
Ajdin Vihric, BSc

Process Refactoring - Reintroduction of
Agile Project Management Practices into
an Agile (Distributed) Free Open Source

Project

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Dipl-Ing. Dr.techn. Christian Schindler

Institute of Softwaretechnology

Head: Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Graz, May 2018

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master‘s thesis.

Graz,

Date Signature

ii

Abstract

Distributed teams have become a common practice in the field of software
engineering. Free Open Source Software (FOSS) contributed to this effect as
its developers community is decentralized. With the success of the Linux
operating system the developers’ interest to participate in FOSS projects
and subsequently its community increased. Working with distributed teams
required new management frameworks that are capable of combining new
software development practices with traditional project management. Within
this context several agile frameworks emerged over the last two decades.
The present thesis studies the current research on agile frameworks and
analyzes three commonly used agile project management frameworks in
detail. It furthermore outlines practical applications of these methods with
a special focus on the Catrobat project. Catrobat is a FOSS project founded
at Graz University of Technology. Currently (2018) the project has more
than 500 contributors and several released smartphone applications. The
thesis concludes agile management practices within Catrobat and outlines
possible improvements for future work.

iii

Contents

Abstract iii

List of Abbreviations vii

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Thesis Outline . 2

2 Related Work 3

3 Frameworks for Agile Project Management 9

3.1 The Agile Manifesto . 10

3.2 Scrum . 12

3.2.1 Structure of Scrum . 12

3.3 Kanban . 16

3.3.1 Kanban board . 20

3.4 eXtreme Programming . 23

3.5 Free Open Source Software . 26

4 Process Introduction into the Catrobat FOSS project 29

4.1 Problem statement . 31

4.2 Agile methods in Catrobat (2010-2014) 31

4.3 Agile methods in Catrobat (2014-2017) 35

4.4 Explorative analysis of tickets with Jira 40

v

Contents

4.5 Improvement process . 49

4.5.1 Workflow . 49

4.5.2 Product Owner board 53

4.5.3 Work in Progress limits 54

4.5.4 Improvement summary 57

5 Conclusion 59

6 Meta reflection and Future work 63

6.1 Outlook for the future . 65

Bibliography 67

vi

List of Abbreviations

AG Apache Group
APK Android application package
ASD Adaptive Software Development
ASF Apache Software Foundation
DoD Definition of Done
DSDM Dynamic Systems Development Method
FDD Feature Driven Development
FFS Five Focusing Steps
FLOSS Free/Libre Open Source Software
FOSS Free Open Source Software
FSF Free Software Foundation
GSoC Google Summer of Code
IRC Internet Relay Chat
LDAP Local Directory Access Protocol
OOPSLA Object Oriented Programming Systems, Languages, and

Applications
OSI Open Source Initiative
PO Product Owner
RUP Rational Unified Process
SM ScrumMaster
TDD Test Driven Development
TPS Toyota Production System
WIP Work in Progress
XP eXtreme Programming

vii

List of Figures

3.1 A sample Burn-Down chart (adapted from Wikipedia) 15

3.2 J-curve (adapted from Viney, 2005) 19

3.3 Kanban board from Catrobat project 21

3.4 Jira Kanban board from Catrobat project 22

4.1 Average age of unresolved issues 40

4.2 Average age of unresolved issues over 5 years 41

4.3 Resolution time of resolved issues 42

4.4 Issue statistics of Catroid . 43

4.5 Issue types grouped by resolution 44

4.6 Issues older than 1 year . 45

4.7 Comment activity of tickets in Jira 47

4.8 Voting activity of tickets in Jira 48

4.9 Old Catrobat workflow . 51

4.10 New Catrobat workflow . 52

ix

List of Tables

4.1 List of sub teams and their status 35

4.2 List of tickets still in Issues pool that have been worked on
and merged into develop branch 46

xi

1 Introduction

Free Open Source Software (FOSS) is gaining ever more popularity and
importance in today’s IT world. Many systems, companies, projects and
individuals are using free software or contributing to FOSS projects. Fur-
thermore distributed teams, which are common in FOSS projects, require
different management as well as development methods. Therefore new
frameworks for software development and project management were born
with increasing growth of FOSS. Amongst a variety of frameworks three
popular ones distilled as the most widely used: Scrum, Kanban and eXtreme
Programming (XP). A detailed description and analysis for using techniques
out of these frameworks in a FOSS project are conducted below. This thesis
analyzes practices of agile project management in the Catrobat FOSS project.
Catrobat was founded at Graz University of Technology. It is a visual pro-
gramming language designed for smartphones and tablets. The target group
are children and teenagers. Although the idea of free software initiated by
Richard Stallman is thirty years old, in-depth research on FOSS is small. In
the case of combining a FOSS project in an educational environment the
research is even sparse.

The main part of this thesis is an historical reappraisal of the Catrobat
project. In particular agile methods and practices inside a sub-team within
Catrobat are analyzed. Further an analysis of the ticketing system (Jira) and
statistical data on various aspects around tickets is conducted. The analysis
is complemented with an improvement process. In this process solutions
and recommendations to further improve Catrobat’s situation are given.
Some solutions are already being implemented in the project. In the final
section a reflection of FOSS and challenges in such are made. A special
focus is laid on Catrobat. Therefore solutions evaluated in the improvement

1

1 Introduction

process are summarized. The thesis is concluded with a future outlook for
the Catrobat project.

1.1 Thesis Outline

This thesis analyzes methods and processes of a distributed Free Open
Source Software (FOSS) project in an educational environment. It is struc-
tured to give an overview of agile project management and software de-
velopment frameworks. After that a concrete example of a FOSS project
that started as a university project is given. Section 2 discusses a literature
review on the field of FOSS in distributed teams. Section 3 explains agile
software development methods and their benefits. The subsequent section
3.1 introduces The Agile Manifesto, which is an important rule set for agile
software development. Sections 3.2 and 3.3 explain the Scrum and Kanban
frameworks in detail. Section 3.4 explains eXtreme Programming (XP), a
framework focused on development techniques, highlights the main differ-
ences to project management focused frameworks like Scrum and Kanban.
Section 3.5 concludes with a detailed summary on FOSS. A practical anal-
ysis of a process introduction in a FOSS project is discussed in section 4.
First a historical appraisal of the Catrobat project is done in sections 4.2 and
4.3. Afterwards an explorative analysis with Jira1 is presented in section 4.4.
Solutions and suggestions for findings of section 4.4 are described in section
4.5. Section 5 summarizes the findings and proposed improvements for a
successful process refactoring. The final section 6 reflects on challenges that
a FOSS project can face and gives possible outlooks for future work on this
field. In particular challenges of the Catrobat FOSS projects are reflected.

1 Tracking and planning software by Atlassian - https://www.atlassian.com/software/jira

2

https://www.atlassian.com/software/jira

2 Related Work

There are many books and papers describing the pro and cons of FOSS.
While many give a rough overview how a FOSS project works, only a small
hand of researchers do an in-depth analysis how the collaboration within
FOSS projects is exactly done (Bonaccorsi and Rossi, 2003). Crowston and
Howison, 2006 for exampleanalyze hierarchical structures, centralization
and social structures in FOSS teams. A hierarchical structure usually con-
sists of a bottom up system. This means that clear roles and division of labor
exist in such a system. However, in FOSS teams this situation is slightly
changed. Hierarchies are less strict in a FOSS project, where open develop-
ment is encouraged. Basically, anyone who is willing to help can contribute
to the code base. Crowston and Howison, 2006 write about development
centralization, which means “who [actually] writes the code”. According
to their analysis of the Apache httpd project, about fifteen developers (the
core team) produce 80 percent of the code base. Mockus, Fielding, and
Herbsleb, 2002, Ghosh and Prakash, 2000 and Koch and Schneider, 2002

come to similar conclusions as observed by Bonaccorsi and Rossi, 2003. Now
one may ask how come that all the volunteers are developing for Open
Source projects without financial remuneration. Bonaccorsi and Rossi, 2003

try to give an answer to this question. They analyze three main questions
in their work. First why developers contribute to Open Source projects.
Second, how does the coordination of several hundred of people distributed
around the globe work. Third, the reasons why Open Source software is
becoming more popular, even though proprietary software dominates the
market. To answer the first question it is necessary to know what kind of
persons the contributing developers are. Bonaccorsi and Rossi, 2003 identify
three groups of people using Open Source software. The first and largest

3

2 Related Work

group are the users of the software. This group does not contribute any
code, but helps to propagate the software. The second group consists of
developers, who contribute small portions in their free time. However the
real success and increased popularity of Open Source software has its roots
somewhere else. This third group consists of developers, who emerged from
the hacker culture. The best example is given in Raymond, 1999’s analysis
of the Linux operating system. In his analysis Raymond defines what he
calls “Linus’ law”. Linus’ law means that a problem is solved quicker when
more developers work on it. Linux is developed by a large number of people
distributed all around the world. Many of these developers are hackers,
who are often called the “real programmers”. In the 1980’s, the beginning
of the hacker culture, programmers came from the engineering and physics
fields. Bonaccorsi and Rossi, 2003 say that many developers see the Open
Source community similar to academic research. In research sharing is a
core part to gain valuable feedback and hence recognition in the research
community. The same applies in Open Source. Some developers as well as
authors (Ullman, 1998) describe Open Source as an art. That is one reason
why Open Source software is often written elegantly. The developers who
are committed try to write efficient and elegant code. The second research
question comes to the result, similarly like Crowston and Howison, 2006,
that hierarchies in Open Source projects do exist. Nevertheless, these hierar-
chies are less strict than in proprietary projects. The third research question
concludes that the success of Open Source in large parts comes from com-
panies. Many companies realized that they can benefit from adopting and
developing Open Source software. Bonaccorsi and Rossi, 2003 call that a
hybrid business model. Companies can use Open Source software in their
proprietary products like some libraries. In return the companies contribute
to Open Source projects, as they have a direct benefit of doing so. Crowston
and Howison, 2006 studied distributed teams that have been successfully
applied to different large and complex projects. In this context reference
is made to the projects Madefast (Cutkosky, Tenenbaum, and Glicksman,
1996), a project for collaboration over the internet, and the software devel-
opment performed in the Linux kernel described by Moon and Sproull,
2000. Crowston and Howison, 2006 furthermore highlight possible problems

4

of software development arising in these projects which are exacerbated
within distributed environments. Within this context, reference is made to
Armstrong and Cole, 2002 who outlined possible techniques that counter
these problems. Exemplary, project managers may consider using practices
that promote mutual understanding. This is exactly done in the frameworks
described in Section 3. Mockus, Fielding, and Herbsleb, 2002 state that
Open Source development has the potential to compete and in some cases
even replace traditional development methods like the Waterfall model
described by Royce, 1987. Within this context they analyze the two Open
Source projects Apache and Mozilla. To draw conclusions they compared
these projects to five commercial projects and among each other. Apache
was the de facto standard software for web servers on the internet when
Mockus, Fielding, and Herbsleb, 2002‘s paper was published. This continues
to be the case today, but several competitors like nginx1 and Microsoft2 have
caught up. According to Netcraft3 nginx could overtake both, Microsoft
and Apache in the next few years. The fact that Apache is free software
has certainly contributed to its success. The Apache Group (AG), the initial
name of the organization around the Apache web server, started with eight
people. Each of the eight founders were volunteers with a regular job. Due
to limited time they could dedicate for the project, a development process
that supports asynchronous communication was required. In this case a
mailing list was the system of choice. In 1999 the AG was incorporated to
the Apache Software Foundation (ASF) and hosts now more than 350 Open
Source projects (The Apache Software Foundation (ASF)), while the Apache
HTTP web server is the most popular one. Mozilla, the second Open Source
project, differs slightly however. Unlike in Apache, where a release manager
for a certain release is a volunteer from the core team, in Mozilla there
are rather predefined roles. This has two main reasons. First Mozilla is a
much larger project, consisting of many sub projects. The sub projects are
called modules. Every owner of a module is responsible for reviewing and

1 https://nginx.org/
2 https://www.iis.net/
3 https://news.netcraft.com/archives/2018/01/19/january-2018-web-server-

survey.html - accessed on 2018-04-28

5

https://nginx.org/
https://www.iis.net/
https://news.netcraft.com/archives/2018/01/19/january-2018-web-server-survey.html
https://news.netcraft.com/archives/2018/01/19/january-2018-web-server-survey.html

2 Related Work

approving new code for the module. Second, Mozilla, as being a so-called
hybrid project, is predestined to implement a mixture of open source and
commercial development processes. A hybrid project has commercial and
Open Source workflows. Mockus, Fielding, and Herbsleb, 2002 furthermore
analyze the development processes of Apache, Mozilla and the five commer-
cial projects that they chose for their study. The commercial development
process has a well-defined sequence of actions. A change request for a
feature or problem passes a meticulous design process. Afterwards it is
assigned to a developer in form of a modification request. The assignments
are done by a supervisor, who delegates work according to developer avail-
ability and skills. Within Apache there is no single development process that
defines the stages a code change passes through. However, some similarity
to the commercial process can be observed. A problem is first discovered.
Subsequenly a solution is being worked out. After that the changes are
presented to other core developers for review. When the review process was
successful, the changes are committed to the code repository. In contrast
to the commercial case the work is not being assigned to developers like
in the commercial case. Developers in Open Source projects tend to pick
certain problems they want to work on. Usually these problems involve
code sections they are familiar with or are experts in the field (Mockus,
Fielding, and Herbsleb, 2002, p.10). The Mozilla development process is a
mixture of commercial and Open Source style, like mentioned previously.
Most of the core developers at Mozilla work full time and are paid (Mockus,
Fielding, and Herbsleb, 2002, p.28). Therefore, a more defined process like
in the commercial projects is in place. Reviews pass through two stages.
First the owner of a module must approve a code change. Second a group
of so-called super-reviewers (Mockus, Fielding, and Herbsleb, 2002, p.25)
inspect the changes for ramifications to the entire system. Bug reports and
feature request are handled via Bugzilla4. Reporters need to set up an ac-
count at Bugzilla in order to create a request. Additionally, there is a group
in the Mozilla team who specialize in reporting defects (Mockus, Fielding,
and Herbsleb, 2002, p.33), which can be compared to a testing team in
commercial projects. Mockus, Fielding, and Herbsleb, 2002 develop seven

4 A bug tracking tool - https://www.bugzilla.org/

6

https://www.bugzilla.org/

hypotheses in their work, which are not further specified except for one:

• Hypothesis 6: In successful open source developments, the devel-
opers will also be users of the software.

