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Abstract

Systems equipped with a redundant set of actuators can be found in many domains which are
characterized by high demands on reliability, fault tolerance, and performance, as for instance
in flight control. Due to the input redundancy in general infinitely many combinations of
actuator actions result in the same effect on the system in the absence of faults. The imple-
mentation of a hierarchical control system with control allocation (CA) is one strategy to deal
with this problem class. In this case the first control layer operates based on a mathematical
system model which neglects the redundancy by replacing the real actuators with a smaller
number of artificial ones. Subsequently, the CA algorithm distributes the desired virtual con-
trol effort from the overlying controller among the real actuators resting upon optimization-
and/or rule-based approaches. The principal difficulty of CA originates from the fact that the
actuators always exhibit a limited operation range leading to constrained optimization pro-
blems. The main purpose of this work is the development of computationally efficient methods
for constrained CA.

Three methods with increasing effectivity and complexity are proposed. The first one is
a new approach to compute generalized inverses with regard to the constraints where the
major computational burden can be handled offline, i.e. prior to the execution of the control
algorithm. It is based on geometric considerations and it requires considerably less computation
time than the conventional method. High performance application scenarios typically involve
the utilization of actuators close to their limits. Therefore, an extension of an established
iterative CA algorithm dedicated to these very situations is presented. It enables the targeted
influence on the error between desired and actually achieved virtual control effort if an exact
solution is impossible due to the constraints. A popular CA problem formulation yields a
quadratic program with linear constraints which has to be solved during the operation of the
control loop. For this purpose an efficient solver based on the penalty function and gradient
projection approaches is introduced. Although, originally designed for CA it is shown that it
can also be successfully applied in different areas such as Model Predictive Control (MPC).
Apart from testing the developed methods in numerical simulations they are also implemented
on a laboratory setup and compared with two alternative methods to handle input redundancy:
Linear Quadratic Regulation and MPC. The results demonstrate the key benefits of CA,
namely good performance and relatively low computational effort.
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Kurzfassung

Um höchsten Anforderungen hinsichtlich Zuverlässigkeit, Fehlertoleranz und Leistungsfähig-
keit entsprechen zu können, werden technische Systeme in zahlreichen Anwendungsgebieten
(z.B. Luftfahrt) mit einem Überschuss an Aktuatoren ausgestattet. Im fehlerfreien Betrieb ist
es aufgrund der redundanten Aktuatorik möglich das Systemverhalten mit unterschiedlichen
Aktuatoreingriffen auf ein und dieselbe Art und Weise zu beeinflussen. Der Einsatz von hier-
archisch Regelungskonzepten mit sogenannter Control Allocation (CA) stellt eine Methode
dar, um dieser Problemstellung zu begegnen. Der Regler im engeren Sinn operiert dabei auf
Basis eines mathematischen Systemmodells, welches durch die Einführung einer geringeren
Anzahl an virtuellen Aktuatoren die Redundanz umgeht. Die daraus resultierenden virtuellen
Stellgrößensignale werden in einem zweiten Schritt vom CA-Algorithmus auf die tatsächlich
vorhandenen Aktuatoren aufgeteilt, wobei die Lösung von Optimierungsproblemen und/oder
regelbasierte Ansätze die Entscheidungsgrundlage bilden. Eine der größten Herausforderungen
für CA stellen hierbei die in allen praktischen Anwendungen vorhandenen Stellgrößenbegren-
zungen dar, welche zu beschränkten Optimierungsproblemen führen. Der Schwerpunkt der
vorliegenden Arbeit liegt in der Entwicklung von effizienten Algorithmen zur Lösung von CA
Problemstellungen unter Berücksichtigung von Aktuatorbeschränkungen (Constrained CA).

Drei Methoden mit steigender Effektivität und Komplexität werden vorgestellt. Zunächst
wird eine neue Vorgehensweise zur Bestimmung von Pseudoinversen entwickelt, die es er-
laubt die Aktuatorbeschränkungen miteinzubeziehen und größtenteils vorab, d.h. nicht erst
zur Laufzeit des Reglers, berechnet werden kann. Sie basiert auf geometrischen Überlegun-
gen und benötigt weniger Rechenzeit als die konventionelle Methode. In vielen Fällen ist es
erforderlich die Aktuatoren nahe ihren Beschränkungen zu betreiben, um die bestmögliche
Leistung des Gesamtsystems zu erzielen. Für diese Fälle wird eine Erweiterung eines iterati-
ven CA-Algorithmus präsentiert, die es erlaubt den Fehler zwischen gewünschten und erzielten
virtuellen Stellgrößen zu beeinflussen, wenn eine exakte Lösung aufgrund der Beschränkungen
nicht möglich ist. CA-Problemstellungen werden häufig als Quadratische Programme (QP)
mit linearen Beschränkungen formuliert, welche zur Laufzeit des Reglers online gelöst werden
müssen. Basierend auf der Methode der Straffunktionen und der Gradientenprojektion wird
ein effizienter Lösungsalgorithmus für QPs entwickelt. Obwohl ursprünglich für CA konzipiert,
kann die Methode auch in anderen Bereichen wie beispielsweise modellprädiktiven Regelungen
(MPR) erfolgreich eingesetzt werden. Die entworfenen Verfahren werden nicht nur in nume-
rischen Simulationen ausführlich getestet, sondern auch an einem Labormodell implementiert
und mit zwei alternativen Ansätzen verglichen: Linear Quadratische Regelung und MPR. Im
Zuge der Experimente zeigt sich, dass mithilfe von CA nicht nur hinsichtlich Rechenaufwand,
sondern auch Leistungsfähigkeit sehr gute Ergebnisse erzielt werden können.
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Notation

Scalars are represented as small letters, vectors as small letters in boldface, and matrices as
capital letters in boldface. The i-th row of a matrix A is written as Ai· and the i-th element
of a vector x reads as xi. Relational operators which are applied on vectors have to be fulfilled
element-wise, for example x,y ∈ Rn : x ≤ y ⇔ ∀i = 1, . . . , n : xi ≤ yi. A � 0 and A � 0
denote positive definite and positive semi-definite matrices, respectively. The right nullspace
of matrix A is Nr(A), the left nullspace is Nl(A), and its range is given by R(A). Gradient

and Hessian of a function f(x) are denoted as ∇f = ∂f
∂x and Hf = ∂2f

∂x2 , respectively. Given
an angle α the short notations of sine, cosine, tangent, and secant are siα, coα, taα, and seα.
The unit step function reads as

σ(Tstep, t) =

{
0 if t < Tstep
1 else

Assignments in algorithms are indicated with the ← operator. For example, i← i+ 1 means
that the value of i is increased by one. The number of elements of a finite set S is denoted by
|S|. The convex hull of a set of points P is labeled as conv(P ).
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1. Introduction

1.1. Over-actuation, input redundancy, and control allocation

The terms over-actuation and input redundancy are closely related although not the same.
The exact definition of over-actuation for a general system is ambiguous. However, primarily
this notion is used in context of motion control where a system whose number of actuators
exceeds those of its degrees of freedom (DOFs) is called over-actuated. This always implies
some kind of redundancy in the actuation of the system, i.e. the plant comes with more
actuators than strictly needed to achieve the control objectives. There are several reasons to
equip complex systems with redundant sets of actuators. Probably the most important one
is the need to guarantee fault-tolerance in safety-critical applications. Redundant actuators
might take over the tasks of defective ones if necessary. In fault-free cases they can be used to
support the overall actuation of the plant. High performance requirements might also induce
the usage of some additional actuators to increase the total control power. Another reason
for input redundancy is the desire to reduce the energy-consumption of systems by means of
actuators which have different efficiency characteristics over the system’s operating range (e.g.
hybrid electric cars). Finally, actuator sharing among multiple control systems is a source of
input redundancy. For example an electric car’s motor can not only be used for propulsion
but also as additional actuator of the braking control system [1].

Input redundancy on the other hand is a property of the mathematical description of a
system. In principle a distinction is made between strong and weak input redundancy. In case
of strong input redundancy infinitely many combinations of actuator actions achieve the same
effect on the dynamics of the system. The mathematical formulation of this property given in
[2] is based on the linear plant model

ẋ = Ax+Buu

y = Cx+Duu
(1.1)

with state vector x ∈ Rn, input u ∈ Rm, output y ∈ Rp, and matrices A, Bu, C, and Du

being of appropriate dimensions. System (1.1) is called strongly input redundant if

Nr

([Bu
Du

]
︸ ︷︷ ︸
Bu

)
6= 0 (1.2)

where Nr(.) denotes the right nullspace of a linear mapping. It is a subspace of control space
Rm which contains those elements which get mapped to zero by multiplication with Bu. Thus
∀u0 ∈ Nr(Bu),u /∈ Nr(Bu) : Buu = Bu (u+ u0). Note that the strong input redundancy
condition (1.2) remains meaningful in case of affine-input nonlinear systems where matrices
Bu and Du can be state-dependent.

Weakly input redundant systems are characterized by allowing infinitely many input vectors
to result in the same steady-state output. If

P ∗ = lim
s→0

[
C (sIn −A)−1Bu +Du

]
(1.3)
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1. Introduction

is a finite matrix and
Nr (P ∗) 6= 0 (1.4)

then (1.1) is called weakly input redundant from u to y [2]. Choosing the system’s output y
as the DOFs over-actuation implies weak input redundancy, but not vice versa.

One possibility to deal with input redundancy is control allocation (CA). Therein, the pro-
blem of selecting one specific combination of actuator actions in order to achieve a desired
effect is considered. The complexity of a CA problem significantly increases in the case of
actuator constraints (e.g. magnitude and rate of each actuating signal). Typically, CA intro-
duces an additional layer into the control system architecture. Figure 1.1 depicts the typical
control scheme including CA:

Figure 1.1.: System architecture incorporating control allocation.

A so-called high-level controller determines a virtual control signal v, which serves as the
input of the CA unit. This control signal is computed while relying on a redundancy-free
plant model, i.e. the redundancy of the original system is not considered at this point. In
context of motion control systems v is usually chosen as a number of forces or torques equal to
the number of DOFs which should be controlled [1]. The CA algorithm is implemented on an
intermediate layer. It distributes the desired virtual control effort among the real actuators,
which constitute the low-level control layer. Each of the actuators can have its own controller
resulting in a hierarchical control system. The benefits of the mentioned approach include:

• A modular control system that is straightforward to understand and to maintain.

• The high-level controller can be designed without detailed knowledge about the actuation
system.

• Actuator constraints are explicitly considered in the CA algorithm.

• Actuator faults may easily be considered in the intermediate layer. They change the
relation between virtual and real controls. Up to a certain extend high-level control is
not affected, provided the faults are recognized.

• Over-actuation does not have to be considered in the high-level control layer. This
broadens up the available techniques of controller design methods of this layer.

Most common CA techniques are based on linear plant models or on models gained by line-
arization. The fact that there may be infinitely many solutions to the CA task suggests its
formulation as a constrained optimization problem. This supports the incorporation of secon-
dary objectives such as minimizing the energy consumption into the CA problem. Popular

4



1.2. A motivating example

objective function formulations lead to linear and quadratic programs, which generally re-
quire the application of numerical algorithms such as Simplex or Active-Set for their solution.
Practically, the problem has to be solved within a discrete time environment with very limited
computational resources. This work focuses on algorithm development for the mentioned class
of problems. In particular, the capability of the resulting algorithms to operate under real-time
conditions and high sampling rates is studied. Consequently, the computational complexity
should be kept as small as possible and an efficient implementation is crucial for a successful
application.

Originally CA methods were developed for flight control because modern aircraft come with
numerous actuators (elevators, ailerons, rudders, canards, ...) which may influence multiple
body axes at the same time. The virtual control vector typically consists of the moments
about the roll, pitch, and yaw axes. All the available control effectors must be actuated
according to the desired angular acceleration coming from the (auto-)pilot ([3], [4], [5], [6],
[7], [8], [9]). Another application for CA can be found in marine crafts. Control systems
for these vessels have to control surge, sway, and yaw during various positioning operations
such as station keeping, low speed maneuvering, or auto-piloting. Actuators include different
types of (turnable) propellers, thrusters and jets as well as rudders and fins ([10], [11], [12]).
Moreover automotive control provides a lot of opportunities for the use of CA techniques.
Powertrain electrification gains more and more importance and introduces additional actuators
accompanied by input redundancy ([13], [14], [15]). Vehicle dynamics control is another field
of application for CA as it can be seen in [16] and [17].

Of course CA is not the only technique to handle input redundant control problems. Linear
Quadratic Regulators (LQR) [18] and Model Predictive Control (MPC) [19] provide alterna-
tives, even though they are not restricted to input redundant plant models. Both methods
overcome the ambiguity in the choice of actuator commands by solving optimization problems.
While in the LQR case this problem is solved during controller design and constraints cannot
be incorporated explicitly, MPC performs the optimization during its operation and facilitates
the consideration of constraints. In contrast to CA there is no separation between control law
and allocation in those methods.

1.2. A motivating example

In order to get a better understanding of the concepts of over-actuation and input redundancy
a descriptive example from the automotive area is presented. Hybrid electric vehicles (HEVs)
have the potential to reduce fuel consumption and exhaust emissions by combining electric
machine (EM) and internal combustion engines (ICEs). An essential point for achieving better
fuel economy than ordinary cars is an effective energy management strategy which determines
the energy distribution between conventional and electric parts of the powertrain. The main
goal is to meet the driver’s power demand at any time by combining the available power
sources. Additional objectives such as minimizing fuel consumption and emissions have to be
considered while satisfying the constraints on battery state of charge and engine speeds ([20],
[21]). The vehicle architecture considered in this example is a parallel HEV which means that
power from ICE and EM can be used simultaneously to drive the car [21]. A schematic of the
vehicle’s powertrain is shown in Figure 1.2. Both ICE and EM propel the driving shaft and
are connected by means of an extra clutch which allows disconnecting and shutting down of
the ICE during EM-only operation. This is useful for reducing the drag torque and energy
consumption. Especially at low speeds most energy management strategies suggest that the
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transmission &
main clutch

differential

ICE EMclutch

crankshaft

Figure 1.2.: A parallel HEV architecture with a crankshaft-integrated electric machine.

vehicle is driven exclusively by the EM with the ICE being switched off. Hence it is essential
to provide a method to smoothly restart the engine while driving. ICE start-up is done in
two phases. First the engine is accelerated up to the current powertrain speed by the EM
and after that combustion is initiated. During the speed matching phase EM and clutch must
be controlled such that the driver’s torque request is still met despite the additional load of
accelerating the ICE.

For the rest of this section only the driving shaft dynamics of the HEV powertrain are
considered. The number of degrees of freedom of the two sides (ICE and EM) of the driving
shaft depends on the clutch state. Assuming infinitely stiff shafts there is only one DOF if the
clutch is completely closed while there are two DOFs otherwise. Figure 1.3 shows the relevant
quantities for the system description. Inertia, internal friction, driving torque, and angular
speed of the ICE are denoted as J1, Tfr1, T1, and ω1 respectively. Subscript 2 labels the same
quantities for the EM. Driving resistance is represented as torque Tload acting on the EM shaft.
Tc stands for the torque transmitted by the clutch. A simple model for the shaft dynamics of

𝐽1 𝐽2

𝑇1, ω1 𝑇2, ω2

𝑇𝐶
ICE EM

𝑇𝑓𝑟2, 𝑇𝑙𝑜𝑎𝑑𝑇𝑓𝑟1

Figure 1.3.: Simplified model for the HEV driving shaft dynamics: two motors can be coupled
via clutch.

ICE and EM reads as

ω̇1 =
1

J1
[T1 − Tfr1(ω1)− Tc] (1.5a)

ω̇2 =
1

J2
[T2 − Tfr2(ω2) + Tc − Tload] . (1.5b)

Typical friction clutches consist of at least two discs, each of them being connected to one
input shaft. An actuator (e.g. electromechanic, electrohydraulic, or electromagnetic) creates
an axial force which compresses the rotating discs. Torque is transmitted between the shafts
due to the resulting friction. In order to compute Tc one has to distinguish whether the clutch
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is slipping or locked [22]. The effective torque entering the transmission and controlled via the
accelerator pedal is

Teff = T2 + Tc. (1.6)

1.2.1. Slipping clutch

The clutch is in slipping mode if the angular velocities of the shafts are not equal, i.e. one side
rotates faster than the other one or in the opposite direction. In this case torque depends on
the friction coefficient µslip, the active radius ra, the number of friction surfaces ns, and the
force Fax generated by the actuator. It can be written as [22]

Tc = µslipransFax sign(ω1 − ω2). (1.7)

1.2.2. Locked clutch

During locked mode both sides of the clutch spin with equal angular velocity. The system has
now only one DOF instead of two. The clutch remains locked as long as the magnitude of
the transmitted torque does not exceed the maximum Tc,max which is governed by the stiction
coefficient µstick and the actuator’s axial force [22]

Tc,max = µstickransFax. (1.8)

While the clutch is locked Tc cannot be manipulated directly, instead it follows from ω1 ≡ ω2.
Equating (1.5a) and (1.5b) yields

T c =
T1J2 − Tfr1(ω1)J2 − T2J1 + Tfr2(ω2)J1 + TloadJ1

J1 + J2
. (1.9)

Expression (1.9) ensures that both angular speeds stay identical. The torque which is actually
transmitted during locked mode is obtained by combining (1.8) and (1.9)

Tc =

{
T c if |T c| ≤ Tc,max
sign(T c)Tc,max else

. (1.10)

In fact the behavior of (1.5) in this state could also be described by a single differential equation
as long as ω1 = ω2. Substituting (1.9) into (1.5) results in

ω̇ =
1

J1 + J2
[T1 + T2 − Tfr1(ω1)− Tfr2(ω2)− Tload] . (1.11)

1.2.3. Actuator dynamics

Equations (1.5) presume infinitely fast actuators which is not possible in reality. Unmodeled
dynamics (e.g. combustion and EM dynamics, finite stiffness of shafts, ...) slow down torque
generation. Thus the actuators are modeled as PT1-elements

ẋ =
1

τi
(−x+ u)

y = x

(1.12)

with time constants τi > 0 and i ∈ {1, 2, ax}. Model (1.12) is an approximation of the closed-
loop behavior of an actuator with a dedicated low-level controller.
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1.2.4. Control-oriented plant models

Depending on the chosen strategy to perform the ICE start-up and the desired level of detail,
different modeling approaches can be used as a basis of controller development. For all fol-
lowing models speed-proportional friction torques are assumed and the unknown input Tload
is neglected. One possibility to realize the ICE-startup is using speed control for both shaft
sides. Introducing the short notation

µ(ω) = µsliprans sign(ω1 − ω2) (1.13)

the plant model is obtained from the combination of (1.5) and (1.7) which yields[
ω̇1

ω̇2

]
=

[
−k1
J1

0

0 −k2
J2

] [
ω1

ω2

]
+

[
1
J1

0 −µ(ω)
J1

0 1
J2

µ(ω)
J2

]
︸ ︷︷ ︸

Bu1(ω)

 T1

T2

Fax

 . (1.14)

The actuator dynamics (1.12) are neglected in (1.14). System (1.14) is strongly input redun-
dant because rank(Bu1(ω)) = 2 or equivalently Nr(Bu1(ω)) 6= 0.

A different model taking the actuator dynamics (1.12) into account as well is given by
Ṫ1

Ṫ2

Ḟax
ω̇1

ω̇2

 =


− 1
τ1

0 0 0 0

0 − 1
τ2

0 0 0

0 0 − 1
τax

0 0
1
J1

0 −µ(ω)
J1

−k1
J1

0

0 1
J2

µ(ω)
J2

0 −k2
J2



T1

T2

Fax
ω1

ω2

+


1
τ1

0 0

0 1
τ2

0

0 0 1
τax

0 0 0
0 0 0


︸ ︷︷ ︸

Bu2(ω)

 T1,d

T2,d

Fax,d

 (1.15)

with T1,d, T2,d, and Fax,d being the desired torques and axial force. Owing to Nr(Bu2(ω)) = 0
model (1.15) is not strongly input redundant. However, considering ω as the system’s output,

i.e. C =

[
0 0 0 1 0
0 0 0 0 1

]
, the dc-gain matrix

P ∗ =

[
1
k1

0 −µ(ω)
k1

0 1
k2

µ(ω)
k2

]
(1.16)

is finite and weak input redundancy follows from Nr(P
∗) 6= 0.

One recognizes that the chosen mathematical representation of a system determines whether
it is strongly or weakly input redundant or neither. Instead over-actuation is a property of the
real-world plant and does not depend on the model which is chosen for controller development.
The driving shaft dynamics are over-actuated. If the clutch is in slipping mode the system has
two DOFs and three inputs and if the clutch is locked one DOF is controlled by two inputs.

1.3. Problem statement

1.3.1. General nonlinear model

The majority of CA algorithms require a system description which is linear with respect to
the control inputs. Consider a general nonlinear system of the form

ẋ = f(x,u)

y = h(x)
(1.17)
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with x ∈ Rn being the state vector, u ∈ Rm the input vector, and y ∈ Rp the system’s output.
In order to facilitate the separation between regulation and CA (1.17) has to be transformed
into a special form. For that purpose one has to introduce the virtual control vector v̂ ∈ Rk
with k < m and find a mapping

v̂ = g(x,u) such that ∀x,u : f(x,u) = f̂(x, g(x,u)︸ ︷︷ ︸
v̂

). (1.18)

Since ẋ remains unaffected by an appropriate mapping (1.18) its existence can be interpreted
as condition for the strong input redundancy of nonlinear systems. Next, high-level controller
design is carried out for the modified plant dynamics

ẋ = f̂(x, v̂)

y = h(x).
(1.19)

Typically, actuators are subject to constraints which define the feasible subset of m-dimensional
(m-D) control space

Ω ⊂ Rm. (1.20)

The general CA problem is to find a real control vector u ∈ Ω which fulfills (1.18) for given
virtual controls v̂. However, this goal can be unachievable if the desired v̂ exceeds the capabi-
lities of the actuators because of their constraints. In such situations the objective of the CA
algorithm is to minimize the allocation error in some sense. Hence, the CA problem can be
stated as the optimization task

min
u∈Ω
‖v̂ − g(x,u)‖ . (1.21)

Due to the fact that (1.18) is an underdetermined nonlinear system of equations its solution
(provided that it exists) is not unique in general. This offers the opportunity to introduce
secondary objectives by means of a cost function J(x,u) and reformulate the CA task as
combined optimization problem

min
u∈Ω
‖v̂ − g(x,u)‖+ γJ(x,u) (1.22)

where γ > 0 is a sufficiently small weighting parameter. The solution of (1.22) can be com-
putationally expensive because the general formulation allows non-convex cost functions and
constraints. In order to enable a real-time solution one common method is the consecutive
linearization of (1.18) at each time step [1]. It can be locally approximated around the last
commanded control vector u0 by the affine mapping ([7] and [23])

g(x,u) ≈ g(x,u0) +
∂g(x,u0)

∂u︸ ︷︷ ︸
B(x)

(u− u0). (1.23)

Now a new CA equation which has a linear relationship between real and virtual controls
follows

v = B(x)u (1.24)

where B(x) ∈ Rk×m is called control effectivity matrix and v ∈ Rk is the new virtual control
vector. It is computed from the high-level control’s output (1.18) and (1.23) by means of

v = v̂ − g(x,u0) +B(x)u0. (1.25)

Assuming that the current system state x is known (1.24) is reduced to v = Bu. This linear
underdetermined system of equations is solved at each time step by the CA algorithm.
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1.3.2. Input-affine model

Another commonly occurring class of (non)linear systems1 is input-affine and reads as

ẋ = a(x) +Bu(x)u

y = c(x)
(1.26)

with input matrix Bu(x) ∈ Rn×m. Under the assumption that

∀x : k = rank (Bu(x)) < m (1.27)

it follows from the rank-nullity theorem [24] that dim [Nr (Bu(x))] = m − k which implies
that (1.26) is strongly input redundant ∀x. In other words Bu(x) does not have full column
rank and so perturbations of u in nullspace directions do not affect the system dynamics.
Condition (1.27) enables an input matrix factorization of Bu(x) into a virtual input matrix
Bv(x) ∈ Rn×k and a control effectivity matrix B(x) ∈ Rk×m, i.e.

Bu(x) = Bv(x)B(x) (1.28)

with both of their ranks being

rank(Bv(x)) = rank(B(x)) = k. (1.29)

The factorization of Bu(x) according to (1.28) induces the altered plant model

ẋ = a(x) +Bv(x)v

y = c(x)
(1.30)

which provides the basis for high-level controller development in further consequence. CA
algorithms are applied on (1.24) at each time step, just as in the general case.

1.3.3. Constraints

Actuator constraints delimit the admissible subset of control space Rm. The considered class
of constraints forms a m-D hyperrectangle or box which is given by

Ω =
{
u ∈ Rm

∣∣umin ≤ u ≤ umax} . (1.31)

Definition (1.31) not only includes constraints regarding the magnitude but also the rate of
actuator actions and even state-dependent constraints. All these can be treated as time-varying
bounds umin(t) and umax(t) in principle. But due to the fact that CA is carried out in each
time step the bounds are still considered as constant during one execution cycle. For example
actuator magnitude and rate constraints

umin ≤ u ≤ umax, (1.32a)

|u̇| ≤ u̇max (1.32b)

can be combined to (1.31) with (see [8])

umax = min (umax,u+ Tsu̇max) , (1.33a)

umin = max (umin,u− Tsu̇max) . (1.33b)

1Note that the linear system (1.1) is just a special form of (1.26).
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where Ts is the sample time. Accordingly one can define a subset Φ of virtual control space
Rk containing all v which can be achieved by feasible u ∈ Ω. It is called attainable moment
set (AMS) [3] and is basically the projection of the m-D box Ω into lower dimensional virtual
control space

Φ = BΩ :=
{
v ∈ Rk

∣∣∃u ∈ Ω : v = Bu
}

. (1.34)

Whereas the mapping from Ω to Φ is unique this is not the case in the opposite direction
due to Ω’s higher dimension, meaning that there are infinitely many u ∈ Rm (not only in Ω)
which fulfill (1.24) for a given v ∈ Φ. The challenge for CA algorithms is to avoid computing
solutions u /∈ Ω to (1.24) although v ∈ Φ [25].

The saturation function satΩ(u) of a vector u regarding box-like constraints (1.31) is often
employed in the rest of this thesis. It is defined by means of the component-wise saturation
function satΩ,i(u) with index i = 1, . . . ,m as

satΩ(u) = [satΩ,1(u) . . . satΩ,m(u)]T (1.35a)

satΩ,i(u) =


umax,i if ui > umax,i
umin,i if ui < umin,i
ui else

. (1.35b)

1.3.4. Summary

The main objective considered in this thesis is the development of CA-methods for strongly in-
put redundant systems. Mathematically this can be stated as finding computationally efficient
solutions to

min
u∈Ω
‖v −Bu‖ . (1.36)

As (1.36) may have infinitely many solutions additional goals can be specified as cost functions
augmenting the optimization problem.

1.4. Thesis outline

Chapter 2 presents an overview on the standard methods for controller design for input re-
dundant systems. The main focus lies on the description of various CA algorithms. However,
the concepts of two very common alternatives are also briefly outlined: LQR and MPC.

The next part of this thesis is dedicated to some theoretical results on linear CA problems.
First, the influence of input matrix factorization on standard CA techniques is investigated.
Based on those results a new method to generate generalized inverses for CA is presented in
Chapter 4. It incorporates the actuator constraints into its computation leading to feasible
allocation results for a greater amount of the AMS as it typically is the case for the standard
approach. Another outcome of the factorization research is an extension of an established
iterative CA algorithm which is developed in Chapter 5. In cases where the desired virtual
controls cannot be reached due to the actuator constraints it enables the prioritization of
certain virtual control vector elements by the developer. Subsequently, an efficient algorithm
for solving quadratic programs with linear constraints is introduced in Chapter 6. It is based
on the penalty function and gradient projection methods. Extensive testing and comparisons
against free and commercial standard solvers demonstrate the capabilities of the approach. It
may not only be used in the context of CA but also, for instance, as solver for MPC.
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The final part deals with the application of CA in practical examples. At the beginning
solutions of the ICE-startup problem described in Section 1.2 are presented. Two possible
schemes of high-level control and CA are derived and evaluated in simulations. In the last
chapter CA methods are implemented for the control of a laboratory model: a quadrotor
test bed. A comprehensive nonlinear model is developed by means of Lagrangian dynamics
and parameter identification is carried out. In order to meet the control objective of attitude
tracking various strategies are realized. The performance of CA-based schemes using a Sliding
Mode approach for high-level control are compared to the alternatives LQR and MPC.
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2. Control Design in Consideration of Input
Redundancy

In principle, there are two strategies for dealing with input redundancy in controller develop-
ment. First, there are methods which directly incorporate the distribution of control effort
among the actuators in their control laws. Due to the fact that in general there are infinitely
many possibilities of blending actuator effects resulting in the same virtue on the plant, these
techniques are related to some kind of optimization in order to find a unique solution. Sections
2.2 and 2.3 explain the principles of two such methods, namely LQR and MPC.

Second, one can separate the allocation from the control task by introducing a dedicated
algorithm for this purpose as already outlined in the introduction (Chapter 1). In most CA
approaches the input redundancy is neglected during high-level control development by intro-
ducing the virtual control vector and relying on an altered system description like (1.19) or
(1.30). Since high-level controller design is more or less independent from CA it is not treated
in this chapter. Actually, it is neither possible nor meaningful to deal with this topic as it is
basically possible to use any kind of controller for this task, depending only on the particular
application. The following Section 2.1 provides the reader with the principles of common CA
techniques.

2.1. Control allocation

Fundamentally, CA algorithms can be divided into two groups. On one hand there is static
allocation which means that no dynamics are involved in the computations. These CA methods
provide a mapping ucmd = fst,CA(v) from virtual to real controls which is independent of
time. Dynamic allocation on the other hand comprises a gradual progress of the allocation
result towards the target value, i.e.

u̇cmd = fdy,CA(v). (2.1)

Typically, the final value is the result of an equivalent optimization problem (see [2] and [26]).
It should be emphasized that this distinction does not necessarily have something to do with
the fact whether actuator dynamics are considered in the allocation process or not. Expression
(2.1) just means that the commanded real controls evolve over time in a certain way. Actuator
dynamics can be taken into account in both static and dynamic CA. The majority of CA
methods relies on linear actuation models

v = Bu (2.2)

with the control effectivity matrix B ∈ Rk×m characterizing the relationship between virtual
and real controls. However, for most applications matrix B changes with the system state
and/or input and other time-varying parameters. Thus, (2.2) does not restrict CA to linear
time-invariant (LTI) systems because B gets updated in every sampling instant.
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2.1.1. Explicit ganging

In some cases, especially if the number of virtual and real controls is rather small, it is known
a priori how to combine the actuator actions to achieve a certain v. Therefore, one can use
a method called Explicit Ganging where the allocation is explicitly predefined by the control
designer. Actuators are grouped to so-called pseudo controls upseudo ∈ Rk which have the
same dimension as the virtual controls v. The relationship between pseudo controls and real
controls is given by [8]

u = Gupseudo (2.3)

with G ∈ Rm×k having full column rank. Inserting (2.3) into (2.2) yields

v = BGupseudo ⇒ upseudo = (BG)−1 v. (2.4)

The real controls u are now obtained from (2.3) and (2.4). Effectively, this method reduces
the control space dimension in order to get a unique relationship between virtual and pseudo
controls. After that, the predefined mapping G provides the distribution on the real controls
[8]. The actuator constraints (1.31) are not considered, excesses are just cut off. The desired
virtual controls will in general not be reached in such situations.

2.1.2. Pseudoinverse

Computing a generalized inverse or pseudoinverse is a common way to solve linear systems
of equations with non-square parameter matrices. For every matrix B ∈ Rk×m there exist
matrices P ∈ Rm×k satisfying at least one of the four so-called Penrose-equations [25] [27]

BPB = B (2.5a)

PBP = P (2.5b)

(BP )∗ = BP (2.5c)

(PB)∗ = PB, (2.5d)

where A∗ denotes the conjugate transpose of a matrix A. Since B is assumed to have full row
rank a matrix P which satisfies (2.5a) is a right-inverse of B, i.e. BP = Ik with Ik ∈ Rk×k
being the identity matrix [27]. The solution to the CA problem can now be written as [25]

u = Pv, (2.6)

whereby those elements of u which exceed Ω are set to their extremal values ([3] and [4]).

2.1.2.1. Weighted pseudoinverse

The unconstrained control allocation problem (2.2) has infinitely many solutions and a rea-
sonable choice is to pick that with the lowest energy consumption (least-norm solution [28],
[29]). Using a constant positive definite weighting matrix W � 0 and a constant offset vector
c ∈ Rm, an optimization problem can be formulated [1] [8] [30]

min
u

(u+ c)T W (u+ c) , (2.7)

which is subject to equality constraint (2.2). The purpose of c is to specify preferred control
positions or to account for faulty actuators [8]. For example assume that the favored actuator
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2.1. Control allocation

positions minimizing the air drag of a plane for its current state are given by up. Then solving
(2.7) with c = −up minimizes the deviation from up. The closed-form solution of (2.7) is
derived with the method of Lagrange multipliers and reads as

u = −c+B# (v +Bc) (2.8a)

B# = W−1BT
(
BW−1BT

)−1
. (2.8b)

B# ∈ Rm×k is called weighted pseudoinverse and if W = Im then B# = B‡ is the Moore-
Penrose pseudoinverse (MPP) [28] [30]. It satisfies all Penrose-equations (2.5) and is unique
for a given matrix B.

If rank(B) < k, e.g. due to actuator faults, the closed form solution (2.8b) is not applicable
any more. In such cases a rank-deficient pseudoinverse can still be calculated using either
regularization techniques like

B# = W−1BT
(
BW−1BT + εIk

)−1
(2.9)

with small ε > 0 or the Singular Value Decomposition (SVD, see Chapter 5 for more details).
However, in general the desired v cannot be reached even without considering the actuator
constraints [1].

2.1.3. Daisy chaining

This approach is used when a fixed hierarchy of actuator utilizations can be specified. In other
words, a certain subset of the actuators should be preferably used to accomplish the CA task.
If the desired virtual controls cannot be reached by them exclusively the remaining virtual
control demand is passed to the next group and so on. For this reason, the real control vector
is divided into a fixed number of groups [8]

u =
[
uT1 . . .u

T
N

]T
(2.10)

where a low group number stands for high priority. The control effectivity matrix is partitioned
in the same fashion as

B = [B1 . . .BN ] (2.11)

and for each group j = 1, . . . , N a feasible subset Ωj ⊂ Ω exists. The algorithm starts with
initializing the control vector u← 0, the current group number j ← 1 and the virtual control
deviation vj = v. Thereafter, the following steps are taken [4]:

1. Compute the allocation result for the current group by means of the MPP of Bj

ũj = B‡jvj . (2.12)

2. Truncate the previous result
uj = satΩj (ũj). (2.13)

3. If there was a constraint violation in (2.12), i.e. ũj /∈ Ωj then compute the next virtual
control deviation from (2.13)

vj+1 = vj −Bjuj , (2.14)

set j ← j + 1, and go back to step 1.
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2. Control Design in Consideration of Input Redundancy

4. Otherwise: STOP

Note that depending on rank(Bj) and the number of group members the MPP in (2.12) can
be an ordinary (square) inverse, a right-inverse, a left-inverse, or a rank-deficient inverse [4].
Although Daisy Chaining takes the constraints (1.31) into account during its iterations it is
not guaranteed that a feasible u is found ∀v ∈ Φ. Due to the fact that all the controls in one
group are frozen as soon as one of them violates the constraints it can easily happen that a
solution is not found, though many actuators are barely utilized [1].

2.1.4. Redistributed pseudoinverse

Redistributed Pseudoinverse (RPINV) is an iterative process that takes the actuator con-
straints into account. During the first step the unconstrained solution according to the con-
ventional weighted pseudoinverse (2.8b) is calculated. If no controls exceed their limits, no
further steps are required. Otherwise, the actuators that violate the constraints are fixed at
their extremal values (saturated) and a reduced pseudoinverse is computed for the remaining
free controls. This procedure is repeated until no new constraint violations occur or all actua-
tors are at their limits ([1], [8]). Let B0 be the control effectivity matrix, uN the result of the
N-th iteration, and u0 = 0. Constraint violations are recorded in an offset vector [30]

cN = [cN1 ... cNm]T (2.15a)

cNi =


−umax,i if uN−1

i ≥ umax,i
−umin,i if uN−1

i ≤ umin,i
0 else

with i = 1, ...,m. (2.15b)

The set of free actuator indices sorted in ascending order reads as

JN = {l ∈ N+|cNl = 0} = {l1, ..., lj} (2.16)

and j = |JN | denotes its number. Using the i-th unit vector ei ∈ Rm one can define the
column-selection matrix [30]

R =
[
el1 ... elj

]
. (2.17)

By means of (2.17) the modified control effectivity matrix with columns related to saturated
controls set to zero is given by

BN = B0RR
T . (2.18)

Applying (2.8b) the result of the N-th iteration of RPINV reads as

uN = −cN +B#
(
v +B0c

N
)

. (2.19)

Remark 2.1.1. The resulting virtual control after the application of RPINV and neglecting
potentially exceeded constraints is denoted as vact. Considering v = B0u

N and (2.19) one
obtains [30]

vact = −B0c
N +B0B

#vdes +B0B
#B0c

N (2.20)

where vdes is the desired value coming from the controller. One realizes from (2.20) that
vdes can be reached in principle if B0B

# = Ik. Inserting (2.18) into (2.8b) yields B# =

W−1RRTBT
0

(
B0RR

TW−1RRTBT
0

)−1
. In order to achieve BB# = B0B

# = Ik the
computation is altered into [30]

B# = RRTW−1RRTBT
0

(
B0RR

TW−1RRTBT
0

)−1
. (2.21)
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2.1. Control allocation

RPINV is a simple and effective method of regarding actuator constraints but just as Daisy
Chaining it does not use the entire AMS, though it tends to be more effective [1]. An intuitive
explanation is that it is advantageous to retain only those controls which violate the constraints,
because this increases the overall actuator utilization.

2.1.5. Direct allocation

Direct allocation (DA) uses geometric principles to compute u from a given virtual control
vector v. Its main advantage is its ability to determine a u ∈ Ω for every v ∈ Φ, i.e. it
facilitates the usage of the entire AMS. Figures 2.1 and 2.2 give a visual interpretation of the
DA problem in case of m = 3 and k = 2. The following requirements have to be met [4] [30]:

• A half-line starting in the origin of Φ intersects its boundary ∂(Φ) in a single point, see
Figure 2.2.

• Every point on ∂(Φ) uniquely maps to one point on ∂(Ω) (the boundary of Ω) in each
case, i.e.

v∗ ∈ ∂ (Φ)⇒ ∃!u∗ ∈ ∂ (Ω) : v∗ = Bu∗. (2.22)

At first DA computes the intersection of vector v with the boundary ∂(Φ). This solution v∗

is always located on a (k-1)-D object and is the image of one point u∗ on ∂(Ω). Now v∗ is
scaled by a factor 0 < a ∈ R to match v. In order to obtain u the same scaling can be applied
to u∗ because of the linearity of the problem [30]

v = av∗ = aBu∗ = B(au∗). (2.23)

If a > 1, the desired virtual control lies outside of Φ. In this case the boundary-intersecting
solution u∗ is chosen, which preserves the desired virtual control direction ([3], [4])

u = αu∗ with α =

{
a if 0 < a ≤ 1
1 else

. (2.24)

Thus, the direction of the desired v is maintained even if v /∈ Φ. This preservation of virtual
control direction is an important characteristic in flight control systems. One disadvantage
of DA is the lack of any possibility for prioritization or influencing the allocation result [31].
A crucial point in DA is the determination of the intersection of v with the boundary of the
AMS ∂(Φ). One possibility is to project all vertices of Ω into Rk, compute the convex hull
∂(Φ), and iterate through all of its (k-1)-D objects. In order to avoid the expensive convex
hull computation [4] presents a method which is based on the relation between the geometry
of ∂(Φ) and ∂(Ω) to speed up the procedure. The approach exploits the fact that only a small
portion of all (k-1)-D object on ∂(Ω) also lie on ∂(Φ). It uses an efficient way to determine
this objects resulting in a significantly reduced number of computations during the search for
the intersection v∗ [4]. Alternatively, DA can also be formulated as optimization problem [31]

max
ρ>0, u∗∈Ω

ρ subject to Bu∗ = ρv (2.25a)

u =

{ u∗

ρ if ρ > 1

u∗ else.
(2.25b)

and transformed into a standard linear program (LP). By relying on a dedicated solver for
linear programs the advantage of (2.25) is the low development effort.
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Figure 2.1.: DA computes the solution uDA (green ’o’, inside the box) for the desired virtual
control vdes (see Figure 2.2) by scaling down the boundary intersection (blue ’+’).
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the resulting virtual control. ( c© 2018 IEEE, [30]).
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2.1. Control allocation

2.1.6. CA via numerical optimization

Numerical optimization is a powerful approach to solve the CA problem. Especially, its ability
to explicitly consider the actuator constraints (1.31) while still enabling actuator or virtual
control weighting distinguishes this method from the previous ones. However, increased com-
putational complexity compared to the pseudoinverse-based algorithms is the price one has to
pay in exchange.

