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Abstract 

Euler-Lagrange (EL) based simulations of industrial scaled processes demand very 

high computational resources, especially for wet gas-particle systems. As a 

consequence, some sort of coarse-graining (CG) to reduce the number of tracked 

particles is necessary. Two different scaling laws, taking liquid bridges and cohesive 

forces into account, were investigated for the usage in EL-based simulations. The 

coarse-graining models based on (i) constant stresses and (ii) invariant key numbers 

were compared to (iii) a coarse-graining model without scaling of the cohesive 

forces. 

The outcome of the different scaling strategies was verified against data from the 

original systems (without CG) considering (i) a wet fluidized bed, and (ii) the 

sedimentation of wet particles in a fully periodic domain. The results indicate that 

the maximum pressure drop of a fluidized bed is not improved by a scaling of the 

cohesive forces. In the cohesive dominated regime, the closest approximation of the 

original bed height is obtained when using the scaling based on a constant Bond 

number. The results for the domain average slip velocity in the periodic domain 

confirmed that the Bond number-based scaling achieves the smallest deviations to 

the original system. Although, this is only valid for small coarse-graining ratios, at 

higher ratios the nonlinear adaption of the cohesive parameters led to a significant 

overprediction of the cohesive force and therefore big particle clusters. 
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Kurzfassung 

Simulationen von Prozessen im Industriemaßstab auf Basis von Euler-Lagrange (EL) 

Betrachtungen erfordern einen sehr großen Rechenaufwand, insbesondere für 

feuchte Gas-Partikel-Systeme. Um solche Simulationen durchführen zu können ist 

es notwendig die Anzahl an betrachteten Partikeln zu reduzieren. Für den Einsatz in 

EL-basierten Simulationen - unter der Berücksichtigung von Flüssigbrücken und 

kohäsiven Kräften - wurden zwei verschiede Skalierungen untersucht. Diese 

Skalierungsmodelle basierend auf konstanten Spannungen bzw. konstanten Bond-

zahlen, werden mit einem vergrößerten System ohne Skalierung der kohäsiven 

Kräfte verglichen. Die Ergebnisse der verschiedenen Skalierungsstrategien aus (i) 

den Simulationen einer feuchten Wirbelschicht, sowie (ii) der Sedimentation in einer 

vollkommen periodischen Box wird mit (iii) dem jeweiligen Basissystem (ohne 

Skalierung) verifiziert. 

Hinsichtlich des maximalen Druckverlustes einer Wirbelschicht wurde kein Hinweis 

gefunden, dass die Skalierung der kohäsiven Kräfte automatisch in einer besseren 

Wiedergabe des Basissystems resultiert. In kohäsiv dominierten Regimen bildet die 

Bond-Zahl-basierte Vergrößerung die Betthöhe der Wirbelschicht am genauesten 

nach. Die Ergebnisse der Schlupfgeschwindigkeit der periodischen Simulationen 

bestätigen die Erkenntnis, dass die Bond-Zahl-basierte Skalierung die beste 

Reproduktion des Originalsystems liefert. Dies ist jedoch nur gültig für kleine 

Skalierungsraten, da die nichtlineare Skalierung der Kohäsions-Parameter in die 

Bildung großer Partikel-Cluster resultiert. 
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1. Introduction 

Wet particulate systems, such as agitated wet granular matter or fluidized wet 

particles, play an important role in a variety of industrial processes. Examples are 

chemical processes like cracking of hydrocarbons [1], or at the usage of wet powders 

in the pharmaceutical industry [2]. For this reason, the investigation of the flow 

characteristics in these industrial processes is essential for the equipment design, or 

the optimal operation of a process. 

This section provides an overview of the challenges and the background that are 

associated with the modeling and simulation of wet particulate systems. It further 

describes the state of the art in this field and explains the goal of the present study. 

1.1.  Challenges and background 

The occurrence of coherent, inhomogeneous flow structures (often called “mesoscale 

structures”) affects essential process characteristics already in dry systems at a 

fundamental level [3,4]. Even more challenging are wet systems: the addition of 

liquid, or the use of wet particles, increases the complexity of the system behavior. 

The presence of a liquid film on the particles enables liquid bridge formation during 

particle–particle or particle–wall interactions. These liquid bridges may cause wanted 

or unwanted agglomeration [5]. 

The flow structure is impeded by agglomerates, which leads to slumping or 

roughening of the fluidization process. Overall, these phenomena affect key 

characteristics like the heat or mass transfer and can influence chemical reactions. 

This impact on fluidization has been explored by several researchers [6,7,8,9,10]. 

Mesoscale structures emerge over a wide span of time and length scales [4]. As a 

consequence, it is computationally expensive to resolve these structures fully. To 

investigate these characteristics of wet particle flow in the presence of gas, three 

appropriate methods are basically available: (i) Direct Numerical Simulation (DNS), 

(ii) Euler–Euler (EE), and (iii) Euler–Lagrange (EL) methods [11]. 

In DNS, all particles are individually observed and the fluid around the particles is 

completely resolved. Newton’s equation of motion is solved for each particle and the 

Navier–Stokes equation in its most fundamental form is solved for the interstitial 

fluid [12]. Because of this complex and computational demanding approach, DNS is 
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limited to small systems (typically a few thousand particles, up to at most 1 Million 

particles). DNS is mainly used for the simulation of microscale flow features to derive 

closures for other simulation approaches. 

The EE method, commonly referred to as the two-fluid model (TFM), treats both 

phases as continua. TFMs rely on solving locally averaged equations [13,14]. This 

concept fits well for large-scale flow characteristics, although constitutive models are 

needed for the force between the two phases, and for the effective stress in each 

phase. TFMs are adequate for dry systems [13,15]. However, a complete set of 

constitutive models is not available for wet systems yet [11]. 

In some sense, the EL approach combines DNS and EE by solving locally averaged 

equations for the fluid phase and tracking individual particles via Newton’s equation 

of motion [16][17]. Thus, the EL approach also requires constitutive models for the 

fluid–particle interaction force. 

Deen et al. [15] investigated the hard- and soft-sphere approach for the modeling of 

particle–particle interactions, which are applicable for EL and DNS. Commonly used 

for the soft-sphere approach is the Discrete Element Method (DEM) of Cundall and 

Strack [18], which is applied in the present work as well. 

To study mesoscale structures in wet systems looking at particles as discrete objects, 

as done in the EL simulations, is an attractive approach. The reason, therefore, lay 

in the fact that the implementation of the formation and rupture of liquid bridges in 

this modeling approach is straightforward [11]. Models, which describe interaction 

forces between colliding particles, have been presented by Mikami et al. [19] for the 

capillary force and by Pitois et al. [20] for viscous effects. The rupture of the liquid 

bridge was described by Lian et al. [21] and the redistribution of the unbound liquid 

was in the focus of several studies [22,23,24]. Taking into account the described 

advantages, the EL method is used in this study. In the literature, this approach is 

commonly known as the Computational Fluid Dynamics–Discrete Element Method 

(CFD–DEM) [25]. 

Nowadays, EL simulations with several million particles can be performed with 

standard computer clusters. To observe industrial scale processes with up to a few 

billion particles some kind of coarse-graining, which reduces the number of particles 

to be tracked, is necessary. Such a coarse-graining approach requires deeper 
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thoughts on how particle-fluid and particle-particle interaction models should be 

implemented. Specifically, there are two different strategies of reducing the number 

of tracked particles in EL-based simulations: (i) using so-called “parcels” that consist 

of a certain number of small particles and are modeled as solid spheres [26], or (ii) 

by applying the Multiphase Particle-In-Cell method (MPI-PIC) [27]. The former is 

often referred to as the Discrete Parcel Method (DPM), which is reviewed in greater 

detail in Section 1.2 below. DPM only tracks a fraction of the particles, but accounts 

for parcel-parcel collision using classical (DEM-inspired) contact force models. In 

contrast, MPI-PIC neither tracks all particles, nor their collisions. Instead a (discrete) 

approximation of the particle distribution is performed via test particles. 

Another option to reduce the computational cost associated with simulations is the 

coarsening of the fluid phase [28]. However, the cost assigned to the solution of fluid 

phase transport equations are typically much lower than the cost of solving the 

particle phase. Thus, for the present study fluid coarsening has not been addressed 

in greater detail. 

1.2.  Background on the Discrete Parcel Method 

A parcel approach for the simulation of dry gas–particle flows was presented by Radl 

et al. [26]. In addition, the influence of the discrete parcel method (DPM) on the 

drag force was investigated in a previous study [29]. The use of the coarse-grained 

soft-sphere approach in industrial applications was reviewed recently by Radl and 

Municchi [30]. 

Bierwisch et al. [31] presented a coarse-graining approach for the dynamics of 

powders in cavity filling. For dilute systems, the coarse-graining scheme was based 

on force scaling, and for dense systems it was based on stress scaling. In general, the 

idea was to preserve the energy density and the evolution of the energy density of 

the original system. It was shown that the scaling must be based on the following 

scaling-invariant factors: particle density, friction coefficients, Young’s modulus, and 

coefficient of restitution. Cohesion effects were represented in a simplified way by 

considering a JKR model. 

A large-scale DEM of a 2D fluidized bed was performed by Sakai et al. [32], in which 

particle–wall interactions were not taken into account. The so-called “direct force 

scaling” method was used with quadratic scaling of the cohesive force and cubic 
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scaling of the contact forces. In this simplified set-up - cohesive interactions were 

expressed with van der Waals forces - the coarse-grained system imitated the 

original case precisely.  

Chan et al. [33] applied a similar coarse-graining model to wet particle flow in a 

mixer. The liquid bridge force was scaled quadratic in this study and was considered 

only between particles, while the effects on particle interactions with walls and the 

impeller were neglected. The coarse-graining model used was validated for 

reproducing the original bulk flow and mixing behavior. 

Thakur et al. [34] considered the scaling of DEM model parameters for cohesive and 

noncohesive systems in a uniaxial compression test. They stated that a linear scaling 

of the particle stiffness and a quadratic scaling of the adhesive force can reproduce 

the bulk properties of the basic system with the primary particles sufficiently. 

A subtle, but eventually important detail related to EL-based simulations is the 

rolling friction. Goniva et al. [35] showed the influence of the rolling friction model 

on CFD–DEM simulations of a fluidized bed. Therefore, different rolling friction 

models were tested, with the key conclusion that a simple rolling friction model 

should be used for such applications. 

1.3.  Goals 

The focus of the present thesis is on presenting a coarse-graining approach for wet 

particulate systems that allows precise DPM-based simulation of these systems. A 

specific focus is on particle–wall interactions, since these have not been detailed in 

greater depth in literature. Also the coarse-graining approach should be suitable for 

the following three flow situations: (i) the filling and the emptying of a box with wet 

(cohesive) powder, (ii) the fluidization of wet granular material, and (iii) the 

sedimentation of wet particles. The verification of the coarse-grained model is 

obtained by comparing the results of the DPM-based simulations with data from the 

original particle system, i.e., a DEM-based simulation. 
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1.4.  Thesis structure 

The simulation method, as well as closures for contact and liquid bridge forces, are 

described in Chapter 2. The coarse-graining approach, considering different scaling 

strategies, is explained in Chapter 3. The preliminary results, which describe the 

outcome of the rolling friction tests and of the simulations made for testing the 

coarse graining of the solid phase, are provided in Chapter 4. Chapter 5 discusses 

the main results and findings of the present study. Chapter 6 provides a conclusion. 
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2. Simulation Method 

As described in the previous chapter, the CFD–DEM approach is used in this work. 

The CFD part is realized within the framework of OpenFOAM® [36] and the DEM 

part is solved using LIGGGHTS® [37]. The coupling between these two solvers is 

performed with CFDEM® [37]. 

