
Stefan J. More, BSc

TIGHTest

Towards automating global Academic Mobility

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Ass.Prof. Dipl.-Ing. Dr.techn. Peter Lipp

Institute of Applied Information Processing and Communications

Faculty of Computer Science and Biomedical Engineering

Graz, April 2018

This thesis is set in Palatino,
compiled with latexrun, pdfLATEX2e, and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be found online:
https://github.com/novoid/LaTeX-KOMA-template

PlantUML was used to generate the diagrams used in this thesis.

https://github.com/aclements/latexrun
http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template
http://plantuml.com/

Affidavit

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly indicated all material which
has been quoted either literally or by content from the sources used. The text document
uploaded to tugrazonline is identical to the present master‘s thesis.

Signature

iii

Abstract

Academic mobility is key in a global world. It is possible to graduate from one university
in one country and continue studying at a different institution abroad. Doing so follows
a procedure established by laws, treaties, and other rules. It often involves a lot
of paperwork, translations of documents, certifications, and various authorities. To
automate this process, we introduce TIGHTest.

The Tiny Infrastructure for Global Heterogeneous Trust management in support of an open
Ecosystem of Stakeholders and Trust schemes (TIGHTest)1 defines a trust infrastructure to
automate trust decisions arising in global academic mobility. TIGHTest defines a set of
software components, formats and protocols.

We show that the trust infrastructure of the Domain Name System (DNS) and its
security extensions (DNSSEC) can be used to establish a global trust root for automated
trust decisions. We demonstrate that using this trust root and defined protocols, it is
possible to locate and query the authorities responsible for authenticating documents.
In addition, we show how this can be used to automate the verification of student
applications.

Keywords: Trust Management, Academic Mobility, DNSSEC

1 TIGHTest is based on the LIGHTest project, which is funded by the European Commission as an
Innovation Act as part of the Horizon2020 program under grant agreement number 700321.

iv

Kurzfassung

Akademische Mobilität ist ein Schlüsselkonzept in einer globalisierten Welt. Es ist
möglich, ein Studium auf einer Universität abzuschließen und anschließend an einer
anderen Institution in einem anderen Land weiter zu studieren. Möglich ist dies dank
etablierter Abkommen, Gesetze und anderer Regeln. Außerdem sind üblicherweise
viele Formulare, Übersetzungen von Dokumenten, Bescheinigungen, Beurkundungen,
Zertifizierungen und Institutionen beteiligt. Um diesen Prozess zu automatisieren
präsentieren wir TIGHTest.

Das Tiny Infrastructure for Global Heterogeneous Trust management in support of an open
Ecosystem of Stakeholders and Trust schemes (TIGHTest)2 Projekt stellt eine Infrastruktur
bereit, um Vertrauensfragen zu automatisieren, die bei akademischer Mobilität auftreten.
TIGHTest definiert dazu Software Komponenten, Formate und Protokolle.

Wir zeigen, dass die Infrastruktur des Domain Name System (DNS) und seiner Sicher-
heitserweiterungen (DNSSEC) dazu verwendet werden kann, einen globalen Vertrauen-
sanker für automatische Vertrauensfragen zu etablieren. Des weiteren demonstrieren
wir, wie es mit Hilfe dieses Vertrauensankers und definierter Protokolle möglich ist,
die zuständigen Institutionen zu finden und abzufragen. Darüber hinaus zeigen wir,
wie das Verarbeiten von Bewerbungen der Studierenden automatisiert werden kann.

Keywords: Trust Management, Akademische Mobilität, DNSSEC

2 TIGHTest basiert auf das LIGHTest Projekt, welches von der Europäischen Kommission als Innovation
Act im Horizon2020 Programm unter der Grant Agreement Nummer 700321 gefördert wird.

v

Contents

Abstract iv

1. Introduction 1

1.1. Legalization of documents . 1

1.2. Introducing TIGHTest . 4

1.3. Research Questions . 7

1.4. Assumptions . 8

1.5. Thesis outline . 8

1.6. Acknowledgements . 9

2. Preliminaries 10

2.1. Trust Management . 10

2.1.1. Trust Infrastructure . 10

2.2. Public-key Cryptography . 11

2.3. X.509 . 11

2.4. TLS / HTTPS . 12

2.5. Domain Name System (DNS) . 12

2.5.1. NAPTR Records . 16

2.5.2. Domain Name System Security Extensions (DNSSEC) 17

2.5.3. DNS-based Authentication of Named Entities (DANE) 22

2.6. XML Signatures . 24

3. Related Work 25

4. TIGHTest Architecture 29

4.1. Component Overview . 29

4.1.1. Electronic Transaction (ET) . 31

4.1.2. Trust Policy (TP) . 33

4.1.3. Trust List (TL) . 35

4.1.4. Automated Trust Verifier (ATV) 36

vi

Contents

4.1.5. Trust Scheme Publication Authority (TSPA) 36

4.1.6. Trust Scheme Publisher (TSP) . 37

4.2. Actors . 38

5. Reference Implementation 40

5.1. Automated Trust Verifier (ATV) . 40

5.2. Trust Scheme Publication Authority (TSPA) 41

5.3. Trust Scheme Publisher (TSP) . 42

5.4. The TIGHTest Process . 44

5.4.1. Initializing ATV . 44

5.4.2. Load Trust Policy . 45

5.4.3. Load Transaction . 45

5.4.4. Signature Validation . 45

5.4.5. Validate Trust Membership Claim 45

5.4.6. Validate Trust Policy . 46

5.4.7. Human Readable Results . 47

5.5. Discussion & Limitations . 48

6. Future Work 49

6.1. Trust Policy . 49

6.2. Trust Translation . 50

6.3. Delegation . 51

7. Conclusion 52

Bibliography 54

A. Additional Figures

vii

List of Figures

1.1. Legalization trust path . 2

1.2. Legalization of a document . 3

1.3. TIGHTest process (simplified) . 6

1.4. TIGHTest trust path (simplified) . 7

2.1. Example PKI hierarchy . 12

2.2. Example DNS hierarchy . 13

2.3. Example DNS query . 14

2.4. Example DNSSEC hierarchy . 18

2.5. Example DNSSEC zone transfer . 19

2.6. Example DNSSEC query . 20

2.7. Example DANE trust transfer . 23

3.1. Example LIGHTest trust decision . 25

3.2. The LIGHTest Reference Architecture . 26

3.3. Example LIGHTest trust translation . 28

4.1. TIGHTest components . 30

4.2. Structure of an Electronic Transaction . 31

4.3. Structure of a tinypolicy Trust Policy . 34

4.4. Discovery of a TSP using a Trust Scheme Publication Authority (TSPA) 37

4.5. TIGHTest trust path . 38

4.6. Actors involved in a student application 39

4.7. Actor involved in configuration of an AT 39

5.1. Screenshot of an Automated Trust Verifier prototype 41

5.2. Structure of the database used by the Trust Scheme Publisher (TSP) . . 43

A.1. Example DNSSEC Authentication Chain

viii

List of Tables

List of Tables

4.1. Overview of the TIGHTest components. 29

ix

Listings

2.1. Example A record for tightest.eu. 15

2.2. Example zone file for tightest.eu. zone . 16

2.3. Example NAPTR records . 16

2.4. Example signed DNS zone (without NSEC3 records) 21

2.5. Example TLSA record in a DNSSEC signed zone file 23

2.6. Example XML Signature . 24

4.1. A sample electronic transaction: Data & Metadata 32

4.2. A sample electronic transaction signature & certificate 33

4.3. Example Trust Policy in tinypolicy format 35

5.1. Example NAPTR record . 42

5.2. Example RRSIG record for a NAPTR record 42

5.3. Example TLSA and RRSIG records . 43

5.4. Example (unauthenticated) query to the TSP Application Programming
Interface (API) . 44

x

List of Acronyms

API Application Programming Interface
DANE DNS-based Authentication of Named Entities
DNS Domain Name System
DNSSEC Domain Name System Security Extensions
DSA Digital Signature Algorithm
ECDSA Elliptic Curve Digital Signature Algorithm
eIDAS electronic IDentification, Authentication and trust Services
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IANA Internet Assigned Numbers Authority
ICANN Internet Corporation for Assigned Names and Numbers
NAPTR Name Authority Pointer
NSD Name Server Daemon
PKI Public Key Infrastructure
RRSIG Resource Record digital Signature
RSA the Rivest–Shamir–Adleman public-key cryptosystem
SaaS Software as a Service
SHA Secure Hash Algorithm
TLS Transport Layer Security
TLSA Transport Layer Security Authentication

ATV Automated Trust Verifier
ET Electronic Transaction
TL Trust List
TP Trust Policy
TSMC Trust Scheme Membership Claim
TSP Trust Scheme Publisher
TSPA Trust Scheme Publication Authority

xi

1. Introduction

Academic mobility is the process of members of the academic community moving
between universities to study, teach, or do research.

In this thesis we focus on students who graduate from a university and continue their
study at TIGHTest one abroad. To do so, they need to register or apply at a different
university. This involves proofing existing degrees. For example, students provide
diplomas stating their former university, graduation level and study program. The
new university then checks if the diploma is valid, the issuing university is legit, and
the conditions required for applying are fulfilled – a complex and time-consuming
process.

This thesis is concerned with the automatization of this process using electronic tools.
This means a student submits their documents in electronic form. The documents are
digitally signed. The system proposed in this thesis can be used to discover and query
the authorities, which can authenticate the signer of those signatures. Those authorities
are responsible for a certain domain and area. This allows automated checking of the
authenticity of documents issued abroad.

1.1. Legalization of documents

A document which has been issued in one country (Country A) and is legal there is
not necessarily automatically legal in TIGHTest country (Country B). For the document
to be legal in the other country, it is required that it’s legalized first (Council of the
Notariats of the European Union, 2008).

There are countries who are party to the Hague Convention Abolishing the Requirement for
Legalisation for Foreign Public Documents (Apostille Convention) (Hague Conference on
Private International Law, 1961). Those countries use a simpler form of legalization.
Nevertheless, our system can also be used in transactions involving those countries.

1

1. Introduction

In general, legalization of a document involves multiple entities.

