
Andreas Jeindl, BSc.

Influence of Molecule Size on Surface Polymorph Formation:
An ab-initio Study with Machine Learning

zur Erlangung des akademischen Grades

MASTERARBEIT

                                         Masterstudium Technische Physik

eingereicht an der

Technischen Universität Graz

Dr.techn. Oliver T. Hofmann
Univ.-Prof. Dr. Peter Hadley

       Betreuer

Institut für Festkörperphysik

Graz, April 2018

    Diplom-Ingenieur



EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, 

andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten 

Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht 

habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden 

Masterarbeit identisch.

Datum Unterschrift



Acknowledgment

First of all, I want to thank all the people that helped me throughout the process of writing this thesis.
I would especially like to express my gratitude towards my supervisor Oliver Hofmann, who led the
way, but still allowed me to go towards the direction that fascinated me the most.

Without the preliminary work and help of my co-workers, especially Michael, but also Lukas and
Alex, this thesis would not be what it is today, thank you for that. The fruitful discussions with the
members of the advanced materials modeling team and the other members of the Institute of Solid
State Physics are also experiences I do not want to miss.

For the many CPU hours spent, I want to thank the Vienna Scientific Cluster and the Argonne
Leadership Computing Facility. Financial support by the Austrian Science Fund was received with
great appreciation.

The student days would not have been the same without my dearest colleagues: Berni, Cesi, Sascha,
Lukas, Flo, Sarah, Mari and many more. Thank your for the countless hours spent learning, discussing
and having fun.

Finishing my studies could not have been accomplished without my family. Thank you for supporting
me unreservedly over the years.

Finally, I want to wholeheartedly thank the person that has accompanied me throughout most of the
years at university: Thank you Lisa.



Abstract

Influence of Molecule Size on Surface Polymorph Formation:
An ab-initio Study with Machine Learning

Andreas Jeindl
Institute of Solid State Physics, Graz University of Technology

A variety of properties of metal-organic interfaces are determined by the polymorph that the molecules
assume on the (metal) surface. Intriguingly, some properties of such surface-induced phases even
exceed those of the bulk crystal. Thus, for the engineering of functional interfaces it is crucial
to understand and predict the polymorphs molecules assume on a given surface. Still, there are
surprisingly few systematic studies that allow to infer reliable relationships between the molecular
structure and the kinds of interface polymorphs that form. The reason for this is, that in experiments
often kinetically trapped phases form, which prohibit the systematic investigation of thermodynamic
relationships. Computational studies are prohibited by the "configurational explosion" which leads to
an intractably vast number of possible polymorphs.

In this thesis, the influence of molecule size on the formation of surface polymorphs is investigated
systematically with the example of acenequinones on Ag(111). Starting from the small benzoquinone,
the analysis is continued via anthraquinone to the larger pentacenequinone. An exhaustive structure
search is performed utilizing the SAMPLE approach, which uses a combination of physically-motivated
coarse graining of the configurational potential energy surface and machine learning in the form
of Bayesian linear regression to overcome the configurational explosion. The adjustments and im-
provements to the method, developed in the course of this thesis to enable the prediction of larger
molecules with functional groups, are presented. The influence of the size of single molecules on their
interaction with the surface is elucidated through the investigation of preferred adsorption sites for
single molecules on the substrate. To complete the picture, the low energy polymorphs and surface
patterns for benzoquinone and anthraquinone are shown. The driving forces for their formation
are illuminated by representation of the complex interactions via molecule-substrate and molecule-
molecule contributions.



Kurzfassung

Einfluss der Molekülgröße auf die Bildung von Oberflächenpolymorphen:
Eine ab-initio Studie mit maschinellem Lernen

Andreas Jeindl
Institut für Festkörperphysik, Technische Universität Graz

Eine Vielzahl der physikalischen Eigenschaften von dünnen Filmen organischer Materialien auf Metal-
len werden von der Anordnung der Moleküle auf der Oberfläche dominiert. Bemerkenswerterweise sind
einige Eigenschaften von solchen oberflächeninduzierten Phasen besser als jene im Molekülkristall. Zur
Entwicklung funktioneller Grenzflächen ist ein Verständnis des Zusammenhangs zwischen Molekül-
struktur und dem Polymorph, das sich auf der Oberfläche formt, daher von großem Interesse. Leider
existieren jedoch nur sehr wenige systematische Studien, die einen klaren Zusammenhang zwischen
Molekülstruktur und Grenzflächenpolymporph schließen lassen. Die Gründe dafür sind einerseits, dass
bei experimentellen Studien oftmals kinetisch stabilisierte Phasen entstehen, welche die Untersuchung
der thermodynamischen Zusammenhänge verhindern. Simulationen andererseits sind durch die riesige
Anzahl möglicher Strukturen, auch bekannt als Konfigurationsexplosion, beschränkt.

Ziel dieser Arbeit ist die Untersuchung des Zusammenhangs zwischen der Molekülgröße und der
Polymorphe, die sich auf der Oberfläche bilden. Als Mustersystem dafür dienen Chinone unterschied-
licher Größe auf der Silber (111) Oberfläche. Zur Überwindung der Konfigurationsexplosion wird
die SAMPLE Methode vorgestellt, welche eine physikalisch motivierte Diskretisierung der Potential-
oberfläche mit Bayesscher Statistik kombiniert. Die Anpassungen und Weiterentwicklungen der Me-
thode, welche im Rahmen dieser Arbeit für die korrekte Vorhersage großer Moleküle mit funktionellen
Gruppen entwickelt wurden, werden erläutert. Die Abhängigkeit der dominierendenWechselwirkungen
zwischen Molekül und Oberfläche von der Größe der Moleküle wird anhand der präferierten lokalen
Adsorptionsgeometrien einzelner Moleküle dargestellt. Abgerundet wird die Betrachtung mit den
energetisch günstigsten Polymorphen und Oberflächenstrukturen von Benzochinon- und Anthrachinon-
Monolagen. Die treibenden Kräfte für die Bildung jener Strukturen werden durch Aufteilung der
Energien in Molekül-Substrat und Molekül-Molekül Wechselwirkungen veranschaulicht.
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1

1. Introduction

In this chapter the theoretical basics of this thesis are introduced. First the quantum mechanical
methodology and its limitations are presented. Then an overview of typical interactions of molecules
with surfaces followed by an introduction to surface poly morphs is given. In the last part the structure
search method and some approaches to solve the linear model, which is at the core of the method, are
explained.

ack

1.1. Quantum Mechanical Basics

The following section deals with some quantum mechanical methods, which are necessary for a full
ab-initio modeling of organic/inorganic interfaces. It is mainly based on the book Introduction to
Computational Chemistry by Frank Jensen [1] in the third edition. Other sources will be mentioned
explicitly.

Fundamentals

Starting point for quantum mechanical calculations is always the Schrödinger equation [2], whose time
independent shorthand operator form is:

Htot |Ψ〉 = E |Ψ〉 (1.1)

This is an eigenvalue equation, which has no analytic solution for more than two particles. To still find
a solution, approximations are applied. The total non-relativistic Hamilton operator can be written
as:

Htot = Tn + Te + Vne + Vee + Vnn (1.2)

Here T represents the kinetic and V the potential energy operators, the subscript index n denotes
nuclei and e electrons. For sufficient description of a quantum mechanical system, a suitable wave
function Ψ has to be found. This can be done with the help of the variational principle, which states
that the total energy E obtained by evaluation of the Hamilton operator with any approximate wave
function will always be higher than the ground state energy E0 of the system, unless the wave function
is optimal.

E = 〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 ≥ E

0 (1.3)

Therefore, trial wave functions can be constructed and improved successively by minimizing the total
energy. For normalized wave functions the denominator becomes unity and the equation is reduced
to

E = 〈Ψ|H|Ψ〉 ≥ E0 (1.4)
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Due to the coupling of nuclei and electrons with themselves and each other, the Schrödinger equation
is very hard to solve. Therefore some approximations are made, which are explained in the following
pages.

1.1.1. Born Oppenheimer Approximation

One first approximation is to separate nuclear and electronic wave functions. Therefore the full
Hamilton operator 1.2 is first transformed to the center of mass system:

Htot = Tn + Te + Vne + Vee + Vnn︸ ︷︷ ︸
=He

− 1
2Mtot

Nelec∑
i

∇i

2

︸ ︷︷ ︸
=Hmp

(1.5)

with the electronic Hamiltonian operatorHe and the mass-polarizationHmp. This mass-polarization
arises, because for systems with more than two particles a rigorous separation of center-of-mass motion
from internal motion is not possible. He now only depends on the positions of the nuclei, but not on
their momenta. If the full set of solutions for the electronic Schrödinger equation is now assumed to
be known, equation 1.1 can be rewritten to

He(R)Ψi(R, r) = Ei(R)Ψi(R, r); i = 1, 2, . . . ,∞ (1.6)

Because of the hermiticity of the Hamiltonian, the Ψi can be chosen to be orthonormal with respect
to each other. Now the total wave function can be written as an expansion in the set of electronic
functions, where the expansion coefficients are functions of nuclear coordinates

Ψtot(R, r) =
∞∑
i=1

Ψni(R)Ψi(R, r) (1.7)

Inserting this wave function into the Schrödinger equation leads to
∞∑
i=1

(Tn +He +Hmp)Ψni(R)Ψi(R, r) = Etot

∞∑
i=1

Ψni(R)Ψi(R, r) (1.8)

This equation is then multiplied from the left by a specific electronic wave function Ψ∗j and integrated
over the electron coordinates. Neglecting the non-adiabatic coupling elements (coupling of different
electronic states with ∇n) and neglecting the mass polarization leads to

(Tn + Ej + 〈Ψj |∇2
n|Ψj〉︸ ︷︷ ︸

=U(R)

)Ψnj = EtotΨnj (1.9)

Ej is the energy of the j-th electronic wave function. U(R) is called diagonal correction and is usually
a very small, slowly with Ri varying function and therefore neglected in the Born Oppenheimer
approximation, which can now be rewritten as

(Tn + Ej)Ψnj = EtotΨnj (1.10)

This equation describes nuclei moving on the potential energy surfaces given by the solution of the
electronic Schrödinger equation. As the coupling terms of different electronic states are neglected,
the approximation breaks down, as soon as different solutions to the Schrödinger equation come close
energetically (in other words when potential energy surfaces overlap).

Now that the nuclear motion is separated, a solution for the electronic Schrödinger equation can be
approached.
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1.1.2. Hartree-Fock Theory

To fulfill the antisymmetry requirement for fermionic wave functions (Pauli principle) the total wave
function can be built from Slater determinants with single-electron wave functions (orbitals) as matrix
elements. When calculating molecules, these one-electron wave functions, which each are a product
of spatial and spin orbitals, are interpreted as molecular orbitals. One further approximation made in
Hartree-Fock, is taking only a single determinant for the trial wave function and thereby neglecting
electron-electron correlation completely. This leads to a formalism which describes independent
electrons moving in the field generated by all particles. Such methods are called mean field methods.

The full electronic Hamiltonian is

He = Te + Vne + Vee + Vnn (1.11)

=
Nelec∑
i

−1
2∇

2
i −

Nnuclei∑
A

ZA
|RA − ri|


︸ ︷︷ ︸

hi

+
Nelec∑
j>i

1
|ri − rj |︸ ︷︷ ︸

gij

+Vnn (1.12)

Here the one-electron operator hi describes the motion of a single electron in the field of all nuclei. gij
represents the electron-electron repulsion. Inserting the electronic Hamiltonian and the Slater-type
wave function into 1.4 leads to an energy of the form

E =
Nelec∑
i=1
〈ψi(1)|h1|ψi(1)〉 (1.13)

+
Nelec∑
i=1

Nelec∑
j>i

(〈ψi(1)ψj(2)|g12|ψi(1)︸ ︷︷ ︸
Jij

ψj(2)〉 − 〈ψi(1)ψj(2)|g12|ψj(1)︸ ︷︷ ︸
Kij

ψi(2)〉) + Vnn (1.14)

E =
Nelec∑
i=1

hi +
Nelec∑
i=1

Nelec∑
j>i

(Jij −Kij) + Vnn (1.15)

The operators Ji and Ki with the corresponding energies Jij and Kij are called Coulomb and
exchange operators. The exchange operator arises due to the (anti)symmetry of the wave functions
of indistinguishable particles upon exchange. As a next step, a set of orthonormal molecular orbitals
that minimizes the energy or at least makes it stationary with respect to a change in molecule orbitals
needs to be found. Carrying out this optimization with Lagrange multipliers leads to the following set
of Hartree-Fock equations

Fiφ
′
i =

Nelec∑
j

λijφ
′
j (1.16)

Fi = hi +
Nelec∑
j

(Jj −Kj) (1.17)

where the Lagrange multipliers λij are the elements of a Hermitian matrix Λ. Fi is the so-called
Fock-operator. Transformation of the molecular orbitals to a set of orbitals, which makes Λ diagonal
(canonical MOs), leads to a set of pseudo-eigenvalue equations for the orbitals

Fiφi = εiφi (1.18)

The eigenvalues εi are interpreted as the energies of the molecular orbitals. Equation 1.18 is not a real
eigenvalue equation because the Coulomb and exchange elements of the Fock operator still depend
on all occupied orbitals. Therefore an iterative self-consistent field (SCF) method must be used to
determine all MOs and their energies.
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The total energy of the system(equation 1.15) can now also be written with respect to the eigenenergies
of the orbitals

E =
Nelec∑
i

εi −
1
2

Nelec∑
ij

(Jij −Kij) + Vnn (1.19)

εi = 〈ψi|Fi|ψi〉 = hi +
Nelec∑
j

(Ji −Ki) (1.20)

The Coulomb and exchange term have to be subtracted as they are counted twice in the calculation
of the MO eigenvalues.

HF is not the exact solution of the Schrödinger equation as the electron-electron repulsion is only
treated in an averaged manner. This is called the Hartree-Fock limit.

Koopmans’ Theorem

If it is assumed, that for a system with N electrons and a system with one electron removed or added
from orbital k the MOs are identical, then the ionization energy or electron affinity is simply given as
the orbital energy εk. This is also called "frozen MO" approximation. When expanding the MOs in a
set of basis functions this approach is reasonable for ionization energies. Using it for electron affinities
is debatable as the physical meaning of the unoccupied orbitals is often questionable, especially when
the lowest unoccupied molecular orbital lies above the vacuum level of the system.

Beyond Hartree-Fock

To describe the electron correlation, neglected by Hartree-Fock, a series of different methods have
been developed. All of those methods include electron correlation by adding more Slater determinants
to the calculation. This leads to a multideterminant wave function of the form

Ψ = a0ΦHF +
∑
i=1

aiΦi (1.21)

A detailed description of some of those methods can be found in Introduction to Computational
Chemistry.
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1.1.3. Basis Sets

For all but very small systems, the Hartree-Fock equations can not be solved by directly mapping out
the molecular orbitals in real space. Therefore the orbitals are expanded into basis functions χα

φi =
Nbasis∑
α

cαiχα (1.22)

Now equation 1.18 can be rewritten as

Fi

Nbasis∑
α

cαiχα = εi

Nbasis∑
α

cαiχα (1.23)

Multiplication from the left and integration leads to the so-called Roothan-Hall equations, which can
be written in matrix notation

FC = SCε (1.24)

where F contains the Fock-matrix elements and S are the overlap matrix elements. C is the coefficient
matrix for the basis functions and ε is the matrix of orbital energies. To solve those equations, the
Fock matrix has to be diagonalized. As this is only possible if all basis function coefficients are known,
again a self-consistent field procedure has to be employed. The solution of the Roothan-Hall equation
delivers Nbasis orbitals, where Nelec orbitals are occupied and Nbasis−Nelec are virtual orbitals, which
have no direct physical interpretation.

Ideally the basis functions are constructed such, that an increase of basis set size systematically
improves the accuracy of the orbitals. Usage of a complete basis set would therefore be equivalent to
a direct mapping of orbitals, which is still only accurate up to the limits of the underlying method.

