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Abstract

In the last few years, numerous side channels have been identified in the
Android API and reported to Google. Most of the side channels have
been detected by manually inspecting a small subset of the Android API.
However, by manually choosing methods to be investigated, information
leaks may be overlooked. Therefore, we propose a more systematic approach
by introducing the automatic side-channel detection framework SCAnDroid.
The framework triggers events of interest while invoking methods of the
Android API and recording the return values. These recordings are then
analysed for correlations with the help of dynamic time warping.

We demonstrate the applicability of the SCAnDroid framework by ex-
posing side channels in several parts of the Android API. We show
that these side channels can be exploited to infer various events, such
as website invocations, application launches, and Google Maps search
queries. In particular, the global network statistics released via the
android.net.TrafficStats API allow us to deduce the executed events
with high accuracy. Furthermore, storage statistics released via the
Java java.io.File API, Android’s android.os.storage.StorageManager,
and android.app.usage.StorageStatsManager APIs also leak information
about the executed event. Some of these methods have only recently been
added in Android 8, the latest stable release. Compared to a manual invest-
igation, SCAnDroid can be automatically applied to recently added methods
in new versions of the Android API. Therefore, SCAnDroid represents a
valuable framework for hardening the Android API against side-channel
attacks.
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Kurzfassung

In den letzten Jahren wurden unzählige Seitenkanäle in der Android API
identifiziert und an Google gemeldet. Die meisten der Seitenkanäle wur-
den durch die manuelle Inspektion eines kleinen Teiles der Android API
erkannt. Durch die manuelle Auswahl der zu untersuchenden Methoden
können Seitenkanäle jedoch übersehen werden. Deswegen stellen wir mit
dem automatischen Seitenkanalerkennungsframework SCAnDroid eine sys-
tematischere Herangehensweise vor. SCAnDroid startet Ereignisse, während
es gleichzeitig Methoden der Android API aufruft und die Rückgabewerte
dieser Methoden speichert. Diese Aufnahmen werden dann mit Hilfe von
Dynamic-Time-Warping auf Korrelationen untersucht.

Wir demonstrieren die Anwendbarkeit von SCAnDroid durch das
Aufdecken von Seitenkanälen in verschiedenen Teilen der Android
API. Wir zeigen, dass die gefundenen Seitenkanäle ausgenutzt werden
können um auf verschiedene Ereignisse zurückzuschicken, wie zum Bei-
spiel das Öffnen von Webseiten, das Starten von Applikationen, oder
Sucheingaben in Google Maps. Vor allem die globalen Netzwerkstatis-
tiken, welche über die android.net.TrafficStats API abgerufen wer-
den können, erlauben es auf die ausgeführten Ereignisse mit hoher
Genauigkeit aus den veröffentlichten Daten zu schließen. Zusätzlich
ermöglichen es uns auch Speicherstatistiken, wie sie über die Java
java.io.File API, android.os.storage.StorageManager API, und die
android.app.usage.StorageStatsManager API veröffentlicht werden, auf
die ausgeführten Ereignisse zurückzuschließen. Einige der genannten Me-
thoden wurden erst kürzlich, mit Version 8 des Android Betriebssystems,
eingeführt. Im Vergleich zu einer manuellen Untersuchung kann SCAnDro-
id automatisch auf neu hinzugefügte API Methoden angewandt werden.
Dadurch ist SCAnDroid ein nützliches Framework, um die Android API
gegen Seitenkanalattacken abzusichern.
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1. Introduction

Smartphones have become omnipresent in our daily lives. We use them to
store our most personal photos, exchange secret messages with friends and
relatives, and may even use our personal device at work due to the trend of
bring your own device (BYOD). Therefore, a strict separation between the
different applications running on the device is needed. On Android, this
separation is achieved by sandboxing each application with the help of the
underlying Linux kernel. Thus, an application is prevented from directly ac-
cessing data stored by another application. Furthermore, access to resources
which are considered sensitive is managed by Android’s permission system.
However, shared resources which are deemed as insensitive and, therefore,
available without a permission, may still leak our private data to untrusted
applications. Several attacks have been conducted in the literature by ex-
ploiting these seemingly benign resources. In such side-channel attacks, the
resources are used to deduce, for example, sensitive events and, therefore,
circumvent the previously mentioned security measures. The identified
side channels include usage statistics which can be utilised to infer, e.g.,
opened websites [49, 77, 78] or running applications [11, 36, 78, 82], and
sensor readings which may leak, for example, entered unlock patterns and
passwords [4, 5, 7, 8, 62, 76, 81], or even the user’s daily commuting routes
[45, 58, 59].

Until recently, most of the published side-channel analyses on smartphones
have been identified manually, by choosing to profile specific resources.
However, manually finding and analysing possible side-channel candidates
is an elaborate and time-consuming undertaking. To automate this task,
Spreitzer et al. [78] have introduced a more systematic approach in a tool
called ProcHarvester. The framework is designed to automatically find and
analyse side channels in the procfs [74] of Android, which contains various
process-specific statistics. However, to our knowledge, no such tool exists
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1. Introduction

for the Android API. Therefore, we introduce SCAnDroid, a framework for
the automatic detection and analysis of side channels in the Android API.
In the first step, SCAnDroid searches for possible side-channel candidates
in the Android API. In the second step, it invokes these methods while
launching events of interest and, in the third step, it analyses the gathered
data for correlations. Using this approach, we make the process of finding
and evaluating side channels in the Android API more systematic and, in
turn, improve the security of the stored and processed private information
on Android smartphones by reporting our findings to Google and by open-
sourcing SCAnDroid.

1.1. Contributions

• Implementation: We introduce the SCAnDroid framework for the
automatic detection and analysis of side channels in the Android API.
We extend the ProcHarvester framework [78] to automate the profiling
of methods in the Android API. SCAnDroid utilises the analysis
framework based on dynamic time warping from the ProcHarvester
implementation to detect side channels. Furthermore, it builds on the
communication framework used in ProcHarvester to launch events
and communicate between the smartphone and the PC.
• Utilisation: We apply SCAnDroid to explore the Android API for

possible side channels systematically. We assess the information leak-
age by recording the return values of API methods while triggering
different events of interest, namely website invocations, application
starts, Google Maps searches, and keyboard gestures.
• Evaluation: By running SCAnDroid on a device with the latest An-

droid release, version 8.1, we uncover several side channels in different
parts of the Android API, allowing us to infer the launched events of
interest.

The results of this work have been published at ACM WiSec 2018.

2



1. Introduction

1.2. Outline

In Chapter 2, we discuss the background and related work. In Chapter 3,
we give an overview of the SCAnDroid framework and the steps taken to
profile the Android API for information leaks automatically. In Chapter 4,
we demonstrate the capabilities of SCAnDroid by investigating four different
attack scenarios and present the results. In Chapter 5, we discuss possible
countermeasures, how SCAnDroid can help to harden new APIs, limitations
of the framework, and possible future work. Finally, Chapter 6 concludes
this work.

3



2. Preliminaries

In this chapter, we give an overview of the related work and present back-
ground information.

2.1. Related Work

In this section, we shortly introduce general side-channel attacks, explore
related work in the field of software-based side-channel attacks with a focus
on smartphones, and tools to automate the software-based side-channel
analysis process.

2.1.1. Side-Channel Attacks

The discovery of side-channel-based information leakage dates back to at
least World War II [39]. Back then, Bell Labs detected that (part of) the
plaintext their encryption device was processing could be inferred from,
e.g., electromagnetic radiation and acoustic emanations. Conductors like
signal or power lines could amplify the signal and made it possible to
infer secrets over considerable distances. Since then, side channels have
been found in many devices and software products handling sensitive
information. In general, side channels are not considered as an exploit of
specific vulnerabilities in, e.g., software or hardware. Side channels represent
leaks in information published either unintentionally, as in the example
above, or intentionally by publishing seemingly harmless information [79].
Side-channel attacks include attacks on cryptographic implementations of
mathematically secure primitives (see [80]). However, side channels have also
been found in numerous other applications, such as web applications (see
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2. Preliminaries

[12]), operating systems (see [46]), or mobile devices [79]. The attack vectors
include, for example, electromagnetic emanations [2], timing behaviour [40],
and power consumption [50] of a device. Attackers can also play an active
role and may, for example, try to cause faults [6].

2.1.2. Software-Based Side-Channel Attacks

In this section, we will concentrate on software-based side-channel attacks.
Specifically, we focus on software-based side channels which have been
demonstrated on Android smartphones. All of the attacks mentioned can be
carried out remotely via the installation of a seemingly benign application.
The attacks are also passive, i.e., the attacker does not try to influence the
device actively and only observes specific properties of the smartphone
and its operating system. The information used in these attacks is usually
gathered via the Android API or the procfs/sysfs.1 All of the side channels
are exploitable without requiring permissions that have to be granted by
the user. However, some of the exploited information channels have been
restricted in newer versions of Android.

Memory Usage Statistics

Jana and Shmatikov [49] were able to deduce a user’s browsing behaviour
using the RAM usage of the web browser, such as Chrome and Firefox. The
attack utilised the process-specific memory usage of the browser which was
published via the procfs. They exploited the observation that, depending on
the opened website, the memory footprint of the browser differs. The authors
used the Jaccard index for classification. To further improve the accuracy
of their work, they also used CPU scheduling statistics to distinguish the
entered URLs by their length.

1The procfs and sysfs are pseudo file systems inherited from the Linux kernel, which
provide various statistics and data about the system, such as process statistics or CPU
details [74, 75].
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2. Preliminaries

Interrupt Timings

Simon et al. [73] proposed an attack to infer entered text on keyboards using
gestures. In their work, they used the interrupt counter of the smartphone
display and the global context-switch counter. These system-wide statistics
are provided via the procfs. Whenever the user touches the screen, the
interrupt counter of the display gets increased. Furthermore, the keyboard
application switches between kernel and user space while processing the
events, increasing the context-switch counter. Even though other applic-
ations running in the background may also increase the context-switch
counter, they were able to deduce the entered text from a list of sentences of
interest. For the inference, a recurrent neural network was used in the paper.
The side channels also allowed them to identify users in message boards
based on inferring the messages they submitted.

Diao et al. [36] exploited the interrupt counters of the display sub-system
to infer the unlock pattern and running applications. This information is
again released via the procfs. In their paper, a hidden Markov model was
used to deduce possible unlock patterns which significantly reduced the
search space compared to random guessing. For the application inference,
dynamic time warping was used.

Shared Memory Statistics

Chen et al. [11] utilised process-specific shared memory counters released
via the procfs to infer currently running applications and their state. An-
droid, like many other operating systems, uses shared memory to commu-
nicate between the current application and the window compositor. The
window compositor is responsible for drawing the application window on
the screen. As different activities use a different number of user interface
elements, the shared memory usage differs. The authors used a hidden
Markov model to infer transitions between activities and the activity itself.
In their experiments, they deduced the running activity in seven different
applications, such as WebMD, Gmail, or the banking application Chase. To
improve the inference accuracy, they also considered the process-specific
CPU-utilisation time and process-specific network usage statistics, such
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2. Preliminaries

as the size of sent packets and destination IP addresses. They showcased
the power of these side channels by launching a fraudulent login activity
directly after an application started its login activity. Therefore, this attack
could be used to steal user data. The authors presented such an attack
against two of the profiled applications. Furthermore, they used the side
channel to infer when the camera was opened and later released by the
Chase application to capture images of cheques while the user was still
pointing at them.

