
Domain-Oriented Masking–
Generically Masked Hardware Implementations

by

Hannes Groß

A PhD Thesis
Presented to the Faculty of Computer Science

in Partial Fulfillment of the Requirements for the
PhD Degree

Assessors

Prof. Stefan Mangard (Graz University of Technology, Austria)
Prof. Lejla Batina (Radboud University, Netherlands)

June 2018

Institute for Applied Information Processing and Communications (IAIK)
Faculty of Computer Science

Graz University of Technology, Austria

Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the sources
used. The text document uploaded to TUGRAZonline is identical to the present
doctoral thesis.

Date Signature

iii

Abstract

An ever-growing number of devices are threatened by low-cost Side-Channel
Analysis (SCA) attacks and therefore require efficient protection mechanisms.
Masking provides a high level of resistance against SCA at an adjustable level of
security. A high level of SCA resistance, however, goes hand in hand with an
increasing demand for chip area and fresh randomness which drastically increases
the overall implementation costs. In this thesis, we investigate efficient ways to
protect security-sensitive hardware implementations against SCA by means of
Boolean masking, and show formal methods to prove the security claims of our
masked hardware implementations.

In the first part of this thesis, we discuss different hardware-based masking
schemes and possible trade-offs to make masking less demanding in terms of
randomness requirements or faster by reducing the latency of the masked cir-
cuits. As basis of our investigation we introduce the so-called Domain-Oriented
Masking (DOM) scheme, which allows for generic protection against SCA at
low randomness requirements compared to other masking schemes. By simply
adjusting its security parameter (d), masked hardware implementations protected
by DOM can be synthesized for arbitrary protection orders without changing
the underlying hardware designs. Regardless of its generic appearance, DOM
uses the minimum number of random shares, which is beneficial for the chip
area costs of the designs, and requires only d(d+ 1)/2 fresh random bits for the
protection of a single-bit finite field multiplication.

On the basis of DOM, we then introduce two variants called Unified Masking
(UMA) and Low-Latency Masking (LOLA). With UMA we show that with a
better control over the signal flow of security-critical data in hardware (by using
more registers), the randomness costs of DOM can be reduced to only around
d(d+ 1)/4 fresh random bits. For this purpose, we use algorithms known from
software-based masking and combine them with the ideas of DOM to lower the
randomness costs even further and to make their algorithms suitable for hardware
designs.

Contrary to UMA, LOLA allows to loosen the control over the data flow
and thus to reduce the number of register stages. Less register stages result
in less latency for the resulting masked hardware designs at the cost of higher
randomness requirements, more data redundancy, and additional circuitry. The
higher randomness costs result from the fact that we allow the number of shares to
grow in our design at every nonlinear operation and perform a randomness-costly

v

vi Abstract

share reduction as late as the randomness constraints allow.

The second part of this thesis investigates the benefits and drawbacks of
the masking schemes from the first part. At first, we compare DOM to other
hardware-based masking schemes by using generic implementations of the Ad-
vanced Encryption Standard (AES) before demonstrating how LOLA can be
used to reduce the latency of the AES S-box from at least five cycles of the DOM
variants to only one or two cycles.

We also participated in the evaluation of the next generation of symmet-
ric ciphers by designing hardware implementations for the so-called CAESAR
competition, which has the goal to find suitable candidates for a portfolio of
so-called Authenticated Encryption (AE) schemes. Besides the introduction
of three unprotected variants of the AE scheme Ascon that were designed to
fulfill the needs to a wide variety of AE applications, we also compare different
masked variants of Ascon for which we compare DOM, UMA, and LOLA designs.
Furthermore, we show optimizations for DOM on the case study of the hash
function Keccak which has become the new Secure Hash Algorithm 3 (SHA3)
standard. We complete this part of the thesis with a protected implementation of
a 32-bit RISC-V processor to demonstrate the versatility of our DOM approach.

Although, masking theoretically provides a high level of resistance against
side-channel analysis, in practice there are many possible pitfalls when masking
schemes are applied, and implementation flaws are easily overlooked. Over the
recent years, the formal verification of masked software implementations has
made substantial progress. In contrast to software implementations, hardware
implementations are inherently susceptible to glitches. Therefore, the same
methods tailored for software implementations are not readily applicable.

In the third part of this thesis, we introduce a method to formally verify the
security of masked hardware implementations that takes glitches into account.
Our approach does not require any intermediate modeling steps of the targeted
implementation. The verification is performed directly on the circuit’s netlist
in the probing model with glitches and covers also higher-order flaws. For this
purpose, a sound but conservative estimation of the Fourier coefficients of each
gate in the netlist is calculated, which characterizes statistical dependence of
the gates on the inputs and thus allows to predict possible leakages. In contrast
to existing practical evaluations, like t-tests, this formal verification approach
makes security statements beyond specific measurement methods, the number of
evaluated leakage traces, and the evaluated devices. Furthermore, flaws detected
by the verifier are automatically localized. We have implemented our method on
the basis of a SAT solver and demonstrate the suitability on a range of correctly
and incorrectly protected circuits of different masking schemes and for different
protection orders. Our approach is efficient enough to prove the security of a full
DOM masked first-order AES S-box, and of the DOM Keccak S-box up to the
third protection order.

“By His hand, we are all fed.
Give us Lord, our daily bread.
Please know that we are truly grateful.
For every cup and every plateful.”

— Texan Mealtime Prayer (TBBT) Acknowledgements

This dissertation is the sum of many scientific and personal contributions which
have formed this thesis, and for which I am very thankful. In the following, I
want to say thank you to all the people without whom this PhD thesis would not
have been possible. Keeping their contributions in mind, I refrain from using the
personal pronoun “I” or any derived form in the remaining parts of this thesis
and instead use “we” to underline that many people have contributed to the
presented work.

I would not have started this five year long journey to receive my PhD without
Thomas Plos and Martin Feldhofer, and therefore would have missed many great
experiences for which I feel very blessed today. Many thanks to both of you.

Dear Stefan, as my advisor you have always encouraged me to reconsider
what seemed to me to be carved in stone. Ever since I presented my work on
threshold implementations of arithmetic logic units and you said: “There must
be a way to do this with less shares...”, my scientific journey has taken a direction
I could have never imagined when I started my PhD. Only we know how much
passion and effort we put into our work on the Domain-Oriented Masking scheme
and how hard we fought to get this work published. Regardless of the tough
headwind we had to overcome, your faith in my work has given me the right
motivation to focus my entire research on masking. I will always be grateful to
you for giving me the time to realign my research topic and for your guidance on
my way to this thesis.

Dear Raphael, you were the best “bunkmate” I could have had, and over
the years you have become a very dear friend to me. Thank you for cheering
me up after bad reviews, for proof-reading many of my papers, watering my
rubber tree while I was on vacation, and thanks for the laughs and rums we shared.

I want to thank all my colleagues from the Secure Systems Group, who have
made my life at the institute more enjoyable with our “little board” meetings
early in the morning, our board game evenings, our “almost weekly” beer rounds,
and at many other occasions. I also want to thank all my colleagues outside the
Secure Systems group with whom I really enjoyed working together: Roderick
Bloem, Rinat Iusupov, Bettina Könighofer, Daniel Slamanig, Johannes Winter,
and my master students Manuel Jelinek and David Schaffenrath.

vii

viii Acknowledgements

Special thanks to the people from Cafe Zapo for providing a family-like lunch
atmosphere, and especially to Raimund, the best cook in Graz (and far beyond)
who has become a very dear friend to me. Your great food has helped me more
than once to get through a rough day.

There are a lot of people outside my work environment who I would like to
thank for their support. Listing them all, along with the things I am thankful for
would be an unmanageable task. So I apologize upfront for not mentioning every-
body personally. Above all, I want to thank my beloved family: My parents who
always supported me in every thinkable way without ever putting any pressure
on me, and who constantly showered me with their unconditional love. My two
brothers who enrich my life and believe in me much more than I ever could. My
grandparents for always being there for me and for being role models in so many
important aspects of life. My in-laws who welcomed me in their family from
the very first day on. All my friends who I very much consider as part of my family.

Finally, I want to thank my beloved wife Angelika, who I feel deserves my
gratitude most of all. Dearest Angelika, ever since the day we met, regardless of
what was going on in my life, I always felt to be the luckiest man to have you in
my life. Thank you so much for cheering me up and supporting me after every
setback, and for providing me with a safe haven where I could forget all worries
and felt that nothing really bad could ever happen in my life, as long as you are
with me. Thank you for sharing so many good times with me, for enjoying the
things that I enjoy most, and for laughing with me over things that nobody else
could ever understand.

I dedicate this thesis to you and my everlasting love for you.

January 2018, Graz

Table of Contents

Affidavit iii

Abstract v

Acknowledgements vii

List of Tables xiii

List of Figures xv

List of Abbreviations xix

Introduction 1

Side-Channel Analysis . 1

Classification . 2

Attack Scenario . 4

Masking as Countermeasure to SCA 6

Thesis Overview . 11

I Generic Masking Schemes 13

1 Domain-Oriented Masking (DOM) 17

1.1 First-Order Secure DOM Multiplier 18

1.2 Higher-Order Secure DOM Multiplier 20

1.3 Summary . 23

2 Unified Masking (UMA) 25

2.1 Randomness Gap in Hardware and Software 25

2.1.1 Barthe et al.’s Algorithm 26

2.1.2 Randomness Bounds and Optimal Solutions 27

2.2 Unified Masked Multiplication in Software 28

2.2.1 Full Description of UMA 29

2.3 UMA in Hardware . 31

ix

x Table of Contents

3 Low-Latency Masking (LOLA) 39
3.1 Compression Skipping . 39
3.2 Avoiding Collisions . 40
3.3 Resolving Gate Collisions . 41
3.4 A Low-Latency Ascon S-box . 42
3.5 A Low-Latency Masked AES S-box 44

4 Conclusions 49

II Masked Implementations 51

5 Advanced Encryption Standard (AES) 55
5.1 DOM-Protected AES . 55

5.1.1 DOM Design of the AES S-box 56
5.1.2 Implementation Results 59

5.2 LOLA-Protected AES S-box . 61
5.2.1 Comparison with DOM and Related Work 62

6 Ascon—Authenticated Encryption 65
6.1 Overview on Ascon . 65

6.1.1 Mode of Operation . 66
6.1.2 Permutation . 66
6.1.3 Hardware Security Properties of Ascon 67

6.2 Unprotected Hardware Designs 67
6.2.1 High Throughput Design (Ascon-fast) 67
6.2.2 64-bit Datapath Design (Ascon-64-bit) 68
6.2.3 Low Area Design (Ascon-x-low-area) 69
6.2.4 Results . 70

6.3 DOM- and UMA-Protected Implementations 72
6.3.1 Implementation Results 74
6.3.2 Discussion on the Randomness Costs 76

6.4 LOLA-Protected Ascon Implementations 78

7 Keccak Secure Hash Algorithm (SHA3) 81
7.1 DOM Optimizations . 82
7.2 Implementation . 84
7.3 Results . 87

8 RISC-V Processor 93
8.1 Protected Implementation of V-scale 94

8.1.1 Additional Pipeline Stage 95
8.1.2 Unprotected Operations 96
8.1.3 Protected Arithmetic-Logic Unit (ALU) 96

8.2 Hardware Results . 100

9 Conclusions 103

Table of Contents xi

III Verification of Masking 105

10 Empirical Side-Channel Evaluation 109

11 Formal Verification of Masking 113
11.1 Preliminaries . 115
11.2 Masking and the Probing Model 116
11.3 Verification for Stable Signals . 119

11.3.1 Labeling . 120
11.3.2 Propagation rules . 120
11.3.3 Verification . 122

11.4 Modeling Transient Timing Effects 123
11.4.1 Glitches . 123
11.4.2 Formalization of Probing Security with Glitches 124
11.4.3 Modeling Information from Multiple Clock Cycles 125

11.5 Extension for Transient Signals 126

12 Practical Formal Verification 129
12.1 Formal Verification of UMA Circuits 129
12.2 Formal Verification of LOLA Circuits 130
12.3 Taint checking of the LOLA AES S-box 130

13 Conclusions 133

14 Summary and Outlook 135

Bibliography 139

About the Author 151

List of Tables

2.1 Randomness requirement comparison 31
2.2 Overview of the hardware costs of different blocks 36
2.3 Comparison of the UMA AND gate with DOM 38

5.1 First-order secure AES-128 implementation results 59
5.2 Second-order secure AES-128 implementation results 60
5.3 Results and comparison of masked AES S-box implementations . 63
5.4 Cycle count estimation for full AES-128 hardware implementations

with a variable numbers of cycles for the S-box (lsbox) 64

6.1 Characteristics of the Ascon-128 hardware implementations . . 70
6.2 Characteristics of related implementations 71
6.3 Results for Ascon-128 with one cycle per round (64 S-boxes) . . 79

7.1 Synthesis results . 88

8.1 V-scale core implementation results 101

11.1 Propagation rules for the stable set S(g) connected to the gates
ga and gb . 122

11.2 Propagation rules for the transient set T(g) fed by the gates ga
and gb . 127

12.1 Formal verification results of the UMA S-box 130
12.2 Side-channel resistance verification results for the LOLA Ascon

and the first-order zero latency AES S-box designs 131

xiii

List of Figures

1 Classification of the attacks considered in this thesis 3
2 Typical measurement setup for an SCA attack 5
3 Classical masked GF (2n) multiplier according to [Tri03] 9
4 Threshold Implementations (TI) multiplier with component func-

tions . 10

1.1 First-order DOM GF (2n) multiplier 19
1.2 Second-order secure DOM GF (2n) multiplier 21

2.1 Randomness requirements for the best known masked multiplica-
tion algorithms . 28

2.2 Inner-domain block . 32
2.3 Complete block . 33
2.4 Half-complete block (Beläıd’s opt.) 34
2.5 Incomplete block . 35
2.6 Fully assembled UMA AND gate 35

3.1 First-order LOLA multiplication with compression skipping, re-
sulting in four domains . 40

3.2 Example for an insecure first-order masked circuit calculating
(x · y) · x (left), and a secure circuit (x · y) · x′ (right). The shares
of x are colored green (x0) and blue (x1) for clarity reasons . . . 41

3.3 Example for collisions directly caused by inputs (1) and collisions
caused by gates (2), collisions (left) and resolved collisions (right) 42

3.4 Ascon’s original S-box, with collisions in a to d 43
3.5 Mui S-box design (black and red parts are from the original

design), gray dotted paths and elements replace the red paths to
which they are connected in the collision-free design 46

5.1 Datapath of the DOM AES implementation (all data signals are
8 bits wide) . 56

5.2 First-order DOM design of the AES S-box 57
5.3 Area requirements absolute (left) and in percent (right) per

protection order . 61

6.1 The encryption of Ascon-128 65
6.2 Substitution layer with 5-bit S-box Ascon 67

xv

xvi List of Figures

6.3 Datapath of the fast variant of Ascon with one round transfor-
mation per cycle . 68

6.4 Datapath of the 64-bit variant of Ascon 69

6.5 Datapath of the x-low-area variant of Ascon 70

6.6 Throughput versus area comparison 72

6.7 Overview of the Ascon core (left) and the state module (right) 73

6.8 Ascon’s S-box module with optional affine transformation at
input (gray) and variable number of pipeline registers (green) . 74

6.9 UMA versus DOM area requirements for different protection
orders. Left figure compares masked AND gates, right figure
compares full Ascon implementations 75

6.10 UMA versus DOM area requirements for Ascon at different
protection orders and 64 parallel S-boxes (left) and throughput
comparison in the right figure 75

6.11 UMA versus DOM area requirements for Ascon including an
area estimation for the randomness generation in the left figure,
and an efficiency evaluation (throughput per chip area) on the
right . 77

6.12 Hardware design overview of Ascon 78

7.1 First-order DOM multiplier calculating q = ab, and with random-
ness optimization for q = ab⊕ c calculation (gray) 82

7.2 First-order protected S-box of Keccak with the DOM multiplier
from Figure 7.1 . 83

7.3 Simplified architecture of our implementation 86

7.4 Area requirement for increasing number of share domains. Serial
with 1 slice processed in parallel with pipelined S-box 89

7.5 Serial-Tp: Area over the number of share domains for different
number of parallel processed slices 90

7.6 Serial-Tp: Frequency over the number of share domains for a
varying number of parallel processed slices 90

8.1 V-scale core overview . 94

8.2 Protected ALU . 97

8.3 Masked adder . 98

8.4 Required LUT (left) and registers (right) on an FPGA 101

10.1 T-test evaluation for different protection orders d = 0 . . . 3 (from
top to bottom) and for different t-test orders (first to third, from
left to right) . 111

11.1 Circuit graph of circuit in Figure 11.2 118

11.2 Masked circuit example with according labels after the propaga-
tion step . 121

11.3 Masked circuit example, insecure due to glitches 123

List of Figures xvii

11.4 Waveform example for the circuit in Figure 11.3, showing security-
critical glitch (red) . 124

11.5 Example for modeling of glitches of a circuit C (without blue
parts) in C ′ . 125

11.6 XOR gate rules for stable (blue) and transient (red) signal sets 127
11.7 Masked circuit example from Figure 11.2 reevaluated with the

transient rules (red) which leads to a flaw due to glitches (black
labels) . 128

List of Abbreviations

AE Authenticated Encryption
AES Advanced Encryption Standard
ALU Arithmetic-Logic Unit
ASIC Application-Specific Integrated Circuit

CMOS Complementary Metal-Oxide-Semiconductor
CPU Central Processing Unit

DOM Domain-Oriented Masking
DPA Differential Power Analysis

FPGA Field Programmable Gate Array
FSM Finite-State Machine

ISA Instruction-Set Architecture

LOLA Low-Latency Masking
LSFR Linear-Feedback Shift Register
LUT Look-Up Table

PRNG Pseudo-Random Number Generator

RNG Random Number Generator

SCA Side-Channel Analysis
SHA3 Secure Hash Algorithm 3
SPA Simple Power Analysis

TI Threshold Implementations
TRNG True-Random Number Generator

UMA Unified Masking

xix

xx List of Abbreviations

“One cannot not communicate.”

— Paul Watzlawick

Introduction

The security of our entire digital world that increasingly becomes interwoven
with our everyday life strongly relies on the ability to keep secrets. Without
secrets, even the strongest cryptographic primitives and protocols fail in pro-
viding confidentiality, integrity, and authenticity. Many amenities we gained
through digitalization, like electronic payment, e-commerce, eGovernment but
also safety-relevant applications like medical devices, are unthinkable without
sound cryptographic implementations that conceal the secrets on which they
rely. So-called Side-Channel Analysis (SCA) attacks can easily reveal a device’s
secrets when no appropriate countermeasures are implemented.

In general, the term SCA refers to an attack that does not target the main
communication channel but exploits information that is produced as a by-product
of computation or data transmission with the goal to reveal security sensitive
information. Before a more precise classification of the SCA attacks that are
considered in this thesis is given, we first briefly introduce the idea of SCA with
some real-world examples.

Side-Channel Analysis

“Every computation leaks information” — this famous variation of a quote stated
by Micali and Reyzin in [MR04] is one of the most fundamental assumptions of
the side-channel community. However, SCA is not an invention of the computer
sciences or even of our time. During World War I, field telephones to send orders
of the day to different military corps used only one wire for communication [MC14].
The earth was used as voltage reference for the communication channel and thus
the return current was measurable by enemy intelligence corps by using rods
that were buried in the earth to eavesdrop on the enemy’s orders. During World
War II, Bell Labs were aware of electromagnetic emanation attacks to eavesdrop
on secured communications over distances of more than 24 meters.

SCA is not even a human invention. In Paul Watzlawick’s famous book [Wat76]
“How real is real?” he discusses the human inability to not communicate as one of
the most fundamental principles in communication science. In human communi-
cation, even the absence of words can therefore be a strong statement and other
communication channels exist beside speech that are much harder to control, like
facial expression or gesture.

As an example, Watzlawick retold a story of a mathematics teacher and
amateur horse trainer named Wilhelm von Osten who lived around the beginning

1

2 Introduction

of the 20th century. Von Osten had an Orlov trotter horse which became famous
as the Clever Hans after which even a physiological effect was named. Wilhelm
von Osten claimed that his horse was able to perform simple arithmetic and
other intellectual tasks, by answering by tapping with its hoof or by nodding or
shaking its head. These claims were investigated by a committee formed around
the psychologist Carl Stumpf. The result of the investigation was that no tricks
were involved and thus confirming von Osten’s claims regarding the abilities of
his horse. The investigation was passed on to the psychologist Oskar Pfungst who
performed a couple of experiments that should disconnect the horses reaction
from environmental influences like willful or unintentional clues from the audience
or his master. As a result of the experiments Pfungst concluded that the horse
only answered correctly, if the answer is also known by the questioner and if
the horse could see the person that asked the question. Further investigations
revealed that the only possibility for the horses correct answers was its ability to
read, even unintentionally given clues from persons, like a change in the posture
or the facial expression, when the number of given hoof taps reached the correct
result. This case could thus be the first documented SCA performed by an animal
on people.

There exists a broad variety of documented SCA attacks like the examples
stated above performed on different targets and by exploiting different side-
channels. In the following, we want to provide a differentiation on what SCA
means in the context of this work.

Classification

We follow the path given by the underlined keywords in Figure 1 from top to
bottom which denote the attack classification attributes which are relevant for
the remainder of the thesis. Even though the outcome of the research that
was conducted for this thesis is applicable to protect a broader class of security
sensitive applications, most examples within this thesis are given on the basis
of symmetric cryptographic primitives. More precisely, the kind of attacks for
which we provide countermeasures are attacks on the implementation of these
cryptographic primitives in Complementary Metal-Oxide-Semiconductor (CMOS)
hardware, rather than attacks targeting the mathematical structure of these
primitives like linear or differential cryptanalysis.

Active and Passive Attacks. Side-channel attacks are so-called passive at-
tacks that work by only observing the behavior of an implementation and by
concluding from the observed behavior information about the processed secret
data (like the used symmetric key). Such information exploited by an attacker
can be, for example, the power consumption or the electromagnetic emanation
of a device during security-sensitive computations. The goal of an attacker is
to either directly determine the used secret information or to narrow down the
search space so that the secret information can be calculated within reasonable
time.

Introduction 3

Cryptographic Primitives

Algorithm Implementation

Hardware Software

Active Passive

Non-Invasive Invasive

Time Electromagnetic

Figure 1: Classification of the attacks considered in this thesis

Strong symmetric primitives are designed in such a way that, even for an
observation of multiple plaintext and ciphertext pairs, the remaining key space is
reasonably larger than the complexity that can be handled by today’s computers.
For example, it is known from cryptanalysis of the 128-bit key variant of the
Advanced Encryption Standard (AES) that the key space that needs to be tried
out by an attacker can be reduced from 128 bits to about 126.1 bits [Bog+11].
This is, however, still much more than what can be brute-force searched by
conventional (non-quantum) computers in the foreseeable future. By using SCA,
on the other hand, the possible key space can be reduced significantly depending
on the targeted platform and the concrete implementation.

Contrary to passive attacks, there are also active attacks that not only observe
the behavior of an implementation but try to manipulate the execution in such a
way that it results in an advantageous misbehavior from an attacker’s perspective.
Active attacks include, for example, fault analysis attacks where a device is used
outside its specification ranges (clock speed, temperature, supply voltage) to
produce faulty behavior. Another way to disturb the correct execution of a device
is to use lasers or other electromagnetic sources. For the AES-128 encryption
for instance, which consists of ten consecutive round transformations before the
ciphertext is returned, a fault attack can be used to skip several of these rounds.
The produced ciphertext thus reveals the internal state of the cipher at an early
point during the execution which allows to determine the key or to cut down
the possible key space to one that can be brute-force searched in reasonable
time. Active attacks are very powerful and countermeasures against these attacks
are thus intensively researched in the literature. However, defense mechanisms
against active attacks are out of scope for this thesis.

4 Introduction

Invasive and Non-Invasive Attacks. Side-channel attacks as considered
for this thesis are assumed to be non-invasive, which means that the attack is
performed on the device as it is without altering the device or even (partially)
destroying it. Invasive attacks, on the other hand, are performed for example
by opening the package of a chip. This is done by using etching and polishing
techniques with the goal to gain access to the surface of the IC’s die. Up to this
point, the attack would still qualify as a semi-invasive attack, since the chip die
itself is not penetrated. If the motivation for getting access to the chip surface
is not only to study the architecture of the chip, but to the get access to the
internal structures of the chip the attack is considered to be invasive. An example
for such an invasive attack is the usage of probing needles or focused ion beams
to read-out or manipulate information on chip wires. Techniques to counteract
invasive attacks are not considered in this thesis.

Types of Side-Channels. There exist many possible types of side channels
that can be exploited by an attacker. Some of the first side-channel attacks on
cryptographic implementations were attacks on the execution time [Koc96]. If
there are operations whose execution time varies with regard to the used key or
internal state, then the execution time allows to draw conclusions on security-
sensitive information. Even though the awareness for the execution time as
side-channel has increased over the last years, there are still new attacks coming
up that exploit variations in the runtime, like cache timing attacks [Lip+16;
Lip+18]. A basic requirement for cryptographic implementations is thus constant
runtime, which is also the case for the side-channel protected implementations
we introduce in this thesis. Nevertheless, the techniques we present in this thesis
to prevent SCA are not suited to seal leakages that are caused by non-constant
runtime. We focus on side-channels caused by electromagnetic effects like power
consumption [Koc+99] and electromagnetic emanation [QS01]. Such attacks are
in the literature often referred to as power analysis attacks or electromagnetic
emanation analysis attacks, respectively. For the remainder of this thesis, however,
we generally refer to this kind of attacks as SCA.

Attack Scenario

A typical measurement setup to extract side-channel leakage information from
a cryptographic hardware implementation is depicted in Figure 2. During the
computation, the chip generates electromagnetic radiation that is produced by
changes in the electric current flowing through the circuit (gates, transistors,
wires). These changes in the current flow produce changes in the electromagnetic
field that are sensed by the probe in form of a small induced current. The
produced electromagnetic radiation is thus a result of the changes in the power
consumption of the chip or the part of the chip that is probed. The amplifier
that is connected to the probe is used to amplify the small current that flows
through the electromagnetic probe so that the recording of the signal uses the
optimal dynamic range of the oscilloscope. The recorded traces are then evaluated

Introduction 5

using, for example, statistical analysis, machine learning algorithms or pattern
recognition. Because of the different attack methods and ways to exploit leakages,
there exists a whole variety of names for side-channel attacks. A coarse distinction
can be made between so-called Simple Power Analysis (SPA) and Differential
Power Analysis (DPA).

AMP

Oscilloscope

Computer

IC
H

EM probe

IC
H

Figure 2: Typical measurement setup for an SCA attack

Simple Power Analysis. According to [Man+07], SPA attacks are attacks
that work by exploiting key-dependent differences or patterns within a single
leakage trace, for example, the recording of a device’s power consumption during
one encryption or a subsequence of the encryption procedure. This does not
mean that for an SPA attack just a single power trace is used. Multiple traces
could be used to lower the signal to noise ratio between the actual leakage signal
and the electronic and measurement noise, for instance. However, the term
“simple” refers to the fact that in an SPA, the relation between multiple traces
and changes within intermediate values that produce the recorded leakage trace
is not exploited.

A classical example for an SPA attack is the recognition of leakage patterns
that are caused by individual commands of a processor. A square-and-multiply
algorithm, as it is used in binary exponentiation of insecure implementations of
elliptic curve point multiplications or also in RSA encryption, shows recognizable
patterns depending on whether a simple squaring (shift operation) or a more
complex multiplication is performed. Since these patterns can even emerge in
pure visual inspection of a power trace, the exponent that was used for the
exponentiation (which could be the key itself or key-related) can be directly
extracted from the power trace.

Differential Power Analysis. In contrast to SPA, DPA exploits the relation
among power traces to find evidence for the usage of a certain key or other
secret data. A classical DPA can be coarsely divided into three phases: leakage
gathering phase, hypotheses building phase, and hypotheses matching phase. In
the following we only briefly summarize how a typical DPA attack works. For
more details we refer the interested reader to [Man+07].

6 Introduction

In the first phase leakage traces are collected under varying inputs, e.g. different
plaintexts that are encrypted using the same secret key. The exploitation of
differences in leakage traces under different inputs requires an alignment of the
individual traces to each other that needs to be as exact as possible for the
hypotheses matching phase. For practical attacks, there often exists no exact
reference point in time for each encryption. This phase could thus involve a
post-processing phase in which the leakage traces are first aligned. More advanced
attacks require an even more complex post-processing that involves filtering or the
combination of leakage points, but for the remainder of this introduction to power
analysis we assume perfectly aligned traces that do not require post-processing
for the attack to work.

Since no knowledge on the used secret key is assumed, the next step is to
generate hypotheses on the basis of the unknown secret key. This phase is usually
performed in a divide-and-conquer manner because building hypothesis based
on a 128-bit key space as required for a full AES-128, for example, would be
too complex. Therefore, a suitable point in the attacked algorithm needs to be
found at first for which there exists a relation to the attacked secret key and the
known input data. A suitable point for building this hypothesis is for example
the result of the addition of the key and the plaintext in the first round of an AES
that is followed by the 8-bit S-box lookup. Hypotheses can thus be calculated
individually for all 8-bit chunks of the 128-bit key. The hypotheses contain the
potential values of the attacked intermediate result of the algorithm that are
calculated for each leakage trace of the targeted key byte. As the dynamic power
consumption of a CMOS circuit depends on changes of a signal rather than the
absolute values of the intermediate value, the hypothetical intermediate values
are then mapped to a power consumption model. The mapping to a power model
can again be rather simple, for example just calculating the number of bits that
are nonzero (Hamming-weight model) or the number of bits that changed their
value (Hamming-distance model), but can also become more complex and use
power consumption characteristics of the attacked device.

In the matching phase, the hypothetical power model for the specific key
guesses are statistically evaluated against the actual observations in the leakage
traces. In practice, there exists a vast number of so-called side-channel distin-
guishers to select the most probable key candidate from the set of hypothetical
keys. These distinguishers are based on different statistical methods like the
Pearson correlation, difference of means, or mutual information analysis, and
have varying practical properties and implications. The goal of all of these distin-
guishers is, however, to find and quantify dependencies between the hypothetical
power models and leakage traces in order to determine the used key.

Masking as Countermeasure to SCA

There have been many methods researched over the last almost 20 years to
counteract SCA, which can be roughly categorized into masking and hiding
countermeasures (e.g. randomized execution paths). However, masking is the

Introduction 7

best researched countermeasure against SCA and favored because it severely
impedes the exploitation of side-channel leakage. The core idea of masking is
to make the produced side-channel leakage statistically independent from the
data beeing processed. In classical masking this independence is achieved by
masking a sensitive variable e.g. x as the sum of the variable and some fresh
random masks (m).

xm = x⊕m0 ⊕m1 ⊕ . . .
We will use this masking notation later in Part III. However, for the first

parts of this thesis we use a sharing based notation which is just a different way
to denote the masking. For this purpose, the secret data is assumed to be split
into a number of so-called shares, which when recombined through addition over
GF (2n) result in the original data again. The sharing is again based on uniformly
distributed random masks. The sharing of a variable x can be written as shown
in Equation 1, where the shares are denoted by numbers in the subscript index.

x = x0 ⊕ x1 ⊕ x2 ⊕ . . . (1)

We can easily convert between the two representation forms, e.g. if we assign
x0 = x⊕m0 ⊕m1 ⊕ . . . and the remaining shares to be just one of the masks
(x1 = m0, x1 = m1, et cetera). Both forms are equal but the sharing-based
notation is more general because it hides how the masking was initially performed.
For the sharing-based form, it is just relevant that only the combination of all
shares of one masked variable will leak any information on the underlying secret.

The sharing does not only affect the representation of the data but also of
the functions that are applied to this data. An unshared function “F” is split up
into a number of component functions denoted by the original function’s name
with a number in the index. Again, the sum over the component functions must
give the same result as for the unshared variables (see Equation 2).

F(x, y) = F0 ⊕ F1 ⊕ F2 ⊕ . . . (2)

Independence and the Probing model. A basic requirement of all masking
schemes is that each intermediate signal needs to be statistically independent of
all unshared inputs and outputs. Often maintaining this independence requires
the addition of a fresh random share to intermediate results. In this thesis,
we always use r shares to refer to randomly picked shares with the intention
to provide statistical independence. The independence requirement is strongly
related to the so-called probing model.

The probing model introduced by Ishai, Sahai and Wagner [Ish+03] is the de
facto standard model in which the side-channel resistance of a Boolean masked
circuit is analyzed. Informally speaking, a circuit is said to be dth-order secure
in the probing model, if an attacker with the ability to place up to d probing
needles on to any wire or gate of a circuit (to continuously record the signal
transitions over time) is not able to combine the recorded information to reveal

8 Introduction

any (unshared) critical information. For example, the sharing of the variable x
with d+ 1 shares is by definition dth-order secure in the probing model because it
would require more than d needles to collect all d+ 1 shares. The inherent goal
of a masked circuit is to keep this independence throughout the entire circuit.

It was demonstrated by Faust et al. [Fau+10] and Rivain et al. [RP10] that
there indeed exists a relation between the number of probed wires in the probing
model and the attack order for a differential DPA attack. As it was shown by
Chari et al. [Cha+99], there exists an exponential relation between the protection
order and the number of required leakage traces to unmask the secrets.

While linear functions over GF (2n) can be implemented trivially, the im-
plementation of nonlinear parts is quite challenging. In the past, Galois field
(GF) multipliers have shown to be a good reference to compare masking schemes.
Multipliers are also of particular interest because on the basis of a simple one-bit
multiplier, which corresponds to an AND gate, every boolean logic gate can be
realized and in consequence every possible circuit. In the following, we explain a
classical masking approach based on the Trichina gate [Tri03] and the Threshold
Implementations (TI) scheme, as examples for different masking schemes, on the
basis of a Galois field multiplier that is protected against first-order attacks.

Classical Boolean Masking. First-order masking in general requires only
two shares. Accordingly, a shared multiplication of two inputs x and y over
GF (2n) can be written as the multiplication of two shared finite field elements
as demonstrated in Equation 3, where x = x0 ⊕ x1 and y = y0 ⊕ y1.

q = x · y = (x0 ⊕ x1)(y0 ⊕ y1)

= x0y0 ⊕ x0y1 ⊕ x1y0 ⊕ x1y1

(3)

While each partial product is statistically independent of x and y, the resulting
sum is not. A fresh random share r0 needs to be added to the first multiplication
result of Equation 3 to maintain first-order security in the probing model. Figure 3
shows a classical masked GF (2n) multiplier introduced by Trichina [Tri03].

Even though this multiplier seems to be secure in the probing model, this
implementation is still not free from first-order leakages. Consider the results of
the two multipliers on the left, for example, that calculate x0y0 and x0y1. If these
intermediate signals reach the exclusive-OR gate before r0, then the resulting
signal is no longer statistically independent of y. As a result, the security of the
masked multiplier depends on signal transition times caused by wire lengths,
transistor speeds, et cetera, which is hard to control for digital designers. For this
reason, the classical Boolean masking scheme is considered to be flawed [Man+05].
As shown by Mangard et al. [MS06] the problems are not caused by the four
multipliers or their additive leakage. The only reason this sharing produces
first-order leakages are glitches that are caused by the addition of the multiplier
results.

Researchers have tried to repair the masked multiplier in Figure 3 [Ala+09;
Gho+07; Kum+07]. These works mainly focused on balancing and reordering
the signals and gates in such a way that no glitches can occur any longer. These

Introduction 9

x
0

x
1

y
0

y
1

q
0

r
0

q
1

Figure 3: Classical masked GF (2n) multiplier according to [Tri03]

approaches, however, require an enormous effort in the backend of the hardware
design flow in order to guarantee the correctness of the signal timings.

Threshold Implementations. The TI scheme by Nikova et al. [Nik+06] was
the first provably secure masking scheme resistant to glitches. TI focuses on
so-called component functions (cf. Equation 2), and on the properties these
component functions have to fulfill to guarantee security in the probing model.
These properties are called correctness, non-completeness, and uniformity. The
correctness property of TI simply requires that the sum over the component
functions must give the same result as the original function for the unshared
variables.

The main idea of TI to prevent glitches that reduce the security in the probing
model, is to only feed a subset of shares per variable into a component function
(non-completeness property). As a direct consequence, the realization of nonlinear
functions with TI always requires more than d+ 1 shares. While functions that
are linear over GF (2n) can be implemented in a first-order secure manner with
only two shares, Nikova et al. [Nik+06] state the lower bound for nonlinear
functions with two variables to be at least three shares. In general, the number of
input shares required for higher-order security [Bil+14c] is given by sin ≥ d · t+ 1
where s is the number of shares, d is the protection order, and t the degree of the
function. The number of output shares for TI is given with sout ≥

(
sin
t

)
. In order

to ensure that glitches do not propagate within adjacent component functions,
registers are required at the output of each component function.

10 Introduction

The property that is usually the hardest to achieve is uniformity which
demands all share inputs and outputs of component functions to be uniformly
distributed regardless of which unshared values they represent. For first-order TI,
uniformity of the component functions can often be achieved without performing
a complete resharing of the outputs by using more shares, or correction terms, or
using fresh random shares in more than one component function.

As an example for a first-order secure TI, the GF (2) multiplier in Figure 4 uses
three shares per variable and one fresh random share for achieving uniformity of all
output shares as shown by Bilgin [Bil+15a]. Equation 4 defines the corresponding
component functions.

F
A

F
B

F
C

x
0

y
1

y
0

x
1

q
0

y
2

x
2

q
1

q
2

r
0

 FF FF FF

F
1

F
0

F
2

Figure 4: TI multiplier with component functions

F0(x1, x2, y1, y2) = x1y1 ⊕ x1y2 ⊕ x2y1 ⊕ r0

F1(x0, x2, y0, y2) = x2y2 ⊕ x0y2 ⊕ x2y0 ⊕ x0r0 ⊕ y0r0

F2(x0, x1, y0, y1) = x0y0 ⊕ x0y1 ⊕ x1y0 ⊕ x0r0 ⊕ y0r0 ⊕ r0

(4)

For the sake of completeness we note that the TI multiplier could also be
implemented by using two fresh random shares and fewer logic gates, or using
more shares and an increased gate count.

