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1. Introduction

Life and the universe itself are full of non-equilibrium processes. Wherever there is a
transfer of energy between systems, the thermodynamically equilibrated states are dis-
turbed. These perturbations might be of electromagnetic, chemical or thermal origin,
for example. In physics, people began to describe these rather complex non-equilibrium
problems with relatively simple laws and equations early. Relations like Ohm’s law, the
Seebeck effect, Fick’s law, the Hall effect, Fourier’s law and many others were based on
empirical findings and initially lacked fundamental physical proofs. Due to the nature
of these typically linear descriptions of difficult problems, there are certain limitations
for all these laws. For electrical conductivity, for instance, Ohm’s law is only valid for
electric fields below a certain threshold. However, those simple descriptions of non-
equilibrium problems are still forming the essential backbone of (classical) physics.
The non-equilibrium process that this thesis deals with is the exposure of the system
to small1 temperature gradients on a crystalline system. The phenomenological propor-
tionality constant that relates the temperature gradient to the heat flux density is the
thermal conductivity. In practice, this quantity is one of the most important properties
of a solid because it determines, how fast heat is transferred through the system from
the hot to the cold side. For most classes of materials the mechanisms of heat transport
can be attributed to two basic energy carriers: electrons and phonons. Although there
might be contributions from other interactions in the solid - quantised as quasiparticles
like magnons, plasmons etc. - these two usually dominate the thermal conductivity.
There are numerous examples in nature and technology, where thermal transport prop-
erties are one of the main concerns. Consider a piece of electrically conducting material,
for example. If an electrical current flows through the solid, heat will be generated (by
means of Joule heating and additionally recombination heating in the case of semicon-
ductors). This heat has to be dissipated at least with the same speed as new energy
density is generated in order to prevent thermal runaway. In semiconductor physics
a situation like this can be modelled in order to predict the thermodynamically sta-
ble situation if the temperature dependence of the charge carrier mobility as well as the
thermal conductivity of the solid are known. However, this requires the determination of
these quantities in a microscopic or even a quantum-mechanical picture. Subsequently,
macroscopic simulations can be carried out with the parameters obtained. Modelling of
materials properties is, therefore, the first step in multiscale simulations predicting the
behaviour of real applications.
A further example, where the thermal transport properties are a main concern, are ther-
moelectric effects. Especially in systems like metals, where the electronic contributions
overweigh the phononic ones, the movement of the electrons also results in an electric
current density. This effect is known as thermoelectricity. Therefore, one can generate
electric currents or voltages (depending on the boundary conditions) by applying a tem-
perature gradient to solids with distinct thermoelectric properties.
Although there are many models of the thermal conductivity for certain inorganic sys-

1So small that the resulting heat flux density can be described with Fourier’s law (cf. eq. (3.8))
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1. Introduction

tems available, e.g. for metals and semiconductors, the situation is much more compli-
cated for organic or hybrid systems. For that reason, thermal transport is only poorly
understood in these classes of materials, in spite of its importance already illustrated.
With the increasing demand of organic LEDs (OLEDs), for example, it is important to
understand and to be able to predict thermal transport in such materials too. However,
in molecular crystals one has to deal with large, complex systems and additional interac-
tions like dispersion forces that can be neglected for metals. Moreover, due to the rather
bound electrons of organic crystals compared to metals, the phononic contributions for
the thermal conductivity are very likely to dominate. For that reason, in the following
the focus will be on the thermal transport properties arising from lattice vibrations.
Let us consider a very simplistic model system, based on which some general tendencies
can be illustrated. The periodic system consists of a one-dimensional chain of two atoms
in the primitive unit cell connected with linear springs. Obviously the two atoms differ
in their masses, otherwise the cell size could be reduced. By solving Newton’s equation
with a plane-wave ansatz one obtains the phonon band structure for this system. This
can be seen in figure 1.1. For certain phase shifts between the movements of atoms in
neighbouring unit cells - described with the reciprocal wavelength q - the eigenfrequen-
cies ω can be calculated. If one replaces now the heavier one of the two atoms with
another atom with even larger and larger mass, the band structure changes as it is seen
in figure 1.1.

Fig. 1.1: Phonon band structure of a linear one-dimensional chain of two atoms with
different masses m1 and m2 in a primitive unit cell of length a. The optical
and acoustic bands are plotted for different mass ratios m2/m1. ω . . . phonon
frequency, q . . . phonon wave vector.
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As the ratio of the masses increases, some noticeable features can be observed. The
bands tend to become flatter and to be restricted to lower frequencies. The real space
analogue to flat bands is a localisation of modes at certain atoms. Localised vibrations
are, of course, inhibitors of thermal transport, since phonon modes cannot efficiently
transfer heat from one atom to its neighbour in this way. Although in most inorganic
crystals there are not very large mass differences present, this is exactly the case for
metal-organic hybrid structures like metal-organic frameworks (MOFs). Due to the large
amount of atoms in their unit cells, MOFs have many optical phonons, with some of them
possibly reaching lower frequencies, which are typically found to be more important for
the thermal conductivity than higher frequency phonons. Therefore, MOFs have the
potential to show interesting thermal transport properties.
MOFs are materials which have recently gained a lot of scientific interest as can be seen
in figure 1.2. In that plot the number of publications on Web of Science having "MOF"
or "metal-organic framework" as their topic is displayed from 1994 to July 2018. Note
that the last bar is smaller because it accounts only for the first half of the year 2018.

Fig. 1.2: Number of publications listed by Web of Science that have "MOF" or "metal-
organic framework" as their topic. Evaluated at 2 July 2018, 7 pm.

The general structure of MOFs contains two main constituents: metallic clusters
(nodes) connected with organic molecules (linkers). Depending on the length of the
linkers, the structures are relatively open and usually show cavities or channels, with
both resulting in a large amount of internal surface area. For this reason, the main ap-
plications of MOFs are uses, where one exploits this large surface areas like catalysis and
gas storage. In all those applications temperature gradients are generated. This raises
the question, whether their thermal transport properties are suitable to dissipate the
heat fast enough for preventing the material from destruction. If MOFs are to be used
efficiently in future applications, the knowledge of their thermal transport behaviour is
absolutely essential, but hardly investigated yet. This can be seen as the motivation
for this thesis. However, as there are numerous possibilities to vary the constituents in
order to derive structure-to-property relationships, a systematic approach and accurate
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computational simulation methods have to be chosen. As a consequence, first-principle
calculations are employed within a quasi-harmonic lattice dynamics approach to study
the influences the different constituents of a MOF have on the vibrational properties
and the thermal conductivity.
Therefore, in section 2 some important applications and structural considerations of
MOFs are summarised in order to better understand these materials. Once this is
accomplished, the next step is to briefly condense the theoretical approaches, approx-
imations and methodologies that one can use in order to obtain the desired materials
properties. This is the topic of section 3. Here, one has to consider the necessary calcu-
lations to compute the thermal conductivity. The quantities of interest can be divided
into harmonic and anharmonic ingredients as will be shown. The following part mainly
deals with some computational details. In section 4, the used programmes as well as
the most important input parameters are introduced and discussed in order to allow to
reproduce the obtained results. These are presented and discussed in section 5, before
the most important findings are condensed in the summary in section 6.
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2. Metal-organic frameworks

Metal-organic frameworks (MOFs) are crystals that consist of metallic and organic con-
stituents, as the name implies. The so-called nodes of a MOF are usually formed by
polymetallic clusters with non-metallic atoms such as oxygen. These rather heavy nodes
are then connected by organic molecules that are usually referred to as linkers. Due to
the fact that this class of material has been the subject of studies all over the world, a
lot of different names were given to the structures. Some abbreviations besides MOF
that will be used in the rest of this work are IRMOF (isoreticular MOFs) and MIL
(Matériaux de l‘Institut Lavosier) with a number representing the specific organic linker
and the metal’s name inside brackets.
In general, one can build MOFs in many ways. The easiest way is to use the same organic
linkers to connect the nodes with cubic symmetry. The result is then what is usually
referred to as an IRMOF - i.e. a MOF with the same linkers in all three directions, with
the Bravais lattice being face-centred cubic. The next, more complicated step would be
to use different linkers in the three directions of the crystal. Examples for both cases
can be seen in figure 2.1. Note that both structures form very open frameworks so that
there is a relatively large amount of free space in the internal cavities.

(a) MOF-5(Zn) (b) MOF-508(Zn)

Fig. 2.1: Some exemplaric MOF structures forming cavities with (a) simple cubic and
(b) simple tetragonal Bravais lattice.

One of the most attractive aspects about MOFs is that one can resort to the whole
toolbox of organic chemistry. If one replaces the organic linker by a different molecule
or if just a different way of synthesising the MOF is chosen, one most probably ends
up with different geometries of the final framework. As a result, one can find ways and
means to control the desired structure and, therefore, the properties of the material.
For example, MOFs with varied composition compared to the two systems of figure
2.1, like MIL-53 or MOF-74, usually form different structures. In figure 2.2 it can
be seen that in those systems channels are created. This provides a convenient way
for particles to penetrate the crystal along the channels, but blocks them in directions
orthogonal to it. Furthermore, some MOFs like MIL-53 for example undergo phase
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transition dependent on the ambient temperature and pressure [1]. The phase shown
in figure 2.2(a) is the high temperature phase (ht) that is observed experimentally.
By varying the environmental conditions one can, therefore, influence the structure of
certain systems. Considerations of that kind complicate the usage of MOFs since phase
transitions might limit the operating range in real applications.

(a) MIL-53(Al) - ht (b) MOF-74(Zn)

Fig. 2.2: Some exemplaric MOF structures forming channels trough the crystal.