Basis functions should be designed hierarchical, to allow a systematic improvement towards this
limit. Furthermore they should reflect the nature of the system and be available for all atom
species of interest. For a universal applicability they should also be suitable for different methods
and properties.

Types of Orbitals

There are two types of analytic orbitals which are commonly used to model the atomistic electron
distribution. The first are Slater-type orbitals (STOs)[3]

χζ,n,l,m(r, θ,φ) = NYl,m(θ,φ)rn−1e−ζr (1.25)

Here Yl,m are spherical harmonics and N is a normalization constant. n,l and m resemble the principal,
azimuthal and magnetic quantum numbers. The parameter ζ determines the spread of the basis
function and is important for the mixing of different basis functions. The mathematical form of
Slater-type orbitals is very close to hydrogen-like orbitals, which ensures a rapid convergence with
increasing number of functions, but analytic calculations of 2- and 4-center integrals are not possible
due to the mathematical form.

Therefore, often Gaussian-type orbitals (GTOs)[4] are used.

χζ,n,l,m(r, θ,φ) = NYl,m(θ,φ)r2n−2−le−ζr
2 (1.26)

They do not resemble the analytic hydrogen orbitals that well, as the slope near the nucleus is too
small and further away too large, which means that more GTOs (roughly 3-times as many) are needed
to achieve the same level of accuracy as STOs. The main benefit however is, that calculations of
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multi-center integrals become easy, as the Gaussians always transform into Gaussians. This more
than compensates the increase in basis functions.

For computational applications, where the resulting integrals have to be solved numerically anyway,
the basis functions can be numerical as well. One example for such numerical atomic orbitals
(NAOs) are the ones used in the program package FHI-aims [5], that is also used in this work

χi(r, θ,φ) = ui(r)
r

Yl,m(θ,φ) (1.27)

This is the formalism of the original publication, where the different quantum numbers (l,m) are coded
into the index i. Yl,m are again spherical harmonics. The radial function is numerically tabulated for
each basis function, which has the advantage that the physical form of the atom orbital can be modeled
very accurate. Because of their numerical form, the basis functions are only evaluated to a certain
distance from the atom core.

Size of the Basis Set

As soon as the type of basis functions is chosen, the size of the basis set has to be decided. For atom
centered orbitals there exists a systematic classification for this task. This classification often refers
to the exponent zeta used for STOs and GTOs. If each atom orbital is only modeled by a single set of
basis functions with just one free parameter, it is called minimal or single zeta (SZ) basis set. A first
improvement over this basis, is using a second set of basis functions for all occupied orbitals, which is
commonly referred to as double zeta (DZ) basis and allows a better description of different bonding
behavior (σ and π bonds) in molecules. Because normally only the valence electrons are involved in
molecular bonds, often only the valence orbitals are doubled which is then called split valence basis.
The next improvement is using three, four, five or more sets of basis functions for each occupied orbital,
which is then called triple, quadruple, quintuple, . . . , -zeta basis. For the correct description of anions
and dipole moments, basis functions with small exponents, which spread out far, are needed. They are
called diffuse functions. Another significant improvement can be accomplished by adding functions
for orbitals with higher angular momenta, which are denoted polarization functions. For Hartree-Fock
the inclusion of a single set of polarization functions is often already sufficient. When using methods
that calculate the electron correlation explicitly, many more polarization functions have to be used to
account for the angular correlation.

When calculating hydrogen for example, the minimal basis consists of a single orbital for which a
single parameter has to be optimized. The double zeta basis set adds a second orbital. Increasing the
zeta by one always adds one new orbital. Using diffuse functions also adds one new orbital for each
occupied orbital in the atom (1 for the case of hydrogen). Adding polarization functions means for
hydrogen, that p-orbitals are included for the calculation, leading to three new orbitals.

Plane Wave Basis Functions

In contrast to reconstructing the molecular orbitals of the system, here the full system is modeled
with suitable functions. For periodic metals the valence electrons behave almost like free electrons,
which suggests using solutions for the free electrons as basis functions for infinite systems. For such
systems molecular levels coalesce into bands which can be written as

χk(r) = eikr (1.28)

with the corresponding energy

E = 1
2k

2 (1.29)
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The allowed values for k are determined by the unit cell translation vector t via kt = 2πm with a
positive integer m. Here one can see that the number of plane waves is determined by the highest
k-vector, which also defines the maximum kinetic energy via equation 1.29.

The quality (and size) of the basis set is often defined by a cutoff energy Ecut which is typically in
the range of several hundred eV. One major benefit of plane waves is, that their basis set size only
depends on the size of the unit cell and the cutoff energy, but not on the number of atoms within the
system, which makes it attractive for larger systems. This benefit however is also a drawback when
calculating surfaces and non-interacting molecules, which have to be separated by large distances to
prevent interactions with periodic replicas. There a lot of basis functions are used solely to model the
vacuum region, where no physical processes occur. Plane waves are very good at describing strongly
delocalized electron densities with slow local variations but require a large number of heavily oscillating
functions to model the core regions, leading to a basis with very large Emax. The core singularities
of electron densities are also almost impossible to model, which is why plane waves are always used
in combination with pseudopotentials. Those are analytic functions (e.g. Bessel Functions), which
replace the full description of the electrons inside a specified core radius rc. The functions have to be
designed such, that at rc the functions, as well as their first and second derivatives, are continuous.

Basis Set Superposition Error

When using an atom centered basis set, such as GTOs, several hundred functions per atom would be
needed to reach chemical accuracy (1 kcal/mol or around 40 meV) for the total energy. But usually
one is only interested in energy differences, which can be achieved faster by choosing a balanced basis
set with almost constant basis set error. When calculating a molecule with such an underconverged
basis set, the electron distribution around the core can be improved with basis functions of another
atom. This effect changes with different geometries, leading to a basis set error which is commonly
called basis set superposition error (BSSE).

1.1.4. Density Functional Theory

Hohenberg and Kohn have shown, that the ground state electron energy is fully determined by the
electron density [6]. As this is the integral of the squared wave function over N-1 electrons, the
dimensionality of the problem can in principle be reduced from 4N (3 spacial and one spin component
for each electron) to 3 dimensions for spin up and 3 for spin down. The problem hereby is, that the
functional that connects the electron density to the energy E = E{ρ(r)} is not known. From Hartree-
Fock theory it seems reasonable to divide the energy functional into 4 terms: the kinetic energy T,
the electron-nucleus attraction Ene, Coulomb interaction J and electron-electron correlation K

E[ρ] = T [ρ] + Ene[ρ] + J [ρ] +K[ρ] (1.30)

First theories, such as Thomas-Fermi and Thomas-Fermi-Dirac, tried to calculate the total energy
directly from the electron density. Those so-called orbital-free DFT methods, which could make full
use of the benefit of having only three variables independent of system size, lead to a significantly
worse behavior compared to HF. The main flaw in those methods lies in the representation of the
kinetic energy. Therefore Kohn and Sham [7] reintroduced a set of orthonormal orbitals and split the
kinetic energy term into two parts, an exact solution for non-interacting particles (identical to HF)
and a small correction for the kinetic electron correlation. This electron correlation is adsorbed into
an exchange correlation functional Exc. The total DFT energy functional can now be written as

EDFT [ρ] = THF [ρ] + Ene[ρ] + J [ρ] + Exc[ρ] +
∫
Vext(r)ρ(r)dr (1.31)

Exc[ρ] = (T [ρ]− THF [ρ]) + (Eee[ρ]− J [ρ]) (1.32)
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In the second equation, the first bracket represents the kinetic correlation energy as the difference
between the real kinetic energy and the kinetic energy in the Hartree-Fock formalism. The second
bracket contains the potential correlation and exchange energy.

Here it becomes clear, that for Kohn-Sham (KS) DFT only functionals for the small correction Exc
have to be derived whereas for orbital free DFT, the kinetic and correlation energy functionals must be
found. With KS-DFTmethods the dimensionality of the problem is now again 6N, but computationally
much less expensive than post-HF because correlation effects are not calculated explicitly.

Once the exchange-correlation functional is chosen, a set of orthogonal orbitals that minimizes the
energy needs to be found. Here the relevant equations are

hKSφi =
Norb∑
j

λijφj (1.33)

hKS = 1
2∇

2 + veff (1.34)

veff = V ne(r) +
∫

ρ(r)
|r − r′|

dr′

︸ ︷︷ ︸
=J [ρ]

+V xc(r) (1.35)

hKS now has the same role as the Fock Operator in HF. The set of orbitals can again be diagonalized

hKSφi = εiφi (1.36)

By expanding the KS orbitals in an atomic basis set, the problem formally becomes identical to
equation 1.24

hKSC = SCε (1.37)

The matrix elements of hKS for the kinetic, one-electron and Coulomb parts are identical to the
corresponding elements in F , but the exchange-correlation part V xc depends on the electron density
and possibly also its derivatives. The evaluation of KS matrix elements for V xc is difficult, because of
its implicit dependence on the integration variables via the electron density. For numerical evaluations
of the integrals, the accuracy depends on the number of integration points used. This grid can lead
to a superposition error similar to the BSSE and should therefore not be changed when calculating
different properties of a quantum mechanical system.

1.1.5. Exchange-Correlation Functionals

It can be proven that there exists a unique exchange-correlation (XC) functional which is valid for all
systems. If this functional was known explicitly, DFT would be exact. Sadly this is not the case, but
a number of properties for the exact functional can be derived. All currently used functionals fulfill
different properties, each having errors by neglecting others.

Usually the functional is split into an exchange and a correlation part. For the exchange part, in
principle the HF exchange could be used. This has been shown to give poor results, because the
definition of the exchange and correlation is not equivalent to the HF definition. In wave mechanics,
both exchange and correlation energy have a short- and a long-range part. The long-range correlation
effectively cancels the delocalized part of the exchange energy. For DFT those energies only depend
on the local electron density and its vicinity and the cancellation at long range should be implicitly
built into the functionals. Using exact exchange thus destroys this cancellation.

XC-functionals exhibit parameters which can either be fitted to experimental results (empirical) or be
chosen in such a way that a maximum number of properties of the exact functional are fulfilled. The
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quality of the functional has to be determined by comparing it to either a high level wave-mechanics
calculation or to experiments.

Differently to wave function methods (where more Slater determinants are used), the quality of
calculations can not be improved systematically, but J.P. Perdew has suggested a "Jacob’s ladder"
[8] where for each step up the ladder an improvement in accuracy can be expected. In the following
some important steps on this ladder will be explained briefly.

Local Density Approximation

The first approximation assumes, that the density can locally be treated as an uniform electron gas
for which the exchange energy is known analytically and the correlation energy is also known to high
accuracy. Here only the electron density is needed to calculate exchange and correlation energies. If
the densities for different spins are not equal, this approach is generalized to two distinct spin densities
which is then called Local Spin Density Approximation.

Generalized Gradient Approximation

This class of functionals uses the first derivative of the electron density as additional parameter for
the calculation of exchange and correlation energy. Directly adding the gradient to the energy would
perform worse than LSDA, because some important properties would be destroyed. Therefore in
Generalized Gradient Approximation (GGA) methods the gradient of the electron density is included
as a variable which is tuned to fulfill certain requirements. One popular semi-empirical correlation
functional is the one from Lee, Yang and Parr (LYP)[9] which has 4 parameters that are fitted to
experimental data of the Helium atom. It is often used with the (also semi-empirical) B88 exchange
functional from Becke [10]. A famous functional, that works without empirical data, was designed by
Perdew, Burke and Enzerhof (PBE) [11]. Here the exchange and correlation functionals are designed
as enhancement factors which are multiplied (exchange) and added (correlation) to the LSDA solution.
The parameters for these functionals are optimized to fulfill the exact functional requirements, rather
than fitted to experimental data.

Meta-GGA

The next step on Jacob’s ladder is allowing functionals to depend on higher order derivatives of the
density. Inclusion of orbital kinetic energy dependence also falls into this category, as it gives essentially
the same information as the second derivative of the electron density. One relatively new but very
promising non-empirical representative of this class of functionals is called SCAN [12]. It is ought to
replace the old-established functional from Tao, Perdew, Staroverov and Scuseria (TPSS)[13]. They
can both be seen as a next improvement to PBE.

Hybrid Functionals

For a system of non-interacting particles residing on the KS orbitals, Hartree-Fock would give the
exact exchange energy, which is commonly referred to as exact exchange. Mixing this exact exchange
with LSDA and GGA methods leads to a zoo of possible exchange-correlation functionals with even
more parametrizations. One famous semi-empirical example is the combination of B88 with LYP
called B3LYP [14]. On the non-empirical side there is also a hybrid version of PBE called PBE0 [15].
The improvement when mixing HF-exchange can be explained by the fact that most errors of LSDA
(contained in most functionals) and HF display systematic errors in opposite directions and using a
suitable linear combination of both cancels out most of those errors.
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Double Hybrid Functionals

Mixing in the full information of KS-orbitals leads to double hybrid methods, which are generally
better than hybrid functionals but hindered by their computational cost.

Range-Separated Methods

Current functionals have been found to describe the charge transfer excitation energies wrong. This is
related to the overestimation of the delocalization of electrons and the self-interaction error stemming
from the incorrect long-range behavior of exchange functionals which then fail to cancel the Coulomb
term. To cope with this, range-separated functionals have been derived which use different exchange
functionals for short and large distances to the nucleus. The parameter that usually controls the
partitioning is commonly called ω For short range most commonly a density-exchange functional is
used and for the long range part the exact HF-exchange is employed. Such range-separated versions
[16] can be employed for all commonly used functionals but reparametrizations have to be done.
Improvements to the previously mentioned functionals are LC-BLYP and LC-PBE. Livshits and Baer
brought up the idea called optimal tuning [17] to choose ω in such a way that Koopmans’ theorem is
fulfilled and the HOMO is equal to the ionization potential.

For use in periodic solid state systems sometimes HF is used for the short and density-exchange for
the long-range part. Such functionals are then called screened-exchange. A famous example is from
Heyd, Scuseria and Enzerhof (HSE) [18].

Dispersion-Corrected Methods

A major disadvantage of standard DFT is, that most functionals are unable to describe long range
dispersion forces (Van der Waals interactions). Therefore S. Grimme proposed additional empirical
terms to account for vdW interactions [19]. First versions simply used the R−6 behavior together with
a parameter C6 for every different species combination. To circumvent divergence at short distances,
a damping function has been added. Further improvements were made by including higher order
terms.

∆Edisp =
∑

n=6(8,10)
sn

atoms∑
AB

CABn
RnAB

fdamp(RAB) (1.38)

the damping function is typically of the form fdamp(RAB) = sn
1+e−d(RAB/snRAB0−1 and in the simple

approach by Grimme the CAB6 coefficients are determined from single-species parameters via

Cij6 = 2 Ci6C
j
6

Ci6 + Cj6

The scaling factor sn is different for each XC functional to take account for the different amounts
of short-range interaction included. More sophisticated methods calculate the dispersion coefficients
CABn , cutoff-radii RAB,0 and polarizability αi from their (often tabulated) free atomic values and the
charge-density of the system taking into account the local chemical environment. For the method
proposed by Tkatchenko and Scheffler [20] the effective volume vi and the Hirshfeld weight wi(r) are
determined from the free atomic values via

vi =
∫
r3wi(r)n(r)d(r)∫
r3nfreei (r)d(r)

(1.39)

wi(r) = nfreei (r)∑Natom
j=1 nfreej (r)

(1.40)



Chapter 1. Introduction 11

The dispersion interaction is then calculated with

C6ii = v2
iC

free
6ii (1.41)

αi = viα
free
i (1.42)

C6ij = 2C6iiC6jj[
αj
αi
C6ii + αi

αj
C6jj

] (1.43)

For this method there also exists a surface parametrization called TSsurf [21].

Another approach is to directly link the electron density to an appropriate dispersion kernel, leading
to a six-dimensional integral with much higher cost. Those methods are called many-body dispersion
correction [22]. Additionally the methods can be classified as self-consistent when employed in every
SCF-cycle and a-posteriori if only added at the last step.

1.1.6. Errors Inherent to Common Density Functional Approximations

Here some of the most prominent errors that occur in density functional theory are summarized, a
more detailed explanation is given in [23] and [24].