The basic problem formulation with respect to the linear actuation model (2.2) is given in
the introduction by (1.36) and can be extended by a weighting matrix Wv ∈ Rk×k leading to

min
u∈Ω
‖Wv (Bu− v)‖ . (2.26)

Problem (2.26) is called error minimization. As already discussed the solution of (2.26) is in
general not unique for feasible virtual controls, i.e. if v ∈ Φ there are infinitely many u ∈ Ω
making the cost function of (2.26) zero [1] [6] [31]. In such situations a second optimization
problem

min
u∈Ω
‖Wu (u− up)‖ subject to Bu = v (2.27)

with weighting matrix Wu ∈ Rm×m and preferred control positions up ∈ Rm can be solved
in order to get a unique solution. This two-step procedure is known as error and control
minimization [8] [31].

A drawback of coping with (2.26) and (2.27) sequentially is the fact that two optimization
problems have to be solved (for feasible v) which requires considerable effort. In order to avoid
this, both objectives can be combined into a single cost function as indicated in (1.22) leading
to the mixed optimization problem [8] [31]

min
u∈Ω

(
‖Wu (u− up)‖+ γ ‖Wv (Bu− v)‖

)
(2.28)

with a large weighting factor γ > 0 emphasizing the primary CA objective. So far, the 1-norm,
the 2-norm, and the ∞-norm have been successfully applied to (2.26) - (2.28). The decision
which norm is chosen not only influences the applicable algorithms for solving the optimization
problems but obviously also the outcome. As shown in [7] the main differences of the allocation
results are:

• The 1-norm solution utilizes as few controls as possible to reach v whereas in case of the
2-norm the control effort is distributed among all elements of u.

• For a nonsingular Wu the 2-norm solution is unique. Depending on B and Wu this is
not true for the result regarding the 1-norm [32].

• Continuous changes of parameters of B also yield continuous variations in the 2-norm
solution while the 1-norm solution varies discontinuously.

Using the ∞-norm which is defined as

‖u− up‖∞ = max
i
|ui − up,i| (2.29)

for (2.27) minimizes the maximum deflection of actuators from their preferred positions. This
leads to a more balanced actuator utilization compared to the 1-norm solution. Both 1-norm
and ∞-norm problems (2.26) - (2.28) can be transformed into standard LPs [33]. Common
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2. Control Design in Consideration of Input Redundancy

algorithms for solving LPs are based on the simplex method, the active-set method, and interior-
point methods with the first one being by far the most widely used for CA [1] [31].

The choice of the 2-norm enables the transformation of (2.26) - (2.28) to standard quadratic
programs (QP). In context of CA such problems are solved with the fixed-point method [34],
active-set methods [6], and interior-point methods [35]. Algorithms based on the active-set
strategy perform very well in case of a moderate number of actuators and offer the advantage
of using the previous allocation result as an initial guess. Interior-point methods on the other
hand are superior for large numbers of actuators [35].

2.1.7. Dynamic allocation for linear plant models

All CA algorithms discussed so far belong to the static methods, i.e. the computations directly
provide u. The dynamic allocation approach in contrast uses integral action in the CA law.
Starting from a linear plant model (1.1) assume that there is already a linear controller and
that the closed-loop system is internally stable. The dynamic allocator (DYA) is introduced
in [2] as

ẇ = −KNTWu (2.30a)

u = yc +Nw (2.30b)

with w representing the allocator states, K � 0 and W are gain and weighting matrices of
appropriate dimensions, span(N) = Nr(Bu) spans the nullspace according to definition (1.2),
and u is the plant input consisting of the controller output yc and the allocator output. The
DYA is inserted between plant and controller as illustrated in Figure 2.3 [2]. In case of strong

Dynamic allocator

𝑵∫

𝒚ሶ𝒙𝒄 = 𝑨𝒄𝒙𝒄 +𝑩𝒄𝒚 + 𝑩𝒓𝒓
𝒚𝒄 = 𝑪𝒄𝒙𝒄 +𝑫𝒄𝒚 + 𝑫𝒓𝒓

ሶ𝒙 = 𝑨𝒙 + 𝑩𝒖𝒖
𝒚 = 𝑪𝒙 + 𝑫𝒖𝒖

−𝑲𝑵𝑇𝑾

𝒓 𝒚𝒄 𝒖

𝒘

controller plant

Figure 2.3.: Dynamic allocation scheme with the dynamic allocator being inserted between
controller and plant.

input redundancy of (1.1) the allocator is completely invisible at the resulting dynamics and
the interconnection as shown in Figure 2.3 is internally stable iff the control system without
DYA is internally stable. This is not surprising as the plant dynamics read as [2]

ẋ = Ax+Buyc +BuN︸ ︷︷ ︸
0

w (2.31)

which allows the simplification of the stability analysis by considering a cascade connection
between the original control loop and the DYA as depicted in Figure 2.4 instead. At the first
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2.2. Linear Quadratic Regulator

glance it might seem pointless to add a zero-term in (2.31). But actually it is the essence
of CA for strongly input redundant systems to choose u from a set of inputs which all have
the same effect on the system dynamics. The steady-state output of the DYA (for a constant
controller output y∗c ) is [2]

u∗ =
[
I −N

(
NTWN

)−1
NTW

]
y∗c (2.32)

which is the solution of the optimization problem

min
w

(y∗c +Nw)T W (y∗c +Nw) . (2.33)

By means of the gain matrix K the allocator’s speed of convergence to (2.32) can be adjusted
and in case of strong input redundancy there is no restriction in this respect. Static allocation
via pseudoinverse yields comparable results [2].

Dynamic allocator

∫
𝒚

ሶ𝒙𝒄 = 𝑨𝒄𝒙𝒄 +𝑩𝒄𝒚 + 𝑩𝒓𝒓
𝒚𝒄 = 𝑪𝒄𝒙𝒄 +𝑫𝒄𝒚 + 𝑫𝒓𝒓

ሶ𝒙 = 𝑨𝒙 + 𝑩𝒖𝒖
𝒚 = 𝑪𝒙 + 𝑫𝒖𝒖

−𝑲𝑵𝑇𝑾
𝒓 𝒚𝒄

𝒖

𝒘

controller

plant −𝑲𝑵𝑇𝑾𝑵

Figure 2.4.: The independence of the plant dynamics from the allocator output in case of strong
input redundancy enables the stability analysis for a substitute system.

If (1.1) is weakly input redundant the structure of the allocator (2.30) remains the same.
Only the nullspace-spanning matrix changes to span(N) = Nr(P

∗) with P ∗ according to (1.3)
and the gain matrix is K = ρK with ρ > 0 and K � 0. Provided that the closed loop system
without the allocator is internally stable it is shown in [2] that there is a small enough ρ such
that the system with DYA (Figure 2.3) is internally stable. Furthermore, the steady-state
plant outputs with and without the DYA converge to the same values. In order to include
actuator constraints in the dynamic allocation process W in (2.30) can be replaced by a vector
function W (u) which penalizes the usage of actuators that operate close to their limits [2].

2.2. Linear Quadratic Regulator

LQR is a special form of optimal control that is restricted to linear plant models and yields
linear state controllers. As opposed to conventional state controller design where the closed-
loop eigenvalues are specified by the control designer, in case of LQR they are defined by the
solution of an optimization problem. The origin of this method lies in the following general
optimal control problem: Consider a nonlinear plant model

ẋ = f [x(t),u(t)] (2.34)
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2. Control Design in Consideration of Input Redundancy

with state x(t) ∈ Rn, input u(t) ∈ Rm, and known initial state x0 = x(0). Now, compute an
input signal u(t) that drives the state to the origin by solving the optimization problem

min
u

∫ T

0
L [x(t),u(t), t] dt+ S [x(T )] satisfying (2.34). (2.35)

The cost function in (2.35) rates the system’s state trajectory as well as the control signal in the
range [0, T ] via the integral part L and the final state by means of S. Next, the Hamiltonian
is defined as

H(x,u,λ, t) = L(x,u, t) + λTf(x,u) (2.36)

where λ ∈ Rn is the vector of Lagrange multipliers or costate vector. Assuming that u is not
explicitly bounded1 the following necessary conditions for the optimal state x∗ and control u∗

vectors can be derived from the Euler-Lagrange equations (p. 101 in [36]):

ẋ =
∂H

∂λ
with x(0) = x0 (2.37a)

−λ̇ =
∂H

∂x
(2.37b)

0 =
∂H

∂u
(2.37c)

λ(T ) =
∂S

∂x

∣∣∣
t=T

(2.37d)

LQR can now be deduced by focusing on linear plant models ẋ = A(t)x(t)+Bu(t)u(t) instead
of the general form (2.34). For the purpose of obtaining a linear controller a quadratic cost
function [18]

J =
1

2

∫ T

0

[
x(t)TQ(t)x(t) + u(t)TR(t)u(t)

]
dt+

1

2
x(T )TSx(T ) (2.38)

with Q(t) � 0, R(t) � 0, and S � 0 is formulated. Evaluating (2.36) yields H = 1
2x

TQx +
1
2u

TRu+ λT (Ax+Buu) which is used together with (2.37a) - (2.37c) to get

ẋ = A(t)x(t)−Bu(t)R(t)−1Bu(t)Tλ(t) (2.39a)

λ̇ = −Q(t)x(t)−A(t)Tλ(t). (2.39b)

From (2.39) it can be shown that there is a linear relationship between the state and costate
vectors [18]

λ(t) = P (t)x(t) (2.40)

which leads to the linear control law

u(t) = −R(t)−1Bu(t)TP (t)x(t). (2.41)

Taking the time-derivative of (2.40) and considering (2.39) results in the matrix Riccati diffe-
rential equation [18]

Ṗ = −A(t)TP (t)− P (t)A(t)−Q(t) + P (t)Bu(t)R(t)−1Bu(t)TP (t). (2.42)

Using (2.40) and (2.37d) leads to λ(T ) = Sx(T ) and finally

P (T ) = S. (2.43)

1Implicitly, it can be bounded by the choice of the cost function.
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2.2.1. Time-invariant results

In many cases the plant is adequately described by a linear time-invariant model ẋ = Ax(t) +
Buu(t). If additionally T → ∞ and the time-dependence of the weighting matrices in (2.38)
is omitted then a constant control law [18]

u(t) = −R−1BT
u P̄ x(t). (2.44)

originates from the solution of the optimization problem. Furthermore, S = 0 applies in this
case. Matrix P̄ satisfies the algebraic Riccati equation [18]

0 = −AT P̄ − P̄A−Q+ P̄BuR
−1BT

u P̄ . (2.45)

Remark 2.2.1. By means of extending T → ∞ it follows that the infinite-time optimization
problem

J =
1

2

∫ ∞
0

[
x(t)TQx(t) + u(t)TRu(t)

]
dt (2.46)

results in a finite J only if x(t) → 0 which requires [A,Bu] to be stabilizable. On the other
hand (2.46) were also finite if it would not include the unstable elements of x. However, the
resulting controller were impractical because it would not stabilize the plant. Hence, another
reasonable requirement is to choose the state weighting matrix as

Q = ETE (2.47)

with E ∈ Rn×n and [A,E] being detectable. Note that since Q is positive semidefinite and
symmetric a factorization (2.47) is always possible [24].

2.2.2. Extension of the time-invariant controller for tracking

So far, all the LQR controller can do is forcing the system state to the origin. Though, in
many practical applications the output values of a plant shall follow a reference signal r. This
can be realized by a simple extension of the controller involving a prefilter. Consider a linear
time-invariant plant model

ẋ = Ax+Buu (2.48a)

y = Cx (2.48b)

with x ∈ Rn, u ∈ Rm, and y, r ∈ Rp. The control law is chosen as

u(t) = −R−1BT
u P̄︸ ︷︷ ︸

K

x(t) + V r(t) (2.49)

with the first part corresponding with the LQR result (2.44) for stabilization of the origin and
the prefilter V ∈ Rm×p multiplied by the reference signal. The prefilter is designed such that
a vanishing steady-state error for constant references r∞ is achieved, i.e.

lim
t→∞

y(t)
!

= r∞. (2.50)

It follows from (2.50) that ẋ = 0 when t→∞ which leads to

0 = (A−BuK)x∞ +BuV r∞ ⇒ y∞ = −C(A−BuK)−1Bu︸ ︷︷ ︸
L∈Rp×m

V r∞
!

= r∞.

Assuming that p ≤ m and rank(L) = p the prefilter is computed from LV = Ip as

V = LT
(
LLT

)−1
. (2.51)
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2.3. Model Predictive Control

MPC is an optimization-based control technique which is frequently used in academics as
well as in various industrial environments. Especially within the chemical-, oil- and process-
industry it is recognized as an established control method. This is motivated due to the
following characteristics [37]:

1. MPC has the inherent ability to handle multiple-input and multiple-output control pro-
blems.

2. It takes constraints regarding actuators, states, and outputs into consideration.

3. The basic underlying principle is easy to understand even for people not familiar with
control engineering.

4. The dynamics of plants in process industry is usually rather slow compared to motion con-
trol or electrical control problems. Thus, more time can be spent on online-optimization.

However, the ongoing advances in computer hardware also facilitate the application of MPC in
more dynamic areas like automotive control (e.g. [38]). The receding horizon idea is the basis of
MPC and Figure 2.5 demonstrates its principles for a single-input single-output (SISO) system.
At the current time index k MPC uses a mathematical model of the plant for predicting its
output over the prediction horizon np as a function of the chosen input sequence and, depending
on the model representation, the internal states of the plant or the past input values. The
input sequence {uk, uk+1, . . . , uk+nc−1} with nc denoting the control horizon resulting in the
best predicted behavior with respect to an objective function and satisfying an optional set of
constraints is computed by solving an optimization problem. The objective function involves
at least the error between reference and predicted plant output but can contain several other
influencing factors like for example energy consumption. In case of nc < np the input is
assumed constant after the end of the control horizon. Although computing nc future input
values, MPC only applies the first element as the plant’s actual input signal. In the subsequent
sampling instant k+ 1 the whole procedure is repeated to get the next input [37]. In principle
this idea is applicable to any kind of plant model (2.34) with general objective functions (2.35)
and constraints. Unfortunately this general formulation leads to nonlinear and non-convex
optimization problems. But since the solution must be found online the majority of MPC
deals with special classes of plant models, objective functions and constraints which facilitate
an efficient implementation.

2.3.1. Plant model

Most MPC formulations are based on linear, discrete-time, state-space representations of the
plant

xk+1 = Axk +Buk +Bddk (2.52a)

yk = Cxk +Duk +Dddk (2.52b)

with state vector xk, input vector uk, measured disturbances dk, and controlled outputs
yk. Measured disturbances can be interpreted as known but uncontrollable inputs. Their
consideration enables a feedforward-like behavior since the controller does not have to wait for
changes in yk before it can react [37].
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Figure 2.5.: The receding horizon principle for the SISO case: At discrete-time instant k MPC
computes an input sequence which is optimal in terms of some cost function that
includes the error between reference and predicted output. Only the first element
uk is used, then the process is repeated.

2.3.2. Objective function

One of the most frequently used objective function types for MPC is a sum of quadratic terms
[37]. It is very common in MPC literature to choose the input changes u∆,k = uk − uk−1

as optimization variables instead of the total input uk. A possible formulation penalizing
deviations of the predicted output from the reference and high rate of change of the input
signals reads as

J(k) =

np∑
i=1

(yk+i − rk+i)
T Qi (yk+i − rk+i) +

nc∑
i=1

uT∆,k+i−1R∆,iu∆,k+i−1 (2.53)

with Qi � 0 and R∆,i � 0 being the weighting matrices. In most cases only their main
diagonals are chosen different from zero.

2.3.3. Constraints

The favorable representations of constraints on inputs, outputs, and states of (2.52) are li-
near inequalities. They all have to be translated into expressions which only depend on the
optimization variables, i.e. the plant inputs, before solving.

2.3.4. Overall optimization problem

If all the assumptions of the previous Sections 2.3.1 - 2.3.3 are satisfied the resulting optimi-
zation problem is a QP.
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3. Input Matrix Factorization

In order to apply control allocation techniques one must transform the plant model into a form
that allows the separation of the regulation from the control distribution task ([1], [25], [39]).
For a strongly input-redundant plant model that is linear with respect to its inputs, an input
matrix factorization has to be conducted, which is not unique for each plant [30]. The main
results of this chapter have been published by the author in [25] and [30]. The starting point
of considerations is the linear plant model

ẋ = Ax+Buu, (3.1)

where A ∈ Rn×n is the system matrix, x ∈ Rn is the state vector, Bu ∈ Rn×m is the input
matrix, and u ∈ Rm is the input vector. Let the rank of the input matrix be [25]

k = rank(Bu) < m, (3.2)

which means that Bu does not have full column rank or in other words the plant is equipped
with a redundant set of actuators. Nr(Bu) is the right nullspace of Bu and dim [Nr(Bu)] =
m−k follows from the rank-nullity theorem [24]. Hence certain directions in control space Rm
are mapped to zero which means that infinitely many input vectors have the same effect on
the plant. Condition (3.2) implies that the input matrix can be factorized into a virtual input
matrix Bv ∈ Rn×k and a control effectivity matrix B ∈ Rk×m, i.e. [25]

Bu = BvB (3.3)

with their ranks satisfying
rank(Bv) = rank(B) = k. (3.4)

The factorization (3.3) of Bu leads to an alternative plant model

ẋ = Ax+Bvv (3.5a)

v = Bu (3.5b)

including the virtual control vector v ∈ Rk which has, according to (3.2), less elements than u.
A controller for redundancy-free (3.5a) provides the output v, which is distributed among the
real actuators u by CA [39]. Usually, the actuators uT = [u1 . . . um] are subject to constraints,
which delimit the admissible subset of the m-dimensional (m-D) control space Ω according to
(1.31). In the same way a subset of k-D virtual control space Φ is defined as (1.34) and called
AMS [25].

The factorization according to (3.3) is not unique, i.e. the number of possibilities to form
Bv and B is infinite. In the case of n = k a natural choice is Bv = Ik and B = Bu with
Ik ∈ Rk×k being the identity matrix [25]. In case of n > k it is not always so obvious how to
accomplish (3.3). Singular value decomposition (SVD) and QR factorization, to name but a
few, are possible options [30]. For instance the SVD of Bu yields

Bu = USV T (3.6)
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3. Input Matrix Factorization

with orthogonal U ∈ Rn×n, S ∈ Rn×m, and orthogonal V ∈ Rm×m [28]. Matrix S is all zero
except for the first k entries of its main diagonal, which are the nonzero singular values of Bu.
One possible factorization following from (3.6) is

Bu = UkSk︸ ︷︷ ︸
Bv

V T
k︸︷︷︸
B

(3.7)

where Uk ∈ Rn×k consists of the first k columns of U , Sk ∈ Rk×k is the diagonal matrix of all
nonzero singular values, and Vk ∈ Rm×k is composed of the first k columns of V .

3.1. Relationship between factorizations

Consider two arbitrary input matrix factorizations

Bu = Bv1B1 = Bv2B2 (3.8)

whereby according to (3.4) the rank of all matrices is k.

Theorem 3.1.1. For any pair of input matrix factorizations (3.8) an invertible transformation
matrix

T =
(
BT
v1Bv1

)−1
BT
v1Bv2 (3.9)

with T ∈ Rk×k exists, such that

Bv1T = Bv2 (3.10)

T−1B1 = B2 (3.11)

hold [25].

Proof. The first step is to show that T always exists and that it is invertible. In accordance
with [24] and [40] rank(BT

v1Bv1) = rank(Bv1) = k and so (3.9) can always be calculated.
In order for T being invertible rank(BT

v1Bv2) must be k. For the purpose of determining
rank(BT

v1Bv2) one can write

Nr(B
T
v1Bv2) = {z ∈ Rk|[z ∈ Nr(Bv2)]∨

[Bv2z ∈ Nr(B
T
v1)]}.

(3.12)

The rank-nullity theorem [24] yields

k = dim[Nr(Bvi)] + dim[im(Bvi)]︸ ︷︷ ︸
=rank(Bvi)=k

∀i ∈ {1, 2}, (3.13)

which means that

Nr(Bvi) = 0 ∈ Rk ∀i ∈ {1, 2}. (3.14)

In order to get Nr(B
T
v1) evaluating the rank-nullity theorem once again one obtains

k = dim[Nr(B
T
i )] + rank(BT

i )︸ ︷︷ ︸
=k

∀i ∈ {1, 2}, (3.15)
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3.2. Influence on virtual control

and this means that Nr(B
T
i ) = 0 ∈ Rk. Given that the nullspace of the transposed input

matrix simplifies to

Nr(B
T
u ) = Nr(B

T
i B

T
vi) = Nr(B

T
vi) ∀i ∈ {1, 2}, (3.16)

which implies that
Nr(B

T
v1) = Nr(B

T
v2). (3.17)

Combining (3.12) and (3.17) results in Nr(B
T
v1Bv2) = Nr(B

T
v2Bv2). According to [24] and

[40] ∀A ∈ Rm×n : Nr(A
TA) = Nr(A). Considering that and (3.14) yields Nr(B

T
v2Bv2) =

Nr(Bv2) = 0 which means that rank(BT
v1Bv2) = k. In order to prove (3.11) one can rewrite

(3.9) to get
(
BT
v1Bv1

)
T = BT

v1Bv2. Multiplying with B2 from the right-hand side and
considering (3.8) results in

BT
v1Bv1TB2 = BT

v1Bv2B2︸ ︷︷ ︸
Bv1B1

. (3.18)

The square matrix BT
v1Bv1 has full rank and so (3.11) follows. Inserting (3.11) into (3.8)

yields
(
Bv1 −Bv2T

−1
)
B1 = 0. Taking into account (3.4) and the dimensions of B1 its left

nullspace reads as Nl(B1) = 0 ∈ Rk which implies (3.10) [25]. �

Remark 3.1.1. In case of n = k the transformation matrix computation simplifies to [25]

T = B−1
v1Bv2 (3.19)

and the proof of Theorem 3.1.1 becomes trivial.

3.2. Influence on virtual control

The main goal of the controller is to make the state of system (3.1) track a desired trajectory
regardless of the chosen factorization method. The state vector xi(t) for factorization Bu =
BviBi and initial state x0 := x(t = 0) reads as [25]

xi(t) = ΦA(t)x0 +

∫ t

0
[ΦA(t− τ)Bvivi(τ)] dτ (3.20)

with ΦA(t) being the state-transition matrix. Using (3.10) and (3.20) it follows that the state
vectors for different input matrix factorizations are identical, i.e. x1(t) ≡ x2(t) if [25]

v2(t) = T−1v1(t) ∀t. (3.21)

This relationship is utilized in Sections 3.4 - 3.6 to analyze the factorization’s impact on
generalized inverses.

3.3. Influence on admissible subsets

Each input matrix factorization has its own attainable moment set

Φi =
{
vi ∈ Rk

∣∣∃u ∈ Ω : vi = Biu
}
∀i ∈ {1, 2}. (3.22)

In contrast the admissible control space Ω stays the same [25].
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3. Input Matrix Factorization

3.4. Influence on direct allocation

Theorem 3.4.1. For any pair of input matrix factorizations (3.8) direct allocation yields the
same input vectors u1 ≡ u2 if the virtual control vectors v1 and v2 fulfill (3.21) [30].

Proof. Each factorization has its own boundary of the related attainable moment set

∂(Φi) = {vi ∈ Φi|(bvi /∈ Φi)∀ (b > 1)} ∀i ∈ {1, 2} (3.23)

with b ∈ R. For one factorization the boundary-intersections v∗1 and u∗1 fulfill

v1 = a1v
∗
1 = a1B1u

∗
1. (3.24)

Using (3.21) the virtual control vector v2 can be expressed as

v2 = T−1v1 = a1T
−1v∗1 = a1 T

−1B1︸ ︷︷ ︸
B2

u∗1 (3.25)

in case of another factorization of the input matrix. Due to the dimension reduction which
takes place by the mapping from Ω to Φ2 not all elements on ∂(Ω) lie on ∂(Φ2) but rather in
the interior of Φ2. However, only if B2u

∗
1 = T−1v∗1 ∈ ∂(Φ2) DA will compute the same real

control vector for both factorizations. Let v∗1 be located on ∂(Φ1), i.e. [30]

v∗1 ∈ ∂(Φ1) ⇒ ∀ b > 1 : bv∗1 /∈ Φ1. (3.26)

Assuming that T−1v∗1 is in the interior of Φ2 means that T−1v∗1 ∈ Φ2 and T−1v∗1 /∈ ∂(Φ2),
which is equivalent to

∃ b > 1 : bT−1v∗1 ∈ Φ2. (3.27)

Utilizing (3.22) to rewrite (3.27) yields

∃ b > 1, ∃(bu) ∈ Ω : bT−1v∗1 = bB2u. (3.28)

Now one can see from (3.11) that (3.28) is equivalent to ∃ b > 1, ∃(bu) ∈ Ω : bv∗1 = bB1u,
which means that v∗1 lies in the interior of Φ1, i.e. ∃ b > 1 : bv∗1 ∈ Φ1 and this is contradictory
to (3.26). Therefore T−1v∗1 is indeed on ∂ (Φ2) and so it follows from (2.22) that DA will yield
the same u for all factorizations [30]. �

3.5. Influence on generalized inverses

Theorem 3.5.1. Given two arbitrary input matrix factorizations (3.8), consider a generalized
inverse P1 for factorization 1 and the transformation matrix T according to (3.9). Then a
generalized inverse for factorization 2 is given by [25]

P2 = P1T . (3.29)

Proof. Equation (3.29) can be proved by inserting it together with (3.11) into the Penrose-
equations (2.5) [25]. �

Corollary 3.5.1. Consider two arbitrary input matrix factorizations (3.8) with related gene-
ralized inverses P1 and P2 satisfying (3.29) and virtual control vectors v1 and v2 fulfilling
(3.21). Then (2.6) yields identical input vectors u1 ≡ u2 for both factorizations [25].

Proof. Using (2.6), (3.21), and (3.29) yields u1 = P1v1 = P1TT
−1v1 = P2v2 = u2. �

Hence, CA via generalized inverses remains unaffected by input matrix factorization [25].
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3.5. Influence on generalized inverses

3.5.1. Geometrical considerations

With i ∈ 1, 2 representing the factorization number the columns of a generalized inverse Pi
span a k-D subspace R(Pi) =

{
u ∈ Rm | (u = Piv)∀ (v ∈ Rk)

}
⊂ Rm which is called column

space or range (see [40] and [27]). Two generalized inverses fulfilling (3.29) have identical
ranges, i.e. [25]

R(P2) = R(P1T ) = R(P1) (3.30)

because T is guaranteed to have full row rank [40]. The intersection of this subspace with the
convex set Ω is also convex ([4]) and reads as [25]

Θ(Pi) = R(Pi) ∩ Ω. (3.31)

It forms the feasible set of points that can be reached by means of the pseudoinverse and is
invariant to input matrix factorizations because of (3.30). Θ(Pi) can be projected into virtual
control space by means of Bi, where it denotes the subset Πi of virtual controls, that gets
mapped to feasible real controls for the i-th factorization [25]

Πi = BiΘ(Pi) ⊆ Φi. (3.32)

Fig. 3.1 shows Θ(Pi) and Ω in a 3-D example and Fig. 3.2 depicts its virtual control space for
an arbitrary factorization. In order to map more virtual control vectors into Ω the sets Πi and

Figure 3.1.: Visualization of a pseudoinverse
for m = 3 and k = 2: The red
box depicts Ω. The green plane is
R(Pi). The intersection with the
red box is the subset Θ(Pi). The
yellow line shows the nullspace.
Moving along its direction does
not change the resulting virtual
control. ( c© 2016 IEEE, [25]).

-150 -100 -50 0 50 100 150v
1

-60

-40

-20

0

20

40

60

v 2

admissible virtual control space: 
5

6

7 2

1

3

4

8

boundary of 
vertices of 

: 65.08 % of 
intersection P

i

Figure 3.2.: 2-D virtual control space related
to the example in Figure 3.1: The
red polygon is the projection of
Ω into 2-D space and thus it
spans the admissible virtual con-
trol space Φi for a certain factori-
zation. The green polygon is Πi,
which is the projection of Θ(Pi).
( c© 2016 IEEE, [25]).

Φi should coincide as much as possible, i.e. their volumes should be the same. One possibility
to determine the volume of a k-D polytope P involves the triangulation of its boundary ∂(P )
into a set ∆P of (k-1)-D simplices (special case of polytopes, see [41]). Each (k-1)-simplex
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3. Input Matrix Factorization

forms together with the origin a k-simplex. The volume of P is calculated as the sum of
volumes of all k-simplices [25]

V (P ) =
1

k!

∑
σ∈∆P

∣∣ det
[
p1(σ) . . . pk(σ)

] ∣∣ (3.33)

with pj(σ) being the j-th vertex of simplex σ [42]. Using (1.34) and (3.11) the vertices of Φ2

can be written as
p(Φ2) = T−1p(Φ1). (3.34)

Consequently, one can utilize (3.32) and (3.11) to express the vertices of Π2 as

p(Π2) = T−1p(Π1). (3.35)

Combining (3.33) and (3.34) the volume of Φ2 reads as

V (Φ2) =

∣∣det(T−1)
∣∣

k!

∑
σ∈∆Φ1

det
∣∣ [p1(σ) . . . pk(σ)

] ∣∣
=
∣∣det(T−1)

∣∣V (Φ1)

(3.36)

and together with (3.35) one obtains

V (Π2) =

∣∣det(T−1)
∣∣

k!

∑
σ∈∆Π1

det
∣∣ [p1(σ) . . . pk(σ)

] ∣∣
=
∣∣det(T−1)

∣∣V (Π1).

(3.37)

It follows from (3.36) and (3.37) that the volume ratio is not affected by factorization, i.e. [25]

V (Π1)

V (Φ1)
=
V (Π2)

V (Φ2)
. (3.38)

Figure 3.3 shows the virtual control space of another input matrix factorization related to the
example in Figure 3.1. One can observe that the volume ratio is the same as in case of the
factorization leading to Figure 3.2.

Figure 3.3: 2-D virtual control space
related to the example
in Figure 3.1 for a dif-
ferent factorization. The
red polygon is Φ and the
green polygon is Π (the
projection of Θ(P1) =
Θ(P2)).
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3.6. Influence on Redistributed Pseudoinverse

3.6. Influence on Redistributed Pseudoinverse

Whether the factorization affects RPINV is related with a possible decrease of the input
matrix’s rank [30]. Let j denote the number of free actuators during an RPINV iteration.

Assumption 3.6.1. Every k × k submatrix of B0 is full rank.

Assumption 3.6.2. The number of free controls satisfies j ≥ k.

Theorem 3.6.1. Under Assumptions 3.6.1 and 3.6.2 RPINV yields the same input vectors
u1 ≡ u2 for any pair of input matrix factorizations (3.8) if the virtual control vectors v1 and
v2 fulfill (3.21) [30].

Proof. During the first iteration (unconstrained solution) c1 is zero for both factorizations.
Considering (3.11), (2.18), and (2.21) the weighted pseudoinverse for the second factorization
reads as [30]

B#
2 =RRTW−1BN,T

1 T−T
[
T−1BN

1 W
−1BN,T

1 T−T
]−1

=RRTW−1BN,T
1

(
BN

1 W
−1BN,T

1

)−1
T = B#

1 T

(3.39)

and so u1
1 ≡ u1

2 follows from (3.21). Assume that j ≥ k actuators remain free in iteration
N ≥ 1. Because of uN−1

1 = uN−1
2 this leads to the same changes in cN and BN

i for both

factorizations i ∈ {1, 2} and k = rank(BN
i ) = min(k, j) still holds. Hence, BN

i W
−1BN,T

i is
still invertible and (3.39) can be applied again to show that uN1 = uN2 [30]. �

Remark 3.6.1. Assumption 3.6.1 guarantees that rank(BN ) = k as long as it contains k nonzero
columns. If this assumption is not fulfilled, zeroing columns can lead to a rank-reduction of
BN although Assumption 3.6.2 holds. Whether Theorem 3.6.1 holds depends in this case not
only on the number of saturated actuators but also on which of them saturate [30].

In order to analyze the case of j < k assume that W = Im which causes B# to become the
MPP1, i.e. B# = B‡ = BT (BBT )−1. Due to numerical reasons this calculation is not carried
out directly, but instead the SVD is used [28]. Consider matrix B as [30]

B =

b11 · · · b1j 0 · · · 0
...

...
...

...
bk1 · · · bkj 0 · · · 0

 (3.40)

with j being the number of nonzero columns2 and singular values. The SVD yieldsB = USV T

with the orthonormal columns of U ∈ Rk×k being the eigenvectors of BBT [30],

S =

σ1 0 · · · 0
. . .

...
...

σk 0 · · · 0

 ∈ Rk×m (3.41)

containing the singular values σ1, . . . , σk of B (note that only the first j of them are nonzero),
and the orthogonal matrix V ∈ Rm×m. An important observation is that in the first j columns

1A generalization for arbitrary W � 0 is presented later on. In order to keep notations concise superscript ’N’
in BN is omitted from now on.

2W.l.o.g. one can assume the nonzero columns to be the first ones, because columns of B and related elements
in u may be appropriately interchanged.
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3. Input Matrix Factorization

of V the last m− j rows are zero, because these columns are the eigenvectors of the nonzero
eigenvalues of BTB, whose m− j last rows are zero. The MPP of B reads as [30]

B‡ = V ΣUT (3.42)

with

Σ =



σ−1
1 . . .

σ−1
j

. . .

0 · · · 0
...

...
0 · · · 0


∈ Rm×k. (3.43)

One can see from (3.43) that B‡ is no longer a right-inverse because rank(Σ) < k. Matrix Σ
has m − j zero rows which means together with (3.42) that the last m − j columns of V do
not contribute to B‡. Evaluating (3.42) and considering these insights yields [30]

B‡ =



σ−1
1 v11 · · · σ−1

j v1j 0 · · · 0
...

...
...

...

σ−1
1 vj1 · · · σ−1

j vjj 0 · · · 0

0 · · · 0 0 · · · 0
...

...
...

...
0 · · · 0 0 · · · 0


·UT (3.44)

with vpq being the element from V ’s p-th row and q-th column. Equation (3.44) can be
rewritten to

B‡ = R

v11 · · · v1j...
...

vj1 · · · vjj

σ−1
1 0 · · · 0

. . .
...

...

σ−1
j 0 · · · 0

UT (3.45)

with R ∈ Rm×j being consistent with (2.17). Expression (3.45) can also be evaluated if
rank(B) < k, i.e. less than k actuators are free3. Assuming j < k and taking all nonzero
columns from (3.40), one obtains [30]

B̃ = BR =

b11 · · · b1j
...

...
bk1 · · · bkj

 ∈ Rk×j (3.46)

with rank(B̃) = j. Applying the SVD on B̃ results in B̃ = Ũ S̃Ṽ T with Ũ ∈ Rk×k, S̃ ∈ Rk×j ,
and Ṽ ∈ Rj×j . Note that the zero columns of B do not affect U , because BBT = B̃B̃T . This
implies that U = Ũ and the nonzero singular values of B and B̃ are the same. Furthermore,
it can be shown that the elements of Ṽ coincide with those from the top-left j × j-submatrix
of V . The MPP of B̃ is now a left inverse and reads as B̃† = (B̃T B̃)−1B̃T = Ṽ Σ̃ŨT [28] or
more specifically [30]

B̃† =

v11 · · · v1j...
...

vj1 · · · vjj

σ−1
1 0 · · · 0

. . .
...

...

σ−1
j 0 · · · 0

UT . (3.47)

3In (2.8b) the expression (BBT )−1 does not exist any more.
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3.6. Influence on Redistributed Pseudoinverse

Comparing (3.45) and (3.47) one realizes that if j < k then

B‡ = RB̃†, (3.48)

i.e. the pseudoinverse of BN is the left inverse of its nonzero columns augmented with rows
of zeros [30].

3.6.1. RPINV with non-identity weighting matrices

Now an arbitrary weighting matrixW � 0 is considered. By means of Cholesky decomposition
W can be factorized into W = Ŵ TŴ and Ŵ ∈ Rm×m is an upper triangular matrix with
positive diagonal entries [24]. Assuming j ≥ k an auxiliary matrix is introduced as [30]

BW = B0RR
TŴ−1 (3.49)

with rank(BW ) = k following from (A.3) in Appendix A. Its MPP is

B‡W = Ŵ−TRRTBT
0

(
B0RR

T Ŵ−1Ŵ−T︸ ︷︷ ︸
(Ŵ T Ŵ )

−1
=W−1

RRTBT
0

)−1
. (3.50)

Comparing (2.21) and (3.50) it follows that the weighted pseudoinverse of B can be computed
by [30]

B# = RRTŴ−1B‡W . (3.51)

Lemma 3.6.1. In case of j < k the weighting matrix has no influence on the resulting pseu-
doinverse [30].

Proof. Combining (3.46) and (3.49) yields another auxiliary matrix

B̃W = BWR (3.52)

with B̃W ∈ Rk×j . Its MPP reads as

B̃†W =
(
RTŴ−TRRTBT

0B0RR
TŴ−1R

)−1
RTŴ−TRRTBT

0 . (3.53)

Right-multiplying a matrix with R selects according to (2.16) columns with indices {l1, ..., lj}
and left-multiplying with RT selects rows with identical indices. Therefore, RTŴ−TR and
RTŴ−1R are triangular matrices with positive diagonal entries which guarantees invertibility.
It follows that [30]

B̃†W =
(
RTŴ−1R

)−1 (
B̃T B̃

)−1
B̃T (3.54)

and together with (3.48) and (3.51) one obtains [30]

B# = R
(
RTŴ−1R

)(
RTŴ−1R

)−1 (
B̃T B̃

)−1
B̃T

= R
(
B̃T B̃

)−1
B̃T = RB̃† = B‡

. (3.55)

�
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Assumption 3.6.3. Two input matrix factorizations (3.8) are related by means of a transfor-
mation matrix T with orthogonal columns, i.e.

TT T = Ikd (3.56)

with d ∈ R \ {0}.

Theorem 3.6.2. Under Assumption 3.6.3 RPINV yields identical input vectors u1 ≡ u2 for
any j ≥ 0 if v1 and v2 fulfill (3.21) [30].

Proof. If j ≥ k Theorem 3.6.1 holds. In case of j < k Lemma 3.6.1 enables the restriction of
considerations on W = Im. Using (3.11) leads to B̃2 = T−1B̃1 and according to (3.55) the
rank deficient pseudoinverse for the second factorization is [30]

B#
2 = R

[
B̃T

1 T
−TT−1B̃1

]−1
B̃T

1 T
−T . (3.57)

Considering (3.56) yields T−TT−1 = Ik
1
d and taking that out of the bracket in (3.57) one

obtains IkdT
−T = T . Consequently, B#

2 = B#
1 T and together with (3.21) u1 ≡ u2 follows

[30]. �

Factorizations which do not comply with Assumption 3.6.3 lead to deviating allocation results
if the number of free actuators decreases below k. This is due to the fact that B#

2 6= B#
1 T

and so T−1 is not canceled from (3.21) in the corresponding RPINV iteration.

3.7. Conclusion

At the beginning of this chapter transformation matrices are introduced which provide a syste-
matic way of describing the relationship between the major CA-related quantities for different
input matrix factorizations. Additionally, the factorization influence on three popular CA
algorithms is investigated. Whereas WPINV and DA remain invariant under factorizations
RPINV can be influenced depending on the number of actuator saturations. Only those facto-
rizations which are connected by means of transformation matrices with orthogonal columns
yield identical RPINV results under all circumstances. In other cases it is crucial when zeroing
columns of the control effectivity matrix leads to its rank-reduction, because then the resulting
virtual control vector starts to deviate from the desired one [30].

If actuator constraints are considered the AMS Φ and the subset Π ⊂ Rk which leads to
feasible u for a given generalized inverse are convex polytopes. Transformation matrices enable
the conversion of their volumes from one factorization to another.
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4. Normalized Generalized Inverse

As mentioned in Section 3.5.1 it can be advantageous to use a generalized inverse that maxi-
mizes the volume ratio

p :=
V (Π)

V (Φ)
(4.1)

because it may improve the overall actuator utilization. One way to compute Π-maximizing
generalized inverses is known as Tailored Generalized Inverse (TINV). The control effectivity
matrix B is split into an invertible part Ba ∈ Rk×k and Bb ∈ Rk×(m−k). As described in [3]
and [4] the TINV can now be determined by [25]

Ptail =

[
B−1
a (Ik −BbPb)

Pb

]
(4.2)

with Pb ∈ R(m−k)×k containing the free parameters corresponding to the number of DOF one
has in the choice of a k-D subspace in Rm (see [3], [4], and [41]). These are tuned by means of
a search algorithm and that changes the orientation of the k-D hyperplane which is spanned
by the generalized inverse. Therefore the algorithm not only has to compute the intersections
Θ(Ptail) with the m-D object Ω during each iteration step, but also the triangulation of ∂(Π)
before the volume can be determined. This makes the overall computation very expensive.
Another major drawback of this optimization procedure is its strong dependability on the initial
value of the free parameters Pb. In general they are chosen to match with the corresponding
entries in (2.8b), but this does not guarantee convergence to the optimum at all [25].

