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Abstract

Quantification of 2D Printed Medicine with Near Infrared
Spectroscopy

In this work three “inks” consisting of sodium picosulfate solved in water, carvedilol
solved in ethanol and metformin hydrochloride solved in water were formulated and
printed on a number of substrates namely: EVA, HPMC, HGC, icing sheet, potato
starch wafer and HGC with 2% titanium dioxide using the pico system of Scienion’s
sciFLEXXARRAY printer.
After a drying period of one day the samples were measured using EVK hyperspec-
tral imaging system, which measures wavelengths ranging from 732 - 1700 nm.
The samples were then displayed in MATLAB R©. After comparing all samples the
combination of metformin hydrochloride printed on gelatin with 2% titanium diox-
ide was chosen to investigate the possibility of implementing NIR spectroscopy as
PAT technology for printed medicine.
A calibration model was created with a number of spots with increasing drops per
spot using projection to latent structures as implemented in MATLAB R© using the
SIMPLS algorithm.
In order to create an appropriate response matrix Raman measurements were con-
ducted, by revealing the distribution of API within the sample drops.
To determine the viability of the model HPLC measurements were conducted on
both the calibration and the test samples.

Key Words: Printed Medicine, NIR Spectroscopy, PLSR
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Abstract

Quantifizierung von 2D gedruckter Medizin mittels Nah-Infrarot
Spektroskopie

In dieser Arbeiten wurden drei ”Tinten” mit dem pico-system des sciFLEXXARRAY
Druckers von Scienion auf verschiendene Substrate gedruckt. Die Tinten bestanden
aus den aktiven pharmazeutischen Ingredienzien Natriumpicosulfat und Metformin
Hydrochlorid gelöst in Wasser, und Carvedilol gelöst in Ethanol. Als Substrate wur-
den: EVA, HPMC, HGC, Glasurblätter, Waffeln aus Kartoffelstärke und HGC mit
eingebettetem Titandioxid verwendet.
Nach einer eintägigen Trocknungszeit werden die Proben mit einem hyperspektralen
Bildanalysesystem von EVK im Wellenlängenbereich von 931 - 1700 nm vermessen.
Nach einem Vergleich aller Kombinationen von Tinten und Substraten wird Met-
formin Hydrochlorid auf HGC mit eingebettetem Titandioxid ausgewählt, um zu
untersuchen, ob es möglich ist NIR Spektroskopie als PAT Technologie zu verwen-
den.
Ein Kalibrationsmodell wird durch Projektion auf latente Strukturen in Matlab er-
stellt.
Um die Qualität des Modells zu bewerten wird die vorhergesagt Menge an Met-
formin Hydrochlorid mit dem Ergebnis einer HPLC Messung verglichen.

Schlüsselwörter: gedruckte Medizin, NIR Spectroskopie, PLSR
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1. Introduction

1.1. Printed Medicine

Under the term printed medicine the technique of dispensing an active pharmaceuti-
cal ingredient (API) on orodispersible films (ODFs) is described.
Traditional SDFs, such as tablets, can be problematic for patients with swallowing
disorders and dysphagia, just like neonatal and pediatric populations. To improve
drug delivery for these patient groups orodispersible film have gained popularity in
the pharmaceutical industry. While the soluble films forgo the problem of swallow-
ing, it further paves the way for personalized medicine. Through printing the dosage
can be tailored to each individual patient’s need based on age, size and specific
characteristics, this would eliminate to need for cutting tablets into pieces [1–4].
Moreover, since these ODFs are thin and dissolve quickly the need for water is
eliminated, which is an advantage for i.e. travellers or patients in regions where
clean drinking water is not readily available.
While ODFs where introduced quite early on in the 1960s, the first to gain popularity
were the Listerine R© PocketPaks, thin breath-freshening films, introduced by Pfizer
in 2001. The EU first approved prescription drug delivered by ODF in 2010 [5, 6].
Additionally, to help patients with swallowing difficulties the rapid absorption is
useful for problems with the need for fast relief like motion sickness or allergic
reactions, since pre-gastric absorption can enhance bioavailability and unwanted
effects. [6, 7]
Ideally ODFs should be thin, flexible, but still show enough tensile strength to
withstand stress from mouth activity. Furthermore, swelling should not be excessive
to avoid discomfort. Moreover, the substrate has to keep the API stable. [8, 9]
Various polymers can be used in the film’s preparation, these polymers provide the
film’s strength. Popular polymers and substrates are: edible icing sheets, hydrox-
ypropyl cellulose (HPC), hydroxyl propyl methyl cellulose (HPMC), starches and
modified starches, pullunan, polyethylene oxide, pectin, gelatin, carboxy methyl
cellulose, polyvinylpyrollidone (PVP) and crosslinked PVP, alginates, poly vinyl
alcohol, maltodextrose and polyox. [2, 10]
In this thesis HPMC, edible icing sheets, gelatin, listerine, ethylene vinyl acetate and
starch are used.

While the formulation of orodispersible films is well established within the phar-
maceutical industry, the printing of medicine is still facing technical difficulties. As
mentioned before, this technique shows great potential, due to it’s variability in
dosage. Tablets are mass produced with predifined dosages, and it is not possible to
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1. Introduction

cut tablets and keep the variation in dosage at an acceptable level. Two popular meth-
ods of printing drop on demand (DoD), as is needed for the required accuracy of
priting pharmaceuticals, are thermal ink-jet printing and piezoelectric printing. [11]
Thermal ink-jet printing uses heat pulses to dispense fluid. A heat element consisting
of a resistor heats up through electrical pulses, with this heat a vapor bubble forms,
as this bubble expands the volume within the reservoir creating a droplet, and
forcing it out of the nozzle. When this air bubble collapses a vacuum is created,
causing more ink to flow from the ink reservoir into the nozzle.
Piezoelectric printing is based on the piezoelectric effect, which describes the change
polarization due to mechanical stress. The piezoelectric crystal is positioned at the
ink reservoir’s back, through an applied voltage, the element deforms creating pres-
sure waves, which causes ink to be released through the nozzle. After the element
has returned to its starting state, the nozzle refills with ink. Schematics for both these
processes are shown in figure 1.1. [11–13]
In 2012 Takala et al. wanted to compare thermal and piezo-electric ink jet printing

Fig. 1.1.: Schematic for a thermal and a piezoelectric printhead, as shown by Gerard Cummins. [13]

regarding their suitability to print pharmaceuticals, using commercial printers. In
their study the piezoelectric printhead was unable to print any substance. [12]
Other studies such as those of Lee et al. or Scoutaris et al. used piezoelectrically
driven printers both showing promising results. For this work a piezoelectric ink-jet
system is used. [14, 15]

Challenges that have yet to be fully overcome are posed by of the required viscosity
and surface tension from the ink solution. While viscosity needs to be low enough
for the fluid to be jetted, it has to be viscous enough not to run through the nozzle
at unwanted time points (leading to errors in the drop on demand system, and sub-
sequently in dosage). The ink also requires enough surface tension to form spherical
drops and resist leakage through the print nozzle. One solution to decrease problems
of high viscosity fluids is to use heated piezoelectric ink-jet systems, this in turn
can lead to degradation of APIs due to their temperature sensitivity. Furthermore,
high-dose dosage forms might be limited due to the substrate’s capacity and certain
API’s limited solubility. In addition the drop volume is not constant, and can not be
determined for each drop individually for time consumption reasons, this leads to
a variation in dosage and requires a tool for checking the dispensed dosage. One
instance, where printed medicines on ODFs are not an option are drugs which

2



1. Introduction

irritate the oral mucosa. [1, 11, 16, 17]

The advantages and possibilities of printed medicine, however, outweigh the dis-
advantages and call for action to improve the technique. These advantages, as
mentioned above include (as described by [9, 11, 12, 16–19]:

• easy form factor for low dosage medicines (no need for padding material to
increase the size of a tablet)
• possible complex drug release
• multiple pharmaceutical agents possible in one form factor
• high reproducibility given an appropriate quality control system or improved

certainty regarding the DoD systems
• waste minimization
• ease of administration for pediatric, geriatric and patients suffering from

dysphagia
• no need for water
• reduced unwanted effects through pre-gastric absorption
• higher bioavailability due to pre-gastric absorption
• rapid relief for problems, in need of sudden relief like allergic attack or cough-

ing
• cost effectiveness
• improved production efficiency by allowing real-time release testing (with

appropriate feedback loops)
• reduce mass production
• ability to produce personalize medicine, attuned for each individual’s needs

1.1.1. Quality Control

Although printing of medicine is a promising technology there is a need for an
appropriate process analytical technology (PAT). The FDA defines PAT as a system
that analyses and controls manufacturing processes in a timely fashion for critical
quality parameters, to ensure acceptable product quality. [20]
This means that a PAT system overcomes the traditional separation between analytical
chemistry and the manufacturing process. It focuses on building quality into the
product (QbD) through at-line, in-line or on-line measurements of process quality
using chemometric approaches, i.e. multivariate statistical analysis. Figure 1.2 shows
a schematic displaying the differences between at-, in- and on-line processes. This
means technologies need to be quick and non-destructive to the sample, resulting in
the fact, that traditional techniques such as high-performace liquid chromatography
(HPLC) and mass spectrometry are not suitable. Moreover, the technologies should
be automated giving the opportunity for uninterrupted operation. Technologies in
use for PAT are NIR spectroscopy for moisture determination, X-ray spectroscopy,
microwaves for moisture determination and photoacoustic spectroscopy. [20]
To extract knowledge about the process and quality from the chemical information
delivered by these technologies mathematical models are used. The field of projecting

3



1. Introduction

Fig. 1.2.: Schematic displaying differences between in- on- and at-line processes, as described by [21].

chemical information to a few dimensions using multivariate analysis is called
chemometrics. [20, 22]

1.2. NIR Spectroscopy

NIR chemical imaging (NIR-CI) (applying near-infrared spectroscopy (NIRS) to
chemical information) has been used for rapid characterization of raw materials,
with the application of models it should be possible to quantify the information.
NIRS is the most common PAT analyzer in manufacturing of solid dosage forms.
Hyperspectral image (HSI) acquisition is used more and more to be able to get a two
dimensional spatial positions in addition to the spectral information. [23–25]

The NIR spectrum is a small region within the electromagnetic spectrum in the
region between 780 - 2500 nm. NIR spectra exist due to molecular vibration induced
by infrared radiation. When light with the energy equaling one of a molecule’s
vibrational energy level differences interacts with it, energy is absorbed and the
molecule enters a higher energy state. Light’s energy is related to it’s wavelength
with equation (1.1), where h is Planck’s constant, c is the speed of light, f is frequency,
and λ the wavelength.