The non-completeness rule can be directly observed in the notation of the
component functions of Equation 4. The first component function F0, e.g., is
independent of all shares with share index 0 (except the r shares), the second
component function F1 of all shares with index 1, and so forth. The glitch
resistance, however, comes at higher costs in terms of gate count. While the
classical multiplier requires only four AND gates and four XOR gates, the TI
variant in Equation 4 consumes 13 AND gates, 12 XOR gates, and three registers.

Introduction 11

In [Rep+15], Reparaz et al. introduced an extension of TI to higher orders,
and mentioned that given an independent input sharing and carefully designed
component functions with more calculation steps and registers, the number of
shares can be lowered to d+1 for TI. However, they stated that they avoid giving
a generic construction for the d+ 1 case, because extreme care has to be taken
in order to not unmask any intermediate value.

Thesis Overview

The present dissertation examines the secure construction of generically masked
hardware designs with a scalable protection level and their formal verification.
In Part I, we introduce the Domain-Oriented Masking (DOM) scheme in Chap-
ter 1, which is the basis for all other introduced masking schemes and practical
implementations. We successively refine the idea of DOM in the remainder of
this chapter, and research possible trade-offs to either save online randomness
with the Unified Masking (UMA) scheme in Chapter 2 or ways to reduce the
latency of DOM with our Low-Latency Masking (LOLA) scheme in Chapter 3.

Part II is about the practical comparison of the masking schemes introduced
in Part I, which is performed on a wide variety of different masked hardware
implementations. In Chapter 5 we start off with a DOM implementation of the
AES which is the most widely deployed symmetric cryptographic primitive and
thus used in many practical applications. In addition, we introduce different
low-latency designs of the AES S-box and show the overhead costs of our LOLA
scheme. The upcoming generation of symmetric primitives is considered in
Chapter 6 in the form of the Authenticated Encryption (AE) scheme Ascon. We
introduce many different protected and unprotected hardware implementations
of Ascon and use them to compare all DOM based masking schemes among
each other.

The application of DOM to the Secure Hash Algorithm 3 (SHA3) Keccak
along with different optimizations is shown in Chapter 7, before we conclude this
part with a protected implementation of a RISC-V processor in Chapter 8.

The last part of this thesis (Part III) is about the formal verification of
masking and presents a comparison with empirical verification methods for
masked hardware implementations. We introduce a formal verification approach
on the basis of the Fourier representation (or Walsh transformation) of Boolean
functions which allows us to make a worst-case estimation of the data leakage
under all possible signal timings. Our formal modeling approach is then used to
evaluate practical masking examples.

For each part, we first briefly introduce the respective topics, we highlight
our contributions in this area, and give closing remarks at the end of each part.
We close this thesis with a discussion on open research questions and give an
outlook on future research directions.

Part I

Generic Masking Schemes

13

15

In this part of the thesis, we first introduce the concept of Domain-Oriented
Masking (DOM), a generic masking scheme that leads to hardware designs which
can be synthesized for arbitrary Side-Channel Analysis (SCA) protection orders.
DOM thereby realizes the same theoretical bounds for fresh randomness as the
private circuits scheme [Ish+03] without being vulnerable to glitches. Therefore,
we introduce the concept of share domains and apply the idea of keeping each
domain independent from other share domains.

On the basis of DOM, we introduce two derived variants to explore different
randomness, area, and latency trade-offs. With the Unified Masking (UMA)
scheme, we show how the randomness usage can be lowered for the costs of better
control over the transient behavior of the circuit. With the Low-Latency Masking
(LOLA) scheme, we reduce the latency that is usually required in DOM for the
remasking step in the nonlinear parts of the circuit.

This part is based on the following papers.

� Chapter 1: Domain-Oriented Masking (DOM)

I Hannes Groß, Stefan Mangard, and Thomas Korak. “An Efficient Side-
Channel Protected AES Implementation with Arbitrary Protection Order.”
In: CT-RSA. vol. 10159. Lecture Notes in Computer Science. Springer,
2017, pp. 95–112

which is a reduced version of our IACR’s ePrint archive paper:

I Hannes Groß, Stefan Mangard, and Thomas Korak. “Domain-Oriented
Masking: Compact Masked Hardware Implementations with Arbitrary Pro-
tection Order.” In: IACR Cryptology ePrint Archive (2016)

that was also presented at the TIS workshop of the CCS and published as
extended abstract:

I Hannes Groß, Stefan Mangard, and Thomas Korak. “Domain-Oriented
Masking: Compact Masked Hardware Implementations with Arbitrary Pro-
tection Order.” In: TIS@CCS. ACM, 2016, p. 3

� Chapter 2: Unified Masking (UMA)

I Hannes Groß and Stefan Mangard. “Reconciling d+1 Masking in Hard-
ware and Software.” In: CHES. vol. 10529. Lecture Notes in Computer
Science. Springer, 2017, pp. 115–136

� Chapter 3: Low-Latency Masking (LOLA)

I Hannes Groß, Rinat Iusupov, and Roderick Bloem. Generic Low-Latency
Masking in Hardware. CHES 2018 (in press)

Contribution. For the parts of the papers that were used in these chapters
the author of this thesis is the main author.

“When you change the way you look
at things, the things you look at
change.”

— Wayne Dyer

1
Domain-Oriented Masking (DOM)

In this chapter we introduce the general concept behind the DOM scheme. In
contrast to Threshold Implementations (TI), which consider properties at function
level, our DOM approach is based on the concept of share domains. In DOM,
each share of a variable is associated with exactly one share domain. This is also
reflected in the notation that is used. The shares x0 and x1 of a variable x, for
example, are associated with the domains 0 and 1, respectively.

A DOM implementation uses d + 1 shares per variable in order to achieve
dth-order security. There are d+ 1 domains in this case. The basic idea of the
DOM approach is to keep the shares of all domains independent of shares of other
domains. This independence ensures dth-order security according to the d-probing
model. If, for example, in a first-order security setting, a component function
takes the inputs x0 and y0 from domain 0, all intermediate values calculated by
this function are independent of the corresponding unshared inputs x = x0 ⊕ x1

and y = y0 ⊕ y1. This is a consequence of the fact that x1 and y1 are not part
of this function and are combined by another component function working on
domain 1.

In case of linear functions, the independence of the domains is trivial to
achieve because linear functions only require to combine shares within one share
domain. If only linear functions are used in a circuit, d+ 1 disjoint domains are
formed, with no wires from one domain to another, that only contain one share
of each input variable, and calculating one share per output variable. The critical
part, like in all masking schemes, are the non-linear functions. In the case of
non-linear functions, domain borders need to be crossed and dedicated measures
need to be taken in order to maintain the independence of the shares in the
different domains. The basic idea of DOM is to secure domain crossings by adding
a fresh random share r and by using a register in order to prevent glitches from

17

18 Chapter 1. Domain-Oriented Masking (DOM)

propagating from one domain to another. By carefully using the randomness,
the signals that are derived from different domains can be reintegrated into the
domains in a correct and secure manner.

In the following, we detail the concept for a two-input GF DOM multiplier,
which serves as a basis to protect arbitrary circuits, and which is also the most
critical part of masked Advanced Encryption Standard (AES) implementations,
for instance. As for many other masked multipliers in the literature, one basic
requirement of the DOM multiplier is that the inputs are shared independently.

As an example for a violation of share independence consider the classical
masked GF multiplier (see Figure 3 in the introduction of this thesis). If this
multiplier calculates x · x for the same sharing of both inputs x, then this would
result in the multiplication terms x0x0, x0x1, x1x0, and x1x1. The terms x0x0

and x1x1 use only one share of x and are thus uncritical. The terms x0x1 and x1x0,
on the other hand, violate the share independence by bringing together shares
from different domains of one sharing. The share independence of course only
requires the shares of the inputs to be independent not the variables themselves.
It is therefore possible to calculate, for example, x · x with the DOM multiplier,
as long as both inputs are shared independently.

In practice, dependencies between shares can be less obvious and are often
just temporary. As an example, consider an unshared 2-bit transformation that
is defined as follows: The first output bit p of this transformation is the linear
combination of two of the input bits x⊕ y and the second output bit is just the
first input bit q = x. Due to signal delays it is possible that both output bits are
temporarily formed by the same input bit x only. If those bits are the shared
inputs of a non-linear multiplication, then this again results in a temporary
violation of the share independence in form of so-called glitches.

We start to introduce DOM by means of the first-order secure DOM multiplier
in Section 1.1 before we extend it in Section 1.2 to arbitrary protection orders.

1.1 First-Order Secure DOM Multiplier

A first-order secure DOM multiplier (see Figure 1.1) consists of two share domains.
The inputs x and y are provided to the multiplier by the shares x0 and x1, and
y0 and y1, respectively. The sharings for x and y are required to be uniformly
random and independent of each other. The multiplier returns the shares q0

and q1 of the output q. A DOM multiplier performs three steps in order to map
the input shares to the output shares. We refer to these steps as calculation,
resharing and integration.

Calculation: In the calculation step, the actual multiplication is performed
and the product terms x0y0, x0y1, x1y0 and x1y1 are calculated. In DOM, we
distinguish between inner-domain terms (x0y0, x1y1) and cross-domain terms
(x0y1, x1y0). The calculation of inner-domain terms only combines shares within
one domain. These terms are not critical from a security point of view. Any
function that is computed based on shares that are independent of the shares in

1.1. First-Order Secure DOM Multiplier 19

q
1

x
0

x
1

y
0

y
1

q
0

r
0q

domain 0 domain 1

 FF

calculation

integration

 FF
resharing

Figure 1.1: First-order DOM GF (2n) multiplier

other domains only leads to outputs that are also independent of the shares of
the other domains.

In case of cross-domain calculations, there is less freedom. In fact, in a
DOM scheme, cross-domain calculations can only be done for independently
shared variables. If shares of the same variable were combined for example, the
scheme would be trivially broken. For example, the product x0x1 would leak
information about x. However, shares from different domains corresponding
to different variables can be combined without violating the requirement for
dth-order security. In fact, there is no leakage about x or y when calculating
any function of x0 and y1. This results from the requirement that x and y are
independently shared. There is also no leakage caused by any function of x1 and
y0 for an independent sharing of x and y. Circuit parts that operate on inputs
from multiple domains are plotted red in Figure 1.1. These parts are not assigned
to a specific domain and contain the cross-domain terms.

Resharing: In DOM, the integration of cross-domain terms into a domain is
prepared during the resharing step. By adding a fresh random r share to a
cross-domain term, it becomes statistically independent of all other values and
can therefore be added to any arbitrary domain in a next step. However, using a
new share for each cross-domain term would lead to a high overhead. In DOM,
the goal is to minimize the number of fresh shares. In case of the first-order
secure multiplier, the same fresh share r0 is used for the resharing of the product
terms x0y1 and x1y0. This does not lead to a first-order leakage and at the same
time allows for building a very efficient design.

In order to prevent any glitches from propagating through the resharing step,
there is always a register included in DOM as last part of the resharing step.

20 Chapter 1. Domain-Oriented Masking (DOM)

The two registers in gray dotted lines are optional registers for the inner-domain
terms and are only required in case pipelining is used. At first sight, the registers
in Figure 1.1 seem to add an additional delay compared to the TI variant of
the multiplier (see Figure 4, in the introduction). However, the TI scheme
also requires registers at the output of each component function. Otherwise no
cascading of functions is possible. In case of a DOM multiplier, the output can
be directly plugged into the next nonlinear function, as long as the second input
of this nonlinear function is not one of the inputs of the first nonlinear function
(otherwise a register stage is required between the first and the second nonlinear
function). The number of register stages is thus the same for both schemes.

Integration: During the integration phase, the reshared cross-domain terms are
added to the domains, which concludes the GF multiplication. This addition
leads to glitches at the XOR gate at the output of the domain. However, as the
resharing finishes with a register, no glitches depending on x or y can occur. In
terms of correctness of the scheme, it is important to point out that the fresh
share r0 becomes part of both domains of the multiplier. Hence, it holds that
q = q0 ⊕ q1 and no additional share is needed.

In summary, the security against a first-order probing attacker is ensured
because each domain contains only inner-domain terms and cross-domain terms
that are reshared with a fresh random share which is only used once in each
domain. An attacker thus always needs to combine two or more intermediate
signals to get one signal that depends on one of the independently shared inputs
x or y. Problems caused by different signal propagation times are prevented
through registered outputs in the resharing phase.

1.2 Higher-Order Secure DOM Multiplier

The first-order DOM multiplier can be extended to arbitrary protection orders.
The generalization requires to first extend the calculation phase in order to
produce a correct sharing with d + 1 shares for any given protection order d.
In the resharing phase, it needs to be ensured that the fresh random r shares
are distributed over the domains in a way that (1) each cross-domain term is
reshared with an r share that is unique inside the targeted domain, and (2) none
of the signal combinations created in the integration phase reveals more than the
inner-domain terms or shares.

Calculation: The same rules as for the first-order DOM apply for the higher-
order generalization. Again, any combination of inner-domain shares can be
used for the multiplication terms inside their associated domain without any
restrictions. Cross-domain multiplication terms are restricted to be originated
from independently shared variables in order to prevent two shares of the same
sharing from being combined.

Considering these restrictions, the GF (2n) multiplication formula can easily
be generalized for d+ 1 input shares per variable as shown in Equation 1.1.

1.2. Higher-Order Secure DOM Multiplier 21

x
0

q
0

x
2

q
2

 FF

q
1

domain 0 domain 1 domain 2

r
0

r
1

r
2

r
0

r
2

r
1

y
1

x
1

y
0

y
2

 FF FF FF FF FF

calculation

integration

resharing

Figure 1.2: Second-order secure DOM GF (2n) multiplier

q = x · y =(x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ . . .)(y0 ⊕ y1 ⊕ y2 ⊕ y3 ⊕ y4 ⊕ . . .)
=x0y0 ⊕ x0y1 ⊕ x0y2 ⊕ x0y3 ⊕ x0y4 ⊕ . . .︸ ︷︷ ︸

q0

x1y0 ⊕ x1y1 ⊕ x1y2 ⊕ x1y3 ⊕ x1y4 ⊕ . . .︸ ︷︷ ︸
q1

x2y0 ⊕ x2y1 ⊕ x2y2 ⊕ x2y3 ⊕ x2y4 ⊕ . . .︸ ︷︷ ︸
q2

...
...

...
...

...

(1.1)

Each row of this formula stands for one component function calculating one
share of the output q. The multiplications in the diagonal (bold) are the inner-
domain multiplication terms containing only shares from one specific domain and
hence only leak about shares of this domain. The cross-domain products do not
leak more information on the inputs x and y than probing of one share of x of
one share of y directly. Hence, with this formula the sharing for the calculation
step for the GF multiplier is secure in the d-probing model and can be realized
for arbitrary numbers of shares. An example for a second-order DOM multiplier
is given in Figure 1.2.
Resharing: A core property for the generalization of the DOM scheme is how
the required fresh random r shares can be distributed among the cross-domain
terms efficiently and correctly. From Equation 1.1 it can be seen that there
are exactly d(d + 1) cross-domain terms which need to be reshared. It is also
important to note that there are exactly two product terms that combine shares

22 Chapter 1. Domain-Oriented Masking (DOM)

from two given domains. For example, shares from domain 0 and 1 are only
combined in the terms x0y1 and x1y0. In DOM, we use the same fresh share
for product terms that combine shares from the same domain, see Equation 1.2.
Hence, we use d(d+ 1)/2 fresh shares for a dth-order DOM implementation of
the multiplier (like Ishai et al. [Ish+03]).

Since no probing of any intermediate value created in the calculation phase
contains more than one share of each input variable x or y, and we only add fresh
random shares to the cross-domain terms in the resharing phase, no advantage
to a d-probing attacker is given during these phases.

Integration: During the integration phase, the multiplication terms of each
component function are added up at the output of the domain. Since a digital
designer has no influence on the sequence in which these terms are added up, the
higher-order DOM multiplier needs to provide security for each possible partial
sum of these terms. In particular, it has to be taken care that each of the possible
partial sums an attacker could probe only reveals the shares of the domain it is
probed in. This is ensured by the resharing shown in Equation 1.2, where each r
share is only reused for cross-domain multiplication terms with the same domain
associations.

In order to exploit the reuse, it would be necessary to probe the two component
functions that use the terms with the reused share. However, the two component
functions that use the two terms are associated with the same domains as the
terms in the cross-domain products. Hence, there is no advantage for the attacker
due to the reuse of the r shares.

For example, share r0 in Figure 1.2 is used on the terms x0y1 and x1y0 and
these two terms only occur in the component functions for q0 and q1. An attacker
that probes any partial sum of the terms of q0 learns only about shares in domain
0. When probing any partial sum of the terms q1, there is only information about
shares of domain 1. A second-order attacker that learns about partial sums of
q0 and q1 learns about shares from domains 0 and 1 in any case. The fact that
partial products x0y1 and x1y0 reuse r0 does not provide any advantage to an
attacker.

Based on Equation 1.2, the fact that a DOM multiplier fulfills dth-order
security can be verified visually. In this multiplication matrix, the diagonal
terms are formed by the inner-domain product terms. These inner-domain terms
also divide the multiplication matrix into an upper and lower triangular matrix
in which each of the fresh random r shares is used exactly once. The triangle
formed by the r shares is mirrored along the diagonal. The mirroring of the
r shares ensures that each possible combination of partial sums from any two
component functions removes at most one fresh random share, and reveals only
the inner-domain shares of both domains. As this applies for all combinations of
partial sums of all different domains, an attacker restricted to d probes obtains
at most d shares per variable. The higher order multiplier is thus secure in the
d-probing model.

1.3. Summary 23

q0 = x0y0 ⊕ (x0y1 ⊕ r0)⊕ (x0y2 ⊕ r1)⊕ (x0y3 ⊕ r3)⊕ (x0y4 ⊕ r6)⊕ . . .
q1 = (x1y0 ⊕ r0)⊕ x1y1 ⊕ (x1y2 ⊕ r2)⊕ (x1y3 ⊕ r4)⊕ (x1y4 ⊕ r7)⊕ . . .
q2 = (x2y0 ⊕ r1)⊕ (x2y1 ⊕ r2)⊕ x2y2 ⊕ (x2y3 ⊕ r5)⊕ (x2y4 ⊕ r8)⊕ . . .
q3 = (x3y0 ⊕ r3)⊕ (x3y1 ⊕ r4)⊕ (x3y2 ⊕ r5)⊕ x3y3 ⊕ (x3y4 ⊕ r9)⊕ . . .
q4 = (x4y0 ⊕ r6)⊕ (x4y1 ⊕ r7)⊕ (x4y2 ⊕ r8)⊕ (x4y3 ⊕ r9)⊕ x4y4 ⊕ . . .

...
...

...
...

...

(1.2)

The component functions of the multiplication matrix can also be written in
closed form as shown in Equation 1.3.

qi = xiyi ⊕
d∑
j>i

(xiyj ⊕ r(i+j(j−1)/2))⊕
d∑
j<i

(xiyj ⊕ r(j+i(i−1)/2)) (1.3)

This equation is the basis for the scalable hardware designs in Part II.

1.3 Summary

In this chapter, we introduced the DOM scheme which allows generic protection
against dth-order SCA. The main idea of DOM is to transform an unprotected
circuit into a masked circuit by splitting not only the input and output variables
of the circuit, but also the circuit itself, into d + 1 domains. Each domain
(or subcircuit) thus has only one share per masked variable as input. This
trivially ensures security in the d-probing model for circuits that contain only
linear operations. For the calculation of nonlinear operations, however, it is also
required to combine shares from different domains in a secure manner. For this
purpose, we introduced a secure and scalable DOM GF (2n) multiplier, which
for GF (2) corresponds to a securely masked AND gate and can thus be used to
implement arbitrary circuits. The DOM multiplier is secure under the assumption
of independently shared inputs, which is however not a strong practical limitation
as we will demonstrate in Part II of this thesis. For example, the calculation of
x2 which is often required in practice is a linear operation in GF (2n) and does
not require a DOM multiplier at all. Share independence is broken by linear
combination of independently shared variables, for example, (x⊕ y) · x is secure
in DOM as long as a register is used for the calculation of x⊕ y to hinder glitch
propagation. Furthermore, the DOM multiplier only outputs shares from and to
the same domain (or securely remasked share combinations), and also completely
breaks the share dependence to the input variables of the multiplier after an
additional register stage at the output. The additional register ensures that all
of the randomness used in the DOM multiplier is added to the signals before
further propagation. This also ensures independence to variables used in any

24 Chapter 1. Domain-Oriented Masking (DOM)

linear operations that are performed directly at the output of the multiplier
with respect to the share domains (between the output of the multiplier and an
additional register stage). However, this additional register stage is not always
required between cascaded DOM multipliers as long as share independence can
be ensured, for example, for calculating x · y · z under the assumption that all
variables are independently shared. A generic strategy for avoiding register stages
(even inside DOM multipliers) is introduced in Chapter 3. Before this, we discuss
how randomness can be saved in DOM for the cost of more register stages in the
next chapter.

2
Unified Masking (UMA)

In this chapter, we combine the DOM approach with the most randomness-efficient
masking approaches from software in a unified masking approach (UMA). The
basis of the generic UMA algorithm is the algorithm of Barthe et al. [Bar+17b]
which we combine with DOM. The randomness requirements of UMA are in all
cases less or equal to generic software masking approaches. As a non-generic
optimization, for the second protection order, we also take into account the
solution of Beläıd et al. [Bel+16]. We then show how the UMA algorithm can be
efficiently ported to hardware and thereby reduce the asymptotic randomness
costs from d(d + 1)/2 to d(d + 1)/4. For this purpose, we analyze the parts
of the algorithm that are susceptible to glitches and split the algorithm into
smaller independent hardware modules that can be calculated in parallel. As a
result, the latency in hardware is at most five cycles. Finally, we compare the
implementation costs and randomness requirements of UMA to the costs of DOM
and point out practical differences.

2.1 Randomness Gap in Hardware and Software

As a starting point of our randomness considerations we recapitulate the multi-
plication matrix of the DOM scheme for independently shared inputs. For the
moment, however, we do not consider registers but instead assume a software
implementation for which all stated equations are evaluated from left to right
and with respect to the parentheses. An example for the multiplication of the
independently shared variables a and b is given in Equation 2.1.

25

26 Chapter 2. Unified Masking (UMA)

q0 = a0b0 ⊕ (a0b1 ⊕ r0)⊕ (a0b2 ⊕ r1)⊕ (a0b3 ⊕ r3)⊕ (a0b4 ⊕ r6) . . .

q1 = (a1b0 ⊕ r0)⊕ a1b1 ⊕ (a1b2 ⊕ r2)⊕ (a1b3 ⊕ r4)⊕ (a1b4 ⊕ r7) . . .

q2 = (a2b0 ⊕ r1)⊕ (a2b1 ⊕ r2)⊕ a2b2 ⊕ (a2b3 ⊕ r5)⊕ (a2b4 ⊕ r8) . . .

q3 = (a3b0 ⊕ r3)⊕ (a3b1 ⊕ r4)⊕ (a3b2 ⊕ r5)⊕ a3b3 ⊕ (a3b4 ⊕ r9) . . .

q4 = (a4b0 ⊕ r6)⊕ (a4b1 ⊕ r7)⊕ (a4b2 ⊕ r8)⊕ (a4b3 ⊕ r9)⊕ a4b4 . . .

. . .

(2.1)

This shared multiplication requires d(d+ 1)/2 fresh random bits which results
from the fact that multiplication terms where a and b have the same index
(inner-domain terms) do not require fresh randomness, and for the remaining
cross-domain terms the same random bit is used as for terms with mirrored indices.
The DOM algorithm is especially suited for hardware implementations because it
does not require control over the order in which the (remasked) multiplications
terms are summed up in each domain, which would require additional registers.
However, by introducing a better control over the order in which these terms are
summed up (more registers or using software implementations) the randomness
requirement can be lowered as demonstrated by the software masking algorithm
of Barthe et al. , for instance.

2.1.1 Barthe et al.’s Algorithm

The essence of Barthe et al.’s algorithm is that by grouping the multiplication
terms and the used random bits in a certain way, the randomness can be reused
securely and in a more efficient manner than in Equation 2.1. Please note
that for the moment we just consider the original software implementation of
the algorithm for which all stated equations are evaluated from left to right.
Parentheses indicating registers are thus omitted.

Instead of using one random bit to protect two mirrored terms (aibj and aibj ,
where i 6= j) as in Equation 2.1, the same fresh random bit can be used again to
protect another pair of mirrored terms. The multiplication matrix for the shared
q can thus be written according to Equation 2.2 for d = 4 as an example. Here,
the random bit r0 is used to secure the absorption of the terms a0b1 and a1b0 in
q0 as well as for the terms a4b1 and a1b4 in q4.

q0 = a0b0 ⊕ r0 ⊕ a0b1 ⊕ a1b0 ⊕ r1 ⊕ a0b2 ⊕ a2b0

q1 = a1b1 ⊕ r1 ⊕ a1b2 ⊕ a2b1 ⊕ r2 ⊕ a1b3 ⊕ a3b1

q2 = a2b2 ⊕ r2 ⊕ a2b3 ⊕ a3b2 ⊕ r3 ⊕ a2b4 ⊕ a4b2

q3 = a3b3 ⊕ r3 ⊕ a3b4 ⊕ a4b3 ⊕ r4 ⊕ a3b0 ⊕ a0b3

q4 = a4b4 ⊕ r4 ⊕ a4b0 ⊕ a0b4 ⊕ r0 ⊕ a4b1 ⊕ a1b4

(2.2)

A vectorized version of Barthe et al.’s algorithm is given in Equation 2.3
where all operations are performed share-wise from left to right and bold let-
ters indicate a vector of shares (q = {q0, q1, . . . , qd}). Accordingly, the vector

2.1. Randomness Gap in Hardware and Software 27

multiplication is the multiplication of the shares with the same share index, e.g.
ab = {a0b0, a1b1, . . . , adbd}. Additions in the subscript indicate an index offset
of the vector modulo d+ 1 which equals a rotation of the vector elements inside
the vector, e.g. a+1 = {a1, a2, . . . , a0}. Superscript indices refer to different and
independent randomness vectors with a size of d+ 1 random bits for each vector.

q = ab⊕ r0 ⊕ ab+1 ⊕ a+1b⊕ r0+1 ⊕ ab+2 ⊕ a+2b

⊕ r1 ⊕ ab+3 ⊕ a+3b⊕ r1+1 ⊕ ab+4 ⊕ a+4b

⊕ r2 ⊕ ab+5 ⊕ a+5b⊕ r2+1 ⊕ ab+6 ⊕ a+6b . . .

(2.3)

At the beginning of the algorithm, the shares of q are initialized with the
terms resulting from the share-wise multiplication ab. Then there begins a
repeating sequence that ends when all multiplication terms are absorbed inside
one of the shares of q. The first sequence starts with the addition of the random
bit vector r0. Then a multiplication term and mirrored term pair (aibj and ajbi,
where i 6= j) is added, before the rotated r0+1 vector is added followed by the
next pair of terms. The next (up to) four multiplication terms are absorbed
using the same sequence but with a new random bit vector r1. This procedure is
repeated until all multiplication terms are absorbed. There are thus dd4e random
vectors required with a length of d + 1 bits each. So, in total the randomness
requirement is dd4e(d + 1). In any case, for the last sequence Barthe et al.’s
algorithm introduces a new randomness vector that is added once normally and
once rotated by one element. This makes the randomness usage of the last
sequence less efficient if the last sequence uses less than four multiplication terms
per share of q. We shall take this up again in Section 2.2 in order to extend
Barthe et al.’s algorithm by making it more randomness-efficient.

2.1.2 Randomness Bounds and Optimal Solutions

Barthe et al.’s generic algorithm, even though it has the best asymptotic ran-
domness requirement so far, is known to be not optimal in all cases. The work of
Beläıd et al. [Bel+16] proves a lower bound for the randomness requirement of
masked multiplications being d+ 1 for d ≤ 3 (and d for the cases d ≤ 2). This
work also introduces a generic masking algorithm along with some brute-force
searched “optimal” solutions which achieve the stated randomness bound.

Nevertheless, it remains unclear whether or not this stated randomness bound
is tight. Furthermore, this lower randomness bound (for d > 1) is so far only
reached by Beläıd et al. ’s brute-force searched optimal solutions up to order 4,
and in the case of (d = 3 and d = 4) by Barthe et al.’s generic algorithm. For
protection orders above d = 4, there is no algorithm known to reach this lower
bound. In addition, Barthe et al.’s algorithm requires one fresh random bit more
than Beläıd et al.’s generic algorithm in case d = 1 mod 4.

The randomness requirement is depicted in Figure 2.1 for which the so far
least randomness demanding masked multiplication algorithms in software were
merged together, and then compared to the so far least randomness demanding

28 Chapter 2. Unified Masking (UMA)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

4

8

16

32

64

128

Protection order d

R
an

d
om

n
es

s
[b

it
s]

lower bound

best SW/[Bar+17b] & [Bel+16]

best HW/[Gro+17a]

Figure 2.1: Randomness requirements for the best known masked multiplication
algorithms

masked multiplication algorithm suitable for hardware implementations (DOM).
As it shows, the gap between the state of the art in software and hardware-based
masking is quite significant, and in some cases it is as wide as twice the amount
of random bits required for software (for d = 0 mod 4).

In the next sections, we introduce the UMA multiplication algorithm that
closes the randomness gap between software and hardware-based masking. In
addition, the UMA algorithm also lowers the randomness requirement for software
for d = 1 mod 4.

2.2 Unified Masked Multiplication in Software

For the assembly of the UMA algorithm, we extend Barthe et al.’s algorithm with
optimizations from Beläıd et al. and DOM. We differentiate between four cases
for handling the last sequence in Barthe et al.’s algorithm: (1) if the protection
order d is an integral multiple of 4, we call the last sequence complete, (2) if d ≡ 3
mod 4, we call it pseudo-complete, (3) if d ≡ 2 mod 4, we call it half-complete,
and (4) if d ≡ 1 mod 4, we call it incomplete. We first introduce each case briefly
before giving a full algorithmic description of the whole algorithm.

Complete and Pseudo-Complete. Complete and pseudo complete sequences
are treated according to Barthe et al.’s algorithm. In contrast to the complete
sequence, the pseudo-complete sequence contains only three multiplication terms
per share of q. See the following example for d = 3:

2.2. Unified Masked Multiplication in Software 29

q = ab⊕ r0 ⊕ ab+1 ⊕ a+1b⊕ r0+1 ⊕ ab+2

Half-Complete. Half-complete sequences contain two multiplication terms per
share of q. For handling this sequence, we consider two different optimizations.
The first optimization requires d fresh random bits and is hereafter referred to as
Beläıd’s optimization because it is the non-generic solution in [Bel+16] for the
d = 2 case. An example for Beläıd’s optimization is given in Equation 2.4. The
trick to save randomness here is to use the accumulated randomness used for the
terms in the first functions in order to protect the last function of q. It needs to
be ensured that r0

0 is added to r0
1 before the terms a2b0 and a0b2 are added.

q0 = a0b0 ⊕ r0
0 ⊕ a0b1 ⊕ a1b0

q1 = a1b1 ⊕ r0
1 ⊕ a1b2 ⊕ a2b1

q2 = a2b2 ⊕ r0
0 ⊕ r0

1 ⊕ a2b0 ⊕ a0b2

(2.4)

Unfortunately, Beläıd’s optimization cannot be generalized to higher orders
to the best of our knowledge. As a second optimization we thus consider the
DOM approach for handling this block which is again generic. DOM requires one
addition less for the last q function for d = 2 but requires one random bit more
than the Beläıd’s optimization (see Equation 2.5) and thus the same amount as
Barthe et al.’s original algorithm. However, for the hardware implementation
the DOM approach saves area in this case because it can be parallelized.

q0 = a0b0 ⊕ r0
0 ⊕ a0b1 ⊕ r0

2 ⊕ a0b2

q1 = a1b1 ⊕ r0
1 ⊕ a1b2 ⊕ r0

0 ⊕ a1b0

q2 = a2b2 ⊕ r0
2 ⊕ a2b0 ⊕ r0

1 ⊕ a2b1

(2.5)

Incomplete. Incomplete sequences contain only one multiplication term per
share of q. Therefore, in this case one term is no longer added to its mirrored
term. Instead, the association of each term with the shares of q and the usage of
the fresh random bits is performed according to the DOM scheme. An example
for d = 1 is given in Equation 2.6.

q0 = a0b0 ⊕ r0
0 ⊕ a0b1

q1 = a1b1 ⊕ r0
0 ⊕ a1b0

(2.6)

2.2.1 Full Description of UMA

Algorithm 1 shows the pseudo-code of the proposed UMA algorithm. The inputs
of the algorithm are the two operands a and b split into d + 1 shares each.
The randomness vector r∗ (we use ∗ to make it explicit that r is a vector of

30 Chapter 2. Unified Masking (UMA)

Algorithm 1 : UMA multiplication algorithm

Input: a, b, r∗

Output: q
Initialize q:

1: q = ab
Handle complete sequences:

2: for i = 0 < bd/4c do
3: q⊕= ri ⊕ ab+2i+1 ⊕ a+2i+1b⊕ ri+1 ⊕ ab+2i+2 ⊕ a+2i+2b
4: end for

Handle last sequence:
5: l = bd/4c

Pseudo-complete sequence:
6: if d ≡ 3 mod 4 then
7: q⊕= rl ⊕ ab+2l+1 ⊕ a+2l+1b⊕ rl+1 ⊕ ab+2l+2

Half-complete sequence:
8: else if d ≡ 2 mod 4 then
9: if d = 2 then

10: z = {rl0, rl1, rl0 ⊕ rl1}
11: q⊕= z ⊕ ab+2l+1 ⊕ a+2l+1b
12: else
13: q⊕= rl ⊕ ab+2l+1 ⊕ rl+2l+2 ⊕ ab+2l+2

14: end if
Incomplete sequence:

15: else if d ≡ 1 mod 4 then
16: z = {rl, rl}
17: q⊕= z ⊕ ab+2l+1

18: end if
19: return q

vectors) contains dd/4e vectors with d+ 1 random bits each. Please note that all
operations, including the multiplication and the addition, are again performed
share-wise from left to right.

At first, the return vector q is initialized with the multiplication terms that
have the same share index for a and b in Line 1. In Line 2 to 4, the complete
sequences are calculated according to Barthe et al.’s original algorithm. We use
the superscript indices to address specific vectors of r∗ and use again subscript
indices for indexing operations on the vector. Subscript indices with a leading
“+” denote a rotation by the given offset.

From Line 5 to 17, the handling of the remaining multiplication terms is
performed according to the description above for the pseudo-complete, half-
complete, and incomplete cases. In order to write this algorithm in quite compact
form, we made the assumption that for the last random bit vector rl only the
required random bits are provided. In Line 10 where Beläıd’s optimization is
used for d = 2, a new bit vector z is formed that consists of the concatenation of

2.3. UMA in Hardware 31

the two elements of vector rl and the sum of these bits. So, in total the z vector
is again d+ 1 (three) bits long. In a similar way, we handle the randomness in
Line 16. We concatenate two copies of rl of the length (d+ 1)/2 to form z which
is then added to the remaining multiplication terms.

Randomness requirements. Table 2.1 shows a comparison of the random-
ness requirements of UMA with other masked multiplication algorithms. The
comparison shows that UMA requires the least amount of fresh randomness
in all generic cases. With the non-generic optimization by Beläıd et al., the
algorithm reaches lower bounds of d+ 1 for d > 2 and of d for d ≤ 2 below the
fifth protection order.

Table 2.1: Randomness requirement comparison

d UMA Barthe et al. Beläıd et al. DOM

1 1 2 1 1
2 3 (21) 3 3 (21) 3
3 4 4 5 (41) 6
4 5 5 8 (51) 10
5 9 12 11 15
6 14 14 15 21
7 16 16 19 28
8 18 18 24 36
9 25 30 29 45

10 33 33 35 55
11 36 36 41 66
12 39 39 48 78
13 49 56 55 91
14 60 60 63 105
15 64 64 71 120

1) non-generic solution

Compared to Barthe et al.’s original algorithm, UMA saves random bits in
the cases where the last sequence is incomplete. More importantly, since we
target efficient higher-order masked hardware implementations, UMA has much
lower randomness requirements than the original DOM scheme. Up to half of
the randomness costs can thus be saved compared to DOM. In the next section
we show how UMA can be securely and efficiently implemented in hardware.

2.3 UMA in Hardware

Directly porting UMA to hardware by emulating what a processor would do, i.e.
ensuring the correct order of instruction execution by using registers in between
every operation, would introduce a tremendous area and performance overhead

32 Chapter 2. Unified Masking (UMA)

over existing hardware masking approaches. To make this algorithm more efficient
while still keeping it secure in hardware, it needs to be sliced into smaller portions
of independent code parts than can be translated to hardware modules which
can be evaluated in parallel.

Inner-domain block. The assignment of the inner-domain terms (q = ab) in
Line 1 of Algorithm 1 can thus be considered uncritical in terms of dth-order
probing security. Only shares with the same share index are multiplied and stored
at the same index position of the share in q. The inner-domain block is depicted
in Figure 2.2 and consist of d + 1 AND gates that are evaluated in parallel.
Hence, each share stays in its respective share domain. So even if the sharings
of the inputs of a and b were the same, this block would not compromise the
security because neither a0a0 nor b0b0, for example, would provide any additional
information on a or b. We can thus combine the inner-domain block freely with
any other secure masked component that ensures the same domain separation.

a
0
b
0

q
0

a
1
b
1

q
1

a
2
b
2

q
2

a
d
b
d

q
d

... XXXX

Figure 2.2: Inner-domain block

(Pseudo-)Complete blocks. For the security of the implementation in hard-
ware, the order in which the operations in Line 3 (and Line 7) are performed is
essential. Since the calculation of one complete sequence is subdivided by the
addition of the random vector in the middle of this code line, it is quite tempting
to split this calculation into two parts and to parallelize them in order to speed
up the calculation.