Self-Interaction Error

The one-electron self-interaction error stems from the fact, that for a quantum mechanical system the
Coulomb self-energy should cancel out the exchange self-energy exactly (see eq. 1.15). Hartree-Fock
takes this into account explicitly. For many DFT exchange functionals however this constraint does
not hold exactly, which leads to an effective interaction energy of single electrons with themselves. As
explained in section 1.1.5 this is a design criterion for functionals, but to date by far not all functionals
in use take it into account.

Delocalization Error

This error is also called "deviation from straight line"-error or many-electron self-interaction error.
When fractional charges are added or subtracted from an atom, the actual energy is a linear interpolation
between the integer charge energies due to the discrete nature of electrons. For semi-local DFT this
change is convex, for HF concave. This means that in DFT fractional charges are over-stabilized,
leading to over-delocalization, underestimated bond lengths, underestimated band-gaps, too low transition
state energies and unphysical charge transfer between molecules and metal surfaces. HF in comparison
over-localizes electrons leading to the opposite behavior. Figure 1.1 shows this behavior for a single
atom calculated with DFT and different XC functionals.

Static Correlation Error

For systems with strong electron-electron correlation, there can arise electronic states with fractional
spins. For the exact XC-functional these states give the same energy as their comprising degenerate
pure-spin states [25]. If the molecule H2 for example is dissociated, the spin states are degenerate
which leads to fractional spins on both atoms. This energy should be equal to the one of pure spins
located on both atoms, but currently used functionals deviate strongly from this behavior, which
leads to an overestimation of covalent bonds. For the calculation of correlated systems however, such
functionals will be needed.
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Figure 1.1.: Deviation from straight line condition shown for DFT calculations of a single Cl atom
with fractional charges and different XC functionals.

1.1.7. Periodic Quantum Mechanical Calculations

Calculating an extended system, such as a metal or semiconductor, would be extremely costly, as the
computational expense is proportional to the number of electrons in the system. A periodic system
can be described by an infinite repetition of a unit cell. The unit cell in three dimensions is described
by three vectors (a1, a2 and a3), defining the space and the shape of the cell. Any point r′ within
the crystal can now be reached by defining a vector in the first unit cell r and a linear combination of
translation vectors ai.

r′ = r + n1 ∗ a1 + n2 ∗ a2 + n3 ∗ a3 = r +R (1.44)

The reciprocal cell is also defined by three orthonormal vectors obeying the condition ai∗bj = 2πδij :

b1 = 2π a2 × a3
a1·(a2 × a3) , b2 = 2π a3 × a1

a1·(a2 × a3) , b3 = 2π a1 × a2
a1·(a2 × a3)

Those vectors span the unit cell in reciprocal space, also called Brillouin zone (BZ). Just as points in
the real unit cell can be reached via r′, points in reciprocal space can be reached via g′, also called
wave vector.

g′ = g + k1 ∗ b1 + k2 ∗ b2 + k3 ∗ b3 = g + k (1.45)

The periodicity of the system requires, that the square of the wave function at periodic replicas of the
unit cell is the same, which means that the wave function can only differ by a complex wave factor.
This requirement is fulfilled by Bloch waves [26]:

φ(r +R) = φ(r)eikR (1.46)

with the unit cell vector R introduced in equation 1.45 and the wave vector k. Bloch orbitals can be
created by combining spatially periodic functions with plane waves:

φn,k(r) = ψn(r)eikr
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Figure 1.2.: Left: fcc lattice in real space (balls on faces red), arrows are primitive lattice vectors.
Right: Bravais lattice (blue balls) and reciprocal lattice vectors (red arrows) of the fcc
lattice.

Those spatially periodic functions can either be expanded into plane waves (PW) or suitable atom-
centered functions (ACO) in Bloch-form:

φPWn,k (r) = eikr
Nbasis∑
i

cni χ
PW
i (r)

φACOn,k (r) =
Nbasis∑
i

∑
R

cni e
ikr χACOi (r +R)

for further discussion of basis sets see section 1.1.3.

This projects the problem from infinitely many electrons to those in the unit cell, but now the solutions
are functions of the reciprocal space vector k. The problem can now again be mapped onto a matrix
equation like equation 1.24:

F kCk = SkCkεk

The solutions to this equation are continuous functions of k called bands. For every k-vector many
solutions are found, forming many energetically distinct bands.

To determine the number of states at specific energies, the density of states (DOS) is used. The
electron density is then found by filling the bands up to the Fermi level

ρ(r) =
∫
BZ

dk
Nbands∑
n=0

|ψik(r)|2φ(En(k)− EF )

Ei(k) is the eigenvalue of the i-th crystalline orbital at the reciprocal point k. The Heaviside function
θ stems from the Fermi-Dirac distribution

f(E) = 1
exp

(
E−EF
kBT

)
+ 1
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evaluated at 0 Kelvin. The Fermi level EF determines the occupation of each orbital. It can be defined
via the occupation number of the system:

n =
∫
dEDOS(E)f(E)

DOS(E) =
∫
BZ

d3k

(2π)3 δ(E − E(k))

With this the Fermi level is the energy where a state (if there is one) is half filled, independent of
temperature. If this energy is in the band gap of a material, EF at 0 K (which is the case for QM
calculations) can be at any arbitrary energy between the highest occupied and lowest unoccupied state
and therefore can not be used as a physically meaningful parameter.

Due to the relatively smooth form of the bands, often only a small amount of k-points needs to be
calculated for a good result, but the choice of k-points is critical for the calculation performance.

One of the most used methods to distribute points in k-space is the Monkhorst-Pack scheme [27],
which spaces the points equally in the first Brillouin-zone but with an offset from the Gamma point
(origin in k-space).

Repeated Slab Approach

For the modeling of bulk-like properties considering a large number of atoms is essential, which can only
be realized with periodic calculations. For the calculation of surfaces however, 3D-periodic calculations
are not suitable, as there is no periodicity perpendicular to the surface. While there exist methods to
calculate 2D systems [28], the modeling of surfaces is still a niche in the field of ab-initio modeling,
so there is no reliable code for such systems. To calculate 2D systems with 3D code, the unit cell is
constructed to have a large vacuum area above the surface slab. As there is no coupling between the
periodic surface-replicas in z-direction, only one k-point needs to be used in this direction.

Systems that are not symmetric in z-direction can have different electrostatic properties at the top
and at the bottom. This would lead to an electrostatic potential gradient in the slab and thus to
physically unreasonable charge rearrangements. To overcome this problem, an artificial dipole layer
is introduced in the slab, creating a step in the electrostatic potential. An example of a surface slab
with 1 surface atoms in the unit cell and a single atom adsorbed on top is shown in figure 1.3. The
red arrows indicate the dipole layer.

Figure 1.3.: Illustration of the repeated slab approach. The red arrows indicate the artificial dipole
layer introduced.
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1.2. Interactions of Organic Molecules and Surfaces

Here a brief introduction to some specific interactions between molecules and surfaces is given. Figure
1.4 shows the energy level diagram of a molecule layer adsorbed on a metal surface. The interaction of
the molecule with the surface introduces a surface dipole, which shifts the surface vacuum level V L1
of the metal surface by ∆, whereas the vacuum level at infinite distance V L∞ stays constant. The
surface work function is changed from the metal work function ψM to ψ. ψnB and ψpB are the electron
and hole injection barriers. The energy of the molecules’ fundamental gap EG plus the electron affinity
A gives the ionization energy I of the molecule on the surface.

Figure 1.4.: Explanation of the different energies used when explaining the interactions of molecules
on surfaces. Possible origins of the interface dipole are explained below.

Here some of the interactions creating the surface dipole are explained briefly, for a detailed explanation
see the reviews from Ishii et al. [29] and Braun et al. [30].

Electrostatic Interaction Molecules with intrinsic dipoles can generate a dipole layer at the interface
when aligned properly, generating shift in the vacuum level. Charged molecules can create mirror
charges in the substrate, leading to attractive forces.

Chemical Bonds The formation of chemical bonds also leads to an effective surface dipole which
influences the work function of the surface.

Push back For metals, the core charges are usually at fixed positions, but the electrons can move
freely in the solid and also ’leak’ out of the surface. When a molecule physically adsorbs on such a
surface (via van der Waals forces), the molecules’ electron density pushes the metal electrons away
from the molecule and partly back into the slab. This generates a surface dipole that shifts the vacuum
level. The whole process is then called push back.

Charge Transfer The substrate and molecule layer can have different electronic chemical potentials
at the interface. This will lead to an exchange of charges until an energetic equilibrium is reached.
If the number of mobile charge carriers is high enough, this will lead to a redistribution of electrons
until the chemical potential is aligned. Some specific characteristics of charge transfer are

Fermi Level Pinning: As soon as the Fermi level of the metal is below the HOMO or
above the LUMO of the molecule, electrons can be transferred from the HOMO or to the
LUMO which leads to a pinning of the HOMO or LUMO at the Fermi level, independent of
the metals’ work function.

Backdonation: When charge is transferred to the LUMO of the molecule, some of the
charge from energetically lower lying orbitals, which are closer to the metal surface, can be
partially depleted, leading to a backdonation of electrons into the metal.
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Integer Charge Transfer The charge transferred from an inorganic substrate to a full organic layer
(or back) is typically lower than one electron per molecule. It is not completely clear, if those charges
are distributed homogeneously over the whole layer or whether some molecules have integer charged
whereas others remain neutral. There is evidence for such integer charge transfer situations for systems
with a nonconducting buffer between a metal substrate and the molecule layer, but the topic is still
highly debated.

1.3. Structure Search

In thermodynamic equilibrium, the crystal structure that is lowest in Gibbs free energy will form. In
many cases, many competing low enthalpy structures exist and the experimentally observed polymorph
is governed by external parameters (like temperature or pressure). If only one polymorph is present
from 0 K until melting point, it is called monotropic. For enantiotropic systems on the other hand
the relative stability of polymorphs changes with the temperature. If the condition of thermodynamic
equilibrium is not fulfilled, also kinetically trapped polymorphs can be observed. Thus for many
systems a range of possible polymophs can be found. Already in 1965 Walter McCrone stated, that
the amount of polymorphs found corresponds to the time and money spent searching for it [31].

The search for crystal structures of organic molecules has been a task over decades [32]. First it was
primarily driven by drug research as different polymorphs can change the biological activity and legal
regulations require the knowledge of all possible polymorphs present in the drug. Since the uprising
of organic electronics, the influence of the relative molecule arrangements has also been recognized as
a dominant factor in the performance of organic devices.

A very prominent example therefore is the mobility of rubrene, which does not exceed 2 cm2/V s in
bulk phases [33] but can increase up to 40 cm2/V s when grown in the right polymorph in a thin film
transistor [34]. Here it needs to be highlighted, that this high mobility can only be achieved by one
of four possible polymorphs and that this is not a surface induced phase.

In recent years, the importance of the interface between inorganic and organic materials for charge
injection and other device properties was also realized. One crucial insight was the role of surface-
induced phases for the device performance, which offers new design strategies for organic electronics
[35]. Surface polymorphism with properties varying from the bulk systems have been found for various
molecules. The role of such surface polymorphs for crystal growth on inorganic and metal substrates
has been reviewed by Andrew Jones and colleagues [36]. They state that the formation of such
polymorphs can directly be governed by the surface or that a wetting layer can form and act as a
mask for the following layers. The phases of subsequent molecular layers usually perform a transition
into bulk phases with increasing thickness. A sketch of such a transition from a wetting layer over a
surface phase to the bulk structure for pentacene is shown in figure 1.5.

Figure 1.5.: Schematic representation of the first three layers of pentacene on boron nitride. Taken
from [37].
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1.4. Computational Structure Search

Following the importance of organic polymorphism, much effort has been put into computational
prediction of polymorphism for single molecules and molecular crystals. Application of structure search
to organic-inorganic interfaces is still at the very beginning. One reason therefore is the configurational
explosion. It states that the number of possible surface structures grows exponentially with the
number of molecules and coverage considered. Thus the configurational space can become intractably
large already for very small systems. Another prohibitive factor is the computational cost of ab-
initio calculations of periodic surface-molecule interfaces, which is orders of magnitude larger than for
bulk crystals or single molecules. This means that already established molecular dynamics methods
for crystal structure prediction, such as simulated annealing [38, 39], basin hopping [40, 41], minima
hopping [42, 43], and also evolutionary approaches such as genetic algorithms [44, 45] or particle swarm
optimization [46] are not applicable to organic/inorganic interfaces due to the large data sets needed
for successful prediction. For this reason, most structure search methods for such interfaces focus on
the adsorption of single molecules on the surface [41, 47, 48]. Nevertheless there are very promising
approaches for the ab-initio prediction of full molecular monolayers using kernel ridge regression [49].

1.4.1. Linear Regression Methods

The machine learning model used in this thesis is based on linear regression, therefore first the basic
concepts of this method will be explained.

Suppose a linear model with a target variable y dependent on variables x and model parameters w.

yi = w1xi1 + · · ·+ wpxip (1.47)

A given set of known data points y′ should be used to estimate the best parameters to predict further
points y. The errors of the data points are supposed to be normally distributed εi ∝ N (0,σM ). For
a single data point y′i this can be written as

y′i = w1xi1 + · · ·+ wpxip + ε = wxi + εi (1.48)

and for a vector of N data points y′ in matrix form

y′ = Xw + ε (1.49)

X =



x11 . . . x1p
...

...
...

xi1 . . . xip
...

...
...

xN1 . . . xNp


(1.50)

The conditional probability of the y′i given xi now reads

p(y = y′|X) = p(Xw + ε = y′|X) = p(ε = y′ −Xw|X)

p(ε = y′ −Xw|X) = N (y′ −Xw,σM ) ∝ e
− (y′−Xw)2

2σ2
M

Maximizing this probability with respect to w is widely known as maximum likelihood estimation. It
is equal to the problem

min
w

(
||Xw − y′||22

)
(1.51)

which is also known as least squares approach.
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The solution is given by (XTX)−1XTy, but if the number of data points is smaller than the number
of parameters, this is an ill-conditioned problem and some more information needs to be added to the
model.

This can be done using Bayes’ theorem with the already known likelihood p(y′|w,X)

p(w|y′,X) = p(y′|w,X)p(w|X)
p(y′|X) (1.52)

To maximize p(w|y,X) some prior information about the model can be added. Using a normal
distributed Gaussian prior

p(w|X) ∝ N (ŵ, Γ) (1.53)

leads to a minimization problem which is known as maximum a posteriori optimization. It is equivalent
to least squares with Tikhonov regression [50] using a Tikhonov matrix Γ

min
w

(
||Xw − y′||22 + ||Γw||22

)
(1.54)

Choosing the matrix as a multiple of the identity matrix is also called L2 regularization or ridge
regression

min
w

(
||Xw − y′||22 + α||w||22

)
(1.55)

and leads to a preference of very many non-zero but small parameters.

If the parameter space should ideally be very sparse, a Laplacian prior can be used

min
w

(
1

2nsamples
||Xw − y||22 + α||w||1

)
(1.56)

also called LASSO regularization. This prior favors sparse parameter vectors where the nonzero
elements are still small.

An analytic solution for those minimization problems exists only, if conjugate priors are used, which
means that the likelihood and prior are from the same functional family.

1.4.2. Bayesian Linear Regression

One such method with a conjugate prior is Bayesian linear regression. Here the prior is a multivariate
Gaussian distribution. The posterior probability for the parameters w given some data y′ is

p(w|y′) = 1
Z
p(y′|w)p(w) (1.57)

with the likelihood p(y|w) and the prior p(w)

p(y|w) ∝ e−
1

2σ2 ||Xw−y′||2 (1.58)

p(w) ∝ e−
1
2 (w−w̄)TC−1(w−w̄) (1.59)

combining those two leads to the full posterior probability

p(w|y) ∝ e−
1

2σ2 (Xw−y′)T (Xw−y′)e−
1
2 (w−w̄)TC−1(w−w̄) (1.60)
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To maximize the probability to get the correct parameters, only the exponent needs to be minimized

min
w

(
||Xw − y′||2 + (w − w̄)TC−1(w − w̄)

)
(1.61)

The right part of the equation can again be seen as regularization.

