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Abstract

The Multi Particle Finite Element Method gains importance in the field of particle simula-
tion. Combining Discrete Element Method and Finite Element Method enables depicting
and analysing the compaction process and understanding powder behaviour. The com-
paction process of tablets is a crucial unit operation in the pharmaceutical manufacturing
path. Commencing from an available code to simulate the compression behaviour of
spheres including cohesive contacts, non-spherical particles are implemented to mimic
fibrous microcrystalline cellulose. After studying the convergence behaviour of the sim-
ulation parameters different particle rotations and the effects on the strength after com-
pression are examined. During these convergence studies a mesh fineness of four ele-
ments per particle diameter, a particle number of 100 particles in the RVE, a solver time
step size of 10−4 s and a mass scaling of 104 are found as optimal. For non-spherical par-
ticles the strengths show different behaviours regarding the yield test direction. One rev-
olution per particle length leads to the maximum strengths observed, whereas minimum
strengths are obtained for zero and a half revolution per particle length. The proposed
simulation code allows for mechanistic understanding of the particle behaviour and thus
for examining influences on the strengths, such as equivalent pressure after compression
equivalent and elastic strain during unloading.



Kurzfassung

Die Multipartikel-Finite-Elemente-Methode gewinnt im Bereich der Partikelsimulation
an Relevanz. Die Kombination von Diskrete-Element-Methode und Finite-Elemente-
Methode ermöglicht die Darstellung und Analyse des Verdichtungsprozesses und verbessert
das Verständnis des Pulververhaltens. Der Verdichtungsprozess von Tabletten ist ein
zentraler Prozessschritt in der pharmazeutischen Produktion. Ausgehend von einem ver-
fügbaren Code zur Simulation des Kompressionsverhaltens von Kugeln einschließlich
kohäsiver Kontakte, werden nicht-sphärische Partikel zur Modellierung von faseriger
mikrokristalliner Cellulose implementiert. Nach der Untersuchung des Konvergenzver-
haltens der Simulationsparameter werden verschiedene Rotationsgrade und die Auswirkun-
gen auf die Festigkeit nach der Kompression analysiert. Die Konvergenzstudien zeigen
optimale Balance zwischen Genauigkeit und Effizienz bei einer Netzfeinheit von vier El-
ementen pro Partikeldurchmesser, eine Partikelanzahl von 100 Partikeln im RVE, eine
Solverzeitschrittweite von 10−4 s und einem Massenskalierungsfaktor von 104. Bei nicht-
sphärischen Partikeln zeigen die Festigkeiten ein unterschiedliches Verhalten abbhängig
von der Testrichtung. Maximale Festigkeiten werden bei einer Umdrehung pro Partikel-
länge beobachtet, während bei null und halber Umdrehung pro Partikellänge minimale
Festigkeiten erreicht werden. Der vorgeschlagene Simulationscode ermöglicht ein mech-
anistisches Verständnis des Partikelverhaltens und damit die Untersuchung von ver-
schiedenen Einflüssen auf die Festigkeiten, wie z.B. äquivalentem Druck nach der Kom-
paktierung und äquivalenter elastischer Dehnung bei der Entlastung.
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Chapter 1

Introduction

During pharmaceutical manufacturing one has to deal inevitable with powders. Unit
operations are devoted to create particles, modify those and form the desired product.
Crystallisation, milling, blending, granulation and the final processing to the desired
drug delivery form are just a few unit operations in the pharmaceutical manufacturing
path. Muzzio et al. [18] describe the pharmaceutical manufacturing path and emphasised
the importance of powder and particle technology in the pharmaceutical industry.
As the behaviour of powders not only depends on material properties but also on en-
vironmental parameters, such as temperature, humidity and the history of the powder,
it is obvious that a deep understanding and wide knowledge of material properties and
behaviour of powders is crucial. To give an example, Sinka et al. [22] focused on the fill-
ing and compaction of the tableting process and examined important process parameters
and its influences on the final material properties of the tablets and stated the complexity
of the tablet compression process.

To place importance on the mechanical material properties they are mentioned in this
part. The Young’s Modulus E is a measure of stiffness and describes the reversible elas-
tic deformation reaction of the powder to external stress. If the elastic limit is reached
irreversible plastic deformation occurs. A measure to describe the plasticity of a material
is the yield strength, which is critical for the tablet design. The tensile strength equals
the maximum strength to be withstand by the material with tensile load before material
breakage. Another measure is the hardness of a material which is commonly measured
by indentation and characterises the resistance of a solid material to irreversible deforma-
tion. Sun et al. [25] examined mechanical material properties of pharmaceutical solids,
set them into correlation and concluded the effects on the tableting process.
Furthermore, powder behaviour is strongly effected by particle-particle interaction and
the resulting inter-particle forces. For powders these inter particle forces might be dom-
inated by cohesion which may arise from electrostatic, capillary and/or Van der Waals
forces. Understanding cohesion and mechanical material properties is essential for set-
ting up a mechanistic model to emulate powder behaviour.
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Two methods for powder flow simulation gained importance in the recent years: the Dis-
crete Element Method (DEM) and the Finite Element Method (FEM). In DEM powders are
modelled as an assembly of particles. Most times each particle is modelled as a sphere
because of simplification reasons. Since the particles are rigid no deformation is consid-
ered. Overlapping of particles is interpreted as contact and leads to contact forces. To
gain information about the system, the equations of motion are solved for every parti-
cle. The advantage of DEM in particle flow simulations is the resolution of every particle
in the powder. Recent studies with DEM on powder compaction include Persson et al.
[19] and Jerier et al. [15]. In comparison, the FEM models the powder as a continuum.
Which is the reason that single particles can not be tracked and analysed anymore. How-
ever the simulation becomes more efficient in terms of simulation time as the property
of each particle does not need to be calculated every time step. The FEM approach bases
on a material model, which in contrast to DEM, is difficult to determine. The compaction
process of a pharmaceutical powder was analysed with FEM in the work of Wu et al.
[26]. Combining these two methods introduces the Multi Particle Finite Element Model
(MPFEM). MPFEM modelling, in detail described in [27], treats every single particle as
own entity with its individual mesh. The particle deformation is modelled and depends
on the material properties of the particles and loading conditions. Loading conditions
include body, external and contact forces. With the MPFEM approach the material model
for FEM simulations can be determined, information about the tensile and compression
strengths can be obtained and the simulation might be more accurate than with DEM
simulations. However, MPFEM is more expensive.