The translational and rotational motion of the particles is described by: 

!" 	
$%&,"
$( = *+,-.,"/- + *+,-.,"/. + *+,1 + !"	2 +

/
*3456,6→& (1) 

8" 	
$9"
$( = :" (2) 

!" is the solid mass of the particle ;. Because of the small contribution, the mass of 

the liquid adhering to the particle surface is neglected. %&," is the translational 

velocity of the particle. *+,-.,"/-  and *+,-.,"/.  are the normal and tangential contact 

forces, while *3456,6→& represents the interaction force between the gas and the 

particle.	*+,1 is the cohesive force acting on the particles and is defined as the sum of 

the capillary force *+5& and the viscous force *<"=. The total torque :" on each 

particle is equal to the moment of inertia 8" and the change in the angular velocity 

9". This form used for the rotational degree of freedom is valid for spheres only, 

which is acceptable for most of the systems under consideration. 

2.1.  Closures for contact forces 

Particles are represented as soft spheres, and their deformations are represented by 

idealized closure models based on overlaps. Specifically, for the tangential and 

normal particle interaction, a spring–dashpot-slider model will be used. 

2.1.1. Normal force contact model 

In a dense system, the normal contact force is described by: 

*+,-.,"/- = >-	?-	@"/ +	A-	?-	@"/	 (3) 

In equation 3, >- is the normal stiffness of the particle,	A- the normal damping 

coefficient, and ?- the normal particle overlap. @"/ is the unit normal vector between 

the colliding particles ; and B. 
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2.1.2. Tangential force contact model 

The tangential contact force is modeled with: 

*+,-.,"/. = min	( *+,-.,"/- 	µ4	H"/	, >.	?.	H"/ +	A.	?.	H"/) (4) 

µ4 represents the rolling friction coefficient, >. is the tangential stiffness, A. is the 

tangential damping coefficient, and ?. stands for the tangential overlap.	H"/ is the 

unit tangential normal vector. 

2.1.3. Rolling friction model 

Different rolling friction models were tested in the pure granular flow tests. Ai et al. 

[38] made an assessment of different rolling friction models used in DEM 

simulations and classified them into four characteristic categories. Also contact 

independent models (Model D) were reviewed, but rejected at the outset, because of 

the contact pair torques that are not in equilibrium. 

a) Model A: directional constant torque 

Bierwisch et al. [31] used a Coulomb-like rolling friction model, which corresponds 

to the model A in [38]. They also noted that long-term relaxations can occur when 

using this dynamic rolling friction model but did not consider any stabilizing 

strategies in their work [31]. In the directional constant torque models, the torque 

acting between two particles J4 is expressed as: 

J4 = −
94LM
94LM

	µ4	NLOO	*- (5) 

94LM = 9" − 9/	, NLOO =
N"	N/

(N" + N/)
 (6),(7) 

NLOO is the effective particle radius and 94LM the relative angular velocity between 

particle ; and particle B. 

b) Model B: viscous models (CDT) 

A term related to the angular velocity is added to model A to form so-called viscous 

(-based) torque models. This model is referred to as “CDT” in LIGGGHTS®. 

J4 = −µ4	NLOO	*-	 9"	N" − 9/	N/  (8) 

This description of the rolling friction is often used in literature, e.g., as done by 

Radl et al. [26], and used in parcel-based approaches for gas–particle flows. 
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c) Model C.1: elastic-plastic spring–dashpot model (EPSD) 

In the elastic-plastic spring–dashpot model the total rolling resistance torque is 

calculated as: 

J4 = J4
3 +J4

P (9) 

The spring torque J4
P is determined via an incremental torque using the rolling 

stiffness >4 and the increment in the relative particle-particle contact angle ΔR4: 

∆T4
P = −>4	∆R4 (10) 

>4 = 2.25	>-	NLOOX 	µ4X (11) 

The viscous damping torque T4
3 is also summed up from an incremental torque with 

(for further information of the EPSD model and the calculation of J4
Y see Appendix 

A.1): 

T4,.Z∆.
3 =

−A4	R4	;[ T4,.Z∆.
P < J4

Y

−[	A4	R4	;[ T4,.Z∆.
P = J4

Y (12) 

	
d) Model C.2: elastic-plastic spring–dashpot model 2 (EPSD2) 

In the EPSD2 model, the viscous damping torque J4
3 is neglected. Therefore, the 

total rolling resistance torque J4 simplifies to: 

J4 = T4
P (13) 

In contrast to the EPSD model, the rolling stiffness is defined by: 

>4 = >.	NLOOX  (14) 
 

2.2.  Closures accounting for the presence of liquid bridges 

The formation or rupture of liquid bridges is dependent on the distance between 

the surfaces of the particles. This distance ℎ"/ is described as: 

ℎ"/ = N" + N/ − ^"/  (15) 

^"/ = ^" − /̂ (16) 

where ^"/ is the distance between the center of the two interacting particles ; and B. 

The liquid loading level Λ is expressed as in Wu et al. [24], with the half liquid 

bridge volume à normalized with the particle volume: 

Λ = à
2	 &̀

 
(17) 
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2.2.1. Liquid bridge filling model 

Wu et al. [24] presented a dynamic liquid bridge filling model based on their 

previous work [23]. This model will be used to describe the liquid bridge formation, 

which is decisive for capillary and viscous forces in the system. The dimensionless 

forms of the mass balance differential equations are: 

$b&,"∗

$(∗ = −d"	(b&,"∗ 	eY," − à
∗

2 ) 
(18) 

$b&,/∗

$(∗ = −d"	(b&,/∗ 	eY,/ − à
∗

2 ) 
(19) 

$ à
∗

$(∗ = −(
$b&,"∗

$(∗ +
$b&,/∗

$(∗ ) 
(20) 

b&,"∗  and b&,/∗  are the liquid contents on particles	; and B, d" is a dimensionless filling 

rate coefficient. eY," and eY,/ are the mobility coefficients of the liquid on the 

particle, i.e., the relative amount of liquid that is able to flow into the liquid bridge 

region. The dimensionless bridge volume à
∗ is defined as à Nf. Based on the 

assumption of uniformly coated particles of equal size the mobility coefficient is 

determined as [24]: 

eY," = eY,/ = 5	ℎg∗  (21) 

ℎg∗ , which represents the initial dimensionless film height, is the ratio of the actual 

film height ℎg and the particle radius. The following relations are used to create the 

dimensionless parameters: 

b&,"∗ =
b&,"
Nf 	 , b&,/

∗ =
b&,/
Nf 	 , (4LO =

$& ∙ µM
(2	i) 	 , (

∗ =
(
(4LO

 (22),(23),(24),(25) 

i is the surface tension, N the particle radius, and µM the liquid viscosity. The initial 

bridge volume à,g
∗ , will be calculated using the case of zero separation with à,g

∗ =

10.5	 ℎg∗ l.m. These dimensionless parameters will remain invariant when using 

coarse graining. 

2.2.2. Bridge rupturing model 

If the critical distance between two particles is exceeded, the liquid bridge ruptures 

and the liquid contained in the bridge is redistributed. Wu et al. [24] assumed an 

equal redistribution to the two involved particles, the same assumption is made in 

this study. Based on Lian et al. [21] the rupture distance is represented by: 
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ℎ4n& = 1 + 0.5	R 	 à
l/f (26) 

ℎ4n& is the critical rupture distance, and R is the contact angle of the liquid bridge. 

The assumption of fully wetted particles was made in Wu et al. [24], which leads to a 

situation that is best approximated by assuming zero contact angle. The liquid 

bridge model of the present study is based on these findings and the contact angle 

will also be approximated as zero. As a consequence, the rupture distance is: 

ℎ4n& = à
l/f (27) 

Using the dimensionless liquid bridge volume à
∗ will lead to the dimensionless 

rupture distance ℎ4n&∗ . Both dimensionless parameters will remain invariant for the 

scaled and the unscaled system. Therefore, the rupture distance ℎ4n& will be scaled 

with the coarse-graining ratio Ap. 

2.2.3. Capillary force model 

The capillary force model is provided by Mikami et al. [19]. The capillary force is 

calculated from: 

*+5& = q	N	i	 exp A	v∗ + B + C 	@"/		 (28) 

y = −1.1	( à
∗)zg.mf	 (29) 

{ = [−0.34	 ln à
∗ − 0.96] ∙ RX − 0.019	 ln à

∗ + 0.48	 (30) 

Ñ = 0.0042	 ln à
∗ + 0.078	 (31) 

where the dimensionless surface-surface separation distance is defined as v∗ = ℎ"/
N, 

with the reference length being the particle radius N. For equal-sized particles, the 

reference radius is simply the particle radius. If particles overlap in a collision, the 

dimensionless separation distance is set to zero, in that case only the parameters { 

and Ñ have an impact on the capillary force calculation. 

2.2.4. Viscous force model 

The viscous force model by Pitois et al. [20] is used the present work: 

*<"= = −
3	q
2 	ÜM 	

N
v∗ 	%-,g	á<

X		@"/		 (32)	

á< = 1 −
1

1 + 2	 à∗
q	v∗X

	 (33) 
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In the case of zero separation, the dimensionless separation is substituted by v∗ =
ℎà,LOO

N, where ℎà,LOO is an effective roughness length of the particle. The effective 

roughness is the sum of the absolute roughness ℎà and the dimensionless roughness 

ℎà∗ times the effective particle radius. For that reason, the dimensionless roughness 

will remain invariant when scaling the system. 

 
2.3.  Drag-force model 

Beetstra et al. [39] investigated the drag force acting on particles of intermediate 

Reynolds number flow. For monodisperse systems the following correlation was 

proposed by them: 

*3456,6→& = 	
18	µ6		 â − % 	 &̀

$&X
	 1 − e& 	

10	e&
1 − e&

X + 1 − e&X 	 1 + 1.5e&g.m

+
0.413	Nä&

24	 1 − e&
X 	

1 − e&
zl + 3	e& 1 − e& + 8.4	Nä&zg.fãf

1 + 10fåç	Nä&
z(lZãåç)/X 	. 

 

(34) 

e& is the solids volume fraction, µ6	 is the gas viscosity, &̀ is the particle volume and 

the particle Reynolds number is defined as: 

Nä& =
é6	$&	 â − % 	(1 − e&)

Ü6
	 (35) 

where â is the gas velocity, % is the particle velocity, and é6 is the gas density. 

 
2.4.  Boundary and initial conditions 

The reference impact velocity of the particles %-,g	= 1 [m/s] is set as invariant for all 

test simulations. To guarantee that the particle overlap is not excessively large, the 

particle stiffness is derived from a fixed (desired) maximum dimensionless overlap. 

This dimensionless maximum overlap is set at 1 [%]. In the case only the cohesion 

force is considered in the analysis of the overlap, particles would overlap more than 

1 [%] in case of low Bond number flows. This is simply because particle interaction 

forces are dominated by the gravitational force in this case. Therefore, the 

gravitational force will be taken into account in the determination of the particle 

stiffness to match the desired overlap (for further information see Appendix A.2). 
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The parameters were tested in a simulation of a binary collision. When setting the 

dimensionless filling rate coefficient equal to 0.005, the dynamic liquid bridge filling 

caused significantly higher overlaps (see Appendix A.2). For that reason, the 

dimensionless filling rate coefficient will be set to 0 in further simulations. That 

means no additional liquid is added to the bridge, only the liquid on the particles is 

distributed. Particle–wall interactions are taken into account in all performed 

simulations.	
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3. Theoretical Analysis of Coarse-Graining Strategies 

In the parcel approach, the diameter of the parcel is defined via the scaling ratio Ap 

according to $&54+LM = Ap ∙ $&4"Y. Consequently, one parcel consists of Apf particles. A 

coarse-graining strategy provides scaling rules for the parameters (e.g., the surface 

tension) used in relevant closures (e.g., for inter-particle forces). Next, a simple time 

scale analysis is presented, followed by a set of options for such coarse-graining 

strategies.  

3.1.  Simple time scale analysis 

To be able to reproduce the behavior of the original system with coarsened particles, 

the time scales of the different equations need to be aligned. The dimensionless 

scaled time of the differential equation based on the kinematics of a simple normal 

head-on collision is: 

(,<L4M5&∗ =
(	è-,g
N"

 (36) 

Considering the differential equation for the dynamic liquid bridge another option 

for the scaling of the time is: 

(a4"36L∗ =
(	i
N"	µM

 (37) 

The ratio of the two time scales is: 

(a4"36L∗

(,<L4M5&∗ =
è-,g		µM
i 	 (38) 

This means the ratio of the impact velocity è-,g	 to capillary velocity i µM in case of 

Bond scaling needs to be constant. For a constant impact velocity, the capillary 

velocity must also be constant. 