This probability can now be rewritten to a standard Gaussian. For better readability this is done with
the logarithmic probability.

log p(w|y′) ∝ −1
2

[ 1
σ2 (Xw − y′)T (Xw − y′) + (w − w̄)TC−1(w − w̄)

]
(1.62)

∝ −1
2

[
wT

(
XTX

σ2 + C−1
)
w − 2

(
w̄TC−1 + y′TX

σ2

)
w + 1

σ2y
′Ty′ + w̄TC−1w̄

]
(1.63)

Equating the coefficients with

log p(w|y′) ∝ −1
2
[
(w −w′)TA−1(w −w′)

]
+R (1.64)

leads to the new covariance A and mean w′

A−1 = XTX

σ2 + C−1 (1.65)

w′ = A

(
C−1w′ + XTy

σ2

)
(1.66)

which leads to the posterior probability

p(w|y′) = e−
1
2 (w−w′)TA−1(w−w′)/Z (1.67)

This is now a multivariate probability distribution. The mean of the distribution are the best
parameters w′ and their variance and also covariance is encoded in A. Those parameters can then be
used to predict new values y, given the coordinates x.

1.5. The SAMPLE Approach

The structure search method used in this thesis is called Surface Adsorbate polyMorph Prediction
with Little Effort or short SAMPLE. It is an approach to efficiently predict all possible surface
polymorphs that molecules can form on any given substrate. At the moment the approach is limited to
monolayers of molecules with significant molecule-substrate interactions as it is limited to commensurate
structures.

The polymorph prediction is done in four distinct steps from a discretization of the potential energy
surface to the prediction of all possible polymorphs on a surface. In this section a short overview of
these four steps will be given, for an extensive explanation see [51]. The approach has already been
shown to be able to explain the formation of triangular TCNE structures on Au(111) [52] and could
identify the defect energies of kink formation for TCNE on Ag(100) [53].



Chapter 1. Introduction 20

1.5.1. Step 1: Generation of Local Geometries

In this step the interaction of single molecules with the surface is explored. The basically infinite
potential energy surface for the position of a single molecule on the surface is reduced to the local
energy minima. Those geometric local minima are then used as discrete building blocks with a
common anchor point, which is the surface atom closest to the geometrical center of the molecule.
This approach combined with basin hopping was successfully applied for the structure prediction of
TCNE on Au(111)[52]. A detailed explanation of the determination of the local geometries can be
found in section 2.3.

1.5.2. Step 2: Combination to Configurations

Once the building blocks are found, they need to be combined in every possible way for a full
exploration of the discretized configurational space. In principle this is easy: First one needs to
take all possible inequivalent surface unit cells. Then, for each unit cell, all combinations of symmetry
inequivalent local geometries that fit into the cell have to be built. This is done by representing the
unit cell as a discretized grid with every surface atom in the unit cell acting as an anchor point. The
first local geometry is then put onto the first anchor point. The next molecule is positioned on another
anchor point and then the structure is checked for collisions. If the molecules collide, in the cell or in
any periodic replica, the second molecule is moved to the next position, otherwise another molecule
gets added with the same procedure. This procedure is repeated for all possible local geometries on
all possible positions with specified cell and number of molecules. A representative sketch is shown
in figure 1.6. The combination of a specific unit cell with local adsorption geometries will further be
called configuration. Periodically replicated configurations will be called structures.

(a) Discretized grid (b) Add first
molecule

(c) Discard colliding
configurations

(d) Add second
molecule

Figure 1.6.: Creation of a configuration with 2 molecules in a 4x4 unit cell. First a discretized grid is
specified, then the first molecule is added at the first position and the second molecule
is shifted until the molecules do not collide with each other (adapted from [54]).

The main problem of this method is, that the number of configurations increases exponentially with
the number of molecules and the size of the unit cell. Lukas Hörmann was able to tackle this problem
in his master’s thesis [54]. He developed methods to remove all symmetry equivalent configurations
and parallelized the code to a degree where it is possible to create millions of configurations within a
day on a standard personal computer.
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1.5.3. Step 3: Learning of Interactions

Now that the millions of possible inequivalent discretized configurations are found, a formalism to
estimate their energies is needed. The main problem here is, that in contrast to many machine
learning applications, each data point is very expensive to evaluate (≈ 1000 CPUh). Thus an energy
model, which enables the description of the system, and a method to efficiently train the model are
needed. A very general model would be an expansion of all interaction energies in a configuration into
n-body contributions

Econf =
N1body∑

i

niEi +
N2body∑
j

njEj +
N3body∑
k

nkEk + . . . (1.68)

To train this model, all n-body interaction energies Eα for all n-body contributions need to be fitted
sufficiently. This model is still too complicated and would lead to a highly underdetermined system
given the affordable number of calculations. A reasonable simplification of the model is a truncation
at the 2-body contributions as 3-body and higher interactions are not expected to have a significant
influence in the formation of surface polymorphs.

The energy model used then reads

Econf =
∑

geometries

ngUg +
∑
pairs

npVp (1.69)

= N ∗E (1.70)
E = (U1, . . . ,UNg ,V1, . . . ,VNp)T (1.71)

and is visualized in figure 1.7.

Figure 1.7.: Visualization of the interactions used for the energy model. Molecule-slab interactions
are shown in blue and molecule-molecule interactions in green (adapted from [51]).

Here the 1-body contributions represent the interaction of a single molecule with the surface and the
2-body contributions represent interactions of pairs of molecules with each other.

The number of 1-body contributions is limited to the number of local adsorption geometries. For
the 2-body interactions the situation is different. Here, in principle, there are still infinitely many
contributions, but many of them are very similar. To encode this similarity, pairs of molecules
are represented with feature vectors (FV). A common feature vector used for the representation of
molecules is the Coulomb matrix, where the molecule is represented as a matrix of all interatomic
distances rij scaled with the atomic numbers. As this FV operates in the internal coordinate system
of the molecule, it is insensitive with respect to symmetry operations. A reasonable adaption of
this FV for molecule pairs is the replacement of interatomic distances with distances of atoms on
different molecules. To reduce the amount of redundant information, only a subset of the atoms in the
molecule (usually those at the rim of the molecule) are considered. The distances are then scaled with
a minimal distance dmin, specifying the closest possible arrangement of two molecules. The minimal
distance needs to be chosen such that attractive interactions are fully represented, but Pauli repulsion
is excluded. How it is chosen in this thesis is explained in section 2.4.2.
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One major drawback of the Coulomb matrix feature vector is, that it is discontinuous with respect
to a permutation of atom indices. Thus, for the feature vector in SAMPLE the distances are sorted,
and the feature vector is populated with the N smallest distances. In figure 1.8 all distances between
hydrogen atoms surrounding two benzene rings are shown. The ten smallest distances, which could
be used for a FV are highlighted by a thicker line width. To increase the separation in feature space
for smaller distances, the renormalized distances are potentiated by n, where n is typically between 1
and 5. The full mathematical form of the feature vector is displayed in equation 1.75.

f(g1, g2) =


(
dmin
|ri−rj |

)n(
dmin
|ri−rj |

)n
...

 (1.72)

Figure 1.8.: Visualization of all distances between hydrogen atoms of two benzene molecules. The
thick lines mark the 10 smallest distances used for the feature vector.

For an estimation of the interaction energies E, Bayesian linear regression (equation 1.61) is used.
The regression problem here takes on the form

min
E

(
||NE −EDFT ||+ (E − Ê)TC−1(E − Ê)

)
(1.73)

The parameter vector now consists of the interaction energies E with the corresponding mean values
Ê. The model matrix N consists of as much rows with model vectors n as there are training
configurations EDFT . The number of columns is equivalent to the length of the interaction energy
vector E. Each element of the matrix represents the number of occurrences of this specific interaction
in the configuration, normalized by the number of molecules in the configuration. As an example: a
configuration with 2 of 4 possible adsorption geometries in the unit cell and a distinction between six
different pairwise interactions, where one is present four times and the other twice in the configuration,
the model vector n will look as follows:

ni = (1, 0, 1, 0︸ ︷︷ ︸
1body terms

0, 2, 0, 4, 0, 0)︸ ︷︷ ︸
2body terms

/2

= (1
2, 0, 1

2, 0, 0, 1, 0, 2, 0, 0)

Those model vectors for all data points are then combined to the model matrix N .

Now only values for the mean Ê and covariance C for the prior p(E) are missing. As prior energies
for the molecule-slab interactions Ug the adsorption energies from the local geometry search are used.
All interaction energies are chosen to be zero and the physical knowledge is encoded in the covariance
matrix. The single-body submatrix of C is given by a constant value σ2

ads times a unity matrix. For
the covariance of the pair energies a twofold kernel is used.
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The first part σi consists of the mean pairwise prior deviation σint and a factor that scales this
correlation with the minimal distance between two geometries renormalized by a typical decay length
τ . This kernel represents the physical intuition, that pair interactions will decay to zero for large
distances.

σi = σint · e
dmin−min(|rgi−rgj |)

τ (1.74)

For the covariance of a pair of feature vectors, the σi are multiplied with an additional kernel that
encodes the similarity of two molecule pairs in feature space. This encodes the assumption, that similar
pairs will have similar interaction energies. The elements of the pair-energy part of the covariance
matrix now read

Cij = σi ∗ σj ∗ e−
|fi−fj |

γ (1.75)

When training the model, a small D-optimally selected subset of configurations is calculated with DFT
and the covariance and mean of the parameter posterior p(E|y) are updated according to equations
1.65 and 1.66.

D-optimal selection is an established method in experimental design theory. It chooses a set of
configurations that maximizes the determinant of the information matrix NTN .

The hyper parameters used in SAMPLE are

σDFT DFT uncertainty
σads Estimated deviation of adsorption energies
σint Estimated energy range of interaction energies
τ Characteristic decay length for interactions

dmin Minimal distance between atoms
γ Characteristic decay length of feature vector

They are preoptimized on artificial gasphase monolayers (full configuration with removed metal
substrate). This enables a reasonable hyper parameter optimization with little computational effort.
The exact procedure is explained in section 2.4.

1.5.4. Step 4: Prediction

Once training of the model is finished, the energies for all remaining configurations can be predicted.
Therefore only the model vectors n need to be determined. Then the energies can be calculated by
evaluation of a simple matrix multiplication

Epred = N ∗E (1.76)

Thus the configuration energy of millions of structures can be evaluated within a few CPUh, enabling
the prediction of large data sets.

The quality of the prediction is evaluated by validation on a test set consisting of DFT calculated
configurations that were not part of the training set. The root mean square error (RMSE, see equation
1.77) between prediction and DFT energy is representative for the uncertainty of all predictions.

RMSE =

√√√√ 1
N

N∑
i=1

(Epred,i − Eexact,i)2 (1.77)

A full workflow of the SAMPLE method is shown in figure 1.9.



Chapter 1. Introduction 24

Start prediction

Find local geometries

Determine minimal distances

Create possible configurations

Generate gas phase data
set (≈ 2000 calculations)

Optimize hyperparameters

Calculate first D-optimal
configurations on substrate

Train with data set

prediction good enough? Calculate additional dataset

Calculate validation set

Predict validation set

Validation good enough? Add validation set to training set

Finished structure search

n

y

n

y

Figure 1.9.: Schematic workflow of the sample method from the calculation of local geometries to
the prediction of surface polymorphs. Red boxes involve costly DFT calculations. Blue
boxes are done by the SAMPLE package and orange boxes are user decisions.
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2. Making Tractable

In the first part of this chapter, the necessary adaptions to the computational method are explained.
As an increasing molecule size inevitably increases the computational expense, the largest molecule
used here would have needed resources beyond our capacity. Thus, the first part will introduce the
computational methodology and an approach to reduce the cost of every single DFT calculation
significantly, which enabled the calculations of the results presented in chapter 3.

While being able to calculate the properties of interest quantum chemically for a few configurations
is nice, it is still not sufficient for a reliable structure prediction. Therefore the second part of this
chapter will focus on adaptions to the the SAMPLE approach (sec. 1.5). Some of these were necessary
to enable the treatment of molecules with functional groups, while others massively improved the
predictive power.

2.1. Quantum Mechanical Method Used

The computational effort of periodic surface calculations scales formally O(N3) with respect to the
number of basis functions N. For periodic systems, the use of plane waves would in principle be
beneficial (see section 1.1.7). In this thesis mainly surface calculations employing the repeated slab
approach and large areas of vacuum were performed. The description of vacuum with plane waves
in the periodic slab approach is very costly, thus for this thesis the DFT code FHI-aims [5] was
mainly used. Here, by using numeric atom-centered basis functions and employing suitable numerical
integration schemes, the scaling can be brought down to roughly O(N). As exchange correlation
functional PBE was used. For the dispersion correction the method by Tkatchenko and Scheffler (TS)
in its surface parametrization TSsurf was taken. The k-point distribution was carried out with the
Monkhorst-Pack scheme, but no gamma offset was used. For the species basis sets, tight settings with
modifications due to the convergence tests were used.

2.2. Mixed Basis Set Method

Despite the good scaling of numeric atomic orbitals, larger systems (>5000 electrons) are still hard
to handle. For metal-organic interfaces however, such large systems occur, as due to the strong
delocalization of electrons in metals, surfaces have to comprise several atom-layers and large surface
areas need to be considered for molecule-surface interactions.

Figure 2.1.: Accuracy
requirements for the metal
slab layers.

One little recognized detail is, that high accuracy is only needed in
the vicinity of the surface, where the interaction with the molecules
takes place. The slab underneath only has to act as an electron bath
with reasonable bulk properties. Therefore a reasonable approach for
cost-reduction is to adapt the number of basis functions used with
respect to the position in the slab.

For the slab used in this thesis this means: Use a well converged basis
for the uppermost slab layers and as simple and cheap basis functions
as possible for the lower lying layers. This procedure is here often
called mixed basis set method.
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2.2.1. Application to Ag(111)

The structure search in this thesis is performed on the Ag(111) surface, thus it is the system of choice
for a test of the basis set optimization. The first step when starting with a new system in DFT is
performing convergence tests for all relevant parameters. Those tests for the standard parameters can
be found in section A. Within these tests one problem arose: With the standard methods it was not
possible to gain reasonable accuracy (below 20 meV) for the convergence of the number of substrate
layers within the available computational time. This problem was the driving force in the development
of the mixed basis set method.

Setup

The assumption of the approach was, that the lower lying layers only act as an electron bath and thus
only the minimal basis is needed. As there was no reference available, 3 different test species with
decreasing accuracy were used. This was achieved by starting with the standard tight Ag basis set
and subsequent removal of basis functions and sparsening of the integration grid up very light settings
which are further on called reallylight. The explicit settings and full calculations are shown in section
C.

Converging the Work Function

The resulting slab should still represent the correct physical properties of a silver surface. A reasonable
slab thickness is assumed to be reached when the surface-work function is reasonably converged
(around 10 meV error). The suitability of the different basis-sets was checked in the following way:
A single-pillar slab of tight Ag with 10 atoms was created and the species was replaced with the
corresponding lighter settings atom by atom.

A check of the work function (figure 2.2) shows, that a suitable convergence of the work function can
already be achieved when only 2 of the atoms are calculated with the better species definitions, taking
only tight Ag, 5 layers of silver are needed for the same convergence. The computational offset of
this method is comparable to 2-4 layers of tight silver because there are always 8-10 atoms present.
However this is outweighed by the better convergence behavior. Differences of the electron densities
were also checked, but already for 3 tight layers the fluctuations in the surface region are negligible.
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Figure 2.2.: Work function evolution and mean SCF-cycle time of an Ag pillar of 10 atoms when
gradually replacing the basis set.
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Slab Relaxation

To allow for the geometric interaction of the surface with adsorbed molecules, usually the uppermost
two layers are relaxed during a geometry optimization and the lower lying layers are held fixed.
Therefore the number of tight Ag layers on the surface needed for correct reconstruction has to be
checked. This was done by creating a slab with 8 layers, fixing the 6 lowermost and successively
replacing the reallylight Ag species with tight Ag from the top. The results in figure 2.3 suggest to use
three layers of tight Ag which leads to an error in energy below 0.5 meV and a geometric deviation
below 0.001 Å .
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Figure 2.3.: Evolution of surface relaxation with increasing number of tight Ag layers starting from
an 8-layer slab with reallylight Ag. Left: Energy difference to a relaxed tight Ag only
reference slab. Right: deviation of the z coordinate for the top, and second layer from
a reference slab.