Data Usage Statistics

Zhou et al. [87] used process-specific data usage statistics as provided by
the Android API and via the procfs to infer sensitive information about
the user. They were able to collect the user identities by observing the data
statistics of the Twitter application. Furthermore, the data usage of the
WebMD application allowed them to infer medical conditions. The data
usage of the Yahoo! Finance application enabled them to infer stocks a
user is observing. The authors built a signature database by executing the
events while running a network sniffing application on their device. The
signatures accounted for differences in the size of the sent and received
network packets. For example, the size of a sent Twitter message may have
varied by 140 bytes, which was the maximum message size of a Twitter
message back then. For the WebMD application, they built a finite state
machine comprising of such signatures. In the attack phase, they compared
the recorded data usage with the pre-built signatures. Process-specific data
usage statistics have since been restricted.

Spreitzer et al. [77] showed that it was possible to use the application-specific
data usage statistics to infer the web browsing behaviour of the user. The
experiments were conducted with different browser applications, including
Chrome and Firefox. Even when surfing via the anonymity network Tor
using the Tor Browser for Android (Orfox), these statistics allowed to infer
website launches with high accuracy. They used a classifier based on the
Jaccard index. The authors stressed that, in combination with sensor-based
side-channel attacks [56, 62, 64], this attack could be used to infer the visited
websites based on the data usage and to steal the login credentials with the

7
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help of the sensor data. Therefore, combinations of the presented attacks
allow even more devastating attack scenarios which do not only pose a
threat to the privacy but also the security of the user.

Speaker Status

In addition to inferring personal information from applications via the data
usage statistics as outlined in the previous section, Zhou et al. [87] were also
able to deduce the user’s location via the speaker status published through
the Android API. Even though the speaker status only represents the binary
information on or off, the researchers were able to infer driving routes of
the user based on the length of the navigation guidance from the navigation
application. The length was determined by polling the speaker status with
high frequency. The authors simulated different driving routes to collect the
length of the navigation guidance on these routes and utilised a variant of
the Jaccard index for classification. They used Google Maps as navigation
application as this application also announces the road name in addition
to the driving direction. However, any navigation application announcing
road names should be susceptible to this attack.

Power Consumption Statistics

Michalevsky et al. [55] leveraged the power consumption of the smartphone
to deduce the user’s location. This attack is possible because the device
consumes more power if it is further away from the connected cell tower
or if obstacles are between the phone and the tower. Therefore, the signal
strength can be approximated by the overall power consumption of the
device. The authors used subsequence dynamic time warping and optimal
subsequence bijection for the classification of the gathered data. These
algorithms allowed them to match parts of the recorded routes to parts
of the known routes. The power consumption has been obtained from the
battery statistics in the sysfs.

Yan et al. [82] exploited the global power consumption statistics to infer
running applications or to identify the UI state of the currently running
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application. Similar to the previously mentioned attacks, this information
could again be used by a malicious entity to conduct a phishing attack by
starting a fake login screen when the user is supposed to enter username
and password. Furthermore, the authors used the power consumption to
infer the length of entered passwords. While they were not able to guess
the actual password, the number of characters can still help to reduce the
search space in brute-force attacks.

Sensor Readings

Compared to traditional desktop computers, virtually all modern mobile
devices, such as smartphones and tablets, contain a plethora of sensors.
While these sensors enable a multitude of new features and use cases, such
as automatic screen rotation, motion-steered games, and virtual reality
applications, these sensors also pose a privacy and security threat. The
sensors are available to developers via the Android API. Most of them do
not require dedicated permissions. To use a sensor, an application usually
requests access to the sensor by registering a callback interface. This interface
gets called whenever the sensor reading changes. Different sensors have
been exploited to infer, for example, user input or location.

Cai et al. [9] and Raij et al. [70] laid the groundwork for sensor-based attacks
on smartphones by analysing the threat landscape and user awareness. Later
on, Cai and Chen [8] utilised the accelerometer to derive touch input on a
number-only keyboard. The probability density function of the Gaussian
normal distribution was used to infer the keystrokes.

Owusu et al. [62] used the accelerometer to infer keypresses on a QWERTY
keyboard. They used the random forest classification method. Furthermore,
the researchers used their findings to reduce the search space for guessing
6-character passwords significantly.

In further publications, sensors were used to deduce the PIN or pattern
which is entered to unlock the phone. Xu et al. [81] used the accelerometer
and the orientation sensor to infer PIN input. The researchers constructed
different features from the obtained data and used k-means clustering for

9
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classification. Furthermore, Aviv [4] and Aviv et al. [5] used the accelero-
meter to deduce both PINs and patterns. Logistic regression and the hidden
Markov model were used for the classification of the extracted features.
The logistic regression classifier was used to deduce the entered PIN out
of a set of 50 candidates, while the hidden Markov model was used to
infer random PINs and patterns from a set of smaller training sequences.
Furthermore, Cai and Chen [7] utilised the accelerometer and the gyroscope
to infer 4-digit PINs. They used dynamic time warping and support vector
machines (SVM) as classifiers. They evaluated the attack among different
users, devices, and keyboard layouts and found that the sensors leaked
information about the entered PIN code in all cases. Furthermore, they
noted that the gyroscope readings collected in the study lead to a higher
inference accuracy than the accelerometer traces.

Miluzzo et al. [56] inferred touch locations and entered English text by
combining the readings of the gyroscope and the accelerometer. They used
an ensemble approach for the inference, i.e., they connected the output
of multiple classifiers, namely k-nearest neighbour (kNN), SVM, random
forests, multinomial logistic regression, and bagged decision trees. Again,
the authors concluded that the gyroscope contributed the most to the
inference accuracy. Ping et al. [64] also combined the gyroscope and the
accelerometer to infer more extended bodies of text, such as typed Twitter
messages and emails. The entered Twitter messages allowed the researchers
to deduce the identity of the user by searching for the inferred text on Twitter.
They used the shared memory side channel from [11] to detect the presence
of the keyboard on the screen and the timing of user input. Furthermore,
they applied language models to correct the inferred keypresses, and thereby,
increased the accuracy on a letter and word level. For the classification of
the typed letters, the authors used an ensemble approach combining linear
logistic regression, random forests, SVM, and kNN classifiers.

Michalevsky et al. [54] exploited readings from the gyroscope to recover
speech patterns of nearby persons. Due to the limited sampling rate of
the gyroscope, not every word could be reconstructed from the gyroscope
readings. Therefore, the authors limited the dictionary of recognisable words
to single digits. Still, such a side channel could be used to, for example,
deduce spoken credit card numbers. Combining gyroscope readings of the
same statement from multiple smartphones allowed them to increase the
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inference accuracy further. Before applying the speech recognition, they
first identified the gender of the speaker, and subsequently also the speaker.
For the gender identification, they used a binary SVM classifier, and for
the speaker identification, they utilised a multi-class SVM and a Gaussian
mixture model. For the actual speech recognition, dynamic time warping
was used, as the same word could differ in its length when spoken multiple
times or by different persons.

Spreitzer [76] proposed an attack using the ambient-light sensor to infer
PIN input from a set of 50 candidates. The author used multiclass logistic
regression, discriminant analysis, and kNN as classifiers. The attack was
conducted successfully under different lighting conditions. The only premise
for this attack to work is that the readings of the ambient-light sensor have
to change during PIN input, which may not be the case in very bright or
dark environments.

In addition to text input, the accelerometer and the gyroscope can also
be exploited to infer driving routes. Nawaz and Mascolo [59] used the
accelerometer and the gyroscope readings to detect repeated driving routes.
They applied a dynamic time warping approach on the angular velocities
to compensate for different journey times caused by, for example, traffic
congestion and driving styles. Narain et al. [58] combined the accelerometer,
gyroscope, and magnetometer to deduce driving routes in a city. They
used a maximum likelihood estimator to calculate a list of the most likely
courses based on the recorded trajectory. Possible routes were based on
OpenStreetMap data of a specific city. The authors argued that the gyroscope
readings provided the most useful data as the readings allowed to infer turn
angles and road curvature best.

Hemminki et al. [43] utilised the accelerometer to detect the user’s current
transportation mode. They used a hidden Markov model and AdaBoost
for classification. They were able to differentiate between resting, walking,
transportation by bus, and railway transportation, i.e., tram, train, and metro.
Similarly, Sankaran et al. [72] used the barometer to deduce the transport-
ation mode. They distinguished more coarsely between resting, walking,
and general transportation by vehicle, which includes both motorised and
unmotorised vehicles. Compared to accelerometer-based transportation type
inference, the barometer also classified the resting state correctly if the user
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was creating movements by operating the device in her hands. They classi-
fied the barometer readings through different observations, for example, the
height change in a given time frame or by calculating the standard deviation
of the height in a predefined period. The classification occurred in real time
on the phone. Furthermore, Ho et al. [45] used the barometer to estimate the
elevation and subsequently infer driving routes. They used dynamic time
warping to deduce the most likely driving route from a fixed set of paths.

2.1.3. Automated Side-Channel Analysis

Most of the attacks in the literature rely on the manual selection and
exploitation of possible side channels. Unlike testing frameworks, which
do exist for most programming languages, frameworks for the automatic
detection of side channels are much less ubiquitous. We are aware of one
framework made specially for Android and two tools for the discovery of
side channels in individual web applications. The framework for Android
is called ProcHarvester [78]. It automates the detection of side channels in
the procfs. For the analysis of web applications, we identified Sidebuster
[83] for GWT (Google Web Toolkit) applications and a more generic tool
by Chapman et al. [10], which, unlike Sidebuster, is not constrained to a
single web application framework. As side channels in web applications are
a threat to smartphone users as well, we will take a closer look at these two
tools before we move on to ProcHarvester.

Compared to side channels specific to smartphones, the two web applic-
ation frameworks consider a different adversary model. As described in
Section 2.2.1, with smartphone-specific side channels we (usually) consider
a seemingly benign application or game which the user installs. In the case
of web applications, on the other hand, no installation of an application is
required. Instead, the user only opens the web application in a browser. In
this adversary model, the web application, furthermore, uses encryption to
protect information transferred between the server and the client. Therefore,
the sensitive information is not directly available to anyone observing the
communication. The attacker resides on the wire and, hence, cannot directly
execute code on the client. Such an attacker could, for example, be the
Internet service provider (ISP) or other users on the local network. The
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attacker has access to the encrypted web traffic and any metadata which
is sent unencrypted, such as packet lengths and sequences. The attacker
uses this information to infer the encrypted data. Furthermore, the tool by
Chapman et al. [10] also considers an adversary who has only access to
encrypted WLAN traffic, i.e., no direct access to individual packet metadata.
Thus, the adversary in this second threat model only sees the size of the
transferred data and whether the traffic is outgoing or incoming.

Automated Side-Channel Analysis in Web Applications

Sidebuster [83] is a tool to help detect side channels in web applications. It
has been designed for applications based on Google Web Toolkit. The tool
first uses a white-box approach to find interactions with the investigated
website which are possibly leaking sensitive information. For this step, the
developer of the web application has to tag variables containing sensitive
information. Sidebuster then checks whether or not the sensitive information
is in fact sent over the network by examining the data flow and control flow
of the application. In a second step, the tool assesses how much sensitive
information is leaking by running the possibly leaking interaction in a
simulated browser based on HtmlUnit [3]. The result of this step should
help the developer to evaluate whether or not an information leak is worth
fixing. In their paper, the researchers used the tool to assess six different
web applications. Three of them were replicas of websites with known side-
channel vulnerabilities. Sidebuster was able to detect the known issues and
also found side channels in the other three examined applications. However,
the researchers note that most of the web applications built on GWT are
closed source and can, therefore, not be analysed using Sidebuster unless
the source code is made available. Furthermore, Sidebuster does not work
with the various other web frameworks used in practice.

Chapman et al. [10] proposed another tool to detect side channels in web
applications. Unlike Sidebuster, their framework is based on a black-box
approach. Therefore, it does not need access to the source code and is applic-
able to any web application. The implementation is based on Crawljax [53],
which is in turn based on Selenium [69], a browser automation application
primarily used for testing. To detect possible side channels, the tool requires
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a so-called crawl specification for each website. This specification contains,
for example, the elements to click, input fields and corresponding values
to fill, or login data for individual sites. The tool was tested on parts of six
different real-world web applications, consisting of four search engines and
two health-related websites. Five of them had known side-channel leaks
which could be verified with the tool. In the sixth application, a symp-
tom checker, they were able to infer the entered information with high
accuracy.