E = h f =
hc
λ

(1.1)

4



1. Introduction

As Blanco et al. describes, vibrational frequency for a diatomic molecule can be
simulated using a harmonic oscillator model, then the variation of the potential
energy with bond distance shows a parabolic curve centred around the equilibrium
state with evenly spaced vibrational energy levels (as shown in figure 1.3). At higher

Fig. 1.3.: Morse curve: showing the relationship between energy and the internucleur distance r in a
diatomic molecule as shown in [26]. ZPE is the zero point energy, it is the lowest possible
energy level a molecule can have. BDE is the bond dissociation energy.

energy levels (shown by the blue lines) the distance variation (r) between the atoms
increases, when enough energy is is transfered to the molecule the atoms disassociate,
as soon as the bond dissociation energy is reached. The light’s energy required to
elevate a molecule from it’s ground state (n = 0) needs to match the difference in the
energy state exactly. The energy En between the discrete energy levels is described
by equation (1.2). Here n is the vibrational quantum number, k the bonding force
constant (a measure of rigidity of a chemical bond in its normal quilibrium position)
and m the effective mass (m = m1m2

m1+m2
). [27]

En =

(
n +

1
2

)
h̄

√
k
m

(1.2)

In reality vibrations are not harmonic and energy levels not completely evenly
spaced, this is why in figure 1.3 the parabola is slanted to the right.
To improve the model higher order terms and a non harmonicity constant need to
be involved. Through this inclusion it is shown, that frequencies that are multiples
of the fundamental frequency exist, these are called overtones. Absorption bands
within the NIR region are related to overtones and combinations of fundamental
vibrations of function groups of -CH,-NH, -OH. [27, 28] Figure 1.4 shows the ab-
sorption bands as a function of the wavelength. In this region stretchig and bending
are the two vibrational modes, meaning the distances and bond angles changes

5



1. Introduction

continuously. [29] Due to the fact, that the vibrations within this region are over-

Fig. 1.4.: NIR functional groups absorption bands as a function of the wavelength.

tones, absorption coefficients are rather low, since transition probability decreases
significantly with increased vibrational quantum number. This leads to restricted
sensitivity but enables reflectance measurements by increasing penetration depth.
NIRS can be implemented as a reflectance or transmission mode. In the reflectance
mode reflected light is detected after it has interacted with the sample, in trans-
mission mode transmitted light is detected, therefore the detected light is directly
proportional to incident - absorbed light.
To extract absorbance and concentration information from reflected light Beer’s law
is used [27]

A = log
1
R

= a′c (1.3)

Summarized the advantages of NIRS are listed below [30]:

• minimal sample preparation
• measurement within seconds
• cost effective
• non destructive
• measurement of solid samples in reflectance mode
• easy implementation of HSI

A major drawback of this technique is the fact that low energy levels result in spectra
with broad peaks, increasing the chance of overlapping absorption bands and there-
fore more complex attainability of information. For this reason it is standard practice
to create a calibration model based on measurements with known information. To
link the two chemometrics is used, to extract information of new samples the model,
based on training data, is applied to the sample. [30]

6



1. Introduction

1.2.1. Hyperspectral Imaging

Hyperspectral imaging, also known as spectroscopic chemical imaging, combines
conventional imaging (defined as creation of a representative reproduction of an
object) and spectroscopy to attain spectral and spatial information from an ob-
ject. [23, 25, 28, 31]
A conventional image consists of a two-dimensional data matrix that can be de-
scribed as a function f (x, y) where x and y are orthogonal coordinates and I is
the intensity at each datapoint called pixel. Spectroscopic results depend on the
wavelength. HSI is the combination of these two techniques: a hyperspectral image is
decribed by two orthogonal spatial directions but I is described not by one intensity
value but an entire (NIR-)spectrum. [32]
Therefore the hyperspectral image is not a two-dimensional data matrix but is de-
scribed by three dimension, this 3D data matrix is called a hypercube. [25]
Gowen et al. describes multiple methods of measuring a hypercube. One, called the
”staring imager” where the wavelength is modified using a tuneable filter in depen-
dence of two spatial dimensions. The other method is called ”push broom scanning”,
here the multiple wavelengths are measured simultaneously in dependence of one
spatial dimension. [25] Push broom setup usually involve an additional element,
such as a moving linear stage, to measure the second spatial dimension. The system
measures one line of sample after another while the sample is moved at a constant
rate. The line can then be subdivided into pixels. [31]
HSI allows the determination of chemical information for a specific spatial plane,
not an average composition as for non-imaging NIR spectroscopy. [28] Based on the
principle of HSI, especially push broom technologies, it becomes apparent, that it
would be an appropriate technology to implement as a PAT system.

Hyperspectral data is multidimensional (two spatial and one spectral dimension
with multiple variables in each dimension), for analysis dimensionality needs to
be reduced while retaining relevant information. This is where chemometrics and
multivariate analysis comes into play.
Before applying multivariate analysis data is preprocessed to remove non chemical
biases such as scattering effects or baseline drifts.

1.3. Multivariate Data Analysis

As mentioned above multivariate data analysis is needed to reduce data’s dimen-
sionality to relevant information. An important tool for this reduction are projection
methods such as principal component analysis (PCA) and partial least squares
(PLS). These methods take cases of a K-dimensional space and projects them onto
a lower-dimensional plane, called hyper-plane. This is practicable for summariz-
ing and visualizing a data set, classification and finding quantitative relationships

7



1. Introduction

among variables. Multivariate data analysis and projection of data onto a hyper-
plane are established methods for PAT and quality control in the food processing
industry. [22, 33, 34]
PCA is useful to get an overview over data, it helps to recognize groups within a
larger data set and can further be useful to classify new observations, since they
exhibit similar patterns.
For a quantification regression modeling is used, two data blocks, usually denoted X
and Y, are compared aiming for the ability to predict Y from a new observation data
set X2. This model is achieved through the PLS method. [33] For this work X is the
measured hypercube and Y the concentration, or mass, of API as a function of the
two spatial dimensions.
The PLS approache was formulated in the 1970s by Herman Wold, and shortly after
slightly modified by Svante Wold and Harald Martens who also started to interpret
PLS as Projection to Latent Structures (as opposed to Partial Least Squares) for a
more descriptive meaning. [33, 35]
Assuming X to consists of K variables and N observations, the predictors, and as it
is in this present case the response matrix Y to be one dimensional X and Y have
the dimensions (N * K) and (N * 1), respectively. N is determined by the number of
pixels measured by the HSI system, K is determined by the spectrum. The number
of variables is the number of measured spectral wavelength (I of subsection 1.2.1).
Y must always have the same number of observation points but can have another
number of responses, when for example more than one chemical information has to
be determined, therefore Y could have the dimension of (N * M).

There is multiple algorithms to calculate these hyper-planes efficiently, one is the
nonlinear iterative partial least squares (NIPALS) another the SIMPLS algorithm.

1.3.1. NIPALS

The NIPALS algorithm is an established algorithm to estimate the parameters itera-
tively. The steps are described subsection 2.6.1 and in several publications. [35–38]
The data exists in two separate coordinate system, in X and Y, respectively, for
both the number of cooridnates equals the number of variables (columns). The
algorithms task is to find a coordinate system that describes the relationship between
the observations in the two existing systems. This is done by finding a number of
components. Figure 1.5 taken from [33] describes the relationship for an exemplary
data set where X has the dimension (21 * 3) and Y (21 * 1). The first component is
a line in the X-space approximates the point swarm and correlates well with the
Y-vector (of matrix if Y is multidimensional). When projecting the sample onto the
line, the distance between the projected point and the line is termed as the score
t1. The scores T can be though of as new variable that describes the information in
the original X-variables and can be used to estimate the residuals F by applying the
score and a weight matrix C (dimension (N * 1)). F describes the variation that is
left unexplained by the components calculated to this point. An ideal model would
explain the entire variation in Y, so F would be zero.

8



1. Introduction

Fig. 1.5.: For the regression observations can be understood as two data swarms in two separate
spaces, through the regression these are related to each other. In this example the data has
been mean-centered, meaning the coordinate systems pass through the average point (dark
gray) of each point swarm.

To add the second component, a second line, orthogonal to the first is added to
describe the X-data better and still provides a good correlation with the residuals F
of the first component. The projection to calculation of scores is repeated to create
t2, which with a second column of the weight matrix C (dimension (N * 2)), can be
applied to the Y-data to create the new residual F matrix.
This process is repeated until most of the variation is explained, therefore F con-
verges.
Overall it can be summarized that scores matrices called T and U are calculated,
these store information related to the observations. The weights matrix C and the
X-loading P store information related to variables for the Y- and X data, respectively.
An indicator for how well these variables model X and Y residuals, denoted E and F
can be calculated. Equations (1.4) and (1.7) describe the relationships between these
matrices. [33]

Y = TCT + F (1.4)

with (1.5)

T = XW∗ (1.6)

X = TPT + E (1.7)

Figure 1.6 shows the relationship and dimensions of variables calculated during the
PLS alorightm as shown in [33] on page 80.

9



1. Introduction

Fig. 1.6.: Matrix relationships among the PLS computation. 1 ∗ x̄ and 1 ∗ ȳ are the averages along each
column, that stem from the mean centering step. T and U are the X-and Y-scores (containing
information about the observations and their similiarites with respect to the given problem.
The weights W* and C contain information about how the variables combine to relay the
relation between X and Y. E and F contain the variation in the data not contained in the
model, calles residuals.

1.3.2. SIMPLS

De Jong et al. proposed an alternative PLS algorithm called the SIMPLS algorithm,
that is implemented in the MATLAB R© function. Their objective being finding a
predictive linear model Ŷ = XB (meaning F in (1.4) equals zero). The algorithm is
changed and shortened to avoid calculating weight W*. The algorithm is described
in more detail in subsection 2.6.2.
De Jong points out several advantages of the SIMPLS algorithm mainly the direct
calculation of weights (instead of using defalted X matrices). He shows that SIMPLS
and NIPALS are equivalent for M = 1 and only slightly different for multivariate
Y. [39]
Due to the fact that in this work only a one dimensional Y matrix is used it is fitting,
that MATLAB R© uses the SIMPLS and does not need to be adapted.

The calculated regression coefficients give a weight to each variable (i.e. wavelength),
these coefficients can be applied to new observations. Through this application
(multiplication) the spectrum for each observation is related to the response value
(e.g. the concentration).

10



1. Introduction

1.3.3. Challenges

A first challenge to create a viable calibration model is the determination of the
response matrix Y, to minimize the residuals it gives. Naturally, the accuracy of Y
is dependent on a suitable reference method. It has been proposed that an inverse
calibration might be useful. This means the concentration Y used for the calibration
is a regressed value. [34]
Another challenge is the determination of the right number of components used
for the calibration model. The risk here is to overfit or underfit. With overfitting the
model finds correlations were non are present. For example noise could be correlated
by chance, this will lead to a suboptimal result when the model is applied to an
independent data set. Underfitting the model is another risk, where not all aspects
of the data are explained within it.
Validation is a tool to estimate the prediction error, herefore cross-validation can
be used. Cross-validation sepereates the data into segments, then the main data is
used for model creation and the smaller data segments are uesd for validation. The
number values within a segment should be roughly the same for all iterations, and
every data value should be used for validation once. [40]

1.4. Aim

The aim of this thesis is to research the feasibility of using NIR spectroscopy with
a push broom HSI system as a PAT tool for printed medicine. During the printing
process knowledge about the drop volume of the printing system is limited, there-
fore, the actual mass of dispensed API cannot be known accurately. It is necessary
to find a way of deducing the actual concentration of API based on spectroscopic
data, by applying regression coefficients calculated on a calibration data set to new
measurements and predicting the mass correctly, comparing it to HPLC results.

11



2. Methods

2.1. Printing

2.1.1. Printer

For printing sciFLEXARRAYER S3 printer’s pico system (Scienion AG, Berlin, Ger-
many) is used. The printer is an automated piezoelectric electrically-driven non-
contact system for research and design, as well as production laboratories. The
system is capable of dispensing 50-550 pl per drop with a typical spot size of 80-
250 μm . The system has a preinstalled video camera that is used to examine the
printed drops. The nozzle can be positioned in front of this camera by clicking
the camera symbol in the designated software tab. Once the nozzle is positioned
correctly in the middle of the camera’s field of view (FOV), auto focus is used to
sharpen the image. Furthermore, the LED’s brightness can be changed to improve
image quality.
The drop’s size and shape can be influenced by changing the printing parameters as
the voltage, pulse length, frequency and the LED delay. The software is capable of
measuring the drop volume (picoliters).
After cleaning the system with water, the nozzle is filled with 100 pl of air followed by
250 pl of ink by filling the prepared ink into a wash tray, dipping the nozzle into it and
taking in the liquid. Then continuous dispensing is started and the aforementioned
parameters are changed until a round, stable drop, that is not shimmying is created.

Fig. 2.1.: Scienion software with adjusters for volt-
age, pulse length, LED Delay and fre-
quency.

Figure 2.1 shows the software’s tab used
to manipulate the parameters. Prior to
printing samples it is necessary to check
the drop volume’s consistency. For this
a program is executed, within which the
drop volume is measured 21 times after
dispensing 500 drops, respectively. The
variance in these measurements should
not exceed 3% of the drop volume. If
all 21 measurements are within the 3%
range, the user may continue with their
printing plan by setting up the target.
The substrates to be printed on are taped
to microscope slides to ensure their flat-
ness as to prevent the nozzle coming
into contact with them and the ink from
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Table 2.1.: Parameters used for target setup.