• An entity in Country A which can issue relevant documents. For example, a
university which issues graduation certificates (diplomas) to students.

• An entity which is a trusted authority in Country A, for example, the foreign
ministry. The foreign ministry knows (and trusts) all legitimate entities in its
country.

• An entity of Country B, for example, an embassy. An embassy knows (and trusts)
the authority of the foreign ministry of Country A. In addition, the embassy is
trusted by Country B (through its foreign ministry).

Country A

Country B

University1

Document

ForeignMinistryA EmbassyB

ForeignMinistryBUniversity2

issues

trusts trusts

trusts

trustsimplicit trust

Figure 1.1.: Trust path involved in legalization of a document

This chain of trust establishes the trust path shown in Figure 1.1. Since every entity
trusts the next one in the hierarchy, documents issued by the university in Country A
can be authenticated by all entities in Country B. For example, by trusting its foreign
ministry, a university in Country B can authenticate a student application from Country
A. This creates an implicit (unidirectional) trust between the two universities.

The process of legalization has multiple steps, shown in figure 1.2.

• The process starts when a student is graduating from a university.
• First, a document (diploma) is issued by the university in Country A.
• Next, the foreign ministry of Country A comes into play. It needs to certify

the document. By doing so, it certifies that the issuing university is actually a
legitimate entity in Country A.

2

1. Introduction

• After that, the embassy of Country B is needed to certify the document again.
This time it certifies that the certification of the foreign ministry is valid. This
can also involve language translators. Since the embassy is trusted in Country B
(through its foreign ministry), this legalizes the document.

Student University1 ForeignMinistryA EmbassyB ForeignMinistryB University2

graduate

issue (signed)
document

send document

certify university signature

send document

certify foreign ministry signature

send document

certify embassy signature

send document & application

application response

Figure 1.2.: Legalization of a document

Doing so, the chain of authorities forms a chain of trust. Each authority is trusted by
the one next in line, as shown in Figure 1.1. The last one (in the pictured example the
foreign ministry) serves as a trusted root for other entities in Country B. This trusted
root is used by all entities in Country B to verify documents.

In the domain of academic mobility, this process can involve TIGHTest step: The foreign
ministry of a country might not know all legitimate universities in its territory. So it
needs the certification of an institution which does, for example, the education ministry.
This adds one step to the chain of trust but does not change the overall idea.

In this thesis, we look into a simplified version of this process. We assume the existence
of a global entity, which is trusted by all entities in the process. This is done to simplify

3

1. Introduction

the demonstration of the technical feasibility. Chapter 6 explains how this limitation
can be removed in a follow-up project.

1.2. Introducing TIGHTest

In this thesis we introduce TIGHTest. TIGHTest is a step towards automating the
process of global legalization of electronic documents involved in academic mobility, as
described in Section 1.1. It does so by defining a system which uses the Domain Name
System Security Extensions (DNSSEC) root zone as global trust root. TIGHTest can be
generalized for the legalization of all kinds of documents.

We define an architecture in the form of protocols and formats. This architecture is not
specific to a programming language or operating system. This allows implementations
on various platforms. Furthermore, it enables integration with existing workflows. We
also provide a prototype implementation of this architecture, the TIGHTest reference
implementation.

The TIGHTest infrastructure can be used by universities to automatically verify the
authenticity of student applications. Furthermore, it provides means of verifying the
legitimacy of the issuing university. In addition, it allows automated checking of the
application using policies defined by the university.

A TIGHTest process starts with a university receiving electronic applications from a
student who did their previous studies at TIGHTest university. An application consists
of multiple electronic documents the university requests from its applicants. For the
sake of simplicity, we focus on applications consisting of one document, but the process
works the same for multiple documents per application.

The university can check the content of the document. This check might be trivial or
non-trivial, depending on the content of the document. In addition, the university needs
to check the document’s authenticity. The document might contain a seal in form of a
digital signature of the issuing university, which can be used to check the authenticity.
To do so, the university needs to verify two things:

• Q1: Is the issuing university a recognized institution?
• Q2: Is the digital signature valid and was it issued by this university?

4

1. Introduction

Those are the trust questions TIGHTest aims to answer in an automated way.

To answer the first question, the university needs to build a chain of trust from a trusted
entity to the electronic certificate which was used to sign the document. To answer the
second question, the university needs to check if that certificate was actually used to
sign the document.

TIGHTest answers both of the questions automatically as follows:

The client software starts the process by extracting the certificate and performing
a signature check. The first step is making sure that the issuing university actually
signed the document. This is done by performing a simple signature check using
the cryptographic keys contained in the certificate. If successful, the document is
analyzed. It contains a claim stating the authority which is responsible for the issuing
university. The claim comes in the form of a domain name identifying this authority. If
the claimed authority is part of the university list of trusted authorities, TIGHTest can
use this information to verify that the issuing university is legitimate. This requires a
verification that the issuing university is actually known and trusted by the authority it
claims to be. The software verifies this by first discovering an Application Programming
Interface (API) of this authority using the domain name. This is done in a secure
way using the Domain Name System (DNS). By contacting the API, the software then
verifies that the university is legitimate. The transmission of the query result is secured
by well established cryptographic protocols. TIGHTest concludes the check by verifying
the contents of the document using a specified set of conditions an applicant has to
fulfill. This process is shown in Figure 1.3.

5

1. Introduction

TIGHTest

TIGHTest
Policy

(Signed)
Document

Authority API

Q1: Loading document

Parse document & verify signature

Signature status

Document data

Membership claim (domain)

Q2: Membership check

Is authority trusted by TIGHTest?

Authority status information

discover authority API

Is university trusted by authority (membership claim)

Membership verification status

Additional checks

Is document data ok?

Document data status

Figure 1.3.: TIGHTest verification process (simplified)

6

1. Introduction

University

DNSSec root key eu. zone key tightest.eu. zone key

TLS certificateAPI responseSigning university
certificate

Document

trusts
(pinning) signs signs

signs
(DANE)

signs (TLS)containssigns

Figure 1.4.: TIGHTest DNSSEC trust path (simplified)

A chain of trust to the document is built using the mentioned authority and the
DNSSEC system. TIGHTest makes sure the trust from the (trusted) global root is
transferred step by step to the document. The trust path is visualized in Figure 1.4. The
university needs to trust the global DNSSEC root. This is achieved by pre-configuring
the keys used to sign the DNS root zone (pinning) in the tool used to carry out the
checks. Since the root zone is global, these are the only keys the university needs to
trust. The tool then traverses from the root zone to the domain name of the responsible
authority. In DNSSEC trust is transferred to the next zone by signing its keys. The
process continues until the trust path reaches the claimed domain name. This transfers
trust to the authority. After doing so, the tool uses the domain name of the authority to
discover a Hypertext Transfer Protocol (HTTP) API. The communication with the API
is secured by Transport Layer Security (TLS). Trust in the API is established by using
the (now trusted) DNSSEC keys of the authority to sign the TLS certificate. This is done
using DNS-based Authentication of Named Entities (DANE). This authenticates the
response of the API. By querying the API with the university certificate, trust is finally
transferred to the certificate itself. The certificate of the issuing university is then linked
to the document by means of a digital signature. DANE is explained in more detail in
Section 2.5.3.

1.3. Research Questions

TIGHTest is a research prototype. It is crafted to explore technical questions, and not to
provide a ready-to-use solution to the stated problem.

7

1. Introduction

The main focus of the TIGHTest project is concerned with the process of establishing
trust. This involves building a trust path from the university to the authority. In addition,
it covers the discovery of the authority API, which can be used to verify the legitimacy
of a foreign university. Furthermore, it focuses on the transfer of trust from the DNS to
the API.

In more general terms, this thesis tries to answer the following questions: How can
the DNS be used to discover trust services in a secure way? Are the technical aspects
proposed in the LIGHTest project feasible?

1.4. Assumptions

In this thesis we assume a world which is globally digitalized. We assume that univer-
sities issue digital graduation diplomas to their students when they graduate. Those
diplomas are cryptographically signed. Furthermore, we assume all universities use a
standardized format for issuing those diplomas.

In addition, for this thesis we assume there is a globally recognized entity which
coordinates institutions of higher education. This is used to simplify the scope of the
thesis. We discuss this limitation in Section 5.5.

1.5. Thesis outline

The rest of this thesis is structured as follows: Chapter 2 introduces some of the
technologies used in this thesis. It focuses on an introduction into the DNS and
DNSSEC. Chapter 3 briefly discusses the project this thesis is based on, LIGHTest.
Chapter 4 introduces the architecture of TIGHTest and its components, while Chapter 5

goes more into detail of our reference implementation. Chapter 6 looks into the future
and discusses limitations of TIGHTest and how one could remove them. Chapter 7

concludes the thesis.

8

1. Introduction

1.6. Acknowledgements

The concepts used in this thesis are based on the LIGHTest project. The LIGHTest project
is introduced in Chapter 3. Chapter 6 discusses the relation between the two projects in
more detail.

The use-case of academic mobility is based on a contribution to the LIGHTest project
by Sebastian Mödersheim and Rasmus Birkedal (Technical University of Denmark)
(LIGHTest Consortium, 2017).

9

2. Preliminaries

In this chapter we introduce several concepts, terms, and systems in the domain of our
thesis.

2.1. Trust Management

The field of trust management deals with questions related to trust decisions. It is
concerned with the issue of how and in what way information provided by a party can
be trusted (Blaze, Ioannidis, and Keromytis, 2003). Furthermore, it is concerned with
the identity of the involved parties itself.

Common applications of trust management are authentication and authorization.
Concepts include access policies, passwords and other authentication factors.

2.1.1. Trust Infrastructure

A trust infrastructure helps dealing with trust decisions in an automated way. It is often
backed by some formal rules, like a law, a treaty between countries, company policies,
or a contract between companies.

An example of a trust infrastructure relevant for TIGHTest are the trust services envis-
aged by Europe’s electronic IDentification, Authentication and trust Services (eIDAS)
regulation, like electronic signatures, qualified digital certificates, electronic seals and
timestamps.