 
3.2.  Contact force-based scaling for noncohesive systems 

For noncohesive systems, the differential equation for the overlap in a normal 

direction from Newton’s equation of motion is [26]: 

!LOO	?- = >-	?- − A-	?-	 (39) 

The effective mass and effective radius are (considering parameter ê = N/
N"): 

!LOO =
!"	!/

(!" + !/)
=
4	q	N"f	éë	êf
3	(1 + êf) 	 , NLOO =

N"	ê
1 + ê	 

(40),(41) 
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Indices ; and B represent particle ; and particle B respectively, which are interacting. 

Radl et al. [26] inserted these expressions and the dimensionless variables ?-∗ = ?- ⁄

N", ?-∗ = ?- ⁄ èg, and (∗ = (	èg ⁄ N"	with the reference velocity èg in Equation 39, 

(considering ìl = 4	q	 êf [3	 1 + êf ]) to arrive at: 

ìl	?-∗ =
>-	?-∗
N"	éë	ègX

+
A-	?-∗

N"X	éë	èg
		 (42) 

This scaling is based on the dimensionless normal overlap for the translational 

motion of a particle. As reference length in the parcel approach the parcel diameter 

is used and in the original case, the primary particle diameter is used. Therefore, the 

relative overlap will remain invariant when scaling the system. Based on the 

dimensionless differential equation for the normal overlap, the following 

dimensionless parameters can be identified: 

Πl = 	ê, ΠX = >- N"	éë	ègX , 	Πf =	 A- N"X	éë	èg 		
Πl,&4"Y = Πl,&54+LM,	ΠX,&4"Y = ΠX,&54+LM,	Πf,&4"Y = Πf,&54+LM 	

Πl requires a constant ratio of the radii of the colliding parcels or particles. As long 

as each parcel is made up of the same number of particles ï the ratio will remain 

constant. The parcels will be made up by a constant number of particles with the 

same size and the same density. As a consequence, the parcel density will be the 

same as the particle density. Because the reference velocity èg will be invariant, 

condition ΠX requires that >- N" = constant. This leads, when scaling the system, to: 

>-,&4"Y
N&4"Y

=
>-,&54+LM
N&54+LM

 (43) 

Dimensionless parameter Πf requires that A- N"X = constant, that means the 

damping coefficient of the primary particles A- scales with ApX into the parcel system 

(see equation 44). 
c-,&4"Y
N&4"YX =

c-,&54+LM	
N&54+LMX  (44) 

This will result in an invariant coefficient of restitution and a damping force that will 

scale with ApX. When scaling the system, the dimensionless friction coefficients Ü and 

Ü4 must be kept constant [26]. 
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3.3.  Contact force-based scaling for cohesive systems 

In the cohesive case, the cohesive force acts like an additional damping term: 

!LOO	?- = >-	?- − A-	?- − õ+,1 (45) 

When converting this equation to a dimensionless form, similar to the noncohesive 

case, an additional dimensionless parameter is obtained: 

Πã = õ+,1 N"X	éë	ègX 	 (46) 

For a constant dimensionless bridge volume and a constant dimensionless separation 

distance, this leads to: 
i&4"Y
N&4"Y

=
i&54+LM
N&54+LM

	 ,
µM,&4"Y
N&4"Y

=
µM,&54+LM
N&54+LM

 (47),(48) 

The scaling rules for the normal stiffness and normal damping coefficient remain 

the same for cohesive and noncohesive systems. 

	
3.4.  Stress-based scaling for cohesive systems 

Bierwisch et al. [31] considered a stress-based scaling having powder filling into 

cavities in mind. Specifically, they assumed that the ratio of a typical cohesive stress 

and a hydrostatic stress remain constant in the case of coarse-graining.  

In the case of stress-based scaling, obviously the ratio õúùAä N"X	 must remain 

constant. For the normal stress, and in case of a constant dimensionless overlap, this 

leads to: 

>-,&4"Y
N&4"Y

=
>-,&54+LM
N&54+LM

,
c-,&4"Y
N&4"YX =

c-,&54+LM	
N&54+LMX  (49),(50) 

The normal stiffness scales with Ap and the normal damping factor scales with ApX. 

For the capillary stress and the viscous stress, as well as a constant dimensionless 

bridge volume, the following scaling rules can be distilled: 
i&4"Y
N&4"Y

=
i&54+LM
N&54+LM

,
µM,&4"Y
N&4"Y

=
µM,&54+LM
N&54+LM

 (51),(52) 

That means that the surface tension and liquid viscosity scale with Ap. These findings 

are similar to the force-based scaling results. 

Note that in the inertial flow regime, stress-based scaling leads to an overprediction 

of stresses [26]. This is because the dimensionless shear rate is increased when using 

parcels instead of the original particles. Unfortunately, it is not straightforward to 

overcome the stress overprediction in the inertial flow regime, even for dry systems. 
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3.5.  Bond number-based scaling for cohesive systems 

The cohesive influence on the system is governed by the following dimensionless 

parameters: 

{ú =
6	i

$&X	p	é&
 (53) 

Ñd =
µM	è.
i  (54) 

The scaling for a constant Bond number leads to: 
i&4"Y
N&4"YX =

i&54+LM
N&54+LMX  (55) 

Therefore, the surface tension scales with ApX for the sedimentation of particles. The 

scaling for a constant Capillary number yields: 
µM,&4"Y	
i&4"Y

=
µM,&54+LM	
i&54+LM

	 ,
µM,&4"Y	
N&4"YX =

µM,&54+LM	
N&54+LMX  (56),(57) 

The liquid viscosity in this case also scales with ApX. 

In the case of Bond number-based scaling, the maximum dimensionless overlap will 

also be held constant. The normal stiffness in this approach is calculated via: 

>- =
õ+,1

?-,Y5û∗ 	N"
 (58) 

Rearranging this equation leads to: 

?-,Y5û∗ =
õ+,1,&4"Y

>-,&4"Y	N&4"Y
= 	

õ+,1,&54+LM
>-,&54+LM	N&54+LM

 (59) 

With the previously shown scaling rules for the surface tension and the liquid 

viscosity, this leads to: 

k-,&4"Y
N&4"YX =

k-,&54+LM	
N&54+LMX  (60) 

As can be seen, the normal stiffness scales with ApX. This nonlinear increase of the 

particle stiffness will require smaller simulation time steps compared with the stress 

scaling. 

Finally, one is interested in the scaling rule for the damping coefficient. The normal 

damping coefficient in the Hooke contact model in LIGGGHTS® is calculated via: 

c† =
4	m°¢¢	k†

1 + π
ln e†

X (61) 
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For a constant coefficient of restitution, e†, and where the effective mass ratio of the 

primary particle to the parcel being m°¢¢,§•¶ß m°¢¢,§®•©°™ = R§•¶ß R§®•©°™
f
, the 

scaling rule for the normal damping coefficient is: 

A-,&4"Y
A-,&54+LM

=
N&4"Y
N&54+LM

m

		 (62) 

	
3.6.  Coefficient of restitution-based scaling 

Hrenya et al. [40] showed that for dilute cohesive systems considering the energy 

dissipated during binary collisions yields adequate scaling rules. Specifically, in case 

the coefficient of restitution should be unaffected by coarse-graining, the energy 

dissipation rate per volume and time of the original system is preserved [26,31]. 

The coefficient of restitution will be held constant during the collision of wet 

particles and the collision velocity is also constant. Therefore, the energy dissipation 

(for a constant dimensionless bridge volume) during the collision until reaching the 

bridge rupture distance is calculated. Energy gain during particle approximation 

will be neglected. The dissipated energy ∆¨P"- in a binary collision, where ℎ"/a  and ℎ"/5  

are the normal components of the relative velocity before and after the collision, is 

[31]: 

∆¨P"- =
!LOO
2 	 ℎ"/a

X − ℎ"/5
X

 (63) 

ℎ"/ is the distance between the surfaces of the particles. The overall (or “wet”) 

coefficient of restitution ä-,≠L. is expressed as [41]: 

ä-,≠L. = 1 −
b.,Y5û
!	è-,gX

 (64) 

where è-,g is the initial velocity before impact. The maximal possible energy 

dissipation b.,Y5û is: 

b.,Y5û = 2	(Æ<"=,. + Æ+5&,. + b+) (65) 

Æ<"=,. is the maximum possible viscous work, Æ+5&,. is the maximum possible 

capillary work and b+ is the energy of the contact loss. 
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3.6.1. Capillary limiting case 

For the capillary limiting case [41], the overall wet coefficient of restitution is 

determined from: 

ä-,≠L. = 1 −
2	(2	q	N	 cos R 	i	 v − vX + dX + 12 	!	 1 − ä-

X è-,gX )
!	è-,gX

	 (66) 

v is half of the separation distance ℎ"/, and the parameter dX is defined as: 

dX = à
2	q	N (67) 

Making this so-called half-separation distance dimensionless by applying the 

reference particle radius yields half of the dimensionless distance v∗. Inserting these 

parameters and the dimensionless bridge volume à
∗ into Equation 66 leads to the 

dimensionless parameter: 

ΠØ = 	
i	 cos R
N	è-,gX 	é&

 (68) 

The assumption of zero contact angle and keeping the dimensionless bridge volume 

and the initial velocity constant leads to: 
i&4"Y
N&4"Y

=
i&54+LM
N&54+LM

 (69) 

Thus, the surface tension should scale with Ap. This is equal to the findings of the 

stress-based scaling. 

3.6.2. Viscous limiting case 

For dominant viscous effects, two dimensionless parameters characterize the system: 

the particle Stokes number ∞(< and the critical particle Stokes number ∞(<,+4". [41]: 

∞(< =
8	é&	è-,g	N

9	ÜM
, ∞(<,+4". = 1 +

1
ä-

ln
ℎg

ℎà,5<6
 (70),(71) 

ℎg is the initial liquid height, and ℎà,5<6 is the average surface roughness. In the 

critical condition (i.e., ∞(< = 	∞(<,+4".), the maximum possible energy dissipation in the 

viscous limited case is [41]: 

b.,Y5û =
3	q
2 	NX	ÜM	±g 1 +

1
ä-

ln
[(ℎg)

[(ℎà,5<6)
 (72) 

	 	



Josef Tausendschön  19 

The overall wet coefficient of restitution in the viscous limiting case is: 

ä-,≠L. = 1 −

3	q
2 	NX	ÜM	±g 1 + 1

ä- ln [(ℎg)
[(ℎà,5<6)

!	±gX
 

(73) 

With the constant dimensionless initial liquid film height ℎg∗ = ℎg N	and the constant 

relative roughness ℎ5∗ = ℎ5 v,	the liquid viscosity scales with: 
µM,&4"Y
N&4"Y

=
µM,&54+LM
N&54+LM

 (74) 

This relation is also equal to that obtained with the stress-based scaling rules. 

 

3.7.  Drag-force scaling 

The drag force in a gas–particle system is typically modeled with: 

*3456,6→&," = &̀,"	ê&."		(â − %) (75) 

Most of the closures for the drag coefficient ê&," can be described in the following 

functional form: 

ê&," =
18	µ6
$&,"X

	 1 − e& 	 õg e& 	[ Nä& + ≤g(Nä&)  (76) 

The particle Reynolds number in a gas flow is given by: 

Nä& =
é6	$&4"Y	 â − % 	(1 − e&)

Ü6
 (77) 

Thus, as long as the fluid-particle relative speed is kept constant, also the physical 

properties of the fluid (i.e., é6 and Ü6) must be kept invariant. This is also necessary 

to avoid changing fluid properties when scaling the particle system. 