Convergence of Adsorption Energy

To further check the method, the adsorption energy of carbon monoxide on a silver slab with 8 atoms
and subsequently altered species from tight to reallylight was investigated. Convergence tests for the
adsorption energy with respect to the number of tight layers and k-points showed that 3 layers of
tight Ag and 36 k-points show reasonable convergence accuracy. The full tests are shown in section
C. Figure 2.4 shows the dependence of the adsorption energy accuracy on the computational time
invested for successive replacement of tight Ag with reallylight Ag (green) and increasing number of
tight Ag layers (red) at 36 k-points. It is again visible that the improved method reaches convergence
with 2 tight Ag layers whereas otherwise 7 to 8 layers would have been needed.
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Figure 2.4.: Left: Adsorption energy accuracy dependent on the calculation time for a layer
convergence with reallylight Ag and 36 k-points, The number of tight layers is written
next to the calculation points. Right: Adsorption geometry of CO on an Ag-slab with
three tight Ag layers for both methods.
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Number of Layers Needed

All tests up to now were for a small toy system and with a fixed total amount of layers. For a reliable
estimation of the error, the adsorption energy for pentacenequinone, which will be used later, with
respect to the total number of slab layers was investigated. Therefore a slab with 3 layers of tight
Ag was taken and layers of tight Ag or reallylight Ag were added. To minimize the k-point error,
those calculations were performed with 60 k-points. The evolution of the adsorption energy error and
computational expense are shown in figure 2.5. Due to computational cost and convergence issues the
calculations with solely tight Ag were carried out only up to 7 layers.

For 8 layers the adsorption energy with the mixed method is converged to 3 meV but with the cost
of 1000 CPUh for a single calculation. Because this is still too expensive for structure search, 8 layers
were recalculated with looser settings for the tight Ag (tabulated in listing 2). The resulting adsorption
energy is displayed as green cross in figure 2.5. This minor adjustment changes the adsorption energy
by only 6 meV but cuts the computational cost by nearly one half.
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Figure 2.5.: Layer convergence for pentacenequinone. The calculations were performed with 3 layers
of tight Ag and N-3 layers of reallylight or tight Ag below. The point marked with a
cross is a single calculation with cheaper settings described in the text.

With the cheaper settings also a k-point convergence test for a 8-layer slab was carried out, which
is shown in figure 2.6. It indicates, that with an adsorption energy error of around 20 meV, another
halving of computational expenses can be achieved.
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Figure 2.6.: K-point convergence for PQ on Ag(111) with mixed Ag species.

Final Settings

Taking all convergence tests into account, the k-point density was chosen to 36 per substrate atom. The
slab used for further calculations consists of 3 layers of tight Ag and 5 layers reallylight Ag underneath.
The species definitions and full settings for the further calculations are tabulated in section C.
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2.3. Local Adsorption Geometry Search

One important part of the SAMPLE approach is the search for local adsorption geometries. For such
a search for local energetic minima, the number of degrees of freedom (DOF) is 3N-6, where N is
the number of atoms allowed to move. For the surface slabs used here, the two uppermost layers of
silver and the molecule have to be optimized, which leads to several hundred degrees of freedom. But
luckily it can be assumed that the slab and molecule will not change their general structure strongly,
so for rigid molecules, the most important degrees of freedom are the rotations and movement of
the molecule with respect to the surface. As large molecule-substrate interactions are expected, this
six-dimensional subspace (3 rotations and 3 translations for the molecule) is further reduced to only
3 important dimensions, namely the movement along the surface plane and the rotation of the whole
molecule on the plane. The vertical distance between the lying molecule and the substrate influences
the adsorption energy strongly, but is also fixed as it is similar for all x-y positions.

Figure 2.7.: High-symmetry points on the fcc(111) surface.

Now a rough presampling of the surface can be performed within this three-dimensional subspace.
Full geometry optimizations are then performed from selected points on this potential energy surface
(PES). Up to now, the starting points were selected by positioning the molecules center of mass
above all high symmetry points of the substrate (for fcc see figure 2.7) and rotating it in discrete
angle-steps. From all those points full optimizations were performed. This approach led to slow
optimization convergence and possibly missed minima, because the starting points were often far from
local minima of the reduced PES.

To eliminate this problem, a reasonable presampling of this reduced PES needs to be performed. One
possible method is presented here:

First the approximate adsorption height is determined by putting a single molecule on a point on
the surface, that is supposed to be high in adsorption height (e.g. a top position). Then a geometry
relaxation restricted to the z-coordinates of the molecule is performed. With this adsorption height,
the molecules are placed on all high symmetry points and then rotated to distinct points on the
surface. In contrast to the old method explained above, instead of full, CPU time consuming, geometry
optimizations, now only single points are calculated. The energies for the full rotations are then
interpolated with cubic piecewise polynomial splines using the torque on the molecule as the first
derivative of the energy with respect to the rotation. The full mathematical derivation is depicted in
section F. From the minima on those splined curves, full geometry optimizations are performed. Some
examples for this method are shown in section 2.3.

This approach still uses only the PES around the high symmetry points. An improvement can be
achieved with the help of Gaussian process regression, which allows a continuous interpolation of the
full subspace.
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2.4. Improvements to the Learner

The only molecules the SAMPLE approach was already successfully applied to are naphthalene and
TCNE [51, 54] (figure 2.8). Naphthalene is solely surrounded by hydrogen atoms, which dominates
the interactions with other naphthalenes. For TCNE, the description of pairs using the nitrogen atoms
is unique and as nitrogen and carbon have similar van der Waals radii, there is also no problem when
defining minimal distances between molecules. To describe the pairwise interactions of molecules
with multiple surrounding species correctly, some improvements to the method were implemented. In
the following section these improvements will be shown on the example of benzoquinone on Ag(111)
(see figure 2.8). It is surrounded by hydrogen and oxygen atoms which have very different size and
interaction range, which makes a distinction in the characterization necessary.

Naphthalene / Cu(111) TCNE / Ag(100) Benzoquinone / Ag(111)

Figure 2.8.: Left and middle: molecules and surfaces already used for structure searches.
Right: system used for learner improvements.

2.4.1. New Feature Vector

The feature vector (FV) introduced in section 1.5.3, which defines the similarity between pairs, does
not distinguish between different species. As shown in table 2.1, the interaction range is very different
for different species combinations. To encode this physical requirement, the feature vector was split
into sub-vectors, which all consider only one specific species pair. The entries of the sub-vectors are
then sorted and cropped at a specific length. In principle this approach is a stacked combination of
the standard FV (see section 1.5) for each species pair.

In equation 2.1, the structure of such a feature vector for two geometries g1 and g2 and a distinction
between species H and O is shown. The minimal distances dXYmin are hyper parameters that need to be
chosen reasonably. ri and rj are positions of atoms on different molecules.

f(g1, g2) =



(
dOOmin
|rAi −r

O
j |

)n
...(

dOHmin
|rAi −r

H
j |

)n
...(

dHHmin
|rBi −r

H
j |

)n
...



fOO(g1, g2)

fOH(g1, g2)

fHH(g1, g2)

(2.1)

Figure 2.9.: Representation of the
feature vector for species
O and H.

This new feature vector allows to distinguish between different species and thereby interaction ranges.
A test of the new FV and all other improvements introduced in this section is shown in section 2.4.5.
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2.4.2. Choice of Minimal Distances

For the generation of all configurations and also the learning of the interactions, a physically reasonable
minimal distance between all different species occurring in the molecule has to be provided, but there is
no straightforward way of choosing those minimal distances. To find reasonable values, the interaction
energy of selected BQ pairs dependent on the dimer distance was probed. The pairs were selected
such, that the dominating interactions are solely between a single species on either molecule. The
interaction energies are then corrected by the adsorption energy of single molecules on the surface:

Einteract = Egasphaseinteract − Esubstrateads

ddimer ∗ hmol
(2.2)

where the dimer distance ddimer (measured at the molecule centers) times hmol, the length of the
molecule orthogonal to the movement, represents the area a single molecule would occupy on the
surface (see figure 2.10). This allows for an estimation of the interaction energy on the surface. A
value lower than zero means, that if the molecule-surface interaction does not change the molecule-
molecule interaction, at this distance it would still be energetically favorable for a line of molecules on
the surface to stay on the surface. For values higher than zero, the line would gain energy by desorption.
As the remaining of the molecules on the surface is a crucial requirement for surface structures, the
distances where the interaction energy becomes zero were chosen as the distance thresholds. From
equation 2.2 it is also evident, that this point does not depend on the length of the molecule, but only
on the distance and interaction energy, which makes it a very robust parameter.
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Figure 2.10.: Interaction energy evolution of a BQ dimer used to probe the minimal distance between
hydrogen atoms.

The results for all distance thresholds are shown in table 2.1 and the exemplary pair energy curve
of the H-H distance of benzoquinone on Ag(111) can be seen in figure 2.10. All potential curves are
shown in section E. From the results it is evident, that the different species pairs have distinct scaling
behavior, making a diverse treatment necessary. It is also noteworthy, that the minimal distance
between two hydrogen atoms, and the one between hydrogen and oxygen is the same, whereas the
distance between hydrogen and carbon is much larger. This indicates that the system is likely to form
hydrogen bonds which could stabilize certain configurations.

Table 2.1.: Final distance thresholds for benzoquinone mapped from gas phase pairs
species pair min distance / Å

C-H 2.30
H-H 1.60
C-O 2.50
O-H 1.60
O-O 2.40
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2.4.3. New Covariance Kernels

Because of the new feature vector, the old definition of the real-space kernel (see equation 1.74) is
no more applicable, as the definition of the minimal distance is no more unique. Therefore four new
kernels were tried. The first takes only one minimal distance parameter and uses the minimum of all
species pair distances for the uncertainty.

ignore: σint · exp
[
−dmin − dpair,min

τ

]
(2.3)

This causes the minimal distances of the smallest atoms (most often hydrogen) to be the dominating
factor for the uncertainty. A slight improvement is achieved by the minimal kernel, which takes a
different minimal distance for all pairwise interactions and then takes only the maximal variance for
the prior.

minimal: σint ·max
(
exp

[
−
dABmin − dABpair,min

τAB

])
(2.4)

If several species pairs have similar values, this could influence the effective uncertainty. Another
option is to build a mean of all variances by summing up all contributions and then dividing by the
number of species combinations.

additive: σint ·
1

NAB

∑
AB

exp

[
−
dABmin − dABpair,min

τAB

]
(2.5)

This leads to a kernel that considers not only the largest, but also smaller variances and should be
well suitable for systems with only a few different species. If the number of species becomes too large,
the averaging will lead to an underestimation of the uncertainty. One more possibility is to multiply
all variances.

multiplicative: σint ·
∏
AB

exp

[
−
dABmin − dABpair,min

τAB

]
(2.6)

This approach is frequently used in Gaussian process regression, but leads to a significant, and in this
application unwanted, reduction of the correlation between pairs.

The performance of the different kernels for the training of BQ in gas phase is shown in figure 2.11.
Their applicability is due to be tested with more systems. For this system there is no significant
difference between additive, minimal and ignore, but the multiplicative kernel performs noticeably
worse.
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Figure 2.11.: Performance of the different kernels for a BQ gas phase monolayer. From a test set of
2370 calculations, 100, 150 and 200 were chosen D-optimal for training and all other
configurations were predicted.
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2.4.4. Improvements of the Prior

For the reliable energy prediction of all constructed configurations, a certain number of training
calculations is necessary. With Bayesian linear regression, this number can be reduced by introduction
of physical knowledge into the model via the mean and covariance of the prior. For the interaction
of the molecule with the substrate, the adsorption energy can be used as a suitable prior mean.
On the other hand, the molecule-molecule interactions on the surface are manifold. Some examples
are electrostatic interactions, van der Waals forces, formations of chemical bonds, Pauli repulsion
or exchange and correlation energies. An approximate estimation without quantum mechanical
calculations is possible only for the electrostatic interactions and for van der Waals interactions. As
the electrostatic prior is still quite expensive to calculate and has not shown significant improvement
for our systems, the formalism needed is only shown in section D.

Van der Waals Forces can easily be computed with the correction suggested by Stefan Grimme[19]
which was already introduced in section 1.1.5. In this thesis the interaction energy between two
molecules is estimated by equation 1.38 in sixth order. The free molecule coefficients CAA6 and RAA
were taken from Grimme’s publication[19]:

Species H C N O F
CA6 /

eV
A6 1.66 17.10 11.50 7.25 5.90

RA0 /A 1.11 1.61 1.55 1.49 1.43

For PBE the s6 coefficient was chosen to s6 = 0.94 and the damping constant in the damping function
was selected to α = 23. Those are the same values as used inside the FHI-aims code.

Learning from Gas Phase on the other hand is a useful tool if the dominating interactions in the
gas phase are similar to those on the surface, which is true for hydrogen bonds and van der Waals
interactions, but completely wrong for charge transfer driven interactions. If applicable, pairwise
interaction energies from gas phase calculations can be used as a prior for the pairwise interactions
on the substrate.

An application of those two prior improvements to benzoquinone on silver is shown in section 2.4.5.
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2.4.5. Comparison of the Improvements

To test the different improvements introduced in this section, a RMSE evolution for the training of
benzoquinone on Ag(111) was calculated. Therefore all substrate calculations of BQ were used (220
with 1 or 2 molecules per UC, 27 with 3 or 4 molecules per UC). For the feature vector the atom
distances between all hydrogen and oxygen atoms were used, if not noted differently. Then a training
set with size N was chosen D-optimal from the calculations with 1 or 2 molecules per UC and all other
configurations were predicted. All results can be seen in figure 2.12.
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Figure 2.12.: Comparison of the different feature vectors for BQ on Ag(111). The RMSE per
molecule is calculated by D-optimal training from a set of surface calculations and
prediction on the remaining data points.

For the first test, only the oxygen atoms of the BQ molecules were used to define the FVs. The error
increases because some configurations in the test set can not be learned and as the test set becomes
smaller, their influence increases. The old feature vector with oxygen and hydrogen atoms is able to
decrease the error by learning, but not to a satisfactory level.

The new feature vector allows for a significantly increased prediction result, but the use of a van
der Waals prior leads to no real improvement. An optimization of the hyper parameters allows for
the RMSE to decrease even further. To get even better results, first a gas phase system with pairs
equivalent to the substrate was trained with 2850 data points. The pair energies of this system were
then used as interaction prior for the substrate system. What is remarkable about this approach, is
that the RMSE is very low right from the beginning. The best value of the optimized learner is here
already reached after 60 data points.
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3. Application

To date the SAMPLE approach has only been tested for small and highly symmetric molecules (TCNE
and naphthalene). Molecules used in organic electronics are often much larger. The aim of this thesis
was to extend the applicability of the approach toward larger systems.

3.1. Systems of Interest

For this extension of system size, a system with specific characteristics was needed. The main
functional groups of the molecule should not change with molecule size, as otherwise the results would
not be directly comparable. Also the smallest unit, which is used for methodology development, should
have a size, where a larger set of test calculations is within the available computational expense.

With these requirements in mind, acenequinones were chosen as the ideal playground for the advance
towards larger molecules. Their smallest representative, benzoquinone, allows reasonably fast and
cheap calculations which are needed for method development. Adding a benzene ring on either side
leads to a significantly larger molecule, which still has similar interactions with the surface. With two
more benzene rings, the even larger molecule pentacenequinone is obtained. The ab-initio structure
search for this molecule is at the computational limits realizable with the available resources (2 high-
performance clusters).