However, if we consider Equation 2.3, and omit the inner domain-terms that
would have already been calculated in a separate inner-domain block, a probing
attacker could get (through glitches) the intermediate results from the probe
p0 = r0 ⊕ a0b1 ⊕ a1b0 from the calculation of q0 and p1 = r0 ⊕ a4b1 ⊕ a1b4 from
the calculation of q4. By combining the probed information from p0 and p1 the
attacker would already gain information on three shares of a and b. With the
remaining two probes, the attacker could just probe the missing shares of a or b
to fully reconstruct them. The complete sequence and for the same reasons also
the pseudo-complete sequence can thus not be further parallelized.

2.3. UMA in Hardware 33

X

a b
+1
a
+1
b a b

+2
r a

+2
b

 FF

 FF

 FF

 FF

 FF

 FF FF

 FF

q

X

X

X

 <<1

Figure 2.3: Complete block

Figure 2.3 shows the vectorized complete block that consists of five register
stages. Optional pipeline registers are depicted with dotted lines where necessary
that make the construction more efficient in terms of throughput. For the pseudo-
complete block, the last XOR is removed and the most right multiplier including
the pipeline registers before the multiplier (marked green).

The security of this construction has already been analyzed by Barthe et
al. [Bar+17b] in conjunction with the inner-domain terms (which have no influence
on the probing security) and for subsequent calculation of the sequences. Since
the scope of the randomness vector is limited to one block only, a probing attacker
does not gain any advantage (information on more shares than probes used) by
combining intermediate results of different blocks, even if they are calculated in
parallel. Furthermore, each output of these blocks is independently and freshly
masked and separated in d+ 1 domains which allows for the combination with
other blocks.

Half-complete block. Figure 2.4 shows the construction of the half-complete
sequence in hardware when Beläıd’s optimization is used for d = 2. The creation
of the random vector z requires one register and one XOR gate. The security of
this construction was formally proven by Beläıd et al. in [Bel+16]. For protection
orders other than d = 2, we use instead the same DOM construction as for the
incomplete block.

34 Chapter 2. Unified Masking (UMA)

a b
+1
a
+1
b

q

 FF

 FF

 FF

X

X

r
1

z

r
0

Figure 2.4: Half-complete block (Beläıd’s opt.)

Incomplete block. For the incomplete block (and the half-complete block
without Beläıd’s optimization) each random bit is only used to protect one
multiplication term and its mirrored term. The term and the mirrored term are
distributed in different domains to guarantee probing security. Figure 2.5 shows
the construction of an incomplete block following the construction principles
of DOM for two bits of q at the same time. For half-complete blocks (without
Beläıd’s optimization), two instances of the incomplete constructions are used
with different indexing offsets and the resulting bits are added together (see
Line 13). No further registers are required for the XOR gate at the output of
this construction because it is ensured by the registers that all multiplication
terms are remasked by r before the results are added.

Assembling the UMA AND Gate. Figure 2.6 shows how the UMA AND
gate is composed from the aforementioned building blocks. Except for the inner-
domain block which is always used, all other blocks are instantiated and connected
depending on the given protection order which allows for a generic construction
of the masked AND gate from d = 0 (no protection) to any desired protection
order. Connected to the inner-domain block, there are bd4c complete blocks, and
either one or none of the pseudo-complete, half-complete, or incomplete blocks.

Table 2.2 gives an overview of the hardware costs of the different blocks that
form the masked AND gate. All stated gate counts need to be multiplied by

2.3. UMA in Hardware 35

a

 FF

X

b

X

<< 2l+1 << 2l+1

r

 FF

q q
+2l+1

Figure 2.5: Incomplete block

a b

Inner-Domain Complete Pseudo-
Complete

Half-
Complete Incomplete

q

Figure 2.6: Fully assembled UMA AND gate

the number of shares (d+ 1). The XOR gates which are required for connecting
the different blocks are accounted to the inner-domain block. In case pipelining
is used, the input shares of a and b are pipelined instead of pipelining the
multiplication results inside the respective blocks. The required pipelining
registers for the input shares are also added to the inner-domain block’s register
requirements, since this is the only fixed block of every masked AND gate. The
number of pipelining registers is determined by the biggest latency required
for one block. In case one or more complete blocks are instantiated, there are
always five register stages required which gives a total amount of 10(d+ 1) input
pipelining registers. However, for d < 4 the number of input pipelining registers
is always twice the amount of cycles for the instantiated block which could also
be zero for the unprotected case where the masked AND gate consists only of the
inner-domain block. The inner-domain block itself does not require any registers
except for the pipelining case and thus has a latency of zero.

For the cost calculation of the UMA AND gate, the gate counts for the
complete block need to be multiplied by the number of instantiated complete
blocks (bd4c) and the number of shares (d+ 1). The other blocks are instantiated
at most once. The pseudo-complete block in case d ≡ 3 mod 4, the half-complete

36 Chapter 2. Unified Masking (UMA)

Table 2.2: Overview of the hardware costs of different blocks

Block AND XOR FF ·(d+ 1) Latency

·(d+ 1) ·(d+ 1) w/o pipel. pipelined [Cycles]

Inner-domain 1 dd4e 0 0− 10 0

Complete 4 5 5 7 5

Pseudo-complete 3 4 4 6 4

Half-complete:
Beläıd’s optimization 2 2 + 1

3 3 3 3
DOM 2 3 2 2 1

Incomplete 1 1 1 1 1

block in case d ≡ 2 mod 4 (where Beläıd’s optimization is only used for d = 2),
and the incomplete block in case d ≡ 1 mod 4.

Comparison with DOM. Table 2.3 shows a comparison of the UMA AND
gate with a masked AND gate from the DOM scheme. For the generation of
these numbers, we used Table 2.2 to calculate the gate counts for the UMA
AND gate. For DOM, we have (d+ 1)2 AND gates, 2d(d+ 1) XOR gates, and
(d + 1)2 registers (− d − 1, for the unpipelined variant). For calculating the
gate equivalence, we used the 90 nm UMC library from Faraday as reference.
Accordingly, a two-input AND gate requires 1.25 GE, an XOR gate 2.5 GE, and
a D-type flip-flop with asynchronous reset 4.5 GE.

Since in both implementations AND gates are only used for creating the
multiplication terms, both columns for the UMA AND gate construction and the
DOM AND are equivalent. The gate count for the XORs in the UMA implemen-
tation is lower than for the DOM gate which results from the reduced randomness
usage compared to DOM. The reduced XOR count almost compensates for the
higher register usage in the unpipelined case. The difference for the 15th order,
for example, is still only 8 GE. However, the latency of the UMA AND gate is
in contrast to the DOM AND gate, except for d = 1, not always one cycle but
increases up to five cycles. Therefore, in the pipelined implementation more
registers are necessary, which results in an increasing difference in the required
chip area for higher protection orders.

Practical Differences to DOM. There is another very important practical
difference between the DOM and UMA masked AND gates regarding their
security. While both masked AND gates are secure in the probing model under the
assumption of independently shared inputs, the reduced amount of randomness
required for the UMA variant does not achieve a complete separation of the
shared input variables at the output, even after the insertion of another register
stage. More care has thus to be take in practice when combining UMA gates. For

2.3. UMA in Hardware 37

example, the calculation of (x ·y) ·x is secure when DOM ANDs are used, but not
for all protection orders if UMA gates are used. A DOM gate can therefore not
always be replaced with a UMA gate in practice. At this point, we want to thank
Moos et al. [Moo+18] for pointing out this difference prior to the publishing of
this thesis.

38 Chapter 2. Unified Masking (UMA)

T
a
b
le

2
.3
:

C
o
m

p
a
riso

n
o
f

th
e

U
M

A
A

N
D

g
a
te

w
ith

D
O

M

U
M

A
A

N
D

D
O

M
A

N
D

d
A

N
D

X
O

R
R

egisters
G

E
A

N
D

X
O

R
R

egisters
G

E

u
n

p
ip

el.
p

ip
el.

u
n

p
ip

el.
p

ip
el.

u
n

p
ip

el.
p

ip
el.

u
n

p
ip

el.
p
ip

el.

1
4

4
2

6
2
4

4
2

4
4

2
4

24
33

2
9

10
9

27
7
7

1
5
7

9
1
2

6
9

68
82

3
1
6

20
16

56
1
4
2

3
2
2

1
6

2
4

12
16

134
152

4
2
5

30
25

85
2
1
9

4
8
9

2
5

4
0

20
25

221
244

5
3
6

48
36

1
08

3
2
7

6
5
1

3
6

6
0

30
36

330
357

6
4
9

70
49

1
33

4
5
7

8
3
5

4
9

8
4

42
49

460
492

7
6
4

88
72

1
84

6
2
4

1
,1

2
8

6
4

1
1
2

56
64

612
648

8
8
1

108
90

2
16

7
7
6

1
,3

4
3

8
1

1
4
4

72
81

785
826

9
10

0
140

110
2
50

9
7
0

1
,6

0
0

1
0
0

1
8
0

90
100

980
1,025

1
0

1
21

1
7
6

1
3
2

2
86

1
,1

8
5

1
,8

7
8

1
2
1

2
2
0

110
121

1,196
1,246

1
1

1
44

2
0
4

1
6
8

3
60

1
,4

4
6

2
,3

1
0

1
4
4

2
6
4

132
144

1,434
1,488

1
2

1
69

2
3
4

1
9
5

4
03

1
,6

7
4

2
,6

1
0

1
6
9

3
1
2

156
169

1,693
1,752

1
3

1
96

2
8
0

2
2
4

4
48

1
,9

5
3

2
,9

6
1

1
9
6

3
6
4

182
196

1,974
2,037

1
4

2
25

3
3
0

2
7
0

5
10

2
,3

2
1

3
,4

0
1

2
2
5

4
2
0

210
225

2,276
2,344

1
5

2
56

3
6
8

3
0
4

5
92

2
,6

0
8

3
,9

0
4

2
5
6

4
8
0

240
256

2,600
2,672

3
Low-Latency Masking (LOLA)

In this chapter, we show how to reduce the latency of DOM implementations.
From the last two chapters we can conclude that the main causes which hinder the
calculation of a DOM masked circuit in fewer clock cycles are: 1) the compression
to d+ 1 shares after nonlinear operations (like the DOM multiplier in Figure 1.1)
which require registers for the resharing of the cross-domain terms, and 2) the
temporary or permanent dependencies (variable collisions) at the inputs of a
nonlinear circuit part (cf. Section 1.1, in Chapter 1). Our LOLA approach thus
works by skipping the share compression step and avoiding variable collisions at
the input of nonlinear functions.

3.1 Compression Skipping

Our main observation is that the resharing and compression to d+ 1 shares (and
therefore also the randomness and additional circuitry) is not a necessity from
the probing model itself. It is solely performed for practical reasons and to some
extent to make the result independent of the shared operands without having an
explicit mask refreshing. We extend the domain separation requirement of the
DOM approach insofar as we still constrain each domain to use at most one share
per variable but with the addition to allow domains with mixed share indices.

For example, the shared multiplication q = x·y without a subsequent resharing
and compression step thus results in four share domains for the result variable
q (Figure 3.1). Each domain contains only one multiplication term from the
calculation step. Any subsequent linear operations on the shares of q that only
involve shares that are already used in the respective domain can be performed
without violating the probing model. If q is multiplied by another variable, e.g.

39

40 Chapter 3. Low-Latency Masking (LOLA)

z with d+ 1 shares, the number of shares and domains increases to (d+ 1)3 and
so on. To keep this exponential blowup of shares and domains within reasonable
bounds, the number of consecutive nonlinear operations needs to be minimized,
or otherwise at some point a secure share compression needs to be performed if
the blowup becomes unacceptable.

q
1,1

x
0

x
1

y
0

y
1

q
0,0

domain 0,0

q
0,1

q
1,0

domain 0,1 domain 1,0 domain 1,1

Figure 3.1: First-order LOLA multiplication with compression skipping, resulting in
four domains

The security in the probing model for the compression skipping approach
is given because any masked circuit that can be divided into at least d + 1
independent subcircuits (without any wires to the other subcircuits), where each
subcircuit uses at most one of the d+ 1 input shares from each variable, requires
at least d+ 1 probes to combine all shares of one variable.

3.2 Avoiding Collisions

The up to now tacit assumption that allows for the nonlinear combination
of shares without compression and mask refreshing is that all operands have
independent sharings. Meaning that it is relatively straightforward to apply this
approach to a masked circuit that calculates x · y · z if all involved shares are
produced using independent and fresh randomness. The calculation of (x · y) · x,
on the other hand, requires more attention (see Figure 3.2, left). One of the
resulting multiplication terms would be x0 · y0 · x1 (q0,0,1) which brings two
shares of x together and thus violates the domain separation requirement. This
circumstance is indicated in Figure 3.2 by the different coloring of the shares
for x which when combined result in an insecure sharing (colored red). One
approach to circumvent the violation of the probing model, that is used by the
threshold implementations scheme for instance, is to use more than d+ 1 shares
and to ensure that in the worst case the probing attacker gets access to at most
d shares when using up to d probing needles. Efficient sharings that fulfill the

3.3. Resolving Gate Collisions 41

x
0

y
0

x
1

y
1

q
0,0,1

x
0

y
0

x
1

y
1

x'
1

x'
0

Figure 3.2: Example for an insecure first-order masked circuit calculating (x · y) · x
(left), and a secure circuit (x · y) · x′ (right). The shares of x are colored
green (x0) and blue (x1) for clarity reasons

properties required by the TI [Nik+06] scheme (correctness, independence, and
uniformity) at the same time are, however, not trivial to find.

Instead of increasing the share count per variable, we propose the duplication
of colliding variables (and gates) by using multiple shared instances of the same
variable with independent sharings. Instead of calculating (x · y) · x, we thus

calculate the equivalent (x ·y) ·x′ where x =
∑d
i=0 xi =

∑d
i=0 x

′
i, and all involved

shares are picked independently and uniformly at random. As Figure 3.2 (right)
shows, mixing of the shares of x is circumvented this way. While at first sight
this may seem as if we were using a sledgehammer to crack a nut, it has the same
randomness costs for sharing a variable than e.g. a first-order (d = 1) TI with
three shares and does not require additional (online) randomness. We would
thus share x into x0 = x⊕ r0 and x1 = r0, and x′ into x′0 = x⊕ r1 and x′1 = r1.
The probing security for this simple example can be easily observed by writing
down all resulting shares qi,j,k = xiyjx

′
k. Since none of the shares of q contain

two shares of the same variable, the sharing is secure.
More generally, the probing security of any circuit with d+ 1 input shares

and protection order d is given, if at no point in the circuit there exists a path
from one share of a variable to another share of the same variable (assuming that
all variables are independently shared).

3.3 Resolving Gate Collisions

When looking at complex circuits, collisions can no longer entirely be resolved
by duplication of the input variables. For the purpose of illustration, we consider
a purely combinatorial unmasked circuit (Figure 3.3).

We note that collisions that would be caused when a circuit is masked using
the DOM scheme are already evident in the unshared circuit. The first collision
in this circuit (1) is caused because there exists a path (over other gates) from
one input of the circuit to both inputs of a nonlinear gate. Since this collision is
directly caused by the circuit input i3, we could simply duplicate the input that
causes the collision as before and connect the copy (i′3) accordingly (Figure 3.3,
right). The second collision is caused by a gate (2) that has a path to both inputs
of a nonlinear gate. In this case, simply duplicating the inputs would not be

42 Chapter 3. Low-Latency Masking (LOLA)

i
n

...i
4

i
3

i
1

o
2

o
1

...

i
2

2

1

i
3

1

i
n

...i
4

i
3

i
n
''...i

4
''i

3
''

2

i
3
'

o
2

...o
1

i
1

resolve
collisions

nonlinear gates

linear gates

Legend:

Figure 3.3: Example for collisions directly caused by inputs (1) and collisions caused
by gates (2), collisions (left) and resolved collisions (right)

enough to avoid this collision. Instead, the gate causing the collision needs to be
duplicated including its entire fan-in circuitry and the respective inputs. The
output of the duplicated circuit then needs to be used in one path instead of the
output wire of the gate that caused the collision.

In the next sections, we demonstrate the suitability of our LOLA approach
on practical examples and discuss trade-offs and possible pitfalls.

3.4 A Low-Latency Ascon S-box

As a first proof of concept, we introduce a masked Ascon S-box that requires a
single clock cycle while existing d+ 1 share implementations [GM17] require at
least three clock cycles. The S-box is equivalent to the Keccak S-box except for
an affine transformation on the input that produces temporary variable collisions
making it a viable first practical example for our approach. We first transform
the unshared S-box circuit to free the circuit from variable collisions, and then
share the S-box according to our LOLA approach.

Collision-free S-box. The structure of the S-box is depicted in Figure 3.4,
which corresponds to Equation 3.1.

a′′ = (a⊕ e)⊕ (¬b ∧ (b⊕ c))⊕ (d⊕ e)⊕ (¬ (a⊕ e) ∧ b)
b′′ = b⊕ (¬ (b⊕ c) ∧ d)⊕ (a⊕ e)⊕ (¬b ∧ (b⊕ c))

c′′ = ¬
(

(b⊕ c)⊕ (¬d ∧ (d⊕ e))
)

d′′ = d⊕ (¬ (d⊕ e) ∧ (a⊕ e))⊕ (b⊕ c)⊕ (¬d ∧ (d⊕ e))
e′′ = (d⊕ e)⊕ (¬ (a⊕ e) ∧ b)

(3.1)

By looking at the equations one can observe that there is a variable collision
in the AND gates in five cases (underlined parts in Equation 3.1). These are
the nonlinear gates that would produce a violation in the probing model due to
glitches in case we would share the S-box using DOM. For example (¬b ∧ (b⊕ c))

3.4. A Low-Latency Ascon S-box 43

a

b

c

d

e

⊕

⊕

⊕

5
5

5
5

5

�

�

�

�

�

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

5

a′′

b′′

c′′

d′′

e′′

Figure 3.4: Ascon’s original S-box, with collisions in a to d

in a′′ combines the variable b with itself in an AND gate which would combine
shares with different share index (e.g. b0b1) when the S-box is shared and thus
create a violation.

To avoid collisions in the AND gates we duplicate the signals b, d, and e (b′,
d′, and e′) and replace one of the operands of the AND gates accordingly as
shown in Equation 3.2.

a′′ = (a⊕ e)⊕ (¬b′ ∧ (b⊕ c))⊕ (d⊕ e)⊕ (¬ (a⊕ e) ∧ b)
b′′ = b⊕ (¬ (b⊕ c) ∧ d)⊕ (a⊕ e)⊕ (¬b′ ∧ (b⊕ c))
c′′ = ¬ ((b⊕ c)⊕ (¬d′ ∧ (d⊕ e)))
d′′ = d⊕ (¬ (d⊕ e) ∧ (a⊕ e′))⊕ (b⊕ c)⊕ (¬d′ ∧ (d⊕ e))
e′′ = (d⊕ e)⊕ (¬ (a⊕ e) ∧ b)

(3.2)

Sharing of the S-box. Since the S-box description is now free from any
variable collisions, the S-box can safely be shared following our LOLA approach.
We assume that each of the five inputs and the two duplicated inputs are shared
using d+ 1 shares. As there is a single layer of AND gates, the shares and thus
the domains for each of the outputs grow from d+ 1 to (d+ 1)2, and we use two
indices (i and j) to denote the according output share.

44 Chapter 3. Low-Latency Masking (LOLA)

a′′i,j =

{
(ai ⊕ ei)⊕

(
¬ib′i ∧ (bi ⊕ ci)

)
⊕ (di ⊕ ei)⊕

(
¬i (ai ⊕ ei) ∧ bi

)
, if i = j.(

¬ib′i ∧ (bj ⊕ cj)
)
⊕
(
¬i (ai ⊕ ei) ∧ bj

)
, otherwise.

b′′i,j =

{
bi ⊕

(
¬i (bi ⊕ ci) ∧ di

)
⊕ (ai ⊕ ei)⊕

(
¬ib′i ∧ (bi ⊕ ci)

)
, if i = j.(

¬i (bi ⊕ ci) ∧ dj
)
⊕
(
¬jb′j ∧ (bi ⊕ ci)

)
, otherwise.

c′′i,j =

{
¬i
(
(bi ⊕ ci)⊕

(
¬id′i ∧ (di ⊕ ei)

))
, if i = j.(

¬id′i ∧ (dj ⊕ ej)
)
, otherwise.

d′′i,j =

{
di ⊕

(
¬i (di ⊕ ei) ∧ (ai ⊕ e′i)

)
⊕ (bi ⊕ ci)⊕

(
¬id′i ∧ (di ⊕ ei)

)
, if i = j.(

¬i (di ⊕ ei) ∧
(
aj ⊕ e′j

))
⊕
(
¬jd′j ∧ (di ⊕ ei)

)
, otherwise.

e′′i,j =

{
(di ⊕ ei)⊕

(
¬i (ai ⊕ ei) ∧ bi

)
, if i = j.(

¬i (ai ⊕ ei) ∧ bj
)
, otherwise.

(3.3)

For each output variable we consider two cases:
1) The case i = j covers the inner-domain terms where only variables with

the same share index appear. To ensure correctness of the sharing, the negation
e.g. ¬i is only effective if the corresponding variable in the superscript equals to
zero so that only the first share of a variable is inverted.

2) For the remaining output shares, we need to be more careful to fulfill
the domain separation requirement. By the duplication of the according inputs
we ensured that there are no two paths for any of the input variables that
are combined in a nonlinear AND gate, which would result in a flaw that
could not be avoided in this case. However, for linear gates we still need to
ensure that we do not combine shares with different share indices from the same
variable in the same domain (domain separation requirement). For example
(b′i ∧ (bj ⊕ cj)) ⊕ ((ai ⊕ ei) ∧ bj) in a′′ would produce a flaw in case we would
switch the share index variable of one of the b variables (i to j) in this equation
so that we have (. . . (bi . . .))⊕ ((. . . bj). For this reason, we also need to set the
indices in b′′ and d′′ for the last AND gate terms accordingly.

The correctness of the sharing is given by the fact that the sums over i and j
over each output variable result in Equations 3.1 when b′ is set to b, d′ is set to
d, and e′ is set to e. The security is given by the fact that we do not have any
domain crossings.

3.5 A Low-Latency Masked AES S-box

The efficient (masked) implementation of the AES S-box has proven to be a
difficult practical problem and a huge variety of papers have been published
on efficient S-box constructions. Most of the recent works on masked AES
implementations use the S-box design of David Canright [Can05] as basis. The
original design goal of Canright’s S-box design is low chip area for an unmasked

3.5. A Low-Latency Masked AES S-box 45

implementation which does not automatically result in the lowest area costs for a
side-channel protected implementation. For our LOLA approach, the maximum
logic depth and in particular the nonlinear gate depth (number of AND gates or
GF multipliers in the logic path) seems to be the natural major design criterion
because at each nonlinear gate the number of shares is increased. The S-box
design of Boyar and Peralta [BP12] addresses low logic depth which results in a
total logic depth of 16 and a nonlinear gate depth of 4. This design was most
recently used in another work on low-latency masking by Ghoshal et al. [GC17]
with a latency of three to four cycles. Canright’s S-box on the other hand has a
logic depth of 25 to 27, and a nonlinear gate depth of 4 (in the variant as it is
used by most masked implementations). Another important aspect that needs to
be taken into account for our approach is the number of bit collisions because
it determines the number of input duplicates we need to provide in order to
guarantee collision freeness.

Choosing the most promising S-box design. As analyzing a circuit with
respect to its collision behavior is rather time-consuming, we developed a tool
that simply traces all inputs and gate outputs through a given circuit and checks
for conflicts. We analyzed the Canright S-box (original design), the Boyar-Peralta
S-box and the design of Edwin NC Mui [Mui07]. As it turns out, even despite the
fact that the Boyar-Peralta S-box was designed for low circuit depth, it implies
lots of gate dependencies which require quite a number of sub-circuit copies and
input copies. Furthermore, the Canright and the Mui S-box designs do not break
down the complete design of the AES S-box into single gates but rather consist of
larger self-contained structures like Galois field multipliers which can be shared
more efficiently than by sharing each AND gate separately. The circuit that
showed the fewest dependencies is the design by Mui which we then chose to
take it as basis for our own design. However, we note that we do not consider
this choice of the S-box or our LOLA implementations of it to be optimal.

Mui’s design is depicted in Figure 3.5. The black and red (security-critical)
paths correspond to the original design by Edwin NC Mui. The gray dotted
circuit elements are used for the collision-free S-box design and replace the
red paths. For the design of the S-box without collisions, we took an iterative
approach for which we implemented the circuit from the inputs onwards to the
next nonlinear part of the circuit and checked for collisions. We thus also split
the explanation accordingly.

S-box inputs to inverter. After the input transformation mapping the S-box
input x, which is interpreted as a polynomial in GF (256), to two elements in
GF (16) the transformed input is split into two halves. The two halves are
nonlinearly combined in the GF (16) multiplier. Since the linear input mapping
and the XOR in front of the first GF multiplier mixes many of the input bits
(cf. [Mui07] for details), it requires to duplicate all bits of x (x′) except for the
fifth bit and the circuitry that causes the flaw (the gray colored and dotted input
mapping). Otherwise, an input collision would be caused in the multiplier as

46 Chapter 3. Low-Latency Masking (LOLA)

X
Input
Transf.

GF(16)
Mult.

x2 x∙λ
GF(16)
Mult.

GF(16)
Mult.

Output
Transf. Y

X' Input
Transf.

4 Copies

X''
Input
Transf.

GF(16)
Inverter

1. Compression
(optional)

2. Compression
(optional)

Figure 3.5: Mui S-box design (black and red parts are from the original design),
gray dotted paths and elements replace the red paths to which they are
connected in the collision-free design

indicated by the red wire. For the shared S-box variant, the number of shares is
increased from d+ 1 to (d+ 1)2 after the multiplier and the linearly transformed
parts (x2 and xλ) are added with respect to their share domain.

GF(16) inverter. In Mui’s S-box design, the GF (16) inverter is given as
Boolean equation instead of finite field arithmetic as e.g. in Canrights S-box.
The mathematical description is stated in Equation 3.4. The inversion in GF (16)
results in collisions for all S-box input bits which requires to separate the calcu-
lation of all input bits of the inversion by copying the fan-in circuit (dotted gray
hexagon, “4 Copies”) four times including the changes as described above. Up
to this point, the S-box circuit requires in total four full copies of the input x
and four partial copies (x′, each bit except for the fifth bit) to avoid collisions.

a′ = a⊕ abc⊕ ad⊕ b
b′ = abc⊕ abd⊕ ad⊕ b⊕ bc
c′ = a⊕ abc⊕ acd⊕ b⊕ bd⊕ c
d′ = abc⊕ abd⊕ ac⊕ acd⊕ ad⊕ b⊕ bc⊕ bcd⊕ c⊕ d

(3.4)

In contrast to the Ascon S-box example, the equations for the inverter are
free from any internal collisions of the inverter inputs (there is no path from one
input variable to both inputs of an AND gate). In order to avoid the combination
of two or more shares of one input for the shared S-box representation, care needs
to be taken also for the linear gates. Again we avoid collisions in the linear parts
by associating with each variable one share index which we keep throughout the
entire calculation. To keep the number of output shares to a minimum we try to
use as few share indices as possible. However, as can already be observed in the
underlined parts of the unshared calculation of d′, using only three indices is not
always possible.

3.5. A Low-Latency Masked AES S-box 47

Reduced example for flawed indexing. To demonstrate the resulting prob-
lem for d′ in the shared variant, we consider a reduced example that contains
only the problematic parts:

q = abc⊕ abd⊕ acd
If we want to calculate the shared representation of q, we need to combine all

shares (given by the indices i, j, and k) of the variables connected by an AND
gate as given in the following example. We assume, as for the inverter inputs,
that the input share count is already increased to (d+ 1)2.

q(i,j,k) = aibjck ⊕ aibjdk ⊕ aicjdk
The problem arises in the XOR gates because we combine shares from the

same variable c one time with the share index k and another time with index j
which violates the mixed domains assumption. Since there is no way to overcome
this issue by associating the share indices differently, the calculation is split into
two parts. Splitting up the calculation in two parts as shown in Equation 3.5
increases the amount of shares from (d+1)2 to 2(d+1)6 (the curly braces indicate
a concatenation of shares).

q(i,j,k) = {aibjck ⊕ aibjdk, aicjdk} (3.5)

By applying this solution to the equation of the inversion (Equation 3.4), we
can denote the sharing of the inverter as in Equation 3.6. The curly braces under
the equations ensure correctness of the sharing and denote that certain terms
are only present in certain output shares (when the stated constraint is fulfilled).

a′(i,j,k) = a(i)︸︷︷︸
j=k=0

⊕ a(i)b(j)c(k) ⊕ a(i)d(k)︸ ︷︷ ︸
j=0

⊕ b(j)︸︷︷︸
i=k=0

b′(i,j,k) =a(i)b(j)c(k) ⊕ a(i)b(j)d(k) ⊕ a(i)d(k)︸ ︷︷ ︸
j=0

⊕ b(j)︸︷︷︸
i=k=0

⊕ b(j)c(k)︸ ︷︷ ︸
i=0

c′(i,j,k) ={ a(i)︸︷︷︸
j=k=0

⊕a(i)b(j)c(k) ⊕ b(j)︸︷︷︸
i=k=0

⊕ c(k)︸︷︷︸
i=j=0

, a(i)c(j)d(k) ⊕ b(i)d(k)︸ ︷︷ ︸
j=0

}

d′(i,j,k) ={a(i)b(j)c(k) ⊕ a(i)b(j)d(k) ⊕ a(i)c(k)︸ ︷︷ ︸
j=0

⊕ a(i)d(k)︸ ︷︷ ︸
j=0

⊕ b(j)︸︷︷︸
i=k=0

⊕ b(j)c(k)︸ ︷︷ ︸
i=0

⊕ c(k)︸︷︷︸
i=j=0

⊕ d(k)︸︷︷︸
i=j=0

, a(i)c(j)d(k) ⊕ b(i)c(j)d(k)}

(3.6)

Final multiplier stage to output transformation. For the final multiplier
stage we avoid collisions by using an additional set of freshly masked copies
of the S-box inputs (x′′, with d + 1 shares). These copies are then combined
with outputs of the GF (16) inverter in the multipliers. As these multiplications

48 Chapter 3. Low-Latency Masking (LOLA)

occur in parallel and no nonlinear transformation follows in the S-box, only one
additional copy of the inputs x′′ suffices for both multiplications. The adjacent
linear transformations are applied share-wise and with respect to the share
domains to avoid collisions at this stage. Up to this point, no additional online
randomness or registers are required and further linear transformations are still
possible within the same clock cycle. As a drawback, the number of shares is
increased to 2(d+ 1)7 at the output. For practical implementation of a full AES,
a resharing and compression stage is thus required at some point as we will
discuss in Section 5.2. However, our goal in this chapter was to demonstrate
that DOM masked circuits can be implemented without the necessity for register
stages in nonlinear operations, and thus giving designers the possibility to trade
a higher number of shares against less latency.

“The art of war teaches us to rely
not on the likelihood of the enemy’s
not coming, but on our own readi-
ness to receive him; not on the
chance of his not attacking, but
rather on the fact that we have
made our position unassailable.”

— Sun Tzu

4
Conclusions

In this part of the thesis, we introduced the DOM scheme as countermeasure
against SCA and showed possible trade-offs in the form of the derived masking
schemes UMA and LOLA. The essence of the domain-oriented masking per-
spective is to shift the design perspective of masked hardware implementations
from a functional level as in TI to the circuit level. This offers the advantage
that hardware designers can stay in their preferred design paradigm because
the relation between the unmasked and the masked circuits remains natural.
From an abstract point of view, we achieve share independence as required for
secure masking just by copying the original circuit into a number of independent
subcircuits (domains) the same way as we split up sensitive information into the
according number of shares in masking. By associating each share per variable
with one of these domains, and by keeping the shares in their respective domains
the share independence as required for secure masked circuits, even in higher-
order cases, can be achieved quite easily. The domain-oriented design approach
allows us to create generic hardware designs that can be synthesized for any
desired protection order without changing the design itself but only by adjusting
the security parameter. We will demonstrate this in the next part of the thesis.

Another benefit of DOM is that the randomness costs are significantly reduced
compared to other schemes, especially in the higher-order case. In practice, the
generation of online randomness is one of the biggest obstacles that hinder
the efficient implementation of higher-order masking. The generation of fresh
randomness not only increases the chip area required for Pseudo-Random Number
Generators (PRNGs) or True-Random Number Generators (TRNGs), but also
requires more energy and power. Saving randomness is thus essential to make
higher protection orders suitable for practical implementations.

49

50 Chapter 4. Conclusions

With UMA we investigated how the randomness costs for generic masking
in hardware can be reduced even further. The cost for reducing the amount of
required online randomness is an increase in the number of delay cycles from one
(for DOM) to up to five cycles, and an increase in the chip area which, however,
in practice is at least compensated by less circuitry required for producing the
randomness.

Nevertheless, there exist practical applications where the latency of a masked
implementation is more important than reducing the overall implementation
costs. With LOLA we thus explored how the latency of a generically masked
hardware design can be traded against an increased number of shares.

Part II

Masked Implementations

51

53

In this part of the thesis, we investigate the hardware overhead costs for
the DOM and the derived schemes UMA and LOLA that were introduced in
Part I. We show implementations of the most relevant symmetric-key primitives
like the AES, as well as for the Secure Hash Algorithm 3 (SHA3) Keccak,
but also for the next generation of symmetric-key primitives in the form of the
so-called Authenticated Encryption (AE) scheme Ascon. Not only cryptographic
primitives require protection against unwanted data leakage. Also the protection
of other parts of a system that manipulate and process sensitive data requires
appropriate measures. We show the versatility of DOM on the example of a
32-bit RISC-V processor.

Area and throughput comparisons as well as randomness costs are considered
for the comparison of the schemes. Furthermore, we compare our implementations
to related masked implementations to provide a comprehensive view on the
benefits and drawbacks of our schemes.

The following papers provide the content for the respective chapters.

� Chapter 5: Advanced Encryption Standard (AES)

This chapter uses the paper:

I Hannes Groß, Stefan Mangard, and Thomas Korak. “An Efficient Side-
Channel Protected AES Implementation with Arbitrary Protection Order.”
In: CT-RSA. vol. 10159. Lecture Notes in Computer Science. Springer,
2017, pp. 95–112

and its extended version:

I Hannes Groß, Stefan Mangard, and Thomas Korak. “Domain-Oriented
Masking: Compact Masked Hardware Implementations with Arbitrary Pro-
tection Order.” In: IACR Cryptology ePrint Archive (2016)

for the original DOM implementations of the AES in Section 5.1. The
LOLA implementation of the AES S-box in Section 5.2 is based on the
work:

I Hannes Groß, Rinat Iusupov, and Roderick Bloem. Generic Low-Latency
Masking in Hardware. CHES 2018 (in press)

Contribution. The author of this thesis is the main author of the papers
used in this chapter.

� Chapter 6: Ascon—Authenticated Encryption

The Ascon AE scheme is introduced with some unprotected implementa-
tion variants based on:

I Hannes Groß, Erich Wenger, Christoph Dobraunig, and Christoph
Ehrenhöfer. “Suit up! — Made-to-Measure Hardware Implementations of
ASCON.” in: DSD. IEEE Computer Society, 2015, pp. 645–652

Before that, DOM, UMA, and LOLA variants are presented based on:

54

I Hannes Groß and Stefan Mangard. “Reconciling d+1 Masking in Hard-
ware and Software.” In: CHES. vol. 10529. Lecture Notes in Computer
Science. Springer, 2017, pp. 115–136

and

I Hannes Groß, Rinat Iusupov, and Roderick Bloem. Generic Low-Latency
Masking in Hardware. CHES 2018 (in press)

Contribution. The author of this thesis is the main author of the parts
of the papers used in this chapter. Two of the hardware implementations
and their description in the first paper were provided by Erich Wenger and
some content with regard to the description of Ascon was contributed by
Christoph Dobraunig.

� Chapter 7: Keccak Secure Hash Algorithm (SHA3)

I Hannes Groß, David Schaffenrath, and Stefan Mangard. “Higher-Order
Side-Channel Protected Implementations of KECCAK.” in: DSD. IEEE
Computer Society, 2017, pp. 205–212

Contribution. The author of this thesis is the main author of the pa-
per. The implementation-related parts and the DOM-protected hardware
implementations were provided by David Schaffenrath in the course of his
master’s project.

� Chapter 8: RISC-V Processor

I Hannes Groß, Manuel Jelinek, Stefan Mangard, Thomas Unterluggauer,
and Mario Werner. “Concealing Secrets in Embedded Processors Designs.”
In: CARDIS. vol. 10146. Lecture Notes in Computer Science. Springer,
2016, pp. 89–104

Contribution. The author of this thesis is the main author of the paper.
The description of the implementation and the RISC-V DOM implementa-
tion were provided by Manuel Jelinek in the course of his master’s thesis.

“Der Worte sind genug gewechselt,
Laßt mich auch endlich Taten sehn!”
(“Enough words have been exchanged,
now at last let me see some deeds!”)

— J. W. von Goethe

5
Advanced Encryption Standard (AES)

The AES is the most frequently used symmetric-key primitive and was designed
by Joan Daemen and Vincent Rijmen originally under the name Rijndael before
being standardized as the AES in 2000. The widespread distribution makes the
AES an interesting target for benchmarking new masking schemes. We first
introduce a DOM implementation of the full AES and compare it to existing
AES implementations before we show the suitability of our LOLA approach on
the S-box of the AES.

5.1 DOM-Protected AES

To compare the efficiency of the DOM scheme to other schemes, we imple-
mented a variant of the AES encryption-only design suggested by Moradi and
Poschmann [Mor+11]. Moradi’s design was also used and modified by Bil-
gin et al. [Bil+14a; Bil+15b] resulting in a more efficient first-order TI, and by
De Cnudde et al. [Cnu+15] for a second-order TI of the AES S-box following the
CMS scheme [Rep15].