Most applications of MOFs exploit the enormous internal surface areas of MOFs. One
of the first typical application people have been using MOFs for is gas absorption [2, 3, 4].
Especially for systems that have three-dimensionally confined cavities in their structure
one can entrap gases inside the porous frameworks. This has been excessively studied in
particular for carbon dioxide [3], hydrogen [5], water [6] and methane [7]. Furthermore,
MOFs were used as adsorption coolers [8, 9, 10] or in adsorption vacuum pumps instead
of the much heavier zeolithes, or as components of thermal batteries [11] storing heat
by means of adsorption. If the organic linkers are functionalised with certain chemical
groups, they also can be used for catalysis [12] where certain molecules preferentially
react with each other at the extended surfaces inside a MOF. If one allows reactions to
change the linker, for example, by substitution of functional groups, or if one modifies
the oxidation numbers of the metals in the nodes, this very likely results in a change
in physical properties (colour, electrical resistivity, crystal structure etc.). If these vari-
ations of properties can be measured, sensing is another typical application a MOF is
suitable for [13].
However, in all the aforementioned potential applications, non-equilibrium processes
involving temperature gradients happen. This could either be the case when chemical
reactions are of exothermal or endothermal nature, if MOFs are used for cooling or heat-
ing purposes, and basically for every type of process where molecules are adsorbed on
the internal surfaces of the framework. In spite of its importance for all the typical ap-
plications of MOFs, the thermal transport properties have been hardly investigated yet,
leaving academic and commercial users in the dark about what influences temperature
gradients will have on the system. Will the generated heat be dissipated fast enough?
Will the material suffer from thermal degradation? Will thermoelectricity be observed?
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Can the input of thermal energy reach the central part of the MOF crystal in finite
time? These and similar questions arise in connection with non-equilibrium situations
during applications and can only by answered if one has a fundamental understanding
of the main influences governing thermal conductivity in MOFs. Once it is figured out,
how the different constituents of the crystals influence the thermal conductivity, one
can, as a next step, use this knowledge and choose linkers or nodes in a way that de-
sired thermal transport properties can be observed. By replacing constituents of the
crystals only in one direction , one can also obtain anisotropy in thermal conductivity
so that preferred pathways for thermal transfer can be realised, while other directions
are blocked, in order to save adjacent sensitive components, for example. A very useful
aspect of MOFs is their quasi-infinite number of possible linker molecules from organic
chemistry to choose from combined with more or less bulky nodes. Future steps would
be to study the influence of different adsorbates or species caught in the cavities on the
thermal conductivity. The more open and porous MOFs become, the more likely they
are to form interpenetrated structures what will reduce the cavity sizes, but definitely
increases thermal transport due to the much denser structures. One of the most difficult
considerations will be the description of thermal transport across boundaries of different
MOFs or different grains of an imperfect solid. This requires the correct understanding
of the single-crystalline systems before. Without doubt, MOFs are a very interesting
class of materials having high potential for industrial applications as well as fundamen-
tal research. The investigation of thermal transport properties is right in the beginning
and will take ages until it will have been described in a proper, quantitative manner.
However, until a general understanding of the thermal transport behaviour in MOFs is
obtained, many studies will have to be conducted. One has to start with simpler systems
and systematically vary small parts of the geometry, unless one wants to get lost in the
huge variety of different constituents. In order to take the first step in the attempt to
deduce structure-to-property relationships for MOFs, the following approach was chosen:
to analyse the effects of different components on the thermal conductivity it is useful to
start by first looking at the lattice vibrations and the respective phonon band structures,
since these quantities are supposed to be the ones determining the thermal transport
properties. The bigger challenge, however, is to anharmonic effects take into account.
Starting from the relatively well-known MOF-5 (cf. fig. 2.1(a)) the two main parts of
a MOF - the linkers and the nodes - are systematically varied to study the changes of
vibrational properties and thermal transport. The thermal conductivity is studied for
the simpler case of IRMOFs, which have the convenient attribute that they have only
one kind of linker in all three directions arranged in a cubic crystal system. The linkers
are substituted by different aromatic or alkyne molecules to understand their influence.
Also the impact of the metals in the nodes is investigated by considering three different
species (Zn, Mg, Ca), with the principal node geometry being fixed.
In order to understand, which physical ingredients are worthwhile looking at, and which
quantities are needed to calculate the thermal conductivity, the theoretical background
has to be dealt with. Therefore, the relevant equations as well as their derivations are
introduced in the next section.
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3. Theory and computational methods

In this section the expression for the thermal conductivity tensor within the lattice
dynamics approach will be derived. Based on that equation, each contribution will then
be dealt with in more detail. When it has become clear what needs to be calculated,
some methods will be discussed, which can be used to obtain these quantities in practice
using well-established procedures.

3.1. Derivation of the thermal conductivity tensor

The derivation of the thermal conductivity tensor will be done in detail to be able to
understand all the approximations and assumptions that are made. This is essential for
understanding the limitations and deficiencies of the used approach. The derivation up
to equation (3.3) is adopted from Ibach and Lüth [14, p. 245ff], whereas the problem-
specific expressions were individually derived and compared to the final equations from
literature (e.g. [15, 16]).
In order to describe (quantum-mechanical) systems it is often useful to introduce a
distribution function f (r,k, t) that describes the probability to find the system at a
given time t at a specific point2 in phase space - i.e. a multidimensional space represented
by the momenta ~k and positions r of all particles involved. Liouville’s equation follows
as a direct consequence of continuity considerations.

df

dt
=
∂f

∂t
+∇kf ·

∂k

∂t
+∇rf ·

∂r

∂t
= 0 (3.1)

The first partial derivative in equation (3.1) accounts for explicit temporal changes
in the distribution function, whereas the second accounts for external forces3 and the
last one for spatial changes. Throughout this derivation, we will neglect external forces
- i.e. the second term - completely. If we rearrange equation (3.1) and interpret the
time derivative of the position r as the group velocities, we end up with the Boltzmann
transport equation (BTE) in the special case of no external forces.

∂f

∂t
= −∇rf · vg +

∂f

∂t

∣∣∣∣
coll

(3.2)

The so-called collision term - i.e. the last term on the right side of the BTE - accounts
for temporal changes in the distribution function due to collisions with other particles in
the system and is usually the biggest challenge when it comes to solving the equation.
One convenient way to (seemingly) circumvent the insufficient knowledge about the
collision term is to make use of the relaxation time approximation (RTA) employing the
following ansatz for the collision term:

2To be exact f (r,k, t) is the probability to find the system at time t in the phase space volume
[r, r+ dr] , [k,k+ dk].

3The time derivative of the momentum corresponds to external forces.
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∂f

∂t

∣∣∣∣
coll

=
f0 − f
τ

(3.3)

This approximation implies that the system returns to approximately 63 % of its equi-
librium distribution f0 after one relaxation time τ has passed in absence of any external
forces and spatial variations in the distribution. In order to analyse the BTE (eq. 3.2)
further one has to think about possible contributions to the spatial gradient of f . The
distribution function f is usually only indirectly dependent on the spatial coordinates
via quantities like the chemical potential µ or the temperature T . For phonons, where
the particle number is a non-conserved quantity, the chemical potential must vanish.
So does its derivative. In cases, where thermal transport is important, a temperature
gradient will however be present. This consideration and the RTA (eq. (3.3)) lead to the
following equation in the stationary case.

f = f0 − τ∇T · vg
∂f

∂T
≈ f0 − τ∇T · vg

∂f0

∂T
(3.4)

The last approximate equality in equation (3.4) differs from the exact solution by
the fact that not the temperature derivative of the actual distribution function, but
that of the equilibrium one is considered. Therefore, one assumes that there is not a
big change regarding the temperature dependence between f and f0. For phonons, the
Bose-Einstein distribution is chosen as the equilibrium distribution function.

f0 = fBE =
1

exp {β~ωn(q)} − 1
(3.5)

In this equation, β is the inverse temperature 1
kBT

scaled with the Boltzmann constant
kB, and ωn(q) is the phonon frequency of band n at the wave vector q. The distribution
function according to equation (3.4) can be used to calculate a number of flux densities
(energy, heat, particles). The way, in which f is used, depends on the properties one
wants to study. If the distribution function according to equation (3.4) is inserted in the
general expression for the ith component of the heat flux density (cf. eq. (3.6)) jQ,i for
phonons, one obtains the result according to equation (3.7). Note that the shorthand
notation ∂i := ∂

∂xi
is used in the following equations.

jQ,i =
1

8π3

∑
n

∫
d3q vg,i(q)~ωn(q) f (3.6)

jQ,i =
1

8π3

∑
n

∫
d3q τn(q) kB

(β~ωn(q))2 exp {β~ωn(q)}
[exp {β~ωn(q)} − 1]2

vg,n,i(q) vg,n,j(q)∂jT (3.7)

It shall be emphasised that the term f0 in the expression of the distribution function
f vanishes during the integration. If the heat flux density of equation (3.7) is compared
to Fourier’s law (cf. eq. (3.8)) the thermal conductivity can be identified as the tensor
quantity shown in equation (3.9).
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jQ,i = κij∂jT (3.8)

In the linear tensorial expression of equation (3.8) the thermal conductivity tensor κij
is introduced as the proportionality constant between the heat flux density in direction
i and a temperature gradient in direction j.