Another dimensionless key figure connected to a gas–particle system is the particle 

Froude number: 

õù& =
%.X
$&	2

 (82) 

%. is the terminal settling velocity. Going from the original to the scaled system, the 

Froude number cannot be kept constant. Because if the velocities are invariant, the 

Froude number must change in case it is based on the parcel diameter.  
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4. Results for Pure Granular Flow 

4.1.  The Necessity of a rolling friction model 

Ai et al. [38] used in their EPSD model a rolling friction coefficient of Ü≥ 	= 	0.2, and 

a viscous damping factor of ¥≥ = 0.3. Bierwisch et al. [31] selected Ü≥ 	= 	0.25 for 

their CDT model. Similar values were tested in this work. 

The simple set-up is depicted in Figure 4-1. From the initial state, the rotational 

speed of the particle on the top and of the one on the right is set to 20 [rad/s]. As can 

be seen in Figure 4-1, the use of a rolling friction model is crucial for realistic 

simulations. When using a no rolling friction model, single particles will keep on 

rolling for a long distance. 

 
Figure 4-1: Rolling friction on a plane 

From Table 4-1 can be seen that the outcome, as pictured above, for the different 

models is close to each other. Using no rolling friction model results in completely 

different behavior and data. 

Table 4-1: Results of the rolling friction test 

Rolling Model µ4 (-) ¥4 (-) >äO"-5M	[J] ¨&,.,O"-5M ¨&,.,"-"."5M  
No Roll 0.2 - 0.029 0 
CDT 0.2 - 7.65e–08 0.38 
EPSD 0.2 0.2 2.48e–13 0.43 
EPSD2 0.2 - 9.49e–16 0.44 

c) CDT model (Model B) 

b) no rolling friction 

d) EPSD model (Model C) 

e) EPSD2 model (Model D) 

a) initial state 
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4.2.  Coarse-graining test 

As in Bierwisch et al. [31], the filling of a hopper was tested with a one-sided open 

box. These tests were performed as DEM simulations because potential gas–particle 

interactions have only an insignificant impact on the filling of a hopper for typical 

particles. 

4.2.1. Particles with Diameter Dp = 0.05, Np = 1833 and different rolling 

friction models 

An example of the total kinetic energy over time is displayed in Figure 4-2. Different 

rolling friction models were tested in this set-up because the relaxation time when 

the system is at rest is influenced by the rolling friction model. Therefore, the 

remaining rotational and translational kinetic energy of the system is compared with 

the gravitational potential energy of the system at the end of simulation with the so-

called E ratio. If this E ratio is above 1, too much total kinetic energy exists in the 

system. 

 
Figure 4-2: Total kinetic energy over time 
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As can be seen in Figure 4-3, the angle of repose is not a meaningful measurement 

for a cohesive system. For that reason, the ratio of the inserted particles to the 

remaining particles in the box was monitored. This so-called P ratio, the E ratio, and 

the fill level will be compared between the different simulations. 

 

 
Figure 4-3: Coarse-graining test with big particles 

The results of the coarse-graining test for different rolling friction models are shown 

in Table 4-2. For the EPSD model, both scaling strategies provide the same number 

of particles remaining in the box. The Bond scaling, in general, leads to more 

remaining particles in the system, while the stress scaling delivers variable results for 

different rolling friction models. As expected, the stress scaling yielded a slightly 

better reproduction for the P ratio of the unscaled original system. 

a) original, cg = 1 b) cg = 2, Bond scaling (EPSD) 

c) cg = 2, stress scaling (EPSD) 
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In terms of the fill level, the outcome of the stress-scaled simulations is significantly 

closer to the original system than the Bond-scaling simulations. The use of the CDT 

model with stress scaling led to a very accurate imitation of the original system. 

 

Table 4-2: Overview of P ratio and filling level, dp = 0.05 

Model  Ins. 
Part. 

Rem. 
Part. 

P ratio Dev.[%] Fill level [m] Dev.[%] 

CDT original,cg=1 1833 1437 78.40 - 0.5217 - 
µ4=0.2 cg=2,Bond 229 188 82.10 4.72 0.6237 19.55 
 cg=2,stress 229 174 75.98 –3.09 0.5274 1.09 
EPSD original,cg=1 1833 1673 91.27  0.5464 - 
µ4=0.2 cg=2,Bond 229 217 94.76 3.82 0.6917 26.59 
¥4=0.2 cg=2,stress 229 217 94.76 3.82 0.5879 7.60 
EPSD2 original,cg=1 1833 1577 86.03  0.5111 - 
µ4=0.2 cg=2,Bond 229 208 90.83 5.58 0.5970 16.81 
 cg=2,stress 229 199 86.90 1.01 0.5529 8.18 
 
Table 4-3 shows the average overlap observed during the simulations. The 

parameters of these simulations were chosen to yield an average overlap of 1 [%]. 

The usage of the EPSD or EPSD2 model caused significantly higher overlaps than 

the usage of the CDT model. As a consequence, the CFD-DEM simulations were 

performed with the CDT model only. 

The E ratio of the EPSD-tests is higher than the E ratio of the other tests and two 

times above the limit of 1. The remaining energy in the system in the case of the 

CDT model is significantly smaller than of the two other options. 

An important objective of the coarse-graining approach is to reduce the 

computational cost and minimize the necessary simulation time. Overall, the coarse-

graining decreased the simulation time to a large extent. The stress scaling enabled 

even smaller simulation times than Bond scaling because, as stated before, the Bond 

scaling requires an increase of the stiffness of the particles. 
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Table 4-3: Overview of simulation time, overlap, and E ratio, dp = 0.05 

Model  Sim. time [mm:ss] Avg. Overlap [%] E ratio 
CDT original,cg=1 03:36 1.48 7.20e–5 
µ4=0.2 cg=2,Bond 00:15 1.25 8.50e–5 
 cg=2,stress 00:10 1.78 4.00e–6 
EPSD original,cg=1 03:26 7.17 1.80 
µ4=0.2 cg=2,Bond 00:17 6.87 0.42 
¥4=0.2 cg=2,stress 00:12 7.12 1.28 
EPSD2 original,cg=1 03:57	 6.69 0.28 
µ4=0.2 cg=2,Bond 00:17 6.36 0.49 
 cg=2,stress 00:11 6.91 0.26 
 

4.2.2. Particle with Diameter Dp = 7.5e–3, Np = 500,000 

The same box with the same parameters was tested with 500,000 particles with a 

smaller size. The filled box for the original system and the stress-scaled systems are 

shown in Figure 4-4 (for the figure with the Bond-scaled set-ups see Appendix B). 

 
Figure 4-4: Coarse-graining test with small particles 

a) original, cg = 1 b) cg = 3, stress scaling 

c) cg = 7, stress scaling 
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An overview of the results is given in Table 4-4. The outcome of these simulations 

confirmed the findings of the test with the big particles. The stress scaling performed 

significantly better than the Bond scaling regarding the fill level and the P ratio. 

Table 4-4: Overview of P ratio and filling level, Dp = 7.5e–3 

EPSD2, 
	µ4=0.2 

 Ins. Part. Rem. Part. P ratio Dev.[%] Fill level [m] Dev.[%] 

original,cg=1  500000 387000 77.40 - 0.4260 - 
cg=3,Bond  18518 15645 89.89 16.14 0.4740 11.27 
cg=3,stress  18518 15115 81.62 5.45 0.4165 –2.23 
cg=7,Bond  1457 1355 93.00 20.16 0.5244 23.10 
cg=7,stress  1457 1241 85.18 10.05 0.4207 –1.24 
 

An overview of the simulation time and the average overlap is given in Table 4-5. 

The unscaled original system was run in parallel on 16 CPUs, all other simulations 

on a single CPU. As can be seen, the necessary time was cut down to a very small 

level. 

As in the simulations with the bigger particles, the E ratio of the EPSD2 model is 

higher for Bond scaling. 

 
Table 4-5: Overview of simulation time, overlap, and E ratio, Dp = 7.5e–3 

EPSD2, 
	µ4=0.2 

Sim. time [hh:mm:ss] Avg. Overlap [%] E ratio 

original,cg=1 09:19:06 (16 CPUs) 11.13 5.72e–2 
cg=3,Bond 01:20:19 7.91 0.70 
cg=3,stress 00:48:30 10.78 2.91e–2 
cg=7,Bond 00:03:13 7.13 1.56 
cg=7,stress 00:01:21 11.42 1.09e–3 
 
Overall, the stress scaling led to a significant reduction in computational cost and still 

provides a reproduction of the original fill level within a deviation of 2 [%] or less. 

In terms of the P ratio, deviations are smaller than 4 [%] for cg = 2, around 5 [%] for 

cg = 3, and 10 [%] for cg = 7. As expected for the P ratio, the differences between 

the coarsened and the original system increase with an increasing coarse-graining 

ratio. 
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5. Results for Fluid-Particle Suspensions 

5.1.  Fluidization test 

The parameters of the fluidization tests are summarized in Table 5-1. The dry 

minimum fluidization velocity µYO,34∂ was estimated to be 0.027415 [m/s]. Girardi et 

al. [11] showed that a change of the fluid grid in CFD–DEM simulations causes 

different results. Therefore, the same CFD grid was used in all tests. For the 

coarsened set-ups, a smoothing algorithm was applied in case the parcel size was 

equal or larger than half of the fluid grid size. Specifically, a smoothing length, equal 

to three times the parcel diameter, was used for these smoothing operations. 

Table 5-1: Parameter overview for the fluidization test 

Bed size 0.009 x 0.009 x 0.18 [m] 
CFD grid count 20 x 20 x 400 
CFD ∆grid size 3 $&4"Y 
Primary particle diameter 150e–6 [m] 
Particle density 2000 [kg/m3] 
Gas density 1.25 [kg/m3] 
Gas viscosity 1.44e–5 [Pa s] 
Bond number, Bo 0, 0.1, 1, 5, 10 
Capillary number, Ca 0.01 
Min. fluidization velocity (dry) 0.027415 [m/s] 
Liquid Loading 0.001 
Number of primary particles 330,024 
DEM time step 5e–6 [s] 
CFD time step 5e–5 [s] 
Coefficient of restitution 0.4 
Coefficient of friction 0.9 
Coefficient of rolling friction 0.2 
 
The superficial gas velocity was ramped from µ/µYO,34∂ = 0 to µ/µYO,34∂ = 10 in 1.5 

[s]. Tests with a slower acceleration of the gas velocity were made with one-half and 

one-fifth of the slope (see Appendix C for results). These experiments did not cause 

a smaller variance of the pressure drop or less volatility of the bed height data. 

In the so-called “unscaled” systems, no scaling is applied to the surface tension, 

liquid viscosity, or particle stiffness. Only the ratio of liquid volume to particle 

volume is kept constant. As a consequence, the liquid on the particle is scaled with 

Apf.  
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The simulated pressure drop versus the superficial velocity was used to determine 

the fluidization point. The average pressure drop and the variance of the data after 

the fluidization point are used as characteristic values. In Figure 5-1, an example of 

this data evaluation strategy is provided. 

 
Figure 5-1: Evaluation example fluidization 

The determined fluidization point was utilized for linear regression of the simulated 

bed height data. The slope and intersection of these regressions will be used to 

compare the bed behavior of different coarse-graining ratios and scaling strategies. 

Boyce et al. [42] defined the bed height as the 99-quantile of all particles’ heights, 

that means 99% of the particles are below this height. The same definition was used 

in the present study. The actual bed height ∑ is divided by the initial bed height ∑g 
to arrive at the dimensionless bed expansion. In all simulations, the fluidized bed is 

filled with particles at the beginning and the fluidization starts when the bed is 

completely at rest. 
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The preliminary results indicate that the filling of the box with coarsened particles 

causes deviations, which range between 4 and 5 [%] in terms of the initial bed height. 

This needs to be considered when comparing the fluidization dynamics of the 

original and coarsened systems. Figure 5-2 displays an example of the linear 

regression and the generated bed height data. 

 
Figure 5-2: Evaluation example bed height 

The maximum pressure drop for all tests is shown in Figure 5-3. As expected, the 

maximum pressure drop increases with an increasing Bond number. This is caused 

by higher cohesive forces between the particles at higher Bond numbers. In all 

coarse-grained systems, the pressure drop is bigger than in the original system. The 

overestimation of the pressure drop increases with increasing coarse-graining ratio 

for both scaling strategies. For Bo = 10 the unscaled system reveals the only 

underestimation of the maximum pressure drop. 
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Figure 5-3: Results maximum pressure drop 

The results are summarized in Table 5-2. For higher Bond numbers, the stress-

scaling strategy yielded better results for cg = 2 and cg = 3 than the Bond scaling. 