The control path of our modified AES design consists of a linear-feedback
shift register (LFSR), the round constant generation module (RCON), and some
additional logic gates to generate the control signals (see [Mor+11] for more
details). Our LFSR module has a cycle length of 23. In each round, the first
16 cycles are spent on AddRoundKey and SubBytes. Then there are four cycles
used for MixColumns and to calculate the first four bytes of the next round
key. Then there are two dummy rounds inserted to bring the state register in
correct position for further processing before in the final cycle the ShiftRows
transformation is performed. The datapath (Figure 5.1) mainly consists of the

55

56 Chapter 5. Advanced Encryption Standard (AES)

11

M
ix

C
ol

u
m

n
s

S-Box

PT Key

03

13

23

33

02

12

22

32

01

11

21

31

00

10

20

30

CT

RCON

State
Registers

00

10

20

30

01

21

31

02

12

22

32

03

13

23

33

Key
Registers

Figure 5.1: Datapath of the DOM AES implementation (all data signals are 8 bits
wide)

S-box, the key and state registers which are implemented as shift registers, the
MixColumns module, and some multiplexers.

5.1.1 DOM Design of the AES S-box

The by far most complex and most security critical part of the AES implementa-
tion is the S-box. Figure 5.2 shows our design of a 1st-order protected variant
of Canright’s [Can05] AES S-box design. The S-box consists of many linear
operations like the linear mappings at the input and the output, the square
scalers, the sub-field inverters, and the adders. These are the parts that can
be implemented share-wise for both domains in a straightforward way. The
Galois field multipliers with different field order form the non-linear parts of
the S-box. Canright’s S-box makes repeated use of a finite field isomorphism
to express GF (28) elements as multiple elements in lower subfields—down to
eight elements in GF (2). These GF (2n) multipliers are replaced by the masked
DOM GF multipliers. Therefore, the standard-cell library AND cells used for
the calculation step in the masked AND gate are simply replace by the according
GF multipliers.

To maximize the efficiency of the implementation, seven pipelining stages are
added to the S-box. The pipelining registers are marked with circles and appear
along the red and green dotted lines in Figure 5.2. Red dotted lines indicate
multiplier related stages which are also labeled Stage 1-5 in order to refer to them
more easily. The green marked registers are required to ensure independence
in the presence of glitches for the inputs of the adjacent GF gates. To make
the S-box secure and efficient at the same time, it is necessary to pinpoint all
GF gates that have related input sharings. These gates need to be treated more
carefully than the one with independent inputs. We now discuss the security of
each multiplication stage individually which reveals that the additional pipeline

5.1. DOM-Protected AES 57

li
n
.

m
ap

x
0

γ 1 γ 0

G
F
(2

4)

m
u
lt

ip
li
er

in
v
.

li
n
.

m
ap

li
n
.

m
ap

in
v
.

li
n
.

m
ap

sq
u
ar

e-
sc

al
er

x
1

y
0

y
1

sq
u
ar

e-
sc

al
er

γ 1

⊗

γ 0

θ

⊗

γ 1

θ

⊗

γ 0

G
F
(2

4
)

m
u
lt

ip
li
er

Γ
1

Γ
0

N

⊗

Γ
²

G
F
(2

2)
m

u
lt

ip
li
er

N

⊗

Γ
²

sq
u
ar

e-
sc

al
er

sq
u
ar

e-
sc

al
er

Γ
1

⊗

Γ
0

Θ

⊗

Γ
1

Θ

⊗

Γ
0

Γ
-1

Γ
-1

G
F
(2

2
)

m
u
lt

ip
li
er

in
v
er

te
r

in
v
er

te
r

G
F
(2

4)

in
v
er

te
r

ν
⊗

 γ
²

ν
⊗

 γ
²

S
ta

ge
 1

S
ta

ge
 2

S
ta

ge
 3

S
ta

ge
 4

S
ta

ge
 5

L
eg

en
d
:

8-
b
it
 s

ig
n
al

4-
b
it
 s

ig
n
al

2-
b
it
 s

ig
n
al

m
u
lt

ip
li
er

 s
ta

ge
ad

d
it
io

n
al

 s
ta

ge

re
gi

st
er

Figure 5.2: First-order DOM design of the AES S-box

58 Chapter 5. Advanced Encryption Standard (AES)

stages (plotted in green) are required at multiplication stages 1, 2, and 3, but
not at 4 and 5.

Stage 1. The GF (24) gate in Stage 1 receives its inputs from the linear mapping
at the S-box input. The linear mapping takes the 8-bit input shares x0 and x1

and linearly combines these eight bits inside their respective domain (see [Can05]
for more details). Because of the different signal transition times and gate delays,
it is therefore possible that the output of the linear mapping temporarily consists
of bits with related sharing. Applying these bits directly to the GF gate from
Figure 1.1—while the linear mapping has not yet settled—would thus violate the
independence in the cross-domain terms associated GF multipliers. To avoid
these glitches, registers are inserted after the linear maps to ensure the signals
are settled before the bits are applied to the GF gate.

Stage 2 and 3. The situation is similar at Stage 2 and Stage 3. At these
stages, glitches can occur from the combination of the square scaler outputs with
the outputs of the GF gate. Again these glitches can be avoided by inserting
pipelining stages at the marked positions in Figure 1.2.

Stage 4. For the GF gates in Stage 4, the inputs are the pipelined S-box inputs
and the output of the GF gates of the previous stage. The output of the GF gate
of Stage 3 originate from the inputs of the GF (24) inverter which is remasked in
Stage 1 (the masking is effective at latest at Stage 2). Therefore, the inputs of
the Stage 4 GF gates are clearly independent and so no registers are required
here.

Stage 5. The output mapping in this stage is again a linear transformation
and uncritical as long as it is not followed by a nonlinear transformation that is
unprepared for related sharing of its inputs. However, in our design of the AES
core the output of the S-box is either stored in the key or state registers before
it is used again, or fed into the S-box which is also uncritical because the input
multiplier of either S-box variant is already prepared to process related input
sharings.

The rest of the S-box is implemented according to the original Canright
design but without some of its optimizations that would not be beneficial for
our implementation. Canright’s design, for example, reuses some temporary
results in other parts of the S-box. Storing temporary results would lead to many
additional pipelining registers for our design of the S-box and is therefore not
suitable. For the generalization of the S-box to higher protection orders, the
black (or blue) parts in Figure 5.2 are basically duplicated and the secure GF
gates are generated as described in Chapter 1.

5.1. DOM-Protected AES 59

Table 5.1: First-order secure AES-128 implementation results

Design/Module Chip Area Randomness Cycles
[%] [kGE] [Bits/S-box]

Our Implementation (90 nm)
Overall 100.0 6.0 18 246

S-box 37.3 2.2
State registers 34.0 2.0
Key registers 21.0 1.3
Control, et cetera 7.7 0.5

td+1 TI (180 nm)
[Mor+11] 11.0 / 10.8a 48 266
[Bil+14a] 9.1 / 8.2a 44 246
[Bil+15b] 8.1 / 7.3a 32 246

d+1 TI (45 nm)
[Cnu+16] 6.7 / 6.3a 54 276

a
This variant uses the compile ultra flag which is not available in our tool chain.

5.1.2 Implementation Results

All stated numbers are post-synthesis results for a 90 nm UMC Low-K process
with 1.0 V power supply and 0.1 MHz clock frequency (in accordance with related
work). Our designs are compiled with the Cadence Encounter RTL compiler
version v08.10-s28 1 and routed with Cadence NanoRoute v08.10-s155. Please
note that in general hardware result for different technologies, compiled and
synthesized with different tool chains are difficult to compare. Furthermore, the
functionality implemented by different modules is not always consistent with
other implementations. The comparison of chip area results with related work
should therefore be seen under this premise. To make comparison with our
generic AES design easier for future work, we therefore decided on publishing
the source code online [Gro16].

Anyway, for a masked hardware design the number required fresh random
bits is even more crucial for the efficiency of an implementation than the stated
chip area of the designs. The generation of fresh random bits with high entropy
requires additional hardware and involves, e.g., complex analog circuitry or
pseudo random number generators based on symmetric primitives. Both options
have a critical influence on the chip area requirements, the energy budget, and
on the delay or throughput.

First-order secure AES. Table 5.1 compares our first-order secure AES
hardware implementation with existing related work. The d+ 1 share designs
of [Cnu+16] with 6.7 kGE and our design with 6 kGE are smaller than the
td+ 1 TI designs. The size difference mainly comes from the fact that td+ 1 TI

60 Chapter 5. Advanced Encryption Standard (AES)

Table 5.2: Second-order secure AES-128 implementation results

Design/Module Chip Area Randomness Cycles
[%] [kGE] [Bits/S-box]

Our Implementation (90 nm)
Overall 100.0 10.0 54 246

S-box 45.1 4.5
State registers 30.3 3.0
Key registers 18.7 1.9
Control, et cetera 5.9 0.6

td+1 TI(estimated [Cnu+16], 45 nm)
[Cnu+15] 18.6 / 14.9a 126 276

d+1 TI (45 nm)
[Cnu+16] 10.5 / 10.3a 162 276

a
This variant uses the compile ultra flag which is not available in our tool chain.

requires at least three shares for securely calculating non-linear functions while
the first-order d+ 1 share designs require only two shares.

In comparison with d+ 1 TI design [Cnu+16] which requires 54 random bits
per S-box calculation, our design requires with 18 bits only a third of its random
bits. Nevertheless, our design achieves the same throughput as the td + 1 TI
design of Bilgin et al. with 52 Kbps for a 100 kHz clock and requires 14 bits less
fresh randomness.

Second-order secure AES. In Table 5.2, a comparison of our second-order
AES design with other second-order secure designs is given. In case of the td+ 1
TI design the chip area was estimated by De Cnudde et al. [Cnu+16]. Again,
there is a noticeable gap between the td+1 share design with about 14.9 kGE and
the d+ 1 share designs with about 10 kGE in terms of chip area resulting from
the increased amount of shares (five shares versus three shares). Considering the
randomness demand of the designs, our design requires 54 bits which is more
than two times less than the td+ 1 design with 126 fresh random bits, and three
times less than the d+ 1 TI design with 162 bits. In terms of throughput, our
AES design requires 246 cycles instead of 276 cycles per encryption.

d th-Order AES Implementations The generic construction of our AES im-
plementation not only allows the calculation of the number of required fresh
random bits of 9d(d+ 1), but furthermore it is possible to synthesize the AES im-
plementation for arbitrary protection orders by just changing one input parameter
of our hardware design.

Figure 5.3 shows the post-synthesis area results for the different components
in relation to the protection order. It can be observed that the state key and
control logic requirements grow linearly with the protection order. The S-box

5.2. LOLA-Protected AES S-box 61

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

120

140

160

Protection order

A
re

a
[k

G
E

]

Overall area
Control, etc.

Key regs.
State regs.

S-box

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

70

80

90

100

Protection order

A
re

a
[%

]

Control, etc.
Key regs.
State regs.

S-box

Figure 5.3: Area requirements absolute (left) and in percent (right) per protection
order

and the contained GF gates grow quadratically. For the S-box, the size increases
from 37.4% for the first-order implementation to about 78.5% for the 15th-order.
The relative size of the state and key register decrease from 34% and 21% to
around 12.2% and 7.5%, respectively. The smallest amount of chip area is spent
on the control logic which stays almost constant.

5.2 LOLA-Protected AES S-box

In this section, we discuss the costs for reducing the latency of the DOM AES
S-box using LOLA, and present a comparison with related work and our DOM
implementation. We present three variants of Mui’s AES S-box depicted in
Figure 3.5. The first variant does not consider share compression at the output
of the S-box. We call this variant the zero-latency variant which denotes that
further linear operations on the output shares (like ShiftRows, MixColumns, or
AddRoundkey) are still possible within the same cycle. However, this variant
hides the costs for share compression and we thus consider also two additional
variants. The first-order zero latency S-box requires 17.83 kGE of chip area for a
90 nm UMC process with a maximum clock frequency of 228 MHz.

For the one-cycle variant of the S-box we compress the shares at the output
of the zero latency S-box by using a CMS compression function after the output
transformation. The number of shares is thus reduced from 2(d+1)7 to d+1 again
which requires 16(d+ 1)7 random bits and registers in total. This variant would
help in a full implementation of the AES to reduce the number of subsequent
linear transformations and registers, for the cost of the CMS resharing stage. The
chip area requirements for the single-cycle masked S-box variant with first-order
protection are 61 kGE at a maximum clock frequency of 356 MHz, and it requires
2 kbits of fresh randomness.

The chip area costs for the single-cycle S-box variant are admittedly very
high given the fact that one round unrolled variant of AES-128 requires 16 of
these S-boxes. The costs can be reduced by performing an intermediate resharing

62 Chapter 5. Advanced Encryption Standard (AES)

and compression step after the inverter in Figure 3.5. The number of shares
is thus reduced from 2(d+ 1)6 to d+ 1 before the last two multiplications are
performed which saves many of the area-consuming GF (16) multipliers and linear
transformations at the output. The final compression requires 8(d + 1)2 fresh
random bits. In total, this variant requires 6(d + 1)6 + 8(d + 1)2 random bits
(416 bits for first-order protection) and the chip area is reduced to 6.7 kGE. For
second order, the amount of required randomness is 4,446 bits and the chip area
is 57 kGE.

5.2.1 Comparison with DOM and Related Work

A summary of the results for our low-latency AES S-box variants and related
work is given in Table 5.3. All of our stated results are post-synthesis results for
a 90 nm Low-K UMC process with 1 V supply and a 20 MHz clock, synthesized
with the Cadence Encounter RTL compiler v14.20. The used cell library and
tool chain vary among the stated related work and the numbers should not be
compared directly.

As the comparison shows, our low-latency AES S-box variants are the first
published constructions that reduce the latency below three cycles per S-box
calculation. The price is a significant increase of both chip area and randomness
requirements, especially for the single-cycle S-box variant with 60.73 kGE and
2 kbit of randomness. The zero latency variant requires with 17.8 kGE almost
nine times more area than the smallest design. The chip area overhead for the
first-order AES S-box with two cycles is relatively moderate with about a factor
of three times the area of the smallest known S-box construction. Furthermore,
our designs are generic.

Comparing the randomness requirements is difficult since most of the stated
work uses a different amount of input shares which is usually not considered to be
part of the required (online) randomness. In this context, our zero latency variant
requires no additional online randomness but it requires of course additional
randomness for the sharing and the duplication of the input variables. In case of
our two-cycle variant, the online randomness costs for calculating one S-box are
with 416 (and 4,446 bits, respectively) significantly increased over the state of
the art.

However, we note that our primary goal was to demonstrate that for generic
higher-order protection a reduction of the latency is indeed possible even in
complex designs like the AES S-box. The most efficient design choices and the
best point at which the shares can be again compressed remains to be an open
problem.

Furthermore, we denote that we used the CMS scheme by Reparaz et al. [Rep+15]
for the estimation of the randomness requirements of the generic protection case.
However, as it was demonstrated by Moos et al. [Moo+18], the CMS scheme is
only secure up to the second protection order. An efficient and generic compres-
sion algorithm thus also remains to be an open problem.

5.2. LOLA-Protected AES S-box 63

Table 5.3: Results and comparison of masked AES S-box implementations

Design Order Size Cycles Max. Clock Randomness
[d] [kGE] /S-box [MHz] [bits] (online)

Zero Latency first 17.83 0 228 0
Zero Latency d 0 0
Single Cycle first 60.73 1 356 2,048
Single Cycle d 1 16(d+ 1)7

Two Cycle first 6.74 2 584 416
Two Cycle second 57.11 2 517 4,446
Two Cycle d 2 6(d+ 1)6 + 8(d+ 1)2

Related work

[Bil+14a] first 3.71 3 44
[Bil+15b] first 2.84 3 32
[Cnu+15] second 7.9 - 11.2 6 126
[Cnu+16] first 1.98 6 54
[GC17] first 4.61 4 0
[GC17] first 3.63 - 3.80 4 34 - 68
[GC17] first 2.91 - 3.34 3 20-24
DOM S-box first 2.2 8 18
DOM S-box second 4.5 8 54
DOM S-box d 8 9d(d+1)
[Mor+11] first 4.24 4 48

Discussion on the impact on full AES implementations. In the follow-
ing, we want to briefly discuss the expected impact on the latency and throughput
of a full AES-128 implementation on the basis of our S-box implementation results.
We denote that we are fully aware of the fact that the provisioning of such high
amounts of randomness, as required for multiple instances of our S-box imple-
mentations in parallel, as well as the required chip area and power consumption
would exceed the capabilities of most practical applications. This comparison
should merely serve as a basis for future comparisons and to demonstrate that
a cycle count reduction not automatically leads to a reduction of the overall
latency.

The impact on the throughput as well as on the latency highly depends on the
concrete AES implementation whose assumptions can highly vary. For this reason,
we make runtime estimations for two different corner cases, namely best-case
and worst-case cycle count estimations. An AES-128 encryption consists of a
pre-round (which only performs the AddRoundKey transformation) followed by
nine full rounds, and the final round (which omits MixColumns). A full round
consists of SubBytes (the S-box layer) followed by ShiftRows, MixColumns and
AddRoundKey.

An overview on our cycle count estimation is given in Table 5.4. For the best-
case runtime estimation, we assume that only the S-box layer introduces delay
cycles due to non-linear calculations and that a full SubBytes transformation with
16 S-boxes in parallel is implemented. All other transformations are assumed to

64 Chapter 5. Advanced Encryption Standard (AES)

be performed implicitly and the round keys are already precomputed. For the
best case, we thus estimate a runtime that is ten times (number of full rounds
plus the final round) the delay of the used S-box transformation (10lsbox). This
cycle count corresponds, for example, to Intel’s AES instructions [Gue09].

Table 5.4: Cycle count estimation for full AES-128 hardware implementations with a
variable numbers of cycles for the S-box (lsbox)

Round SubBytes ShiftRows MixColumns AddRoundKey Key Schedule
0 − − − 0 . . . 16 0 . . . 2 + 16lsbox
1 . . . 9 (1 . . . 16)lsbox 0 . . . 1 0 . . . 4 0 . . . 16 0 . . . 2 + 16lsbox
10 (1 . . . 16)lsbox 0 . . . 1 − 0 . . . 16 −
Overall 10lsbox . . . 224 + 320lsbox

For the worst-case cycle count estimation, we assume that only one S-box
is implemented in hardware, that the key schedule is performed on the fly, and
that all other transformations require one clock cycle. The key schedule is thus
assumed to require at most two cycles (for RotWord and Rcon) plus 16 times the
number of the assumed S-box delay for SubWord. Our worst-case estimation of
224 + 320lsbox approximately corresponds to Feldhofer et al.’s [Fel+05] low-power
AES implementation which requires 1,032 cycles for a two-cycle S-box.

For our single-cycle S-box variant, we thus estimate the cycle count for a full
AES-128 to be between 10 cycles and 544 cycles, and for the two-cycle S-box the
estimations result in 20 cycles and 864 cycles, respectively. Given the maximum
clock frequencies in Table 5.3 (and neglecting additional combinatorial delay
introduced by other components of the AES), the estimated latency for the single-
cycle S-box AES is between 1.53 µs and 28.09 ns, and for the two-cycle S-box
AES variant between 1.48 µs and 34.25 ns. The reduction to a single-cycle S-box
could thus, in the best of cases save about 18% of latency while for the worst
case estimation the single-cycle S-box introduces an even 3.3% higher latency
in the full AES than the two cycle S-box. Similarly, the estimated throughput
is between 83.76 Mbps and 4.56 Gbps for the single-cycle variant, and between
86.52 Mbps and 3.74 Gbps for the two-cycle S-box variant.

In summary, even when keeping practical limitations regarding randomness
provisioning, chip area, and power or energy consumption aside, it is not entirely
clear whether or not a reduction of the latency for the nonlinear parts of a
cryptographic implementation automatically leads to a reduction of the overall
latency of the system. In practice, the most valuable design choices therefore
need careful evaluation of the overall constraints of a system.

6
Ascon—Authenticated Encryption

Symmetric cryptography has a rich history of competitions to find good and
secure cryptographic primitives. Winners of such competitions like the AES serve
as a basis of our modern information and communication systems. In the so-called
CAESAR competition over 45 different AE schemes competed in becoming the
standard primitives for authenticated encryption. One of the finalists in this
competition is the AE scheme Ascon.

6.1 Overview on Ascon

Ascon [Dob+16] has a sponge-like mode of operation as depicted in Figure 6.1.
Its state size, the permutation p and mode of operation are chosen in a way that
allows compact hardware implementations, while still providing high throughput.
Ascon comes in two different versions, namely Ascon-128 and Ascon-128a

IV‖K‖N 320
pa

⊕

0∗‖K

c

⊕r

A1

pb
⊕

As

c
pb

⊕

0∗‖1

c

⊕r

P 1C1

pb
c

⊕

P t−1 Ct−1

pb
⊕

P t Ct

r

⊕

K‖0∗

c

pa

⊕

K

k
T

Initialization Associated Data Plaintext Finalization

Figure 6.1: The encryption of Ascon-128

65

66 Chapter 6. Ascon—Authenticated Encryption

with both 128 bit security level but different rates. We focus on Ascon-128 in
the remainder of this chapter.

6.1.1 Mode of Operation

Ascon has a state size of 320 bits (consisting of five 64-bit words x0, . . . , x4)
that are updated in four phases: Initialization, Processing of Associated Data,
Processing of Plaintext/Ciphertext, and Finalization. All phases use the same
permutation function p that is applied twelve times during the Initialization and
Finalization phase. The lighter variant of p with six rounds is used for processing
the data and ensures high performance. The data is handled in 64-bit blocks.

The Initialization phase, takes the secret key K (128 bits) and the public
nonce N (128 bits). This nonce has to be fresh for every encryption and must not
be used twice. If the nonce is used twice or multiple times, then the confidentiality
is jeopardized.

After the Initialization phase the optional associated data Ai is processed.
Associated data is information, which does not need to be confidential, but must
not be altered by an attacker. Each block Ai is added to the secret state. If
there is no associated data to process, the whole step can be omitted.

In the Encryption phase, each plaintext block P i is xored with the secret
state to produce one ciphertext block Ci. Six consecutive round transformations
p are executed for each of the 64-bit data blocks.

After the generation of the ciphertext, the Finalization starts. The output of
the Finalization is the 128-bit tag T . With the help of this tag, modifications
of the ciphertext and the associated data can be detected during decryption
(validation).

Decryption is very similar to encryption. Just the part, where the ciphertext
is processed instead of the plaintext differs slightly. Thus, no inverse of the
permutation is needed for decryption. So, both encryption and decryption can
be implemented with just a slight overhead compared to encryption only.

6.1.2 Permutation

Ascon-128 uses two permutations, p6 and p12. The two permutations are
the 6 and 12 iterative executions of the round transformation p. The round
transformation p consists of a constant addition to x2, followed by an application
of a substitution layer, and a linear layer.

The substitution layer is the parallel application of 64 5-bit S-boxes. The
S-boxes used for Ascon are an affine transformation of the χ mapping of Kec-
cak [Ber+11]. This affine mapping improves some cryptographic properties of the
Keccak’s χ mapping, while still leaving the core of the S-box and therefore the
algebraic degree of 2 intact. Moreover, the Ascon S-box can be implemented
using only a few logical operations, which are highly parallelizeable (Figure 6.2).

The linear layer consists of five applications of the function Σli,ri(x
i) =

xi ⊕ (xi ≫ li)⊕ (xi ≫ ri) to each 64-bit word of the state (x0, . . . , x4). The Σ
function is similar to the one used in SHA-2 [NIS95], except that other rotation

6.2. Unprotected Hardware Designs 67

x0

x1

x2

x3

x4

⊕

⊕

⊕

5
5

5
5

5

�

�

�

�

�

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

5

y0

y1

y2

y3

y4

Figure 6.2: Substitution layer with 5-bit S-box Ascon

values (li, ri) are used. The rotation values (li, ri) are different for every 64-bit
word in one round.

6.1.3 Hardware Security Properties of Ascon

In order to protect Ascon against SCA it is important to reflect on the properties
of Ascon that make the life of an attacker hard. Ascon uses a mode of opera-
tion which is based on MonkeyDuplex [Dae12]. In contrast to MonkeyDuplex,
Ascon uses a keyed Initialization and Finalization. This has the effect that a
state recovery during the processing of data neither leads to the recovery of the
secret key, nor allows universal forgeries.

Therefore, SCA attacks on the data processing phase may be applied in order
to recover the internal states, but do not allow the attacker to recover the key.
In addition, SCA on the Finalization are hard, since the attacker would have
to attack both the key and many unknown state bits that have no influence on
the emitted tag. In fact, the most vulnerable phase is the Initialization. For
Ascon-128, three out of five input bits of the first S-boxes are publicly known
and the other two bits belong to the secret key.

6.2 Unprotected Hardware Designs

Ascon allows to be optimized for many practical applications, where both confi-
dentiality and authenticity are required. In the following, three implementation
variants with different design goals are introduced.

6.2.1 High Throughput Design (Ascon-fast)

Due to the low complexity of Ascon’s round transformation, it is possible to fully
unroll a complete round transformation and still achieve high frequencies. As it
turns out, the round transformations are so hardware-friendly that even multiple
rounds can be computed in a single clock cycle. The Ascon-fast variants aim at
a maximal data throughput with a minimum of latency. Therefore, at least one

68 Chapter 6. Ascon—Authenticated Encryption

round transformation is performed in every clock cycle and no pipelining stages
are used. Each Ascon-fast variant uses a different number of unrolled round
transformations. The datapath of Ascon-fast as shown in Figure 6.3 mainly
consists of the unrolled round transformations (five 64-bit state registers, 64
parallel S-boxes, and the linear diffusion layer). Only a few additional multiplexers
and XOR-gates are needed to connect the unrolled round transformation with
the data bus and the key register.

State Registers
063

S-Box

>> 1 >> 6

>> 61 >> 39 >> 10 >> 17

>> 19 >> 28 >> 7 >> 41

Linear
Diffusion

Layer

io_data

63

0

p0

p1

p2

p3

p4

x0

x1

x2

x3

x4

t0

t1

t2

t3

t4

key_reg [127:64]

key_reg [63:0]

key_reg [63:0]

key_reg [127:64]

round_const

“000...1”_

Figure 6.3: Datapath of the fast variant of Ascon with one round transformation
per cycle

6.2.2 64-bit Datapath Design (Ascon-64-bit)

The design idea behind the Ascon-64-bit implementation is based on the inherent
64-bit structure of Ascon. Instead of a concrete implementation of the S-box
and the linear diffusion layer, this design uses an arithmetic logic unit (ALU)
comparable to a microcontroller design. Consequently, the controlpath works
similarly to a sequential program code that is executed by the datapath in Figure
6.4.

Besides the five state registers, there exist also two temporary registers,
which—together with the inputs from the controlpath—form the input operands
of the ALU. The ALU itself consists of an iterative barrel-shifter unit, three
logic operations, and a data-storage unit that takes the 64-bit bus data input
and stores it either in the high or the low part of the selected operand. On the
output of the ALU, the result of the operation is selected that is then applied
to the destination register. During the execution, the S-box and linear layer are
iteratively calculated using the operations of the ALU. Thus, one round operation
takes 59 clock cycles.

6.2. Unprotected Hardware Designs 69

State Registers
063

Temp. Registers
063

key_reg

io_data

rnd_cnst

x0...4

temp0...1

ALU

HIGH

op_b_sel

op_a_sel DATA_W

LOWdata_w

>> 1

>> 2

>> 4

>> 8

>> 16

>> 32

 operat_sel

dest_sel

 io_data

DATA_W

x0...4

temp0...1

Figure 6.4: Datapath of the 64-bit variant of Ascon

6.2.3 Low Area Design (Ascon-x-low-area)

The datapath of the so-called Ascon-x-low-area variant (see Figure 6.5) uses a
radical low-area approach, which can be summarized as “one bit operation per
cycle”. The state consists of five clock-gated shift registers with independent
shift-enable inputs. For the S-box calculation, all state registers are activated and
shifted bit-slice-wise through the single S-box instance. The result is stored in the
least-significant bits of the state. Accordingly, the whole S-box layer operation
consumes 64 cycles. The subsequent linear diffusion layer is split up into five
interleaved subiterations in which each state register is updated individually. As
a single state bit depends on two other bits of the same state row, the linear
layer cannot be calculated without temporarily storing either the results or the
state row itself, respectively. Thus, another (temporary) shift register is needed
that in one iteration holds the result of the current linear layer operation and in
the next iteration is used to write the result back. Once the first subiteration
of the linear layer is finished, the calculation of the next state row and the
write-back operation can be done in parallel. This uncompromising low-area
approach results in 512 clock cycles per round transformation.

70 Chapter 6. Ascon—Authenticated Encryption

x0

x1

x2

x3

x4

s0

s1

s2

s3

s4

S-Box
063

tmp

State Shift Registers

Temp. Shift Register

x0...4

tmp
s0...4

io_data x⊕ 0

state_sel

tmp_sel

key_reg [⊕ x1,2

]

io_data [⊕ x0

]

round_const ⊕ x2

Linear
Diffusion

Layer

Figure 6.5: Datapath of the x-low-area variant of Ascon

6.2.4 Results

All Ascon designs are implemented in VHDL and evaluated using a Cadence-
based ASIC design-flow. For the following results, a 90 nm UMC standard
performance low-K library from Faraday is used with a global clock of 1 MHz and
a 1 V power supply. The designs are compiled with the Cadence Encounter RTL
compiler version v08.10-s28 1 and routed with Cadence NanoRoute v08.10-s155.
The results of all practical evaluations are collected in Table 6.1.

Table 6.1: Characteristics of the Ascon-128 hardware implementations

Design Chip Area Throughput Power Energy
w/o interface w/ interface at 1 MHz

[kGE] [kGE] [cycles/byte] [Mbps] [µW] [µJ/byte]

Ascon-fast
1 round 7.08 7.95 0.75 5,524 43 33
2 rounds 10.61 11.48 0.38 8,425 72 27
3 rounds 14.26 15.13 0.25 10,407 102 25
6 rounds 24.93 25.80 0.13 13,218 184 23

Ascon-64-bit 4.99 5.86 44.25 72 32 1,397
Ascon-x-low-area 2.57 3.75 384.00 14 15 5,706

Some implementations can process up to 8 bytes of data in a single clock
cycle (0.125 cycles per byte) and other implementations are as small as 2.57 kGE.
Especially the characteristics of Ascon-fast with one unrolled round are impres-
sive. This implementation needs 7.08 kGE (7.95 kGE with key register and 64-bit
bus interface), reaches a maximum clock frequency of 517 MHz, and can therefore
process up to 5.5 Gbit per second. This means that the most straightforward
design is easily sufficient to encrypt a gigabit Ethernet connection on the fly. At
100 MHz, the design only needs 529 µW (38µW static leakage and 4.9µW/MHz
dynamic power) and is therefore also suitable for mobile applications. As it

6.2. Unprotected Hardware Designs 71

Table 6.2: Characteristics of related implementations

Design Chip Area Throughput Power Technology

[kGE] [Mbps] [µW/MHz]

AES-CCM [Bog+13] 3.77 57 5.12 STM 65 nm
AES-OCB2 [Bog+13] 5.92 113 8.11 STM 65 nm
AES-ALE [Bog+13] 2.70 244 10.55 STM 65 nm
Minalpher [Sas+14] low-area 2.81 369 —
SILC [Iwa+14] V1 15.70 764 —
AES-OCB [Par05] 22.55 854 — TSMC 90 nm
SILC [Iwa+14] V2 23.10 2,635 —
Scream ED [Gro+14b] 1 Round 6.23 4,577 — STM 65 nm
Keccak MonkeyDupl. [YK13] 5.90 4,900 42
Scream ED [Gro+14b] 2 Round 8.31 5,190 — STM 65 nm
Minalpher [Sas+14] high-speed 14.32 6,104 —
Norx [Aum+14] 59.00 10,000 — UMC 180 nm
ICEPOLE [Mor+14] — 41,364 — FPGA (Xilinx Virtex 6)

also provides the best performance per throughput, it is perfectly suitable for
embedded systems.

If higher throughput is required, Ascon-fast with six unrolled rounds can
process more than 13 Gbit/sec at 206 MHz. This is more than sufficient even
for 10 gigabit network connections. For RFID applications, where size as well
as power matter, Ascon-x-low is only 2.57 kGE large and requires as little as
15 µW for a 1 MHz clock source. For a, for example for RFID tags more suitable,
power saving 130 nm low-leakage UMC technology, the power consumption is
reduced to 4.1µW.

Energy, the most critical characteristic of wireless sensor nodes, is the product
of power and runtime. The Ascon-fast implementations require the least amount
of energy because of their low runtimes. Even though six unrolled rounds give
the best energy results, it would probably be more reasonable to use Ascon-fast
with one unrolled round for wireless sensor nodes.

Related Work A fair comparison of hardware designs is a difficult task. Dif-
ferent designers make diverging assumptions about, e.g., key registers or bus
interfaces. Additionally, results are highly dependent on the used manufacturing
technology, the used toolchain (e.g., Cadence, Synopsis, Menthor, Xilinx, or
Altera), and the external operating conditions (e.g., power supply voltage or
ambient temperature). Therefore, the following comparison with related work
has to be interpreted with caution.

In Table 6.2, the hardware results of several AE designs are listed. There
are standardized AES-based implementations [Bog+13; Par05] and CAESAR
candidates based on sponge constructions [Aum+14; Mor+14; YK13] and block
ciphers [Gro+14b; Iwa+14; Sas+14]. Figure 6.6 visually combines Tables 6.1
and 6.2. The horizontal axis shows the throughput and the vertical axis depicts
the area footprint. The dashed equi-efficiency lines indicate a constant throughput
per area ratio.

72 Chapter 6. Ascon—Authenticated Encryption

102 103 104
0

10

20

Ascon-fast-1R

Ascon-fast-2R

Ascon-fast-3R

Ascon-fast-6R

AES-ALE

AES-OCB2
AES-CCM

AES-OCB

Keccak-MD

Minalpher-speed

Minalpher-area
Scream-1R
Scream-2R

SILCv1

SILCv2

Throughput [Mbits/sec]

C
h
ip

A
re

a
[k

G
E

]

Faster

More Efficient
Smaller

Figure 6.6: Throughput versus area comparison

It seems that Ascon provides, together with Keccak MonkeyDuplex [YK13],
excellent performance per area. All AES implementations are a magnitude slower
than even the slowest Ascon-fast implementation. Only Norx [Aum+14] and
ICEPOLE [Mor+14] achieve similar or higher performance. However, Norx is
more than twice as large (59 kGE) as the largest Ascon design (26 kGE). The
table contains ASIC results available for ICEPOLE so far. In terms of size,
Ascon needs six times fewer registers to store the state and the processed data
(1280 + 1024 vs. 320 + 64) than ICEPOLE. ICEPOLE S-boxes also have an
algebraic degree of four and are thus potentially harder to share than the Ascon S-
boxes, which probably results in a higher overhead for protected implementations.

6.3 DOM- and UMA-Protected Implementations

An overview of the top module of our DOM and UMA hardware design is given
in Figure 6.7 (left). It consists of a simple data interface to transfer associated
data, plaintext or ciphertext data with ready and busy signaling which allows for
simple connection with e.g. AXI4 streaming masters. Since the nonce input and
the tag output have a width of 128 bit, they are transferred via a separate port.
The assumptions taken on the key storage and the Random Number Generator
(RNG) are also depicted. We assume a secure key storage that directly transfers
the key to the cipher core in shared form, and an RNG that has the capability
to deliver as many fresh random bits as required by the selected configuration of
the core.

The core itself consists of the Finite-State Machine (FSM) that controls the
general process (control FSM) and the round counter that form the control
path, and the state module that forms the data path and is responsible for all
state transformations. Figure 6.7 (right) shows a simplistic schematic of the
state module. The state module has a separate FSM and performs the round

6.3. DOM- and UMA-Protected Implementations 73

Key Storage RNG

Ascon Top

State

Round
Counter

Control
FSM

DataxDI

PTCTDataRDYxSI

NoncexDI

StartEncryptionxSI

StartDecryptionxSI

FinalizexSI

KeyxDI ZxDI

TagxDO

DataxDO

DataRDYxSO

BusyxSO

X0

X1

X2

X3

X4

State Register

S-box

Linear
Transform.

DataxDI
KeyxDI

NoncexDI
RoundConstxDI

State:

Figure 6.7: Overview of the Ascon core (left) and the state module (right)

transformation in four substeps: (1) during IDLE, the initialization of the state
with the configuration constants, the key, and the nonce is ensured.

(2) in the ADD ROUND CONST state, the round constant is added, and
optionally other required data is either written or added to the state registers
like input data or the key. Furthermore, it is possible to perform the linear parts
of the S-box transformation already in this state to save pipeline registers during
the S-box transformation and to save one delay cycle. This option, however, is
only used for the configuration of Ascon where all 64 possible S-box instances
are instantiated.

(3) the SBOX LAYER state provides flexible handling of the S-box calculation
with a configurable number of parallel S-box instances. Since the S-box is the
only non-linear part of the transformation, its size grows quadratically with the
protection order and not linearly as the other data path parts of the design.
The configurable number of S-boxes thus allows to choose a trade-off between
throughput and chip area, power consumption, et cetera. During the S-box
calculation, the state registers are shifted and the S-box module is fed with the
configured number of state slices with five bits each slice. The result of the S-box
calculation is written back during the state shifting. Since the minimum latency
of the S-box changes with the protection order and whether the DOM or UMA
approach is used, the S-box calculation takes one to 70 cycles.

(4) in the LINEAR LAYER state, the whole linear part of the round trans-
formation is calculated in a single clock cycle. The linear transformation simply
adds two rotated copies of one state row with itself. It would be possible to
break down this step into smaller chunks to save area. However, the performance
overhead and the additional registers required to do so would relativize the chip
area savings especially for higher orders.

S-box construction. Ascons’s S-box is affine-equivalent to the Keccak S-box
and takes five (shared) bits as an input (see Figure 6.8). The figure shows
where the pipeline registers are placed in our S-box design (green dotted lines).
The first pipeline stage (Stage 0, gray) is optionally already calculated in the
ADD ROUND CONST stage. The registers after the XOR gate in State 0 are
important for the glitch resistance and therefore for the security of the design.
Without these registers, the second masked AND gate from the top (red paths),

74 Chapter 6. Ascon—Authenticated Encryption

for example, could temporarily be sourced twice by the shares of x1 for both
inputs of the masked AND gate. Since the masked AND gate mixes shares
from different domains, a timing-dependent violation (glitch) of the d-probing
resistance could occur. Note that the XOR gates at the output do not require an
additional register stage because they are fed into one of the state registers. As
long as no share domains are crossed during the linear parts of the transformation
the probing security is given. We assure this by associating each share and each
part of the circuit with one specific share domain (or index) and keeping this for
the entire circuit.