The Ag(111) substrate as a surface was chosen, because the interaction with the molecules was
expected to be between physisorption and chemisorption (at least for pentacenequinone [55]), which
was expected to lead to commensurate structures, but also rich surface polymorphism.

The molecules and substrate surface used in this thesis are visualized in figure 3.1.

Benzoquinone (BQ) Anthraquinone (AQ) Pentacenequinone (PQ)

Ag(111) Surface

Figure 3.1.: Molecules used for structure search on Ag(111).
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3.2. Local Geometry Search

For the SAMPLE approach, the first step is to find local adsorption geometries. Therefore the search
method introduced in section 2.3 was used. The procedure is here explained in detail on the example
of benzoquinone. For anthraquinone and pentacenequinone the same practice was used.

3.2.1. Search Procedure

First a geometry relaxation of the BQ molecule in the gas phase was performed. Then a single molecule
was relaxed on a position at the surface which was suspected to have a large adsorption height. With
this resulting adsorption geometry lifted by 0.1 Å , the rotational potential energy surface was mapped
around the high-symmetry points depicted in figure 3.2. For all high symmetry points single-point
calculations of 6 to 8 geometries equally distributed in the symmetrically inequivalent rotation area
were performed. As all three molecules share the same symmetries, this means that for the bridge
position, 90 degrees, and for the other high symmetry points 30 degrees had to be screened.

Figure 3.2.: High symmetry points on the fcc(111) surface.

An example of the adsorption energy dependence of BQ for rotation at the bridge position is plotted
on the left side of figure 3.3. Here the starting position of 0 degrees is always the one, where the
oxygen atoms are aligned vertically. For BQ at bridge the energy range is about 300 meV and a local
minimum is present at around 60 degree.

Before this curve can be used for further calculations, its stability with respect to the chosen adsorption
height needs to be tested. The main findings of this test (right side of figure 3.3) are, that a reduction
of the height by 0.2 Å shifts the minimum at 0 degree due to Pauli push back effects. For an increase
of 0.2 Å the curve stays qualitatively the same and increasing it by 1 Å results in a very flat curve
which still comprises the same minima. Thus it can be assumed that the chosen height is suitable and
that for the rotational sampling the use of a geometry, which is slightly higher than the initial relaxed
geometry is advisable.
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Figure 3.3.: Left: Rotational adsorption curve for BQ in the bridge position. Starting points for
geometry optimization are marked with red arrows. Right: Adsorption curve in different
heights. The reference height is 3.53 Å .
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As the exact form of the rotational PES-curves for all three molecules is not really relevant, they can
be found in section G. The main findings of the rotational presampling are, that the energy spread
is largest for the bridge position (≈ 300 meV), intermediate for top (≈ 100 meV) and smallest for
the hollow positions (≈ 50 meV) independent of molecule size. A significant change of the shape
with changing molecule size is only observable for the bridge rotations, where more local minima are
developed. From all curves, full geometry optimizations were performed from all local minima and
saddle points. In the following section the resulting geometries for the three molecules are discussed.

3.2.2. Results for Benzoquinone

For this molecule, 9 starting points for the full geometry optimization resulted in 7 distinct geometries,
because three geometries relaxed into the global minimum (local geometry 1). The geometries together
with their adsorption energies are shown in figure 3.4. The energetically most favorable site is≈ 50 meV
lower in energy than geometries 2 and 3. Those are symmetry equivalent with respect to the first Ag
layer, but the different hollow sites make them geometrically distinguishable. From 3 to 4 there is again
an energetic penalty of ≈ 50 meV and then geometries 5 and 6 are another ≈ 60 meV less favorable.
Local geometry 7 is 300 meV worse in adsorption energy than the energetically most favorable site,
thus it was neglected for the structure search due to its low adsorption energy. Nonetheless it is shown
here, because it also appears in the local geometries for AQ and PQ.

1 2 3
-1111 meV -1066 meV -1065 meV

4 5 6 7
-1016 meV -955 meV -953 meV -812 meV

Figure 3.4.: Local adsorption geometries of BQ with their adsorption energies. The uncertainty of
the adsorption energies is ≈ 10 meV.

Figure 3.5 shows the mean adsorption heights for all local geometries divided into the different species
(carbon, oxygen and hydrogen). The variation of adsorption height is in the range of 0.2 Å. As
expected, it mainly depends on the positions of the atoms on the surface. This means, that atoms
right above metal atoms are higher in position compared to those on bridge and hollow sites. The
only exception to this is the adsorption height of geometry 7, which is the only geometry where carbon
atoms are directly on top of silver atoms.
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Figure 3.5.: Adsorption heights and energies of the local geometries of BQ.

3.2.3. Results for Anthraquinone

Adding a benzene ring on both ends of benzoquinone leads to anthraquinone. Here geometry optimi-
zations were not solely started from the minima and saddle points of the rotational PES sweep,
but additionally a slightly more sophisticated PES-prediction method involving Gaussian process
regression was used. This resulted in slightly different starting points. From the form of the resulting
adsorption sites it can be assumed, that they would have also been found with the method explained
in this thesis and the improved approach only led to faster results with fewer calculations. The
resulting local geometries for AQ are displayed in figure 3.6. Geometries 1 and 2 are again almost
symmetry equivalent with respect to the first Ag layer and their energy difference stems from the
different adsorption heights, which could be a geometry convergence artifact. Around ≈ 50-80 meV
less favorable is a range of 4 adsorption geometries, now also with a hollow position as central
adsorption point. Another ≈ 60 meV off are geometries 7 and 8 which are also hollow-ignoring
symmetry equivalents. As already for BQ, the last structure is ≈ 300 meV lower in adsorption energy
than the best.

1 2 3 4 5
-1500 meV -1487 meV -1434 meV -1413 meV -1399 meV

6 7 8 9 10
-1398 meV -1336 meV -1334 meV -1296 meV -1205 meV

Figure 3.6.: Local adsorption geometries of AQ with their adsorption energies. The related
geometries of BQ are indicated with blue circles. Due to the convergence tests a
maximum uncertainty of adsorption energies of ≈ 15 meV can be assumed.
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Interesting about these structures is, that the adsorption geometries of BQ can be found as direct
part of the AQ geometries for geometries 5, 9 and 10. The backbone of geometries 1 and 2 is almost
equivalent to BQ geometry 5, and the one from geometry 3 is very similar to the 6th of BQ, but a
little bit shifted due to the additional benzene rings. The worst geometry of BQ is here also part of
the worst adsorption geometry. A general observation for all those structures is, that it is energetically
beneficial for the benzene-ring carbons to be at positions far from the Ag atoms.
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Figure 3.7.: Adsorption heights and energies of the local geometries of AQ.

3.2.4. Results for Pentacenequinone

The largest molecule investigated exhibits a range of 12 distinct local geometries, which are all
visualized in figure 3.9. Unfortunately, the first 8 are within an energy range of only 40 meV. Here
again geometries 2 & 4 and 7 & 8 are hollow-ignoring symmetry equivalents. In contrast to the two
other molecules, the total energy spread is now only ≈ 170 meV. Geometry 9 of AQ, which had
a reasonable adsorption energy, exhibits the worst local minimum for PQ, closely followed by the
geometry that was already the least favorable for BQ and AQ.
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Figure 3.8.: Left: Adsorption heights of pentacenequinone. The dotted lines indicate experimental
results obtained by Georg Heimel and colleagues [55]. Right: energies of all local
geometries of pentacenequinone.

In figure 3.8 the species resolved adsorption heights are plotted and compared to experimental results
obtained by XSW [55]. To date no clear indications for the large difference between simulation and
experiment were found, but new experiments are already being performed.
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It is remarkable, that for this molecule all 7 local geometries of BQ can be identified as parts of
the local geometries, and that three more can be explained with geometries of AQ. Those results
indicate, that the backbone (BQ) is influencing the preferred adsorption sites strongly. The remaining
distinctions arise due to preferred positions of the benzene rings, which leads to an increase in the
number of adsorption sites.

1 2 3 4
-2149 meV -2137 meV -2133 meV -2131 meV

5 6 7 8
-2130 meV -2122 meV -2118 meV -2113 meV

9 10 11 12
-2075 meV -2032 meV -1998 meV -1983 meV

Figure 3.9.: Local adsorption geometries of PQ with their adsorption energies. Related geometries
of BQ and AQ are indicated with blue circles. The uncertainty of adsorption energies
is ≈ 20 meV (see section 2.2).



Chapter 3. Application 41

3.3. Structure Search

Now that the local geometries are found, the actual task of polymorph search can be tackled. In this
section the results for the structure search of benzoquinone and anthraquinone are presented.

3.3.1. Preparations

Before the real structure search on the surface could start, some preparatory tasks had to be accom-
plished. After finding the adsorption geometries, the first challenge was to find out, how close such
geometries should be allowed to come. Those minimal distances for the different species combinations
have already been found for BQ in section 2.4.2 and due to the structural similarity of BQ and AQ,
they were also used for the latter. With those minimal distances, all configurations in a reasonable
coverage range could be constructed. In the following the word coverage will always be used in the
sense of surface silver atoms per molecule. In total, for benzoquinone 279000 and for anthraquinone 3
million structures were constructed. Detailed numbers for the configurations created and the maximum
coverage used for the corresponding number of molecules are shown in table 3.1. Configurations larger
(and less dense) than the upper limits would not lead to energetically more favorable structures, but
increase the number of configurations exponentially, due to the configurational explosion.

Table 3.1.: Total number of configurations constructed for benzoquinone and anthraquinone with
the maximal unit cell size used for structure creation. Additionally the total number of
DFT calculations used for the training in gas phase and on the substrate is depicted for
both molecules.
molecules Structure creation DFT calculations

per Configurations Max UC area Gas phase Ag(111)
unit cell BQ AQ BQ AQ BQ AQ BQ AQ

1 132 2179 12 30 125 300 39 46
2 4592 17827 18 30 1068 300 181 189
3 60956 1790444 24 45 913 300 7 8
4 213904 1210220 29 51 743 0 20 0

After all configurations were constructed, there was one last step before the actual learning could
start. In the SAMPLE approach there are in total 8 hyper parameters (see section 1.5), for all of
which reasonable values need to be found. The physically motivated parameters, like the energy
uncertainties and decay lengths can readily be estimated by human intuition. For the choice of
the feature space parameters, this task is much harder. Thus for the choice of hyper parameters,
sweeps with different combinations of parameters were performed for gas phase monolayers. This is
a configuration of molecules on the surface, but calculated without the surface, which implies, that
molecule-molecule interactions, such as hydrogen bonds, van der Waals interactions and Pauli push-
back are represented well, whereas all effects that arise due to the surface, like charge transfer and
other interactions with the surface, are not considered.

For all the hyper parameter tests, RMSE evaluations were performed with learners trained on confi-
gurations selected D-optimally from the available 1 and 2 molecule configurations and validated on
all remaining calculations (also including 3 and 4 molecules). The hyper parameters chosen after the
tests (shown in section H) are depicted in table 3.2. The number of gas phase calculations available
is shown in table 3.1.

A little remark on one delicate detail about the optimization: This procedure was previously not part
of the standard workflow of SAMPLE, but rather settings that seemed reasonable were chosen. This
led to the belief, that for the feature decay parameter γ, only values between 0 and 1 should be chosen.
A sweep of this parameter revealed, that the RMSE starts diverging for values lower than 0.4 and the
optimum parameter for the molecules used here lies at around 10. So it was possible to cut the RMSE
of several systems, used in the group, in half within a single day of convergence tests.
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Table 3.2.: Hyper parameters used for the structure prediction of BQ and AQ. The full hyper
parameter optimization is shown in section H.

Hyper parameter Symbol Value BQ Value AQ
uncertainty adsorption energy σads 100 meV 100 meV
uncertainty interaction energy σint 300 meV 300 meV
uncertainty DFT data σDFT 10 meV 5 meV
decay length τ 5 Å 5 Å
decay power n 3 3
decay length feature space γ 12 9
feature threshold 0.0075 0.0075
covariance kernel additive additive

3.3.2. Inspection of the Learning Behavior

Once all configurations were created and the optimal hyper parameters were found, the structure
search on the surface could be tackled. Before predictions can be presented, the reliability of the
learner needs to be evaluated. Therefore, in the following a comparison of the learning behavior with
the van der Waals and with the gas phase prior will be given. For the second prior, all gas phase
calculations were used to train a gas phase model. From this trained model, the pair energies were
taken as prior values for the substrate learner. The prior for the single-body energies is in both cases
the adsorption energy of the local adsorption geometries.

One small side remark: due to the small amount of calculations, the standard RMSE, which only
considers data points that have not been learned, could no longer be used reliably. Therefore the
leave-one-out error was utilized. There the deviation of a single calculation from the prediction is
evaluated by training with all but this configuration and subsequent prediction of this single value.
The RMSE is then calculated with all those single-value errors. The maximum error in this case is
simply the largest single-value error. This means that the biggest error calculated with this method
is the maximum obtainable error, given the calculated configurations.
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Figure 3.10.: Comparison of vdW and gas phase prior for benzoquinone and anthraquinone. The
training/test set size was 247 for BQ and 243 for AQ. The error shown here is obtained
with leave-one-out validation.

The first property of interest was the learning behavior with increasing training set size. For this, the
learners were trained with N D-optimally selected calculations from the 1 and 2 molecule configurations,
with N ranging from 10 to 200, and subsequent calculation of the RMSE on all other calculations. The
results in figure 3.10 show, that for both systems, the gas phase prior led to a faster convergence of
the RMSE and also the final RMSE was slightly lower. More important is the fact, that the maximum
error was also much lower, which is beneficial for the confidence in the predictions further on.
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The question now was, why the gas phase prior is so much better than the van der Waals prior. To
answer this question, the evolution of the interaction energies while learning was probed. To picture
this, all unique pairs in the learner were sorted by minimal distance between oxygen and hydrogen.
Then, for each pair, the evolution of the energy from the prior value to the learned value was indicated
with an arrow. An arrow going upwards means, that this pair interaction energy was corrected towards
higher energy while training and the tip represents the final value. For the downwards arrows the
same holds, but in the other direction. A comparison of the two learners for BQ with this method is
shown in figure 3.11. Here it is evident, that with the vdW prior large changes in interaction energy
(up to 400 meV) need to be learned, while for the gas phase prior only small adjustments need to be
made. For anthraquinone (figure 3.12) the situation is a little less obvious. Here the changes of the
gas phase prior are also in the range of 100 meV, but due to the high correlation of the pairs, only a
few substrate calculations are needed for a good representation of the whole system.

Van der Waals prior

Gas phase prior

Figure 3.11.: Comparison of the interaction energy change from the van der Waals and the gas phase
prior for BQ.

As a general conclusion, the vdW prior is not able to model the highly attractive O-H interactions
in the range of 2-3 Å correctly and Pauli repulsion, which becomes important below 2 Å is also not
considered. In all those plots, the general structure of a Lennard-Jones potential is recognizable. The
differences to this structure are caused by other species pairs, which can be closer than the shown O-H
value and have an other orientation and specific interactions.
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Van der Waals prior

Gas phase prior

Figure 3.12.: Comparison of the interaction energy change from the van der Waals and the gas phase
prior for AQ.

3.3.3. Predicted Configurations

For the final predictions, D-optimal sets with a fixed number of configurations (usually 50) were drawn,
and the learner with gas phase prior was trained until convergence of the RMSE in the range of the
DFT error (around 10 meV) was reached. Thus in total 220 configurations with 1 or 2 molecules per UC
were calculated and used for the training of AQ and BQ. With the trained model, then all generated
configurations were predicted. To test the prediction accuracy, the best predicted structures and some
more random structures with 3 and 4 molecules were calculated. The total number of structures
calculated with DFT is shown in table 3.1.
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Figure 3.13.: Prediction versus DFT calculations for BQ and AQ on Ag(111). The errors are only
with respect to the validation set.
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In figure 3.13 the match of the prediction with the calculation results for final training with the gas
phase prior and the full training set is shown. There the validation set for BQ consists of all structures
with 3 and 4 molecules, which were never seen by the learner. For AQ the validation set consists of 16
configurations with 2 molecules and the 8 best 3-molecule configurations, because the computational
cost for single configurations is much higher. As visible there, the validation RMSE could be cut to
the desired 10 meV, but the maximum error is still higher.