They conclude that this hypothesis is especially true in the case of Mozilla.
The developers of the Firefox browser, a Mozilla software, are very likely also
users of that software. Hence, they can be considered as domain experts.

7

3 Frameworks for Agile Project

Management

The term Agile, related to software development, first appeared in 2001 in
the Agile Manifesto (The Agile Manifesto). The manifesto is the result of a
meeting, whose participants were advocates of different software devel-
opment processes. Details of the manifesto are discussed in Section 3.1.
Software development in general consists of several different parts. The
parts are grouped, among other things, into activities, models, methods
and practices. Some practices like Test Driven Development (TDD) and
Pair Programing are discussed in the forthcoming sections. Methods are
structured in frameworks. Details of three specific frameworks are discussed
in the upcoming sections. The term Project Management refers to the classic
definition:

“A project is a planned program of work that requires a definitive
amount of time, effort, and planning to complete. Projects have
goals and objectives and often must be completed in some fixed
period of time and within a certain budget.”

— Layton, 2012

On the other hand the term Agile Project Management refers to Agile
Software Development. There are many Agile software frameworks, but
the focus is set to the most popular and widely used, which are Scrum,
Kanban and XP. Scrum and Kanban focus on project management and
continuous delivery of work. XP has its focus on practical software de-
velopment skills, like Pair Programming, Continuous integration and Testing.
Other agile frameworks including Crystal, Dynamic Systems Development

9

3 Frameworks for Agile Project Management

Method (DSDM), Feature Driven Development (FDD), Rational Unified
Process (RUP), Adaptive Software Development (ASD) are described in
detail in Abrahamsson et al., 2002. There are also frameworks that combine
principles from different frameworks like Scrumban (Ladas, 2009), taking
the best from Scrum and Kanban.

3.1 The Agile Manifesto

The Agile Manifesto was signed by seventeen people (Kent Beck, Mike
Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin
Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon
Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff
Sutherland and Dave Thomas), who were “[r]epresentatives from Extreme
Programming, SCRUM, DSDM, Adaptive Software Development, Crystal,
Feature-Driven Development, Pragmatic Programming, and others [...]” (The
Agile Manifesto), of a meeting that took place in February 2001 in Utah. The
manifesto consists of the following twelve principles (The Agile Manifesto):

“Our highest priority is to satisfy the customer through early
and continuous delivery of valuable software.”

“Welcome changing requirements, even late in development.
Agile processes harness change for the customer’s competitive
advantage.”

“Deliver working software frequently, from a couple of weeks to
a couple of months, with a preference to the shorter timescale.”

“Business people and developers must work together daily
throughout the project.”

10

3.1 The Agile Manifesto

“Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the
job done.”

“The most efficient and effective method of conveying informa-
tion to and within a development team is face-to-face conversa-
tion.”

“Working software is the primary measure of progress.”

“Agile processes promote sustainable development. The spon-
sors, developers, and users should be able to maintain a constant
pace indefinitely.”

“Continuous attention to technical excellence and good design
enhances agility.”

“Simplicity - the art of maximizing the amount of work not done
- is essential.”

“The best architectures, requirements, and designs emerge from
self-organizing teams.”

“At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.”

The meeting in Utah was not coincidental. It was incubated at an earlier
meeting in Oergon a year before. Participants of that meeting were dis-
cussing about light software development methodologies. However nothing
concrete was decided. Robert C. Martin finally kicked-off the Utah-meeting
by sending an email and suggesting a conference to take place in February
of 2001 (The Agile Manifesto). The resulting manifesto was then created in
Utah and serves as a central pillar for agile software development.

11

3 Frameworks for Agile Project Management

3.2 Scrum

Mary Poppendieck describes Scrum in Schwaber, 2004‘s book with the
following simple example: Consider traveling with an aircraft and a car. In
an aircraft flight there are certain procedures and rules you have to follow
to reach your destination. Starting with the pilot checking all precautions
necessary before an aircraft departure and ending with the predefined
landing runway. All the actions in between the flight are planned as well.
For instance the flight duration and speed. Whereas when you travel by
car, the only rules you have to follow are the traffic rules. You are are
free to choose which route you will take to reach your destination. Time
is also on your own disposal, you can stop the car at any time and take
a pause. Scrum is like the car. It provides a small amount of rules and
tools, but it does not provide every single step in the process of reaching
the goal. Ken Schwaber and Jeff Sutherland presented Scrum at the Object
Oriented Programming Systems, Languages, and Applications (OOPSLA)
conference in 1995 (Schwaber, 1995) as a new project management tool for
object oriented programming. Since then the global Scrum community, as
well as the framework’s popularity, grew constantly. According to Schwaber,
2004, p.1 Scrum is based on industrial process control theory. Scrum is
a contemporary framework for managing complex projects and is most
widely used in software development. The following section discusses the
framework in more detail. Schwaber, 1995 and Lacey, 2012 serve as the
primary literature for this section.

3.2.1 Structure of Scrum

Scrum is structured into roles, meetings or events and artifacts. In Scrum
there are the following core responsibilities: Product Owner (PO), ScrumMaster
(SM) and the development team. The PO acts as the representer of wishes
and expectations of customers and stakeholders. Furthermore the PO de-
cides about the development process like what and when is something
developed and is also responsible for the success or failure of a project. The

12

3.2 Scrum

SM is responsible to protect the development team from distractions and
acts as a middle-person between the PO, customers, stakeholders and the
development team. If the team gets stuck at any point, the SM is the first
person to provide help. The PO and SM are working with the development
team. The development team brings the Product Owners vision to life, by
developing, testing and optimizing the code. This development process is
done in so called Sprints. A Sprint is basically a task list that has to be
completed until the next release. Depending on various factors such as team
experience or project size, the typical Sprint length is between one and four
weeks. The Scrum Guide (Scrum Guide) implies that during a Sprint:

• “No changes are made that would endanger the Sprint goal.”
• “Quality goals do not decrease.”
• “Scope may be clarified and renegotiated between the PO and devel-

opment team as more is learned.”

Another important pillar of the Scrum framework are meetings of which
there are four kinds, namely planning meetings, the Daily Scrum meetings,
Sprint review meetings and Sprint retrospective meetings. Planning meet-
ings, also called Sprint Planning, take place on the first day of each Sprint
and are time boxed to a maximum of eight hours for a four week Sprint,
shorter Sprints usually have a shorter time boxing. The plan is created
collaboratively by the whole Scrum team. The Sprint Planning serves to
answer two main questions (Scrum Guide):

1. “What amount of work can be done in the time frame of the upcoming
Sprint?”

2. “How to get the Sprint’s work done?”

The Daily Scrum meetings usually take place on a daily basis for about
fifteen minutes and serve for team synchronization, as well as a quick
planning session for the next twenty four hours. Daily Scrums are held at
the same time and place to reduce complexity. Participants of the meeting
explain the following (Scrum Guide):

• “What did I do yesterday that helped the development team meet the
Sprint goal?”

13

3 Frameworks for Agile Project Management

• “What will I do today to help the development team meet the Sprint
Goal?”

• “Do I see any impediment that prevents me or the development team
from meeting the Sprint goal?”

The SM, who helps the team to keep the fifteen minute time frame, also
ensures that only development team members participate in the Daily
Scrum. The Scrum Guide summarizes the main advantages of the Daily
Scrum. Due to an improvement in communication, the development team is
capable of eliminating dispensable meetings. The project gains efficiency by
quick decision making. Subsuming, the Daily Scrum improves the overall
development team‘s knowledge. The Sprint Review and Sprint Retrospective
take place on the last day of a Sprint. Sprint Reviews are an opportunity
for customers to review the work so far and ask for changes, but they also
give overall feedback to the team. As a result the Product Backlog is revised
further, as the team gains more detailed knowledge. On the other hand the
Retrospective serves the team to further improve their work by analyzing
what went well and wrong in the Sprint. Primarily only the development
team and the SM participate in the Retrospective. When there is need the
PO can be invited to the Retrospective. In Scrum there are three kinds of
artifacts which are crucial to success according to Lacey, 2012. First there
is the Product Backlog which contains everything that needs to be done in
order to successfully complete a project. It is constantly optimized by the
PO who prioritizes and orders tasks. The Product Backlog displays the tasks
with the attributes description, order, estimate and value. The description states
the work that has to be done for this task. The order indicates how important
a task is. The estimate gives an estimated effort needed to complete a task.
The value depends on the usage of a product. A feature that has already been
released and generates additional tickets enhancing or correcting the feature
have more value than other tickets for instance. Cohn, 2009 and Pichler,
2010 use different attributes for the Product Backlog, that are summarized
under the acronym DEEP. Detailed Appropriately is the first attribute. Tickets
that are planned to be worked on the next Sprint need to contain enough
detail to be delivered. Estimated is the second attribute. Tickets at the top
of the Backlog are estimated more precise than the ones at the lower end.

14

3.2 Scrum

Emergent is the third attribute and describes that the Backlog is changing
accordingly to requirements. Prioritized means that the valuable tickets are
at the top and less valuable at the bottom of the Backlog. Therefore the team
will deliver maximum value by finishing tickets from the top of the Backlog.
The Sprint Backlog is the second artifact type and is a list of tasks that are
going to be addressed in the upcoming Sprint. It is constantly being refined
during the Sprint, as the team gets to know more details about the work to
be done. Even removing tasks is not uncommon in this phase, as the team is
solely responsible for the Sprint Backlog. The third kind of artifact according
to Lacey, 2012 is the Sprint Burn-Down chart. It is a graphical representation
of the remaining work of the current Sprint (see Figure 3.1).

Figure 3.1: A sample Burn-Down chart (adapted from Wikipedia1)

Figure 3.1 displays the remaining days on the x-axis and the remaining
hours on the y-axis. During the Sprint Planning the ideal Burn-Down is
plotted. Now each day the SM or a team member updates the remaining
hours at the end of the day. Comparing the ideal and real Burn-Down values
gives a good overview if the team is on track to meet the Sprint Goal. Even

1 https : //en.wikipedia.org/wiki/Burn down chart - accessed on 2017-10-29

15

https://en.wikipedia.org/wiki/Burn_down_chart

3 Frameworks for Agile Project Management

if Sprint Burn-Downs are a useful tool, not all consider it as a core part of
Scrum as Lacey, 2012 says in his book. Schwaber and Sutherland (Scrum
Guide) for instance talk about the Product Increment. The Product Increment
is a sum of all Product Backlog items completed during a Sprint as well
as the value of all previous Sprints. At the end of a Sprint the Increment
must be complete, which means that it has to meet the team’s Definition of
Done (DoD).