Automated Side-Channel Analysis on Smartphones

In the mobile space, only recently Spreitzer et al. [78] introduced a tool called
ProcHarvester. The tool automatically searches for possible side channels
in the procfs of Android [74]. In a second step, it records traces of these
side-channel candidates while automatically triggering events of interest.
The recorded time series are later analysed for correlations. In their work,
application starts, website launches, and keyboard gestures were profiled.
While launching these events, ProcHarvester was able to identify a known
side channel, but also found several new side channels in Android 7 and
Android 8. The recognised side channels allowed the researchers to infer
the profiled events with high accuracy. However, no such tool exists for the
Android API. Therefore, SCAnDroid closes this gap by profiling the Android
API for side channels. It builds on the concept of ProcHarvester. However,
unlike ProcHarvester, which uses the File API to read from the procfs,
SCAnDroid has to create complex objects for the invocation of methods and
constructors.

2.2. Background

In this section, we present our adversary model, discuss how Android
implements the isolation between different applications via the concept of
sandboxing and permissions, show the machine learning technique used in
this paper, and give an introduction to Java Reflection.
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2.2.1. Adversary Model

In this work, we consider so-called template attacks, which are a form of
profiling attacks. The attacks consist of two different steps, the training and
the attack step. In the training step, the attacker creates a template of the
different events of interest. The attacker does this step on a device of her
choice. To obtain data for the attack phase, the attacker then releases an
application to an application store like the Google Play or the Amazon App
Store. The application may fulfil some useful purpose or is an addictive
game to provide an incentive for the user to install the application. However,
besides this legitimate purpose, the application also runs in the background
recording data while the user may perform events of interest. To make it
look even more benign, the application does not require any permissions
which would need to be granted by the user to obtain the data. The gathered
data is then analysed with the help of the template built in the previous
step. To keep the battery consumption reasonable, this step may be done
on a more capable remote machine. As every application on Android is
allowed to access the Internet without user consent, this should not raise
any further suspicion by the user. The application only gathers data and
does not try to modify or influence the operation of the device. Hence, in
our adversary model, the attacker is a passive attacker.

2.2.2. Android Permission Types

In recent years, smartphones have emerged as the computing device of
choice for many people. Smartphones have become much more capable,
and we carry them with us almost anywhere. Therefore, these devices
accumulate a lot of sensitive information about the user. Smartphones allow
the user to, for example, shoot and store personal photographs, create notes,
hold conversations, and manage contacts. Furthermore, with the trend of
BYOD, personal devices are increasingly used in the work environment
to process sensitive corporate information. On the other hand, application
markets like Google Play or the Amazon App Store allow users to install
potentially untrusted applications and games.
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To keep personal and corporate information safe from untrusted applica-
tions, Android uses the concept of sandboxing to separate applications from
each other. Android uses security features from the Linux kernel to enforce
the sandboxing concept. To achieve this, the operating system assigns a
unique user ID (UID) to each application. Furthermore, since version 4.3,
Android also uses security-enhanced Linux (SELinux) to refine the sandbox
further [68]. SELinux is a Linux kernel module which provides support for
mandatory access control. It allows specifying policies for different applic-
ations. Violations of these policies are enforced by the kernel to prevent
malicious activity.

The security techniques described in the last paragraph allow Android to
separate applications from each other. However, some applications need
access to information and resources outside the sandbox, like access to the
internal storage, contacts, or camera. Applications can ask for access to such
resources by requesting the appropriate permissions. Before Android 6.0,
these permissions were granted at installation time, i.e., the user only had the
choice of granting all requested permissions or not installing applications
requiring too many permissions. However, with the introduction of runtime
permissions in Android 6.0, the user can now deny or revoke individual
permissions from applications [17].

The permissions are grouped into different protection levels. In general, we
distinguish three different types of applications corresponding to the type
of permissions they request. These are as follows:

• Zero-Permission Applications: Zero-permission applications do not
request any permission from the user of the device. On Android, these
applications can request so-called normal permissions [29]. These normal
permission allow an application to access certain resources outside its
sandbox which are considered as having little risk to the user’s privacy.
They are granted to the application at install time without requiring
user interaction and cannot be revoked by the user. Examples in this
category include the SET ALARM or INTERNET permission.
• Dangerous-Permission Applications: Dangerous-permission applica-

tions are allowed to access certain private information from the device.
Since Android 6.0 [17], these permissions need to be granted by the
user either via a pop-up dialogue or from the settings application.
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Examples of dangerous permissions are the READ EXTERNAL STORAGE

permission to read the persistent storage of the device or the READ -

CONTACTS permission to access the contacts of the user.
• System-Level/Signature-Permission Applications: In general, system-

level and signature permissions are only available to system applic-
ations or applications signed with a special key respectively. How-
ever, some of these permissions can also be requested by third-party
applications. These permissions are listed in [41], annotated with
android:protectionLevel="appop". Of special interest here is the
PACKAGE USAGE STATS permission [26], which allows to query vari-
ous usage statistics. Compared to dangerous permissions, system-level
and signature permissions, if available to third-party applications, can
only be granted from the settings application.

For this work, we primarily search for side channels in the Android API
which can be exploited by zero-permission applications, as these applica-
tions should not be able to access or infer any personal information.

2.2.3. Java Reflection

To systematically evaluate the Android API, we use the Java Reflection
API [61]. In general, reflection is the capability of a program to analyse
and change itself at runtime [52]. Reflection allows us to programmatically
examine the Android API by retrieving all API classes and invoking the
methods of these classes. Thus, the methods do not need to be called manu-
ally by invoking each individual method in the source code of SCAnDroid.
With thousands of methods in the Android API, a manual inspection would
be nearly impossible. With Reflection, on the other hand, it is possible to
dynamically retrieve a class based on a string containing the package and
class name. The Reflection API then allows us to query all constructors and
to create an object of the class. In case a constructor takes any parameters,
the type of the parameters can be queried, and objects can be instantiated
before invoking the constructor. Furthermore, the declared methods of the
class can be retrieved and invoked via Reflection. Similar to constructors,
the parameters of a specific method can also be queried and instantiated
before the method is called.
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An example of retrieving the class android.net.TrafficStats and invoking
each of the methods inside this class can be found in Listing 2.1. As non-
static methods need an object for invocation, we first create objects by
calling all available constructors. In case a constructor or method requires
parameter objects, these are also created accordingly. Moreover, Reflection
allows calling methods and retrieving fields which are marked as private
or protected and, thus, inaccessible from regular Java code outside the
respective class or package. For more information on Java Reflection, we
refer to the official Java API documentation [61] and specialist publications
on the topic such as [38].

2.2.4. Dynamic Time Warping

In this work, we record return values of methods over time, while triggering
events of interest on the smartphone. These recorded values form so-called
traces or time series. Let us assume we recorded the data usage of a browser
while opening the same website twice. When disregarding disk cache usage
and any dynamic content that may change between site visits, the browser’s
data usage should be the same between the two recordings. However, due
to network congestion, routing differences, or other influencing factors, the
data usage recorded at a specific point in time may not be exactly the same.
To account for these temporal variations, we use dynamic time warping
(DTW) [57]. DTW warps the two time series in a non-linear fashion to find
the warping path with minimal distance. Compared to a linear alignment,
such as produced by applying the Euclidean or Manhattan distance, a non-
linear alignment such as produced by dynamic time warping leads to much
better accuracies for time series. Dynamic time warping has been used in
automatic speech recognition [71] but has since been applied in other fields,
such as bioinformatics [44] and gesture recognition [51], as well. In essence,
DTW calculates the distance between each point of the two time series and
then backtracks to find the ideal warping path. However, in practice, several
constraints are applied to reduce the computational overhead and to avoid
some problems. According to [57], these are as follows:

• Boundary Condition: The warping path starts at the beginning of the
time series and stops at the end, i.e., the algorithm considers both time
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// Retr ieve c l a s s and get declared c o n s t r u c t o r s
Class c l a z z = Class . forName ( ” android . net . T r a f f i c S t a t s ” ) ;
Constructor [ ] c s t o r s = c l a z z . getDeclaredConstructors ( ) ;
// Create array f o r saving the constructed c l a s s o b j e c t s
ArrayList<Object []> c l a s s O b j e c t s = . . . ;
f o r ( Constructor c o n s t r u c t o r : c s t o r s ) {

// Get type of c o n s t r u c t o r parameters and c r e a t e o b j e c t s
Class <?>[] paramTypes = c o n s t r u c t o r . getParameterTypes ( ) ;
ArrayList<Object []> parameterObjects =

getParamObjs ( paramTypes ) ;
// Create c l a s s o b j e c t s by invoking each c o n s t r u c t o r
f o r ( Object [ ] paramObject : parameterObjects ) {

c l a s s O b j e t s . add ( c o n s t r u c t o r . invoke ( paramObject ) ) ;
}

}
// Get a l l declared methods
Method [ ] methods = c l a z z . getDeclaredMethods ( ) ;
f o r ( Method method : methods ) {

f o r ( Object c l a s s O b j : c l a s s O b j e c t s ) {
// Get parameter types and c r e a t e o b j e c t s
ArrayList<Object []> parameterObjects =

getParamObjs ( method . getParameterTypes ( ) ) ;
// Invoke each method to r e t r i e v e the return value
f o r ( Object [ ] paramObj : parameterObjects ) {

Object retValue = method . invoke ( c lassObj , paramObj ) ;
}

}
}
ArrayList<Object []> getParamObjs ( Class <?>[] paramTypes ) {

ArrayList<Object []> parameterObjects = . . . ;
f o r ( Class parameterType : paramTypes ) {

// Parameter o b j e c t s may need to be crea ted r e c u r s i v e l y
parameterObjects . add ( . . . ) ;

}
re turn parameterObjects ;

}

Listing 2.1: Retrieving the return value of all methods of a specific class.
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series as a whole and not just subsequences.
• Monotonicity Condition: The warping path does not go back in time,

i.e., features are not repeated.
• Step Size Condition: A basic step size condition is to move the warp-

ing path one point forward in each step, either in one of the two
time series or in both. Therefore, the warping path does not jump
in time, and no features are skipped. However, using this basic step
size condition does not prevent that short parts of one time series are
matched to very long parts of the other time series. This problem can
be circumvented by constraining the slope of the warping path. These
so-called slope constraints ensure that the warping path is neither too
steep nor too flat.
• Warping Window: Considering the three constraints above, it is still

possible that one point of a time series gets matched to many points in
the other time series. To avoid this, a warping window is introduced.
The warping window represents a global constraint which reduces the
number of admissible warping paths.

In our experiments, we use a k-nearest neighbour classifier on the distance
matrix computed with dynamic time warping. In particular, we utilise
the python library cdtw [42] in combination with the machine learning
framework scikit-learn [63]. As shown in [37], the combination of DTW and
a kNN classifier produces a high accuracy. Figure 2.1 depicts the alignment
produced by dynamic time warping when applying the algorithm to two of
the time series SCAnDroid has gathered during our experiments.
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Figure 2.1.: Alignment of two time series produced by applying dynamic time warping.
The time series show the received bytes while launching the application Spiegel
Online.
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SCAnDroid is a generic framework for side-channel detection and analysis
of the Android API. In general, SCAnDroid automatically triggers events
of interest (e.g., opening applications or websites) on a smartphone (or
emulator) running Android. Concurrently, SCAnDroid invokes a specified
set of methods in the Android API and monitors the return values for
changes. In a second step, the gathered data will be analysed for correlations
with the help of machine learning techniques.