4.1. Algorithm principles

In order to avoid the drawbacks of TINV an alternative problem formulation is presented
that tackles the problem from the opposite direction. Major parts of this chapter have been
published by the author in [25]. The main ideas behind this method are:

• First, construct a matrix Pn spanning a k-D subspace in Ω using geometric principles.

• After that compute a factorization (3.3) for which Pn is a generalized inverse. We refer
to Pn as Normalized Generalized Inverse (NINV).

Without loss of generality the method requires that the input constraints are symmetric, i.e.
umin = −umax with umax > 0. It is shown in [4] that in case of asymmetric constraints an
input transformation u′ = u + u∆ can be applied to overcome this restriction. For a certain
class of problems a closed-form solution is stated, but in most cases a search algorithm is used
which outperforms the existing approach for typical problem sizes [25].
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4. Normalized Generalized Inverse

4.2. Factorization of the input matrix

Theorem 4.2.1. Let Bu ∈ Rn×m fulfilling (3.2) be the input matrix and Pn ∈ Rm×k satisfying
rank(BuPn) = k. Then an input matrix factorization can be computed with

Bu = Bv,nBn (4.3a)

Bv,n = BuPn (4.3b)

Bn =
(
BT
v,nBv,n

)−1
BT
v,nBu (4.3c)

and Pn is a right-inverse of Bn [25].

Proof. Considering rank(BT
v,nBv,n) = rank(Bv,n) (see [24] and [40]) and using (4.3b) yields

k = rank(BT
v,nBv,n) = rank

[(
BT
v,nBu

)
Pn
]

≤ min
[
rank(BT

v,nBu), rank(Pn)
]

.
(4.4)

It follows from (4.4) that rank(BT
v,nBu) = k and therefore rank(Bn) = k. Next it is shown

that Pn is a right-inverse of Bn by inserting (4.3b) into (4.3c) and multiplying with Pn from
the right-hand side [25]

BnPn =
(
P T
nB

T
uBuPn

)−1
P T
nB

T
uBuPn = Ik. (4.5)

Now (4.3a) is derived. Because of rank(Pn) = rank(Bv,n) = k it follows that

rank
[
Pn
(
BT
v,nBv,n

)−1
BT
v,n

]
︸ ︷︷ ︸

=:G

= k. (4.6)

Inserting (4.3b) into G reveals that GBuG = G, which is one of the Penrose-equations. Due
to rank(G) = rank(Bu) one can conclude that BuGBu = Bu (see [27]). Finally, inserting
(4.3b) and (4.3c) into that expression yields [25]

Bu

[
Pn
(
P T
nB

T
uBuPn

)−1
P T
nB

T
u

]
Bu︸ ︷︷ ︸

=Bv,nBn

= Bu. (4.7)

�

4.3. Construction of Pn for k = 1

In the case of 1-D virtual control space a closed form solution can be derived that ensures
100% usage of Φ [25]. The concept behind NINV is best explained with the aid of the simplest
constrained CA problem with m = 2 actuators and k = 1 virtual control. The actuator
constraints can be visualized as red rectangle in Figure 4.1 and the nullspace of B ∈ R1×2

is spanned by N ∈ R2×1 depicted as yellow line. Generalized inverses P ∈ R2×1 can be
represented as lines through the origin, i.e. the CA results u = P v are located on those lines.
Figure 4.2 shows the corresponding Φ which is delimited by two projected vertices of Ω. The
best achievable volume ratio is ”1” meaning that there is no v ∈ Φ which gets mapped to
u /∈ Ω by multiplication with P . Drawing the attention back to real control space (Figure 4.1)
this is equivalent with finding a line through the origin which does feature any points outside
the red rectangle Ω from where Ω’s boundary could be reached by moving along the nullspace
direction. In the given example the optimal solution is clearly the green line intersecting
vertices 2 and 3. This idea is now generalized for an arbitrary number of actuators.
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4.3. NINV construction for 1-D virtual control spaces
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Figure 4.1.: Real control space Ω for m = 2 and k = 1: the illustrated generalized inverse
enables the usage of the entire AMS (see Figure 4.2). This can be seen because
there is no point on the green line which lies outside Ω and can be translated back
into Ω by following the nullspace direction.
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Figure 4.2.: Admissible virtual control space Φ belonging to Figure 4.1: Π = Φ.

Theorem 4.3.1. Consider an input matrix Bu ∈ Rn×m with rank(Bu) = 1, i.e.

Bu =


bTu1

c2b
T
u1

...

cnb
T
u1

 (4.8)

where bTu1 = [bu11 . . . bu1m] is the first row of the input matrix and ci ∈ R are scalar factors
with i ∈ {2, ..., n}. Then

Pn = diag
[
sign(bTu1)

]
umax (4.9)

is an optimal generalized inverse for factorization (4.3) which maximizes the volume ratio
(4.1) [25].

Proof. Initially it is shown that the assumption rank(BuPn) = rank(Bv,n) = 1 in Theorem
4.2.1 is satisfied. Because of Bv,n ∈ Rn×1 this assumption is equivalent to the demand on
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4. Normalized Generalized Inverse

Bv,n not having all entries set to zero. Combining (4.8) and (4.9) the virtual input matrix
can be written as [25]

Bv,n =
[
1 c2 . . . cn

]T m∑
i=1

|bu1i|ui,max. (4.10)

At least one entry of bTu1 must be different from zero (otherwise there were no plant inputs)
and so rank(Bv,n) = 1 is guaranteed. The next step is showing that (4.9) is the optimal
solution. The set of Ω’s vertices reads as [25]

Υ = {p1(Ω), . . . , p2m(Ω)} (4.11)

where pj(Ω)T = [±u1,max . . . ± um,max] is the j-th vertex corresponding to one specific sign
combination. The AMS Φn is bounded by the convex hull of the projection of Υ into k-D
virtual control space ([3], [4]), i.e. ∂ (Φn) = conv {BnΥ}. Since k = 1 one can simplify that
to get its interval representation

Φn,1 = [min(BnΥ),max(BnΥ)] . (4.12)

Inserting (4.8) and (4.10) into (4.3c) results in

Bn =

(
1 + c2

2 + . . .+ c2
n

)
(
∑m

i=1 |bu1i|ui,max)(
1 + c2

2 + . . .+ c2
n

)
(
∑m

i=1 |bu1i|ui,max)2b
T
u1

=
1∑m

i=1 |bu1i|ui,max
bTu1.

(4.13)

The projection of an arbitrary vertex of Υ by means of (4.13) reads as

Bnpj(Ω) =
±|bu11|u1,max ± . . . ± |bu1m|um,max∑m

i=1 |bu1i|ui,max
. (4.14)

Equation (4.14) reaches its minimum (maximum) if all signs are negative (positive). Thus
evaluating (4.12) yields Φn,1 = [−1, 1] . A direct implication from (4.9) is that the subset of
Φn,1 where a multiplication with Pn yields u ∈ Ω can also be written as Πn,1 = [−1, 1] .
Therefore Πn,1 = Φn,1 and (4.9) is the optimal solution [25]. �

Remark 4.3.1. A necessary condition for 100 % AMS usage is that the number of intersection
points that form Π is equal to the number of vertices that define Φ. For higher dimensional
virtual control spaces this requirement is in general not met, apart from some degenerated
cases.

Remark 4.3.2. As it can be seen in Figure 4.2 v is restricted to values between -1 and +1. This
normalization also appears for higher dimensional virtual control spaces (see next Section 4.4)
and defines the name of this method.

4.4. Construction of Pn for k > 1

In this case a combinatorial search algorithm examines several candidates for Pn and computes
their volume ratio in a very efficient way. The remainder of this section deals with the following
major issues:

1. How can one efficiently determine shape and volume of Π?

2. Which vertex-combinations of Ω should be used as candidates for Pn?

3. How can one efficiently compute the volume of the AMS Φ?
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4.4. NINV construction for multi-D virtual control spaces

4.4.1. Shape and volume of Π

The candidates are constructed from vertices of Ω in order to normalize the subset Π. As a
consequence, there is a finite number of possible shapes with prescribed volume that Π can
take. Hence, there is no need for intersection computation and triangulation any more. Each
candidate reads as [25]

Pn =

±u1,max · · · ±u1,max
...

...
±um,max · · · ±um,max

 ∈ Rm×k (4.15)

and because of its columns being part of Ω’s boundary they automatically specify k intersecti-
ons.

Definition 4.4.1. Let rT ∈ R1×q be a row of M ∈ Rp×q. Then rT is called scalarly indepen-
dent if it cannot be obtained by a scalar multiplication of any of the p − 1 other rows of M
[25].

Theorem 4.4.1. Let the generalized inverse candidate complying with (4.15) contain 2k−1

scalarly independent rows. Then the resulting subset Π is a k-D cross-polytope with fixed
volume [25].

Proof. In order to compute Π one must project the vertices of Θ(Pn) into virtual control space
Rk by means of the control effectivity matrix (4.3c). The k columns of (4.15) which are also
vertices are mapped to unit vectors in Rk, i.e. Ik = BnPn because of Bn being constructed to
have Pn as right-inverse. Due to the symmetry of Ω one has to consider not only the vertices
which form the generalized inverse but also their reflections around the origin (multiplication
by −1). Consequently, they are mapped to negative unit vectors, i.e. −Ik = Bn(−Pn) which
means that at least 2k unit vectors are vertices of Π. Assuming that these 2k points are the
only vertices, the subset which guarantees Pnv ∈ Ω can be written as [25]

ΠX =

{
v ∈ Rk

∣∣∣( k∑
i=1

|vi|

)
≤ 1

}
. (4.16)

Expression (4.16) is also the definition of a k-D unit cross-polytope [43] whose volume reads
as

V (ΠX) =
2k

k!
. (4.17)

What remains is to show under which circumstances the columns of Pn and −Pn are indeed
the only vertices. According to (3.31) further vertices must lie in the column space R(Pn) of
the generalized inverse. This is equivalent to being a linear combination of the columns of Pn.
Therefore, all intersections s fulfill [25]

Pnv = s with s ∈ ∂(Ω). (4.18)

Noting from (3.32) that Π is the linear mapping of the convex set Θ(Pn) it is also convex.
Hence, the projections v = [v1 . . . vk]

T of additional intersection points, that extend (4.16),
have to satisfy [25] (

k∑
i=1

|vi|

)
> 1. (4.19)
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4. Normalized Generalized Inverse

Considering (4.15) it can be seen that each row of the system of equations (4.18) is scaled by
the corresponding component of umax. Therefore the entries of Pn and the bounds on the
elements of vector s can be normalized to 1. The overall mathematical problem whose solution
can yield additional intersections reads as [25]±1 · · · ±1

...
...

±1 · · · ±1


︸ ︷︷ ︸

Pn∈Rm×k

v1
...
vk

 =

 s1
...
sm

 (4.20a)

with − 1 ≤ si ≤ 1 for i = 1, . . . ,m (4.20b)

∃ j ∈ {1, . . . ,m} : |sj | = 1 (4.20c)

|v1|+ . . .+ |vk| > 1 (4.20d)

The maximum number of possible unique rows in Pn is 2k. They can be generated by taking
all binary numbers from 0 to 2k − 1 and by replacing 0 by −1. A matrix containing the first
half of the resulting combinations is given by [25]

J =



−1 . . . −1
−1 . . . −1 1
−1 . . . −1 1 −1
−1 . . . −1 1 1

...
−1 1 . . . 1 −1
−1 1 . . . 1


∈ R2k−1×k. (4.21)

Multiplying all combinations in (4.21) with −1 yields the remaining second half of possible

rows. Consequently, one can compose a matrix J̃ ∈ R2k−1×k of any rows taken from J and
−J that are scalarly independent and −J̃ is the other half of all possible rows.
On the other hand the number of possible sign combinations of the elements v1, . . . , vk is also
2k and can be generated in exactly the same way as stated above. Thus if Pn contains 2k−1

scalarly independent rows from J and −J then one of those rows has equal signs as either v
or −v. Assuming the related row index being l the corresponding equation of (4.20a) can be
written as [25]

(±1) (|v1|+ . . . + |vk|) = sl. (4.22)

Equation (4.22) must now satisfy the conflicting inequalities (4.20b) and (4.20d). For this
reason no more intersections can occur under the given circumstances [25]. �

In order to clarify Theorem 4.4.1 consider the case where k = 3. According to (4.21) one
obtains

J =


−1 −1 −1
−1 −1 1
−1 1 −1
−1 −1 −1

 (4.23)

which contains one half of all possible rows of Pn and at the same time one half of the possible
sign combinations of the elements of v = [v1 v2 v3]T . Assume that Pn comprises all rows
from (4.23). Consequently, the entries of one row must have either equal or opposite signs
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4.4. NINV construction for multi-D virtual control spaces

as the elements of any v and (4.22) follows from (4.20a). However, (4.22) is also true if any
number of rows in (4.23) is multiplied by −1 as the rows remain scalarly independent.

Corollary 4.4.1. In 2-D virtual control space the cross-polytope is the only possible geometric
shape that the normalized subset Π can take (see Figure 4.3) [25].

Proof. Every generalized inverse Pn,2 ∈ Rm×2 satisfies rank (Pn,2) = 2 and so it follows that
Pn in (4.20a) has two linearly independent rows. The corresponding matrix J ∈ R2×2 in (4.21)
also contains just two linearly independent rows. Therefore, the assumptions of Theorem 4.4.1
are automatically met [25]. �

-1.0 -0.5 0.5 1.0
v1

-1.0

-0.5

0.5

1.0

v2
shape of normalized ∏ for k=2

Figure 4.3.: The 2-D cross-polytope is a
square and according to (4.17)
its volume is V = 2. ( c© 2016
IEEE, [25]).

Figure 4.4.: The 3-D cross-polytope is an oc-
tahedron and according to (4.17)
its volume is V = 4

3 . ( c© 2016
IEEE, [25]).

Corollary 4.4.2. In 3-D virtual control spaces the shape of the normalized subset Π is either
a cross-polytope or a parallelepiped (see Figures 4.4 - 4.8).

Proof. Evaluating (4.21) for k = 3 yields

J3 =


−1 −1 −1
−1 −1 1
−1 1 −1
−1 1 1

 . (4.24)

Every generalized inverse Pn,3 ∈ Rm×3 satisfies rank (Pn,3) = 3 and so it contains only
three linearly independent rows. Thus, it is not necessary for Pn to involve 2k−1 = 4 scalarly
independent rows from J3 and −J3 but only three. If four rows of Pn are scalarly independent
it follows from Theorem 4.4.1 that Π is a cross-polytope (Figure 4.4). In case of only three
scalarly independent rows the number of possibilities to choose three out of four without
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4. Normalized Generalized Inverse

Figure 4.5.: Variant 1 of the normalized pa-
rallelepiped (rows 1, 2, and 3).
( c© 2016 IEEE, [25]).

Figure 4.6.: Variant 2 of the normalized pa-
rallelepiped (rows 1, 2, and 4).
( c© 2016 IEEE, [25]).

repetition and ordering is
(

4
3

)
= 4. For each of those row combinations additional intersections

extend Π which leads to four manifestations of the resulting geometric shape [25]. Assume
that all rows of Pn are scalar multiples of the first three rows of −J3. Equation (4.20a) can
now be reduced to 1 1 1

1 1 −1
1 −1 1

v1

v2

v3


︸ ︷︷ ︸
vI

=

s1

s2

s3


︸ ︷︷ ︸
s

(4.25)

because the remaining m − 3 equations are linearly dependent, i.e. they are automatically
fulfilled if a solution for (4.25) is found. Incorporating the solution of (4.25) into (4.20b) -
(4.20d) yields

|s2 + s3|+ |s1 − s3|+ |s1 − s2| > 2 (4.26a)

with − 1 ≤ si ≤ 1 for i = 1, 2, 3 (4.26b)

∃ j ∈ {1, 2, 3} : |sj | = 1. (4.26c)

Considering (4.26b) it can be seen that the maximum of the left-hand-side of (4.26a) is reached
if sT = [ 1 −1 −1] or sT = [−1 1 1]. The projections of these solutions into virtual control
space are vTI = [−1 1 1] and −vTI = [ 1 − 1 − 1] respectively. It can be shown that all
other solutions of (4.26) lie either on or inside of

∂ (Π♦) = conv {Ik,−Ik,vI ,−vI} . (4.27)

Figure 4.5 shows the visualization of (4.27) and one can recognize a parallelepiped which is
just a 3-D unit cross-polytope that is augmented by two unit simplices. The volume of a k-D
unit simplex S (see [43]) is

V (S) =

√
k + 1

k!
. (4.28)
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4.4. NINV construction for multi-D virtual control spaces

Figure 4.7.: Variant 3 of the normalized paral-
lelepiped (rows 1, 3, and 4).

Figure 4.8.: Variant 4 of the normalized paral-
lelepiped (rows 2, 3, and 4).

Using (4.17) and (4.28) the volume of the 3-D parallelepiped is [25]

V (Π♦) = V (ΠX) + 2V (S) = 2. (4.29)

The other three possible row combinations of (4.25) reveal parallelepipeds with different orien-
tations but the same volume (4.29) as it can be seen in Figures 4.6 - 4.8. �

For higher virtual control space dimensions k > 3 the amount of possible shapes and volumes
increases and the number of scalarly independent rows is not the only distinguishing factor
any more.

4.4.2. Generating candidates for Pn

Definition 4.4.2. An n-flat is an n-D subspace which might not contain the origin [4]. It is
determined by n+ 1 points. In Rm (with m > n) a point on an n-flat ω has n DOFs and must
fulfill m− n = cgeo(ω) geometric constraints [41].

Definition 4.4.3. An object is a closed subset of an n-flat [4].

The actuator constraints (1.31) form an m-D hyperrectangle which in turn is bounded by 2m
so-called (m-1)-flats [43]. On each of those (m-1)-flats one actuator is either at its minimum
or maximum value, i.e. a point on an (m-1)-flat has (m-1) DOFs and one geometric constraint
which also corresponds to an actuator constraint (red faces in Figure 4.9). The intersection of
two (m-1)-flats is an (m-2)-D flat where both of the corresponding two actuators are at their
extremal values. So in general c (m-1)-flats on the boundary of Ω intersect in an (m-c)-flat ωc
where c = csat(ωc) actuators are permanently at their extremal values.

Definition 4.4.4. The number of actuators which are at their extremal values everywhere on
a given n-flat ω reads as csat(ω) ∈ N+ and is called saturation number [25].
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4. Normalized Generalized Inverse

Definition 4.4.5. The set of indices of permanently saturated actuators on a certain n-flat ω
contains c = csat(ω) elements and is denoted as saturation indices

S = {s1, . . . , sc} = rfix(ω). (4.30)

Definition 4.4.6. Consider a set of saturation indices S with c elements. ωS is the intersection
of those c (m-1)-flats on ∂(Ω) whose permanently saturated actuators correspond to S. A point
on ωS has m − c DOFs and must satisfy c = cgeo(ωS) constraints [4]. Hence, the (m-c)-flat
ωS exhibits the special relationship

csat(ωS) = cgeo(ωS). (4.31)

Pn consists of k column vectors of dimension m which are vertices of Ω and span a k-D subspace
of Rm known as column space R(Pn). The intersection with the set of actuator constraints is
Θ(Pn) = R(Pn)∩Ω which is consequently bounded by (k-1)-flats ϑi each of them requiring k
points for its definition. Every (k-1)-flat is obtained from

ϑi = R(Pn) ∩ ωS with rfix(ϑi) = rfix(ωS). (4.32)

The feasible area on each n-flat is given by

ϑi = {u ∈ ϑi
∣∣u ∈ ∂(Ω)}. (4.33)

Thus, Pn not only describes a k-D subspace Θ but also a (k-1)-flat ϑi and a (k-1)-D object ϑi
which is located on both boundaries, i.e. [25]

ϑi ⊂ ∂ [Θ(Pn)] ⊂ ∂(Ω) with i = 1, . . . , 2nϑ. (4.34)

The projections of (4.34) into virtual control space delimit the feasible set Π (Pn) for a par-
ticular candidate. Note that the number of bounding objects in (4.34) must be even because
due to the symmetry of constraints an intersection with ϑi also implies −ϑi ⊂ ∂ [Θ(Pn)] where
−ϑi represents its reflection in the origin. Therefore, ∂ [Θ(Pn)] and ∂ [Π(Pn)] are uniquely
determined by nϑ objects, provided that none of them is a reflection of another one. In case
of k = 2 it can be seen from Figure 4.3 that nϑ = 2. In contrast there are two possibilities
if k = 3, namely nϑ = 3 in case of Π being a parallelepiped (e.g. Figure 4.5) and nϑ = 4
if Π is a cross-polytope (Figure 4.4). Matrix representations of each ϑi ∈ ∂ [Θ(Pn)] can be
chosen as different candidates, but the resulting sets Θ ⊂ Rm and Π ⊂ Rk remain the same as
well as the corresponding volume ratio (4.1). This fact is exploited to reduce the number of
vertex-combinations to check [25].

Figure 4.9 illustrates the previous definitions by means of a 3-D example. It also emphasi-
zes the distinction between geometric (Definition 4.4.2) and actuator constraints (saturation
number, Definition 4.4.4) of ϑi.

Lemma 4.4.1. The saturation number c = csat(ϑi) of a (k-1)-D object ϑi in (4.34) satisfies

1 ≤ c ≤ m− k + 1 = cgeo(ϑi). (4.35)

Proof. Since ϑi is a (k-1)-D object a point on ϑi has k − 1 DOFs and cgeo(ϑi) = m − k + 1
geometric constraints. Hence, the maximum possible saturation number is m−k+1 otherwise
ϑi were a p-flat with p < k − 1. As ϑi ∈ ∂(Ω) it follows that at least one actuator must be at
an extremal value. �
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Figure 4.9.: Visualization of Ω and Θ for problem dimensions m = 3 and k = 2: Each red
face is a 2-flat corresponding to one saturated actuator. The green plane depicts
the k-D subspace spanned by one possible Pn ∈ R3×2. The darker area inside Ω
represents Θ(Pn). The boundary of Θ(Pn) consists of 2nϑ = 4 (k-1)-D objects
which are lines in this case. Any of them is determined by two vertices of Ω which
can be chosen as columns for a Pn candidate without changing Θ(Pn), Π(Pn), and
the volume ratio. Only two of them, either {ϑ1, ϑ2} or {−ϑ1,−ϑ2}, are required
to define the boundary ∂ [Θ(Pn)] due to the symmetry. Their saturation numbers
are 1 = csat(ϑ1) and 2 = csat(ϑ2). A point on any ϑ has one DOF and must satisfy
two geometric constraints in a 3-D space. However, on ϑ1 only one of them is due
to actuator bounds as opposed to ϑ2 which has two active actuator constraints.

Definition 4.4.7. Each ϑi in (4.34) can be described by several matrix representations Pn,1,
Pn,2, . . . which span the same column space. Since all Pn,j are composed of vertices of Ω it
follows that those elements corresponding to saturated actuators are identical in all columns
of the matrices. Thus, all Pn,j related to a specific ϑi contain the same csat(ϑi) rows with
identical elements which are called fixed rows and in accordance with (4.30) denoted as

∀j : rfix(Pn,j) = rfix(ϑi). (4.36)

Remark 4.4.1. Note that every candidate matrix Pn ∈ Rm×k must satisfy rank(Pn) = k.
Otherwise, at least one column were a linear combination of the others. As a consequence,
only k−1 points were necessary to determine ϑi meaning it were a (k-2)-D object. Furthermore,
it were no right-inverse of Bn (see Section 4.2).

Lemma 4.4.2. Let ϑi be a (k-1)-D object in (4.34) and S = rfix(ϑi) with c = csat(ϑi). Then
−ϑi is the only other (k-1)-D object on ∂ [Θ(Pn)] with actuators contained in S being at their
extremal values permanently.
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Proof. Every ϑi has at least one matrix representation via Pn (see Definition 4.4.7). Assume
their is another (k-1)-D object ϑj ∈ ∂ [Θ(Pn)] with S = rfix(ϑj). It follows that all of its matrix
representations Pn,j must span the same column space as Pn, i.e. ∀j : R(Pn) = R(Pn,j). A
matrix Pn,j with the same column space as Pn must be representable as linear combination
of its columns. Thus, the right-multiplication

PnV = Pn,j (4.37)

with V ∈ Rk×k and rank(V ) = k has to yield the sought matrix. W.l.o.g. assume that
S = {1, . . . , c}, i.e. the set consists of the first c row indices. According to (4.15) the elements
in each row of Pn and Pn,j have the same magnitude. Therefore, a left-multiplication of (4.37)
with a suitable invertible diagonal matrix normalizes all elements of Pn and Pn,j to ±1. Note
that it does not matter that this normalization changes the column spaces of Pn and Pn,j
as this proof is based on the relationship between them. This is equivalent to assuming that
umax = im with iTm = [1 . . . 1] ∈ R1×m and so the matrix representation for ϑi can be written
as

Pn =



±iTk
...
±iTk
pTc+1

...
pTm



 P̃n ∈ Rc×k with rank(P̃n) = 1Pn ∈ R(m−c)×k with k − 1 ≤ rank(Pn) ≤ k

(4.38)

with pTj = [±1 . . . ± 1] ∈ R1×k ∀j = (c + 1), . . . ,m and at least one element of each row pTj
has a different sign than the others. In general there are three possibilities1 that have to be
considered:

1. Exactly the same set of actuator constraints is permanently active on ϑj . It follows from
(4.32) that ϑj = R(Pn) ∩ ωS = ϑi and so (4.33) implies identical objects ϑj = ϑi.

2. The inverse constraints are permanently active on ϑj . According to (4.32) one obtains
ϑj = R(Pn)∩−ωS = −ϑi which means ϑj = −ϑi. Thus, ϑj is the reflection of ϑi in the
origin.

3. ϑj and ϑi have equal saturation indices but 1 ≤ d ≤ (c − 1) of those actuators have
different saturation types (min. or max). Considering (4.37) and (4.38) this is equivalent
to the modification of d rows of P̃n by right-multiplying with V without affecting the
remaining c− d rows. Since rank(P̃n) = 1 this is impossible.

Now assume that rfix(ϑj) ⊂ S. This also requires changing certain rows of P̃n in (4.38) by
right-multiplying with V without affecting the remaining ones. Hence, this scenario cannot
occur.

Finally, consider the case where S ⊂ rfix(ϑj). Suppose there is a matrix Pn,j in R(Pn)
obtained from (4.37) with rfix(Pn,j) = {1, . . . , (c+ 1)}. Considering only the first c+ 1 rows

1Note that S only contains saturation indices. It does not provide any information about the type of saturation
(min. or max.).
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of (4.37) gives 
±iTk

...
±iTk
pTc


︸ ︷︷ ︸

P̂n∈R(c+1)×k

·V =


±iTk

...
±iTk
±iTk


︸ ︷︷ ︸

P̂n,j∈R(c+1)×k

(4.39)

with rank(P̂n) = 2 and rank(P̂n,j = 1). Applying (A.3) yields

rank(P̂n) + rank(V )− k ≤ rank(P̂nV ) ≤ min
[
rank(P̂n), rank(V )

]
2 + rank(V )− k ≤ 1 ≤ min [2, rank(V )] .

(4.40)

Inequality (4.40) is satisfied under the assumption rank(V ) = 1 and k ≥ 2 but it can be seen
from (4.37) and (A.3) that rank(Pn,j) 6= k. On the other hand assuming that rank(V ) > 1
one obtains from (4.40)

2 + rank(V )− k ≤ 1 ≤ 2

rank(V ) ≤ k − 1
(4.41)

which also renders rank(Pn,j) = k impossible. Therefore ϑi and −ϑi are the only (k-1)-D
objects in ∂ [Θ(Pn)] which contain saturation indices from S. �

In summary, Lemma 4.4.2 states that it is impossible to change only a subset of the fixed rows
of Pn or to preserve them while modifying the rest of the matrix.

Theorem 4.4.2. Let Pn be a generalized inverse according to (4.15). Consider a set of (k-1)-D
bounding objects of Θ(Pn)

Θ∂/2 =
{
ϑi
∣∣ϑi 6= ±ϑj i ∈ I, j ∈ I \ i} (4.42)

with I = {1, . . . , nϑ}, that uniquely defines ∂ [Θ(Pn)], i.e. contains no reflections of other
included objects. Then the sum of saturation numbers fulfills

nϑ ≤
nϑ∑
i=1

csat(ϑi) ≤ m with ϑi ∈ Θ∂/2 (4.43)

and

nϑ ≥ k. (4.44)

Proof. The columns qj with j = 1, . . . , k of Pn are vertices of Θ(Pn). Each vertex qj is
the intersection of no (k-1)-flats lying on ∂ [Θ(Pn)]. Hence, on qj every constraint of the
surrounding (k-1)-flats is satisfied. However, not all of them are actuator constraints but
rather general geometric constraints that a point must fulfill in order to be on the corresponding
flat. From Lemma 4.4.1 we know that the number of permanently saturated actuators on the
corresponding (k-1)-D objects is given by 1 ≤ csat(ϑi) ≤ m− k + 1. Lemma 4.4.2 states that
each actuator is permanently saturated only on one object in Θ∂/2. It follows that

no ≤
no∑
i=1

csat(ϑi) ≤ m. (4.45)
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On the other hand, the column vectors qj are also a vertices of Ω. A vertex can also be
referred to as 0-flat which means that it is the intersection of m (m-1)-flats that bound the
m-D hyperrectangle Ω. This is exactly one half of all existing (m-1)-flats of Ω and due to the
symmetry of constraints a reflection around the origin yields the remaining ones. Each ϑi is a
subset of at least one (m-1)-flat otherwise it were not part of ∂(Ω). Due to the symmetry Ω
and Θ(Pn) a vertex must also be the intersection of one half of all objects on ∂[Θ(Pn)], i.e.
no = nϑ. The objects ϑi are part of a k-D subspace and so one needs at least the intersection
of k (k-1)-flats to obtain a 0-flat, which means nϑ ≥ k. �

The rather abstract result of Theorem 4.4.2 is illustrated by means of an example. Let m = 5
and k = 3. According to (4.43) the bounding objects of Θ resulting in a parallelepiped fulfill

3 ≤
3∑
i=1

csat(ϑi)︸ ︷︷ ︸
sc

≤ 5. (4.46)

Assuming that sc = 5 there are two possibilities to combine the corresponding saturation
numbers (the ordering does not matter), namely

sc = 5 = 1 + 1 + 3

sc = 5 = 1 + 2 + 2.

The other possible outcomes of (4.46) are sc = 4 and sc = 3 which yield

sc = 4 = 1 + 1 + 2 and

sc = 3 = 1 + 1 + 1.

In case of Θ’s projection into virtual control space being a cross-polytope (4.46) changes to

4 ≤
4∑
i=1

csat(ϑi)︸ ︷︷ ︸
sc

≤ 5 (4.47)

which is achievable by two combinations

sc = 5 = 1 + 1 + 1 + 2 and

sc = 4 = 1 + 1 + 1 + 1.

Each Pn uniquely describes a ϑ and its corresponding Θ(Pn). Since every possible sum of
saturation numbers contains ”1” it is sufficient to use only candidates with 1 = csat(ϑi). In
contrast if m = 6 one possibility to gain a Θ that leads to a parallelepiped is sc = 6 = 2+2+2.
Hence, for 6-D control spaces candidates with 2 = csat(ϑi) have to be considered additionally.
This observation is formalized in the following corollary for the purpose of reducing the com-
putational effort of the algorithm.

Corollary 4.4.3. Given the dimensions m of real control space and k of virtual control space
the candidates Pn can be restricted to those whose corresponding object’s saturation number
complies with

1 ≤ csat(ϑ) ≤
⌊m
k

⌋
. (4.48)
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Proof. Due to the fact that all summands of (4.43) are integer there is a finite number of
possible combinations. As the number of summands in (4.43) is fixed it follows that the highest
saturation numbers are required for the greatest sum. Hence, considerations are restricted to
the upper bound of (4.43), i.e. m =

∑nϑ
i=1 csat(ϑi). Suppose that (m mod nϑ) = 0 one can

write (4.43) as

m = csat(ϑ1) + . . .+ csat(ϑnϑ) =
m

nϑ
+ . . .+

m

nϑ
. (4.49)

So in this case m
nϑ

is the upper bound for the saturation number of the candidates because
each csat(ϑi) >

m
nϑ

implies that (some of) the remaining summands are decreased. When
(m mod nϑ) > 0 it follows that

m = nϑ

⌊
m

nϑ

⌋
+m mod nϑ︸ ︷︷ ︸

=:σ<nϑ

. (4.50)

Since the maximum value that σ can take is nϑ − 1 there is at least one csat(ϑi) =
⌊
m
nϑ

⌋
if σ

is equally distributed among all summands. Inequality (4.44) can be used to define an upper
bound

⌊
m
k

⌋
for csat(ϑi) which is independent of the unknown nϑ. �

All candidates with csat(ϑ) >
⌊
m
k

⌋
are part of a k-D subspace of another candidate that

satisfies (4.48) and so they can be ignored. The algorithm iterates over all (k-1)-D objects
ϑ ⊂ ∂(Ω) fulfilling (4.48). Each of these objects is represented as matrix Pn as defined in
(4.20a) whereby the signs of the object’s vertices specify the matrix columns. The volume of
the corresponding set Π in virtual control space is defined by the scalarly independent rows of
the resulting matrix Pn [25].

4.4.3. Efficient computation of the AMS volume

For the purpose of evaluating (4.1) one must also determine the volume of the AMS Φ.
At the beginning of the algorithm an arbitrary input matrix factorization Bu = Bv0B0 is
computed. After that the volume of Π0 related to the weighted pseudoinverse with W =
diag( 1

u1,max
, ..., 1

um,max
) is calculated together with the AMS-volume V (Φ0). Only generalized

inverses that have a greater volume ratio than this standard solution are considered as pos-
sible results. For each candidate Pn there is an appropriate factorization of Bu according to
(4.3). Using (3.9) and (4.3b) the transformation matrix from the initial to the candidate’s
factorization reads as [25]

T0c =
(
BT
v0Bv0

)−1
BT
v0BuPn. (4.51)

Now (3.36) is applied to obtain the AMS volume in the candidate’s factorization [25]

V (Φ) =
V (Φ0)

|det (T0c)|
. (4.52)

4.4.4. Selecting the best candidate

The algorithm uses the candidates’ prescribed volume and (4.52) to find the generalized inverse
with the greatest volume ratio (4.1) [25].

Remark 4.4.2. Note that (4.51) is the first occasion where the actual problem data (Bu and
umax) appear in the computations. Therefore all preceding steps could be done offline provided
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that k and m are known. The online-part of the algorithm would only consist of evaluating
(4.51), (4.52), and (4.1) for all candidates. But this separation has not been done in the current
implementation [25].

4.5. Results

The first example demonstrates the NINV computation for an input matrix

Bu =

[
5 −7 4

−15 21 −12

]
with rank(Bu) = 1 and input constraints uTmax = [5 8 8]. According to (4.9) the NINV
reads as P T

n = [5 −8 8] and the resulting factorization (4.3) yields [25]

Bv,n =

[
113
−339

]
and Bn = [ 5

113
−7
113

4
113 ].

Figure 4.10 shows the real control space for this example. It can be seen that there is no point
in R(Pn) (green line) which lies outside Ω and from where Ω could be reached by moving
along the nullspace directions. Hence the entire AMS Φ is utilized. The next example deals
with the input matrix [25]

Bu =

[
−1 −1 3 −2 5 2

3 4 −1 3 −1 0

]
with rank(Bu) = 2 and the constraints are uTmax = [8 8 5 8 8 7]. The resulting NINV
is

Pn =



−8 −8
−8 −8
−5 5
−8 −8
−8 8
−7 7


and the saturation number of the corresponding (k-1)-D object is three. The input matrix
factorization according to (4.3) gives

Bv,n =

[
−37 101
−67 −93

]
and Bn =

[
−41
1993

−164
5383

−23
1319

−117
10208

−91
2552

−17
933

−23
1319

−48
2279

55
2359

−245
10208

93
2552

39
2971

]
.

Figure 4.11 shows the usable subsets of Φ for the NINV (Π1) and the weighted pseudoinverse
(Π2) with W = diag( 1

u1,max
, ..., 1

u6,max
). The achieved volume ratio of NINV is nearly 86 %

which is significantly higher than that of the weighted pseudoinverse [25]. In order to demon-
strate the performance of the proposed algorithm it is compared with TINV. The evaluation
procedure randomly generates input matrices and constraints and compares computation time
as well as the resulting volume ratio of both methods. The number of virtual controls k is
varied between 2 and 3 and the number of real controls m takes values from k+1 to 9. For
each combination of m and k the average results of 500 tests are shown in Tables 4.1 and
4.2. It can be seen that the average computation time of NINV is significantly lower than
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Figure 4.10.: Real control space for example 1.
The green line represents Pn.
( c© 2016 IEEE, [25]).
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Figure 4.11.: Virtual control space for exam-
ple 2. The green square is
the feasible area for the NINV.
( c© 2016 IEEE, [25]).

Table 4.1.: Computation times and quality of results of NINV and TINV are shown for 2-D
virtual control spaces. ( c© 2016 IEEE, [25]).

m
Avg. time

TINV
Avg. time

NINV
equal
results

NINV
better

Avg. diff. in
remaining cases

3 0.236 s 0.004 s 76.0 % 5.4 % 1.4 %

4 1.074 s 0.006 s 46.6 % 36.6 % 1.1 %

5 2.402 s 0.008 s 32.8 % 52.0 % 1.4 %

6 4.388 s 0.015 s 23.2 % 64.2 % 0.9 %

7 7.526 s 0.026 s 17.8 % 69.0 % 1.1 %

8 12.092 s 0.083 s 16.4 % 73.4 % 1.0 %

9 15.850 s 0.194 s 12.8 % 79.6 % 0.8 %

that of TINV. Furthermore, the tables show that with increasing m NINV’s results tend to
be better than TINV. The reason for that is the increasing number of degrees of freedom in
(4.2) which makes it more likely for TINV to get stuck in a local maximum. The last column
in these tables deals with those tests where TINV obtained a higher volume ratio than NINV.
It contains the average volume ratio benefit of TINV in these cases and one recognizes that
it is always below 2 % which bears no relation with the computational overhead. The test
machine is a notebook equipped with an Intel Core i5-3320M CPU, 4 GB RAM, Windows
10 64-Bit, and Matlab R2015b 64-bit. Both algorithms are implemented in Matlab. Convex
hull and volume calculations in both algorithms are done by means of “convhulln”, which is
an implementation of the Quickhull algorithm [44]. TINV uses “fminunc” with a quasi-newton
algorithm to search for the maximum volume ratio. The computation of Θ(Ptail) is carried
out as described in [4] during the iterations of TINV [25].
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Table 4.2.: Comparison of computation times and result quality of NINV and TINV for 3-D
virtual control spaces. ( c© 2016 IEEE, [25]).

m
Avg. time

TINV
Avg. time

NINV
equal
results

NINV
better

Avg. diff. in
remaining cases

4 0.420 s 0.006 s 57.8 % 3.8 % 1.5 %

5 2.978 s 0.018 s 23.4 % 22.0 % 1.6 %

6 8.396 s 0.122 s 15.2 % 36.6 % 1.5 %

7 19.246 s 0.775 s 12.8 % 45.6 % 1.2 %

8 38.430 s 5.182 s 8.2 % 50.0 % 1.2 %

9 68.760 s 49.507 s 10.6 % 58.4 % 1.1 %

4.6. Conclusion

A novel computation algorithm (NINV) for generalized inverses, which takes actuator con-
straints into account, is introduced in this chapter. It outperforms the existing approach for
small and medium problem sizes in terms of computation time. Beside its speed one of the
main advantages of this method is the fixed computation time which facilitates an implemen-
tation on an electronic control unit. Another benefit is the lack of tuning parameters which
enables the usage of this algorithm without extensive adjustments on the problem. The se-
arch process among the candidates consists of numerous independent calculations. Therefore,
further speedup could be achieved by parallelization. Moreover, a separation of the algorithm
in offline and online parts could reduce the computation time considerably [25].
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The factorization impact on Redistributed Pseudoinverse (RPINV) is reduced to the number
of active actuator constraints in Section 3.6.1. It has been proven that in general the rank-
reduction of the pseudoinverse entails deviating allocation results for different factorizations.
Above a certain number of active actuator constraints the desired control effort is generally
not reached by RPINV. In order to address this issue an enhanced version of that algorithm
is proposed. Therein one can specify allocation error components which should preferably
vanish. This objective is met by a change of factorization during execution [30].