The other pipelining registers are required because of the latency of the
masked AND gates which is one cycle for the DOM gate, and up to five cycles
for the UMA AND gate.

X

X

X

X

x0

x1

x2

x3

x4

(Stage 0) Stage 1-5

X

y0

y1

y2

y3

y4

Figure 6.8: Ascon’s S-box module with optional affine
transformation at input (gray) and variable
number of pipeline registers (green)

6.3.1 Implementation Results

All results stated in this section are post-synthesis results for a 90 nm Low-K
UMC process with 1 V supply voltage and a 20 MHz clock. The designs were
synthesized with the Cadence Encounter RTL compiler v14.20-s064-1. Figure 6.9
compares the area requirements of the UMA approach with DOM for the pipelined
Ascon implementation with a single S-box instance. The figure on the left shows
the comparison of single masked AND gates inside the Ascon design, while the
figure on the right compares the whole implementations of the design. Comparing
this results with Table 2.3 reveals that the expected gate counts for DOM match
the practical results quite nicely. For the UMA approach, on the other hand, the
practical results are always lower than the stated numbers. The reduction results
from the fact that the amount of required pipelining registers for the operands
is reduced because the pipelining register are shared among the masked AND
gates. This does not affect the DOM implementation because the multiplication
results are always calculated within only one delay cycle.

6.3. DOM- and UMA-Protected Implementations 75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

200
400
600
800

1,000
1,200
1,400
1,600
1,800
2,000
2,200
2,400
2,600
2,800
3,000
3,200

Protection order

A
re

a
[G

E
]

UMA-AND
DOM-AND

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

Protection order

A
re

a
[k

G
E

]

UMA one S-box
DOM one S-box

Figure 6.9: UMA versus DOM area requirements for different protection orders. Left
figure compares masked AND gates, right figure compares full Ascon
implementations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

100
200
300
400
500
600
700
800
900

1,000
1,100
1,200
1,300

Protection order

A
re

a
[k

G
E

]

UMA 64 S-boxes
DOM 64 S-boxes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

500

1,000

1,500

2,000

2,500

Protection order

T
h
ro

u
gh

p
u
t

[M
bp

s]

UMA one S-Box 64 S-Boxes
DOM one S-Box 64 S-Boxes

Figure 6.10: UMA versus DOM area requirements for Ascon at different protection
orders and 64 parallel S-boxes (left) and throughput comparison in the
right figure

The right figure shows that the difference for the single S-box Ascon imple-
mentation is relatively low, especially for low protection orders, and seems to grow
only linearly within the synthesized range for d between 1 and 15. For the first
order implementation, both designs require about 10.8 kGE. For the second order
implementation, the difference is still only about 200 GE (16.2 kGE for DOM
versus 16.4 kGE). The difference grows with the protection order and is about
4.8 kGE for d = 15 which is a size difference of about 5 %. The seemingly linear
growth in area requirements for both approaches is observed because the S-box is
only a relatively small part with 3-20 % of the design which grows quadratically,
while the state registers that grow linearly dominate the area requirements with
96-80 %.

We also synthesized the design for 64 parallel S-boxes which makes the
implementation much faster in terms of throughput but also has a huge impact
on the area requirements (see Figure 6.10). The characteristics for UMA and

76 Chapter 6. Ascon—Authenticated Encryption

DOM look quite similar to the comparison of the masked AND gates in Figure 6.9
(left) and show a quadratic increase with the protection order. The chip area is
now between 28 kGE (d = 1) and 1,250 kGE (d = 15) for UMA and 926 kGE for
DOM. The S-box requires between 55 % and 92 % of the whole chip area.

Throughput. To compare the maximum throughput achieved by our designs,
we calculated the maximum clock frequency for which our design is expected
to work for typical operating conditions (1 V supply, and 25 °C) over the timing
slack for the longest delay path. This frequency is then multiplied with the block
size for our encryption (64 bits) divided by the required cycles for absorbing the
data in the state of Ascon (for six consecutive round transformations).

The results are shown in Figure 6.10. The throughput of both masking
approaches with only one S-box instance is quite similar which can be explained
with the high number of cycles required for calculating one round transformation
(402-426 cycles for UMA versus 402 cycles for DOM). The UMA approach achieves
a throughput between 48 Mbps and 108 Mbps, and the DOM design between
50 Mbps and 108 Mbps for the single S-box variants.

For 64 parallel S-boxes, the gap between DOM and UMA increases because
DOM requires only 18 cycles to absorb one block of data while UMA requires
between 18 and 42 cycles which is an overhead of more than 130 %. Therefore,
also the throughput is in average more than halved for the UMA implementation.
The UMA design achieves between 0.5 Gbps and 2.3 Gbps, and DOM Ascon
between 1.5 Gbps and 2.3 Gbps.

Randomness. The amount of randomness required for the UMA and DOM
designs can be calculated from Table 2.1 by multiplying the stated number by five
(for the five S-box bits), and additionally by 64 in case of the 64 parallel S-box
version. For the single S-box design, the (maximum) amount of randomness
required per cycle for the UMA design is thus between 5 bits for d = 1 and
320 bits for d = 15, and for DOM between 5 bits and 600 bits. For the 64 parallel
S-boxes design, the first-order designs already require 320 bits per cycle, and
for the 15th-order designs the randomness requirements grow to 20 kbits and
37.5 kbits per cycle, respectively.

6.3.2 Discussion on the Randomness Costs

In practice, the generation of fresh randomness with high entropy is a difficult
and costly task. It is, however, also difficult to put precise numbers on the cost
of randomness generation because there exist many possible realizations. The
following comparison should thus not be seen as statement of implementation
results but reflects only one possible realization which serves as a basis for the
discussion.

A common and performant way to generate many random numbers with high
entropy is the usage of PRNGs based on symmetric primitives, like Ascon for
example. A single cipher design thus provides a fixed number of random bits,

6.3. DOM- and UMA-Protected Implementations 77

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

101

102

103

104

105

106

Protection order

A
re

a
[k

G
E

]

UMA one S-Box 64 S-Boxes
DOM one S-Box 64 S-Boxes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

Protection order

E
ffi

ci
en

cy
[M

bp
s/

kG
E

]

UMA one S-Box 64 S-Boxes
DOM one S-Box 64 S-Boxes

Figure 6.11: UMA versus DOM area requirements for Ascon including an area
estimation for the randomness generation in the left figure, and an
efficiency evaluation (throughput per chip area) on the right

e.g. 64 bits in the case of Ascon, every few cycles. In the following comparison,
we assume a one-round unrolled Ascon implementation resulting in six delay
cycles and 7.1 kGE of chip area [Gro+15b]. If more random bits are required,
additional PRNGs are inserted, which increase the area overhead accordingly.

Figure 6.11 (left) shows the area results from including the overhead cost for
the required PRNGs. Starting with d = 2 for DOM, d = 3 for UMA for the
single S-box variants, and for all of the 64 parallel S-box variants, one PRNG
is no longer sufficient to reach the maximum possible throughput the designs
offer. The randomness generation thus becomes the bottleneck of the design
and additional PRNGs are required, which result in the chip area differences
compared to Figures 6.9 and 6.10, respectively. As depicted, both UMA variants
require less chip area than their DOM pendants. However, this comparison does
not take the throughput of the designs into account (see Figure 6.10).

Figure 6.11 (right) compares the efficiency, calculated as throughput (in Mbps)
over the chip area (in kGE). By using this metric, it shows that UMA is the
more efficient scheme when considering the single S-box variants, while DOM is
the more efficient solution for the 64 S-box variants. However, the practicality of
the 64 S-box implementations with up to a few millions of GE and between 30
and 3,600 additional PRNGs is very questionable.

78 Chapter 6. Ascon—Authenticated Encryption

Key Storage RNG

Ascon Top

State

Round
Counter

Control
FSM

DataxDI

DataRDYxSI

NoncexDI

StartEncxSI

StartDecxSI

FinalizexSI

Key1xDI ZxDI

TagxDO

DataxDO

DataRDYxSO

BusyxSO

a

b

b'

c

d

State Register

Linear
Transform.

Key1xDI
Key2xDI

NoncexDI
RConxDI

State:

Key2xDI

S-box

d'

e

e'

DataxDI

Compress Remask

ZxDI

Figure 6.12: Hardware design overview of Ascon

6.4 LOLA-Protected Ascon Implementations

In this section, we integrate the LOLA S-box design from Section 3.4 into a
round unrolled variant of Ascon-128. Since the S-box layer in Ascon is only
preceded by the linear addition of key or data, and only followed by the linear
transformation layer (which both can be securely realized by only operating on
each share separately), the shared S-box description can be used to implement a
full round transformation of Ascon without any registers in between.

For the sake of completeness, we remark that the combination of the shares
created by the shared S-box in Equation 3.3 would not be secure because different
share indices are used for some variables. However, this is not an issue for the
one-round unrolled Ascon variant because the S-box is calculated column-wise
over the state and is only followed by a linear transformation that operates inside
one state row. Independence of the cipher rounds is ensured by a resharing
after each round transformation. The resharing also includes the creation of the
duplicated state rows for the next round by applying the compression two times
in parallel for these variables with fresh and independent randomness (ZxDI)
from the RNG.

Design description. Figure 6.12 depicts our top module of the Ascon core.
The structure is based on the one used in Section 6.3 for the DOM and UMA
designs. The majority of changes are done in the state module (right). The round
transformation is no longer distributed over (at least) three clock cycles but is
performed in a single step. Due to the S-box layer, the amount of shares increases
from d + 1 to (d + 1)2 for the linear layer which is followed by a remasking
according to the CMS scheme of Reparaz et al. [Rep+15]. The CMS remasking
requires one fresh random bit per share which amounts to 8 · 64 · (d+ 1)2 bits in
total for our design. Before the compression to d+ 1 terms can be performed, the
(d+1)2 refreshed shares are stored in the state registers which includes duplicated
state rows needed for the S-box layer in the next round transformation. The
number of state registers is therefore increased from 5 ·64 · (d+1) to 8 ·64 · (d+1)2

compared to the DOM and UMA variants which is partially compensated by the
registers which are not required for the S-box layer.

6.4. LOLA-Protected Ascon Implementations 79

Another change affects the key storage which now needs to supply an additional
copy of the key since the key is combined with the state during the initialization
and the finalization and is used in parts of the state that need to be copied for
the secure S-box transformation.

Results and comparison. The post-synthesis results for a 90 nm Low-K
UMC process with 1 V supply and a 20 MHz clock synthesized with the Cadence
Encounter RTL compiler v14.20 of the LOLA designs are given in Table 6.3.
The design is generic in terms of protection order (d), but since the number
of registers grows quadratically with the protection order, we only considered
results up to order five. For all protection orders, only six cycles per encryption
or decryption are required which is three to seven times fewer than for the (64
parallel S-boxes) DOM and UMA designs.

Unrolling one round produces much more combinatorial delay which results
in a lowered maximum clock frequency. Nevertheless, also the throughput is in
all cases increased over related work. While for first-order the throughput is
only slightly increased, the difference becomes much more significant for order
five for which the throughput is almost doubled over the DOM design and 3.5
times higher than for the UMA design. The price for the reduced latency is
an increased chip area (about 15 kGE overhead for the first-order variant, and
double the amount of area over DOM for order five), and an increased randomness
consumption which is between 5.2 (UMA, order five) and 6.4 (DOM/UMA, first
order) higher.

Table 6.3: Results for Ascon-128 with one cycle per round (64 S-boxes)

Design Size Cycles Max. Throughput Randomness
[kGE] [Cycles/Round] [Gb/s] [bits/cycle]

1st-order 42.75 1 2.77 2,048
2nd-order 90.94 1 3.35 4,608
3rd-order 153.91 1 3.34 8,192
4th-order 238.30 1 2.59 12,800
5th-order 339.82 1 2.99 18,432

Related work

1st-order UMA 27.18 3 2.25 320
1st-order DOM 28.89 3 2.25 320
5th-order DOM 161.87 3 1.86 4,800
5th-order UMA 220.01 7 0.85 3,520

Discussion. We admit that the randomness requirements for the higher-order
variants become very high but we denote two things:

1) Our LOLA approach offers a new design choice that a designer of a masked
circuit can use to trade-off area and randomness against less latency. We used one
corner case to demonstrate the feasibility of the approach by targeting one cycle

80 Chapter 6. Ascon—Authenticated Encryption

per round transformation. A designer, of course, could also target a two-cycle
variant by using the resharing e.g. after the S-box or by inserting registers after
the affine transformation in the S-box to save randomness and area.

2) The CMS resharing function is not an ideal choice from multiple perspec-
tives. As it was pointed out by Moos et al. [Moo+18], the CMS resharing is
only secure up to the second protection order, and therefore not scalable to
any protection order as required by LOLA. We nevertheless decided to use the
hardware and randomness numbers, even for protection orders greater than two,
as estimation for the implementation costs because of the lack of suitable alterna-
tives. A DOM-like resharing, for example, could possibly reduce the randomness
amount, e.g. for first order by a factor of 4 which would reduce the randomness
to 512 bits per cycle. On the other hand, using the DOM resharing would require
a deeper analysis of the design over at least two rounds. Therefore, we made the
choice to use the CMS resharing at this point and denote the use of a generic,
secure, and more efficient resharing function as one interesting practical extension
of our work.

7
Keccak Secure Hash Algorithm (SHA3)

Keccak is a family of sponge functions, from which several instantiations
have been standardized by NIST as SHA-3, SHAKE and Keccak-p in [NIS15],
as a result from the SHA-3 hash competition. The SHA-3 specification de-
scribes four different instantiations of the Keccak-f [1600] hash function. The
Keccak family [NIS15] consists of seven permutations Keccak-f [b], for
b ∈ {25, 50, 100, 200, 400, 800, 1600}, where b denotes the width of the permuta-
tion. These permutations are organized in a sponge construction, which also
allows to express the Keccak permutation in terms of rate r and capacity c as
Keccak [r,c], for b = r + c. The rate in the sponge construction corresponds to
the block size and can be a multiple of a lane size, while its capacity determines
the security level as c/2.

Although the seven permutations of Keccak-f [b] have different permutation
widths, their underlying round function is always the same. A full round of
Keccak consists of the five steps θ, ρ, π, χ and ι, which operate on the three-
dimensional state in this order. A full permutation is defined as the repeated
application of these five steps.

� θ is a linear diffusion step. It calculates the parity of each column in a slice
and adds it to a neighboring column in the same and the next higher slice.

� ρ and π are also linear diffusion steps, most often implemented directly by
wiring in a hardware implementation.

� χ is a degree-2 non-linear mapping. It operates on each row of the state
independently and is implemented as xi ← xi ⊕ (xi+1 ⊕ 1)xi+2.

� ι is a simple addition of a round constant to a lane.

81

82 Chapter 7. Keccak Secure Hash Algorithm (SHA3)

q
1

a
0

a
1

b
0

b
1

q
0

r
x

 FF FF

c
0

c
1

Figure 7.1: First-order DOM multiplier calculating q = ab, and with randomness
optimization for q = ab⊕ c calculation (gray)

7.1 DOM Optimizations

In order to make our protected Keccak implementation more efficient, we
introduce different optimizations to decrease the overhead in terms of area, delay,
and required randomness.

Randomness Optimization. DOM was intended for the efficient and generic
higher-order protection of hardware designs. This genericity, however, leads
to an unnecessary overhead in terms of fresh randomness for first-order pro-
tection of some S-box constructions. In particular, this affects S-boxes of the
form ab⊕ c which is the case e.g. in the S-box of Keccak, Present [Bog+07],
Noekeon [Dae+00], and LowMC [Alb+15] .

The 5-bit Keccak S-box is given as xi ⊕ (xi+1 ⊕ 1)xi+2 which is of the form
ab ⊕ c. In a first-order DOM-protected Keccak S-box (see Figure 7.2), the
straightforward implementation requires 5 bit of randomness for each S-box to
calculate xi+1xi+2. However, the shares of xi are independent from the ones
of xi+1 and xi+2 and thus the shares of xi fulfill the same property as a fresh
random r share. Instead of adding r to the cross-domain terms in both domains,
we add the shares associated with xi as c0 and c1 to these cross-domain terms in
their respective domain (see Figure 7.1).

Saving randomness by reusing unrelated state bits has already been reported
for first-order threshold implementations by Bilgin et al. [Bil+14b] and more
recently by Daemen et al. [Dae17]. The difference is that Daemen’s changing-
of-the-guards approach performs an explicit resharing at the end of the S-box
function for two out of five S-box bits, which requires additional XOR gates,
while we perform this implicitly.

While the probing security of the construction in Figure 7.1 is trivially given
under the assumption that the sharings of the input bits (a, b, and c) are

7.1. DOM Optimizations 83

x0
0

DOM
AND

DOM
AND

DOM
AND

DOM
AND

DOM
AND

x0
1

x1
0

x1
1

x2
0

x2
1

x3
0

x3
1

x4
0

x4
1

y0
0

y0
1

y1
0

y1
1

y2
0

y2
1

y3
0

y3
1

y4
0

y4
1

register
stage

Figure 7.2: First-order protected S-box of Keccak with the DOM multiplier from
Figure 7.1

independent, the security argumentation gets more difficult when the rest of the
Keccak transformations and the full S-box implementation is considered. Indeed,
the uniformity of the state bits and therefore their suitability for masking other
operations degenerates over the rounds of Keccak as stated by Daemen. As this
effect is considered to be minimal by Daemen [Dae16] and therefore unpractical to
exploit, we still consider it as a valid option in our design. However, we note that,
formally speaking, this optimization leads to a flaw in the probing assumption.
Using this optimization requires careful investigation of the degeneration effect
for the targeted design or usage of the changing-of-the-guards method from
Daemen [Dae17]. Thus we made the usage of this optimization optional for our
first-order Keccak instantiation.

Throughput and Area Optimization. The DOM multiplier always intro-
duces a delay cycle through the resharing of the cross-domain terms. To make this
calculation more efficient, another register could be added in the inner-domain
paths of the multiplier to generate a pipeline stage (gray dotted registers in
Figure 7.1). However, this has a negative influence on the required chip area
if many S-box instances are used in parallel. We circumvent the additional
register by clocking the cross-domain flip-flops on the negative clock edge, which
effectively means doubling the clock frequency for the S-box. We investigate the
effectiveness of this approach in Section 7.3 and investigate its influence on the
maximum throughput. Furthermore, we note that this optimization is only a
meaningful option if the critical path in the S-box is relatively small compared to
the other circuit parts, or if the overall clock frequency of the chip is somewhat
already constrained. Otherwise this optimization might have a negative influence
on the layout of the design to meet the clock constraints.

84 Chapter 7. Keccak Secure Hash Algorithm (SHA3)

7.2 Implementation

Our generic Keccak implementation allows to be customized for a variety of
requirements for different security-critical applications. In the following, all
possible configurations of the Keccak design are explained, and the main
variants are introduced.

A high-level architectural view of the design is shown in Figure 7.3. It is
important to note that each mapping is either directly connected to the next one
or to the sponge state. The configuration of the connection is done at synthesis
time. Hence the connection between the steps, respectively between a mapping
and the sponge state, is done by simple wiring. Everything from a fully parallel
implementation, in which all five steps are done in one clock cycle, to a fully
iterative one, in which the output of each step is written back into the state,
can be instantiated. For example, when omitting the gray connections shown
in Figure 7.3, the Serial-Area configuration, which is described later in this
Section, is obtained.

Iterative Application of Functions. The design allows to apply the individ-
ual round transformation steps in an iterative way, which takes either multiple
cycles, but can also be performed in a single clock cycle. In case a step is handled
iteratively it will act on a specified number of state slices (in powers of two) in
parallel. This means that the state can be thought of as a number of FIFOs.
The FIFO’s output form the input of the iteratively applied step, and the output
of the step gets either piped into the input of the following step (which would in
turn need to be iterative), or back to the FIFO. The specified number of parallel
slices is used for all iterative steps (except for an iterative ρ/π step which is
explained further below). This simplifies the design by allowing to chain the
slice-based iterative χ, ι, θ and absorption steps together.

The iterative version of the steps looks as follows.

� In θ, one output slice depends on the parity of a previously processed slice’s
columns. This can simply be handled by storing the parity of the highest
processed slice of the previous cycle. This works for every slice except for
the first one, which can only be finished once we look at the last slice. Thus
the first slice is a special case and is finished together with the last one.

� An iterative ρ step means that each lane gets rotated until the desired
offset is reached. This does imply some control overhead, but allows to
save most of the multiplexers which are needed when π ◦ ρ is performed in
one cycle, which requires the full state to be written at once.

� The π mapping is then applied together with χ, which works out nicely,
since both are slice-based functions and π is implemented by simple wiring.

� The iterative ι step is simply done by adding only the relevant part of the
round constant. In our implementation ι is always done concurrently with
the S-box function χ.

7.2. Implementation 85

It is also possible to choose the lane length freely, which means, that any
Keccak-f [b] variant can be instantiated.

Absorption. A concrete instantiation of our design can perform the absorption
either in a lane-based or a slice-based fashion. In case of a slice-based absorption,
the absorbed slice(s) can be fed directly into an iterative θ step, which saves cycles
that otherwise would be wasted solely for absorption. In the case of a lane-based
absorption, such optimizations are not possible. However, lane-based absorption
often fits much more naturally with how data is processed and sent over buses,
hence possibly saving area or increasing overall performance, depending on the
concrete system. To avoid having to include additional buffers in case of systems
with bus widths unequal to the lane length, it is possible to adjust the number of
bits absorbed in a single cycle (in powers of two). This means, that it is possible
to absorb more than one lane at once, or only a fraction of a lane, as long as the
word to absorb is a power of two, depending on the configuration.

Concrete instantiations. Since the number of configurations which are pos-
sible with this approach is huge, we focus on three corner cases.

� Serial-Tp All steps except ρ and π are performed iteratively. The absorp-
tion is done in a slice-based manner, in parallel with the θ step in the first
round. ρ and π are done in a separate step. The χ and ι steps are chained
together with the absorption XORs and the θ step. Thus the processing
of a block takes r(WSP + 1) cycles, where W is the lane length, SP are
the number of parallel processed slices and r the number of rounds. This
implementation is similar to the one described by Bilgin et al. [Bil+14b]
but performs π ◦ ρ in a dedicated cycle instead of concurrently with the
last cycle of θ.

� Serial-Area This variant is similar to Serial-Tp but every step is done
iteratively (including ρ and π). In the iterative ρ step, each lane gets
rotated until a counter exceeds the rotation offset of that lane, hence this
step now takes W cycles to complete. This saves most of the multiplexers
which are needed when π ◦ ρ is performed in one cycle, as the whole state
does not have to be updated at once. This simple modification yields the
smallest register-based implementation of Keccak to date. As a trade-off,
throughput is decreased, compared to Serial-Tp, since ρ now takes W
cycles to complete.

� Parallel This variant is a fully parallel implementation in which we try
to achieve the highest possible throughput. The unprotected instantiation
performs ι ◦ χ ◦ π ◦ ρ ◦ θ in one cycle. The DOM-masked instantiations
require an additional flip-flop stage before the S-boxes, otherwise glitches
in the θ step would lead to a violation of the probing security during the
application of the χ step. Hence for one round of Keccak π ◦ ρ ◦ θ is
performed in one cycle and ι ◦ χ in the next. Such a configuration yields
the highest throughput but on the other hand requires 5 · 2l 5-bit S-boxes.

86 Chapter 7. Keccak Secure Hash Algorithm (SHA3)

Figure 7.3: Simplified architecture of our implementation

S-Box Variants. For each of the previously described configurations, we fur-
ther instantiated two different variants that differ in the implementation of the
S-Box in the χ step.

� Pipelined DOM variant. In this variant we use additional inner-domain
flip-flops together with the cross-domain flip-flops as a pipeline stage for
the multiplier in Figure 7.1.

� Double-clocked DOM variant. Here we try to keep the area overhead
of DOM minimal by saving the inner-domain flip-flops and clocking the
cross-domain flip-flops on the negative clock edge as described in Section 7.1.

Both S-box variants use the optional optimization to reduce randomness in
the first-order case, as described in Section 7.1. For the Serial configuration,
the overhead of the inner-domain flip-flops is negligible when only one slice is
processed in parallel. Thus only the pipelined S-box variant is shown in the
results for these instantiations.

Area Estimation. For the protected implementations, the linear parts (except
for the inverts) need to be replicated for each additional domain. Hence the
linear θ, ρ, π mappings, as well as the state itself are expected to scale linearly
with the number of shares (d+ 1). For the non-linear χ step, a more detailed
look at the S-Box is required. An unprotected S-Box consists of 5 AND, 5 NOT
and 5 XOR gates as can be obtained when only looking at domain A (black
parts) in Figure 7.2 and replacing the DOM AND instances by normal AND
gates. An estimation for the scaling of the χ step can be given by looking at the
generic construction of the DOM AND gate in Equation 1.3, and replicating the
XOR gates for each share, as illustrated in Figure 7.2 for two shares. Generally
speaking, for d+1 shares, the combinatorial part of the S-Box consists of 5(d+1)2

AND gates, 5 NOT gates and 5(d+ 1) + 5(d+ 1)2 XOR gates. Simplifying this
by looking only at the DOM AND gate ((d + 1)2 ANDs and XORs), we can
estimate the combinatorial part to increase with a factor (d+ 1)2. The number

7.3. Results 87

of flip-flops in the χ step depends on whether the implementation is pipelined
(uses the inner-domain flip-flops) or not. The pipelined variant requires (d+ 1)2

flip-flops, the variant without inner-domain flip-flops requires d(d+ 1).

7.3 Results

The synthesis results are obtained with the configurations described in Section 7.2.
We apply the configurations to the Keccak [1088,512] permutation, since it is a
SHA3 standard, and allows comparisons with other publications. All values have
been obtained by synthesizing the design with Cadence RTL Compiler version
8.1 XL. We used the FSC0H D and FSD0A A libraries from FARADAY for the
130 nm and 90 nm designs respectively. The numbers given in plots correspond
to designs synthesized with the 130 nm library.

A detailed look at the synthesis results, up to the second protection order, is
given in Table 7.1. The Keccak team itself were the first to provide a first-order
protected Keccak threshold implementation with three shares [Ber+12]. The
implementation was later on improved by Bilgin et al. [Bil+14b] resulting in the
smallest register-based1 protected and unprotected Keccak designs reported up
to now.

Area Requirements. The Serial configurations in Table 7.1 show the re-
sulting numbers when processing a single slice per cycle. This allows to directly
compare our serial designs with the one of Bilgin et al. [Bil+14b], which also
processes one slice per cycle. Their unprotected design has a size of just 10.6 kGE
for their serial implementation while our unprotected variants use 11 kGE in
case of Serial-Tp, and 9.2 kGE in the Serial-Area implementation for the
cost of a doubled cycle count. This makes our Serial-Area configuration the
smallest register-based Keccak implementation reported so far.

When looking at the Serial configurations’ increase in size between unpro-
tected (11.0/9.2 kGE), first-order (22.3/18.7 kGE) and second-order (34.6/28.8 kGE)
protected Serial designs in Table 7.1, it can be seen that all linear parts grow
linearly with the protection order as expected. This is also illustrated in Figure
7.4, which shows that the area requirement increases almost linearly with the
protection order for the Serial designs. The only non-linear part of the design
is the χ step, which only operates on one slice in the Serial configurations as
shown in Table 7.1, and thus the χ transformation has only a marginal influence
on the overall size.

For the Parallel configurations, the linear parts of the design grow linearly
with the protection order as well. The non-linear χ step now operates on the full
state, hence 64 · 5 5-bit S-Boxes are required, making it the main contributor to
the overall area.

As discussed in Section 7.2, the area of the DOM-protected χ step in-
creases non-linearly with the number of shares. This can best be observed

1 The smallest design this far is achieved by the usage of RAM macros and needs significantly
more cycles per block [PH13].

88 Chapter 7. Keccak Secure Hash Algorithm (SHA3)

U
M

C
0
.1

3
µ

m
U

M
C

9
0
n
m

P
ro

t.
A

re
a

(k
G

E
)

F
re

q
.

A
re

a
(k

G
E

)
F
re

q
.

o
rd

e
r

D
e
si

g
n

θ
χ

S
ta

te
/
O

th
e
r

∑
(M

H
z
)

θ
χ

S
ta

te
/
O

th
e
r

∑
(M

H
z
)

C
y
c
le

s
R

a
n
d
.

N
o
n
e

P
a
r
a
l
l
e
l

8
.6

6
.4

1
6
.2

3
1
.2

9
1
9
.1

7
.4

6
.0

1
4
.0

2
7
.4

1
,2

8
7
.0

2
4

-
S
e
r
ia
l
-T

p
0
.3

0
.1

1
0
.6

1
1
.0

8
6
6
.6

0
.2

0
.1

9
.6

9
.9

8
6
1
.3

1
6
2
4

-
S
e
r
ia
l
-A

r
e
a

0
.3

0
.1

8
.8

9
.2

8
6
1
.3

0
.2

0
.1

7
.4

7
.7

9
0
0
.9

3
1
3
6

-

1
st

o
rd

e
r

P
a
r
a
l
l
e
l

d
o
u
b
le

-c
lo

ck
e
d

2
1
7
.2

4
4
.2

3
8
.9

1
0
0
.5

8
0
3
.9

1
5
.0

3
8
.4

3
2
.2

8
5
.7

8
9
1
.3

4
8

-
P
a
r
a
l
l
e
l

p
ip

e
li
n
e
d

2
1
7
.2

5
7
.6

3
6
.8

1
1
1
.8

8
3
7
.5

1
5
.0

5
0
.4

3
2
.2

9
7
.7

8
4
6
.7

7
2

-
S
e
r
ia
l
-T

p
p
ip

e
li
n
e
d

0
.6

0
.9

2
0
.8

2
2
.3

8
1
2
.3

0
.4

0
.8

1
8
.9

2
0
.1

8
6
4
.3

1
6
4
8

-
S
e
r
ia
l
-A

r
e
a

p
ip

e
li
n
e
d

0
.6

0
.9

1
7
.1

1
8
.7

8
5
6
.2

0
.4

0
.4

1
4
.5

1
5
.7

8
5
0
.3

3
1
6
0

-

2
n
d

o
rd

e
r

P
a
r
a
l
l
e
l

d
o
u
b
le

-c
lo

ck
e
d

2
2
6
.0

1
3
9
.9

6
0
.1

2
2
6
.0

8
1
1
.7

2
2
.5

1
1
4
.0

5
1
.1

1
8
8
.1

8
9
7
.7

4
8

4
8
0
0
/
c
y
c
le

P
a
r
a
l
l
e
l

p
ip

e
li
n
e
d

2
2
5
.8

1
5
7
.2

5
5
.1

2
3
8
.4

8
4
0
.3

2
2
.5

1
3
8
.0

4
8
.2

2
0
8
.9

8
4
8
.9

7
2

4
8
0
0
/
c
y
c
le

S
e
r
ia
l
-T

p
p
ip

e
li
n
e
d

1
.0

2
.5

3
1
.1

3
4
.6

8
4
4
.6

0
.6

2
.2

2
8
.1

3
0
.9

8
4
5
.3

1
6
4
8

7
5
/
c
y
c
le

S
e
r
ia
l
-A

r
e
a

p
ip

e
li
n
e
d

0
.9

2
.5

2
5
.4

2
8
.8

8
5
2
.5

0
.6

2
.2

2
1
.4

2
4
.2

8
9
8
.5

3
1
6
0

7
5
/
c
y
c
le

R
e
la
t
e
d

W
o
r
k

N
o
n
e

P
a
ra

ll
e
l

[B
il
+

1
4
b
]

8
.6

6
.4

1
5
.6

3
0
.6

8
5
5

-
-

-
-

-
2
4

-
S
e
ri

a
l

[B
il
+

1
4
b
]

0
.1

0
.1

1
0
.4

1
0
.6

7
5
2

-
-

-
-

-
1
6
0
0

-

1
st

o
rd

e
r

P
a
ra

ll
e
l-

3
sh

[B
il
+

1
4
b
]

2
5
.7

5
2
.8

5
6
.7

1
3
5
.2

7
4
6

-
-

-
-

-
2
5

4
/
ro

u
n
d

P
a
ra

ll
e
l-

4
sh

[B
il
+

1
4
b
]

3
4
.2

6
1
.6

6
1
.8

1
5
7
.6

7
3
5

-
-

-
-

-
2
4

-
S
e
ri

a
l-

3
sh

[B
il
+

1
4
b
]

0
.4

0
.8

3
1
.4

3
2
.6

8
2
0

-
-

-
-

-
1
6
2
5

4
/
ro

u
n
d

S
e
ri

a
l-

4
sh

[B
il
+

1
4
b
]

0
.5

0
.9

4
1

4
2
.4

7
7
5

-
-

-
-

-
1
6
0
0

-

Table 7.1: Synthesis results

7.3. Results 89

Figure 7.4: Area requirement for increasing number of share domains. Serial with 1
slice processed in parallel with pipelined S-box

in the area increase from the unprotected Parallel to the protected Par-
allel configurations. The unprotected χ step (6.4 kGE) consists solely of
combinational logic, a 1600-bit state of small flip-flops is around 8.8 kGE (see
Serial-Area in Table 7.1). Hence, as was discussed in Section 7.2, a rough
area estimation for the χ step of the parallel Keccak implementation with
d + 1 shares would be (d + 1)2 · (6.4 kGE + 8.8 kGE) for the pipelined and
(d + 1)2 · 6.4 kGE + d(d + 1) · 8.8 kGE for the double-clocked variant. In case
of a first-order protected implementation this corresponds to 60.8 kGE, respec-
tively 43.2 kGE, which is close to the actually achieved results (57.6 kGE, resp.
44.2 kGE).

Compared to the existing implementations, our designs have a lower area
overhead for the same protection order, while achieving similar throughput, in
all configurations. The main reason for this difference is that related work uses
the dt+ 1 TI approach which requires at least three input shares for first-order
protection while our d+ 1 share implementations require only two shares in the
first-order case.

Throughput Considerations In case higher throughput is desired it is also
possible to increase the number of slices that are processed in parallel as mentioned
in Section 7.2. Figure 7.5 and Figure 7.6 show how the area and maximum
frequency develop, respectively, when doing so for the pipelined Serial-Tp
configuration. Note that while the area and maximum frequency for Serial-
Area would look similar, the throughput gain would be lower, due to ρ always
taking 64 cycles.

90 Chapter 7. Keccak Secure Hash Algorithm (SHA3)

Figure 7.5: Serial-Tp: Area over the number of share domains for different number
of parallel processed slices

Figure 7.6: Serial-Tp: Frequency over the number of share domains for a varying
number of parallel processed slices

7.3. Results 91

The throughput of the Serial-Tp configuration doubles if the number of
parallel processed slices doubles. This, of course, also doubles the number of
needed S-boxes, thus the area increase with higher protection order becomes less
linear. Compared to the first-order protected dt+ 1 TI in Table 7.1 that needs
32.6 kGE , the DOM-protected counterpart uses just 22.3 kGE.

The highest throughput is achieved with the Parallel configuration, which
needs the full 1600 S-boxes. The area requirement can be lowered by implementing
the double clocking of the S-box as described in Section 7.1. As shown in Table 7.1,
the area of the double-clocked S-box variant (100.5 kGE resp. 226.0 kGE) is
notably smaller than the area of the pipelined S-box variant (111.8 kGE resp.
238.4 kGE).

8
RISC-V Processor

This implementation builds upon the V-scale processor that implements the
RISC-V Instruction-Set Architecture (ISA), which was originally developed at
the University of California, Berkeley. RISC-V is a customizable, modular, free
and open RISC ISA. Its architecture is highly flexible, meaning that the register
sizes (32, 64, or 128 bit), their number (16 or 32), the number of privilege levels
(1 to 4), and the supported instructions can be chosen according to the desired
use case.

The ISA defines the mandatory base-integer instruction set (I or E) which
contains the most basic memory, arithmetic, logic, and control-flow instructions.
Optionally, more complex instructions can be implemented and are defined via
various standard extensions. These extensions include, for example, instructions
for integer multiplication/division (M), atomic (A) operations, as well as single-
(F) and double-precision (D) floating-point computations. The instructions in
the base instruction set and the mentioned extensions are all encoded in 32
bits. However, both shorter and longer instructions are supported, too. The
extension for compressed instructions (C), for example, defines 16-bit instructions,
which map to the base instruction set, to increase code density. Furthermore,
RISC-V also supports the addition of fully customized instructions as so called
non-standard extensions (X).

The fact that RISC-V, unlike for example the AVR, x86, and the ARM ISA,
has no status flags (carry, overflow, zero, ...) is noteworthy too, given that it
simplifies the masking efforts. Carry propagation as well as comparisons are
performed with dedicated instructions instead.

Like the ISA, also the V-scale processor core has been developed in Berkeley.
V-scale is a Verilog implementation of the RV32IM instruction set, i.e., it is a
RISC-V processor with 32 registers with a width of 32 bits featuring the base-

93

94 Chapter 8. RISC-V Processor

Figure 8.1: Overview of the V-scale core. Gray blocks are registers or use a register
stage internal. Shared data connections are illustrated in red, unshared
in black and the randomness in blue

integer instruction set and the integer multiplication extension. The core itself
relies on a single-issue in-order 3-stage pipeline comprising a fetch, a combined
decode+execute, and a write-back stage. Additionally, the data dependencies
between consecutive instructions can be resolved using a bypass of the write-back
stage which permits to maximize the utilization of the core. Communication
with memory relies on separated AHB-Lite memory interfaces for instructions
and data, permitting to build Harvard and von Neumann architectures.

8.1 Protected Implementation of V-scale

Our protected implementation of V-scale addresses the problem that data pro-
cessed by the processor is subject to side-channel attacks. In our design, we
solely protect the instructions of the base RV32I instruction set as it is the most
versatile one. Nevertheless, the multiplication/division (M) extension of the
original V-scale processor has been kept to maintain compatibility but is still
unprotected.