Definition of Done (DoD) - The DoD is a checklist of activities that need
to be fulfilled. A product (software) is done when all parts of the DoD
are finished. Nevertheless a DoD is not static. With changing require-
ments and/or organizational structure the DoD needs to be adapted
accordingly. For the Catrobat project the DoD currently consists of
eight parts. New code must meet the following requirements:

1. Tests are available that cover the new functionality
2. Does not break existing tests or functionality
3. Should be branched off the development branch
4. Ticket is in Ready for Code review column in Jira
5. A pull request has been made at GitHub
6. A green (successful) test run on the Jenkins CI system
7. Commit guidelines1 are fulfilled
8. Pull request has passed code review

3.3 Kanban

The Kanban system was originally developed in the automotive industry by
Toyota and is often referred to as the Toyota Production System (TPS). As of
different customization wishes the classic Ford system, which introduced
the division of labor, was not suitable anymore. Taiichi Ohno, former vice
president of Toyota Motor Corporation, therefore developed the kanban

1 Catrobat commit guidelines on GitHub - https://github.com/Catrobat/Catroid/wiki/Commit-
Message-Guidelines

16

https://github.com/Catrobat/Catroid/wiki/Commit-Message-Guidelines
https://github.com/Catrobat/Catroid/wiki/Commit-Message-Guidelines

3.3 Kanban

technique that latter became the TPS and introduced the Just-in-Time pro-
duction (Toyota Production System). The goal is to minimize production to
a low level and only produce what is needed at the time it is needed. Kan
means signal and ban means card, thus kanban is the signal card that a new
production or work can be performed. In Kanban everything is about to
achieve Kaizen, which is the Japanese expression for continuous improve-
ment. David J. Anderson was the first who adapted the traditional Kanban
system to the needs in software development. According to Anderson, 2010,
p.13 in software development the signal cards represent work items, rather
than a sign to pull more work. In this thesis Kanban is always referring to
software development. One important rule when implementing or using
a Kanban system is to start small with existing processes and slowly, but
continuously, improve the production flow or in other words gain Kaizen.
This evolutionary change is the biggest difference to other agile methods
(Anderson, 2010; Leopold and Kaltenecker, 2013). Kanban has four charac-
teristic elements according to Epping, 2011, although these characteristics
are not an official commitment:

Pull principle - Tasks are not being pushed throughout the value chain, but
rather pulled by the development team. This has two main advantages.
First the team is not overloaded with work and second the team is
being supported to work self organized. Visually this process can
be displayed on a Kanban board. Reference is made to Section 3.3.1,
where Kanban board is explained in detail.

Work in Progress (WIP) limits serve two main purposes. First, to avoid
work overload and second, to shorten the task cycle time in the value
chain. Furthermore the average completion rate is increased as task
switching is avoided or at least minimized when WIP limits are in
place. Depending on the maturity level of an organization the WIP
limits should be chosen accordingly. A more mature organization
can set the WIP limit to one per developer. Organizations that use
Kanban for the first time may use a higher limit of two or three per
developer in order to avoid big sufferings from the so called J-curve
effect. The J-curve effect describes the phenomenon of capability drop
and recovery when implementing a change initiative (The J-Curve

17

3 Frameworks for Agile Project Management

Effect). From a management‘s point of view the depth of the J-curve
should be minimized.
The biggest challenge is to come out of the curve‘s dip. Stakeholders
often expect things to move according to the dotted line as displayed
in Figure 3.2. In reality the opposite takes place, no matter how well
the management planned to avoid the J-curve. Viney, 2005 identified
that people experiencing the J-curve effect, go through three phases.
The first phase is optimism. Almost everyone is excited about a new
system at the start. Soon after that the second phase, down slope,
takes place. This phase is characterized by shock, denial, anger and
bargaining. The key to success is to overcome this phase as quick as
possible. Otherwise stakeholders may withdraw their support, which
can lead to project failure. Therefore management shall take people‘s
anger serious and work with them on a solution. On the other hand,
management also needs to calm stakeholders and explain to them,
that this situation is normal in a change initiative. At success phase
three, upslope, is reached. Phase three comprises of adapting, testing
and acceptance.

18

3.3 Kanban

Figure 3.2: J-curve (adapted from Viney, 2005)

19

3 Frameworks for Agile Project Management

Transparent Information - Transparent means that every person in a team
profits from information related to a task. All information is disclosed
on the Kanban board and displays the following (Epping, 2011, p.58):

• The phases of the value chain, every task passes.
• Tasks in the different phases.
• People working on a task.
• WIP limits in every phase.
• A project index, that indicates the work progress.

Continuous improvement - At the beginning in Kanban everything is about
Kaizen, the continuous improvement. This means to constantly adapt
to project specific parameters. It is important to involve every team
member in this process. Every improvement passes five steps, known
as the Five Focusing Steps (FFS) by Goldratt. The FFS emerged from
Goldratt’s Theory of Constraints published in Goldratt and Cox, 1984.
Anderson, 2010, p.189 states the FFS as follows:

1. “Identify the biggest bottleneck.”
2. “Decide how to exploit the bottleneck.”
3. “Subordinate every other decision to the decision made

in step two.”
4. “Remedy the bottleneck.”
5. “Start over at step one.”

3.3.1 Kanban board

A Kanban board is a visual representation of open tasks that need to be
done. In practice, it is easy to create and supports transparent information.
A whiteboard is the best tool to draw a Kanban board (see Figure 3.3), as it
is visible to everyone in a room and supports the Daily Standup meetings
very well. Every participant of the meeting can simply put or take sticky
notes to or from the board, depending if the developer is taking a task to
work on or finished a task. The board itself has several columns that can be
designed as it fits the needs of the development team. A simple partition

20

3.3 Kanban

usually consist of columns containing Product Backlog, In Development and
Done (see Figure 3.3 as an example).

Figure 3.3: Kanban board from Catrobat project

In nowadays globally connected businesses it is very common that devel-
opment teams work in distributed areas around the globe. Classical white-
boards are not useful in such scenarios. Therefore there are also electronic
tools that model a Kanban board.

Such a tool can be seen in Figure 3.4. Electronic tools have a main advantage
over a whiteboard, as they allow to generate reports and metrics out of
the data, which is useful for management. Furthermore they allow an easy
communication between all stakeholders.

21

3 Frameworks for Agile Project Management

Figure 3.4: Jira Kanban board from Catrobat project

22

3.4 eXtreme Programming

3.4 eXtreme Programming

“[eXtreme Programming (XP)] is a lightweight, efficient, low-risk,
flexible, predictable, scientific, and fun way to develop software.”

— Beck, 1999

The framework was created by Kent Beck and published in his book Extreme
Programming Explained: Embrace Change (Beck, 1999). According to Beck, 1999

there are four variables in software development

Cost - A balance for spending the right amount of money has to be found.
Too much money is as bad as too little. Customer requirements will not
be solvable with limited investments. On the other hand an excessive
budget might tempt the team to not focus on what the customer really
needs.

Time - Similar to cost the right amount of time until production deliv-
ery needs to be found. With too little time all other variables suffer.
Too much time can hinder a project to get valuable feedback out of
production, which is the most valuable aspect according to Beck, 1999.

Quality - There are two types of quality, external and internal quality.
External quality is measured by customers and internal quality is
measured by programmers. Sacrificing internal quality for reducing
time to market will back fire sooner or later. In the worst case the
software gets unmaintainable or too expensive (Beck, 1999).

Scope - Beck, 1999 describes this as the most important variable in software
development. The key is not to do too much or in other words, only
do as much as is needed. This may sound as a lazy approach, but if
the customer changes mind, which happens quite often, the amount of
useless work is limited. A side effect of this approach is that (quality)
products are produced on time. Projects sometimes require to reduce
the scope, either out of time or money issues. Dropping functionality
is a common strategy for reducing scope. In order not to upset the
customer, XP offers two strategies. The first strategy are estimates,
which become more accurate over time and practice. Giving the cus-
tomer more accurate estimates helps them to decide going on with

23

3 Frameworks for Agile Project Management

the project as planned or not. The second strategy is to implement the
most important features, from a customer’s view, first. So even if the
project gets cut off or runs out of funding, the customer has at least a
basic functionality delivered.

XP has four core values and twelve derived principles. The four values
are:

Communication is a key when multiple people work on a project. Some-
times people do not communicate clearly with each other, e.g., a pro-
grammer does not tell the team about an important design change or a
manager does not ask the right questions, thus important information
is not shared during a meeting. XP tries to counter bad communication
by requiring testing, pair programming and estimating, which forces
the team to communicate with each other.

Simplicity - Sometimes simple solutions are more valuable than complex
ones. Ironically simplicity is not an easy task to perform (Beck, 1999).
It is hard to do a task without thinking forward including possible
implications of that task. For instance a rather simple programming
solution to a problem would take only a fraction of time, than a
complex one. Besides that a complex solution might be discarded
as requirements change quickly, thus more time and work would be
thrown away. XP’s approach is to encourage simplicity. Beck, 1999 says
that “[s]implicity and communication have a [...] mutually supporting
relationship”, which means that more communication leads to see
things clearer and thus make them simpler.

Feedback is an important supplement for communication. The more feedback
there is the easier the communication gets. A programmer can get two
kinds of feedback. First, from the system itself. When code is changed
the system, respectively existing tests, return immediate feedback if
the change was successful or not. Second, from testers and customers,
who write functional tests.

Courage - Sometimes it is better to start from scratch or try new things, like
throwing away code or refactoring. To do such things it needs people
with courage. However the first three values need to be in place, in

24

3.4 eXtreme Programming

order that courage becomes valuable. Otherwise it would be “[...] plain
hacking [...]” (Beck, 1999)

All of the four values described above are useless, if there is no mutual
respect within a team. Thus respect can be seen as the fifth value, which
is more important than all previous values combined. Another important
pillar of XP are the twelve principles, often referred as the twelve practices
(Beck, 1999):

Planning game - A quick and rough planning for the next scope of the
release cycle.

Small releases - As soon as a requirement set is finished, release a new
version.

Metaphor - A guideline for developing a system that every developer can
easily understand.

Simple design - Keep the design simple. Complex parts should be simpli-
fied if possible.

Testing - Every code fragment should have a corresponding test that en-
sures the correctness and functionality of that fragment.

Refactoring - Developers constantly improve existing code by simplifying
it or removing duplicates.

Pair programming - Code is written by two developers on one machine.
Collective ownership - Any developer can work on any part of the code.
Continuous integration - Integrate and build the system several times a

day. Ideally this is done as soon as a task is completed.
40 hour week - This is a rule of thumb. The goal is not to have tired devel-

opers, as this results in lower quality code.
On-site customer - A real person who is available at all times for questions

and setting priorities.
Coding standards - Same code style supports collaboration and makes it

easier to recruit new developers.

25

3 Frameworks for Agile Project Management

3.5 Free Open Source Software

The term Free Open Source Software (FOSS) is a composition of two move-
ments, namely the Free Software community and the Open Source com-
munity. The two terms may be perceived as being the same, but there are
significant differences. Free software is a social movement that started in
1984 and Open Source is a development methodology. The Free Software
Foundation (FSF) is the main driver behind the Free Software community.
Richard M. Stallman, one of the most popular persons from the FSF, defines
free software with four principles (Stallman and Gay, 2002, p.43):

• “The freedom to run the program, for any purpose.”
• “The freedom to study how the program works, and adapt it to your

needs. (Access to the source code is a precondition for this.)”
• “The freedom to redistribute copies.”
• “The freedom to improve the program, and release your improvements

to the public, so that the whole community benefits. (Access to the
source code is a precondition for this.)”

Many people consider free software only to be free in the sense of cost, but
quite the opposite is true. It is legitimate to sell copies of free software and
charge money for it. According to Stallman and Gay, 2002 the word free
means the freedom to do basically anything with the software, like free
speech allows you to say whatever you like. Therefore you are allowed to
use, copy, modify and redistribute free software however you like. There
are of course some restrictions, but only to ensure that the main principles
are not hurt. For instance it is not allowed to to add restrictions that would
undermine one of the existing principles. What began in the late 1990s with
the emergence of Linux became the Open Source Initiative (OSI) in 1998,
also referred to as the Open Source movement by Stallman and Gay, 2002.
The Open Source community has similar definitions as the Free Software
community, but they are less strict in some terms like licensing. Software is
considered Open Source by the OSI when the source code of a particular
software is publicly available. However executables of such software are
mostly provided by one entity, who also digitally signs the executable. A

26

3.5 Free Open Source Software

modification of the executable may not be possible, as it was digitally signed,
which would not be classified as free software by the FSF. Both movements
have a thing in common, which is that the source code of software must be
publicly available. These differences in details are confusing even for experts
in this area. Therefore people began to use the term FOSS, also referred to
as Free/Libre Open Source Software (FLOSS), to indicate that the software
is both free and Open Source. In fact FOSS has become so popular that
even for profit organizations start to switch certain projects to Open Source
or contribute to other Open Source projects. Microsoft has announced2 in
late September of 2017 that it is joining the OSI as a premium sponsor.
Furthermore Microsoft has even made some very popular products Open
Source like .NET Core3 and Visual Studio Code4. Although these products do
not have the same rich features as the commercial pendants, the commitment
of companies like Microsoft in the Open Source community is laudable.
Another important tool that has to be mentioned when we talk about FOSS
is GitHub. GitHub is an online platform for hosting code repositories of
all kinds. Since the service is free for FOSS projects it has become the de
facto standard for hosting and managing code repositories of many FOSS
projects, including .NET Core and Catrobat. The only drawback of GitHub
is that private repositories are only available as a paid plan. Since Open
Source projects are meant to be open to the public, this is not a problem.
For those who support and follow the principles of the FSF, GitHub is not
an option. Luckily there are two other application which meet the FSF’s
criteria5: GitLab6 and Savannah7.