Parameter Description

Start point displacement in x and y direction respectively from upper left corner
Field gap space between fields in x and y direction respectively

No. of Fields number of fields in x and y direction
Spots per Field number of spots per field in x and y direction

Spot pitch distance between spots in field in x and y direction respectively

trickling to another than the defined po-
sition.
In the target setup page of Scienion’s software, the user may define a number of
parameters to create the desired printing pattern described in table 2.1.

Fig. 2.2.: Target setup menu with in Scienion’s software.

2.1.2. Ink Formulations

Three inks were formulated and tested before choosing one for further analysis and
quantification. The different substances are are listed in table 2.2, the corresponding
material data safety sheet can be found in the appendix.
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Table 2.2.: Formulated inks.

API Solvent Concentration (mg/ml)

Sodium picosulfate water 200

Metformin hydrochloride water 250

Carvedilol ethanol 10

The differences in concentration stem from the API’s solubility, and these concentra-
tion have been tested to create a stable drop when printing. Metformin hydrochloride
(Sigma Aldrich, St. Louis, USA) and sodium picosulfate (Shenzhen Nexconn Phar-
matechs Ltd., Shanghai, China) are soluable in water up to 1.06 · 103 mg/ml at 25

◦C
(est) and over 1 mg/l, respectively. Carvedilol (Hersteller) is practically insoluble in
water [41] therefore ethanol is used which is also a good solvent. It’s disadvantage is
that the preparation effort for the printer is higher, since the system liquid needs to
be changed as well.
Sodium picosulfate is a laxative used to treat constipation or preparing patients
before colonoscopies of surgeries to clean the large bowel.
Metformin is a medication for overweight type 2 diabetes patients.
Carvedilol is a beta blocker use on patients suffering from congestive heart failure or
left ventricular dysfunction or high blood pressure.

2.1.3. Substrates

As described in 2.1 several substrates are used to choose one for further analysis.
The substrates are

• Wafer Paper Sheets with the ingredients potato starch and water (Print4you
Cake Toppers, UK) (starch)
• Listerine Pocketpaks R©, Oral Care Strips (listerine)
• Ethylene vinyl acetate (EVA),
• Gelatin film strips (HGC) (Capsugel, Bornem, Belgium)
• Gelatin film strips with 2% titanium dioxide (HGC+TiO2) (Capsugel, Bornem,

Belgium)
• Hydroxypropylmethylcellulose (HPMC) (Capsugel, Bornem, Belgium): is an

ingredient of a water-soluble cellulose ether derivative used for controlled-
release preparations.
• Edible icing sheet containing water, cornstarch (bulking agent, corn syrup, corn

syrup solids, cellulose (firming agent), sorbitol, glycerin, vegetable oil, gum
arabic, vanilla flavor enhancer, titanium dioxide and citric acid (preservative)
(DECO Enterprises Ltd, Sutton Valence, UK) (icing)

All of these substrates, are materials used in pharmaceutical sciences.

Quantification is done for one ink in combination with one substrate. In order to
decide which combination of ink and substrate to use several calibration curves are
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Fig. 2.3.: Setup for NIR measurements. (1) Linear stage control, (2) power supply, (3) helios sensor, (4)
linear stage, (5) fiber optig ring light guide, (6) Light source.

printed on different combinations of inks and substrates. The ink formulations and
substrates to choose from are described in sections 2.1.2 and 2.1.3, respectively.
The printing pattern consists of 7 spots with a varying number of drops dispensed
at each spot.

2.2. Near Infrared Spectrometer Setup

For the near infrared (NIR) measurements the HELIOS NIR G2-320 Class by EVK
(EVK DI Kerschhaggl GmbH, Raaba, Austria) is used. The sensor is powered by a 24

V DC external power supply.
This hyperspectral imaging (HSI) system measures a spectral range with 256 pixels
spanning 900 -1700 nm, a sample is measured one line at a time that is subdivided
into 320 pixels, the maximum measurement frequency is 333 Hz. To improve resolu-
tion a KOWA extension ring of 5 mm is added to the sensor’s lens.
Underneath the lens a linear stage is mounted, which is used to move the samples
at a constant rate to be able to measure the entire sample. The MovTec SMC-100

stage is hooked up to a computer where the NanoPro V17 Software is used to steer
it. A platform covered in blackened aluminum, is attached to the stage, where the
samples can be positioned.
For illumination a tungsten- halogen lamp is used (Polytec GmbH, Waldbronn,
Germany) to which a fiber optic ring light guide (Edmund Optics GmbH, York, UK)
is attached. The ring light guide is positioned just below the HSI lens. This setup
allows for shadow less illumination of the samples.
The setup can be seen in figure 2.3. Although the individual parts existed this setup
was designed and assembeled before any measurements could be undertaken.
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2.3. Measurements

As can be seen in section 2.2 all measurements are performed in reflectance mode.
This means the light source is positioned in the same direction as the spectrometer
in respect to the sample. The light hits the sample and has a penetration depth of
about 500 μm . Depending on the chemical configuration of the molecules within
the sample, light is reflected due to vibrations in the molecule. The reflected light
then hits the spectrometer. To calculate the absorbance units from the measurements
equation (2.1) is used

A = −log10

(
x− B

W − B

)
(2.1)

where x is the reflectance spectrum (max 320*256), B the black reference spectrum
and W the white reference spectrum.
The white and black reference spectra are measured before the samples with the
same parameters by measuring a reflective teflon sheet (which does not absorb NIR
light [27] and covering the lens, respectively (see figure 2.4(a)). For these measure-

(a) Teflon sheet and
lense cover used
for measurement
of white and black
reference spectrum.

(b) All spectra for white and black reference used
for the calculation of absorption units.

Fig. 2.4.: Tools used to create white and black reference spectra, and the spectra averaged along the
time dimension.

ments the linear stage is not used, the stage remains static until at least 500 frames
have been measured. The measurements are averaged to create the black and white
reference spectra used for the calculation in equation (2.1). An example for such
spectra can be seen in figure 2.4(b). The figure shows 320 lines for each measurement
representing the 320 spatial resolution pixels mentioned above. Outliers exist due to
defect pixels in the CCD chip matrix, these values are corrected in the preprocessing
stage of the data (see section 2.5).
The hyperspectral data is saved in a data cube with to spatial dimensions x and y,
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Fig. 2.5.: Schematic respresentation of the measurement’s data set.
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Fig. 2.6.: Measurement spectrum (reflection)(left panel) and calculated absorption (right panel) of a
random pixel.

and a spectral dimension. The temporal direction t, will be denoted as pixelvalue
x in this work, the spatial dimension as pixelvalue y (in the figure noted as spatial
resolution). Figure 2.5 shows a schematic representation of this datacube. This means
the intensity of a certain pixel is a function of time t, space x, and wavelength λ.
For the measurements exposure time is set high at 9000 µs to ensure enough light
reaches the sensor, while the frequency is kept rather low at 10 Hz.
During the measurement of samples, the specimen is secured on blackened alu-
minum, which has a very high absorbance, keeping them as flat as possible as
to avoid distance variation during measurement. The sample is positioned where
illumination is the highest. The speed of the linear stage is kept at 2 mm/s. How
data changes when going from reflectance to absorption using the aforementioned
equation can be seen in figure 2.6. Here a random pixel of a measurement of sodium
picosulfate on HGC+TiO2 is displayed. The conversion from reflectance to absorption
units is done, to later get a unit proportional to the concentration based on Beer’s
law:

A = −log
(

I
I0

)
= εcd (2.2)

where d is the light’s path length, c is the concentration and ε is an extinction
coefficient. This is not always ideal since path length in reflection mode is not known,
due to Beer Lamber usually being defined for a single chemical compound with
known extinction.
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2.4. Resolution

2.4.1. Spatial Resolution (Pixelvalue y)

Fig. 2.7.: USAF test chart used
for the determination
of spatial resolution

To determine the resolution in the spatial direction a 1951

US Air Force (USAF) resolution test chart as seen in fig-
ure 2.7 is used. The target is measured without using
the linear stage. Multiple time frames are measured with
an exposure time of 9000 μs and a frequency of 10 Hz.
The measurements are averaged to reduce noise effects
and a mean black reference spectrum is subtracted. Fur-
thermore, the different wavelengths are averaged to be
able to plot the reflection’s cross-section, as can be seen
in figure 2.8(b). No further processing or smoothing are
performed. Figure 2.8(a) shows the surface plot for the
measurement of layer one in figure 2.7 and the additional
element 1 below, the color represents the mean intensity
of all wavelengths.
The lines at about 170 pixels (fig. 2.8(a)), represent the
one in figure 2.7, while the other absorption peaks rep-
resent the elements 1-6 of layer 1, where an element is
the triple lines. Elements 1-3 are clearly separable, while
the lines at element four are no longer. Therefore, it can
be concluded that layer 1 element three represents the
resolution limit.

Resolution according to the test chart is given by equation (2.3), where G is the group
(the number above each column of elements, and e is the element number (given
next to the triple lines), the resolution is given in lp/mm. A line pair (lp) consists of
a black and a white line [42].

Resolution(lp/mm) = 2G+(e−1)/6 = 2.5lp/mm (2.3)

A line width in this element is 228 μm and is represented in two measurement points,
as can be seen in figure 2.8(b), resulting in a resolution of Ry = 0.22887mm

2pixels = 0.114 mm
px .

The same can be confirmed counting the number of measurements for 2.5 line pairs
( 1mm

9pixels = 0.111 mm
px ).

2.4.2. Temporal Resolution (Pixelvalue x)

The second dimension in figures such as the center panel in 2.9 is created by plotting
the subsequently measured lines (third dimension in 2.5) next to each other. The
resolution in this direction is a function of the measurement and linear stage velocity
as well as the basic resolution.
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(b) Cross-section for the measurement wave-
lengths averaged.

Fig. 2.8.: Measurement

To find this value a single drawn line is moved through the sensor’s measuring line
to approximate the resolution in the temporal dimension, this direction will be called
pixelvalue x. The line can be seen in the left panel of figure 2.9. The paper is moved
at a velocity of 0.2 mm/s and measured with a frequency of f=10 Hz. bline is the
line’s width measured using the Senterra optical microscope (Bruker, Billerica, USA)
and it’s measuring tool, the measured bline equals 285 μm.
The middle panel of figure 2.9 shows the surface plot for the absorption when the
wavelengths are averaged, the right panel shows the absorption along the pixelvalue
x axis.
To calculate an approximation for this resolution the assumption is made that the
real line ( fline), the systems point spread function (PSF) ( fPSF) and the measured
line ( fmeas) can be displayed as a Gauss function. This allows the linewidth to be
expressed as the standard deviation σ of Gauss functions, based on the rules of
convolution (as described in (2.5).

fmeas = fline ∗ fPSF (2.4)

σ2
meas = σ2

line + σ2
PSF (2.5)

The width of the drawn and measured line can be measured (left and right panel
in 2.9). This allows the deduction of the PSF.

σPSF =
√

σ2
meas − σ2

line (2.6)

To find σmeas the number of pixels at full width half maximum (FWHM) nFWHM
can be counted (right panel figure 2.9). Gaussian curves have the relationship:
FWHM = 2

√
2ln(2)σ.

The line’s width (bline) is known. The blackness drops drastically towards the line’s
border, therefore the assumption is made that the measured width contains 99% of
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the line’s Gauss function, this corresponds to 6σ.
To convert the width in pixels to mm a factor is needed, this factor is determined by
the frequency of measurement f and the speed of the linear stage v: k = v/ f (mm).
This results in:

σPSF =

√√√√( nFWHM

2
√

2ln(2)
· k
)2

−
(

bline
6

)2

(2.7)

nFWHM is 19, k equals 0.02 mm, and as mentioned before bline was measured at
0.285 mm. Using equation (2.7) this results in a resolution in the x direction of
Rx = 0.154 mm/px.