κij =
1

8π3

∑
n

∫
d3q τn(q) kB

(β~ωn(q))2 exp {β~ωn(q)}
[exp {β~ωn(q)} − 1]2

vg,n,i(q) vg,n,j(q) (3.9)

Still the sum over the indices n sums over contribution of all the 3N phonon bands
where N is the number of atoms in the primitive unit cell. The integral accounts for all
contributions at wave vectors q inside the first Brillouin zone. From statistical physics
one can derive an expression for the specific heat capacity of a system of independent
harmonic oscillators according to the following equation. The derivation can be found
in the appendix A.1.

cV (T ) =
1

8π3

∑
n

∫
d3q kB

(β~ωn(q))2 exp {β~ωn(q)}
[exp {β~ωn(q)} − 1]2

=
1

8π3

∑
n

∫
d3q C(ωn(q))

(3.10)
The integrand of the equation above is exactly the central part of the integrand in

equation (3.9). For that reason, the expression for the thermal conductivity tensor can
often be found in the following form:

κij =
1

8π3

∑
n

∫
d3q τn(q) C(ωn(q)) vg,n,i(q)vg,n,j(q) (3.11)

It has to be emphasised that C(ωn(q)) is not the heat capacity of a material that can,
e.g., be determined from experiments. C(ωn(q)) is only the contribution of one single
phonon mode, which one would have to integrate over all frequencies in order to obtain
the phononic contribution to the material’s specific heat capacity labelled as cV (T ).
Actually it is only a shorthand notation, which contains the temperature derivative of
the Bose-Einstein distribution function and, therefore, accounts for occupation of phonon
modes participating in thermal transport. The heat capacity function can be seen in
figure 3.1. In figure 3.1(a) also the Bose-Einstein distribution (cf. eq. (3.5)) is plotted,
showing that the heat capacity function is much broader.
By using equation (3.9) or (3.11), one can immediately calculate the (phononic) thermal
conductivity by only knowing the phonon density of states (phDOS) respectively the
band structure and the relaxation times. The phonon bands then allow the computation
of the "heat capacities" and the group velocities which are defined as the derivatives of
the bands with respect to the wave vector.
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3.1. Derivation of the thermal conductivity tensor

(a) General dependence with x = ~ω
kBT

(b) Heat capacities for various temperatures

Fig. 3.1: Heat capacities according to eq. (3.10) for (a) the general univariate function
compared to the Bose-Einstein distribution fBE and (b) for different temper-
atures T as parameter over a frequency range ν. Mind that the curves for
different temperatures correspond to a rescaling of the abscissa in (a).

The ith component of the group velocity vg,n,i is defined as the derivative of the fre-
quency of band n with respect to the ith component of the wave vector qi according to
equation (3.12).

vg,n,i(q) =
∂ωn(q)

∂qi
(3.12)

The methods of how these quantities are obtained in practice will be the topic of the
next subsections. There, we first focus on all the harmonic ingredients - i.e. the phonon
band structure from which the group velocities and the heat capacities can be calculated
(cf. sec. 3.2). In the next step, methods that are used to obtain the phonon lifetimes
from the anharmonicities will be discussed (cf. sec. 3.3).
In principle, one can find a very similar expression for the electronic contribution to heat
transport. The only differences are that one uses the Fermi-Dirac distribution as the
equilibrium distribution function f0 and that the chemical potential µ is not zero.

f0 = fFD =
1

exp {β(En(k)− µ)}+ 1
(3.13)

In this equation En(k) is the energy of the nth band at the (electronic) wave vector k.
With non-vanishing chemical potential and a spin multiplicity of 2 the heat flux density
changes slightly.

jQ,i =
1

4~π3

∑
n

∫
d3q (En(k)− µ)

∂En(k)

∂ki
f (3.14)

For the distribution function f equation (3.4) can be applied again, if the chemical
potential of the electronic system does not change as a function of the location. A
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3. Theory and computational methods

comparison with Fourier’s law (cf. eq. (3.8)) yields the electronic contribution to the
thermal conductivity κelecij .

κelecij =
1

4π3~2

∑
n

∫
d3k τ elecn (k) kB

(β(En(k)− µ))2 exp {β(En(k)− µ)}
[exp {β(En(k)− µ)}+ 1]2

∂En(k)

∂ki

∂En(k)

∂kj
(3.15)

The ingredients to compute the electronic contributions are similar to those for phonons:
the band structure respectively the DOS, and the electronic relaxation times. Even the
chemical potential can be calculated from the DOS. However, the mobility of the charge
carriers in organic crystals is dramatically reduced compared to metals and the bands
are nearly fully occupied. Furthermore, the derivatives of the band energies with re-
spect to the wave vector are typically very small for organic crystals. Therefore, this
contribution will be neglected compared to the phononic part of equation (3.9).

3.2. Phonon calculations

As can be seen in the equation for the thermal conductivity (eq. (3.9)) for most of the
integrand only the phonon frequencies - i.e. the band structure resp. the density of states
- are needed. In order to obtain those, one has to solve Newton’s equation of motion for
all the atoms in the crystal. The derivation of the phonon frequencies is adapted from
[17, p. 176f]. The interaction between the respective atoms is usually considered as being
a linear function of the displacement from the equilibrium position. This is equal to the
picture of the atoms being pairwise interconnected by stronger or weaker linear springs.
The strength of these springs is determined by the energy landscape as a function of
the atomic coordinates. This already implies that the resulting phonon normal modes
are only valid within the harmonic approximation. This means that in this step one
assumes the potential energy surface (PES) to have constant second derivatives4, or in
other words, that the PES can be represented by a high-dimensional parabola. This
assumption is only true, of course, if one does not move too far away from the minimum
of the PES. Directly at the minimum, the PES (labelled with E) can be Taylor expanded
with respect to the displacement uai (A) of each atom a in unit cell A in direction i. In
this equation the indices i and j run over the cartesian directions x, y, z, and a and b
over the atoms in the unit cells A and B.

E(r + u) = E(r) +
1

2

∑
a,b

∑
i,j

∑
A,B

∂2E

∂uai (A)∂ubj(B)

∣∣∣∣∣
r

uai (A)ubj(B) + . . . (3.16)

The first derivatives vanish at the minimum of the PES. The second derivatives are
often referred to as either the force constant matrix or the Hessian matrix. In the
harmonic approximation, where the usual concept of phonons is applicable, one truncates
the expansion of equation (3.16) after the second order terms and uses the force constants

4The potential of a linear spring with a fixed spring constant C is a quadratic function of the displace-
ment.
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3.2. Phonon calculations

to describe the interactions between the atoms when solving the equations of motions.
When it comes to that step, one however has to make sure that also possible interactions
to adjacent unit cells are taken care of. Therefore, in general one has to define the force
constants as quantities also dependent on the unit cell index (described with capital
letters).

Cab
ij (A,B) =

∂2E

∂uai (A) ∂ubj(B)
= −

∂F b
j (B)

∂uai (A)
(3.17)

That means that if one atom a in unit cell A is displaced in i direction, another atom b
in unit cell B will feel a force that is linearly dependent on the force constant Cab

ij (A,B).
The last equality in equation (3.17) uses the fact that one of the derivatives can be
interpreted as the force on that respective atom. This equation is an important relation
that can be exploited to obtain the force constants numerically, as will be discussed
later.
When solving Newton’s equations of motion for all the atoms in the unit cell, one can
make use of the periodicity of the system and employ Bloch’s theorem. Therefore, one
can make the ansatz that a displacements uai (A) of atom a in unit cell A in i direction
can be described by a plane wave:

uai (A) =
1
√
ma

ξai · exp {i (q ·RA − ωt)} (3.18)

In equation (3.18) ma is the mass of atom a, ξai is the amplitude of the plane wave
and RA is the lattice vector that defines the location of the unit cell A. After inserting
the ansatz (eq. (3.18)) in the equations of motion, one ends up with a single matrix to
diagonalise. This matrix Dab

ij (q) is called the dynamical matrix and is shown in equation
(3.19).

Dab
ij (q) =

1
√
mamb

∑
cells:A,B

Cab
ij (A,B) exp {iq · (RA −RB)} (3.19)

In essence, every element of this matrix is the Fourier transform of all the force con-
stants between two atoms scaled with a factor containing their masses. Since both unit
cell indices A and B run over all possible unit cells in the whole crystal, equation (3.19)
can be written equally as:

Dab
ij (q) =

1
√
mamb

∑
cells:B

Cab
ij (0, B) exp {−iq ·RB} (3.20)

The difference of that equation is that the sum only accounts for all force constants
between one atom a that is located in the central unit cell labelled as 0 and another atom
b that is located in all the periodic images of the unit cell labelled with the index B.
The advantage of using the form of equation (3.20) for the calculation of the dynamical
matrix is a huge reduction of computational effort. In order to determine the force
constants Cab

ij (0, B) one only has to displace the atoms in the central unit cell (0) and
calculate the forces on the atoms in all the other unit cells (B) of the crystal.
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3. Theory and computational methods

Once the dynamical matrix for a system is known, one can diagonalise it and directly
obtain the (squared) phonon frequencies ωn(q) and the eigenvectors en(q) for every
desired wave vector q (cf. eq. (3.21)).

ω2
n(q) = 〈en(q) |D(q) | en(q)〉 (3.21)

The eigenvectors contain all the amplitudes of the plane wave ansatz (cf. eq. (3.18))
that can be converted to real space displacements by a rescaling with the square roots
of the respective masses.
This is one of the biggest differences to electronic band structure calculations. In that
case one usually has to re-calculate the energies for every (electronic) wave vector k.
In the case of phonons, one only has to make sure that the series in equation (3.20)
converges by taking enough force constants into consideration. In order to achieve this,
one must usually increase the system size to large supercells to obtain an sufficient
amount of terms in the series so that the force constants are small enough for the series
to be converged.