Currently the pharmaceutical industry takes an overall turn from trial and error practices
to quality by design. Loidolt et al. [17] contributed to this development and evolved a
simulation environment in Abaqus CAE - Simulia™ with the goal to determine material
models of powders based on MPFEM. A novel kind of boundary conditions was intro-
duced to circumvent the influence of boundary effects. The simulation environment was
designed in such a way to enable arbitrary variation of simulation and material param-
eters and to ease the convergence study process. However they used in their work a
spherical particle shape. As powder particles in reality rarely have the form of spheres
and the simulation environment of Loidolt et al. [17] allows for implementing different
shapes and size the subject of this thesis arose.
This master thesis’ intention is the introduction of non-spherical particles in the simula-
tion procedure, conduct convergence studies to verify the used model parameters and
investigate the effects of different geometrical particle shapes on resulting tension, com-
paction and isostatic yield strengths after uni-axial compaction. Following chapters are
focusing on the basic structure, important key points and introduced changes to the work
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of Loidolt et al. [17].
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Chapter 2

Methods & Material

2.1 Material

Microcrystalline cellulose (MCC) is an important material in the pharmaceutical indus-
try, mainly used as a binding and filling material in the production of pharmaceutical
tablets. Since MCC not only enhances the binding properties but also the compaction be-
haviour, numerous works study the compaction and deformation behaviour (Edge et al.
[3], Eichhorn et al. [4], Hancock et al. [9], Sun [24]). Depending on the process parameters
and the production path of the MCC the size, shape and particle distribution vary. MCC
may occur in a particulate or fibrous shape.

Figure 2.1: Scanning electron microscope picture of MCC particles (from Horio
et al. [12]). Particles are poly-disperse distributed, slighlty twisted and in fibrous

shape.

Zhao et al. [30] measured the size and shape of untreated cotton linters. The macrofibrils
length varies between 300-500 µm and the diameter between 10-20 µm. Gaudreault et al.
[6] determined the average particle size of 24 µm of a MCC powder by light scattering.
The cellulose fibres are poly-disperse distributed and slightly twisted (Figure 2.1). The
size and shape of the implemented particles in the simulation base on these measures.
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The particles are modelled as elongated helical spring. Due to efficiency and practica-
bility issues the particle distribution in the simulation is mono-disperse and the length
to diameter ratio is about one decimal power smaller. The size measures of the particles
are chosen four decimal powers bigger. Because of a quasi-static simulation (no inertial
effects occur) the compression strength results are not influenced.

Table 2.1: Diameter, length, revolution and offset of the particles used to
mimic cellulose fibres.

Particle No. Length [m] Diameter [m] Offset [m] Revolution

P0 0.3 0.15 0.04 0.0
P1 0.3 0.15 0.04 0.25
P2 0.3 0.15 0.04 0.5
P3 0.3 0.15 0.04 0.75
P4 0.3 0.15 0.04 1.0

Different forms of particles are studied (Table 2.1). The diameter, length and offset of the
helical spring are kept constant and the effect of different revolutions per particle length
on the compression strengths is examined. The offset defines the distance between the
center of the fibre and the rotational axis. In Equation (2.1) the mathematical description
of the revolution is shown and can be expressed as the number of revolutions per particle
length.

revolution =
no. revolutions
particle length

(2.1)

2.2 Methods

Overall goal is to set up a micromechanical model to determine macroscopic material
properties of powders, e.g. Young’s Modulus and uni-axial yield strengths. This macro-
scopic material properties can later be used in FEM simulations. Following procedure
is performed to pave the way to a micromechanical model of powders: With the open-
source DEM software LIGGGHTS® [16] a random particle packing is generated. This
packing’s aim is to depict a Representative Volume Element (RVE) of the powder. Af-
terwards the packing is transferred into the simulation environment of Abaqus CAE -
Simulia™ to perform the MPFEM simulations.
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2.2.1 Representative Volume Element (RVE)

To emphasise the importance of the RVE a short overview is given in this section. Various
definitions for RVEs can be found in the literature. For listings and literature reviews I
want to refer to Gitman et al. [7] and Stroeven et al. [23]. Just the conclusion of relevant
key findings shall be mentioned:

• Hashin [11]: An RVE must be sufficiently large to representatively depict the micro-
structure.

• Evesque [5]: In order to not homogenize macroscopic effects the RVE should be
small enough.

Determination of an optimal RVE is not trivial. As computational costs and simulation
time are crucial one has to find the optimal balance. The optimum depends on the RVE
size and as well on simulation parameters, e.g. mesh fineness and particle number, which
are mentioned in detail in section 2.2.3.3. The aim of the simulation with LIGGGHTS®
is the generation of the initial packings. These need to be sufficient dense packed for
the simulation in Abaqus CAE - Simulia™. Later the packings are inserted into the Abaqus
CAE - Simulia™ environment where the compression and yield tests are carried out.

2.2.2 Generation of the RVE with LIGGGHTS®

For extensive parameter studies various initial packings (RVEs) need to be generated.
Form and size of particles determine the final size of a packing with given density. There-
fore different particle shapes (Table 2.1) and particle numbers demand individual initial
packing parameters.
This initial packing should fulfil following criteria:

• evenly dispersed particles

• randomly distributed particles

• particles with same size and shape (mono-disperse)

• easy to implement different shapes and sizes of particles

• roughly no overlaps between particles

• final packing should be dense packed, but not compressed

• fast and efficient generation of packings

2.2.2.1 Generation of the Initial Fibre/Multisphere

Basis of the explained procedure in this section are the bachelor theses of Segner [20] and
Huber [14]. The initial fibre generation and location determination of the particles in the
RVE are further developed and modified.
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The cellulose fibres are modelled as multispheres in LIGGGHTS®. These multispheres are
composed out of a set of spheres which are partially overlapping and linked together to
mimic a cellulose fibre [20]. The initial multisphere is modelled with a python script, and
depending on the input parameters (length, diameter, revolution and overlap of neigh-
bouring spheres) outputs the set of all center coordinates of the spheres. Additionally
three small spheres, the so called orientation spheres, are located around the center of
the first sphere. Aim of these orientation spheres is to specify the rotation and location
of the multisphere when transferring the initial packing to the Abaqus CAE - Simulia™
environment [14]. Therefore every orientation sphere is displaced in a different direction
in space (x,y or z). In this work a displacement of half the radius of one sphere is being
chosen. The resulting multisphere represents an initial fibre which is set arbitrary times
into the LIGGGHTS® simulation to fill a box with the chosen number of particles. The
box shrinks till a dense packing of the multispheres is reached, which realizes the RVE.

Figure 2.2: Examined particle shapes generated as multispheres in LIGGGHTS®,
different revolutions, top row (left to right): 0.0 and 0.25 revolution , bottom row
(left to right): 0.5, 0.75 and 1.0 revolution. All fibres have the same radius r (Table

2.1).