Fig. 2.9.: Photo of pencil line and it’s NIR measurement shown at the mean wavelenth.

2.5. Data Preprocessing

2.5.1. Defect Pixel Correction

As can be seen in figure 2.4(b) there are several outliers. The mean black reference
spectrum as shown in the figure is chosen to perform the detection.
Herein the mean value of each wavelength and subsequently the median absolute
deviation is calculated. The threshold for an outlier detection is set to 7 times the
median deviation, the value was chosen through trial and error (eq. (2.8)). These
outliers are then interpolated linearly, setting the value to the mean of the two
neighboring points. If the outlier happens to be at a border the value is set to its
neighboring value.

OL = (x− x̄) > (7 ·median(|x− x̄|)) (2.8)

After the indices of defect pixels are known, they are corrected in all measurements
as described above. To ensure the correct calculation of the absorbance units (equa-
tion (2.1)) it is important to check the denominator for any values that become zero
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Fig. 2.10.: Calculated absorption spectrum (left panel) and normalized absorption after standard
normal variate (SNV) (right panel).

after subtraction, if this is the case the value is interpolated linearly. Furthermore
any values below zero after the division must be detected, these are changed to the
smallest possible value in MATLAB R© eps before applying the logarithm.

2.5.2. Standard Normal Variate

The first step in the processing pipeline after absorbance calculation is applying the
standard normal variate. This is a popular method for scatter correction, since it
does not require a reference signal [43].
Equation (2.9) is implemented in MATLAB R©, where xorig is the original two di-
mensional spectrum (as in space and wavelength), x̄orig is the mean value of each
spectrum (along the spectral dimension), and σxorig is the standard deviation (320*1

vector repeated 256 times.

xcorr =
xorig − x̄orig

σxorig

(2.9)

Since certain spectral values outside the region of our interest might influence
the mean and standard deviation too much, it is possible to only use a range of
wavelength values for the correction. If a range is not given the entire spectral range
is used. The effect of using only a certain range can be seen in figure 2.10. In this
thesis a spectral reange of 1158 - 1557 nm was used.

2.5.3. Savitzky-Golay Filtering

According to Rinnan et al. derivatives are capable of removing additive effects in
spectra and have been used in analytical spectroscopy for a long time.
For derivation and smoothing the very popular method of using a Savitzky-Golay
filter (SG-filter) is applied. This filter smoothes and derives the spectra by fitting
a low order polynomial to a subset of data and estimating the derivation for this
fit [43] [44]. MATLAB R© provides the sgolayfilt() function. Here it is important to
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Fig. 2.11.: Differences in filter result by varying frame size (left) and polynomial order (right), keeping
the polynomial order constant at 2 and frame size constant at 11 points, respectively.

find the right parameters for the frame size and polynomial order, to reduce noise
through smoothing and still retaining all relevant information. The effect of changing
frame size and polynomial order can be observed in figure 2.11. Since the filter uses
the subset of frame size to estimate the central point of the derivation the result is
smoother the bigger the frame size is. Contrary to this for the polynomial order the
higher the order is, the noisier the signal becomes due to the more complex fitted
curve.
To find the right parameters is not an easy task and requires a lot of trial and error.
In this thesis multiple parameters were tried, for the final results a polynom of order
2 was fitted to a 35 step size window.

2.6. Quantification

For the quantification a PLS regression or projections to latent structures (PLS) is
used. This method combines features of PCA and multiple linear regression. It can
be helpful to predict a set of dependent variables from a large set of independent
variables [37]. The algorithm projects the data to a lower-dimensional hyperplane,
this allows the finding of quantitative relationships among variables by decomposing
a response Y and an observation matrix X by maximizing the covariance between
the two [33] [37].
The observation matrix X consists of N observations and M dependent variables
i.e. the NIR measurements, where N observations are the spatial and temporal
information (the data set of figure 2.5 is rearranged as shown in figure 2.12) and the
dependent variables are the wavelengths. The response matrix Y has the dimension
N x K, to each observation the predicted value is matched i.e. the concentration.
For the quantification of the printed medicine a calibration curve (see chapter 3) is
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Fig. 2.12.: Schematic of how data set is rearranged to reduce it from three to two dimensions.

printed, measured and preprocessed as described in section 2.5 and then rearranged
in two dimensions and declared as X. Since only one parameter, i.e. the concentration,
needs to be quantified the response matrix is of size N x 1, each observation is
matched to one value.
Y is created by mapping the measurement’s spots onto a new matrix and setting each
value to the estimated mass of API in that observation. The mass can be calculated
with equation (2.10), where vdrop is the drop volume recorded by the printer and cink
is the ink’s concentration.

mAPI = vdrop(ml) · cink(mg/ml) (2.10)

It is important to predict the mass as accurately as possible, which automatically
improves the explained variance and by maximizing the correlation between the data
sets and therefore the model. To gather the distribution of API within a dispensed
spot, a Raman measurement is performed (see section 2.7.1). The advantage of
Raman spectrometers over NIR spectrometers is the proportionality of intensity and
concentration, as well as its insensitivity to the surface composition in comparison to
NIR. The disadvantage, however, is its expenditure of time, while the NIR measure-
ments measures 20 μm in 9 ms, the mapping of a (1*1) mm area took several hours.
With X and Y set the regression, to estimate the parameters can be started, as
mentioned in the introduction, either the NIPALS or the SIMPLS algorithm could
be applied. The following two subsections describe these two algorithms in more
detail.

2.6.1. NIPALS Algorithm

The algorithm consists of the following steps after mean centering.
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1. Start: u to the first column of Y
2. W∗ = XTu

uTu
3. scale W to length one (W∗ = W∗

|W∗| )
4. T = XW∗

5. C = YTT
TTT

6. scale C to length one
7. U = YTC

CTC
8. repeat 2-8 until convergence (for M > 1)

With U,C and W∗ the X- and Y loadings (P and Q) can be calculated due to the
relationship shown in (2.11). This means that the X-scores T with the estimated
weights C describe Y with small residuals F. The loadings are used to calculate E
and F, the residuals used for the next iteration.

Y = TCT + F (2.11)

X = TPT + E (2.12)

P =
XTT
TTT

(2.13)

Q =
YTU
UTU

(2.14)

E = X− TP′ (2.15)

F = Y− XW∗CT (2.16)

In the first iteration all calculated variables are vectors, the first X-score t1 can be
thought of as a new, latent variable, which reflects the information in the original
X-variables, this is the first component, to add the second, the algorithm is repeated
with E and F as input. With each iteration, and added component F will decrease
until a convergence. Therefore, F indicates is an indicator for the model’s quality,
since it describes what is not explained with the regression terms. It should be as
small as possible.
W∗CT is also called the PLS-regression coefficient B. According to Wold et al. the
changing (called deflation) of Y is optional since the results are equivalent. [35, 38]
For an ideal model Y can be described as: Y = XB.

2.6.2. SIMPLS Algorithm

To shorten the NIPALS algorithm De Jong et al. propose to find X-scores ta that
maximize the covariance with the corresponding Y-loadings ua. In their system the
weights W* are not calculated but a generalized inverse of P’ R is used (see (2.17)).
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[39]
T = X0R (2.17)

Here X0 is the original centered data instead of the depleted X matrix since these
correspond do linear combinations of the centered X variables.
With this adaptation neither the weight W* nor the depleted matrices E and F need
be calculated. [29]
The pseudocode of the SIMPLS algorithm as described by de Jong [39] is shown in
figure 2.13

Fig. 2.13.: Pseudocode for the SIMPLS algorithm as published by De Jong [39].

The MATLAB R© function plsregress uses the SIMPLS algorithm. As input the mea-
sured NIR data, the created concentration matrix and the number of components to
do the regression with and a cross-validation partitioning are used. The vector of
regression coefficients, denoted as beta is extended by one variable (column) that
contains the means, this could be interpreted as the 0

th component. Therefore, when
applying beta, the data matrix (NIR- measurements) has to be extended, with a
column of ones.
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2.7. Reference Methods

2.7.1. Raman Spectroscopy

As mentioned above, a Raman shift measurement is performed on two drops. For
the measurement the RamanStation 400F (PerkinElmer, Waltham, US) is used. This
station uses a 350 mW near infrared 785 nm laser, and measures a spectral range of
95- 3500 cm-1.
The drop is positioned on the stage, and then moved below the laser by using the
Spectrum

TM
software and the preinstalled USB CCD video camera. During the

measurement an area of 1x1 mm with a spacing of 0.01 mm is mapped. Each point
is scanned 3 times with an exposure time of 6 seconds, resulting in a total time of
50 hours.
Based on the spectra (comparing inside and outside the drop) it can be determined
that metformin hydrochloride has a peak at 735 cm-1. With the fsmloader by Ben
Perston it is possible to load the PerkinElmer files into MATLAB R© [45]. Next the data
corresponding to the wavelengths around this peak are averaged (730 - 740), and
the cross-section at this wavelength is plotted to examine the intensity and therefore
the concentration. Figure 2.14(a) shows the mean intensity over all wavelengths for
a drop of metformin hydrochloride ink on HGC+TiO2 . Here the drop’s border is
vaguely visible, the determination of the peak follows by comparing spectra inside
and outside the drop, as shown in figure 2.14(b). At 735 cm-1 the curves inside
the drop show a peak, while the outside does not. Since the Raman measurement
was conducted days after printing, it is assumed that any water has evaporated.
The resulting cross-section and the recreation of the response matrix used for the
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Fig. 2.14.: Raman shift measurement for a drop of the metformin hydrochloride ink (see section 2.1.2)
on HGC+TiO2 .

regression can be seen in chapter 3.
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2. Methods

2.7.2. High-Performance Liquid Chromatography

High-performance liquid chromatography (HPLC) is used to compare the predicted
and actual API content for the printed samples. HPLC reveals very accurate results
and is a common method for the determination of API content, but it is a destructive
method, and therefore not ideal for a quality control.
In order to extract the API, the printed samples are dissolved in 5 ml of deionized
water (Hersteller) and shaken at room temperature and 300 rpm for 2 hours. SP
content of the printed samples is determined by using HPLC with UV-detection. Flow
rate is set to 0.4 ml/min, injection temperature at 20

◦C, column temperature at 30
◦C,

and detection wavelength at 233 nm. A 90:10 mixture of 1 mM ammoniumacetat and
ACN is used as mobile phase for 10 minutes. A Waters Alliance 2695 (MassLynx)
(Waters Cooperation, Millford MA, USA) equipped with a Agilent Zorbax SB-CN
(narrow-bore 2.1x150 mm, 5 μm Part. Nr. 883700-905) was used.
The results of the HPLC measurements are used to asses the model’s prediction
values.
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3. Experiments

As mentioned in section 2.1.2 and 2.1.3 there were multiple APIs and substrates but
only one is chosen to performe the quantification. Figure 3.1 show the API’s and sub-
strate’s NIR- spectra, respectively. Here, the raw spectra without data preprocessing
(except defect pixel correction) are plotted. For the decision of which combination of
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Fig. 3.1.: NIR- specctra for all substrates and APIs measured seperatly.

API and substrate to use, all combinations are printed with the same pattern. The
pattern chosen is a calibration curve with 7 spots each with a different number of
drops per spot. Table 3.1 shows the parameters used to print these calibrations in
the target setup tab as shown in figure 2.2. In the field setup sub-tab the number of
drops are chosen, this results in a printing pattern as shown in figure 3.2. Important
to note is, that in the NIR measurement surface plot the order of spots is reversed
due to the direction of the moving linear stage.

Table 3.1.: Target page in target setup tab in Scienion AG parameters.
Parameter Value X Value Y

No. of Fields 1 1

Spots per Field 7 1

Field Gap [μm] 200 200

Spot Pitch [μm] 5000 200

Startpoint variable variable
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Fig. 3.2.: Printing pattern schematic: 7 spots with increasing number of drops per spot ranging from
10 to 300 drops.

