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Abstract

Measuring portfolio risk using Value-at-Risk (VaR) and Conditional-Value-
at-Risk (CVaR) has been a hot issue in both academia and the financial
industry for some time. Of special interests for financial institutions is
often the influence of coupled risk. This thesis constructs a vine copula
based GARCH(1,1) VaR and CVaR model combining the use of GARCH
models and copula functions to allow for flexibility in the choice of marginal
distributions and for a rich dependence structure. Vine copulas are a cascade
of bivariate copula constructions allowing for multivariate dependence
modeling by using bivariate copulas as building blocs, and serve as a useful
alternative to multivariate copulas for high-dimensional portfolios. We apply
this modeling approach, using three different vine copula structures (C-vine,
D-vine and R-vine), to a six-dimensional equally weighted portfolio and test
the performance of these models in forecasting daily VaR and CVaR over
a period of 1757 days. For comparison we perform the same calculations
using a multivariate Student’s t-copula model. An approach using fixed
dependence structure was compared to a 50 days refitted rolling window
approach. The empirical results show that refitting the GARCH(1,1) model
and the vine copula structure every 50 days can improve the measurement
reliability, provided that a sufficiently large number of simulations is used,
whereas a fixed model approach might struggle to adjust to market changes,
especially in periods of high volatility such as the recent global financial
crisis.
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1. Introduction

There are a number of approaches to quantify risk in modern financial
risk management. With the most modern and consistent being quantile
based, it is of major interest to us to thoroughly understand the distri-
bution of portfolio returns. Most financial portfolios consist of multiple
assets, which could lead to complications. Copulas are an important tool
to model dependencies. While it is easy to construct bivariate copulas, the
construction of flexible high-dimensional copulas can be a more challenging
problem. Although there are a multitude of parametric bivariate copulas,
the class of high-dimensional copulas is still rather limited. Vine copula
models (proposed by Joe (1997)) offer great advantages in describing the
relationship among multi-dimensional portfolios. The introduction of pair-
copula-constructions (PCC) (see Aas et al. (2006)) has been an enormous
advancement for high-dimensional dependence modeling. It gives us the
benefits of rich selection of bivariate copula families, while simultaneously
adding flexibility to our model.

In this thesis a model for analyzing stocks and calculating Value-at-Risk
(VaR) and Conditional-Value-at-Risk (CVaR or alternatively ES for Expected-
Shortfall), with vine copula based GARCH(1,1) modeling is presented. VaR
and CVaR are widely used instruments to measure market risk. However,
risk measures such as VaR and CVaR are only accurate as long as the
return distribution is precisely modeled. Typical choices of confidence levels
connected with VaR and CVaR are 95%, 97% and 99% respectively.

This thesis consists of six chapters, whereof four are of theoretical nature
and the last two deal with empirical studies and analysis and results. The
first chapter of this thesis introduces mathematical concepts and definitions
which are needed to be able to understand the further chapters. The sec-
ond chapter gives a brief introduction to the GARCH model especially the

1



1. Introduction

GARCH(1,1) model, which will later be used to model the marginal distribu-
tions of the different stock markets. In Chapter 3 we present an overview of
the most commonly used bivariate copula families and their properties. The
fourth chapter will be all about the modeling of inter-structure dependence
of these stock markets with R-vine, C-vine and D-vine copula models using
the bivariate copula families introduced in Chapter 3 as building blocs. Here
we will introduce the pair-copula-construction (PCC) approach.

The last two chapters of this master’s thesis are concerned with practical
analysis of data and results. Here we estimate VaR and CVaR in the C-vine,
D-vine and R-vine model based on daily data and compare the results to
values calculated from a multivariate Student’s t-copula and traditional
methods like historical simulation (HS) and the mean variance model (MV).
We consider two backtesting scenarios: First we look at a fixed dependence
model and in a second approach we re-estimate the dependence structure
every 50 days.

Summarizing, we will estimate the joint distribution of a portfolio of six
assets using R-vine, C-vine and D-vine copula models. After evaluating
the joint distribution of this six dimensional portfolio we can predict Value-
at-Risk and Conditional-Value-at-Risk and use backtesting procedures to
evaluate the accuracy of our estimations. For comparison we used a multi-
variate Student’s t-copula model.

For the sake of completeness and fully understanding the following thesis
and results the remainder of this chapter is devoted to some standard
mathematical concepts and definitions.

1.1. Risk

Since the financial crisis from 2007 until 2009 and its aftermath, the dis-
cussion of systemic risk has become more important than ever before. The
default of Lehman Brothers in September 2008 showed strikingly that the
abrupt meltdown of one key global financial player does not only affect
other financial institutions but can also lead to serious instability and en-
dangerment of real economies in countries all around the globe.

2



1. Introduction

According to Merriam Webster Dictionary risk is defined as the ”possibility of
loss or injury” or alternatively ”the chance that an investment (such as a stock or
commodity) will lose value”. While in the eyes of most people risk represents
something negative it can also be an opportunity. A entire industry has
formed around financial products and risk management, that would not
exist if there was no risk. The products and services offered by those financial
institutions usually give their clients and customers more financial stability
and certainty.

According to A. J. McNeil, Frey, and Embrechts (2006) there are three main
types of risk that are encountered in the context of financial and insurance
industries: Market Risk, Operational Risk and Credit Risk.

Especially in banking Market Risk is well-known. It is the possibility of
loss experienced by an investor due to the financial market in which he is
investing and its general performance. It is not possible to eliminate market
risk by diversification, although an investor can construct a hedge against
it. Changes in value of underlying assets can occure due to several reasons
including recession, political turmoil, natural disasters or terrorist attacks.

The second important category is Credit Risk, which refers to the risk that a
borrower does not repay its promised payments on outstanding investments,
including loans, bonds and other obligations. This usually happens due to
default of the borrower. It is almost never certain whether the debtors will
definitely have the assets to repay their debts or not.

Lastly, Operational Risks are the risks undertaken by a company operating
within a given field or industry. It can be summarized as the risk of losses
resulting from failed or inadequate internal processes, people or systems.
External events can also be a source of operational risk. It can be character-
ized as the risk of business operations failing due to human error. The main
differentiator of this risk category to the other two categories are that it is
not revenue driven.

We always have to keep in mind that the boundaries between all three risk
categories are not precisely defined and not always clear. In this thesis we
will analyze a portfolio of different assets and try to evaluate the market
risk connected with these assets using so-called risk measures.

3



1. Introduction

1.2. Risk measures

A risk measure needs to fulfill a list of desirable properties in order to be a
good risk measure. The selection of the appropriate risk measure is crucial.
In financial economics and actuarial science there are many ways to define
risk. In order to clarify the concept Artzner, Delbaen, and Ebner (1999)
described a number of properties that a risk measure might have. Let G be
a vector space of random variables that represent portfolio values at a fixed
future date.

Definition 1 (Coherent risk measure)
Let ρ : G → R be a risk measure. A risk measure satisfying the following four
axioms is called coherent.
Axiom T - Translation invariance

For all X ∈ G and all real numbers α, we have ρ(X + α) = ρ(X)− α.

Axiom S - Subadditivity

For all X and Y ∈ G, we have ρ(X + Y) ≤ ρ(X) + ρ(Y).

Axiom PH - Positive homogeneity

For all λ > 0 and all X ∈ G, we have ρ(λX) = λρ(X).

Axiom M - Monotonicity

For all X and Y ∈ G with X
a.s.
≤ Y, we have ρ(Y) ≤ ρ(X).

A risk measure assigns a monetary value to risk, which has economically
speaking approximately the same value as equity needed to hedge against
the same risk. Describing risk using a single number is connected to a
great loss of information. However the decision of taking risk or not is
fundamentally binary. Many times standard deviation (or variance) is a
sufficient measure of risk. More recently however, other risk measures such
as Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), also known
as Expected-Shortfall (ES), are more and more being used in practice. Also
Basel II considers VaR as the preferred risk measure.

4



1. Introduction

1.2.1. Value-at-Risk

Value-at-Risk(VaR) is widely used as measurement of financial risk and
plays a vital role in modern risk measurement. It was first introduced by
Baumol (1963). Although VaR can be interpreted without difficult it is not
trivial to estimate.

Often VaR is analysed in terms of loss L by using the loss distribution
FL. Here we will follow a different approach by using the actual portfolio
distribution of X. In our case X is representing the distribution of change in
portfolio value in a given day.

Definition 2 (Value-at-Risk)
Given some confidence level α ∈ (0, 1) the VaRα of an underlying X is defined as
the smallest number x so that P(X ≤ x) ≥ α.

VaRα(X) = inf{x ∈ R|P(X ≤ x) ≥ α}
= inf{x ∈ R|FX(x) ≥ α}

Definition 3 (Generalized inverse function)
Let F : R→ R be a increasing function (x ≤ y⇒ F(x) ≤ F(y)). The generalized
inverse function of F is defined as

F←(y) := inf{x ∈ R : F(x) ≥ y}.

We use the convention that the infimum of an empty set is ∞.

Therefore the VaR is simply the α-quantile of the return distribution,

VaRα(L) = qα(F) = F←(α),

where
F : R→ R, qα(F) := inf{x ∈ R : F(x) ≥ α}

is the α-quantile of F.

Keep in mind that VaR always relates to some confidence level α, typically
around 1 to 5 percent and hence does not give us a maximum loss but rather
tells us the worst portfolio outcome that happens once every so many days.
Clearly this is not sufficient to tell us everything about risk. Thus one major

5



1. Introduction

flaw of VaR is that it does not tell us how large the likely magnitude of
losses is on the days that the return is worse than the VaR.

Artzner, Delbaen, and Ebner (1999) have shown that VaR fails to satisfy
the subadditivity property and therefore is no coherent risk measure as
described in the beginning of this section. One way to conquer this shortcom-
ing is the introduction of Conditional-Value-at-Risk (CVaR), as an alternative
to traditional VaR, which is defined as the expected return conditional on
the return being worse than the VaR.

Banking laws and the Basel Committee on Banking and Supervision define VaR
as a main component of risk quantification. It regulates that . . . (a) ”Value-
at-risk” must be computed on a daily basis. (b) In calculating the value-at-risk, a
99-th percentile, one-tailed confidence interval is to be used. . . . [Basel Committee
on Banking Supervision (2009)] Although there do exist alternatives to VaR,
it still remains the most commonly used risk measure.

95%
Chance of a Return
Better than −1.88%

5%
Chance of a Return
Worse than −1.88%

T
he

 5
%

 V
aR

 is
 −

1.
88

%

0.0

0.1

0.2

−5 0 5

Portfolio value

5% Value−at−Risk

Figure 1.1.: Illustration of VaR0.05.

Figure 1.1 illustrates an α = 5% VaR for a random portfolio of normally
distributed variables with a mean of 1 and standard deviation of 1.7. The
vertical line marks the VaR0.05 or equivalently as mentioned above the 5%
quantile.
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1.2.2. Conditional Value-at-Risk

Conditional-Value-at-Risk (CVaR) also known as Expected-Shortfall (ES) is
closely linked to Value-at-Risk (VaR). From now on we will refer to it as
CVaR.

Definition 4 (Conditional-Value-at-Risk)
Given some confidence level α ∈ (0, 1) and a continuous portfolio distribution X
with distribution function FX, the CVaRα(X) is defined as:

CVaRα(X) := ESα(X) = E [X|X ≤ VaRα(X)]

This can equivalently be written as

CVaRα(X) =
1
α

∫ α

0
VaRp(X)dp.

In other words, the ”CVaR at level α%” gives us the expected return in
the worst α% of all cases. It is considered to be a better alternative to VaR,
because it takes into account the shape of the left tail of the loss distribution.
Pflug (2000) proved that CVaR satisfies all four conditions for a coherent
risk measure: translation invariance, subadditivity, positive homogenity
and monotonicity. In contrast to VaR, CVaR therefore is a coherent risk
measure.

The 5% CVaR is −2.68%

0.0

0.1

0.2

−4 0 4 8

Portfolio value

5% Conditional−Value−at−Risk

Figure 1.2.: Illustration of CVaR0.05.

7



1. Introduction

Figure 1.2 illustrates an α = 5% CVaR for a random portfolio of normally
distributed variables with a mean of 1 and standard deviation of 1.7.

The CVaR satisfies the following properties:

• CVaR is a coherent risk measure.
• CVaR1.0 equals the expected value of the entire portfolio.
• As α increases the CVaRα increases.
• For any given portfolio we get CVaRα ≤ VaRα at the same level α.

Historical overview over the most important developments concerning VaR
and CVaR:

• 1994: RiskMetricsTM Technical Documents make VaR popular.
• 1996: Basel Committee on Banking Supervision (1996) internal-based

approach to capital adequacy - based on VaR.
• 1999: Artzner, Delbaen, and Ebner (1999) develops axioms for sensible

risk measures. VaR is criticized for not complying.
• 2000: Pflug (2000) proved that CVaR satisfies all conditions for a

coherent risk measure.
• 2000: VaR and CVaR are widely adopted in the financial industry.
• 2013/2016: Basel Committee on Banking Supervision (2013) replaces

VaR0.01 with CVaR0.025. VaR remains important for model backtesting.

1.3. Traditional methods for calculating VaR and
CVaR

There are several different ways of calculating VaR. In this section we give a
brief introduction to the two most commonly used methods: the historical
simulation and the mean variance method. On the basis of VaR we will later
be able to further calculate the CVaR of a given multidimensional portfolio.
The general outline of this subsection is modeled after works from Xu and
Chen (2012).

8
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1.3.1. Historical simulation method (HS)

One of the industry standards for computing VaR is the so-called historical
simulation (HS). Under this model the forecasting of VaR is solely based
on the empirical loss distribution. On this way it is possible to estimate
future VaR directly from observed portfolio returns. Hence there is no need
for modeling the loss distribution under some statistical model. VaR of a
n-dimensional portfolio can be computed in two simple steps.

1. We first need to transform the asset returns into pseudohistorical
portfolio returns. Using today’s portfolio weights and historical asset
returns of the past t days, a series of pseudohistorical portfolio returns,
is constructed:

Ri
p =

n

∑
j=1

wjR
i,j
a for 1 ≤ i ≤ t,

where Ri
p denotes the pseudohistorical portfolio return at time i, wj

the portfolio weight of financial assets j and Ri,j
a denotes the historical

asset return of the single portfolio component j at time i. The portfolio
weights w = (w1, w2, . . . , wn) give the proportion invested in each
individual asset and sum to one.

2. The α-quantile of the pseudohistorical portfolio returns is being calcu-
lated, which leads to the empirical VaRα at time t + 1:

V̂aR
t+1
α = qα(R1

p, R2
p, . . . , Rt

p)

Advocates of the HS model to calculate VaR highlight its model-free nature.
Nevertheless it is certainly not assumption-free. Historical simulation implic-
itly assumes that the returns are independent and identically distributed,
which is unfortunately empirically not the case. This might be very mislead-
ing, especially in the case when a period of market turbulence appears after
a long period of low volatility. The obvious attractions of the HS method are
that it is quite easy to implement and does not depend on any assumptions
of the loss distribution.

One should also be very careful when setting the length of the timeframe
of historic data used for the estimation. A too long window might lead
to a VaR that is based on too old historical data which may not correctly

9
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represent the current situation on the market anymore and in addition is
slow to adjust to changes in volatility. On the other hand a too short window
might lead to calculations that are not sufficiently robust.

Figure 1.3.: Illustration of historical simulation method, from Harper (2017).

Figure 1.3 illustrates an α = 5% VaR of daily returns of the NASDAQ
100 (ticker: QQQ) within a period of something more than five years by
using a histogram of daily returns. Therefore the red bars on the left of the
histogram are indicating the worst 5% of daily returns. In this example we
can say with a certainty of 95% that the worst daily loss will not exceed
4%.

This approach struggles from the co-called ghost effects, which refers to
the effect of a VaR estimation being unduly high (low) due to a short
period of high (low) volatility. The VaR estimation stays high (low) until
these observations have fallen out of the sample window. To reduce this
Boudoukh, Richardson, and Whitelaw (1997) suggested using weights for
each observation according to their age, instead of using equal weights for
all historic observations. This makes the VaR estimates more responsive to a
large loss observation and also helps with volatility clustering (e.g. clusters
of large losses).

10
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1.3.2. Mean variance method (MV)

This method, used by the RiskMetricsTM methodology, was originally devel-
oped by JP Morgan. It assumes that the portfolio returns are multivariate
normally distributed with mean vector µ and covariance matrix Σ. This
allows us to plot a normal distribution curve against the actual return data
as seen below.

Figure 1.4.: Illustration of mean variance method, from Harper (2017).

The idea behind this method is very similar to the historical simulation,
except that we are now using a familiar curve instead of actual market data.
On this normal curve it is quite trivial to calculate the worst α% that we
need for VaR estimation. The VaR can be computed in three simple steps:

1. We need to estimate two factors from the portfolio of assets: The vector
of expected returns µ and the covariance matrix Σ,

µ =


µ1
µ2
...

µn

 and Σ =


σ2

1 σ12 · · · σ1n
σ21 σ2

2 · · · σ2n
...

... . . . ...
σn1 σn2 · · · σ2

n

 .

11



1. Introduction

The mean vector µ represents the average historical returns for each
asset, whereas the covariance matrix Σ depicts the interdependencies
between each asset. One way to estimate the mean µi of the individual
asset i is

µ̂i =
1
t

t

∑
k=1

Rk,i
a for 1 ≤ i ≤ n

whereas the estimator Σ̂ = (σ̂ij) for Σ = (σij) is given by:

σ̂ij =
1

t− 1

t

∑
k=1

(Rk,i
a − µ̂i)(Rk,j

a − µ̂j) for 1 ≤ i, j ≤ n.

2. Given a vector of portfolio weights w = (w1, w2, · · · , wn), the estima-
tors of weighted expected portfolio return µ̂p and the weighted return
variance σ̂2

p are given by:
µ̂p = wµ̂

σ̂2
p = wΣ̂w′

3. Under the assumption of multivariate normal distribution the estima-
tor V̂aRα at time t + 1 can now be calculated:

V̂aR
t+1
α = µ̂p + σ̂pφ−1(α),

where φ denotes the cumulative distribution function of a standard
normally distributed random variable.

One major drawback of assuming normal distribution for VaR calculation
is that portfolio asset are, in the best case scenario, only approximately
normally distributed. In the worst case asset values could follow a totally
different distribution.

12
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1.4. Methods of backtesting VaR and CVaR

Backtesting procedures are essential tools for determining the accuracy of
VaR and CVaR models. In the context of financial risk modeling, the main
idea of backtesting is to compare the calculated VaRt

α measures to the actual
observed gains (or losses) xt realized on the portfolio for 1 ≤ t ≤ n, to
assess the performance of the used VaR/CVaR model. In practice, there are
several different metrics and statistical tests1 to evaluate the performance
of risk measures, whereof we are using a widely used test introduced by
P. F. Christoffersen (1998) and Kupiec (1995) for VaR and the Zero Mean test
proposed by A. J. McNeil and Frey (2000) for CVaR.

1.4.1. VaR: Kupiec and Christoffersen coverage test

VaRα
t is defined in such a way that the probability of realizing a loss in

access of the reported VaRt
α (also known as a violation) is matching the

implied probability α from the VaR confidence level. {1t}n
t=1 is defined as

a indicator sequence across n days indicating if such a violation at day t
occurred or not:

1t =

{
1, if xt < VaRt

α

0, if xt ≥ VaRt
α,

(1.1)

where xt is denoting the actual gain (or loss) realized on the portfolio,
whereas VaRt

α denotes the calculated α% VaR value for day t. This series of
indicators, which is often referred to as hitting sequence, returns 1 on day t
if the actual return on that day is lower than the VaR forecast for that day.
Vice versa, if the forecasted VaR for day t is smaller than the observed return,
then the hitting sequence returns 0. According to P. F. Christoffersen (1998),
the problem of determining the quality of a VaR model can be reduced to
the question whether the hitting sequence {1t}n

t=1 fulfills two properties:

1. Unconditional coverage property:
The likelihood of realizing a loss in excess of the reported VaRt

α (also

1See Campbell (2005) and Berkowitz, P. Christoffersen, and Pelletier (2011) for further
details on several different backtesting procedures.
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known as violations) must match the implied probability α from the
VaR confidence level. Formally

P(1t = 1) = α for 1 ≤ t ≤ n, (1.2)

makes sure that the probability of violation during the observed period
equals the α level of the VaR estimation.

2. Independence property:
Up to this point we have only placed restrictions on how often a VaR
violation my occur. The independence property states additionally
restrictions regarding the way in which the violations may occur. The
VaR violations observed on two different observations for the same
coverage rate of α must be independently distributed. This means
that a variable 1t must be independent of the variable 1t−j, ∀j 6= 0.
Hence past unconditional coverage violations should not carry any
information about possible future violations.

Christoffersen points out that VaR forecasts are only valid if both properties
are met, this meaning that the hitting sequence satisfies the unconditional
coverage hypothesis (UC) and the independence hypothesis (IND). In other
words, the hitting sequence should be completely unpredictable and hence
independently distributed over time, following an i.i.d. Bernoulli distribu-
tion that assumes 1 with probability α and 0 with probability (1− α). This
can be written as:

H0 : 1t
i.i.d.∼ Bernoulli(α)

The probability distribution function of a Bernoulli distribution with α ∈
(0, 1) is given as:

f (1t|α) = (1− α)1−1t α1t

Overall the Christoffersen frequency test consists of two separate tests which
can be joined together to a conditional coverage test (CC).

The likelihood ratio test of unconditional coverage (UC):
The unconditional coverage test evaluates the unconditional coverage prop-
erties of a series of VaRt

α forecasts for 1 ≤ t ≤ n.

We want to test if the fraction of violations obtained for a certain observed
risk model (we will call it π) is significantly different from the expected

14
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fraction α. Hence we set the null and alternative hypothesis as:

H0 : 1t
i.i.d.∼ Bernoulli(α)

H1 : 1t
i.i.d.∼ Bernoulli(π)

The likelihood under H0 is simply the likelihood of an i.i.d. Bernoulli(α)
hitting sequence

L(α|11, 12, . . . , 1n) =
n

∏
t=1

(1− α)1−1t α1t = (1− α)n0αn1 ,

and under the alternative hypothesis H1

L(π|11, 12, . . . , 1n) =
n

∏
t=1

(1− π)1−1t π1t = (1− π)n0πn1 ,

where n is the total number of VaR forecasts in the series and n0 and n1
the number of non-violations and violations in the sample. π can easily
be estimated from the observed fraction of violation in the sequence using
maximum likelihood estimation:

π̂ =
n1

n0 + n1
=

n1

n

Detailed calculations can be found in Appendix A.2.1.

The test statistic can now be formulated as a standard likelihood ratio
test2:

LRuc =− 2 log
[

L(α|11, 12, . . . , 1n)

L(π̂|11, 12, . . . , 1n)

]
=− 2 log

[
(1− α)n0αn1(

1− n1
n
)n0
(n1

n
)n1

]

The likelihood ratio test compares two nested models, hence the simpler
model in the numerator with fewer parameters is a special case of the more
complex model in the denominator consisting of more parameters. We now

2A short introduction to the likelihood ratio test can be found in Appendix A.1.
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use Wilks’ Theorem introduced in Wilks (1938). The theorem states that the
distribution of the statistic −2 log

[
L(θ0|x)
L(θ|x)

]
for a nested model converges to

a χ2
ν distribution as the sample size n→ ∞, given H0 is true. The degrees of

freedom ν of the χ2
ν distribution are equal to the difference in dimension of

the parameter space of θ and θ0.

With this theorem in hand (and for large n) we can now asymptotically
compare LRuc to the χ2

ν distributions with ν = (2− 1) degrees of freedom.

LRuc
asy∼ χ2

2−1 = χ2
1

Example for a significance level of β = 5%:
As the LRuc value gets larger the more unlikely H0 is to be true. Under the
significance level of β = 5%, we will have a critical value of 3.841 from the
χ2

1 distribution. Hence the null hypothesis is rejected if LRuc > LRcritical =
3.841.

In another approach we can calculate the p-value associated with the likeli-
hood ratio test statistic, which is defined as the probability, given the null
hypothesis H0 is true, of obtaining a sample that conforms even less to the
null hypothesis H0 than the sample we actually got.

In our particular setting the p-value is calculated as:

p-value : 1− Fχ2
1
(LRuc)

Fχ2
1
(·) is denoting the cumulative density function of a χ2 variable using one

degree of freedom. The null hypothesis is rejected if the p-value is below
the significance level β. If we now presume a test value of LRuc = 4.1, then
we obtain a p-value of:

p-value : 1− Fχ2
1
(4.1) = 1− 0.9571 = 0.0429

Hence, when using a significance level of β = 5%, we can reject the null
hypothesis.

Nevertheless simply testing for correct unconditional coverage is insufficient.
The UC hypothesis gives no indication whether the violations come clus-
tered together in a time-dependent fashion. The clustering of VaR violations
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can be a serious warning signal of risk model misspecification. This often
happens when using VaR forecasting models that are slow at responding
to volatility increases in the market like e.g. historical simulation (HS). We
need one more test to make up for this deficiency.

The likelihood ratio test of independence (IND):
Our goal is to construct a statistical test that is able to reject a series of
VaR estimates that exhibit clustered violations. The VaR violations observed
on two different observations for the same coverage rate of α% must be
independently distributed. This means that a variable 1t (indicating a VaR
violation at time t) must be independent of the variable 1t−j, ∀j 6= 0. Hence
past UC violations should not carry any information about possible fu-
ture violations. We now consider a first-order Markov chain {1t}n

t=1 with
transition matrix

Π1 =

(
1− π01 π01
1− π11 π11

)
,

where
πij = P(1t = j|1t−1 = i).