2 Microsoft announcing accession to OSI - https://open.microsoft.com/2017/09/26/microsoft-
joins-open-source-initiative/ -
accessed on 2018-01-15

3 https://blogs.msdn.microsoft.com/dotnet/2014/11/12/net-core-is-open-source/ - ac-
cessed on 2018-01-15

4 https://code.visualstudio.com/
5 Blogpost by FSF announcing ethical evaluations of code-hosting services -

https://www.fsf.org/news/gnu-releases-ethical-evaluations-of-code-hosting-services -
accessed on 2018-01-15

6 https://about.gitlab.com/
7 https://savannah.gnu.org/

27

https://open.microsoft.com/2017/09/26/microsoft-joins-open-source-initiative/
https://open.microsoft.com/2017/09/26/microsoft-joins-open-source-initiative/
https://blogs.msdn.microsoft.com/dotnet/2014/11/12/net-core-is-open-source/
https://code.visualstudio.com/
https://www.fsf.org/news/gnu-releases-ethical-evaluations-of-code-hosting-services
https://about.gitlab.com/
https://savannah.gnu.org/

4 Process Introduction into the

Catrobat FOSS project

Catrobat started as a Free Open Source Software (FOSS) project initiated
and managed by Professor Wolfgang Slany at Graz University of Technology
at the Institute of Software Technology in 2010. Catrobat is a visual program-
ming language (VPL) designed for smartphones and tablets. It is inspired
by Scratch1, another VPL, that is developed by the Lifelong Kindergarten
Group at the MIT Media Lab (Catrobat developer site). The idea of Catrobat
is to teach children and teenagers basic concepts in programming. This
is achieved with a Lego-style approach (Slany, 2012). Pocket Code is the
Android implementation of the Catrobat language. Also known as Catroid
internally, it allows to run, modify and create Catrobat programs. Besides
the Android version of Pocket Code an iOS and HTML5 version are in
development. Unlike in Scratch, programming with Pocket Code does not
require to have a computer. All actions can be performed on a smartphone
or tablet.
The following section introduces the agile methods used in Catrobat are
going to be explained. Fellhofer, Harzl, and Slany, 2015 and my own experi-
ence as a Catrobat member serve as the main literature within this section.
Catrobat acts as an umbrella organization that contains several teams. In
total there are eight different teams, segregated in development, infrastruc-
ture and design. Six out of eight teams are development focused, two are
maintaining infrastructure and one team is responsible for all design and
useability. The development teams are split into Android, iOS, HTML5 and
web. It is important to know that the Catrobat project is developing actually

1 https://scratch.mit.edu/

29

https://scratch.mit.edu/

4 Process Introduction into the Catrobat FOSS project

two smartphone apps. The first app is Pocket Code, which is inspired by
the Scratch programming language. The second app is Pocket Paint, which
originally was designed as a supplement for Pocket Code. With Pocket Paint
users can draw and edit images. These images can further be used in Pocket
Code to build a program. The popularity amongst users of Pocket Paint
soon made the development nearly as important as Pocket Code. While
Pocket Paint as a standalone image editor has been successful according
to user feedback and reviews on Google Play2, Pocket Code struggled to
keep up for some time. Currently both apps have an average rating of 4.0
on Googe Play3. Besides being far more complex than Pocket Paint and thus
having more bugs, the greatest drawback of Pocket Code is the missing
integration of Pocket Paint. In the starting days of Pocket Paint Android
development with use of Intents was very popular. Therefore the decision
was made to release Pocket Paint as a standalone app.

“[An intent4]provides a facility for performing late runtime bind-
ing between the code in different applications. Its most significant
use is in the launching of activities, where it can be thought of
as the glue between activities.”

— Android developers website

Users regularly complain about having to install two applications in order
to use all features of Pocket Code. A desired target is to merge the two apps.
However this is a challenging task. The code bases of Pocket Code and
Pocket Paint are too different to pass a smooth and automatic code merge.
A lot of manual work is necessary to include Pocket Paint into Pocket Code
and not breaking existing functionality. Nevertheless, the Pocket Paint team
already started to work on these tasks with spring 2018.

2 https://play.google.com/store/apps/details?id=org.catrobat.paintroid - accessed on
2018-05-15

3 https://play.google.com/store/apps/details?id=org.catrobat.catroid - accessed on 2018-
05-15

4 https://developer.android.com/reference/android/content/Intent - accessed on 2018-
05-15

30

https://play.google.com/store/apps/details?id=org.catrobat.paintroid
https://play.google.com/store/apps/details?id=org.catrobat.catroid
https://developer.android.com/reference/android/content/Intent

4.1 Problem statement

4.1 Problem statement

The current situation in Catrobat, and Catroid in particular, is the broad
amount of code and complexity of processes. Furthermore despite being a
FOSS project the majority of contributors are students. Thus many of the
students leave the project after a dedicated amount of time. The fact that
hardly anyone is a professional programmer when joining the project, leads
to significant amount of time spent in training. While having implemented
some techniques from Kanban and XP in the past, the current situation gives
room for further improvements. The first two sections deal with Catrobat’s
use of agile development methods in the period from 2010 until 2017. In
Section 4.4 I will show with the aid of statistical data from Jira that the
average ticket age is too high. Additionally the statistics will point out
data that may have been misconfigured or exhibit a failure in Jira’s internal
database. Generally it is very difficult to plan a release based on such old
data. In Section 4.5 a comparison between the current workflow and the
new workflow is made. The new workflow is currently being worked out by
the also newly created PO board. Section 4.5 covers the PO board as well.

4.2 Agile methods in Catrobat (2010-2014)

Back in 2010 when the project was launched, only five contributors were
part of it. Over the years the number of contributors grew and with them
also organizational issues arose (Fellhofer, Harzl, and Slany, 2015). At the
beginning, mostly students from Graz University of Technology participated
in the project. With increasing number of contributors and popularity of
the project, external contributors joined Catrobat. Until 2014 the number of
contributors had grown to an impressive number of 130 people (Fellhofer,
Harzl, and Slany, 2015, p.13). Noteworthy not all members of the project
are developers. Some are specifically responsible for design and usability,
others for marketing. This is quite important as the majority of developers
are not users of Pocket Code. Some problems that Fellhofer, Harzl, and

31

4 Process Introduction into the Catrobat FOSS project

Slany, 2015 describe include documentation and communication channels
which were capable of improvement. Communication was not really an
issue while the project consisted only of students from Graz University of
Technology. However, it became an issue in 2011 when Catrobat applied
to participate in Google Summer of Code (GSoC)5 for the first time. Face
to face conversations were not possible with externals. Google additionally
required the project to have an Internet Relay Chat (IRC) channel, which is
often an essential part in FOSS projects. This was the initial start when the
project management decided to change the overall project infrastructure and
communication practices. In the following subsection a detailed summary
of changes in the Catrobat project will be discussed, that Fellhofer, Harzl,
and Slany, 2015 describe. The changes in infrastructure and communication
include switching from a manual user management to a centralized one,
introduction of new tools for communication and code change tracking and
use of agile methods.

User management - No central user management existed prior to the
projects change initiative. All accounts needed for participating in
the project were created on demand. Additionally, every tool had its
own user management. Some services were used with shared accounts.
With increasing number of participants, the manual user/account man-
agement was not feasible anymore. The missing accountability due
to shared accounts was also a problem. In order to solve these prob-
lems, the management decided to introduce Local Directory Access
Protocol (LDAP). LDAP allows to manage users and access rights in
a central database. Fortunately, almost all tools and services in use
had a build-in LDAP support. GitHub6 and Crowdin7 were the only
exceptions.

Communication - As mentioned previously face to face communication was
practiced in the beginning of the project. The fact that the project is
allowed to use a dedicated room at the university, supported the face to

5 A global program focused on bringing more student developers into Open Source
software development - https://summerofcode.withgoogle.com/

6 An online version control system and hosting service - https://github.com/
7 An online collaborative translation service - https://crowdin.com/

32

https://summerofcode.withgoogle.com/
https://github.com/
https://crowdin.com/

4.2 Agile methods in Catrobat (2010-2014)

face communication approach. Members meet, discuss and code in that
dedicated room. However, with increasing number of members, soon
the room was too small for the whole team. The initial solution was
to use Instant Messaging. Skype8 was the tool of choice. Nevertheless,
Skype came with several drawbacks. First a lot of members who joined
the group chat were passive users. Another problem was that new
members needed an invitation to join the group. Furthermore the
main language used in the group chat was German. Non-German
speaking contributors had a clear disadvantage, as they could not
follow the conversations. Therefore IRC channels were introduced,
with the promising attempt to improve overall communication. The
Skype chat was terminated and English was compulsory to be used in
IRC. Additionally, an IRC bouncer was installed to keep the history of
messages. Users could read back a conversation until the last log-out
session. However, IRC was not as successful as initially expected. One
reason was that it was deemed as old fashioned by many members,
especially students from Graz University of Technology. Being an
almost 30-year-old technology, many of the young students never used
IRC. It was also quite complicated to set it up correctly. Users had to
create a separate account at freenode9. In addition, an authentication
at the project bouncer was necessary. Both services needed different
credentials. After some time however, members got used to IRC.

Agile methods - At an early stage of Catrobat Kanban in combination with
XP and TDD were chosen as agile development methods. Neverthe-
less, there have been some drawbacks. For Kanban the whiteboards
in the project room were used. This became problematic when the
project grew and several sub-teams emerged. Every team needed a
separate Kanban board. The room size soon became too small to serve
every team with a board. Another problem was the issue tracking of
user stories and bug reports. Although GitHub was used as a source
code repository, the bug reporting was scattered to GitHub, the local

8 An instant messaging software - https://www.skype.com/
9 An IRC hosting network - https://freenode.net/

33

https://www.skype.com/
https://freenode.net/

4 Process Introduction into the Catrobat FOSS project

Kanban board and a Google group10. Hence an asynchrony was un-
avoidable. The resolution to the problem was to switch to an online
agile environment. Several software solutions were available, but they
had to meet certain criteria. The most important criteria were LDAP
support and a rights management. For a detailed list of criteria and
tools refer to Fellhofer, Harzl, and Slany, 2015, p.18. Jira in combi-
nation with Confluence11 were chosen, as these tools best met the
criteria. Jira was tested as a pilot during GSoC 2013. The trial period
revealed useful information for customization of the workflow. After
the successful pilot it was decided to roll out Jira to the whole project.
Confluence was introduced at a later stage. Reasons are given below.

Documentation management - The documentation was incomplete. At the
beginning of the project with five people a lot of decisions were com-
municated orally. With increasing project size and increasing number
of members documentation became essential. The problem of differ-
ent communication channels remained. Documents were distributed
through: Google documents, Dropbox12 and a complex wiki13 system.
Another problem was a missing central user and document manage-
ment. When members left the project, the document ownership was
not transferred yielding inclomplete information. Therefore, a central
content collaboration management system with customizable access
rights was needed. As mentioned previously Confluence was cho-
sen as a solution. The focus of the new system was laid on simple
application.

10 https://groups.google.com/forum/#!forum/catrobat
11 Content collaboration software by Atlassian https://www.atlassian.com/software/confluence
12 An online file hosting service - https://dropbox.com
13 A website on which users collaboratively modify content and structure directly from the

web browser (definition from Wikipedia)

34

https://groups.google.com/forum/#!forum/catrobat
https://www.atlassian.com/software/confluence
https://dropbox.com
https://en.wikipedia.org/wiki/Wiki

4.3 Agile methods in Catrobat (2014-2017)

4.3 Agile methods in Catrobat (2014-2017)

In summer of 2013 I joined Catrobat. Several teams were up to choose from,
where I decided to join the Android team. This was and still is the largest
team in Catrobat. While the Android team is actually split into several
sub teams, the other development teams are not. Moreover the Android
development is devided into Pocket Code and Pocket Paint, as mentioned
earlier. Pocket Code has had a lot of sub teams of which some have been
merged completely. A portion of sub teams are discontinued as development
stopped. Table 4.1 shows all sub teams and their current status.