3.2.1. Finite differences approach

The finite differences approach makes use of equation (3.17) to calculate the harmonic
force constants of the system. Instead of really calculating the derivative, it is approx-
imated with a central difference quotient. That means, that one has to displace every
atom in the unit cell in each direction twice (+i and −i direction with i = x, y, z). In
this way, one has to carry out 6N single point calculations where N is the number of
atoms in the unit cell in order to obtain all the force constants. Luckily, one can reduce
the number of necessary displacements by using the symmetries of the system. In the
case of MOF-5 this reduces the effort from 636 displacements to only 19 due to the high
(cubic) symmetry.
However, the approximation of a derivative by a difference quotient always imposes an
error on the calculation. By choosing the central difference quotient one can at least de-
crease the error from O ((∆r)2) to O ((∆r)3). Another reason to keep the displacement
very small besides numerical accuracy is that one should guarantee that the displace-
ment is small enough to stay within the harmonic approximation of the PES. However,
one must not choose the displacement too small because otherwise the effect will be
suppressed by inevitable numerical noise. An example of how the harmonic approxima-
tion of an anharmonic potential could look like is displayed in figure 3.2 in section 3.3.
Typical values that are used for such atomic displacements are approximately 0.01 Å.
Comparing this with a typical bond distance being in the range of 1 Å this is indeed
rather small and will in most cases fulfil both requirements: acceptable numerical accu-
racy and the validity of the harmonic approximation. From the atomic displacements,
the change of the forces is determined and regarded as an approximation for the desired
derivatives. From that, the dynamical matrix is constructed via a Fourier transform
from which phonon frequencies can be calculated for any desired wave vector q.
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3.3. Phonon lifetimes

3.2.2. Perturbative approach

A somewhat different approach is density functional perturbation theory (DFPT). Like
in ordinary perturbation theory, with DFPT one solves the quantum-mechanical prob-
lem of a system that is slightly perturbated from a reference state that is already solved.
This perturbation can, for instance, be a superimposed electric field, an additional po-
tential term etc. In the case of phonon calculations, the perturbation corresponds to an
elastic term that originates from the displacement of one atom. Within the framework
of DFPT there are analytical expressions to obtain the correction (usually up to second
order) to the energy, the charge density, and the KS wave functions.
The way in which DFPT is used to calculate the phonons, however, changes between the
available simulation packages. For example, the Vienna Ab-Initio Simulation Package
(VASP) [18, 19, 20] performs DFPT calculations only at the Brillouin zone centre Γ.
That infers that in order to obtain the complete phonon band structure, one has to
increase the system to larger supercells and unfold the results afterwards. So in this
approach, there is essentially no difference in the phonon calculation, only in the way
how the interatomic force constants are calculated. There is even a drawback of this
approach: with the finite differences method one can in principle run all the rather
cheap single point calculations at once, whereas within DFPT one usually is forced to
calculate the perturbative corrections of all the displacements sequentially. Furthermore,
single point calculations are much cheaper with respect to computational time than a
full DFPT calculation, where both types of calculations have to be carried out for the
same super cell to obtain the same amount of information.
In contrast, there is an alternative way of making use of DFPT. The Quantum Espresso
package [21, 22] considers a perturbation in reciprocal space: instead of an atomic dis-
placement as perturbation, there a change of the PES due to a plane wave with wave
vector q is used. In that way, one can directly calculate the phononic vibrations for a
specific q point in the first Brillouin zone. In order to obtain the complete phonon band
structure, one has to repeat the quite expensive DFPT calculation for a mesh of wave
vectors. But still, one cannot calculate the phonons for any desired q point from that.
The approach to solve this problem is the following. The reciprocal force constants have
to be calculated for a q mesh that is fine enough to allow an accurate inverse Fourier
transformation from those reciprocal to the real space force constants. The latter are
the quantities that are calculated directly in the finite differences approach. Once you
know the real space force constants, the dynamical matrix is constructible and from that
quantity the phonons for any desired q can be computed.

3.3. Phonon lifetimes

So far all considerations were focused on how one can obtain the phonon band structure,
the knowledge of which is essential for calculating the heat capacities and group velocities
for the thermal conductivity (cf. eq. 3.9). Still the problem remains, how one can obtain
expressions for the phonon lifetime τn(q). First of all, it has to be stressed that in
the usual concept of phonons, which are essentially obtained by solving the classical
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3. Theory and computational methods

equations of motion within the harmonic approximation, every phonon "lives" forever -
i.e. there is no finite relaxation time. This quantity only comes into play if one considers
the anharmonic contribution of the PES. The Lennard-Jones potential being a typical
anharmonic potential as well as its harmonic approximation can be seen in figure 3.2.

Fig. 3.2: Lennard-Jones potential plotted as a function of the distance in comparison
with its harmonic approximation around the minimum.

One way to calculate the phonon lifetimes is Molecular Dynamics (MD). With this
approach one can simulate large supercells and calculate the time dependent normal
mode-coordinates (cf. eq. (3.35)) [23]. From this information one can then calculate
how the harmonic energy (determined by the normal-coordinates) evolves in time. If
finally the autocorrelation function of this energy is calculated, one can find the lifetime
of that mode as a measure for how fast the autocorrelation decays.
The approach within lattice dynamics is rather different. Since the harmonic approxi-
mation corresponds to a truncation of the Taylor expansion of the PES after the second
order term, the logical conclusion is to consider also higher order terms that then contain
the anharmonicites of the system. With Fermi’s golden rule one can derive an expres-
sion for the phonon lifetimes considering the third derivatives of the PES. The following
considerations are based on [23, 24, 25]. The third derivative of the PES with respect to
three displacements of atoms a, b, c being in the unit cells labelled with A,B,C in i, j, k
direction is given by equation (3.22).

Φa,b,c
i,j,k (A,B,C) =

∂3E

∂uai (A) ∂ubj(B) ∂uck(C)
= − ∂2F c

k (C)

∂uai (A) ∂ubj(B)
(3.22)
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3.3. Phonon lifetimes

The analytical expression considers both the conservation of energy (with the delta
distributions in equation (3.23)) and the conservation of momentum (with the Kronecker
delta in eq. (3.24)) of the interactions between three phonons with wave vector q, q′ and
q′′. Furhermore, the occupation factors f (Bose-Einstein distribution) of all the phonons
participating in possible scatter events are taken into account.

τ−1
n (q) =

~π
8Z

Z,3N∑
q′,n′

Z,3N∑
q′′,n′′

∣∣∣Φ̃n,n′,n′′(q,q
′,q′′)

∣∣∣2 · {[f(ωn′(q
′)) + f(ωn′′(q

′′)) + 1] · (3.23)

·δ (ωn(q)− ωn′(q′)− ωn′′(q′′)) + [f(ωn′(q
′))− f(ωn′′(q

′′))] ·
[δ (ωn(q) + ωn′(q

′)− ωn′′(q′′)) − δ (ωn(q)− ωn′(q′) + ωn′′(q
′′))] }

The interaction strength Φ̃n,n′,n′′(q,q
′,q′′) of the three-phonon-process is essentially

given by a multi-dimensional Fourier transform of the third-order force constants Φa,b,c
i,j,k

scaled with the respective atomic masses ma and the eigenvector overlap between the
parts of the phononic eigenvectors ean,i(q) that belong to a certain atom a and a wave
vector q. The position vectors in the exponent of the Fourier transform of equation (3.24)
are labelled as rb for the coordinates of atom b in the "central" unit cell (0), whereas
RB stands for the lattice vector of cell B relative to cell 0.

Φ̃n,n′,n′′(q,q
′,q′′) =

3,N∑
i,a

3,N,Z∑
j,b,B

3,N,Z∑
k,c,C

δq+q′+q′′,G Φa,b,c
i,j,k (0, B, C)√

maωn(q)mbωn′(q′)mcωn′′(q′′)
· (3.24)

·ean,i(q)ebn′,j(q
′)ecn′′,k(q

′′) · exp {i [(q · ra + q′ · (rb + RB) + q′′ · (rc + RC)]}

The Kronecker delta in eq. (3.24) also accounts for Umklapp scattering if the sum of
all wave vector equals an arbitrary lattice vector G. The variable Z appearing in both
expression is the number of unit cells the sum is running over (with Z →∞ in the end).
Obviously one can calculate the phonon lifetimes from the equations above more or less
straightforwardly. In reality, however, a significant complication arises. How do we com-
pute the third-order force constants? If we used a finite differences scheme as for the
harmonic force constants, this would mean that we could make use of the last equality
in equation (3.22), where one of the derivatives was interpreted as the force on that
atom. Still it would be necessary to calculate the changes of that force if two atoms are
simultaneously displaced from their equilibrium position. As the systems grow, there are
more and more combinatorial choices to pick two atoms and two directions to displace
them. In fact, for a system of N atoms in the unit cell there are

(
6N
2

)
combinations .

However, this is only the number of combinations for one unit cell. In order to guarantee
that the Fourier series in equation (3.24) converges, one has to consider supercells again.
If only a 2× 2× 2 supercell was found to be sufficient for convergence, this would mean
that there are

(
48N

2

)
combinations.

For example, let us consider the relatively small system MOF-508 with 54 atoms in the
primitive unit cell. In this unit cell there would be 52 326 combinations that would
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3. Theory and computational methods

take about 46 years in computational time if the single point calculations were carried
out with VASP (cf. fig. 3.3 in sec. 3.4.3). For a 2 × 2 × 2 supercell there are already
more than 3.4 · 106 combinations which would need 2 · 105 years of computational time
considering that calculations with supercells are slower than with primitive cells.
Despite the combinatorial explosion, there is an approach to handle this calculation. If
one sets a certain cutoff for the distances up to which atoms are considered to have an
influence on the third-order force constants, the number of necessary displacements can
be decreased significantly. Also symmetry consideration can spare one some displace-
ment combinations. But still, this approach is tremendously expensive. For that reason,
a model to compute the phonon lifetimes from quantities that are related to the third
derivatives was employed. This model will be the topic of the following subsection.

3.3.1. Used model for phonon lifetimes

The chosen procedure employs the model of Bjerg et al.[16]. This model uses a number
of empirical relations to obtain an approximative expression for the mode dependent
phonon lifetime. The first ingredient of the model is an empiric relation for the phonon
lifetimes that was found by Slack et al. [26] for the case that the dominating phonon-
phonon interaction is Umklapp scattering. In this publication they used equation (3.25)
with α = 2, β = 3, but stressed that other values could be better approximations for
other systems and temperatures.