2.2.2.2 Material & Simulation Parameters

To inhibit huge overlaps of the particles during DEM simulation, the sphere properties
are aligned with following material and simulation properties shown in (Table 2.2). The
material properties density ρ, Poisson’s ratio ν, coefficient of restitution ε, frictional co-
efficient µ and Young’s Modulus E are kept constant throughout all simulations. The
initial velocity is Gaussian distributed with a velocity mean of zero and a velocity stan-
dard deviation of ∆v. A force is set on every sphere directing towards the center of the
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box. The force F is set constant, but depending on the sphere location it is factorized with
the distance to the center (section 2.2.2.3).

tsim =

¿

Á
ÁÀ

2 ∗ (l0 − le)

aboxde f ormation

(2.2)

∆t = time f ac ∗
π ∗ r

0.1631 ∗ ν + 0.8766
∗

√

ρ ∗ 2 ∗ (1+ ν)

E
(2.3)

Equation (2.2) expresses the overall simulation time tsim depending on the decrease of the
box size and the box deformation acceleration, whereas the time increment of every sim-
ulation step ∆t is chosen by following Equation (2.3). This equation depicts the Rayleigh
time for granular systems factorized with the time factor time f ac. Which is varied in the
given parameter range (Table 2.2) depending on the stability of the simulation.

Table 2.2: Material properties (ρ, ν, ε, µ, E) and parameters (∆v, F) which
are set constant for RVE generation in DEM. The timefactor time f ac is

varied.

Constants & Parameters

ρ 1300 [
kg
m3 ]

ν 0.3 [−]

ε 0.99 [−]

µ 0.1 [−]

E 5 ∗ 1012
[Pa]

∆v 1 [
m
s ]

F 2 [N]

time f ac 0.06− 0.006 [−]

In terms of efficiency an appropriate size of the initial box is important. The smallest
possible box for 50 multispheres at the inserting step and the sufficient dense final box
are found by trial and error procedure (Table 2.3). The initial and final size for the other
particle numbers is calculated by keeping the volume of the box to volume of the particles
ratio constant. Based on the initial box size with 50 multispheres the box size for 100
multispheres can be calculated. Equation 2.4 depicts the mathematical expression for
this relation. All box sizes for packings with other particle numbers can be determined
according to this equation.

l0100 = l050 ∗
3

√

100
50

(2.4)
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Table 2.3: Initial length l0 and final length le of the simulation box for 50
multispheres.

particle length[m] l0[m] le[m]

0.3 1.5 0.6

2.2.2.3 Simulation Procedure in LIGGGHTS®

To guarantee evenly dispersed and randomly distributed multispheres the desired quan-
tity of multispheres is set in a box with initial size l0, periodic boundary conditions and
the origin in the center of the box. The orientation and location of the multispheres are
randomly distributed and every sphere obtains a Gaussian distributed initial velocity v
in a random direction (Figure (2.3) right). The box shrinks towards the origin till the
final size le is reached. Since the box’s surfaces get smaller and the multispheres are lo-
cated with higher probability on the outer box areas, the multispheres might assemble in
the outer region of the box and do not disperse evenly. To circumvent fine and tedious
adjustments of the deformation speed and initial velocity two additional conditions are
introduced to avoid this issue. First condition sets a force F on every sphere directing
towards the center of the box. The force is multiplied by the distance of the sphere to the
center lparticle to center (Equation 2.5, Figure (2.3) left). The second condition adjusts accel-
eration of the deformation of the box aboxde f ormation to the maximum occurring acceleration
of a sphere aSphere located on the outer boundary. This relation is described by Equation
(2.6). On the boundary of the box the force acting on a sphere is multiplied by its distance
from the center, which is half the initial box size. Resulting box deformation acceleration
allows for rough estimation of the derivation of the incremental box displacement ∆xbox,
neglecting the randomly distributed initial particle velocity (Equation (2.7)). Multisphere
assemblies are inhibited by aligning these two accelerations.

FSphere = F ∗ lparticle to center (2.5)

aSphere =
F ∗ l0

2

ρ ∗ 4
3 ∗ r3

∗π
= aboxde f ormation (2.6)

∆xbox =
−aboxde f ormation

2
∗ t2

sim (2.7)
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Figure 2.3: Initial arrangement of multispheres in box; vectors indicate the direc-
tion of the force acting on each sphere (left) and indicate the direction of the initial

velocity (right).

2.2.3 MPFEM Modelling with Abaqus CAE - Simulia™

With MPFEM, powder simulation and modelling seems to be within ones reach. Consid-
ering discrete particles with an individual finite element mesh offers the opportunity to
widen the horizon of powder simulation.
The hurdles of powder compaction process simulation not only arise from the difficulty
of setting up a material model which connects stress and strain (in classical FEM) but also
taking particle deformation into account. Moreover implementing inter particle contacts,
for example cohesion, is problematic in DEM.
Due to the MPFEM approach these hurdles can be overcome. The simulation procedure,
concept and some background informations are outlined in this section. For detailed de-
scription and a deeper insight into this concept I want to refer to the work of Loidolt et al.
[17].
Recent works in the literature mainly consider powder as spherical particles, either three
dimensional as spheres or two dimensional as circles. This paragraph gives a short
overview of some MPFEM approaches dealing with powder compression. Some as well
determine yielding of the powder probes:

• Zhang [28]: Deals with the closed die compaction process of mono-sized particles
(2D) containing a composite mixture of soft and hard particles and examines the
compression behaviour.

• Zhang et al. [29]: Analyse the single action die compaction process of copper in 2D
with a special glance on the characteristics of the compaction processes, deforma-
tion and densification mechanisms.
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• Huang et al. [13]: Describe the densification process, mechanisms and dynamics of
poly-disperse (binary) Al & SiC composite powders (2D).

• Harthong et al. [10]: Mono-sized sphere (3D) assembly compression and a method
to probe yielding was proposed to micromechanical interpret and understand the
micromechanical phenomena.

• Gustafsson et al. [8]: The compression of iron ore pellets was examined with the
confined compression test of 2D spheres with statistically distributed size, shape
and material properties. A fraction criterion was introduced. Determining the
stress inside the particles estimates the prediction of failure.

• Abdelmoula et al. [1]: Study the plastic flow of isotropic and closed die compaction
and a method for probing yield surfaces is proposed.

However, the simulation concept used for this work [17] is based on a RVE and uses
another kind of periodic boundaries to introduce periodic boundary conditions and cir-
cumvent the influence of wall effects. Further differences to the mentioned studies is the
introduction of non-spherical particles. Particles resembling fibres, are introduced in the
simulation box and the influence of length and rotation is examined after a parameter
study. In the next sections the simulation set-up is explained reasonably. The parameters
and material properties are outlined and a short overview over the simulation procedure
in Abaqus CAE - Simulia™ is given.

2.2.3.1 Simulation Setup/ Environment

In section 2.2.1 the aim of an RVE is already stated as well as the generation of initial
packings with LIGGGHTS®. Subsequently in the Abaqus CAE - Simulia™ environment
a periodic simulation box containing these particles, the initial packing, is introduced.
When the particles initial packing is transferred from LIGGGHTS® into the Abaqus CAE -
Simulia™ simulation environment, they are formed out of one part instead of an assem-
bly of spheres. The location of the particles is determined with the center point of the
first sphere. With the coordinate information of the orientation spheres the rotation of
the fibre in space is found. Particles touching the upper boundary of the periodic box
are shifted to the lower boundary. After the meshing of the particles the fibres on the
boundary are duplicated (one, three or seven times) and transferred to the linked bound-
aries (Figure 2.4), respecting the periodic boundary condition. E.g. a particle on the edge
needs to be duplicated three times to fulfil the periodicity condition (Figure 2.4, center).
Not until then particles ranging out of the simulation box are cut and protruding ele-
ments are deleted.
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Figure 2.4: The red coloured mesh shows the initial already cut particle which lies
on a boundary face (left), on the edge (center) or in the corner (right). To fulfil
the periodic boundary condition the green coloured particles are duplicates. The

periodic box is shown in blue color.