Sub-team Status
Drone merged

Livewallpaper discontinued
Lego mindstorms (NXT) merged

Albert robot discontinued
Physics merged
Arduino merged

Musicdroid in development
Virtual gamepad discontinued

Chromecast merged
NFC (Near FIeld Communication) merged

Sony Xperia Play discontinued
Tutorial game discontinued

Catroid 3d discontinued
Android application package (APK) generator in development

Rasperino merged
Scratch2Catrobat in development

Phiro robot merged
Catblocks in development

No One Left Behind (NOLB) merged

Table 4.1: List of sub teams and their status

35

4 Process Introduction into the Catrobat FOSS project

While the Android version of Pocket Code and Pocket Paint have apps in the
Google Play Store since 2013, the iOS version is currently in development.
The Windows Phone team has been disbanded due to discontinuation of
the Windows Phone operating system by Microsoft14. The HTML5 team is
developing a player for the web browser, which is integrated into Pocket
Code’s sharing website15. The player can load some programs for a tryout in
the browser. Unfortunately programs that use the sensors of a smartphone
cannot be simulated in the browser. The sharing website is a central part
of Pocket Code. Pocket Code would not be as successful as it is without
the sharing website. Users of Pocket Code can download new programs,
remix them and upload their own creations to the sharing website. This is
one reason why the contribution of the web team is important. The web
team is responsible for developing and maintaining all functionality around
the sharing website. Users have to create an account in order to upload
own programs. The download of programs however is available without
any registration or account. Registration for a new account requires a user
name, an email address and a password. Alternatively users can register an
account via Facebook or Google Plus. Details about third party registration
can be found in Jaindl, 2016’s work. Development in Catrobat follows the
principle of Test Driven Development (TDD). TDD prescribes that first a test
has to be written for new code functionality. Logically this test fails on the
first run, as no code is available that meets the test criteria. The developer
then implements the new code. In the subsequent test-run the previously
developed test-case should pass. To use TDD in practice, the project uses a
Jenkins16 server for Continuous Integration and Continuous Delivery. The
web and Jenkins teams are part of the infrastructure in Catrobat. Developers
can trigger complete test-runs or single test-cases on the Jenkins server.
While a complete test-run can take up to 40 minutes, a single test-run
is finished in a couple of minutes. Furthermore automatic test-runs are
performed regularly on Jenkins. Finally the Useability (UX) and Design (UI)

14 https://redmondmag.com/blogs/the-schwartz-report/2017/10/no-more-windows-
phone.aspx - accessed on 2018-05-15

15 https://share.catrob.at
16 https://jenkins.catrob.at

36

https://redmondmag.com/blogs/the-schwartz-report/2017/10/no-more-windows-phone.aspx
https://redmondmag.com/blogs/the-schwartz-report/2017/10/no-more-windows-phone.aspx
https://share.catrob.at
https://jenkins.catrob.at

4.3 Agile methods in Catrobat (2014-2017)

team round up Catrobat’s team constellation. They provide other teams with
mockups for new icons, colors and overall design. Another important task
are field tests with teenagers in schools, which result in valuable feedback for
further development. This is very critical, as the developers may not always
be users of Pocket Code. Mockus, Fielding, and Herbsleb, 2002’s hypothesis
6 in Section 2 is hardly met in Catrobat’s case. Therefore the feedback the
development team receives from field studies is quite essential.

I started as as novice in Android programming. The biggest advantage at
that time were the people already working in the project. Many experienced
developers were active and helped to gain knowledge of the overall system.
At that time the project used different tools and methods than today. Pair
Programming, one of XP’s principles, was used commonly. Therefore a
senior developer programmed with a beginner on simple tasks. GitHub was
a key part around code management. It served as the code repository as well
as a bug and issue tracker. With increasing number of project members and
sub-teams GitHub soon became unsuited as a tool. Planning a project was
very limited due to the lack of an electronic Scrum or Kanban board. The
only tools GitHub provided at that time were labels and milestones. These
are very limited tools when things like release plans, cross team organization
or a certain workflow need to be realized. This lack of functionality within
GitHub led to a non ideal situation. All planning and decision making
was being made offline and analog. Every team had their own Kanban
boards in form of whiteboards in the project’s room. For a new release
a Planning Game was held. In this process new work tickets have been
created, as well as a review of existing ones. However in order to enable
contributors to work on tickets outside of the project room, an electronic
solution was needed. Therefore all tickets were recreated at GitHub. This
was not only double work, but also led to asynchrony between the offline
and online Backlog. As details regarding a ticket often appear during the
development phase, the result was that adjustments were often done only
at GitHub. A lot of Planning Game work thereby became obsolete. The
majority of developers solely regarded on information that was on GitHub.
Another non ideal situation was the rights management for the repository
at GitHub. Every developer had write access. Furthermore new developers

37

4 Process Introduction into the Catrobat FOSS project

and contributors needed to be added manually to the repository. This
circumstance was not a problem with GitHub itself, but rather with the
organization of the Catrobat project. Like described in section 4.2 at the
beginning only a handful developers were part of the project. Giving all of
them write access was an obvious decision. As the project’s contributor size
grew however, the rights management had been unaffected. Usually FOSS
projects have a different workflow, especially when distributed, non core
developers, contribute code. The majority of FOSS projects (at GitHub) uses
a forking workflow. Therefore a repository is forked (a copy is made) and
contributions back to the original repository are made via pull requests. This
workflow has two advantages. First, contributors do not need write access
to the original repository. Hence possible damage by unskilled developers is
avoided. Second, if the original repository is abandoned or discontinued by
the owner, the fork can still exist17. A good example is Veracrypt18, a fork
of the popular Truecrypt encryption software. Truecrypt was Open Source
software, but the developers decided to discontinue the project for unknown
reasons. The atypical Git19 workflow in Catrobat compared to other FOSS
projects did not state a problem until August 2014. At that time the Catroid
team and the code base reached a critical size. In order to streamline the
commit habits of developers, commit guidelines had been introduced. One
requirement was that commits had to be kept to an absolute minimum,
ideally only one commit. However this is rather unlikely to happen in
real development processes. Therefore developers had to merge all their
commits to a single one. An additional requirement was to preserve the
local and remote commit history. Git being a very powerful tool, offers such
an operation, which is called rebase. Technically it represents a rewrite of
Git’s history. Git creates a hash value for every command (commit, push,
checkout, ...) and keeps track of every change that was made. However in
the meantime changes in the main branch and other branches most likely
already happened. If a developer tries to push a rebased history, Git would
not allow the command to succeed. It provides a protective measure to avoid

17 Assuming the license of the project allows it
18 https://www.veracrypt.fr/en/Home.html
19 Git is a a decentralized versioning system

38

https://www.veracrypt.fr/en/Home.html

4.3 Agile methods in Catrobat (2014-2017)

conflicts with other developers that are working on the same repository.
However a developer can force the push command. Now the force push
command can damage quite a lot, depending on the Git configuration and
the individual situation it is used in. Prior to Git version 2.020 the default
behavior was matching. That means that all local branches that match the
same name at the remote server, will be pushed. One developer who was
working on an issue had exactly this old default Git configuration. A rebased
branch needed to be force pushed to the remote repository. Unfortunately
that developer had checked out the master branch, which was not up to date
with the remote origin master. The result was a broken master branch of the
Catroid project. Not only was the work and Git history of two days gone, but
also the contributions of sub-teams of Catroid. Weeks were needed to recover
from this incident and to repair the repository. This was the tipping point
when the Catrobat management decided to switch to a forking workflow in
order to prevent similar incidents in the future.

Another problem that came up were feature branches (sub projects of
Catroid) that were merged back to the main development branch of Catroid
(see Table 4.1 for a list of all merged sub project). The corresponding pull
request included several thousand lines of code. For a reviewer this may
be challenging. As such the pull requests were accepted on behalf of the
sub teams confirmations that it is tested thoroughly. Consequently some
incompatibilities with core functionality arose sometimes. Reasons are hard
to identify, as feature branches exist for a long time beside the main branch.
Often the main branch is further developed (by number of commits). Resync-
ing feature branches with the main branch can be very difficult, sometimes
even impossible. Similar to feature branches GSoC development often comes
as a single pull request. Winkelbauer, 2016, p.85 describes such a ticket (CAT-
1717) that resulted in eight follow up tickets to fix issues in CAT-1717.

20 https://git-scm.com/docs/git-config#git-config-pushdefault

39

https://git-scm.com/docs/git-config#git-config-pushdefault

4 Process Introduction into the Catrobat FOSS project

4.4 Explorative analysis of tickets with Jira

In this section an analysis of statistical data retrieved from the Jira system
is conducted. The goal of the analysis is to recognize bottlenecks and give
possible advice to improve the situation. A time frame of 180 days (6
months), beginning at 30th of October 2017, is taken into consideration for
the analysis. In some cases a longer time frame of 1825 days (5 years) is
used to illustrate a long term trend of unresolved tickets. Data with a time
frame of 180 days are grouped weekly and data with a time frame of 1825

days are grouped monthly. All graphical images are generated out of the
Jira system using Jira plugins.

Figure 4.1: Average age of unresolved issues

The snapshot (accessed on 28.04.2018) takes into account all tickets available
in Jira that have no resolution status. This means a ticket has not reached the

40

4.4 Explorative analysis of tickets with Jira

Merged state of the Catrobat workflow. Figure 4.1 shows the average age of
unresolved issues is over 400 days for the period of 30th of October 2017 until
28th of April 2018. Apart from a single drop at the beginning of December
2017, Figure 4.1 displays an evident increase in the average of unresolved
tickets. In order to illustrate the general development a visualization of
unresolved tickets over the last five years has been made and can be seen in
Figure 4.2.

Figure 4.2: Average age of unresolved issues over 5 years

As Figure 4.2 clearly outlines, the average age of unresolved tickets has
grown constantly since 2013, except some decreases in several months. One
reason for the increase is that very old tickets remain in the Issues pool,
although they have a creation date several years ago. For the calculation of
the average resolution age of tickets the whole lifetime from creation date
to resolution date is counted. The current prioritization of tickets is done
into trivial, minor, major, critical and blocker. The creation date of tickets is
not taken into account in the prioritization process resulting in old tickets
remaining in the Issues pool. Therefore the average age of unresolved tickets

41

4 Process Introduction into the Catrobat FOSS project

increases, but does not represent the real resolution time of tickets. In
contrast to Figure 4.1, Figure 4.3 shows the average age of resolved issues
for a given period. Figure 4.3 has higher amounts in some cases compared

Figure 4.3: Resolution time of resolved issues

to Figure 4.1. However the data has to be examined with caution. While
data in Figure 4.1 is increasing over time, Figure 4.3 depends highly on
the working time of developers. The week of December 29th and March
14th for instance show no data. This may indicate that no tickets have been
resolved in that time frame. Considering that the majority of developers are
students, this seems plausible. The time frame falls into Christmas holidays
and semester holidays respectively. The high valued average mirrors very
old, often several years, tickets. Moreover the circumstance that 67% of
issues is still in the Issues pool increases the average age of unresolved issues
(see Figure 4.4).

42

4.4 Explorative analysis of tickets with Jira

Figure 4.4: Issue statistics of Catroid

Figure 4.5 shows the total amount of issues in project Catroid. Column one
lists the issue types. In total there are six different types. A bug is a flaw in
the code that needs to be corrected, like a function that calculates wrong
results. A sub-bug represents a similar flaw like it’s parent bug, but with
minor differences. In order to keep the problem description of a bug ticket
compact, sub-bug tickets are helpful to split the work of larger bug issue
tickets. The issue type Epic represent a major change that needs to be split
into several smaller tickets. Epics are used to plan and structure big changes
by visualizing them in the workflow as such. A Story is a special kind of
issue type. It represents a customer or user need, thus it can be called a
system requirement. Stories, often called user stories, are the smallest unit
of work in agile frameworks. User stories usually do not contain details
about how the desired requirements shall be accomplished. Finally issue
types task and sub-task represent work items that need to be done. The
type sub-task is not necessarily a child node of a task. In Catrobat’s case a
sub-task is mostly part of an epic ticket. Column 2 of Figure 4.5 shows all

43

4 Process Introduction into the Catrobat FOSS project

Figure 4.5: Issue types grouped by resolution

unresolved issues. Out of 457 unresolved issues 261 are older than one year
(see Figure 4.6). This is 57,11%. Moreover a significant amount (67%) of the
261 issues is still in the Issues pool, which can be seen in Figure 4.6.