τ−1
n (q) = p(〈γ2〉) ωαn(q)

T

Θ
exp

{
−Θ

βT

}
(3.25)

In the above equation T is the temperature, Θ a temperature scaling factor that cor-
responds to the Debye temperature for inorganic systems, ωn(q) is the phonon frequency
with band index n and wave vector q. Finally, p(〈γ2〉) is an empirically determined fit-
ting function that is dependent on the mean squared Grüneisen parameter 〈γ2〉. Let us
first see, what the mode dependent Grüneisen parameter is, before we consider the mean
squared one. In essence, the mode dependent Grüneisen parameter γn(q) describes how
much the phonon frequency ωn(q) changes if the system volume V is altered relative
to its equilibrium value V0. This is stated in equation (3.26), where the last equality
follows from the spectral theorem since the squared phonon frequencies are the eigen-
values of the dynamical matrix D. Furthermore, this equality is exactly the way, the
mode dependent Grüneisen parameters are calculated in practice. Rather than directly
computing the changes of the frequencies, a new matrixM (cf. eq. (3.27)) is constructed
by the dynamical matrices of slightly larger and smaller volumes, which is diagonalised.
The result is then proportional to the mode dependent Grüneisen parameter.

γn(q) = − V0

ωn(q)

∂ωn(q)

∂V

∣∣∣∣
V0

= − V0

2 ωn(q)

〈
en(q)

∣∣∣∣∣ ∂D(q)

∂V

∣∣∣∣
V0

∣∣∣∣∣ en(q)

〉
(3.26)

M(q) =
∂D(q)

∂V

∣∣∣∣
V0

≈ ∆D(q)

∆V

∣∣∣∣
V0

(3.27)
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3.3. Phonon lifetimes

The Grüneisen parameter is a measure of the anharmonicities in the system. If a
crystal would have a totally harmonic PES, then all the Grüneisen parameters would
vanish. One can also understand that the Grüneisen parameters are (roughly) related
to the third derivatives of the PES because the frequency is proportional to the energy
and ∂V ≈ ∂x∂y∂z. So the usage of this quantity is very reasonable to account for
anharmonicities.

The mean Grüneisen parameter of order m is defined as the average weighted with
the mode heat capacities (cf. eq. (3.10)). In the model of Bjerg et al. m = 2 is used
to prevent the cancellation of positive and negative Grüneisen parameters what would
distort the overall image of the present anharmonicities.

〈γm〉 =

∑
n

∫
d3qCn(q) (γn(q))m∑
n

∫
d3qCi(q)

(3.28)

In the considered model another empirical finding by Slack et al. [15] for the thermal
conductivity in noble gas crystals is then used along with the thermal conductivity
according to equation (3.9) within the Debye model to find an expression for the fitting
function p.

p =
1− 0.514(〈γ2〉)−1 + 0.228(〈γ2〉)−1

0.0948

~2 〈γ2〉
kBΘMV 1/3cs

(3.29)

The variables appearing in this equation are the average atomic mass in the unit cell,
M , the unit cell volume, V and the speed of sound, cs, as well as the temperature scaling
factor Θ which is the Debye temperature for several reported inorganic systems [16, 27].
The Debye temperature can be calculated rather easily from an arbitrary moment of the
phonon frequencies defined with the phonon density of states D according to equation
(3.30).

Θ =
~
kB

(m−n)

√
m+ 3

n+ 3

〈ωm〉
〈ωn〉

with 〈ωj〉 =

∫
dω D(ω) ωj (3.30)

This expression is usually evaluated for m = 2 and n = 0 - i.e. the second moment of
the phonon frequencies divided by a scaling constant.
To sum up, the main ingredient are the mode dependent Grüneisen parameters that
represent the anharmonicities of the system. By using the mean squared Grüneisen
parameter in equation (3.29), one can calculate the fit function p, the knowledge of
which finally allows the computation of the mode dependent phonon lifetimes according
to equation (3.25).
It has to be stressed once more that this model was shown several times to be very
well applicable to inorganic crystals [16, 27]. Together with the fact that this approach
reduces the computational effort dramatically because the lifetimes are obtained from
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only three phonon band structure calculations at different volumes, this model is very
interesting in terms of applications to other systems. Even if the model did not fit too
well for a whole class of materials different to those the model was set up for, there
would be still parameters to adjust as the variables α and β in equation (3.25), as it was
suggested in the original publication [26].

3.4. Computational methods

In order to obtain all the aforementioned quantities, first principle calculations were
employed. Nowadays the framework of density funcional theroy (DFT) is the standard
way to perform quantum-machanical calculations of materials. Since DFT has been in-
tensively reviewed in the last decades, only a very brief summary will be given here that
is sufficient to understand the much less well-known density functional tight binding
(DFTB) approach of section 3.4.3. A more detailed description of the conceptual ideas
and applications of DFT can be found e.g. in [28, 29].

3.4.1. Density functional theory

In DFT the central quantity is the electron density ρ. The total energy of the system was
shown by Hohenberg and Kohn [30] to be expressible as a functional of the charge density,
where the ground state of the system should result in a charge density which minimises
this functional. However, the form of the functional is not known. The framework for
solving quantum-mechanical problems with the DFT approach was introduced by Kohn
and Sham [31]. They suggested the functional of equation (3.31), where the real problem
is mapped onto an auxiliary system of non-interacting electrons. This expression yields
the exact solution if the exchange-correlation functional was known. That is where
approximation comes into play. The following considerations are based on [29].

EKS[ρ] = T0[ρ] +

∫
d3r ρ(r)

(
Vext(r) +

1

2
Φ(r)

)
+ Exc[ρ] (3.31)

In this equation T0 is a functional representing the kinetic energy of all electrons under
the assumption that they do not interact with each other, Vext is the external potential,
Φ =

∫
d3r′ρ(r′)/‖r− r′‖ is the classical Coulomb potential of a charge distribution and

all the unknown, complicated multi-body effects are put into the exchange-correlation
energy Exc. In principle, the lack of knowledge of the exact functional is thereby trans-
ferred to the lack of knowledge of the exchange-correlation energy functional. In order
to use the method, there are numerous approximate functionals available which (empir-
ically) try to describe the Exc[ρ] term in equation (3.31). The functional that is used
in all reported DFT results in this thesis is the PBE functional of Perdew, Burke and
Ernzerhof [32]. This functional is one of the so-called generalised gradient approximation
(GGA) functionals - i.e. it is assumed that the exchange-correlation term is not only a
function of the charge density, but also of the gradient of it.
The next step is the introduction of single-particle wave functions (KS orbitals) that yied
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the desired density of the system (eq. (3.32)) and fulfill the single-particle Schrödinger
equations of equation (3.33).

ρ(r) =
∑
i

|〈r |Ψi〉|2 (3.32)

[
−1

2
∇2 + vKS(r)

]
Ψi = εiΨi with vKS(r) = Vext(r) + Φ(r) +

δExc[ρ(r)]

δρ(r)
(3.33)

It is obvious from the interdependencies above that these equations can only be solved
iteratively in order to find the charge density that minimises the Kohn-Sham energy
functional EKS. In this so-called self consistent field (SCF) approach, an initial charge
density is guessed from the nuclei’s position. From that, the KS-potential vKS according
to equation (3.33) can be calculated if a certain exchange-correlation energy functional
is provided. After that, the single-particle Shrödinger equation can be solved for all
KS-orbitals Ψi, which yield a new charge density. With the new density one can again
compute the KS-potential and so on. The KS-energy is evaluated in every SCF step and
the iterative procedure is finished when the energy converges within a certain accuracy.
Nowadays, there are many codes available to allow quantum-mechanical calculations
with DFT. They essentially differ in how they describe the KS-orbitals and which func-
tionals one can use. One approach that accelerates the calculations, for instance, is the
usage of pseudopotentials instead of solving the KS-equations for all the electrons in the
system. One particularly efficient way is the projector augmented wave method (PAW)
introduced by Blöchl [33], whose work is briefly summarised in the following. The prob-
lem is that if one wants to describe wave functions near the nucleus (core states), one
usually has to use a large plane wave basis set to account for the strongly oscillating
radial functions in the core region. In the PAW approach, linear operators T̂ are in-
troduced to map the all-electron (AE) wave functions |Ψ〉 onto pseudo wave functions
|Ψ̃〉 that are smoother around the nuclei and decrease the computational effort. These
projection operators differ from the identity only in a certain volume around the nucleus
(augmentation region ΩR). That means that both wave functions are equal outside ΩR.
If both, the AE and the pseudo wave functions, are expressed as a linear combination
of plane waves |φi〉 and "pseudo plane waves" |φ̃i〉, a linear operator T̂ can be found:

T̂ = 1 +
∑
i

(
|φi〉 − |φ̃i〉

)
〈p̃i| (3.34)

In the equation above |p̃i〉 are the so-called localised projector functions, which are or-
thonormal to all pseudo partial waves and usually localised in the augmentation region.
Knowing the transformation T̂ , it can be used to transform also operators so that ex-
pectation values and other observables can be calculated from the pseudo wavefunction
and the transformed operators.

3.4.2. Calculation of Raman spectra within DFT

Porezag and Pederson introduced a straightforward way to use DFT to compute infrared
intensities (IR) and Raman scattering intensities [34]. The following summary is based
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on their work. They report that this method is especially suited for GGA functionals,
as the results are in much better agreement with experiments compared to LDA results.
In Raman spectroscopy visible light is used. The photons of the incident radiation
inelastically scatter at the crystal, creating or annihilating phonons, for example, so that
the momentum as well as the energy of the photons is altered. Visible light is usually
used because the changes of the frequencies (Raman shift) can easily be measured in that
range. The absolute momentum change, however, is rather small. As a consequence,
one can only image the phonon band structure at the Γ point of the first Brillouin zone.
Obviously, it is enough for a DFT Raman spectra calculation to consider the phonon
modes at Γ. The displacement ui corresponding to the movement of the ith mode can be
written as the product of the respective eigenvector ei and a dimensionless normal-mode
coordinate Qi. The normal-coordinates are of interest for the vibrational properties of
a material.

ui = Qi ei (3.35)

Both, the IR and the Raman scattering intensities, depend on the derivative of an
observable quantity with respect to the normal-mode coordinates. The derivatives of
a quantity labelled as X with respect to the normal-mode coordinate can be easily
expressed by using the derivatives with respect to the atoms’ positions (rµ) and the
phonon eigenvectors.