Because a thermodynamic equilibrium with a surface molecule monolayer and an infinite molecule
reservoir is assumed as experimental condition, the configuration energy per area is the property of
interest. The case without infinite molecule reservoir, where the configuration energy per molecule
would become the relevant property, could also be considered easily.

With these conditions in mind, the final prediction is plotted, ordered by coverage, in figure 3.14 for
BQ and in figure 3.15 for AQ. Both systems exhibit a large spread in energy because all possible
configurations were predicted, which means that also such, that are energetically unfavorable are
shown in the plots. The non-integer lines arise from the cells with more molecules, for which the
coverage in number of adsorbate atoms per molecule can become a rational number. As can also be
seen, most training calculations were not performed at the best coverages and still the prediction of
the closer packed structures is very good. This implies, that the chosen energy model, which cuts
the interactions at two-body terms, is indeed able to reproduce the configuration interactions with
reasonable accuracy.

Figure 3.14.: Prediction of configuration energies for benzoquinone on Ag(111) dependent on
coverage (left) and ranked by energy (right). The validation and training points
represent energies stemming from DFT calculations. The maximal uncertainty based
on the maximum error of the training is 10 meV/Nads.

For both molecules, the best configurations are found at the highest coverage (which is the smallest
value of substrate atoms per molecule) for which configurations were created. Smaller configurations
were not possible due to the choice of minimal distance. For BQ, in the beginning calculations with
even higher coverage were also used. There the high Pauli repulsion energy contributions caused the
predictive power of the method to deteriorate rapidly, because the assumption of a single decay length
for the interactions is no more valid. This might be solved in the future by implementing a suitable
kernel for the interaction prior. With the chosen minimal distances it would in principle be possible,
that structures with even higher coverage are energetically more favorable, but it is not very likely as
the interaction energies (figure 3.11) are already very high for the distances covered.
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It is also possible, that the best structure has more than 4 molecules in the unit cell. Such structures
were not considered, because it would increase the number of configurations dramatically and the
predicted configurations would not be validateable because DFT calculations would be too costly.

Figure 3.15.: Prediction of configuration energies for anthraquinone on Ag(111) dependent on
coverage (left) and ranked by energy (right). The validation and training points
represent energies stemming from DFT calculations. The maximal uncertainty based
on the maximum error of the training is 2.5 meV/Nads.

To get a better feeling for the energy distribution of the configurations, a different method of visualization
was used. In figures 3.14 and 3.15 the energies of all calculations, ranked by energy, are therefore shown.
The general form of this curve is similar for both molecules. A small subset is very good in energy and
another subset is very bad, while the bulk of configurations is within a smaller energy range. For the
training and validation set, the blue points at a ranking position are the predicted results while the
orange and green points are energies from the DFT calculations. With this visualization, the fit of the
validation set to the predicted data points can be seen nicely. What is also common for both systems
is, that although the training set was only chosen at specific coverages, the energies are distributed
over the whole range. At first sight it seems that the BQ validation fits much better, but this is partly
caused by the different energy scale used for the two systems. Both exhibit two structures, which are
lowest in energy and energetically separated from all the other structures by more than the RMSE.
The difference is, that for BQ this energy difference is over 20 meV while it is only around 2 meV for
AQ. One has to keep in mind that the configuration energy per molecule is rather similar for both
molecules whereas the area needed for AQ is almost the double of BQ.

Before the best structures are examined in detail, the energetic composition for the lowest structures
is discussed. Thus in figure 3.16 the energy contributions from the adsorption and interaction energy
are shown for the 50 best structures for BQ and AQ. One can see, that the variation in adsorption
and interaction energy is much larger for BQ. There is one specific combination of local geometries,
that is especially beneficial and a combination of this with strong interaction energies leads to the
best configuration. The second best configuration has a slightly worse adsorption energy, but an
equivalently good interaction contribution.

The spread in adsorption energy for AQ is by far not so high and the best structures are mainly
distinguished by their good interaction energy. It will be shown in the next section, that for AQ a
specific combination of local geometries is the cause of those good interaction energies. This is also
the reason for the smaller energy spread and the larger number of similar structures.
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Benzoquinone

Anthraquinone

Figure 3.16.: Comparison of the energy contributions for the 50 best structures of BQ and AQ.

3.3.4. Explanation of the Best Structures

It is now time to take a closer look at the best predicted structures. For BQ, the two structures that
are significantly better in energy compared to all other structures are shown in figure 3.17. The first
has 2 molecules per unit cell, which are local geometries 1 and 4, and the second has a slightly tighter
packing and additionally the second and third best local geometry.

Econf = -235 meV/Nads

area = 6 Nads/mol
Econf = -237 meV/Nads

area = 5.75 Nads/mol

Figure 3.17.: Best configurations for BQ on Ag(111). The unit cell is indicated in green.

This is already an important factor for the favorability of those structures, but the interaction energies
also need to be taken into account. Due to the energy model, the pairwise interaction energies can
be visualized directly. The pair potential for a selection of geometry combinations is shown in figure
3.17.
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In all those pair potential plots, the gray circles indicate the atoms of the silver surface. Each hexagon
represents one pair and the color the energy of this pair. All hexagons are aligned such, that the center
of the surrounding molecule is equal to the center of the hexagon. Remarkable about the interactions
of those two molecules is, that for the combination of 1 and 4, there is one specific position, which is
highly attractive. This position is the one that the best 2-molecule structure of BQ mainly consists
of, which explains the high configuration energy. For the interactions of geometry 2 and 3 with 1
and 4 there are also very specific and highly attractive positions, from which almost all are present
in the configuration. The interaction energies for hollow-ignoring symmetry equivalent geometries are
almost equivalent but mirrored, which is shown on the example of the geometry combinations 4-2 and
4-3.

1-4 1-3 2-3

4-2 4-3 2-2

Figure 3.18.: Pairwise interaction plots for all pairs of the two best configuration for BQ.

The situation for anthraquinone is slightly different. Here two structures are equal in energy and
their only structural difference is a shift of one molecule row by a single silver atom. Many of the
energetically favorable structures are composed of local geometries 4/6, 7/8 and 5 and most of them
have such stripe-like patterns. The energetically most favorable local geometry is only rarely present.
In some configurations, local geometry 9 is also present, which then leads to kinks in the structures.
The fifteen best structures are visualized in section I. The two best structures and the best with kinks
are shown in figure 3.19. To understand them, the pair interaction maps in figure 3.20 are helpful.
Local geometry 5 has very attractive pairs with geometries 7 and 4 at positions, that favor such stripe-
like structures. For geometry 4 and 6 there are also a few pairs that allow these stripes to form. Such
highly attractive pairs can thereby only form, if both hollow-ignoring symmetry equivalent geometries
are combined. Using only one of them would not result in such preferential pairs. Configurations
with geometry 9 are only low in energy, because one specific pair of the geometry with itself is very
attractive, while interactions with other local geometries are not so beneficial.

The best structures for benzoquinone however look very promising, and experimental results are
curiously awaited.
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Econf = -159 meV/Nads

area = 10.66 Nads/mol
Econf = -159 meV/Nads

area = 10.66 Nads/mol
Econf = -156 meV/Nads

area = 11 Nads/mol

Figure 3.19.: The two best configurations for AQ on Ag(111) and the fifth best structure, which
contains an adsorption geometry that causes a kink to form. The unit cell is indicated
in green.

5-4 5-7 4-7

9-9 9-4 4-6

Figure 3.20.: Pairwise interaction plots for the relevant pairs of the best configurations for AQ.
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Conclusion

In this thesis, the SAMPLE approach was improved to a degree that enables surface polymorph
prediction of large molecules with functional groups. It utilizes coarse graining of the potential energy
surface, by discretization of the possible adsorption positions for single molecules to adsorption sites,
combined with exhaustive configuration creation and prediction using Bayesian linear regression.

The first step was the development of a mixed-basis set approach for the numerical atomic basis set of
the FHI-aims package, that cut the computational cost to an affordable level. As a second step, the
method for the generation of local geometries was improved by making use of the torque of a single
molecule on the surface for a smart interpolation of the rotational degree of freedom for molecules on
the surface. Then the Bayesian learner, which was before only applicable to small, highly symmetric
molecules, was generalized by consistent introduction of species-distinguishing methods. One more
improvement was achieved by application of knowledge from gas phase calculations to the surface
structures.

With this improved method the local geometries for benzoquinone, anthraquinone and pentacene-
quinone were found. Thereby, a clear connection between the different adsorption geometries came to
light, as the number of geometries increased with increasing molecule size. However, most positions for
even the largest molecule could be explained by the adsorption behavior of the smaller molecules.

The real structure prediction was then performed with benzoquinone and anthraquinone. For benzo-
quinone two energetically significantly favorable structures could be found and explained by closer
examination of the interaction energies on the surface. Anthraquinone showed a smaller energy spread
within the best structures, but the emergence of the manifold of favorable structures could also be
illuminated with physical insight.

Those two molecules already provide insight into the influence of molecule size on surface polymorphism.
For a deeper understanding the structure search will also be conducted for the larger molecule
pentacenequinone and as an intermediate step between benzoquinone and anthraquinone, naphtaquinone
will be investigated as well.
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Appendices

A. Convergence of DFT Settings for an Ag Bulk

For all following calculations some standard aims settings were used:

Exchange Correlation Functional PBE
Spin Restricted
Charge None
Relativistic Effects Atomic_zora scalar
Occupation Smearing Gaussian 0.1 or 0.01
Multipole Error Compensation True
vdW correction TSsurf
RI method lvl_fast

For all slab calculations dipole correction was used.

Convergence of the Ag Bulk

The first step was to get a correct lattice constant for the silver bulk. Therefore first a primitive
unit cell for a silver fcc bulk with the experimental lattice constant was constructed. Then a sweep of
k-points from 8 to 80 in steps of 8 was performed in each direction. VdW corrections with Tkatchenko-
Scheffler surface parametrization were used also for the bulk calculations to ensure compatibility with
the surface calculations later on.
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Figure A1.: Convergence behavior of the total energy of an Ag-bulk with respect to the number of
k-points in each direction.

To find the equilibrium lattice constant a of the silver bulk, it had to be chosen such that the cohesive
energy Ec is minimized.

Ec(a) =
(
E(a)
N − Eisol

)
E(a) . . . total energy of the atoms in a unit cell
N . . . . . number of atoms in the cell
Eisol . . . total energy of an isolated atom
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Therefore single point(SP) calculations for a fcc-bulk with a lattice constant varying from 3.6 Å to 4.4
Å with 64 k-points (clearly converged as visualized in figure A1) were performed. A Birch Murnaghan
fit was then used to determine the equilibrium lattice constant. The Birch-Murnaghan equation of
state [56] is a relationship between the volume of a body and the pressure to which it is subjected.
The internal energy of the system is given by

E(V ) = E0 + 9V0B0
16


[(
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V

) 2
3
− 1

]3
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) 2
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For mono-atomic unit cell bases, the minimization of the internal energy is equivalent to the minimization
of the cohesive energy. The results are shown in figure A2.
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Calculated points
Birch Murnaghan fit

Figure A2.: Evolution of total energy of a fcc Ag-bulk with variation of the lattice constant.

With this method the lattice constant of the conventional unit cell was determined to a0 = 4.01915
Å , which is close to the experimental value of 4.079 Å [57].

Convergence of the Ag(111) Slab

Another value to consider was the surface energy, which was obtained by taking the total energy of
the slab minus the bulk energy times number of layers. Here convergence could be enforced by taking
many k-points and a medium amount of layers (5-6). Convergence of the work function is a harder
task, here many k-points have to be taken and the work function is still not sufficiently converged.
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Figure A3.: Evolution of the surface energy and work function of an Ag(111) slab in dependence of
the number of layers and k-points.

B. Convergence Tests for the Adsorption Energy of
Pentacenequinone

As for the work in this thesis only proper convergence of the adsorption energy is necessary, further
tests of several parameters were conducted. For all parameter tests a preoptimized geometry from
Elisabeth Wruß was taken (see figure A4). It consists of a single pentacenequinone molecule on a
silver slab with 5 layers and 4 by 6 Ag atoms per layer in the unit cell.

Figure A4.: Geometry used for parameter convergence tests.

The varied parameters and their effects on adsorption energy and computation time are shown in figure
A5. All values are differences of adsorption energies between different settings. For all calculations
the affected parts were recalculated with the respective parameters (e.g. for radial_multiplier the full
system and Ag slab were recalculated whereas the molecule was not).

Based on these results, the following settings were chosen:

species setting value reason error / meV save per SCF / %
Ag cut_pot 5.0 convergence 5 -8
Ag radial_multiplier 1 runtime 5 2
Ag basisfunctions tier1 -5g runtime 6 34
Ag wave_threshold 1E-5 runtime 0.1 0.6
Ag l_hartree 6 convergence 0 0
Ag basis_dep_cutoff 1E-4 convergence / runtime 0 0
C basisfunctions tier2 -5g runtime 3.7 5.8

Another calculation with all chosen settings gives a total error of 16 meV and a computation time
saving of 40 %.
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Figure A5.: Convergence calculations for several parameters of the tight Ag and tight C species.
E0 is always the reference of the standard tight basis set. The basis functions were
removed from the highest tier (tier1 for Ag and tier2 for C). For all calculations only
one parameter was swept and the other were kept at the default settings. The differences
between total time and SCF time arise from the different numbers of SCF cycles needed.
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Convergence of Differences of Adsorption energies

Due to the horrible layer convergence, a second adsorption geometry was created and the convergence
with respect to the difference of adsorption energies between the two systems was checked.

Figure A6.: Previously used configuration (left) and second adsorption geometry (right) on a 6x6
Ag(111) slab.
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Figure A7.: Dependence of the adsorption energies (red) and difference of adsorption energies (blue)
on the number of k-points (left) and number of Ag layers (right).

First a check of k-points was performed and then with a nearly converged value of 4 k-points in x and
y direction the layer convergence was carried out (see figure A7). The layer convergence exhibits a
strong dependence of the adsorption energy on the number of layers, which was just the opposite of
what was expected to happen.

A solution to this behavior was then found with the mixed-basis set approach. The results for the
layer convergence are shown in figure 2.5.
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C. Computational Details of the Mixed Basis Set Method

Trial Basis sets Used

Table A.1.: Test species for the slab basis-set modification
species name of the designed basis set
l_hartree maximum angular momentum of charge-density expansion
cut_pot outer cutoff radius of numeric species definition
rad_mult multiplicity for the number of integration points given by radial_multiplier
last grid outermost radial shell with explicit integration grid density
outer grid integration grid density from last grid to cut_pot
basis functions basis functions additional to the minimal basis

species l_hartree cut_pot rad_mult last grid outer grid basis functions
tight Ag 6 4.0 2 1.59 434 5p; 4f; 3s; 5g; 4d

5p Ag 6 4.0 1 1.59 434 5p
light Ag 4 3.5 1 1.56 302 5p; 4f; 3s; 4d

reallylight Ag 4 3.5 1 1.27 194 5p

The basis set tight Ag is the standard tight basis set used in aims, from there three different bases
were created. 5p Ag stems from the tight Ag basis except the 5p orbitals were removed. The light Ag
consists of all tight-Ag basis functions except the 5g functions, but the integration grid was reduced
significantly. The reallylight Ag has as little basis functions as 5p Ag and an even worse integration grid
than light Ag. The tight basis set was also modified to a cutoff potential of 5 Å , due to convergence
tests.

Convergence issues

When trying to calculate long slabs with different basis sets, convergence issues were encountered,
which manifested with a large amount of SCF cycles. To overcome this problem, a check of the
manual revealed the following recommendations for metal slabs: The FHI-aims manual suggests that
the mixing parameter for the Pulay mixer should have a value of 0.05 or lower. For the preconditioner
Kerker can be used but with a value between 1 and 2.

A test of the number of SCFs for a slab with 6 tight Ag and 4 reallylight Ag atoms confirmed the
manual suggestions by reducing the cycles to around 20 (see table A.2).