5.1. Optimal factorization

In accordance with Section 3.6 the number of free actuators during one RPINV iteration is
labeled as j. Suppose j < k and W = Im (see Lemma 3.6.1). Due to B# lacking full column
rank vdes will generally not be reached any more because B0B

# 6= Ik. Of course this raises
the question whether there is an optimal factorization of Bu which makes the error between
the desired virtual controls vdes and the actually achieved vact as small as possible [30]. Using
(2.20) this error can be written as

vdes − vact =
(
Ik −B0B

#
)

(vdes +B0c) . (5.1)

The dependence on the transformation parameters is introduced into (5.1) via (3.11) and (3.21)
which yields

ev =
(
Ik − T−1B0B

#
T

)
T−1 (vdes +B0c)

= T−1
(
Ik −B0B

#
T T
−1
)

(vdes +B0c)
(5.2)

with short notation B#
T for (3.57), i.e.

B#
T = R

(
B̃TT−TT−1B̃

)−1
B̃TT−T . (5.3)

An intuitive problem formulation could be

min
T

∥∥ev∥∥ =
∥∥T−1

(
Ik −B0B

#
T T
−1
)

(vdes +B0c)
∥∥ (5.4a)

umin ≤ −c+B#
T T
−1 (vdes +B0c) ≤ umax (5.4b)

where it is recognizable that this cost function can be made arbitrarily small by simple scaling.
Furthermore, small virtual error components can have a great impact on the plant dynamics if
the corresponding entries of the virtual input matrix Bv are sufficiently large. Therefore, it is
more reasonable to minimize the deviation between desired and actual effect on the plant [30]:
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ev = Bv (vdes − vact). Considering (3.10) results in the multiplication of (5.2) with BvT and
one can formulate the optimization problem [30]

min
T

∥∥ev∥∥ = min
T

∥∥MT (vdes +B0c)︸ ︷︷ ︸
ṽ

∥∥ (5.5a)

MT = BvT
(
Ik − T−1B0B

#
T

)
T−1 (5.5b)

umin ≤ −c+B#
T T
−1 (vdes +B0c) ≤ umax (5.5c)

If ṽ ∈ Nr (MT ), the desired value vdes could be reached, although B0B
# 6= Ik provided that

vdes ∈ Φ. It turns out that both MT (because of B̃ in (5.3)) and ṽ depend on vdes and so
there is no universally best factorization that could be computed offline. Problem (5.5) is a
nonlinear constrained optimization problem which makes online solving quite sophisticated.
RPINV is intended to be a low-effort method for considering actuator constraints and so this
is not a reasonable option [30].

5.2. Effect prioritization

Instead of minimizing the total effect error ev it is easier to focus on certain components. The
basic idea of the approach is to exploit the rank deficiency of MT by introducing zero rows.
In this subsection n = k and w.l.o.g. Bv = Ik are assumed and therefore (5.5b) simplifies
to [30]

MT = Ik −B0B
#
T T
−1. (5.6)

Lemma 5.2.1. For all j < k and all invertible transformations T ∈ Rk×k the rank of (5.6) is
k − j [30].

Proof. Define B̃T = T−1B̃ and (A.3) in Appendix A.2 yields rank(B̃T ) = j. According to

(3.55) one obtainsB#
T = RB̃†T . From Lemma 1 of [27] it follows that rank(B̃†T ) = rank(B̃T ) =

j and repeatedly applying (A.3) results in [30]

j = rank(RB̃†T ) = rank(B#
T T
−1). (5.7)

Note that B0B
#
T T
−1 = B̃B̃†TT

−1 and once again (A.3) reveals that

rank(B0B
#
T T
−1) = j. (5.8)

Appendix A.3 provides the rank of (5.6) by means of (A.4). Recall that B0B
#
T = B̃B̃†T and

I†k = Ik. Thus B0B
#
T T
−1I†kB0B

#
T T
−1 = B̃ B̃†TT

−1B̃︸ ︷︷ ︸
Ij

B̃†TT
−1 = B0B

#
T T
−1.

Let C = [Ik B0B
#
T T
−1] ∈ Rk×2k, C =

[
Ik

B0B
#
T T
−1

]
∈ R2k×k. Due to rank(Ik) = k it

follows that C has full row rank and C full column rank. Consequently, (5.8) and (A.4) yields

rank(Ik −B0B
#
T T
−1) = rank(Ik)− rank(B0B

#
T T
−1) = k − j [30]. �

Theorem 5.2.1. Let B̃j ∈ Rj×j be an invertible submatrix of B̃ consisting of rows with
indices {r1, ..., rj}. Then there exist invertible matrices T ∈ Rk×k which transform (5.6) such
that its rows with indices {r1, ..., rj} contain only zeros [30].
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5.2. Effect prioritization

Proof. rank(MT ) = k − j due to Lemma 5.2.1 which means it can contain up to j zero rows.
W.l.o.g. it is assumed that the first j rows of (5.6) should be zeroed. Using the partitioned
matrices [30]

B̃ =

[
B̃j
B̃k−j

]
with B̃j ∈ Rj×j and B̃k−j ∈ R(k−j)×j (5.9)

and

B̃†TT
−1 =

[
Ã1 Ã2

]
with Ã1 ∈ Rj×j and Ã2 ∈ Rj×(k−j) (5.10)

the first j rows of MT = Ik − B̃B̃†TT−1 read as

0j×k
!

=
[
Ij − B̃jÃ1 B̃jÃ2

]
(5.11)

where 0j×k ∈ Rj×k is a zero-matrix. It follows that Ã1 = B̃−1
j and Ã2 = 0j×(k−j). Defining

T = T−1 one obtains [30]

B̃†TT =
[
B̃−1
j 0j×(k−j)

]
=
(
B̃TT

T
TB̃

)−1
B̃TT

T
T . (5.12)

After partitioning T = [T j T k−j ] with T j ∈ Rk×j and T k−j ∈ Rk×(k−j) one can split (5.12)
into two equations. One of them is [30]

0j×(k−j) =
(
B̃TT

T
TB̃

)−1
B̃TT

T︸ ︷︷ ︸
B̃†T

T k−j (5.13)

where rank(B̃†T ) = j (see Lemma 5.2.1). Hence, the bracket term in (5.13) is full rank.

Considering the left nullspace Nl(B̃
T ) = 0T and partitioning of B̃T and T

T
, equation (5.13)

simplifies to [30]

0j×(k−j) =
[
B̃T
j B̃T

k−j

] [ T Tj
T
T
k−j

]
T k−j . (5.14)

Rewriting (5.14) yields

0j×(k−j) =
(
B̃T
j T

T
j + B̃T

k−jT
T
k−j

)
︸ ︷︷ ︸

∈ Rj×k

T k−j (5.15)

Note that dim
[
Nl(T k−j)

]
= j, which coincides with the number of rows in the bracket term

of (5.15). Thus, one can choose an arbitrary T k−j with rank(T k−j) = k − j and determine
a matrix NT ∈ Rj×k such that span(NT ) = Nl(T k−j). Finally, the remaining columns of T
are given by [30]

T j =
(
NT − B̃T

k−jT
T
k−j

)T
B̃−1
j . (5.16)

Now that T is completely determined it must be shown that it satisfies

B̃−1
j =

(
B̃TT

T
TB̃

)−1
B̃TT

T
T j , (5.17)
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i.e. the second matrix equation in (5.12). Finally, please observe that the last k − j columns

of B̃TT
T [
T j T k−j

]
are all zeros due to (5.14). Hence it follows that

B̃TT
T
TB̃ = B̃TT

T
T jB̃j (5.18)

and inserted into (5.17) results indeed in [30](
B̃TT

T
T jB̃j

)−1
B̃TT

T
T j = B̃−1

j

(
B̃TT

T
T j

)−1
B̃TT

T
T j = B̃−1

j . (5.19)

�

Based on Theorem 5.2.1 an Enhanced Redistributed Pseudoinverse (ERPINV) algorithm is
proposed. This RPINV extension supports the specification of a priority list containing the
numbers of k− 1 components of ev which should be made zero. As soon as j < k it takes the
following measures [30]:

5.2.1. Enhanced Redistributed Pseudoinverse

1. The priority list items 1, ..., j determine the rows of B̃ which form B̃j . The remaining

rows of B̃ are called B̃k−j ∈ R(k−j)×j .

2. If det(B̃j) = 0 then abort and continue with ordinary RPINV calculations.

3. Choose an arbitrary matrix T k−j with rank(T k−j) = k − j and compute a basis of its
left nullspace NT ∈ Rj×k.

4. Evaluate T j =
(
NT − B̃T

k−jT
T
k−j

)T
B̃−1
j to get the inverse transformation T−1 = T =

[T j T k−j ].

5. Use T to transform B, B0, and vdes via (3.11) and (3.21). Now, (2.19) is reformulated
as

ûN = −cN +
(
TBm

)#
T
(
v +BcN

)
. (5.20)

6. If ûN contains no new constraint violations or all actuators are saturated: STOP.

7. Otherwise, update the offset vector cN as well as Bm and go to step (1) again.

Note that these extensions do not require any modifications of the controller as the desired
virtual control vector is transformed according to the new factorization [30].

Remark 5.2.1. Apparently zeroing components of (5.6) only works if the resulting uN ∈ Ω
because otherwise (2.20) is not fulfilled which is the basis for the derivation of (5.6) [30].

5.3. Simulation results

This section demonstrates the results for ERPINV. The control goal is to stabilize the origin
x = 0. The state space representation of the plant reads as [30]

ẋ =

 1 0 −1
1 2 0
−1 1 2

x+

−6 1 1 10
−4 0 9 −5
−1 8 3 4


︸ ︷︷ ︸

Bu

u (5.21)
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and the input constraints are −umax ≤ u ≤ umax with uTmax = [1 13 13 12]. Three factori-
zations of Bu are tested:

Factorization 1:

Bv1 =

 1 0 0
2
3 − 4

47 1
1
6 1 0

 B1 =

−6 1 1 10
0 47

6
17
6

7
3

0 0 403
47 −539

47


Factorization 2:

Bv2 =

 −7 4 4

−142
141

1516
141

139
141

17
6 −1

3
26
3

 B2 =


14
27

73
243

5447
11421 −15022

11421

− 8
27 − 23

486
19673
22842 − 7625

11421

− 8
27

200
243

2551
11421

9889
11421


Factorization 3:

Bv3 =

 1 0 0
0 1 0
0 0 1

 B3 =

−6 1 1 10
−4 0 9 −5
−1 8 3 4


The transformation matrix describing the relationship between factorizations 1 and 2 has
orthogonal columns and reads as

T12 =

−7 4 4
4 −1 8
4 8 −1

 . (5.22)

The weighting matrix is W = diag( 1
umax,1

, ..., 1
umax,4

). A linear state-controller is chosen for

stabilization. For each factorization the controller gain matrixKi is chosen in order to place all
eigenvalues of the closed-loop system matrices (A−BviKi) for i = 1, 2, 3 at −12. The initial
state at t = 0 is xT0 = [−7 − 2 14]. In Figures 5.1 and 5.2 one can see a different behavior
depending on the factorization because the number of free controls is smaller than k = 3. Due
to the special transformation matrix T12 there is no deviation between factorizations 1 and
2 [30]. Figures 5.3 and 5.4 show desired and actually achieved effect on the plant as well as
the effect error ev for RPINV and ERPINV respectively. Initially ERPINV uses factorization
3 because Bv3 = I3 is required. It is configured to prefer vanishing error components ev,1
and ev,2 as recognizable in Figure 5.4. This also influences the performance in bringing the
corresponding state variables to zero as illustrated by the mean squared errors (MSE) in Figure
5.1. The required transformation matrix is computed online and depends on which actuators
saturate. In this example an approximation of one possible result is [30]

T−1 ≈

−
3155
10844 − 5680

33393
1190
3253

−3397
8324 −1410

9977
16862
22085

− 8543
30064 − 4075

19103
9647
15364

 . (5.23)
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Figure 5.1.: States over time using RPINV for factorizations 1 - 3 and ERPINV. ( c© 2018
IEEE, [30]).
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Figure 5.2.: Inputs over time using RPINV for factorizations 1 - 3 and ERPINV. ( c© 2018
IEEE, [30]).
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Figure 5.3.: Desired and achieved effect on plant for RPINV with factorization 3. ( c© 2018
IEEE, [30]).
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ev,2. ( c© 2018 IEEE, [30]).
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5.4. Conclusion

In this chapter it is shown that by changing the factorization online depending on the desired
virtual control one could reduce the potential virtual control error originating from the rank-
reduction of the pseudoinverse. However, the complex structure of the optimization problem
would stand in contrast to the simplicity of RPINV. Rather than solving the optimization
problem (5.5) online it is possible to make a certain number of error components zero (ER-
PINV) depending on the rank of the reduced pseudoinverse. This is accomplished by a change
of input matrix factorization, which is completely transparent to the controller. It allows a
prioritization of error components in case of a rank deficient pseudoinverse originating from
actuator saturations [30].
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6. Exterior Point Algorithm1

Several numerical optimization methods have already been successfully applied to solve the
CA problem [6] [31] [33] [35]. A popular problem formulation yields a constrained QP which
is solved in each execution step of the controller. The fixed-point method [34] is conceptually
simple and easy to implement. It finds approximate solutions and works well if the optimum
is not too close to the boundary of the feasible region. Alternatives are active-set strategy
based algorithms. They are computationally very efficient for small problem sizes, but do
not scale very well with an increasing number of actuators. A great advantage of active-
set strategies is their hot-start ability, i.e. an initial guess of the working set from previous
execution cycles can be used [6]. In contrast, interior-point methods have more computational
overhead than active-set algorithms at lower problem dimensions whereas they outperform
them as the number of variables grows. The algorithm presented in this chapter is based on
the penalty function method [45] [46] and gradient projection [32]. It restates the constrained
optimization problem to an unconstrained one and generates a sequence of exterior points
that converges to the solution of the original problem if it is consistent. The proposed Exterior
Point Algorithm (EPA) shares some similarities with [47] but there are also some important
differences. First of all, it is specially designed not only to handle inequality-type but also
equality-type constraints. A crucial point of algorithms based on penalty functions is the
adaption of the penalty parameter during the iterations. In [47] this is done by multiplication
with a constant factor whereas the proposed approach takes the progress towards the feasible
region into account. The resulting algorithm scales very well with problem dimensions which
makes it applicable not only for CA but also in domains where larger problems arise. The
general benefits of the proposed algorithm are its fast computation time and its effectiveness
at problems with dense weighting matrices. Advantages which are especially useful in a CA
context are the efficient way of handling equality constraints and the fact that the algorithm
features hot-start ability, i.e. its computation time can be reduced by taking previous result
into account.

6.1. Problem statement

The relationship between virtual and real controls is described by the under-determined system
of equations (2.2) which has to be solved for u by CA. Consequently, the nullspace of B is
non-trivial and its dimension dim [Nr(B)] = m − k follows from the rank-nullity theorem
[24]. Typically, actuator constraints (1.31) limit the range of values that the components of u
can take to a subset of the m-dimensional (m-D) control space. The projection of this m-D
hyperbox into virtual control space Rk is the AMS given by (1.34). It contains all vectors v
which can be achieved by feasible u ∈ Ω. Considering (2.2), (1.31), and rank(B) = k it is
possible that there is no, exactly one, or an infinite number of valid control vectors u that map
to a specific vector v. In the latter case, secondary objectives can be incorporated leading to a

1Parts of this chapter have been submitted to the 57th IEEE Conference on Decision and Control. At print
time the decision has been pending.
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notation of the CA task as an optimization problem. A commonly used formulation is known
as Weighted Least Squares (WLS) method (see Section 2.1.6 and [6]) and reads as

min
u
‖Wu (u− up) ‖22 + γ‖Wv (Bu− v) ‖22 (6.1a)

subject to u ∈ Ω (6.1b)

with Wu ∈ Rm×m and Wv ∈ Rk×k being full rank weighting matrices, up ∈ Rm containing
the preferred actuator positions, and γ > 0 being a weighting factor. Instead of explicitly
including (2.2) as equation-type constraints it is part of the cost function and for large values
of γ one can expect the solution of (6.1) u∗W to comply with it. Note that with up = 0
and Wu = Im denoting the m-D identity matrix (6.1) seeks to minimize the actuator energy
consumption.

6.1.1. Feasible virtual controls

Assuming v ∈ Φ the second weighting term in (6.1a) is zero at the minimum and (6.1) can be
rewritten as

min
u

uTWu+ uTcu︸ ︷︷ ︸
fu(u)

(6.2a)

subject to v = Bu (6.2b)

and u ∈ Ω (6.2c)

with positive definiteW = W T
uWu, cu = −2Wup and neglecting the constant offset uTpWup

in (6.2a). Because of Hfu = 2W � 0 on Rm the cost function fu(u) is strictly convex. Since
(6.2b) and (6.2c) describe convex subsets of Rm problems (6.1) and (6.2) have a common strict
global minimizer [45] denoted as u∗.

6.1.2. Infeasible virtual controls

An infeasible virtual control vector means that v /∈ Φ ⇔ @u ∈ Ω : v = Bu. Due to the fact
that WLS incorporates hard actuator constraints via (6.1b) the corresponding minimizer u∗W
is feasible. Inevitably, (2.2) is not satisfied, but u∗W minimizes the weighted virtual control
deviation

d(u,v) = ‖Wv (Bu− v) ‖22. (6.3)

Problem (6.2) is inconsistent in this case because (6.2b) and (6.2c) cannot both be fulfilled.

6.2. Algorithm concept

The suggested algorithm is based on the following principles:

1. Neglecting (6.2c) the optimization problem has a closed-form solution which involves
the computation of a generalized inverse of B. If the obtained solution happens to be
feasible regarding (6.2c) no further steps are required.

2. The equality constraints (6.2b) reduce the degrees of freedom of the vector of optimization
variables u in (6.2a) in the feasible case.
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3. The constrained optimization problem is transformed into an unconstrained one using
the idea of penalty functions (see [47], [45], and [32]).

4. If v /∈ Φ additional steps are taken subsequently to ensure a feasible result.

6.2.1. Initial solution

The solution of (6.2a)-(6.2b) can be derived from the method of Lagrange multipliers (e.g.
[32]) in closed-form and reads as

u0 = −1

2
W−1cu +B#

(
v +

1

2
BW−1cu

)
(6.4a)

B# = W−1BT
(
BW−1BT

)−1
(6.4b)

whereB# ∈ Rm×k is a right-inverse ofB (see [25]). In case of u0 ∈ Ω the algorithm terminates.

6.2.2. Problem dimension reduction

Assume that v ∈ Φ. If the algorithm has to continue one can exploit the fact that u0 already
fulfills (6.2b). Therefore the search directions for finding u∗ can be restricted to those which are
part of the nullspace of the control effectivity matrixB. Suppose that a matrixN ∈ Rm×(m−k)

is known whose columns span the nullspace, i.e.

span(N) = Nr (B) . (6.5)

The minimizer of (6.2) u∗ coincides with

u∗E = u0 +Nx∗ (6.6)

where x∗ ∈ Rm−k is the solution of a related problem in nullspace. The distinction between
u∗ and u∗E is made because the problem in nullspace is chosen such that it is consistent for all
virtual controls, i.e. (6.6) always exists while u∗ does not. Note that ∀x ∈ Rm−k : v = Bu∗E
because BN = 0 ∈ Rk×(m−k). The optimization process takes now place in nullspace which
only has (m − k) degrees of freedom. Hence, the problem’s number of optimization variables
is reduced. The feasible region in nullspace reads as

Ψ(u0) =
{
x ∈ Rm−k

∣∣umin ≤ u0 +Nx ≤ umax
}

(6.7)

which is also convex. By means of the short notation ux(x) := (u0 +Nx) one can rewrite
(6.2) as

min
x∈Ψ(u0)

ux(x)TWux(x) + ux(x)Tcu. (6.8)

For convenience (6.8) is represented in standard form of quadratic programming as

min
x

xTQx+ xTc+ c0︸ ︷︷ ︸
f(x)

(6.9a)

subject to Ax ≤ b (6.9b)

with AT = [NT −NT ] (6.9c)

bT = [(umax − u0)T (u0 − umin)T ], (6.9d)

Q = NTWN being positive definite and symmetric (see [24]), c = NT (2Wu0 + cu), and
c0 =

(
uT0W + cTu

)
u0. If v ∈ Φ then (6.9) has a minimizer denoted as x∗Q which corresponds

with x∗ in (6.6).
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6.2.3. Penalty function

Instead of proceeding with the constrained problem (6.9) a sequence of unconstrained ones is
stated with solutions converging to x∗Q under the assumption that v ∈ Φ. Violations of (6.9b)
are penalized by means of an additional quadratic term in the cost function

v(x) = (Ax− b)T V (x) (Ax− b) (6.10)

with diagonal matrix

V (x) = diag(w1(x), ..., w2m(x)) (6.11a)

wi(x) =

{
1 if Ai·x− bi > 0
0 else

. (6.11b)

The new cost function combines the original f(x) with (6.10) and is defined as

Pα(x) = v(x) + αf(x) (6.12)

with penalty parameter α > 0. Starting from u0 given by (6.4a) with initial values x1 = 0
and α1 the algorithm performs a sequence of unconstrained minimizations

min
x
Pα(x) (6.13)

while adapting α which ultimately tends to zero. The minimizer of (6.13) for the final penalty
parameter αfin is denoted as

x∗ = arg min
x

Pαfin(x). (6.14)

Note that (6.14) always exists, even if v /∈ Φ as opposed to (6.2) and (6.9). In this case only
v(x) is minimized.

6.2.4. Infeasibility handling

EPA indirectly includes the actuator constraints via v(x) in (6.13) while only considering
solution candidates which automatically fulfill (2.2). Hence, u∗E /∈ Ω follows and additional
measures have to be taken. There are two possible strategies considered which differ in their
computational complexity.

6.2.4.1. Projection onto Ω

Performing the Euclidean projection of the optimization result u∗E on the feasible set Ω is
the simplest way of infeasibility handling. The projection operator on an m-D box is the
component-wise saturation function (1.35) [29], i.e.

projΩ(u∗E) = satΩ(u∗E). (6.15)

Please note that in case of v ∈ Φ (6.15) yields the unchanged u∗E . In order to investigate the
properties of the projection of u∗E onto Ω one can express it as

projΩ(u∗E) = u∗E + u∆ (6.16)
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where u∆ = [u∆,1 . . . u∆,m]T represents shift due to the projection. Using the short notation
wi for (6.11b) one can define the auxiliary matrix

V (x) = [−diag(w1, ..., wm) diag(wm+1, ..., w2m)]. (6.17)

From (6.6), (6.9c) - (6.9d), (6.15), and (6.16) one can verify that

u∆,i =


bi −Ai·x∗ if wi > 0
A(i+m)·x

∗ − bi+m if wi+m > 0

0 else
(6.18)

with i = 1, ...,m. Note that wi and wi+m are never both equal to one because maximum
and minimum constraints cannot be violated by the same variable. It follows from (6.17) and
(6.18) that

u∆ = V (x∗) (Ax∗ − b) (6.19)

and considering V (x) = V (x)TV (x) together with (6.10) results in

v(x∗) = ‖u∆‖22. (6.20)

EPA minimizes v(x∗) and so u∗E has minimum distance to its projection on Ω, while still
satisfying v = Bu∗E . Conversely, projΩ(u∗E) is the feasible control vector lying closest to a
vector satisfying (2.2). The rest of this section shows under which circumstances the results
of EPA and WLS are identical.

Lemma 6.2.1. The vector u∆ connecting the optimization result u∗E with its projection on Ω
satisfies

NTu∆ = 0. (6.21)

Proof. A necessary condition for minimizing v(x) is

∇v(x
∗) = 0. (6.22)

Evaluating (6.22) and considering (6.19) yields

ATV (x∗)T︸ ︷︷ ︸
N
T∈R(m−k)×m

V (x∗) (Ax∗ − b)︸ ︷︷ ︸
u∆

= 0. (6.23)

N contains rows from N and zero rows. Thus, N
T
u∆ = 0 implies NTu∆ = 0. �

Assumption 6.2.1. Wv = Ik.

Assumption 6.2.2. The singular values of B are all equal, i.e. σi(B) = σ ∀i = 1, ..., k.

Theorem 6.2.1. Under Assumptions 6.2.1 and 6.2.2, WLS and EPA yield identical results,
i.e. u∗W = projΩ(u∗E).

Proof. Because v /∈ Φ and γ being very large the first summand in (6.1a) is neglected and the
WLS cost function reduces to (6.3). By inserting (6.16) into (6.3) and considering Assumption
6.2.1 one obtains

d(projΩ(u∗E),v) = ‖Wv

(
Bu∗E − v︸ ︷︷ ︸

0

+Bu∆

)
‖22

= ‖Bu∆‖22.

(6.24)
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6. Exterior Point Algorithm

The singular value decomposition (SVD) of B = USV T is inserted in (6.24) leading to

d(projΩ(u∗E),v) = uT∆V S
TS V Tu∆︸ ︷︷ ︸

vu∆

. (6.25)

It is worth noting that the last m− k columns of V span Nr(B) because they are the eigen-
vectors belonging to the m− k zero-eigenvalues of BTB. Hence,

vTu∆
= [∗ . . . ∗ 0 . . . 0︸ ︷︷ ︸

m−k

] (6.26)

follows from Lemma 6.2.1. Assumption 6.2.2 entails

STS = σ2

[
Ik 0k×(m−k)

0(m−k)×k 0(m−k)×(m−k)

]
(6.27)

and from (6.25), (6.26), and (6.27) one obtains

d(projΩ(u∗E),v) = ‖σ2V Tu∆‖22 = σ2‖u∆‖22. (6.28)

Consequently, (6.20) and (6.28) imply

min
u∈Ω

γd (u,v) = min
x
v(x)⇒ u∗W = projΩ(u∗E).

�

Remark 6.2.1. Input matrix factorization is not unique and so supposeBu = Bv1B1 = Bv2B2

is given. The initial solution u0 in

projΩ(u∗E) = u0 +Nx∗ + u∆ (6.29)

is computed via the generalized inverse in (6.4a). It is shown in Section 3.5 and [25] that CA
via generalized inverses is not influenced by factorization and so is u0. Since Bv1 and Bv2

must have full column rank it follows that

Nr(Bu) = Nr(B1) = Nr(B2). (6.30)

As a consequence (6.9), its minimizer x∗Q, (6.13) with minimizer x∗, and finally projΩ(u∗E)
remain the same or in other words EPA with projection onto Ω is unaffected by input matrix
factorization regardless of whether v ∈ Φ or not.

The factorization influence on WLS depends on the feasibility of v. If v ∈ Φ all factorization-
dependent parts of (6.1) are zero and so there is no effect on the minimizer. In case of v /∈ Φ
(6.1a) effectively reduces to min

u
d(u,v). Given the transformation matrix T ∈ Rk×k from

factorization 1 to 2 the cost functions are related by means of (see Section 3.1 or [25])

‖Wv (B2u− v2) ‖22 = ‖WvT
−1 (B1u− v1) ‖22. (6.31)

Therefore, if v /∈ Φ factorization influences WLS in the same way as changing the virtual
control weighting matrix.
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6.3. Implementation

Remark 6.2.2. One possibility to gain a factorization Bv1B1 = Bu satisfying Assumption
6.2.2 reads as follows. Let UBuSBuV

T
Bu

= Bu be the result of a SVD and define the auxiliary

matrices S̃ ∈ Rk×k consisting of the first k rows and columns of SBu and Ṽ ∈ Rm×k comprising
all rows from the first k columns of VBu . The sought factorization of Bu is

Bv1 = UBuS̃ (6.32a)

B1 = Ṽ T (6.32b)

with all singular values of B1 being equal to one. Please note that the factorization (6.32) cau-
ses the WLS minimizer u∗W to coincide with projΩ(u∗E) which is identical in all factorizations
(see Remark 6.2.1).

6.2.4.2. Gradient projection

As deflections in nullspace directions of B do not change the resulting virtual controls the
minimization of (6.3) for arbitrary factorizations must be done in original control space Rm.
Proceeding with projΩ(u∗E) as starting point a subsequent QP obtained by expanding (6.3) as

min
u∈Ω

JG(u) (6.33a)

JG(u) =
1

2
uTGu+ uTcG + g0 (6.33b)

with G = BTW T
vWvB, cG = −BTW T

vWvv, and constant g0 = 1
2v

TW T
vWvv is solved. Due

to the fact that the projection operation onto the m-D box Ω is very simple the utilization of
a gradient projection algorithm [32] is facilitated. This method comprises two phases in each
iteration. In phase one the search direction is chosen as the negative of the gradient

g(u) := ∇JG = Gu+ cG (6.34)

of the cost function in (6.33). As soon as −g(u) hits a constraint the corresponding component
of u is fixed causing a kink of the search direction. The result is a piecewise-linear feasible path
which is examined for the first local minimizer uc [32]. The active constraints of uc are fixed
during the next phase of gradient projection. Thus, the search is restricted to a particular
subspace of Rm with lower dimension. However, this subproblem is a constraint QP itself
whose exact solution is too expensive. The requirements on the result of the second phase
uH to obtain convergence are relatively modest, namely JG(uH) ≤ JG(uc) [32]. Thus, the
subspace minimization problem is only solved approximately by means of a single step in the
direction obtained from Newton’s method [32]. If the calculated point violates the constraints
the step length is reduced until a feasible solution is found. After phase two g(uH) is evaluated
and compared with the previous gradient. The procedure terminates if the absolute values of
the deviations are below a small threshold εg > 0.

6.3. Implementation

6.3.1. Algorithm structure

The proposed method’s basic structure is given as pseudo-code in Algorithm 1. It is an iterative
process whose maximum iteration number is specified by imax. The search direction p(x, αi)
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6. Exterior Point Algorithm

is computed with Newton’s method (see Section 6.3.3). If the norm of the gradient is below a
small threshold 0 < ε < 1 the current result is considered as minimizer of (6.12) for the current
penalty parameter αi. The choice of αi+1 depends on whether a solution has been found for
the current αi. If the minimizer is found the penalty parameter can be further decreased.
Otherwise, αi+1 is selected closer to that value where the last minimizer has been found (see
Section 6.3.4). In this way the corresponding minimizer of (6.12) for αi+1 lies nearer to the
current position facilitating a successful minimization in the next iteration. The stopping
criteria in step 4) are thresholds for the absolute values of the gradient of (6.12) and for the
minimum progress during the last N > 1 iterations. After step 4) the resulting x∗ is used

Algorithm 1 Exterior Point Algorithm

1) compute initial solution (6.4a)
2) determine nullspace matrix N
3) initialize x1 and α1

4) iterative minimization:
for i← 1, 2, . . . , imax do

4.1) calculate Newton search direction p(x, αi)
4.2) adapting penalty parameter:

if ‖∇Pα(xi + p(x, αi))‖ < ε then
xi+1 ← xi + p(x, αi)
reduce (αi+1)

else
xi+1 ← xi
increase (αi+1)

end if

4.3) check stopping criteria
end for

5) Result & infeasibility handling
if u∗E ∈ Ω then
u← u∗E

else
u← finfhandling(u

∗
E)

end if

compute u∗E via (6.6). If u∗E ∈ Ω this is the minimizer of (6.2) u∗. Otherwise, the infeasibility
handling takes place which guarantees that u ∈ Ω.

6.3.2. Initial solution and nullspace matrix

Because of W being positive definite one can use Cholesky decomposition [40] to obtain W =
Ŵ TŴ and introduce an auxiliary matrix

BW = BŴ−1. (6.35)
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6.3. Implementation

Using (6.4) and (6.35) the unconstrained minimum reads as

u0 = −1

2
W−1cu + Ŵ−1B†︸ ︷︷ ︸

B#

(
v +

1

2
BW−1cu

)
(6.36)

where B† = BT
W

(
BWB

T
W

)−1
is the Moore-Penrose pseudoinverse [40] of BW . However,

(6.36) is not directly calculated to reduce computation time. By means of QR factorization
[40] of BT

W one gets

BW =
[
R̂T 0

]︸ ︷︷ ︸
RT

[
Q̂T

Q
T

]
︸ ︷︷ ︸

QT∈Rm×m

(6.37)

with R̂ ∈ Rk×k being an upper triangle matrix and the orthogonal matrix Q consisting of
Q̂ ∈ Rm×k and Q ∈ Rm×(m−k). It can be seen that a right multiplication of (6.37) with Q
(the last m− k columns of Q) results in 0 ∈ Rm×(m−k). Thus, they span the nullspace of BW
which is utilized to determine the sought nullspace matrix

N = Ŵ−1Q. (6.38)

From (6.37) one obtains B# = Ŵ−1Q̂R̂−T . So the first step to efficiently compute the initial
solution is solving

v +
1

2
BW−1cu = R̂Ty (6.39)

for y by forward substitution. Now

u0 = −1

2
W−1cu + Ŵ−1Q̂y (6.40)

follows. Please note that Ŵ−1 in the preceding expressions is never computed explicitly,
instead (column-wise) backward substitution is used because Ŵ is an upper triangular matrix.
The main advantage of this approach is that N is computed without any additional effort
(solving a homogeneous system of equations is not required).

6.3.3. Search direction

In the i-th iteration EPA determines a search direction p in order to minimize (6.12) for a
given αi by means of Newton’s method [32], i.e.

Hp = −∇Pα(xi, αi) (6.41)

is solved for p with H ∈ R(m−k)×(m−k) usually being HPα(xi, α). Its inverse is not explicitly
computed, but instead Gaussian elimination with partial pivoting is used [40] to obtain p. As
xi approaches Ψ(u0) and αi gets very small the condition number κ of (6.41) can get very
large. Therefore, H is chosen as

H =

{
HPα(xi, α) if κ [HPα ] < κmax
HPα(xi, α) + γHIm−k else

. (6.42)

with γH > 0 (Hessian Modification, [32]).
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6. Exterior Point Algorithm

6.3.4. Penalty parameter α

Let i be the iteration number, αi the corresponding penalty parameter of the i-th iteration,
and xαi = arg min

x
Pαi(x). In general the sequence {αi} must decrease in order that {xαi}

converges to x∗Q. An adaption law that works very well reads as

αi+1 = min

(
1

2
αi,

v(xαi)

f+(xαi)

)
(6.43)

with f+(x) = f(x) + foffset and foffset > 0 ensuring ∀x : f+(x) > 0. However, if Newton’s
method does not find xαi during the current iteration then αi+1 is increased by

αi+1 =
1

2
(αok + αi) (6.44)

with αok being the last penalty parameter value where a solution was found (see Section 6.4).

6.3.5. Initial values and hot-start

Usually, EPA is initialized with xα0 = 0 (corresponds with solution from generalized inverse),
α0 = 2, and evaluating (6.43). In case of a hot-start, values based on the last execution of
the CA-algorithm are used for initialization instead. The basic idea behind this strategy is
that the virtual controls of consecutive time steps do not differ very much. Hence, the same is
expected to be true for the real controls u and nullspace vector x (although there is of course
no guarantee). The hot-start initialization is xα0 = x∗δ1 and α1 = αδ2 with x∗ and α being
the final values from the last time step, 0 < δ1 < 1, and δ2 > 1.

6.3.6. Gradient projection

The gradient projection method comprises two stages. The first one starts with the calculation
of a piecewise-linear path from the steepest descent direction (the negative gradient (6.34))
of the cost function. Introducing the scalar parameter l ≥ 0 and the initial value as u0 =
projΩ(u∗E) the path is described by

u(l) = projΩ [u0 − lg(u0)] . (6.45)

The next step is the computation of those values of l where the boundary of Ω is reached for
each vector component of (6.45). After sorting the results in ascending order and removing
duplicates one obtains a list {l1, ..., lN} for examining the path interval-wise. On every path
segment [li−1, li] for i = 1, ..., N with l0 := 0 one can express (6.33b) as a scalar quadratic
function of l∆ ∈ [0, li− li−1]. Setting its gradient to zero results in l∗∆ and if 0 ≤ l∗∆ < (li− li−1)
the first local minimizer is given as

uc = u(li−1 + l∗∆). (6.46)

Otherwise, the next interval on the path is examined in the same way. The implementation of
this first phase of gradient projection is done as described in [32].

Let the active set of constraints at uc be given as

A(uc) :=
{
i ∈ {1, ...,m}

∣∣(uc,i = umin,i) ∨ (uc,i = umax,i)
}

(6.47)
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6.4. Convergence

and the corresponding set of free variables as

F(uc) :=
{
i ∈ {1, ...,m}

∣∣i /∈ A(uc)
}

. (6.48)

The second stage of gradient projection performs an approximate subspace minimization with
(6.47) kept constant [32]. Hence, the new vector of optimization variables reads as x =
[x1, ..., xNf ]T with Nf := |F(uc)|. The relationship to the optimization vector from stage one
reads as

u = uc +NHx (6.49)

where NH ∈ Rm×Nf . Considering F(uc) = {f1, ..., fNf } each column hi of NH contains only
zeros except for the element with row index fi which is ”1”. Note that (6.49) is basically a
transformation into nullspace similar to Section 6.2.2. Neglecting g0 in (6.33) and using (6.49)
yields2

min
x
JH(x) (6.50a)

JH(x) =
[1
2
xT NT

HGNH︸ ︷︷ ︸
GH

x+ xT
(
NT
HGuc +NT

HcG
)︸ ︷︷ ︸

cH

]
(6.50b)

subject to NT
H(umin − uc) ≤ x ≤NT

H(umax − uc). (6.50c)

The search direction pH is now computed with Newton’s method from

HpH = −∇JH (x) (6.51)

with H ∈ RNf×Nf . It should be pointed out that rank(HJH ) = rank(GH) = min(Nf , k)
which follows from rank(G) = k. Therefore, the following Hessian modification

H =

{
HJH if Nf ≤ k
HJH + εHINf else

(6.52)

with 0 < εH < 1 is carried out. Finally, the step length lH is reduced until x = lHpH satisfies
(6.50c) and the result of stage two reads as

uH = uc + lHNHpH . (6.53)

Denote the gradient projection result of the last iteration as u
(j−1)
H and the current result as

u
(j)
H . The algorithm terminates if

|u(j)
H − u

(j−1)
H | < ε1 (6.54)

with 0 < ε < 1 and 1 ∈ Rm having all entries set to ”1”. Otherwise, the next iteration is

started using u
(j)
H as initial value in (6.45) instead of u0.

6.4. Convergence

The penalty function approach is well-known in optimization literature. Proofs of convergence
can be found for example in [45], [46], and [32] where instead of (6.12) a slightly modified
unconstrained cost function

Pα(x) =
1

α
v(x) + f(x) (6.55)

is used with 1
α →∞.

2The resulting constant terms in (6.50) have already been omitted.
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Assumption 6.4.1. Problem (6.9) has a solution x∗Q.

Assumption 6.4.2. f(x) and Ai·x− bi with i = 1, ..., 2m are continuous functions on Rm−k.
Assumption 6.4.3. f(x) is coercive, i.e. lim

‖x‖→∞
f(x) = +∞.

Lemma 6.4.1. Under assumptions 6.4.1 - 6.4.3 it follows that

∀α > 0, ∃xα : Pα(xα) = min
x
Pα(x) (6.56a)

lim
α→0
{xα} = x∗Q (6.56b)

{xα} bounded. (6.56c)

Proof. Assumption 6.4.2 is fulfilled because f(x) and Ai·x − bi are polynomials which are
continuous on their domain and Q � 0 guarantees Assumption 6.4.3. The expression Pα(x) =
α
[
f(x) + 1

αv(x)
]

= αPα(x) is just (6.55) scaled by a positive value which does not change
any properties of the optimization problem. Multiplying (6.56a) by 1

α yields exactly the same
statements as in Corollary 6.2.4 from [45] which completes the proof. �

Using (6.9a), (6.10), (6.12), and the abbreviation Vx = V (x) one obtains the overall cost
function

Pα(x) = (Ax− b)T Vx (Ax− b) + α
(
xTQx+ xTc+ c0

)
= xT

(
ATVxA+ αQ

)
x+ xT

(
αc− 2ATVxb

)
+ bTVxb+ αc0.

(6.57)

Lemma 6.4.2. For all α > 0 expression (6.57) has a global minimizer at xα which is a critical
point, i.e. ∇Pα(xα) = 0.

Proof. From Vx � 0 it follows that ATVxA � 0 and because of Q � 0 one obtains ATVxA+
αQ � 0 (see [24]). This implies that Pα(x) is coercive and therefore xα is a global minimizer
(see [45], Theorem 1.4.4). The gradient

∇Pα(x, α) = 2ATVx (Ax− b) + 2αQx+ αc

= 2
(
ATVxA+ αQ

)
x− 2ATVxb+ αc

(6.58)

is a continuous function which exists on all of Rm−k and so it follows from the same theorem
in [45] that xα must be a critical point. �

Remark 6.4.1. Note that Lemma 6.4.2 remains true if v /∈ Φ, i.e. (6.14) always exists.

Remark 6.4.2. ∀x ∈ Rm−k \ D : ∂Vx∂x = 0 with

D =
{
x ∈ Rm−k|∃(i ≤ 2m) ∈ N+,Ai·x− bi = 0

}
, (6.59)

i.e. D contains the discontinuities of (6.11b). However, due to the quadratic form of the penalty
function (6.10) the gradient (6.58) nevertheless exists and is continuous on all of Rm−k. The
Hessian on the other hand side

HPα(x, α) = 2
(
ATVxA+ αQ

)
(6.60)

only exists on Rm−k \ D. Despite that (6.60) has no singularities (see Section 6.3.3) and can
be used for all x as discussed in [47].
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The region where the identical set of constraints is violated as at a given position x0 is denoted
as

Mx0 =
{
x ∈ Rm−k

∣∣Vx = Vx0

}
. (6.61)

Lemma 6.4.3. Let αi > 0 be the value of the penalty parameter in the i-th iteration and assume
that the minimum for αi−1 was found during the previous iteration at xαi−1 /∈ D. Suppose xn
is the result of a single Newton step. If xn ∈Mxαi−1

holds it follows that xn = xαi.