10

2. Preliminaries

2.2. Public-key Cryptography

Public-key cryptography references a class of cryptographic algorithms which require two
different keys (Menezes, Van Oorschot, and Vanstone, 1997). In the context of digital
signatures, the so called private-key is used to sign a message. On the other hand, a
public-key is needed to verify the signature. This allows anyone in the possession of
the public-key (which is by definition public) to verify the signature. In addition, it
makes sure that only the person in the possession of the private-key can create a valid
signature. Public-key cryptography is also called asymmetric cryptography. The process
principle is illustrated in Equations 2.1 and 2.2.

signature = signer(message, privateKey) (2.1)

signStatus = verifier(signature, message, publicKey) (2.2)

2.3. X.509

X.509 is a format for public-key certificates (Cooper et al., 2008). A certificate is used
to link an identity to a public-key. It is a data structure containing the public-key, the
identity information, and some metadata. The certificate is then either self-signed or
signed by an authority.

The authority which issues certificates is called Certificate Authority (CA). In the same
way, the identity of a CA can be certified by TIGHTest CA. This creates a hierarchical
trust tree, called Public Key Infrastructure (PKI). An example PKI structure is shown in
Figure 2.1. If a CA is at the top of this tree, its certificate has to be self-signed. Such
a CA acts as a root of trust. It is therefore called Root Certificate Authority (Root CA).
A PKI trust system has many roots of trust. If a CA is not at the top of the tree, and
therefore signed by TIGHTest CA, it is called Intermediate CA.

X.509 certificates are represented using Abstract Syntax Notation.One (ASN.1).

X.509 certificates can be used to authenticate arbitrary data. For example, it is used
in Transport Layer Security (TLS) to authenticate a communication participant in a
secure connection. In addition, it is possible to use the public-key of a certificate to
authenticate an electronic document.

11

2. Preliminaries

Root CA 1 Root CA 2 Root CA n

Intermediate CA 1 Intermediate CA 2 Intermediate CA n

End-user Certificate 1 End-user Certificate 2 End-user Certificate n

signs signs signs

signs signs signs signs

signs signs signs signs

Figure 2.1.: Example (simplified) PKI hierarchy

2.4. TLS / HTTPS

TLS is a protocol used to protect network connections. ”The protocol allows clien-
t/server applications to communicate in a way that is designed to prevent eavesdrop-
ping, tampering, or message forgery” (Dierks and Rescorla, 2008).

TLS provides confidentiality by using symmetric cryptography to encrypt the trans-
mitted data. In addition, it authenticates the transmitted data by using public-key
cryptography. This is done by using the public-key from an authenticated X.509 certifi-
cate to sign agreement data during the connection handshake.

TLS is used in the Hypertext Transfer Protocol Secure (HTTPS) protocol to protect
HTTP communication.

2.5. Domain Name System (DNS)

The Domain Name System (DNS) is the address book of the Internet. In its core it
is a distributed key-value database. It consists of a set of protocols, and software
components implementing those protocols to talk to each other. Its main usage is the

12

2. Preliminaries

translation of addresses from a human-readable representation (domain name) into a
representation used by computers to communicate on the Internet (IP address).

DNS is specified in multiple RFCs. It was first defined by Mockapetris, (1987a) and
Mockapetris, (1987b), later Postel, (1994).

A domain name has a hierarchical structure, each level separated by a period. Every
level of the hierarchy is called a zone. For example, the domain name tightest.eu. (with
a period on the right end) represents the zone tightest, which is part of the eu zone
(top-level domain), which by itself is part of the . zone (root zone). This hierarchy is
shown in Figure 2.2.

Root Zone

.

com.eu.net.org.

tightest.eu.

Figure 2.2.: Example DNS hierarchy for tightest.eu.

The process of translating a domain name into an IP address is called resolving. A client
computer uses a DNS resolver to resolve a domain name into an IP address. Resolving a
domain name works in a hierarchical way, following the structure of the domain name.
Usually, the local DNS resolver (stub resolver) talks to a recursive resolver on the Internet.
A recursive resolver is commonly hosted by an infrastructure provider (ISP, ...) and has
a cache for domains to be resolved. The resolver starts resolving the domain name from

13

2. Preliminaries

the right-hand side, the root zone. The servers which answer DNS queries for a zone
are called nameserver. The root zone nameserver tells the resolver the nameserver of
the desired zone. After receiving the information via the DNS protocol, the recursive
resolver sends the next query to the zones nameserver. The recursive resolver repeats
this process until it reaches the left-most part of the domain name. The nameserver
responsible for the left-most part is called authoritative nameserver. After traversing
the zone hierarchy, the stub resolver ends up with the IP of the server identified by the
domain name.

For example, while resolving tightest.eu., the resolver first queries the root zone (.)
nameserver for information about the eu zone. Next, it queries the eu zone nameserver
for information about tightest.eu. Using this nameserver, it retrieves the desired IP
address and finally establishes a connection to the server. This process is shown in
Figure 2.3.

Client Stub Resolver Recursive Resolver
root Zone

Nameserver
eu Zone

Nameserver
tightest Zone
Nameserver

Application

IP of tightest.eu?

A record of tightest.eu.?

Check if record in cache

Nameserver of eu.?

NS record for eu.

Nameserver of tightest.eu.?

NS record for tightest.eu.

A record of tightest.eu.?

A record of tightest.eu.

A record of tightest.eu.

A record of tightest.eu.

Request to app

Response from app

Figure 2.3.: Example DNS query for tightest.eu.

A DNS resolver queries a DNS server for a specific record. In addition to a (domain)
name, such a record is identified by its record type. Depending on the queried record
type, the DNS server responds with a different record. By doing so, the DNS does
support many different forms of queries. For example, the answer to a query for the IP
address of a domain name is called A record (for an IPv4 address).

14

2. Preliminaries

An example query and response for an A record is shown in Listing 2.1. In addition to
the desired A record, the server returns a list of the authoritative nameservers for this
zone.

; ; QUESTION SECTION :
t i g h t e s t . eu . IN A

; ; ANSWER SECTION :
t i g h t e s t . eu . 5 IN A 1 8 5 . 1 9 4 . 1 4 3 . 2 0 4

; ; AUTHORITY SECTION :
t i g h t e s t . eu . 10 IN NS ns1 . f a i l i n g . systems .
t i g h t e s t . eu . 10 IN NS ns2 . f a i l i n g . systems .

Listing 2.1: Example A record for tightest.eu.

Operation of the DNS involves many parties, following the hierarchy shown in Figure
2.2. For example, the root zone nameserver (. zone) is operated by the Internet Corpora-
tion for Assigned Names and Numbers (ICANN) and its subsidiary Internet Assigned
Numbers Authority (IANA)1, while the top level domain nameservers (e.g. .eu zone)
are run by different registries. In addition, the authoritative nameservers are operated
by cloud infrastructure providers, web hosters, or the service providers itself.

The configuration file used to describe a zone is called zone file. A zone file is loaded
by the nameserver software and contains all records of a zone, or pointers to other
nameservers. Listing 2.2 shows the content of an example zone file. The main content is
the A record also used in the query shown in Listing 2.1. In addition, it lists the zone
name itself, and Start of Authority (SOA) and Name Server (NS) records needed to
operate the zone.

1https://www.iana.org/domains/root

15

https://www.iana.org/domains/root

2. Preliminaries

$ORIGIN t i g h t e s t . eu .
$TTL 10

@ IN SOA ns1 . f a i l i n g . systems . s . f a i l i n g . systems . (
201712002 ; s e r i a l number
3600 ; r e f r e s h
900 ; r e t r y
1209600 ; expire
10 ; t t l
)

; Name s e r v e r s
IN NS ns1 . f a i l i n g . systems .
IN NS ns2 . f a i l i n g . systems .

; A records of . t i g h t e s t . eu
@ IN A 1 8 5 . 1 9 4 . 1 4 3 . 2 0 4

Listing 2.2: Example zone file for tightest.eu. zone

2.5.1. NAPTR Records

Name Authority Pointer (NAPTR) records are a type of records returned by a DNS
server (Mealling and Daniel, 2000). Its main usage is in Internet telephony to translate
phone numbers into Internet addresses. In a more generic way, they allow translation
of domain names to uniform resource identifiers (URIs). In contrast to other record
types, the response to a NAPTR query does not contain the final response. Instead the
nameserver returns a response containing a regular expression. The application then
uses this regular expression and other query data to construct the desired URI. An
example NAPTR query and response is shown in Listing 2.3.

; ; QUESTION SECTION :
scheme . t i g h t e s t . eu . IN NAPTR

; ; ANSWER SECTION :
scheme . t i g h t e s t . eu . 10 IN NAPTR 100 10 ”U” ” t i g h t e s t ” ” ! ˆ (. *)

$! h t tps :// t i g h t e s t . eu/query /\\1 . j son ! ” .

Listing 2.3: Example NAPTR records

16

2. Preliminaries

2.5.2. Domain Name System Security Extensions (DNSSEC)

The DNS does not provide any form of protection of the transmitted or stored data. It
is therefore possible to eavesdrop on the resolved domains or returned server address.
It is furthermore possible to replace the returned address, by doing so redirecting the
traffic to a malicious host. To counteract the dangers of the latter, a set of extensions to
the DNS, called Domain Name System Security Extensions (DNSSEC) (Eastlake, 1999)
has been defined.

The main feature of DNSSEC is to digitally sign the zone content and therefore provide
a chain of trust from the root zone to the leaf zone. The root zone’s signing key acts as
a root of trust. This structure authenticates the response to DNS queries and enables
to resolve and verify the integrity of every (signed) domain in the world by trusting
one global root. Since it is possible to store arbitrary records in the DNS, DNSSEC
effectively provides a global integrity protected database. This is what TIGHTest uses
to build its trust path, as described in Chapters 4 and 5.

To build this trust path, DNSSEC follows the DNS hierarchy introduced in Section 2.5.
This is done using public-key cryptography. Every (signed) zone has two key pairs,
called zone-signing key (ZSK) and key-signing key (KSK). The reason for two separate
key pairs are operational requirements. For example, the ZSK is loaded on the server
operating the zone, while the KSK can be kept offline. In case of a security breach,
it is then possible to replace the ZSK and re-sign the zone during operation without
effecting other zones.