∂X

∂Qi

=
∑
µ

∂X

∂rµ
ei,µ (3.36)

In the case of IR intensities X is the electric dipole moment pk and in the case of Raman
scattering the polarisability tensor αij. For the Raman scattering intensities one has to
consider the differential Raman scattering cross section (cf. ref. [34]). From that expres-
sion one can find the Raman scattering intensities as a function of the derivatives of αmn
under the following experimental convention. The directions of the incident radiation,
the polarisation of the light and the detection direction are all perpendicular to each
other. The differential cross section was evaluated for this experimental arrangement,
but could have been computed for any other as well.
With equation (3.36) one has to compute the derivative of the polarisability tensor with
respect to cartesian atomic positions rp in order to obtain the desired Raman activity
respectively intensity. By making use of fundamental dependencies of the polarisability
tensor αmn, the electric field εm, the forces on atoms Fm, the electric dipole moment µm,
and the energy E one can find the following relation:

∂αmn
∂rp

=
∂2µm
∂εn∂rp

= − ∂3E

∂εm∂εn∂rp
=

∂2Fp
∂εm∂εn

(3.37)

Especially the last equality in equation (3.37) can easily be exploited to compute the
derivatives of the polarisability tensor via numerical methods. One usually calculates
how the forces in the system change when electric fields are perturbatively introduced
(density functional perturbation theory DFPT).
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3.4.3. Density functional tight binding

As it was discussed in section 3.2 one has to make sure that the force constants decay fast
enough so that the Fourier transform converges for a given super cell size. This implies
that system sizes rather soon become very large and the computations become very often
too computationally expensive. In figure 3.3 it can be seen how the computational time
scales with the system size for VASP single point calculations. The simulated system
was MOF-508 with different super cell sizes up to a 2× 2× 2 super cell. Except for the
Brillouin zone sampling, all the simulations parameters were kept the same for all system
sizes. Even for a rather small super cell (2 × 2 × 2) the computational effort increases
by nearly a factor of 500. Therefore, it is necessary to look for other computational
methods, which still can reproduce the desired physical quantities within an acceptable
accuracy, but decrease the computational effort significantly.

Fig. 3.3: Computational time scaling behaviour for single point calculations of different
super cells of MOF-508 with VASP (EDIFF = 1E-8, ALGO = Fast, PREC =
Accurate). The Brillouin zone sampling has been adapted to the supercell
sizes.

One possible alternative is density functional tight binding (DFTB). Very instructive
reviews of the methods can be found for instance in [35, 36]. Only the most fundamental
steps will be discussed in this subsection in order to understand the biggest differences
to DFT and the capabilities of DFTB. The following summary is inspired by the work
of Oliveira et al. [35].

Oliveira et al. [35] derive the DFTB formalism from the Kohn-Sham equations, start-
ing by expressing the electron density ρ as some reference density ρ0 that is perturbated
by a small charge density fluctuation δρ.

ρ(r) = ρ0(r) + δρ(r) (3.38)
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Using this ansatz for the density in the KS-equations and Taylor expanding the
exchange-correlation functional (cf. eq. (3.39)), one can rearrange the energy functional
and ends up with three contributions as indicated in equation (3.40).

Exc[ρ0 + δρ] = Exc[ρ0] +
δExc
δρ

∣∣∣∣
ρ0

δρ+
δ2Exc
δρ δρ′

∣∣∣∣
ρ0

δρ δρ′ + . . . (3.39)

E[ρ0 + δρ] = Eband[ρ0] + Erep[ρ0] + Efluct[ρ0, δρ] (3.40)

The term Eband is essentially the sum of all the expectation values of all sinlge-particle
Hamiltonians ĥ0 of equation (3.33) evaluated for single-particle wave functions Ψi (de-
generacy ni) that together give the reference density ρ0.

Eband[ρ0] =
∑
i

ni

〈
Ψi

∣∣∣ ĥ0[ρ0]
∣∣∣Ψi

〉
(3.41)

The second term is referred to as repulsion term Erep. Here the contribution from the
Coulomb repulsion of the nuclei will be omitted, which one would have to add to the
repulsion term otherwise. The functional derivative of the exchange-correlation energy
with respect to the density is written as the exchange-correlation potential vxc[ρ].

Erep[ρ0] = Exc[ρ0]− 1

2

∫ ∫
d3r d3r′

ρ0(r)ρ0(r′)

‖r− r′‖
−
∫
d3r vxc[ρ0(r)]ρ0(r) (3.42)

In this expression the reference density is simply assumed to be a linear superposition
of atomic charge densities around the nuclei α.

ρ0(r) =
∑
α

ρα0 (r−Rα) (3.43)

If this ansatz is inserted in equation (3.42) numerous multi-centres integrals would ap-
pear. Usually only terms up to 2-centre contributions are considered.
Although these contributions could be calculated theoretically, the whole repulsion

term Erep is usually seen as a fitting quantity (as a function of atomic distances) which
is used to bring the energy of DFT in agreement with the band energy from DFTB.
The only term that includes the density fluctuation δρ is the fluctuation functional
Efluct[ρ0, δρ].

Efluct[ρ0, δρ] =
1

2

∫ ∫
d3r d3r′

(
1

‖r− r′‖
+
δ2Exc
δρδρ′

∣∣∣∣
ρ0

)
δρ(r)δρ(r′) (3.44)

In the standard DFTB approach, this term is completely neglected. Consequently,
there is no need for an iterative solution as the reference density is known (cf. eq. (3.43)).
One then expresses the wave functions of equation (3.41) as a linear combinations of
atomic orbitals (LCAO) φn.

ψαµ (r) =
∑
n

Cµn φn (r−Rα) (3.45)
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Inserting this ansatz in the expression for the band energy, one has now to solve a gener-
alised eigenvalue problem for the expansion coefficients Cµn which is determined by the
Hamiltonian matrix Hµν =

〈
φµ

∣∣∣ ĥ0

∣∣∣φν〉 and the overlap matrix Sµν = 〈φµ |φν〉. What
makes DFTB so fast is the fact that those matrix elements are pre-calculated with DFT
and provided in so-called Slater-Koster files. That means that a code solving a problem
with the standard DFTB approach only has to read those files, set up the matrices and
solve the general eigenvalue problem.
However, the results with standard DFTB are usually not in very good agreement with
other first principle calculations. The accuracy is significantly increased, when one
considers the fluctuation term and solves the equations self-consistently (self-consistent
charge, SCC). In this approach, one approximates the charge fluctuation as superpo-
sition of contributions from every atom that are non-directional in space and decay
fast with increasing distance from the nuclei. As analysed in [35] this corresponds to
a consideration of charge transfer, but changes of the shape of the electronic density
are neglected. The fluctuation energy term is approximated by the following equation
making use of the additional charges ∆qµ and functions γαβ that describe the Coulomb
and exchange-correlation interaction between those charge fluctuations.

Efluct ≈
1

2

∑
αβ

∆qα ∆qβ γαβ (3.46)

In SCC-DFTB the desired matrix elements are now also dependent on the additional
charge ∆qα centred around a nucleus α. For that reason, one has to guess a starting
charge fluctuation, read the tabulated matrix elements for standard DFTB and calcu-
late the SCC-DFTB matrix elements with the charge fluctuations assumed. From that,
one can solve the generalised eigenvalue problem, which yields the expansion coefficients
and, therefore, the wave functions, respectively the charges. Those charge densities dif-
fer from the reference density by some fluctuations, which can then again be used to
calculate new matrix elements and so on. The flow of actions can be seen schematically
in figure 3.4.

Fig. 3.4: Flow chart of the self-consistent charge approach in DFTB.
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3. Theory and computational methods

The fast performance of DFTB compromises the numerous approximations that are
made in this approach. DFTB cannot be used to solve every quantum-mechanical prob-
lem, but usually performs rather well regarding the calculation of forces and total ener-
gies. These are essentially the only quantities that are needed for phonon calculations.
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In the previous chapter the theoretical background for the calculation of vibrational
properties and the thermal conductivity has been described. The practical procedure
that has been followed is the topic of the current section with detailed reports of relevant
input parameters. The general steps to compute the thermal conductivity are shown
in the flow chart of figure 4.1. For the (quasi-)harmonic part of the calculation the
Vienna Ab-Initio Simulation Package (VASP) and DFTB+ were used. It will become
clear during the following discussion, which programme was used to obtain which results.
Depending on the used package some parameters have to be converged as a first step
of the computational procedure. For the processing of the data produced with the ab-
initio codes and the evaluation of the interatomic force constants, the phonons, and the
mode Grüneisen parameters the phonopy package was employed. Prior to the phonon
calculation, the atomic positions and also the lattice geometry were optimised in order
to make sure that the system is in a minimum of the PES such that the harmonic
approximation can be applied. Otherwise, the calculation of vibrations yields unphysical
results.

Fig. 4.1: Flow chart of the general steps in order to calculate the thermal conductivity
tensor. The code packages used are assigned to certain steps.

The geometries for the various studied IRMOFs were obtained from [37]. The cif-files
contain references to the work of Eddaoudi et al. [38]. It has to be mentioned that these
geometry files contained the atomic position of the conventional cell with a simple cubic
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Bravais lattice, but more atoms in the system than necessary. All the systems of interest
were reduced to primitive cells. For all IRMOFs this means a reduction of the numbers
of atoms by a factor of four and the transition from a simple cubic to a face-centred
cubic (fcc) Bravais lattice.
For the calculation of vibrational properties, one usually has to use rather tight numerical
criteria for the geometry relaxations, for instance. These settings were tested and then
consistently used throughout all steps of the computational procedure. The simulation
parameters that were used are the topic of the following sections. It shall be emphasised
that the results presented in section 5 were obtained with the settings discussed here
unless explicitly stated otherwise.