Figure 3.3 shows all substrates with the printed carvedilol ink. The linear stages
velocity here was set to 0.1 mm/s resulting in not being able to get all calibration
spots in one data set. Colorcoding represents the absorption at carvedilol’s peak
at 1539 nm (compare figure 3.1). For the creation of these images preprocessing
has not been applied. Figure 3.4 shows pattern of sodium picosulfate ink printed

Fig. 3.3.: 9.9 mg Carvedilol in 10 ml ethanol printed on all substrates, ethanol is also used as system
liquid for the printer.

on all substrates. Here ink had a concentration of 200.5 mg/ml, the samples were
measured with a frequency of 10 Hz and an exposure time of 9 ms. The linear stage
was operated at 1 mm/s. All plots are displayed at the 1409 nm peak.

Figure 3.5 shows all substrates with metformin printed on it at a concentration of
250.04 mg/ml. During the NIR measurement the stage was moved at 0.2 mm/s, the
measurement frequency was set to 10 Hz and exposure time was 9 ms.

Based on figures 3.3-3.5 starch, icing sheet and listerine are disregarded for further
analysis, since listerine and icing break very easily and starch absorbs the ink to such
an extend, that it is no longer possible to see the drops after the drying process. For
sodium picosulfate HPMC, HGC and HGC+TiO2 could work for quantificaiton since
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Fig. 3.4.: sodium picosulfate ink on all substrates except listerine since the water created holes.

Fig. 3.5.: Metformin ink on all substrates except listerine displayed at 1515 nm.

borders are clearly visible (which they need to be to create a better response matrix).
For metformin hydrochloride HGC+TiO2 is clearly the best substrate showing very
clear borders. Therefore this combination was chosen for continuing work.

3.1. Basic Modelling
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Fig. 3.6.: Calibration curve.

The first attempt of creating a calibration model
was done with figure 3.6. This is the absorption
plot displayed at 1515 nm (same as upper right
panel in figure 3.5). The first 15 and last 11 dis-
crete measured wavelengths are deleted due to
excessive noise (leaving a range of 976 - 1669 nm)
(not shown in figure 3.6, since this shows the
two spatial dimensions at 1515 nm). This figure
is also the basis for the Y matrix creation. This
is done by creating a mask based on figure 3.6,
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3. Experiments

where the width of the spot is estimated for each pixelvalue y. Then all pixels within
the border, therefore within the estimated spot, are set to the concentration (calcu-
lated with equation (3.1)), while every other pixel is set to zero. v̄drop is the mean
drop volume in ml, c is API concentration in the ink in mg/ml, ndrops is the number
of drops on the spot and npixel is the number of pixels within the spot.

mAPI,spot =
v̄drop · c · ndrops

npixel
(3.1)

The 10 drop spot (as shown in figure 3.2) was ignored, since it is so small and barely
visible, that it is very hard to define edges.
The data is preprocessed as described in section 2.5. For the standard normal variate
(SNV) correction values between 1182 and 1665 nm are used. During the Savitzky-
Golay filtering step a second order polynomial is fitted using a 21 point window
(chosen after examination of the resulting spectra and advice by more experienced
collegues).
After applying the plsregress function its result is applied to the NIR- data to create
a prediction matrix where each value represents the mass of API on the respective
pixel. Predicting the mass of API, on the data that has been used to create the model
is called backprojection. The backprojection should give realistic result as to where
API is present. If the input, therefore the designed response matrix, is incorrect, the
regression is not able to create a realistic model. Subsequently, the backprojection
predicts unrealistic values.
With the first designed response matrix, results are not realistic and point to neces-
sary refinement of the model.

3.2. Refinement

Instead of estimating the number of pixelvalues x contained within the spot (spot’s
width along x) for each pixelvalue y (as described in 3.1), and therefore to make it
more adaptable to other measurements, ellipses are fitted by defining only the center
and length of axis setting the value of calculated, estimated mass if condition (3.2) is
true ((x,y) is the test point; (h,k) center point, rx and ry half minor and major axis).

(x− h)2

r2
x

+
(y− k)2

r2
y

≤ 1 (3.2)

After calculating the mass of API per spot (table 3.2), this value is divided by the
number of pixels within the designed ellipses, to give the mass of API per pixel. This
resulted in a Y matrix as shown in figure 3.7.

Figure 3.8 shows the image of the 300 drop spot taken by the Senterra optical
microscope. Here it could be assumed, that the coffeering effect is present, this is
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Fig. 3.7.: Modelled Y matrix with constant concentration within spots from left to right
300,200,100,50,30,20 drops per spot each with corresponding concentration shown in 3.2
calculated with (3.1).

Table 3.2.: Masses of API on each spot calculated with (3.1).
m300=3.53*10

−5 mg m50=9.82*10
−6 mg

m200=2.51*10
−5 mg m30=6.07*10

−6 mg
m100=1.53*10

−5 mg m20=4.30*10
−6 mg

why the Raman measurement was taken to confirm the suspicion. Furthermore,

Fig. 3.8.: 300 drops spot taken taken using the Senterra microscope

as described in chapter 2 the Raman measurement was taken to determine the
API distribution within the drop. This is achieved by taking the intensity image at
735 cm-1 and averaging values between 450 and 550 μm of one axis and plotting
the intensity value along the other direction as shown in figure 3.9. This shows a
relatively constant API concentration across the drop with a rapid decrease towards
the border. Trying to emulate this the concentration matrix is changed accordingly.
This change is done by creating one smaller ellipse (shorter axis and a higher API
value) with rings around it with decreasing values.
Additionally, it is important, to keep the sum of dispensed and modelled API the
same for each spot.
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Fig. 3.9.: Raman shift intensity at API peak (metformin).

3.3. Testing

To test the created model new samples are printed. Here 17 fields are printed each
with 17 spots spaced 300 μm apart. This pattern is repeated with different layers and
with a different number of drops per spot. A sketch of this printing pattern can be
seen in figure 3.10. The first test pattern consisted of 4 squares, each with one drop

Fig. 3.10.: printing pattern for test model.

per spot at one, 10, 20 and 30 layers (see figure 3.11).
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3.4. Final Process

In order to apply all the lessons learned from the first attempts new samples
(calibration and testing samples) are printed.

Ink Formulation

The new metformin hydrochloride ink is formulated weighing in 2.5003 g and dis-
solving it in 10 ml of purified water, resulting in a concentration of cink=250.03 mg/ml.
The ink is filtered once to reduce the clogging-risk during printing.

Printing

After filling 100 ml of air and subsequently 250 ml of ink into the Scienion printer
its camera is used to check if a stable, round drop is dispensed. This was the case
when setting the printer parameters to 90 V, with pulse duration of 55 ms. 10000

drops are dispensed while every 500 drops the drop volume is measured. This run
reveals a mean drop volume of 413.7 pl with a deviation of 2% (see figure 3.12). The
calibration is printed using one field in Y direction, 9 spots in X direction with a spot
pitch of 3000 μm (target setup menu shown in figure 2.2), the number of drops is
increased with each spot (10, 20, 30, 50, 100, 200, 300, 400, 500, respectively)(setting
done in the subtab ”Field Setup” (tab Target Setup) within the Scienion software).
Additionally three test samples are printed all using the printing pattern shown in
figure 3.10. One was printed at one drop per spot at 10, 15, 20, 25 and 30 layers on a
square, respectively, one at one drop per spot at 11, 15, 20, 25 and 30 layers and one
at 5 drops per spot for 10, 15, 20 ,25 and 30 layers, respectively.
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Fig. 3.12.: Measurement of drop volume by the scienion software.

3.4.1. NIR measurement

All samples are fixed on blackened aluminum using tape, positioned on the linear
stage and moved at a velocity of v=0.2 mm/s while illuminated with the tungsten
light source for the measurement. Spectra at 256 wavelengths along 320 pixels are
measured 10 times a second (f=10 Hz) with an integration time of 9 ms. An example
is shown in figure 3.13.

Fig. 3.13.: Sample (Testpattern 1 drop per spot, [11,15,20,25,30] layers) on the blackened aluminum, as
it is then measured.

3.4.2. Data processing

All measurements are saved, loaded into MATLAB R©and absorption units are calcu-
lated using mean white and black reference spectra.
By plotting absorption as a function of the spatial and the temporal dimension (third
dimension of 2.5 as pixelvalue x, and spatial dimension as pixelvalue y) the region
of interest (ROI) can be kept while the majority of the data can be deleted to reduce
needed computing power. This process is shown in figure 3.14. Before applying the
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Fig. 3.14.: Left panel: Extraction of ROI from entire measurement. Right panel: the extracted ROI
containing the calibration spots. The colorbars represent absorption at 1515 nm.

SNV and the SG Filter the first 15 and last 16 measured wavelengths are discarded
due to excessive noise, reducing the wavelength range to 973 - 1653 nm. The SNV
is applied by using the 1140 - 1533 nm range. In the Savitzky Golay filtering step a
second order polynomial is fitted to a window of size 35, after attempting several
other parameter combinations.
Figure 3.15 shows the normalized absorption at 1515 nm as well as the effect of
preprocessing on the spectra shown exemplarily for the spectra at 270 - 280 and
10 - 11 for pixelvalue x and y, respectively.
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Fig. 3.15.: Effects of data preprocessing on spectra and normalized and derived absorption at 1515 nm.

Predictor Matrix

For creation of the predictor matrix, the spot’s centers and borders are estimated
and ellipses are created. HPLC is only conducted on the spots down to 50 drops
(not on 30, 20, 10 drops), therefore only these spots are created in the concentration
matrix since only there the mean mass of API per spot is known. The mean mass of
API per pixel is calculated by dividing the total mass by the number of pixels in the
spot. Then ellipses of different sizes are creating, assigning different values to each
one (representing the mass of API at that pixel) are created for each spot to create
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the reduced mass towards the border to emulate the distribution revealed by the
Raman measurement. The predictor matrix created using HPLC and Raman results
is shown in figure 3.16.
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Fig. 3.16.: Preprocessed data displayed at 1515 nm (left, colorbar representing normalized absorption
in the left panel of figure 3.15) and the created concentration matrix (response matrix)
with color representing the mass of API in mg. A smaller ellipse than the actual drop is
estimated in the center and rings are put around it with different amplitudes to emulate
the drop of API towards the border.

PLS Regression

The plsregress function expects at least three inputs, namely the two two-dimensional
data sets to do minimization with and the number of components to be used. The
number of components can by estimated by the number of components in the mix-
ture (i.e. water, API, substrate, noise) and by examining the explained variance of
the components. Figure 4.2(b) shows how the explained variance in Y (therefore the
concentration matrix) increases with the number of components up to 9 and then
remains constant, even before that the explained Variance does not increase much.
Then 5 components were chosen since after 5 the explained variance increases only
slightly. A lower number of components is beneficial to decreasing the probability of
finding correlations by chance, and added bonus is that less components also mean
that less computing power is needed.

3.4.3. Backprojection and Prediction

After a first model assessment using the percentage of explained variance, examina-
tion of weights per component and comparing fitted (the predicted) and observed
(response- reference) data, it is of use to backproject the starting data, to see where
which values are predicted.
The prediction is created by applying the model beta to the preprocessed data set
using multiplication. It is important to note, as described in chapter 2, that beta
has a different dimension which is why the preprocessed measurement data needs
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to be extended with one column at the beginning (constisting of all ones). The
preprocessing before applying the model has to be the same as was used for the
model creation.
The result of model application is vector containig the predicted value (mass of API
for each pixel), the prediction can be displayed as a function of pixelvalue x and y,
where the amplitude represents the API.
For quantification ROIs are extracted and the single masses are summed up, to
calculate the total dispensed API on the spot. For the standard deviation the two
dimensional standard deviation of noise is calculated, therefore, a ROI where nothing
was printed is extracted. The value is corrected with the size of the noise ROI.
Furthermore the total dispensed API per sample is calculated by adding all pre-
dicted values and all HPLC values, with this the deviation is calculated using
equation (3.3).