Here we assume that only todays outcome has relevance for tomorrows
outcome. The likelihood function for this first-order Markov process is

L(Π1|11, 12, . . . , 1n) = (1− π01)
n00πn01

01 (1− π11)
n10πn11

11 , (1.3)

where nij for i, j ∈ {0, 1} refers to the number of observation where j follows
i. We can solve for the maximum likelihood estimates by taking the first
derivatives with respect to π01 and π11 and setting these derivatives to
zero:

π̂01 =
n01

n00 + n01

π̂11 =
n11

n10 + n11

Detailed calculations can be found in Appendix A.3.1. The probabilities
need to sum up to one, hence we get:

Π̂1 =

(
π̂00 π̂01
π̂10 π̂11

)
=

(
1− π̂01 π̂01
1− π̂11 π̂11

)
=

(
n00

n00+n01

n01
n00+n01n10

n10+n11

n11
n10+n11

)
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Dependence in the hitting sequence corresponds to allowing π01 and π11 to
be different. In general, we are mostly concerned about positive dependence,
meaning that it is more likely that a violation is following a violation (π11)
than a non-violation (π01). However, in the case of independent violations
over time, the probabilities of a violation tomorrow does not depend on the
occurrence of a violation today. Therefore we set the null hypothesis as:

H0 : The occurreces of violations and non-violations in the
hitting sequence {1t}n

t=1 are independently distributed
over time, hence π01 = π11 = π.

This leads to the transition matrix

Π =

(
1− π π
1− π π

)
.

Under the null hypothesis the likelihood function becomes

L(Π|11, 12, . . . , 1n) = (1− π)(n00+n10)π(n01+n11),

and the maximum likelihood estimate is

π̂ =
n01 + n11

n00 + n10 + n01 + n11
=

n1

n
.

Detailed calculations can be found in Appendix A.3.2. We set the alternative
hypothesis as:

H1 : The occurreces of violations and non-violations in the
hitting sequence {1t}n

t=1 are not independently distributed
over time.

Under the alternative hypothesis the likelihood function is given by Equation
(1.3).

The following likelihood ratio test tests the independence hypothesis that
π01 = π11:

LRind =− 2 log
[

L(Π̂|11, 12, . . . , 1n)

L(Π̂1|11, 12, . . . , 1n)

]
=− 2 log

[
(1− π̂)(n00+n10)π̂(n01+n11)

(1− π̂01)n00π̂n01
01 (1− π̂11)n10π̂n11

11

]
asy∼ χ2

1
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In the practical implementation of LRind one might find samples where
n11 = 0 (the existence of no instances where violations follow directly onto
violations), which leads to numerical problems.

Example for a significance level of β = 5%:
The larger the LRind value is the more unlikely the independence hypothesis
is to be true. Under the significance level of β = 5%, we will have a critical
value of 3.841 from the χ2

1 distribution. Hence the independence hypothesis
is rejected if LRind > LRcritical = 3.841.

Alternatively the null hypothesis is rejected if the p-value is below the
significance level β. If we now presume a test value of LRind = 4.1, then we
obtain a p-value of:

p-value : 1− Fχ2
1
(4.1) = 1− 0.9571 = 0.0429

Hence, when using a significance level of β = 5%, we can reject the null
hypothesis.

This test does not depend on the true coverage rate α and therefore it is only
a test for the independence part of our hypothesis.

The likelihood ratio test of conditional coverage (CC):
An accurate VaR measure must satisfy both the unconditional coverage (UC)
and independence (IND) property. The conditional coverage (CC) test forms
a complete test by jointly testing for the unconditional coverage (UC) and
the independence (IND) property. The previously discussed independence
test (IND) examined whether the likelihood of a violation following on a
previous violation is equal to the likelihood of a violation following on
a previous non-violation: π01 = π11. If we additionally require the VaR
estimate to exhibit the unconditional coverage (UC) property, then the above
likelihoods need to correspond with the total proportion of violation α,
hence: π01 = π11 = α.

Accordingly, the joint conditional coverage (CC) test determines if there is a
difference in likelihood of a VaR violation following a VaR violation or a
non-violation and examines whether the probability is significantly different
from α. Therefore we set the null hypothesis as:

H0 : π01 = π11 = α
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The conditional coverage test statistic is given as:

LRcc = −2 log
[

L(α|11, 12, . . . , 1n)

L(Π̂1|11, 12, . . . , 1n)

]
asy∼ χ2

2

The likelihood ratio test statistic for the unconditional coverage test (CC) is
asymptotically χ2

2 distributed as seen in Equation (1.4).

The unconditional coverage test (UC), the independence test (IND) and the
conditional coverage test (CC) are related by the following identity:

LRcc =− 2 log
[

L(α|11, 12, . . . , 1n)

L(Π̂1|11, 12, . . . , 1n)

]
=− 2 log

[
L(α|11, 12, . . . , 1n)

L(π̂|11, 12, . . . , 1n)
· L(Π̂|11, 12, . . . , 1n)

L(Π̂1|11, 12, . . . , 1n)

]
=− 2 log

[
L(α|11, 12, . . . , 1n)

L(Π̂|11, 12, . . . , 1n)

]
− 2 log

[
L(Π̂|11, 12, . . . , 1n)

L(Π̂1|11, 12, . . . , 1n)

]
=LRuc + LRind

asy∼ χ2
2 (1.4)

Example for a significance level of β = 5%:
Under significance level of β = 5%, we will have a critical value of 5.991
from the χ2

2 distribution. The VaR model passes the conditional coverage
test if LRcc ≤ LRcritical = 5.991.

Alternatively the null hypothesis is rejected if the p-value is below the
significance level β. If we now presume a test value of LRcc = 8.2, then we
obtain a p-value of:

p-value : 1− Fχ2
2
(8.2) = 1− 0.9834 = 0.0166

Hence, when using a significance level of β = 5%, we can reject the null
hypothesis.
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1.4.2. CVaR: Zero mean test

According to the definition of Conditional-Value-at-Risk given in Artzner,
Delbaen, and Ebner (1999), CVaR is the conditional expectation of loss, given
the loss of an portfolio of assets is greater than the forecasted VaR. CVaR is
a risk measure for forecasting a specific loss on the basis of VaR. Therefore
we cannot discuss the CVaR forecast for models which are not even suitable
to properly forecast VaR of a portfolio. A. J. McNeil and Frey (2000) have
proposed a backtesting procedure for CVaR using the zero mean test. We
observe that CVaRα can be written as

CVaRα = VaRα + (CVaRα −VaRα)︸ ︷︷ ︸
Excess Shortfall

.

Given that the VaR estimation passed the previously in Subsection 1.4.1 de-
scribed tests, the excess shortfall part can be backtested using the following
test statistic:

St =
(
CVaRt

α − xt
)

1{xt<VaRt
α} for 1 ≤ t ≤ n,

where xt denotes the actual gains (losses) realized on the portfolio, whereas
VaRt

α and CVaRt
α denote the calculated risk measures at a α% level for day t.

A. J. McNeil and Frey (2000) pointed out that St should be i.i.d. distributed
over time with a mean of 0, in the case that the CVaR is forecasted correctly.
Therefore the null hypothesis H0 states that the excess conditional shortfall
(excess of the actual series when VaR is violated), is i.i.d. and has a mean
of 0. We can conduct a standard one-sided t-test against the alternative
hypothesis H1 that the excess shortfall has mean greater than 0, meaning
that the CVaR is systemically underestimated, since this presents the most
likely direction of failure.
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1.5. Copula

Definition 5 (Copula)
A n-dimensional copula C is a multivariate cumulative distribution function on
[0, 1]n,

C : [0, 1]n → [0, 1],

with univariate uniform distribution margins.

In other terms, C : [0, 1]n → [0, 1] is a n-dimensional copula if:

• C(u1, . . . , ui−1, 0, ui+1, . . . , un) = 0 for all i ∈ {1, . . . , n}, ui ∈ [0, 1]. If
one of the arguments is zero then the copula is equal to zero.
• C(1, . . . , 1, ui, 1, . . . , 1) = ui for all i ∈ {1, . . . , n}, ui ∈ [0, 1]. If one of

the arguments of the copula is ui and all others are 1 then the copula
is equal to ui.
• C is d-non-decreasing, i.e. for each hyperrectangle

R =
n

∏
i=1

[xi, yi] ⊆ [0, 1]n with 0 ≤ xi ≤ yi ≤ 1, for all i ∈ {1, . . . , n}

the C-volume of R is non-negative:

VC(R) :=
∫

R
dC(u) = ∑

z∈∏n
i=1{xi,yi}

(−1)N(z)C(z) ≥ 0,

where the N(z) = #{i : zi = xi}.

In the 2-dimensional case, C : [0, 1]× [0, 1]→ [0, 1] is a bivariate copula if

• C(0, u) = C(u, 0) = 0, for all u ∈ [0, 1]
• C(1, u) = C(u, 1) = u, for all u ∈ [0, 1]
• C is 2-non-decreasing:

VC([u1, u2]× [v1, v2]) = C(u2, v2)−C(u2, v1)−C(u1, v2)+C(u1, v1) ≥
0 for all 0 ≤ u1 ≤ u2 ≤ 1 and 0 ≤ v1 ≤ v2 ≤ 1.

For further details on copulas and bivariate copula families see Chapter 3.
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1. Introduction

1.6. Dependence measures

In this section we will briefly introduce and describe the dependence mea-
sures Pearson’s ρ, Spearman’s ρ and Kendall’s τ. The following subsection
is based on Embrechts, Lindskog, and A. McNeil (2003) Chapter 5.

Definition 6 (Concordant / Discordant)
Let (x1, x2)

T and (x̃1, x̃2)
T be two observations from a vector (X1, X2)

T of contin-
uous random variables. (x1, x2)

T and (x̃1, x̃2)
T are called concordant if

(x1 − x̃1)(x2 − x̃2) > 0.

Similarly (x1, x2)
T and (x̃1, x̃2)

T are called discordant if

(x1 − x̃1)(x2 − x̃2) < 0.

Two important measures of concordance we will look at in this section are
Kendall’s τ and Spearman’s ρ. Further details on dependence measures can
be found in Joe (1997).

1.6.1. Pearson correlation coefficient

The Pearson correlation coefficient is a measure of linear dependence of two
variables X1 and X2.

Definition 7 (Pearson correlation coefficient / Linear correlation coefficient)
Let Var(X1), Var(X2) ∈ (0, ∞). The Pearson correlation coefficient also known as
linear correlation coefficient ρL(X1, X2) ∈ [−1, 1] is defined as

ρL(X1, X2) =
Cov(X1, X2)√

σ2
X1

σ2
X2

,

where Cov(·) is the covariance, σX1 the standard deviation of X1 and σX2 the
standard deviation of X2.

This kind of linear correlation coefficient has some limitations and therefore
has to face some criticism:

23



1. Introduction

• It measures linear dependence, which can be a drawback in cases
where dependence is non-linear.
• Zero correlation in general does not imply independence.
• It is sensitive to outliers.
• May be misleading if the multivariate distribution function is not

elliptical.
• The pearson correlation coefficient is not defined for variables with

non-finite variance.
• It is not invariant under non-linear strictly increasing transformations

(e.g. X1 and X2 do not yield the same correlation as log(X1) and
log(X2)). Invariance only holds in case of strictly increasing linear
transformations. Hence for two random variables X1 and X2 and real
constants α1, α2, β1, β2 ∈ R, β1 > 0 and β2 > 0 we have:

ρL(α1 + β1X1, α2 + β2X2) = ρL(X1, X2)

Copulas on the other hand are invariant under non-linear continuous and
increasing transformation of the margins. It is common practice in the
analysis of financial risk factors to use log-returns on asset and commodity
prices, which may presents a problem when using linear correlation. So it is
apparent that we will now focus on copula-based dependence measures as
alternative to linear correlation based measures.

1.6.2. Spearman’s ρ

Definition 8 (Spearman’s ρ)
Let F be a continuous bivariate cumulative distribution function and let (X1, X2)

T,
(X̃1, X̃2)

T and (X̌1, X̌2) be independent random pairs with distribution F. Then
formally Spearman’s ρ denoted by ρS(X1, X2) ∈ [0, 1] is defined as:

ρS(X1, X2) = 3
(
P
(
(X1 − X̃1)(X2 − X̌2) > 0

)
−P

(
(X1 − X̃1)(X2 − X̌2) < 0

))
Equivalently, let F1 and F2 be the continuous margins of (X1, X2)

T, then Spear-
man’s ρ is the Pearson correlation of F1(X1) and F2(X2) (ρS(X1, X2) = ρL(F1(X1), F2(X2))).
In other words Spearman’s ρ is the linear correlation of the unique copula of
(X1, X2)

T.
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Theorem 1
Let (X1, X2)

T be a random vector with continuous margins and a unique copula C,
then we can write Spearman’s ρ as:

ρS(X1, X2) =12
∫ 1

0

∫ 1

0
(C(u1, u2)− u1u2)du1du2 (1.5)

=12
∫ 1

0

∫ 1

0
C(u1, u2)du1du2 − 3 (1.6)

Proof. The proof to this theorem can be found in A. J. McNeil, Frey, and
Embrechts (2006), Proposition 5.29.

1.6.3. Kendall’s τ

Definition 9 (Kendall’s τ)
Let F be a continuous bivariate cumulative distribution function and let (X1, X2)

T,
(X̃1, X̃2)

T be independent random pairs with distribution F. Then formally Kendall’s
τ denoted by ρτ(X1, X2) ∈ [0, 1] is defined as:

ρτ(X1, X2) = P
(
(X1 − X̃1)(X2 − X̃2) > 0

)
−P

(
(X1 − X̃1)(X2 − X̃2) < 0

)
Theorem 2
Let (X1, X2)

T be a random vector with continuous margins and a unique copula C,
then we can write Kendall’s τ as:

ρτ(X1, X2) = 4
∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2)− 1 (1.7)

Proof. The proof to this theorem can be found in A. J. McNeil, Frey, and
Embrechts (2006), Proposition 5.29.

We can interpret Kendall’s τ as the difference of probability of two random
concordant pairs and the probability of two random discordant pairs.

Spearman’s ρ and Kendall’s τ are rank correlations, which do not directly
depend on the particular distribution of the observed data but on the copula
of the bivariate random vector. Therefore they are invariant under strictly
monotone transformation.
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1.6.4. Tail dependence

This concept refers to the degree of dependence in the lower-left quadrant
and the upper-right quadrant of a bivariate distribution and is therefore
important for measuring dependence between extreme events.

Definition 10 (Upper tail dependence)
Let (X1, X2)

T be a random vector with marginal distribution F1 and F2. The
coefficient of upper tail dependence of (X1, X2)

T is defined as:

λU(X1, X2) = lim
u→1−

P(X2 > F←2 (u) | X1 > F←1 (u)),

given that the limit exists.

Definition 11 (Lower tail dependence)
Let (X1, X2)

T be a random vector with marginal distribution F1 and F2. The
coefficient of lower tail dependence of (X1, X2)

T is defined as:

λL(X1, X2) = lim
u→0+

P(X2 ≤ F←2 (u) | X1 ≤ F←1 (u)),

given that the limit exists.

If λU > 0 (λL > 0) we say that (X1, X2)
T has a upper (lower) tail depen-

dence.

Theorem 3
Let (X1, X2)

T be a random vector with continuous marginal distribution and C a
copula. If the limits exist we get

λU(X1, X2) = lim
u→1−

1− 2u + C(u, u)
1− u

λL(X1, X2) = lim
u→0+

C(u, u)
u

.

Proof. The proof to this theorem can be found in Dragoti-Çela (2009).

If the copula in question has a simple closed form, the calculation of these
coefficients is usually straightforward as we will see in Chapter 3.
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2. Univariate GARCH model

An important concept in financial modeling that measures the movement in
market prices is volatility. Time series of financial asset returns often tend to
volatility clustering. This is the tendency of large price changes of financial
assets to cluster together, meaning that the variance of log-prices is high for
extended periods and then low for extended periods.

This phenomenon has been of great interest to researchers and has influ-
enced the development of several stochastic models in finance. While many
econometric models take the assumption of constant variance, the Autore-
gressive Conditional Heteroscedasticity (ARCH) model introduced by Engel
(1982) models the conditional variance as a function of past errors, hence
allowing it to change over time.

Since the development of the ARCH model there have been several ex-
tensions in order to improve the model, one of which is the Generalized
Autoregressive Conditional Heteroscedasticity (GARCH) model by Bollerslev
(1986). The GARCH process is often used by financial professionals because
it provides good real-world properties when trying to estimate prices and
rates of financial instruments. In our context we will mainly focus on the
univariate GARCH(1,1) model. Parts of this chapter are based on works
from Orskaug (2009), Dißmann (2010) and Brechmann (2010).

Definition 12 (Autocovariance function)
If (Xt)t∈Z is a stochastic process with mean E[X2

t ] < ∞, ∀t ∈ Z, then the
autocovariance function γX of (Xt)t∈Z is defined as

γX(r, s) =Cov(Xr, Xs)

=E[(Xr − µr)(Xs − µs)],

with r, s ∈ Z and µt = E[Xt].
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2. Univariate GARCH model

Definition 13 (Stationarity1)
The time series (Xt)t∈Z is called stationary if it satisfies the following:

• E[X2
t ] < ∞ ∀t ∈ Z

• E[Xt] = µ ∈ R, ∀t ∈ Z and
• γX(r, s) = γX(r + t, s + t) ∀r, s, t ∈ Z

Obviously, for a stationary process the autocovariance function as defined in
Definition 12 only depends on |r− s|, since γX(r, s) = γX(r− s, 0). Hence
we can redefine the autocovariance function for a stationary process as:

γX(h) := γX(h, 0) = Cov(Xt+h, Xt), ∀t, h ∈ Z.

Definition 14 (Autocorrelation function (ACF))
The autocorrelation function of a stochastic process with mean E[X2

t ] < ∞, ∀t ∈ Z,
is the normed autocovariance function:

ρX(r, s) =
γX(r, s)√

Var(Xr)Var(Xs)
,

where −1 ≤ ρX(r, s) ≤ 1.

As already stated above for a stationary process the autocovariance function
only depends on the difference in time of r and s. Therefore the standard
deviation is independent of time and the product of the standard deviations
in the denominator corresponds to

√
VarXt

2 = Var(Xt) = Cov(Xt, Xt) =
γX(0), independent of t. Therefore the autocorrelation function of a station-
ary process simplifies to

ρX(h) := ρX(h, 0) =
Cov(Xt, Xt−h)√

Var(Xt)Var(Xt−h)
=

γX(h)
γX(0)

, ∀t, h ∈ Z,

where h ≥ 1 denotes the lag and ρ(h) = ρ(−h).

Autocorrelation is a representation of the degree of similarity between a
given time series and a lagged version of itself over successive time intervals.

1In some literature the definition of stationarity that is used here is referred to as weak
stationarity.
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2. Univariate GARCH model

It is the same as calculating the correlation between two different time series,
except that the same time series is used twice: once in its original form and
once lagged one or more time periods. Large values for an extended amount
of lags in the autocorrelation function imply volatility clustering. Figure 2.1
displays two examples of ACF plots, one with volatility clustering and one
without volatility clustering.
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Figure 2.1.: Empirical ACF of log-returns with lags h up to 35 - volatility clustering vs.
without volatility clustering.

The by all appearances random variations of asset prices share some non
trivial statistical characteristics. In general such properties (as described
in Cont (2001)), common across a wide range of financial markets and
instruments such as log-returns on indices, interest rates and commodity
prices are called stylized facts:

• Volatility clustering: Volatility of the log-return series is time varying
and appears to be clustered.
• Heavy tails: The distribution of return series seems to display heavy-

tails. Hence normality has to be rejected.
• Leverage effect: The changes in stock prices tend to be negatively

correlated with the changes in volatility.
• Mean reverting: The Volatility is mean-reverting, meaning that there

is a normal level to which volatility will eventually return.
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2. Univariate GARCH model

• Serial correlation: Especially absolute and squared values of the re-
turn series display serial correlation.

The time series of daily log-returns rt is defined as rt = ln
(

St
St−1

)
, where St

are observed market prices at time t. In the following chapters, the term
returns always refers to log-returns, unless otherwise specified. The variable
rt can then be modeled as

rt =µt + εt

εt =σtzt with zt ∼ D(0, 1),

where µt describes the expected value of conditional rt (E[rt|Ft−1] = µt),
σ2

t the conditional variance (E[r2
t |Ft−1] = σ2

t ) and zt is an i.i.d. process of
some distribution D(0, 1) with zero mean and unit variance. Ft denotes the
information set available at time t, i.e. Ft = {rk|k ≤ t}.

Definition 15 (The ARCH(q) model)
A process (εt)t∈Z is called a ARCH(q) process if for every t,

εt =σtzt

σ2
t =α0 +

q

∑
i=1

αiε
2
t−i,

where q ∈ N, α0, α1, . . . , αq ≥ 0 and (zt)t∈Z an i.i.d. sequence with zero mean
and unit variance independent of {εt−k, k ≥ 1}, ∀t ∈ Z.

Using the information Ft−1, given at time t− 1, we can calculate the condi-
tional mean and variance of εt:

E[εt|Ft−1] =E[σtzt|Ft−1] = σtE[zt|Ft−1] = σtE[zt] = 0 (2.1)

Var[εt|Ft−1] =E[σ2
t z2

t |Ft−1]−

=0, using (2.1)︷ ︸︸ ︷
(E[σtzt|Ft−1])

2 = σ2
t E[z2

t |Ft−1] (2.2)

=σ2
t (Var[zt|Ft−1] + E[zt|Ft−1]

2) = σ2
t Var[zt] = σ2

t (2.3)

The Generalized Autoregressive Conditional Heteroscedasticity model
(GARCH), which allows for a longer memory and more flexible lag structure,
is an extension of the ARCH model.
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2. Univariate GARCH model

Definition 16 (The GARCH(p,q) model)
A process (εt)t∈Z is called a GARCH(p,q) process if for every t,

εt =σtzt

σ2
t =α0 +

q

∑
i=1

αiε
2
t−i +

p

∑
j=1

β jσ
2
t−j,

where p ∈ N0, q ∈ N, α0, α1, . . . , αq, β1, . . . , βp ≥ 0 and (zt)t∈Z an i.i.d. se-
quence with zero mean and unit variance independent of {εt−k, k ≥ 1}, ∀t ∈ Z.

In the ARCH(q) model the conditional variance is specified as a linear
function of the past sample variances, while in the GARCH(p,q) model
lagged conditional variances are also taken into account.

2.1. GARCH(1,1) model

The GARCH(1,1) is the simplest but many times still very useful GARCH
model. We will use this model in our practical applications. The GARCH(1,1)
model is given by

εt =σtzt

σ2
t =α0 + α1ε2

t−1 + β1σ2
t−1,

where (zt)t∈Z is an i.i.d. sequence with zero mean and unit variance.

Using the so called ”surprise in squared returns” method one can rewrite
the GARCH(1,1) model to an ARMA(1,1) model on squared residuals ε2

t by
making the substitution ηt = ε2

t − σ2
t . We can show that {ηt} is a serially

uncorrelated sequence with zero mean and uncorrelated with past squared
returns.
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2. Univariate GARCH model

ε2
t =σ2

t + ηt

=α0 + α1ε2
t−1 + β1σ2

t−1 + ηt

Using ηt−1 =ε2
t−1 − σ2

t−1 or equivalently σ2
t−1 = ε2

t−1 − ηt−1 one gets

ε2
t =α0 + α1ε2

t−1 + β1(ε
2
t−1 − ηt−1) + ηt

=α0 + ηt + (α1 + β1)ε
2
t−1 − β1ηt−1,

which is a ARMA(1,1)2 model for the squared residuals.

We see that a GARCH(1,1) model for the returns is the same as a ARMA(1,1)
model for the squared residuals.

The unconditional mean of εt is:

E[εt] =E[E[εt|Ftt1]]

=E[E[σtzt|Ft−1]]

=E[σtE[zt|Ft−1]]

=E[σtE[zt]] = 0

Here we use that E[zt] = 0, ∀t ∈ Z and the independence of zt and σt.

The unconditional variance of εt is:

σ2 = Var[εt] =E[ε2
t ]− (E[εt])

2

=E[ε2
t ]

=E[E[ε2
t |Ft−1]]

=E[E[σ2
t z2

t |Ft−1]]

=E[σ2
t E[z2

t ]]

=E[σ2
t ]

=α0 + α1E[ε2
t−1] + β1E[σ2

t−1]

=α0 + α1 Var[εt−1]︸ ︷︷ ︸
=σ2

+β1 E[σ2
t−1]︸ ︷︷ ︸

=σ2

,

2A ARMA(p,q) model refers to a model with p autoregressive terms and q moving
average terms and is given by: rt = c + εt + ∑

p
i=1 airt−i + ∑

q
j=1 bjεt−j
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2. Univariate GARCH model

Here we use that E[z2
t ] = E[z2

t ]−E[zt]2 = Var[zt] = 1 and the independence
of z2

t and σ2
t . If we assume {εt} to be a stationary process, we get σ2 =

Var[εt] = Var[εt−1] = · · · = Var[εt−q], which leads to the unconditional
variance, by solving with respect to σ2:

σ2 =
α0

1− α1 − β1
(2.4)

The unconditional autocovariance of εt is:

E[εt+kεt−1] = E[E[εt+kεt+1|Ft−1]] = E[εt+k E[εt+1|Ft−1]︸ ︷︷ ︸
=0

] = 0 for k = 0, 1, 2, . . .

Stationarity

According to Theorem 1 in Bollerslev (1986) a GARCH(p,q) process is
stationary if ∑

q
i=1 αi + ∑

p
j=1 β j < 1. Therefore a GARCH(1,1) process is

stationary if α1 + β1 < 1.

2.1.1. Forecasting volatility

One major use of the GARCH model is the prediction of future volatilities.
We are especially interested in predicting future volatilities k-steps ahead,
hence in the estimation of σt+k for k ≥ 1. In the assumed GARCH(1,1) we
have:

σ2
t = α0 + α1ε2

t−1 + β1σ2
t−1
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2. Univariate GARCH model

In particular for GARCH(1,1) and when looking k ≥ 1 steps ahead using
the information at time t this yields a general formulation as follows:

E[σ2
t+1|Ft] =α0 + α1E[ε2

t |Ft] + β1E[σ2
t |Ft]

=α0 + (α1 + β1)σ
2
t

E[σ2
t+2|Ft] =α0 + α1E[ε2

t+1|Ft] + β1E[σ2
t+1|Ft]

=α0 + (α1 + β1)E[σ2
t+1|Ft]

=α0 + (α1 + β1)[α0 + (α1 + β1)σ
2
t ]

=α0[1 + (α1 + β1)] + (α1 + β1)
2σ2

t

E[σ2
t+3|Ft] =α0 + α1E[ε2

t+2|Ft] + β1E[σ2
t+2|Ft]

=α0 + (α1 + β1)E[σ2
t+2|Ft]

=α0 + (α1 + β1)[α0[1 + (α1 + β1)] + (α1 + β1)
2σ2

t ]

=α0[1 + (α1 + β1) + (α1 + β1)
2] + (α1 + β1)

3σ2
t

...