As expected for small Bond numbers, the results are close due to the small cohesive 

influence. 

A comparison of these results with the unscaled data shows that for noncohesive and 

weakly cohesive systems, the outcome is pretty close. In cohesive regions, the 

unscaled system yields significantly better reproduction of the original system. 

Because of smaller cohesive forces, the initial bed of the unscaled systems is not as 

compact as the bed of the scaled systems. This leads to a faster fluidization. 

Table 5-2: Results maximum pressure drop 

  Bo=0 Bo=0.1 Bo=1 Bo=5 Bo=10 
original,cg=1 ∆∏π5û	 ∫d  166.43 168.17 169.65 181.68 209.39 
cg=2,Bond Dev.[%] 5.62 2.71 9.64 24.92 26.05 
cg=3,Bond Dev.[%] 8.36 6.92 23.82 50.92 52.60 
cg=2,stress Dev.[%] 4.99 4.21 7.62 11.90 10.24 
cg=3,stress Dev.[%] 11.16 8.95 13.93 18.22 18.88 
cg=2,unscaled Dev.[%] 4.43 3.91 6.18 4.03 –3.10 
cg=3,unscaled Dev.[%] 11.01 11.11 8.11 6.54 –22.91 
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The average pressure drop after the fluidization point for all simulations is shown in 

Figure 5-4. The pressure drop for the unscaled system is higher than in the scaled 

systems, except for the simulations with cg = 3 and Bond scaling at Bo = 5 and Bo 

= 10. Up to Bo = 1, the difference of the results is again small. 

 
Figure 5-4: Results for average pressure drop 

An overview of the results is given in Table 5-3. The deviation for the stress scaling 

accumulates at around –10 [%], while there are major changes of the deviation for 

the Bond scaling. At scaling ratio cg = 3 for Bo = 5, the prediction is very accurate 

and the same parameters at Bo = 10 led to the biggest deviation. 

The deviation of the unscaled outcome is overall between –8 [%] and –13 [%] without 

big changes. As expected, the results are similar up to Bo = 1. At higher Bond 

numbers, the scaling of the cohesive force demonstrates a better reproduction of the 

original system. In the case of Bond scaling with cg = 2, the deviation decreases with 

increasing Bond number. 
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Table 5-3: Results for average pressure drop 

  Bo=0 Bo=0.1 Bo=1 Bo=5 Bo=10 
original,cg=1 ∆∏ª<6	 ∫d 	 144.61 144.18 142.72 138.90 144.52 
cg=2,Bond Dev.[%] –11.71 –11.60 –9.60 –7.39 –1.17 
cg=3,Bond Dev.[%] –13.31 –12.17 –11.26 0.51 21.80 
cg=2,stress Dev.[%] –12.75 –12.13 –10.83 –6.91 –10.69 
cg=3,stress Dev.[%] –12.86 –14.67 –10.27 –8.83 –8.14 
cg=2,unscaled Dev.[%] –11.47 –11.57 –9.41 –8.05 –11.47 
cg=3,unscaled Dev.[%] –13.04 –13.09 –11.29 –9.74 –9.93 
 
As can be seen in Figure 5-5, the variance of the original data is very high. The 

pressure drop of the unscaled systems fluctuates more than the scaled systems, 

except for the Bond scaling at cg = 3 and Bo = 10. Higher cohesive forces at higher 

Bond numbers lead to particle clustering. As a result, the difference of the variance 

between the unscaled and the scaled systems is decreasing. 

 
Figure 5-5: Results for the variance of the pressure drop data 

For the dry system, the Bond scaling provides the best reproduction of the original 

system. Up to Bo = 1 the tests with cg = 2 yield better results than the simulation 

with cg = 3; this effect changes above Bo = 5. Table 5-4 shows the results of the 
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variance evaluation. Overall, the scaling of the cohesive forces reproduces the 

dynamics of the system after the minimum fluidization point better than the 

unscaled systems. 

Table 5-4: Variance of the pressure drop data 

  Bo=0 Bo=0.1 Bo=1 Bo=5 Bo=10 

original,cg=1 `dù(∆∏ª<6)	
∫dX   

2986.09 4211.20 3079.56 2902.75 2384.93 

cg=2,Bond Dev.[%] –57.20 –82.28 –60.92 –43.56 –11.32 
cg=3,Bond Dev.[%] –80.27 –84.93 –73.88 –23.03 –36.93 
cg=2,stress Dev.[%] –68.34 –72.45 –66.15 –67.57 –26.88 
cg=3,stress Dev.[%] –84.74 –86.84 –77.86 –61.81 19.13 
cg=2,unscaled Dev.[%] –75.76 –77.89 –77.62 –45.37 –51.71 
cg=3,unscaled Dev.[%] –82.99 –86.89 –84.81 –72.60 –60.35 
 

As displayed in Figure 5-6, higher superficial velocities are necessary for the 

fluidization of the coarse-grained bed. The overestimation of the wet minimum 

fluidization velocity increase with higher Bond numbers. Because of higher cohesive 

forces at higher Bond numbers, the original wet minimum fluidization velocity was 

expected to be higher for Bo = 10. The minimum fluidization velocity should 

increase with higher cohesive forces [9]. 
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Figure 5-6: Results for minimum fluidization velocity 

Table 5-5 shows that the deviation of the predicted minimum fluidization velocity 

for the systems with a scaling ratio of cg = 3 is higher than for systems with cg = 2. 

For the dry fluidization, the Bond scaling and the unscaled version yield similar 

results. In the case of Bo = 0.1, Bond scaling provides the best reproduction. At 

higher Bond numbers, the unscaled method achieved smaller deviations. This 

reflects the findings of the maximum pressure drop data. 

Table 5-5: Results for minimum fluidization velocity 

  Bo=0 Bo=0.1 Bo=1 Bo=5 Bo=10 
original,cg=1 µYO,ºL.	[−]  1.26 1.26 1.22 1.61 1.26 
cg=2,Bond Dev.[%] 2.67 2.19 25.34 32.69 98.49 
cg=3,Bond Dev.[%] 26.04 27.61 68.66 75.37 175.17 
cg=2,stress Dev.[%] 5.95 7.58 17.62 13.68 71.68 
cg=3,stress Dev.[%] 25.09 25.48 41.64 29.46 101.67 
cg=2,unscaled Dev.[%] 2.59 4.67 13.34 1.47 44.52 
cg=3,unscaled Dev.[%] 26.94 26.58 30.49 9.22 65.83 
 



Josef Tausendschön  34 

In Figure 5-7 the slope of the linear fit of the bed height data is shown. In general, a 

bigger slope indicates a higher bed height. As can be seen, the outcome varies over 

the different Bond numbers. 

 
Figure 5-7: Results for the fit of bed height, slope 

Table 5-6 shows that in the dry environment the test with cg = 3 shows a better or 

similar reproduction of the basic system than the tests with the smaller coarse-

graining ratio. The Bond scaling with cg = 2 yielded a very accurate description of 

the original system at Bo = 0.1, Bo = 1, and Bo = 10, while the deviations for Bo = 

0 and Bo = 5 shift to above 30 [%]. The unscaled results show a similar behavior 

over the Bond number. The stress scaling provided similar results for cg = 2 and cg 

= 3 at Bo = 0.1. These varying results reflect the complexity of predicting the bed 

height in a fluidized bed. 
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Table 5-6: Results for the slope linear fit 

  Bo=0 Bo=0.1 Bo=1 Bo=5 Bo=10 
original,cg=1 ∞Ωú∏ä	 −   0.155 0.182 0.177 0.180 0.199 
cg=2,Bond Dev.[%] 32.94 2.97 0.60 39.68 3.13 
cg=3,Bond Dev.[%] 16.74 8.04 –9.64 18.32 –48.13 
cg=2,stress Dev.[%] 39.01 12.80 21.74 –3.30 11.04 
cg=3,stress Dev.[%] 14.89 12.93 13.70 –8.03 5.98 
cg=2,unscaled Dev.[%] 19.62 1.41 5.34 21.28 –6.40 
cg=3,unscaled Dev.[%] 20.90 11.03 –0.98 3.65 –35.63 
 
A snapshot for the qualitative comparison of the original system to the coarsened 

systems with cg = 2 is shown in Figure 5-8. As can be seen, the different coarsened 

set-ups led to different dynamic behavior. 

 
Figure 5-8: Simulation snapshot, cg = 2 at Bo = 1 

The reproduction of the maximum particle height is closer with no scaling, while the 

closest imitation of the resting bed and the velocity of the upwards moving particles 

is achieved when considering the Bond scaling. 

At the same time step, Figure 5-9 shows a qualitative comparison between the set-

ups with cg = 3 and the original system. It can be seen that the reproduction of the 

system dynamics is worse for the Bond-scaled set-up compared with the set-up with 

cg = 2. In contrast to the Bond scaling, the outcome of the stress-scaled and the 

unscaled test showed improvement when increasing the coarse-graining ratio. 
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Figure 5-9: Simulation snapshot, cg = 3 at Bo = 1 

The same snapshot for systems with Bo = 10 is displayed in Figure 5-10. Because of 

the strong cohesion, particles are partially sticking to the walls and the velocities in 

the bed are smaller than in the Bo = 1 set-up. This snapshot confirms the qualitative 

finding that the prediction of the bed height is the best with the Bond scaling for 

small coarse-graining ratios. The bed expansion is too small without any scaling of 

the cohesive forces and the velocities of the upward moving parcels are too high for 

the stress-scaled system. 



Josef Tausendschön  37 

 
Figure 5-10: Simulation snapshot, cg = 2 at Bo = 10 

As shown in Figure 5-11, the imitation of the bed expansion is worse at cg = 3 than 

at cg = 2, this behavior reflects the finding of the test with Bo = 1. The nonlinear 

scaling of the cohesive forces in the Bond-based scaling results into a single big 

particle cluster (at cg = 3) that heavily influences the fluidization behavior. In a 

quantitative view, the stress-scaling strategy demonstrated the closest reproduction 

of the original system for this parameter combination. 

 
Figure 5-11: Simulation snapshot, cg = 3 at Bo = 10	  
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However, no significant evidence was found that the scaling of the cohesive forces 

leads to an overall better reproduction of the original system. Because of the small 

cohesive influence, the results of the unscaled and scaled systems are collectively 

close up to Bo = 1. 

Different characteristics of the fluidized bed require different scaling strategies. For 

example, in the case of finding the maximum pressure drop, the unscaled set-up at 

cg = 2 provided the best reproduction with a mean deviation of 4 [%], while the 

stress scaling with cg = 2 yielded an average overall deviation of 7 [%]. For the wet 

minimum fluidization velocity, the unscaled set-up with cg = 2 also achieved the 

smallest deviations accumulated around 13 [%]. In contrast to the minimum 

fluidization behavior, the outcome of the Bond scaling with cg = 2 showed the 

closest reproduction of the average pressure drop after the minimum fluidization 

point. The same finding is true for the variance. Both deviations decrease with an 

increasing Bond number. This suggests that for higher superficial velocities the 

Bond-based scaling strategy provides a better reproduction of the system dynamics. 

Between Bo = 0.1 and Bo = 1, the Bond scaling yielded the best result. However, 

above that the nonlinear scaling of the cohesive parameters is overpredicting the 

cohesive influence, especially at higher coarse-graining ratios. 

The required simulation time is summarized in Table 5-7. As displayed, the 

simulation time was reduced by at least a factor of 4 for cg = 2 and a factor of 7 for 

cg = 3. As expected, the dry systems needed less simulation time. 