Loidolt et al. [17] found that an extra layer around the periodic box of around half a
particle radius r diminishes boundary effects. As in this study no spheres, but elongated
particles are examined a slightly thicker additional layer ∆xadd (Equation 2.8) is used.

∆xadd = 2 ∗ r ∗ f racadd,layer +
1
4
∗ lelement (2.8)

Figure 2.5: View on RVE with artificial added periodic and simulation box (blue)
for demonstration reasons. The green meshed fibre particles are located in the sim-
ulation box. The periodic box is extended with an additional layer to diminish
boundary effects. The particles in the simulation box are the basis for later simu-

lations.

This additional layer not only depends on the radius r but also on the size of one el-
ement lelement and an additional-layer-fraction parameter f racadd,layer. In this additional
layer, particles within the periodic box can reach into the additional layer, whereas par-
ticles which would lie just outside the periodic box are not duplicated. Additionally, all
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remains of fibres with less than three elements are eliminated, as they do not influence
the simulation procedure. Figure 2.5 shows the periodic box with the additional layer,
which forms the basis for later compression and reloading procedures. Throughout all
simulations an additional-layer-fraction parameter f racadd,layer of 0.5 is chosen.

Boundary Condition, Constraints and Coupling

Every particle on the boundary is given a reference point in the particles center. A de-
fined number of nodes of the particles which lie in the additional layer are coupled with
this reference point. The coupling is enabled by distributed coupling, which distributes
loads from the reference point to the coupled nodes or vice versa. Opposite particles
reference points are constrained via linear constraint equations for all three translational
and rotational degrees of freedom. Defined three auxiliary nodes enable the controlled
displacement, as their displacement is included in the linear constraint equations. The
overall boundary condition concept allows for periodic boundary conditions over the
RVE, but the concept allows for single particles to have traction boundary conditions
which in total results in a mixed-Dirichlet-Neumann boundary condition [17].
To sum up this paragraph and emphasise its importance: Kinematic constraining of the
auxiliary nodes to the reference points of boundary particles enables deformation of the
box. The reference points of particles are linked via distributed coupling with their nodes.
These conditions enable incremental deformation of this non-linear system, subsequently
solving of the equations and therefore incremental calculation of the nodal position.

Contact Modelling

As already mentioned with the MPFEM inter-particle contacts can be modelled. In Abaqus
CAE - Simulia™ various arbitrary contact models can be implemented. In this work just
one contact model is examined, which takes repulsive force, friction force and cohesion
force into account. Implementation of different contact models is proposed for further
works. As the model is similar to the one used in [17] the contact model itself and the
implementation details are just outlined.
The contact force of a node on the slave surface arises from the contact stress and as-
sociated nodal contact area. The nodal contact stress is computed in the implemented
user defined subroutine VUINTERACTION in Abaqus CAE - Simulia™ [21]. Two slaves
contact forces are weighted equally and the resulting contact force is received from linear
combination of the pure forces of the master slaves.
The distance normal to the master surface δN (Figure 2.6, left) has positive values for
overlap/penetration and negative values for no physical contact. The normal stress is
computed concerning this normal distance δN and is linearly dependent on the contact
normal stiffness k. The tangential displacement δT results in the tangential contact stress.
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Both stresses may be damped with a damping factor d which acts as a damper for the sys-
tem depending on the normal relative velocity ˙δN and tangential relative velocity δ̇T. Aim
of the damping factor is to stabilise the contact forces and inhibit oscillation. The interac-
tion length δ0 determines the distance from which onward cohesion contact forces occur.
With decreasing master-slave-surface distance the cohesion force increases linearly. As
the surfaces touch each other the cohesion force σcohmax remains constant, independent
on the penetration. The evolving repulsion and cohesion stress over surface distance is
sketched in the right picture of Figure 2.6. The friction force occurs when the surfaces are
in contact. It depends on the tangential displacement δT and is limited by a maximum
friction stress. The maximum friction stress results from the repulsive stress times the
coefficient of friction.

Figure 2.6: The normal distance δN between master surface and slave surface de-
termines force intensity (left), schematic course of repulsion and cohesion stress as
function of the normal distance δN , positive δN values are interpreted as overlap

and damping effects are neglected (right).

Table 2.4: Contact model properties.

Constants & Parameters

µ 0.2 [−]

δ0 0.01 ∗ 2 ∗ r [m]

d 5 ∗ 108
[

Pa∗s
m ]

k 5 ∗ 1012
[

N
m ]

σcohmax 1 ∗ 108
[Pa]
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Stress, Strain & Yield Criterion

A short overview over the determination of the stress, strain and the yield point is given
in this section. The most important assumptions and details are outlined. For additional
and detailed descriptions I may refer to the work of Loidolt et al. [17].
As already mentioned three auxiliary nodes are defined in the simulation environment.
Every auxiliary node is assigned to one direction in space, either x, y or z. The nodes are
kinematically constrained with the reference points of the boundary particles and enable
controlled displacement. Furthermore, they are essential for the stress, strain and yield
point determination.
To determine the yield point a plastic deformation criterion for the powder is required.
As only small strains occur during the yielding the small strain theory is assumed. This
theory implies a coincidence of the first Piola-Kirchhoff stress tensor with the Cauchy
stress tensor, Equation (2.9). The three force vectors Fx, Fy and Fz of the auxiliary nodes
and their components are necessary to compute the stress tensor.

σ =
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(2.9)

The strain tensor can be obtained from the displacements of the three auxiliary nodes
∆ux, ∆uy, ∆uz and their components. Equation (2.10) shows the mathematical expression
for the strain tensor, where X, Y and Z are the box lengths in the respective direction.
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(2.10)

The yield stress indicates the end of elastic behaviour and the onset of plastic defor-
mations. Loidolt et al. [17] introduced in their work a universal yield criterion. They
proposed an equivalent plastic strain εpl which indicates plastic deformation when an
equivalent plastic strain of 0.002 is reached. The equivalent plastic strain εpl (Equation
(2.11)) depends on the elastic strain tensor εel and the strain tensor at the yield point εyp.
The elastic strain tensor εel is determined from the displacement of the RVE during the
unloading step.