4.1. VASP

VASP (version 5.4.1) [18, 19, 20] was used with PAW pseudopotentials [39] and the PBE
functional [32]. A number of tests of different simulation variables were conducted for
each system to end up with the same level of convergence in order to guarantee com-
parability amongst the systems, whereas some special tests were only carried out for
the test system MOF-508. The (electronic) k point convergence and the energy cutoff
turned out to be the parameters that could vary between different MOFs, while all the
remaining parameters were kept constant.
As a first step of every calculation, the convergence behaviour with respect to the sam-
pling density of k points in the first Brillouin zone was investigated. It turned out that it
is a good practice to converge the total energy of the system to less than 1 meV per atom
compared to the converged value with infinitely dense sampling. Except for MOF-5, for
which a 2×2×2 sampling was necessary, for all IRMOFs a 1×1×1 k mesh was sufficient
to reach this condition, whereas for MOF-508 resp. PMOF-508 a 3×3×2 resp. 2×2×3
mesh had to be used. The k points were generated using the Monkhorst-Pack scheme.
The ENCUT tag, which controls the energy cutoff for plane waves, was set to 800 eV in
all cases. So was the minimisation algorithm ALGO = Fast as this is said to perform
well in both regimes, at the start and the end of the SCF cycles. In those two phases of
the calculation the intermediate solution differs more or less from the converged result.
There are algorithms that are more suitable for each of those regimes, with Fast being
an appropriate compromise.
The following settings were only tested once for MOF-508 and then consistently used
in accordance with the results from the tests. The convergence criterion for the self-
consistent field (SCF) cycles was set to EDIFF = 1E-8. This criterion usually has to be
tighter as for ordinary single-point calculations. To avoid aliasing errors, the PREC tag
was set to ACCURATE. The presence of "wrap around" errors was tested by comparing
the total energy per atom in the system of different supercells. If aliasing errors were
present, these values should change considerably. However, with the settings mentioned
up to this point differences of the total energy per atom were calculated differing only
on the order of 10−5 eV between different supercell sizes, which can be attributed to nu-
merical noise. A rather expensive choice that was absolutely necessary, though, was to
evaluate the projection operators in reciprocal space via LREAL = .FALSE. because the
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real space evaluation tends to yield negative (imaginary) frequencies more often. More-
over, Gaussian smearing (ISMEAR = 0) with a smearing parameter of SIGMA = 0.05 eV
was used.
The impact of van der Waals (vdW) interactions was tested by calculating the phonon
frequencies at the Γ point with the Tkatchenko-Scheffler method [40] (IVDW = 2) and
without any correction. Since the maximum relative differences of the low-frequency
modes were only in the order of 1 %, the influence of vdW interaction was, therefore,
neglected for all calculations. Due to the fact that there are recent discussions about
the quality and efficiency of different vdW corrections within DFT [41, 42, 43], this de-
cision was made to eliminate the influence of this further parameter as the changes are
expected to be very small. Besides, for larger systems than MOF-508 where the linkers
are separated from each other by even longer distances, the influence is assumed to be
even smaller.

Once it has been assured that the general simulation parameters were chosen in a
reasonable way, the next step was to optimise the atomic position in order to move the
system to a minimum of the PES, where the forces - i.e. the gradients of the PES - vanish.
Since this criterion can never be fulfilled exactly with numeric methods, one has to set a
maximum residual force that is allowed to remain without altering the reliability of the
results. A rule of thumb is to relax the atoms to a maximum residual fore of 1 meV/Å.
To estimate the influence of the quality of relaxation on the phonon frequencies, MOF-
508 was once relaxed to a maximum remaining force of 1.54 · 10−4 eV/Å and once even
further to 2 · 10−5 eV/Å. It turned out that the biggest change in frequencies was in the
range of 0.2 cm−1 (approx. 0.5 %). However, the relaxation takes considerably longer if
the forces are reduced to such a small threshold. The dependence of the computational
time on the maximum remaining force was seen to show exponential behaviour. In order
to save resources, the price of a relatively small loss of accuracy was paid. The maximum
force for the geometry relaxations was set to be 1 meV/Å for all reported results. For
a similar reason, the VASP tag ADDGRID was not used, which introduces a finer mesh
for the evaluation of quantities like the compensation (or augmentation) charges. Al-
though if set to .TRUE., the numeric noise on the forces is supposed to be reduced, no
significant changes in the phonon frequencies were observed, while the computational
times showed the tendency to increase slightly. The optimisation of the coordinates
inside the unit cell was done with the GADGET code implemented by Bucko et al. [44],
usually showing faster convergence to the PES minimum than the optimisation algo-
rithms available within VASP (IBRION) by making use of internal coordinates instead of
cartesian ones. GADGET performs the optimisation independently, while VASP only
yields energies and forces as a result of single-point calculations. Moreover, it allows
to consider constraints and system specific initialisation of the second derivatives of the
PES (Hessian matrix). The relaxations with GADGET were performed with an itera-
tive update of the Hessian matrix according to the Broyden-Fletcher–Goldfarb-Shanno
(BFGS) method, keeping the lattice vectors constant. The optimisation of the unit cell
was achieved in a different way described in section 4.3. For systems with large numbers
of atoms in the unit cell, the efficiency of the relaxations using GADGET was observed
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to significantly drop due to the rather slow convergence of the SCF cycles starting from
scratch. In order to resolve this unfavourable behaviour, the wave functions from a
previous relaxation step were saved (LWAVE = .TRUE.) and read as an initial guess for
the next one (ISTART = 1, 2). This accelerated the calculations by up to a factor of 10.

The calculation of the Raman intensities according to Porezag et al. [34] was carried
out with an implementation written in Python for VASP by Fonari et al. [45]. The
code makes use of DFPT calculations with VASP (IBRION = 8) in order to calculate
the dielectric tensor (LEPSILON = .TRUE.) which is evaluated by the raman_vasp code
to obtain the Raman scattering activities separately for every single phonon mode at
Γ. Therefore, one needs to know the frequencies at the centre of the Brillouin zone
already, before the Raman calculation can be started. Since the phonon calculations
were conducted in an equivalent way for both, VASP and DFTB+, the procedure is
described in section 4.4.

4.2. DFTB+

For most of the studied systems, the supercells necessary to make the force constants
converge and yield physically reasonable phonon frequencies are too big to be calcu-
lated using VASP. Therefore, the DFTB code DFTB+ (version 18.1) [46] was used to
describe such large systems. The most important influence factor for this package is the
choice of the Slater-Koster files. Especially for the MOFs containing Zn, the parameters
set "znorg-0-1" [47] could have been used, since these parameters have been tested in
various studies. However, in order to guarantee comparability between the results with
MOFs containing different metals, this parameter set could not be used, since it does not
contain parameters for pair interactions involving Ca or Mg. Therefore, the "3ob-3-1"
parameters were used [48, 49, 50]. Based on this Slater-Koster set, some parameter files
were replaced by those of the "3ob:freq-1-2" set [51]. This set provides a modification
of the ordinary 3ob set, which is supposed to improve vibrational properties involving
carbon. All reported results have been calculated with this set of Slater-Koster files.
As a first step of the calculation of the thermal conductivity of every system the conver-
gence of the total energy with respect to the Brillouin zone sampling density was tested.
For all studied IRMOFs it was found to be sufficient to use the Γ point only for the
electronic calculations.
Actually, the 3ob Slater-Koster files allow the application of the DFTB3 method (see
appendix A.2). However, for all the studied IRMOFs there was hardly any difference
observed in the phonon modes obtained with ordinary DFTB and DFTB3, except for a
slight increase of computational time. For economic reasons, this additional correction
was neglected for the presented results.
All calculations were conducted in the self-consistent charge (SCC) mode of DFTB+
with a required convergence of SccTolerance = 1E-10. Maximum angular momenta
considered for the elements were l = 0 (s) for hydrogen, l = 1 (p) for oxygen, nitrogen,
carbon, calcium, and magnesium and l = 2 (d) for zinc.
To be consistent with VASP and to allow future comparisons, vdW corrections were also
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neglected in the DFTB+ calculations.
Geometry optimisations were carried out using the conjugate gradient algorithm from

scratch (Driver = ConjugateGradient{}) allowing all atoms to move (MovedAtoms =
1:-1) up to a maximal residual force (MaxForceComponent) of 10−8 eV/Å. Since the
lattice relaxations in DFTB+ are somewhat inefficient, the optimisations have been
conducted with fixed lattice vectors (LatticeOpt = No). The methodology to find the
equilibrium volume for the systems is the topic of the next section.

4.3. Lattice parameter relaxations

This section deals with the way in which the cell geometries were optimised in both
DFTB+ and VASP calculations. There are two main reasons why the optimisation of
the lattice vectors was outsourced, so to say. Firstly, in VASP one has to increase the
energy cutoff by at least a factor of 1.3 in order to account for the distortion of the
cell and the change in the plane wave basis set that results from that. The increased
cutoff slows down the calculations considerably. Secondly, it was found easier to impose
certain constraints on the cell shapes. In principle, it is possible to force VASP to let the
cell relax in a certain shape when the volume is optimised using the tag ISIF = 3, for
instance. For this, however, the code has to be changed and recompiled, which was found
to be too tedious for every different Bravais lattice. The location where such a change has
to be performed is in the file constr_cell_relax.f90. Inside this subroutine the cell
force FCELL is evaluated and returned for the next step of the optimisation algorithm. If
one manually sets certain components of this 3×3 array to 0, the respective components
of the lattice vectors will feel no force and will not change during the relaxation. In a
similar way one could also impose certain relations between the lattice vectors etc.
It was found that the easiest and most efficient way to account for the conservation of
symmetry of the cell during the relaxation was to separate the lattice parameter from
the geometry optimisation. This was achieved by fitting the PES with respect to the
lattice parameters of the respective cell. For an fcc Bravais lattice only one variable is
necessary, for instance, or three for an orthorhombic system. Close to the minimum of
the PES it can be fitted to a multidimensional parabola according to equation (4.1),
where xi/j are the m variables of interest (m = 1 for fcc, m = 3 for orthorhombic etc.).
The matrix Aij with m(m+ 1)/2 independent components as it is symmetric, the vector
bi with m components and c are the fit parameters of the parabola. Note that the sum
convention is used.

f(x) =
1

2
Aijxixj − bixi + c with Aij = Aji (4.1)

From this equation, the minimum can be found by solving for the roots of the gradient
of f shown in equation (4.2). The largest m value conceivable is 9; so the solution vector
of equation (4.2) can be easily found by inverting the matrix Aij.