The trust path starts at the root zone. Every DNSSEC-enabled resolver needs to know
the key-signing key of the root zone. This is done by pinning the key, for example
by hard-coding it in the program code, or shipping it together with operating system
updates. The root zone key-signing key is used by the operator of the root zone to sign
the zone-signing key. The signature of the zone-signing key is put next to it in the root
zone file.

A resolver verifies the authenticity of a record in the root zone by first verifying the
signature on the root-signing key using its pinned public-key part of the key-signing
key. It then uses the zone-signing key to verify the signatures on the zone records. A
simplified version of this trust path is shown in Figure 2.4.

17

2. Preliminaries

Root Zone

. key-signing key

. zone-signing key eu. key-signing key

eu. zone-signing key tightest.eu. key-signing key

tightest.eu. zone-signing key

tightest.eu. A record

resolver

signs

signs

signs

signs

signs

signs

pins

Figure 2.4.: Example DNSSEC hierarchy for tightest.eu.

18

2. Preliminaries

To transfer trust from a zone to the next one in the DNS hierarchy, DNSSEC pins the
zone-signing key of the child zone in the parent zone. This is done by adding the hash
digest of the KSK public key to the zone file of the parent zone. In addition, the parent
zones ZSK is used to sign this record. Figure 2.5 shows in more detail how the transfer
of trust from a parent zone to a child zone works. An even more detailed view is shown
in the Appendix by Figure A.1.

. key-signing key
DNSKEY record

. zone-signing key
DNSKEY record

hash of eu. key-signing key
DS record

eu. key-signing key
DNSKEY record

eu. zone-signing key
DNSKEY record

signs

signs

represents

signs

Figure 2.5.: Example DNSSEC zone transfer

A stub resolver requests a DNSSEC enabled resolving by setting the DNSSEC OK (DO)
bit. The recursive resolver then uses the data provided by DNSSEC to authenticate the
response. If successful, the recursive resolver sets the Authenticated Data (AD) bit when
sending the query result back to the stub resolver. The process of DNSSEC-enabled
resolving is shown in Figure 2.6.

19

2.
P
relim

in
aries

Client Stub Resolver Recursive Resolver
root Zone

Nameserver
eu Zone

Nameserver
tightest Zone
Nameserver

Application

IP of tightest.eu?

A record of tightest.eu.?
+ DNSSEC OK (DO) bit

Check if record in cache

Nameserver of eu.?

signed NS & DS record for eu. (RRSIG)
signed DNSKEY record for . (RRSIG)

Check RRSIG using pinned root zone DNSKEY

Nameserver of tightest.eu.?

signed NS & DS records for tightest.eu. (RRSIG)
signed DNSKEY records for eu. (RRSIG)

Check RRSIG using DNSKEY from eu.

A record of tightest.eu.?

signed A record of tightest.eu. (RRSIG)
signed DNSKEY records for tightest.eu. (RRSIG)

Check RRSIG for A record using DNSKEY from tightest.eu.

A record of tightest.eu.
+ Authenticated Data (AD) bit

A record of tightest.eu.

Request to app

Response from app

Figure 2.6.: Example DNSSEC query for tightest.eu.

20

2. Preliminaries

DNSSEC Record Types

DNSSEC signs records in a zone file to provide proof of authenticity of records. The
signature of a record is added next to the record in the same zone file. In addition, it
adds the hash digests of the keys used to sign a zone in the parent zone’s zone file.
Furthermore, DNSSEC is able to show the non-existence of a record name. To do al of
this, it introduces multiple new record types:

• RRSIG: signature of a record, put right next to the record
• DNSKEY: public key used to sign the zone, used to verify the signatures in RRSIG

records
• DS: hash digest of the key, put in the parent zone file
• NSEC/NSEC3: link to the next record name in the zone, used to show non-

existence of a record name

Listing 2.4 shows an example signed zone file. This zone file contains one SOA record,
one A record, two NS records and two DNSKEY records. In addition, it contains the
signatures of all those records. The example leaves out the NSEC3 records, since they
are not relevant for this thesis.

t i g h t e s t . eu . 10 IN SOA cloud . f a i l i n g . systems . s . f a i l i n g .
systems . 201706002 3600 900 1209600 10

t i g h t e s t . eu . 10 IN RRSIG SOA 13 2 10 20171223022555

20171125022555 65265 t i g h t e s t . eu . <s ignature>

t i g h t e s t . eu . 10 IN A 1 8 5 . 1 9 4 . 1 4 3 . 2 0 4

t i g h t e s t . eu . 10 IN RRSIG A 13 2 10 20171223022555

20171125022555 65265 t i g h t e s t . eu . <s ignature>

t i g h t e s t . eu . 10 IN NS ns1 . f a i l i n g . systems .
t i g h t e s t . eu . 10 IN NS ns2 . f a i l i n g . systems .
t i g h t e s t . eu . 10 IN RRSIG NS 13 2 10 20171223022555

20171125022555 65265 t i g h t e s t . eu . <s ignature>

t i g h t e s t . eu . 10 IN DNSKEY 256 3 13 <key data> ;{ id = 65265 (zsk
) , s i z e = 256b}

t i g h t e s t . eu . 10 IN DNSKEY 257 3 13 <key data> ;{ id = 22696 (ksk
) , s i z e = 256b}

t i g h t e s t . eu . 10 IN RRSIG DNSKEY 13 2 10 20171223022555

20171125022555 22696 t i g h t e s t . eu . <s ignature>

Listing 2.4: Example signed DNS zone (without NSEC3 records)

21

2. Preliminaries

It is important to note that DNSSEC does not protect the confidentiality of DNS queries
and results, since it is not encrypting data.

2.5.3. DNS-based Authentication of Named Entities (DANE)

To ensure safe transmission of Hypertext Transfer Protocol (HTTP) resources, the
HTTPS protocol is used. To authenticate an HTTPS connection, X.509 certificates and
PKI are used. In contrast to DNSSEC, in PKI there are many roots of trust, called Root
Certificate Authorities.

DNS-based Authentication of Named Entities (DANE) has been proposed as an alter-
native trust model to PKI (Barnes, 2011; Hoffman and Schlyter, 2012). It uses the global
single root of trust of DNSSEC to establish a chain of trust to an X.509 certificate. This is
done by storing the certificate’s fingerprint in a DNS record and signing the record. By
doing so, trust is transferred from the (authenticated) DNS zone to the X.509 certificate,
and therefore to the TLS connection. Using this approach, trust in the root-zone key
is enough to authenticate any HTTP response, e.g., content served by an Application
Programming Interface (API). Figure 2.7 shows this trust path.

The DNS record type used to store the X.509 certificate fingerprint in DNS is called
Transport Layer Security Authentication (TLSA). Listing 2.5 shows an example zone
file with a TLSA record. The TLSA record is followed by its signature in an RRSIG
record.

22

2. Preliminaries

DNS

TLS

tightest.eu. key-signing key
DNSKEY record

tightest.eu. zone-signing key
DNSKEY record

tightest.eu X.509 cert fingerprint
TLSA record

tightest.eu X.509 cert

tightest.eu TLS connection

signs

signs

represents

authenticates

Figure 2.7.: Example DANE trust transfer

443 . t c p . t i g h t e s t . eu . 10 IN TLSA 3 1 2 99d6d . . . 9 c8079e
443 . t c p . t i g h t e s t . eu . 10 IN RRSIG TLSA 13 4 10 20180204232452

20180107232452 65265 t i g h t e s t . eu . <s ignature>

Listing 2.5: Example TLSA record in a DNSSEC signed zone file

23

2. Preliminaries

2.6. XML Signatures

XML Signature is an XML-based format for digital signatures (Solo et al., 2008). It
can be used to sign arbitrary data, for example an image, an HTML file, or an XML
document.

An XML Signature contains references to the signed data and used keys. In addition, it
contains information about the canonicalization of the data, what algorithm was used
to form the message digest, and how the signing was done. Furthermore, it contains
the actual signature. Example signature data is shown in Listing 2.6.

<Signature Id=” MyFirstSignature ” xmlns=” http ://www. w3 . org /2000/09/ xmldsig#”>
<SignedInfo>
<CanonicalizationMethod Algorithm=” http ://www. w3 . org /2006/12/xml−c14n11”/>
<SignatureMethod Algorithm=” http ://www. w3 . org /2001/04/ xmldsig−more# rsa−

sha256”/>
<Reference URI=” http ://www. w3 . org/TR/2000/REC−xhtml1−20000126/”>

<Transforms>
<Transform Algorithm=” http ://www. w3 . org /2006/12/xml−c14n11”/>

</Transforms>
<DigestMethod Algorithm=” http ://www. w3 . org /2001/04/xmlenc# sha256”/>
<DigestValue>dGhpcyBpcyBub3QgYSBzaWduYXR1cmUK. . . </ DigestValue>

</Reference>
</SignedInfo>

<SignatureValue > . . .</ SignatureValue>
<KeyInfo>
<KeyValue>

<DSAKeyValue>
<P> . . .</P><Q> . . .</Q><G> . . .</G><Y> . . .</Y>

</DSAKeyValue>
</KeyValue>

</KeyInfo>
</Signature>

Listing 2.6: Example XML Signature2

2https://www.w3.org/TR/xmldsig-core/#sec-o-Simple, accessed 2018-01-12

24

https://www.w3.org/TR/xmldsig-core/#sec-o-Simple

3. Related Work

In this chapter we introduce LIGHTest, the project on which TIGHTest is based.

To the best of our knowledge there are no other systems that try to build a global trust
management infrastructure for academic mobility.

Lightweight Infrastructure for Global Heterogeneous Trust management in support of an open
Ecosystem of Stakeholders and Trust schemes (LIGHTest) is an EU-funded project working
towards establishing a global trust management infrastructure (Bruegger and Lipp,
2016). It is concerned with similar questions as the TIGHTest project but develops a
more abstract and broader system. This chapter gives a high-level overview of the
system.