εpl =

√

2
3
∗ εyp ∶ εyp −

√

2
3
∗ εel ∶ εel (2.11)
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2.2.3.2 Simulation Procedure in Abaqus CAE - Simulia™

Initial Hold Step

Since in the initial packing the particles slightly overlap due to small differences of the
multisphere fibres (in LIGGGHTS®) and the meshed fibres (in Abaqus CAE - Simulia™)
transition no deformation is applied during this step. The contact stiffness is linearly
ramped from zero to the final value, to inhibit high local contact forces and allow small
rearrangement of the fibres in the packing to lower the overlaps (Figure 2.7 top left and
right). This step lasts five seconds, in terms of simulated time.

Initial arrangement (t=0s) End initial hold step (t=5s)

End compaction (t=10s) End hold & compaction step (t=11s)

Figure 2.7: Top view on RVE with 50 particles. Snapshots from beginning and
end of the initial hold step (top row, left to right), compaction and hold (bottom
row, left to right) shown in chronological order. Colouring represents the maximal

(white) and minimal (black) occurring stress in the RVE.

Compaction Step & Hold

In the compaction step deformation is applied to the RVE. After the step time of five sec-
onds the compaction to the predefined relative packing density is realised with deformation-
controlled uni-axial compression. The incremental deformation of the packing is linearly
ramped up till half of the step time is reached and subsequently ramped down till the
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tenth second. Ramping up and down of the incremental deformation is applied to avoid
high accelerations. After the compaction (Figure 2.7 bottom left) one second of holding
(Figure 2.7 bottom right) is applied. During this time the boundaries are kept constant. If
some potential oscillations arise during the compaction step, they can be damped during
this holding time.

Unloading Step

At the beginning of the unloading step the deformation-controlled load control switches
to force controlled mode. During this step the load is linearly ramped down to 0.1 MPa.
This residual stress is to avoid disaggregation of the RVE, which may occur at low cohe-
sion. This RVE state is the basis and reference state for further yield studies. This step
lasts five seconds.

Reload/ Yield Step

The yield step may be repeated more times to test the yielding in different directions.
Every yield test starts with the reference RVE received from the unloading step. To get
a precise result from the yield test of one certain direction, the yielding is tested in three
iterative steps. The direction of the load may vary in arbitrary directions. To get an idea of
this procedure in the following paragraph it is assumed to test the yielding in x-direction
and to test the compression strength:
In the first iteration in the yield step the stress towards the RVE in x-direction is ramped
up in such a way to certainly reach the yield point. Then the second iteration to determine
the yield point is started. The RVE configuration from a defined state before the first
yielding occurred is taken as initial configuration for the second iteration. The second
yield iteration is then started with a load ramp velocity smaller than the ramp velocity
for the first time and lasts till yielding occurs. The initial configuration for the third and
last yield iteration is again taken from the second iteration. The third yielding proceeds
a defined state before the second yielding occurred and with a slower ramp velocity. It
is necessary to ramp the load slow enough to not having inertia effects influencing the
final result. The mentioned procedure with three iterations is the procedure for testing
one yield direction. For every yield test direction the yield point is determined after each
third yield trial. This procedure arose due to maximization of accuracy and efficiency
[17]. Every yield iteration’s simulated time lasts a maximum of five seconds, but ends
when the yield point is hit.
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2.2.3.3 Parameters & Material Properties

During the overall simulation particles are modelled as elasto-plastic body and the ma-
terial properties (e.g. density and Young’s Modulus) of the particles are the properties of
copper. The neglect of particle breakage might be relevant when high deformation oc-
curs. The properties of copper for the particles are used instead of the material properties
of MCC, as in the first step the effect of the geometrical properties of the fibres (length,
diameter and revolution) on the overall material behaviour is examined. In subsequent
studies it is proposed to change the material properties to the properties of the MCC.
Simulation parameters, like solver time step, mesh fineness, mass scaling, sufficient par-
ticle number for the RVE have to be determined with parameter studies. In this work
every parameter study is realised one time although the selection of the parameters with
efficient and stable solving behaviour is an iterative process, since they effect each other.
Since mass scaling increases the time step size and is valid as long as no inertia effects
occur (quasi static model) it enhances the efficiency. Shortly summarized mass scaling
is the artificial increase of the particle density with a mass scaling factor f acscale mass. For
further details of mass scaling in explicit FEM see Chung et al. [2] and tailored to this
work see Loidolt et al. [17].

Material Properties

As mentioned above, the material properties of copper are chosen. Since changing too
much inhibits direct comparison between the previous work of Loidolt et al. [17] where
the spheres are as well modelled with the material properties of copper. In Table 2.5 the
material properties are summarised.

Table 2.5: Material and yield properties of copper used as particle ma-
terial: density ρ, Young’s Modulus E, Poisson’s Ratio ν and the stress σ

dependent on the plastic strain εplastic.

Material Properties

ρ 8920 [
kg
m3 ]

E 115 [GPa]
ν 0.34 [−]

σ [Mpa] εplastic

150 0.00
250 0.06
300 0.30
350 1.00
400 2.50
450 5.00
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Simulation Parameters - Convergence study for the RVE

Determining a convenient RVE requires elaboration of appropriate simulation parame-
ters, which guarantee the maximum balance between accuracy and computational effort.
The convergence study results from the work of Loidolt et al. [17] are taken as initial
values for the simulation parameters , see Table 2.6.

Table 2.6: Results from the convergence study of spheres of Loidolt et al.
[17] which are taken as initial values for fibre shaped particles conver-

gence study.

Initial Values for Simulation Parameters

particle number RVE 50 [
No. particles

RVE ]

∆tsolver 1 ∗ 10−4
[s]

f acscale mass 1 ∗ 104
[−]

The convergence of the mesh fineness, which is parametrised with the number of element
per fibre diameter d, is elaborated in the first parameter study . The particles are meshed
with eight-node linear brick (C3D8 [21]) elements. When the optimal element number is
found, the convergence of particles inside the RVE is examined. Sufficient particles are
required in the RVE to homogenize microscopic effects and yield the macroscopic proper-
ties. Later the solver time step size ∆tsolver is varied. Although it strongly correlates with
the mass scaling the convergence study is executed just once. Next the mass scale factor
f acscale mass is varied. The examined parameter range is shown in Table 2.7. When all con-
vergence studies are finished and the optimum parameters are obtained the geometrical
properties of the fibres are changed and its effects examined. Although the influence of
other parameters such as relative density after compaction, cohesion strength and fric-
tion coefficient might be of interest the focus of this work lies on geometrical influences.

Table 2.7: Mesh fineness, particle number inside RVE, solver time step
size and mass scale factors variation range to study the convergence be-

haviour.