Therefore, the register file, the majority of the Arithmetic-Logic Unit (ALU)
and the data memory interface of the V-scale processor have been protected
using the DOM scheme. Other parts, like the instruction memory interface
and the decoder, have been left unprotected. The reason for this split is that
in any case the implemented code must be written in such a way that it does

8.1. Protected Implementation of V-scale 95

not leak information about the processed data over the instruction sequence
because different instructions show different power signatures in leakage traces.
Otherwise, even on a fully shared processor, timing attacks would for example
be possible.

The resulting processor’s architecture is depicted in Figure 8.1. One major
difference to the original V-scale processor is that the protected core now has four
pipeline stages. The additional pipeline stage (see (1) in Figure 8.1) splits the
previously combined decode+execute stage and is necessary to prevent leakage
due to glitches when data shares are merged. This aspect is described in more
detail in Section 8.1.1.

From another perspective, the processor is split into a part that operates on
DOM-shared data and a part operating with merged data shares. Accordingly,
the ALU itself has been split into a protected and an unprotected part. The
unprotected ALU (see (2) in Figure 8.1) implements multiplication/division,
address calculation, and data comparison for conditional jumps. Performing
comparisons for conditional jumps in an unprotected way is legitimate as code is
not allowed to branch on secure data anyway in order to avoid timing attacks.
More details on the logic to securely merge the different DOM shares and on
the unprotected ALU itself can be found in Section 8.1.2. All the remaining
functionality being part of the base instruction set (e.g. AND, OR, XOR, ADD,
...) is implemented in the protected ALU in a DOM-protected way. The protected
ALU is visualized in Figure 8.1 at (3) and is thoroughly described in Section 8.1.3.

8.1.1 Additional Pipeline Stage

The major change compared to the unprotected processor consists in the addi-
tional source registers shown in Figure 8.1 at (1). The main purpose of these
buffer registers is to prevent glitches in the merging units connected to RS1-merge
and RS2-merge. These merging units recombine the shares to the original value
as shown in Equation 1.

Without the registers RS1-merge and RS2-merge, (de-)activation of the
merging units can result in data-dependent glitches. This is illustrated using two
basic scenarios. First, the output of the register file switches to sensitive data.
This requires the merging units to be disabled by detaching their inputs from the
source register. However, if the sensitive data is selected faster than the merging
unit is disabled, sensitive data propagates into the merging unit which results in
the leakage of sensitive data. Second, the output of the register file switches from
sensitive data to data to be merged. This enables the merging unit by switching
the multiplexer to the output of the register file. Here, if the multiplexer switches
faster than the register file output is selected, the sensitive data from before
glitches into the merging units which leaks information. Both scenarios are
prevented by the additional buffer registers RS1-merge and RS2-merge. These
effectively decouple the merging units from the register file selector by setting
the input to the merging units to zero if not required. To adapt the delay of the
protected to the unprotected data path, further buffer registers RS1 and RS2
are needed.

96 Chapter 8. RISC-V Processor

Another change to the processor design is the addition of fresh randomness
to the processed values before the ALU result is written back to the register file
and before the registers RS1 and RS2 are used as operands for the protected
ALU. This allows to restore the independence of the sharings after unprotected
operations and shifts operations which generate zeros or duplicate the most
significant bit, respectively. Furthermore, the addition of fresh randomness is
required right before operating on identical operand registers for protected ALU
operations.

8.1.2 Unprotected Operations

Figure 8.1 shows at (2) the modules MUL-DIV and ALU (unpr.) providing
the unprotected operations of our core. These modules operate natively with
32-bit word size and use the merged data as described in Section 8.1.1. The
MUL-DIV -module is the unprotected hardware multiplication and division unit
from the original V-scale processor design and kept to maintain compatibility.

The unprotected ALU implements different compare operations, e.g., for
branch instructions. However, the comparison results can also be written back
to a register. While all branch instructions use two source register inputs,
instructions storing the comparison result allow to alternatively use an immediate
value as the second source. Note that the compare functionality could have been
implemented without merging the data, but branching on protected data must
anyway be avoided due to possible timing attacks [Koc96]. This design decision
should be kept in mind as it makes it necessary to avoid compare operations on
protected data.

Furthermore, the unprotected ALU provides an adder to perform address
calculations within load and store operations. Note, however, that the required
merging of source register before the actual address computation does not reduce
security. As the second operand is constant and determined by a known software
implementation, the value of the source register can always be reconstructed,
also if a masked adder was used and the shares of the memory address were
merged afterwards. Besides, the unprotected adder is also used within two further
instructions. First, the adder is used in the jump and link instruction to increment
the program counter in the computation of the address of the following instruction.
Second, in the “add upper immediate to program counter”-instruction both the
program counter and the immediate input are publicly known making a masked
adder obsolete.

8.1.3 Protected ALU

The protected ALU is shown in Figure 8.2 which provides the masked functionality
for bit-wise logic operations and arithmetic operations. Both input sharing vectors
X and Y are composed of d+ 1 independent shares (see Equation 8.1), where
d is the protection order of the DOM implementation. For resharing purposes,
the protected ALU has two additional inputs Z(1) and Z(2) holding the required

8.1. Protected Implementation of V-scale 97

Figure 8.2: Protected ALU using a single DOM-AND for AND and OR operations.
Shown XOR operations used in different manner: (p)airwise XOR opera-
tion of input shares (e.g. x0 ⊕ y0;x1 ⊕ y1; . . .); (i)nverting the operand
xoring the signal OR with every element of the corresponding first share

fresh random shares. The data width of the input shares and the fresh random z
shares is 32 bits each.

X = (x0, x1, x2, . . .)︸ ︷︷ ︸
d+1

Y = (y0, y1, y2, . . .)︸ ︷︷ ︸
d+1

(8.1)

Z(1) = (z
(1)
0 , z

(1)
1 , z

(1)
2 , . . .)︸ ︷︷ ︸

d(d+1)/2

Z(2) = (z
(2)
0 , z

(2)
1 , z

(2)
2 , . . .)︸ ︷︷ ︸

d(d+1)/2

(8.2)

DOM-AND

The basis for all implemented non-linear operations is the DOM GF (2) multiplier
(see Section 1.1) which corresponds to a logic AND gate with two one-bit inputs.
A basic requirement of the DOM multiplier is that the two inputs X and Y are
independently shared which is ensured by design of the protected core.

The construction of the DOM-AND is generic and can thus be extended
to arbitrary protection orders by adding additional shares. For the protection
order d, d+ 1 shares per variable are required giving d + 1 independent share
domains. Every domain consists of d+ 1 AND gates and flip-flops which results
in a quadratical growth of the chip area accordign to the protection order. The
three steps (calculation, resharing, and integration) of the DOM implementation
are applied independently for every bit position of the 32-bit shares. Therefore,
a 32-bit AND gate consists of 32 DOM-AND gates.

98 Chapter 8. RISC-V Processor

Figure 8.3: Masked adder using two DOM-AND. Shown XOR operations used in
different manner: (p)airwise XOR operation of input shares (e.g. x0 ⊕
y0;x1 ⊕ y1; . . .); (i)nverting the operand by xoring the signal SUB with
every element of the first share of Y (y0).

DOM-Adder

The protected adder is based on a Kogge-Stone design, similar to the construction
of Schneider et al. [Sch+15]. The adder is a carry-lookahead-type adder using a
tree-like structure separating the addition into propagation and carry generation.
Figure 8.3 shows the secure DOM adder. It is composed of two DOM-ANDs,
two bit shifts, and multiple XORs. The XOR as well as the shift operations
can be performed independently for each share domain and each input. The
nonlinear parts of the adder are formed by two DOM-AND gates. To make the
illustration of the adder in Figure 8.3 more concise, the three steps for calculating
the DOM-AND are only indicated by the respective function. The DOM-AND ’s
internal registers together with the G are used as the working registers for the
iterative calculation of the sum. The DOM-AND ’s internal registers are indicated
by GP which belongs to the carry generation path and P which belongs to the
propagation path.

For the carry generation path, the register G is used to store the previous
value of the generation step as it is required in the next iteration. An important
requirement of the used DOM-AND gate is an independent sharing of both inputs.
This independence is ensured for both AND gates because the bit position of one
operand is always shifted by at least one position. With the same argument, the
random shares in each cycle are applied for both AND gates without violating
the independence requirement.

The subtraction operation can easily be performed by calculating the two’s-
complement of the subtrahend. The subtraction is controlled by the SUB input.
Therefore, the input signal SUB is xored with every bit of the first share of Y
(y0). Incrementing the result by one is done by connecting the carry-in of the
adder with SUB which is active on a subtraction. This is done in the shifter of
the generation path by appending the carry bit below the least significant bit
of the first share and shifting it into the carry generation path. The following

8.1. Protected Implementation of V-scale 99

equations use the � operation to indicate a left shift performed independently
on every input share supporting only shifts with 2n where n ≥ 0. The calculation
of the sum is performed in three steps called preprocessing, processing, and
postprocessing.

An addition is started with the initial preprocessing step initializing the
registers G, P0 and GP according to Equation 8.3.

G0 = 0 P0 = X⊕Y GP0 = XY (8.3)

The processing step is performed five times in a row (n =1 . . . 5). The first
and last steps are diverging from the normal processing operation. In the first
step, the input register P is replaced by P0. In the last processing step, the
register update of P is omitted (see Equations 8.4-8.6).

Gn = Gn−1 ⊕GPn−1 n = 1 . . . N (8.4)

Pn = Pn−1 (Pn−1 � 2n−1) n = 1 . . . N − 1 (8.5)

GPn = Pn−1(Gn � 2n−1) n = 2 . . . N (8.6)

In the final postprocessing step, the resulting sum is simply computed by a
single XOR operation as shown in Equation 8.7.

S = P0 ⊕ (GN � 1) (8.7)

Resharing of ALU Inputs and Outputs

To reduce the required fresh randomness, the two resharing values R(1) and R(2)

in Figure 8.1 are generated from the random shares. Furthermore, the merged
value of both R shares is always zero so that an addition of the shares with a
sharing of the register file input or output always result in a resharing without
changing the underlying value. For first-order protection, the resharing value is
generated by duplicating a single random share as shown in Equation 8.8.

R(1) = (z
(1)
0 , z

(1)
0) R(2) = (z

(2)
0 , z

(2)
0) (8.8)

For other protection orders, the randomness is composed as shown in Equation 8.9-
8.10.

R(1) = (z
(1)
0 , z

(1)
0 ⊕ z(2)

1 , z
(1)
2 ⊕ z(2)

1 , z
(1)
2 ⊕ z(2)

3 , z
(1)
4 ⊕ z(2)

3 , . . .) (8.9)

R(2) = (z
(2)
0 , z

(1)
1 ⊕ z(2)

0 , z
(1)
1 ⊕ z(2)

2 , z
(1)
3 ⊕ z(2)

2 , z
(1)
3 ⊕ z(2)

4 , . . .) (8.10)

To guarantee the independence of both resharing values, the first sharing R(1)

uses the shares of Z(1) with even and shares of Z(2) with odd indexes, whereas the
second sharing R(2) uses the remaining shares of Z(1) and Z(2). This combination
of both shares is necessary to prevent adding of two shares which are also used
in the DOM-AND for the integration step. For example, if the second term of

100 Chapter 8. RISC-V Processor

R(1) uses the same random z share (z
(1)
0 ⊕ z(1)

1), it could be used to eliminate
two random values in domain 0. This reduces the number of signals an attacker
has to probe to reveal an unshared intermediate.

Other ALU Operations

The remaining operations of the protected ALU (see Figure 8.2) are the shift
operations, the logic operations XOR and OR, and the pass-through path. The
shift operations are represented by the blocks SLL, SRL and SRA, which perform
a logical left or right shift or an arithmetic right shift. The Shift operand
uses a separate unshared input for selecting the shift width which is generated
outside the module as shown in Figure 8.1. This is necessary to prevent an
unwanted merging of the default-used shift operand Y. The shifts are performed
independently on every share of X. For the arithmetic right shift, the most
significant bit of every share is duplicated. The logical shift operations add zeros
to the shares. Therefore, the shares must be refreshed, which is done before
writing back the result into the register file or the buffer registers adding fresh
randomness (see Figure 8.1).

The XOR operation is done in a straight-forward way by adding the input
shares of X and Y share-wise. This leads to a zero result using the same input
values. Again, the results are reshared using fresh randomness before storing
them in the buffer registers RS1 and RS2 to guarantee independence of the
shares.

The pass-through applies the second input Y unmodified to the output. To
prevent a duplication of the sharing of Y in different registers, the sharing is
again refreshed before writing it to a register.

The OR operation is combined with the AND operation formed by the DOM-
AND to reduce the logic overhead. This is done by transforming the logical OR
into an AND by inverting both inputs and the output. If the OR operation is
used, the input OR is set which inverts the first share of both input operands
as well as the resulting output of the DOM-AND by adding to all bits the OR
signal.

8.2 Hardware Results

The hardware results are gathered for a Xilinx Kintex-7 FPGA with the Xilinx
Vivado Design Suite 2014.3. Therefore, the synthesis was done for the unprotected
core as well as for the protected V-scale core with protection orders from 1 up
to 4. Figure 8.4 shows the evolution of required look-up tables (LUTs) (left) as
well as the required registers (right) for increasing protection order. The overall
area seems to grow only linearly with the protection order. The design of the
DOM-AND gates which are part of the nonlinear modules of the protected ALU
increase quadratically which, however, contributes only marginally to the overall
size for lower protection orders. Table 8.1 shows the area result in numbers.
Additionally, the required randomness is shown which increases quadratically

8.2. Hardware Results 101

Unpr. 1 2 3 4

Protection order

0

2K

4K

6K

8K

10K
Ar

ea
 [L

UT
s]

Overall
Prot. ALU
Control

Unpr. 1 2 3 4

Protection order

0

1K

2K

3K

4K

5K

Ar
ea

 [r
eg

s]

Overall
Prot. ALU
Control

Figure 8.4: Required LUT (left) and registers (right) on an FPGA

Table 8.1: V-scale core implementation results

Prot. Order FPGA Logic Randomness Max. Clock
d [LUTs] [regs] [Bits] [MHz]

Unpr. 2,607 996 0 45.6
1 4,143 1,842 64 61.0
2 5,626 2,551 192 59.5
3 7,259 3,484 384 58.3
4 9,244 4,561 640 41.0

with the protection order. In particular the randomness required for the protected
ALU is 32× d(d+ 1) bits in each cycle. The last column shows the maximum
clock frequency which is higher for the protection orders 1 up to 3 than for the
unprotected implementation. This results from the additional pipeline stage of
the protected implementation which reduces the critical path but increases the
delay at the same time.

“Talking isn’t doing. It is a kind
of good deed to say well; and yet
words are not deeds.”

— William Shakespeare

9
Conclusions

In this part of the thesis, several masked implementations of cryptographic
primitives as well as masked S-box constructions and a masked RISC-V processor
implementation have been introduced. These implementations allowed us to
compare the DOM based masking schemes from Part I among each other and to
compare our implementations with other existing implementations from many
different points of view. All of our the stated designs are generic in terms
of protection order while related hardware implementations are usually only
designed for first and in some cases for second order SCA resistance. This
genericity, however, is not bought by a huge overhead in terms of chip area or
randomness costs. Our DOM AES and SHA3 implementations, for example,
are still the least randomness demanding higher-order protected design to date,
while our LOLA AES S-box constructions are the first to lower the latency below
two cycles and even allows us to calculate a masked AES S-box in a single clock
cycle.

With the Ascon hardware implementations, we have demonstrated that
Ascon is not only a very versatile AE with in general low hardware costs but
also that its comparably low side-channel protection costs makes it a suitable
candidate for the next generation of symmetric-key primitives. Furthermore, both
UMA as well as LOLA variants have shown to extend the DOM implementation
meaningfully by either reducing the randomness costs or the latency significantly,
and thus enabling Ascon for a wide range of security-critical applications with
different constraints.

Giving fair comparisons for hardware designs is in general a difficult task
given the fact that most of the stated hardware results in the literature are given
for different combinations of standard-cell libraries, design tools, and synthesis
parameters. The various assumptions on the different masked implementations,

103

104 Chapter 9. Conclusions

like the number of shares for a certain protection order or the relation of the
produced random bits among each other, make this comparison even less trans-
parent. A direct comparison of the stated numbers is thus only possible to
a very limited extent. To make the comparison with our implementations as
fair and transparent as possible, we thus decided to make all of our hardware
implementations openly available:

I Hannes Groß. Collection of DOM-Protected Hardware Implementations.
https: // github. com/ hgrosz

https://github.com/hgrosz

Part III

Verification of Masking

105

107

In this part of the thesis, we introduce a method to formally prove the security
of masked hardware implementations in the presence of glitches. In contrast to
existing formal or non-empirical verification approaches for hardware designs,
the introduced approach does not require any additional modeling of the circuit
or the leakage source and proves the security of a circuit directly on its netlist.
Compared to empirical verification methods based on the statistical analysis of
leakage traces, our formal approach allows direct localization of the detected
flaws, and gives conclusive security statements that are independent of device- or
measurement-specific conditions, or the amount of gathered leakage information.

We base our approach on the probing model of Ishai et al. [Ish+03] and
take the effects of glitches into account. We introduce a circuit verification
method that performs a conservative estimate of the data an attacker can learn
by probing different gates and wires. The verification works directly on the
gate-level representation of the circuit. It uses the Fourier expansion (or Walsh
expansion) of the functions that are computed and uses the fact that a non-zero
Fourier coefficient for a linear combination of variables indicates a correlation
between the function and these variables (cf. [Bha+13]). A correlation with a
linear combination of variables that contains secrets but no uniformly distributed
masking variables corresponds to an information leak. By only keeping track
of whether coefficients are zero or not, we circumvent the complexity of a full
Fourier representation of all functions computed by all gates of the circuit, at
the cost of a loss of precision that may lead to false alarms.

We start this part with an example for an empirical leakage assessment based
on statistical t-tests and discuss its limitations. We then introduce our formal
verification approach and apply the approach on practical examples.

This part of the thesis is based on the following papers:

� Chapter 10: Empirical Side-Channel Evaluation

I Hannes Groß and Stefan Mangard. “Reconciling d+1 Masking in Hard-
ware and Software.” In: CHES. vol. 10529. Lecture Notes in Computer
Science. Springer, 2017, pp. 115–136

Contribution. The author of this thesis is the main author of the paper.

� Chapter 11: Formal Verification of Masking

I Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan
Mangard, and Johannes Winter. “Formal Verification of Masked Hardware
Implementations in the Presence of Glitches.” In: EUROCRYPT (2).
Vol. 10821. Lecture Notes in Computer Science. Springer, 2018, pp. 321–
353

Contribution. The parts of the paper used for this thesis are joint work
with equal contributions from the authors.

108

� Chapter 12: Practical Formal Verification

I Hannes Groß and Stefan Mangard. “Reconciling d+1 Masking in Hard-
ware and Software.” In: CHES. vol. 10529. Lecture Notes in Computer
Science. Springer, 2017, pp. 115–136

I Hannes Groß, Rinat Iusupov, and Roderick Bloem. Generic Low-Latency
Masking in Hardware. CHES 2018 (in press)

Contribution. The author of this thesis is the main author of the papers.
The taint-checking-based verification tool was provided by Rinat Iusupov.

10
Empirical Side-Channel Evaluation

Before introducing our formal verification approach in the next section, we first
perform an exemplary empirical leakage evaluation on the example of the UMA
S-box of Ascon from Section 6.3 and discuss its limitations.

In order to analyze the SCA resistance of our UMA implementations empiri-
cally, we performed a statistical t-test according to Goodwill et al. [Goo+11] on
leakage traces of the S-box designs of the UMA variants. We note that t-tests
are unsuitable for proving any general statements on the security of a design (for
all possible conditions and signal timings) as it would be required for a complete
security verification. T-tests only allow statements for the tested devices and
under the limitations of the measurement setup. Many works test masked circuits
on a Field Programmable Gate Array (FPGA) and perform the t-test on the
traces gathered from power measurements. This approach has the drawback that
due to the relatively high noise levels the evaluation is usually limited to first
and second-order multivariate t-tests.

However, in practice t-tests have proven to be very sensitive and useful to
test the side-channel resistance of a design.

Setup. We use the recorded signal traces from the post-synthesis simulations
of the netlists, which are noise-free and allow us to evaluate the designs up to
the third order. Using post-synthesis leakage traces over traces collected from
an FPGA or Application-Specific Integrated Circuit (ASIC) design shows some
differences which are in some cases very beneficial but there are also drawbacks.
First of all, post-synthesis leakage traces are totally free from environmental
noise and variations in the operating conditions like temperature or the supply
voltage. As a result, violations of the dth-order security are found with much
fewer leakage traces. Another big advantage is that the t-tests can be performed

109

110 Chapter 10. Empirical Side-Channel Evaluation

either on a rather coarse level, by taking all signals together into account, or on
a very fine-grained level by using individual signals. The latter allows to directly
locate the source of the leakage on signal level which makes it very easy to find
the flaws in the design.

One disadvantage of this approach is that post-synthesis traces do not use a
real existent leakage source. A t-test performed on a specific ASIC chip or FPGA
design, however, also only allows to give a statement about this specific device
and even does not give a guarantee about its behavior in the future, since signal
delays may change under different environmental conditions and over the life
cycle of a device. In case of the simulated synthesized netlist, the signal delays
are based on unified gate delays which also result in signal glitches that appear
from cascading logic gates. Glitches that could result from different wire lengths,
and other parasitic effects, however, are not modeled and thus are more likely to
show up on FPGA or ASIC-based t-tests.

The intuition of the t-test follows the idea that a Differential Power Analysis
(DPA) attacker can only make use of differences in leakage traces. To test that
a device shows no exploitable differences, two sets of traces are collected per
t-test: (1) a set with randomly picked inputs, (2) a set with fixed inputs and
the according t-value is calculated. Then the t-value is calculated according to
Equation 10.1 where X denotes the mean of the respective trace set, S2 is the
variance, and N is the size of the set, respectively.

t =
X1 −X2√
S2
1

N1
+

S2
2

N2

(10.1)

The null-hypothesis is that the means of both trace sets are equal, which is
accepted if the calculated t-value is below the threshold of ±4.5. If the t-value
exceeds this threshold, then the null-hypothesis is rejected with a confidence
greater than 99.999% for large enough trace sets. A so-called centered product
pre-processing step with trace points inside a six cycle time window is performed
for higher-order t-tests. Beyond this time frame, the intermediates are ensured
to be unrelated to the inputs. We thus combine multiple tracepoints by first
normalizing the means of the trace points and then multiplying the resulting
values with other normalized points inside the time window.

Results. Figure 10.1 shows the results of the t-tests for the time offsets which
yielded the highest t-values for the UMA S-box implementations of Ascon. From
top to bottom, the figures show the results for different protection orders from
d = 0 to d = 3, and from left to right we performed different orders of t-tests
starting from first order up to third order. Above d = 3 and third-order t-tests,
the evaluation of the t-tests becomes too time-intensive for our setup.

On the y-axis of the figures, the t-values are drawn, and the y-axis denotes
the used number of traces at a fraction of a million. The horizontal lines (green,
inside the figures) indicate the ±4.5 confidence border. The protection border
between the figures (the red lines) separates the t-tests for which the protection

111

Figure 10.1: T-test evaluation for different protection orders d = 0 . . . 3 (from top to
bottom) and for different t-test orders (first to third, from left to right)

order of the design is below the performed t-test (left) from the t-tests for which
the test order is above (right).

As intended, the t-values for the masked implementations below the protection
border do not show any significant differences even after one million noise-free
traces. For the unprotected implementation (top, left figure), for example, the
first-order t-test fails with great confidence even after only a couple of traces,
and so do the second and third-order t-tests on the right. The first-order t-test
below the first-order protected S-box does not show any leakages anymore but
the higher-order t-tests fail again as expected. The third-order implementation
does not show any leakages anymore for the performed t-tests. We thus conclude
that our implementations seem to be secure.

Discussion An empirical leakage evaluation like the t-test performed in this
chapter, regardless of whether real leakage traces or simulated leakage traces were
used, is never conclusive. This means that is that it is impossible to conclude from
the t-test result that with more traces the t-test would still be negative below the
stated security level. On the other hand, if the leakage test is positive, finding the
cause of the leakage is usually not trivial because the leakage test usually takes
the sum of the leakages of all or at least many signals into account. Furthermore,
an empirical evaluation does not ensure the security of the implementation itself,
but only states the security of the implementation for the tested devices and for
the specific environmental and testing conditions which when varied may lead
to different signal timings. Another drawback is that t-tests cannot be easily
performed during the design phase of a circuit. Is is usually required to map
the part that should be tested to a real implementation, e.g. an FPGA, and to

112 Chapter 10. Empirical Side-Channel Evaluation

run the statistical test on this. However, if an ASIC implementation is targeted,
this mapping to an FPGA implementation is quite imprecise because the leakage
behavior of logic gates of ASIC designs and the Look-Up Table (LUT) based
design of an FPGA are quite different. To conclude this discussion, an empirical
leakage assessment, even though it is required and very helpful in practice, can
never guarantee the soundness of an implemented countermeasure under all
possible environmental conditions and signal timings.

In the next chapter, we introduce a formal verification approach that over-
comes these shortcomings.

“Just because it works in practice does
not mean it also works in theory.”

— Anonymous recipient of cruel reviews

11
Formal Verification of Masking

Automated verification of masked implementations has been intensively researched
over the last years and recently many works targeting this topic have been pub-
lished [Bar+15a; Bay+13; Bel+16; BM16; EW14; Eld+14b; Eld+14a; Mos+12].
Most of the existing work, however, targets software-based masking which does
not include the effects of glitches.

Verification of masked software. One of the most groundbreaking works
towards the efficient verification of masked software implementations is the work of
Barthe et al. [Bar+16]. Instead of proving the security of a whole implementation
at once, this work introduces the notion of strong non-interference (SNI). SNI
is an extension to the more general non-interference (NI) notion introduced
in [Bar+15b]. The SNI notion allows to prove the security of smaller code
sequences (called gadgets) in terms of composability with other code parts.
Gadgets fulfilling this SNI notion can be freely composed with other gadgets
without interfering with their SCA resistance.

Verification of algorithms that fulfill this notion scale much better than other
approaches but not all masking algorithms that are secure are also directly
composable. As a matter of fact, the most efficient software masking algorithms
in terms of randomness of Beläıd et al. [Bel+16; Bel+17], Barthe et al. [Bar+17b],
and UMA, for example, do not achieve SNI directly.

In contrast to Barthe et al.’s work on SNI [Bar+16], our approach does
not check for composability and is therefore less restrictive to the circuits and
masking schemes that can be proven (similar to the NI approach of Barthe et
al. [Bar+15b]). Since Barthe et al.’s work is designed to prove masked software
implementations, it does not cover glitches. In our work, we introduce the
necessary formal groundwork for the verification of masked circuits and in

113

114 Chapter 11. Formal Verification of Masking

particular the propagation of glitches. Our approach is thereby not bound to our
SAT realization but is also compatible with existing tools like easycrypt which is
developed by Barthe et al. [Bar+17a].

Most recently, another formal verification approach by Coron [Cor] was
introduced that builds on the work of Barthe et al.. Essentially, two approaches
are discussed in this work. The first approach is basically the same as the
approach in [Bar+15b] but written in Common Lisp language. The second
approach is quite different and works by using elementary transformations in
order to make the targeted program verifiable using the NI and SNI properties.
Coron’s work targets again only software based masking and does not take glitches
into account.

Eldib et al. [Eld+14b] present an approach to verify masked software imple-
mentations. Similar to our approach, the verification problem is encoded into
SMT and verified by checking the constraints for individual nodes (operations)
inside the program. This approach allows direct localization of the vulnerable
code parts. However, their approach targets software and therefore does not
cover glitches. It also produces SMT formulas that are exponential in the number
of secret variables, whereas the formulas that are produced by our approach are
only linear.

Bhasin et al. [Bha+13] also use the Fourier transformation to estimate the
side channel attack resistance of circuits. Their approach uses a SAT solver to
construct low-weight functions of a certain resistance order. They have not used
their approach to evaluate existing implementations of cryptographic functions,
and they do not take glitching behavior into account.

Verification of masked hardware. Similar to our approach, Bertoni et
al. [BM16] address verification of masked hardware implementations in the
presence of glitches. In this work, all possible transients at the input of a circuit
are considered and all resulting glitches that could occur at the gates are modeled.
However, this approach focuses on first-order masking of purely combinatorial
logic and uses a rather simple power model to measure the impact (transitions
from 0 to 1 result in the same power consumption as transitions from 1 to
0). We note that focusing on combinatorial logic only, leaves out most of the
existing hardware-based masking schemes such as [GM17; Gro+17a; Nik+06;
Rep+15]. Bertoni et al.demonstrated their approach on a masked implementation
of Keccak based on a masking scheme that is known to be insecure in the presence
of glitches.

In contrast to Bertoni et al.’s work, our approach considers combinatorial
logic as well as sequential gates (registers), covers also higher-order leakages, and
is not restricted to circuits with only one output bit.

In the work of Reparaz [Rep16], a leakage assessment approach is introduced
that works by simulating leakages of a targeted hardware implementation in
software. At first, a high-level model of the hardware implementation is created,
and the verification then works by simulating the model with different inputs
and extracting leakage traces. The verification result is gathered by applying

11.1. Preliminaries 115

statistical significance tests (t-tests) to the simulated leakage traces. Compared
to our approach, the leakage detection approach of Reparaz does not perform
a formal verification but an empirical leakage assessment. Furthermore, the
verification is not directly performed on the targeted hardware implementation
but requires to model its (leakage) behavior in software.

11.1 Preliminaries

In the following, we make extensive use of the usual set notation, where S4 T =
S \ T ∪ T \ S denotes the symmetric difference of S and T and for two sets of
sets S and T, we define S44 T = {S 4 T | S ∈ S, T ∈ T} to be the pointwise set
difference of all elements. We write B = {true, false} for the set of Booleans. For
a set X of Boolean variables, we identify an assignment f : X → B with the set
of variables x for which f(x) = true. For a Boolean function f(X,Y) and an
assignment x ⊆ X, we write f |x to denote the function f |x(y) = f(x, y).

Fourier expansion of Boolean functions. There is a close connection be-
tween statistical dependence and the Fourier expansion of Boolean functions.
First, we formally define statistical independence.

Definition 1 (Statistical independence). Let X, Y , and Z be sets of Boolean
variables and let f : 2X × 2Y → 2Z . We say that f is statistically independent of
X if for all z there is a c such that for all x we have |{y | f(x, y) = z}| = c.

Lemma 2. Let F : BX × BY → BZ . Function F is statistically independent of
X iff for all functions f : BZ → B we have that f ◦ F is statistically independent
of X.

To define Fourier expansions, we follow the exposition of [O’D14] and associate
true with −1 and false with 1. We can then represent a Boolean function as a
multilinear polynomial over the rationals.

Definition 3 (Fourier expansion). A Boolean function f : {−1, 1}n → {−1, 1}
can be uniquely expressed as a multilinear polynomial in the n-tuple of variables
X = (x1, x2, . . . , xn) with xi ∈ {±1}, i.e., the multilinear polynomial of f
is a linear combination of monomials, called Fourier characters, of the form
χT (X) =

∏
xi∈T xi for every subset T ⊆ X. The coefficient of χT ∈ Q is

called the Fourier coefficient f̂(T) of the subset T . Thus we have the Fourier
representation of f :

f(X) =
∑
T⊆X

f̂(T)χT (X) =
∑
T⊆X

f̂(T)
∏
xi∈T

xi.

The Fourier characters χT : {−1, 1}n → {−1, 1} form an orthonormal basis
for the vector space of functions in f : {−1, 1}n → {−1, 1}. The Fourier
coefficients are given by the projection of the function to its basis, i.e., for

116 Chapter 11. Formal Verification of Masking

f : {−1, 1}n → {−1, 1} and T ⊆ X = (x1, x2, . . . , xn), the coefficient f̂(T) is

given by f̂(T) = 1/2n ·∑X∈{±1}n(f(X) · χT (X)). In order to prevent confusion
between multiplication and addition on rationals and conjuction and XOR on
Booleans, we write · and + for the former and ∧ and ⊕ for the latter.

As an example, the Fourier expansion of x ∧ y is

1/2 + 1/2 · x+ 1/2 · y − 1/2 · x · y. (11.1)

If x = false = 1 and y = true = −1, for example, the polynomial evaluates to
1/2 + 1/2− 1/2 + 1/2 = 1 = false as expected for an AND function.

Let us note some simple facts. (1) The Fourier expansion uses the exclusive
OR of variables as the basis: x⊕ y = x · y. (2) f2 = 1 for the Fourier expansion
of any Boolean function f [O’D14]. (3) There are two linear functions of two
arguments: f = x · y (XOR) and f = −(x · y) (XNOR). All other functions

f are nonlinear and for them, each of f̂(∅), f̂({x}), f̂({y}), and f̂({x, y}) is
nonzero. (We are ignoring the constant and unary functions.) (4) The statistical
dependence of the functions can be read off directly from the Fourier expansion:
the conjunction has a constant bias, positively correlates with x and y, and
negatively with its x ⊕ y. This last fact can be generalized to the following
lemma.

Lemma 4 (Xiao-Massey [XM88]). A Boolean function f : {−1, 1}n → {−1, 1}
is statistically independent of a set of variables X ′ ⊆ X iff ∀T ⊆ X ′ it holds that
if T 6= ∅ then f̂(T) = 0.

11.2 Masking and the Probing Model

For this chapter, we change the so far used sharing-based notation to a masking
based notation which is more convenient for our formal verification approach.
Reconsider that the intention of masking is to impede SCA attacks by making side-
channel information independent of the underlying security-sensitive information.
This independence is achieved through the randomization of the representation
of security-sensitive variables inside the circuit. For this purpose, randomly
produced and uniformly distributed masks are added (XOR) to the security-
sensitive variables prior to a security-critical computation. The number of used
masks depends on the used masking scheme and is a function of the security
order.

As a simple example, we consider the security-sensitive 1-bit variable s in
Equation 11.2 that is protected by adding a uniformly random mask ms, resulting
in the masked representation sm.

sm = s⊕ms. (11.2)

The masked value sm is again uniformly distributed and statistically inde-
pendent of s, i.e., it has the same probability to be 0 or 1 regardless of the value
of s. Any operation that is performed only on sm is statistically independent

11.2. Masking and the Probing Model 117

of s and so is thus also the produced side-channel information. Since the mask
ms is randomly produced, operations on the mask are uncritical. However, the
combination of side-channel information on sm and ms can reveal information on
s. The independence achieved through masking is thus only given up to a certain
degree (the number of fresh masks used for masking s), and it is important to
ensure this degree of independence throughout the entire circuit. The degree of
independence is usually referred to as the protection order d.

Masked circuits. For the remainder of this chapter, let us fix an ordered set
X = {x0, . . . , xn} of input variables. We partition the input variables X into
three categories:

� S = {s1, . . . sj} are security-sensitive variables such as key material and
intermediate values of cryptographic algorithms that must be protected
against an attacker by means of masking.

� M = {m1, . . .mk} are masks that are used to break the statistical de-
pendency between the secrets S and the information carried on the wires
and gates. Masks are assumed to be fresh random variables with uniform
distribution and with no statistical dependency to any other variable of the
circuit.

� P = {p1, . . . pl} are all other variables including publicly known constants,
control signals, et cetera. Unlike secret variables, these signals do not need
to be protected by masks and are unsuitable for protecting secret variables.

We define a circuit C = (G,W, R, f, I), where (G,W) is an acyclic directed
graph with vertices G (gates) and edges W ⊆ G× G (wires). Gates with indegree
0 are called inputs I, gates with outdegree 0 are called outputs O. Furthermore,
R ⊆ G is a set of registers, f is a function that associates with any gate g ∈ G \ I
with indegree k a function f(g) : Bk → B, and I : I → (2X → B) associates an
externally computed Boolean function over X to each input. We require that
registers have indegree 1 and that the associated function is the identity. In
the following, we assume, wlog, that all gates, except inputs and registers, have
indegree 2 and we partition these gates into a set L of linear gates (XOR, XNOR)
and a set N of nonlinear gates (AND, NAND, OR, NOR, the two implications
and their negations). We also require that for any gate g, any path from some
input to g has the same number of registers.

The intuitive meaning of f is the local function computed by a gate. For
instance, if g is an AND gate, f(g)(x, y) = x ∧ y. We associate with every gate
another function F (g) : 2X → B, which defines the function computed by the
output of the gates in terms of the circuit inputs. The function F (g) is defined
by the functions of the predecessor gates and f(g) in the obvious way. Given a
sequence of gates (g1, . . . , gd), we extend F pointwise to F (g1, . . . , gd) : 2X → Bd:
F (g1, . . . , gd)(x) = (g1(x), . . . , gd(x)). We often identify a gate with its function.

118 Chapter 11. Formal Verification of Masking

g
2

g
1

g
3

∈I

∈O

wire
Legend:

f(g
2
)(a,b) = a ∧ b

gate
function

m
s

m
1

s
m

s ⊕ m
s

p
1

q

F(g
3
) = F(g

1
) ⊕ F(g

2
)

f(g
1
)(a,b) = a ⊕ b

Figure 11.1: Circuit graph of circuit in Figure 11.2

As an example, consider the circuit graph in Figure 11.1 (which corresponds
to the circuit depicted in Figure 11.2). We have f(g3)(a, b) = a⊕ b and F (g3) =
(sm ⊕m1)⊕ (ms ∧ p1).

For a circuit C, a sequence of gates G = (g1, . . . , gn), and a sequence of
functions F = (f1, . . . , fn) with fi ∈ B2 → B, we write C[G 7→ F] for the circuit
C in which gate gi is replaced by a gate with the Boolean function fi.

Security of masked circuits. The security of various masking schemes is
often analyzed in the so-called probing model that was introduced by Ishai et
al. [Ish+03]. It was shown by Faust et al. [Fau+10] and Rivain et al. [RP10]
that the probing model is indeed suitable to model side-channel attacks and to
describe the resistance of an implementation in relation to the protection order
d. As it was shown by Chari et al. [Cha+99], there is an exponential relation
between d and the number of leakage traces required to exploit the side-channel
information.