Proof. The Newton direction is given as xn = xαi−1 −HPα(xαi−1 , αi)
−1∇Pα(xαi−1 , αi) and

using (6.58), (6.60) and Sx,α := ATVxA+ αQ results in

xn = S−1
xαi−1

,αi

(
ATVxαi−1

b− αi
2
c
)

(6.62)

The gradient evaluated at the new position xn is

∇Pα(xn, αi) = −2ATVxnb+ αic+

2Sxn,αi S
−1
xαi−1

,αi

(
ATVxαi−1

b− αi
2
c
)

︸ ︷︷ ︸
xn

. (6.63)

xn ∈ Mxαi−1
is equivalent to Vxn = Vxαi−1

which implies (6.63) is zero and this yields
xn = xαi . �
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Figure 6.1.: Visualization of the exterior path: The gradient of an absolute value penalty
function reveals those regions in nullspace with identical constraints violated as
areas with the same arrow directions. The red polygon represents the feasible
region Ψ(u0). The continuous exterior path is shown as sequence of purple ’x’
connecting 0 and x∗Q (labeled with a green ’x’).

The sequence of points {xα} starting at 0 and converging to x∗Q (or x∗ in case of an infeasible
v /∈ Φ) is called exterior path [47]. It is defined by the implicit function ∇Pα(x,α) = 0. Since
on Rm−k \ D the gradient ∇Pα is continuously differentiable and HPα is invertible it can be
concluded from the implicit function theorem [32] that a continuous function xα(α) exists.
In case of a 2-D nullspace the exterior path and the feasible region can be visualized (see
Figure 6.1) by plotting the solutions of (6.13) for α decreasing in tiny steps. The gradient
of an absolute value penalty function [45] is used in this figure to illustrate the areas where
the same constraints are violated by arrows pointing in the same direction. The exterior path
continuously connects the origin and x∗Q.

The following discussion deals with xn /∈ Mxαi−1
. EPA repeats computing Newton steps

for a number of times N > 1. In case of reaching xαi the penalty parameter αi+1 is reduced as
described in Section 6.3.4. If xαi is not found the failed Newton steps are discarded, xαi−1 is
chosen as starting point for iteration i+ 1, and αi+1 is increased to a value αi < αi+1 ≤ αi−1.
Now three scenarios are possible:

scenario 1: xn ∈ Mxαi−1
. It follows from Lemma 6.4.3 that xαi+1 is found in one step.

Consequently, the penalty parameter of the next iteration αi+2 is decreased. This corre-
sponds with going from xα0 to xn1 in Figure 6.2.

scenario 2: xn /∈Mxαi−1
and xn /∈Mxαi+1

. There is still no guarantee that xαi+1 is found
by the Newton step. This is represented by the step from xα1 to xn2 in Figure 6.2.
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step
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2nd Newton
step

Figure 6.2.: Principal behavior of EPA when the set of violated constraints changes on the
exterior path. The red polygon depicts the feasible area in nullspace and the gray-
framed polygons outline regions where the same constraints are violated. Initially,
scenario 1 applies because the sets of violated constraints at xα0 and xα1 are
identical (see Lemma 6.4.3) whereas in case of scenarios 2 and 3 those sets differ
from each other. Thus, the first Newton steps in scenarios 2 and 3 will not reach
the minimum for the current αi in general. In scenario 2 the set of violated
constraints at xn2 is different from the one at xα2 . Therefore, it is not certain
that subsequent Newton steps reach xα2 and so α3 possibly has to be increased.
This reduces the distance between the current position on the exterior path xα1

and xα3 . In the third scenario xn3 ∈Mxα3
and so the second Newton step yields

the current minimum xα3 .

EPA potentially has to discard the failed steps, use xαi−1 again as starting point, and
increase αi+2 such that αi+1 < αi+2 ≤ αi−1.

scenario 3: xn /∈ Mxαi−1
and xn ∈ Mxαi+1

. EPA reaches the correct position xαi+1 with
the second Newton step and αi+2 is decreased. This is indicated by moving from xα1 to
xn3 in Figure 6.2.

To put it briefly, EPA reduces the distance on the continuous exterior path between the
starting point of an iteration and the sought position. Thereby |∇Pα | at the starting point
is decreased and as a consequence the same is true for the step-size which facilitates the
occurrence of scenario 3 from the list above.

6.5. Results

EPA is implemented in C++ using the BLAS and LAPACK3 routines of the mathematical
programming library Intel MKL 2018 [48]. MEX functions provide the interface to Matlab.
Execution time is measured by means of the Matlab-commands tic and toc. The test machine

3Basic Linear Algebra Subprograms and Linear Algebra Package define standardized programming interfaces
for numerous mathematical operations.
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is a notebook computer coming with an Intel Core i7-6700HQ CPU with 2.6 GHz, 16 GB
RAM, Windows 10 64-bit, and Matlab R2016b 64-bit.

6.5.1. Small-scale problems

Quadratic programming in CA has mainly to deal with low-dimensional problems with k,m ≤
10. At first this section contrasts the performance of EPA with QCAT [49] which is a collection
of WLS solvers for CA. In this comparison the tested algorithms are

• wlsc alloc (WLA): active-set strategy [6] implemented in C, using the BLAS and LA-
PACK routines of Intel MKL 2018

• fxp alloc (FXP): fixed-point algorithm [34]

• ip alloc (IPA): interior-point algorithm [35].

The considered optimization task is (6.1) with problem data

B =

 10 8 2 1 0
−8 10 −1 2 0

−2366
1171 − 869

2060
91128
7709 − 149

2393 5


umax =

[
1 2 2 5 1

]T
umin =

[
−1 −1 −4 −4 −4

]T
up = 0, W = Im, Wv = Ik

vfea =
[
20 28 27

]T
, vinf =

[
30 −25 25

]T
(6.64)

Initially, the desired virtual control vector vfea lies inside the AMS (1.34). The quality of
a result is measured by means of the cost function value fu(u), the maximum constraint
violation v(u), and the norm of the virtual control error (6.3). In order to determine the
average computation time each algorithm has to solve the problem 10000 times. The results
are condensed in Table 6.1. One can see that WLA requires the least computation time closely
followed by EPA. In terms of accuracy in reaching the desired vfea EPA achieves the best
result followed by WLA. However, WLA is the only algorithm that features a small constraint
violation. The fixed-point method entails the greatest error in matching the desired virtual
control. By increasing its maximum number of iterations, which was set to 200 during the
tests, one could reduce this error at the price of rising execution time. The worst result
regarding computation time and cost function value comes from IPA which is moreover very
sensitive for variations of the weighting parameter γ. The nullspace dimension of B in (6.64)
is two, which allows a comprehensible visualization. Figures 6.3 and 6.4 show the optimization
steps of EPA together with the cost function f(x) and the constraint violation v(x). One
recognizes that already the result of the fourth iteration lies very close to the optimal value,
i.e. the computation time could be further reduced by adjusting the tolerance of the stopping
criteria. The next test deals with the infeasible virtual control vector vinf . As it can be
seen in Figure 6.5 EPA minimizes the constraint violation in such cases, i.e. the optimization
result u∗E is as close to Ω as possible. However, EPA does not return u∗E in this case but
its projection on Ω. Because of all singular values of B in (6.64) being identical EPA is able
to minimize the deviation between desired and actual virtual controls without the subsequent
gradient projection stage as it can be seen in the last line of Table 6.2. Finally, the virtual
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Table 6.1.: Results for solving (6.64) with v = vfea.

EPA WLA FXP IPA

time 22 µs 12 µs 155 µs 304 µs

iter. 6 3 200 11

fu(u) 21.4309878 21.4309841 20.5597369 21.6729754

v(u) 0 1.43 · 10−8 0 0

d(u,v) 7.59 · 10−9 1.64 · 10−6 0.27 1.67 · 10−3
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Figure 6.3.: The minimum of f(x) disregarding the actuator constraints (6.9b) always lies in
the center of nullspace because this corresponds with the solution u0 from the
generalized inverse (6.4a). The red polygon depicts the feasible area Ψ(u0) where
the actuator constraints are satisfied. The exterior path is shown as dashed, purple
line and ends at the global constrained minimizer x∗Q ≈ [−3.18 0.06]T .

control weighting matrix in (6.64) is changed to Wv = diag(100, 3, 52) while the desired virtual
control vector is still the infeasible vinf . Thus, gradient projection has to be applied after
determining projΩ(u∗E) by EPA. The related results can be seen in Table 6.3. EPA needs two
gradient projection iterations after its first optimization stage in nullspace. EPA and WLA
achieve effectively the same results for the weighted virtual control error d(u,v). In order
to assess the performance of EPA for a wider range of problems it has to solve randomly
generated test cases. Its results and execution times are not only compared to the algorithms
from QCAT but also to the following reference algorithms:

• Quadprog with interior-point-convex alg. (QUA)

• Gurobi 7.02 64-bit ([50]) (GUR)

• IBM ILOG CPLEX 12.7 64-bit (CPL)

• qpOASES 3.2.0 ([51]) (QPO)

Quadprog is Matlab’s built-in solver for quadratic programming. Gurobi and CPLEX are se-
parate software packages which come with interfaces that allow access from Matlab. qpOASES
is an active-set based open-source solver for QPs written in C++ which can be compiled for
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Figure 6.4.: The costs for constraint violation are zero only inside the feasible region Ψ(u0)
(red polygon).

Table 6.2.: Results for solving (6.64) with v = vinf .

EPA WLA FXP IPA

time 39 µs 13 µs 153 µs 258 µs

iter. 11 4 200 10

fu(u) 21.7529785 21.7530014 21.7529998 21.7529593

v(u) 0 4.26 · 10−8 0 0

d(u,v) 19.990242 19.990242 19.990242 19.990242

use in Matlab as MEX-File. All algorithms are used with their standard parameters. The
results can be found in Table 6.4 which is horizontally split into three parts. The first eight
rows contain the results for each algorithm in case of feasible virtual control vectors, the next
eight rows are dedicated to infeasible ones with identity weighting, and the remaining rows
are related to infeasible v with random Wv. In either case three types of actuator weighting
matrices are tested: identity, diagonal, and dense. The preferred control position is the zero
vector in all generated problems, the number of optimization variables (subject to the box-like
constraints Ω) is m = 10, and the number of equality constraints is k = 5. Table 6.4 not only
shows the average computation time and number of iterations for each algorithm but also how
many of the problems could be solved. In the feasible cases a result is as considered correct
if its maximum constraint violation regarding (6.2b) and (6.2c) is below 0.01 % and the cost
function value does not exceed the best solution by more than 0.01 %. A correct result for in-
feasible problems requires the maximum violation of (6.2c) to be below 0.01 % and the virtual
control error (6.3) to be at most 0.01 % higher than the best one. The current implementation
of IPA can only handle identity weighting matrices which is why merely the first three entries
of Table 6.4 are filled for feasible problems. In the infeasible case the dominating part of the
cost function is the virtual control error. Therefore, IPA is able to solve those problems for
all types of weighting matrices. Another peculiarity of Table 6.4 is the fact that the iteration
count of of CPL cannot be shown because its Matlab interface does not return a valid number.
The essence of Table 6.4 is:

• QUA, GUR, and CPL are supposed to be used for larger problem sizes. Their compu-
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Figure 6.5.: If v /∈ Φ there is no intersection between the nullspace directions and Ω.

Table 6.3.: Results for (6.64) with Wv = diag(100, 3, 52) and v = vinf .

EPA WLA FXP IPA

time 43 µs 15 µs 154 µs 396 µs

iter. 11 (2) 6 200 -

fu(u) 9.7157025 9.7157024 9.6325387 9.7157025

v(u) 0 1.08 · 10−8 0 0

d(u,v) 104.811509 104.811511 105.414924 104.811509

tation times are much higher in the low-dimensional examples considered here.

• FXP and IPA are not very reliable for solving feasible problems. Especially IPA depends
very much on the selection of the weighting parameter γ. In the infeasible cases on
the other hand they work satisfactorily. The maximum number of FXP-iterations has
been set to 300 in the infeasible test cases. Increasing this value would also increase the
number of solved problems but with higher computation time.

• Active-set based algorithms (WLA and QPO) are well-suited for low problem dimensions.
However, WLA has difficulties solving problems with dense weighting matrices. The
weighting parameter γ in (6.1a) has been increased to get more feasible results.

• EPA has a computation time similar to WLA for small-scale feasible examples, but it
can also handle dense weighting matrices.

• In the infeasible cases with non-identity Wv the active-set algorithms (WLA and QPO)
perform best for identity and diagonal actuator weighting matrices Wu, followed by
EPA. However, for dense Wu EPA is able to solve more problems than WLA and QPO.

• Since changing the virtual weighting matrix Wv is equivalent with changing the facto-
rization and the actuator weighting matrix has effectively no influence on the infeasible
cases IPA can also be tested.
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Table 6.4.: Randomized testing of 8000 test cases for each actuator weighting matrix type with
m = 10, k = 5, and up = 0. The last eight rows contain the results where gradient
projection has been applied. Its iteration number can be seen in brackets beside
the exterior point iteration number.
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EPA 0.088 5.2 7999 0.088 5.0 8000 0.104 7.5 8000
WLA 0.081 3.3 7999 0.081 3.3 8000 0.079 3.0 2244
FXP 0.300 300 3915 0.296 300 153 0.324 300 4
IPA 0.501 12.4 5882 - - - - - -

QUA 2.726 5.3 8000 2.794 6.2 7994 2.871 6.7 8000
GUR 1.550 8.5 8000 1.378 8.9 8000 1.710 9.6 8000
CPL 4.126 ? 7994 4.195 ? 8000 4.358 ? 7998
QPO 0.251 17.5 8000 0.252 17.9 8000 0.284 21.6 8000

in
fe

as
ib

le
,
W
v

=
I EPA 0.124 12.6 8000 0.128 12.7 8000 0.164 17.5 8000

WLA 0.100 11.4 8000 0.101 11.5 8000 0.101 11.8 7985
FXP 0.391 400 7999 0.397 400 7999 0.395 400 7998
IPA 0.393 9.3 8000 0.397 9.3 8000 0.396 9.4 7999

QUA 3.007 8.5 8000 3.020 8.5 8000 3.022 8.5 7985
GUR 1.847 20.3 8000 1.935 20.2 8000 1.853 20.0 7985
CPL 4.464 ? 8000 4.881 ? 8000 4.736 ? 7985
QPO 0.128 14.8 8000 0.128 14.9 8000 0.121 13.2 7985

in
fe
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si

b
le

,
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n
d

.
W
v EPA 0.168 13.6 (6.9) 8000 0.162 12.6 (6.9) 8000 0.203 18.5 (7.3) 7999

WLA 0.097 8.2 8000 0.096 8.1 8000 0.099 9.2 7756
FXP 0.393 400 3707 0.391 400 3706 0.395 400 3716
IPA 0.498 12.5 7994 0.497 12.5 7994 0.500 12.5 7990

QUA 2.911 7.4 8000 2.904 7.4 8000 2.911 7.4 7756
GUR 1.776 19.4 8000 1.785 19.8 8000 1.803 21.6 7755
CPL 4.356 ? 7997 4.341 ? 7996 4.357 ? 7753
QPO 0.134 14.9 8000 0.131 14.4 8000 0.139 16.3 7756

6.5.2. Medium-scale problems

With rising m and k the benefit of the proposed approach becomes clearer. The outcome of
randomized testing with m = 50 and k = 25 is contained in Table 6.5. EPA is the fastest
solver in these examples. FXP would require more iterations for feasible virtual controls and
infeasible ones with random Wv whereas its results for Wv = I are nearly as good as those
from EPA. Ignoring the fact that IPA cannot handle non-identity Wu it is very effective for
infeasible v. One can summarize Table 6.5 as follows:

• The computation time depends on the feasibility of v for all tested algorithms. Except
for QPO and IPA, all solvers need more time for the infeasible problems.

• The maximum iteration number (300) of IPA in the feasible test cases is too low and so
none of the problems has been solved. The test is not repeated as more iterations require
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more computation time and make FXP less competitive to the other solvers. The same
observation can be made for FXP’s performance in case of infeasible v and random Wv.

• Considering computation time and number of solved problems EPA achieves very good
results.

Table 6.6 shows how the considered algorithms deal with problems which are ten times larger
than those in the last section. It gives an estimate on how well they scale with an increasing
number of optimization variables and constraints. In contrast to the examples in Tables 6.4
and 6.5 the preferred control vector is different from zero in all of the randomly generated test
cases, i.e. the linear part of the cost function (6.2a) does not vanish. The key aspects of
Table 6.6 are:

• FXP cannot handle cost functions with linear terms (for lower dimensional problems
this is also true). However, in case of infeasible problems it is applicable (because of the
high weighting of the virtual control error) and together with EPA it requires the least
computation time.

• The number of iterations of active-set based algorithms rises significantly. For feasible
problems QPO requires the most computation time. WLA is only applicable for identity
and diagonal weighting matrices whereas most of the problems with dense Wu could not
be solved although γ has been increased significantly. The average computation time of
WLA is roughly 100 times higher than in Table 6.4 although the problem size is only 10
times greater.

• EPA achieves the best results regarding computation time and number of solved pro-
blems.

Figure 6.6 demonstrates the advantage of transforming the optimization into nullspace if there
are equality constraints involved. It depicts the average execution times for problems with
identity weighting matrix, non-zero linear term in the cost function, a constant nullspace
dimension of m−k = 25, and an increasing number of optimization variables m. One recognizes
that the increase of EPA’s execution time is clearly below the other algorithms. The results in
the remainder of this section demonstrate the capabilities of EPA in solving problems larger
than they usually occur in CA. QPs appear in various engineering applications and so there are
lots of possibilities to apply EPA in other areas apart from CA. Hence, the considered problem
type is now extended by general inequality constraints which have to be fulfilled additionally
to the box-like constraints in the examples before. Table 6.7 contains the average results for
problems with m = 500 optimization variables, box-like inequality constraints, no equality
constraints (k = 0), and i = 500 extra inequality constraints which can be written in matrix
form as

Aiqu ≤ biq. (6.65)

Note that only four algorithms are tested because the others require significantly more compu-
tation time and do not find a solution in the majority of cases anyway. In summary, Table 6.7
shows that EPA is able to solve the problems significantly faster than the other algorithms,
especially for dense weighting matrices. In these cases CPL had some difficulties as indicated
by the small number of solved problems.
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Figure 6.6.: The average execution time of EPA for problems with v ∈ Φ and m − k = 25
scales very well with an increasing number of optimization variables m.

6.5.3. Simulation results

In this section EPA is tested in a closed-loop simulation with CA. Given the linear plant model

ẋst =

0 2 2
0 2 1
1 −1 −2


︸ ︷︷ ︸

Ast

xst +

−7 −3 6 4 1
0 2 −4 8 −7

10 −5 1 10 −7


︸ ︷︷ ︸

Bu

u (6.66)

subject to input constraints −umax ≤ u ≤ umax with umax
T = [2 7 14 5 9] the control goal

is the stabilization of the origin. The initial state reads as xTst,0 = [7 − 2 − 4] and the input
matrix factorization BvB = Bu is conducted according to (6.32). A linear state controller is
developed for ẋst = Astxst+Bvv such that all eigenvalues of the closed-loop system matrices
are at −12. The weighting matrix is chosen as W = diag( 1

umax,1
, ..., 1

umax,m
) and the preferred

control positions are up = 0. Furthermore a sinusoidal disturbance

d(t) = 70si10t (6.67)

affects the second state variable in order to increase the necessary control action during the
simulation. The CA problem is solved with WLA (with Wv = Ik), EPA, and EPA-HS (hot-
start). Figures 6.7 and 6.8 show states and control inputs over time. One recognizes that EPA
and EPA-HS yield the same solution as WLA. The benefit of exploiting the hot-start ability
of EPA can be recognized in Figure 6.9.
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Figure 6.7.: As expected the state curves are identical for all algorithms. The second state
variable shows the influence of the disturbance (6.67).
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Figure 6.8.: These actuator signals are the results of the three CA-algorithms.
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Table 6.5.: Randomized testing of 8000 test cases for each actuator weighting matrix type with
m = 50, k = 25, and up = 0. The last eight rows contain the results where gradient
projection (iteration number in brackets) has been applied. The weighting factor γ
for WLA is increased by a factor of 1e4 in case of dense actuator weighting matrices
in order to obtain feasible results.
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EPA 0.365 6.0 7999 0.355 5.7 8000 0.453 8.2 7999
WLA 0.741 13.1 7993 0.675 12.1 7998 0.931 18.9 7788
FXP - - 0 - - 0 - - 0
IPA 1.011 14.6 6537 - - 0 - - 0

QUA 6.240 6.9 7999 7.438 8.1 7993 8.857 8.5 7999
GUR 2.275 9.9 7999 2.300 10.4 8000 5.681 14.7 8000
CPL 5.152 ? 7999 4.563 ? 7999 9.214 ? 7996
QPO 8.122 121.8 7999 9.319 144.9 7999 8.996 118.5 7999
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a
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b
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,
W
v

=
I EPA 0.430 13.0 8000 0.466 13.6 8000 0.640 16.7 8000

WLA 1.911 54.8 8000 1.915 55.4 8000 1.914 54.0 7966
FXP 0.628 400 8000 0.626 400 8000 0.631 400 8000
IPA 0.750 9.7 8000 0.749 9.7 8000 0.753 9.7 8000

QUA 7.951 9.8 8000 7.872 9.8 8000 7.919 9.9 7966
GUR 5.394 30.8 8000 5.469 30.9 8000 4.708 24.1 7966
CPL 6.860 ? 8000 6.755 ? 8000 6.817 ? 7966
QPO 2.457 104.8 8000 2.496 107.2 8000 1.265 56.4 7966

in
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le
,

ra
n
d

.
W
v EPA 0.947 15.2 (26.4) 7994 0.961 15.4 (26.4) 7994 1.197 21.9 (26.3) 7997

WLA 1.588 38.6 8000 1.603 39.3 8000 1.747 45.0 7905
FXP 0.620 400 1006 0.615 400 1006 0.613 400 940
IPA 1.144 15.9 7999 1.144 15.9 7999 1.136 15.9 7999

QUA 7.542 9.2 8000 7.589 9.2 8000 7.336 9.3 7905
GUR 5.420 26.4 7999 5.421 26.4 7999 7.827 48.5 7903
CPL 6.559 ? 7991 6.602 ? 7989 6.583 ? 7903
QPO 2.374 93.2 8000 2.574 103.3 8000 2.867 114.5 7905
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Table 6.6.: Randomized testing of 5000 test cases for each weighting matrix type with m = 100,
k = 50, and random up. The last eight rows contain the results where gradient
projection (iteration number in brackets) has been applied. The weighting factor γ
for WLA is increased by a factor of 1e4 in case of dense actuator weighting matrices
in order to obtain feasible results.
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EPA 1.066 7.8 4999 1.306 10 4999 1.419 10.6 4998
WLA 7.369 36.2 5000 8.953 50.1 5000 7.503 34.0 698
FXP - - 0 - - 0 - - 0
IPA 2.554 17.5 4479 - - 0 - - 0

QUA 15.934 8.0 4999 17.313 8.3 5000 32.541 9.9 5000
GUR 6.011 10.6 5000 6.426 11.2 5000 23.091 20.6 5000
CPL 9.416 ? 5000 9.428 ? 5000 9.418 ? 4998
QPO 62.949 291 5000 67.484 317 5000 69.201 258 4992
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,
W
v

=
I EPA 1.244 13.0 5000 1.337 13.0 5000 1.783 16.8 5000

WLA 12.821 98.5 4739 12.763 98.8 4655 13.140 99.4 4093
FXP 1.659 400 4538 - - 0 1.683 400 4400
IPA 1.655 10.0 5000 1.632 10 4999 1.678 10.0 4989

QUA 18.416 10.1 5000 18.265 10.1 5000 18.309 10.2 4983
GUR 20.544 34.5 5000 20.733 34.5 5000 19.299 31.4 4983
CPL 11.177 ? 5000 10.951 ? 5000 11.240 ? 4983
QPO 18.063 235 5000 18.231 239 5000 9.376 128 4983
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.
W
v EPA 3.338 16.3 (48.5) 5000 3.577 18.4 (48.9) 5000 4.076 23.3 (48.4) 5000

WLA 11.710 78.0 4993 12.269 84.2 4866 12.448 88.1 4702
FXP - - 0 - - 0 1.637 400 17
IPA 2.745 17.6 5000 2.756 17.6 4996 2.719 17.6 4993

QUA 15.379 10.3 5000 15.473 10.3 5000 15.300 10.3 4917
GUR 20.792 37.1 4998 18.285 37.0 4998 30.152 57.5 4917
CPL 12.868 ? 4998 12.828 ? 4996 12.909 ? 4917
QPO 16.269 197 5000 16.625 203 5000 20.997 259 4917

Table 6.7.: Randomized testing of 2500 test cases for each weighting matrix type with m = 500,
k = 0, i = 500, and cu 6= 0
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EPA 63.49 5.1 2500 84.97 5.3 2500 157.3 16.2 2499

QUA 1272 9.3 2500 1538 10.1 2500 3945 15.2 2500

GUR 182.4 14.9 2500 180.1 15 2500 6453 124 2500

CPL 236.0 ? 2500 243.6 ? 2500 1078 ? 21
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Figure 6.9.: The hot-start feature of EPA-HS reduces the number of iterations to find the
solution.

6.6. Conclusion

In this chapter an efficient solver (EPA) for convex quadratic programs is presented. The
underlying principles are a transformation of the problem into nullspace for efficiently addres-
sing equality constraints and the augmentation of the cost function with an additional term
dedicated to the inequality constraints. The adaption law of the penalty parameter ensures
the convergence of the the algorithm to the minimum. For infeasible virtual controls EPA
computes a feasible vector u which has either minimum distance to the desired value in real
control space Rm or alternatively minimizes the weighted distance in virtual control space
Rk. It is shown that for certain problems both properties can be achieved at the same time.
Randomized testing shows the competitiveness of EPA with established solvers for small (up
to 10 optimization variables) and medium-scale (several hundreds of optimization variables)
problems. Similar to active-set based algorithms EPA-HS facilitates hot-starts, i.e. the initi-
alization with results from previous executions for similar problems. This property leads to a
reduction of the required iteration number and makes it particularly useful as a CA-method.
However, due to the fact that its computational effort scales well with the problem size it has
potential to be used in other applications too.
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7. ICE start-up Control for HEV Powertrains

In this chapter the problem of starting the ICE of a HEV while driving (see Section 1.2 for
more details) is solved with the aid of a CA-based control structure. The main goal during the
starting process of the ICE is to increase its speed by means of a clutch which connects it to
the rest of the powertrain. Once the desired speed is reached combustion is started. The first
presented approach utilizes pure speed control to harmonize the shaft speeds. The powertrain
acceleration is kept constant until ω1 and ω2 match. The second method is designed in order to
simultaneously meet the overall driving torque demand of the driver. While a speed controller
operates on ω1, the desired torque related to the accelerator pedal position is maintained
by torque control. Both approaches are tested in simulations where the plant dynamics are
governed by (1.5) - (1.10) and (1.12). The required model parameters for simulating the driving
shaft dynamics are condensed in Table 7.1. The actuator limits forming the feasible subset of

parameter value parameter value

J1 0.25 kgm2 µslip 0.2

J2 0.2 kgm2 µstick 0.3

k1 0.5 kgm2

s ra 0.125m

k2 0.5 kgm2

s ns 8

τ1 0.12 s τ3 0.01 s

τ2 0.05 s - -

Table 7.1.: Driving shaft model parameters.

controls Ω ⊂ R3 are

umin = [0 − 250 0]T (7.1a)

umax = [140 250 3000]T (7.1b)

The start-up procedure can be divided into three phases:

1. acceleration phase: The ICE speed is increased by means of EM and clutch.

2. ignition and torque blending: The ICE is started and its torque starts to increase.

3. clutch lock-up: The clutch actuator’s axial force is chosen such that the shafts remain
permanently connected, i.e. |T c| ≤ Tc,max. The system dynamics reduce to (1.11) and
the clutch is no torque source any more. The majority of the required torque should
come from the ICE.

In a CA-based control system it has to be guaranteed that the commanded controls u are
realized properly. This is the responsibility of low-level control (see Figure 1.1) which consists of
individual actuator controllers. In the present case the existence of motor and clutch controllers
is presumed, i.e. each components and its controller are considered as single system with input
and output torques. The interested reader is referred to Appendix C where the development
of a clutch actuator controller is exhaustively explained.
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7. ICE start-up Control for HEV Powertrains

7.1. Pure speed control

In this approach a speed controller is used during start-up to align both shaft speeds. The
speed reference value depends on the driving situation, i.e., the current speed and whether
the car is accelerating or not. The starting point of considerations is model (1.14). The first
steps are conducting an input matrix factorization of Bu1 and introducing the virtual control
vector v. In the present case the factorization is chosen as

Bu1(ω) = BvB =

[ 1
J1

0

0 1
J2

] [
1 0 −µ(ω)
0 1 µ(ω)

]
. (7.2)

This leads to a redundancy-free model with two virtual controls

ω̇ = Aω +Bvv =

[
ω̇1

ω̇2

]
=

[
−k1
J1

0

0 −k2
J2

][
ω1

ω2

]
+

[ 1
J1

0

0 1
J2

] [
v1

v2

]
y = Cω =

[
y1

y2

]
=

[
1 0
0 1

] [
ω1

ω2

] (7.3)

which is used for developing a linear state feedback controller

v = −Kω + V r (7.4)

with controller parameters K,V ∈ R2×2 and the reference signal r ∈ R2. The gain matrix K
is computed such that the eigenvalues of the closed-loop system matrix (A−BvK) lie at −10
and −13. Due to A’s diagonal structure K is also diagonal and reads as

K =

[
k11 0
0 k22

]
=

[
10J1 − k1 0

0 13J2 − k2

]
. (7.5)

Vanishing steady-state errors for step reference signals r are achieved by

V = −
[
C (A−BvK)−1Bv

]−1
. (7.6)

Next, the virtual control computed by (7.4) is distributed among ICE, EM, and the clutch
actuator by CA. The reference signals for speed control depend on the current driving situation.
If the current speed is more or less constant it is kept constant during start up (Figure 7.1)
whereas in an acceleration phase the speed gradient is kept constant (Figure 7.2). The time
instant where the ICE reference starts to rise is denoted as Tstart and the rise time as Tramp.
During the pre start-up phase (t < Tstart) the car is exclusively powered by the EM.

7.1.1. Pseudoinverse-based approach

Since it is already roughly known in advance which actuators should dominate in which start-
up phase the CA algorithm should offer the possibility to incorporate those ideas. WPINV is
one of the simplest CA methods meeting this criterion by means of the weighting matrix W
whose composition is described in the following. In this case a variable weighting matrix has
proven successful. Its structure is

W =

c11e
c12(ω1−ω2)2

0 0
0 c2 0
0 0 c31 − c32σ(Tstart, t)

 (7.7)
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Figure 7.1.: Speed reference for ICE start-up
in constant speed phase.
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Figure 7.2.: Speed reference for start-up du-
ring acceleration.

with scalar constants 0 < c11 < c2, 0 < c32 < c31 < c2, and 0 < c12. The exponential term
in (7.7) is large during EM-only operation and gets smaller for a decreasing speed deviation
leading to a gradually increasing ICE torque. Parameter c31 has to be large in pre start-up
phase to prevent clutch usage. At the beginning of start-up the step function reduces the
weight for clutch actuation. The parameters yielding the results of this section are specified
in Table 7.2. The results for constant and ramp EM speed references are shown in Figures 7.3

parameter value parameter value

c11 1 c12 0.001

c2 5 - -

c31 1000 c32 999.9

Table 7.2.: Weighting matrix parameters for pseudoinverse computation.

and 7.4 respectively. One recognizes that in both cases the acceleration phase of the ICE is
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Figure 7.3.: Allocation results using WPINV with (7.7) for constant speed reference.

done with EM and clutch only as requested. The clutch torque Tc is negative if the EM side of
the shaft propels the ICE side. ICE torque starts to rise not until t ≈ 1.4 s. The parameters
where chosen such that at the end of speed matching (t ≈ 1.75 s) an increasing part of the
torque comes from the ICE resulting in Tc > 0. Start-up is completed after about 750 ms in
both cases. The subsequent lock-up phase is explained in Section 7.1.3.
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Figure 7.4.: Allocation results using WPINV with (7.7) in case of acceleration.

7.1.2. Direct allocation with weighted nullspace modification

WPINV is not able to take the actuator constraints into account. DA on the other hand is
a constrained CA method always able to find a correct allocation, provided that one exists.
However, DA exhibits no design parameters which enable influencing the result comparable
to the weighting matrix. Therefore, it is natural to seek a combination of DA and weighting
matrix. The proposed approach starts with DA and computes an initial solution uDA =
fDA(v) with ∀v ∈ R3 : uDA ∈ Ω and ∀v ∈ Φ : v = BuDA. Let N ∈ R3×1 span the right
nullspace of the control effectivity matrix, i.e. span(N) = Nr (B) implying BN = 0. Now
one can formulate an optimization problem in nullspace as

min
x

(uDA +Nx)T W (uDA +Nx) (7.8)

with W � 0 being a weighting matrix such as (7.7). Considering that
(
NTWN

)
� 0 [24],

the solution of (7.8) reads as

x = −
(
NTWN

)−1
NTWuDA. (7.9)

The combined allocation result of DA and (7.9) can be written as

u = uDA +Nαx (7.10)

with
α = max

0≤α≤1
α such that (uDA +Nαx) ∈ Ω. (7.11)

Due to the convexity of (7.8) and the fact that x is just a scalar, (7.11) is approximately solved
by a simple iterative line search algorithm starting with α = 1. The results of this approach
are presented in Figures 7.5 and 7.6. In principle the torque and speed curves are similar to
the WPINV results. The overall start-up process takes slightly longer than in Figures 7.3 and
7.4. But on the other hand the behavior of Tc is much smoother. Comparisons of the effective
torque (1.6) in Figures 7.7 and 7.8 reveal that the magnitude of torque jerks is significantly
reduced by the use of the modified DA strategy. At t ≈ 1.8 s the lock-up phase begins which
is described in the following Section 7.1.3.
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Figure 7.5.: Allocation results using modified DA with (7.7) for constant speed reference.
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Figure 7.6.: Allocation results using modified DA with (7.7) in case of acceleration.

7.1.3. Control in lock-up phase

When the clutch enters locked mode the degrees of freedom of the considered system reduce
to one, i.e. (1.11) governs its dynamics and ω1 ≡ ω2 (see Section 1.2.2). The clutch actuator’s
axial force does not directly influence the shaft speed any more. Instead, it determines how
much torque can be transmitted over the clutch via (1.8). One possibility to deal with this
situation is switching to another state controller developed for

ω̇ =
1

J1 + J2
[−(k1 + k2)ω + v] (7.12a)

y = ω (7.12b)

which calculates a scalar virtual control v and solving the CA task v = B̃ũ with B̃ = [1 1]
and ũ = [T1 T2]T afterwards. However, this switching is evitable because it can be shown
that in locked mode and for equal speed references r1 = r2 the closed-loop dynamics of the
coupled second-order system and the reduced first-order system with corresponding linear state
controllers are the same (see Appendix B for more details). Hence, only CA has to explicitly
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Figure 7.7.: Comparison of the effective tor-
que (1.6) resulting from WPINV
and modified DA in case of con-
stant speed.
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Figure 7.8.: Comparison of the effective tor-
que (1.6) resulting from WPINV
and modified DA in case of
acceleration.

consider the loss of Fax as actuator in the narrower sense. The necessary Fax for maintaining
locked mode of the clutch is computed from the estimated transmitted torque (1.9) and not
from CA.

At first, WPINV and DA without the modifications of Section 7.1.2 use B from (7.2) to
determine an initial solution u0 = [u0,1 u0,2 u0,3]T . Because of the last column of B being
zero in locked mode the weighted pseudoinverse reads as

B# =

1 0
0 1
0 0

 . (7.13)

As a consequence, both WPINV and DA calculate u0 = [u0,1 u0,2 0]T . In order to achieve
the desired torque distribution between ICE and EM the same principle as in Section 7.1.2 is
applied after the computation of u0. Instead of (7.8) the optimization problem

min
x̃

(
ũ0 + Ñ x̃

)T
W̃
(
ũ0 + Ñ x̃

)
(7.14)

with ũ0 = [u0,1 u0,2]T , Ñ = [1 −1]T , and W̃ being the top-right submatrix of (7.7) is solved.
Note that span(Ñ) = Nr([1 1]) = Nr(B̃), i.e. Ñ spans the right nullspace of the reduced
control effectivity matrix B̃. Denoting the first two dimensions of Ω as Ω̃ the commanded
controls for ICE and EM are

ũ = ũ0 + Ñ α̃x̃ (7.15)

with α̃ = max
0≤α̃≤1

α̃ such that
(
ũ0 + Ñ α̃x̃

)
∈ Ω̃.

7.2. Combining torque and speed control

Usually, a car’s powertrain is torque-controlled with the reference signal coming from the driver
via the accelerator pedal position. The velocities of wheels, differential gears, transmission,
and driving shaft are not explicitly controlled, instead they are results of the torque Teff
and the current driving resistance. Another option for realizing ICE-startup incorporates a
combination of torque and speed control. At ICE-startup a speed controller is activated to
ensure that ω1 → ω2 while Teff still follows the reference by means of the torque controller. In
further consequence a concept based on the dynamic allocation approach from [2] is presented.
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In case of a slipping clutch the dynamics of shafts and actuators are summarized in

ẋs =


− 1
τ1

0 0 0 0

0 − 1
τ2

0 0 0

0 0 − 1
τax

0 0
1
J1

0 −µ(ω)
J1

−k1
J1

0

0 1
J2

µ(ω)
J2

0 −k2
J2


︸ ︷︷ ︸

As

xs +


1
τ1

0 0

0 1
τ2

0

0 0 1
τax

0 0 0
0 0 0


︸ ︷︷ ︸

Bu,s

us (7.16a)

ys =

[
0 0 0 1 0
0 1 −µslip 0 0

]
︸ ︷︷ ︸

Cs

xs (7.16b)

with state vector xs = [T1 T2 Fax ω1 ω2]T , input vector us = [T1,c T2,c Fax,c]
T containing

the desired actuator commands, and output ys = [ω1 Teff ]T . The corresponding dc-gain
matrix lim

s→0
Cs (sI5 −As)−1Bu,s depends on the sign of the speed deviation sω = sign(x4−x5)

and reads as

P ∗slip(sω) =

[
1
k1

0
−µslipsω

k1

0 1 µslipsω

]
. (7.17)

From Nr(P
∗
slip) 6= 0 weak input redundancy follows. Since the system order decreases in

case of a locked clutch the state vector reduces to xl = [T1 T2 ω]T and the plant input is
ul = [T1,c T2,c]

T . The axial force is controlled separately depending on whether locked mode
should be maintained or left. The system description is now

ẋl =

 −
1
T1

0 0

0 − 1
T2

0
1

J1+J2

1
J1+J2

−(k1+k2)
J1+J2


︸ ︷︷ ︸

Al

xl +

 1
T1

0

0 1
T2

0 0


︸ ︷︷ ︸

Bu,l

ul (7.18a)

yl =
[

J2
J1+J2

1− J1
J1+J2

k2J1−k1J2
J1+J2

]
︸ ︷︷ ︸

Cl

xl (7.18b)

and the only interesting output is yl = Teff . Evaluating the dc-gain matrix of (7.18)

P ∗lock =

[
k2

k1 + k2

k2

k1 + k2

]
(7.19)

for the parameters in Table 7.1 yields P ∗lock = [0.5 0.5] which implies weak input redundancy.
As described in Section 2.1.7 dynamic allocation is a technique which modifies the output
signal of a controller for input redundant systems such that it converges to the solution of
an optimization problem with a configurable rate. Hence, the controller has to provide the
entire control vector us or ul respectively (see Figure 7.9) and not just a reduced virtual
control as in case of static CA methods. In the present case both control tasks could be
solved independently with Fax = 0, one speed controller using T1 as control variable and a
torque controller only utilizing T2. The dynamic allocator ensures that the start-up process
takes place as specified at the beginning of this chapter, in particular that EM and clutch are
initially given preference to the ICE. A PI controller is used for torque control. Since initially
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Figure 7.9.: Control scheme for combined torque and speed control during ICE start-up. At
time instant t = Tstart the speed controller’s reference signal rs changes from zero
to the speed of the EM. When the shaft speeds coincide and the clutch is in locked
mode the speed controller is deactivated, i.e. its output is set to zero.

the ICE is solely accelerated with EM and clutch this results in a disturbance on Teff during
start-up which should be kept as small as possible. For this purpose, speed control is also
accomplished by a PI-like controller, but the proportional factor depends on the current ICE
speed. The error signal for speed matching is

es := ys,1 − rs = ω1 − ω2σ(Tstart) (7.20)

i.e. the speed controller remains inactive until t = Tstart. The speed control law reads as

ẋs = es

yc,1 = kixs + kp|ys,1|es.
(7.21)

Thus, (7.21) is initially a pure integral controller and at time t = Tstart its output gradually
increases despite the step in its reference signal rs. Consequently, the impact on Teff is reduced
when the speed controller is activated. Alternatively, one could use a ramp reference speed
signal in (7.20) (see Section 7.1) instead of the step function. The two controller signals are
condensed in

yc,s = [T1,c T2,c 0]T (7.22)

and are the inputs of the dynamic allocator (see Figure 7.9) as long as the speed deviation is
sufficiently large (open clutch or clutch in slipping mode).