Table 5-7: Overview of the required simulation time of the fluidization tests 

Sim. Time [hh:mm:ss] 
 Bo=0 Bo=0.1 Bo=1 Bo=5 Bo=10 
original,cg=1 22:25:57 31:16:23 34:12:24 32:25:31 31:27:28 
cg=2,Bond 05:28:36 06:56:55 06:56:15 06:48:26 05:36:44 
cg=3,Bond 03:39:02 04:47:41 04:48:29 04:35:57 04:42:38 
cg=2,stress 05:24:02 07:02:15 07:05:57 05:38:12 05:36:13 
cg=3,stress 03:10:54 03:53:38 03:55:04 04:34:28 04:43:13 
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5.2.  Sedimentation in a Periodic Box 

The parameters of the periodic box simulations are displayed in Table 5-8. The 

same particle properties as in the fluidization test are used, excluding the Young’s 

modulus, which is set to 4e6 [Pa] for the primary particles. 

Table 5-8: Parameter overview for the periodic box 

Periodic Box 0.018 x 0.018 x 0.072 [m] 
CFD grid count 40 x 40 x 160 
CFD ∆grid size 3 $&4"Y 
Primary particle diameter 150e–6 [m] 
Particle density 2000 [kg/m3] 
Gas density 1.3 [kg/m3] 
Gas viscosity 1.44e–5 [Pa s] 
Bond number, Bo 0, 0.1, 1, 10 
Capillary number, Ca 0.01 
Liquid Loading 0.001 
Particle volume fraction 0.10 
DEM time step 1e–6 [s] 
CFD time step 1e–5 [s] 
Coefficient of restitution 0.4 
Coefficient of friction 0.9 
Coefficient of rolling friction 0.2 
 
The calculated terminal settling velocity %. is 0.8562 [m/s] and the reference time is 

determined based on (4LO = %. 2. The domain-averaged slip velocity %=M"&  is 

calculated from â6 −	 %= , where the domain-averaged gas velocity â6  and the 

average solid velocity %=  are: 

â6 	=
1

3̀	 e6
	 e6	â6 	$`	, %= =

1
ï&
	 %=

æç

 (82),(83) 

%=M"&  is one of two important indicators in the determination of inhomogeneities in 

the flow structure, the other possibility is the observation of the volume fraction 

distribution. The simulations are performed until 40 (/(4LO is reached because, as 

shown in Figure 5-12, the flow in the periodic systems approaches a statistical steady 

state after approximately 5 (/(4LO. The mean and variance of the obtained data are 

calculated after stabilization in this statistical steady state. The analytic solution for 

the sedimentation speed of a homogeneous suspension is also displayed. 

The reference momentum of the periodic simulations was compared with the total 

momentum. This is to achieve that the simulation runs in a stable mode. The 
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outcome of these tests is valid if the reference momentum is approximately two 

orders of magnitude higher than the total momentum, which was the case for all 

simulation data presented below. 

 
Figure 5-12: Simulation outcome example for a periodic box 

In Figure 5-13, è=M"&/è. is shown for different Bond numbers. As can be seen, the 

results suggest more stable tendencies than the outcome of the fluidization test. In 

the literature, increasing slip velocities with increasing Bond numbers were 

identified [11,24]. The same trend can be found when looking at the overall 

tendency of the slip velocity. 

The ratio of the velocities is slightly increasing over the Bond number for the stress-

scaled system, while the Bond-scaled set-ups show a stronger growth going from Bo 

= 1 to Bo = 10. The unscaled data remain almost unchanged over the different 

regimes. As displayed in Figure 5-13, a higher coarse-graining ratio led to 

significantly smaller velocities and therefore higher deviations. This confirms the 

findings of the box-filling test and the fluidization test that the difference between 

the original and coarsened systems increases with increasing coarse-graining ratio. 

Up to Bo = 1, the outcomes of the unscaled and scaled set-ups are located close to 
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each other. At Bo = 10, a significant difference can be determined between the 

coarsened cases. This indicates that in more cohesive systems the scaling of the 

cohesive forces achieves better results than the unscaled systems. 

 
Figure 5-13: è=M"&/è. over different Bond numbers 

An overview of the obtained data is given in Table 5-9. For Bo = 0 and Bo = 0.1, the 

deviations for cg = 2 accumulate around 25 [%] and for cg = 4 around 36 [%]. As 

expected, the influence of the scaling strategy is small in this non or midly cohesive 

regime. The deviations to the respective original systems are overall above 20 [%] 

with cg = 2 and at least 29 [%] with cg = 4. At Bo = 1, the Bond scaling yielded the 

closest reproduction at cg = 2 and at cg = 4. In the cohesive-dominated regime at 

Bo = 10, the Bond scaling provided the best imitation of the original system. 
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Table 5-9: Results for è=M"&/è. with the periodic box 

  Bo=0 Bo=0.1 Bo=1 Bo=10 
original,cg=1 %=M"& 	 %. 	 [-] 1.453 1.480 1.420 1.551 
cg=2,Bond Dev.[%] –23.70 –26.74 –21.11 –22.88 
cg=4,Bond Dev.[%] –35.67 –35.83 –33.57 –29.76 
cg=2,stress Dev.[%] –25.98 –27.38 –23.83 –27.20 
cg=4,stress Dev.[%] –36.45 –37.50 –36.05 –37.83 
cg=2,unscaled Dev.[%] –26.15 –25.71 –22.71 –28.24 
cg=4,unscaled Dev.[%] –36.03 –37.09 –33.76 –40.32 
 
Figure 5-14 displays the obtained variance over different Bond numbers. A higher 

variance points out higher fluctuations of the slip velocity in the statistical steady 

state. As shown, the outcome varies, in contrast to the more stable tendencies of the 

collected mean slip velocities. At Bo = 10, the Bond-scaled set-up with cg = 4 

generated the only overprediction of the variance; with cg = 2 the increase between 

Bo = 1 and Bo = 10 is also stronger than in the original case or in the other 

coarsened systems. This effect is caused by the nonlinear scaling of the cohesive 

parameters in the Bond-based scaling strategy, which causes bigger parcel clusters at 

high coarse-graining ratios. 

 
Figure 5-14: Variance over different Bond numbers 
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An overview of the quantitative measurements is given in Table 5-10. The unscaled 

set-up with cg = 2 follows the trend of the basic system, whereas at cg = 4 the 

tendency is the reverse of the original case. The Bond scaling with cg = 2 achieved 

the closest reproduction of the original system at Bo = 1 and Bo = 10. 

Table 5-10: Results for the variance of the statistical steady state 

  Bo=0 Bo=0.1 Bo=1 Bo=10 
original,cg=1 `dù( %=M"& 	 %. 	) [-] 1.25e-02 1.44e-02 8.34e-03 1,56e-02 
cg=2,Bond Dev.[%] –49.84 –57.86 –8.66 –19.45 
cg=4,Bond Dev.[%] –56.34 –71.97 –33.34 73.64 
cg=2,stress Dev.[%] –71.55 –44.22 –52.16 –51.96 
cg=4,stress Dev.[%] –54.48 –61.72 –32.21 –68.35 
cg=2,unscaled Dev.[%] –67.39 –57.96 –43.49 –53.91 
cg=4,unscaled Dev.[%] –62.87 –78.57 –42.04 –72.66 
 
A qualitative comparison of the original system at Bond numbers 0 and 10 is shown 

in Figure 5-15. As can be seen in the system with Bo = 10, more upward moving 

particles are present. One strand of upward moving particles is visible from the top 

to the bottom, whereas in the dry case no such structure exists. 

 
Figure 5-15: Simulation snapshot over the basic case at Bo = 0 and Bo = 10 

All coarsened set-ups with cg = 2 for Bo = 10 and the original system are shown in 

Figure 5-16. The Bond-scaled system achieved the closest reproduction of the 

domain-averaged slip velocity. As shown, velocities of the particles are significantly 
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smaller in the coarsened system than in the basic case. More areas without particles 

are visible in the Bond-scaled set-up than in the other cases due to the quadratic 

scaling of the cohesive parameters. 

 
Figure 5-16: cg = 2 comparison at Bo = 10 

Figure 5-17 shows the same snapshot, but for set-ups with cg = 4. The reduction 

from 1.3 million particles in the original system to 20627 parcels in the coarsened 

system is clearly visible, in particular, in the Bond-scaled system where the parcels 

build significantly more clusters than in the other coarsened systems. 

 
Figure 5-17: cg = 4 comparison at Bo = 10 
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A example of the required simulation times is shown in Table 5-11. As displayed the 

original system was running in parallel on 128 CPU’s for around 40 days. The 

coarse-graining reduced the simulation time by a factor of 4 for cg = 2 and a factor 

of 6 for cg = 4 with half of the CPU usage.  

Table 5-11: Required simulation time of periodic box tests with Bo=0.1 

Sim. Time [hh:mm:ss] 
 Bo=0.1 CPU’s 
original,cg=1 970:13:01 128 
cg=2,Bond 241:35:13 64 
cg=4,Bond 160:13:37 64 
cg=2,stress 246:04:30 64 
cg=4,stress 163:48:16 64 
 
  



Josef Tausendschön  46 

6. Conclusions 

This work highlighted the necessity for the implementation of rolling friction 

models, and their influence on DEM simulations was verified in two tests: a simple 

test where particles are rolling on a horizontal plane and the test of cavity filling a 

box with one open side. 

A theoretical analysis of various coarse-graining strategies was performed and two 

different ways of scaling the cohesive influence, when going from the primary 

particles to the scaled parcels, were identified. The proposed scaling strategies were 

compared to an unscaled coarse-graining setup in CFD-DEM simulations of a 

fluidized bed, and in the simulation of the sedimentation in a periodic box. The 

DEM simulation of cavity filling was also used to investigate the effect of coarse-

graining, and the importance of the rolling friction models. 

The necessity of the implementation of a rolling friction model was verified. The use 

of elastic-plastic spring–dashpot models caused particle relaxation at the end of 

simulations, where particles should be at rest. Applying a constant directional torque 

model to the DEM simulations prevented these problems, although this CDT model 

is less realistic than the EPSD models. The stress scaling led to a very accurate 

imitation of the original system in the cavity-filling test even at high coarse-graining 

ratios and big simulations with 500,000 primary particles. 

As expected for the CFD–DEM simulations, a higher coarse-graining ratio led to a 

higher inaccuracy in reproducing the original system. Because of the small cohesive 

influence up to Bo = 1, the outcomes of the unscaled and scaled systems are close; 

no significant improvement when scaling the cohesive forces was found in these 

regimes. The simulation of the fluidized bed indicates at Bo = 10 that Bond scaling 

with cg = 2 provided the best imitation of the bed height and the closest 

reproduction of the system dynamics when the bed is already fluidized. This changes 

at higher coarse-graining ratios where the nonlinear scaling of the cohesive 

parameters leads to an overprediction of the cohesive force and therefore bigger 

clusters. In terms of finding the maximum pressure drop and minimum fluidization 

velocity, the unscaled set-up yielded the best results. This indicates that the scaling of 

the cohesive parameters causes a higher compaction of the resting bed. 
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The results of the periodic box at Bo = 10 also slightly indicate that scaling of the 

cohesive forces leads to better results than the unscaled set-ups in already cohesive-

dominated fluidized systems. 

The necessary computational time could be reduced by a factor of 24 with cg = 3 

and over 800 with cg = 7 in the cavity-filling DEM simulations, while deviations of 

the fill level with the stress-scaled set-up were under 2 [%]. In the CFD–DEM 

simulations in which the same fluid time step was used in different set-ups, the 

computational cost was cut down by at least a factor of 4 for cg = 2 and a factor of 7 

for cg = 3. 