When examining the unresolved tickets some irregularities come to light.
See Figure 4.4 for details. 11 tickets out of the 457 happen to be Merged.
Thus their status should not be unresolved, but rather resolved. Another 4

tickets have been remaining in state UX Rejected and yet another 19 tickets
in UX Done. These tickets are in fact unresolved, but were never moved back
to the Backlog. This is a drawback of the old workflow (see Figure 4.9). All
UX related tickets are handled in a separate Kanban board in Jira. This can
lead to “forgotten” tickets, which increases the total amount of unresolved
tickets. Another problem is given by tickets with the state Rejected, which are
also listed as unresolved. There are a total of 18 tickets with that state. The
correct state should be Rejected with resolution Won’t fix, as seen in Figure 4.5
column 4. In conclusion the correct amount of unresolved tickets would be
428 [457 - 11(Merged) - 18(Rejected)]. Column 3 of Figure 4.5 shows tickets
that have been fixed. The resolution of fixed tickets is Merged. Column 5

shows tickets that have been classified as duplicates. Out of 101 tickets with

44

4.4 Explorative analysis of tickets with Jira

Figure 4.6: Issues older than 1 year

the resolution Duplicate only 59 have a status Duplicate as well. The other 42

tickets have been wrongly assigned the status Merged. This should not be
possible according to the current workflow, which is described in section
4.5. Furthermore the 42 tickets have a value set for field Fix version21, which
may be the reason for the status to be Merged. This may indicate either
a failure in the database system of Jira or a manual change that led to a
distortion. Column 6 is the last resolution state shown in Figure 4.5. First of
all Cannot reproduce is neither a resolution nor a status that is available in
the current workflow. Moreover all 22 tickets have a state Merged. Thus the
correct resolution should be Fixed. Nevertheless, when examining the tickets
however, only two tickets have a commit on GitHub (which were declined).
All other tickets have no commit that is recognized by Jira. These facts yield
the assumption that the resolution (Cannot reproduce) is indeed correct,

21 Example ticket - https://jira.catrob.at/browse/CAT-1479 - accessed on 2018-05-15

45

https://jira.catrob.at/browse/CAT-1479

4 Process Introduction into the Catrobat FOSS project

but the status may be wrong. The reason for the wrong status however
can not be verified from existing data. Finally column 7 of Figure 4.5 list
the total amount of tickets for each issue type, as well as the accumulated
total of all tickets in the project. Figure 4.5 shows furthermore that a total
of 1323 out of 2665 tickets are bugs, which equals 49,64%. If sub-bugs are
taken into account as well, the total accumulated number of bugs rises to
1587 or 59,55%. This is a relatively large percentage, which may lead to an
assumption that the code base needs to be strengthened.

Another fact that data from Jira shows is that certain tickets have been
worked on even when they never left the Issues pool. Table 4.2 shows a list
of all tickets that have a git commit, which has been merged into the main
development branch. Similar incidents should be avoided. When following
a given workflow with no exceptions such a situation would not come up.

CAT-2656

CAT-2640

CAT-2630

CAT-2553

CAT-2525

CAT-2494

CAT-2491

CAT-2475

CAT-2400

CAT-1274

Table 4.2: List of tickets still in Issues pool that have been worked on and merged into
develop branch

The majority of distributed FOSS projects uses mailing lists for communica-
tion. The mailing lists are also used as a discussion platform for work tickets
or patches of code that developers share. In Catrobat however, communi-
cation is often done face to face in the project room or in corresponding
Slack22 channels. Catrobat uses Slack as a replacement for IRC since 2017.

22 A cloud based collaboration tool - https://slack.com/

46

https://slack.com/

4.4 Explorative analysis of tickets with Jira

Only in rare cases a discussion about a specific ticket is done inside of Jira.
Figure 4.7 shows the correlation between days open, number of comments,
and participants of tickets in Jira. The chart in Figure 4.7 displays the first

Figure 4.7: Comment activity of tickets in Jira

200 tickets of project Catroid for a time frame of twelve weeks. It allows
a general statement about all tickets. Every bubble represents one ticket
within Jira. The size of the bubbles indicates the number of participants
involved in this ticket. Participants can interact via the commenting function
in Jira. Therefore the x-axis of Figure 4.7 displays the amount of comments.
The majority of tickets has no comments at all and therefore only one par-
ticipant, the creator (also called reporter) of the ticket. A smaller fraction of
tickets has some comments (1-6). Only very few tickets have more than six
comments. The big red bubble in the upper right corner represents a ticket
that has recently been commented a lot. On the y-axis of Figure 4.7 the
number of elapsed days a ticket has been opened is shown. The increasing

47

4 Process Introduction into the Catrobat FOSS project

trend shown by Figures 4.1 and 4.2 appears again in Figure 4.7: A significant
amount of tickets is very old. Commenting is one way developers can inter-
act with tickets and provide feedback to others. Another way developers
can support a ticket is by voting for it. The intention is that tickets with
more votes are more likely to be scheduled for the next release by the PO.
Unfortunately the voting feature is less used than comments in Jira, which
can be seen in Figure 4.8. The size of the bubbles indicate the number of

Figure 4.8: Voting activity of tickets in Jira

votes per ticket. Only 2 out of 200 tickets in the time frame considered have
a vote (1 in both cases).

48

4.5 Improvement process

4.5 Improvement process

This section describes possible improvements to the presented issues stated
in sections 4.2, 4.3 and 4.4. Some of these solutions are already being
executed. Others are still in development.

4.5.1 Workflow

Figure 4.9 displays the current Catrobat workflow in Jira. Currently every
team except for the web team uses the old/current workflow. The web team
has already adapted the new workflow. It is planned that all teams switch
to the new workflow, but since it is still in refinement it would be infeasible
to introduce it to a larger team like Catroid. Catroid is currently under-
taking major changes. Besides refactoring a large portion of the code base,
the Catroid team is participating in GSoC. The current workflow appears
overloaded when compared to the new workflow in Figure 4.10. This is
confirmed by examining the different states. UX related states (UX Back-
log, In Development, UX Rejected, UX Done) are part of the current workflow.
However the UX team uses a separate Kanban board. This can lead to tickets
that are not transferred back to the Backlog, like discussed previously. The
new workflow reduces the UX related states to a single one. Furthermore
only one Kanban board is now used. Another redundant state in the current
workflow is Duplicate. The resolution of a duplicated ticket is the same
as for Rejected. Therefore the states can be reduced to Rejected. It is still
possible to mention that a ticket was rejected because it was a duplicate in
the comment section of a ticket. Yet another two states are not present in
the new workflow, namely Ready for Code review and Ready for UX review.
These are intermediate states. The PO board decided that there is no need
to have a representation of these states in the new workflow. Nevertheless
a new state is introduced in the new workflow: PO review. This is the final
state before a ticket can be merged (Ready for Merge is the equivalent in
the current workflow). The PO board can evaluate if the tickets meets all
criteria to be closed or needs changes. In the case that changes are necessary,

49

4 Process Introduction into the Catrobat FOSS project

the ticket is sent back to development. The PO review can be compared
to Sprint review meetings in Scrum. Another change in the new workflow
are less transitions between the states. First the transitions of not existing
states are gone. Second in the new workflow back transitions have only been
implemented with added value like transitions from Issues pool to Backlog
and vice versa. Other transitions were removed like Rejected to Issues pool
(when a ticket is rejected there is usually no need to reopen it) and Merged
to Issues pool (same as for rejected). If for some reason a ticket needs to
be reopened, then a new ticket referencing to the old can be made. This
prevents possible overload in the workflow.

50

4.5 Improvement process

Figure 4.9: Old Catrobat workflow
51

4 Process Introduction into the Catrobat FOSS project

Figure 4.10: New Catrobat workflow

52

4.5 Improvement process

4.5.2 Product Owner board

The Product Owner (PO) board was created out of necessity for general
management related purposes of the Catrobat project. Members include
Professor Slany amongst three others. The idea of the board is to improve
communication project wide, due to a weakness in communication between
different teams. Another reason a PO board is necessary is the size Catrobat
has grown to. While development and management decisions are becoming
more team independent, a central steering board is needed. Due to the
fact that team managers (coordinators) are in most cases students, it makes
sense to have a general management group. In section 4.4 several aspects
were shown that indicate a superior number of tickets is causing slow
throughput of development. In addition many tickets do not have a proper
problem description or get created without analyzing existing tickets, which
causes duplicates. To improve the situation the PO board is meant to review
tickets that are planned for development and reject others. In particular a
prioritization is planned to be established. Unlike the current prioritization
like described in section 4.4 the PO board intends to prioritize tickets with
the DEEP (see Cohn, 2009; Pichler, 2010) approach. Furthermore the PO
board is also responsible for verifying if a ticket has been solved as intended.
It represents the final step before a ticket is merged and therefore closed
(see also Figure 4.10). However this circumstance could lead to a bottleneck,
as members of the PO board only have limited time. A possible solution
could be to involve experienced senior members of the project in the PO
review state of the workflow. The reporting tools in Jira can help the PO
board in decision making. The current situation produces only limited
reports due to missing requirements. In order to improve the situation two
steps are needed as basic prerequisites. At first an estimation of tickets
would be helpful to enable forecast reports in Jira. Second a ticket cleanup
is unavoidable. Leopold and Kaltenecker, 2013 suggest to regularly clean
the Backlog. As an example they suggest to discard all tickets older than
six months that have not been pulled for work. In the case of Catroid six
months would be a too short time frame. A reasonable time frame would
be one or one and a half year. This would result in 180 tickets for a one year

53

4 Process Introduction into the Catrobat FOSS project

period and 252 tickets for one and a half year. A more radical, but often
more efficient way is to discard all existing tickets and start with a fresh
ticket pool. Moreover the PO board could consider to hold retrospective
meetings with the development team. Retrospective meetings take place
soon after a release and before the next planning meeting. Retrospectives
are an excellent opportunity to review what went well and which parts
did not succeed as planned. Thereby the team gets more experienced in
estimating and delivering the planned release cycles. Furthermore the PO
board also learns valuable information about the team’s performance. Thus
a more accurate future planning is possible.

4.5.3 Work in Progress limits

A Work in Progress (WIP) limit is very effective way to reveal bottlenecks in
a workflow. Anderson, 2010, p.115 states it would be a mistake not to have
WIP limits. In simpler words a WIP limit serves to restrict the concurrent
work that can be done in a queue. Limiting WIP has also positive side
effects. Developers are more focused if they have to do only one job at a
time. When working on multiple tasks at the same time there is always
switching cost, which increases the throughput time. A typical limit is the
amount of developers that are working on the project. Though development
teams that never worked with WIP limits should be granted a higher limit
of two or three per developer. The Catroid core team currently consists of 20

members. This would result in a WIP limit of 20, if the usual limit of one is
assigned. Considering that the Catroid team is unfamiliar wit WIP limits, the
actual limit would be even higher. Therefore a split in the responsibilities
may be reasonable. Considering Kent Beck’s advice not to use XP with
teams bigger than ten people (Beck, 1999), the team structure in Catroid
would need a revision. A possible team constellation could be to have two
teams with ten members each. One team could be focused on fixing bugs
and implementing new functionality. The other team could refactor code
and tests. After a predefined time frame the teams swap roles. However any
improvement process should always have the goal to support developers.

54

4.5 Improvement process

Hence an introduction of WIP limits into a team that never worked with
comparable constraints has to be carefully planned. Developers need to
be convinced that these techniques can improve their work as well as the
overall success of a project. Concurrently the management needs to be aware
that the development team will need some time to incorporate the new
techniques. Furthermore the team coordinator would have the task to keep
the team motivated in In the short run WIP limits could slow down a project
at first. Though in the long run a project most likely benefits from WIP
limits by improving the throughput rate. When the throughput is improved
the lead time is automatically improved as well. This can be proven by
Little’s law. Little’s law is based on the queueing theory, a mathematical
sub-field of probability theory. Hence the average number of items (tickets)
in a queueing system is denoted as L. L is depends on the average number
of tickets arriving into the system (λ) and the average time (w) a ticket is
unresolved. This is expressed in Little’s law formula:

L = λ · w (4.1)

Equation (4.1) can be adapted slightly to match Kanban’s terms. Denoting L
as WIP, λ as the throughput rate (TR) and w as the lead time (LT) yields to
the expression:

WIP = TR · LT (4.2)

Transforming Equation (4.2) yields the following representation for the
average lead time:

LT =
WIP
TR

(4.3)

A project manager can easily calculate the lead time with Equation (4.3).
Furthermore it can be proven that the lead time increases when higher WIP
limits are chosen. Anderson, 2010, p.28 draws the same conclusion in his
analysis of two teams inside the Motorola company. To illustrate this, the
following example is chosen: Assuming a WIP value of 4 and an average TR
of 2 leads to a LT of 2 by applying Equation (4.3). Increasing the WIP to 8,
LT is increased to 4. In order to shorten the lead time there are two options.
Either the throughput rate is increased or the WIP is decreased. Most
projects tend to increase the throughput rate by hiring more developers,

55

4 Process Introduction into the Catrobat FOSS project

using additional tools or requiring team members to work overtime. The
fact that most of these actions fail can be explained with Brook’s law:

“Adding manpower to a late software project makes it later.”
— Jr., 1995, p.14

The above example illustrates that WIP limits can help to shorten the lead
time of a project. However in software development unpredictable things
can occur that require to either exceed the WIP limits or reconsider them.
Both options are allowed in Kanban, but should not be the rule. Applying
WIP limits to Catrobat in general and Catroid specifically needs certain
requirements. First a throughput rate needs to be calculated. This however
is not feasible with current data in Jira, as the average age of tickets is too
high. Furthermore no real planning of releases takes place, which leads to
a random ticket processing. The PO board should therefore plan a release
together with the development team, including estimates for tickets. It is
important that all stakeholders stick to a given process in order to get
useful results and be able to calculate the throughput rate. The second
requirement is to approximate a possible WIP limits by taking into account
the amount of developers available and an approximate lead time from
previous releases. With these components several small release cycles can
be tested. The results can be taken into account for establishing real WIP
limits for the development team.