Deviation =

(
1−

massprediction

massHPLC

)
· 100 (3.3)
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The HPLC results are shown in tables 4.1 and 4.2 and figure 4.1. The calibration’s
values are used for the creation of the response matrix. Sample 1 consists of the test
pattern printed with one drop per spot 11, 15, 20, 25 and 30 times. Sample 2 consists
of the test pattern with five drops per spot 10, 15, 20, 25 and 30 times and sample 3

printed at one drop per spot for 10, 15, 20, 25 and 30 layers.

Table 4.1.: HPLC results for the calibration and the three printed test samples. Plots for these values
can be seen in figure 4.1. For the calibration

sample name drops on one spot API (μg)
calibration 50 3.85

100 6.18

200 16.46

300 24.06

400 33.05

500 38.26

Figure 4.2 shows the first model creation of the calibration, applying the first few
adaptations, described in section 3.4 and using the measurement and the created
response matrix shown in figure 3.16. Here the entire measured sample is used
without creating the spots not measured in the HPLC (so spots with 30, 20 and 10

drops) (response matrix figure 3.16(b)). Panel (a) shows the calculated weights for
each component in dependence of the wavelength variable (Variables are the discrete
measured wavelengths). (b) shows how the variance decreases with higher number
of components. (c) compares the values estimated in the response matrix (based on
HPLC and Raman measurements) (observed) and the predicted values (fitted). (d)
shows the regression coefficient in dependence of the wavelength variables, when
the variable is applied to measurements (e) to predict Y from X as shown in (f).
Figure 4.3 shows the predicted mass for sample one as a function of pixelvalues x
and y, additionally it shows one rectangle used to sum up the single rectangles with
the different number of layers and subsequently the number of dispensed drops.
This summation of the predicted value on the entire rectangle displayed as a function
of layers is shown in figure 4.4 (a),(b) and (c). Panel (d) shows the escalation curve
as a function of the number of drops per field since sample 1 was printed with 1

drop/spot and sample 2 at 5 drops/spot. The printer data added to the first three
panels is calculated by taking the mean drop volume (measured before and after the
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Table 4.2.: HPLC results for the three printed test samples. Plots for these values can be seen in
figure 4.1. Each layer consists of 17x17 spots as shown in figure 3.10, for samples 1 and
3 one drop was dispensed on each spot, for sample 2 five drops were dispensed on each
spot,respectively .

sample name no. of layers API (μg)
sample 1 11 372.02

15 386.16

20 486.49

25 544.58

30 683.84

sample 2 10 1249.10

15 1771.22

20 2335.47

25 2967.00

30 3729.48

sample 3 10 240.92

15 363.75

20 492.49

25 650.84

30 738.17

run) and multiplying the number of drops (289 or 1445 per field), then calculating
the mass using (2.10).

For each panel the deviation between the prediction and HPLC analysis is calcu-
lated.

In the attempt of improving the prediction the measurement data (figure 4.2(e)) is
decreased in size as to not include spots without HPLC result i.e. spots of 30, 20,
and 10 layers. Keeping everything else the same the explained variance is improved
and raised to 69.74%. The variation in the comparison of fitted and estimated mass
still shows a lot of variance but somewhat better.

Figure 4.6 shows the comparison of the HPLC data and the prediction for sample 1

and 2, and the comparison of sample 3 prediction with its HPLC and Printer result.
Quantitative results for this model can be seen in the appendix table B.2.

Another refinement consisted of doing an inverse calibration as described by Kessler
on page 103. [34] Herein the prediction of an earlier model is used as the response
matrix to create a new model. This means for a new model panel (f) of figure 4.2
is used as response matrix for a new model. Based on the appearance of this
backprojection it can be assumed that the prediction is accurate. Furthermore, the
total mass as predicted differs only 2.3 μg from the HPLC result. When approximating
the first spot to calculate its predicted mass the difference between the HPLC value
and the predicted is only 3.5 μg and only 2 μg using the values within the ROI of
the first modelled spot (figure 3.16). Based on the appearance and these preliminary
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Fig. 4.1.: HPLC results plotted as a function of the number of drops on the spot/field.

values, the prediction was assumed to be better than the response matrix modelled
beforehand, and therefore used to create a new model. This, unsurprisingly brought a
significant improvement in the explained variance, and the comparison between fitted
and the reference mass. At the same time though it also showed a big improvement
when applying this model to the test samples, that were not used for the model
creation. The plots comparing the printer, HPLC and prediction data are shown in
figure 4.7.
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Fig. 4.2.: First model results modelling spots of 500, 400, 300, 200, 100 and 50 spots and interpreting
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Fig. 4.3.: Prediciton of sample 1, rectangle used to sum up total mass on testing surface added for
sample with 30 layers.
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Fig. 4.7.: Results when using figure 4.4(f) as response matrix.
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Through further adaptations the final result is shown in figure 4.8. For this model the
SNV is applied using a wavelength range of 1200-1600 nm, and a window size for
the Savitzky-Golay filter of 35. The response matrix checking each modelled spot for
the right mass (comparing it to HPLC), the difference of the modelled and expected
mass on the calibration sample is .259 ng. Then the backprojection of the first step
is used to calculate weights and the regression coefficients used for the prediction
by giving the backprojected data as response matrix after setting negative values to
zero.

Figure 4.9 shows 26 vectors (pixelvalues y of figure 4.8) values along the x values axis,
as a function of the predicted mass. Figure 4.10 shows the results when applying the
regression coefficients depicted in figure 4.8(d).

Figure 4.11 shows the rectangles used to calculate the values shown in figure 4.10.
This figure shows the surface plot for the prediction, where the amplitude (color)
represents the mass of API on the pixel, exemplary for sample 1.

Table 4.3 shows the quantitative values for figures 4.10.

Name Printer HPLC Prediction Deviation
(HPLC & Prediction)

μg μg μg %
1.11 317.14 372.02 320.61 13.82

1.15 431.53 386.16 308.95 19.99

1.20 574.02 486.49 432.57 11.08

1.25 712.54 544.58 577.26 -6.00

1.30 850.20 683.84 684.57 -0.11

2.10 1446.08 1249.10 1104.34 11.59

2.15 2159.63 1771.22 1959.43 -10.63

2.20 2871.92 2335.47 2515.15 -7.69

2.25 3563.44 2967.00 3019.55 -1.77

2.30 4252.42 3729.48 3450.72 7.47

3.10 300.42 240.92 205.71 14.61

3.15 421.05 363.75 325.44 10.53

3.20 602.10 492.49 449.85 8.66

3.25 751.49 650.84 594.99 8.58

3.30 900.09 738.17 652.47 11.61

Table 4.3.: Quantitaive results shown for figure 4.10
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Fig. 4.8.: Model after further adaptation, using a first prediction as the new response matrix but
setting negative values to zero.
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Fig. 4.10.: Final result comparing the predicted and HPLC data applying the regression coefficients
in 4.8.

Fig. 4.11.: Sample 1 surfaceplot of prediction, with added ROIs of summation used for quantification
and comparison with HPLC. The colorbar represents mass of API in mg.
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Considering figures 3.3, 3.4 and 3.5 in addition to metformin hydrochloride the
calibration and following quantification of test samples could have been done for
several combinations of substrates and ink:

• HGC + sodium picosulfate
• HGC+TiO2 + sodium picosulfate
• HPMC + sodium picosulfate
• HGC + metformin hydrochloride

But only one combination was required for the first feasibility test, due to time
limitations.
For sodium picosulfate and metformin hydrochloride listerine was not measured
since the film disintegrated during the drying period. Presumably the water dissolved
the substrate in the first printing tests, listerine was therefore deemed inappropriate
for further testing and disregarded. The ethanol in the carvedilol ink did not have
the same effect, but the drops dissolved too much, making it almost impossible to
distinguish drops.
Surprisingly the carvedilol spots could not be identified on the HPMC film, one
reason could be the reduced concentration another one swelling of the substrate.
Icing and starch wafers are problematic for all three inks, this might be due to their
tendency of absorbing liquids easily. Then the ink is absorbed and API is distributed
so much, that drops are no longer visible. Also both these substrates show a very
low absorbance, therefore the light might be reflected from the substrate’s molecules
before detecting API.
Based on the absorption spectrum of EVA it was expected to be a suitable substrate,
having a very constant absorption along the entire measured spectrum. The printed
calibration curves showed the contrary tough. In the 2D image (3.4 and 3.5) none of
the drops are visible, and the substrate does not show a constant signal at 1539 nm
and 1515 nm, respectively. One possible explanation is that the samples were not
completely flat on the blackened aluminum, thus changing the light’s preferred
reflection direction significantly.
As mentioned in section 3.4 all measurements were taken using the entirety of the
chip, the 320 pixels in the y direction, then choosing the ROI by examining the data
set and cutting it accordingly. The process is shown for the calibration in figure 3.16.
This step has been done for all measurements, since the printed samples are smaller
than the 36 mm range. When the setup is used as a PAT it would be beneficial to
reduce the size of the measured line in the push broom spectrometer. This can be
done in HeliosViewer software. Thus, reducing the amount of data and computing
power and shortening the process before beginning the actual working process.
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Moreover, because it can be hard to find the actual printed samples within the 2D
displayed data due to its small size (as can be seen in figure 3.14).

When examining the values for the calibration in figure 4.1 and table 4.2 it is seen
that the presence of API increases in an almost linear pattern with some variation.
While with 100 drops the content is lower than would be expected the 200, 300, and
400 spots have a higher API content than a linear fit would predict. Figure 4.1(a)
with an added a fit and the corresponding residuals can be seen figure A.1(a).
More surprising is the course within the samples, especially in sample 1 and 3. Here,
the doubling in drops (15 layers to 30 layers) does not yield a doubled API content.
Using a linear fit, the residual is smallest for the third data point (i.e. 20 layers) the
neighboring data-points seem to have a significantly lower API content than would
be expected (fits shown in figure A.1(b) and A.1(c))
Due to the mostly linear course in all four panels of figure 4.1 it can be assumed that
sample 1 was degraded in some way, for example by scratching off some API, in
retrospect it is not possible to determine at what point in the processes this might
have happened.
For a first judgement of the model a backprojection is done, if here the result does
not overlap with the expectation of seeing the same calibration curve, it can be
assumed, that something went wrong in the regression process.
When examining the first backprojection (applying the first regression coefficients
(figure 4.2(d)) to the measurement (e)) the result is plausible (figure 4.8(f)). The spots
with a higher presence of metformin hydrochloride are higher and bigger than the
ones with lower number of drops. Even though the smaller spots with 30, 20, and 10

drops are not represented in the response matrix (see figure 3.16) they are detected
in the backprojection since metformin hydrochloride is detected at a low rate.
The fact, that these spots are not noted in the response matrix is one factor why the
explained variance is rather low at only about 65% and why in figure (c) the fitted
values show a high scattering.
One error, however, can be assumed at pixelvalue x about 600, where the predicted
mass has its maximum, it is not likely, that in reality metformin has accumulated
this much at this one spot.
When applying this model to the test prints higher amplitudes, therefore higher
presence of API is detected correctly as visible in figure 4.3. For the quantitative
result all values within a rectangle are added and then compared to the HPLC and
estimated printer data result (figure 4.4), an example for such a ROI is shown in 4.3.
When comparing printer data and HPLC it is easily visible, that the estimation
using the drop volume and ink concentration is not a viable method of predicting
printed API dosage. This might be due to the system not printing every drop as
planned clogging for a short time and then unclogging through pressure build up,
or clogging part of the nozzle. Another reason could be that through the filtering
of the ink to reduce the risk of clogging during printing the API concentration is
lowered to some extend, leading to the overprediction of API content.
The assumption, that sample 1 was degraded lowering API content especially on
the fields of 15 and 25 layers is further supported. Before the NIR measurement
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some lint was stuck on the 15 layers field of sample 1, it was removed. During the
careful removing it can be assumed that some API stuck to the lint reducing the
perceived printed API content. For the data point of 25 layers on sample 1 it can be
assumed, that some degradation happened during the storing period between the
two measurements or in the sample preparation process for the HPLC.
The prediction for sample 3 follows the line of HPLC well, but divergence increases
with an increasing number of drops.
When creating an escalation curve, by combining sample 1 and 2 (printed in one go)
and plotting it as a function of drops. In the higher section (sample 2) prediction
accuracy seems to be lower even though overall the deviation between printed and
predicted mass is lower, this stems from the fact, that the underestimation tends to
go into an overestimation at 15 and 20 layers. It is not clear if the first data point of
sample 2 is the outlier or data points two and three, respectively.
The quantitative values (appendix) show the deviation between HPLC and prediction
are in a wide range and many in a range above 15%.
This first result is promising but needs improvement.