For clear evidence that the scaling of the cohesive force is superior to other scaling 

strategies, more simulations in stronger cohesive environments need to be 

performed. A detailed analysis on the influence of coarse-graining wet systems on 

different liquid bridge models would provide new helpful insights for further 

improvements of the parcel-based approach. Potentially the use of more complex 

models when describing particle interactions or the liquid distribution could refine 

the imitation of original nonscaled systems. 
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10. Nomenclature 

Latin Symbols 

d"  Dimensionless filling rate   [-] 

Bo  Bond number    [-] 

c  Damping coefficient   [kg/s] 

Ca  Capillary number    [-] 

cg  Coarse-graining ratio   [-] 

d  Diameter     [m] 

v∗  Dimensionless separation distance [-] 

e  Coefficient of restitution   [-] 

¨P"-  Kinetic energy    [J] 

f  Function     [-] 

F  Force      [N] 

g  Gravity     [m/s2] 

k  Stiffness     [N/m] 

ℎà  Particle roughness    [m] 

ℎ"/  Surface distance    [m] 

ℎg  Initial liquid height    [m] 

ℎ4n&  Rupture distance    [m] 

I  Moment of Inertia    [kg m2] 

b+  Contact loss energy    [J] 

b.  Dissipated energy     [J] 

b&  Liquid on Particle    [m3] 

m  Mass      [kg] 

M  Moment     [N m] 

n  Normal unit vector    [-] 

p  Pressure     [Pa] 

r  Vector to Particle    [-] 

^"/  Distance between interacting particles [m] 

R  Radius     [m] 

Re  Reynolds number    [-] 
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∞(<  Particle Stokes number   [-] 

t  Time      [s] 

t  tangential unit vector   [-] 

T  Torque     [N m] 

u  Fluid velocity    [m/s] 

v  Particle velocity    [m/s] 

%-,g  Impact velocity    [m/s] 

%g  Reference velocity    [m/s] 

V  Volume     [m3] 

3̀  Domain Volume    [m3] 

%.  Particle terminal settling velocity  [m/s] 

W  Work      [J] 

Y  Young’s Modulus     [Pa] 

 
Greek 

ê  Interacting Particles radius ratio  [-] 

ê&,"  Particle drag coefficient   [kg/(m3 s)] 

?  Particle overlap    [m] 

i  Surface tension    [N/m] 

é  Density     [kg/m3] 

R  Contact angle    [rad] 

Ü  Dynamic viscosity    [Pa s] 

Π  Dimensionless key figure   [-] 

Ü4  Rolling friction coefficient   [-] 

¿  Kinematic viscosity    [m2/s] 

¡&,"  Poisson ratio     [-] 

e  Volume fraction    [-] 

eY  Mobility coefficient    [-] 

9  angular velocity    [1/s] 
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Sub/Superscripts 

*  Dimensionless parameter 

avg  Average 

cap  Capillary 

coh  cohesive 

cont  contact 

crit  Critical 

d  Damping 

drag  Drag 

eff  Effective 

f  fluid 

g  gas 

i, j  particle indices 

k  spring 

l  liquid 

m  Mobilization 

max  Maximum 

n  Normal 

p  Particle 

prim  Primary particle 

parcel  Coarsened particle 

r  rolling 

ref  reference 

rel  relative 

s  solid 

t  tangential 

vis  viscous   
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11. Appendices 

11.1. Appendix A.1: EPSD Model 

In the following equations, all parameters that are used in the EPSD and EPSD2 

models are described: 

∆T4,.Z∆.
P = ∆T4,.

P + ∆T4
P (84) 

∆T4,.Z∆.
P ≤ 	J4

Y (85) 

J4
Y = µ4	NLOO	*- (86) 

A4 = ¥4	A4+4". (87) 

A4+4". = 2	 84	>4 (88) 

84 =
2

8 + !&4"Y	ù&4"YX

zl

 
(89) 

 
11.2.  Appendix A.2: Stiffness Scaling 

The cohesive force acts like: 

!LOO	?- = >-	?- − A-	?- − õ+,1 (90) 

At max. overlap ?-,Y5û, ?-, and ?- are zero. For that reason, the particle stiffness can 

be expressed as: 

>- =
õ+,1
?-,Y5û

 (91) 

The effective Young’s modulus √LOO can be determined with the definition of the 

normal spring stiffness from the Hooke contact model in LIGGGHTS: 

>- =
16
15	 NLOO	√LOO 	

15	!LOO	è-,gX

16	 NLOO	√LOO

l/m

 (92) 

The Young’s modulus √ is calculated with:  

1
√LOO

=
(1 − ¡&,",lX )

√l
+
(1 − ¡&,",XX )

√X
 (93) 

where ¡&," is the Poisson ratio. The viscoelastic damping constant for normal contact 

is then determined from: 

A- =
4	!LOO	>-

1 + q
ln ä-

X (94) 
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11.2.1. Collision tests 

The collision tests were performed with particle diameter 0.05 [m] and a liquid 

loading of 0.001. As can be seen in Table 11-1, the actual overlap when setting the 

dimensionless filling rate to 0.005 is significantly higher than the prescribed 

maximum overlap. Figure 11-1 shows the overlap of the tests with d" = 0 and Figure 

11-2 displays the outcome of the tests with d" = 0.005.  

Table 11-1: Overview collision test 

Interaction Dim.Fill-rate [-] maxOverlap [%] Sim.Overlap [%] 
Particle–particle 0 1 1 
Particle–wall 0 1 0.72 
Particle–particle 0.005 1 14 
Particle–wall 0.005 1 0.72 
 

 
Figure 11-1: Overlap over time for d;	 = 0 

a) Particle–particle, d"	 = 0 

b) Particle–wall, d"	= 0 
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Figure 11-2: Overlap over time for d;	 = 0.005 

 
11.3.  Appendix B: Box filling 

The outcome of the big box-filling test for the Bond-scaled set-ups is displayed in 

Figure 11-3.  

 
Figure 11-3: Filled simulation box with Bond scaling 
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11.4.  Appendix C: Fluidization Test 

11.4.1. Overall intersect 

The intersect of the linear fit of the bed height data can be seen over different Bond 

numbers in Figure 11-4. 

 
Figure 11-4: Overall results bed height fit, intersect	

Table 11-2 shows the determined intersects of all tests. 

Table 11-2: Results of the linear fit, intersect 

  Bo=0 Bo=0.1 Bo=1 Bo=5 Bo=10 
original,cg=1 8ƒ(äùøäA(	[−]  0.923 0.793 0.883 0.769 0.787 
cg=2,Bond Dev.[%] –18.91 2.49 7.14 44.27 46.35 
cg=3,Bond Dev.[%] –9.06 –4.47 3.18 51.33 5.08 
cg=2,stress Dev.[%] –20.52 –0.71 22.72 2.22 30.88 
cg=3,stress Dev.[%] –10.87 –6.23 18.45 4.57 38.91 
cg=2,unscaled Dev.[%] 8.34 –8.66 9.45 14.37 1.39 
cg=3,unscaled Dev.[%] 14.55 7.56 3.39 –1.77 3.22 
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11.4.2. Average maximum overlap 

The average maximum overlaps of the fluidization tests are summarized in Table 

11-3. 

Table 11-3: Overview of the average max. overlap 

Avg. maximum overlap [%] 
 original,cg=1 cg=2,Bond cg=3,Bond cg=2,stress cg=3,stress 
Bo=0 12.44 8.01 5.07 13.27 10.67 
Bo=0.1 17.63 7.33 4.95 12.49 10.56 
Bo=1 12.12 5.37 3.34 8.43 7.77 
Bo=5 6.36 2.53 1.56 4.06 3.65 
Bo=10 3.29 1.51 0.79 2.85 2.47 
 

11.4.3. Results slower acceleration of the gas velocity 

As can be seen in Table 11-4 the variance of the slower accelerated gas ramps is 

higher than the variance of the basic case. 

Table 11-4: Variance over different velocity ramps 

Variance of the pressure drop data [Pa2] 
 >45Y&	  >45Y&	1/2 >45Y&	1/5 
original,cg=1 3079.56 3361.60 3225.93 
cg=2,Bond 1203.57 850.39  
 
Figure 11-5 and Figure 11-6 show the pressure drop and the bed height data of the 

tests with slower acceleration of the gas velocity. 
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Figure 11-5: Pressure drop and bed height data for half acceleration at Bo = 1 
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Figure 11-6: Pressure drop and bed height data for 1/5 acceleration at Bo = 1	
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11.5.  Appendix D: Octave scripts 

11.5.1. Minimum Fluidization Velocity and terminal settling velocity 

The following code was used to estimate the minimum fluidization velocity and for 

the calculation of the terminal settling velocity. In the case of the terminal settling 

velocity, the particle volume fraction phiP was set to zero. 

 
  

Seite 1 von 1

beetstra2 17.05.18, 13:33

function y = beetstra2 (x)
    y=zeros(1,1);
    etaFluid=1.8e-5;
    dprimary=150e-6;
    phiP=0.64;
    Vp=dprimary^3*3.1415/6;
    rhoFluid=1.25;
    rhoP=2000;
    nuFluid=etaFluid/rhoFluid;
    rhoM=rhoP*phiP+rhoFluid*(1-phiP);
    uF=0;
    
    A=18*etaFluid/dprimary^2*(1-phiP);
    B=10*phiP/((1-phiP)^2)+(1-phiP)^2*(1+1.5*phiP^0.5);
    C=0.413/(24*(1-phiP)^2);
    D=(1-phiP)^-1+3*phiP*(1-phiP);

    ReP=abs((1-phiP)*dprimary*(uF-x(1))/nuFluid);
    betaP=A*(B+C*ReP*((D+8.4*ReP^-0.343)/(1+10^(3*phiP)*ReP^(-(1+4*phiP)/2))));
    
    y(1)=betaP/rhoP*(uF-x(1))+9.81*(1-rhoM/rhoP);
endfunction

figure;
t=linspace(0,0.90,1000);
y=lsode("beetstra2",-10^-6,t);
plot(t,y);
disp(y(end));
Umf=y(end);



Josef Tausendschön  64 

11.5.2. Evaluation of the fluidization tests 

 

Seite 1 von 2

totalPressureDrop_v3_3 17.05.18, 13:55

close all;
clear;
clc;
%%laden von plotstyle
addpath("../../../")
%%%run("plotstyle.m");
c=pwd();
cas=strsplit(c,"/");
casename=cas{8}

%====================================%
% simulation data 1
%====================================%
rhoG=1.25;
UmfDry=0.027415; %dry min. fluidization velocity [m/s]
veloc=inline("0.18276667*x");

%%%%%%%%%%%load data
path = '../postProcessing/probes/0/p'; % 2.2.x
data = load(path);
[x,y]=size(data)
dp_sim = (data(:,2)-data(:,y))*rhoG; %conversion to Pa!
t_sim = data(:,1);
dp1=dp_sim';

dpMax=max(dp_sim(1:7500))

ind=find(dp_sim==dpMax);
UmfWet=veloc(t_sim(ind))./UmfDry
dpAvgRest=mean(dp_sim(ind+1:end))

varRest=var(dp_sim(ind+1:end))

velocities=veloc(t_sim)./UmfDry;
dp_data=[velocities' ; dp_sim']; %%save plot-data

%==================plot-dp-data==================%
fileN=sprintf('%s_dp.png',casename);
f3=figure();
set(f3,"visible","off","papersize",[12.0 12.0]);
plot(velocities,dp_sim,"k",UmfWet,dpMax,'x',"LineWidth",lineW);
title("Simulated Pressure 
Drop","fontsize",fontsizeHeader,"fontweight",fontW,"FontName",fontstyle);
h=legend("dP ");
set(h,"fontsize",fontsizeLeg,"FontName",fontstyle);
xlabel("U/Umf,dry","fontsize",fontsizeLab,"FontName",fontstyle);
ylabel("dP [Pa]","fontsize",fontsizeLab,"FontName",fontstyle);
ylim([0 400]);
xlim([0 10]);
print(f3,fileN);

%================bed height============%
pwd();
cd ../../DEM/post;
delimiterIn=' ';
headerlinesIn=9;
impData=importdata('dump.staticBed',delimiterIn,headerlinesIn);
rawdata=struct2cell(impData);
data=cell2mat(rawdata(1));
%evaluation
zpos=data(:,2);
staticHeight=quantile(zpos,0.99) %definition bei Boyce et al
numfiles=120;
r=20000;
myDynData=cell(1,numfiles);
dynHeight=zeros(2,numfiles);
cfd=2500;
for k=1:numfiles
    dynHeight(1,1)=1;
    dynHeight(2,1)=0.000;
    filename=sprintf('dump%d.dynBedHeight',r);
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close all;
clear;
clc;
%%laden von plotstyle
addpath("../../../")
%%%run("plotstyle.m");
c=pwd();
cas=strsplit(c,"/");
casename=cas{8}