Variation Range Parameters for Convergence Study

mesh fineness 3− 7 [
elements

d ]

particle number RVE 50− 300 [
No. particles

RVE ]

∆tsolver 5 ∗ 10−6
− 2 ∗ 10−4

[s]
f acscale mass 5 ∗ 103

− 107
[−]
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Chapter 3

Results & Discussion

The focus of this section lies on the convergence study results and the effects of different
geometrical shapes of the fibres on the yield strengths, in terms of the number of rev-
olutions. Besides the already mentioned contact model parameters (Table 2.4) and ma-
terial parameters (Table 2.6) the Abaqus CAE - Simulia™ environment needs some more
input parameters which are depicted in Table 3.1. Although varying the final relative
compaction density and the effects on the strengths might be of interest we keep this
parameter constant throughout all simulations. A final relative density of 0.85 after the
compaction step is chosen, as this relative density guarantees a compaction of all pack-
ings without high deformations of the elements and results in sufficient high strengths of
the RVE. The tracking thickness specifies the maximum distance between two surfaces
from which onward contact is assumed and the contact model is evaluated. To certainly
detect all contacts the additional length of one percent of the radius is added to the inter-
action length δ0.

Table 3.1: Simulation parameters for the Abaqus CAE - Simulia™ envi-
ronment which are set constant throughout all simulations.

Simulation Parameters for Abaqus CAE - Simulia™ environment

tracking thickness δ0 + 0.01 ∗ r [m]

final relative compaction density 0.85 [
Vparticles

Vbox
]

3.1 Convergence Studies

The applicability of a convenient RVE is analysed with the aid of observing the conver-
gence behaviour of the uni-axial yield strength as function of the simulation parameters.
In the first step the minimum mesh fineness is examined, then the particle number inside
the RVE is varied and the minimum applicable number of particles is identified. Subse-
quent to the convergence study of the solver time step size the convergence behaviour of
the mass scaling factor is investigated. Higher numbers of particles inside the RVE lead
to lower possible mass scaling factors. Furthermore the solver time step size influences



Chapter 3. Results & Discussion 21

the mesh fineness for a stable simulation, which emphasises the need of an iterative pro-
cedure to determine proper simulation parameters. However these convergence studies
take a lot of time and the context of this master thesis does not allow for this iteration
process. Every simulation parameter is just determined once and these parameters are
not chosen perfectly, yet quantitative results can be obtained.
All following simulations result from an uni-axial compaction in x-direction in the com-
paction step. If not stated differently the compression and tension strength result from
a yield testing in x-direction. The isostatic strength is tested with equal loadings in all
three directions, if not stated differently isostatic strength of compression is tested. For
all yield strength results the tensile strength has positive values whereas the compression
strength has negative values.

3.1.1 Mesh Fineness

The mesh fineness parameter defines how fine the fibres are resolved. On the one hand
higher element numbers result in a finer mesh, but on the other hand the total simulation
time increases as more equations need to be solved. For all mesh convergence studies
Table 2.6 lists the values for the solver time step size and mass scaling. Figure 3.1 shows
the uni-axial strengths depending on the element number per fibre diameter of one initial
RVE with 50 particles.

Figure 3.1: Mesh fineness convergence behaviour of one RVE containing 50 parti-
cles. The initial packing was kept the same throughout this mesh fineness conver-

gence study.

The element size is varied between three and seven elements per diameter. The uni-axial
yield strength for a mesh fineness of three outranges the strengths of the other element
numbers. In the element number range from four to seven the strengths do not vary
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significantly, only for isostatic compression the strength increases slightly for five and six
elements. Since the compression and tension strengths stay approximately constant from
four elements onwards and while being aware of strongly increasing simulation time
with the element number, an element number of four is chosen for following studies.
Figure 3.2 depicts strengths of three different RVEs (unfilled markers) compared to the
strength averaged over all three different simulation results (filled markers). One can
clearly derive that although the single results differ significantly from the averaged re-
sults they follow a schematic curve, which flattens with higher element numbers. The
particle number inside the RVE may have and influence on the resulting strength, and it
may as well influence the resulting strengths in the yield study. Therefore the mesh fine-
ness convergence study should be repeated with the sufficient high number of particles
found in the particle number convergence study. The significant difference between the
single results of studies with the same element number may as well arise from the fact
that the initial packings differ in the initial relative packing density.

Figure 3.2: Unfilled markers show individual simulation results from different
initial RVEs, whereas filled markers represent the averaged strengths.

Figure 3.3 shows the cross section of RVEs with different element numbers and empha-
sizes the choice of four elements per diameter. Obviously a mesh fineness of three is too
coarse to show local stress characteristics. The stress distribution of the RVE with a mesh
fineness of seven may be taken as reverence RVE for high resolved stress characteristics.
Compared to the other RVEs an adequate detailed stress profile over the cross section
from a mesh fineness of four onward is obtained. The stress distribution in the RVE with
four elements per diameter is sufficiently resolved to depict stress characteristics.
The particles which are additionally inserted in the additional layer can be clearly distin-
guished from the others. These particles are in Figure 3.3 boundary particles located on
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the edges of the RVE and coloured dark as they take in less stress. Their aim is to improve
the stress distribution in the periodic boundary region (section 2.2.3.1).

Figure 3.3: Cross sections of one RVE with 50 Particles after the compaction step.
Top row (left to right) shows RVEs with three to five elements per diameter and
bottom row (left to right) shows element numbers of six and seven per fibre diame-
ter. Colouring refers to highest (white) and lowest (black) occurring stress (bottom

row, left).

3.1.2 Particle Number

The convergence behaviour of an RVE containing different numbers of particles is inves-
tigated in this section. The examined particle number inside the RVE ranges from 50 to
500. A high enough number of particles should be chosen to inhibit big influences of
the RVE properties. However more particles lead to longer simulation time and higher
computational costs. Every RVE with different particle number needs an individual ini-
tial packing. Besides the number of particles, all other parameters remain constant. In
Figure 3.4 the simulation results for one particle packing per particle number is shown
for illustrative reasons. The compression and isostatic strength is diverging and does not
seem to converge in the examined particle number range. The tension strength seems to
converge from 150 particles onwards.
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Figure 3.4: Resulting strengths for different particle numbers inside RVE. For
illustrative reasons just one particle packing per particle number is depicted, as

the course of the results is similar.

In Figure 3.5 the Relative Standard Deviation (RSD) of three different random packings
per particle number is investigated. In our case the RSD is the standard deviation of the
yield strength and is expressed as a percentage value relative to the averaged strength.
As different yield test directions may indicate individual effects, averaging over all yield
test directions of one particle number is not applicable. Hence every yield tests RSD is
shown as a function of the particle number. It is suggested that the yield test in y- and
z- direction are in a similar value range as the compaction direction in the compaction
step is towards the x-direction. However, the RSD of these values do not follow this
suggestion, which leads to the presumption that different initial configurations lead to
this diverging effect. What might be impacting the result as well is the dissimilar relative
initial packing density. Although the compaction relative density after the compaction
step is the same for all simulations, the different initial relative packing densities may
allow for different scales of rearrangement movements and different rate and deepness
of overlapping particles. These overlaps are the basis of contact forces and stresses and
subsequently the initial stress distribution and stress forces might diverge significantly
for different initial packings. However, to proof this presumption, further studies are
necessary.
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Figure 3.5: RSD of the yield strengths for three particle packings per particle num-
ber. X, y or z indicates the yield testing direction, the minus indicates compression

yield testing and the plus indicates tension yield testing.