E[σ2
t+k|Ft] =α0[1 + (α1 + β1) + (α1 + β1)

2 + · · ·+ (α1 + β1)
k−1] + (α1 + β1)

kσ2
t

=α0

k−1

∑
i=0

(α1 + β1)
i + (α1 + β1)

kσ2
t

=α0

(
1− (α1 + β1)

k

1− α1 − β1

)
+ (α1 + β1)

kσ2
t

(2.4)
= σ2(1− (α1 + β1)

k) + (α1 + β1)
kσ2

t

=σ2 + (α1 + β1)
k[σ2

t − σ2]

Here in each step and for k ≥ 0 we use:

E[ε2
t+k|Ft] =E[σ2

t+kz2
t+k|Ft]

=E[σ2
t+k|Ft]E[z2

t+k|Ft]

=E[σ2
t+k|Ft](Var[zt+k|Ft] + (E[zt+k|Ft])

2)

=E[σ2
t+k|Ft]

We also used the geometric series ∑k−1
i=0 (α1 + β1)

i with 0 < (α1 + β1) < 1. In
the second to last step we have substituted for the unconditional variance,
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2. Univariate GARCH model

σ2 = α0/(1− α1 − β1). Since (α1 + β1) < 1, we have (α1 + β1)
k → 0 as

k → ∞. We obtain the stationary variance as E[σ2
t+k|Ft]

k→∞−→ α0
1−α1−β1

= σ2

as the forecast horizon goes to infinity. The sum of the parameters α1 and β1
indicate how quickly the variance forecast converges to the unconditional
variance.

2.1.2. Estimation of parameters

The following subsection is based on Subsection (4.3.4) of A. J. McNeil,
Frey, and Embrechts (2006). In practice, the parameters of the GARCH(1,1)
model can be estimated by a maximum likelihood approach on the basis
of historical data. Suppose we have a total of n + 1 data values E0, . . . , En.
Rewriting the joint density function of the corresponding random variables
yields:

fE0,...,En(ε0, . . . , εn) = fEn|En−1,...,E0
(εn|εn−1, . . . , ε0) fE0,...,En−1(ε0, . . . , εn−1)

= fEn−1|En−2,...,E0
(εn−1|εn−2, . . . , ε0)

× fEn|En−1,...,E0
(εn|εn−1, . . . , ε0)

× fE0,...,En−2(ε0, . . . , εn−2)

...

= fE0(x0)
n

∏
t=1

fEt|Et−1,...,E0
(εt|εt−1, . . . , ε0) (2.5)

For determining the likelihood function we have to assume a model for zt.
The simplest choice of an error distribution would be to assume zt to be
i.i.d standard normal distributed (zt ∼ N(0, 1)), hence εt conditional on the
past information will follow a Gaussian distribution with mean zero and
variance σ2

t (εt|Ft−1 ∼ N(0, σ2
t ), since εt = σtzt). Examples of other error

distributions can be found in Subsection 2.1.3.

The likelihood function however can not simply be based on (2.5), because
the marginal density function fE0 is not known in a tractable closed form
for the GARCH model. For a GARCH(1,1) model σt is defined recursively
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through σt−1. For that reason we will now construct the joint density func-
tion of E1, . . . , En conditional on the realized values of σ0 and E0, which is
given as:

fE1,...,En|E0,σ0
(ε1, . . . , εn|ε0, σ0) =

n

∏
t=1

fEt|Et−1,...,E0,σ0
(εt|εt−1, . . . , ε0, σ0)

Each conditional density fEt|Et−1,...,E0,σ0
is depending on the past only via σt,

which is given by the recursion σt =
√

α0 + α1ε2
t−1 + β1σ2

t−1 from σ0, E0, . . . , Et−1.
The conditional likelihood function for a GARCH(1,1) model using a Gaus-
sian distributed error function can now be stated as:

L(α0, α1, β1|ε0, . . . , εn) = fE1,...,En|E0,σ0
(ε1, . . . , εn|ε0, σ0)

=
n

∏
t=1

1√
2πσ2

t

exp
{
− ε2

t
2σ2

t

}
,

where σt =
√

α0 + α1ε2
t−1 + β1σ2

t−1.

However, the problem that the value of σ2
0 is not observed still remains. In

practice this can be solved by using a starting value e.g. the sample variance
of E1, . . . En or in some cases even 0.

The logarithm ln(·) is a strictly increasing function, therefore we can maxi-
mize the logarithm of the conditional likelihood function instead of the con-
ditional likelihood function itself. This is preferable since the log-likelihood
function is usually easier to maximize.

ln(L(α0, α1, β1|ε0, . . . , εn)) = ln

 n

∏
t=1

1√
2πσ2

t

exp
{
− ε2

t
2σ2

t

}
=− 1

2

n

∑
t=1

[
ln(2π) + ln(σ2

t ) +
ε2

t
σ2

t

]
(2.6)

=− 1
2

n

∑
t=1

[
ln(σ2

t ) +
ε2

t
σ2

t

]
+ constant,
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where σ2
t = α0 + ∑

q
i=1 αiε

2
t−i + ∑

p
j=1 αiσ

2
t−j is calculated recursively. The first

term of the likelihood function in (2.6) is a constant and therefore indepen-
dent of the selected model parameters. By using numerical optimization
methods we can find parameter α0, α1, β1 that maximize the log-likelihood
function and we refer to the optimal parameters as maximum likelihood
estimates.

2.1.3. Non-Gaussian error distributions

Financial data however does often not only exhibits volatility clustering but
also a skewed and heavy-tailed distribution such as:

(i) Student’s t-distribution: The density is given by (see Bollerslev (1987)):

f (x) =
Γ( ν+1

2 )

Γ( ν
2 )
√

πνs

(
1 +

x2

sν

)− ν+1
2

,

with degree of freedom ν > 0 and scale parameter s. The classical
Student’s t-density is bell-shaped and symmetric like the normal
distribution, but has heavier tails. The t-distribution approaches the
normal distribution as the number of degrees of freedom ν increases.
The mean and variance of the Student’s t-distribution are

E[zt] =0, ν > 0

Var[zt] =
sν

ν− 2
,

hence to achieve zero mean and unit variance for the error term zt in
the GARCH model, the scale parameter s must be set to ν−2

ν .
(ii) Skewed Student’s t-distribution: The density is given by (see Fernan-

dez and Steel (1998)):

f (x) = 2
γ+ 1

γ

Γ( ν+1
2 )

Γ( ν
2 )
√

πνρ

[
1 + (x−µ)2

νρ

(
1

γ2 1[0,∞)(x− µ) + γ21(−∞,0)(x− µ)
)]− ν+1

2
,

with location parameter µ ∈ R, γ > 0 the skewness parameter, ρ
the scale parameter and ν > 0 the degrees of freedom. If γ = 1
the skewness is 0 and f becomes the non-standardized Student’s
t-distribution with ν degrees of freedom.
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2. Univariate GARCH model

(iii) Normal inverse Gaussian (NIG) distribution: The density is given
by (see Andersson (2001)):

f (x) =
αδK1

(
α
√

δ2 + (x− µ)2
)

π
√

δ2 + (x− µ)2
exp

[
δ
√

α2 − β2 + β(x− µ)

]
,

with location parameter µ ∈ R, scale parameter γ > 0 and asymmetry
parameter α and tail heaviness parameter β, which satisfy 0 ≤ |β| ≤
α. K1 is the modified third order Bessel function of index 1. As a
special case for α→ ∞ and δ/α = σ2 we obtain a normal distribution
N(µ, σ2).

We need to use standardized versions of these distributions since we require
zt do be of mean zero and unit variance.

2.2. Ljung-Box test

After specifying a time series model for (rt)t=1,...,n we are investigating the
appropriateness of the chosen model, i.e. the goodness-of-fit. The Ljung-Box
test (see Ljung and Box (1978)) applied to the residual series, tests whether
the residuals of the fitted model still exhibit serial dependence, or in other
words it tests whether the first m sample autocorrelations ρ̂2

k for k = 1, . . . , m
from a process are collectively small in magnitude.

H0 : The data is independently distributed, i.e. the correlations in the
population from which the sample is taken are 0. Hence any observed
correlations in the data comes from randomness of the sampling process.
H1 : Not H0. At least one correlation in the population from which the
sample is taken is not 0. Hence the data is not independently distributed
and exhibits serial correlation.

For a fixed sufficiently large number m of autocorrelations, the Ljung-Box
statistic Qm is given by

Qm = n(n + 2)
m

∑
h=1

ρ̂2
h

n− h
,
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2. Univariate GARCH model

where n denotes the sample size and ρ̂h is the sample autocorrelation at lag
h. This test jointly considers the autocorrelations of the first m lag, where
1 ≤ m ≤ n− 1. Under the null hypothesis the statistic Qm asymptotically
follows a χ2 distribution, with m degrees of freedom. The null hypothesis
H0 can be rejected for some chosen significance level α if

Qm > χ2
1−α,m,

where m is number of degrees of freedom and χ2
1−α,m is the (1− α)-quantile

of the chi-squared distribution.

2.3. Limitations of the GARCH model

Despite the usefulness of the GARCH model across a wide range of appli-
cations, due to the quite simple structure according to Rossi (2004) some
important limitations arise.

• GARCH models often fail to fully capture observed heavy-tails in the
return series of assets. Although heteroscedasticity explains some of
the heavy-tail behavior it explains typically not all of it. Heavy-tailed
distributions, such as Student’s t-distribution, have been applied in
GARCH modeling. However the right choice of distribution is often a
matter of trail and error.
• GARCH models usually solve only one part of the modeling problem.

Financial decisions are rarely based solely on expected returns and
volatilities.
• GARCH models basically specify the behavior of squared data. This

leads to the problem that a few large observations could dominate the
sample.

These and other limitations are the main reason for the development of
extensions to the GARCH model such as Exponential GARCH (EGARCH),
Threshold GARCH (TGARCH), GARCH-in-Mean (GARCH-M) and many
others. A overview of several different types of GARCH models can be
found in Ali (2013).
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3. Bivariate copula families

Copulas can be described as functions that allow multivariate distribution
functions to be obtained from the marginal distributions. Although copulas
have been formally defined in 1959, the first (published) application in risk
management was as recent as the early 1990s. Copulas are a tool that helps
in understanding dependence at a deeper level and allows us to see the
potential perils of approaches to dependence that only take correlation into
account and show us a way of defining a number of useful alternative
dependence measures. Copulas are described by Nelsen (2006) as ”functions
that join or couple multivariate distribution functions to their one-dimensional
marginal distribution functions”, which explains the name ”copula”. Parts of
this chapter are based on A. J. McNeil, Frey, and Embrechts (2006). Copulas
have already been specified in Definition 5 in Section 1.5.

A very important result is Sklar’s Theorem which provides the theoretical
foundation for the application of copulas. It states that a joint distribu-
tion function can be written using a copula and the marginal distribution
functions.

Theorem 4 (Sklar (1959))
Let F : Rn → [0, 1] be a n-dimensional distribution function with margins
F1, . . . Fn. Then there exists a copula C such that for all x = (x1, . . . , xn)′ ∈ Rn,

F(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)). (3.1)

If F1, . . . , Fn are continuous, then C is unique.

Vice versa if C is a copula and F1, . . . , Fn are univariate distribution functions,
then the function F defined in (3.1) is a joint distribution function with margins
F1, . . . , Fn.
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3. Bivariate copula families

From this we see that for continuous multivariate distribution functions,
the univariate margins and the multivariate dependence structure can be
separated. The dependence structure can be represented by a copula.

If we evaluate the equation in Sklar’s Theorem at the arguments xi = F←i (ui),
0 ≤ ui ≤ 1, i = 1, . . . , n we obtain the following theorem.

Theorem 5
Let F : Rn → [0, 1] be a distribution function with continuous margins F1, . . . Fn.
The unique copula C is defined through

C(u1, . . . , un) = F(F←1 (u1), . . . , F←n (un)),

where F←i are the generalized inverse functions of the margins as defined in Defini-
tion 3.

If the multivariate distribution function F is in addition absolutely continu-
ous with strictly increasing, continuous margins F1, . . . , Fn, then the copula
density can (see A. J. McNeil, Frey, and Embrechts (2006)) be expressed as

c(F1(x1), . . . , Fn(xn)) =
∂nC(F1(x1), . . . , Fn(xn))

∂F1(x1) . . . ∂Fn(xn)

Sklar′sTheorem
=

∂nF(x1, . . . , xn)

∂F1(x1) . . . ∂Fn(xn)

=
f (x1, . . . , xn)

f1(x1) . . . fn(xn)
,

where f is the joint density of F and f1, . . . , fn are the marginal densities.
Hence for the 2-dimensional case this simplifies to

c12(u1, u2) =
∂2C12(u1, u2)

∂u1∂u2
. (3.2)

For the joint density function f (x1, . . . , xn) we have

f (x1, . . . , xn) = c12...n(F1(x1), . . . , Fn(xn)) f1(x1) . . . fn(xn), (3.3)

for some uniquely defined n-variate copula density c12...n. For the 2-dimensional
case we get

f (x1, x2) = c12(F1(x1), F2(x2)) f1(x1) f2(x2).
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3. Bivariate copula families

Theorem 6 (Fréchet–Hoeffding (1957))
For any copula C : [0, 1]n → [0, 1] and any (u1, . . . , un) ∈ [0, 1]n the following
bounds hold:

Wn(u1, . . . , un) ≤ C(u1, . . . , un) ≤ Mn(u1, . . . , un)

The function Wn is called the lower Fréchet–Hoeffding bound and is defined as

Wn(u1, . . . , un) = max {u1 + · · ·+ un − n + 1, 0} ,

whereas the function Mn is called the upper Fréchet–Hoeffding bound which is
defined as

Mn(u1, . . . , un) = min{u1, . . . , un}.

Proof.

C(u1, . . . , ud) = P(U1 ≤ u1, . . . , Un ≤ un) = P

( n⋂
i=1

{Ui ≤ ui}
)

≤ P(Ui ≤ ui) = ui, ∀i

From this it follows that C(u1, . . . , un) ≤ min{u1, . . . , un} =: Mn(u1, . . . , un).

C(u1, . . . , ud) = P

( n⋂
i=1

{Ui ≤ ui}
)
= 1−P

( n⋃
i=1

{Ui > ui}
)

≥ 1−
n

∑
i=1

P(Ui > ui) = 1−
n

∑
i=1

(1− ui) = 1− n +
n

∑
i=1

ui

However, any copula is a probability function and therefore C ≥ 0, hence
C(u1, . . . , un) ≥ max{u1 + · · ·+ un − n + 1, 0} =: Wn(u1, . . . , un).

Comonotonicity copula and countermonotonicity copula

In a 2-dimensional setting the upper and lower bounds are themselves cop-
ulas. The 2-dimensional Fréchet–Hoeffding lower bound W2(u, v) is called
countermonotonicity copula and describes perfect negative dependence whereas
the Fréchet–Hoeffding upper bound M2(u, v) is called comonotonicity copula
and it describes perfect positive dependence.

In the 2-dimensional case, the Fréchet–Hoeffding Theorem reduces to:

W2(u, v) = max{u + v− 1, 0} ≤ C(u, v) ≤ min{u, v} = M2(u, v)
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3. Bivariate copula families

Independence copula

The most simple of all copula models is the so-called independence cop-
ula:

CInd(u1, . . . , un) =
n

∏
i=1

ui (3.4)

It immediately follows from Sklar’s Theorem, especially from equation (3.1),
that random variables with continuous distributions are independent if and
only if their dependence structure is given by the independence copula
(3.4).

Figure 3.1 depicts the perspective plots and the contour plots of the comono-
tonicity copula M2(u, v), the independence copula CInd(u, v) and the coun-
termonotonicity copula W2(u, v).

u

0.0
0.2

0.4
0.6

0.8
1.0v

0.0

0.2

0.4
0.6

0.8
1.00.0

0.2
0.4
0.6
0.8
1.0

Comonotonicity copula

u

0.0
0.2

0.4
0.6

0.8
1.0v

0.0

0.2

0.4
0.6

0.8
1.00.0

0.2
0.4
0.6
0.8
1.0

Independence copula

u

0.0
0.2

0.4
0.6

0.8
1.0v

0.0

0.2

0.4
0.6

0.8
1.00.0

0.2
0.4
0.6
0.8
1.0

Countermonotonicity copula

u

v

 0.1 

 0.2 

 0.3 

 0.4 

 0.5 

 0.6 

 0.7 

 0.8 

 0.9 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

u

v

 0.1 

 0.2 

 0.3 

 0.4 

 0.5 

 0.6 

 0.7 

 0.9 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

u

v

 0.1 

 0.2 

 0.2 

 0.2 

 0.2 

 0.3 

 0.4 

 0.4 

 0.5  0.6 

 0.7  0.8 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3.1.: Perspectve plots and contour plots of the comonotonicity copula, the indepen-
dence copula and the countermonotonicity copula.
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3. Bivariate copula families

3.1. Examples of common elliptical and
Archimedean bivariate copulas

Bivariate copulas, also known as pair-copulas, are the basic building blocs
used for the construction of multivariate models in the following chapters.
In this chapter we present six of the most commonly used and discussed
copulas: Gaussian, Student’s t, Clayton, Gumbel, Frank and Joe copula.
The first two belong to the family of elliptical copulas. They both do not
have a simple closed form and are hence called implicit copulas. The last
four types of copula, all from the Archimedean copula family. They all
have a distribution function with a simple closed form and are therefore
called explicit copulas. Each discussed copula has its own distinct properties
and strength of dependence in the tails of the bivariate distribution. These
distinct properties in strength of dependence in the tails will be described
by the so called upper tail dependence and the lower tail dependence, which was
already introduced in Section 1.6.4. However note that there are copulas
which are neither elliptical nor Archimedean. Those copulas will however
not be discussed in this thesis.

In this chapter we will also present important formulas for each copula, the
copula density, the h-function and the inverse h-function. Although it is
possible to give an explicit h-function of all six discussed pair-copulas, it is
not possible to analytically invert these functions for all six copulas. In a few
cases numerical inversion will be necessary. Availability of the h-function
and the inverse h-function in an explicit form is important for efficiency.
According to Joe (1997) in some cases it might be better to use a different
copula with similar properties instead. At this point we have not formally
introduced the h-function, however we will still state the h-function and
inverse h-function for all six bivariate copulas below. A formal introduction
to the h-function will be given in Equation (4.5) in Chapter 4.1.

The copulas presented here are among the most discussed copulas in lit-
erature. But keep in mind that these are just a tiny sample of all available
bivariate copulas. A good overview of 10 different copulas, including the
once described below can be found in Brechmann (2010). In addition to
the definitions Brechmann also states the density function, Kendall’s τ and
lower and upper tail dependence coefficients.
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3. Bivariate copula families

The following two sections are based on Brechmann (2010) and A. J. McNeil,
Frey, and Embrechts (2006).

3.2. Elliptical copulas

The copulas generated by elliptical distributions are known as elliptical
copulas. The most commonly used elliptical copulas are the Gaussian copula
and the Student’s t-copula. One advantage of elliptical copulas is that one
can specify different levels of correlation between marginal distributions.
However, as mentioned above it is not possible to have a simple closed form
for the distribution function.

3.2.1. Gaussian copula

Let CGa
R be the copula of a n-dimensional normal distribution with correla-

tion matrix R. We have
X ∼ Nn(0, R).

The copula is given by

CGa
R (u) = φR(φ

−1(u1), . . . , φ−1(un)), (3.5)

where φ−1 denotes the inverse cumulative distribution function of a stan-
dard normal distribution and φR denotes the joint cumulative distribution
function of X with correlation matrix R. The Gaussian copula does not have
a simple closed form. We have to express the copula as a integral over the
density of X. In the bivariate case using (3.5) we get:

CGa
ρ (u, v) =

∫ φ−1(u)

−∞

∫ φ−1(v)

−∞

1
2π
√

1− ρ2
exp

{
−x2 − 2ρxy + y2

2(1− ρ2)

}
dxdy,

where ρ ∈ (−1, 1) represents the linear correlation coefficient. By applying
(3.2) the density function of the Gaussian copula is given by

cGa
ρ (u, v) =

1√
1− ρ2

exp
{
−ρ2(x2 + y2)− 2ρxy

2(1− ρ2)

}
,
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3. Bivariate copula families

where x = φ−1(u) and y = φ−1(v) and φ−1 denotes the inverse cumulative
distribution function of the univariate standard normal distribution. For
this copula the h-function is given by (see Appendix A.4.1 for details)

h(u, v, ρ)) = φ

(
φ−1(u)− ρφ−1(v)√

1− ρ2

)

and the inverse of the h-function is given by

h−1(u, v, ρ) = φ

(
φ−1(u)

√
1− ρ2 + ρφ−1(v)

)
.

According to A. J. McNeil, Frey, and Embrechts (2006) and using (1.7) and
(1.6) the rank correlations are:

ρτ(X1, X2) =
2
π

arcsin ρ

ρS(X1, X2) =
6
π

arcsin
1
2

ρ

In a financial context the multivariate Gaussian distribution should not
be used even if it seems very enticing. Empirical studies have shown that
using Gaussian copulas in the context of assets that exhibit skewed and
fat-tailed distributions, which are often exhibited by financial series, can
lead to underestimation of the joint tail probability.

3.2.2. Student’s t-copula

To exhibit tail dependence, a frequently used alternative to the Gaussian
copula is the Student’s t-copula. Similarly to how we extracted a copula from
the multivariate normal distribution, we can extract an implicit copula from
other distributions with continuous marginal distribution functions.

Let Ct
ν,R be the copula of a n-dimensional Student’s t-distribution with

correlation matrix R. We have

X ∼ tn(ν, 0, R).
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3. Bivariate copula families

The copula is given by

Ct
ν,R(u) = tν,R(t−1

ν (u1), . . . , t−1
ν (un)), (3.6)

where t−1
ν denotes the inverse cumulative distribution function of a stan-

dard univariate Student’s t-distribution with ν degrees of freedom and tν,R
denotes the joint cumulative distribution function of X with correlation
matrix R and ν degrees of freedom. The copula can again be expressed as
the integral over X. In the bivariate case using (3.6) we get:

Ct
ρ,ν(u, v) =

∫ t−1
ν (u)
−∞

∫ t−1
ν (v)
−∞

Γ( ν+2
2 )

Γ( ν
2 )πν
√

(1−ρ2)

{
1 + x2−2ρxy+y2

ν(1−ρ2)

}− ν+2
2

dxdy,

where ν represents the degrees of freedom and ρ ∈ (−1, 1) is the linear
correlation coefficient. By applying (3.2) the density function of the Student’s
t-copula is given by:

ct
ρ,ν(u, v) =

Γ( ν+2
2 )/Γ( ν

2 )

νπdt(u, ν)dt(v, ν)
√

1− ρ2

(
1 +

x2 − 2ρxy + y2

ν(1− ρ2)

)− ν+2
2

,

where x = t−1
ν (u) and y = t−1

ν (v). dt(·, ν) and t−1
ν (·) denote the probability

density and the inverse cumulative distribution function of a standard
univariate Student’s t-distribution with ν degrees of freedom, expectation 0
and variance ν

ν−2 . For this copula the h-function is given by (see Appendix
A.4.2 for details)

h(u, v, ρ, ν)) = tν+1

 t−1
ν (u)− ρt−1

ν (v)√
(ν+(t−1

ν (v))2)(1−ρ2)

ν+1


and the inverse of the h-function is given by

h−1(u, v, ρ, ν) = tν

t−1
ν+1(u)

√
(ν(t−1(v))2) (1− ρ2)

ν + 1
+ ρt−1

ν (v)

 .
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3. Bivariate copula families

According to A. J. McNeil, Frey, and Embrechts (2006) and using (1.7) and
(1.6) the rank correlations are:

ρτ(X1, X2) =
2
π

arcsin ρ

ρS(X1, X2) =
6
π

arcsin
1
2

ρ

Similarly to the Student’s t-distribution approaching normality with increas-
ing degrees of freedom the Student’s t-copula is approaching the Gaussian
copula as the degrees of freedom increase. Note the similarity in the sim-
ulations from a Student’s t-copula with ν = 30 degrees of freedom and a
Gaussian copula in Figure 3.2.
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Figure 3.2.: Elliptical copulas: Illustration of dependence structure difference for Gaussian
and Student’s t-copulas with the same dependence parameter ρ and how the
Student’s t-copula converges to the Gaussian copula for higher degrees of
freedom ν.

In theory all previously defined bivariate copulas can be generalized to
higher dimensions. However most of the copulas are designed for bivariate
distributions only. Unfortunately, most financial applications of copulas use
numerous variables and hence require many marginal distributions to be
taken into account.

As mentioned above the Gaussian copula and Student’s t-copula do not
have simple closed forms and are known as implicit copulas. In the next
section we will look at explicit copulas - copulas which have simple closed
forms.
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3. Bivariate copula families

3.3. Archimedean copulas

Definition 17 (Pseudo-inverse function)
Let φ : [0, 1]→ [0, ∞] be a continuous, and strictly decreasing function such that
φ(1) = 0. The pseudo-inverse function φ[−1] : [0, ∞]→ [0, 1] of φ is given by:

φ[−1](t) =

{
φ−1(t) 0 ≤ t ≤ φ(0)
0 φ(0) ≤ t ≤ ∞

φ[−1] is continuous and decreasing on [0, ∞], and strictly decreasing on [0, φ(0)]
and we have:

φ[−1](φ(u)) = u for u ∈ [0, 1]

φ(φ[−1](t)) =

{
t 0 ≤ t ≤ φ(0)
φ(0) φ(0) ≤ t ≤ ∞

Finally, if φ(0) = ∞, then φ[−1] = φ−1.

Theorem 7 (Archimedean copula)
Let φ : [0, 1]→ [0, ∞] be a continuous and strictly decreasing function such that
φ(1) = 0 and let φ[−1] denote the pseudo-inverse of φ. Let C be the function from
[0, 1]2 to [0, 1] given by

C(u1, u2) = φ[−1](φ(u1) + φ(u2)).