Comparing panel (c) of both figure 4.2 and 4.5 the changes seem to have not made a
major difference, comparing panels (d) though, it can be seen that the coefficients
changed. The maximum increases, while also the last few variables increased- getting
a more significant role in the prediction. Examining the backprojection the prevalence
of negative values is surprising. Moreover, the 50 drop spot shows most certainly an
error, with one pixel showing an extreme outlier.
When applying this new model prediction accuracy is not improved by much, still
the curve of the prediction follows actual content but underestimates the mass.
After various changes with varying degrees of improvements of prediction a final
model was created.

For the final model the regression is done twice, once with the same technique
as described above with the created response matrix, and a second time with the
predicted backprojected data, as described in chapter 4.
The model could probably be further improved by reducing the error in the 50 drop-
spot.
Every model shows a surprisingly high number of negative values both in the back-
projection as well as the test prediction, figure 4.9 shows these for the backprojection.
The greatest problems exist at the spot’s borders and for the 50 drop spot.
The results of applying the model shown in figure 4.8 are shown in figure 4.10 and
table 4.3. Here all values deviate from the HPLC result only within 15% except for
the second data point of sample 1. This data point shows the most deviation in all
variations of the model. This could be due to some lint still stuck to the sample, even
though not visible by eye or due to the disturbance created through removing the
piece.

Overall it can be said, that the model works better in smaller concentrations, therefore
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for sample 1 and 3. This could be due to the fact, that the calibration was done with a
lower API content. While the maximum predicted mass per pixel in the calibration is
just over 0.1 μg, all pixels with dispensed API in sample 3 have a higher dosage, with
the maximum at over 0.45 μg. This is not the case for sample 1, where its maximal
predicted value is at 0.14 μg, the same goes for sample 3. Additionally, a lower API
content could allow for better light access to lower layers and thus better inforamtion
on overall absorption.

To improve the prediction at higher dosages it may be necessary to move the cali-
bration range to higher dosages as well. One risk of increasing the dispensed drops
in one go is the deterioration of the substrate during the printing process. The
substrate could swell up or the spot geometry changes. Swelling can appear due to
the absorption of water in a short amount of time. The geometry could change due
to breaking surface tension of the drop thus increases the spot’s in area enough to
combine with other spots (avoidable by increasing spot pitch) or that the per pixel
API mass is decreased significantly once more.
To avoid this, one idea could be to avoid using single spots as calibration, but square
or rectangle shape with either a different number of layers (similarly to our test
samples) or a different number of drops.

Another improvement could be the reduction of negative values within the ”empty
region” of the prediction, and a reduction of noise.

As can be seen in figure 4.11 it can be hard to find the right dimensions to set the ROI
to. While the width and height are easily determinable using measuring frequency
and the linear stage’s speed and the resolution in y direction, respectively, it can
be hard to find the right origin for this rectangle. Relief for this problem might be
brought with a measurement setup specific for this use, which once setup is not
moved or changed, with this the measured area is more adapted and measurement
timing more perfected.

One factor that might influence the results, but was not considered in this work is
the drying period between printing the layers. This might influence how the API
is deposited within the fields/ spots. The drying time between each printing cycle
decreased with a decreasing number of fields to print.

5.1. Conclusion

In conclusion it can be said that NIR spectroscopy is a promising method for quality
control of printed medicine, giving results within 15% deviation to the destructive
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reference method of HPLC, although improvements must be made for the appli-
cation within the pharma - industry. A first improvement could be brought on by
a permanent NIR measurement setup used for this purpose exclusively, allowing
for the same light situation and geometry in every measurement. Furthermore, the
drying effect during the printing process needs to be examined. Also the minimum
time needed between printing and the NIR measurement for all solvent effects need
to be investigated.
It would be beneficial to find a compound, that can be added to every API-solvent
mixture without interfering with it’s affects on the body. This compound would
serve as a tracer to be able to calculate API content based on the tracer content. This
means the tracer needs to be completely soluble in the solvent, and mixed in the ink
homogeneously.
Herein a possible effect based on different substrates needs to be considered and
reviewed.

Ideally NIR spectroscopy could be used as a in-line process analytical tool, measuring
the dispensed API content after each printing step and adjusting and the, i.e. number
of layers and drops accordingly. A processing line could be developed where the
ink is printed, dried and measured, if not enough API has been detected the film is
brought back to the printer and another printing step is added, repeating the process
until the desired API dosage has been positioned on the film.
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Appendix A.

Fits for HPLC Results
Figures A.1(a)- A.1(d) show the HPLC results for all samples, including the calibra-
tion sample with a linear fit (quadratic fit added for the calibration).
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Fig. A.1.: HPLC results for all samples and their linear fit and residuals created using the
MATLAB R©basic fitting tool
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Tables for created models

Tables B.1 through B.14 show the quantitative results for some of the created models.
For the first test (Table B.1) SNV range was chosen to be variable 70 - 200 and a
window size of 35 for the SG filter.

Name Printer HPLC Prediction Deviation
(HPLC & Prediction)

μg μg μg %
1.11 317.14 372.02 290.41 21.94

1.15 431.53 386.16 273.28 29.23

1.20 574.02 486.49 390.94 19.64

1.25 712.54 544.58 521.25 4.28

1.30 850.20 683.84 634.59 7.20

2.10 1446.08 1249.10 957.93 23.31

2.15 2159.63 1771.22 1784.68 -0.76

2.20 2871.92 2335.47 2326.28 0.39

2.25 3563.44 2967.00 2819.15 4.98

2.30 4252.42 3729.48 3260.51 12.57

3.10 300.42 240.92 218.66 9.24

3.15 421.05 363.75 327.57 9.95

3.20 602.10 492.49 445.30 9.58

3.25 751.49 650.84 576.74 11.39

3.30 900.09 738.17 628.34 14.88

Table B.1.: API mass according to the estimated drop volume, HPLC and the prediction, and the
deviation between the HPLC results and the prediction for test 1. SNV range: 70-200; SG
filter: polynomial order 2, window size 35

Table B.3 shows the quantitative results for figure 4.7.

model 16:

For table B.14 it was tried to delete the 50 drop spot after the first backprojection
(where an error was).
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Appendix B. Tables for created models

Name Printer HPLC Prediction Deviation
(HPLC & Prediction)

μg μg μg %
1.11 317.14 372.02 263.18 29.26

1.15 431.53 386.16 245.18 36.51

1.20 574.02 486.49 370.66 23.81

1.25 712.54 544.58 514.76 5.48

1.30 850.20 683.84 623.27 8.86

2.10 1446.08 1249.10 1049.52 15.98

2.15 2159.63 1771.22 1903.51 -7.47

2.20 2871.92 2335.47 2457.64 -5.23

2.25 3563.44 2967.00 2962.71 0.14

2.30 4252.42 3729.48 3400.44 8.82

3.10 300.42 240.92 207.41 13.91

3.15 421.05 363.75 316.97 12.86

3.20 602.10 492.49 438.18 11.03

3.25 751.49 650.84 580.35 10.83

3.30 900.09 738.17 635.02 13.97

Table B.2.: Results of test 2, here SNV and SG parameters and ellipses form and amplitude are the
same as for test 1 but not the entire measurement was used for the calibration since spots
with fewer than 50 drops where not modelled, they were excluded from the calibration.

Name Printer HPLC Prediction Deviation
(HPLC & Prediction)

μg μg μg %
1.11 317.14 372.02 315.19 15.28

1.15 431.53 386.16 299.30 22.49

1.20 574.02 486.49 415.52 14.59

1.25 712.54 544.58 545.47 -0.16

1.30 850.20 683.84 658.98 3.64

2.10 1446.08 1249.10 971.91 22.19

2.15 2159.63 1771.22 1800.49 -1.65

2.20 2871.92 2335.47 2344.26 -0.38

2.25 3563.44 2967.00 2837.50 4.36

2.30 4252.42 3729.48 3277.65 12.11

3.10 300.42 240.92 218.34 9.37

3.15 421.05 363.75 331.84 8.77

3.20 602.10 492.49 450.14 8.60

3.25 751.49 650.84 581.98 10.58

3.30 900.09 738.17 633.43 14.19

Table B.3.: Results of test 3, here the backprojection of test 1 was used as the response matrix (inverse
calibration).
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Appendix B. Tables for created models

Name Printer HPLC Prediction Deviation
(HPLC & Prediction)

μg μg μg %
1.11 317.14 372.02 263.18 29.26

1.15 431.53 386.16 245.18 36.51

1.20 574.02 486.49 370.66 23.81

1.25 712.54 544.58 514.76 5.48

1.30 850.20 683.84 623.27 8.86

2.10 1446.08 1249.10 1049.52 15.98

2.15 2159.63 1771.22 1903.51 -7.47

2.20 2871.92 2335.47 2457.64 -5.23

2.25 3563.44 2967.00 2962.71 0.14

2.30 4252.42 3729.48 3400.44 8.82

3.10 300.42 240.92 207.41 13.91

3.15 421.05 363.75 316.97 12.86

3.20 602.10 492.49 438.18 11.03

3.25 751.49 650.84 580.35 10.83

3.30 900.09 738.17 635.02 13.97

Table B.4.: Results of test 4, here the spots with fewer than 50 drops were excluded but only after the
preprocessing step.

Name Printer HPLC Prediction Deviation
(HPLC & Prediction)

μg μg μg %
1.11 317.14 372.02 285.34 23.30

1.15 431.53 386.16 272.54 29.42

1.20 574.02 486.49 397.72 18.25

1.25 712.54 544.58 541.42 0.58

1.30 850.20 683.84 652.59 4.57

2.10 1446.08 1249.10 1058.28 15.28

2.15 2159.63 1771.22 1926.33 -8.76

2.20 2871.92 2335.47 2489.04 -6.58

2.25 3563.44 2967.00 2999.28 -1.09

2.30 4252.42 3729.48 3442.11 7.71

3.10 300.42 240.92 224.55 6.79

3.15 421.05 363.75 337.41 7.24

3.20 602.10 492.49 459.93 6.61

3.25 751.49 650.84 602.60 7.41

3.30 900.09 738.17 654.17 11.38

Table B.5.: Results of test 5: uses the backprojection of test 4 as response matrix.
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Appendix B. Tables for created models

Name Printer HPLC Prediction Deviation
(HPLC & Prediction)

μg μg μg %
1.11 317.14 372.02 308.31 17.12

1.15 431.53 386.16 293.03 24.12

1.20 574.02 486.49 403.63 17.03

1.25 712.54 544.58 527.35 3.16

1.30 850.20 683.84 631.00 7.73

2.10 1446.08 1249.10 932.27 25.36

2.15 2159.63 1771.22 1714.89 3.18

2.20 2871.92 2335.47 2226.31 4.67

2.25 3563.44 2967.00 2690.24 9.33

2.30 4252.42 3729.48 3102.35 16.82

3.10 300.42 240.92 218.30 9.39

3.15 421.05 363.75 322.24 11.41

3.20 602.10 492.49 433.61 11.95

3.25 751.49 650.84 559.10 14.10

3.30 900.09 738.17 607.81 17.66

Table B.6.: Results of test 6: uses results the backprojection of the first model with negative values set
to zero

Name Printer HPLC Prediction Deviation
(HPLC & Prediction)

μg μg μg %
1.11 317.14 372.02 285.17 23.35

1.15 431.53 386.16 273.06 29.29

1.20 574.02 486.49 401.70 17.43

1.25 712.54 544.58 548.56 -0.73

1.30 850.20 683.84 662.46 3.13

2.10 1446.08 1249.10 1079.74 13.56

2.15 2159.63 1771.22 1960.85 -10.71

2.20 2871.92 2335.47 2531.03 -8.37

2.25 3563.44 2967.00 3049.61 -2.78

2.30 4252.42 3729.48 3500.12 6.15

3.10 300.42 240.92 217.03 9.92

3.15 421.05 363.75 332.91 8.48

3.20 602.10 492.49 457.95 7.01

3.25 751.49 650.84 602.72 7.39

3.30 900.09 738.17 655.35 11.22

Table B.7.: Results of test 7: uses backprojection based on test 2 as response matrix with negative
values of the fit set to zero.
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Appendix B. Tables for created models

Name Printer HPLC Prediction Deviation
(HPLC & Prediction)

μg μg μg %
1.11 317.14 372.02 256.20 31.13

1.15 431.53 386.16 238.81 38.16

1.20 574.02 486.49 361.18 25.76

1.25 712.54 544.58 501.03 8.00

1.30 850.20 683.84 604.76 11.56

2.10 1446.08 1249.10 1015.85 18.67

2.15 2159.63 1771.22 1843.36 -4.07

2.20 2871.92 2335.47 2378.62 -1.85

2.25 3563.44 2967.00 2866.77 3.38

2.30 4252.42 3729.48 3289.82 11.79

3.10 300.42 240.92 202.45 15.97

3.15 421.05 363.75 306.74 15.67

3.20 602.10 492.49 424.11 13.89

3.25 751.49 650.84 561.94 13.66

3.30 900.09 738.17 614.76 16.72

Table B.8.: Results of test 8: uses spots down to 50 drops but changes the values within the ellipses.