Figure 3.1.: Example LIGHTest trust decision (Bruegger and Lipp, 2016)

LIGHTest establishes a system which is able to answer trust questions. A trust question
is concerned with whether the claims made in an electronic transaction can be trusted.
Trusted in this context means an authority qualified for that domain has signed it. An
electronic transaction is a collection of documents signed by various entities. LIGHTest

uses those signatures to establish trust in the documents. For example, when two
companies take part in a business transaction, a purchase order is issued. In our

25

3. Related Work

example, a letter of credit is attached to the purchase order. The company making
that purchase is signing the purchase order, while a bank may sign the letter of
credit. The seller then uses this authenticated information to decide if the buyer is
trustworthy. This example is shown in Figure 3.1. In addition to transactions between
companies, LIGHTest supports transactions between individual people and other forms
of organizations, but also devices.

LIGHTest proposes various software components, protocols and formats to automate
those trust decisions. The system uses the global trust root of the Domain Name
System Security Extensions (DNSSEC) to establish trust in transactions and entities. An
overview of the architecture is shown in Figure 3.2.

Figure 3.2.: The LIGHTest Reference Architecture (Bruegger and Lipp, 2016)

LIGHTest uses a software tool to carry out those trust decisions. It is possible to
customize the behavior of this tool using trust policies. Such policies enable using
different trust schemes by defining them as trust anchor in the trust policy. In addition,
other transaction specific policies can be defined. For the above example, this could
be a maximum transaction volume, or a list of trusted banks.

26

3. Related Work

LIGHTest is a system built with existing trust infrastructures kept in mind. It was
inspired by the European trust management framework eIDAS. This framework already
establishes trust infrastructures in the European Union. An example trust service is
the use of qualified signatures in European member states, which is a valid signature
in the whole European Union. To establish a list of trusted authorities, the European
Commission publishes a trust list. The authorities on this list act as trusted authorities
who sign certificates. Signatures issued using one of those certificates are qualified
signatures in the European Union trust scheme. In addition, a trust list contains
information about expired or revoked authorities. LIGHTest creates a global standard
way of publishing trust lists using the Domain Name System (DNS).

In addition, LIGHTest provides means to translate trust from one trust scheme to
TIGHTest. This allows delegating the negotiation with other trust schemes to a higher
authority. For example, the European Commission negotiated various treaties with
other countries. In LIGHTest, it could publish the rules contained in those treaties in
an electronic way using the DNS. In addition, the European Commission publishes
information on how to translate different levels of assurance between the trust schemes.
This helps the software at a company carrying out a trust decision involving a trans-
action issued by an entity that is part of a different trust scheme. The company does
not need to trust the other trust scheme. Instead, the company trusts the decision of
the trust scheme authority of its trust scheme and thus the published translation of
trust to the other trust scheme. For example, a company part of the Swiss trust scheme
would like to order something from a company part of the European Commission trust
scheme. To establish trust in the order document, the seller needs to establish trust
in the buyer’s trust scheme. It does so by querying the trust schemes authority for a
translation and sets up the trust path. This example is illustrated in Figure 3.3.

Delegations are TIGHTest concept supported by LIGHTest. Transactions are often not
signed by an organization certificate directly. Instead, individual employees sign the
transaction with their personal certificate. To transfer trust from the company to the
employee, the company publishes a delegation mandate. This is done using DNS
similarly than with trust translations.

27

3. Related Work

e-service.admin.ch Schemetrust.ec.europa.eu Scheme

Buyer Certificate

SuisseID Authority

Seller Certificate

European Commission

Order Document

signs

Membership
Confirmation

trusts

Trust
Translation

implicit trust

Figure 3.3.: Example LIGHTest trust translation

The LIGHTest project develops a generic framework. In contrast, the main goal of
TIGHTest was to strip away some concepts and features to focus on questions related to
the technical feasibility of some design ideas. Furthermore, while LIGHTest is a very
abstract system, TIGHTest focuses on the problems and processes of academic mobility.
Thus, it implements one of many use-cases of LIGHTest. In principle, TIGHTest is a slim
LIGHTest prototype, thus its name tiny. Furthermore, LIGHTest extends the concepts
also present in TIGHTest. This is described in more detail in Chapter 6.

28

4. TIGHTest Architecture

This chapter introduces the architecture of TIGHTest. It starts with a brief overview
of the components of TIGHTest and how they interact. It continues by explaining the
components in more detail. The chapter concludes with a discussion of the involved
actors.

TIGHTest itself is not a software, but a suite of protocols and formats. This allows any
component to exist in various or multiple programming languages. Furthermore, it
allows integration in existing software and customization to business processes. This
chapter discusses the protocols and formats of TIGHTest. The details of the reference
implementation are described in Chapter 5.

4.1. Component Overview

- Local university Entity
- Issuing university Entity

ET Electronic Transaction Document
TP Trust Policy Document
TL Trust List Document

TSPA Trust Scheme Publication Authority Entity

TSP Trust Scheme Publisher Software
ATV Automated Trust Verifier Software

- TSP Discovery Protocol
- TS Membership Verifying Protocol

Table 4.1.: Overview of the TIGHTest components.

To perform a check as described in Section 1.2, TIGHTest requires several components.
Some of those components are software, others are documents or entities. In this section

29

4. TIGHTest Architecture

we discuss how they are connected. An overview of the involved components is given in
Table 4.1. Figure 4.1 shows how the components are connected. The following sections
describe them in more detail.

«Entity»
Local University

«Software»
Automated Trust Verifier

«Document»
Trust Policy

«Document»
Electronic Transaction

«Entity»
Trust Scheme Publication Authority

«Software»
Trust Scheme Publisher

«Document»
Trust List

DNSSECHTTPS

loadload

TSP DiscoveryTS Membership
Verifying

Figure 4.1.: Overview of the TIGHTest architecture.

Summary: A student wants to register for a study program at our local university. To
do so, they submit all requested documents in form of Electronic Transactions. Those
electronic transactions are digitally signed by the university the student graduated
from. To verify the authenticity of the documents, the local university uses a tool, the
Automated Trust Verifier. This tool checks the X.509 certificate and signatures on the
electronic transaction. An electronic transaction contains a Trust Scheme Membership
Claim. The tool checks if the claimed trust scheme is part of the universities Trust Policy.
To verify if the signing university is actually trustworthy/legitimate, the local university
then verifies this trust scheme membership claim. The Trust Scheme Publication Authority

30

4. TIGHTest Architecture

provides an interface to verify this claim, the Trust Scheme Publisher. This interface is
discovered by querying the Domain Name System (DNS) of the authority. In addition,
the trust policy of the local university contains other rules the electronic transaction
has to fulfill.

TIGHTest aims to automate the answering of the following trust questions:

• Did the issuing university really sign the transaction?
→ Is the signature on the electronic transaction valid?

• Is the issuing university a legitimate university?
→ Is the issuer part of a trusted trust scheme?

• Is the applicant eligible to apply?
→ Does the electronic transaction fulfill the rules in the trust policy?

4.1.1. Electronic Transaction (ET)

TIGHTest is verifying the authenticity of documents. A document is usually some sort
of diploma. It contains the information which is validated against a Trust Policy (TP). It
is digitally signed and accompanied by the certificate used to sign it.

SigningUniversity

Transaction

student_identity
diploma
signing_university & membership_claim
signature & certificate

LocalUniversity

signs receives

Figure 4.2.: Structure of an Electronic Transaction

An Electronic Transaction (ET) is the signed diploma together with its digital certificate.
Furthermore, some metadata is attached. This metadata contains a Trust Scheme
Membership Claim (TSMC). In addition, the digital identity of the student is stored
in the transaction. This allows additional checks. For example, to ensure the diploma

31

4. TIGHTest Architecture

belongs to the applying student, the university could require that the student signs
their application. This process is not covered by TIGHTest. Figure 4.2 gives an overview
of the structure of an ET.

An ET is a set of signed documents in XML format. Since an ET is exchanged between
entities (universities), the format is not implementation specific. Listing 4.1 gives an
overview of the format of an ET.

To obtain a message digest of a document, all members of the Secure Hash Algo-
rithm (SHA) 2 family are supported. For signing the Rivest–Shamir–Adleman public-
key cryptosystem (RSA), Digital Signature Algorithm (DSA) or Elliptic Curve Digital
Signature Algorithm (ECDSA) can be used. Signatures are encoded in the W3C XML
Signature format. Certificates used to sign transaction documents are represented in
X.509 format. Listing 4.2 gives an overview of the format of this signature data.

<diploma c r e a t o r =” t i g h t e s t ”>

<student>
<name>Alice Musterfrau</name>
<country>Austr ia</country>
<X 5 0 9 C e r t i f i c a t e> . . . </ X 5 0 9 C e r t i f i c a t e>

</student>

<u n i v e r s i t y>
<name>Graz Univers i ty of Technology</name>
<country>AT</country>
<scheme>t r u s t . academia . ec . eu</scheme>

</ u n i v e r s i t y>

<c e r t i f i c a t i o n>
<l e v e l>MSC</ l e v e l>
<studyProgram>ComputerScience</studyProgram>

</ c e r t i f i c a t i o n>

< !−− S i g n a t u r e B l o c k −−>
</diploma>

Listing 4.1: A sample electronic transaction: Data & Metadata

32

4. TIGHTest Architecture

<Signature xmlns=” h t t p : //www. w3 . org /2000/09/ xmldsig #”>
<SignedInfo>
<CanonicalizationMethod Algorithm=” h t t p : //www. w3 . org/TR/2001/REC−xml−c14n

−20010315#WithComments”/>
<SignatureMethod Algorithm=” h t t p : //www. w3 . org /2000/09/ xmldsig # rsa−sha1 ”/>
<Reference URI=””>
<Transforms>
<Transform Algorithm=” h t t p : //www. w3 . org /2000/09/ xmldsig #enveloped−

s ignature ”/>
</Transforms>
<DigestMethod Algorithm=” h t t p : //www. w3 . org /2001/04/xmlenc# sha256 ”/>
<DigestValue> . . . </DigestValue>

</Reference>

</SignedInfo>
<SignatureValue> . . . </SignatureValue>

<KeyInfo Id=” KeyInfo ”>
<X509Data>
<X 5 0 9 C e r t i f i c a t e> . . . </ X 5 0 9 C e r t i f i c a t e>

</X509Data>
</KeyInfo>

</Signature>

Listing 4.2: A sample electronic transaction signature & certificate

4.1.2. Trust Policy (TP)

An Automated Trust Verifier (ATV) follows the rules defined in a Trust Policy (TP).
Every university can define their own TP. It can define multiple TPs, for example for
different study programs.