Then C is a copula if and only if φ is convex. φ is called the generator of a copula C.
In the case of φ(0) = ∞ we say that φ is a strict generator. In this case φ[−1] = φ−1

and hence C(u1, u2) = φ−1(φ(u1) + φ(u2)) is called a strict Archimedean copula.

This class of copulas has proved to be very useful for modeling the credit
risk of a portfolio. Many families in the class of Archimedean copulas allow
for a great variety of different dependence structures. According to Nelsen
(2006) it is possible to calculate Kendall’s rank correlation for Archimedean
copulas directly from the generator using the following theorem.
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3. Bivariate copula families

Theorem 8
Let (X1, X2)

T be a random vector with continuous marginal distribution and a
unique Archimedean copula C generated by φ. Then Kendall’s τ can be expressed as

ρτ(X1, X2) = 1 + 4
∫ 1

0

φ(t)
φ′(t)

dt.

One disadvantage Archimedean copulas face is the lack of free parameter
choice in higher dimensions (some entries in the rank correlation matrix are
forced to be equal). For this reason, we will only focus on using bivariate
Archimedean copulas.

3.3.1. Clayton copula

The Clayton copula has a one-parametric generator φ(t) = 1
θ (t
−θ− 1), which

leads to φ−1(t) = (1 + θt)−1/θ.

CCl
θ (u, v) = (u−θ + v−θ − 1)−1/θ,

where 0 < θ < ∞ is the parameter controlling the dependence. For
θ → 0 the Clayton copula exhibits independence as limθ→0 CCl

θ (u, v) =

CInd(u, v) = uv, while perfect positive dependence is achieved for θ → ∞
as limθ→∞ CCl

θ (u, v) = M2(u, v) = min{u, v}.

By differentiating CCl
θ (u, v) with respect to u and v we obtain the copula
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3. Bivariate copula families

density:

cCl
θ (u, v) =

∂2CCl
θ (u, v)
∂u∂v

=
∂

∂u

[
∂CCl

θ (u, v)
∂v

]

=
∂

∂u

[
∂(u−θ + v−θ − 1)−1/θ

∂v

]

=
∂

∂u

[
−1

θ
(u−θ + v−θ − 1)−1/θ−1(−θv−θ−1)

]
=− 1

θ
(−1

θ
− 1)(u−θ + v−θ − 1)−1/θ−2(−θu−θ−1)(−θv−θ−1)

=(−θ)(−1
θ
− 1)(u−θ + v−θ − 1)−1/θ−2(uv)−θ−1)

=(1 + θ)(u−θ + v−θ − 1)−1/θ−2(uv)−θ−1

For this copula the h-function is given as follows (see Appendix A.4.3 for
details)

h(u, v, θ) = v−θ−1
(

u−θ + v−θ − 1
)−1−1/θ

and the inverse of the h-function is given by

h−1(u, v, θ) =

[(
uvθ+1

)− θ
θ+1

+ 1− v−θ

]−1/θ

.
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3. Bivariate copula families

Using Theorem 8 we can calculate Kendall’s τ:

ρτ(θ) =1 + 4
∫ 1

0

φ(t)
φ′(t)

dt

=1 + 4
∫ 1

0

1
θ (t
−θ − 1)

1
θ (−θ)t−θ−1

dt

=1 + 4
∫ 1

0

(tθ+1 − t)
θ

dt

=1 +
4
θ

[
tθ+2

θ + 2
− t2

2

]1

0

=1 +
4
θ

(
1

θ + 2
− 1

2

)
=

θ

θ + 2

As mentioned in Chapter 1 we can use Theorem 3 to calculate the tail
dependence coefficients:

λθ,Cl
U = lim

u→1−

1− 2u + CCl
θ (u, u)

1− u
= lim

u→1−

1− 2u + (2u−θ − 1)−1/θ

1− u
L′Hospital

= lim
u→1−

−2 + (−1/θ)(2u−θ − 1)−1/θ−1(−θ)2u−θ−1

−1
= 0

λθ,Cl
L = lim

u→0+

CCl
θ (u, u)

u
= lim

u→0+

(2u−θ − 1)−1/θ

u

= lim
u→0+

1
(2− uθ)1/θ

=
1

21/θ
= 2−1/θ

3.3.2. Gumbel copula

The Gumbel copula has a one-parametric generator φ(t) = (− ln(t))θ , which
leads to φ−1(t) = exp

(
−t1/θ

)
.

CGu
θ (u, v) = exp

{
−[(− ln u)θ + (− ln v)θ]1/θ

}
,

where 1 ≤ θ < ∞ is the parameter controlling the dependence. For θ = 1 the
Gumbel copula exhibits independence as CGu

1 (u, v) = CInd(u, v) = uv, while
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3. Bivariate copula families

perfect positive dependence is achieved for θ → ∞ as limθ→∞ CGu
θ (u, v) =

M2(u, v) = min{u, v}.

By differentiating CGu
θ (u, v) with respect to u and v we obtain the copula

density:

cGu
θ (u, v) =

∂2CGu
θ (u, v)
∂u∂v

=
∂

∂u

[
∂CGu

θ (u, v)
∂v

]

=
∂

∂u

[
∂ exp

{
−[(− ln u)θ + (− ln v)θ]1/θ

}
∂v

]

=
∂

∂u

[
CGu

θ (u, v)(−1
θ
)
[
(− ln u)θ + (− ln v)θ

]1/θ−1
θ(− ln(v))θ−1

(
−1

v

)]
=

∂

∂u

[
CGu

θ (u, v)
[
(− ln u)θ + (− ln v)θ

]1/θ−1
(− ln(v))θ−1 1

v

]
=

1
v
(− ln v)θ−1

[
CGu

θ (u, v)
[
(− ln u)θ + (− ln v)θ

]1/θ−1
(− ln(u))θ−1 1

u

×
[
(− ln u)θ + (− ln v)θ

]1/θ−1

+CGu
θ (u, v)(1/θ − 1)[(− ln u)θ + (− ln v)θ]1/θ−2θ(− ln u)θ−1

(
− 1

u

) ]
=

1
v
(− ln v)θ−1CGu

θ (u, v)
[
[(− ln u)θ + (− ln v)θ]2/θ−2(− ln u)θ−1 1

u

+(1/θ − 1)[(− ln u)θ + (− ln v)θ]1/θ−2θ(− ln u)θ−1
(
− 1

u

) ]
=

1
v
(− ln v)θ−1 1

u
(− ln u)θ−1CGu

θ (u, v)
[
[(− ln u)θ + (− ln v)θ]2/θ−2

+(1− θ)[(− ln u)θ + (− ln v)θ]1/θ−2
]

=
CGu

θ (u, v)
uv

(ln v ln u)θ−1

[(− ln u)θ + (− ln v)θ]2−1/θ

[
[(− ln u)θ + (− ln v)θ]1/θ + θ − 1

]
For this copula the h-function is given as follows (see Appendix A.4.4 for
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3. Bivariate copula families

details)

h(u, v, θ)) = v−1 exp
{
−[(− ln u)θ + (− ln v)θ]1/θ

}(
1 +

(
− ln u
− ln v

)θ
)−1+1/θ

and the inverse of the h-function cannot be written in closed form. Therefore
it must be obtained numerically using for instance the Newton Raphson
method (see Aas et al. (2006)). For large-dimensional problems it might be
better to use a different heavy right tail copula like the Clayton survival
copula (see e.g. Joe (1997)).

Using Theorem 8 we can easily calculate Kendall’s τ:

ρτ(θ) =1 + 4
∫ 1

0

φ(t)
φ′(t)

dt

=1 + 4
∫ 1

0

− ln(t)θ

−1
t θ ln(t)θ−1

dt

=1 + 4
∫ 1

0

t ln t
θ

dt

=1 +
4
θ

([
t2

2
ln t
]1

0
−
∫ 1

0

t
2

dt

)

=1 +
4
θ
(0− 1

4
) = 1− 1

θ

As mentioned in Chapter 1 we can use Theorem 3 to calculate the tail
dependence coefficients:

λθ,Gu
U = lim

u→1−

1− 2u + CGu
θ (u, u)

1− u
= lim

u→1−

1− 2u + u21/θ

1− u
L′Hospital

= lim
u→1−

−2 + 21/θu21/θ−1

−1
= 2− 21/θ

λθ,Gu
L = lim

u→0+

CGu
θ (u, u)

u
=

u21/θ

u
L′Hospital

= lim
u→0+

21/θu21/θ−1

1
= 0
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3. Bivariate copula families

3.3.3. Frank copula

The Frank copula has a one-parametric generator φ(t) = − ln
(

e−θt−1
e−θ−1

)
,

which leads to φ−1(t) = −1
θ ln(1 + e−t(e−θ − 1)).

CFr
θ (u, v) = −1

θ
ln
(

1 +
(e−θu − 1)(e−θv − 1)

e−θ − 1

)
,

where 0 < θ < ∞ is the parameter controlling the dependence. By differen-
tiating CFr

θ (u, v) with respect to u and v we obtain the copula density:

cFr
θ (u, v) =

θ(1− e−θ)e−θ(u+v)

(1− e−θ − (1− eθu)(1− eθv))2

For this copula the h-function is given as follows (see Appendix A.4.5 for
details)

h(u, v, θ)) =
e−θv

1−e−θ

1−e−θu + e−θv − 1

and the inverse of the h-function is given by

h−1(u, v, θ) = − ln
(

1− 1− e−θ

(u−1 − 1)e−θv + 1

)
/θ.

According to Genest (1987) the Kendall’s τ is given by:

ρτ(θ) = 1 + 4
∫ 1

0

φ(t)
φ′(t)

dt = 1− 4θ−1(D1(θ)− 1),

where Dk(θ) = k/θ−k ∫ θ
0 tk/(exp(t)− 1)dt is the Debye function.

As mentioned in Chapter 1 we can use Theorem 3 to calculate the tail
dependence coefficients:

λθ,Fr
U = lim

u→1−

1− 2u + CFr
θ (u, u)

1− u
= lim

u→1−

1− 2u− 1
θ ln

(
1 + (e−θu−1)2

e−θ−1

)
1− u

L′Hospital
= lim

u→1−

−2− 1
θ

(
e−θ−1

(e−θ−1)+(e−θu−1)2

)
2(e−θu−1)

e−θ−1 (−θ)e−θu

−1
= 0

λθ,Fr
L = lim

u→0+

CFr
θ (u, u)

u
L′Hospital

= lim
u→0+

−1
θ

(
e−θ−1

(e−θ−1)+(e−θu−1)2

)
2(e−θu−1)

e−θ−1 (−θ)e−θu

1
= 0
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3. Bivariate copula families

3.3.4. Joe copula

The Joe copula has a one-parametric generator φ(t) = − ln(1− (1− t)θ),
which leads to φ−1(t) = 1− (1− exp(−t))1/θ.

C Jo
θ (u, v) = 1−

[
(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ

]1/θ
,

where 1 ≤ θ < ∞ is the parameter controlling the dependence. By differen-
tiating C Jo

θ (u, v) with respect to u and v we obtain the copula density:

cJo
θ (u, v) =

[
(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ

]1/θ−2
(1− u)θ−1(1− v)θ−1

× [θ − 1(1 + u)θ + (1 + v)θ − (1− u)θ(1− v)θ]

For this copula the h-function is given as follows (see Appendix A.4.6 for
details)

h(u, v, θ)) = ((1−u)θ +(1− v)θ− (1−u)θ(1− v)θ)1/θ−1(1− v)θ−1(1− (1−u)θ)

and the inverse of the h-function cannot be written in closed form. Therefore
it must be obtained numerically.

According to Hofert, Mächler, and A. J. McNeil (2012) the Kendall’s τ is
given by:

ρτ = 1− 4
∞

∑
k=1

1
k(θk + 2)(θ(k− 1) + 2)

As mentioned in Chapter 1 we can use Theorem 3 to calculate the tail
dependence coefficients:

λθ,Jo
U = lim

u→1−

1− 2u + C Jo
θ (u, u)

1− u
= lim

u→1−

1− 2u + 1−
[
2(1− u)θ − (1− u)2θ

]1/θ

1− u
L′Hospital

= lim
u→1−

−2− 1
θ [2(1− u)θ − (1− u)2θ]1/θ−1(−2θ(1− u)θ−1 + 2θ(1− u)2θ−1)

−1
=2− 21/θ

λθ,Jo
L = lim

u→0+

C Jo
θ (u, u)

u
= lim

u→0+

1−
[
2(1− u)θ − (1− u)2θ

]1/θ

u
L′Hospital

= lim
u→0+

−1
θ [2(1− u)θ − (1− u)2θ]1/θ−1(−2θ(1− u)θ−1 + 2θ(1− u)2θ−1)

1
= 0
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3. Bivariate copula families

3.4. Simulation of Archimedean and elliptical
copulas

In this section the simulation (also known as sampling) from a specific
copula family will be described. The common way of simulating copulas is
based on specific techniques for each class of copula.

3.4.1. Simulation of elliptical copulas

The following section is based on Chapter 5 of Embrechts, Lindskog, and
A. McNeil (2003).

In the sampling for Gaussian and Student’s t-copula we use the Cholesky
decomposition LLT = R of a given correlation matrix R ∈ Rn×n to obtain a
lower triangular matrix L ∈ Rn×n.

In the case of independence of Z1, . . . , Zn ∼ N(0, 1) it follows that X :=
LZ ∼ Nn(0, R). Using Theorem 4 (Sklar’s Theorem) and the definition of
the Gaussian copula given in Section 3.2.1 this leads to

P(U1 ≤ u1, . . . , Un ≤ un) = P(φ(X1) ≤ x1, . . . , φ(Xn) ≤ xn)

= P(X1 ≤ φ−1(x1), . . . , Xn ≤ φ−1(xn))

= φR(φ
−1(u1), . . . , φ−1(un))

Sklar’s Theorem
def. Gaussian copula

= CGa
R ,

where φR denotes the joint cumulative distribution function of X.

Algorithm 3.4.1 Algorithm for generating a random vector U =
(U1, . . . , Un). with distribution function of a Gaussian copula CGa

R .

1: Compute the Cholesky decomposition L from R: R = LLT.
2: Sample i.i.d. Z1, . . . , Zn ∼ N(0, 1).
3: Calculate Xi = ∑i

j=1 lijZi, ∀i ∈ {1, . . . , n}. Hence X = LZ ∼ Nn(0, R).
4: Return (U1, . . . , Un), where Ui = Φ(Xi) ∼ U(0, 1), ∀i ∈ {1, . . . , n}.
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3. Bivariate copula families

In case of the Student’s t-copula the sampling algorithm can be derived in a
similar way. For the stochastic representation of a Student’s t-distribution
given the independence of Z1, . . . , Zn ∼ N(0, 1) and S ∼ χ2

ν it follows

that X :=
√

ν
S LZ ∼ tn(ν, 0, R). Using Theorem 4 (Sklar’s Theorem) and the

definition of the Student’s t-copula given in Section 3.2.2 leads to the desired
result.

Algorithm 3.4.2 Algorithm for generating a random vector U =
(U1, . . . , Un). with distribution function of a Student’s t-copula Ct

ν,R.

1: Compute the Cholesky decomposition L from R: R = LLT.
2: Sample i.i.d. Z1, . . . , Zn ∼ N(0, 1).
3: Sample a random variable S ∼ χ2

ν independent of Z1, . . . , Zn.
4: Calculate Yi = ∑i

j=1 lijZi, ∀i ∈ {1, . . . , n}. Hence Y = LZ ∼ Nn(0, R).

5: Calculate Xi =
√

ν
SYi, ∀i ∈ {1, . . . , n}. Hence X ∼ Tν,n(0, R).

6: Return (U1, . . . , Un), where Ui = tν(Xi) ∼ U(0, 1), ∀i ∈ {1, . . . , n}.

3.4.2. Simulation of Archimedean copulas

The following section is based on Hofert (2008) and Subsection 5.4.2 of A. J.
McNeil, Frey, and Embrechts (2006).

The considered Archimedean copulas fall into the class of so-called Laplace
transform Archimedean copulas (or LT-Archimedean copulas).

Definition 18 (Complete monotonicity)
A function g : [0, ∞)→ [0, ∞) is called completely monotone, if g is continuous
on [0, ∞), infinitely differentiable on (0, ∞) and satisfies

(−1)k

(
dk

dsk g(s)

)∣∣∣∣∣
s=t

≥ 0, for k = 0, 1, 2, . . . and ∀t ∈ (0, ∞).

Theorem 9 (Kimberling (1974))
Let φ : [0, 1]→ [0, ∞] be continuous and strictly decreasing with φ(0) = ∞ and
φ(1) = 0. The function C : [0, 1]n → [0, 1], C(u) = φ−1(φ(u1) + φ(u2) + · · ·+
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3. Bivariate copula families

φ(un)), is a copula for any n ≥ 2 if and only if φ−1 : [0, ∞]→ [0, 1] is completely
monotone in [0, ∞).

Theorem 10 (Bernstein)
A function ψ : [0, ∞)→ [0, ∞) is the Laplace-Stiltjes transform of a distribution
function F in [0, ∞) (ψ(s) =

∫ ∞
0 e−sxdF(x), s ≥ 0) if and only if ψ is completely

monotone and ψ(0) = 1.

The class of all completely monotone Archimedean generators is denoted by
Ψ∞. Bernstein’s theorem establishes a link between completely monotone
functions and Laplace-Stiltjes transforms. Using Bernstein’s theorem it is
clear that this class coincides with the class of Laplace-Stieltjes transforms
of distribution functions F on the positive real line. The Laplace-Stieltjes
transform of F is defined as

LS [F](t) :=
∫ ∞

0
e−txdF(x), for t ≥ 0. (3.7)

For ψ ∈ Ψ∞, we hence have the relation

ψ = LS [F],

or equivalently
F = LS−1[ψ].

For the sampling of a n-dimensional exchangeable Archimedean copula
with generator ψ we use the algorithm described in Marshall and Olkin
(1988), where LS−1[ψ] denotes the inverse Laplace-Stieltjes transform of
ψ.

Theorem 11
Let F be a distribution function on [0, ∞) satisfying F(0) = 0 with Laplace-Stiltjes
transform ψ as in (3.7) and set ψ(∞) := 0. Let V be a random variable with
distribution function F and let U1 . . . , Un be a sequence of random variables that
are conditionally independent given V with conditional distribution function given
by

FUi|V(u|v) = exp (−vψ−1(u)), for u ∈ [0, 1].

Then
P(U1 ≤ u1, . . . , Un ≤ un) = ψ(ψ−1(u1) + · · ·+ ψ−1(un)),
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3. Bivariate copula families

so that the distribution function of U = (U1, . . . , Un) is a Archimedean copula
with generator φ = ψ−1.

Proof. The proof to this theorem can be found in Proposition 5.46 of A. J.
McNeil, Frey, and Embrechts (2006).

Algorithm 3.4.3 Algorithm for generating a random vector U =
(U1, . . . , Un). with Archimedean copula C(u) = φ−1(φ(u1) + · · ·+ φ(un))
with generator φ as distribution function.

1: Sample V ∼ F = LS−1[ψ] where ψ = φ−1

2: Sample i.i.d V1, . . . , Vn ∼ U(0, 1).
3: Return (U1, . . . , Un), where Ui = ψ

(
− ln(Vi)

V

)
, ∀i ∈ {1, . . . , n}.

This provides a powerful tool for sampling exchangeable Archimedean
copula, given that we know how to sample F. This algorithm is efficient
even in larger dimensions. It requires only n + 1 random numbers for
generating a n-dimensional observation. Regardless of dimensions only one
sample V ∼ F is required.

Archimedean copula inv. Laplace-Stiltjes transf. F1 inverse generator φ−1(t) = ψ(t)

Clayton Γ(1/θ, 1) (1 + t)−1/θ2

Gumbel3 St(1/θ, 1, (cos( π
2θ ))

θ, 0) exp
(
−t1/θ

)
Frank yk =

(1−e−θ)k

kθ , k ∈N −1
θ log(1 + e−t(e−θ − 1))

Joe yk = (−1)k+1(1/θ
k ), k ∈N 1− (1− exp(−t))1/θ

Table 3.1.: Overview of selected Archimedean families with corresponding inverse Laplace-
Stiltjes transforms F = LS−1[ψ] and inverse generators φ−1(t) = ψ(t).

1The Laplace-Stiltjes transforms are given in Hofert (2008). Further details to the inverse
Laplace-Stiltjes transforms F can be found in Appendix A.5.

2Here we use a alternative but equivalent representation of the generator of the Clayton
copula.

3Although the closed form of the density of stable distribution is not known, Nolan
(2011) proposed a simulation algorithm for generating stable random variables.
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For Frank’s copula and Joe’s copula F is discrete with a given probability
mass function (yk)k∈N. Unfortunately, there is no known way to find F
explicitly. In the case where F is a step function we use the following
theorem.

Theorem 12
Let ψ ∈ Ψ∞ with F = LS−1[ψ] and let G(x) = ∑∞

k=0 yk1[xk,∞)(x), with 0 <
x0 < x1 < . . . and yk > 0, k ∈N0, with ∑∞

k=0 yk = 1. Then

F ≡ G ⇔ ψ(t) =
∞

∑
k=0

yke−xkt, t ∈ [0, ∞].

Proof. The proof to this theorem can be found in Hofert (2008).

For further details on the subject matter of sampling a larger variety of
Archimedean copulas see Jaworski et al. (2010).

3.5. Summary of presented copula families and
their characteristics

Copula Parameters Kendall’s τ Tail-dependence
(lower, upper)

Gaussian ρ ∈ (−1, 1) 2
π arcsin(ρ) (0, 0)

Student’s t ρ ∈ (−1, 1) 2
π arcsin(ρ)

(
2tν+1

(
−
√

ν + 1
√

1−ρ√
1+ρ

)
,

ν > 2 2tν+1

(
−
√

ν + 1
√

1−ρ√
1+ρ

))
Clayton θ ∈ (0, ∞) θ

2+θ (2−1/θ, 0)
Gumbel θ ∈ [1, ∞) 1− 1

θ (0, 2− 21/θ)
Frank θ ∈ (0, ∞) 1− 4

θ (D1(θ)− 1) with (0, 0)
D1(θ) = θ−1

∫ θ
0 t/(exp(t)− 1)dt

Joe θ ∈ [1, ∞) 1− 4 ∑∞
k=1 1/[k(θk + 2)(θ(k− 1) + 2)] (0, 2− 21/θ)

Table 3.2.: Summary of pair-copula families and their characteristics. The first two are from
the elliptical copula class, the others from the Archimedean copula class.
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Archimedean copula generator φ(t) inverse generator φ−1(t)

Clayton 1
θ (t
−θ − 1) (1 + θt)−1/θ

Gumbel (− log(t))θ exp
(
−t1/θ

)
Frank − log

(
e−θt−1
e−θ−1

)
−1

θ log(1 + e−t(e−θ − 1))

Joe − log(1− (1− t)θ) 1− (1− exp(−t))1/θ

Table 3.3.: Overview of the generators φ(t) and their inverse of all four Archimedean
copulas described in this thesis.

In the following chapter we will introduce a concept called pair-copula-
constructions (PCC), which is a general construction method for multivariate
copulas using only pair-copulas as building blocs (see Section 4.1). By using
PCCs it is possible to capture different types of dependencies and tail
behavior by utilizing distinct properties of pair-copulas. Table 3.4 illustrates
that the Clayton, Gumbel and Joe copula have tail asymmetry and therefore
different properties of upper and lower tail dependence. The Gaussian,
Student’s t and Frank copula all feature positive and negative dependence.
With this set of copulas as we will see in the next chapter it is possible to
capture different types of dependence when using PCCs.

N t Cl Gu Fr Jo

Tail asymmetry - - X X - X

Upper tail dependence - X - X - X
Lower tail dependence - X X - - -

Positive dependence X X X X X X
Negative dependence X X - - X -

Table 3.4.: Overview of dependencies in the bivariate copula families described in this
thesis.

Figure 3.3 gives an overview of all six described copulas using two different
dependence parameters for each copula to illustrate the differences in the
dependence structure.
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3. Bivariate copula families
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Gaussian − ρ = 0.75
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Student's t − ρ = 0.75, ν = 4
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Figure 3.3.: Illustration of differences in dependence structure for all presented copulas.
Each copula is depicted with two different dependence parameters to illustrate
the change in dependence structure.
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4. Vine copula

Even though it is possible to construct multivariate copulas with more than
two variables, in practice, when modeling a large financial data set of which
not all pairs of risk-factors have the same dependence structure, higher-
dimensional copulas are sometimes not sufficient to capture the dependence
structure by using just one or two parameters. Standard multivariate copulas
do not allow for different dependence structures between different pairs of
variables. This chapter will introduce a method called pair-copula-construction
(PCC), which can be used to model a joint probability distribution function
from bivariate copulas and marginal densities. PCCs are in general more
flexible than multivariate copulas to capture dependence structure among
assets. Bivariate copulas as described in Chapter 3 serve as building blocs
for higher-dimensional distributions.

Joe (1996) introduced the first construction of a multivariate copula using
bivariate copulas and marginal distributions. Later Bedford and R. Cooke
(2002) extended this work to a more general construction method of mul-
tivariate densities and subsequently with the introduction of a graphical
model called the regular vine made it possible to describe the structure of
a PCC in a more organized and convenient way. Regular vine is a graph-
ical concept with the goal of capturing the most important dependencies
between pairs of variables by using a nested set of trees, where each edge
corresponds to a bivariate copula density and the edge labels correspond to
the subscript of the bivariate copula density, e.g. edge 12|3 corresponds to
the copula density c12|3(F1|3(x1|x3), F2|3(x2|x3)).

There are quite a number of possible PCCs for high-dimensional distribu-
tions. According to Morales-Nápoles, R. M. Cooke, and Kurowicka (2010)
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4. Vine copula

for a six-dimensional density function there are already 23, 0401 possible
regular vines. Thats why, canonical vines (see Definition 26) and drawable
vines (see Definition 27), two special cases of regular vines, have recently
attracted special attention (see Aas et al. (2006)). Both vines impose addi-
tional restriction on the structure and therefore limit the number of different
models. It can be shown that the number of canonical vines on n nodes
equals the number of drawable vines on n nodes and is n!