A graphical overview of the structure of the SCAnDroid framework can
be found in Figure 3.1. The framework consists of three main components.
These components are called the Parser, the Backend, and the Service. The
Parser and the Backend run on the PC, while the Service is executed on
the smartphone. Before the profiling, the Parser fetches a list of methods,
constructors, and the corresponding package structure from the Android
Developers [20] website. During the actual profiling, this information is
then used by the Service component to invoke methods of interest by
means of Java Reflection. The profiling phase is controlled by the Con-
troller component of the Backend. In this profiling phase, the Service first
detects potentially leaking methods by monitoring the return values for
changes, while the Backend continuously triggers events of interest. After
side-channel candidates have been found, the Backend starts the actual
profiling. It invokes predefined events of interest while the Service records
the return values of the candidate methods. When the profiling is done, the
Backend pulls the recorded files from the Android device for analysis by
the Analysis component. The Backend and parts of the Service component
are based on the ProcHarvester [78] implementation. The following sections
will provide more details about the features and configuration options of
the components.
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Figure 3.1.: Overview of the structure of SCAnDroid.

3.1. Parser

The Parser collects data from the Android Developers documentation. Some
of the data collected by the Parser cannot be gathered during runtime of the
Service using Java Reflection. In particular, these are the parameter names of
methods and constructors. While parameter names are not strictly needed
to call methods, the parameter names often convey the meaning of different
parameters. Therefore, they allow us to define parameters of our choice with
predefined values instead of randomly guessing them. Thus, the parameter
names are needed by the Service to associate the predefined parameter val-
ues and statements with the parameters of methods and constructors. With
Android 8 now supporting version 8 of the Java API [18], it is theoretically
possible to query parameter names at runtime. The Java 8 standard specifies
a method called getName() [28] in the java.lang.reflect.Parameter class.
However, this method only provides the real parameter names as specified
in the source code if the class of the method or constructor is compiled with
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debug information. As the Android API on a regular phone is not compiled
with debug information, the method getName() only provides generic para-
meter names in the form of arg0, arg1, ... , argN. These generic names
make it harder to correctly associate the predefined parameters with the
parameters of methods and constructors. Therefore, we parse the parameter
names from the Android Developers documentation.

The Parser creates two files. One file contains information about methods
and the other one about constructors. We call these the methods file and
the constructors file respectively. An example of the methods file can be
found in Figure 3.2. It consists of the method names and the name of their
parameters grouped by package and class. The constructors file contains all
parameter names of the constructors grouped by package and class. The
constructors file has a similar structure as the methods file. The grouping
by package and class is needed because the same method name can exist in
different classes and packages. The files, however, do not contain the types
of the parameter. These can be queried via the Reflection API. Thus, the
Service checks if a predefined parameter type fits before calling a method
or creating a class object. The parsed files can be edited to remove specific
methods or to probe only a particular subset of the Android API. The
Parser can also be configured to only parse methods and constructors of a
specified API level or up to a specified API level. This option can be helpful
to investigate possible side channels introduced in a specific version of
Android.

The Parser also collects all Android permissions provided by the operating
system itself. These permissions are directly written into valid Android
App Manifest XML files [22]. Three different files are created. The first one
contains only normal permissions which do not require any user interaction.
The second one also encompasses dangerous permissions which need to be
granted by the user via a popup. The third one contains all permissions,
including system-level and signature permissions which have to be granted
via the settings application. Each Manifest file represents a different build
variant in Android Studio. These variants are installed as separate applic-
ations on the phone. Each application acts like either a zero-permission
application, a dangerous-permission application, or a system-level permis-
sion application respectively. They are distinguished by the Backend via
their package name. When starting the recording process in the Controller
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Structure

<package.class>
 Methods: <number of methods in class>
  <method_name> | <param1>, <param2>,…

Example

android.content.Context
 Methods: 117
  bindService | service, conn, flags
  …

Figure 3.2.: Structure and example of the methods file.

component of the Backend, the variant is chosen by a parameter. While
normal permissions are the most interesting as they can be accessed without
user consent, SCAnDroid is also able to explore methods which require
permissions. This feature can be useful for debugging or comparison pur-
poses (e.g., between similar leaking methods where one method requires a
permission and the other one does not).

3.2. Backend

The process of running SCAnDroid can be split up into two different phases
— the profiling phase and the analysis phase. In the profiling phase, a
smartphone (or emulator) running some version of Android and a PC are
needed to execute actions on the phone. The communication between the
Controller component of the Backend on the PC and the Service on the
smartphone is done via the Android Debug Bridge (ADB) [19] by means of
Intents. The analysis phase, on the other hand, is executed entirely on a PC.
The Controller and Analysis components are both written in Python.
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Controller component: The Controller component controls the Service on
the phone during profiling. It starts the Service on the phone and waits
until the Service has loaded completely. Afterwards, the Controller com-
ponent randomly triggers a set of predefined events of interest while the
Service records the return values of the potentially leaking methods. The
Controller also sends the corresponding label of the event to the Service.
After triggering an event, the Controller component waits for a specified
amount of time until the next event is triggered. Currently, the Controller
component can trigger website invocations, application launches, Google
Maps search queries, and keyboard gestures. Furthermore, the framework
can be easily extended with new events by adding them to the Controller
component. Changes to the Service are usually not needed as the concept of
recording return values stays the same. To automatically profile the events,
it should be possible to trigger the events via ADB or some other automatic
execution mechanism. The framework also supports triggering events by a
human manually. This feature is useful to rule out interference caused by
the automatic triggering of the events.

Analysis component: In the analysis phase, the data recorded in the pro-
filing phase is checked for correlations utilising machine learning. The
framework uses the cdtw library [42] which implements dynamic time
warping, and the machine learning framework scikit-learn [63] for analysis.
In our experiments, we record changing return values together with the
respective time stamp and label them with the current event. These form
the so-called traces or time series. The time series is first normalised by sub-
tracting the mean of the recorded values from the time series. Afterwards,
the time series gets interpolated. The interpolation ensures that the values
are distributed evenly over the time series while assuring that each value
occurs at least once in the series.

Let us denote the combination of all the preprocessed time series as TS.
Let us further assume that we recorded 8 launches of 20 different events.
Therefore, we have 160 time series in TS. We use k-fold cross-validation
to split up the recorded time series TS into training and test data. In
our example, we use 8 folds to split up the data into 140 training traces
and 20 test traces. The folds are split up in a stratified fashion, i.e., the
percentage of each event is preserved in the folds. For each test trace ttest,
the distances between ttest and each of the 140 training traces ttrain are
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calculated. The Analysis component then takes the nearest neighbour, i.e.,
the training trace ttrain with the lowest distance to ttest, as the inferred
event. If the inferred event corresponds to the label of the test trace ttest,
the event has been inferred correctly. The proportion of the number of
correctly inferred events and the total number of events in this fold depicts
the accuracy of the inference. This accuracy is averaged over all folds. In case
the accuracy is higher than random guessing, we consider the method as
leaking. The results of our experiments can be found in Section 4.2. We also
tried to extract features with the help of tsfresh [13], used a convolutional
neural network (CNN), and long short-term memory (LSTM) network based
on Tensorflow [1]. However, in our experiments, the results were not as
promising as the DTW approach.

3.3. Background Service

The Background Service running on the smartphone is implemented as
an IntentService. A background service on Android does not need a
user interface and is thus invisible to the user. In general, the Service is
responsible for recording traces while the Backend triggers events of interest
on the device. In our experiments, we consider methods with a special
prefix as relevant. The prefixes have been chosen because they are usually
associated with retrieving information. These prefixes are:

• get
• has
• is
• query

We apply several preprocessing steps as detailed in the following sections.
Even though we restrict the list of relevant methods as discussed above,
these preprocessing steps still require a lot of RAM. Therefore, we split up
the list of methods and constructors into four parts for our experiments
with a Nexus 5X having 2 GB of RAM. For each of these parts, we apply the
following preprocessing procedure consisting of three phases.
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Loading Phase

Before searching for side-channel candidates, we invoke each method of
interest once and remove methods which cannot be called, e.g., due to
invalid parameters. For methods which can be invoked successfully, we
save the created parameters, and in case of non-static methods, we also save
the class objects. These are needed for invocation of the methods in the
following phases.

Class Object Creation: To create objects for the invocation of non-static
methods, the framework queries all available constructors of a class and
invokes them. To invoke some constructors, we first need to create parameter
objects. There are four cases to consider:

1. No Parameters: The constructor does not take any parameters. It can
be invoked directly without creating any parameter objects.

2. Primitive Parameters: The constructor takes one or more primitive
parameters. These can be either predefined or will be randomly
guessed by SCAnDroid.

3. Non-Primitive Parameters: The constructor takes an object of a non-
primitive class type. In this case, the framework will recursively create
the needed objects until it reaches a constructor of type 1 or 2. In
case there are multiple constructors for the non-primitive parameter
objects, the framework will call all constructors and combine them
in all possible combinations, i.e., it will create all permutations of the
created parameter objects.

4. Primitive and Non-Primitive Parameters: In case the constructor
takes both primitive and non-primitive parameters, primitive paramet-
ers are handled as described in case 2 and non-primitive parameters
are handled as in case 3.

Method Invocation: At the beginning of the method invocation phase, the
framework queries all available methods. When at least one object of the
class was created (or if the class has static methods), the framework creates
parameter objects for each method that is also defined in the methods file
to invoke the methods. The framework distinguishes the same four cases
as when invoking constructors. For each of the created parameter objects
and each of the previously created class objects, the framework invokes
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the method. If the method can be successfully invoked, we distinguish two
different cases based on the type of the return value:

1. Primitive Return Value: In case the method returns a primitive return
value, e.g., a return value of type int or boolean, or if it returns an
array or collection of type java.util.Collection containing primitive
types, the method, parameter objects, and the corresponding class
object will be saved. These will be used in the following phases to
invoke the method again.

2. Non-Primitive Return Value: If the method returns an object of non-
primitive type, the framework explores the object recursively, i.e., the
framework explores all methods of the returned class objects until it
reaches a predefined recursion depth. For our experiments, we have
set the recursion depth to 2.

By default, the framework only saves the objects on which the method has
been invoked and does not recreate this object or its parent objects, i.e., it
flattens the recursion to reduce the processing time. However, in some cases,
it may be required to recreate this object for each invocation. For example,
consider a returned object containing the two fields int x and int y and
the corresponding getter methods getX() and getY(). The fields are set at
creation time via the constructor and, thus, invoking any of the two getter
methods will not change the values of the fields. Therefore, getX() and
getY() will always return the same value when invoked on the same object.
However, recreating the object itself may lead to different values of x and y.
Therefore, it is possible to configure classes for which the object should be
recreated.

Exploration Phase

After the Service has loaded all invokable methods and the correspond-
ing objects into memory, the Backend starts to trigger events of interest
continuously. Meanwhile, the Service calls each of the saved methods and
records the return value. Each method will be invoked a specified amount
of times. In these subsequent invocations, the Service will only record the
return value if it has changed compared to the previously saved value. At
the end of the exploration phase, the Service discards all methods where
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the return value has not changed at least once. This phase significantly
reduces the number of methods to be profiled in the next phase, because
the return value does not change for most methods. Thus, the potentially
leaking methods can be invoked at a higher rate in the recording phase.

Recording Phase

In the recording phase, the Backend triggers a predefined set of events a
predefined number of times in randomised order. In the meantime, the
Service keeps running in the background, invoking the potentially leaking
methods and recording the return values. The return value of each method
is written to a separate file for later evaluation. For each triggered event,
the Backend sends a label to the Service which appends it to each trace.
At the end of the recording phase, the Backend pulls the recorded files for
evaluation by the Analysis component.