The main feature of a TP is to list the trust schemes relevant for the university. A trust
scheme is identified by a human-readable domain name, which is part of the TP.

Furthermore, the TP can contain other rules which need to be fulfilled for a transaction
to pass. The university can restrict the applicable study program the student has to
have graduated in. It can also restrict the level of graduation (e.g. bachelor or master
level).

A Trust Policy is represented by a simple, TIGHTest specific scheme in XML format,
called TIGHTest tinypolicy. TIGHTest tinypolicy is a simple policy format created for

33

4. TIGHTest Architecture

TIGHTest to demonstrate the verification process. It is not a generic policy format and
tied to the use case of academic mobility. The tinypolicy format provides means to
specify rules defining the required level of graduation, and study program. In addition,
it allows to chain multiple rules, connecting them with logical and and or operators.
Figure 4.3 gives an overview of the structure of a tinypolicy.

TrustPolicy

Scheme

domainName

Rules

Rule

level
studyProgram

AndRules OrRules

Figure 4.3.: Structure of a tinypolicy Trust Policy

Example policy: To apply for a PhD program in computer science, a student has to
provide a graduation certificate (diploma) from a computer science or ICE masters
program of a recognized university. In this context recognized university is defined by
the membership in a trusted trust scheme. A trust scheme becomes trusted by being
listed in the TP. This example is represented by the TP given in Listing 4.3.

34

4. TIGHTest Architecture

<t i n y P o l i c y c r e a t o r =” t i g h t e s t ” name=”ComputerScience−PhD”>

<trustedSchemes>
<trustedScheme>t r u s t . academia . ec . eu</trustedScheme>
<trustedScheme>scheme . t i g h t e s t . eu</trustedScheme>

</trustedSchemes>

<r u l e s>
<or>

<r u l e>
<l e v e l>MSC</ l e v e l>
<studyProgram>ComputerScience</studyProgram>

</r u l e>
<r u l e>

<l e v e l>MSC</ l e v e l>
<studyProgram>ICE</studyProgram>

</r u l e>
</or>

</ r u l e s>

</ t i n y P o l i c y>

Listing 4.3: Example Trust Policy in tinypolicy format

4.1.3. Trust List (TL)

A Trust List (TL) is a list of trusted services in the scope of a specific trust scheme. It
contains a list of X.509 certificates of those services. In addition, it may contain meta
information about those services. For example, it can define the scope in which a
trust service is valid. Another example is the validity period of a X.509 certificate, or
revocations.

To validate an Trust Scheme Membership Claim, an ATV queries a Trust Scheme
Publisher (TSP). As a result, the TSP returns the relevant segment of its TL.

A TL is represented in XML format. An example XML scheme is the European Telecom-
munications Standards Institute (ETSI) TS 119 612 standard for Trusted Lists 1. This allows
the ATV to verify that the membership claim is valid at the specific time.

1http://www.etsi.org/deliver/etsi_ts/119600_119699/119612/

35

http://www.etsi.org/deliver/etsi_ts/119600_119699/119612/

4. TIGHTest Architecture

4.1.4. Automated Trust Verifier (ATV)

The software component executing all the checks and queries is called ATV. The
reference implementation ATV is described in Section 5.1.

The ATV is a software operated at the university processing the student application.
The ATV queries other components to verifying the authenticity of an ET.

The university configures its ATV by providing a TP. Different policies can be used for
each check. This allows specific rules, depending on the nature of the check.

An ATV verifies the authenticity of an ET by checking the signature and the certificate.
Furthermore, it verifies the TSMC by querying the Trust Scheme Publication Authority
(TSPA) configured in its TP. If the TSPA confirms that the certificate used to sign the
transaction is a member of its scheme, the membership claim is valid. In addition, the
ATV performs other checks described in the TP.

4.1.5. Trust Scheme Publication Authority (TSPA)

To check if the university which signed the submitted ET is legitimate, the ATV needs
to verify the Trust Scheme Membership Claim of the ET.

All entities are members of a trust scheme. The transactions issued by entities contain a
claim which informs other parties about this membership.

To verify a TSMC, an ATV queries a TSPA. A TSPA is an institution recognized by all
entities taking part in the process. It acts as a root of trust for a trust scheme.

A TSPA is identified by a human-readable domain name. To recognize the TSPA, a
university operating an ATV needs to know the domain name of the TSPA it trusts.
This is a human-readable identifier of the relevant trust scheme. The domain name of
the trusted TSPA is then configured in the universities TP. If the domain name in the
TP matched the one in the transaction, the claimed scheme is considered trusted.

Using the domain name in the transaction, an ATV queries the TSPA to discover the
TSP. This is shown in Figure 4.4.

A TIGHTest TSPA operates a DNS server to support discovery of its TSP. An ATV uses
the domain name to request the pointer to the TSP from the DNS server. The DNS

36

4. TIGHTest Architecture

Transaction Certificate
TSPA:

scheme.tightest.eu.
TSP:

tsp.tightest.eu

API response
TL

TSMC:
hostname

DNS:
NAPTR record

HTTPS:
API Query

Figure 4.4.: Discovery of a TSP using a TSPA

server returns the requested pointer in form of a NAPTR record. The ATV resoles this
NAPTR record to retrieve the TP location in form of a new new domain name. After
doing so, it queries this new domain name to retrieve the location of the TSP HTTP
API. The discovery is complete.

To build a chain of trust, the DNS server is DNSSec enabled. All responses are signed,
and it is therefore possible to verify its authenticity using the configured root-zone keys.
In addition, for the pointers to the Hypertext Transfer Protocol (HTTP) Application
Programming Interface (API), the DNS server returns records authenticated by DNS-
based Authentication of Named Entities (DANE). This extends the chain of trust from
the DNS to the TSP HTTP API. The resulting trust path is shown in Figure 4.5.

4.1.6. Trust Scheme Publisher (TSP)

A TSP is a software operated by a TSPA. A TSP uses a Trust List. This is a list of the
X.509 certificates of all legitimate universities in the trust scheme. This trust list is issued
by the authority of the trust scheme. The reference implementation TSP is described in
Section 5.3.

The TSP provides an API to query this list. A TSPA provides means to discover this
API from its domain name. This API is then used by an ATV to verify a TSMC.

The ATV queries the API using the X.509 certificates fingerprint. The TSP returns the
trust list section relevant for the requested X.509 certificate, if it is part of its trust
scheme.

37

4. TIGHTest Architecture

University

DNSSec root key

scheme.tightest.eu. zone key
TSPA

eu. zone key tightest.eu. zone key

tsp.tightest.eu. zone key
TSP

TLS certificate
TSP

API response
TL

trusts
(pinning)

knows
(TP)

signs
(DNSSEC)

signs
(DNSSEC)

signs
(DNSSEC)

signs
(DNSSEC)

helps to discover

signs
(DANE)

signs (TLS)

Figure 4.5.: TIGHTest trust path from University to TSP API reponse

All transmissions are secured using the Transport Layer Security (TLS) protocol. The
TLS connection is authenticated using a X.509 certificate. The ATV retrieves the finger-
print of the TLS certificate via DNS from the TSPA during discovery of the TSP (using
DANE). It thereby extends the chain of trust from the TSPA to the data returned.

4.2. Actors

An issuing university issues and signs a diploma for a student. A student sends an
application containing a diploma to a second university. An ATV is operated at the
second university. The person responsible for processing student applications starts
the verification process by loading a student application into the ATV. These actors are
shown in Figure 4.6.

In addition to operating an ATV, the local university also needs to create and maintain
a TP. This can be done by hand, or with any form of TP editor. It is possible to write a

38

4. TIGHTest Architecture

Student

Transaction & Certificate

University1 University2

submits

signs loads into ATV

Figure 4.6.: Actors involved in a student application

TP in human-readable form and translate it to the tinypolicy XML format. This is not in
the scope of this thesis. As part of creating an trust policy, the university also defines
the trusted trust schemes by listing its TSPA domain names. This is shown in Figure
4.7.

University2

ATV
Automated Trust Verifier

configures
(defines TP)

Figure 4.7.: Actor involved in configuration of an ATV

Since the TSP is a fully automated software operated by a TSPA, it does not require a
human during operation. Setup of the TSP API and discovery mechanism only needs
to be done once.

39

5. Reference Implementation

This chapter is concerned with the technical implementation of the TIGHTest refer-
ence architecture. In addition, it gives an overview of the structure of a TIGHTest

transaction.

5.1. Automated Trust Verifier (ATV)

A TIGHTest Automated Trust Verifier (ATV) is a web application developed using the
Java programing language.

It consists of modules to:

• interact with users
• read Electronic Transactions (ETs)
• validate XML signatures
• read and understand Trust Policys (TPs)
• discover and query Trust Scheme Publishers (TSPs)
• execute and validate DNSSEC queries
• retrieve and understand Trust List (TL) segments

The ATV is hosted at a university webserver. As an alternative, TIGHTest possible
deployment options could to rent an ATV instance as a Software as a Service (SaaS).

Figure 5.1 shows the prototype implementation of an ATV graphical user interface.
It displays the verification steps in the left column. In addition, the results of the
verification of a sample transaction are displayed in the right column. Section 5.4
describes the steps in more detail.

40

5. Reference Implementation

Figure 5.1.: Screenshot of an Automated Trust Verifier prototype

5.2. Trust Scheme Publication Authority (TSPA)

The Trust Scheme Publication Authority (TSPA) is used by the ATV to discover the TSP
Application Programming Interface (API) using the Domain Name System (DNS). In
our reference implementation, we used the Name Server Daemon (NSD)1 software to
respond to DNS queries. In addition to responding to DNS queries by the ATV, NSD
also serves signatures of the requested records.

To discover the TSP API, the ATV queries the TSPA for a Name Authority Pointer
(NAPTR) record on the trust scheme domain configured in the transaction (and TP).
The NAPTR record belonging to the TSPA zone contains a regular expression, as
illustrated in Listing 5.1. This regular expression is used by the ATV to discover the
TSP API. TSP discovery is explained in more detail in Section 4.1.5.