2 (see Lemma 3.3 in
Morales-Nápoles, R. M. Cooke, and Kurowicka (2010)).

Our goal is to find the vine model which depicts the dependence structure
most accurately. From now on regular, canonical and drawable vines will be
called R-vines, C-vines and D-vines.

4.1. Pair-copula-construction - PCC

Large portions of this section are based on the work of Aas et al. (2006)
and Krämer and Schepsmeier (2011). To be able to better understand this
concept we will first illustrate a 3-dimensional PCC. Later we will state the
generalization for higher dimensions. The concept of PCC is based on the
decomposition of an n-dimensional joint density function f

f (x1, . . ., xn)

= f1(x1) f2|1(x2|x1) f3|12(x3|x1, x2) . . . fn|1...n−1(xn|x1, . . . , xn−1). (4.1)

3-dimensional example of a PCC:

Our goal is to express the probability density function f (x1, x2, x3) as a
product of pair-copula densities and marginal densities f1(x1), f2(x2), f3(x3).
One possible decomposition of f (x1, x2, x3) would be:

f (x1, x2, x3) = f1(x1)︸ ︷︷ ︸
part 1

· f2|1(x2|x1)︸ ︷︷ ︸
part 2

· f3|12(x3|x1, x2)︸ ︷︷ ︸
part 3

(4.2)

1Morales-Nápoles, R. M. Cooke, and Kurowicka (2010) showed that there are n!
2 × 2(

n−2
2 )

possible R-vines on n nodes.
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4. Vine copula

Furthermore, the conditional density can be expressed as a copula func-
tion.

Starting with part 2 we get:

f2|1(x2|x1) =
f1,2(x1, x2)

f1(x1)

(3.3)
=

f1(x1) f2(x2)c12(F1(x1), F2(x2))

f1(x1)

= f2(x2)c12(F1(x1), F2(x2)) (4.3)

For part 3 one possible decomposition would be:

f3|12(x3|x1, x2) =
f (x1, x2, x3)

f12(x1, x2)
=

f13|2(x1, x3|x2) f2(x2)

f1|2(x1|x2) f2(x2)
=

f13|2(x1, x3|x2)

f1|2(x1|x2)

=
f3|2(x3|x2) f1|2(x1|x2)c13|2(F1|2(x1|x2), F3|2(x3|x2)|x2)

f1|2(x1|x2)

= f3|2(x3|x2)c13|2(F1|2(x1|x2), F3|2(x3|x2)|x2)

(4.3)
= f3(x3)c23(F2(x2), F3(x3))c13|2(F1|2(x1|x2), F3|2(x3|x2)|x2)

An alternative decomposition where we choose c23|1 instead of c13|2 is:

f3|12(x3|x1, x2) = f3|1(x3|x1)c23|1(F2|1(x2|x1), F3|1(x3|x1)|x1)

= f3(x3)c13(F1(x1), F3(x3))c23|1(F2|1(x2|x1), F3|1(x3|x1)|x1)

As we see in this example the decomposition is not unique. In fact the
number of decompositions grows rapidly with the dimension. For a 5-
dimensional density we already have as many as 240 different PCCs (see
Hobæk Haff, Aas, and Frigessi (2010)).

In general c31|2 depends on the conditioning variable x2. This dependence
consists not only through its arguments F1|2(x1|x2) and F3|2(x3|x2) but also
through x2 directly. For purely practical reasons Hobæk Haff, Aas, and
Frigessi (2010) proposed to leave the full PCC, where all pair-copulas can be
dependent directly on a conditioning variable, behind and introduced the
simplified PCC instead, which can be used as a good approximation to the
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4. Vine copula

correct decomposition. We therefore assume that pair-copulas are indepen-
dent of conditioning variables, except through the conditional distribution.
Now that we have calculated all three parts in (4.2) using simplified PCC
leads to:

f (x1, x2, x2) =

part 1︷ ︸︸ ︷
f1(x1)

part 2︷ ︸︸ ︷
f2|1(x2|x1)

part 3︷ ︸︸ ︷
f3|12(x3|x1, x2)

= f1(x1) f2(x2)c12(F1(x1), F2(x2))

× f3(x3)c23(F2(x2), F3(x3))c13|2(F1|2(x1|x2), F3|2(x3|x2))

= f1(x1) f2(x2) f3(x3) (marginals)
×c12(F1(x1), F2(x2))c23(F2(x2), F3(x3)) (unconditional pairs)
×c13|2(F1|2(x1|x2), F3|2(x3|x2)) (conditional pair)

Now let v = (v1, . . . , vn) be a n-dimensional vector, vj one component
of this vector and v−j = (v1, . . . , vj−1, vj+1, . . . , vn) the vector v excluding
this component. According to Aas et al. (2006), we can generalize the
factorization from above to

f (x|v) = cxvj|v−j
(F(x|v−j), F(vj|v−j)) · f (x|v−j).

This iterative construction can lead to many different possible pair-copula-
constructions. Applying this to the factorization of f (x1, . . . , xn) from (4.1)
we can now express the univariate density using a combination of bivariate
copulas marginal densities.

Using f (x|v) = cxv(Fx(x), Fv(v)) fx(v), for the univariate case where v con-
sists only of one component this leads to

F(x|v) =
∫ x

−∞
cxv(Fx(u), Fv(v)) fx(u)du

=
∫ x

−∞

∂Cxv(Fx(u), Fv(v))
∂Fx(u)∂Fv(v)

fx(u)du

=
∂Cxv(Fx(x), Fv(v))

∂Fv(v)
,

Joe (1996) showed that for every j we get

F(x|v) =
∂Cxvj|v−j

(F(x|v−j), F(vj|v−j))

∂F(vj|v−j)
, (4.4)
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4. Vine copula

where Cij|v−j
is a arbitrary 2-dimensional copula distribution function.

If x and v are uniformly distributed i.e. f (x) = f (v) = 1, F(x) = x and
F(v) = v we will use the function h(x, v, Θ) to represent the conditional
distribution function, which proves to be very useful for simulation and con-
struction of vine copulas. This function is often referred to as h-function.

h(x, v, Θ) = F(x|v) = ∂Cxv(x, v, Θ)

∂v
(4.5)

where Θ represents the set of parameters for the copula associated with
the joint distribution of x and v. The second argument of h(·) denotes
the conditioning variable. Let h−1(x, v, Θ) be the inverse of the conditional
distribution function with respect to the first variable x, hence the inverse
of the conditional distribution function.

4.2. Introduction to vines

Vines are a graphical model used for the representation of simplified PCC
by using graph theory. Hence this graphical model can be used to specify
multivariate distributions by specifying its marginal distributions and the
way in which the marginal distributions are coupled.

First we will introduce some basic concepts from graph theory needed for
the introduction of regular vines, while at the same time limiting graph
theory to the bare minimum necessary for this thesis.

Definition 19 (Graph, edge, node)
A pair G = (N, E) of sets such that E ⊆ {{i, j} : i, j ∈ N, i 6= j} is called graph.
The elements of E are called edges of the graph G whereas the elements of N are
called nodes of the graph G.

Definition 20 (Path, cycle)
A graph P = (N, E) with E = {{n0, n1}, {n1, n2}, . . . , {nk−1, nk}} and N =
{n0, n1, . . . , nk} is called path. A cycle is a path with n0 = nk.

Definition 21 (Degree)
Let G = (N, E) be a graph. The degree of a node of a graph is the number edges
incident to the node, i.e the number of its neighbors.
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4. Vine copula

Definition 22 (Connected)
Let G = (N, E) be a graph. Two nodes ni, nj ∈ N, ni 6= nj are connected if there
is a path from ni to nj. If every node in a graph is connected to every other node we
call a graph connected.

Definition 23 (Tree)
A Tree is a graph T = (N, E) that has no cycles and is connected.

Definition 24 (Star, root node)
A tree T = (N, E), with a node n0 with degree |N| − 1 is called a star and n0 is
called the root node. |N| refers to the number of nodes in tree T.

Definition 25 (R-vine)
A n-dimensional regular vine V = {T1, . . . , Tn−1} is a sequence of n− 1 trees
with nodes Ni and edges Ei with:

1. Tree T1 = (N1, E1) has nodes N1 = {1, . . . , n} and a set of edges E1
2. For i = 2, . . . , n− 1 tree Ti = (Ni, Ei) has nodes Ni = Ei−1.
3. Proximity condition: For i = 2, . . . , n− 1, if {a, b} ∈ Ei, with a = {a1, a2}

and b = {b1, b2}, then it must hold that |a ∩ b| = 1, i.e. exactly one of the
a′js equals one of the b′js.

The proximity condition assures that if there is an edge in Ei connecting
two nodes a and b, then those two nodes are edges in tree Ti−1 and they
share a common node.

The class of R-vines is very general and consists of a very large number
of possible pair-copula-decompositions. A way the reduce the number of
R-vines is the usage of two special cases of R-vines, the C-vine and the
D-vine, which have both been discussed extensively in literature.

Definition 26 (C-vine)
C-vines are regular vines for which each tree Ti, for i = 1, . . . , n − 1, is a star.
Hence a C-vine has a unique node with degree n− i. This unique node is called the
root node of tree Ti

Definition 27 (D-vine)
D-vines are regular vines for which the first tree T1 is a path. Hence in a D-vine
each node in T1 has a degree of at most 2.
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Definition 28 (R-vine copula specification - Bedford and R. Cooke (2002))
(F,V , B) is called a R-vine copula specification if:

1. F = (F1, . . . , Fn) is a vector of continuous invertible distribution functions,
2. V is an n-dimensional R-vine and
3. B = {Be|i = 1, . . . , n − 1; e ∈ Ei} is a set of copulas, with Be being a

pair-copula and Ei the set of edges of tree Ti of the R-vine V .

On the following pages we will give a short profile including a 5-dimensional
example of each of the three types of vines used in this thesis. Bedford and
R. Cooke (2001) states the density of an multi-dimensional distribution in
terms of a R-vine density, which Aas et al. (2006) specialized to a C-vine
and D-vine.

We will use the following abbreviations in order to save some space and to
visualize the densities more clearly:

• For a bivariate conditional copula density of Xi and Xj given xi1 , . . . , xin
for arbitrary distinct indices i, j, i1, . . . , in with i < j and i1 < · · · < in
we use:

ci,j|i1,...,in := ci,j|i1,...,in(F(xi|xi1 , . . . , xik), F(xj|xi1 , . . . , xik))

• For the marginal density of Xi we use:

fi := fi(xi)

Definition 29 (Complete union, conditioning set)
Let V be a n-dimensional regular vine and e ∈ {i(e), j(e)} ∈ Ek, i(e), j(e) ∈ Ek−1,
k = 1, . . . , n− 1 an arbitrary edge.

(i) The complete union of e is defined by

Ue = {n ∈ N1| ∃e1 ∈ E1, . . . , ek−1 ∈ Ek−1 with n ∈ e1 ∈ . . . ,∈ ek−1 ∈ e}

Ue is a set of nodes in N1 that are in some way ”connected” by edge e, i.e. all
elements of Ue are connected by an edge, that is enclosed in an edge, in e.

(ii) The conditioning set of e is defined by

D(e) = Ui(e) ∩Uj(e).

For more details see Dißmann (2010) and Bedford and R. Cooke (2001).
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R-vine:

For a n-dimensional density f (x1, . . . , xn) the PCC of the R-vine is given in
Bedford and R. Cooke (2001) as follows:

f (x) =
n

∏
k=1

fk(xk)︸ ︷︷ ︸
marginal densities

n−1

∏
m=1

∏
e∈Em

ci(e),j(e)|D(e)(F(xi(e)|xD(e)), F(xj(e)|xD(e)))︸ ︷︷ ︸
pair-copula densities

,

where Em denotes the edge set of tree Tm, e = i(e), j(e)|D(e) are edges in Em
with conditioning set D(e) and ci(e),j(e)|D(e) is the copula density associated
with e. xD(e) stands for the variables in D(e), i.e. xD(e) = {xi|i ∈ D(e)}.

Tree 1:

1 2 3 4

5

12 23 34

25

Tree 2:

12 23 34

25

13|2 24|3

35|2

Tree 3:

13|2 24|3 35|2
14|23 45|23

Tree 4:

14|23 45|23
15|234

Figure 4.1.: An example R-vine on five variables, four trees and ten pair-copulas.

The density represented in Figure 4.1 can be written as:

f12345 = f1 f2 f3 f4 f5︸ ︷︷ ︸
nodes in tree 1

c12c23c34c25︸ ︷︷ ︸
edges in tree 1

nodes in tree 2

c24|3c35|1c13|2︸ ︷︷ ︸
edges in tree 2

nodes in tree 3

c14|23c45|23︸ ︷︷ ︸
edges in tree 3

nodes in tree 4

c15|234︸ ︷︷ ︸
edges in tree 4
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D-vine:

For a n-dimensional density f (x1, . . . , xn) the PCC of the D-vine is given in
Aas et al. (2006) as follows:

f (x) =
n

∏
k=1

fk(xk)︸ ︷︷ ︸
marginal densities

n−1

∏
j=1

n−j

∏
i=1

ci,i+j|(i+1):(i+j−1)(F(xi|x(i+1):(i+j−1)), F(xi+j|x(i+1):(i+j−1)))︸ ︷︷ ︸
pair-copula densities

In a D-vine every node in any Tree Tj is assigned a degree of 1 or 2.

Tree 1:

1 2 3 4 5
12 23 34 45

Tree 2:

12 23 34 45
13|2 24|3 35|4

Tree 3:

13|2 24|3 35|4
14|23 25|34

Tree 4:

14|23 25|34
15|234

Figure 4.2.: An example D-vine on five variables, four trees and ten pair-copulas.

The density represented in Figure 4.2 can be written as:

f12345 = f1 f2 f3 f4 f5︸ ︷︷ ︸
nodes in tree 1

c12c23c34c45︸ ︷︷ ︸
edges in tree 1

nodes in tree 2

c13|2c24|3c35|4︸ ︷︷ ︸
edges in tree 2

nodes in tree 3

c14|23c25|34︸ ︷︷ ︸
edges in tree 3

nodes in tree 4

c15|234︸ ︷︷ ︸
edges in tree 4
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C-vine:

For a n-dimensional density f (x1, . . . , xn) the PCC of the C-vine is given in
Aas et al. (2006) as follows:

f (x) =
n

∏
k=1

fk(xk)︸ ︷︷ ︸
marginal densities

n−1

∏
j=1

n−j

∏
i=1

cj,j+i|1:(j−1)(F(xj|x1:(j−1)), F(xj+i|x1:(j−1)))︸ ︷︷ ︸
pair-copula densities

.

In a C-vine each tree Tj has one unique node with degree n− j. The C-vine
might be advantageous in a scenario where one particular variable acts as
the key component that governs interactions in the dataset and is associated
with all variables in the group. This key variable (variable 1 in Figure 4.3) is
then used as root of the C-vine.

Tree 1:

5 1 2

4 3

15 12

14 13

Tree 2:

13 12 15

14

23|1 25|1

24|1

Tree 3:

24|1 23|1 25|1
34|12 35|12

Tree 4:

34|13 35|12
45|123

Figure 4.3.: An example C-vine on five variables, four trees and ten pair-copulas.
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The density represented in Figure 4.3 can be written as:

f12345 = f1 f2 f3 f4 f5︸ ︷︷ ︸
nodes in tree 1

c12c13c14c15︸ ︷︷ ︸
edges in tree 1

nodes in tree 2

c23|1c24|1c25|1︸ ︷︷ ︸
edges in tree 2

nodes in tree 3

c34|12c35|12︸ ︷︷ ︸
edges in tree 3

nodes in tree 4

c45|123︸ ︷︷ ︸
edges in tree 4

All three vine structures have different properties in representing the struc-
ture of a multi-dimensional portfolio.

4.3. Vine copula specification

It takes three steps to fit a R-vine copula specification to a given dataset:

1. Tree structure selection: Selection which conditioned and uncondi-
tioned pairs to use for the R-vine.

2. Copula family selection: Choice of bivariate copula family for each
selected pair.

3. Parameter estimation: Estimation of parameter(s) for each chosen
copula.

tree structures

model copula families

copula parameters

=

+

+

One possibility would be to accomplish step 2 and 3 for all possible R-vine
structure selections. Obviously, this approach is not very practical since
Morales-Nápoles, R. M. Cooke, and Kurowicka (2010) showed that there are
n!/2× 2(

n−2
2 ) possible R-vines on n nodes.

74



4. Vine copula

Nodes [n] 3 4 5 6 7 8

number of different R-vines 3 24 480 23.040 2.580.480 660.602.880

Table 4.1.: Number of regular vines on 3, 4, 5, 6, 7 and 8 nodes.

Due to the enormous number of different R-vines with increasing node
count as seen in Table 4.1 we will need to turn to rather heuristic methods
used in graph theory to estimate the best structure.

4.3.1. Tree structure selection

For a given dataset it is necessary to determine for which pair of variables
we want to specify a copula. Dißmann (2010) described a method called
”Sequential method to select an R-vine model based on Kendall’s τ” (see Algorithm
4.3.1) which is based on the idea that the copula families specified in the
first tree of the R-vine often have the greatest influence on the precision of
the model. This means that the model prioritizes strong dependence in the
first tree. The method proceeds sequentially tree by tree starting with the
first tree T1 = (N1, E1). Since every tree is examined separately, this method
can not guarantee to find the global optimum.

There do also exist alternative ways of generating R-vines. Kurowicka (2011)
proposed a method that tries to generate the R-vine starting with the last
tree, building the tree from the other side, trying to construct a R-vine with
the lowest dependencies in the top trees.

Kendall’s τ is chosen as dependence measures since it measures dependence
independently of the assumed distributions. This is especially useful when
combining different copula families.

The method proposed in Dißmann (2010) can be summarized as follows:
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Algorithm 4.3.1 Sequential method to select an R-vine model based on
Kendall’s τ.
Require: Uniformly distributed margins of n variables.
Ensure: A fully specified R-vine (C-vine or D-vine).

1: Calculate the empirical Kendall’s τ̂ for all possible variable pairs.
2: Select the spanning tree that maximizes the sum of absolute empirical

Kendall’s τ̂′s
max ∑

edges ij in spanning tree
|τ̂ij|.

(For this step we can simply use the algorithm of Prim. Generally
speaking we are looking for a tree. If we however modify this step to
look for a star or a path instead we will obtain a D-vine or C-vine.)

3: Select a copula for all pairs found in Step 2 and fit the corresponding
parameter.
(This is explained in detail in Section 4.3.2 and Section 4.3.3)

4: Transform the observations by using the h-function (as defined in (4.4))
for the in Step 3 chosen bivariate copula and its parameters.

5: Use these transformed observations to calculate empirical Kendall’s τ̂′s
for all possible pairs (proximity condition (see Definition 25) must be
fulfilled).

6: Proceed with Step 2 until receiving a fully specified R-vine (C-vine or
D-vine).

If we want to obtain a C-vine we have to determine a unique root node with
degree n− i (where n is the dimension of the portfolio and i the number
of the considered tree) in each tree. This can be done by finding a spanning
star which maximizes the edge weights in a complete graph. Summing up
the columns in the weight matrix (in our case a matrix of absolute empirical
Kendall’s τ) and choosing the one with the maximum sum gives us the
desired result.

In the case that we want to obtain a D-vine we are only interested in finding
the first tree, since all other trees are already uniquely determined by the
first tree. Here the construction is much more complex than in the case
of C-vines or R-vines. The problem of finding the longest sequence of
nodes, by means of absolute edge weights, with each variable occurring
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exactly once, corresponds to the problem of finding a longest Hamiltonian
path. Or equivalently the shortest Hamiltonian path in terms of weights
1− |τ̂ij|. Unfortunately this problem is NP-hard, meaning that there is no
fast efficient solution, especially in higher dimensions. This problem can be
transformed into the Traveling Salesman Problem (TSP) i.e where the shortest
circle that uses each node exactly has to be found. There are a wide range
of heuristics available to solve this problem.

4.3.2. Copula family selection

In addition to a vine structure we need to select a copula family for each
pair of variable that fits best. In this thesis we take a look at the following six
copula families, all of which have different properties and tail dependence:

• Gaussian/Normal copula (tail-symmetric, no tail dependence)
• Student-t copula (tail-symmetric, tail dependence)
• Clayton copula (tail-asymmetric, lower tail dependence)
• Gumbel copula (tail-asymmetric, upper tail dependence)
• Frank copula (tail-symmetric, no tail dependence)
• Joe copula (tail-asymmetric, upper tail dependence)

For determining which copula family gives us the best fit we use the AIC
(Akaike Information Criterion) introduced by Akaike (1974). It is a measure
of the relative quality of statistical models for a given set of data. Although
the AIC will select the best model from a set, it only measures the quality
of a model relative to other models. It won’t say anything about absolute
quality of a model. Hence AIC gives no indication of a poor fit in a case
where all candidate models fit poorly.

Definition 30 (Akaike information criterion)
Let M be a statistical model of some data x. AIC is defined as

AIC := −2 ln
[
L̂
]
+ 2k,

where L̂ is the maximized value of the likelihood function for the model and k
denotes the number of parameters; i.e. L̂ = f (x|θ̂, M), where θ̂ are the parameter
values that maximize the likelihood function.
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In order to select a suitable copula family we first need to estimate parame-
ters for each copula family using bivariate maximum likelihood estimation.
Using the estimated parameters, for a specific bivariate copula density c the
AIC is hence given by (see Brechmann (2010))

AIC := −2
d

∑
i=1

ln c(ui,1, ui,2|θ̂) + 2k,

where θ̂ = (θ̂1, . . . , θ̂k)
′, (ui,1, ui,2) for i = 1, . . . , d are observations and with

k = 1 for bivariate copulas with one parameter (e.g. Gaussian, Clayton
etc.) and k = 2 for bivariate copula with two parameters (Student’s t). We
calculate the AIC’s for every possible family for each pair of variables and
then choose the copula family with the smallest AIC. Manner (2007) found
that this is overall a relatively reliable criterion. The performance of AIC
as selection criterion is not entirely satisfactory for weak dependence (by
means of Kendall’s τ), nevertheless in those cases where it does not find the
best fitting model is usually choses one that is close to it.

This bivariate estimation method fits nicely into Algorithm 4.3.1 which
estimates the copula family and its parameters sequentially one tree after
the other. It estimates the copula families and its parameters individually for
each bivariate copula in one tree and then computes transformed variables
for the following tree using the corresponding h-function, and so on. Using
this method only bivariate copula estimation is required, which can be
calculated rather quickly.

We now outline the copula family estimation and parameter estimation
part of Algorithm 4.3.1 by using an example. For this example we use the
5-dimensional R-vine described in Figure 4.1.

Example: First we need to estimate the tree structure of the first tree by using
the algorithm of Prim. By using maximum likelihood estimation and AIC,
we estimate the copula families and its parameters, namely C12, C23, C34
and C25 based on the transformed observations Fj(xk,j) for xk,j, k = 1, . . . , d,
j = 1, . . . , 5. At this point we have already fully specified the first tree
of our R-vine. For the next tree we now consider all edges which do not
violate the proximity condition and calculate all transformed observations
corresponding to these possible edges. We then calculate Kendall’s τ and
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estimate the tree structure for this tree. In the next step we need to estimate
the families and the parameters of all conditional copulas for this tree, which
we will illustrate for C13|2. For this we have to use transformed observations
F1|2(xk,1|xk,2, θ̂12) and F3|2(xk,3|xk,2, θ̂23), k = 1, . . . d via the h-function using
the parameters of copula C12 and C23. Let us assume C12 was estimated
to be a Clayton copula with parameters θ̂12. The transformed observations
are now being calculated using a Clayton h-function: F1|2(xk,1|xk,2, θ̂12) =

h(xk,1, xk,2, θ̂12), for k = 1, . . . , d. Similarly we calculate F3|2(xk,3|xk,2, θ̂23). By
using maximum likelihood estimation and AIC, we estimate the copula
family and its parameters for copula C13|2. This procedure is continued
along the sequence of trees until the last tree in the pair-copula-construction
is reached.

Comparison of different vine models:

When constructing different models from the same data, like we do in
Chapter 5 when comparing C-vines, D-vines and R-vines, the question of
which model is ”better” arises. Brechmann (2010) describes a popular way
which allows for easy model comparison by using AIC as described in
Definition 30. Given observations xi, i = 1, . . . , d, we get

AIC := −2
d

∑
i=1

ln f (xi|θ̂) + 2k,

with θ̂ being the maximum likelihood estimate of θ and k denotes the
overall number of parameters θ = (θ1, . . . , θk)

′ which penalize a high count
of parameters in order to avoid over fitting. For example in the case of a
R-vine copula density as described in Section 4.2 the AIC is given by

AIC =− 2
d

∑
i=1

[
ln

n−1

∏
m=1

∏
e∈Em

cj(e),k(e)|D(e)(F(xi,j(e)|xi,D(e)), F(xi,k(e)|xi,D(e)))

]
+ 2k

=− 2

[
d

∑
i=1

n−1

∑
m=1

∑
e∈Em

ln cj(e),k(e)|D(e)(F(xi,j(e)|xi,D(e)), F(xi,k(e)|xi,D(e)))

]
+ 2k,

where k denotes the total number of parameters. In a similar way we can
evaluate the AICs for C-vines and D-vines. An alternative to AIC would
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be using the Baysian information criterion (BIC) which involves a stronger
penalty term. In both cases the model selection happens by choosing the
model which minimizes the criterion.

4.3.3. Parameter estimation

We have already implicitly estimated parameters for the bivariate copulas
in Subsection 4.3.2. These parameters however were calculated by using
a sequential estimation approach which only leads to a locally optimal
selection for each copula.

A better approach for estimating copula parameters would be using max-
imum likelihood techniques. Given a already determined suitable tree
structure and the appropriate bivariate copula families for each pair of
variables we are able to estimate the copula parameters θ for these bivariate
copulas for observed data u ∈ Rd×n via maximum likelihood estimation.
The number of observations is denoted by d whereas n is the dimension
of the PCC. The critical part of this task are the conditional distribution
functions F(xj(e)|xD(e)), which depend on copulas of previous trees.