In the probing model, an attacker is bound to d probing needles which can be
freely placed on arbitrary circuit gates (or wires). Probes are placed permanently
on these gates and monitor all signal states and signal transitions that occur at
the probed circuit gate from the circuit reset onwards. Thus one probe records
the probed signals at all time instances. The probing model quantifies the level of
side-channel resistance of a circuit over the minimum number of probing needles
an attacker requires to extract any secret information. More specifically, a circuit
is secure in the probing model if an attacker cannot combine the information
gathered from d probes over all points in time in an arbitrary function F such
that F statistically depends on any of the secret variables in S. We model a
probe as the ability to read the Boolean function produced by the probed gate
or its associated wire. Since we assume that the masking variables are uniformly
distributed, and the public variables are known, the circuit leaks information iff

11.3. Verification for Stable Signals 119

F is statistically dependent on S regardless of the values that the public variables
take.

Definition 5 (secure functions). A function f : 2X → Bd is secure if f is for
any assignment p ⊆ P to the public variables, f |p is statistically independent of
S.

Definition 6 (d-probing security [Ish+03]). A circuit C = (G,W, f, I) is order
d probing secure (d-probing secure) iff for any gates g1, . . . , gd ∈ G, F (g1, . . . , gd)
is secure.

Verification example using the Fourier expansion. According to Lemma 4,
we can decide whether the values computed by a circuit are secure by computing
the Fourier expansion of all its gates and checking whether there is a coefficient
that contains only secret variables without a mask (and with or without public

variables). Formally, we check that ∅ 6= S′ ⊆ S ∪ P such that F̂ (g)(S′) 6= 0. The
first-order security of a circuit can thus be verified using the probing model by
calculating the Fourier expansion of the whole circuit. As an example, consider
the Fourier expansion of the circuit in Figure 11.2 for which we have:

F (g1) = sm ·m1,

F (g2) = 1/2 + 1/2 ·ms + 1/2 · p1 − 1/2 ·msp1, and

F (g3) = F (g1) · F (g2)

= 1/2 · smm1 + 1/2 ·mssmm1 + 1/2 · p1smm1 − 1/2 ·msp1smm1.

Assuming that sm = s⊕ms and using the properties of the Fourier expansion
this implies that

F (g3) = 1/2 · smsm1 + 1/2 · sm1 + 1/2 · sp1msm1 − 1/2 · sp1m1. (11.3)

For the example circuit in Figure 11.2, if s is a secret and m1 is a uniformly
distributed random mask, then g3 in Equation 11.3 computes a function that
does not reveal any secret information. This follows from the fact that in F (g3)
there are only (non-zero) Fourier coefficients for terms that contain s and at least
one masked value.

Since the exact computation of Fourier coefficients is very expensive and
the extension to higher-order probing security nontrivial, in the following we
develop a method to estimate the Fourier coefficients of each gate and to check
for higher-order security.

11.3 Verification for Stable Signals

In this section, we present a sound verification method for (d-)probing security
for the steady-state of a digital circuit. It is assumed that the signals at the
circuit input are fixed to a certain value and that all intermediate signals at
the gates and the circuit output have reached their final (stable) state. This

120 Chapter 11. Formal Verification of Masking

approach is later on extended in Sections 11.4 and 11.5 to cover transient signals
and glitches.

Since the formal verification of the security order of masked circuits has
proven to be a non-trivial problem in practice, the intention behind a circuit
verifier is to have a method that correctly classifies a wide range of practically
relevant and securely masked circuits but rejects all insecure circuits. Any circuit
that is not secure according to Definition 6 is rejected. Our verification approach
can be subdivided into three parts: (1) the labeling system, (2) the propagation
rules, and (3) the actual verification.

11.3.1 Labeling

In order to check the security of a circuit we introduce a labeling over the set

of input variables X for the stable signals S : G→ 22X

that associates a set of
sets of variables to every gate. This labeling system is based on the Fourier
representation of Boolean functions (see Section 11.1) and intuitively, a label

contains at least those sets X ′ ⊆ X for which f̂(X ′) 6= 0 (the sets that correlate
with the Boolean functions).

The initial labeling is derived from I. For an input g which is fed by function
fg = I(g), we have S(g) = {X ′ ⊂ X | f̂g(X ′) 6= 0}. In practice, the initial
labeling of the circuits is easy to determine as inputs are typically provided with
either a single variable m or a masked secret x⊕m. An example for the labeling
of an example circuit is shown in Figure 11.2 (blue). Inputs containing security-
sensitive variables contain a single set listing all security-sensitive variables and
masks that protect these sensitive variables. For the masked signal sm = s⊕ms,
for example, the initial label is S(sm) = {{s,ms}}. The meaning of the label
is that by probing this input the attacker does not learn anything about s. In
order to reveal any information on s, also some information on ms needs to
be combined with this wire in, either by the circuit itself (which would be a
first-order flaw) or by the attacker by probing an according wire. If the attacker
is assumed to be restricted to a single probing needle (d = 1), the signal sm
is secure against first-order attacks. Finally, the masked inputs ms and m1 in
Figure 11.2 contain only the mask variables. Formally, for inputs g ∈ I with
function I(g) = f(X), we set S(g) = {X ′|X ′ = X}.

11.3.2 Propagation rules

To estimate the information that an attacker can learn by probing the output of
a gate, we propagate the input labels through the circuit. For the verification,
we conservatively estimate which coefficients of the Fourier representation are
different from zero and correlate with the variables. We prove at the end of
this section that our estimation is sufficient to point out all security-relevant
information.

Nonlinear gates. To generate the labels for the outputs of each gate of the
circuit, we introduce the nonlinear gate rule. The nonlinear gate rule corresponds

11.3. Verification for Stable Signals 121

m
s

m
1

s
m

g
1

g
3

g
2

p
1

q

{{s,m
s
}}

{{m
1
}}

{{m
s
}}

{p
1
} &

{{s,m
s
,m

1
}}

{Â,{m
s
},{p

1
},{m

s
,p
1
}}

{{s,m
s
,m

1
},{s,m

1
},

{s,m
s
,m

1
,p
1
},{s,m

1
,p
1
}}

Figure 11.2: Masked circuit example with according labels after the propagation step

to a worst-case estimation of the concrete Fourier spectrum of the signals and
trivially catches all flaws. The labeling for the output of the nonlinear gate
g ∈ N , with inputs ga and gb is:

S(g) = {∅} ∪ S(ga) ∪ S(gb) ∪ S(ga)44 S(gb).

See gate g2 in Figure 11.2 for a simple example of an AND gate calculating
ms ∧ p1. The resulting labels denote the information that can be learned by
probing this gate which could be either ms or p1 alone, or together. The labeling
reflects the Fourier spectrum of the AND gate (see Equation 11.1). In particular,
the labeling shows all terms of the Fourier polynomial whose coefficients are
different from zero and are therefore statistically dependent.

Linear gate rule. By following the Definition 3 of the Fourier expansions
further we can also model linear gates that have a reduced spectrum compared
to nonlinear gates. We model this circumstance by introducing a new rule for
labeling a linear gate g ∈ L with inputs ga and gb:

S(g) = S(ga)44 S(gb).

Combined example. To demonstrate how the propagation step works in
practice, we applied the propagation rules (summarized in Table 11.1) to an
example circuit. The result is shown in Figure 11.2. The AND gate g2 is a
nonlinear gate, and the propagation rules are then iteratively applied to the gates
g1 to g3. The output labeling of g1 indicates that the security-critical variable
s is here not only protected by ms but also by the mask m1. Combining the
public signal p1 with the mask ms in the nonlinear gate results in a nonuniform
output signal which is indicated by the {∅} label at the output of g2. For the
calculation of the labels of g3, the linear rule is used on the output labels of g1

and g2 which results in a labeling that indicates that s is still protected by ms,
or m1, or both, even in the worst-case.

122 Chapter 11. Formal Verification of Masking

Table 11.1: Propagation rules for the stable set S(g) connected to the gates ga and gb

Gate Type of g Stable set rule

Input I(g) = f(X) S(g) = {X ′ | X ′ = X}
Nonlinear gate S(g) = {∅} ∪ S(ga) ∪ S(gb) ∪ S(ga)44 S(gb)
Linear gate S(g) = S(ga)44 S(gb)
Register S(g) = S(ga)

11.3.3 Verification

For the verification step, in the first-order case, the circuit verifier checks if any of
the sublabels created in the propagation step contain one or more secret variables
without any masking variables (public variables are ignored since they are unable
to mask secret data). If this is the case, the verifier rejects the circuit. In the
example circuit in Figure 11.2, all of the labels that contain s also contain m1 or
ms and therefore the circuit is accepted by the verifier.

Higher-order verification. For the generalization to d-order verification, it
is quite tempting to model the attackers abilities by letting the attacker pick
multiple labels from any gate and combining them in an arbitrary manner.
However, we note that the labeling does not reflect the relation of the probed
information among each other and thus does not give a suitable approximation
of what can be learned when multiple gates are probed. As a trivial example,
consider a circuit that calculates q = (a ∧ b)⊕ c where all inputs are uniformly
distributed. The labeling of the output q after the propagation step consists of the
labels {c}, {a, c}, {b, c}, and {a, b, c} for all of which an attacker probing q would
indeed see a correlation. If an attacker restricted to two probes were to probe
q with the first probe, the attacker obviously would not learn anything more
by probing q a second time. In other words, if we would model a higher-order
attacker by the ability to combine multiple labels, the attacker could combine
the label {c} with any other label of q, e.g. {a, b, c}, in order to get information
on a or b which is of course not the case.

Instead of modeling higher-order verification by the straight-forward combi-
nation of labels, we check the nonlinear combination of any tuple of d gates. An
attacker can thus pick any number of up to d gates and combines them in an
arbitrary function. We then need to check that even the worst case function over
the gates could never contain a secret variable without a mask. This causes an
obvious combinatorial blowup.

In the next two sections, we extend the verifier to cover glitches which shows
that the example circuit is actually insecure.

11.4. Modeling Transient Timing Effects 123

m
s

m
1

g
1

g
3

s
m

Figure 11.3: Masked circuit example, insecure due to glitches

11.4 Modeling Transient Timing Effects

So far, we have only considered the circuit’s stable signals. We now discuss
signal timing effects inside one clock cycle i.e. glitches and formalize how we
model glitches in the probing model. Subsequently, we discuss how we model
information that is collected from multiple clock cycles.

11.4.1 Glitches

As an example of what can go wrong when differences in the signal propagation
times are not taken into account [MS06], consider the circuit in Figure 11.3. The
depicted circuit is secure in the original probing model as introduced in [Ish+03].

The information on the outputs of the XOR gates is (sm = s⊕ms):

g1 = sm ⊕m1 = s⊕ms ⊕m1 and

g3 = sm ⊕m1 ⊕ms = s⊕m1.

Since the other circuit gates (input terminals are modeled as gates) only carry
information on the masked value sm or the masks ms and m1, a single probe on
any parts of the circuit does not reveal s and the circuit is thus first-order secure
in the original probing model.

However, if we assume that in a subsequent clock cycle (Cycle 2 in Figure 11.4)
a different secret s′ is processed, the circuit inputs change accordingly from sm,
ms, and m1 to s′m, m′s, and m′1, respectively. Figure 11.4 shows an example
on how these changes propagate through the circuit. Due to signal timing
variance caused by physical circumstances, like different wire lengths or different
driving strengths of transistors, so-called glitches arise. As a result of this timing
variance, m1 changes its value later (t2) than the other inputs (t1) thus creating
a temporary information leak (glitch). An attacker who places one probe on
the output of g3 firsts observes the original value s⊕m1 (at time t0) and then
s′ ⊕m1 (between t1 and t2). By combining the information the attacker obtains
the information (s ⊕m1) ⊕ (s′ ⊕m1) which is equivalent to s ⊕ s′. Thus, the
attacker learns the relation of two secret bits. This information could not be
obtained by combining the stable signals in the two clock cycles. Indeed, the

124 Chapter 11. Formal Verification of Masking

Cycle 1

s
m

m
s

m
1

g
3
:

t

s´
m

m´
s

m´
1

s

⊕ m

1
s´ ⊕ m

1
s´ ⊕ m´

1

t
0
t

1
t

2

Cycle 2

clk:

Figure 11.4: Waveform example for the circuit in Figure 11.3, showing security-critical
glitch (red)

leakage critically depends on the temporary information provided by the glitch in
the circuit. To verify the security of a circuit in the probing model with glitches,
all possible signal combinations that could arise because of propagation delays of
signals need to be considered.

11.4.2 Formalization of Probing Security with Glitches

To formalize the probing model with glitches in the first-order case, the attacker’s
abilities are extended as follows: The attacker can first replace any number of
gates (except for registers) by a gate that computes an arbitrary Boolean function
from the gate’s original inputs, and may then place one probe on any wire such
that there is no register between any replaced gate and the probe.

For higher-order attacks with d > 1, the formalization is a little more cumber-
some. Intuitively, the attacker should be able to modify the behavior of arbitrary
gates, but this effect should disappear when the signal passes through a register.
We model this by copying the combinational parts of the circuit and allowing the
attacker to change gates in the copy, whereas the original, unmodified signals
are propagated by the unmodified gates. Figure 11.5 illustrates an example for
the modeling of the glitches. The copied gates, which the attacker may modify,
are drawn in blue. Note in particular that gate g7 feeds into register g8, but the
copy g′7 becomes a new primary output.

Formally, given a circuit C = (G,W, R, f, I), we do the following.

(1) We define a circuit C ′ = (G′,W′, R, f ′, I). We copy all the gates except
inputs and registers: G′ = G ∪ {g′ | g ∈ G \R \ I}. We introduce wires from the
inputs and registers to the copied gates and introduce wires between the copied
gates: W′ = W ∪ {(g, h′) | (g, h) ∈ W, g ∈ I ∪ R} ∪ {(g′, h′) | (g, h) ∈ W, g /∈

11.4. Modeling Transient Timing Effects 125

g´

g´

g
4

g
3

g
2

g
1

g
6

g
5

g
6

g
5

g
7

g
9

g´g
7

g
8

inputs outputs

∈R

g´g
9

comb.
logic

Figure 11.5: Example for modeling of glitches of a circuit C (without blue parts) in
C′

I ∪R, h /∈ R}. Finally, the functions of the copied gates are the same as those of
the originals: f ′(g′) = f(g) for g ∈ G′ \ G.

(2) The attacker may replace any gate copy g′ by a gate that computes an
arbitrary Boolean function. We model this by defining a set of circuits, one for
any set of gates that the attacker may modify:

Cglitch(C) = {C ′[(g′1, . . . , g′n) 7→ (f1, . . . , fn)] | (g1, . . . , gn) ∈ Gn,∀i.fi : B2 → B}.

Definition 7 (d-probing security with glitches). A circuit C is order d probing
secure with glitches iff for any Cglitch = (G′,W′, R, f ′, I) ∈ Cglitch and any gates
g1, . . . , gd ∈ G′, F (g1, . . . , gd) is secure.

11.4.3 Modeling Information from Multiple Clock Cycles

The verification of higher-order probing security requires to model information
that is obtained and combined over different clock cycles. In our verification
approach, we consider dependencies between variables rather than concrete
instantiation of these variables. The way we model glitches allows an attacker
to exploit the worst case dependencies between the variables in between two
register stages. We now state assumptions on masked circuits that ensure that
the worst-case dependencies are the same in each clock cycle.

Assumptions on masked circuits. Without loss of relevance for masked
circuits we make the following assumptions which are inspired by practical
masked circuits: (1) We assume that the values on the inputs remain the same
throughout a clock cycle, they toggle only once at the beginning of a new clock
cycle (registered inputs). (2) The class of the variables that are used in the
input functions and the functions themselves do not change over time. For the
circuit in Figure 11.3, for example, the input sm always contains a variable

126 Chapter 11. Formal Verification of Masking

s ∈ S and the associated mask ms ∈ M even though in each clock cycle the
variables may change (e.g. from s to s′). (3) Mask variables are fresh random
and uniformly distributed at each clock cycle. (4) The circuits are feedback-free
and loop-free, except for the inherent feedback loops of registers. (5) The register
depth (number of registers passed, counting from the input of the circuit) for
each variable combined in a gate function is the same. No information resulting
from different clock cycles is thus combined apart from the effects of delays
and glitches which may temporarily combine information from two successive
clock cycles. This assumption is motivated by the fact that most of the masked
hardware designs, e.g. common S-box designs, are designed in a pipelined way.

From these assumptions it follows that all variables change in each cycle (e.g.
from s to s′, and so on), however, at varying times and in an arbitrary order.
The variable classes and functions remain the same, and as a result from the
assumptions 4 and 5 it is ensured that only variables that are fed into the circuit
at the same cycle or from the cycle before are combined. It is therefore enough
to consider the propagation of dependencies instead of concrete instantiation of
variables.

11.5 Extension for Transient Signals

In this section, we use the modeling of the transient timing effects from the previ-
ous section to complete our verification approach. We take glitches into account
by extending the propagation rules accordingly. The modeling of information
from different clock cycles, on the other hand, does not require any changes in
the verification approach from Section 11.3.

The nonlinear gate rule in Table 11.1 already inherently covers glitches by
propagating the labels of the inputs and all possible combinations of these labels
directly to the output. To hinder the propagation of glitches, circuit designers use
registers that propagate their input only on a specific clock event, and thus isolate
the register input from the output during the evaluation phase. We model the
glitching behavior of a circuit by introducing an additional transient set of labels
T per gate. Each gate thus has two associated sets: S carries the information
of the stable state of the circuit as before, and the transient set T describes
the transient information that is only accessible to an attacker in between two
registers (or an input and a register, or a register and an output). In between
two registers, we also apply the nonlinear gate rule to linear gates to ensure we
cover all possible effects of glitches.

Figure 11.6 illustrates the new linear gate rule for the stable (blue) and the
transient (red) set of labels. The stable and transient sets of the inputs are
equal at the beginning because the inputs are either circuit inputs or outputs
of a register. When the signals propagate through the linear XOR gate, the
transient set is calculated by applying the linear rule from Table 11.2 and the
stable set with the linear rule from Table 11.1. After the signal passes the register,
only the stable information remains and the transient set carries thus the same
information as the stable set. Table 11.2 summarizes the rules for creating the

11.5. Extension for Transient Signals 127

Table 11.2: Propagation rules for the transient set T(g) fed by the gates ga and gb

Gate Type of g Transient set rule

Input T(g) = S(g)
Nonlinear gate T(g) = {∅} ∪ T(ga) ∪ T(gb) ∪ T(ga)44 T(gb)
Linear gate T(g) = {∅} ∪ T(ga) ∪ T(gb) ∪ T(ga)44 T(gb)
Register T(g) = S(ga)

a
b

{{a}}{{a}}

{{b}}{{b}} g
xor

FF

g
ff

q

{{a,b}}{{a,b}}

{{a,b}}{Â,{a},{b},{a,b}}

Figure 11.6: XOR gate rules for stable (blue) and transient (red) signal sets

transient-set labels T(g). Please note that introducing the transient set and the
transient gate rules corresponds to the modeling of glitches from Section 11.4
as depicted in Figure 11.5 (blue), where the gates in between two registers are
copied and their function can be changed in an arbitrary manner by the attacker.
Replacing the transient labels with the stable labels at a register corresponds to
connecting the copied gates to the circuit output to hinder the propagation of
glitches.

Aside from the introduction of the transient set and the according propagation
rules, the verification works as described in Section 11.3. The circuit inputs
are initially labeled according to their input variables where both the stable
and transient sets hold the same labels. Then, for all possible combinations
of up to d gates, the propagation of the labels is performed according to the
stable and transient propagation rules. The circuit is order-d probing secure if
no combination of gates produces a label that only consists of secrets and public
variables without masks.

Example. The transient labels T of the circuit in Figure 11.2 are shown in
Figure 11.7 (the stable sets are omitted since they do not carry any additional
information). Due to the transient set propagation rules, the functionality of the
gates g1 and g3, which are linear gates in the underlying circuit in Figure 11.2,
is replaced by the functionality of nonlinear gates. As can be observed at the
output of the circuit, the verification under the consideration of glitches leads to
a rejection of the circuit because the s variable (black labels) is in the output
labeling without being masked by either ms or m1.

To make it clear that the circuit is indeed insecure, we assume that p1 = true
and that sm and ms change their values to s′m and m′s, resp., but the value of m1

128 Chapter 11. Formal Verification of Masking

and p1 temporarily remains unchanged. Then, g1 transitions from s⊕ms ⊕m1

to s′ ⊕ m′s ⊕ m1 and as a result g3 transitions from s ⊕ m1 to s′ ⊕ m1, thus
leaking information about the relation of s and s′ (cf. Figure 11.4). The flaw
can be repaired easily by adding a register after g1 which ensures that sm is
always remasked before ms is combined with sm in g3, and the same labels as in
Figure 11.2 for g1 would thus be propagated.

m
s

m
1

s
m

g
1

g
3

g
2

p
1

{{s,m
s
}}

{{m
1
}}

{{m
s
}}

{p
1
}

{Â,{s,m
s
},{m

1
},{s,m

s
,m

1
}}

{Â,{m
s
},{p

1
},{m

s
,p
1
}}

{Â,{s,m
s
},{m

1
},{s,m

s
,m

1
},

{m
s
},{p

1
},{m

s
,p
1
},{s},

{m
1
},{s,m

1
},{s,m

s
,p
1
},

{m
1
,p
1
},{s,m

s
,m

1
,p
1
},

{s,p
1
},{m

1
,p
1
},{s,m

1
,p
1
}}&

Figure 11.7: Masked circuit example from Figure 11.2 reevaluated with the transient
rules (red) which leads to a flaw due to glitches (black labels)

12
Practical Formal Verification

For the analysis of the side-channel resistance of our UMA and LOLA Ascon
S-box designs, we used the formal verification approach described in the previous
chapter. For the sake of completeness, we denote that in the original paper of
our formal verification approach [Blo+18] we also state more verification results,
including but not limited to the DOM multipliers, the DOM AES S-box, and
the DOM Keccak S-box. We do not include these results in this chapter because
they were mainly gathered by Rinat Iusupov. The respective tool which was also
implemented by Rinat Iusupov is publicly accessible online [Ius]. For the LOLA
circuits we extended the verification approach towards a faster evaluation for
these specific LOLA circuits (cf. taint checking below).

12.1 Formal Verification of UMA Circuits

The verification results for the UMA S-box design of ascon are shown in
Table 12.1. We used the optimization introduced in [Blo+18] for which each
shared input is checked individually. The time stated in the table is the average
verification time over each of the five secret inputs. The first-order protected
UMA S-box requires about one second per secret. The verification time increases
significantly with the verification order. For the second order, the verification
takes about 1.5 minutes, and for the third order it is already about 20 hours.
Again, all verification results indicate a secure design of the S-box which confirms
the results of the t-test in Section 10.

129

130 Chapter 12. Practical Formal Verification

Table 12.1: Formal verification results of the UMA S-box

Design Verification order Time Result

1st-order UMA S-box 1 ≤ 1 s 3

2nd-order UMA S-box 2 ≤ 1.5 m 3

3rd-order UMA S-box 3 ≤ 20 h 3

12.2 Formal Verification of LOLA Circuits

For our further side-channel experiments, we verified the LOLA S-box designs of
Ascon up to order three. The results are shown in Table 12.2 (column FV).

It shows that the first-order S-box design is verified in less than two seconds
(parallel verification of the five secrets) on our Intel Xeon E5-2699v4 CPU with a
clock frequency of 3.6 GHz and 512 GB of RAM running in a 64-bit Debian 9
operating system. For order two, the verification increases to about 18 seconds,
and for order three the verification takes about 21 minutes. All verification
results indicate securely masked circuits for the given protection order.

For the verification of the AES S-box, on the other hand, the circuit size
exceeds the number of gates over the most complex circuit tested in the paper of
Bloem et al. [Blo+18] (a DOM-protected AES S-box verified in 5 to 10 hours)
by almost a factor of ten. Therefore, we could not finish the verification within
one day and decided to use a verification approach specifically designed for our
approach which we refer to as taint checking in the following.

12.3 Taint checking of the LOLA AES S-box

The basic idea for the taint checking verification approach follows from the design
principle of our LOLA masking approach. Any d+ 1 masked circuit is trivially
secure in the probing model if for any gate or wire of the circuit there is no path
that connects any two shares of one variable. We could thus split the circuit into
d+ 1 distinct sub-circuits that are never fed by two or more shares of one shared
input variable. This approach only works, of course, if we do not use a share
compression as it is the case for the Ascon S-box design and the zero latency AES
S-box variant. Other variants of our designs that use the CMS share compression
cannot be verified using this approach because the compression clearly creates
paths that combine two or more shares (which are then of course first remasked
to ensure independence). However, our main goal is to show the security of our
LOLA masking approach and to demonstrate that even very complex designs
like the AES S-box can be securely implemented this way. The other variants
of the AES S-box suggested in Section 3.5 are introduced to analyze possible
trade-offs and implementation costs of our approach.

We instantiated the taint checking approach by using the SAT-based verifica-
tion tool as basis. We label all shared circuit inputs accordingly to the sharing
and then simply propagate the input labels through the entire circuit so that

12.3. Taint checking of the LOLA AES S-box 131

every gate and wire that is somehow connected with the input share is tainted
by assigning the label of the connected inputs. If at any point in the circuit
two shares from the same variable are part of the labeling of one wire, our tool
denotes a flaw and returns the causing gate and inputs. This tool has proven
to be extremely helpful also during the design of the LOLA AES and Ascon
circuits.

We also performed the taint checking verification approach for the Ascon
circuits, for which the verification now takes less than a second. Furthermore,
we managed to check the first-order zero latency AES S-box variant in a bit
more than ten minutes. We, however, note that this approach works only for this
specific kind of LOLA circuits without compression for which the security can be
easily verified by ensuring a separation of shares throughout the entire circuit.

Table 12.2: Side-channel resistance verification results for the LOLA Ascon and the
first-order zero latency AES S-box designs

S-box Design
Gates

Order
FV Taint Checking

Lin Non-lin Time Result Time Result

1st-order Ascon 34 22 1 ≤ 2 s 3 ≤ 1 s 3

2nd-order Ascon 58 48 2 ≤ 18 s 3 ≤ 1 s 3

3rd-order Ascon 88 84 3 ≤ 21 m 3 ≤ 1 s 3

Zero Latency AES 17,199 5,544 1 ≥ 1 day ? ≤ 11 m 3

“All the proof of a pudding,
is in the eating.”

— William Camden

13
Conclusions

Having secure masking schemes whose assumptions and rules hold in the probing
model is a basic requirement for having SCA-resistant circuits. Nevertheless, the
usage of a masking scheme in practice remains a cumbersome and error-prone task
which makes the verification of the SCA resistance of a masked implementation
inevitable.

In this part, we have compared a typical empirical method that is widely
used in practice, namely a t-test based leakage assessment on leakage traces
of the UMA construction of the Ascon S-box (Chapter 10), against a formal
verification method which we introduced in Chapter 11. While empirical methods
like statistical leakage assessment or practical attacks can only increase the trust
in the correctness of a masked implementation, a formal verification can give
conclusive security statements. The security is thus ensured for all possible signal
timings, environmental conditions, and beyond the number of tested leakage
traces.

The advantage of empirical methods, on the other hand, is that they allow to
consider a bigger part of a circuit for the verification like a whole chip during the
processing of security-critical data. The formal verification method we introduced,
despite the fact that it is the first method that is efficient enough to prove a
whole masked DOM AES S-box, allows at least not yet for a verification of a
whole AES circuit, for example.

However, in most of the existing symmetric ciphers, the S-box construction is
the only nonlinear part which is the most likely to fail and the hardest to verify
because this is the part of a circuit where share domains need to be mixed. For
the remaining linear parts of a circuit, a much simpler approach can be used to
ensure that no domain crossings are performed like the taint checking approach
we introduced in Chapter 12.

133

134 Chapter 13. Conclusions

A clear benefit of our formal verification approach over empirical methods
is that a flaw can easily be localized and that our tool can handle netlists at
different design stages (from a first RTL description up to a back-annotated
netlist before the final tape out). This makes the approach helpful during the
whole design process of a masked circuit and allows to try out new optimizations,
new masking schemes, and to directly observe their impact.

“Prediction is very difficult,
especially about the future.”

— Niels Bohr

14
Summary and Outlook

The increasing number of interconnected devices demand security not only
on a cryptographic level but also on a physical level. Without appropriate
countermeasures against physical attacks like Side-Channel Analysis (SCA) these
devices are defenseless against attackers that have physical access. Such an
attacker could extract secret information by just passively observing the physical
side-channel information (like power consumption, electromagnetic emanation)
that is unintentionally created during security-critical computations.

In this thesis, we discussed generic methods to protect hardware implemen-
tations against SCA by means of Boolean masking. We introduced a Domain-
Oriented Masking (DOM) perspective in the first part of the thesis and derived
different masking schemes that allow to trade implementation costs like chip area
and randomness requirements against performance figures, and vice versa. All
presented schemes form the basis for the design of hardware implementations
that scale generically with the required level of resistance against SCA.

We discussed the implementation costs of our DOM-based schemes and
several trade-offs on generically masked hardware implementations in the second
part of this thesis. Our practical comparison includes implementations of the
Advanced Encryption Standard (AES), the Secure Hash Algorithm 3 (SHA3), the
Authenticated Encryption (AE) scheme Ascon, and a 32-bit RISC-V processor.
Regardless of their generic appearance, our masked hardware implementations
result in very randomness-efficient and low area demanding circuits, or in masked
circuits that allow to calculate the outputs within only a few clock cycles,
respectively.

In the third part of this thesis, we introduced a formal verification approach
that verifies the soundness of the implemented masking scheme directly on the
netlist of a hardware implementation. We compared this formal approach to an

135

136 Chapter 14. Summary and Outlook

empirical leakage assessment based on statistical t-tests which is the predominant
method for leakage evaluation in the recent literature. Besides the much stronger
security argument that is provided by formal verification, our approach has
proven to be very helpful during the whole design process of a masked circuit
and for the creation of new masking schemes.

Open Research Questions

Masking as a countermeasure against SCA has a long history that reaches
back almost as long as the Differential Power Analysis (DPA) paper of Kocher
et al. [Koc+99]. Even though this research area seems relatively old for the fast
growing and fast developing computer sciences field, substantial progress has
been made over the past years and the progress still continues. In the following,
we want to share our perspective on how this research field might progress over
the next fex years and what questions remain unanswered after this thesis.

Randomness Requirements

The question of how much randomness is necessary to protect an implementa-
tion against a certain attack order remains remains an open issue. There are
works that try to prove randomness bounds like [Bel+16]. However, it remains
uncertain whether or not these bounds are tight and under what assumptions
they hold. These proven bounds also just consider a completely isolated masked
multiplication. So, even if the bounds were tight it is not clear how they map to
practical implementations of larger circuits where randomness could probably
be reused. For example, in our Low-Latency Masking (LOLA) scheme we have
shown that theoretically no online randomness is needed at all if an exponential
share blow-up is accepted. So, an even more intriguing question in this regard is
how we can find the sweet spot between the number of sharing duplications and
the required online randomness under the given constraints.

Better Compression Algorithms for LOLA

In regard of low-latency masking, we used the CMS resharing algorithm for
the intermediate and final share compression in our hardware implementations.
Given the extended domain separation principle, it should be possible to design
a more efficient compression algorithm much like the original DOM compression
that requires less randomness than CMS for LOLA circuits.

Smaller Technology Sizes

Complementary Metal-Oxide-Semiconductor (CMOS) technology continues to
evolve and to produce smaller structure sizes which soon will reach 5 nm processes
for semiconductor manufacturing. With the decrease of the structure sizes, the
CMOS transistors produce more and more static leakage (current flows even

137

though the transistors are turned off) and wire distances get smaller which
provokes crosstalk. Both effects shake on the fundamental assumptions of masking
which requires independent leakage of shared information or at least only additive
Gaussian leakages. The extent to which cross talk and static leakage reduce the
security level in practical implementations is largely unexplored and might lead
to higher requirements for the SCA protection order.

Formal Verification

Practical formal verification of masked hardware implementations is quite a young
research field compared to masking itself. The formal verification approach we
presented in this thesis is the first to prove practical hardware implementations
on the basis of their netlist and not on e.g. their mathematical equations, under
the assumption of glitches, and for higher verification orders. Nevertheless, our
approach is only a first step towards practical formal verification of masked
hardware implementations, and we are optimistic that the outcome of our work
will encourage research on how to improve and extend this approach.

Bibliography

[Ala+09] Monjur Alam, Santosh Ghosh, M. J. Mohan, Debdeep Mukhopad-
hyay, Dipanwita Roy Chowdhury, and Indranil Sengupta. “Effect
of glitches against masked AES S-box implementation and counter-
measure.” In: IET Information Security 3.1 (2009), pp. 34–44.

[Alb+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. “Ciphers for MPC and FHE.” In:
EUROCRYPT 2015. 2015. doi: 10.1007/978-3-662-46800-5_17.
url: http://dx.doi.org/10.1007/978-3-662-46800-5_17.

[Aum+14] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves.
NORX. Submission to the CAESAR competition: http : / /

competitions.cr.yp.to/round1/norxv1.pdf. 2014.

[Bar+15a] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain
Fouque, and Benjamin Gregoire. “Compositional Verification
of Higher-Order Masking: Application to a Verifying Masking
Compiler.” In: IACR Cryptology ePrint Archive 2015 (2015), p. 506.
url: http://eprint.iacr.org/2015/506.

[Bar+15b] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain
Fouque, Benjamin Grégoire, and Pierre-Yves Strub. “Verified
Proofs of Higher-Order Masking.” In: EUROCRYPT 2015, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part I. Ed. by Elis-
abeth Oswald and Marc Fischlin. Vol. 9056. LNCS. Springer,
2015, pp. 457–485. doi: 10.1007/978- 3- 662- 46800- 5_18. url:
https://doi.org/10.1007/978-3-662-46800-5_18.

[Bar+16] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain
Fouque, Benjamin Grégoire, Pierre-Yves Strub, and Rébecca
Zucchini. “Strong Non-Interference and Type-Directed Higher-
Order Masking.” In: Proceedings of the 2016 ACM SIGSAC CCS,
Vienna, Austria, October 24-28, 2016. 2016, pp. 116–129. doi:
10.1145/2976749.2978427. url: http://doi.acm.org/10.1145/

2976749.2978427.

[Bar+17a] Gilles Barthe, François Dupressoir, Benjamin Grégoire, Alley
Stoughton, and Pierre-Yves Strub. EasyCrypt: Computer-Aided
Cryptographic Proofs. https://github.com/EasyCrypt/easycrypt.
2017.

139

https://doi.org/10.1007/978-3-662-46800-5_17
http://dx.doi.org/10.1007/978-3-662-46800-5_17
http://competitions.cr.yp.to/round1/norxv1.pdf
http://competitions.cr.yp.to/round1/norxv1.pdf
http://eprint.iacr.org/2015/506
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1145/2976749.2978427
http://doi.acm.org/10.1145/2976749.2978427
http://doi.acm.org/10.1145/2976749.2978427
https://github.com/EasyCrypt/easycrypt

140 Bibliography

[Bar+17b] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin
Grégoire, François-Xavier Standaert, and Pierre-Yves Strub. “Paral-
lel Implementations of Masking Schemes and the Bounded Moment
Leakage Model.” In: EUROCRYPT (1). Vol. 10210. Lecture Notes
in Computer Science. 2017, pp. 535–566.

[Bay+13] Ali Galip Bayrak, Francesco Regazzoni, David Novo, and Paolo
Ienne. “Sleuth: Automated Verification of Software Power Analysis
Countermeasures.” In: CHES 2013, Santa Barbara, CA, USA, Au-
gust 20-23, 2013. Proceedings. 2013, pp. 293–310. doi: 10.1007/978-
3-642-40349-1_17. url: http://dx.doi.org/10.1007/978-3-642-

40349-1_17.

[Bel+16] Sonia Beläıd, Fabrice Benhamouda, Alain Passelègue, Emmanuel
Prouff, Adrian Thillard, and Damien Vergnaud. “Randomness Com-
plexity of Private Circuits for Multiplication.” In: EUROCRYPT
2016. 2016. doi: 10 . 1007 / 978 - 3 - 662 - 49896 - 5 _ 22. url: http :

//dx.doi.org/10.1007/978-3-662-49896-5_22.

[Bel+17] Sonia Beläıd, Fabrice Benhamouda, Alain Passelègue, Emmanuel
Prouff, Adrian Thillard, and Damien Vergnaud. “Private Multipli-
cation over Finite Fields.” In: CRYPTO (3). Vol. 10403. LNCS.
Springer, 2017, pp. 397–426.

[Ber+11] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van
Assche. Keccak Specifications. Submission to NIST (Round 3). 2011.
url: http://keccak.noekeon.org.

[Ber+12] Guido Bertoni, Joan Daemen, Michael Peeters, Gilles Van Assche,
and Ronny Van Keer. “Keccak implementation overview.” In: URL:
http://keccak.neokeon.org/Keccak-implementation-3.2.pdf (2012).

[Bha+13] Shivam Bhasin, Claude Carlet, and Sylvain Guilley. “Theory of mask-
ing with codewords in hardware: low-weight dth-order correlation-
immune Boolean functions.” In: IACR Cryptology ePrint Archive
2013 (2013), p. 303. url: http://eprint.iacr.org/2013/303.

[Bil+14a] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov,
and Vincent Rijmen. “A More Efficient AES Threshold Implemen-
tation.” In: Progress in Cryptology - AFRICACRYPT 2014 - 7th
International Conference on Cryptology in Africa, Marrakesh, Mo-
rocco, May 28-30, 2014. Proceedings. Ed. by David Pointcheval and
Damien Vergnaud. Vol. 8469. Lecture Notes in Computer Science.
Springer, 2014, pp. 267–284.