56

4.5 Improvement process

4.5.4 Improvement summary

As described in Section 4.2 the early stages of the Catrobat project heavily
used some XP techniques. In particular this included Pair Programming,
Planning Games, Continuous Integration and Testing. By the time the project
gained growth, some of these techniques were pushed into the background.
As a consequence new problems occurred as described in Section 4.4. To
conquer the problems a re-introduction of XP techniques may be effective.
Especially the use of Pair Programming and Planning Games is essential to
gain success. In the special case of Catrobat being a FOSS with a majority
of students as contributors the following suggestion may be fruitful. By
introducing a Code Day, developers could actively learn and practice Pair
Programming. For further advise and examples how to introduce Pair
Programming into a project reference is made to Williams and Kessler, 2002.
In the case of Planning Games it is important to stick to the already made
decisions made in it. Otherwise a Planning Game exhibits limited success.
Another important task is to re-invent estimates for tickets. This is actually
a part of the Planning Game. The advantage gained by this process is the
ability to generate forecast reports in Jira. Finally, retrospective meetings
offer the possibility to review the work and enable a more accurate future
planning process.

57

5 Conclusion

In section 4 a history of Catrobat’s development methods has been con-
ducted. The historical reappraisal shows how the project evolved over time
and with it also new challenges arose. At the beginning of the Catrobat
project with a handful of contributors management was not an issue. With
growing number of contributors and popularity of the project challenges
appeared. One of the main challenges was user management. Therefore
Catrobat’s management decided to introduce a more effective way to handle
user management. LDAP proved to be right choice for this requirement.
However the use of electronic tools proved not always to be the best solution,
like the use of IRC. Communication is generally a challenge in a large dis-
tributed environment. Important decisions need to be documented properly
in order to ascertain basis of decision-making in the future. Section 4.2 and
4.3 describe the use of specific agile methods used in Catrobat. Notably the
Catrobat work within the period from 2010 until 2014 was more agile than
the period from 2014 until 2017. This unexpected conclusion is based on
the present data in Jira. In practice, the acceptance criteria for pull requests
was very straight forward. For new code, tests had to exist and pass the test
suite on Jenkins. In general new code should not break existing tests and
functionality. The pull request were reviewed by several senior members,
who gave valuable feedback and improvement comments on GitHub. The
second important factor is that prior to Jira, Planning Games included an
estimation process. Developers assigned estimates to each ticket in the range
from 1 to 500. The range included the values: 1, 5, 10, 20, 50, 100, 200, 500.
1 represents a simple task like correcting a typo in a string. Values 5 to
50 represent work that a single developer can accomplish by themselves.
Depending on the complexity of the task a higher or lower estimation is

59

5 Conclusion

given. For instance rewriting a core functionality may have a value of 50,
as several code areas need to be modified. Values from 100 onwards are
meant to be split up into smaller tasks. Generally an estimation above 100

represents a major modification of the code base or a summary of different
smaller tasks belonging to the same category. In Jira a ticket of type Epic
would have an estimation between 100 and 500. With the introduction of
Jira many developers were uncertain what estimation value a ticket shall
be assigned. The estimation range was too broad. As a result the estimate
field in Jira became optional to provide. The current situation in Catrobat is
that estimation of tickets is not part of the current workflow. This results
in difficult release planning processes which exacerbate a forecast on the
completion of tickets for future releases. Furthermore the majority of report
functionality within Jira can not be utilized without any estimates. The solu-
tion is to re-introduce estimates into the project. In order to avoid confusion,
the estimation should be worked out with the development teams and the
PO board. A simple estimation model like Kniberg and Skarin, 2010 suggest
using t-shirt sizes may be effective. However it might take several releases in
order for the team to give approximately right estimates. This is aggravated
with fluctuation of team members and availability during the university
semester. The reappraisal furthermore shows that former agile methods like
Pair Programming are not practiced anymore. While Catrobat as a whole
and Catroid in particular is growing, the number of senior members is
limited. Due to the limited contribution time of students, only a handful of
senior members remain who are able to perform code reviews.

In section 4.4 the work in progress and throughput of tickets in Jira were
analyzed. The results can be summarized in an abundance of tickets. More
than 59% of tickets are of type bug or sub-bug. This leads to an assumption
that core functionalities of the code base need a refactoring. A refactoring
of all test cases is currently in process. Furthermore the analysis showed
that 57,11% of all unresolved tickets are older than one year. This explains
the high values of resolution time of tickets. Since the resolution time of a
ticket is measured from creation date, all old tickets influence the average
resolution time. Furthermore Figure 4.4 shows that 67% (305 out of 457)
of currently unresolved tickets are in Issues pool. This means they are not

60

considered for current development. All tickets that are considered for
development are in the Backlog. Another interesting fact that the explorative
analysis showed, are wrong resolution states. There are in sum 29 wrong
unresolved states. 11 have the status Merged and 18 have the status Rejected.
The status Duplicate is only assigned to 59 out of 101 tickets with resolution
Duplicate. Finally 22 tickets that have been classified with a resolution Cannot
reproduce, raises questions how this is possible. There is no resolution or
status Cannot reproduce in the workflow. The irregularities in wrong states
and resolutions may indicate a failure in Jira’s internal database or a manual
change that caused the distortion. Unfortunately no data confirming either
of the assumptions could be found. Another finding of the analysis is that
22 tickets have a status (Cannot reproduce) that is neither available in the
current nor in the new workflow. The fact that 59,55% of all tickets is a bug
or sub-bug, according to Jira’s data, leads to an assumption that the code
base needs to be strengthened. Communication regarding tickets is very
sparse in Catroid, although Jira offers easy to use tools like comments and
votes.

Section 4.5 discusses possible solutions to problems identified in previous
sections. First a comparison of the old, but still in use by most projects,
workflow with the new workflow is made. As the old workflow is basically
used by every team, it will be further called the current workflow. The
current workflow (see Figure 4.9) has several states and transitions that
have been removed compared to the new workflow (see Figure 4.10). The
first change that catches the eye are the missing UX related states. Only
UX review is still available in the new workflow. Considering that all UX
related issues have been handled in a separate Kanban board inside Jira,
the elimination of the UX board is a good thing. Thereby “forgotten” tickets
shall not be possible with the new workflow. Unnecessary transitions were
also removed in order to have a cleaner workflow. After all the workflow
should not hinder a developer. Having less states and transitions helps
achieving exactly that. Noteworthy the new workflow is still in refinement
and therefore only used by the web team.

Subsection 4.5.2 describes the PO board that has been created recently. Due

61

5 Conclusion

to communication and organizational improvement need the PO board will
have the role of a general management unit. The PO board will have a
central role in the new workflow as described earlier. Ticket planning and
reviewing is a core task of the board. Furthermore the PO review status in the
new workflow represents the final stage before a ticket is resolved. However
this stage could possibly lead to a bottleneck. Therefore it is advised that
senior members are involved at this stage. Another finding is that in order
to generate forecast reports in Jira, estimation of tickets would be necessary.
A recommendation regarding tickets abundance is to either purge all tickets
older than a key date (e.g. one year) or start with a fresh ticket pool. The
PO board should further encourage retrospective meetings where valuable
information for future planning can be obtained. Moreover the development
team gains experience estimating release cycles.

In subsection 4.5.3 the advantages of using WIP limits is discussed. Further
simple examples illustrate that WIP can help to optimize the lead time.
Little’s law can be used to mathematically prove that this statement holds.
Establishing the right value for a WIP limit always has to take into account
the project, company or environment for its intended use. If a development
team delivers satisfying results and no sections require improvement then
WIP limits are not necessary. For Catrobat and Catroid in particular WIP
limits would improve the current situation with high probability. However
the current team size and circumstance that no throughput rate can be
calculated make a WIP limit introduction not feasible. Smaller team size or
a separation into two teams with different responsibilities may be a possible
solution. Furthermore several smaller release cycles would be necessary to
gain information about the throughput rate.

62

6 Meta reflection and Future work

Free Open Source Software (FOSS) is enjoying great popularity. Emerged
from the hackers’ culture the success of FOSS really rose exponentially with
Linux. Since the initial release of Linux in 1990 a variety of different prod-
ucts and services based on the Linux operating system emerged. Further
a lot of research has been conducted in the field of FOSS and distributed
teams. Raymond, 1999’s definition of “Linus’ law” was a starting point
from where a lot of today’s methodologies and frameworks followed. No-
tably Scrum Guide’s Scrum, Beck, 1999’s eXtreme Programming (XP) and
Anderson, 2010’s Kanban are agile software development frameworks that
are most widely used. All these frameworks, besides many others, follow
the principles of the Agile Manifesto. Nevertheless research on the field of
distributed teams and their exact functioning is rather small, according to
Bonaccorsi and Rossi, 2003. Moreover research about FOSS in combination
of an educational environment is even smaller. This thesis analyzes agile
project management practices in an educational FOSS project named Catro-
bat. First a historical reappraisal is conducted where practices, methods,
challenges and solutions are discussed. The reappraisal is segmented into
two periods. The first period is from 2010 until 2014 and the second from
2014 until 2017.Concluding from the results of the reappraisal shows that
the period from 2010 until 2014 in some points was more agile than the
ensuing period. A possible explanation is that the Catrobat experienced
a massive growth in the last years. Therefore new requirements and chal-
lenges appeared. The fact that the entire development and management is
based on free contributions is crucial for the project. In the subsection 4.4
an analysis of statistical data from Jira is performed. The main points that
can be taken out from the explorative analysis are as follows:

63

6 Meta reflection and Future work

• There is an abundance of tickets in the system.
• A large portion of tickets is very old.

This leads to an increase in the average age of tickets and thereby an adverse
starting point for planning. Consequently solutions are presented that can
help to improve the current situation and become more agile as a project.

Keeping in mind that Catrobat is founded at an university, run by volunteers
and has no for profit intentions, it is remarkable what the project has
achieved so far. Nevertheless Catrobat faces challenges which will be crucial
for future development. However the fact that volunteers around the world
are willing to help keeps the motivation up.

This thesis analyzed agile practices and frameworks in general, with a
special focus on the Catrobat FOSS project. However a more practical
approach of applying these practices could have been done more profound.
The introduction of WIP limits may have been a good case for research. In
particular a test pilot with a very small team could have been conducted.
The involved stakeholders could have been interviewed for an analysis if
the intended practices make sense. Furthermore the evaluation of Jira tickets
could have been used to review Jira’s configuration for possible failures.

64

6.1 Outlook for the future

6.1 Outlook for the future

As described previously Catrobat is facing challenges. This thesis discussed
some of these challenges and suggests fruitful solutions. The historical
reappraisal showed that techniques from agile methodologies can help the
project, especially principles from XP. Pair Programming and Planning
Games are essential in this case. However it is even more important to keep
information and decisions that are devised from plannings. Catrobat already
uses Confluence as a collaboration and documentation tool. A digitization of
planning and decision making inside Confluence is therefore recommended.
Section 4.5 showed that specific management initiatives and refactoring
processes are already taking place. A result of this thesis is an introduction
of WIP limits as a potential improvement method for Catrobat. A pilot
phase where the feasibility and added value is tested is recommended.
This may represent a possible topic for future research. Further a focus
on automation of technical processes in order to reduce overhead may be
beneficial to the project. In particular the automatic signing and releasing a
finished application into the Google Play store may be an area of application.
Depending on the funding of the Catrobat project it is advised to establish a
real core team of developers. This means that developers work full time and
are paid, like in Mozilla’s case described by Mockus, Fielding, and Herbsleb,
2002. The biggest advantage could be to focus on the development of the
project and to decrease the training time.

65

Bibliography

Abrahamsson, P. et al. (2002). Agile software development methods - Review and
analysis. Tech. rep. 478. VTT PUBLICATIONS. url: http://www.vtt.fi/
inf/pdf/publications/2002/P478.pdf (cit. on p. 10).