For PCCs however the number of parameters θ to be estimated, even in
rather low dimensions such as five of six, may be too large and hence
computationally too heavy for an overall maximum likelihood estimation.
A n-dimensional PCC consists of n(n− 1)/2 bivariate copulas. Hence, for
instance, a six-dimensional PCC consisting of 6(6− 1)/2 = 15 bivariate
Student’s t-copulas, has already 30 parameters that need to be fitted. This
leads to a numerically challenging problem in finding the global maximum
in such a high-dimensional space, even using more elaborate optimization
schemes. Therefore we need to consider faster and computationally easier
estimation procedures.

One way to deal with this problem is to consider appropriate starting values
for the maximum likelihood estimation. The already estimated parameters
using the previously discussed sequential method can be used as starting
values for the joint maximum likelihood estimation, if additional accuracy
is desired. However, sequential estimates are usually already quite close
to those estimates obtained by full maximum likelihood estimation and
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therefore sufficient for most applications. For a discussion on this topic
see Aas et al. (2006) and Hobæk Haff (2013) who investigate different
approaches to parameter estimation for PCC.
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5. Empirical studies and analysis

This chapter focuses on the data used for the practical implementation of
the vine copula models and its analysis. We are using historical data of a
six-dimensional portfolio of assets.

5.1. R implementation and packages

The procedure of data analysis, simulation, estimation and optimization
was carried out using R 3.4.0 (2017/04/21) by R Core Team (2017). Here
is a short overview of the most important packages used to obtain the
results. The list of R packages and functions provided here is by no means
complete.

• VineCopula1: This package provides tools for the statistical analysis of
vine copula models. For our needs we used RVineStructureSelect() to fit
either an R- or a C-vine copula model to a n-dimensional data set. This
function is used to determine pair-copula families, their parameters
and the vine structure. To fit a D-vine copula model we addition-
ally need to use the package TSP to manually determine the D-vine
structure. D2RVine() is used to transform the D-vine structure to the
corresponding R-vine structure, for which we then use RVineStruc-
tureSelect() to determine the appropriate pair-copula families and its
parameters. Finally, we use RVineSim() to simulate samples from a
given vine copula model. The package is also used for the visualization
of vine copula trees and contour plots.

1Schepsmeier, Stoeber, and Brechmann, 2017.
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• rugarch2: This package aims to provide a flexible and rich univariate
GARCH modeling environment. We use the function ugarchspec() to
specify a GARCH(1,1) model with different error distributions which
is then used by ugarchfit() to fit the univariate GARCH(1,1) model, to
find model parameters and to calculate other characteristic values. For
forecasting we use either the function ugarchforecast() or ugarchroll().
Finally, we use the function VaRTest() and ESTest() for backtesting
VaR and CVaR. These two functions provide an implementation of the
”unconditional and conditional coverage Value at Risk Exceedances
Test” of Kupiec and Christoffersen and the ”Expected Shortfall Test”
of McNeil and Frey. The package also provides a set of very useful
plots such as QQ-plots, ACF-plots etc.
• TSP3 This package provides tools for solving a traveling salesperson

problem (TSP). For the construction of a D-vine copula model we
need to find a longest(shortest) Hamiltonian path. With the usage of
insert dummy() we insert a dummy node into our object and obtain a
TSP problem which is then being solved using solveTSP(). To obtain
the original problem we use cut tour() to remove the previously added
node.
• Copula4 The copula package provides classes of commonly used ellip-

tical and archimedean copula families, including methods for density,
distribution and plots. We use this package mainly to fit a multivari-
ate Student’s t-copula using tCopula() and fitcopula() to multivariate
observations. Furthermore, we use the function rCopula() to simulate
samples from the previously estimated multivariate Student’s t-copula
model.
• ggplot25: A system for ”declaratively” creating graphics and a tool

for visualizing data. In addition to the package ggplot2, other pack-
ages for visualization and the preparation of data frames are used.
e.g. gridExtra (arrange multiple grid-based plots), corrplot (graphical
display of a correlation matrix), GGally (extension of ggplot2, used to
create pairwise plot matrix), reshape (manipulation of data frames) and
xtable (export of tables to latex).

2Ghalanos, 2015.
3Hahsler and Hornik, 2017.
4Hofert, Kojadinovic, et al., 2017.
5Wickham and Chang, 2016.
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5.2. Setting up of fixed vs. refitted rolling window
models

We are interested in analyzing and comparing the performance of four
multivariate VaR and CVaR model, namely the C-vine, D-vine and R-vine
copula model and a multivariate Student’s t-copula model. Our goal is
the estimation of one-day-ahead VaR and CVaR forecasts using the last
943 daily observations up to this date. For this we are using two different
approaches with respect to the data used for the parameter estimation and
the frequency of its re-estimation.

5.2.1. Fixed model

In this approach we estimate all parameters for the GARCH(1,1) model and
the copula model for VaR and CVaR predictions using the first 943 daily
log-returns. These parameters will not be updated, but will stay fixed during
the entire backtesting procedure. For this model we expect the performance
to decrease as time goes by and dependencies change. However, due to the
fact that we are keeping the parameters constant and do neither update
the GARCH parameters nor the C-vine, D-vine, R-vine and multivariate
Student’s t-copula parameters, we are computationally more efficient in
comparison to a model that needs to be constantly refitted. This gained
benefit can be invested in increasing the number of simulations to 100.000
to get a more accurate estimation of VaR and CVaR.

5.2.2. Refitted rolling window models

In this approach we are refitting both the GARCH(1,1) and vine the cop-
ula model respectively multivariate Student’s t-copula model parameters
periodically by using data from the last 943 days. Hence for re-estimation
we are using a rolling window of size 943. We have the option to refit
the GARCH parameters and the C-vine, D-vine, R-vine and multivariate
Student’s t-copula models in every single step. A daily refit of parameters
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is however computationally very demanding. Due to very long estimation
time and aiming at the improvement of the overall performance it is often
not feasible to refit on every single day but e.g. every 50 days. Additionally
we need to reduce the sample size of simulations from the copula models.
In the case of a daily refit we are using 30.000 simulations, which is already
computationally demanding.

Figure 5.1 illustrates 814 one-day-ahead VaR and CVaR forecasts, for a
total of 1757 daily observed log-returns. The last forecast (815) can not be
backtested and will therefore be disregarded.

Total observed log-returns - 1757

Time
Sample 1 - Observation 1 to 943 VaR(t=944)

Sample 2 - Observation 2 to 944 VaR(t=945)

Sample 815 - Observation 815 to 1757

VaR(t=1758)

...
...

Figure 5.1.: Observations used for one-day-ahead forecasting.

5.3. Data and analysis of daily log-returns

Period fitting period testing period Total

Date 01/01/2004 - 31/12/2007 01/01/2008 - 07/01/2011

Observations N1 = 943 N2 = 814 N = 1757

Table 5.1.: Initial fitting period and testing period.

For the empirical part of this thesis, we choose a portfolio of six assets with
daily observations. We use publicly available data (adjusted closing prices)
taken from Yahoo! Finance from the periods as described in Table 5.1.
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Allianz SE

Exchange: XETRA

Datasource: Yahoo! Finance
Data available since: 12/16/1996

Symbol: ALV.DE
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Figure 5.2.: Adjusted closing prices and the corresponding daily log-returns of ALV.DE.
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Figure 5.3.: Adjusted closing prices and the corresponding daily log-returns of BMW.DE.
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DAX

Exchange: XETRA
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Data available since: 12/30/1987
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Figure 5.4.: Adjusted closing prices and the corresponding daily log-returns of ˆGDAXI.

Treasury Yield Option
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Exchange: CBOE

Datasource: Yahoo! Finance
Data available since: 1/2/1962
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Figure 5.5.: Adjusted closing prices and the corresponding daily log-returns of ˆTNX.
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Toyota Motor
Corporation
Exchange: NYSE

Datasource: Yahoo! Finance
Data available since: 8/18/1976

Symbol: TM
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Figure 5.6.: Adjusted closing prices and the corresponding daily log-returns of TM.

Nikkei 225

Exchange: Osaka
Datasource: Yahoo! Finance

Data available since: 1/5/1965

Symbol: ˆN255
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Figure 5.7.: Adjusted closing prices and the corresponding daily log-returns of ˆN255.
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Before we go deeper into the construction of suitable vine copula models,
we first perform some preliminary analysis of all six log-return series.
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Figure 5.8.: Normalized adjusted closing prizes using 100 as the base value at 1/1/2004.

The vertical dotted line in Figure 5.8 and Figure 5.9 is indicating the sep-
aration between days of the fitting period, that are solely used for fitting
the vine copula models and the GARCH(1,1) model and days of the testing
period.
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Figure 5.9.: Log-returns of equally weighted portfolio.

Figure 5.9 shows that with the beginning of the global financial crisis from
2008 until 2010 we see a significant increase in volatility of the log-returns.
Starting around 2010 the volatility reverts back to almost pre-crisis levels.
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Figure 5.10.: Normal QQ-plots of all daily log-returns.

We carried out a test for normality by examining normal QQ-plots for
each of the six log-return series. If the data is from the assumed normal
distribution, then the QQ-plot will approximately represent a straight line.
As seen in Figure 5.10 our observed data follows by no means a normal
distribution. We see a significant deviation from the straight line for all six
log-return series, especially in the tails. This is a strong indication that the
assumption of a normally distributed dataset has to be discarded for a more
heavy-tailed distribution.
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minimum maximum mean std.dev skewness kurtosis

ALV.DE -0.15187 0.23305 0.00013 0.02368 1.07173 16.32227

BMW.DE -0.14139 0.13836 0.00053 0.02142 0.28744 6.10397

GDAXI -0.07739 0.13463 0.00035 0.01445 0.31923 10.19878

TNX -0.17021 0.17575 -0.00018 0.01901 -0.00446 9.34664

TM -0.18061 0.14419 0.00016 0.01874 -0.24291 10.21087

N225 -0.12111 0.13235 -0.00005 0.01669 -0.62299 9.25592

Table 5.2.: Results of descriptive statistical analysis of all daily log-returns.

The descriptive statistic of daily log-returns of all assets is given in Table
5.2. As expected we see that the mean of all six time-series is close to zero.
Both the kurtosis and skewness of each series deviates from zero, which
indicates that all six return series are leptokurtic. This is another indication
that the return series distributions are heavy-tailed and do not follow a
normal distribution. The Shapiro-Wilk normality test also shows that all return
series reject normal distribution at the 1% level of significance.
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Figure 5.11.: Empirical Kendall’s τ of log-returns computed pairwise for the fitting period.
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Figure 5.11 displays a matrix of empirical Kendall’s τ of all possible pairs of
the log-return series. Negative correlations are displayed in red and positive
correlations are displayed in blue. The colors and the size of the circles are
proportional to the Kendall’s τ correlation coefficients. The legend, on the
right side of the correlation matrix, shows the corresponding colors of the
correlation coefficients. Our data suggests that the first three assets (ALV.DE,
BMW.DE and GDAXI) have a moderate to strong positive correlation to
each other. These dependencies can also be seen in the first level of all three
vine structures as depicted in Figure 5.31. This also applies similarly, with
slightly weaker correlation, to the assets TM - N255. All other correlations
are rather weak. The correlation of TNX to all other assets is very close to
non existent.

5.4. Marginal distribution estimates

After the discussion and analysis of the daily log-returns, we will now
concentrate on the modeling of the margins. We are going to use methods
from time-series analysis to remove serial dependence among observations
in order to obtain i.i.d. data, which can then be used as input for copula
models. In particular we are going to use a GARCH(1,1) model with ap-
propriate error distributions chosen by using AIC. See Schafzahl (2018) for
further details on the choice of error distribution.

Our datasets consist of financial time series, hence the series of log-returns
are expected to exhibit some degree of volatility clustering, which is the
tendency of large changes in price of financial assets to cluster together.
Benoit Mandelbrot described it as ”large changes tend to be followed by large
changes - of either sign - and small changes tend to be followed by small changes”6.
In Figure 5.12 we see the autocorrelation function of the squared residuals
of all six assets. Autocorrelation describes the correlation observations as
a function of the time lag between them. If our given series of log-returns
are independent over time, the squared value of the log-returns should not
be autocorrelated. This gives us a way to detect the presence of volatility
clustering. Using the Ljung-Box test we have to reject the hypothesis of

6Mandelbrot, 1963.
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independence of the squared log-returns for a level of 3%. The same results
can be obtained using ACF plots.
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Figure 5.12.: ACF of the squared values of the daily log-returns.

The dotted lines represent the 97% confidence interval and given that there
are 30 lags we would expect no more than (3%× 30 = 0.9), which can
be rounded up to 1 lags, to exceed the boundary. For our six stock the
autocorrelation functions of the squared log-returns have a positive value
above the dotted line for a relatively large number of lags. Observations
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of this type often indicate volatility clustering and suggests the usage of
GARCH models in financial forecasting. In summary we can say that the log-
return series do not follow a normal distributions and that the hypothesis
of independence of the log-returns over time, has to be rejected for a level
of 3%.

We fitted the GARCH(1,1) model to the six return series in order to obtain
i.i.d. time series. Table 5.3 presents results from the GARCH(1,1) parameter
estimation using data from the first 943 daily log-returns. The sum of the
parameters α1 + β1 is approaching 1 from below, which indicates that the
GARCH(1,1) models are stationary.

α0 ω α1 β1 α1 + β1 shape Log-Lik

ALV.DE 0.00087 0.00001 0.07516 0.86435 0.93951 10.40133 -2695.69

BMW.DE 0.00038 0.00000 0.01820 0.97545 0.99365 6.86357 -2726.48

GDAXI 0.00088 0.00000 0.07581 0.88201 0.95782 1.48630 -3075.79

TNX 0.00003 0.00000 0.02898 0.96927 0.99825 8.90957 -2939.90

TM 0.00052 0.00000 0.04659 0.93576 0.98235 13.50557 -2776.05

N225 0.00063 0.00000 0.07477 0.91166 0.98643 12.38877 -2940.56

Table 5.3.: Summary of estimated parameters of the GARCH(1,1) model and the log-
likelihood value for all six log-return series.
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Figure 5.13.: Comparison of GARCH(1,1) residuals vs. GARCH(1,1) standardized residual
distribution for each time series for the first 943 daily observations.

Moreover, we have examined the standardized residuals for serial correlation
using a series of Ljung-Box tests. For a lag of 1 the Ljung-Box test gives us
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p-values all greater than 3%, therefore we cannot reject the null hypothesis
that the data is independently distributed and hence any correlation in
the population results from randomness. When increasing the number of
different time lags, the test shows similar results.

ALV.DE BMW.DE GDAXI TNX TM N225

lag = 1 0.329 0.206 0.563 0.278 0.411 0.547

lag = 15 0.779 0.367 0.851 0.038 0.532 0.926

Table 5.4.: Ljung-Box test of standardized residuals for each time series for first 943 days
with lag 1 and lag 15.

The standardized residuals for the first 943 days seen in Figure 5.14 also
indicate that there seems to be no visible volatility clustering in our data.
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Figure 5.14.: GARCH(1,1) standardized residuals for the first 943 days.

For the same estimation period we also present a more detailed analysis,
using a set of four diagnostic plots for each time-series to inspect the
goodness-of-fit for the GARCH(1,1) model. The results of this analysis are
presented in Figures 5.15 - 5.20.
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Empirical Density of Standardized Residuals
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Figure 5.15.: Selected diagnostic plots of a GARCH(1,1) model with Student’s t error
distribution fitted to ALV.DE data from the first 943 days.
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Figure 5.16.: Selected diagnostic plots of a GARCH(1,1) model with Student’s t error
distribution fitted to BMW.DE data from the first 943 days.
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Figure 5.17.: Selected diagnostic plots of a GARCH(1,1) model with skew-generalized error
distribution fitted to ˆGDAXI data from the first 943 days.
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Figure 5.18.: Selected diagnostic plots of a GARCH(1,1) model with Student’s t error
distribution fitted to ˆTNX data from the first 943 days.
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Figure 5.19.: Selected diagnostic plots of a GARCH(1,1) model with Student’s t error
distribution fitted to TM data from the first 943 days.

Empirical Density of Standardized Residuals

zseries

−4 −3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6 Median:  −0.02 | Mean:  −0.0341

G
A

R
C

H
 m

od
el

 : 
 s

G
A

R
C

H

●

●

normal Density
sstd (0,1) Fitted Density

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●●

●●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●●
●● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●

● ●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●●

●

●
●●

●

●

●

●

●

●

●
●

●

●●

●●

●

●●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●
●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2

−
4

−
2

0
1

2
3

sstd − QQ Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

G
A

R
C

H
 m

od
el

 : 
 s

G
A

R
C

H

1 3 5 7 9 11 14 17 20 23 26 29

ACF of Squared Observations

−
0.

05
0.

05
0.

15

G
A

R
C

H
 m

od
el

 : 
 s

G
A

R
C

H

1 3 5 7 9 11 14 17 20 23 26 29

ACF of Squared Standardized Residuals

A
C

F

−
0.

05
0.

00
0.

05

G
A

R
C

H
 m

od
el

 : 
 s

G
A

R
C

H

N225

Figure 5.20.: Selected diagnostic plots of a GARCH(1,1) model with skewed Student’s t
error distribution fitted to ˆN225 data from the first 943 days.
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Looking at the ACF of the squared standardized residuals

ẑ2
t,i =

ε̂2
t,i

σ̂2
t,i

for all six assets i = 1, . . . , 6 in Figures 5.15 - 5.20 we see that the squared
standardized residuals display no autocorrelation. We see no discernible
pattern at any order of lags. This finding has already been confirmed using
a series of Ljung-Box tests.

In the following, before being able to estimate the parameters of the vine
copula models or multivariate Student’s t-copula models we will need to
transform the margins to uniformly distributed margins, i.e. ut,i = Fi(xt,i)
for i = 1, . . . , 6 and t = 1, . . . , 943.

In most cases however, the true distribution functions of the margins Fi’s
are unknown. Therefore, according to Brechmann (2010), for the transfor-
mation of the standardized residuals we will need to replace the unknown
distribution functions Fi’s by their empirical versions

F̂i(ẑ) =
1
n

n

∑
t=1

1[ẑt,i,∞)(ẑ). (5.1)

where 1[ẑt,i,∞) is the indicator function. The uniformly distributed margins
ut,i for assets i = 1, . . . , d and t = 1, . . . , n can now be calculated by using
the so-called pseudo-observations

ut,i =
rank(ẑt,i)

n + 1
=

n
n + 1

F̂i(ẑt,i). (5.2)

The factor n
n+1 is introduced to prevent numerical problems in the bound-

aries of [0, 1]d.

We now transform the previously calculated standardized residuals ẑt,i for
all six return series to uniform variables using the empirical cumulative
distribution function according to (5.1) and (5.2). The Kolmogorov-Smirnov
test fails to reject the null hypothesis H0 that the distribution of transformed
standardized residuals and the uniform distribution are from the same
uniform U(0, 1) distribution at a 5% significance level.
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5. Empirical studies and analysis

On this basis, copula models such as vine copula or multivariate copula
models can now be used to analyze the dependence structure between these
six series.

5.5. Finding the vine copula and Student’s
t-copula models

To model the dependence structure we investigate four models. In partic-
ular, a R-vine copula model, selected using the maximum spanning tree
algorithm proposed in Dißmann (2010), a C-vine copula model, selected by
finding the maximum spanning-star which maximizes the edge weights, a
D-vine copula model, selected using a traveling salesman algorithm7, and
a multivariate Student’s t-copula. The procedure of finding a vine copula
specification has already been discussed in Section 4.3.

In the vine copula structures shown below the numbers in the boxes rep-
resent the stocks (1 = ALV.DE, 2 = BMW.DE, 3 = ˆGDAXI, 4 = ˆTNX,
5 = TM, 6 = ˆN255) whereas the letters on the connecting lines between two
boxes represent the corresponding pair-copula chosen by the AIC criteria,
which characterizes the relationship between two stocks.

7For this we are using the repetitive nearest neighbor algorithm (see Rosenkrantz,
Stearns, and Philip M. Lewis (1977)).
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5.5.1. C-vine
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Figure 5.21.: C-vine: Tree structure estimated with the first 943 observations. The edge
labels denote the corresponding pair-copula families (N = Gaussian copula,
t = Student’s t-copula, C = Clayton copula, G = Gumbel copula F = Frank
copula, J = Joe copula) and its parameters.
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Figure 5.22.: C-vine: Contour plots of all pair-copulas.
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Figure 5.23.: Lower left: Pair plots of C-vine copula simulations.; upper right: Kendall’s τ
of the transformed data set.
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5.5.2. D-vine
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Figure 5.24.: D-vine: Tree structure estimated with the first 943 observations. The edge
labels denote the corresponding pair-copula families (N = Gaussian copula,
t = Student’s t-copula, C = Clayton copula, G = Gumbel copula F = Frank
copula, J = Joe copula) and its parameters.
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Figure 5.25.: D-vine: Contour plots of all pair-copulas.
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Figure 5.26.: Lower left: Pair plots of D-vine copula simulations.; upper right: Kendall’s τ
of the transformed data set.
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5.5.3. R-vine
Tr

ee
 1

t(
0.

84
,7

.2
9)

t(
0.

18
,7

.4
)

t(
0.

67
,5

.8
9) N
(0

.3
7)

N
(0

.4
4)

1

4

2

3

5

6

Tr
ee

 2

F
(0

.3
9)

F
(0

.2
3)

F
(0

.3
6)

N
(0

.2
3)

3,
1

3,
4

3,
2

5,
3

6,
5

Tr
ee

 3

t(
0.

1,
14

.7
7)

F
(−

0.
09

)

F
(0

.4
4)5,

1 
; 3

2,
4 

; 3

5,
2 

; 3

6,
3 

; 5

Tr
ee

 4

t(
−

0.
02

,1
3.

44
)

F
(0

.1
5)

6,
1 

; 5
,3

5,
4 

; 2
,3

6,
2 

; 5
,3

Tr
ee

 5

F
(0

.1
6)

2,
1 

; 6
,5

,3

6,
4 

; 5
,2

,3

Figure 5.27.: R-vine: Tree structure estimated with the first 943 observations. The edge
labels denote the corresponding pair-copula families (N = Gaussian copula,
t = Student’s t-copula, C = Clayton copula, G = Gumbel copula F = Frank
copula, J = Joe copula) and its parameters.
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Figure 5.28.: R-vine: Contour plots of all pair-copulas.
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Figure 5.29.: Lower left: Pair plots of R-vine copula simulations.; upper right: Kendall’s τ
of the transformed data set.
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5.5.4. Student’s t-copula
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Figure 5.30.: Lower left: Pair plots of Student’s t-copula simulations.; upper right: Kendall’s
τ of the transformed data set.

Moreover, we fitted a multivariate Student’s t-copula using the first 943 ob-
servations by using the R routine fitcopula(tCopula(. . . ),. . . ,method=”itau.mpl”)8.
The estimated degree of freedom is ν = 16.34 and the correlation matrix can
be seen below:

ρ =


0.56295
0.84533 0.16541
0.34388 0.34473 0.68384
0.14592 0.29424 0.27350 0.18020
0.36866 0.35186 0.05638 0.08615 0.43978


8This method for estimating parameters of a Student’s t-copula was suggested by

Mashal and Zeevi (2002) (see also Demarta and A. McNeil (2005))

107



5. Empirical studies and analysis

5.5.5. Comparison of models
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Figure 5.31.: The first level of the C-vine, D-vine and R-vine copula tree structure estimated
for the first 943 observations.

The three vine copula structures, which model the relationship of the stocks
in our chosen six-dimensional portfolio, all look totally different, but have
certainly some bivariate building blocs in common. We will now further
analyze the risk measures VaR and CVaR for all three models.

Class Strategy No. parameters Log-likelihood AIC BIC

t-copula ITAU MPL 16 1051.861 −2071.721 −1994.136
C-vine AIC / MLE 20 1078.935 −2117.870 −2020.888
D-vine AIC / MLE 19 1073.089 −2108.179 −2016.047
R-vine AIC / MLE 20 1080.159 −2120.318 −2023.337

Table 5.5.: Comparison of log-likelihood, number of parameters, AIC and BIC of all three
vine copula models and the Student’s t-copula.

Table 5.5 represents a comparison of the model fit of the three previously
described vine copula models and the multivariate Student’s t-copula men-
tioned in Section 5.5.4. In all cases, using either log-likelihood, AIC or BIC,
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we see that the multivariate Student’s t-copula performed slightly worse
than all three vine copula models.

5.6. Procedure: Forecasting and backtesting

We are using historical data to estimate the parameters of the C-vine, D-vine
and R-vine copula models. These models try to capture the dependence
structure of our chosen equally weighted six-dimensional portfolio as closely
as possible. In this section we explore the use of vine copula models in
forecasting one-day-ahead VaRα and CVaRα for different levels of α and use
statistical tests to determine the accuracy of our predictions. In the first sce-
nario of this backtesting procedure, we determine the dependence structure
of our portfolio using C-vine, D-vine and R-vine models and assume that
the dependence structure doesn’t change for the entire backtesting period.
We call this the fixed model approach. This strategy might however be
problematic in scenarios where the dependence structure changes, therefore
we will also use a 943 days rolling window approach, where we refit the
GARCH(1,1) model and the copula models every 50 days and compare the
results to the fixed model approach, where the model is estimated on day
one and stays constant for all following days.

The main steps of the backtesting procedure follow the procedure given in
the master’s thesis of Monstvilaite (2016). We have adapted these steps to
our application and outlined the procedure below:

1. Convert the data sample to daily log-returns

rt,j = ln

(
St,j

St−1,j

)
,

where St,j denotes the price of the j-th asset at day t. In our data
sample we have a total of 1757 daily log-returns.
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Figure 5.32.: Distribution of daily log-returns of all 6 given assets.

2. The data used for analysis starts on 01/01/2004 and ends on 07/01/2011,
which results in a total of 1757 observations per asset. We estimate 814
one-day-ahead VaR and CVaR forecast for the period of 01/01/2008

to 07/01/2011, for which we use data from the last 943 observations
as illustrated in Figure 5.1. The separation into fitting period and
testing period is in accordance to Table 5.1. The parameters for the
GARCH(1,1) models and the vine copula models are either being
estimated using only data from the fitting period [1, . . . , 943] in the
fixed model (Steps 3.a to 9.a) or re-estimated every 50 days using data
from the last 943 observations in the 50 days refitted rolling window
model (Steps 3.b to 9.b).