The transition from slipping to locked clutch is another major source of unwanted torque
jerks. In slipping mode the transmitted clutch torque Tc is proportional to the axial force of
the clutch actuator as stated in (1.7). In locked mode (1.9) governs Tc and depends on the
torques of EM and ICE as well as on friction and Tload. Consequently, these two values differ
from each other in general which results in notable jerks. In order to reduce this deviation the
following measures are taken:

• Before the speeds of ICE and EM match it follows from (1.7) that Tc < 0 because
ω1 < ω2. Hence, it must be guaranteed that T c < 0 (see Section 1.2.2) when locked
mode is entered. Considering (1.9) and ω1 = ω2 implies

T1J2 + (k2J1 − k1J2)ω1 + TloadJ1 < T2J1. (7.23)

Therefore, the weighting parameters of the dynamic allocator are chosen such that T2 is
sufficiently larger than T1 at the transition.
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• Just before the transition from slipping to locked mode the axial force of the clutch
actuator is chosen such that the transmitted torque corresponds to (1.9), i.e.

Ftrans =
δtrans|T c|
µsliprans

(7.24)

with δtrans ≈ 1 being a small tuning parameter.

In locked mode the axial force is chosen in order to remain in this mode as

Flock = max

(
Fmin,

δlock|T c|
µstickrans

)
(7.25)

with Fmin > 0 specifying the minimum actuation force and tuning parameter δlock > 1. The
speed controller is deactivated as soon as the speed deviation is below a threshold and so the
signal entering the dynamic allocator is

yc,l = [0 T2,c 0]T . (7.26)

Depending on the speed deviation x4 − x5 the dynamic allocator distinguishes between three
different cases and computes the actuator commands as

u =



[
Nxa
Flock

]
+ yc,l if |x4 − x5| ≤ εlock[

Nxa
Ftrans

]
+ yc,l if |x4 − x5| ≤ εtrans

Nxa + yc,s else

(7.27)

with 0 < εlock < εtrans, N spans the one-dimensional right nullspace of the dc-gain matrices
(7.17) and (7.19)

N =

{
Nr(P

∗
lock) if |x4 − x5| ≤ εtrans

Nr(P
∗
slip(sω)) else,

(7.28)

and the allocator dynamics

ẋa =

{
−KNTWNxa −KNTWyc,l if |x4 − x5| ≤ εtrans
−KNTWNxa −KNTWyc,s else.

(7.29)

The weighting matrix in (7.29) is given by

W =



[
100 0
0 200

]
if |x4 − x5| ≤ εlock[

c11 − c12σ(Tstart + Tlag) 0
0 c2

]
if |x4 − x5| ≤ εtransc11 − c12σ(Tstart + Tlag) 0 0

0 c2 0
0 0 c31 − c32σ(Tstart)

 else.

(7.30)

If the speed deviation is below εlock > 0 the allocator uses dedicated parameters to enforce
the greater portion of the torque coming from the ICE. The else-branch in (7.30) is dedicated
to the actual start-up. Initially, all diagonal entries except c2 are large resulting in an EM
preference. At the beginning t = Tstart the clutch related element is significantly decreased to
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parameter value parameter value

c11 10000 c12 9750

Tlag 0.4 c2 200

c31 10000 c32 9999

εlock 0.0001 εtrans 3

K 1 - -

Table 7.3.: Parameters of the dynamic allocator

enable the acceleration of the ICE. After a configurable lag Tlag the first entry dedicated to
the ICE is also reduced. The chosen parameters are given in Table 7.3. The remaining case
in (7.30) deals with the transition from slipping to locked mode. The dynamic allocator is
tested for constant (Figure 7.10) and variable torque references (Figure 7.11). It can be seen
that during the acceleration phase of the ICE the effective torque is not affected. Only at the
transition from slipping to locked mode small torque peaks are visible. But due to their short
duration and small magnitude they have virtually no effect on the powertrain acceleration.
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Figure 7.10.: Results of dynamic allocation for constant torque reference.
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Figure 7.11.: Results of dynamic allocation for variable torque reference.

7.3. Clutch control

The clutch controller plays an important role in the proposed HEV control scheme. On one
hand it has to be sufficiently fast to enable the operating strategy to fulfill the driver’s torque
request as good as possible. On the other hand it should not introduce noticeable jolts during
ICE start-up due to jerky actuation. The basic principles of torque transmission with clutches
have already been described in Section 1.2. The amount of transferable torque is determined
by the friction coefficient of the rotating discs and the normal force generated by the actu-
ator. The usual clutch actuator of today’s passenger cars operates on a electrohydraulic or
electromechanic basis. Due to their successful application for many years the related control
concepts are mature and work very well in practice. Typically a combination of a static feed-
forward part and a PID controller is used in both cases. An alternative actuation approach
uses an electromagnet as direct source for generating the axial force. This has the advantage
of requiring less installation space and maintenance than the conventional actuators. On the
downside the electromagnet’s nonlinear characteristics complicate clutch control significantly.

The foundation of the two suggested control strategies is position control of the clutch ac-
tuator. There is a nonlinear mapping from the position of the electromagnet’s armature to
the axial force of the actuator which directly influences the transmittable torque. Appendix
C contains a detailed mathematical model of the actuator, the parameter identification pro-
cedure, and the derivation of the position control laws based on feedback linearization and
differential flatness. The methods are evaluated in simulations where the influence of uncer-
tain parameters is investigated. Furthermore, the flatness-based approach is implemented on
an actuator test bed where it shows very good behavior. Most of this work has already been
published in the author’s works [52] and [53].
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7.4. Conclusion

Two CA-based strategies of ICE start-up in a moving HEV have been presented in this chapter.
Apart from harmonizing the two shaft speeds the avoidance of torque jerks during the process
is of great importance. The combination of torque and speed control provides the most flexible
solution as it does not assume a constant powertrain acceleration during the speed matching
phase of the two motors. Thus, as opposed to the pure speed control approach, the ICE
start-up can be completed for a wider range of driving maneuvers.
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8. Quadrotor Attitude Control1

The number of possible application areas of unmanned aerial vehicles (UAV) is vast and
increasing. Operational scenarios include search and rescue missions, emergency response,
surveillance, building inspection, and mapping [54]. Quadrotors and other vertical takeoff and
landing UAVs offer high maneuverability and versatility for relatively low costs. In the majority
of practical quadrotor applications a human operator controls the position and specifies a
desired attitude using direct sight or an on-board camera, whereas the attitude control is
done automatically. An effective attitude controller is not only important for maintaining the
pilot’s desired orientation, it also stabilizes the UAV and makes it easier to fly [55]. Therefore,
quadrotor attitude control has received a lot of attention in the research community and various
control approaches have been proposed, e.g. [55], [56], [57], [58]. The typical control scheme
consists of three layers: attitude control itself computes virtual torques around the rotational
axes, a procedure which translates those torques into actuator commands, and finally motor
control. Most of the proposed work focuses on the development of the former and uses a static
mapping to obtain the motor commands. However, this approach does not take actuator
constraints into account, which can lead to degraded behavior during challenging maneuvers.
One possibility to address this issue is the usage of CA algorithms. These techniques not
only enable the consideration of constraints but also actuator faults can be incorporated as
demonstrated in [9], [59], and [60].

This chapter describes the practical application of CA for quadrotor attitude control and
compares the usually applied input mapping with various CA methods. Furthermore, the
control task is solved employing LQR and MPC in order to compare the CA-based results with
those of the main alternatives for the control of input redundant systems. The experiments
are conducted with the Quanser 3 DOF Hover system (see [61]) shown in Figure 8.1. Because
of its mounting on a base platform the rotational dynamics are influenced by two additional
quantities as opposed to a flying quadrotor: bearing friction and gravitation. Section 8.1
describes the modeling process using Lagrangian dynamics. A Super-Twisting sliding mode
controller similar to [58] is chosen to generate the virtual torques for reference angle tracking.
Its derivation follows in Section 8.3.1. Subsequently, the input allocation methods are briefly
outlined. The experimental results on the Quanser hovering platform demonstrate better
performance and more flexibility of the constrained CA methods compared to the conventional
input mapping and LQR. The MPC implementation explained in Section 8.5 also achieves good
results but requires more computational effort than the CA-based control scheme.

1Parts of Sections 8.1 and 8.3 have been submitted to the joint 9th IFAC Symposium on Robust Control
Design and 2nd IFAC Workshop on Linear Parameter Varying Systems. At the time of printing the decision
has been pending.
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8. Quadrotor Attitude Control

Figure 8.1: The Quanser 3 DOF Hover [61]
is used for all control experi-
ments in this chapter.

8.1. Modeling

The Quanser 3 DOF Hover basically consists of a stationary base and a frame with four
propellers. The frame is mounted on the base by means of three radial bearings. On each
axle there is an encoder measuring the corresponding angles. By definition rotors 1 and 3 are
located at the hover’s front and rear whereas rotors 2 and 4 lie on the left and right hand
sides. The earth-fixed inertial frame is represented by I = {xi,yi, zi} and the hover-fixed
body frame is called B = {xb,yb, zb}. Figure 8.2 shows the unrotated configuration where
B = I as well as the directions of forces and torques coming from the rotors.

Front and rear rotors rotate anti-clockwise whereas left and right rotors spin in clockwise
direction. The resulting torques τ1, . . . , τ4 act into the opposite directions [62]. Differences in
rotor speeds lead to unbalanced torques and in further consequence to a rotation around the
hover’s body yaw axis. Each rotor also produces a lift force (f1, . . . , f4) and the force differences
between opposite rotors induce torques around body roll and pitch axis. Figures 8.3 - 8.5 show
the positive directions of the system’s three degrees of freedom yaw (ψ), pitch (θ), and roll (φ)
together with the orientation of the coordinate frames. Note that due to the fixation on the
base there is of course no translational motion and so the origins of B and I are always identical.
The considered laboratory setup undeniably shares some similarities with a quadrotor. The
literature which describes modeling the quadrotor rotational dynamics is vast, examples can
be found in [56], [57], [58], [62], and [63] to mention just a few. However, the ground-based
nature of the hover leads to some differences between the behavior of the present setup and a
flying quadrotor:

• Three radial bearings introduce additional friction into the system dynamics which is
notable especially for the yaw rotation.

• The bearing of the hover and the fact that most of its mass is concentrated in the motors
and propellers which are substantially far away from the mounting point result in gra-
vitational influence on the rotation dynamics. Although similar quadrotor rotation test
beds are used in parts of the referenced literature this phenomenon has been neglected
so far.

• On a flying quadrotor typically gyroscopes measure the angular rates with respect to B.
Thus, it is natural to specify the system dynamics in B too. The encoders of the labora-
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Figure 8.2.: Rotors spin with velocities ωi and
the resulting torques τi act in op-
posite direction.
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Figure 8.5.: Roll angle φ denotes the rotation
around the body X-axis xb.

tory setup measure the roll, pitch, and yaw angles instead and so their time derivatives
are chosen to constitute the hover’s dynamics.

The presented model takes these issues into account.

8.1.1. Lagrange modeling

The dynamic model of the Quanser 3 DOF Hover is developed by means of Lagrangian dyn-
amics (see [62] and [64]). Initially, an independent set of variables which are able to describe
the rigid body motion, the so-called generalized coordinates, is chosen as

q =
[
φ(t) θ(t) ψ(t)

]T
. (8.1)

Let Rφ, Rθ, and Rψ be the rotation matrices around x, y, and z-axes respectively [64]

Rψ =

coψ −siψ 0
siψ coψ 0
0 0 1

 (8.2)

Rθ =

 coθ 0 siθ
0 1 0
−siθ 0 coθ

 (8.3)
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Rφ =

1 0 0
0 coφ −siφ
0 siφ coφ

 (8.4)

with coθ = cos(θ) and siθ = sin(θ). The overall rotation matrix from body to inertial frame is
given by Rb2i = RψRθRφ which yields [63]

Rb2i =

coθcoψ coψsiθsiφ − coφsiψ coφcoψsiθ + siφsiψ
coθsiψ coφcoψ + siθsiφsiψ coφsiθsiψ − coψsiφ
−siθ coθsiφ coθcoφ

 . (8.5)

The hover’s angular velocities expressed in B are computed from the following skew symmetric
matrix [64]

Ωb =

 0 −ωb,z ωb,y
ωb,z 0 −ωb,x
−ωb,y ωb,x 0

 = RT
b2iṘb2i (8.6)

and read as

ωb =

ωb,xωb,y
ωb,z

 =

 φ̇− siθψ̇

coφθ̇ + coθsiφψ̇

−siφθ̇ + coθcoφψ̇

 . (8.7)

From (8.7) one can determine the Body Jacobian

Jb =
∂ωb
∂q̇

=

1 0 −siθ
0 coφ coθsiφ
0 −siφ coθcoφ

 (8.8)

which links the time derivatives of the generalized coordinates with the angular velocities in
B by means of ωb = Jbq̇. Typically, at this point the assumptions φ ≈ θ ≈ 0 motivate the
simplification of (8.8) to an identity matrix I3, which results in ωb ≈ q̇. Hence, rotation
dynamics are specified in B and roll, pitch, and yaw angles are computed by integrating the
angular velocities around the body axes. However, only the body roll axis xb coincides with
the axis for φ-rotation whereas yb is not the axis for θ-rotation and ψ-rotation is not done
around zb (see Figures 8.3 - 8.5). The torques generated by the spinning rotors are the
major influencing factors on the dynamics of the hover. The Body Jacobian is also required
to compute the torques τq ∈ R3 around the axis of rotation of q from the torques τb ∈ R3

expressed in B employing [64]

τq = JTb τb. (8.9)

The inertia matrix for rotations around the axis of B is given by

J b =

Jx 0 0
0 Jy 0
0 0 Jz

 . (8.10)

Now, the kinetic energy T = 1
2ω

T
b J bωb is obtained from (8.7) and J b and reads as

T =
1

2

[
Jx

(
φ̇− siθψ̇

)2
+ Jy

(
coφθ̇ + coθsiφψ̇

)2
+ Jz

(
siφθ̇ − coθcoφψ̇

)2
]

. (8.11)
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The influence of gravitation on the rotational dynamics is incorporated by means of potential
energy. The system’s static mechanical equilibrium attitude is denoted as [φe θe ∗]T . Please
note that ψ does not affect the static equilibrium. In general the gravitation related potential
energy of N point masses is

V =
N∑
j=1

mjghi,j (8.12)

where g is the acceleration of gravity acting in z-direction of I and hi,j is the altitude of the j-th
mass mj in I. In order to express (8.12) in terms of the generalized coordinates the altitude
is written as hi,j = −eTzRb2irb,j with rb,j ∈ R3 being the position of the j-th mass in B and
ez = [0 0 1]T . Using hT = −eTzRb2i and the auxiliary vector

mb,g =

mg,x

mg,y

mg,z

 =
N∑
j=1

mjgrb,j (8.13)

expression (8.12) changes to

V (φ, θ) = hTmb,g. (8.14)

The potential energy has a critical point at the static equilibrium attitude, i.e.

0 =

[
∂V

∂φ

∂V

∂θ
0

]T ∣∣∣∣∣
φ=φe,θ=θe

. (8.15)

Using abbreviations for secant and tangent and combining (8.14) and (8.15) yields

V = −mg,z [seφetaθesiθ + coθ (coφ + siφtaφe)] . (8.16)

Finally, the Lagrangian L(q, q̇) = T−V is obtained from (8.11) and (8.16). Next, the influence
of the actuators is considered. The j-th rotor spins with angular speed ωj and generates a
thrust Frot,j ∝ ω2

j into the negative z-direction of B and a torque Trot,j ∝ ω2
j against its sense

of rotation [62]. Therefore, the torques around the three axis of B arising from actuation are

τb,r =

τb,rxτb,ry
τb,rz

 =

 kφ
(
ω2

2 − ω2
4

)
kθ
(
ω2

1 − ω2
3

)
kψ
(
ω2

1 + ω2
3 − ω2

2 − ω2
4

)
 . (8.17)

The bearing related friction is taken into account with a Stribeck-curve [64] inspired approach

τq,f =

τq,fxτq,fy
τq,fz

 = −


(
dφ,1e

−dφ,0|φ̇|
)
φ̇(

dθ,1e
−dθ,0|θ̇|

)
θ̇(

dψ,2 + dψ,1e
−dψ,0|ψ̇|

)
ψ̇

 . (8.18)

Combining (8.9), (8.17), and (8.18) yields the generalized forces (actually torques in this case)
τq = JTb τb,r + τq,f which read as

τq =

 τb,rx + τq,fx
coφτb,ry − siφτb,rz + τq,fy

coθ (siφτb,ry + coφτb,rz)− siθτb,rx + τq,fz

 . (8.19)
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Because of the considerable complexity of the involved expressions the dynamics are derived
from the Lagrange formalism

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= τq (8.20)

evaluated by means of the computer algebra system Mathematica [65] which yields three
ordinary second-order differential equations.

8.1.2. Model inputs

In the equations obtained from (8.20) the inputs are the angular speeds of the motors ωi. The
motors of the laboratory setup are not equipped with encoders and so it is not possible to
measure or control their exact speeds during normal operation. Dedicated measurements with
an optical tachometer show that the relation between input voltage ui and angular speed ωi
is effectively linear in steady state. Since the transients are much faster than the rotational
dynamics of the hover they can be neglected. Thus, it is reasonable to use voltages instead
of angular velocities as inputs. Due to the fact that only positive motor voltages / speeds are
allowed the mapping from u2

i to ui is unique and the input vector can be defined as

u = [u2
1 u2

2 u2
3 u2

4]T . (8.21)

8.1.3. Full state-space model

By introducing the vector of state variables

xT = [x1 x2 x3 x4 x5 x6] = [φ θ ψ φ̇ θ̇ ψ̇] (8.22)

one obtains a nonlinear sixth-order state-space model

ẋ = f1(x,u) (8.23a)

y = h(x) (8.23b)

with function f1(x,u) as specified in Appendix D and h(x) = [I3 0]x. The elaborate model
(8.23) primarily fulfills two purposes:

1. It provides a realistic simulation model for controller testing.

2. The derivation of a state-dependent input matrix Bu(x) (see Appendix D) serving as
the foundation for CA. Closer examination of (8.23) reveals that it is input affine with
respect to (8.22) and exhibits the special structure

ẋ123 = x456 (8.24a)

ẋ456 = a1(x) +Bu(x)u (8.24b)

y = x123 (8.24c)

with x123 = [x1 x2 x3]T , x456 = [x4 x5 x6]T , vector function a1 : R6 → R3, and input
matrix Bu(x) ∈ R3×4.
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8.2. Parameter identification

Table 8.1.: Relationship between the parameters of (8.26) and physical values.

roll parameters pitch parameters yaw parameters

a1 =
Jx+Jy−Jz

Jx
a5 =

Jz−Jy−Jx
Jy

a9 =
Jx−Jy+Jz

Jz

a2 =
dφ,1
Jx

a6 =
dθ,1
Jy

a10 =
dψ,2
Jz

a3 = dφ,0 a7 = dθ,0 a11 =
ddψ,1
Jz

a4 =
mg,zseφe

Jx
a8 =

mg,zseφeseθe
Jy

a12 = dψ,0

8.1.4. Small-angle models

The full model (8.23) and its other representation (8.24) are not ideal for controller development
due to their complexity. They can be simplified under the small angle assumptions xi ≈ 0 for
i ∈ {1, 2} which implies coxi ≈ 1 and sixi ≈ 0. Furthermore, (8.8) becomes an identity matrix,
i.e. ωb ≈ q̇. Applying those assumptions on the overall model (8.24) results in

ẋ123 = x456 (8.25a)

ẋ456 = a2(x) +

Bu,2︷ ︸︸ ︷ 0
kφ
Jx

0 −kφ
Jx

kθ
Jy

0 − kθ
Jy

0
kψ
Jz
−kψ
Jz

kψ
Jz

−kψ
Jz

u (8.25b)

y = h(x) = x123 (8.25c)

with

a2(x) =

a1x5x6 − a2e
−a3|x4|x4 + a4si(φe−x1)

a5x4x6 − a6e
−a7|x5|x5 + a8si(θe−x2)

a9x4x5 −
(
a10 + a11e

−a12|x6|
)
x6

 (8.26)

parameters ai for i = 1, . . . , 12 summarized in Table 8.1. The second term in each row of (8.26)
relates to the bearing friction. The expressions multiplied with a4 and a8 in (8.26) respectively
describe gravitation’s influence on roll and pitch in case of deflections from the equilibrium
angles φe and θe. If the small angle assumptions are only utilized to simplify a1(x) in (8.24)
one gets

ẋ123 = x456 (8.27a)

ẋ456 = a2(x) +Bu(x)u (8.27b)

y = x123. (8.27c)

8.1.5. Linearized model

A linear model describing deflections from the equilibrium can be derived by linearization of
the full nonlinear model (8.23). Since the resulting model is exclusively used for LQR design
more details about it are available in Section 8.4.

8.2. Parameter identification

Before the models developed in Section 8.1 are usable for simulations and controller design
their parameters have to be determined. The equilibrium angles can be directly measured
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8. Quadrotor Attitude Control

Table 8.2.: Equilibrium angles of the laboratory setup.

parameter value parameter value

φe −0.05997 rad θe 0.15064 rad

and are given in Table 8.2. The estimation of the remaining parameters is based on numerical
optimization. For each model variant a simulation model is built. The objective function of the
optimization algorithm initializes the model with the same initial values as the real laboratory
setup, uses the recorded motor voltages as input signals, and computes the sum of squared
errors between measured and simulated angles for a predefined set of experiments. The sought
model parameters are the optimization variables. As most of the parameters have a physical
meaning their possible range of values can be restricted. Hence, parameter identification is
done by solving a nonlinear constrained optimization problem which may have multiple local
minima. In order to reduce the influence of the starting point of optimization this procedure is
carried out for a variety of initial model parameter guesses. In principle the approach consists
of two steps:

1. Identification of the unactuated system: The hover is deflected from φe and θe. Then
the actuators are deactivated and the measurement is continued until the hover has
returned into equilibrium. The previously described optimization procedure is done for
the measurements starting with the actuator deactivation. The purpose of these librate
experiments is the determination of suitable initial values for the inertias in (8.10), mg,z,
and the friction coefficients in (8.18) for the subsequent identification step.

2. Identification with actuation: In this category three types of experiments are conducted
which are mainly used to identify the three actuator gain parameters.

• Voltage steps primarily inducing a rotation around a single axis

• Randomized input signals

• Inputs generated by an operator with a joystick

Figure 8.6 contains an example of one of the librate experiments used in step 1 of the identifi-
cation process. The adjacent Figure 8.7 shows a comparison of a measurement which was not
used for parameter identification and a simulation with the corresponding inputs for validation
purposes. The simulation results shown in those figures originate from the full nonlinear model
(8.23). One recognizes good conformity between real plant and model. In the second step of
the identification procedure measurements of eleven experiments with active rotors are utilized
for estimating the model parameters. One of them is illustrated in Figure 8.8 together with
the results for all three model variants including the MSE. The full nonlinear model achieves
the best results for all angles in this comparison. Table 8.3 shows the sum over all MSE of
those experiments which are used for identification. As expected the full nonlinear model
achieves the best results for the data its parameters are optimized for. In order to validate
the identified parameters a set of 25 other experiments is used. Figure 8.9 shows one of these
validation experiments. In this case, again the conformity between measured and simulated
angles is very good for the full nonlinear model. The sum over all MSE of the validation
experiments is contained in Table 8.4 where one surprisingly recognizes that the linear model
seems to yield the best results. This originates from the fact that the linear model barely
shows ψ rotations (see Figures 8.8 - 8.10) whereas the other models rotations in many cases
match the real ψ but in some experiments they move to a wrong position. Since ψ is never
reset to known values as it happens with φ and θ a wrong final value of ψ has a big impact on
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Figure 8.6.: Example of a librate experiment
for the identification of the ho-
ver’s mechanical parameters.
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Figure 8.7.: Validation of model and mecha-
nical parameters with another li-
brate experiment.

the MSE. One such experiment is illustrated in Figure 8.10. Whereas the simulation results
for φ and θ are rather bad for the linear model ψ ≈ 0 yields better results than the wrong
movements from the other two model variants.

Table 8.3.: MSE sum of all experiments used
for identification.

model variant MSE sum

full nonlinear 2631.7
small angle 3349.5

linear 45061.7

Table 8.4.: Total MSE sum of the validation
experiments.

model variant MSE sum

full nonlinear 609552
small angle 795793

linear 576482

Nevertheless, the full nonlinear model provides a better simulation environment than the
linear one because the hover dynamics are mainly influenced by φ and θ. The identified
parameters are listed in Table 8.5. Please note that it contains two entries for parameter dψ,2
as the friction in this bearing shows a dependency on the direction of rotation.
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Figure 8.8.: One of the experiments with random input voltages which is used for the parameter
identification of the hover.
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Figure 8.9.: Experiment with random input voltages which is used for validation.
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Figure 8.10.: Another validation experiment with random input voltages. Here one recognizes
that the linear model keeps ψ = 0 which is true on average. On the other hand,
the behavior of φ and θ is much worse than in case of the other models.

Table 8.5.: Identified parameters for the full nonlinear and small angle models.

parameter full nonlinear small angle

mg,z 0.4399 0.3345
Jx 0.3302 0.2496
Jy 0.1633 0.1297
Jz 0.4480 0.2259
dφ,0 0.8095 0.0869
dφ,1 0.0997 0.0572
dθ,0 0.001 0.0006
dθ,1 0.0501 0.0431
dψ,0 280.8499 139.1543
dψ,1 87.4773 23.5491
dψ,2+ 0.2254 0.1186
dψ,2− 0.1446 0.0712
kφ 0.0503 0.0399
kθ 0.0196 0.0116
kψ 0.0117 0.0063
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8.3. Attitude control with control allocation

In order to develop a CA-based control scheme for reference angle tracking (8.27) is adapted.
A virtual control vector v = [v1 v2 v3]T is introduced whose elements can be interpreted as
torques around the three axis of rotation. The resulting control-oriented model reads as

ẋ123 = x456 (8.28a)

ẋ456 = a2(x) + v (8.28b)

y = x123. (8.28c)

This decoupling of inputs facilitates an independent controller development for roll, pitch, and
yaw dynamics [56], [57]. In further consequence, these three virtual control signals have to be
distributed among the actually available actuators by CA on the basis of Bu(x). Assuming
a known state vector x (see Section 8.3.6), during each controller execution step one obtains
the linear relationship

v = Bu (8.29)

where B ∈ R3×4 is a constant control effectivity matrix with rank(B) = 3, and the elements
of u corresponding to squared voltages. The voltages are subject to the constraints2

umin = 0 ≤ ui ≤ 4 = umax with i = 1, . . . , 4. (8.30)

In a typical real quadrotor application, in addition to the attitude its altitude also has to be
controlled. For this purpose the total thrust [55], [56]

Fact = kf
(
u2

1 + u2
2 + u2

3 + u2
4

)
= [kf kf kf kf ]︸ ︷︷ ︸

kTf

u (8.31)

generated by all rotors is utilized. In the present laboratory setup the desired thrust is assumed
to be constant during each experiment.

8.3.1. High-level controller design

Using the example of tracking a reference roll angle x1,d a Super-Twisting control law similar
to [58] is derived. The first steps are the definition of the tracking error e1 = x1,d − x1 with
reference signal x1,d and of the corresponding error dynamics ė1 = ẋ1,d − x4. The chosen
sliding surface and its derivative read as

s1 = ė1 + cφe1 (8.32a)

ṡ1 = ẍ1,d − ẋ4 + cφẋ1,d − cφx4 (8.32b)

where cφ is a positive design parameter. For the purpose of obtaining a sliding mode on (8.32)
the following Super-Twisting approach [58]

ṡ1 = −λφ|s1|
1
2 sign(s1) + w1 (8.33a)

ẇ1 = −αφ sign(s1) (8.33b)

2The amplifier has an internal gain of 3 and so the actual voltage limit at the motors is 12 V.
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with additional design parameters λφ > 0 and αφ > 0 is applied. By equating (8.32b) and
(8.33a) one gets the roll dynamics related control law

v1 = ẍ1,d + cφẋ1,d − cφx4 − a1x5x6 − w1

+ a2e
−a3|x4|x4 − a4si(φe−x1) + λφ|s1|

1
2 sign(s1).

(8.34)

After defining the tracking errors for the remaining angles θ and ψ as e2 = x2,d − x2 and
e3 = x3,d − x3 two corresponding sliding manifolds are introduced as s2 = ė2 + cθe2 and
s3 = ė3 + cψe3. Following a similar procedure as demonstrated for φ’s control law one obtains

v2 = ẍ2,d + cθẋ2,d − cθx5 − a5x4x6 − w2

+ a6e
−a7|x5|x5 − a8si(θe−x2) + λθ|s2|

1
2 sign(s2)

(8.35)

for pitch control and the yaw controller reads as

v3 = ẍ3,d + cψẋ3,d − cψx6 − a9x4x5 − w3

+
(
a10 + a11e

−a12|x6|
)
x6 + λψ|s3|

1
2 sign(s3).

(8.36)

8.3.2. WPINV-based methods

In order to achieve a certain thrust F , a voltage u0 =
√

F
4kf

is applied to the motors. CA

calculates û, which are deflections from u0 = [u2
0 u

2
0 u

2
0 u

2
0]T such that the desired v is reached.

Hence, the constraints considered in CA are altered into

−u2
0︸︷︷︸

ûmin

≤ ûi ≤ u2
max − u2

0︸ ︷︷ ︸
ûmax

with i = 1, . . . , 4. (8.37)

The total input voltages for each motor read as

ui =

{ √
ûi + u2

0 if ûi + u2
0 ≥ 0

0 else
with i = 1, . . . , 4. (8.38)

Considering that u0 is part of B’s right nullspace Nr(B) (see Appendix D) it follows from
(8.38) that v = Bu = Bu0 +Bû = Bû, i.e. the virtual controls are not influenced by the
offset. In summary, the actual CA problem is to solve

v = Bû (8.39)

for û while satisfying (8.37). As (8.39) is an underdetermined linear system of equations an
obvious way of solving is

û = B#v (8.40)

where B# ∈ R4×3 is a pseudoinverse (or generalized inverse) of B (see Section 2.1.2 for more
details). If no constraints are active (8.40) is the solution of all CA-methods in this section.

Assumption 8.3.1. Since penalizing certain actuators is not useful here, W = I.

Assumption 8.3.2. The initial CA-result (8.40) is feasible (without subsequent saturation).

Proposition 8.3.1. Under assumptions 8.3.1 and 8.3.2 the desired thrust is reached.
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Proof. From (8.31) and (8.38) it follows that the actually achieved thrust reads as

Fact = kTfu = kTfu0︸ ︷︷ ︸
F

+kTf û (8.41)

which means that kTf û
!

= 0 is required. The initial CA-result is û = B#v with B# =

BT
(
BBT

)−1
due to assumption 8.3.1. From rank

(
BBT

)
= k and (D.2) one can conclude

Nl(B
#) = Nl(B

T ) = Nr(B)T = span
([

1 1 1 1
])

(8.42)

and considering kTf = kf [1 1 1 1] completes the proof. �

8.3.2.1. Weighted Pseudoinverse

WPINV computes (8.40) via (2.8b). Its main advantage is the possibility to penalize the usage
of certain actuators in case of detected failures [9]. Actuator constraints are not explicitly
considered, potential exceedance is just cut off.

8.3.2.2. Redistributed Pseudoinverse

RPINV (see Section 2.1.4 for a description) is a constrained CA method which is based on the
successive computation of weighted pseudoinverses [1]. Hence, it enables penalizing the usage
of certain actuators (e.g. for incorporating detected actuator faults) in a simple manner. Its
advantage is the iterative refinement of the solution which can lead to feasible results in cases
where WPINV fails. RPINV maximally requires m = 4 iterations.

8.3.2.3. Enhanced Redistributed Pseudoinverse

Let j be the number of not saturated (free) controls after conducting RPINV and k the virtual
control space dimension (k = 3 in the present case). It has been shown in Section 3.6 that
if j < k the desired v will generally not be reached. Therefore, in Chapter 5 the RPINV-
extension ERPINV is derived which enables influencing the behavior in these situations. One
can specify a priority list of k − 1 virtual control vector elements more important than the
others. Taking the hover example, a priority list of [2 1] means reaching v2 is more important
than v1, while v3 is the least relevant element.

8.3.3. WPINV-free algorithms

The following two algorithms do not directly utilize (2.8b) for computing û. Hence, a different
method for gaining the desired thrust is applied after CA. Let û be the CA result satisfying
the original constraints (8.30) and N = [n1 . . . n4]T with span(N) = Nr(B). The resulting
thrust is adjusted by a modification in nullspace direction without changing v and reads as

Fact = kTf (û+Nx). (8.43)

From F
!

= Fact it follows that

x =
F − kTf û
kTfN

. (8.44)
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8.3. Attitude control with control allocation

The actual motor input voltages are

ui =
√
ûi + nix with i = 1, . . . , 4 (8.45)

and scalar x is computed such that (8.30) is satisfied as

x =

{
x if ∀i : umin ≤

√
ûi + nix ≤ umax

0 else
(8.46)

8.3.3.1. Direct allocation

DA is a constrained CA algorithm using geometric principles (see Section 2.1.5). The cha-
racteristics of this approach are the preservation of virtual control direction and the inherent
utilization of the entire AMS [3]. The algorithm is implemented according to [4].

8.3.3.2. Normalized Generalized Inverse

Note that generalized inverses can compute feasible actuator commands û ∈ Ω only for a
subset Π ⊆ Φ. Both Π and Φ are convex k-dimensional (k-D) polytopes and a possible quality
measure for generalized inverses is their volume ratio (4.1) [3], [4]. NINV (see Chapter 4)
is a method to efficiently search for generalized inverses with high volume ratio. The main
idea behind the algorithm is to restrict the search to a finite number of candidates instead
of solving a continuous optimization problem. As NINV requires symmetric constraints, an
input transformation

ûmin + ∆u︸ ︷︷ ︸
−u′max

≤ û+ ∆u︸ ︷︷ ︸
u′

≤ ûmax + ∆u︸ ︷︷ ︸
u′max

(8.47)

is performed. Considering −ûmin −∆u = ûmax + ∆u the offset vector is computed as

∆u = − ûmax + ûmin
2

. (8.48)

From v = Bû = B (u′ −∆u) one obtains the transformed CA problem

v +B∆u︸ ︷︷ ︸
v′

= Bu′ (8.49)

which has to satisfy (8.47).

8.3.4. Numerical optimization

During each execution step of the control software the CA task can be formulated as optimiza-
tion problem. On the laboratory setup quadratic cost functions are employed which generate
constrained convex quadratic programs. In the absence of active constraints the solution corre-
sponds with (8.40). Therefore, the demands of total thrust and virtual controls are combined in
the same manner as in case of the Weighted Pseudoinverse based methods, in particular (8.37)
and (8.38) apply. Due to the fact that CA is executed every Ts = 1ms C-implementations of
the algorithms are used to perform the optimization. Both solvers utilize Intel MKL 2018 [48]
to speed up mathematical operations.
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8. Quadrotor Attitude Control

8.3.4.1. EPA

The principles of this method are the penalty function approach to account for the actuator
constraints and a transformation of the problem into nullspace of B (see Chapter 6). The
results of the algorithm’s iterations approach the optimal values from the outside of the feasible
region.

8.3.4.2. WLA

This algorithm solves the mixed optimization problem (2.28) for the 2-norm. The implemen-
tation is from QCAT [49] and is based on the active-set strategy [6].

8.3.5. Traditional allocation

The usual way of determining the input signal for quadrotors combines the demands from
attitude controllers and (8.31) into a single system of equations [55]

u =


u2

1

u2
2

u2
3

u2
4

 =


0

kφ
Jx

0 −kφ
Jx

kθ
Jy

0 − kθ
Jy

0
kψ
Jz
−kψ
Jz

kψ
Jz

−kψ
Jz

kf kf kf kf


−1 

v1

v2

v3

F

 (8.50)

with a unique solution. The main disadvantage of this procedure is the inability to take the
actuator constraints into account. In the worst case this leads to unattainable negative thrusts.
Any violations of (8.30) are cut off and result in deviations from the desired torques and thrust.
The solution of (8.50) is called Traditional allocation (TA) for the rest of this work and taken
as baseline for comparisons.

8.3.6. Implementation issues

The controller is implemented in Matlab/Simulink and QUARC ([61]) is used for real-time
execution. The sampling time is set to Ts = 1ms. As the high-level control layer requires
the time derivatives of the generalized coordinates (x4, x5, and x6), they are estimated from
the encoder signals. This is accomplished with a linear low-pass filter followed by difference
quotient calculation with an overall transfer function of D(z) = 0.05(z−1)

(z−0.95)Tsz
.

8.3.7. Experimental results

All experiments are carried out with exactly the same parametrization of the Super-Twisting
controller, only the method of input mapping is altered. The reference signals are square-waves
and sinusoidal signals. They are chosen such that the actuators temporarily operate at their
limits as recognizable in Figure 8.11 which depicts the resulting actuation signals from DA
and RPINV in case of sinusoidal angle references. The tracking error shown for each angle
and allocation method in Figures 8.12 - 8.19 is computed as

eabs(xi, xi,d) =
1

N

N−1∑
j=0

∣∣xi,d(jTs)− xi(jTs)∣∣ (8.51)

for i = 1, . . . , 3 with N being the number of samples. The identity matrix is chosen for
actuator weighting in all algorithms. TA and WPINV in Figure 8.12 reach the worst results
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Figure 8.11.: Motor inputs from DA and RPINV during sinusoidal reference tracking (see
Figure 8.13).

in the sinusoidal scenario in terms of the total error sum. In contrast NINV is perceptibly
better in this case and its total error sum is comparable with that from DA in Figure 8.13.
Even better performance is reached by RPINV. The influence of virtual control prioritization
is recognizable in Figure 8.14 which depicts the three considered variants of ERPINV. The
numbers in the subscripts indicate the prioritized virtual controls. Precedence for v1 and v2

yields very good tracking results for φ and θ (blue curves) whereas prioritizing v2 and v3

improves to results for θ and ψ (green curve). One can see that in this experiment favoring
virtual controls 1 and 3 leads to the best overall result (black dashed curve). The results from
numerical optimization are presented in Figure 8.15. WLA (with Wv = I) leads to similar
results as RPINV whereas EPA is better for ψ-tracking at the prize of larger errors at the other
angles. The differences between WLA and EPA originate from the fact that Bu(x) does not
comply with Assumption 6.2.2 and gradient projection has been deactivated for EPA in order
to demonstrate the behavior without virtual control weighting. In general, tracking works
sufficiently well here because the continuous references come close to a realizable trajectory.
The second column in Table 8.6 condenses the sinusoidal experiments by showing the total
sum of errors. In this context the top-three results come from ERPINV13, WLA, and RPINV.
Due to the actuator saturations the desired v cannot always be achieved. The average relative
allocation error is denoted as ev and given in Table 8.6. It should be noted that ERPINV12 and
ERPINV23 produce less allocation errors but more tracking errors than ERPINV13, WLA,
and EPA.

Figure 8.16 shows the square-wave results for TA, WPINV, and NINV. First of all, it is
apparent that following the square references is more challenging than the sinusoidal ones.
One recognizes that TA and WPINV yield very similar results which is not surprising as none
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8. Quadrotor Attitude Control

of them regards the constraints. NINV is able to achieve better results for φ but is less accurate
at tracking θ. Altogether, NINV gives no benefit in this test scenario. Figure 8.17 contains
the results for DA and conventional RPINV. DA shows very good general performance, i.e.
the errors for all angles are moderate. RPINV achieves slightly better results for φ and θ
tracking but this comes at the price of larger errors for ψ. Once again one can see in Figure
8.18 that favoring virtual controls 1 and 3 leads to the best overall behavior (black dashed
curve). Finally, the results from optimization are shown in Figure 8.19. RPINV and WLA
are again quite similar. Taking the overall error sum in the fourth column of Table 8.6 as the
quality criterion the top three methods are ERPINV13, ERPINV23, and DA. It is also notable
that the next best result is achieved by TA lying before WLA although TA has a much greater
average error on v.