Name Printer HPLC Prediction Deviation
(HPLC & Prediction)

μg μg μg %
1.11 317.14 372.02 277.05 25.53

1.15 431.53 386.16 265.07 31.36

1.20 574.02 486.49 390.11 19.81

1.25 712.54 544.58 532.29 2.26

1.30 850.20 683.84 641.12 6.25

2.10 1446.08 1249.10 1043.58 16.45

2.15 2159.63 1771.22 1895.35 -7.01

2.20 2871.92 2335.47 2445.13 -4.70

2.25 3563.44 2967.00 2945.40 0.73

2.30 4252.42 3729.48 3379.86 9.37

3.10 300.42 240.92 210.97 12.43

3.15 421.05 363.75 321.32 11.66

3.20 602.10 492.49 442.12 10.23

3.25 751.49 650.84 582.12 10.56

3.30 900.09 738.17 632.84 14.27

Table B.9.: Results of test 9: uses the backprojection of test 8 as response matrix.
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Appendix B. Tables for created models

Name Printer HPLC Prediction Deviation
(HPLC & Prediction)

μg μg μg %
1.11 317.14 372.02 282.32 24.11

1.15 431.53 386.16 265.58 31.23

1.20 574.02 486.49 379.71 21.95

1.25 712.54 544.58 505.53 7.17

1.30 850.20 683.84 614.19 10.18

2.10 1446.08 1249.10 923.50 26.07

2.15 2159.63 1771.22 1722.14 2.77

2.20 2871.92 2335.47 2244.29 3.90

2.25 3563.44 2967.00 2719.63 8.34

2.30 4252.42 3729.48 3145.61 15.66

3.10 300.42 240.92 213.04 11.57

3.15 421.05 363.75 316.85 12.89

3.20 602.10 492.49 430.50 12.59

3.25 751.49 650.84 557.35 14.36

3.30 900.09 738.17 607.02 17.77

Table B.10.: Results of test 10: combines test 1 (entire sample) with the adapted response matrix new
values used for test 8.

Name Printer HPLC Prediction Deviation
(HPLC & Prediction)

μg μg μg %
1.11 317.14 372.02 305.94 17.76

1.15 431.53 386.16 290.13 24.87

1.20 574.02 486.49 402.35 17.30

1.25 712.54 544.58 527.40 3.15

1.30 850.20 683.84 636.07 6.99

2.10 1446.08 1249.10 935.20 25.13

2.15 2159.63 1771.22 1733.13 2.15

2.20 2871.92 2335.47 2256.12 3.40

2.25 3563.44 2967.00 2730.61 7.97

2.30 4252.42 3729.48 3154.18 15.43

3.10 300.42 240.92 211.89 12.05

3.15 421.05 363.75 320.15 11.99

3.20 602.10 492.49 433.99 11.88

3.25 751.49 650.84 560.83 13.83

3.30 900.09 738.17 610.23 17.33

Table B.11.: Results of test 11: used backprojection of test 12 as response matrix.
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Appendix B. Tables for created models

Name Printer HPLC Prediction Deviation
(HPLC & Prediction)

μg μg μg %
1.11 317.14 372.02 257.00 30.92

1.15 431.53 386.16 239.54 37.97

1.20 574.02 486.49 362.71 25.44

1.25 712.54 544.58 503.46 7.55

1.30 850.20 683.84 607.01 11.24

2.10 1446.08 1249.10 1021.17 18.25

2.15 2159.63 1771.22 1853.26 -4.63

2.20 2871.92 2335.47 2391.38 -2.39

2.25 3563.44 2967.00 2882.35 2.85

2.30 4252.42 3729.48 3307.48 11.32

3.10 300.42 240.92 202.17 16.08

3.15 421.05 363.75 306.47 15.75

3.20 602.10 492.49 424.38 13.83

3.25 751.49 650.84 563.15 13.47

3.30 900.09 738.17 616.29 16.51

Table B.12.: Results of test 12: expands SNV range to 70-210, further changes to the values within the
modelled ellipses in the response matrix.

Name Printer HPLC Prediction Deviation
(HPLC & Prediction)

μg μg μg %
1.11 317.14 372.02 306.00 17.75

1.15 431.53 386.16 295.40 23.50

1.20 574.02 486.49 420.40 13.59

1.25 712.54 544.58 566.55 -4.03

1.30 850.20 683.84 674.20 1.41

2.10 1446.08 1249.10 1104.47 11.58

2.15 2159.63 1771.22 1963.52 -10.86

2.20 2871.92 2335.47 2521.02 -7.95

2.25 3563.44 2967.00 3027.36 -2.03

2.30 4252.42 3729.48 3458.42 7.27

3.10 300.42 240.92 190.46 20.95

3.15 421.05 363.75 310.93 14.52

3.20 602.10 492.49 436.37 11.40

3.25 751.49 650.84 582.71 10.47

3.30 900.09 738.17 640.26 13.26

Table B.13.: Results of test 13: same as test 1 but uses more components for the regression
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Appendix B. Tables for created models

Name Printer HPLC Prediction Deviation
( HPLC & Prediction)

μg μg μg %
1.11 317.14 372.02 306.79 17.54

1.15 431.53 386.16 296.24 23.29

1.20 574.02 486.49 421.19 13.42

1.25 712.54 544.58 567.45 -4.20

1.30 850.20 683.84 675.62 1.20

2.10 1446.08 1249.10 1105.78 11.47

2.15 2159.63 1771.22 1966.28 -11.01

2.20 2871.92 2335.47 2525.10 -8.12

2.25 3563.44 2967.00 3032.51 -2.21

2.30 4252.42 3729.48 3464.61 7.10

3.10 300.42 240.92 189.90 21.18

3.15 421.05 363.75 311.13 14.47

3.20 602.10 492.49 436.86 11.29

3.25 751.49 650.84 583.44 10.36

3.30 900.09 738.17 641.23 13.13

Table B.14.: Results of test 14: does not include spot with 50 drops, since errors in the backprojection
are often in this spot.

Further models with small variations in the ellipses , preprocessing steps etc. were
created, that are not listed here.
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Appendix C.

Conversion Wavelength Variable and
nm

According to EVKs documentation the 256 wavlengths measured by the system,
shows a linear relationship with the wavelengths from 931 - 1702 nm, table C.1 shows
the conversion between the variable (v) and the wavelength in nm (λ).

V λ V λ V λ V λ

1 931 2 934 3 937 4 940

5 943 6 946 7 949 8 952

9 955 10 958 11 961 12 964

13 967 14 970 15 973 16 976

17 979 18 982 19 985 20 988

21 991 22 995 23 998 24 1001

25 1004 26 1007 27 1010 28 1013

29 1016 30 1019 31 1022 32 1025

33 1028 34 1031 35 1034 36 1037

37 1040 38 1043 39 1046 40 1049

41 1052 42 1055 43 1058 44 1061

45 1064 46 1067 47 1070 48 1073

49 1076 50 1079 51 1082 52 1085

53 1088 54 1091 55 1094 56 1097

57 1100 58 1103 59 1106 60 1109

61 1112 62 1115 63 1118 64 1122

65 1125 66 1128 67 1131 68 1134

69 1137 70 1140 71 1143 72 1146

73 1149 74 1152 75 1155 76 1158

77 1161 78 1164 79 1167 80 1170

81 1173 82 1176 83 1179 84 1182

85 1185 86 1188 87 1191 88 1194

89 1197 90 1200 91 1203 92 1206

93 1209 94 1212 95 1215 96 1218

97 1221 98 1224 99 1227 100 1230

101 1233 102 1236 103 1239 104 1242
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Appendix C. Conversion Wavelength Variable and nm

105 1245 106 1248 107 1252 108 1255

109 1258 110 1261 111 1264 112 1267

113 1270 114 1273 115 1276 116 1279

117 1282 118 1285 119 1288 120 1291

121 1294 122 1297 123 1300 124 1303

125 1306 126 1309 127 1312 128 1315

129 1318 130 1321 131 1324 132 1327

133 1330 134 1333 135 1336 136 1339

137 1342 138 1345 139 1348 140 1351

141 1354 142 1357 143 1360 144 1363

145 1366 146 1369 147 1372 148 1375

149 1378 150 1382 151 1385 152 1388

153 1391 154 1394 155 1397 156 1400

157 1403 158 1406 159 1409 160 1412

161 1415 162 1418 163 1421 164 1424

165 1427 166 1430 167 1433 168 1436

169 1439 170 1442 171 1445 172 1448

173 1451 174 1454 175 1457 176 1460

177 1463 178 1466 179 1469 180 1472

181 1475 182 1478 183 1481 184 1484

185 1487 186 1490 187 1493 188 1496

189 1499 190 1502 191 1505 192 1509

193 1512 194 1515 195 1518 196 1521

197 1524 198 1527 199 1530 200 1533

201 1536 202 1539 203 1542 204 1545

205 1548 206 1551 207 1554 208 1557

209 1560 210 1563 211 1566 212 1569

213 1572 214 1575 215 1578 216 1581

217 1584 218 1587 219 1590 220 1593

221 1596 222 1599 223 1602 224 1605

225 1608 226 1611 227 1614 228 1617

229 1620 230 1623 231 1626 232 1629

233 1632 234 1635 235 1639 236 1642

237 1645 238 1648 239 1651 240 1654

241 1657 242 1660 243 1663 244 1666

245 1669 246 1672 247 1675 248 1678

249 1681 250 1684 251 1687 252 1690

253 1693 254 1696 255 1699 256 1702

Table C.1.: Conversion of variable number (V) to nm (λ) for wavelength

66



List of Figures

1.1. Schematic for a thermal and a piezoelectric printhead, as shown by
Gerard Cummins. [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Schematic displaying differences between in- on- and at-line processes,
as described by [21]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3. Morse curve: showing the relationship between energy and the inter-
nucleur distance r in a diatomic molecule as shown in [26]. ZPE is the
zero point energy, it is the lowest possible energy level a molecule can
have. BDE is the bond dissociation energy. . . . . . . . . . . . . . . . . 5

1.4. NIR functional groups absorption bands as a function of the wavelength. 6

1.5. For the regression observations can be understood as two data swarms
in two separate spaces, through the regression these are related to
each other. In this example the data has been mean-centered, meaning
the coordinate systems pass through the average point (dark gray) of
each point swarm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6. Matrix relationships among the PLS computation. 1 ∗ x̄ and 1 ∗ ȳ are
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