Predefining Parameter Values

As randomly guessing parameter values does not always lead to successful
invocations of methods, parameter values for constructors and methods can
be preconfigured in the parameters file. The structure of this file and an
example can be found in Figure 3.3. There are two types of values which
can be set. The first type are constant values of primitive types like boolean,
int, or float. Specifying character strings of type java.lang.String is
also supported. The second type, on the other hand, are more elaborate
statements. These statements are interpreted by the Service before calling
constructors and methods in the loading phase. The Service uses BeanShell
[60] as the interpreter for the statements. These can range from simple
additions to sophisticated invocations of the Java and Android API. As
BeanShell does not know about Android’s concept of Application Contexts
[23], the context of the Service is supplied to BeanShell as a predefined
variable. The parameter values and statements need to be associated with
methods or constructors. Three different options are available to do this.
The most general option is to specify only a parameter name. In this case,
the value or statement is used whenever a parameter with the chosen name
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Structure

primitiveParameterValues:
    <param_name>: <value>

<package>:
<method_name or wildcard>:

<param_name>: <value>
<param_name>: {value: [<value1>, <value2>, …],

  parameter_is_array: true|false}
parameterStatements:
    <param_name>: <statement>

<package>:
<method_name or wildcard>:

<param_name>: <statement>

Example

primitiveParameterValues:
    pid: 1234

android.net.TrafficStats:
"*":

uid: 10083
    android.content.Context:

getSystemService:
name: {value: ["storagestats", "netstats", "storage"],

   parameter_is_array: false}
    …
parameterStatements:
    context: "context"

android.app.usage.NetworkStatsManager:
"*":

startTime: "System.currentTimeMillis()"
…

Figure 3.3.: Structure of the parameter file and an example configuration of different
parameter values.

is encountered. A more detailed option is to specify a value or statement for
all methods and constructors in a specific class. The most granular option is
to constrain the value or statement to methods with a particular name in a
specific class. Regardless of choice, the parameter value or the evaluation of
the statement is checked for type compatibility before calling a method or a
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constructor. It is also possible to set multiple different values or statements
for a single parameter. The Service will then call the method multiple times
with each of the predefined values. As multiple values are specified with
array syntax, a flag has to be set to distinguish them from regular arrays.
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In the following section, we evaluate the coverage of SCAnDroid. The
subsequent section details the side channels we have identified by using
SCAnDroid to profile the Android API in four different scenarios automat-
ically.

4.1. Coverage Analysis

To get a perspective of how many methods were analysed in this work, we
performed a coverage analysis of the Android API. The coverage analysis
has been conducted on the stock Android 8.1 system image on the Nexus
5X with security patches from February 2018. The metrics obtained by the
Parser from the Android Developers documentation are based on API level
27 (Android 8.1). An overview of the coverage analysis is depicted in Table
4.1. According to the Reflection API, 53 913 methods are available in the
packages and classes parsed from the Android Developers documentation.
However, in the documentation of the classes only 36 339 methods are
listed. We attribute this discrepancy to the fact that the Reflection API also
finds methods which are, for example, private or protected. These methods
are normally only available in the corresponding class or package but not
directly to developers.

From our evaluation of the android.net.TrafficStats class, we found
that the undocumented methods in this class are mostly internal help-
ers for the documented methods. For example, the publicly accessible
method getMobileTxBytes() uses the private method getMobileIfaces()

to retrieve all mobile interfaces. Some other public methods may also be
hidden from the documentation deliberately, like for instance the method
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getTxBytes(String iface). We have also tried to evaluate the private and
protected methods in our study. However, a lot of these methods crash in
the native code, due to missing sanity checks already performed in the
public methods. As these crashes generally cannot be caught inside Java,
they make an automatic assessment of the private and protected methods by
SCAnDroid challenging. It is also harder to choose meaningful predefined
values for the parameters of these methods as the name of the parameter
is unknown (see Section 3.3). Thus, our focus in this work is on the 12 012
documented methods which have the prefix get, has, is, or query.

Declared methods according to Java Reflection 53 913
Methods in the Android Developers Documentation 36 339
Methods documented with relevant prefix (get, has, is, query) 12 012

− Methods in abstract classes or interfaces 2 860
− Methods where class could not be found (e.g., android.test) 208
− Methods removed (e.g., due to segmentation faults in native
code)

511

− Methods where invocation throws an error (e.g., due to wrong
parameters)

692

− Non-static methods where object creation fails 3 664
= Methods to be profiled 4 077
Methods actually profiled 5 056

Methods which do not change during website inference 5 020
Methods which change during website inference 36
Methods which do not change during application inference 5 019
Methods which change during application inference 37
Methods which do not change during Google Maps search query
inference

5 020

Methods which change during Google Maps search query inference 36
Methods which do not change during keyboard gesture inference 5 034
Methods which change during keyboard gesture inference 22

Table 4.1.: Coverage of SCAnDroid running on a Nexus 5X stock image based on Android
8.1 (API level 27).
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Out of the 12 012 methods of interest, 2 860 possibly relevant methods are
in abstract classes or interfaces. Thus, they cannot be called directly. An-
other 208 methods cannot be invoked because the class cannot be found
via Reflection. This set contains the deprecated android.test package and
the junit.runner package. We have also removed a small set of classes
due to problems encountered in the pre-profiling. These classes include
511 possibly relevant methods. The biggest part of them are located in the
android.graphics package. Several methods and constructors inside this
package caused segmentation faults in the underlying native code when
invoked with incorrect parameters, which, like in the case of private and
protected methods, cannot be caught inside Java code. Another 692 methods
cannot be invoked due to, e.g., wrong parameters or missing permissions.
For 3 664 non-static methods, we cannot directly create an object. Reas-
ons for this include wrong parameters for the constructor and missing
publicly accessible constructors in the class itself or in the parameters of
the constructor. Factoring in all of the aforementioned limitations, we can
theoretically invoke 4 077 methods. However, some of the missing objects
can later be retrieved by recursively exploring non-primitive return values.
Thus, we improve our coverage by around 1 000 methods to 5 056 invoked
methods. Examples include the method getSystemService(String) [24] of
the class android.content.Context, which returns various system classes
like the android.app.usage.StorageStatsManager.

In our experiments, we profiled four different events of interest. During the
website inference and Google Maps search query inference, the return values
of 36 methods changed at least once, while 5 020 did not change. For the ap-
plication inference, the return value of one additional method changed. We
started the application via Android’s UI/Application Exerciser Monkey [35].
Therefore, the method android.app.ActivityManager.isUserAMonkey(),
which reports whether or not an input has been triggered via the UI/Applic-
ation Exerciser Monkey, returned true while the application was launched.
In total, 37 methods had changing return values during the application
inference, while the return values of 5 019 methods did not change. In our
last experiment, the keyboard gesture inference, the return values of 22
methods changed, while 5 034 did not change. In this case, fewer methods
reacted because the return values of methods providing network statistics
did not change during the execution of keyboard gestures.
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4.2. Findings

In our evaluation, we used a Google Nexus 5X equipped with 2 GB of RAM.
The device is running Android 8.1 (either the stock image or LineageOS).
The following sections detail our results across the four chosen attack
scenarios: website inference, application inference, Google Maps search
query inference, and keyboard gesture inference. These attack scenarios are
by no means exhaustive; however, they show the applicability of SCAnDroid
by exposing information leaks in different parts of the Android API.

The experiments detailed in the following sections have been realised using
the mobile network. For the sake of completeness, we have also executed
the experiments with a WLAN connection. The results were similar and
have, therefore, been omitted. Naturally, API methods reporting mobile data
usage did not leak when using the WLAN connection.

4.2.1. Website Inference

In this attack scenario, an attacker wants to infer visited websites. The
ability for any application to detect visited websites poses a privacy threat.
Knowing visited websites could allow an application to, e.g., learn about
preferences of the user like sexual orientation, political views, or medical
conditions a user suffers. It could also allow an attacker to deduce when
the user is visiting a shopping or banking website to launch a targeted
phishing attack. Therefore, starting with Android 6.0, the ability for third-
party applications to query the browsing history and bookmarks has been
removed entirely [16]. In previous versions of Android, it was possible
to retrieve this information with the READ HISTORY BOOKMARKS permission.
However, side channels in the procfs, as uncovered by Spreitzer et al. [78]
with the ProcHarvester tool, still make it possible to infer visited websites.

We show that inferring visited websites is also possible with information
gathered via the Android API from methods identified by SCAnDroid. We
have conducted the experiment on Android 8.1 running Chrome 64. The
attack, however, is not limited to Android 8.1 or Chrome, respectively. We
have also verified the applicability of the attack on Android 7.1 and other

36



4. Evaluation

browsers like Mozilla Firefox or Firefox Klar. The results for Android 7.1 are
available in Appendix A. In our experiments, we have profiled 20 different
websites. Each website has been opened eight times with a profiling time of
ten seconds. The profiling time has been chosen so that each website has
enough time to load completely under normal circumstances. The websites
have been chosen according to the Alexa Top 500 ranking [48]. We have
removed duplicates like google.de and google.co.uk. The complete list of
the 20 profiled websites is depicted in Table 4.2.

http://www.360.cn http://www.netflix.com
http://www.amazon.com http://www.qq.com
http://www.baidu.com http://www.reddit.com
http://www.facebook.com http://www.sina.com.cn
http://www.google.com http://www.sohu.com
http://www.imgur.com http://www.tmall.com
http://www.instagram.com http://www.vk.com
http://www.jd.com http://www.wikipedia.org
http://www.linkedin.com http://www.yahoo.com
http://www.live.com http://www.yandex.ru

Table 4.2.: The URLs of the 20 profiled websites.

Normal Permissions

In this section, we present the results of inferring website visits by con-
sidering API methods which can be accessed without a dangerous or
system-level permission. An overview of the results is depicted in Table 4.3.
Several of the methods reside in the class android.net.TrafficStats. This
class provides network traffic statistics. These can be either global statist-
ics, mobile data statistics, or statistics for a specific UID by means of the
getUid[R|T]xBytes(uid) and getUid[R|T]xPackets(uid) methods. These
methods return the received or transmitted data size in bytes or packets
respectively. However, in Android 7.0 and above, the UID-specific methods
return UNSUPPORTED for any UID that does not belong to the calling applic-
ation, citing privacy reasons [34]. These methods have already been used
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in the literature to conduct various attacks. Zhang et al. [84] have shown
that it was possible to infer when a user has left home by exploiting such
application specific data usage statistics of two different IoT surveillance
solutions. Spreitzer et al. [77] have demonstrated that it was possible to infer
visited websites with UID-specific data usage statistics as was provided by
TrafficStats and via the procfs. Although these UID-specific information
leaks have been removed, it is still possible to use the global and mobile
data statistics to infer events like visited websites with high accuracy as
shown in this work.

API methods requiring no/normal permission Accuracy
android.net.TrafficStats.getTotalTxBytes() 90.6%
android.net.TrafficStats.getMobileTxBytes() 90.0%
android.net.TrafficStats.getTotalTxPackets() 87.5%
android.net.TrafficStats.getMobileTxPackets() 86.9%
android.net.TrafficStats.getTotalRxPackets() 86.2%
android.net.TrafficStats.getMobileRxPackets() 83.8%
android.net.TrafficStats.getTotalRxBytes() 83.1%
android.net.TrafficStats.getMobileRxBytes() 80.0%
android.app.usage.StorageStatsManager.

getFreeBytes(java.util.UUID)
45.6%

java.io.File.getUsableSpace() 43.8%
java.io.File.getFreeSpace() 41.9%
android.os.storage.StorageManager.

getAllocatableBytes(java.util.UUID)
38.8%

android.os.Process.getElapsedCpuTime() 16.9%

Table 4.3.: Accuracies of the identified API methods when inferring website launches on An-
droid 8.1. All of these methods can be invoked by zero-permission applications.