Other important aspects are the efforts for implementation and computation. TA and
WPINV are clearly the least demanding to implement and compute. The most challenging
part in the NINV implementation is the candidate generation which can be done offline to
reduce the computational effort. The online part only consists of a loop iterating through
all candidates and evaluating (4.52) and (4.1). DA can easily be realized as Linear Program
or with much more effort directly implemented according to [4]. Here, the later approach is
chosen which does not rely on a separate solver and is optimized in terms of execution speed.
RPINV and ERPINV only differ in the additional steps 1-7 which are explained in Section
5.2.1. Other than that they basically comprise a loop with at most m iterations computing
B# via (2.8b) followed by (2.19). Proceeding from a given solver the approaches based on
numerical optimization are straightforward to implement as they only involve the formulation
of a QP. The efficient implementation of EPA is more elaborate than in case of WLA. The
computation time for both algorithms can be significantly higher than for RPINV and ERPINV
especially for greater numbers of actuators than in the present case.
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Figure 8.12.: Comparison of TA, WPINV, and NINV.
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Figure 8.13.: Comparison of DA and RPINV.
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Figure 8.14.: Comparison of ERPINV with differently prioritized virtual controls.
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Figure 8.15.: Comparison of WLA and EPA.
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Figure 8.16.: Comparison of TA, WPINV, and NINV.
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Figure 8.17.: Comparison of DA and RPINV.
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Figure 8.18.: Comparison of ERPINV with differently prioritized virtual controls.
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Figure 8.19.: Comparison of WLA and EPA.

Table 8.6.: Comparison in terms of angle error, allocation error, and efforts for implementation
and computations.

sinus: square:
algorithm ∑

eabs ev
∑
eabs ev

impl. effort
comp.
effort

TA 34.43 56% 70.66 48% very low very low

WPINV 35.90 55% 73.05 38% very low very low

NINV 26.66 45% 73.08 31% medium online
part: low

DA 27.04 44% 69.43 32% high medium

RPINV 24.59 41% 72.18 29% medium medium

ERPINV12 29.23 37% 76.73 27%
medium mediumERPINV23 27.70 35% 67.72 27%

ERPINV13 23.26 41% 62.81 29%

WLA 24.12 41% 72.07 28% without solver: low
with solver: medium

high

EPA 24.40 46% 71.36 14% without solver: low
with solver: high

high
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8.4. Attitude control with LQR

One alternative approach to solve the attitude control problem builds on the time-invariant
LQR design with prefilter as described in Section 2.2.2. The first step is the determination
of a linear time-invariant model of the hover dynamics. For this purpose the nonlinear plant
model

ẋ = f1(x,u) (8.52a)

y = h(x) (8.52b)

with input vector3

u = [u1 u2 u3 u4]T (8.53)

is linearized at xe = [φe θe 0 0 0 0]T which is an equilibrium, i.e. ẋ = 0 = f1(xe,ue).
Since φe and θe are the equilibrium roll and pitch angles of the unactuated system it follows
from (8.24) that a1(xe) = 0. Taking (D.2) into account reveals that all input vectors with
equal elements maintain this equilibrium. Thus, the desired total thrust (8.31) determines the
input vector

ue = [u0 u0 u0 u0]T with u0 =

√
F

4kf
. (8.54)

States, inputs, and outputs can be written as deviations from the equilibrium as

x(t) = xe + x̂(t) (8.55a)

u(t) = ue + û(t) (8.55b)

y(t) = ye + ŷ(t). (8.55c)

Taking the time derivative of (8.55a) and using a Taylor series expansion yields

˙̂x ≈ f1(xe,ue)︸ ︷︷ ︸
0

+
∂f1

∂x

∣∣∣∣x=xe
u=ue︸ ︷︷ ︸
A

·(x− xe) +
∂f1

∂u

∣∣∣∣x=xe
u=ue︸ ︷︷ ︸

Bu

·(u− ue) (8.56)

and similarly the output equation reads as

y ≈ h(xe)︸ ︷︷ ︸
ye

+
∂h

∂x

∣∣∣∣
x=xe︸ ︷︷ ︸
C

·(x− xe). (8.57)

The linear time-invariant model obtained from (8.56) and (8.57) is

˙̂x = Ax̂+Buû (8.58a)

ŷ = Cx̂. (8.58b)

with parameter matrices given in Appendix (D.2). The LQR control law which follows from
(2.49) and (8.55b) reads as

u = ue −Kx̂+ V (r − ye) . (8.59)

3Note that the input vector definition (8.53) of the LQR approach differs from the one used for CA (8.21)
which consists of squared input voltages. This is indicated by the underline.
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8.4.1. Simulation results

In order to verify the basic functionality of the LQR controller simulations are carried out.
First, the controller is tested together with the linear plant model for which it has been deve-
loped. Figures 8.20 and 8.21 show that tracking of step-like angle references does not exhibit
steady-state errors as expected. The linearization has been carried out for an input voltage of

0 1 2 3 4 5 6 7 8 9 10

t [s]

-5

0

5

10

 [°
] ref

 (MSE: 9.5403)

0 1 2 3 4 5 6 7 8 9 10

t [s]

0

10

20

 [°
] ref

 (MSE: 8.3242)

0 1 2 3 4 5 6 7 8 9 10

t [s]

-5

0

5

 [°
]

10-3

ref

 (MSE: 0.0000)

Figure 8.20.: Simulation result of LQR: The
simulated plant coincides with
the model for LQR design and so
there are no steady state errors.
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Figure 8.21.: Control signals originating from
the LQR simulation in Figure
8.20.

u0 = 1.5 V. The state and input weighting matrices are chosen as

Q = diag(100, 100, 50, 0, 0, 0) (8.60a) R = I4 (8.60b)

respectively. In case of simulations incorporating the full nonlinear plant model (8.24) and an-
gles further away from the equilibrium the steady-state errors remain visible as it can be seen
in Figure 8.22. Figure 8.23 shows that in this case input saturation does not have significant
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Figure 8.22.: When the nonlinear plant mo-
del is used in simulation the
LQR cannot prevent steady
state errors.
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Figure 8.23.: Input signals of the LQR simula-
tion shown in Figure 8.22. The
time span where input satura-
tion occurs is very short.

influence on the result. Due to the fact that the input constraints are not considered in the
LQR design there is a strong suspicion that tracking of reference signals leading to input satu-
ration suffers from further degraded performance. This is confirmed by Figures 8.24 and 8.25
illustrating the behavior for reference signals comprising a sequence of steps.
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Figure 8.24.: Closed-loop behavior of LQR
operating on the nonlinear plant
model for angle step sequences.
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Figure 8.25.: Input signals corresponding to
Figure 8.24.

8.4.2. Experimental results

LQR replaces high-level control and CA while the rest of the control software stays the same.
The sampling time remains Ts = 1ms as in the CA-based approach. The differentiation of the
encoder signals is carried out in the same way as described in Section 8.3.6. The weighting
matrices (8.60a) and (8.60b) from simulation are also used in the QUARC implementation of
the LQR. Initially an experiment with small reference angle changes is conducted. Figure 8.26
illustrates that the controller works reasonably well in this situation. Unlike in simulations a
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Figure 8.26.: LQR result for small reference steps.

steady-state error occurs due to model mismatches and the fact that the controller exhibits
no integral action. The corresponding control signals are shown in Figure 8.27. Due to the
fact that the controller has been developed based on a linearized model at the equilibrium one
cannot expect it to work very well for large reference signals. Therefore, the experiments from
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Figure 8.27.: Inputs for the LQR experiment from Figure 8.26.

the CA-based approaches are repeated with a lower amplitude of the reference signals. Figure
8.28 shows the results for a square-wave reference and Figure 8.29 displays the behavior for
sinusoidal references.
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Figure 8.28.: LQR result for square-wave reference signals.
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Figure 8.29.: LQR result for sinusoidal reference signals.

8.5. Attitude control with MPC

A controller which builds on the prediction of the plant’s behavior apparently benefits from
a model as accurate as possible. Hence, intuitively the usage of the full nonlinear model
(8.23) promises the best results. Unfortunately, a nonlinear model usually leads to a non-
convex optimization problem whose global optimum can hardly be found online [19]. The
combination of a linear model with quadratic cost function and linear constraints on the other
hand yields a problem which is much easier to solve. Furthermore, the approach should be
comparable to the control strategies from Section 8.3 where CA is done on the basis of a
linear relationship gained from the evaluation of the nonlinear model at the current state.
Thus, the MPC developed in this section rests on a similar idea. In each execution step an
affine approximation of (8.25) is computed which depends on the current state and inputs.
After determining a discrete-time representation of that model a QP with linear constraints is
constructed and solved.

8.5.1. Model

MPC is implemented in a discrete-time environment with higher sampling time Ts than the
previously presented approaches owed to the greater computational effort for optimization.
Therefore, the time discretization is explicitly considered in the model derivation. At the
beginning of the current sampling instant k the states, outputs, and inputs of the hover are
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given by

xk := x(kTs) (8.61a)

yk := y(kTs) (8.61b)

uk−1 := u((k − 1)Ts). (8.61c)

Initially, an approximation of the nonlinear continuous-time plant model (8.25) is calculated
which describes the deviations from (8.61) labeled by a hat above the symbol

x(t) = xk + x̂(t)

y(t) = yk + ŷ(t)

u(t) = uk−1 + û(t).

(8.62)

After defining the short notation

f2(x,u) =

[
x456

a2(x) +Bu,2u

]
(8.63)

for the stacked right-hand sides of (8.25a) and (8.25) the first-order terms of a Taylor series
expansion read as

˙̂x ≈ f2(xk,uk−1)︸ ︷︷ ︸
ẑk

+
∂f2

∂x

∣∣∣∣x=xk
u=uk−1︸ ︷︷ ︸
Â

·(x− xk) +
∂f2

∂u

∣∣∣∣x=xk
u=uk−1︸ ︷︷ ︸
B̂

·(u− uk−1) (8.64)

and doing the same for the output (8.25c) gives

ŷ ≈ h(xk)︸ ︷︷ ︸
yk

+
∂h

∂x

∣∣∣∣
x=xk︸ ︷︷ ︸
C

·(x− xk). (8.65)

Combining (8.62) - (8.65) results in the model approximation

˙̂x = Âx̂(t) + B̂û(t) + ẑk (8.66a)

ŷ(t) = Cx̂(t) (8.66b)

whose parameters Â, B̂, and ẑk are successively recomputed during each execution step while
the output matrix remains constant C = [I 0]. Since ŷ represents the output deviation from
its current value yk an adaption of the reference angles r is required

r
!

= y = yk + ŷ ⇒ r̂ := r − yk. (8.67)

The next step is the time-discretization of (8.66). Disregarding ẑk in (8.66) the discrete-time
state equations could be written as x̂k+1 = Ax̂k +Bûk with [66]

A = ΦÂ(Ts) (8.68a)

B =

[∫ Ts

0
ΦÂ(t)dt

]
B̂ (8.68b)
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incorporating the state transition matrix [66]

ΦÂ(t) = I + Ât+

(
Ât
)2

2!
+

(
Ât
)3

3!
+

(
Ât
)4

4!
+ . . . . (8.69)

Note that (8.66a) can also be written as

˙̂x = Âx̂+
[
B̂ I

] [ û
ẑk

]
(8.70)

comprising an augmented input matrix and vector. From (8.68) and (8.70) it follows that the
discrete-time representation of (8.66) reads as

x̂k+1 = Ax̂k +Bûk + zk (8.71a)

ŷk = Cx̂k. (8.71b)

with

zk =

[∫ Ts

0
ΦÂ(t)dt

]
ẑk. (8.72)

The evaluation of the integral in (8.68b) and (8.72) yields

∫ Ts

0

[
I + Ât+

(
Ât
)2

2!
+

(
Ât
)3

3!
+ . . .

]
dt =

[
It+

Ât2

2
+
Â2t3

6
+
Â3t4

24
+ . . .

]Ts
0

= ITs +
ÂT 2

s

2!
+
Â2T 3

s

3!
+
Â3T 4

s

4!
+ . . . =

∞∑
i=0

ÂiT i+1
s

(i+ 1)!
.

(8.73)

In the MPC implementation (8.73) is approximately calculated as finite sum

∫ Ts

0
ΦÂ(t)dt ≈

nd∑
i=0

ÂiT i+1
s

(i+ 1)!
(8.74)

with nd > 1 chosen such that further increase does not significantly change the outcome of the
finite sum in (8.74). In the present case nd = 4 has proven successful.

8.5.2. MPC problem formulation

After the model (8.71) has been determined according to the current state information the
actual optimization problem can be stated. The chosen formulation utilizes the control input
variations

û∆,k = ûk − ûk−1 (8.75)

as optimization variables. In order to predict the plant’s behavior for varying inputs (8.75)
and under the assumption of constant z := zk for the duration of the prediction horizon the
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state equations are recursively evaluated for successive time indices which yields

x̂k+1 = Ax̂k +Bûk−1 +Bû∆,k + z

x̂k+2 = Ax̂k+1 +Bûk +Bû∆,k+1 + z

= A2x̂k +ABûk−1 +ABû∆,k +Az +B (ûk−1 + û∆,k) +Bû∆,k+1 + z

= A2x̂k + (AB +B) ûk−1 + (AB +B) û∆,k +Bû∆,k+1 + (A+ I) z

...

x̂k+nc = Ancx̂k +
(
Anc−1 + . . .+ I

)
Bûk−1 +

nc∑
j=1

(
Anc−j + . . .+ I

)
Bû∆,k+j−1

+
(
Anc−1 + . . .+ I

)
z

⇒ control horizon ends: from now on û∆,k+i = 0

x̂k+nc+1 = Anc+1x̂k + (Anc + . . .+ I)Bûk−1 +

nc∑
j=1

(
Anc+1−j + . . .+ I

)
Bû∆,k+j−1

+ (Anc + . . .+ I) z

...

x̂k+np = Anpx̂k +
(
Anp−1 + . . .+ I

)
Bûk−1 +

nc∑
j=1

(
Anp−j + . . .+ I

)
Bû∆,k+j−1

+
(
Anp−1 + . . .+ I

)
z.

(8.76)
Using these results the predicted output corresponding to the three angles is given by

ŷk+1 = Cx̂k+1

...

ŷk+np = Cx̂k+np .

(8.77)

Input variations and outputs can be lumped together as

yk+1 =

 ŷk+1
...

ŷk+np

 (8.78a) and u∆,k =

 û∆,k
...

û∆,k+nc−1

 . (8.78b)

Please note that (8.78a) does not contain ŷk because (8.71) has no direct feedthrough. The
evaluation of (8.78a) using (8.76), (8.77), and (8.78b) results in

yk+1 = F x̂k +GBûk−1 +Gz +Hu∆,k (8.79)

with

F =

 CA...
CAnp

 , (8.80)
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G =


C

C (A+ I)
...

C
(
Anp−1 + . . .+ I

)
 , (8.81)

and

H =



CB 0 . . . 0
C (A+ I)B CB . . . 0

...
...

C
(
Anc−1 + . . .+ I

)
B C

(
Anc−2 + . . .+ I

)
B . . . CB

C (Anc + . . .+ I)B C
(
Anc−1 + . . .+ I

)
B . . . C (A+ I)B

...
...

C
(
Anp−1 + . . .+ I

)
B C

(
Anp−2 + . . .+ I

)
B . . . C (Anp−nc + . . .+ I)B


. (8.82)

Consider that due to the Taylor series expansion around the current state xk and input uk−1

it follows that the initial deviations are zero, i.e. x̂k = 0 and also ûk−1 = 0. Hence, one can
define the auxiliary vector

gk = F x̂k︸︷︷︸
0

+GB ûk−1︸ ︷︷ ︸
0

+Gz (8.83)

and from (8.79) and (8.83) one obtains

yk+1 = gk +Hu∆,k (8.84)

Similar to (8.78a) and (8.78b) additional auxiliary vectors for reference and total input signals
are introduced as

rk+1 =

 rk+1
...

rk+np

 (8.85a) and uk =

 uk
...

uk+np−1

 (8.85b)

whereby (8.85b) can be expressed by means of the optimization variables via

uk = uk−1 + û∆,k

...

uk+nc−1 = uk−1 + û∆,k + . . .+ û∆,k+nc−1

⇒ control horizon ends: from now on u∆,k+i = 0
...

uk+np−1 = uk−1 + û∆,k + . . .+ û∆,k+nc−1.

(8.86)

Rewriting (8.86) in a more concise form yields

uk =


I
...
I
...
I


︸︷︷︸

L1∈R(npm)×m

uk−1 +


I
...

. . .

I . . . I
...

...
I . . . I


︸ ︷︷ ︸
L2∈R(npm)×(ncm)

u∆,k. (8.87)
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8.5.2.1. Constraints

The input constraints must be satisfied during the entire control horizon, i.e.

umin ≤

I...
I


︸︷︷︸

L̃1∈R(ncm)×m

uk−1 +

I 0
...

. . .

I . . . I


︸ ︷︷ ︸
L̃2∈R(ncm)×(ncm)

u∆,k ≤ umax (8.88)

with

umin =

umin...
umin

 ∈ Rncm (8.89a) and umax =

umax...
umax

 ∈ Rncm. (8.89b)

The hover’s attainable roll and pitch angles y12 = [y1 y2]T are limited between

y12,min =

[
φmin
θmin

]
(8.90a) and y12,max =

[
φmax
θmax

]
(8.90b)

due to the size of the stationary base. Therefore, these limitations are included as output con-
straints in the MPC problem. First, the predicted roll and pitch angles are given by

ỹk+1 = F̃ x̂k︸︷︷︸
0

+G̃B ûk−1︸ ︷︷ ︸
0

+G̃z + H̃u∆,k (8.91)

with matrices F̃ , G̃, and H̃ being constructed in the same way as (8.80), (8.81), and (8.82)
except that every third row is skipped because they relate to the yaw angle. Since (8.91) des-
cribes the deviations from the current angles y12,k the bounds have to be adapted accordingly
as

ymin =

y12,min − y12,k
...

y12,min − y12,k

 (8.92a) and ymax =

y12,max − y12,k
...

y12,max − y12,k

 (8.92b)

with ymin,ymax ∈ R2np leading to the inequality

ymin ≤ ỹk+1 ≤ ymax. (8.93)

In a final step (8.88) and (8.93) are combined to a single expression

Aiqu∆,k ≤ biq (8.94)

where

Aiq =


−L̃2

L̃2

−H̃
H̃

 (8.95a) and biq =


L̃1uk−1 − umin
umax − L̃1uk−1

G̃z − ymin
ymax − G̃z

 . (8.95b)
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8.5.2.2. Cost function

The cost function is the place where the actual controller objectives are specified. Apart form
following the reference angles the hover should also generate a desired thrust Fdes. The actual
thrust F caused by the rotors is given by (8.31). Combining the resulting thrusts over the
control horizon yields

T =

kf kf kf kf
. . .

kf kf kf kf


︸ ︷︷ ︸

O∈Rnc×(ncm)

uk,nc (8.96)

with

uk,nc = L̃1uk−1 + L̃2u∆,k. (8.97)

Using Tdes = [Fdes . . . Fdes]
T deviations from the desired thrust are penalized via the quadratic

term

JT = γ (Tdes − T )T (Tdes − T ) (8.98)

with weighting factor γ > 0. The evaluation of (8.98) having regard to (8.96) and (8.97) results
in

JT = γuT∆,kL̃
T
2O

TOL̃2u∆,k + 2γuT∆,k

(
L̃T2O

TOL̃1uk−1 − L̃T2OTTdes

)
+ cJT (8.99)

where cJT > 0 is a constant scalar offset which can be neglected consequently. Before the
remaining parts of the cost function are stated another auxiliary vector is introduced as

ek = gk − rk+1. (8.100)

The overall quadratic cost function which is minimized online by MPC reads as

J(u∆,k) =
(
yk+1 − rk+1

)T
Q
(
yk+1 − rk+1

)
+ uTkRuuk + uT∆,kR∆u∆,k + JT (8.101)

where Q ∈ R(npp)×(npp) is used for weighting the tracking error, Ru ∈ R(npm)×(npm) penalizes
the energy consumption of the actuators, and R∆ ∈ R(ncm)×(ncm) is used to reduce the rate
of change of the actuation signals. The chosen cost function formulation (8.101) also supports
weighting of individual actuators by means of Ru which could be useful in case of detected
failures. R∆ not only enables the smoothing of the actuation signals and but also the indirect
consideration of actuator dynamics. Using (8.84), (8.99), and (8.100) one can rewrite (8.101)
as

J(u∆,k) = uT∆,kW∆u∆,k + 2uT∆,kc∆ + cJ (8.102)

with constant cJ > 0 and

W∆ = HTQH +LT2RuL2 +R∆ + γL̃T2O
TOL̃2 (8.103a)

c∆ = HTQek +LT2RuL1uk−1 + γ
(
L̃T2O

TOL̃1uk−1 − L̃T2OTTdes

)
. (8.103b)
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8.5.3. Implementation issues

The proposed MPC control strategy is realized in Matlab/Simulink which uses automatic
code generation to create a binary for execution with Quanser QUARC. The MPC controller
is split into two parts. The first one deals with the application specific computations like
the determination of the approximated model (8.71) from current measurement data and the
evaluation of the expressions from Section 8.5.2. This results in the formulation of the general
quadratic program

min
u∆,k

(
uT∆,kW∆u∆,k + 2uT∆,kc∆

)
subject to Aiqu∆,k ≤ biq

(8.104)

which is passed to the subsequent component: the optimization algorithm. C-implementa-
tions of QPO and EPA are used to solve the quadratic optimization problems in real-time.
Due to the significantly larger problem size compared to the quadratic programs for CA the
sample time is increased. Besides the prediction and the control horizon the implementation
additionally provides the output constraint horizon ni which determines the amount of time
for which the constraints on φ and θ have to be fulfilled. There are two main reasons for
introducing this parameter:

1. The model (8.71) used for the predictions is only valid in a small region around the
current state. Nevertheless it turned out during the experiments that prediction times
below two seconds lead to unsatisfactory results. Within two seconds the hover’s state
can change dramatically and considering the output constraints for the entire prediction
horizon promotes infeasible optimization problems.

2. The computation time is reduced, especially in case of QPO.

The main MPC configuration used for the experiments features a prediction time of 2.8 s.
All related parameters are shown in Table 8.7. The weighting matrices in (8.101) are chosen

parameter value parameter value

Ts 80ms qdiag [1300 1500 1000]T

np 35 ru,diag [1 1 1 1]T

nc 35 r∆,diag [0.01 0.01 0.01 0.01]T

ni 20 y12,min [−0.67 − 0.67]T

γ 1 y12,max [0.67 0.67]T

Table 8.7.: MPC configuration 1. The angle constraints are specified in radians and correspond
to about 38◦. In this case (8.104) has 140 optimization variables and 320 inequality
constraints.

as diagonal matrices with uniform parameters over the control horizon. Focusing on the
minimization of the output error at the beginning of the prediction by means of decreasing
diagonal elements in Q had no positive impact on the results. Non-diagonal positive-definite
error weighting matrices did also not lead to better performance. The angular velocities are
computed as difference quotients of the encoder signals without additional filtering.

8.5.4. MPC results

The performance of the MPC strategy is evaluated with the same reference signals (square
and sinusoidal waves) as the CA-based solution in Section 8.3.7. As already mentioned they
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are deliberately chosen such that the actuators operate at their limits and perfect tracking
is not possible. Figure 8.30 shows the results for QPO and EPA in case of square-wave
angle references. As expected the behavior is very similar. The computed actuator signals
are depicted in Figure 8.31. On very few occasions the actuator commands show significant
changes although the reference signals are constant at that time. In these cases the solver
could not find a feasible solution. Nevertheless the computed signals are sent to the actuators.
This very simple strategy works as long as not too many infeasible problems occur. Other
approaches of handling such situations like using the same commands as in the previous step
or using future commands from the last successful optimization did not improve the results
or, quite the opposite, deteriorated the behavior. A clear difference between the previous
CA-based results and those from MPC is the instant of time where the controller initiates
the rotation towards the reference angles. Since the MPC ”knows” their future values it
starts the movement before the reference signals have changed. This is visible for example
at t ≈ 11 s in the ψ-graph of Figure 8.30. Figure 8.32 illustrates the results for sinusoidal
reference angles. Differences between QPO and EPA are more recognizable in this case, e.g.
EPA is slightly better in following the ψ reference signal. As a consequence the corresponding
actuator commands shown in Figure 8.33 are also more diverse. The number of iterations as
well as the execution times of QPO and EPA4 are presented in Figures 8.34 - 8.37. One can
see that EPA requires significantly less time which facilitates testing of MPC configurations
with lower sampling time. Finally, the same experiments are carried out in simulations
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Figure 8.30.: Comparison of MPC via QPO and EPA for square-wave reference signals. These
results are obtained from the real experimental setup.

4These are execution times for solving (8.104) only. An additional overhead for obtaining the model for the
current state, the construction of the MPC-related matrices, and I/O must be added to get the total required
CPU time.
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Figure 8.31.: Actuator commands from QPO and EPA related to Figure 8.30.

with the full nonlinear plant model (8.23). Some of the results can be seen in Figures 8.38 and
8.39. The behavior is very similar to the experiments on the real laboratory setup. This is an
indication for a good coincidence between model and real plant.

8.5.4.1. Influence of sample time

This section shows how increasing and decreasing the sample time affects the MPC perfor-
mance. In order to keep the prediction time at 2.8 s the horizons have to be adjusted properly.
Two additional MPC configurations are given in Tables 8.8 and 8.9. Due to the decreased
sample time of configuration 2 the optimization problem dimensions are increased. On the
experimental setup this configuration is only tested with EPA because QPO’s execution time
is too high. Figures 8.40 and 8.41 contain the resulting angles of the experiments. If compared
with the previous results with Ts = 80ms one recognizes no benefit from faster sampling. The
hover’s rotational dynamics are simply not fast enough to take advantage from higher sam-
pling rates. Only for the purpose of external disturbance rejection a faster controller might be
favorable. In the present case the illustrated results in Figures 8.40 and 8.41 are even slightly
worse than those from the slower MPC configuration 1. The origin of this phenomenon lies in
the plant model (8.71) which is computed for the current state. For certain states the resulting
matrix A exhibits eigenvalues greater one, i.e. the system is unstable. Matrix powers Aj for
j = 1, . . . , np are part of several computation steps of the MPC formulation. In case of unsta-
ble systems these matrix powers reach vast magnitudes and increasing np tremendously boosts
those results. Therefore, the solver faces numerical problems and consequently the number of
infeasible optimization problems rises which deteriorates the performance. EPA’s execution
times for configuration 2 can be seen in Figures 8.42 and 8.43. Except from one outlier in
Figure 8.43 the times lie below the sample time.
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Figure 8.32.: Comparison of MPC via QPO and EPA for sinusoidal reference signals. These
results are obtained from the real experimental setup.

Configuration 3 uses a higher sample time resulting in smaller optimization problem di-
mensions for the same prediction time. The results are illustrated in Figures 8.44 and 8.45.
Although the sample time is almost doubled compared to configuration 1 the results are just
a little worse especially in case of EPA. The execution times shown in Figures 8.46 and 8.47
are smaller than in the other cases as expected5. Altogether MPC configuration 1 achieved
the best results.

parameter value parameter value

Ts 60ms qdiag [1300 1300 1000]T

np 47 ru,diag [1 1 1 1]T

nc 47 r∆,diag [0.01 0.01 0.01 0.01]T

ni 27 y12,min [−0.67 − 0.67]T

γ 1 y12,max [0.67 0.67]T

Table 8.8.: MPC configuration 2. In this case (8.104) has 188 optimization variables and 430
inequality constraints.

8.5.4.2. Influence of prediction time

As already mentioned prediction times below two seconds reduce the MPC performance es-
pecially for yaw angle tracking. This effect is demonstrated in simulations using MPC confi-
guration 1 (except for the horizons) whose results are depicted in Figures 8.48 and 8.49. In

5For square-wave references the execution times are very similar.
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Figure 8.33.: Actuator commands from QPO and EPA related to Figure 8.32.

parameter value parameter value

Ts 150ms qdiag [1300 1500 1000]T

np 20 ru,diag [1 1 1 1]T

nc 20 r∆,diag [0.01 0.01 0.01 0.01]T

ni 20 y12,min [−0.67 − 0.67]T

γ 1 y12,max [0.67 0.67]T

Table 8.9.: MPC configuration 3. In this case (8.104) has 80 optimization variables and 200
inequality constraints.

the first scenario the horizons are reduced to 15 which yields a prediction time of 1.2 s. As a
consequence θ-tracking works better at the cost of diminished performance for ψ. Conversely,
increasing the prediction time promotes better results at ψ-tracking but the results for θ are
worse.

8.5.4.3. Remark on the choice of the model

In Section 8.5.1 an approximation of the nonlinear small-angle model (8.25) for the current
state is proposed. An obvious question that arises is whether the MPC results could be impro-
ved if the full nonlinear model (8.23) is used instead. Corresponding experiments have been
conducted and reveal that the answer to this question is no. Especially for longer prediction
times the results are much worse than with the small angle model. In case of large values of
φ and/or θ the behavior of the hover and particularly the effect of the individual rotors on
the state are very different from the horizontal attitude (φ = θ = 0). The approximation of
(8.23) yields a model that is valid for small deviations from the current state. Large deviations
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Figure 8.34.: Iteration number and execution
times of QPO corresponding to
Figure 8.30.
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Figure 8.35.: Iteration number and execution
times of EPA corresponding to
Figure 8.30.
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Figure 8.36.: Iteration number and execution
times of QPO corresponding to
Figure 8.32.
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Figure 8.37.: Iteration number and execution
times of EPA corresponding to
Figure 8.32.

from the current state result in larger model errors. Since the reference signals are offset-free
periodic signals the approximation of the small-angle model can be anticipated to describe the
plant dynamics better ”on average”.

8.5.4.4. Unpredictable reference signal

Up to now, the reference angles are supposed to be known for the entire prediction horizon.
However, if this is not the case MPC can still be used. One possibility to deal with this
situation is to assume constant references during the prediction time. A simulation result with
MPC configuration 1 referring to this scenario is presented in Figure 8.50. One notices the
massive performance decrease.
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Figure 8.38.: Simulation outcome of MPC via QPO for square-wave reference signals. Compa-
ring with the experimental results in Figure 8.30 exposes very similar behavior.
The same is true for EPA which is why its results are omitted here.
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Figure 8.39.: Simulation results of MPC via EPA for sinusoidal reference signals. Compare
with experimental results in Figure 8.32. Using QPO causes almost identical
behavior and therefore it is omitted here.
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Figure 8.40.: These results of MPC via EPA for square-wave reference signals with configura-
tion 2 (60ms sample time) are obtained from the real experimental setup.
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Figure 8.41.: These results of MPC via EPA for sinusoidal reference signals with configuration 2
(60ms sample time) are obtained from the real experimental setup.
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Figure 8.42.: Iteration number and execution
times of EPA corresponding to
Figure 8.40.
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Figure 8.43.: Iteration number and execution
times of EPA corresponding to
Figure 8.41.
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Figure 8.44.: These results of MPC for square-wave reference signals with configuration 3
(150ms sample time) are obtained from the real experimental setup.

0 5 10 15 20 25 30t [s]

-40

-20

0

20

40

 [°
]

sinusoidal reference

ref QPO Config. 3
 (e

abs
 = 6.31)

EPA Config. 3
 (e

abs
 = 6.87)

0 5 10 15 20 25 30t [s]

-40

-20

0

20

40

 [°
]

ref QPO Config. 3
 (e

abs
 = 9.01)

EPA Config. 3
 (e

abs
 = 10.11)

0 5 10 15 20 25 30t [s]

-50

0

50

100

 [°
]

ref QPO Config. 3
 (e

abs
 = 14.09)

EPA Config. 3
 (e

abs
 = 12.36)

Figure 8.45.: These results of MPC for sinusoidal reference signals with configuration 3 (150ms
sample time) are obtained from the real experimental setup.
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Figure 8.46.: Iteration number and execution
times of EPA corresponding to
Figure 8.45.
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Figure 8.47.: Iteration number and execution
times of EPA corresponding to
Figure 8.45.
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Figure 8.48.: Simulation results of MPC via QPO for sinusoidal reference signals with np =
nc = ni = 15 (prediction time: 1.2 s). Especially tracking of ψ is worse than in
case of the original configuration (see Figure 8.39).
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Figure 8.49.: Simulation results of MPC via QPO for sinusoidal reference signals with np =
nc = ni = 50 (prediction time: 4 s). Tracking of ψ works here better than in case
of the original configuration (see Figure 8.39).
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Figure 8.50.: Simulation results of MPC via QPO assuming unpredictable reference signals
(compare with Figure 8.39).
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8.6. Conclusion

In this chapter three different strategies for attitude control of a quadrotor have been develo-
ped and tested on a laboratory setup. Finally, these methods are evaluated with respect to
four properties listed in Table 8.10. The first criterion ”performance” describes how well the

Table 8.10.: Comparison of the three approaches for reference angle tracking of the considered
laboratory setup.

CA-based LQR MPC

performance high low high
parameter tuning effort low / medium low high

complexity of implementation medium very low medium
computational effort low very low high

reference angle tracking task is solved. Both the majority of CA-based approaches and MPC
achieve good results in this field. On the other hand LQR can only be used for small deflecti-
ons from the equilibrium angles which is the reason why the corresponding results in Section
8.4.2 exhibit reference signals with smaller amplitude. MPC, whose results are comparable to
those from CA, takes advantage of knowing the reference signals for the entire control horizon.
Although, it can also be used if only the current values of the reference angles are available
but then the outcome deteriorates dramatically.

The number of parameters of the CA-algorithms is rather low. It ranges from zero for DA and
NINV to seven for WLA (typically only diagonal weighting matrices are used). Additionally,
the three Super-Twisting controllers have altogether nine parameters which is the reason why
the effort for tuning the CA-based method is labeled between low and medium. LQR has
ten parameters if weighting matrices are restricted to diagonal ones. The MPC’s number
of parameters related to diagonal weighting matrices is npp + 2ncm. Moreover, the three
horizons, four output constraints and γ have to be considered which add up to 393 parameters
for configuration 1. If all weighting matrix entries are kept constant over the horizons this
number reduces to 19 parameters.

In terms of implementation effort LQR is clearly the simplest algorithm. The realization of
the Super-Twisting controller is also quite uncomplicated whereas for CA the situation heavily
depends on the algorithm. If the solver is not included in the complexity considerations then
WLA and EPA are straightforward to implement. NINV, RPINV, and ERPINV methods are
moderately complex. In case of DA it depends on the chosen implementation. If formulated as
linear program with a given solver it is trivial whereas the direct implementation based on [4]
is cumbersome. The successive model approximation and the construction of the optimization
problem make MPC moderately complex.

Due to the optimization problem dimensions MPC requires the greatest computational power
of all. LQR basically involves two matrix multiplications per sample making it the least-
demanding method. The computational complexities of the CA-based approaches differ very
much, but all of them can be executed with the same sampling frequency (1 kHz) as the LQR.

The combination of high performance, low computational load, and moderate tuning effort
makes CA the method of choice in this particular application.
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9. Résumé

The main focus of this thesis lies on the development of computationally efficient algorithms
for control allocation of input-redundant systems. The first presented algorithm (NINV) is an
alternative way of computing a generalized inverse for the underdetermined linear systems of
equations which describes the relationship between virtual and real controls. By considering
the actuator constraints it leads to correct allocations for a greater portion of attainable virtual
controls than it is typically the case for the weighted pseudoinverse method. With constant
linear control effectivity matrices the online part of NINV is just a matrix multiplication. For
varying matrices (e.g. due to online recalculations in case of nonlinear systems or actuator
faults) the computationally most expensive part can be done offline.

The second algorithm (ERPINV) is an extension of the well-known RPINV algorithm. In
situations with a large number of active actuator saturations the solution gained from the
original RPINV will in most instances not reach the desired virtual control. Whereas the
RPINV result cannot be influenced any more, ERPINV provides the possibility to specify the
importance of the virtual control components in these cases. The allocation error of highly
prioritized elements is preferably reduced.

The third developed algorithm (EPA) efficiently solves constrained QPs based on the pen-
alty function approach. Though not restricted to CA applications (see Section 8.5 where it
is utilized as MPC solver), they benefit from its characteristics such as hot-start ability and
problem dimension reduction. The latter is realized by transforming the problem into null-
space of the equality constraints. If applied to CA two strategies to handle infeasible virtual
controls based on projection and gradient projection are implemented. It is also shown under
which circumstances the two infeasibility handling methods are equivalent. Extensive compa-
risons with established QP solvers for CA as well as general purpose solvers demonstrate its
competitiveness.

Finally, established and proposed CA methods are applied to practical applications. In
comparison with the alternatives LQR and MPC the CA-based approaches show very good
results with relatively low computational demands. Their easy and intuitive tuning process
should also be emphasized. On the other hand, one has to admit that the CA performance
in a closed-loop setup is naturally linked to the chosen high-level controller. The traditional
rating of CA algorithms with respect to their accuracy in matching the desired virtual controls
does not always conform to the closed-loop performance of the overall control system. Thus,
choosing the theoretically ”best”CA-method does not automatically lead to better results. This
especially applies to situations with multiple active actuator constraints and is recognizable
in Section 8.3.7 where ERPINV achieves lower errors than the methods based on numerical
optimization. In the end an evaluation or ranking of CA-methods in closed-loop operation can
only be valid for a particular application.
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A. Some Facts from Linear Algebra

A.1. Nullspace

Consider two arbitrary matrices A ∈ Rm×n and B ∈ Rn×o. The definition of the nullspace or
kernel of A reads as [24]

Nr(A) =
{
z ∈ Rn

∣∣Az = 0
}

. (A.1)

The nullspace of the product of two matrices can be written as

Nr(AB) =
{
z ∈ Ro

∣∣ [z ∈ Nr(B)] ∨ [Bz ∈ Nr(A)]} . (A.2)

A.2. Rank of matrix product

Given A ∈ Rm×n and B ∈ Rn×o their ranks satisfy (see [24])

rank(A) + rank(B)− n ≤ rank(AB) ≤ min [rank(A), rank(B)] . (A.3)

A.3. Rank of matrix difference

Assume two matrices A and B have the same size then one can conclude according to Theo-
rem 17 in [67] that

rank ([A B]) = rank(A) = rank

([
A
B

])
and BA†B = B

m
rank(A−B) = rank(A)− rank(B).

(A.4)
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B. Closed-loop Dynamics in Clutch’s Locked
Mode

Assumption B.0.1. The clutch is in locked mode. As a result it is not possible to directly
modify Tc any more and (7.3) changes to[

ω̇1

ω̇2

]
=

[
−k1
J1

0

0 −k2
J2

] [
ω1

ω2

]
+

[ 1
J1

0

0 1
J2

] [
v1

v2

]
+

[
−Tc
J1
Tc
J2

]
(B.1)

Assumption B.0.2. ∀t : |T c| ≤ Tc,max ⇒ Tc ≡ T c.
Assumption B.0.3. Both reference signals for the linear state controller (7.4) are identical, i.e.
r1 ≡ r2 ≡ r.
Assumption B.0.4. The linear state controller for (7.12) reads as

v = −(k11 + k22)ω − (k1 + k2 + k11 + k22)r. (B.2)

Proposition B.0.1. Under the assumptions B.0.1 - B.0.4 the closed-loop dynamics of (B.1)
and controller (7.4) is the same as of (7.12) and controller (B.2).

Proof. The closed-loop dynamics of the reduced first order system (7.12) together with (B.2)
reads as

ω̇ = −k1 + k2 + k11 + k22

J1 + J2
(ω − r) . (B.3)

Similarly inserting (7.4) into (B.1) and considering ω1 ≡ ω2 yields[
ω̇
ω̇

]
=

[
−k1+k11

J1
0

0 −k2+k22
J2

] [
ω − r
ω − r

]
+

[
−Tc
J1
Tc
J2

]
(B.4)

The explicit expressions of the elements of v are

v1 = −k11ω + (k1 + k11)r (B.5a)

v2 = −k22ω + (k2 + k22)r. (B.5b)

Please note that in locked mode there is a one-to-one mapping from virtual controls to the
torques of ICE and EM, i.e. v1 = T1 and v2 = T2. Therefore, (B.5) and (1.9) provide the
transmitted clutch torque (w.l.o.g. supposed that Tload = 0)

T c =
J2(−k11ω + k1r + k11r)− J1(k22ω + k2r + k22r)− k1ωJ2 + k2ωJ1

J1 + J2
. (B.6)

Due to Assumption B.0.2 one can substitute (B.6) into both equations of (B.4) and obtains
(B.3) in both cases. �
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C. Modeling and Control of an
Electromagnetic Clutch Actuator

In case of ICE start-up the clutch control is of major importance for its success. This chapter
deals with modeling, identification, and control of an electromagnetic clutch actuator. Its
highly nonlinear dynamics require a model-based approach for controller development. Two
methods relying on feedback linearization and flatness-based control are proposed. The latter
one is implemented on an electronic control unit (ECU) and tested on an actuator test bed
where it shows good results. Most of the content of this chapter has already been published
in the author’s works [52] and [53] and is cited literally.