The RSD for 300 particles is for all yield test directions relative low compared to the RSD
of all other particle numbers, which recommends the particle packing of 300 for further
studies. However, a particle packing of 100 particles is chosen, as the RSDs of the yield
strengths are not exceeding 15 percent and are compared to 300 particle packings RSD
in a similar range. The initial packings with 50, 150, 200 and 500 particles have RSDs
up to 30 %. Therefore their strengths may vary which is not applicable for following
studies. Taking the computational time and costs into account underlines the usage of
initial packings with 100 particles for further simulations.

3.1.3 Simulation Time Step

The time step size ∆tsolver is a crucial parameter for the simulation as it strongly influences
the simulation time, convergence behaviour and therefore the quality of the results. To
examine the convergence behaviour one particle packing with 100 particles, a mesh fine-
ness of four elements per diameter and 104 mass scale factor is used as the basis for this
convergence study. The influence of time step size ∆tsolver, ranging from 5 ∗ 10−6 s to
2 ∗ 10−4 s, on the resulting strengths is examined. This range was chosen because big-
ger solver time step sizes than 2 ∗ 10−4 s are not stable and smaller time step sizes than
5 ∗ 10−6 s lead to extremely long simulation times. For the ∆tsolver of 5 ∗ 10−6 s about two
weeks of simulation time with three CPU cores are necessary to realize all simulation
steps with ten different yielding direction tests. Figure 3.6 depicts the strengths versus



Chapter 3. Results & Discussion 26

the solver time increment size. One can derive from the chart that the results stay about
constant for all solver step sizes observed, however small deviations occur.
In particular the isostatic yield strength deviates with a standard deviation of 4.1 MPa
around the arithmetic mean of −75.0 MPa which results in a RSD of −5.4 %. The tensile
and compression strengths are about equally sensitive to the solver time step size. Both
strengths deviate with a standard deviation of around 0.7 MPa and 1.9 MPa respectively
around their arithmetic mean of 13.9 MPa and −54.3 MPa. The RSD of the tensile strength
is 5.0 % and the RSD of the compressions strength is −3.4 %. Comparing the RSDs of the
three yield strengths concludes that the strengths are slightly varying but a significant
difference between tension, compression and isostatic yield strength can not be observed.
Additionally, the maximum RSD of 5.4 % states a negligibly deviation. The biggest solver
time step size of 2∗ 10−4 s still guarantees stable simulation and convenient results. Since
in later studies differently twisted particles are examined and therefore the mesh and
element configuration may vary, a slightly smaller solver time step size of 10−4 s is chosen
to guarantee a stable simulation.

Figure 3.6: Yield strengths for one particle packing depending on the solver time
step size ∆tsolver. The x-axis is plotted logarithmically and inverse order to em-

phasize the convergence behaviour.

3.1.4 Mass Scaling

The convergence study of mass scaling is performed with various mass scale factors
f acscale mass. This factor is multiplied by the density to increase the mass of the particles
and enables stable simulations and larger solver time sizes. Loidolt et al. [17] demon-
strated that applying the explicit solver in Abaqus CAE - Simulia™ and using the mass
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scaling factor, results in an applicable solver time step size and convergence behaviour.
Basis for this convergence study are the results from the previously examined parame-
ters. A packing of 100 particles with a mesh fineness of four elements per particle di-
ameter and a solver time step size of 10−4 are set constant during this study. The mass
scale factor f acscale mass is varied between 107 and 5∗103. Figure 3.7 illustrates the conver-
gence behaviour of one particle packing with different mass scale factors f acscale mass . For
higher values of f acscale mass than 105 the strength results diverge and for 107 f acscale mass

the compression strength is already about 10 times bigger than for 105 f acscale mass. High
mass results in inertia effects which falsify the resulting strengths. Inertia effects cause a
lag of yielding, which raises the yield strengths to higher values. For f acscale mass values
lower than 105 the strengths show a convergence behaviour. A mass scale factor of 104

is taken for subsequent studies. To guarantee stable simulations for differently twisted
particles a mass scale factor of 104 is chosen and not the minimal possible mass scale fac-
tor. Loidolt et al. [17] observed in their studies with spheres the same behaviour for the
mass scaling that for low mass scale factors instability problems occur. Their f acscale mass

ranged down to 300 f acscale mass, which could not be performed in our studies as the sim-
ulations did not succeed due to instability issues. The lowest possible f acscale mass with a
time step size of 10−4 s is 5 ∗ 103 for the configurations of this study.

Figure 3.7: Yield strengths for one particle packing depending on the mass scale
factor f acscale mass. The x-axis is plotted logarithmically and inverse order to em-

phasize the convergence behaviour.
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3.2 Particle Shape and Size

The influence of the geometrical properties of fibres in terms of the particle twist is
examined in this section. The length of the particles is kept constant while the revolution
(number of revolutions per fibre length) of the particles is kept constant. Twisting of
particles may improve or decline the resulting yield strength.

The revolution of the particles influence the strength in different ways:

• contact area of particles

• tangling of particles

• different characteristics of stress distribution

Figure 3.8: Uni-axial and isostatic yield tests in different directions to the RVE.
Three different initial packings per particle revolution are tested and the averaged

yield strengths are shown.

One would assume that with increasing revolution the strength increases as the parti-
cles tangle and have a higher contact area. Figure 3.8 shows the simulation results for
the uni-axial (x, y and z) and isostatic yield testing for different numbers of revolution.
Unexpectedly the strength for 0.5 revolutions is the lowest. The maximum strengths re-
sult for one total revolution per fibre length. For 0.25 and 0.75 revolution the strengths
are comparably equal and do not differ significantly. What might cause this unexpected
behaviour is the different elastic strain depending on the twisting. Subsequently the
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equivalent elastic strain is determined to proof this presumption. The equation for the
strain tensor (Equation (2.10)) is mentioned in section 2.2.3.1 as well as the basics of the
equivalent elastic strain determination. The equivalent elastic strain εel is obtained from
the unloading step. After the compaction step the RVE is unloaded to a final stress and
the equivalent elastic unloading strain is determined. Detailed explanation can be found
in Loidolt et al. [17].

Figure 3.9: Equivalent elastic strain of the packing at the relieve step after com-
pression for three different RVE sets per revolution.