%====================================%
% simulation data 1
%====================================%
rhoG=1.25;
UmfDry=0.027415; %dry min. fluidization velocity [m/s]
veloc=inline("0.18276667*x");

%%%%%%%%%%%load data
path = '../postProcessing/probes/0/p'; % 2.2.x
data = load(path);
[x,y]=size(data)
dp_sim = (data(:,2)-data(:,y))*rhoG; %conversion to Pa!
t_sim = data(:,1);
dp1=dp_sim';

dpMax=max(dp_sim(1:7500))

ind=find(dp_sim==dpMax);
UmfWet=veloc(t_sim(ind))./UmfDry
dpAvgRest=mean(dp_sim(ind+1:end))

varRest=var(dp_sim(ind+1:end))

velocities=veloc(t_sim)./UmfDry;
dp_data=[velocities' ; dp_sim']; %%save plot-data

%==================plot-dp-data==================%
fileN=sprintf('%s_dp.png',casename);
f3=figure();
set(f3,"visible","off","papersize",[12.0 12.0]);
plot(velocities,dp_sim,"k",UmfWet,dpMax,'x',"LineWidth",lineW);
title("Simulated Pressure 
Drop","fontsize",fontsizeHeader,"fontweight",fontW,"FontName",fontstyle);
h=legend("dP ");
set(h,"fontsize",fontsizeLeg,"FontName",fontstyle);
xlabel("U/Umf,dry","fontsize",fontsizeLab,"FontName",fontstyle);
ylabel("dP [Pa]","fontsize",fontsizeLab,"FontName",fontstyle);
ylim([0 400]);
xlim([0 10]);
print(f3,fileN);

%================bed height============%
pwd();
cd ../../DEM/post;
delimiterIn=' ';
headerlinesIn=9;
impData=importdata('dump.staticBed',delimiterIn,headerlinesIn);
rawdata=struct2cell(impData);
data=cell2mat(rawdata(1));
%evaluation
zpos=data(:,2);
staticHeight=quantile(zpos,0.99) %definition bei Boyce et al
numfiles=120;
r=20000;
myDynData=cell(1,numfiles);
dynHeight=zeros(2,numfiles);
cfd=2500;
for k=1:numfiles
    dynHeight(1,1)=1;
    dynHeight(2,1)=0.000;
    filename=sprintf('dump%d.dynBedHeight',r);
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    myDynData=importdata(filename,delimiterIn,headerlinesIn);
    rawDynData=struct2cell(myDynData);
    dynData=cell2mat(rawDynData(1));
    zpos2=dynData(:,2);
    dynHeight(1,k+1)=quantile(zpos2,0.99)/staticHeight;
    dynHeight(2,k+1)=cfd*5e-6;
    cfd=cfd+2500;
    r=r+2500;
end

velocity=veloc(dynHeight(2,:))./UmfDry;
minfl=(velocity-UmfWet)./UmfWet;
[v,i]=min(abs(minfl));

height_data=[velocity;dynHeight(1,:)]; %save plot-data

%%%linear fit
linfit=polyfit(velocity(i:end),dynHeight(1,i:end),1)
testplotx=velocity(i:end);
testploty=linfit(1)*velocity(i:end)+linfit(2);

cd ../../CFD/octave ;

file2=sprintf('%s_bedH_data.txt',casename);
fid=fopen(file2,'w');
fprintf(fid,'%f %f\n',height_data);
fclose(fid);

file3=sprintf('%s_dp_data.txt',casename);
fid2=fopen(file3,'w');
fprintf(fid2,'dpMax[Pa]= %f\n',dpMax);
fprintf(fid2,'dpAvgRest[Pa]= %f\n',dpAvgRest);
fprintf(fid2,'varRest= %f\n',varRest);
fprintf(fid2,'UmfWet= %f\n',UmfWet);
fprintf(fid2,'slope= %f\n',linfit(1));
fprintf(fid2,'intersect= %f\n',linfit(2));
fprintf(fid2,'dp time data\n');
fprintf(fid2,'%f %f\n',dp_data);
fclose(fid2);
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close all; clear; clc;
run("plotstyle_v2.m");
currDir = pwd;
%%- paths for general installation
utDIR=getenv ("CFDEM_UT_DIR");
utilityPath = strcat(utDIR,"/multiphaseFlowBasics/")
addpath(utilityPath);
tutDIR=getenv ("CFDEM_TUT_DIR");
CFDPath = strcat(pwd,"/../")
uSlipFile1 = "averageProps/0/uSlip";
uSlipFile2= "averageProps/0.64/uSlip";

f=strsplit(CFDPath,"/");
bez=f(6);
l=strsplit(bez{1},"_");
leg=strcat(l(3),"-",l(4),"-original-cg-1");

cd([CFDPath])
%====================================%
% simulation data
%====================================%
data1= load(uSlipFile1);
data2= load(uSlipFile2);

uSlip_sim =[data1(:,5)' data2(:,5)'];
phi_sim =[data1(:,2)' data2(:,2)'];
t_sim =[data1(:,1)' data2(:,1)']; 
%====================================%

%====================================%
% analytical calculation
%====================================%

%%%%ParticleProperties
dragLaw  = 1;
dragName  = 'Beetstra'
dprimary   = 150e-6 ;
g               = 9.81
rhoFluid        = 1.3
rhoP            = 2000;
nuFluid         = 1.3846e-5;
etaFluid        = nuFluid * rhoFluid
uTerm  = 0.8562;
[uSusp, ReSusp] = uSettlingSphereSuspension(  dprimary, rhoP, g, etaFluid, … 

rhoFluid, mean(phi_sim), dragLaw ); % ©Stefan Radl

T = uTerm./g;                    %reference time
tDimLess = t_sim./T;
uSuspDimLess = uSusp ./ uTerm;
uSlipDimLess = uSlip_sim ./ uTerm;

vecplot=[tDimLess; uSlipDimLess];
[vectime b c]=unique(vecplot(1,:));
vecU=vecplot(2,b);

cd([currDir])
searchTime=5.0;
[val ind]=min(abs(tDimLess-searchTime));
UsUt=mean(uSlipDimLess(ind:end))
mean(vecU(ind:end))
varU=var(uSlipDimLess(ind:end));
%%Save to File
file2=sprintf('%s_data.txt',bez{1});
fid=fopen(file2,'w');
fprintf(fid,'uslip/ut= %f\n',UsUt);
fprintf(fid,'variance= %f\n',varU);
fclose(fid);

%%%%%%BEGIN USER INPUT
graphics_toolkit("fltk");
fontSize = 14;
resolution  = 450;
plotSkip=100;
fontsizeLeg=12;
%%%uslip/ut
figure();
hold on;
plot(vectime(1:plotSkip:end),vecU(1:plotSkip:end));
plot([0 max(tDimLess)], [uSuspDimLess(1:plotSkip:end) uSuspDimLess(1:plotSkip:end)],'k--');
h=legend({leg{1},'analytic homogeneous Susp.'});
set(h,"location","northwest","fontsize",fontsizeLeg,"FontName",fontstyle,"fontweight","bold");
legend boxoff;
set(gca,"fontweight","bold","linewidth",1.3,'fontsize',fontSize);
xlabel('$t / t_{Ref} \ [-]$','fontsize',fontSize,'fontweight','bold');
ylabel('$u_{slip} / u_t \ [-]$','fontsize',fontSize,'fontweight','bold');
%%xlim([0 60]);
ylim([0 2]);
t=bez{1}
t( t == "." ) = "_"; 
fileName=t;
print('-depslatexstandalone', fileName);
system (['latex ', fileName, '.tex']);
system (['dvips ', fileName, '.dvi']);
system (['gs -dNOPAUSE -dBATCH -dSAFER -sDEVICE=png16m ', ...
        '-dTextAlphaBits=4 -dGraphicsAlphaBits=4 -r', ...
       num2str(resolution),'x', num2str(resolution), ...
       ' -dEPSCrop -sOutputFile=', ...
        fileName, '.png ', fileName, '.ps']) 
delete('*.tex','*.dvi','*.log','*.aux','*.eps')
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close all; clear; clc;
run("plotstyle_v2.m");
currDir = pwd;
%%- paths for general installation
utDIR=getenv ("CFDEM_UT_DIR");
utilityPath = strcat(utDIR,"/multiphaseFlowBasics/")
addpath(utilityPath);
tutDIR=getenv ("CFDEM_TUT_DIR");
CFDPath = strcat(pwd,"/../")
uSlipFile1 = "averageProps/0/uSlip";
uSlipFile2= "averageProps/0.64/uSlip";

f=strsplit(CFDPath,"/");
bez=f(6);
l=strsplit(bez{1},"_");
leg=strcat(l(3),"-",l(4),"-original-cg-1");

cd([CFDPath])
%====================================%
% simulation data
%====================================%
data1= load(uSlipFile1);
data2= load(uSlipFile2);

uSlip_sim =[data1(:,5)' data2(:,5)'];
phi_sim =[data1(:,2)' data2(:,2)'];
t_sim =[data1(:,1)' data2(:,1)']; 
%====================================%

%====================================%
% analytical calculation
%====================================%

%%%%ParticleProperties
dragLaw  = 1;
dragName  = 'Beetstra'
dprimary   = 150e-6 ;
g               = 9.81
rhoFluid        = 1.3
rhoP            = 2000;
nuFluid         = 1.3846e-5;
etaFluid        = nuFluid * rhoFluid
uTerm  = 0.8562;
[uSusp, ReSusp] = uSettlingSphereSuspension(  dprimary, rhoP, g, etaFluid, … 

rhoFluid, mean(phi_sim), dragLaw ); % ©Stefan Radl

T = uTerm./g;                    %reference time
tDimLess = t_sim./T;
uSuspDimLess = uSusp ./ uTerm;
uSlipDimLess = uSlip_sim ./ uTerm;

vecplot=[tDimLess; uSlipDimLess];
[vectime b c]=unique(vecplot(1,:));
vecU=vecplot(2,b);

cd([currDir])
searchTime=5.0;
[val ind]=min(abs(tDimLess-searchTime));
UsUt=mean(uSlipDimLess(ind:end))
mean(vecU(ind:end))
varU=var(uSlipDimLess(ind:end));
%%Save to File
file2=sprintf('%s_data.txt',bez{1});
fid=fopen(file2,'w');
fprintf(fid,'uslip/ut= %f\n',UsUt);
fprintf(fid,'variance= %f\n',varU);
fclose(fid);

%%%%%%BEGIN USER INPUT
graphics_toolkit("fltk");
fontSize = 14;
resolution  = 450;
plotSkip=100;
fontsizeLeg=12;
%%%uslip/ut
figure();
hold on;
plot(vectime(1:plotSkip:end),vecU(1:plotSkip:end));
plot([0 max(tDimLess)], [uSuspDimLess(1:plotSkip:end) uSuspDimLess(1:plotSkip:end)],'k--');
h=legend({leg{1},'analytic homogeneous Susp.'});
set(h,"location","northwest","fontsize",fontsizeLeg,"FontName",fontstyle,"fontweight","bold");
legend boxoff;
set(gca,"fontweight","bold","linewidth",1.3,'fontsize',fontSize);
xlabel('$t / t_{Ref} \ [-]$','fontsize',fontSize,'fontweight','bold');
ylabel('$u_{slip} / u_t \ [-]$','fontsize',fontSize,'fontweight','bold');
%%xlim([0 60]);
ylim([0 2]);
t=bez{1}
t( t == "." ) = "_"; 
fileName=t;
print('-depslatexstandalone', fileName);
system (['latex ', fileName, '.tex']);
system (['dvips ', fileName, '.dvi']);
system (['gs -dNOPAUSE -dBATCH -dSAFER -sDEVICE=png16m ', ...
        '-dTextAlphaBits=4 -dGraphicsAlphaBits=4 -r', ...
       num2str(resolution),'x', num2str(resolution), ...
       ' -dEPSCrop -sOutputFile=', ...
        fileName, '.png ', fileName, '.ps']) 
delete('*.tex','*.dvi','*.log','*.aux','*.eps')