1https://www.nlnetlabs.nl/projects/nsd/

41

https://www.nlnetlabs.nl/projects/nsd/

5. Reference Implementation

To build trust in the response to the ATV query, we use the Domain Name System
Security Extensions (DNSSEC), as described in Section 2.5.2. The Resource Record
digital Signature (RRSIG) record contains the signature of the NAPTR record, as
illustrated in Listing 5.2. The record is therefore signed by the zones parent zone key.
This authenticates the TSPAs response, as shown in Figure 4.5.

scheme . t i g h t e s t . eu . 10 IN NAPTR 100 10 ”U” ” t i g h t e s t +
trustscheme ” ” ! ˆ (. *) $! h t tps :// t i g h t e s t . eu/query /\\1 . j son ! ” .

Listing 5.1: Example NAPTR record

scheme . t i g h t e s t . eu . 10 IN RRSIG NAPTR 13 3 10 20171223022555

20171125022555 65265 t i g h t e s t . eu . 3

QTvWK9wEWWtDE6BshLPscwG0CjQ0aedcqULzl9DtAUCR . . . nz94A==

Listing 5.2: Example RRSIG record for a NAPTR record

5.3. Trust Scheme Publisher (TSP)

A TIGHTest TSP is a lightweight web API. Since it communicates with the ATV over
a specified protocol, it is not necessary to develop the components in the same pro-
gramming language. In our reference implementation we developed it using the Python
programing language2 to demonstrate this property.

We use the Django web framework3 to implement the TSP. For storing trust list data
we use SQLite4. Figure 5.2 shows the structure of the database. Our database schema
supports the operation of multiple trust schemes with one TSP. In addition, it allows
publishing of multiple trust services per trust scheme. Furthermore, a trust list section
may contain multiple signing keys, for example for different departments.

Editing of endpoints and trust list data is done using the web interface generated
by Django. To provide the API, we create a REST API using Django REST framework5.
The Django application is hosted on a nginx webserver6. To secure the connection we

2https://www.python.org
3https://www.djangoproject.com
4https://www.sqlite.org
5http://www.django-rest-framework.org
6https://www.nginx.com

42

https://www.python.org
https://www.djangoproject.com
https://www.sqlite.org
http://www.django-rest-framework.org
https://www.nginx.com

5. Reference Implementation

TrustScheme

schemeName

TrustService

serviceName

TrustListSection

certificateFingerprint
XMLdata

*

*

1

*

Figure 5.2.: Structure of the database used by the TSP reference implementation

use a Let’s Encrypt7 Transport Layer Security (TLS) certificate. For deployment and
management of TLS certificates we use Certbot.

To transfer trust from the TSPA to the TSP API, we pin the TLS certificate in DNS using
DNS-based Authentication of Named Entities (DANE), as illustrated in Listing 5.3.
The Transport Layer Security Authentication (TLSA) record belonging to the TSP zone
contains the TLS certificates fingerprint. The RRSIG record contains the signature of
the TLSA record, signed by the parent zone key. Since the parent zone is authenticated
by DNSSEC, this results in the trust path shown in Figure 4.5.

443 . t c p . t i g h t e s t . eu . 10 IN TLSA 3 1 2 99

d6d27832c13622e50137 fd42ca05b82a014 f31 f5 f . . .
443 . t c p . t i g h t e s t . eu . 10 IN RRSIG TLSA 13 4 10 20171223022555

20171125022555 65265 t i g h t e s t . eu .
TG9zQ1RGe3RoaXNfaXNfYWxtb3N0X3N1cmVseV9hX2ZsYWd9Cg==

Listing 5.3: Example TLSA and RRSIG records

7https://letsencrypt.org

43

https://letsencrypt.org

5. Reference Implementation

An ATV queries the TSP with a X.509 certificate fingerprint, as shown in Listing 5.4.
This request is handled by Django and the REST framework. The TSP looks for the
X.509 certificate matching the fingerprint in its database. If found, it returns an HTTP
status code 200 (OK) and the corresponding trust list section. The format of a trust list
is described in Section 4.1.3. If there is no entry for the fingerprint, an error is returned
in the form of a HTTP status code. By returning an error, the TSP signals to the ATV
that the requested X.509 certificate is not part of the trust scheme.

t s p u r l = ' h t tps :// t i g h t e s t . eu/query/ '
f i n g e r p r i n t = ' afee0d41695b98818df721d8e0 fa47 f47 f8 f9125 '

queryurl = t s p u r l + f i n g e r p r i n t
t r u s t l i s t = reques ts . get (queryurl)

i f t r u s t l i s t . h t t p s t a t u s c o d e == 2 0 0 : print ' t r u s t e d ! '

Listing 5.4: Example (unauthenticated) query to the TSP API

5.4. The TIGHTest Process

The components described in the earlier sections work together to answer a trust
question. The ATV loads and parses a transaction and a trust policy. It then queries the
other involved components for the required information. In the end the ATV verifies if
the transaction is valid with regard to the TP. This is called the TIGHTest process. Figure
1.3 gives an overview of the process.

This section describes the TIGHTest process of our reference implementation step by
step.

5.4.1. Initializing ATV

The ATV needs to be configured and started on its server. This needs to be done by an
administrator of the university. Since the ATV operator accesses the ATV with a web
browser, there is no need for them to install anything on their local office computer.

44

5. Reference Implementation

5.4.2. Load Trust Policy

If the ATV is initialized successfully, the operator uses a web browser to load a TP. The
ATV then uses the TIGHTest tinypolicy component to parse the policy and prepare a
validator.

Another important step is the identification of the relevant trust scheme. The human-
readable trust scheme identifier is part of the TP.

5.4.3. Load Transaction

The operator then loads a ET document into the ATV. The ATV uses the TIGHTest

transactionutils component to parse the transaction. During this step, the ATV verifies if
the provided transaction document complies with the TIGHTest ET XML scheme.

Furthermore, the Trust Scheme Membership Claim (TSMC) is retrieved from the ET.
The claim is then compared with the trust scheme configured in the TP. If the trust
schemes don’t match, the process exits with an error. If the do match, the ATV continues
with the process.

5.4.4. Signature Validation

As second check, the ATV retrieves the X.509 certificate used to sign the transaction. It
then uses the contained key material to verify the XML signature.

This is done by the ATV using the IAIK JCE and IAIK X-SECT libraries for Java8.

5.4.5. Validate Trust Membership Claim

In addition, the ATV checks whether the X.509 certificate used to sign the transaction
is in the claimed trust scheme. It does so by validating the TSMC using the trust path
shown in Figure 1.4. Doing this requires three steps.

• First, the ATV needs to identify the TSPA for the claimed trust scheme.

8https://jce.iaik.tugraz.at

45

https://jce.iaik.tugraz.at

5. Reference Implementation

• Next, the TSPA is used to discover the TSP API using TIGHTest dnsutils compo-
nent.

• As last step, the ATV contacts the TSP API to retrieve a trust list segment.

This steps will be described in the following section:

The first step is done by loading the TSPA identifier from the trust scheme membership
claim. This TSPA identifier is the same one as in the trust policy, as checked in the
previous steps. The TSP identifier is a valid domain name. The ATV queries this domain
name in the next step.

In the second step, the ATV uses the retrieved domain name to query the TSPA via
DNS. To obtain a pointer to the TSP API, the ATV asks for a NAPTR record. The
TSPA DNS server returns this NAPTR record via DNS. This NAPTR record contains a
regular expression, used in the next step. To prove the authenticity of the requested
data, the DNS records are protected using DNSSEC. The ATV verifies the authenticity
by checking the signatures provided by DNS. This is done by traversing the DNS zones
from the root zone down, as described in Chapter 2. Every zones key is signed by the
key of the zone above. That way a trust chain is established from the (trusted) root zone
to the TSPA zone. This extends trust to the retrieved regular expression.

In step three, the ATV evaluates the received regular expression to retrieve the TSP
API HTTP URL. Afterwards, a connection to the retrieved HTTP URL is established.
The connection to the TSP API is protected by TLS. In addition, the ATV queries the
TSPA DNS server for TLSA records. This records are used in DANE, as described in
Chapter 2. They contain information about the certificate used for the TLS connection.
In addition, they are also signed using the zones DNSSEC key. Therefore the chain of
trust is extended from the global DNSSEC root to the TLS connection.

If the TSMC is validated successfully, the authenticity of the transaction is shown.

5.4.6. Validate Trust Policy

The ATV concludes the process by checking if the transaction (Listing 4.1) fulfills the
rules defined in the trust policy (Listing 4.3). This is done using the TIGHTest tinypolicy
component.

46

5. Reference Implementation

5.4.7. Human Readable Results

There are many possible results of a TIGHTest process. The process can exit with an
error, if one validation step fails. It is also possible that the validation terminates without
error, but the transaction does not comply with the trust policy.

In all cases the ATV provides a human-readable result in form of a receipt. Depending
on which check terminated the process, different information is contained in the
receipt.

The receipt is displayed to the user in compact form. Furthermore, it can for example
be archived or used to communicate possible issues to the applying student.

47

5. Reference Implementation

5.5. Discussion & Limitations

The design of TIGHTest and its reference implementation answer both research question
stated in section 1.3.

TIGHTest, therefore, shows that is it possible to automate the process of academic
mobility. This is done by providing an infrastructure to validate electronic documents in
an automated way. TIGHTest has also shown that the Domain Name System (DNS) can
be used to discover trust services. This provides an easy and human-readable identifier
to identify those trust services. Using Domain Name System Security Extensions
(DNSSEC) TIGHTest is then able to use this identifier securely.

This results show that the technical aspects proposed in the LIGHTest project are
possible. For example, it is possible to use pointers in DNS for discovery. Besides, the
transfer of trust from the (trusted) global DNSSEC root to an Trust Scheme Publication
Authority (TSPA) API using DNS-based Authentication of Named Entities (DANE) is
working.

Nevertheless, TIGHTest is a research prototype. When it comes to practical application,
it has its constraints. Also, the assumptions stated in Section 1.4 lead to some limitations.
Many of those limitations can be worked on, as discussed in Chapter 6.