We have also found several storage-related methods to be
leaking. These methods include getFreeBytes(java.util.UUID)

of the class android.app.usage.StorageStatsManager and the
method getAllocatableBytes(java.util.UUID) of the class
android.os.storage.StorageManager. Both methods have been invoked
with the parameter set to UUID DEFAULT. This UUID represents the default
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internal storage of the device. The objects of the class StorageManager

and StorageStatsManager have been retrieved by invoking the method
Context.getSystemService(String) with the parameters "storage" and
"storagestats" respectively. These parameters have been added to the
parameters file, as detailed in Section 3.3, during our experiments. The
values have been chosen by evaluating the log messages and consulting
the Android Developers documentation for more information about the
constants. While the exact semantics of the return values do not matter
to the automatic analysis process of SCAnDroid, we still give a short
description of the methods for completeness and a better understanding of
the identified information leaks.

The method getFreeBytes(java.util.UUID) reports the free space
in bytes on the requested storage volume [32], while the method
getAllocatableBytes(java.util.UUID) returns the number of bytes an
application can allocate on the storage volume [31]. Both methods have
been added in Android 8.0 and, therefore, constitute a new side chan-
nel added in the latest stable version of Android. While the inference ac-
curacy is lower than for the methods in the class TrafficStats, it still
significantly outperforms random guessing. For example, the method
getFreeBytes(java.util.UUID) classifies more than 45% of the events cor-
rectly, while randomly guessing the right event would result in an inference
accuracy of just 5%. The methods getFreeSpace() and getUsableSpace()

of the class java.io.File are leaking in a similar fashion. The method
getUsableSpace() returns the number of bytes available to non-root users,
i.e., the method takes write permissions and other restrictions into account
when calculating the free space [25]. The method getFreeSpace(), on the
other hand, returns the number of free bytes available to a root user, i.e., any
restrictions applying to the current user are ignored.

Sample traces of one storage-related method and one method returning
network statistics are shown in Figure 4.1. These traces have been created
while triggering the two websites imgur.com and google.com. We subtracted
the value of the first data point of each trace from each data point of the
trace for better comparability. As can be seen in the Figure, the website
google.com does not change a lot between different visits and, therefore,
produces a similar graph for both methods. There are only slight variations
in the timing which can be successfully detected by our DTW approach. The
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content of the website imgur.com, on the other hand, may change between
different visits. This website shows user-generated content such as images
and videos which are regularly updated. Still, our classifier was able to
identify most of the imgur.com traces correctly.

Top N Results

To show how the inference accuracies behave when taking more than one
guess into account, we compare the top 10 guesses in Figure 4.2. For example,
when two events are mistaken by our classifier due to their similarity, the
second guess may increase stronger than random guessing. For reference, we
also show the accuracy of guessing an event randomly. As the storage-related
methods and the network statistics achieve a similar accuracy respectively,
some of the methods have been omitted from the Figure for the sake of
clarity. As shown in the comparison, the identified methods significantly
outperform random guessing. Furthermore, when observing the top 5
guesses of the storage-related methods, the accuracy already reaches close
to 80%.

Dangerous and System-Level Permissions

For the sake of completeness, we have also applied our framework with
dangerous and system-level permissions turned on. The results are shown
in Table 4.4. We have identified the method getDataActivity() of the
class android.telephony.TelephonyManager as leaking. The return value
of the method indicates the type of activity of the cellular data connec-
tion [33]. The method distinguishes four different states. These states in-
dicate either no data activity, in which direction the data is flowing, or
if the connection is currently dormant. The method requires the READ -

PHONE STATE permission, which is a dangerous permission. To obtain an
object of the class TelephonyManager, the framework has called the method
getSystemService(String) of the class Context with the predefined para-
meter "phone". Similar to previous constants, this value has been chosen
during our experiments based on an evaluation of the log messages and by
consulting the Android Developers documentation.
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Figure 4.1.: Sample traces of java.io.File.getUsableSpace() and
android.net.TrafficStats.getMobileTxBytes() when profiling the
two websites google.com and imgur.com respectively.
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Figure 4.2.: Accuracies of the top 10 guesses when inferring website launches.
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API method requiring dangerous permission
(READ PHONE STATE)

Accuracy

android.telephony.TelephonyManager.getDataActivity() 20.6%
API methods requiring system-level permission
(PACKAGE USAGE STATS)

Accuracy

android.app.usage.NetworkStats.Bucket.getTxBytes() 90.6%
android.app.usage.NetworkStats.Bucket.getTxPackets() 87.5%
android.app.usage.NetworkStats.Bucket.getRxPackets() 85.0%
android.app.usage.NetworkStats.Bucket.getRxBytes() 82.5%

Table 4.4.: Accuracies of the identified API methods when inferring website launches on
Android 8.1. These methods require dangerous or system-level permissions.

Furthermore, we have also identified the class
android.app.usage.NetworkStats.Bucket to be leaking information
similar to TrafficStats. However, compared to TrafficStats, retrieving
the NetworkStats.Bucket object requires the system-level permission
PACKAGE USAGE STATS. Similar to the TelephonyManager object, the frame-
work first retrieved an android.app.usage.NetworkStatsManager object
by calling the getSystemService(String) method with the parameter
"netstats". To obtain the actual NetworkStats.Bucket object, the
framework then calls querySummaryForDevice(int networkType, String

subscriberId, long startTime, long endTime). Compared to the meth-
ods in the TrafficStats class, which return the global network statistics
since device boot, this API allows specifying a time range. The start and
end time and the other two parameters have been predefined. For example,
the parameter networkType has been set to ConnectivityManager.TYPE -

MOBILE, the subscriberId to TelephonyManager.getSubscriberId(), the
startTime to java.lang.System.currentTimeMillis() and the endTime

to System.currentTimeMillis() + 10000. The method does not throw an
error or misbehaves if the endTime is in the future. Therefore, setting an
offset such as adding 10 seconds to the current time is possible. Furthermore,
the method getSubscriberId() requires the permission READ PHONE STATE.
However, this parameter is only needed for mobile connections, and not
for, e.g., WLAN. This example shows that SCAnDroid can invoke methods
which require multiple permissions and sophisticated parameters.
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We verified the results by manually launching the websites to rule out
any inference caused by the automatic triggering of events. The manual
investigation revealed the same side channels as the automatic examination.
For the sake of completeness, the results of manually triggering website
launches are available in Appendix B.

4.2.2. Application Inference

Inferring currently executed applications can be used by an adversary to
launch targeted attacks like phishing attacks on banking applications [11].
Therefore, access to currently running applications is restricted on Android.
Prior to Android 5.0, an application had to request the permission GET TASKS

to access this sensitive information. With the introduction of Android 5.0,
the access to running applications has been restricted further, citing privacy
improvements [14]. Effectively, the permission to access the whole list of
running applications is now only granted to system applications via the
REAL GET TASKS permission.

Irrespective of these restrictions, UID-specific network statistics, as were
available in older versions of Android, allowed an attacker to infer running
applications without a permission. Similar to application inference, Zhou et
al. [87] have shown that these methods can be exploited to deduce specific
activities inside applications like WebMD and Twitter. Furthermore, inform-
ation provided by the procfs can be leveraged to infer running applications
or application starts. Diao et al. [36] have shown that interrupt timings
from the Display Sub-System released via the procfs can be used to derive
currently running applications as each application has unique UI refreshing
patterns. More side channels which allow unprivileged applications to infer
application starts on Android 7 and 8 have been uncovered by Spreitzer et
al. [78] with the ProcHarvester tool.

We show that the Android API also allows inferring application starts with
high accuracy. A list of the 20 profiled applications is shown in Table 4.5.
Each application was launched eight times with a profiling duration of eight
seconds. The duration has again been chosen so that each application has
enough time to start completely. The experiment detailed in the following
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com.airbnb.android
com.duckduckgo.mobile.android

com.fsck.k9
com.instagram.android

com.isis papyrus.raiffeisen pay eyewdg
com.moshbit.studo

com.paypal.android.p2pmobile
com.tripadvisor.tripadvisor

com.twitter.android
com.waze

com.whatsapp
de.mcdonalds.mcdonaldsinfoapp

de.pilot.newyorker.android
de.prosiebensat1digital.prosieben

de.spiegel.android.app.spon
de.zalando.mobile

org.chromium.chrome
org.indywidualni.fblite

org.mozilla.firefox
org.zwanoo.android.speedtest

Table 4.5.: The package names of the 20 profiled applications.

sections was conducted on Android 8.1. Results for Android 7.1 are available
in Appendix A.

Normal Permissions

The results for the methods requiring normal permissions are shown in
Table 4.6. The methods from the class TrafficStats again allow us to infer
application starts with high accuracy. The storage-related methods allow
us to deduce the launched applications with an accuracy of more than
60%. The UUID parameter for the methods getAllocatableBytes(UUID) and
getFreeBytes(UUID) was again set to UUID DEFAULT. The class objects used

45



4. Evaluation

API methods requiring no/normal permission Accuracy
android.net.TrafficStats.getTotalRxBytes() 86.2%
android.net.TrafficStats.getMobileRxBytes() 86.2%
android.net.TrafficStats.getTotalTxPackets() 81.9%
android.net.TrafficStats.getTotalRxPackets() 80.6%
android.net.TrafficStats.getMobileTxPackets() 80.6%
android.net.TrafficStats.getMobileTxBytes() 78.8%
android.net.TrafficStats.getMobileRxPackets() 78.8%
android.net.TrafficStats.getTotalTxBytes() 76.2%
java.io.File.getUsableSpace() 61.9%
java.io.File.getFreeSpace() 61.9%
android.os.storage.StorageManager.

getAllocatableBytes(java.util.UUID)
61.2%

android.app.usage.StorageStatsManager.

getFreeBytes(java.util.UUID)
61.2%

android.os.Process.getElapsedCpuTime() 30.6%

Table 4.6.: Accuracies of the identified API methods when inferring application starts on An-
droid 8.1. All of these methods can be invoked by zero-permission applications.

for invocation of the methods have been retrieved as described in Section
4.2.1.

Figure 4.3 shows sample traces of the method getTotalRxBytes() and
getAllocatableBytes(java.util.UUID) while launching the applications
Waze (com.waze) and Spiegel Online (de.spiegel.android.app.spon). We
subtracted the value of the first data point of each trace from each data
point of the trace for better comparability. The traces for the same applica-
tion look similar, while traces of different applications look different and
can, therefore, be distinguished visually as well as by our classifier. How-
ever, there is one outlier in each of the depicted traces. For both methods
and applications, this is the first trace recorded. We assume that this is
the case because applications check for new data on startup and retrieve
more updated information if the application has not been started for a
longer time. Hence, the application retrieves much more data in the first
trace of getTotalRxBytes() and reduces the allocatable size as reported by
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getAllocatableBytes(java.util.UUID) more than subsequent launches by
caching more data on the storage volume.

Top N Results

An evaluation of the top 10 guesses compared to random guessing is
illustrated in Figure 4.4. As the storage-related methods and the network
statistics achieve a similar accuracy respectively, some of the methods have
been omitted from the Figure for the sake of clarity. As in the case of
website inference, the identified methods significantly outperform random
guessing. Furthermore, when observing the top 3 guesses of the storage-
related methods, the accuracy already reaches around 75 to 85%.

Dangerous and System-Level Permissions

The accuracy of the methods requiring system-level permissions are shown
in Table 4.7. These methods allow us to infer events with high accur-
acy, but they cannot be exploited by zero-permission applications. The
NetworkStats.Bucket object was created as described in Section 4.2.1. As
some application starts did not lead to a change in the data activity as re-
ported by android.telephony.TelephonyManager.getDataActivity(), the
method has been omitted from the investigation.