C.1. Actuator modeling

The clutch under investigation is normally open, which means that it is closed by activating the
electromagnet. Figure C.1 illustrates the working principle of the actuator. The electromagnet
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Figure C.1.: Schematic illustration of the electromagnetic clutch actuator. The kiss point
position s1,kpo or s1,kpn depends on the degree of wear. ( c© 2014 IEEE, [52]).

generates a magnetic force Fm which acts on the lumped mass m1. This so-called armature
can move between two mechanical stops. The return spring opens the clutch if the actuator is
deactivated. On the armature a pressure plate is mounted, which enables torque transmission
by compressing the friction discs. The width of the friction discs depends on their degree of
wear. The actuator is used in a dry clutch where this change in width is substantially higher
than in wet clutches. The axial force acting on the pressure plate comes from the main spring.
It is preloaded with several kilonewtons and enables the armature to travel to mechanical
stop 2 regardless of the width of the friction discs. This fact is important, because it reduces
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the amount of power needed, to keep the clutch completely closed. At the so-called kiss point,
contact between the friction discs is established and torque is transmitted. As the axial force
is increased at this point, the elasticities of the mechanical components come into play, see
Section C.1.2 [52].

C.1.1. Electrical subsystem

The dynamics of the electromagnetic subsystem are described by the voltage equation

u = Ri+ Ψ̇(s1, i), (C.1)

where s1 is the actual armature position, R is the coil’s resistance, Ψ(s1, i) is the total mag-
netic flux of all coil windings, i is the current, and u the input voltage of the actuator [68].
For sufficiently large air gaps the nonlinear material behavior like saturation effects can be
neglected which leads to a position-dependent inductance ([69] and [70]). The considered ac-
tuator is designed to generate high axial forces with relatively low currents. Therefore the air
gap between the electromagnet and the armature is very small in order to take advantage of
the resulting gain in magnetic force. As a consequence there is a nonlinear relation between
current and total magnetic flux. This can be modeled by introducing a current-dependent
inductance L(s1, i) ([52], [69], [70]), i.e.

Ψ(s1, i) = L(s1, i)i. (C.2)

A common approach in literature (e.g. in [38], [71], and [72]) to describe the inductance
or the magnetic flux and also the magnetic force Fm(s1, i) is based on simplifications of the
geometric shape and of the magnetic circuit. In the present work quasi-static finite element
(FEM) simulations were used to determine these relationships. The resulting characteristic
curves for magnetic force and inductance are shown in Figures C.2 and C.3 respectively. Using
(C.1) and (C.2), the current dynamics of the electromagnet are given by [52]

u = Ri+
∂L(s1, i)

∂s1
ṡ1i+

[
∂L(s1, i)

∂i
i+ L(s1, i)

]
di

dt
. (C.3)

The partial derivatives of the inductance are computed by numerical methods using the FEM
results. All the inductance related quantities are directly used in (C.3) by means of look-up
tables. Magnetic hysteresis is not included in this model due to its minor influence on the
system behavior. The input voltage of the coil |u| ≤ umax is symmetrically bounded around
the origin where umax > 0 is a known positive constant [52].
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C.1.2. Mechanical subsystem

Neglecting all the kinematic constraints, the mechanical subsystem can be regarded as a two-
mass spring-damper system. Figure C.4 illustrates the interaction of all involved elements.
The equation describing the armature motion reads as [52]

m1s̈1 + Fsp1(s1 − s2) + d1 [ṡ1 − ṡ2] = Fm(s1, i), (C.4)

where m1 is the armature mass, s2 the pressure plate position, Fsp1(s1 − s2) the main spring
force, and d1 the damping coefficient. Similarly the dynamics of the pressure plate are governed
by equation [52]

m2s̈2 + Fsp2(s2)+d2ṡ2 + Fel(s2) =

Fsp1(s1 − s2) + d1 [ṡ1 − ṡ2]
(C.5)

with its mass m2, the return spring force Fsp2(s2), the corresponding damping coefficient d2,
and the spring force modeling the system’s elasticities Fel(s2). Two mechanical stops limiting
the armature movement within the range s1 ∈ [0, s1,max] are implemented as integrator bounds.
Case 1 in Figure C.4 shows that the preloaded main spring Fsp1(s1 − s2) pushes the pressure
plate onto the armature. The return spring force Fsp2(s2) also acts on the pressure plate
but it is several orders of magnitude smaller than the main spring’s preload force Fsp1,pl (see
Figure C.5). Thus, while the pressure plate does not touch the friction discs, its position is
equal to the armature position [52]. Figure C.4 also depicts what happens once the contact
is established (case 2). As the magnetic force Fm(s1, i) is increased at this position, all the
involved mechanical elements such as the armature, the pressure plate, the friction discs and
the springs are slightly deformed. This effect comes from the material’s elasticities and is
modeled as a very stiff linear spring acting against the displacement of m2. The region of this
elastic movement is below a quarter millimeter wide. The positions s1 and s2 start to diverge
as soon as the sum of forces on the left hand side of the pressure plate exceeds that on the right
hand side. So formally it is necessary to model the motion of the two masses with separate
differential equations. However, due to the steeply rising force Fel(s2) (see Figure C.5), the
small damping coefficient, and the relatively moderate armature speed while crossing this area,
the influence of the damping related force can be neglected for the determination of the instant
of time, where s1 6= s2. Instead one can compute a position s2,max where the preload force of
the main spring is exceeded and it starts to compress. Hence, as long as the pressure plate
does not reach that position (cases 1 and 2) s1 and s2 as well as their time derivatives are
identical [52]:

s1 ≡ s2 → ṡ1 ≡ ṡ2 and s̈1 ≡ s̈2 (C.6)

Substituting the results from relations (C.6) into (C.4) and (C.5) yields

m1s̈1 + Fsp1(0) = Fm(s1, i) (C.7)

and
m2s̈1 + Fsp2(s1) + d2ṡ1 + Fel(s1) = Fsp1(0). (C.8)

Equations (C.7) and (C.8) can be combined to obtain a single equation describing the motion
of the coupled masses m1 and m2

[m1 +m2] s̈1 + Fsp2(s1) + d2ṡ1 + Fel(s1) = Fm(s1, i) (C.9)

for both cases 1 and 2 shown in Figure C.4. The spring characteristics of the main spring is
rather flat once the preload force is exceeded at s2 = s2,max. No more deformations occur
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Figure C.4.: Movement of armature and pressure plate. The clutch’s kiss point is denoted as
s1,kp. ( c© 2014 IEEE, [52]).

at this point and the pressure plate position remains constant, which yields s2 ≡ s2,max →
ṡ2 ≡ 0 and s̈2 ≡ 0. As a result the original equation of motion (C.4) changes in case 3 of
Figure C.4 to [52]

m1s̈1 + Fsp1(s1 − s2,max) + d1ṡ1 = Fm(s1, i) (C.10)
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and moreover (C.5) simplifies to

Fsp2(s2,max)+Fel(s2,max) =

Fsp1(s1 − s2,max) + d1ṡ1.
(C.11)

The armature itself will move towards mechanical stop 2 as the magnetic force rises (see case 3
in Figure C.4).

C.1.3. Overall system description

Based on the results of the previous Sections C.1.1 and C.1.2, a system of differential equations
describing the actuator’s behavior can be formulated. A state vector is introduced as

x =
[
x1 x2 x3

]T
:=
[
s1 ṡ1 i

]T
(C.12)

consisting of armature position, speed, and coil current. Using (C.3), (C.9), (C.10), and (C.12)
the state space representation of the system reads as [52]

ẋ1 = x2 (C.13a)

ẋ2 =
1

m(x1)
[−Fsp(x1)− d(x1)x2 + Fm(x1, x3)] (C.13b)

ẋ3 =
1

L̃(x1, x3)

[
−∂L(x1, x3)

∂x1
x2x3 −Rx3 + u

]
. (C.13c)

The position-dependent mass m(x1) in (C.13b) represents the distinction between cases 1 and
2 on the one hand and case 3 on the other hand (see Figure C.4):

m(x1) =

{
m1 +m2 if x1 < s2,max

m1 else
(C.14)

In the same way, the actual spring force Fsp(x1) is chosen according to the armature posi-
tion [52]

Fsp(x1) =

{
Fsp2(x1) + Fel(x1) if x1 < s2,max

Fsp1(x1 − s2,max) else
(C.15)
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as well as the damping coefficient

d(x1) =

{
d2 if x1 < s2,max

d1 else
. (C.16)

Equation (C.13c) contains L̃(x1, x3), which is a short notation for

L̃(x1, x3) = L(x1, x3) +
∂L(x1, x3)

∂x3
x3. (C.17)

Finally, the computation of the axial force Fax(x), which allows torque transmission of the
clutch, is presented. Before reaching the kiss point (case 1 in Figure C.4) there is no axial
force. Beyond this position the sum of forces causing the elastic deformation acts on the
friction discs, i.e. [52]

Fax(x) =


0 if x1 < s1,kp

Fel(x1) if s1,kp ≤ x1 < s2,max

Fax,3(x1) else
(C.18)

with

Fax,3(x) = Fsp1(x1 − s2,max) + d1x2 − Fsp2(x1). (C.19)

In case 2 of Figure C.4, it is equal to Fel(x1) and in case 3 it can be derived from (C.11) which
leads to (C.19).

C.2. Controller design

The actuator control system is designed to work in three different operating modes. A major
goal is to ensure smooth armature motion to and from the kiss point without unintended col-
lisions with the friction discs. Therefore, two model-based armature position controllers are
designed and compared in simulations. The flatness-based approach is additionally implemen-
ted and tested on an actuator testbed. During the slipping phase of the clutch, accurate axial
force regulation has to be achieved. At the first step a PI controller is chosen to accomplish
this task. When the clutch is completely closed the armature should be kept at mechanical
stop 2 to minimize the required electrical power. This is done by a PI current controller [52].

C.2.1. Feedback linearization-based position control

The plant model characterized by (C.13) belongs to the class of affine-input systems whose
generalized structure is given by

ẋ = a(x) + b(x)u (C.20a)

y = c(x). (C.20b)

For the purpose of position control, the system output is chosen as y = x1. In order to
achieve Input-Output Linearization the time derivatives of the output y are computed until
the input u explicitly appears [73]. In the present case, this straight-forward process yields
...
y = L3

ac + Lb(L
2
ac)u, where Lac is the Lie derivative1 of a(x) with respect to c(x). That

1The Lie derivative is recursively defined as: Lgf = ∂f
∂x

g(x), L2
gf =

∂(Lgf)

∂x
g(x), and so on.
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equation shows that the relative degree is δ = 3, which is equal to the system order and
implies that there are no internal dynamics. In the present case the objective of feedback
linearization is to induce a triple-integrator relationship

...
y = v, where v is the virtual input.

With this in mind, a nonlinear compensation term [52]

u(x) =
1

Lb(L2
ac)

(
v − L3

ac
)

(C.21)

is needed. Evaluating (C.21) for the state space model (C.13) leads to [52]

ũ(x) =
m̃L̃(x1, x3)
∂Fm(x1,x3)

∂x3

[
v − 1

m̃

(
−∂Fsp(x1)

∂x1
x2 +

d(x1)2x2

m̃
+

d(x1)Fu(x1, x3)

m̃
+
∂Fm(x1, x3)

∂x1
x2

)]
+
∂L

∂x1
x2x3 +Rx3.

(C.22)

with m̃ = m(x1). In contrast to the approach found in [73], expression (C.22) contains a
distinction of cases given by [52]

Fu(x1, x3) =

{
0 if [Fm(x1, x3) < Fsp2(x1)] ∧ [x1 < ε1]

Fsp(x1)− Fm(x1, x3) else
(C.23)

where ε1 > 0 is a small positive constant. The else-branch contains an expression coming from
the evaluation of (C.21) for model (C.13). The necessity for choosing Fu(x1, x3) = 0 in the
first branch results from the facts that the limits of the armature movement (0 and s1,max)
are not contained in the state equations (C.13) and that the return spring is preloaded. This
preload force would result in a negative input voltage for a zero-reference signal in the vicinity
of mechanical stop 1 where x1 = 0 [52]. After linearization two variants of feedback control
are implemented. In both approaches the virtual control signal v is computed by linear state
controllers. In variant 1 the closed-loop dynamics of the plant, the nonlinear compensator,
and the linear controller can be denoted in controllability canonical form ˙̂x1

˙̂x2
˙̂x3

 =

 0 1 0
0 0 1
−α0 −α1 −α2

x̂1

x̂2

x̂3

+

 0
0
V

 r (C.24)

where α0, α1, α2, and V are design parameters of the controller, r is the reference position
signal, and the auxiliary state vector x̂ = [x̂1 x̂2 x̂3]T = [x1 ẋ1 ẍ1]T . Altogether the

virtual control signal v from the state controller reads as v = V r −
∑2

k=0 αkx
(k)
1 where x

(k)
1

denotes the k-th time derivative of x1. The parameters are chosen to ensure asymptotically
stable dynamics and a vanishing steady-state error for reference steps. Variant 2 reduces the
influence of parameter uncertainties and constant disturbances by introducing integral action
into the state controller as illustrated in Figure C.6. The overall dynamics of the closed-loop
system shown in Figure C.6 reads as

˙̂x1
˙̂x2
˙̂x3
˙̃x

 =


0 1 0 0
0 0 1 0

−k1 −k2 −k3 k̃
−1 0 0 0



x̂1

x̂2

x̂3

x̃

+


0
0
0
1

 r (C.25)

with parameters k1, k2, k3, and k̃ constituting the eigenvalues of the system matrix.
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Figure C.6.: Structure of the closed-loop system with feedback linearization (nonlinear com-
pensation) and integrating state controller. The controller’s design parameters
are k = [k1 k2 k3]T and k̃.

A prerequisite for the feedback linearization-based controller to work is a measurable or
observable state vector. The subsequently presented results in Section C.3 were achieved
under the assumption that x is measurable. The armature acceleration ẋ2 which is needed
in the linear control law was computed by the means of difference quotient. Similarly to the
computation of the inductance’s partial derivatives, the values for ∂Fm(x1,x3)

∂x1
and ∂Fm(x1,x3)

∂x3

were obtained by numerical differentiation of the FEM results and incorporated in the control
law by means of look-up tables [52].

It should also be noted that ũ(x) in (C.22) is not the actual input voltage of the actuator,
which is instead written as

u(x) =

{
0 if (x3 < −ε2) ∨ (r = 0)
ũ(x) else

(C.26)

with ε2 > 0 being a small positive constant. The first term in the condition of (C.26) prevents
the superimposed linear controller from causing a negative current to speed up clutch opening.
Negative currents generate magnetic forces acting in the same direction as those coming from
positive currents [70] and so they are counter-productive for driving the armature back to
x1 = 0. It should be emphasized that (C.26) is not absolutely necessary for the compensator
to work, it is rather an improvement of the control signal quality in this special case. Without
expression (C.26), the controller would switch between positive and negative voltages with
high frequency, generating a small amplitude current oscillation around zero [52].

As the electromagnet’s behavior is the same for positive and negative currents (neglecting
hysteresis) the characteristic curves in Figures C.2 and C.3 are mirrored along the s1-axis to
get the corresponding values for x3 < 0. Therefore the memory space required for the look-up
tables can be reduced by 50 %. At the same time (C.13b) and (C.13c) change to [52]

ẋ2 =
1

m(x1)
[−Fsp(x1)− d(x1)x2 + Fm(x1, |x3|)] (C.27a)

ẋ3 =
1

L̂(x1, |x3|)

[
−∂L(x1, |x3|)

∂x1
x2x3 −Rx3 + u

]
(C.27b)

with L̂(x1, |x3|) being

L̂(x1, |x3|) = L(x1, |x3|) +
∂L(x1, |x3|)

∂|x3|
|x3|. (C.28)
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Noting that |x3| is not differentiable at x3 = 0 the resulting nonlinear compensation reads as

û(x) =

{
m̃L̂(x1, |x3|)
∂Fm(x1,|x3|)

∂x3

[
v − 1

m̃

(
−∂Fsp(x1)

∂x1
x2+

d2
2x2

m̃
+
d2Fu(x1, |x3|)

m̃
+
∂Fm(x1, |x3|)

∂x1
x2

)]
+

∂L

∂x1
x2|x3|+R|x3|

}
sign(x3) (C.29)

for x3 6= 0. Equation (C.29) shows that the control input alternates its sign with the current
and so a high frequency switching is induced into the control signal for negative virtual inputs.

Expression (C.26) explicitly sets u = 0 in case of a zero reference. Otherwise the controller
would compensate the return spring’s preload force.

C.2.2. Flatness-based position control

Choosing the system output as the armature position y = x1, the relative degree of (C.13) is
δ = 3, which is equal to the system order. Hence, y is called a flat output ([74]), which implies
that state vector and input can be expressed as [53]

x = Φ
(
y, ẏ, . . . , y(n−1)

)
(C.30)

u = Ψ
(
y, ẏ, . . . , y(n)

)
. (C.31)

The proposed controller consists of a model-based feedforward and a feedback part as illustra-
ted in Figure C.7. A robustness analysis of this kind of control structure can be found in [75].
Due to differential flatness (see [76]) of the system regarding y = x1, the feedforward control

Feed-forward control

E-MAG
feedback 
control-

Trajectory 
planning

Nonlinear feed-
forward control

x1(t)u(t)uctr(t)

uff(t)

e(t)x1,ref(t)

1 ms

0.1 ms

Figure C.7.: Structure of the flatness-based position controller. ( c© 2015 Elsevier, [53]).

can be written as inversion of (C.13). For a given sufficiently smooth reference trajectory
x1,ref (t), one can compute armature speed x2,ref (t), acceleration ẋ2,ref (t), and the necessary
magnetic force2 from [53]

Fm,ref = (m1 +m2) ẋ2,ref + Fsp(x1,ref ) + d2x2,ref . (C.32)

2The time parameter t is omitted from now on for better readability.
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The magnetic force characteristic curve, which has been identified in Section C.5.1, must now
be inverted for the determination of the required current

x3,ref = F−1
m (x1,ref , Fm,ref ) . (C.33)

Since the determination of x3,ref from the polynomial representation of Fm is not possible, it
is computed from the related look-up table. The slope of the magnetic force in the vicinity of
x1,ref reads as

∆Fm(x3)

∆x
=
Fm (xH , x3)− Fm (xL, x3)

xH − xL
(C.34)

for all currents x3 in the look-up table. xH and xL are the neighboring position entries of
x1,ref . Now the resulting force at x1,ref can be calculated from [53]

F (x1,ref , x3) =Fm (xL, x3) +

∆Fm(x3)

∆x
(x1,ref − xL)

(C.35)

for every current x3. After determining the neighboring forces (FH and FL) and currents (x3,H

and x3,L) from (C.35) the slope of Fm regarding current is given by

∆Fm
∆x3

=
FH − FL
x3,H − x3,L

. (C.36)

Finally, the sought current x3,ref is obtained from

x3,ref = x3,L +
Fm,ref − FL

∆Fm
∆x3

. (C.37)

This calculation sequence is carried out for several position-force combinations in order to
construct the look-up table for F−1

m (x1,ref , Fm,ref ). After computing the desired current’s
time derivative ẋ3,ref , the feedforward control reads as [53]

uff =

[
L (x1,ref , x3,ref ) +

∂L (x1,ref , x3,ref )

∂x3
x3,ref

]
ẋ3,ref

+
∂L (x1,ref , x3,ref )

∂x1
x2,refx3,ref +Rx3,ref .

(C.38)

Remark C.2.1. One can summarize (C.32), (C.33), and (C.38) and express x2,ref , x3,ref , ẋ2,ref ,
and ẋ3,ref by means of the flat output y to get to a notation that is consistent with (C.31)
[53].

Remark C.2.2. All time derivatives in (C.32) and (C.38) are computed by means of difference
quotient. As all signals in these equations are reference signals this does not cause any problems
concerning noise [53].

The return spring is preloaded, which means that Fsp(0) = Fpl > 0. Hence, (C.32) and
(C.33) yield a discontinuous magnetic force and current if the controller is activated. However,
the current cannot change infinitely fast from zero to x3,ref and so even for a sufficiently
smooth reference signal, trajectory following would not be achievable. Therefore, the preload
force is filtered by means of a second order low pass filter in the feedforward control, whose
cutoff frequency is ωc = 300 rad

s [53].
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C.3. Simulation results

Trajectory planning generates a three times continuously differentiable reference position
signal. Denoting the initial position as z0 := x1,ref (0) and the target position at time T as
zT := x1,ref (T ) it reads as

x1,ref (t) = z0 + (zT − z0)
2n+1∑
i=n+1

ai

(
t

T

)i
, (C.39)

with t ∈ [0, T ], n = 3 being the system order, and [a4 a5 a6 a7]T = [35 -84 70 -20]T .
The feedback part of the controller is basically a PD controller with minor modifications to

increase robustness in case of parameter variations. If Fm and Fsp are not known exactly, a
steady state deviation regarding the desired end position xr will occur. In order to reduce this
position error e = r − y the controller is augmented by a saturation function [53]

usat(e) =

{
usat
b e if |e| < b

sign(e)usat else
(C.40)

whose amplitude usat and linear region b is chosen as a compromise between oscillation around
the desired position and the ability to overcome model uncertainties. While the feedback
controller uses a sample time of 0.1ms, trajectory planning and feedforward control only need
to run every millisecond. All computations are done using 32-bit fixed-point arithmetic. As a
consequence, the computational load is reduced significantly which is important with respect
to an implementation on a series car ECU [53].

C.3. Simulation results

Plant and controllers described in the previous sections were implemented and tested in Mat-
lab/Simulink by means of the variable step solver ode45. The controllers ran at a sampling rate
of 10 kHz. The input voltage was limited to umax = 10 V. In the first place, the performance
of the model based approaches is compared to that of a PID controller whose parameters
were tuned in simulation. In fact it is slightly modified to prevent it from generating negative
currents. The parameter sets for all controllers were kept constant during all experiments [52].
The main tasks for the position controllers are:

• Smoothly drive the armature from the initial position (mechanical stop 1 in Figure C.4)
into the vicinity of the kiss point.

• Keep the armature at the kiss point position in order to enable a fast clutch engagement.

• Retrieve it to the original position.

The time spans for those tasks were defined as 100ms, 80ms, and 100ms respectively (the
hold time is chosen so small just to improve the visibility of the transients).

The behavior of the actuator strongly depends on the air gap between electromagnet and
armature. The smaller the air gap (or equivalently the greater the armature position) the
greater the impact of the nonlinear magnetic characteristics on the movement. In a real clutch
the degree of wear of the friction discs determines the kiss point position and therefore the
air gap. Hence, the following position control simulations are carried out for three different
reference positions corresponding to moderate, low, and high wear. The first presented result in
Figure C.8 comes from a PID position controller which was specifically tuned for this reference
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Figure C.8.: Result of the PID armature position controller for moderate clutch wear. This is
the nominal case for which the controller parameters were tuned.

signal. After an initial lag of about 50 ms it almost reaches the goal position but is not able to
hold it. For longer hold times the armature would slowly approach the goal position again. In
case of low or high friction disc wear the kiss point is further away or closer to mechanical stop 2
respectively. Figures C.9 and C.10 show the related simulation results. Moving the armature
to a smaller position than in the nominal case (moderate wear) results in a greater deviation
from the desired value as it can be seen in Figure C.9. The PID controller could achieve similar
results as in Figure C.8 if a new set of parameters were used. The position error resulting from
the nominal parametrization is not acceptable because it would cause an hard impact on the
kiss point if the control mode is switched to force / torque control. When positions which
are closer to the electromagnet are desired the PID controller cannot decelerate the armature
early enough to prevent it from hitting the kiss point (Figure C.10). Figures C.11 - C.13 show
the results from the flatness-based position controller. Almost perfect trajectory tracking is
accomplished regardless of the reference position. This behavior is not surprising since the
feedforward control is computed from the same model with exactly the same parameters as
the plant. The influence of parameter uncertainties is investigated later on. Comparing the
minor deviations in coil current during the first 75 ms of Figures C.11 - C.13 that lead to
end position differences of almost 20 % gives an impression on the sensitivity of the actuation
system. Finally, the results of the controllers based on feedback linearization are depicted in
Figures C.14 - C.16. Both of the solve the position tracking problem satisfactorily. One can
recognize that the response of the controller with integral part is slightly slower than in the
other case.

In practice the behavior of the developed actuator model will not perfectly match that
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Figure C.9.: Result of the PID armature position controller for low clutch wear. A significant
deviation between reference and actual position can be observed which prevents
switching to force / torque control mode.

of the real-world actuator and the model parameters are not known exactly. Thus, it has
to be investigated how such uncertainties influence the performance of the control strategies.
Exemplary, the influence of an error in the magnetic force characteristic is determined. To this
end, a scaling factor which modifies the magnetic force in the plant by -25 %, -10 %, +10 %,
and +25 % is used. Starting with the PID controller, Figure C.17 shows the results. Although
this parameter variation obviously changes the resulting peak position there is no hard impact
on the kiss point. For the flatness-based position controller the situation is different as it
can be seen in Figure C.18. In case of a 25 % positive magnetic force error at the plant the
armature collides with the friction discs at the kiss point. The reason for this is that for the
flatness-based controller the majority of the commanded voltage comes from the feedforward
control law. The gain of the feedback controller is rather low and so it cannot compensate the
model error. In a real application the feedback parameters must be chosen as a compromise
between model error compensation and measurement noise tolerance. Furthermore, such a big
error on the entire magnetic force characteristic, which is the defining property of the actuator,
is rather unlikely. Figures C.19 - C.20 show the results for the position controllers based on
feedback linearization. Both of them do not induce a collision at the kiss point. In case of the
ordinary state controller a steady state error is recognizable. In contrast, the position course
of the integrating state controller remains almost unaffected.
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Figure C.10.: Result of the PID armature position controller for high clutch wear. The position
overshoot leads to a hard impact of the armature on the kiss point.
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Figure C.11.: Result of the flatness-based armature position controller for moderate clutch
wear. This is the nominal case for which the controller parameters were tuned.
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Figure C.12.: Result of the flatness-based armature position controller for low clutch wear.
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Figure C.13.: Result of the flatness-based armature position controller for high clutch wear.
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Figure C.14.: Results of the feedback linearization-based armature position controllers for mo-
derate clutch wear. This is the nominal case for which the controller parameters
were tuned.
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Figure C.15.: Results of the feedback linearization-based armature position controllers for low
clutch wear.
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Figure C.16.: Results of the feedback linearization-based armature position controllers for high
clutch wear.
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Figure C.17.: Influence of magnetic force uncertainties on the PID position controller.
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Figure C.18.: Influence of magnetic force uncertainties on the flatness-based position controller.
A 25 % higher than nominal magnetic force leads to a collision at the kiss point.
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Figure C.19.: Influence of magnetic force uncertainties on the state position controller with
feedback linearization.
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Figure C.20.: Influence of magnetic force uncertainties on the integrating state position con-
troller with feedback linearization. There is almost no impact of the magnetic
force error on the armature position.
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C.4. Actuator test bed

The results shown in Section C.6 come from experiments on a prototype version of the actuator.
It is equipped with comprehensive sensors which are not only used for control purposes but
also for identification of the plant parameters. The armature position is measured by two eddy
current sensors because the armature’s rotation requires a contact-free measurement principle.
The reason for using two sensors is the possibility to detect eventual tilting of the armature.
During position control the average of both signals is used. Current is measured by hall-effect-
based sensors integrated in the H-bridge that drives the coil. The electromagnet is not directly
mounted on the clutch’s housing but on a force sensor which works with strain gauge elements.
This allows the measurement of the magnetic force. Furthermore, the coil temperature is
determined by thermocouples inside the electromagnet. The ECU of the actuator is based on
a TMS320F2808 processor from Texas Instruments. The coil is controlled by means of pulse-
width modulation (PWM) and all measurements are synchronized with the PWM-frequency
of the H-bridge fPWM = 10 kHz. All communication and measurement data acquisition are
done over Controller Area Network (CAN) with a sample time of Ts = 1ms [53].

C.5. Parameter identification

A prerequisite for doing model-based control design is the determination of the parameters
of (C.13). The values for m1 and m2 can be calculated from construction data. Most of
the remaining parameters and characteristic curves were estimated individually by means of
specific experiments conducted on the actuator test bed. The reason for not choosing a global
approach to estimate all parameters in (C.13) at once is the high computational complexity.
As it is shown in this section the characteristic curves require high-order polynomials for
their description, which would lead to an optimization problem with more than 200 variables.
Furthermore additional complexity would emerge due to the constraints that ensure physical
consistency of the estimated characteristics [53].

C.5.1. Magnetic force and electric resistance

Due to the complex geometry of the magnetic circuit and the occurrence of saturation of
the material physically inspired modeling of the magnetic force Fm(x1, x3) is not considered.
Instead surface fitting with a 2D-polynomial is used to approximate the measurement data.
This polynomial is used to create a look-up table for the position and current range where
the actuator is operating. Fm(x1, x3) is directly measured by the force sensor. Usually, the
armature would start to move as soon as the magnetic force exceeds the preload force of the
return spring and therefore it would not be possible to measure the force for high currents at low
positions and vice versa. For this purpose, the test bed allows the removal of the two springs
and blocking of the armature motion at arbitrary positions. During one experiment the PWM
duty cycle of the coil is increased in 2.5% steps from zero to 95% and reduced to zero afterwards.
The measurement points which were used for identification are indicated by red markers in
Figure C.21 and represent those instants of time where current and magnetic force reach their
stationary values. Due to the materials elasticities the measured armature position slightly
rises as the magnetic force is increased3 despite its fixation. This experiment is repeated for
20 different positions between zero and maximum, which results in 1540 measurement points

3These elasticities differ from those described in Section C.1 due to the removal of the two springs.
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Figure C.21.: Half of one of the experiments for magnetic force determination. Red markers
highlight stationary values. ( c© 2015 Elsevier, [53]).

altogether. Figure C.22 shows all results and the approximation of the data, that is used for
look-up table generation. The ninth-degree 2D-polynomial fits the measurement data in the
least squares sense, the mean squared error is 1.33% of max(Fm) [53].

The actuator’s electric resistance is calculated for all the stationary points that were used
to determine Fm according to

R =
usup · d

i
, (C.41)

where usup is the measured supply voltage of the h-bridge, d is the PWM duty cycle, and i is
the measured current. During the experiment the temperature of the windings increased up
to about 42 ◦C and so the temperature dependency of the resistance could be determined. A
linear approximation was done in order to get the resistance as a function of temperature. At
25 ◦C coil temperature the resistance is R = 0.51 Ω [53].

C.5.2. Inductance

The identification of the inductance is based on the measurement data from the same experi-
ments as described in Section C.5.1. But rather than using the stationary values, the transient
of the current is considered. The approach works similar to the identification of a constant
inductance and is based on the fact that the small voltage steps in the experiments result in
small changes in current. The identification procedure consists of two steps that are carried
out for each of the nsteps voltage steps in every experiment [53].
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Figure C.22.: Magnetic force measurements for all experiments are shown in blue. The surface
is an approximation of measurement data. ( c© 2015 Elsevier, [53]).

C.5.2.1. Step 1

The first step deals with identifying the principal dynamic behavior of one voltage step. De-
fining the instant of time where the voltage step is applied as tstep, one can introduce voltage
and current deviations as ∆u(t) = u(t)− u(tstep) and ∆x3(t) = x3(t)− x3(tstep) respectively.
Assuming a constant armature position (the armature is fixed and the elasticities related mo-
tion is negligible during one voltage step), it follows that x2 = 0 and the current dynamics
(C.13c) simplify to [53]

∆̇x3 = −R̂
L̂

∆x3 +
1

L̂
∆u (C.42)

where R̂ is the identified resistance and L̂ includes all inductance related parameters. The
resistance is identified for each voltage step separately in order to be consistent in steady
state. After that, (C.42) is used to compute the step response ∆x3,resp(t) when ∆u(t) is
applied and the error ex3(t) = ∆x3,meas(t) −∆x3,resp(t). By minimizing the sum of squared
errors, one can find the optimal value [53]

L̂∗ = arg min
L̂

[∑
k

e2
x3

(tstep + kTs)

]
. (C.43)

Evaluating (C.43) for every voltage step yields

L =
[
L̂∗1 L̂∗2 . . . L̂∗nsteps

]T
. (C.44)

C.5.2.2. Step 2

Once L is determined, the influence of the inductance’s partial derivative with respect to
current can be examined, see (C.17). The identified value L̂∗ corresponding to the i-th voltage
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step can be expressed as [53]

L̂∗i = L (x1,∆x3,i(t) + x3,0,i)

+
∂L (x1,∆x3,i(t) + x3,0,i)

∂x3
(∆x3,i(t) + x3,0,i)

(C.45)

where x3,0,i = x3(tstep,i) is the initial current before the voltage starts to change. Due to the
small increase in current, the approximation

∆x3,i(t) + x3,0,i ≈
x3,0,i + x3,0,i+1

2︸ ︷︷ ︸
=:x̂3,i

(C.46)

is reasonable. Assuming a constant inductance and partial derivative during one voltage step,
(C.45) can be rewritten as

L̂∗i = L1,i + L2,ix̂3,i (C.47)

with L1,i = L (x1, x̂3,i) and L2,i =
∂L(x1,x̂3,i)

∂x3
. Now the estimation of inductance and its partial

derivative can be formulated as minimization problem [53]

min
L1,L2

[(
L− L1 − X̂3L2

)T (
L− L1 − X̂3L2

)]
(C.48)

for the entire experiment with

L1 =
[
L1,1 L1,2 . . . L1,nsteps

]T
L2 =

[
L2,1 L2,2 . . . L2,nsteps

]T
X̂3 =


x̂3,1 0 . . . 0

0 x̂3,2
...

...
. . . 0

0 . . . 0 x̂3,nsteps

 .

During the optimization the following physically motivated constraints (see [68] and [70]) are
considered:

• The inductance is always positive. During the first voltage steps the current is rather
small and so the influence of L2,i can be neglected. Hence, the average of the first values
in L gives a good estimate on the maximum value L1,max [53].

0 < L1,i ≤ L1,max with i = 1, ..., nsteps (C.49)

• At a constant position the inductance decreases as the current increases and vice versa
[53].

L1,i − L1,i−1

{
≤ 0 if x̂3,i > x̂3,i−1

> 0 else

with i = 2, ..., nsteps

(C.50)

• The partial derivative of the inductance with respect to the current is always negative
[53].

L2,i < 0 with i = 1, ..., nsteps (C.51)
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• As the current increases, the same happens with ∂L
∂x3

(it gets closer to zero) and vice
versa [53].

L2,i − L2,i−1

{
> 0 if x̂3,i > x̂3,i−1

≤ 0 else

with i = 2, ..., nsteps

(C.52)

The optimization problem is solved numerically by means of Matlab using fmincon(...) with
an interior-point algorithm. After repeating steps 1 and 2 for each experiment (different fixed

armature positions x1), the two data sets for L(x1, x3) and ∂L(x1,x3)
∂x3

are approximated by fifth-
degree 2D-polynomials. Those are used for generating equally spaced data points which can be
stored in look-up tables. Figure C.23 shows the results for the inductance. The mean squared
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Figure C.23.: Estimated inductance for all experiments is shown in blue. The surface is a
polynomial approximation of the estimated data. ( c© 2015 Elsevier, [53]).

error between the estimated inductance and the approximation is about 4.5 · 10−6 H. An error
with respect to the real inductance cannot be presented because it is not measurable directly.
The remaining partial derivative with respect to position ∂L(x1,x3)

∂x1
is computed analytically

from the polynomial that fits the inductance [53].

C.5.3. Spring force and elasticities

The determination of these forces is carried out indirectly by measuring the magnetic force
that is necessary to keep the armature at a certain position. A PI current controller is used
for moving the armature within the elasticities’ region (s1,kp and s2,max in Figure C.4) and
gathering the force data. Small changes in current (and magnetic force) lead to rather small
changes in position because of the steeply rising spring characteristics in this region. The
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opposite is true in the region where only the return spring acts on the armature. If the magnetic
force exceeds a certain value, the armature travels the complete distance until it reaches the
kiss point. Therefore, current control is not useful for determination of the return spring
force and a proportional position controller4 was used instead. The measured position-to-force
relationship is approximated by one polynomial for each region as shown in Figure C.24. The
resulting functions are used to build a look-up table that combines return spring and elasticities
related forces [53].
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Figure C.24.: Measurements for determining the spring forces and elasticities. The polynomial
approximations of the data are shown in red and green. ( c© 2015 Elsevier, [53]).

C.5.4. Damping coefficient

After the identification of the other parameters is completed, their values are fed into a simu-
lation model of the plant. A voltage test signal, that causes the armature to move, is applied
on the real actuator and the resulting position data are recorded. Now the damping coefficient
is varied in the simulation model in order to minimize the sum of squared errors between the
recorded and the simulated position signals [53].

C.6. Actuator test bed results

The first presented result compares the flatness-based controller’s performance with a PID
controller. The air gap between armature and electromagnet is initially adjusted to 2.66 mm
resulting in a kiss point position of around 1.75 mm. The goal is to drive the armature to
x1 = 1.5mm within 0.3 s and to hold that position (see Figure C.25). That movement is much
slower than required for the clutch’s normal operation, but the PID controller does not work
at all for faster reference signals. Compared to the PID controller, the armature movement
is much smoother when using the flatness-based controller. In case of faster reference signals,
the visible oscillations in the PID controller’s result would worsen. Figure C.26 shows the
composition of the voltage from feedforward and feedback part for the same experiment.

4This controller works only if the reference position changes very slowly. Thus it is not applicable for solving
the control task of closing the clutch.
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Figure C.25.: Comparison of flatness-based and PID controller. The PID controller already
shows oscillations which would get worse or even unstable for faster reference
signals. ( c© 2015 Elsevier, [53]).

Most of the control signal comes from the feedforward control which is an indication that the
identified model is a proper approximation of the real actuator behavior [53]. Figure C.27
shows that the flatness-based position controller can reach the kiss point position within 0.15
s. This is not possible with the PID controller. One can clearly see the influence of the
stick-slip effect on the armature movement. This phenomenon is not explicitly considered in
the feedforward control. The next result in Figure C.28 shows the armature behavior under
similar conditions as in the clutch’s normal operating mode. In this experiment the air gap of
the actuator test bed is reduced to about 2.34 mm. At first the kiss point position 1.33mm is
reached in 0.15 s and after that the armature approaches 1.55mm in the steeper region of the
spring characteristic within 0.1 s, which would be necessary if the position controller is used
for setting the transmitted torque of the clutch. The main reason for the jerks in armature
movement while reaching the kiss point is once again the unmodeled friction (stick-slip effect).
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Figure C.26.: Segmentation of the controller output in feedforward and feedback part. The
initial peak comes from the preload force filter. ( c© 2015 Elsevier, [53]).
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Figure C.28.: The flatness-based position controller consecutively drives the armature to two
positions: The kiss point and a position within the torque setting range. ( c© 2015
Elsevier, [53]).

186



D. Detailed Hover Model

D.1. State-dependent input matrix

Bu(x) is given by (D.1) and because |x2| ≤ π/4 is guaranteed it is always finite. Note that
this is the input matrix for the accelerations of the Euler angles and not for the angular
accelerations in body frame (in this case it would be constant). This is the reason why tangent
and secant occur in (D.1) just as they do in q̇ = J−1

b ωb [58] [60].

Bu(x) =
[
Bu,12 Bu,34

]
(D.1a)

Bu,12 =


(
kψcox1
Jz

+
kθsix1
Jy

)
tax2

kφ
Jx
− kψcox1 tax2

Jz
kθcox1
Jy
− kψsix1

Jz

kψsix1
Jz

sex2

(
kψcox1
Jz

+
kθsix1
Jy

)
−kψcox1sex2

Jz

 (D.1b)

Bu,34 =


(
kψcox1
Jz
− kθsix1

Jy

)
tax2 −kφ

Jx
− kψcox1 tax2

Jz

−kθcox1
Jy
− kψsix1

Jz

kψsix1
Jz

sex2

(
kψcox1
Jz
− kθsix1

Jy

)
−kψcox1sex2

Jz

 (D.1c)

Furthermore, please note that the right nullspace of Bu(x) is

∀x : Nr(Bu(x)) = span
([

1 1 1 1
]T)

, (D.2)

i.e. it does not depend on the state of the hover.

D.2. Linearized model for LQR

The result of the Taylor series expansion (8.56) is computed in Mathematica [65] and evaluated
for the equilibrium xe = [φe θe 0 0 0 0]T resulting in

A ≈



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−1.3422 0.0158 0 −0.3070 0.0018 −30.2280
0.0154 −2.7240 0 0.0035 −0.3064 20.6489
−0.1502 0.1050 0 −0.0344 0.0118 −201.419

 (D.3a)

Bu ≈



0 0 0 0
0 0 0 0
0 0 0 0

0.0057u0 0.2966u0 0.0101u0 −0.3124u0

0.2428u0 −0.0031u0 −0.2366u0 −0.0031u0

0.0381u0 −0.0527u0 0.0672u0 −0.0527u0

 (D.3b)

C =
[
I3 0

]
. (D.3c)
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D.3. Full nonlinear model

The state equations describing the hover’s dynamics have been derived by means of the Lagrange formalism read as follows:

ẋ =


ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

 = f1(x,u) =
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x4
x5
x6

f4(x,u)
f5(x,u)
f6(x,u)

 (D.4)
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