The main constraints is the requirement of a global entity trusted by all involved parties
(the TSPA). This constraints leads to limitations in real-world scenarios since such an
entity does not exist. The extensions proposed by the LIGHTest project tackle those
constraints on a technical level. They do so by proposing a mechanism of translations
between trust schemes. This approach still requires a TSPA entity but removes the need
for it to be globally trusted. It instead creates the need for local trust entities, which
exist in many countries.

48

6. Future Work

TIGHTest is a system to explore the processing of trust questions in the field of academic
mobility in an automated way. In this thesis, we have shown that this is possible. For
our research prototype, we worked under certain limitations and assumptions. In this
chapter we discuss how those limitations can be tackled.

TIGHTest is a research project based on the LIGHTest project. The LIGHTest project is
introduced by Bruegger and Lipp, (2016) and in Chapter 3. The two projects share many
properties and features. For example, LIGHTest also uses the Domain Name System
Security Extensions (DNSSEC) root as global trust root. But it extends the functionality
even further.

In LIGHTest, several concepts exist that keep the stated limitations in mind. One of the
main goals of LIGHTest is to establish a global trust system. In addition, it provides a
generic system which can be used for many domains and use cases.

To explore technical aspects, TIGHTest and this thesis focus on academic mobility. Thus,
the underlying architecture and the reference implementation are very domain specific.
In contrast, it is possible to use the applied principles for other use cases. One of the
goals of LIGHTest is to explore those possibilities in a more abstract way.

6.1. Trust Policy

tinypolicy is a tiny and lightweight policy format introduced for TIGHTest. Since trust
policies are not in the focus of the TIGHTest research questions, tinypolicy is a very
simplified format. Furthermore, it is domain specific to the academic mobility use
case. In addition, it limits the set of possible rules to those required for the technical
evaluation.

49

6. Future Work

In contrast, there exist multiple policy languages, some of which are relevant to
trust systems. Additionally, the LIGHTest system is working on its own trust policy
language.

Another topic of the LIGHTest project is the editing of trust policies. A tinypolicy is
represented by an XML-based text file, and can, therefore, be edited using a text editor.
Since the concepts of policies used by LIGHTest are more powerful than that, using a
simple text editor is not very user-friendly. The project is, therefore, exploring ways of
representing trust policies in a more human-readable way. An additional idea is the
transformation of a trust policy between different representations. For example, it could
be possible to represent a trust policy in English for editing by a human, but transfer
it to a more abstract language for processing by the Automated Trust Verifier (ATV).
Other ideas involve graphical representations and editing of a trust policy.

6.2. Trust Translation

The biggest issue of TIGHTest is the need of a globally trusted entity, the Trust Scheme
Publication Authority (TSPA). This limitation allowed an evaluation of the technical
concepts, since lifting it does not change the requirements for trust service discovery.
Using TIGHTest, a student can only apply to a university in the same trust scheme as
the university they graduated from. This results from the fact that a university cannot
verify the membership of a trust scheme it has no trust in.

In LIGHTest, this limitation is removed by introducing the concept of Trust Translation.
Using this concept allows for a trust scheme to trust TIGHTest trust scheme. Further-
more, it is possible to add constraints to such a translation. This enables that an entity
in one trust scheme conditionally trusts an entity in a different trust scheme. This is
again secured using DNSSEC.

For example the embassy of a country can be used to establish trust to TIGHTest country,
as shown in Figure 1.4. In addition, treaties between countries exist. It is possible to
represent those treaties in an electronic way.

In simple terms, this adds a step to the trust path. The Domain Name System (DNS)
related concepts explored in this thesis can, therefore, be applied for trust translations
as well.

50

6. Future Work

6.3. Delegation

In addition, LIGHTest introduces the concept of a delegation. This allows different
forms of mandates. In addition, it enables better representation of processes in the
trust chain. For example, a university can delegate the permission to issue diplomas to
specific employees. While this is also what happens in TIGHTest, an employee would
still use the university’s X.509 certificate to issue signatures. In LIGHTest an employee
uses their personal X.509 certificate to sign the document. The university creates such
a delegation by publishing the mandate in their Delegation Publisher (DP). Wagner,
Omolola, and More, (2017) show a generic way of representing delegations. In LIGHTest

delegations are then published in a cryptographically secure way by using DNSSEC
and DNS-based Authentication of Named Entities (DANE). Doing so creates additional
steps in the chain of trust.

51

7. Conclusion

In this thesis we presented the TIGHTest architecture, a system to automate trust
decisions. We focused on applications concerning academic mobility. Also, we provided
a reference implementation of the proposed architecture. By doing so we successfully
demonstrated the effectiveness of the architecture. We showed that the DNS can be
used to provide a chain of trust with a global trust root. This approach allows the
creation of a human-readable and easy-to-understand way of building trust into an
arbitrary transaction.

TIGHTest uses a domain name as scheme identifier. This identifier is used to claim
membership in a trust scheme. The claim is then understandable by humans and
computers. TIGHTest uses DNS together with its security extensions to verify this trust
scheme membership claim in an automated way.

Nevertheless we recognize the challenges involved in the real-world deployment of
such a system. Most of those challenges are not of technical nature and therefore out of
the scope of this thesis.

We hope this thesis contributes to the field of automating trust decisions. We hope it
sparks or feeds further discussions and efforts towards a (more) automated academic
mobility. Besides, want to highlight the contributions of this thesis to the LIGHTest

project. By using and implementing many of its design ideas, we provided a proof of
concept of its design. Furthermore, the knowledge and experience gathered during the
development of TIGHTest directly influenced the development of LIGHTest.

52

Appendix

53

Bibliography

Barnes, R. (2011). Use Cases and Requirements for DNS-Based Authentication of Named
Entities (DANE). RFC 6394. RFC Editor (cit. on p. 22).

Blaze, Matt, John Ioannidis, and Angelos D. Keromytis (2003). “Experience with the
KeyNote Trust Management System: Applications and Future Directions.” In: Trust
management first international conference, iTrust 2003, Heraklion, Crete, Greece, May
28-30, 2003: proceedings. Springer, pp. 284–300. doi: 10.1007/3-540-44875-6_21
(cit. on p. 10).

Bruegger, Bud P. and Peter Lipp (2016). “LIGHTest –ALightweight Infrastructurefor
Global Heterogeneous TrustManagement.” In: Lecture Notes in Informatics (LNI)
(cit. on pp. 25, 26, 49).

Cooper, D. et al. (2008). Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile. RFC 5280. RFC Editor (cit. on p. 11).

Council of the Notariats of the European Union (2008). Comparative Study on Authentic
Instruments National Provisions of Private Law, Circulation, Mutual Recognition and
Enforcement, Possible Legislative Initiative by the European Union. Tech. rep. Council of
the Notariats of the European Union (cit. on p. 1).

Dierks, T. and E. Rescorla (2008). The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246. RFC Editor (cit. on p. 12).

Eastlake, Donald E. (1999). Domain Name System Security Extensions. RFC 2535. RFC
Editor (cit. on p. 17).

Hague Conference on Private International Law (1961). “12. Convention Abolishing the
Requirement of Legalisation for Foreign Public Documents.” In: October (cit. on
p. 1).

Hoffman, P. and J. Schlyter (2012). The DNS-Based Authentication of Named Entities
(DANE) Transport Layer Security (TLS) Protocol: TLSA. RFC 6698. RFC Editor (cit. on
p. 22).

54

http://dx.doi.org/10.1007/3-540-44875-6_21

Bibliography

LIGHTest Consortium (2017). “LIGHTest D2.3: Requirements and Use Cases.” In: (cit.
on p. 9).

Mealling, M. and R. Daniel (2000). The Naming Authority Pointer (NAPTR) DNS Resource
Record. RFC 2915. RFC Editor (cit. on p. 16).

Menezes, A. J. (Alfred J.), Paul C. Van Oorschot, and Scott A. Vanstone (1997). Handbook
of applied cryptography. CRC Press, p. 780. isbn: 0849385237 (cit. on p. 11).

Mockapetris, P. (1987a). Domain names - concepts and facilities. STD 13. RFC Editor (cit. on
p. 13).

Mockapetris, P. (1987b). Domain names - implementation and specification. STD 13. RFC
Editor (cit. on p. 13).

Postel, Jon (1994). Domain Name System Structure and Delegation. RFC 1591. RFC Editor
(cit. on p. 13).

Solo, David et al. (2008). XML Signature Syntax and Processing (Second Edition). W3C
Recommendation. W3C (cit. on p. 24).

Wagner, Georg, Olamide Omolola, and Stefan More (2017). “Harmonizing Delegation
Data Formats.” In: Lecture Notes in Informatics, pp. 25–34 (cit. on p. 51).

55

Appendix A.

Additional Figures

Appendix A. Additional Figures

Figure A.1.: Full DNSSEC Authentication Chain for tightest.eu.
http://dnsviz.net/d/tightest.eu/dnssec/, accessed 2018-01-07

http://dnsviz.net/d/tightest.eu/dnssec/

	Abstract
	Introduction
	Legalization of documents
	Introducing TIGHTest
	Research Questions
	Assumptions
	Thesis outline
	Acknowledgements

	Preliminaries
	Trust Management
	Trust Infrastructure

	Public-key Cryptography
	X.509
	TLS / HTTPS
	Domain Name System (DNS)
	NAPTR Records
	Domain Name System Security Extensions (DNSSEC)
	DNS-based Authentication of Named Entities (DANE)

	XML Signatures

	Related Work
	TIGHTest Architecture
	Component Overview
	Electronic Transaction (ET)
	Trust Policy (TP)
	Trust List (TL)
	Automated Trust Verifier (ATV)
	Trust Scheme Publication Authority (TSPA)
	Trust Scheme Publisher (TSP)

	Actors

	Reference Implementation
	Automated Trust Verifier (ATV)
	Trust Scheme Publication Authority (TSPA)
	Trust Scheme Publisher (TSP)
	The TIGHTest Process
	Initializing ATV
	Load Trust Policy
	Load Transaction
	Signature Validation
	Validate Trust Membership Claim
	Validate Trust Policy
	Human Readable Results

	Discussion & Limitations

	Future Work
	Trust Policy
	Trust Translation
	Delegation

	Conclusion
	Bibliography
	Additional Figures

		2018-04-10T14:57:03+0000
	Stefan Josef More