API methods requiring system-level permission
(PACKAGE USAGE STATS)

Accuracy

android.app.usage.NetworkStats.Bucket.getRxBytes() 86.2%
android.app.usage.NetworkStats.Bucket.getRxPackets() 80.6%
android.app.usage.NetworkStats.Bucket.getTxPackets() 80.0%
android.app.usage.NetworkStats.Bucket.getTxBytes() 77.5%

Table 4.7.: Accuracies of the identified API methods when inferring application starts on
Android 8.1. These methods require a system-level permission.
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Figure 4.3.: Sample traces of getAllocatableBytes(java.util.UUID) and
getTotalRxBytes() when profiling starts of the applications
Pro 7 (de.prosiebensat1digital.prosieben) and Spiegel Online
(de.spiegel.android.app.spon) respectively.
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Figure 4.4.: Accuracies of the top 10 guesses when inferring application starts.
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4.2.3. Google Maps Search Query Inference

In our third case study, we show that it is possible to infer search queries
in Google Maps. The identified side channels allow an attacker to deduce
places the user is planning to travel to or is otherwise interested in. Similar
to Zhang et al. [86], who showed that it was possible to infer searches
for POIs in Apple Maps on iOS, we show that the same attack is possible
in the default navigation application on Google Android phones. For the
evaluation, we picked 20 different points of interest (POIs) from around the
world as our search queries. The complete list of search queries is shown in
Table 4.8. We recorded eight samples per event with a profiling duration of
15 seconds. The duration has been chosen so that Google Maps has enough
time to load the search result and the surrounding area. The experiments
were again conducted on Android 8.1. Results for Android 7.1 are available
in Appendix A.

Acropolis of Athens Petronas Towers
Big Ben Pyeongchang
Burj Khalifa Pyongyang
Cape Town Pyramids of Giza
Colosseum Rome Singapore
Eiffel Tower Sydney Harbour
Empire State Building Taipei 101
Mirabell Gardens The Great Wall of China
Mt. Everest Toronto Canada
Peking Wencelas Square Prague

Table 4.8.: The names of the 20 profiled points of interest.

Normal Permissions

The inference accuracy of methods requiring only normal permissions
is depicted in Table 4.9. Global network statistics published through the
TrafficStats API again allow us to infer POI searches with high accuracy.
However, there is a difference in accuracy between methods which report
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API methods requiring no/normal permission Accuracy
android.net.TrafficStats.getTotalRxBytes() 87.5%
android.net.TrafficStats.getMobileRxBytes() 86.2%
android.net.TrafficStats.getMobileRxPackets() 75.6%
android.net.TrafficStats.getTotalRxPackets() 73.8%
android.net.TrafficStats.getMobileTxPackets() 65.0%
android.net.TrafficStats.getTotalTxPackets() 63.1%
android.net.TrafficStats.getTotalTxBytes() 48.1%
android.net.TrafficStats.getMobileTxBytes() 46.9%
android.app.usage.StorageStatsManager.

getFreeBytes(java.util.UUID)
18.1%

android.os.storage.StorageManager.

getAllocatableBytes(java.util.UUID)
17.5%

java.io.File.getUsableSpace() 14.4%
java.io.File.getFreeSpace() 12.5%
android.os.Process.getElapsedCpuTime() 8.1%

Table 4.9.: Accuracies of the identified API methods when inferring Google Maps search
queries on Android 8.1. All of these methods can be invoked by zero-permission
applications.

transmitted bytes or packets compared to the methods returning received
bytes or packets. We attribute this to the fact that the transmitted search
queries are only marginally different regarding the length of the query.
The received data, on the other hand, can vary more significantly in terms
of features, like the number and shape of nearby roads, buildings, and
other POIs which are rendered by Google Maps when showing the search
result. The storage-based methods achieve a lower accuracy compared
to the network statistics. However, with 12.5%, even the lowest accuracy
as achieved by the storage-based java.io.File.getFreeSpace() API still
exceeds random guessing with an accuracy of 5%.

Figure 4.5 contains traces of the two methods getMobileRxBytes() and
getMobileTxBytes() returning received and transmitted network data re-
spectively. The traces were recorded while either triggering the search query
Pyongyang or Empire State Building. We subtracted the value of the first
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data point of each trace from each data point of the trace for better com-
parability. While the traces of the method getMobileRxBytes() share some
similarities at first sight, the data usage when searching for Empire State

Building is much higher than for Pyongyang. We attribute this to the fact
that Google Maps renders much more points of interest and features in
the vicinity of the Empire State Building compared to Pyongyang. The
traces of the method getMobileTxBytes() look similar and, furthermore,
also produce a similar data usage. Therefore, our classifier achieves a lower
accuracy for the transmitted bytes than for the received bytes as argued in
the previous paragraph.

Top N Results

An evaluation of the top 10 guesses compared to random guessing is
illustrated in Figure 4.6. As the storage-related methods and the network
statistics achieve a similar accuracy, some of the methods have been omitted
from the Figure for the sake of clarity. As shown in the comparison, the
identified methods again outperform random guessing. The accuracy of the
methods returning transmitted bytes or packages improves by around 20%
points when taking the second guess into account.

Dangerous and System-Level Permissions

The inference accuracy of the methods requiring dangerous or system-
level permissions are shown in Table 4.10. Again, these methods cannot be
exploited by zero-permission applications. The TelephonyManager object for
the getDataActivity() method and the NetworkStats.Bucket object have
been created as described in Section 4.2.1.

4.2.4. Keyboard Gesture Inference

In addition to the previous three events, we also profiled keyboard gestures
using the default AOSP Android Keyboard. Inferring touch input, such as
keyboard swipes, allows an attacker to reconstruct entered text on a gesture
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Figure 4.5.: Sample traces of getMobileRxBytes() and getMobileTxBytes() when profil-
ing the search for the POIs Pyongyang and Empire State Building in Google
Maps.
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Figure 4.6.: Accuracies of the top 10 guesses when inferring Google Maps search queries.
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API method requiring dangerous permission
(READ PHONE STATE)

Accuracy

android.telephony.TelephonyManager.getDataActivity() 11.9%
API methods requiring system-level permission
(PACKAGE USAGE STATS)

Accuracy

android.app.usage.NetworkStats.Bucket.getRxBytes() 84.4%
android.app.usage.NetworkStats.Bucket.getRxPackets() 74.4%
android.app.usage.NetworkStats.Bucket.getTxPackets() 63.8%
android.app.usage.NetworkStats.Bucket.getTxBytes() 41.2%

Table 4.10.: Accuracies of the identified API methods when inferring Google Maps search
queries on Android 8.1. These methods require dangerous or system-level
permissions.

keyboard, as shown by Simon et al. [73]. By comparing the inferred text
with sentences posted on an anonymous public message board, they were
even able to identify the users. For our evaluation, we profiled five different
keyboard gestures and gathered ten samples per event. The list of gestures
is depicted in Table 4.11. Every event has been profiled for 1.8 seconds.
Furthermore, the shift and regular buttons were pressed twice, as these
events are very short compared to the other three. Therefore, we assume
that a user would able to conduct two key presses in the time of 1.8 seconds.
The experiments have been conducted on Android 8.1. Results for Android
7.1 are shown in Appendix A.

Long-Press a Character Button
Tap a Character Button

Tap Shift Button
Short Swipe
Long Swipe

Table 4.11.: A list of the five profiled keyboard gestures.

55



4. Evaluation

Normal Permissions

The inference accuracy of methods which require normal permissions can be
found in Table 4.12. Unlike the previous three events, touching and swiping
on the keyboard does not produce any distinguishable network traffic or stor-
age activity. Therefore, the only method which leaks information about the
triggered gesture is getElapsedCpuTime() of the class android.os.Process.
The method returns the time in milliseconds the current process has run
[30]. As the SCAnDroid process records the profiled methods as fast as
possible, we believe that other processes which need CPU time indirectly
affect the elapsed CPU time of SCAnDroid.

API method requiring no/normal permission Accuracy
android.os.Process.getElapsedCpuTime() 55.0%

Table 4.12.: Accuracy of the identified API method when inferring keyboard gestures on
Android 8.1. The method can be invoked by zero-permission applications.

Top N Results

A comparison between random guessing and the top 5 guesses of the iden-
tified method is depicted in Figure 4.7. The getElapsedCpuTime() method
constantly outperforms random guessing, especially when considering the
first guess.

Dangerous and System-Level Permissions

In contrast to the previous three events, SCAnDroid did not detect any
leaking methods requiring dangerous or system-level permissions. All of the
discovered methods in the previous experiments which require dangerous
or system-level permissions leaked the event based on the network activity,
which the AOSP Android Keyboard did not generate during the execution
of the chosen gestures.
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Figure 4.7.: Accuracies of the top 5 guesses when inferring keyboard gestures.
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In the following sections, we will discuss possible countermeasures, limita-
tions of the framework, and future work.

5.1. Countermeasures

In this section, we show possible countermeasures like real-time attack
detection applications and restrictions in the Android API. We also discuss
the applicability of automatic side-channel detection tools like SCAnDroid
in the process of evaluating such mitigations.

5.1.1. App Guardian

Zhang et al. [84] have proposed a tool called App Guardian to protect the
user from side-channel attacks on Android. The application is designed to
constantly run in the background and assess other background processes
for malicious activity. The tool is based on the assumption that the attacking
application needs to run in the background while the user is performing
sensitive activities. To protect the user, App Guardian pauses background
processes which it detects as possibly recording data during delicate tasks. It
uses heuristics such as CPU usage, names of threads, and used permissions
to detect possibly malicious applications, i.e., the application itself relies
on side-channel information to detect these malicious applications. Zhang
et al. [84] have presented the effectiveness of their approach on a Nexus 5
running some version of Android 4 in videos on their website [85]. However,
some of the information used by the tool has been restricted in more recent
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versions of Android. For example, the application uses several process-
related statistics in the /proc/<pid>/ folder and the getRunningTasks()

method of the ActivityManager API. Similar to getRecentTasks(), the
method getRunningTasks() has been restricted in Android 5.0 and only
returns the application’s own tasks and possibly some non-sensitive tasks
such as the home Activity [15]. Diao et al. [36] have shown that App
Guardian did not detect and prevent their attack using information from
/proc/interrupts on Android 5.1. Therefore, such a tool would need to be
constantly updated to keep up with changes in the operating system and
new attack methods.

5.1.2. Hardening the API

We believe that the best countermeasure is to restrict the leaking methods
on the API level. Leaking methods can either be removed from the API or
restricted by permissions, like in the case of NetworkStats. Furthermore,
automatic side-channel detection tools like ProcHarvester [78] or SCAnDroid
can be used by API developers to harden new methods before they are
released and, therefore, mitigate information leaks before they can affect
end users.

Another option to harden useful but leaking methods and resources is to de-
crease their accuracy or sampling rate. For example, the accuracy of battery
statistics in the sysfs has been reduced in order to prevent attacks inferring
the user’s position based on battery usage, as detailed by Michalevsky et al.
[55]. Automatic tools can help in the process of finding a tradeoff between
accuracy and exploitability.

5.2. Limitations

SCAnDroid was able to find various side channels in the Android API. Still,
profiling the whole Android API is a complex task. Therefore, some pro-
gramming patterns are currently not supported by SCAnDroid. Supporting
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these patterns could improve the coverage in future work. We will explore a
few possibilities on how to improve the coverage.

The framework currently does not evaluate changes in the parameters
used for method and constructor invocation. This pattern is, for example,
used by the method boolean getNextBucket(NetworkStats.Bucket) [27]
of the class android.app.usage.NetworkStats. Instead of returning a new
NetworkStats.Bucket object each time the method is called, the method
takes an existing NetworkStats.Bucket object and fills it with new values.
It returns true if the NetworkStats.Bucket has been filled successfully.
Supporting this pattern by exploring the method parameters could uncover
more API methods leaking information.

In addition, SCAnDroid only calls methods with the specified prefixes
get, has, is, and query. During the profiling phase, it polls these methods
as fast as possible to record changes in the return values. However, for
some frequently changing resources such as sensor readings, Android uses
callback interfaces. An application using such a sensor registers an event
listener, which gets called if the value of the sensor changes. These callback
interfaces are not supported by SCAnDroid in its current version.