—————

Backtest with fixed models:
In case of a fixed models we will follow Steps 3.a to 9.a and then proceed
with Step 10.

3.a Fit a univariate GARCH(1,1) model with appropriate innovations
separately for r1:943,1, . . . , r1:943,6 to convert the daily log-returns into
an i.i.d series. Exemplary results for all six time series can be seen
in Table 5.3. Using the determined GARCH(1,1) parameters and the
remaining daily log-return series we calculate the remaining residuals
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and standard deviations by applying the equations given below. For
each of the six assets denoted by j and t ∈ [944, . . . , 1757] we apply
the following:

εt,j = rt,j − µj (5.3)

σ2
t+1,j = α0,j + α1,jε

2
t,j + β1,jσ

2
t,j (5.4)

Here µj denotes the sample mean and εt,j denotes the error term of
the GARCH(1,1) process.

4.a Extract the residuals (5.3) from Step 3.a and standardize them with
the standard deviations (5.4) obtained from Step 3.a using:

zt,i =
εt,i

σt,i

5.a Convert the standardized residuals z1:943,1, . . . , z1:943,6 to standard uni-
form residuals u1:943,1, . . . , u1:943,6 using the empirical cumulative dis-
tribution function according to (5.1) and (5.2). We apply the following
equation for all six series:

ut,j =
n

n + 1
F̂j(zt,j)

6.a Fit an C-vine, D-vine or R-vine copula model to the multivariate data
u1:943,1, . . . , u1:943,6 from the fitting period [1, . . . , 943] using the model
selection methods described in Chapter 4. We will predict the distribu-
tion for days in the interval [944, . . . , 1757], using the determined vine
structure.

7.a Generate sim = 105 simulations usim
1 , . . . , usim

6 using the fitted vine
model from the previous step. We will use the same sample for all
future dates t ∈ [944, . . . , 1757].

8.a Convert the simulated uniform marginals usim
1 , . . . , usim

6 to standard-
ized residuals using the inverse cumulative distribution function:

zsim
j = F̂−1

j (usim
j )

9.a Calculate returns from the simulated standardized residuals using
the previously in Step 3.a calculated GARCH(1,1) coefficients and
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standard deviations. To forecast one-day-ahead for each asset we use:

εt,j = σt,jzsim
j

r∗t+1,j = µj + εt,j,

where zsim
j are the standardized residuals calculated in Step 8.a.

—————

Backtest with 50 days refitted rolling window models:
In case of a 50 days refitted rolling window models we will follow Steps 3.b
to 9.b and then proceed with Step 10. Steps 3.b to 9.b have to be repeated
every 50 days, hence for all t ∈ [943, 993, . . . , 1743].

3.b Fit a univariate GARCH(1,1) model with appropriate innovations
separately for r(t+1−943):t,1, . . . , r(t+1−943):t,6 to convert the daily log-
returns into an i.i.d series. The previously for each asset individually
chosen error distributions of the GARCH(1,1) model is kept the same
in all iterations to maintain uniformity in the method. This approach
also makes the method less computationally intensive. Using the
determined GARCH(1,1) parameters and the daily log-return series
rt:(t+49),1, . . . , rt:(t+49),6 we calculate the following 50 residuals and
standard deviations by applying the equations given below.

εt,j = rt,j − µj (5.5)

σ2
t+1,j = α0,j + α1,jε

2
t,j + β1,jσ

2
t,j (5.6)

Here µj denotes the sample mean and εt,j denotes the error term of
the GARCH(1,1) process.

4.b Extract the residuals (5.5) from Step 3.b and standardize them with
the standard deviations (5.6) obtained from Step 3.b using:

zt,i =
εt,i

σt,i

5.b Convert the standardized residuals z(t+1−943):t,1, . . . , z(t+1−943):t,6 to
standard uniform residuals u(t+1−943):t,1, . . . , u(t+1−943):t,6 using the
empirical cumulative distribution function according to (5.1) and (5.2).
We apply the following equation for all six series:

ut,j =
n

n + 1
F̂j(zt,j)
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6.b Fit an C-vine, D-vine or R-vine copula model to the multivariate
data u(t+1−943):t,1, . . . , u(t+1−943):t,6 using the model selection methods
described in Chapter 4. We will predict the distribution for days in the
interval [t + 1, . . . , t + 50], using the determined vine structure.

7.b Generate sim = 30.000 simulations usim
1 , . . . , usim

6 using the fitted vine
model from the previous step. We will us the same sample for the
following 50 days.

8.b Convert the simulated uniform marginals usim
1 , . . . , usim

6 to standard-
ized residuals using the inverse cumulative distribution function:

zsim
j = F̂−1

j (usim
j )

9.b Calculate returns from the simulated standardized residuals using
the previously in Step 3.b calculated GARCH(1,1) coefficients and
standard deviations. To forecast one-day-ahead for each asset we use:

εt,j =σt,jzsim
j

r∗t+1,j =µj + εt,j,

where zsim
j are the standardized residuals calculated in Step 8.b.

—————

10. Generate a series of simulated daily portfolio returns at time t + 1:

X t+1 =
1
6

6

∑
j=1

r∗t+1,j

The length of the vector X t+1 = (X1
t+1, . . . , Xsim

t+1) of simulated portfolio
returns corresponds to he number of copula simulations sim.

11. Calculate
VaRt+1

α (X t+1) = qα(X1
t+1, . . . , Xsim

t+1)

and

CVaRt+1
α (X t+1) =

1
[sim · α]

[sim·α]

∑
k=1

Xk
t+1,sim

for α ∈ {1%, 3%, 5%} using X1
t+1,sim ≤ X2

t+1,sim ≤ · · · ≤ Xsim
t+1,sim which

is generated by sorting X1
t+1, . . . , Xsim

t+1 and [y] = sup{n ∈ N : n ≤ y}
for every y ∈ R.
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This strategy results in the forecasting of VaR and CVaR of a portfolio of
six co-dependent stocks in a portfolio. This is used to demonstrate the
usefulness and the flexibility captured by the vine copula approach in an
practical application to construct VaR and CVaR forecasts.

In a very similar way we can calculate VaR and CVaR for a multivariate
Student’s t-copula model, which is compared to the C-vine, D-vine and
R-vine models too.
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This chapter features the practical results using the sample data as described
in Chapter 5. The marginal distribution of the different assets are modeled
by means of a GARCH(1,1) model as described in Section 5.6. Moreover
the standardized uniform variables, which were obtained by converting
the standardized residuals, are used to estimate C-vine, D-vine, R-vine
and Student’s t-copula models and to find the appropriate bivariate copula
families and their parameters, as described in Chapter 3. Both a fixed model
approach and a 50 days refitted rolling window approach in the fitting proce-
dure is used. As may be seen later, both approaches have advantages and
disadvantages.

The estimated models and their parameters are then used to forecasting
VaRα and CVaRα for α ∈ {1%, 3%, 5%} as described in Section 5.6.

In this chapter the focus lies on the results and problems that emerge in
the practical implementation of these kind of models. Special attention is
turned to the computational performance and the accuracy of the estimated
one-day-ahead VaR and CVaR using the backtesting procedures of Kupiec
and Christoffersen for VaR and McNeil and Frey for CVaR for all considered
copula models and refitting approaches.

For the sake of completeness traditional methods, especially the historical
simulation (HS) and mean variance (MV) are also considered, regardless of
their expected inferiority in forecasting VaR and CVaR of high-dimensional
portfolios in comparison to vine copula models .
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6.1. Backtesting: Traditional methods - VaR and
CVaR

As in the vine copula and multivariate Student’s t-copula cases, we are
using data from the last 943 days for the historical simulation (HS) and
mean variance (MV) VaR and CVaR estimation for the following day (see
Tabel 5.1). For details on the used HS and MV methods have been described
at the beginning of this thesis, see Section 1.3.

Table 6.1.: VaR test - historical simulation vs. mean variance.

Method 1: Historical simulation
Risk measure Expected exceed. Actual exceed. H0 ”Correct Exceed.” H0 ”Correct Exceed. & Indep.”

VaR0.05 81 71 p = 0.21518 ”Fail to Reject H0” p = 1.12× 10−06 ”Reject H0”
VaR0.03 40 52 p = 0.08086 ”Fail to Reject H0” p = 4.79× 10−05 ”Reject H0”
VaR0.01 8 22 p = 5.50× 10−05 ”Reject H0” p = 9.63× 10−05 ”Reject H0”

Method 2: Mean variance
Risk measure Expected exceed. Actual exceed. H0 ”Correct Exceed.” H0 ”Correct Exceed. & Indep.”

VaR0.05 81 64 p = 0.03537 ”Reject H0” p = 2.10× 10−07 ”Reject H0”
VaR0.03 40 53 p = 0.05822 ”Fail to Reject H0” p = 5.51× 10−05 ”Reject H0”
VaR0.01 8 38 p = 2.03× 10−14 ”Reject H0” p = 1.11× 10−15 ”Reject H0”

Table 6.1 show the results for both the unconditional coverage (UC) rest and
the conditional coverage (CC) test as described in Section 1.4.1 for all three
tested levels of alpha.

In the case of a HS model we cannot reject the hypothesis that exceedance
is correct for two of three α-levels. However the hypothesis H0 is rejected in
all overall conditional coverage (CC) tests and hence HS fails to properly
forecast VaR for all three levels of alpha. MV failed to pass backtesting
under all unconditional coverage (UC) tests but one and all conditional
coverage (CC) tests.

Overall both traditional models have failed all (CC) tests for correct ex-
ceedance and independence and are therefore not suitable for accurately
forecasting VaR for our six-dimensional portfolio of assets.
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Figure 6.1.: VaR backtest: Historical simulation and mean variance.

In Figure 6.1 we can clearly see why both methods are failing miserably.
Both approaches suffer from the so-called ghosting effect starting in late
2008 as larger loss events occur. HS and MV regard all observations used
for the estimation of risk measures as equally important and therefore large
loss observations from far back (as long as still part of the used data) still
have importance for todays VaR and CVaR forecasts.

Using an age-weighted model, which gives larger weight to recent returns
and at the same time smaller weight to distant returns, would make the
VaR estimates more responsive to large loss observations and reduces the
ghosting effect. Figure 6.2 illustrates VaR estimates using the age-weighted
historical simulation (AWHS) method. For details on the used weights and
the AWHS method in general see Boudoukh, Richardson, and Whitelaw
(1997).

117



6. Results

−0.05

0.00

0.05

2008 2009 2010 2011

Date

V
aR

 / 
R

et
ur

ns Daily returns

AWHS VaR 05

AWHS VaR 03

AWHS VaR 01

Age−weighted historical simulation of VaR vs. portfolio returns (1%,3%,5%)

Figure 6.2.: VaR backtest: Age-weighted historical simulation.

CVaR is a risk measure for forecasting the average excess loss with respect
to the VaR. Therefore we cannot discuss the CVaR forecast of the traditional
models HS and MV which are not even suitable for accurately forecast VaR
of a stock portfolio.

6.2. Backtesting: Fixed models - VaR and CVaR

We chose an estimation period of 943 days fo fit each of the three vine copula
models, the multivariate Student’s t-copula model and GARCH(1,1) models
which we all do not update, but keep fixed. It is to be expected that the
model decreases in accuracy as time goes by. Especially with the beginning
of the global economic crisis we expect a sudden drop in the quality of the
predictions. Here we use 100.000 copula simulations per day.

118



6. Results

6.2.1. Fixed model: Value-at-Risk:

Table 6.3.: VaR test of fixed models - Student’s t-copula vs. vine copulas.

Method 3: Student’s t-copula
Risk measure Expected exceed. Actual exceed. H0 ”Correct Exceed.” H0 ”Correct Exceed. & Indep.”

VaR0.05 40 69 p = 3.20× 10−05 ”Reject H0” p = 2.50× 10−05 ”Reject H0”
VaR0.03 24 44 p = 0.00029 ”Reject H0” p = 0.00080 ”Reject H0”
VaR0.01 8 14 p = 0.06114 ”Fail to Reject H0” p = 0.08545 ”Fail to Reject H0”

Method 4: C-vine
Risk measure Expected exceed. Actual exceed. H0 ”Correct Exceed.” H0 ”Correct Exceed. & Indep.”

VaR0.05 40 69 p = 3.20× 10−05 ”Reject H0” p = 2.50× 10−05 ”Reject H0”
VaR0.03 24 43 p = 0.00055 ”Reject H0” p = 0.00156 ”Reject H0”
VaR0.01 8 13 p = 0.11519 ”Fail to Reject H0” p = 0.12619 ”Fail to Reject H0”

Method 5: D-vine
Risk measure Expected exceed. Actual exceed. H0 ”Correct Exceed.” H0 ”Correct Exceed. & Indep.”

VaR0.05 40 69 p = 3.20× 10−05 ”Reject H0” p = 2.50× 10−05 ”Reject H0”
VaR0.03 24 43 p = 000055 ”Reject H0” p = 0.00156 ”Reject H0”
VaR0.01 8 14 p = 0.06114 ”Fail to Reject H0” p = 0.0855 ”Fail to Reject H0”

Method 6: R-vine
Risk measure Expected exceed. Actual exceed. H0 ”Correct Exceed.” H0 ”Correct Exceed. & Indep.”

VaR0.05 40 69 p = 3.20× 10−05 ”Reject H0” p = 2.50× 10−05 ”Reject H0”
VaR0.03 24 43 p = 0.00055 ”Reject H0” p = 0.00156 ”Reject H0”
VaR0.01 8 13 p = 0.11520 ”Fail to Reject H0” p = 0.12619 ”Fail to Reject H0”
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Figure 6.3.: VaR backtest: Fixed model - C/D/R-vine copula and Student’s t-copula.
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Using a fixed setting we can observe that neither model seems to perform
well. We found that all four models on one hand fail at accurately forecasting
VaR for α ∈ {5%, 3%}, but on the other hand still were able to pass the
Kupiec and Christoffersen coverage test for α = 1%.

All four models have very similar VaR estimates, this can be also observed
in Figure 6.3, which illustrates one-day-ahead VaR estimations with mul-
tivariate Student’s t-copula and C/D/R-vine copula models using a level
of α = 5%. From this data we see no obvious best model, we also don’t
see a clear improvement when using vine copula models over multivariate
Student’s t-copula models.

6.2.2. Fixed model: Conditional-Value-at-Risk:

We would also like to explore the ability of multivariate Student’s t-copula
models and vine copula models in estimating one-day-ahead CVaR. CVaR
however is a risk measure for forecasting the average excess loss with respect
to the VaR. Therefore we can only discuss the CVaR forecast in cases where
we were able to properly forecast VaR.

In this specific case we were only able to forecast VaR at α = 1%. As seen in
the summary of the McNeil and Frey zero mean test in Table 6.5, the CVaR
predictions for α = 1% were also sufficiently accurate.
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Table 6.5.: CVaR test of fixed models - Student’s t-copula vs. vine copulas.

Method 3: Student’s t-copula
Risk measure Expected exceed. Actual exceed. H1 ”Mean of Excess Violations of VaR is greater than zero”

CVaR0.05 40 69 p = 0.22451 ”Fail to Reject H0” - VaR backtest failed!
CVaR0.03 24 44 p = 0.21922 ”Fail to Reject H0” - VaR backtest failed!
CVaR0.01 8 14 p = 0.09557 ”Fail to Reject H0”

Method 4: C-vine
Risk measure Expected exceed. Actual exceed. H1 ”Mean of Excess Violations of VaR is greater than zero”

CVaR0.05 40 69 p = 0.26394 ”Fail to Reject H0” - VaR backtest failed!
CVaR0.03 24 43 p = 0.22301 ”Fail to Reject H0” - VaR backtest failed!
CVaR0.01 8 13 p = 0.06297 ”Fail to Reject H0”

Method 5: D-vine
Risk measure Expected exceed. Actual exceed. H1 ”Mean of Excess Violations of VaR is greater than zero”

CVaR0.05 40 69 p = 0.20216 ”Fail to Reject H0” - VaR backtest failed!
CVaR0.03 24 43 p = 0.16849 ”Fail to Reject H0” - VaR backtest failed!
CVaR0.01 8 14 p = 0.07100 ”Fail to Reject H0”

Method 6: R-vine
Risk measure Expected exceed. Actual exceed. H1 ”Mean of Excess Violations of VaR is greater than zero”

CVaR0.05 40 69 p = 0.23669 ”Fail to Reject H0” - VaR backtest failed!
CVaR0.03 40 43 p = 0.20933 ”Fail to Reject H0” - VaR backtest failed!
CVaR0.01 8 13 p = 0.06952 ”Fail to Reject H0”
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Figure 6.4.: CVaR backtest: Fixed model - C/D/R-vine copula and Student’s t-copula.

121



6. Results

6.3. Backtesting: 50 days refitted rolling window
models - VaR and CVaR

We chose a rolling window of 943 days fo fit each of the three vine copula
models and the multivariate Student’s t-copula model. In the forecasting
procedure we are refitting all models every 50 days. The process of calcu-
lating a new model takes a lot of computational resources, hence we are
decreasing the number of simulations from 100.000 simulations per day
used for the fixed model to 30.000 simulation per day. We can also observe
that the vine copula models are computationally more intensive than the
Student’s t-copula model (for further details see Section 6.5).

6.3.1. 50 days refitted rolling window model: Value-at-Risk:

Table 6.7.: VaR test of rolling window models - Student’s t-copula vs. vine copulas.

Method 3: Student’s t-copula
Risk measure Expected exceed. Actual exceed. H0 ”Correct Exceed.” H0 ”Correct Exceed. & Indep.”

VaR0.05 40 44 p = 0.60018 ”Fail to Reject H0” p = 0.49774 ”Fail to Reject H0”
VaR0.03 24 29 p = 0.36042 ”Fail to Reject H0” p = 0.65781 ”Fail to Reject H0”
VaR0.01 8 9 p = 0.76579 ”Fail to Reject H0” p = 0.21329 ”Fail to Reject H0”

Method 4: C-vine
Risk measure Expected exceed. Actual exceed. H0 ”Correct Exceed.” H0 ”Correct Exceed. & Indep.”

VaR0.05 40 40 p = 0.91012 ”Fail to Reject H0” p = 0.72438 ”Fail to Reject H0”
VaR0.03 24 23 p = 0.76832 ”Fail to Reject H0” p = 0.87865 ”Fail to Reject H0”
VaR0.01 8 8 p = 0.96055 ”Fail to Reject H0” p = 0.17660 ”Fail to Reject H0”

Method 5: D-vine
Risk measure Expected exceed. Actual exceed. H0 ”Correct Exceed.” H0 ”Correct Exceed. & Indep.”

VaR0.05 40 41 p = 0.96157 ”Fail to Reject H0” p = 0.68922 ”Fail to Reject H0”
VaR0.03 24 26 p = 0.74796 ”Fail to Reject H0” p = 0.93351 ”Fail to Reject H0”
VaR0.01 8 8 p = 0.96055 ”Fail to Reject H0” p = 0.17660 ”Fail to Reject H0”

Method 6: R-vine
Risk measure Expected exceed. Actual exceed. H0 ”Correct Exceed.” H0 ”Correct Exceed. & Indep.”

VaR0.05 40 46 p = 0.40331 ”Fail to Reject H0” p = 0.24798 ”Fail to Reject H0”
VaR0.03 24 26 p = 0.74796 ”Fail to Reject H0” p = 0.93351 ”Fail to Reject H0”
VaR0.01 8 8 p = 0.96055 ”Fail to Reject H0” p = 0.17660 ”Fail to Reject H0”
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Figure 6.5.: VaR backtest: Rolling window - C/D/R-vine copula and Student’s t-copula.

When using a 50 days refitted rolling window approach we can observe
that all four model seems to perform well in forecasting VaR for α ∈
{1%, 3%, 5%}. All four models passed the Kupiec and Christoffersen cover-
age test.

All four models have very similar VaR estimates, this can also we observed
in Figure 6.5, which illustrates one-day-ahead VaR estimations with multi-
variate Student’s t-copula and C/D/R-vine copula models using a level of
α = 5%. Similar to the fixed model approach we see no obvious best model,
we also don’t see a clear improvement when using vine copula models over
multivariate Student’s t-copula models.

6.3.2. 50 days refitted rolling window model:
Conditional-Value-at-Risk:

We are now in the advantageous situation that we succeeded in forecast-
ing suitable VaR estimates for all four copula models and all levels of α.
Therefore we are able to meaningfully backtest all CVaR forecasts.

All four copula models were able to forecast CVaR for all levels of α ∈
{1%, 3%, 5%}, as seen in the summary of the McNeil and Frey zero mean
test in Table 6.9.
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Table 6.9.: CVaR test of rolling window models - Student’s t-copula vs. vine copulas.

Method 3: Student’s t-copula
Risk measure Expected exceed. Actual exceed. H1 ”Mean of Excess Violations of VaR is greater than zero”

CVaR0.05 40 44 p = 0.42913 ”Fail to Reject H0”
CVaR0.03 24 29 p = 0.41063 ”Fail to Reject H0”
CVaR0.01 8 9 p = 0.19516 ”Fail to Reject H0”

Method 4: C-vine
Risk measure Expected exceed. Actual exceed. H1 ”Mean of Excess Violations of VaR is greater than zero”

CVaR0.05 40 40 p = 0.47909 ”Fail to Reject H0”
CVaR0.03 24 23 p = 0.35018 ”Fail to Reject H0”
CVaR0.01 8 7 p = 0.15917 ”Fail to Reject H0”

Method 5: D-vine
Risk measure Expected exceed. Actual exceed. H1 ”Mean of Excess Violations of VaR is greater than zero”

CVaR0.05 40 41 p = 0.25024 ”Fail to Reject H0”
CVaR0.03 24 26 p = 0.35318 ”Fail to Reject H0”
CVaR0.01 8 8 p = 0.20777 ”Fail to Reject H0”

Method 6: R-vine
Risk measure Expected exceed. Actual exceed. H1 ”Mean of Excess Violations of VaR is greater than zero”

CVaR0.05 40 46 p = 0.64325 ”Fail to Reject H0”
CVaR0.03 24 26 p = 0.34175 ”Fail to Reject H0”
CVaR0.01 8 8 p = 0.17987 ”Fail to Reject H0”
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Figure 6.6.: VaR backtest: Rolling window - C/D/R-vine copula and Student’s t-copula.
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6.4. Graphical comparison of 50 days refitted
rolling window model vs. fixed model

Over time we expect the dependence structure of our portfolio to change.
As we can see below this can lead to a significant deviation between the
regularly refitted rolling window model and the fixed model approach,
in both the vine copula models and the multivariate Student’s t-copula
model.
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Figure 6.7.: VaR backtest: Rolling window vs. fixed - Student’s t-copula.
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Figure 6.8.: VaR backtest: Rolling window vs. fixed - C-vine copula.
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In Figure 6.7 and 6.8 we see that both, the rolling window and the fixed
model approaches, lead to similar results in the first half of 2008. However
with the beginning of the global economic crisis the results, due to a probable
change in the dependence structure, start do deviate significantly. After the
financial crisis the results start to approach each other again.

Schafzahl (2018) investigated this problem for the fixed setting by separating
the backtesting period into a crisis period and a post crisis period for this exact
portfolio.
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Figure 6.9.: Log-returns of equally weighted portfolio.

The estimated VaR and CVaR values did not lead to sufficiently good results
in the crisis period, however the VaR and CVaR values in the post crisis period
did. This lets us believe that the dependence structure of the examined six-
dimensional portfolio in the fitting period (pre crisis) and the post crisis period
pose similar characteristics, whereas the crisis period exhibits a different
dependence structure.

The inability to adapt to changes in the data is one major drawback of
the fixed model. The 50 days refitted rolling window model on the other
hand was able to sufficiently adapt to the changes introduced by the global
economic crisis of 2008 and returned adequate results throughout both the
crisis and post crisis period.
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6.5. Runtime comparison

After comparing the forecasting quality of the discussed models, we will
take a look at the runtime. As we can see below the performance of the
approaches differs quite significantly.

All numerical experiments were run on a Intel(R) Core(TM) i7-3635QM

CPU @2.4GHz 4 real cores + 4 virtual, 16 GB RAM. The algorithms were
implemented in R using a 64 bit Windows 10 operating system. Keep in
mind that R is not utilizing multi-threating by default, hence parallelization
of the code might improve the performance significantly.

runtime[sec] simulations refit[days]

HS 11.95 0 0

MV 3.97 0 0

t-copula fixed 36.51 100000 0

C-vine copula fixed 56.01 100000 0

D-vine copula fixed 60.75 100000 0

R-vine copula fixed 60.18 100000 0

t-copula rolling 69.89 30000 50

C-vine copula rolling 264.71 30000 50

D-vine copula rolling 263.31 30000 50

R-vine copula rolling 268.41 30000 50

Table 6.11.: Comparison of runtime for all approaches and different simulaton count.

Table 6.11 gives an overview of the runtime to calculate one-day-ahead
VaRα and CVaRα for α ∈ {1%, 3%, 5%} for a backtesting period of 814 days
for all models with different simulation count. Especially the fixed models
achieve a good runtime while however struggling to maintain consistent
performance in forecasting. Best precision was archived by the C-vine,
D-vine and R-vine copula models with a rolling window using 30.000
simulations. Schafzahl (2018) compared the results using 3.000, 30.000 and
100.000 and found out that 30.000 simulations presents a good trade-off
between precision and runtime. However the increase in runtime when
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increasing the number of simulations is significant. The increase from
3.000 simulations to 30.000 simulations leads to a 30% increase in runtime,
whereas the increase from 3.000 simulations to 100.000 simulations leads to
an increase in runtime of around 100%.

Overall, the runtime of the 50 days refitted rolling window approach was
around 4− 7 times higher than the runtime of the fixed models. A reduction
of the days between two refits would additionally increase the runtime
drastically.
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Conclusions & outlook

In this master’s thesis, we investigated the risk measures VaRα and CVaRα

for α ∈ {1%, 3% 5%} of a six-dimensional portfolio by using three differ-
ent vine copula models, a multivariate Student’s t-copula model and two
commonly used traditional methods historical simulation and mean vari-
ance. We then backtested the calculated risk measures with the Kupiec and
Christoffersen coverage test and the McNeil and Frey zero mean test. In
the first step we modeled the marginal distribution of all six assets using
a GARCH(1,1) model. Using C-vine, D-vine and R-vine copula models
we were able to model the interdependence of these six assets. Taking the
corresponding vine copula specification we simulated returns for each asset
using the Monte Carlo method and thereof forecasted both risk measures
(VaRα and CVaRα) for the six-dimensional portfolio.