Table A.2.: Convergence behavior of an Ag slab with 10 atoms. Gray atoms are tight Ag, red atoms
reallylight Ag.

mixer specifications Nr SCFs
None 329 –> convergence error

pulay 0.05 27
kerker 1.5 38

mixer + pulay 20
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Convergence Behavior of the Work Function

Here the convergence behavior of the work function for the three basis sets introduced above are
shown. A single-pillar slab of tight Ag with 8 and 10 atoms was created and the species was replaced
with the corresponding lighter settings atom by atom.
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Figure A8.: Work function evolution and mean SCF-cycle time of an Ag pillar of 8 / 10 atoms when
gradually replacing the basis set.

Checking the work function (figure A8) shows, that for a slab with 10 but also 8 atoms a suitable
convergence of the work function for all basis sets can already be achieved when only 2 of the atoms
are calculated with the tight Ag species, whereas 7 layers of silver are needed for the same convergence
taking only tight Ag. The computational offset of this method is comparable to 2-4 layers of tight silver,
because there are always 8-10 atoms present, which is easily outweighed by the better convergence
behavior.

The differences of the electron densities projected onto the x-axis, when replacing the reallylight basis
with tight silver, are shown in figure A9. One can see that the main differences occur where different
basis functions are used. The fluctuations of electron density in the desired region are very small even
for only 3 layers of tight silver.

−10 −5 0 5 10 15

-0.2
0.0
0.2

-0.2
0.0
0.2

-0.2
0.0
0.2

-0.2
0.0
0.2

-0.2
0.0
0.2

z / A

D
iff

er
en

ce
to

re
fe

re
nc

e
de

ns
ity

/e
/A

−10 −5 0 5 10 15

0

1

2

3

4

5

6

7

8

9

10

N
ro

ff
ul

ll
ay

er
s

Figure A9.: Difference of electron densities to the reference density for substitution with reallylight
Ag species. The lowermost line represents a slab with reallylight species only. Tight Ag
were added from the bottom (left in the plot).
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CO Adsorption

Here the adsorption energy of carbon monoxide on a silver slab with 8 atoms and subsequently
altered species from tight to reallylight is shown. In figure A10 the computational cost and the
energy convergence of an 8 layer slab with consecutive replaced atoms for different k-point densities
is depicted.

With the mixed-basis set slab the adsorption energy is again converged within 3 layers of tight Ag,
compared to 6-8 layers for solely tight Ag. The reason for different convergence energy for 36 k-points
might stem from a second very similar solution of the SCF-cycle that is reached when specific k-points
are calculated. As this does not affect the future calculations no further investigations were made.
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Figure A10.: Convergence behavior of CO adsorption energy and time per SCF cycle with different
k point densities.

Number of Layers needed

Before the layer convergence tests for pentacenequinone were performed, they were conducted on CO.
Therefore a slab with 3 layers of tight Ag was taken and layers of tight Ag or reallylight Ag were added.
The results in figure A11 show, that the layer convergence is very similar, but the computational effort
is much lower. As the computational time scales with the number of basis functions in the system,
the savings should become even larger. Those calculations were performed with 36 k-points and an
influence of the k-point density on the convergence behavior can not be ruled out, which is why the
convergence of pentacenequinone was initially performed with 60 k-points.
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Figure A11.: Dependence of of the adsorption energy on the total number of layers for the mixed
basis and the standard tight-only Ag.
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Final Settings

The structure search calculations performed in this thesis worked with a k-point density of 36 per
substrate atom and a slab with 3 layers of tight Ag and 5 layers of reallylight Ag. The species
definitions are tabulated in listing 1 and 2.

The settings for the control file used in the convergence tests and also later are:

General Settings: Accuracy:
xc pbe sc_accuracy_rho 1E-2
spin none sc_accuracy_etot 1E-5
charge 0
relativistic atomic_zora scalar Charge mixer:
occupation_type gaussian 0.1 / 0.01 mixer pulay
k_grid 36 36 1 charge_mix_param 0.05
use_dipole_correction .true. preconditioner kerker 1.5
compensate_multipole_errors .true.

Listing 1: Settings for reallylight Ag
s p e c i e s Ag_rea l l y l i gh t
# g l o b a l s p e c i e s d e f i n i t i o n s

hirshfe ld_param 122 15 .4 2 .57 #vdW
s u r f
nuc leus 47
mass 107.8682
l_hart ree 4
cut_pot 3 .5 1 .5 1 .0
bas is_dep_cutof f 1e−4

# i n t e g r a t i o n g r id
rad ia l_base 62 5 .0
r a d i a l _ m u l t i p l i e r 1
angular_gr ids s p e c i f i e d

d i v i s i o n 0 .5617 50
d i v i s i o n 0 .9788 110
d i v i s i o n 1 .2700 194
outer_gr id 194

# va lence b a s i s s t a t e s
va l ence 5 s 1 .
va l ence 4 p 6 .
va l ence 4 d 10 .

# ion occupancy
ion_occ 5 s 0 .
ion_occ 4 p 6 .
ion_occ 4 d 9 .

# Addi t iona l b a s i s f u n c t i o n s
i o n i c 5 p auto

Listing 2: Settings for tight Ag
s p e c i e s Ag
# g l o b a l s p e c i e s d e f i n i t i o n s

hirshfe ld_param 122 15 .4 2 .57 #vdW
s u r f
nuc leus 47
mass 107.8682
l_hart ree 6
cut_pot 5 2 .0 1 .0
bas is_dep_cutof f 1e−4

# i n t e g r a t i o n g r id
rad ia l_base 62 7 .0
r a d i a l _ m u l t i p l i e r 1
angular_gr ids s p e c i f i e d

d i v i s i o n 0 .3947 50
d i v i s i o n 0 .7739 110
d i v i s i o n 1 .1156 194
d i v i s i o n 1 .3117 302
d i v i s i o n 1 .5936 434
outer_gr id 434

# va lence b a s i s s t a t e s
va l ence 5 s 1 .
va l ence 4 p 6 .
va l ence 4 d 10 .

# ion occupancy
ion_occ 5 s 0 .
ion_occ 4 p 6 .
ion_occ 4 d 9 .

# Addi t iona l b a s i s f u n c t i o n s
i o n i c 5 p auto
hydro 4 f 7 . 6
hydro 3 s 2 .6
hydro 4 d 8 .4
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D. Electrostatic Prior

For systems with much charge transfer and reasonable distance this is assumed to be a major part of
the interaction energy. The first assumption is often given, but the second, namely reasonable distance
between molecules, is only rarely fulfilled at the search for dense packed structures. Nevertheless, in the
following the interaction energy dependent on the interacting charges and potentials will be derived.

The energy stored inside a charge arrangement is equal to the energy needed to generate the arrangement.
The potential of two point charges at a specific distance is:

U =
∫ r12

∞

1
4πε0

q1q2
|r1 − r2|2

dr1 = 1
4πε0

q1q2
r12

(A1)

And because of the superposition principle, the change in potential energy when adding a single charge
into an arrangement of qi is:

∆U = 1
4πε0

∑
i

q1qi
r1i

= 1
2

∫
q1

1
4πε0

∑
i

qi
r1i
dr = 1

2

∫
q1V (r)dr (A2)

which leads to the total potential energy of a point charge distribution:

U = 1
2

1
4πε0

∑
i,j,i 6=j

qiqj
|ri − rj |

(A3)

where the 1/2 comes from double counting and the self energy of charges is excluded from the sum.

Generalizing the last part of equation A2 to a charge distribution ρ(r) leads to the potential energy
of an electron density inside a potential:

U = 1
2

∫
ρ(r)V (r)dr (A4)

Next, the interacting charge parts need to be extracted. The electron density of a single local
adsorption geometry on the substrate can be written as:

ρAtot = ρ0 + ρA + δA

Where ρ0 and ρA are the undisturbed densities of substrate and molecule A. δA is the difference to
the full system which represents the charge rearrangement due to interactions.

The total electrostatic energy of this configuration is given by the interaction of all parts with
themselves and with each other:

EAtot = (ρ0, ρ0) + (δA, δA) + (ρA, ρA) + (ρ0, δA) + (ρ0, ρA) + (δA, ρA)

The interaction terms (ρi, ρj) can either be calculated only via charge densities, leading to a 6-
dimensional integral, or alternatively by considering the potential generated by one of the distributions,
which reduces the mathematical effort to a 3-dimensional integration:

(ρA(r), ρB(r′)) = 1
2

1
4πε0

∫
drdr′

ρA(r)ρB(r′)
|r − r′|

= 1
2

∫
drρA(r)V B(r)



Appendix D. Electrostatic Prior 61

The electrostatic contribution to the adsorption energy is:

EAads = EAtot − Eslab − EAmol
= (δA, δA) + (δA, ρ0) + (δA, ρA) + (ρ0, ρA)

with Eslab = (ρ0, ρ0) and Emol = (ρA, ρA).

When two molecules are adsorbed on a common substrate, the total charge density is given by:

ρA+B
tot = ρ0 + ρA + ρB + δA + δB

The total electrostatic interaction energy between the two molecules, neglecting electronic interactions
leading to charge rearrangements, can then be evaluated by first calculating the total electrostatic
energy of the whole system

EA+B
full = (ρ0, ρ0) + (ρA, ρA) + (ρB, ρB) + (δA, δA) + (δB, δB)

+ (ρ0, δA) + (ρ0, δB) + (ρ0, ρA) + (ρ0, ρB) + (ρA, δA) + (ρB, δB)
+ (δA, δB) + (ρA, ρB) + (δA, ρB) + (δB, ρA)

And then subtracting the self-energies of the molecules and the substrate, and the adsorption energies
of the single molecules

EA+B
int = EA+B

full − Eslab − E
A
mol − EBmol − EAads − EBads

The different colors represent the corresponding energy terms.

Now interaction energy between two adsorbed molecules becomes

EA+B
int = (δA, δB) + (δA, ρB) + (ρA, ρB) + (ρA, δB)

Due to the additivity of the charge distributions and the electrostatic potentials, the total charge of
the two non interacting systems with one molecule each can be reintroduced:

= (δA, δB + ρB) + (ρA, δB + ρB)
= (δA + ρA, δB + ρB)
= (ρAtot − ρ0, ρBtot − ρ0)

Or in another form, which is more stable with respect to numerical treatment

EA+B
int = (ρA, ρBtot − ρ0) + (δA, ρBtot − ρ0) (A5)

This last form is beneficial, because singularities close to the cores of the atoms can be treated.
For molecule B, the total electrostatic potential minus the substrate potential can be used, as the
singularities of the potential are far from the electron density of Molecule A. The charge redistribution
δA shows no singularities and can also be treated nicely. The molecular charge density can now either
be treated fully, or suitable charge partitioning schemes can be used.
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Numerical Treatment

Charge partitioning with Electrostatic potential (ESP) charges: ESP charges are fitted from
the electrostatic potential on a cube grid such, that they reproduce the potential at a certain distance
only with point charges at the center of the atoms. In principle this method works for non periodic
and periodic systems, but within FHI-aims for periodic calculations, all atoms have to be in the first
unit cell. A representative control.in command to get ESP charges is:
output esp
esp n_radius 10 # number o f s h e l l s where p o t e n t i a l i s c a l c u l a t e d
esp rad iu s 1 .0 2 . # po in t s with in once and twice the vdW rad ius
esp pbc_method 1 # 1 : Ewald summation , 2 : Wolf summation
esp R_c 10 # Cutof f Radius f o r pbc

Using Potential and electron density: For the parts in equation A5, where the full density or
potential is needed, cube files were used. Cube files represent the continuous density and potential in a
discretized three-dimensional grid. When evaluating equation A4, this results in a simple summation
over all points of two cube files.

FHI-aims commands to get the potential and electron density are:
output cube to ta l_dens i ty # get whole e l e c t r o n dens i ty on a cube g r id
output cube har t r e e_poten t i a l # shor t and long−range p o t e n t i a l
cube o r i g i n 0 .0 0 .0 0 .0 # cente r o f r eg i on to be p l o t t ed in A
cube edge n dx dy dz # s p e c i f i c a t i o n o f cube edge and voxe l p a r t i t i o n
cube edge 200 0 .1 0 0 # e . g g ive an edge with 20 A in x d i r e c t i o n
cube edge 200 0 0 .1 0 # a l l th ree combined s p e c i f y the cube volume
cube edge 200 0 0 0 .1

Alternatively the values can also be written out at the integration grid points:
output dens i ty # e l e c t r o n dens i ty
output g r id # i n t e g r a t i o n g r id f o r each s p e c i e s
output v_ef f # l o c a l e f f e c t i v e p o t e n t i a l
output v_hartree # w r i t e s e l e c t r o s t a t i c mul t ipo l e components s epara te f o r atom , l and m

Attention: Cube outputs of the geometry and lattice are given in Bohr while the density is given per
cubic Angstrom.

The electric permittivity is usually given in Farad per meters, but the energy unit used in this thesis
is electron volts, therefore the following conversion is used:

1 C = 1
1.602176565 ∗ 10−19 e, 1 m = 1010 A

ε0 = 8.8541878176 ∗ 10−12 F/m = 5.526349599 ∗ 10−3 e/AV
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E. Minimal Distances
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Figure A12.: Interaction energy evolution of five distinct dimers with increasing molecule distance.
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F. Interpolation of the Rotational PES

In the following, the mathematical derivation of the spline interpolation for the rotational dependence
of the adsorption energy for single molecules on a surface is given. The first derivative of the energy
with respect to the rotation angle is determined via the torque

dE

dθ
= τ =

Natoms∑
i=1

ri ∗ f i (A6)

As a boundary condition the splines and their first two derivatives need to be continuous at all data
points

yi(x) != yi+1(x) = Ej

y′i(x) != y′i+1(x) = τj

y′′i (x) != y′′i+1(x)

Taking now a third degree polynomial and its derivatives of the form

yi(x) = ai + bi ∗ x+ ci ∗ x2 + di ∗ x3

y′i(x) = bi + 2 ∗ ci ∗ x+ 3 ∗ di ∗ x2

y′′i (x) = 2 ∗ ci + 6 ∗ di ∗ x

At a single support point, the adjoined polynomials and their derivatives need to be continuous, which
leads to the following polynomial coefficients

ai = Ej

bi = τj

ci = 3 ∗ (Ej+1 − Ej)− 2 ∗ τj ∗∆x− τj+1 ∗∆x−∆x ∗ τj
∆x2

di = τj ∗∆x+ 2 ∗ Ej − 2 ∗ Ej+1 + τj+1 ∗∆x
∆x3
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G. Local Geometry Rotation Sweeps

Here the rotation sweeps for the three molecules are shown. Due to the molecular symmetry along
the first and second main axis, all points after 30 degree are symmetry equivalent for top and the two
hcps. For bridge the symmetry is after 90 degrees. If the molecule had no symmetries, the symmetry
should be after 180 degrees.
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Figure A13.: Adsorption energy of BQ rotated around 4 high symmetry points. The points indicate
DFT calculations. The red arrows are starting geometries for a subsequent geometry
optimization.
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Figure A14.: Adsorption energy of AQ rotated around 4 high symmetry points. The points indicate
DFT calculations. Red arrows indicate starting points for geometry optimization.
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Figure A15.: Adsorption energy of PQ rotated around 4 high symmetry points. The points indicate
DFT calculations. Red arrows indicate starting points for geometry optimization.
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H. Hyper Parameter Tests

Here the full hyper parameter sweep for benzoquinone and anthraquinone is shown. First the hyper
parameters were preoptimized by changing single parameters and then performing the sweep again.
For every sweep all other parameters were kept at the reference value shown in table A.3.

Table A.3.: Reference parameters used for optimization
system σads σint σDFT τ n γ feat. thres. cov. kernel

[meV] [meV] [meV] [Å]
BQ 100 300 10 10 3 12 0.010 additive
AQ 100 300 10 10 3 12 0.010 additive
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Figure A16.: Hyper parameter tests for a gas phase monolayer of benzoquinone.
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Figure A17.: Hyper parameter tests for a gas phase monolayer of anthraquinone.
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