In Figure 3.9 the equivalent elastic strains are depicted versus the particle revolution.
A trend for higher elastic strains with higher revolution can be determined. However
the equivalent elastic strain is slightly diverging for a single number of revolution, es-
pecially noticeable for 0.25. Additionally it needs to be mentioned that a variation of the
equivalent elastic strain of about 0.0005 of different sets is not significant compared to the
occurring variations of resulting yield strengths. The termination of the yield step and
strength is reached when the plastic deformation εpl reaches 0.002, Equation (2.11). The
equivalent elastic strain (Figure 3.9) with an arithmetic mean of 0.0058, is in comparison
to the yield termination condition two to three times bigger. The assumption for this
yielding criterion in Loidolt et al. [17] is that the elastic strain is small compared to the
plastic deformation. However with the simulation of non-spherical particles controver-
sial behaviour is observed. Further adaptation of the termination yield criterion might
be necessary.
The equivalent elastic strain during unloading influences the contact area. High equiva-
lent elastic strain results in a loss of contact area after the compaction step. A correlation
between the yield strengths and equivalent elastic strain can be noticed, Figure 3.8 and
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Figure 3.9 respectively. However a direct connection between the equivalent elastic strain
during unloading and the yield strengths can not be found.
For 1.0 revolution per particle length the strength and equivalent elastic strain show the
highest values although an increasing equivalent elastic strain leads to a loss of con-
tact area. Therefore additionally to the elastic equivalent strain the compaction pressure
needs to be factored in. More twist may result in higher compaction pressure, subse-
quently more contact area and higher strengths occur. Additionally the equivalent elastic
strain increases. The increasing pressure is a consequence of the twisting of the particles
and the following stronger deformation of the particles to fulfil the compaction termina-
tion criterion of 0.85 relative packing density. Thus the equivalent pressure stress p (in
detail explained in Loidolt et al. [17]) at the end of the compaction step is examined. The
equivalent pressure represents the arithmetic mean of the principal normal stresses of the
stress tensor. The analysis of the equivalent pressure stress is depicted in Figure 3.10.

Figure 3.10: The equivalent pressure after the compaction to 0.85 relative density
depending on the particles revolution for three different initial sets per particle

revolution.

Comparing the three Figures (Figure 3.9, Figure 3.8 and 3.10) emphasises the understand-
ing of the relation between equivalent elastic strain, equivalent pressure and strength.
Figure 3.9 and 3.10 depict the equivalent pressure and equivalent elastic strain of the
same set (Set 1 to Set 3) per particle revolution. High equivalent pressures after com-
paction may lead to higher equivalent elastic strains, most notably for one revolution.
However this correlation is not valid for other revolutions. For 0.5 revolution and Set
3 the equivalent pressure after compaction exceeds Set 1 and Set 2, but the equivalent
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elastic strain during unloading is lower than for the other two sets with the same revolu-
tion. Although there are correlations between equivalent pressure after compaction, the
equivalent elastic strain during unloading, the yield strength, and the number of revolu-
tion further studies with different lengths and different particle shapes are reasonable to
may find direct correlations and to deepen the knowledge and understanding of the uni-
axial compression and yield strength behaviour. Additionally more sets are necessary to
diminish effects of individual set configurations on the results.
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Chapter 4

Conclusion & Outlook

Non-spherical particles are implemented in the MPFEM simulation environment devel-
oped by Loidolt et al. [17]. The goal of this MPFEM model is to simulate the behaviour of
powder compacts and to examine the resulting yield behaviour. To achieve this goal two
different simulation procedures are followed. First, an RVE with randomly distributed
particles is generated in LIGGGHTS ®. Second, the generated RVE is transferred into the
Abaqus CAE - Simulia™ environment where the compaction of the RVE is simulated and
the yield strengths are determined.

Convergence studies investigate the influence of the simulation parameters on the
resulting strengths. First the mesh fineness is varied. From an element number of four
elements per particle diameter onwards converging behaviour is observed. The particle
number inside an RVE is the second investigated simulation parameter. A convergence
behaviour for the tension strength of RVEs with 150 particles onwards can be identified.
For the compression and isostatic yield tests the strengths do not show converging
behaviour. Different initial packing configurations for the same particle number lead to
varying strengths. The RSD is relatively small for a number of 100 particles in the RVE.
Simulation time and costs emphasise the decision for further simulations of RVEs with
100 particles. For all examined solver time step sizes an approximately constant strength
is obtained. To guarantee stable simulations for different particle shapes a solver time
step size of 10−4s is chosen. The mass scale factor negatively influences the simulation
result if too high mass factors are applied and the resulting strengths are altered due
to inertia effects. From a mass scale factor lower than 105 onwards about constant
strengths are obtained. A mass scale factor of 104 is chosen. The RVE with the simulation
parameters from the convergence studies are undertaken further studies concerning
the effects of the geometrical particle properties on the strengths. The revolution of
the particle per particle length is varied, whereas all other particle properties are kept
constant. Complex strength behaviour is determined. The mechanistic model allows
for understanding the correlation between the equivalent pressure after compaction, the
equivalent elastic strain during unloading and the yield strengths. The idea of direct
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correlation between higher strengths with increasing twist of the particles can not be
followed. The lowest strengths are obtained for 0.5 revolution of the particles, whereas
the highest strength is obtained for one revolution per particle length.

This work constitutes the opportunity to mechanistically understand the influences of
different properties on the resulting strengths. Nevertheless, numerous improvements
need to be done. To guarantee equal initial RVEs, either an appropriate termination cri-
terion for the packing generation in LIGGGHTS® needs to be realized or the total RVE
generation is implemented into the Abaqus CAE - Simulia™ environment. Further im-
provements include the iterative procedure to determine the process parameters with
convergence studies. In general more simulations are necessary. Not only in terms of
higher number of different initial packings for one specific parameter set but also addi-
tional particle shapes and poly-disperse powders should be investigated. These further
improvements may lead to diminish fluctuations of the strengths and may lead to a bet-
ter understanding of the influences of geometrical shapes on the resulting strengths. If
future studies further indicate the imbalance of plastic strain and equivalent elastic strain
an appropriate yield criteria needs to be developed for non-spherical particles. Besides
the already mentioned improvements in terms of simulation environment, the results
should be compared with experimental results.
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Abbreviations

DEM Discrete Element Method
FEM Finite Element Method
MPFEM Multiparticle Finite Element Method
RSD Relative Standard Deviation
RVE Representative Volume Element

Greek Symbols

δN normal displacement
˙δN normal relative velocity

δT tangential displacement
δ̇T tangential relative velocity
δ0 cohesion interaction length
ε coefficient of restitution
ε strain tensor
εel elastic strain tensor
εpl equivalent plastic strain
εplastic plastic strain
εyp strain tensor at the yield point
µ frictional coefficient
ν Poisson ratio
ρ density
σ stress tensor
σcohmax cohesion stress maximum
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Latin Symbols

aboxde f ormation box deformation acceleration

aSphere sphere acceleration
d damping factor
E Youngs Modulus
F force
Fmax maximal force, occurring on box edges
f acscale mass mass scale factor
f racadd,layer additional-layer-fraction parameter
k normal stiffness
lelement element size
le final length of box
l0 initial length of box
lparticle to center distance particle to box center
p equivalent pressure stress
r particle radius
tsim total simulation time
∆t time step in LIGGGHTS®
∆tsolver solver time step size in Abaqus CAE - Simulia™
v initial particle velocity
∆v standard deviation of the velocity
∆xadd thickness of additional layer
∆xbox incremental box deformation
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