Anderson, David J. The J-Curve Effect. Accessed on 2017-10-22. url: https:
//edu.leankanban.com/blog/organizational-maturity-j-curve-

effect (cit. on p. 17).
Anderson, David J. (2010). Kanban: Successful Evolutionary Change for Your

Technology Business. Blue Hole Press. 280 pp. isbn: 978-0-984-52140-1
(cit. on pp. 17, 20, 54, 55, 63).

Apache. The Apache Software Foundation (ASF). Accessed on 2017-10-22. url:
https://www.apache.org/foundation/ (cit. on p. 5).

Armstrong, David J and Paul Cole (2002). “Managing distances and differ-
ences in geographically distributed work groups.” In: Distributed work,
pp. 167–186 (cit. on p. 5).

Beck, Kent (1999). Extreme Programming Explained: Embrace Change. Addison-
Wesley Professional (cit. on pp. 23–25, 54, 63).

Beck, Kent et al. The Agile Manifesto. Accessed on 2017-10-22. url: http:
//agilemanifesto.org/principles.html (cit. on pp. 9–11).

Bonaccorsi, Andrea and Cristina Rossi (2003). “Why Open Source software
can succeed.” In: Research Policy 32.7, pp. 1243–1258. issn: 0048-7333.
doi: 10.1016/s0048-7333(03)00051-9 (cit. on pp. 3, 4, 63).

Catrobat. Catrobat developer site. url: developer.catrobat.org (cit. on p. 29).
Cobb, Charles G. (2011). Making Sense of Agile Project Management. John

Wiley & Sons, Inc. doi: 10.1002/9781118085950.

67

http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf
http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf
https://edu.leankanban.com/blog/organizational-maturity-j-curve-effect
https://edu.leankanban.com/blog/organizational-maturity-j-curve-effect
https://edu.leankanban.com/blog/organizational-maturity-j-curve-effect
https://www.apache.org/foundation/
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
https://doi.org/10.1016/s0048-7333(03)00051-9
developer.catrobat.org
https://doi.org/10.1002/9781118085950

Bibliography

Cohn, Mike (2009). Make the Product Backlog DEEP. Accessed on 2018-05-
09. url: https://www.mountaingoatsoftware.com/blog/make-the-
product-backlog-deep (cit. on pp. 14, 53).

Conaldi, Guido and Alessandro Lomi (2013). “The dual network structure of
organizational problem solving: A case study on open source software
development.” In: Social Networks 35.2. Special Issue on Advances in
Two-mode Social Networks, pp. 237–250. issn: 0378-8733. doi: 10.1016/
j.socnet.2012.12.003.

Crowston, Kevin and James Howison (2006). “Hierarchy and centralization
in free and open source software team communications.” In: Knowledge,
Technology & Policy 18.4, pp. 65–85. issn: 1874-6314. doi: 10 . 1007 /

s12130-006-1004-8 (cit. on pp. 3, 4).
Cutkosky, Mark R., Jay M. Tenenbaum, and Jay Glicksman (1996). “Madefast:

Collaborative Engineering over the Internet.” In: Communications of the
ACM 39.9, pp. 78–87. issn: 0001-0782. doi: 10.1145/234215.234474
(cit. on p. 4).

Epping, Thomas (2011). Kanban für die Softwareentwicklung. Springer Berlin
Heidelberg. isbn: 978-3-642-22594-9. doi: 10.1007/978-3-642-22595-6
(cit. on pp. 17, 20).

Fellhofer, Stephan, Annemarie Harzl, and Wolfgang Slany (2015). “Scaling
and Internationalizing an Agile FOSS Project: Lessons Learned.” In:
Open Source Systems: Adoption and Impact. Ed. by Ernesto Damiani et al.
Cham: Springer International Publishing, pp. 13–22. isbn: 978-3-319-
17837-0. doi: 10.1007/978-3-319-17837-0_2 (cit. on pp. 29, 31, 32,
34).

Fielding, Roy T. (1999). “Shared leadership in the Apache project.” In:
Communications of the ACM 42.4, pp. 42–43. issn: 0001-0782. doi: 10.
1145/299157.299167.

Ghosh, Rishab Aiyer and Vipul Ved Prakash (2000). “The Orbiten free
software survey.” In: First Monday 5.7. doi: 10.5210/fm.v5i7.769 (cit.
on p. 3).

Goldratt, Eliyahu M. and Jeff Cox (1984). The goal a process of ongoing im-
provement. English. Great Barrington, Mass.: North River Press (cit. on
p. 20).

68

https://www.mountaingoatsoftware.com/blog/make-the-product-backlog-deep
https://www.mountaingoatsoftware.com/blog/make-the-product-backlog-deep
https://doi.org/10.1016/j.socnet.2012.12.003
https://doi.org/10.1016/j.socnet.2012.12.003
https://doi.org/10.1007/s12130-006-1004-8
https://doi.org/10.1007/s12130-006-1004-8
https://doi.org/10.1145/234215.234474
https://doi.org/10.1007/978-3-642-22595-6
https://doi.org/10.1007/978-3-319-17837-0_2
https://doi.org/10.1145/299157.299167
https://doi.org/10.1145/299157.299167
https://doi.org/10.5210/fm.v5i7.769

Bibliography

Jaindl, Stefan (2016). “Social media software integration for the symfony
web framework and Android and iOS versions of the catrobat project.”
MA thesis. Graz University of Technology. url: http://diglib.tugraz.
at/download.php?id=5990d20f5c7b6&location=aleph (cit. on p. 36).

Jr., Frederick P. Brooks (1995). The Mythical Man-Month: Essays on Software
Engineering, Anniversary Edition. Addison-Wesley Professional. isbn: 978-
0-201-83595-3. url: http://proquest.techbus.safaribooksonline.de/
book/software-engineering-and-development/project-management/

0201835959 (cit. on p. 56).
Kniberg, Henrik and Mattias Skarin (2010). Kanban and Scrum-making the

most of both. Lulu.com (cit. on p. 60).
Koch, Stefan and Georg Schneider (2002). “Effort, co-operation and co-

ordination in an open source software project: GNOME.” In: Information
Systems Journal 12.1, pp. 27–42 (cit. on p. 3).

Lacey, Mitch (2012). The Scrum Field Guide: Practical Advice for Your First Year.
1st. Addison-Wesley Professional. isbn: 978-0-321-55415-4 (cit. on pp. 12,
14–16).

Ladas, Corey (2009). Scrumban - Essays on Kanban Systems for Lean Software De-
velopment. Raleigh, North Carolina: MODUS COOPERANDI PR. 180 pp.
isbn: 978-0-578-00214-9 (cit. on p. 10).

Layton, Mark C. (2012). Agile Project Management for Dummies. New York,
NY, USA: John Wiley & Sons, Inc. isbn: 978-1-118-02624-3. url: http://
proquest.techbus.safaribooksonline.de/book/software-engineering-

and-development/project-management/9781118235850 (cit. on p. 9).
Leopold, Klaus and Siegfried Kaltenecker (2013). Kanban in der IT. 2nd. Carl

Hanser Verlag. isbn: 978-3-446-43826-2 (cit. on pp. 17, 53).
Mockus, Audris, Roy T Fielding, and James D Herbsleb (2002). “Two case

studies of open source software development: Apache and Mozilla.” In:
ACM Transactions on Software Engineering and Methodology 11.3, pp. 309–
346. issn: 1049-331X. doi: 10.1145/567793.567795 (cit. on pp. 3, 5, 6, 37,
65).

Moon, Jae Yun and Lee Sproull (2000). “Essence of distributed work: The
case of the Linux kernel.” In: First Monday 5.11. issn: 13960466. doi:
10.5210/fm.v5i11.801 (cit. on p. 4).

69

http://diglib.tugraz.at/download.php?id=5990d20f5c7b6&location=aleph
http://diglib.tugraz.at/download.php?id=5990d20f5c7b6&location=aleph
http://proquest.techbus.safaribooksonline.de/book/software-engineering-and-development/project-management/0201835959
http://proquest.techbus.safaribooksonline.de/book/software-engineering-and-development/project-management/0201835959
http://proquest.techbus.safaribooksonline.de/book/software-engineering-and-development/project-management/0201835959
http://proquest.techbus.safaribooksonline.de/book/software-engineering-and-development/project-management/9781118235850
http://proquest.techbus.safaribooksonline.de/book/software-engineering-and-development/project-management/9781118235850
http://proquest.techbus.safaribooksonline.de/book/software-engineering-and-development/project-management/9781118235850
https://doi.org/10.1145/567793.567795
https://doi.org/10.5210/fm.v5i11.801

Bibliography

Pichler, Roman (2010). Agile Product Management with Scrum: Creating Prod-
ucts That Customers Love. 1st. Addison-Wesley Professional. isbn: 978-0-
321-60578-8 (cit. on pp. 14, 53).

Raymond, Eric (1999). “The cathedral and the bazaar.” In: Knowledge, Tech-
nology & Policy 12.3, pp. 23–49. issn: 1874-6314. doi: 10.1007/s12130-
999-1026-0 (cit. on pp. 4, 63).

Royce, Winston W (1987). “Managing the development of large software
systems: concepts and techniques.” In: Proceedings of the 9th international
conference on Software Engineering. IEEE Computer Society Press, pp. 328–
338 (cit. on p. 5).

Schwaber, Ken (1995). “SCRUM Development Process.” In: Proceedings of
the 10th Annual ACM Conference on Object Oriented Programming Systems,
Languages, and Applications (OOPSLA), pp. 117–134 (cit. on p. 12).

Schwaber, Ken (2004). Agile Project Management With Scrum. Redmond, WA,
USA: Microsoft Press. isbn: 0-735-61993-X (cit. on p. 12).

Schwaber, Ken and Jeff Sutherland. Scrum Guide. Accessed on 2017-10-22.
url: http://www.scrumguides.org/docs/scrumguide/v2016/2016-
Scrum-Guide-US.pdf (cit. on pp. 13, 14, 16, 63).

Slany, W. (2012). “A mobile visual programming system for Android smart-
phones and tablets.” In: 2012 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pp. 265–266. doi: 10.1109/VLHCC.
2012.6344546 (cit. on p. 29).

Stallman, Richard M. and Joshua. Gay (2002). Free software, free society :
selected essays of Richard M. Stallman. English. Boston, Mass. : GNU Press,
Free Software Foundation (cit. on p. 26).

Toyota. Toyota Production System. Accessed on 2017-10-22. url: http://www.
toyota-global.com/company/vision_philosophy/toyota_production_

system/just-in-time.html (cit. on p. 17).
Ullman, Ellen (1998). “The dumbing down of programming.” In: 21st Salon

13 (cit. on p. 4).
Viney, David (2005). The intranet portal guide: How to make the business case

for a corporate portal, then successfully deliver. Mercury Web Publishing
(cit. on pp. 18, 19).

70

https://doi.org/10.1007/s12130-999-1026-0
https://doi.org/10.1007/s12130-999-1026-0
http://www.scrumguides.org/docs/scrumguide/v2016/2016-Scrum-Guide-US.pdf
http://www.scrumguides.org/docs/scrumguide/v2016/2016-Scrum-Guide-US.pdf
https://doi.org/10.1109/VLHCC.2012.6344546
https://doi.org/10.1109/VLHCC.2012.6344546
http://www.toyota-global.com/company/vision_philosophy/toyota_production_system/just-in-time.html
http://www.toyota-global.com/company/vision_philosophy/toyota_production_system/just-in-time.html
http://www.toyota-global.com/company/vision_philosophy/toyota_production_system/just-in-time.html

Bibliography

Williams, Laurie and Robert Kessler (2002). Pair programming illuminated.
Addison-Wesley Longman Publishing Co., Inc. 288 pp. isbn: 978-0-201-
74576-4 (cit. on p. 57).

Winkelbauer, Florian (2016). “Tackling software quality problems in a
free and open source software project.” MA thesis. Graz University
of Technology. url: http://diglib.tugraz.at/download.php?id=
5988e7a223fe4&location=aleph (cit. on p. 39).

71

http://diglib.tugraz.at/download.php?id=5988e7a223fe4&location=aleph
http://diglib.tugraz.at/download.php?id=5988e7a223fe4&location=aleph

	Abstract
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Thesis Outline

	Related Work
	Frameworks for Agile Project Management
	The Agile Manifesto
	Scrum
	Structure of Scrum

	Kanban
	Kanban board

	eXtreme Programming
	Free Open Source Software

	Process Introduction into the Catrobat FOSS project
	Problem statement
	Agile methods in Catrobat (2010-2014)
	Agile methods in Catrobat (2014-2017)
	Explorative analysis of tickets with Jira
	Improvement process
	Workflow
	Product Owner board
	Work in Progress limits
	Improvement summary

	Conclusion
	Meta reflection and Future work
	Outlook for the future

	Bibliography