Furthermore, when invoked with the wrong parameters or on objects with
a wrong internal state, some methods or constructors cause segmenta-
tion faults induced by null pointer dereferences or dereferences of invalid
parameters. These segmentation faults cannot be caught as easily as Java
exceptions and lead to the termination of SCAnDroid. Therefore, crashing
methods had to be removed from the target set and were not profiled in
this work. To profile these methods, a recovery strategy from segmentation
faults would be needed.

Another limitation faced during our experiments is the amount of available
RAM. To alleviate this issue, we had to split up the profiling into four
parts. Furthermore, we reduced the recursion depth for the exploration of
returned objects to 2. Higher RAM capacities or an even more fine-grained
segmentation of the API may allow setting a higher exploration depth. To
keep the memory usage manageable, SCAnDroid furthermore only invokes
methods defined in the class itself, i.e., it does not call any methods defined
in superclasses.
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Similar to other automatic side-channel detection tools such as ProcHar-
vester [78], SCAnDroid also suffers from false negatives, i.e., even if SCAnDroid
does not detect a method as leaking, it cannot prove that the method is in
fact not leaking any information. For example, a method may only leak if
the parameters have been chosen in a specific range, or if the object has
been constructed with the appropriate parameters. Furthermore, a user may
behave differently than what can be simulated by automatically triggering
events of interest via ADB. For example, a user holding the phone while
handling it unwittingly creates movements of the device which can be detec-
ted by the sensors available in modern smartphones. These sensor readings
have been successfully used to infer, e.g., PIN codes as outlined in Section
2.1.2. In the automatic approach SCAnDroid is using, the phone lies on a
table and, thus, no movement of the device occurs which may have leaked
the executed event.

5.3. Future Work

Besides improving the coverage by alleviating the limitations outlined in the
previous section, there are a few other approaches future work could focus
on. These include a change in the parsing strategy, the automatic detection
of timing side channels in the Android API, and the automatic exploration
of native libraries for side channels.

5.3.1. Parsing Strategy

In this work, we have chosen to parse parameter names of methods and
constructors from the Android Developers documentation. This parsing
strategy has the advantage that the parameter names of new methods can
already be parsed while the API is still in the developer preview stage.
However, the documentation does not contain all methods available in the
API, like private and protected methods. As Android is open source, an-
other approach to identify parameter names could be to parse the source
code directly. Pursuing this approach would allow SCAnDroid to asso-
ciate the manually predefined parameters with the parameters of these

61



5. Discussion

undocumented methods. However, the source code may not be available
during development of new versions of Android. According to the FAQ of
the Android Open Source Project [67], the source code of new APIs may
only be released when the next platform version is ready. Furthermore, our
experiments with private and protected methods have shown that some
of these methods cause segmentation faults. Due to their protection status,
they are not meant to be invoked with random parameters. These methods
are only expected to be called by methods in the same class or package.
They may omit sanity checks which are present in the public methods.
Therefore, a recovery strategy from these faults would be required to enable
the automatic profiling of such undocumented methods.

5.3.2. Timing Side Channels

As Zhang et al. [86] have shown in their experiments on Apple iOS, API
methods may also leak internal states through timing differences. They
have demonstrated that the fileExistsAtPath method can be used to infer
installed applications. If the current process has access to this file, this
method returns whether or not a file specified by a path exists on the
device. In case the process does not have access, the method always returns
false to avoid leaking sensitive information. However, by comparing the
execution time of the method, Zhang et al. were able to deduce whether an
application was installed or not. More precisely, they observed the difference
between the execution time of the method when choosing a path that only
exists if a particular application is installed compared to a random path
string. Similar methods exist on Android, such as java.io.File.exists()

or java.nio.file.Files.isReadable(Path). Therefore, future work should
focus on assessing these and similar methods in the Android API for possible
leakage. As a manual investigation faces the same drawbacks as manually
evaluating return values, automatic tools should be developed to investigate
these timing side channels. For example, SCAnDroid could be extended to
profile such timing differences to detect timing side channels on Android
automatically.
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5.3.3. Native Libraries

SCAnDroid profiles the Android API, while ProcHarvester [78] is designed
to investigate the procfs. However, to our knowledge, no automatic analysis
tools exist for the native libraries [21] of Android. An automatic tool for
these native libraries may help to reveal side channels and assist in the
hardening of these methods. Other operating systems, such as Apple iOS,
may also benefit from automatic side channel detection and analysis tools
to harden their API.
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In this work, we have introduced SCAnDroid, a framework for the auto-
matic investigation of side-channel-based information leaks in the Android
API. We were able to overcome several challenges to enable the automatic
exploration of the Android API. SCAnDroid drastically reduces the amount
of manual effort required to find and evaluate side channels on Android.
Furthermore, SCAnDroid has the potential to assist developers of the An-
droid operating system to detect and mitigate possible side channels in the
Android API before new versions are released to the public.

We have successfully demonstrated the applicability of SCAnDroid by
identifying information leaks in different parts of the Android API. We were
able to infer four different event types by exploiting the discovered methods.
Our experiments have been conducted on both Android 7 and Android 8. As
many applications communicate with external servers, the global network
traffic statistics provided by the TrafficStats API allowed us to deduce
events with high accuracy. Thus, this class breaks the claim of application
isolation and allows an attacker to deduce highly sensitive information, such
as the opened websites, which can leak, for example, personal preferences,
political views, or medical conditions. Therefore, publishing such usage
data to unprivileged applications should be rethought, especially as similar
protected methods already exist for applications that need access to network
statistics. Furthermore, filesystem usage statistics also allow inferring events
with a non-negligible accuracy. Therefore, the precision of this information
and the release to unprivileged applications, in general, should also be
reevaluated.

While mitigating side channels, in general, remains a hard to reach goal, we
believe that automatic frameworks such as SCAnDroid can help discover
existing side channels and prevent them in new Android versions before
these are released to developers and end users.
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Appendix A.

Results on Android 7.1

Table A.1, A.2, A.3, and A.4 contain the results for inferring website launches,
application starts, Google Maps search queries, and keyboard gestures
respectively. The analysis has been executed on Android 7.1.
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API methods requiring no/normal permission Accuracy
android.net.TrafficStats.getTotalTxBytes() 87.5%
android.net.TrafficStats.getTotalRxBytes() 87.5%
android.net.TrafficStats.getMobileTxBytes() 87.5%
android.net.TrafficStats.getMobileRxBytes() 86.9%
android.net.TrafficStats.getTotalTxPackets() 83.8%
android.net.TrafficStats.getTotalRxPackets() 83.8%
android.net.TrafficStats.getMobileRxPackets() 83.1%
android.net.TrafficStats.getMobileTxPackets() 82.5%
java.io.File.getUsableSpace() 27.5%
java.io.File.getFreeSpace() 26.2%
android.os.Process.getElapsedCpuTime() 13.8%
API method requiring dangerous permission Accuracy
android.telephony.TelephonyManager.getDataActivity() 23.8%
API methods requiring system-level permission Accuracy
android.app.usage.NetworkStats.Bucket.getTxBytes() 86.2%
android.app.usage.NetworkStats.Bucket.getRxBytes() 85.6%
android.app.usage.NetworkStats.Bucket.getTxPackets() 81.2%
android.app.usage.NetworkStats.Bucket.getRxPackets() 81.2%

Table A.1.: Accuracies of the identified API methods when inferring website launches on
Android 7.1.
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API methods requiring no/normal permission Accuracy
android.net.TrafficStats.getTotalRxBytes() 85.0%
android.net.TrafficStats.getMobileRxBytes() 83.1%
android.net.TrafficStats.getTotalTxBytes() 80.0%
android.net.TrafficStats.getMobileTxBytes() 80.0%
android.net.TrafficStats.getMobileTxPackets() 78.1%
android.net.TrafficStats.getTotalTxPackets() 77.5%
android.net.TrafficStats.getTotalRxPackets() 75.6%
android.net.TrafficStats.getMobileRxPackets() 75.0%
java.io.File.getUsableSpace() 53.8%
java.io.File.getFreeSpace() 50.6%
android.os.Process.getElapsedCpuTime() 14.4%
API methods requiring system-level permission Accuracy
android.app.usage.NetworkStats.Bucket.getRxBytes() 80.0%
android.app.usage.NetworkStats.Bucket.getTxBytes() 77.5%
android.app.usage.NetworkStats.Bucket.getTxPackets() 75.6%
android.app.usage.NetworkStats.Bucket.getRxPackets() 73.8%

Table A.2.: Accuracies of the identified API methods when inferring application starts on
Android 7.1.
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API methods requiring no/normal permission Accuracy
android.net.TrafficStats.getMobileRxBytes() 83.1%
android.net.TrafficStats.getTotalRxBytes() 80.0%
android.net.TrafficStats.getTotalRxPackets() 77.5%
android.net.TrafficStats.getMobileRxPackets() 75.6%
android.net.TrafficStats.getTotalTxPackets() 66.2%
android.net.TrafficStats.getMobileTxPackets() 63.8%
android.net.TrafficStats.getTotalTxBytes() 48.8%
android.net.TrafficStats.getMobileTxBytes() 45.0%
java.io.File.getFreeSpace() 13.8%
java.io.File.getUsableSpace() 9.4%
android.os.Process.getElapsedCpuTime() 9.4%
API methods requiring system-level permission Accuracy
android.app.usage.NetworkStats.Bucket.getRxBytes() 88.1%
android.app.usage.NetworkStats.Bucket.getRxPackets() 75.0%
android.app.usage.NetworkStats.Bucket.getTxPackets() 63.1%
android.app.usage.NetworkStats.Bucket.getTxBytes() 52.5%

Table A.3.: Accuracies of the identified API methods when inferring Google Maps search
queries on Android 7.1.

API method requiring no/normal permission Accuracy
android.os.Process.getElapsedCpuTime() 47.5%

Table A.4.: Accuracy of the identified API method when inferring keyboard gestures on
Android 7.1.
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Results for Manually Triggered
Website Launches

Table B.1 contains the inference accuracies for inferring manually launched
websites. We profiled the same 20 websites as detailed in Section 4.2.1
with each of them launched eight times. This analysis verifies that the
automatically identified methods also leak while manually triggering the
events.
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Appendix B. Results for Manually Triggered Website Launches

API methods requiring no/normal permission Accuracy
android.net.TrafficStats.getTotalTxPackets() 51.9%
android.net.TrafficStats.getTotalTxBytes() 46.9%
android.net.TrafficStats.getTotalRxBytes() 46.9%
android.net.TrafficStats.getMobileTxBytes() 45.6%
android.net.TrafficStats.getMobileRxPackets() 45.0%
android.net.TrafficStats.getMobileRxBytes() 45.0%
android.net.TrafficStats.getMobileTxPackets() 43.1%
android.net.TrafficStats.getTotalRxPackets() 41.2%
java.io.File.getUsableSpace() 18.8%
java.io.File.getFreeSpace() 16.2%
android.app.usage.StorageStatsManager.

getFreeBytes(java.util.UUID)
16.2%

android.os.storage.StorageManager.

getAllocatableBytes(java.util.UUID)
13.8%

android.os.Process.getElapsedCpuTime() 13.8%
API method requiring dangerous permission Accuracy
android.telephony.TelephonyManager.getDataActivity() 7.5%
API methods requiring system-level permission Accuracy
android.app.usage.NetworkStats.Bucket.getTxPackets() 46.9%
android.app.usage.NetworkStats.Bucket.getRxPackets() 46.9%
android.app.usage.NetworkStats.Bucket.getTxBytes() 46.2%
android.app.usage.NetworkStats.Bucket.getRxBytes() 41.2%

Table B.1.: Accuracies of the identified API methods when inferring manually launched
websites on Android 8.1.
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