In order to compare the vine copula forecasted risk measures VaRα and
CVaRα, we also did a series of forecasts using historical simulation (HS),
mean variance (MV) and multivariate Student’s t-copula. For the modeling
with vine copulas and Student’s t-copula we used both a fixed setting and a
rolling window setting of 943 days which was refitted every 50 days.

The main findings we obtained through calculating the VaRα and CVaRα of
the six-dimensional portfolio with all six different models can be summa-
rized as follows:

Traditional methods (historical simulation and mean variance):

• VaR measured by using the traditional methods HS and MV is not
accurate according to the conditional coverage (CC) test. Therefore
these models are not suitable to forecast VaR for our six-dimensional
portfolio of assets.
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Fixed models:

• When looking at the entire backtesting period the C-vine, D-vine and
R-vine copula models and the multivariate Student’s t-copula model
were only able to effectively forecast VaRα and CVaRα for our six-
dimensional portfolio according to the conditional coverage test (CC)
and the zero mean test for α = 1%.
• The separation of the backtesting period into a crisis period and a post

crisis period indicated that the fixed models have major difficulties with
respect to the adaption to changes in the data. The models failed to
predict VaR and CVaR in the crisis period. The inability of these model
to adapt to changed dependence structure is a major drawback of the
fixed models.1

• Nevertheless, the fixed models yield quite good results in periods
of similar characteristics and dependence structure in the fitting and
backtesting period. We were able to successfully forecast VaR and
CVaR in the post crisis period using a model which was fitted just before
the crisis.

50 days refitted rolling window models:

• The refitted rolling window approach yields good results in predicting
VaR and CVaR in all four copula models and all levels of α.
• We witness a 5 to 8 fold increase in runtime for the 50 days rolling

window approach in comparison to the fixed model setting depending
on the number of used simulations. When only comparing rolling
window approaches, using a baseline of 3.000 simulations, an increase
to 30.000 simulations lead to an increase in runtime of around 30%
whereas 100.000 simulations lead to an increase of around 100% in-
crease.

Other observations that were made while writing this thesis:

• In all cases, using either log-likelihood, AIC or BIC for testing the
model-fit, the multivariate Student’s t-copula performed slightly worse

1For further details and finding on the separation of a fixed model into two periods
with different characteristics and interdependencies see the Master’s Project Schafzahl
(2018).
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than all three vine copula models. The C-vine and R-vine copula mod-
els performed slightly better than the D-vine copula model. However,
we saw no significant improvement in using vine copula models
over Student’s t-copula models in forecasting risk measures of our
six-dimensional portfolio.
• Copulas allow to model marginal distributions and the dependence

structure separately.
• Vine copulas are easily constructed: any bivariate copula can be used

as building blocs.
• Pair-copula-construction models such as C-vine, D-vine and R-vine

copula models allow for a very flexible and intuitive way of construct-
ing higher-dimensional copulas.
• Simulation and inference are straight-forward, however it can be very

time-consuming in higher dimensions.
• Copulas are a very promising and flexible tool that still need a lot of

research and development.
• Vine copulas can be very useful in financial risk management.
• There are a few very useful R package available, e.g. VineCopula and

CDVine, which allows for sequential and maximum likelihood param-
eter estimation for C-vine, D-vine and R-vine copulas. This package
also includes tools for model selection, simulation, goodness-of-fit
tests, and visualization.

The main shortcoming of VaR in risk measurement is the inability to meet
the requirement of sub-additivity, which means that the VaR of a portfolio
may be higher than the VaR of the sum of the individual assets. CVaR, which
is based on VaR was introduced to overcome this shortcoming. Despite the
importance of CVaR in risk management, existing literature rarely discusses
CVaR forecasting with C-vine, D-vine or R-vine models. With this thesis we
have tried to combine CVaR forecasting with various vine copula models
on one hand and also with a multivariate Student’s t-copula model on the
other hand. Overall, in our setting, we can say that vine copula models and
multivariate Student’s t-copula models are more accurate and reliable in
predicting VaR and CVaR that traditional models, which failed entirely.

With increasing dimensions we expect the vine copula models, due to
its increased flexibility, to perform superior to the multivariate Student’s
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t-copula model. Albeit, some further research into this topic has to be
conducted.

The number of parameters in a vine structure grows exponentially with the
dimension. One way of reducing the computation time of such a model
might be the reduction of the complexity of the vine structure. Brechmann
(2010) studied the problem of determining whether a vine structure may
be truncated. The truncation of a vine structure at level T refers to a vine
structure where all bivariate copulas with conditioning set larger than or
equal to T are set to independence copulas. This procedure might lead to a
reduction in time needed to fit and simulate from a vine copula.

Overall vine copula models constitute a powerful and flexible class of high-
dimensional dependency models, which is not only useful in financial risk
management but also in a wide range of other applications such as medicine,
biology, imaging or actuarial science.
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Appendix A.

Proofs, calculations etc.

A.1. Likelihood ratio test

This section is based on the lecture ”Mathematische Statistik” held by Friedl
(2015).

Definition 31 (Likelihood function)
Let f (X1, . . . , Xn|θ) be the joint density or probability function of a data sample
X1, . . . , Xn. Given X1 = x1, X2 = x2, . . . , Xn = xn is observed, the function of θ
defined by

L(θ|x1, . . . , xn) = f (x1, . . . , xn|θ)
is called likelihood function.

If comparing the likelihood function at two parameter points θ1 and θ2 finds
that L(θ1|x) > L(θ2|x) then the observed sample is more likely to have
occurred under θ = θ1 than under θ = θ2. Hence, θ1 is a more plausible
value for the real parameter θ than θ2.

Let X1, . . . , Xn be i.i.d. random variables from f (x|θ), then the likelihood
function is given as:

L(θ|x1, . . . , xn) = f (x1, . . . , xn|θ) =
n

∏
i=1

f (xi|θ)
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Definition 32 (Likelihood ratio test)
The likelihood ratio test statistic for the test

H0 : θ ∈ Θ0 against H1 : θ ∈ ΘC
0 ,

where Θ0 is a subset of the parameter space Θ and ΘC
0 is the compliment of Θ0 i.e.

Θ \Θ0, is given as

λ(x1, . . . , xn) =
supθ∈Θ0

L(θ|x1, . . . , xn)

supθ∈Θ L(θ|x1, . . . , xn)
∈ [0, 1].

The likelihood ratio test is a test with a rejection region R of the form

R = {x1, . . . , xn|λ(x1, . . . , xn) ≤ c}

for any c ∈ [0, 1].

A small λ(x1, . . . , xn) is a indication against the null hypothesis H0, whereas
for a large λ(x1, . . . , xn) the null hypothesis cannot be rejected.

Now let θ̂ = θ̂(x1, . . . , xn) be the maximum likelihood estimate of θ and
let θ̂0 = θ̂0(x1, . . . , xn) be the maximum likelihood estimate of θ under the
restricted parameter space Θ0. Using this setting the likelihood ratio test
statistic is

λ(x1, . . . , xn) =
L(θ̂0|x1, . . . , xn)

L(θ̂|x1, . . . , xn)
.
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A.2. Calculations for likelihood ratio test of
unconditional coverage (UC)

A.2.1. Maximum likelihood estimate of π for the likelihood
function of the alternative hypothesis

We can solve for the maximum likelihood estimates by taking the first
derivative with respect to π and setting the derivative to zero. The likelihood
function is given by:

L(π|11, 12, . . . , 1n) = (1− π)n0πn1

Taking the first derivative with respect to π yields:

∂

∂π
L(π|11, 12, . . . , 1n)

= −(1− π)n0−1n0πn1 + (1− π)n0πn1−1n1

Setting the derivative to zero gives us an estimate for π̂:

∂

∂π01
L(π1|11, 12, . . . , 1n)

!
=0

−(1− π)n0−1n0πn1 + (1− π)n0πn1−1n1
!
=0

πn1−1(1− π)n0−1(πn0 − (1− π)n1)
!
=0

This equation holds if one of the three factors on the left side is equal to 0.
By setting the third factor to 0 and excluding π ∈ {0, 1} we get the desired
result.

πn0 − (1− π)n1
!
=0

π(n0 + n1)− n1
!
=0

π̂ =
n1

n0 + n1
=

n1

n

136



Appendix A. Proofs, calculations etc.

A.3. Calculations for likelihood ratio test of
independence (IND)

A.3.1. Maximum likelihood estimate of π01 and π11 for the
likelihood function of the alternative hypothesis

We can solve for the maximum likelihood estimates by taking the first
derivatives with respect to π01 and π11 and setting these derivatives to zero.
The likelihood function for the first-order Markov process is given by:

L(Π1|11, 12, . . . , 1n) = (1− π01)
n00πn10

01 (1− π11)
n01πn11

11

Taking the first derivative with respect to π01 yields:

∂

∂π01
L(Π1|11, 12, . . . , 1n)

=
[
−(1− π01)

n00−1n00πn01
01 + (1− π01)

n00πn01−1
01 n01

]
(1− π11)

n10πn11
11

Setting the derivative to zero gives us an estimate for π̂01:

∂

∂π01
L(Π1|11, 12, . . . , 1n)

!
=0[

−(1− π01)
n00−1n00πn01

01 + (1− π01)
n00πn01−1

01 n01

]
(1− π11)

n10πn11
11

!
=0

−(1− π01)
n00−1n00πn01

01 + (1− π01)
n00π

n01−1
01 n01

!
=0

πn01−1
01 (1− π01)

n00−1(π01n00 − (1− π01)n01)
!
=0

This equation holds if one of the three factors on the left side is equal to 0.
By setting the third factor to 0 and excluding π01 ∈ {0, 1} we get the desired
result.

π01n00 − (1− π01)n01
!
=0

π01(n00 + n01)− n01
!
=0

π̂01 =
n01

n00 + n01
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In the same way it is easily possible to calculate

π̂11 =
n11

n10 + n11
.

A.3.2. Maximum likelihood estimate of π for the likelihood
function of the zero hypothesis

We can solve for the maximum likelihood estimates by taking the first
derivative with respect to π and setting the derivative to zero. The likelihood
function is given by:

L(Π|11, 12, . . . , 1n) = (1− π)n00+n10πn01+n11

Taking the first derivative with respect to π yields:

∂

∂π
L(Π|11, 12, . . . , 1n)

= −(1− π)n00+n10−1(n00 + n10)π
n01+n11 + (1− π)n00+n10πn01+n11−1(n01 + n11)

Setting the derivative to zero gives us an estimate for π̂:

∂

∂π
L(Π|11, 12, . . . , 1n)

!
=0

−(1− π)n00+n10−1(n00 + n10)π
n01+n11 + (1− π)n00+n10πn01+n11−1(n01 + n11)

!
=0

πn01+n11−1(1− π)n00+n10−1(π(n00 + n10)− (1− π)(n01 + n11))
!
=0

This equation holds if one of the three factors on the left side is equal to 0.
By setting the third factor to 0 and excluding π ∈ {0, 1} we get the desired
result.

π(n00 + n10)− (1− π)(n01 + n11)
!
=0

π(n00 + n01 + n10 + n11)− (n01 + n11)
!
=0

π̂ =
n01 + n11

n00 + n01 + n10 + n11
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A.4. Derivation of h-functions for different
copulas

The derivations of the h-functions of most copulas discussed in this thesis
can be found in Aas et al. (2006). For the sake of completeness we include
the computations of the h-functions of the six copulas involved in this thesis.
The h-function is defined as

h(x, v, Θ) = F(x|v) = ∂Cxv(x, v, Θ)

∂v
,

where Θ represents the set of parameters for the copula associated with the
joint distribution function of x and v.

A.4.1. Gaussian copula

The distribution function of the bivariate Gaussian copula is given as

CGa
ρ (u, v) =

∫ φ−1(u)

−∞

∫ φ−1(v)

−∞

1
2π
√

1− ρ2
exp

{
−x2 − 2ρxy + y2

2(1− ρ2)

}
︸ ︷︷ ︸

=g(x,y)

dxdy.

To save some notational work we use g(x, y) and for the bounds we use

b1 = φ−1(u) and b2 = φ−1(v),

where φ(·) is the standard normal distribution function.

For this copula we have:

h(u, v, ρ) =F1|2(u|v)

=
∂

∂v
CGa

ρ (u, v)

=
∂

∂v

∫ b1

−∞

∫ b2

−∞
g(x, y)dydx

=
∂b2

∂v
∂

∂b2

∫ b1

−∞

∫ b2

−∞
g(x, y)dydx
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Using

∂b2

∂v
=

∂

∂v
φ−1(v) =

1
f (b2)

,

where

f (z) =
1

2π
exp

(
−z2

2

)
is the density of the standard normal distribution and

φ(h) =
∫ h

−∞
f (z)dz,

we get:

h(u, v, ρ) =
1

f (b2)

∂

∂b2

∫ b1

−∞

∫ b2

−∞
g(x, y)dydx

=
1

f (b2)

∫ b1

−∞

[
∂

∂b2

∫ b2

−∞
g(x, y)dy

]
dx

=
1

f (b2)

∫ b1

−∞
g(x, b2)dx

=
1

f (b2)

∫ b1

−∞

1
2π
√

1− ρ2
exp

{
−x2 − 2ρxb2 + b2

2
2(1− ρ2)

}
dx

=
1

f (b2)

∫ b1

−∞

1
2π
√

1− ρ2
exp

{
− (x− ρb2)

2 + (b2
2 − ρ2b2

2)

2(1− ρ2)

}
dx

=
1

f (b2)

1√
2π

exp

{
−b2

2
2

} ∫ b1

−∞

1
2π
√

1− ρ2
exp

{
− (x− ρb2)

2

2(1− ρ2)

}
dx

=
1

f (b2)

f (b2)

1
φ

(
b1 − ρb2√

1− ρ2

)
b1=φ−1(u)
b2=φ−1(v)

= φ

(
φ−1(u)− ρφ−1(v)√

1− ρ2

)
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A.4.2. Student’s t-copula

Using the some techniques as previously used for the Gaussian copula we
can derive the h-function for the Student’s t-copula.

The distribution function of the bivariate Student’s t-copula is given as

Ct
ρ,ν(u, v) =

∫ t−1
ν (u)

−∞

∫ t−1
ν (v)

−∞

Γ( ν+2
2 )

Γ( ν
2 )
√
(πν)2(1− ρ2)

{
1 +

x2 − 2ρxy + y2

ν(1− ρ2)

}− ν+2
2

︸ ︷︷ ︸
=g(x,y)

dxdy,

where ν represents the degrees of freedom and ρ ∈ (−1, 1) is the linear
correlation coefficient.

To save some notational work we use g(x, y) and for the bounds we use

b1 = t−1
ν (u)

and
b2 = t−1

ν (v).

Using

∂b2

∂v
=

∂

∂v
t−1
ν (v) =

1
fν(b2)

,

where

fν(z) =
Γ( ν+1

2 )

Γ( ν
2 )
√

πν

(
1 +

z2

ν

)− ν+1
2

for the density distribution function of a Student’s t-distribution with ν
degrees of freedom and

tν(h) =
∫ h

−∞
fν(z)dz.
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we get:

h(u, v, ρ, ν) =F1|2(u|v)

=
∂

∂v
Ct

ρ,ν(u, v)

=
∂

∂v

∫ b1

−∞

∫ b2

−∞
g(x, y)dydx

=
∂b2

∂v
∂

∂b2

∫ b1

−∞

∫ b2

−∞
g(x, y)dydx

=
1

fν(b2)

∂

∂b2

∫ b1

−∞

∫ b2

−∞
g(x, y)dydx

=
1

fν(b2)

∫ b1

−∞

[
∂

∂b2

∫ b2

−∞
g(x, y)dy

]
dx

=
1

fν(b2)

∫ b1

−∞
g(x, b2)dx

=
1

fν(b2)

∫ b1

−∞

Γ( ν+2
2 )

Γ( ν
2 )
√
(πν)2(1− ρ2)

[
1 +

x2 − 2ρxb2 + b2
2

ν(1− ρ2)

]− ν+2
2

dx

=
1

fν(b2)

∫ b1

−∞

Γ( ν+2
2 )

Γ( ν
2 )
√
(πν)2(1− ρ2)

[
1 +

(x− ρb2)
2

(ν + b2
2)(1− ρ2)

]− ν+2
2
[

1 +
b2

2
ν

]− ν+2
2

dx

=
1

fν(b2)

Γ( ν+1
2 )
√

π(ν + b2
2)(1− ρ2)

Γ( ν
2 )
√
(πν)2(1− ρ2)

[
1 +

b2
2

ν

]− ν+1
2
[

1 +
b2

2
ν

]− 1
2

×
∫ b1

−∞

Γ( ν+2
2 )

Γ( ν+1
2 )
√

π(ν + b2
2)(1− ρ2)

[
1 +

(x− ρb2)
2

(ν + b2)2(1− ρ2)

]− ν+2
2

dx

=
1

fν(b2)

Γ( ν+1
2 )

Γ( ν
2 )
√

πν

[
1 +

b2
2

ν

]− ν+1
2

︸ ︷︷ ︸
= fν(b2)

√
π(ν + b2

2)(1− ρ2)√
(πν)(1− ρ2)

[
1 +

b2
2

ν

]− 1
2

︸ ︷︷ ︸
=1

×
∫ b1

−∞

Γ( ν+2
2 )

Γ( ν+1
2 )
√

π(ν + b2
2)(1− ρ2)

[
1 +

(x− ρb2)
2

(ν + b2)2(1− ρ2)

]− ν+2
2

dx

=
∫ b1

−∞

Γ( ν+2
2 )

Γ( ν+1
2 )
√

π(ν + b2
2)(1− ρ2)

[
1 +

(x− ρb2)
2

(ν + b2)2(1− ρ2)

]− ν+2
2

dx
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For notational purposes we set

ν̂ =ν + 1
µ =ρb2

σ =

√
(ν + b2

2)(1− ρ2)

ν + 1
.

h(u, v, ρ, ν) =
∫ b1

−∞

Γ( ν+2
2 )

Γ( ν+1
2 )
√

π(ν + b2
2)(1− ρ2)

[
1 +

(x− ρb2)
2

(ν + b2)2(1− ρ2)

]− ν+2
2

dx

=
∫ b1

−∞

Γ( ν̂+1
2 )

Γ( ν̂
2 )
√

πν̂σ

[
1 +

1
ν̂

(
x− µ

σ

)2
]− ν̂+1

2

dx

=
∫ b1

−∞

1
σ

fν̂

(
x− µ

σ

)
dx

=
∫ (b1−µ)/σ

−∞
fν̂(z)dz

=tν̂

(
b1 − µ

σ

)
After inserting the expressions for b1, µ, ν̂ and σ we finally have

h(u, v, ρ, ν) = tν+1

 t−1
ν (u)− ρt−1

ν (v)√
(ν+(t−1

ν (v))2)(1−ρ2)

ν+1

 .
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A.4.3. Clayton copula

The distribution function of the Clayton copula is given as

CCl
θ (u, v) = (u−θ + v−θ − 1)−1/θ, θ ∈ (0, ∞).

For this copula we have:

h(u, v, θ) =F1|2(u|v)

=
∂

∂v
CCl

θ (u, v)

=
∂

∂v
(u−θ + v−θ − 1)−1/θ

=v−θ−1
(

u−θ + v−θ − 1
)−1−1/θ

A.4.4. Gumbel copula

The distribution function of the Gumbel copula is given as

CGu
θ (u, v) = exp

{
−[(− ln u)θ + (− ln v)θ]1/θ

}
, θ ∈ [1, ∞).

For this copula we have:

h(u, v, θ) =F1|2(u|v)

=
∂

∂v
CGu

θ (u, v)

=
∂

∂v
exp

{
−[(− ln u)θ + (− ln v)θ]1/θ

}
=v−1 exp

{
−[(− log u)θ + (− log v)θ]1/θ

}(
1 +

(
− log u
− log v

)θ
)−1+1/θ
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A.4.5. Frank copula

The distribution function of the Frank copula is given as

CFr
θ (u, v) = −1

θ
ln
(

1 +
(e−θu − 1)(e−θv − 1)

e−θ − 1

)
, θ ∈ (0, ∞).

For this copula we have:

h(u, v, θ) =F1|2(u|v)

=
∂

∂v
CFr

θ (u, v)

=
∂

∂v

[
−1

θ
ln
(

1 +
(e−θu − 1)(e−θv − 1)

e−θ − 1

)]
=

∂

∂v

[
−1

θ
ln
(
(1− e−θ)− (1− e−θu)(1− e−θv)

1− e−θ

)]
=− 1

θ

(
1− e−θ

(1− e−θ)− (1− e−θu)(1− e−θv)

)
(−θ)(1− e−θu)e−θv

1− e−θ

=
e−θv

1−e−θ

1−e−θu + e−θv − 1

A.4.6. Joe copula

The distribution function of the Joe copula is given as

C Jo
θ (u, v) = 1−

[
(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ

]1/θ
, θ ∈ [1, ∞).

For this copula we have:

h(u, v, θ) =F1|2(u|v)

=
∂

∂v
C Jo

θ (u, v)

=
∂

∂v

[
1−

[
(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ

]1/θ
]

=((1− u)θ + (1− v)θ − (1− u)θ(1− v)θ)1/θ−1(1− v)θ−1(1− (1− u)θ)
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A.5. Inverse Laplace-Stiltjes transforms F

Here we will state some thoughts and explanations to the inverse Laplace-
Stiltjes transforms F listed in Table 3.1.

A.5.1. Clayton copula

We have given two different generators which both generate a Clayton
copula CCl

θ . For this application we use the generator φ(t) = t−θ − 1 which
corresponds to φ(t)−1 = (t + 1)−

1
θ .

Definition 33 (Gamma distribution)
A random variable X that follows a Gamma distribution with shape parameter
α ∈ (0, ∞) and scale parameter β ∈ (0, ∞) is denoted by X ∼ Γ(α, β). The
probability density function is defined as

fX(x|α, β) =
βαxα−1e−βx

Γ(α)
, x ∈ [0, ∞).

For X ∼ Γ(1/θ, 1) this leads to fX(x|1/θ, 1) = 1
Γ(1/θ)

x
1
θ−1e−x. Using the

Laplace-Stiltjes transform we can verify the stated inverse Laplace-Stiltjes
transform F for the Clayton copula:

E[e−tX] =
∫ ∞

0
e−tx 1

Γ(1/θ)
x

1
θ−1e−xdx

=
∫ ∞

0

e−(t+1)xx
1
θ−1

Γ(1/θ)
dx

(t+1)x=s
=

1
Γ(1/θ)

∫ ∞

0
e−s s

1
θ−1

(t + 1)
1
θ−1(t + 1)

ds

=
(t + 1)−

1
θ

Γ(1/θ)

∫ ∞

0
e−ss

1
θ−1ds︸ ︷︷ ︸

=Γ(1/θ)

= (t + 1)−
1
θ = φ−1(t)
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A.5.2. Gumbel copula

Definition 34 (Stable distribution)
Let St(α, β, γ, δ) denote a Stable distribution with characteristic exponent α ∈
(0, 2], skewness β ∈ [−1, 1], scale γ ∈ [0, ∞) and location parameter δ ∈ R

defined by the characteristic function

φ(t) = exp(iδt− γα|t|α(1− iβ sgn(t)Φ(t, α))), t ∈ R,

with Φ(t, α) =

{
tan( απ

2 ), α 6= 1,
− 2

π log(|t|), α = 1,
and

sgn(t) = 1[0,∞)(t)− 1(−∞,0](t), t ∈ R.

For X ∼ St(1/θ, 1, (cos( π
2θ ))

θ, 0), t ∈ [0, ∞) and α 6= 1 the characteristic
function simplifies to:

φX(t) = E[exp(itX)] = exp(− cos(
π

2θ
)|t|1/θ(1− i sgn(t)Φ(t, 1/θ)))

α 6=1
= exp(− cos(

π

2θ
)|t|1/θ(1− i sgn(t) tan(

π

2θ
)))

t∈[0,∞)
= exp(−t1/θ (cos(

π

2θ
)− i cos(

π

2θ
) tan(

π

2θ
)︸ ︷︷ ︸

=sin( π
2θ )

)

︸ ︷︷ ︸
=exp(−i π

2θ )=(exp(− iπ
2 ))

1/θ
=(−i)1/θ

)

= exp((−t)1/θ(−i)1/θ) = exp((it)1/θ) (A.1)

Formally LS [F](t) = φX(it), hence

LS [F](t) =φX(it)
(A.1)
= exp((iit)1/θ) = exp(−t1/θ),

which corresponds to the inverse generator of the Gumbel copula.

Although the closed form of the density of stable distribution is not known,
Nolan (2011) proposed a simulation algorithm for generating stable random
variables.
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A.5.3. Frank copula

For Frank’s copula and Joe’s copula F is discrete with a given probability
mass function (yk)k∈N for k ∈N.

Definition 35 (Logarithmic series distribution)
A Random variable K follows a logarithmic series distribution Log(α) with shape
parameter α ∈ (0, 1) if K has a discrete distribution on N+ with probability mass
function

yk =
1

− ln(1− α)

αk

k
, k ∈N+.

The inverse Laplace-Stiltjes transform F for Frank’s copula corresponds to a
logarithmic series distribution with shape parameter α = (1− e−θ).

A algorithm for generating logarithmic series variables can be found in
Kemp (1981).

A.5.4. Joe copula

Definition 36 (Discrete Sibuya distribution)
The Sibuya distribution Sibuya(α) for α ∈ (0, 1] can be defined either by its
Laplace-Stiltjes transform

1− (1− exp(−t))α, t ∈ [0, ∞),

its distribution function

F(k) = 1− (−1)k
(

α− 1
k

)
, k ∈N,

or its probability mass function

yk =

(
α

k

)
(−1)k−1, k ∈N,

where (α
k) = α(α− 1) . . . (α− k + 1)/k! denotes the (generalized) binomial coeffi-

cient.
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The inverse Laplace-Stiltjes transform F for Joe’s copula corresponds to a
Sibuya distribution with parameter α = 1/θ.

For further details on the Sibuya(α) distribution see Kozubowski and Pod-
gorski (2016)).
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