[Bil+14b] Begül Bilgin, Joan Daemen, Ventzislav Nikov, Svetla Nikova, Vincent
Rijmen, and Gilles Van Assche. “Efficient and First-Order DPA
Resistant Implementations of Keccak.” English. In: Smart Card
Research and Advanced Applications. Ed. by Aurélien Francillon
and Pankaj Rohatgi. Lecture Notes in Computer Science. Springer
International Publishing, 2014, pp. 187–199. isbn: 978-3-319-08301-8.

https://doi.org/10.1007/978-3-642-40349-1_17
https://doi.org/10.1007/978-3-642-40349-1_17
http://dx.doi.org/10.1007/978-3-642-40349-1_17
http://dx.doi.org/10.1007/978-3-642-40349-1_17
https://doi.org/10.1007/978-3-662-49896-5_22
http://dx.doi.org/10.1007/978-3-662-49896-5_22
http://dx.doi.org/10.1007/978-3-662-49896-5_22
http://keccak.noekeon.org
http://eprint.iacr.org/2013/303

Bibliography 141

doi: 10.1007/978-3-319-08302-5_13. url: http://dx.doi.org/10.
1007/978-3-319-08302-5_13.

[Bil+14c] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov,
and Vincent Rijmen. “Higher-Order Threshold Implementations.”
English. In: Advances in Cryptology – ASIACRYPT 2014. Ed. by
Palash Sarkar and Tetsu Iwata. Vol. 8874. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2014, pp. 326–343. isbn: 978-
3-662-45607-1. doi: 10.1007/978-3-662-45608-8_18. url: http:

//dx.doi.org/10.1007/978-3-662-45608-8_18.

[Bil+15a] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen,
Natalia Tokareva, and Valeriya Vitkup. “Threshold Implementations
of Small S-boxes.” In: Cryptography and Communications 7.1 (2015).
doi: 10.1007/s12095-014-0104-7. url: http://dx.doi.org/10.1007/
s12095-014-0104-7.

[Bil+15b] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov,
and Vincent Rijmen. “Trade-Offs for Threshold Implementations
Illustrated on AES.” In: IEEE Trans. on CAD of Integrated Circuits
and Systems 34.7 (2015), pp. 1188–1200.

[Blo+18] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer,
Stefan Mangard, and Johannes Winter. “Formal Verification of
Masked Hardware Implementations in the Presence of Glitches.” In:
EUROCRYPT (2). Vol. 10821. Lecture Notes in Computer Science.
Springer, 2018, pp. 321–353.

[BM16] Guido Bertoni and Marco Martinoli. “A Methodology for the Char-
acterisation of Leakages in Combinatorial Logic.” In: SPACE 2016,
Hyderabad, India, December 14-18, 2016, Proceedings. 2016, pp. 363–
382. doi: 10.1007/978-3-319-49445-6_21. url: https://doi.org/10.
1007/978-3-319-49445-6_21.

[Bog+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar,
Axel Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and
C. Vikkelsoe. “PRESENT: An Ultra-Lightweight Block Cipher.”
In: CHES 2007. 2007. doi: 10.1007/978-3-540-74735-2_31. url:
http://dx.doi.org/10.1007/978-3-540-74735-2_31.

[Bog+11] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger.
“Biclique Cryptanalysis of the Full AES.” In: Advances in Cryptology
– ASIACRYPT 2011: 17th International Conference on the Theory
and Application of Cryptology and Information Security, Seoul, South
Korea, December 4-8, 2011. Proceedings. Ed. by Dong Hoon Lee and
Xiaoyun Wang. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 344–371. isbn: 978-3-642-25385-0. doi: 10.1007/978- 3- 642-

25385-0_19. url: https://doi.org/10.1007/978-3-642-25385-0_19.

https://doi.org/10.1007/978-3-319-08302-5_13
http://dx.doi.org/10.1007/978-3-319-08302-5_13
http://dx.doi.org/10.1007/978-3-319-08302-5_13
https://doi.org/10.1007/978-3-662-45608-8_18
http://dx.doi.org/10.1007/978-3-662-45608-8_18
http://dx.doi.org/10.1007/978-3-662-45608-8_18
https://doi.org/10.1007/s12095-014-0104-7
http://dx.doi.org/10.1007/s12095-014-0104-7
http://dx.doi.org/10.1007/s12095-014-0104-7
https://doi.org/10.1007/978-3-319-49445-6_21
https://doi.org/10.1007/978-3-319-49445-6_21
https://doi.org/10.1007/978-3-319-49445-6_21
https://doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/978-3-642-25385-0_19

142 Bibliography

[Bog+13] Andrey Bogdanov, Florian Mendel, Francesco Regazzoni, Vincent
Rijmen, and Elmar Tischhauser. “ALE: AES-Based Lightweight
Authenticated Encryption.” In: Fast Software Encryption - 20th
International Workshop, FSE 2013, Singapore, March 11-13, 2013.
Revised Selected Papers. Ed. by Shiho Moriai. Vol. 8424. Lecture
Notes in Computer Science. Springer, 2013, pp. 447–466. isbn: 978-
3-662-43932-6. doi: 10.1007/978-3-662-43933-3_23. url: http:

//dx.doi.org/10.1007/978-3-662-43933-3_23.

[BP12] Joan Boyar and René Peralta. “A Small Depth-16 Circuit for the
AES S-Box.” In: SEC. Vol. 376. IFIP Advances in Information and
Communication Technology. Springer, 2012, pp. 287–298.

[Can05] David Canright. “A Very Compact S-Box for AES.” In: CHES.
Vol. 3659. Lecture Notes in Computer Science. Springer, 2005,
pp. 441–455.

[Cha+99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Ro-
hatgi. “Towards Sound Approaches to Counteract Power-Analysis
Attacks.” In: CRYPTO. Vol. 1666. Lecture Notes in Computer
Science. Springer, 1999, pp. 398–412.

[Cnu+15] Thomas De Cnudde, Begül Bilgin, Oscar Reparaz, Ventzislav Nikov,
and Svetla Nikova. “Higher-Order Threshold Implementation of the
AES S-Box.” In: CARDIS 2015. 2015. doi: 10.1007/978-3-319-

31271-2_16. url: http://dx.doi.org/10.1007/978-3-319-31271-

2_16.

[Cnu+16] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova,
Ventzislav Nikov, and Vincent Rijmen. “Masking AES with d+1
Shares in Hardware.” In: CHES 2016. 2016. doi: 10.1007/978-3-
662- 53140- 2_10. url: http://dx.doi.org/10.1007/978- 3- 662-

53140-2_10.

[Cor] Jean-Sebastien Coron. Formal Verification of Side-channel Coun-
termeasures via Elementary Circuit Transformations. Cryptology
ePrint Archive, Report 2017/879.

[Dae+00] Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent
Rijmen. “Nessie proposal: NOEKEON.” In: First Open NESSIE
Workshop. 2000, pp. 213–230.

[Dae12] Joan Daemen. Permutation-based Encryption, Authentication and
Authenticated Encryption. DIAC – Directions in Authenticated Ci-
phers. 2012.

[Dae16] Joan Daemen. “On Non-uniformity in Threshold Sharings.” In:
Proceedings of the 2016 ACM Workshop on Theory of Implemen-
tation Security. TIS ’16. Vienna, Austria: ACM, 2016, pp. 41–41.
isbn: 978-1-4503-4575-0. doi: 10.1145/2996366.2996374. url: http:
//doi.acm.org/10.1145/2996366.2996374.

https://doi.org/10.1007/978-3-662-43933-3_23
http://dx.doi.org/10.1007/978-3-662-43933-3_23
http://dx.doi.org/10.1007/978-3-662-43933-3_23
https://doi.org/10.1007/978-3-319-31271-2_16
https://doi.org/10.1007/978-3-319-31271-2_16
http://dx.doi.org/10.1007/978-3-319-31271-2_16
http://dx.doi.org/10.1007/978-3-319-31271-2_16
https://doi.org/10.1007/978-3-662-53140-2_10
https://doi.org/10.1007/978-3-662-53140-2_10
http://dx.doi.org/10.1007/978-3-662-53140-2_10
http://dx.doi.org/10.1007/978-3-662-53140-2_10
https://doi.org/10.1145/2996366.2996374
http://doi.acm.org/10.1145/2996366.2996374
http://doi.acm.org/10.1145/2996366.2996374

Bibliography 143

[Dae17] Joan Daemen. “Changing of the Guards: A Simple and Efficient
Method for Achieving Uniformity in Threshold Sharing.” In: CHES.
Vol. 10529. Lecture Notes in Computer Science. Springer, 2017,
pp. 137–153.

[Dob+16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. Ascon v1.2. Submission to the CAESAR competition:
http://competitions.cr.yp.to/round3/asconv12.pdf. 2016. url:
http://ascon.iaik.tugraz.at.

[Eld+14a] Hassan Eldib, Chao Wang, Mostafa M. I. Taha, and Patrick Schau-
mont. “QMS: Evaluating the Side-Channel Resistance of Masked
Software from Source Code.” In: DAC ’14, San Francisco, CA, USA,
June 1-5, 2014. 2014, 209:1–209:6. doi: 10.1145/2593069.2593193.
url: http://doi.acm.org/10.1145/2593069.2593193.

[Eld+14b] Hassan Eldib, Chao Wang, and Patrick Schaumont. “SMT-Based
Verification of Software Countermeasures against Side-Channel At-
tacks.” In: TACAS 2014, 2014, Grenoble, France, April 5-13, 2014.
Proceedings. 2014, pp. 62–77. doi: 10.1007/978-3-642-54862-8_5.
url: http://dx.doi.org/10.1007/978-3-642-54862-8_5.

[EW14] Hassan Eldib and Chao Wang. “Synthesis of Masking Countermea-
sures against Side Channel Attacks.” In: CAV 2014, Held as Part of
the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-
22, 2014. Proceedings. 2014, pp. 114–130. doi: 10.1007/978-3-319-
08867-9_8. url: http://dx.doi.org/10.1007/978-3-319-08867-9_8.

[Fau+10] Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and
Vinod Vaikuntanathan. “Protecting Circuits from Leakage: the
Computationally-Bounded and Noisy Cases.” English. In: EURO-
CRYPT 2010. Vol. 6110. LNCS. 2010. isbn: 978-3-642-13189-9. doi:
10.1007/978-3-642-13190-5_7. url: http://dx.doi.org/10.1007/
978-3-642-13190-5_7.

[Fel+05] Martin Feldhofer, Johannes Wolkerstorfer, and Vincent Rijmen.
“AES Implementation on a Grain of Sand.” In: IEEE Proceedings -
Information Security 152.1 (2005), pp. 13–20. issn: 1747-0722. doi:
10.1049/ip-ifs:20055006.

[GC17] Ashrujit Ghoshal and Thomas De Cnudde. “Several Masked Imple-
mentations of the Boyar-Peralta AES S-Box.” In: INDOCRYPT.
Vol. 10698. Lecture Notes in Computer Science. Springer, 2017,
pp. 384–402.

[Gho+07] Santosh Ghosh, Monjur Alam, Kundan Kumar, Debdeep Mukhopad-
hyay, and Dipanwita Roy Chowdhury. “Preventing the Side-Channel
Leakage of Masked AES S-Box.” In: Advanced Computing and Com-
munications, 2007. ADCOM 2007. International Conference on.
2007. doi: 10.1109/ADCOM.2007.63.

http://competitions.cr.yp.to/round3/asconv12.pdf
http://ascon.iaik.tugraz.at
https://doi.org/10.1145/2593069.2593193
http://doi.acm.org/10.1145/2593069.2593193
https://doi.org/10.1007/978-3-642-54862-8_5
http://dx.doi.org/10.1007/978-3-642-54862-8_5
https://doi.org/10.1007/978-3-319-08867-9_8
https://doi.org/10.1007/978-3-319-08867-9_8
http://dx.doi.org/10.1007/978-3-319-08867-9_8
https://doi.org/10.1007/978-3-642-13190-5_7
http://dx.doi.org/10.1007/978-3-642-13190-5_7
http://dx.doi.org/10.1007/978-3-642-13190-5_7
https://doi.org/10.1049/ip-ifs:20055006
https://doi.org/10.1109/ADCOM.2007.63

144 Bibliography

[GM17] Hannes Groß and Stefan Mangard. “Reconciling d+1 Masking in
Hardware and Software.” In: CHES. Vol. 10529. Lecture Notes in
Computer Science. Springer, 2017, pp. 115–136.

[GM18] Hannes Gross and Stefan Mangard. “A Unified Masking Approach.”
In: Journal of Cryptographic Engineering (2018). issn: 2190-8516.
doi: 10.1007/s13389-018-0184-y.

[Goo+11] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi.
“A Testing Methodology for Side-Channel Resistance Validation.”
In: NIST Non-Invasive Attack Testing Workshop. 2011.

[GP12] Hannes Groß and Thomas Plos. “On Using Instruction-Set Ex-
tensions for Minimizing the Hardware-Implementation Costs of
Symmetric-Key Algorithms on a Low-Resource Microcontroller.” In:
RFIDSec. Vol. 7739. Lecture Notes in Computer Science. Springer,
2012, pp. 149–164.

[Gro] Hannes Groß. Collection of DOM-Protected Hardware Implementa-
tions. https://github.com/hgrosz.

[Gro+] Hannes Groß, Rinat Iusupov, and Roderick Bloem. Generic Low-
Latency Masking in Hardware. CHES 2018 (in press).

[Gro+14a] Hannes Groß, Erich Wenger, Honorio Mart́ın, and Michael Hutter.
“PIONEER - a Prototype for the Internet of Things Based on an
Extendable EPC Gen2 RFID Tag.” In: RFIDSec. Vol. 8651. Lecture
Notes in Computer Science. Springer, 2014, pp. 54–73.

[Gro+14b] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, Kerem
Varici, François Durvaux, Lubos Gaspar, and Stéphanie Kerckhof.
CAESAR candidate SCREAM Side-Channel Resistant Authenticated
Encryption with Masking. DIAC 2014: Directions in Authenticated
Ciphers, Santa Barbara, USA [Accessed: 2014 09 30]. Aug. 2014.
url: http://2014.diac.cr.yp.to/slides/leurent-scream.pdf.

[Gro+15a] Hannes Groß, Marko Hölbl, Daniel Slamanig, and Raphael Spreitzer.
“Privacy-Aware Authentication in the Internet of Things.” In: CANS.
Vol. 9476. Lecture Notes in Computer Science. Springer, 2015, pp. 32–
39.

[Gro+15b] Hannes Groß, Erich Wenger, Christoph Dobraunig, and Christoph
Ehrenhöfer. “Suit up! — Made-to-Measure Hardware Implementa-
tions of ASCON.” In: DSD. IEEE Computer Society, 2015, pp. 645–
652.

[Gro+16a] Hannes Groß, Manuel Jelinek, Stefan Mangard, Thomas Unter-
luggauer, and Mario Werner. “Concealing Secrets in Embedded
Processors Designs.” In: CARDIS. Vol. 10146. Lecture Notes in
Computer Science. Springer, 2016, pp. 89–104.

https://doi.org/10.1007/s13389-018-0184-y
https://github.com/hgrosz
http://2014.diac.cr.yp.to/slides/leurent-scream.pdf

Bibliography 145

[Gro+16b] Hannes Groß, Stefan Mangard, and Thomas Korak. “Domain-
Oriented Masking: Compact Masked Hardware Implementations
with Arbitrary Protection Order.” In: IACR Cryptology ePrint
Archive (2016).

[Gro+16c] Hannes Groß, Stefan Mangard, and Thomas Korak. “Domain-
Oriented Masking: Compact Masked Hardware Implementations
with Arbitrary Protection Order.” In: TIS@CCS. ACM, 2016, p. 3.

[Gro+17a] Hannes Groß, Stefan Mangard, and Thomas Korak. “An Efficient
Side-Channel Protected AES Implementation with Arbitrary Pro-
tection Order.” In: CT-RSA. Vol. 10159. Lecture Notes in Computer
Science. Springer, 2017, pp. 95–112.

[Gro+17b] Hannes Groß, Erich Wenger, Christoph Dobraunig, and Christoph
Ehrenhöfer. “Ascon hardware implementations and side-channel eval-
uation.” In: Microprocessors and Microsystems - Embedded Hardware
Design 52 (2017), pp. 470–479.

[Gro+17c] Hannes Groß, David Schaffenrath, and Stefan Mangard. “Higher-
Order Side-Channel Protected Implementations of KECCAK.” In:
DSD. IEEE Computer Society, 2017, pp. 205–212.

[Gro15] Hannes Groß. “Sharing is Caring - On the Protection of Arith-
metic Logic Units against Passive Physical Attacks.” In: RFIDSec.
Vol. 9440. Lecture Notes in Computer Science. Springer, 2015, pp. 68–
84.

[Gro16] Hannes Groß. DOM-Protected Hardware Implementation of AES.
https://github.com/hgrosz/aes-dom. 2016.

[Gue09] Shay Gueron. “Intel’s New AES Instructions for Enhanced Perfor-
mance and Security.” In: FSE. Vol. 5665. Lecture Notes in Computer
Science. Springer, 2009, pp. 51–66.

[Ish+03] Yuval Ishai, Amit Sahai, and David Wagner. “Private Circuits:
Securing Hardware against Probing Attacks.” English. In: CRYPTO
2003. Vol. 2729. LNCS. 2003. isbn: 978-3-540-40674-7. doi: 10.1007/
978-3-540-45146-4_27. url: http://dx.doi.org/10.1007/978-3-

540-45146-4_27.

[Ius] Rinat Iusupov. REBECCA - Masking verification tool. https://

github.com/riusupov/rebecca.

[Iwa+14] Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, Sumio Morioka, and
Eita Kobayashi. SILC: SImple Lightweight CFB. DIAC 2014: Direc-
tions in Authenticated Ciphers, Santa Barbara, USA [Accessed: 2014
09 30]. Aug. 2014. url: http://2014.diac.cr.yp.to/slides/iwata-
silc.pdf.

https://github.com/hgrosz/aes-dom
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
http://dx.doi.org/10.1007/978-3-540-45146-4_27
http://dx.doi.org/10.1007/978-3-540-45146-4_27
https://github.com/riusupov/rebecca
https://github.com/riusupov/rebecca
http://2014.diac.cr.yp.to/slides/iwata-silc.pdf
http://2014.diac.cr.yp.to/slides/iwata-silc.pdf

146 Bibliography

[Koc+99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. “Differential
Power Analysis.” In: Proceedings of the 19th Annual International
Cryptology Conference on Advances in Cryptology. CRYPTO ’99.
London, UK, UK: Springer-Verlag, 1999, pp. 388–397. isbn: 3-540-
66347-9. url: http://dl.acm.org/citation.cfm?id=646764.703989.

[Koc96] Paul C. Kocher. “Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems.” In: CRYPTO. Vol. 1109.
Lecture Notes in Computer Science. Springer, 1996, pp. 104–113.

[Kum+07] Kundan Kumar, Debdeep Mukhopadhyay, and Dipanwita Roy-
Chowdhury. “Design of a Differential Power Analysis Resistant
Masked AES S-Box.” English. In: INDOCRYPT 2007. Vol. 4859.
LNCS. 2007. isbn: 978-3-540-77025-1. doi: 10.1007/978- 3-540-

77026-8_29. url: http://dx.doi.org/10.1007/978-3-540-77026-

8_29.

[Lip+16] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. “ARMageddon: Cache Attacks on Mobile
Devices.” In: USENIX Security Symposium. USENIX Association,
2016, pp. 549–564.

[Lip+18] Moritz Lipp et al. “Meltdown.” In: meltdownattack.com (2018).

[Man+05] Stefan Mangard, Thomas Popp, and BerndtM. Gammel. “Side-
Channel Leakage of Masked CMOS Gates.” English. In: CT-RSA
2005. Vol. 3376. LNCS. 2005. isbn: 978-3-540-24399-1. doi: 10.1007/
978-3-540-30574-3_24. url: http://dx.doi.org/10.1007/978-3-

540-30574-3_24.

[Man+07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power anal-
ysis attacks - revealing the secrets of smart cards. Springer, 2007.
isbn: 978-0-387-30857-9.

[MC14] Debdeep Mukhopadhyay and Rajat Subhra Chakraborty. Hardware
Security - Design, Threats, and Safeguards. CRC Press, 2014.

[Moo+18] Thorben Moos, Amir Moradi, Tobias Schneider, and François-Xavier
Standaert. Glitch-Resistant Masking Revisited - or Why Proofs in
the Robust Probing Model are Needed. Cryptology ePrint Archive,
Report 2018/490. https://eprint.iacr.org/2018/490. 2018.

[Mor+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huax-
iong Wang. “Pushing the Limits: A Very Compact and a Threshold
Implementation of AES.” In: Proceedings of the 30th Annual Inter-
national Conference on Theory and Applications of Cryptographic
Techniques: Advances in Cryptology. EUROCRYPT’11. Tallinn, Es-
tonia: Springer-Verlag, 2011, pp. 69–88. isbn: 978-3-642-20464-7.
url: http://dl.acm.org/citation.cfm?id=2008684.2008693.

http://dl.acm.org/citation.cfm?id=646764.703989
https://doi.org/10.1007/978-3-540-77026-8_29
https://doi.org/10.1007/978-3-540-77026-8_29
http://dx.doi.org/10.1007/978-3-540-77026-8_29
http://dx.doi.org/10.1007/978-3-540-77026-8_29
https://doi.org/10.1007/978-3-540-30574-3_24
https://doi.org/10.1007/978-3-540-30574-3_24
http://dx.doi.org/10.1007/978-3-540-30574-3_24
http://dx.doi.org/10.1007/978-3-540-30574-3_24
https://eprint.iacr.org/2018/490
http://dl.acm.org/citation.cfm?id=2008684.2008693

Bibliography 147

[Mor+14] Pawel Morawiecki, Kris Gaj, Ekawat Homsirikamol, Krystian Ma-
tusiewicz, Josef Pieprzyk, Marcin Rogawski, Marian Srebrny, and
Marcin Wójcik. ICEPOLE. Submission to the CAESAR competition:
http://competitions.cr.yp.to/round1/icepolev1.pdf. 2014.

[Mos+12] Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall.
“Compiler Assisted Masking.” In: CHES 2012, Leuven, Belgium,
September 9-12, 2012. Proceedings. 2012, pp. 58–75. doi: 10.1007/
978-3-642-33027-8_4. url: http://dx.doi.org/10.1007/978-3-642-
33027-8_4.

[MR04] Silvio Micali and Leonid Reyzin. “Physically Observable Cryptog-
raphy.” In: Theory of Cryptography: First Theory of Cryptography
Conference, TCC 2004, Cambridge, MA, USA, February 19-21,
2004. Proceedings. Ed. by Moni Naor. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 278–296. isbn: 978-3-540-24638-1. doi:
10.1007/978-3-540-24638-1_16. url: https://doi.org/10.1007/978-
3-540-24638-1_16.

[MS06] Stefan Mangard and Kai Schramm. “Pinpointing the Side-Channel
Leakage of Masked AES Hardware Implementations.” English. In:
CHES 2006. Vol. 4249. LNCS. 2006. isbn: 978-3-540-46559-1. doi:
10.1007/11894063_7. url: http://dx.doi.org/10.1007/11894063_7.

[Mui07] Edwin NC Mui. “Practical implementation of Rijndael S-box using
Combinational logic.” In: Custom R&D Engineer Texco Enterprise
Pvt. Ltd (2007).

[Nik+06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. “Thresh-
old Implementations Against Side-channel Attacks and Glitches.” In:
Proceedings of the 8th International Conference on Information and
Communications Security. ICICS’06. Raleigh, NC: Springer-Verlag,
2006, pp. 529–545. isbn: 3-540-49496-0, 978-3-540-49496-6. doi: 10.
1007/11935308_38. url: http://dx.doi.org/10.1007/11935308_38.

[NIS15] NIST. SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions. 2015. url: http://nvlpubs.nist.gov/nistpubs/
FIPS/NIST.FIPS.202.pdf.

[NIS95] NIST. FIPS PUB 180-4: Secure Hash Standard. Apr. 1995.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge
University Press, 2014. isbn: 978-1-10-703832-5. url: http :

//www.cambridge.org/de/academic/subjects/computer- science/

algorithmics- complexity- computer- algebra- and- computational-

g/analysis-boolean-functions.

[Par05] Milind M. Parelkar. “Authenticated Encryption in Hardware.” MA
thesis. Fairfax, VA, USA: George Mason University, 2005.

http://competitions.cr.yp.to/round1/icepolev1.pdf
https://doi.org/10.1007/978-3-642-33027-8_4
https://doi.org/10.1007/978-3-642-33027-8_4
http://dx.doi.org/10.1007/978-3-642-33027-8_4
http://dx.doi.org/10.1007/978-3-642-33027-8_4
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/11894063_7
http://dx.doi.org/10.1007/11894063_7
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38
http://dx.doi.org/10.1007/11935308_38
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions

148 Bibliography

[PH13] Peter Pessl and Michael Hutter. “Pushing the Limits of SHA-3 Hard-
ware Implementations to Fit on RFID.” In: Cryptographic Hardware
and Embedded Systems – CHES 2013, 15th International Workshop,
Santa Barbara, CA, USA, August 20-23. Vol. 8086. Springer, 2013.
doi: 10.1007/978-3-642-40349-1_8.

[Plo+10] Thomas Plos, Hannes Groß, and Martin Feldhofer. “Implementation
of Symmetric Algorithms on a Synthesizable 8-Bit Microcontroller
Targeting Passive RFID Tags.” In: Selected Areas in Cryptogra-
phy. Vol. 6544. Lecture Notes in Computer Science. Springer, 2010,
pp. 114–129.

[QS01] Jean-Jacques Quisquater and David Samyde. “ElectroMagnetic Anal-
ysis (EMA): Measures and Counter-measures for Smart Cards.” En-
glish. In: Smart Card Programming and Security. Vol. 2140. LNCS.
2001. isbn: 978-3-540-42610-3. doi: 10.1007/3-540-45418-7_17. url:
http://dx.doi.org/10.1007/3-540-45418-7_17.

[Rep+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs,
and Ingrid Verbauwhede. “Consolidating Masking Schemes.” In:
CRYPTO 2015. 2015. doi: 10.1007/978-3-662-47989-6_37. url:
http://dx.doi.org/10.1007/978-3-662-47989-6_37.

[Rep15] Oscar Reparaz. “A Note on the Security of Higher-Order Threshold
Implementations.” In: IACR Cryptology ePrint Archive 2015 (2015).
url: http://eprint.iacr.org/2015/001.

[Rep16] Oscar Reparaz. “Detecting Flawed Masking Schemes with Leakage
Detection Tests.” In: FSE 2016, Bochum, Germany, March 20-23,
2016, Revised Selected Papers. 2016, pp. 204–222. doi: 10.1007/978-
3-662-52993-5_11. url: https://doi.org/10.1007/978-3-662-

52993-5_11.

[RP10] Matthieu Rivain and Emmanuel Prouff. “Provably Secure Higher-
Order Masking of AES.” English. In: CHES 2010. Vol. 6225. LNCS.
2010. isbn: 978-3-642-15030-2. doi: 10.1007/978-3-642-15031-9_28.
url: http://dx.doi.org/10.1007/978-3-642-15031-9_28.

[Sas+14] Yu Sasaki, Yosuke Todo, Kazumaro Aoki, Yusuke Naito, Takeshi
Sugawara, Yumiko Murakami, Mitsuru Matsui, and Shoichi Hirose.
Minalpher. DIAC 2014: Directions in Authenticated Ciphers, Santa
Barbara, USA [Accessed: 2014 09 30]. Aug. 2014. url: http://2014.
diac.cr.yp.to/slides/matsui-minalpher.pdf.

[Sch+15] Tobias Schneider, Amir Moradi, and Tim Güneysu. “Arithmetic
Addition over Boolean Masking - Towards First- and Second-Order
Resistance in Hardware.” In: ACNS. Vol. 9092. Lecture Notes in
Computer Science. Springer, 2015, pp. 559–578.

[Tri03] Elena Trichina. “Combinational Logic Design for AES SubByte
Transformation on Masked Data.” In: IACR Cryptology ePrint
Archive 2003 (2003). url: http://eprint.iacr.org/2003/236.

https://doi.org/10.1007/978-3-642-40349-1_8
https://doi.org/10.1007/3-540-45418-7_17
http://dx.doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/978-3-662-47989-6_37
http://dx.doi.org/10.1007/978-3-662-47989-6_37
http://eprint.iacr.org/2015/001
https://doi.org/10.1007/978-3-662-52993-5_11
https://doi.org/10.1007/978-3-662-52993-5_11
https://doi.org/10.1007/978-3-662-52993-5_11
https://doi.org/10.1007/978-3-662-52993-5_11
https://doi.org/10.1007/978-3-642-15031-9_28
http://dx.doi.org/10.1007/978-3-642-15031-9_28
http://2014.diac.cr.yp.to/slides/matsui-minalpher.pdf
http://2014.diac.cr.yp.to/slides/matsui-minalpher.pdf
http://eprint.iacr.org/2003/236

Bibliography 149

[Wat76] Paul Watzlawick. How Real Is Real?: Confusion, Disinforma-
tion, Communication. Vintage books. Random House, 1976. isbn:
9780394498539.

[XM88] Guo-Zhen Xiao and James L. Massey. “A spectral characterization
of correlation-immune combining functions.” In: IEEE Trans. In-
formation Theory 34.3 (1988), pp. 569–571. doi: 10.1109/18.6037.
url: http://dx.doi.org/10.1109/18.6037.

[YK13] Tolga Yalçin and Elif Bilge Kavun. “On the Implementation Aspects
of Sponge-based Authenticated Encryption for Pervasive Devices.”
In: Proceedings of the 11th International Conference on Smart Card
Research and Advanced Applications. CARDIS’12. Graz, Austria:
Springer-Verlag, 2013, pp. 141–157. isbn: 978-3-642-37287-2. doi:
10.1007/978-3-642-37288-9_10. url: http://dx.doi.org/10.1007/
978-3-642-37288-9_10.

[Zös+15] Lukas Zöscher, Jasmin Grosinger, Raphael Spreitzer, Ulrich
Muehlmann, Hannes Groß, and Wolfgang Bösch. “Concept for a
security aware automatic fare collection system using HF/UHF dual
band RFID transponders.” In: ESSDERC. IEEE, 2015, pp. 194–197.

[Zös+16] Lukas Zöscher, Raphael Spreitzer, Hannes Groß, Jasmin Grosinger,
Ulrich Muehlmann, Dominik Amschl, Hubert Watzinger, and
Wolfgang Bösch. “HF/UHF dual band RFID transponders for an
information-driven public transportation system.” In: Elektrotechnik
und Informationstechnik 133.3 (2016), pp. 163–175.

https://doi.org/10.1109/18.6037
http://dx.doi.org/10.1109/18.6037
https://doi.org/10.1007/978-3-642-37288-9_10
http://dx.doi.org/10.1007/978-3-642-37288-9_10
http://dx.doi.org/10.1007/978-3-642-37288-9_10

About the Author

Author information as of June 2018.

Personal Information

Name: Hannes Groß
Date of birth: December 19th, 1986
Place of birth: Wolfsberg, Austria

Education

� 06/2013 – present: Doctoral studies, Graz University of Technology,
Austria.

� 07/2011 – 04/2013: Master studies in Information and Computer Engi-
neering (Telematik), Graz University of Technology, Austria.

� 10/2007 – 07/2011: Bachelor studies in Information and Computer
Engineering (Telematik), Graz University of Technology, Austria.

Professional and Academic Experience

� 06/2013 – present: Project assistant, Institute for Applied Information
Processing and Communications (IAIK), Graz University of Technology,
Austria.

� 2013: Contractor, NXP, Graz, Austria.

� 2012 – 2013: Master’s Thesis, NXP, Graz, Austria.

� Summer 2010 and 2011: Internship as software developer for RFID
systems, Graz University of Technology, Austria.

151

152 Author’s Publications

Author’s Publications

Author’s publications as of June 2018.

Publications Used in this Thesis

I Hannes Groß, Rinat Iusupov, and Roderick Bloem. Generic Low-Latency
Masking in Hardware. CHES 2018 (in press)

I Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan
Mangard, and Johannes Winter. “Formal Verification of Masked Hardware
Implementations in the Presence of Glitches.” In: EUROCRYPT (2). Vol. 10821.
Lecture Notes in Computer Science. Springer, 2018, pp. 321–353

I Hannes Groß and Stefan Mangard. “Reconciling d+1 Masking in Hardware
and Software.” In: CHES. vol. 10529. Lecture Notes in Computer Science.
Springer, 2017, pp. 115–136

I Hannes Groß, David Schaffenrath, and Stefan Mangard. “Higher-Order Side-
Channel Protected Implementations of KECCAK.” in: DSD. IEEE Computer
Society, 2017, pp. 205–212

I Hannes Groß, Stefan Mangard, and Thomas Korak. “An Efficient Side-
Channel Protected AES Implementation with Arbitrary Protection Order.” In:
CT-RSA. vol. 10159. Lecture Notes in Computer Science. Springer, 2017,
pp. 95–112

I Hannes Groß, Manuel Jelinek, Stefan Mangard, Thomas Unterluggauer, and
Mario Werner. “Concealing Secrets in Embedded Processors Designs.” In:
CARDIS. vol. 10146. Lecture Notes in Computer Science. Springer, 2016,
pp. 89–104

I Hannes Groß, Erich Wenger, Christoph Dobraunig, and Christoph Ehrenhöfer.
“Suit up! — Made-to-Measure Hardware Implementations of ASCON.” in: DSD.
IEEE Computer Society, 2015, pp. 645–652

Other Publications

I Hannes Gross and Stefan Mangard. “A Unified Masking Approach.”
In: Journal of Cryptographic Engineering (2018). issn: 2190-8516. doi:
10. 1007/ s13389-018-0184-y

I Hannes Groß, Erich Wenger, Christoph Dobraunig, and Christoph Ehrenhöfer.
“Ascon hardware implementations and side-channel evaluation.” In: Micropro-

https://doi.org/10.1007/s13389-018-0184-y

Author’s Publications 153

cessors and Microsystems - Embedded Hardware Design 52 (2017), pp. 470–479

I Lukas Zöscher, Raphael Spreitzer, Hannes Groß, Jasmin Grosinger, Ul-
rich Muehlmann, Dominik Amschl, Hubert Watzinger, and Wolfgang Bösch.
“HF/UHF dual band RFID transponders for an information-driven public
transportation system.” In: Elektrotechnik und Informationstechnik 133.3
(2016), pp. 163–175

I Hannes Groß, Marko Hölbl, Daniel Slamanig, and Raphael Spreitzer.
“Privacy-Aware Authentication in the Internet of Things.” In: CANS. vol. 9476.
Lecture Notes in Computer Science. Springer, 2015, pp. 32–39

I Lukas Zöscher, Jasmin Grosinger, Raphael Spreitzer, Ulrich Muehlmann,
Hannes Groß, and Wolfgang Bösch. “Concept for a security aware automatic fare
collection system using HF/UHF dual band RFID transponders.” In: ESSDERC.
IEEE, 2015, pp. 194–197

I Hannes Groß. “Sharing is Caring - On the Protection of Arithmetic
Logic Units against Passive Physical Attacks.” In: RFIDSec. Vol. 9440. Lecture
Notes in Computer Science. Springer, 2015, pp. 68–84

I Hannes Groß, Erich Wenger, Honorio Mart́ın, and Michael Hutter. “PIO-
NEER - a Prototype for the Internet of Things Based on an Extendable EPC
Gen2 RFID Tag.” In: RFIDSec. Vol. 8651. Lecture Notes in Computer Science.
Springer, 2014, pp. 54–73

I Hannes Groß and Thomas Plos. “On Using Instruction-Set Extensions for
Minimizing the Hardware-Implementation Costs of Symmetric-Key Algorithms
on a Low-Resource Microcontroller.” In: RFIDSec. Vol. 7739. Lecture Notes in
Computer Science. Springer, 2012, pp. 149–164

I Thomas Plos, Hannes Groß, and Martin Feldhofer. “Implementation
of Symmetric Algorithms on a Synthesizable 8-Bit Microcontroller Targeting
Passive RFID Tags.” In: Selected Areas in Cryptography. Vol. 6544. Lecture
Notes in Computer Science. Springer, 2010, pp. 114–129

	Title Page
	Affidavit
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Side-Channel Analysis
	Classification
	Attack Scenario
	Masking as Countermeasure to SCA
	Thesis Overview

	I Generic Masking Schemes
	Domain-Oriented Masking (DOM)
	First-Order Secure DOM Multiplier
	Higher-Order Secure DOM Multiplier
	Summary

	Unified Masking (UMA)
	Randomness Gap in Hardware and Software
	Barthe et al.'s Algorithm
	Randomness Bounds and Optimal Solutions

	Unified Masked Multiplication in Software
	Full Description of UMA

	UMA in Hardware

	Low-Latency Masking (LOLA)
	Compression Skipping
	Avoiding Collisions
	Resolving Gate Collisions
	A Low-Latency Ascon S-box
	A Low-Latency Masked AES S-box

	Conclusions

	II Masked Implementations
	Advanced Encryption Standard (AES)
	DOM-Protected AES
	DOM Design of the AES S-box
	Implementation Results

	LOLA-Protected AES S-box
	Comparison with DOM and Related Work

	Ascon—Authenticated Encryption
	Overview on Ascon
	Mode of Operation
	Permutation
	Hardware Security Properties of Ascon

	Unprotected Hardware Designs
	High Throughput Design (Ascon-fast)
	64-bit Datapath Design (Ascon-64-bit)
	Low Area Design (Ascon-x-low-area)
	Results

	DOM- and UMA-Protected Implementations
	Implementation Results
	Discussion on the Randomness Costs

	LOLA-Protected Ascon Implementations

	Keccak Secure Hash Algorithm (SHA3)
	DOM Optimizations
	Implementation
	Results

	RISC-V Processor
	Protected Implementation of V-scale
	Additional Pipeline Stage
	Unprotected Operations
	Protected alu

	Hardware Results

	Conclusions

	III Verification of Masking
	Empirical Side-Channel Evaluation
	Formal Verification of Masking
	Preliminaries
	Masking and the Probing Model
	Verification for Stable Signals
	Labeling
	Propagation rules
	Verification

	Modeling Transient Timing Effects
	Glitches
	Formalization of Probing Security with Glitches
	Modeling Information from Multiple Clock Cycles

	Extension for Transient Signals

	Practical Formal Verification
	Formal Verification of UMA Circuits
	Formal Verification of LOLA Circuits
	Taint checking of the lola AES S-box

	Conclusions

	Summary and Outlook
	Bibliography
	About the Author