∇f(x)
!

= 0⇒ Aijxj = bi (4.2)
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Geometry relaxations were performed for a set of fixed cell parameters to sample
the PES with respect to the relevant lattice parameters. The obtained data was fitted
to a general parabola according to equation (4.1) within the framework of Bayesian
probability theory in order to obtain (the probability density of) the lattice parameters
at the minimum of the PES. This approach provides a convenient way of estimating
the uncertainty of the found optimal lattice vectors, since the entire probability density
functions are computed. If, for example, the variance of these probability densities turns
out to be unacceptably large, the formalism is used to calculate the next set of lattice
parameters, for which a "measurement" should be conducted in order to gain the largest
amount of information and decrease the uncertainty (expected utility). With this new
data point the fit is performed again and possibly the new variance is small enough to
be accepted. If not, the procedure is repeated, and so on. The approach is based on [52,
p. 491ff].

4.4. Phonon calculations

VASP respectively DFTB+ was used to compute the phonons via the finite differences
approach introduced in section 3.2.1. Therefore, atoms have to be displaced one by one
in each direction twice and the reslting forces are computed. The geometries containing
the displacements were generated with the phonopy package (version 1.13.0) [53]. There
is an interface in phonopy implemented for VASP that directly can create supercell
geometries from the primitive unit cells. For DFTB+ phonon calculations, a slightly
more complicated procedure was necessary due to the lack of a phonopy interface. The
geometry files of DFTB+ were translated into VASP POSCAR files by a Python script.
Phonopy was run on those artificial POSCARs and created the displacements, which
were re-translated to the geometry format for DFTB+.
During the generation of the displacements with phonopy one can save a lot of compu-
tational resources by making use of the command option –-tolerance. By doing so,
one can influence the resulting number of displacements necessary to calculate because
phonopy internally detects the symmetries of the systems and uses them to decrease the
effort accordingly. If the tolerance is set to rather high values, more symmetries will
be recognised and fewer calculations are needed. This can sometimes reduce the effort
significantly depending on the intrinsic symmetries of the system. The general approach
was to use a tolerance so that the experimental space group is reproduced. For example,
the necessary number of displacements of MOF-5(Zn) relaxed with VASP would have
been 636 (= number of atoms in the unit cell times six) if the default tolerance (10−5)
had been used. This is equal to saying that there are no symmetries in the crystal (space
group P1). By increasing the tolerance to 5·10−3, however, the experimental space group
Fm̄3m is found, resulting in only 19 displacements. Interestingly, the geometries relaxed
with DFTB+ showed the experimental symmetries even for the default tolerance, mak-
ing it unnecessary to increase it manually. Apparently, the conjugate gradient algorithm
of DFTB+ yields geometries with the tendency to keep the initial symmetry, whereas
GADGET distorts the systems more significantly. In future calculations it should be
taken into consideration to perform an additional optimisation step after the relaxation
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with GADGET. For such a step, a different optimisation method like VASPS’s conjugate
gradient algorithm should be used, which could possibly result in a better preservation
of the symmetries.
It was tested how the different symmetry tolerances of phonopy alter the Γ frequencies
of the test system MOF-508. The biggest absolute change turned out to be less than
0.1 cm−1, the biggest relative change about 0.4 %
After all the forces on the atoms in the system have been calculated, phonopy reads and
collects them in the FORCE_SETS files. For DFTB+ calculations the output had to be
translated manually to a format known to phonopy via one of its interfaces. It has to be
stressed that all reported phonon band structures and phonon densities of states, which
describe the whole first Brillouin zone, were obtained by DFTB+ calculations.
The supercell sizes necessary in order to converge the force constants so that no nega-
tive frequencies were obtained for band structures etc. can be found in table 4.1. The
last column also shows the number of atoms in the respective supercells, rationalising
why this type of calculations are very expensive using DFT programmes like VASP. The
uncertainties of the found lattice constants with the approach described in section 4.3
are the square roots of the respective probability density functions. The definition of
the lattice parameter a can be found in equation (5.4).

Tab. 4.1: Systems with converged force constants allowing to calculate phonons for
generic q points. The supercell size necessary for this, the number of atoms
in the primitive (N) and supercells (Nsupercell) as well as the lattice parameters
according to eq. (5.4) are listed.

System N a / Å supercell size Nsupercell

MOF-5(Zn) 106 13.189± 0.001 3× 3× 3 2862
MOF-5(Ca) 106 13.798± 0.003 3× 3× 3 2862
MOF-5(Mg) 106 13.165± 0.001 2× 2× 2 848
IRMOF-14(Mg) 190 17.454± 0.002 3× 3× 3 5130
IRMOF-131(Mg) 58 11.452± 0.001 5× 5× 5 7250
IRMOF-132(Mg) 70 14.043± 0.001 5× 5× 5 8750

The general transformation from a primitive unit cell described by a matrix P , which
contains the primitive lattice vectors as rows, to a supercell, described by a matrix S
(again containing the supercell vectors as rows) is done by means of a transformation
matrix M according to equation 4.3.

S = MT P (4.3)

For the supercells used in all systems the transformation was diagonal - i.e. Mij = ns δij.
For cubic systems like the ones studied there is no reason to use non-diagonal transfor-
mation matrices. This could be different for MOFs with different symmetries.
Note that for all frequencies the acoustic sum rules are imposed by setting FC_SYMMETRY
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= .TRUE. in phonopy. For the systems shown in the table above, many phononic prop-
erties can then be calculated, once the force constants are made sure to be converged.
Further quantities that are needed for the calculation of the thermal conductivity or
the analysis are the group velocities (GROUP_VELOCITY = .TRUE.), the eigenvectors
(EIGENVECTORS = .TRUE.), and the Debye frequency calculated by phonopy by a fit-
ting procedure of the first quarter of the DOS to a quadratic function according to the
Debye model (DEBYE_MODEL = .TRUE.). For the calculation of the group velocities, the
symmetric mesh generation had to be switched off (MESH_SYMMETRY = .FALSE.), since
vectorial properties are not necessarily the same for (irreducible) q points in the first
Brillouin zone, whereas scalar quantities are equal. In other words, for frequencies or
mode Grüneisen parameters it is sufficient to consider only the irreducible part of the
first Brillouin zone. Weights can be assigned to those quantities (in order to calculate
expectation values, for intance) depending on how often they would occur in the whole
first Brillouin zone. This is not true for vector quantities like the group velocities. There
are two possibilities to obtain the right group velocities of the whole first Brillouin zone:
use the results of the irreducible part and properly apply the respective symmetry op-
erations, or consider the whole first Brillouin zone in the first place so that all weights
are the same.

4.5. Phonon lifetimes

The calculation of the phonon lifetimes was carried out according to the earlier described
model of Bjerg et al. (cf. sec. 3.3.1). The necessary ingredients can be seen in equation
(3.25). The frequencies are already known, so the next thing is to calculate Θ. In the
correct derivation from the Debye model, this variable is the Debye temperature, which
can be calculated from (arbitrary) momenta of the phonon DOS according to equation
(3.30). However, Bjerg et al. rescaled this temperature with N−1/3 (N . . . number of
atoms in the unit cell) in order to obtain better results. Since this scaling factor was
introduced with relatively little justification, another definition for Θ was used. Because
of the fact that there are only acoustic bands in the Debye model, people attempt
to define the analogue of the Debye temperature for real systems by considering only
modes up to the flattening out of the acoustic bands [54]. A similar approach was tried
for determining Θ by which the right orders of magnitudes (according to the work of
Huang et al. [55, 56]) for the thermal conductivity could be reproduced. The procedure
is to find out the highest frequency νcut from the band structure at which an acoustic
band flattens out. Subsequently, the integrals in equation (3.30) are truncated at this
limiting frequency. The resulting Θ is then referred to as a temperature scaling factor
rather than as Debye temperature.
The next step is to determine p (〈γ2〉) from equation (3.25). There the temperature
scaling factor appears again. Further parameters are the average mass per atom in
the unit cell M , the system volume V and the speed of sound cs. While the first
two quantities can be easily determined from the atomic masses respectively the lattice
vectors, the speed of sound is calculated from the Debye frequency ωD via the following
equation, involving the number of atoms in the unit cell N .
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cs =
ωD

3

√
6π2N

V

(4.4)

In principle, the Debye frequency and temperature describe the same physical concept,
just with different units, so that the one quantity can be directly converted to the other
(with ~/kB). However, the results obtained with the lifetime model were better compared
to the results reported in [55, 56] if for the Debye frequency ωD the value calculated with
phonopy was used. The way this is done is by fitting the first (lower-frequency) quarter
of the DOS to the quadratic shape of the Debye model and extracting the maximum
frequency using normalisation conditions. Since the quality of the fit depends on the
number of q points that are sampled in the first Brillouin zone, the convergence of the
obtained Debye frequency had to be studied. Usually, the value does not change above
20×20×20 meshes. The converged values for ωD were then used for further calculations.

Tab. 4.2: Quantities necessary to calculate the phonon lifetimes for the studied systems.
All listed values were obtained from DFTB+ calculations.

V . . . primitive unit cell volume M . . . average atomic mass in the unit cell
νcut . . . truncation frequency for Θ Θ . . . temperature scaling factor (eq. (3.30))
νD . . .Debye wavenumber (phonopy)

System V / Å3 M / u νcut / cm−1 Θ / K νD / cm−1

MOF-5(Zn) 4588 14.52 22.7 33.12 1201
MOF-5(Ca) 5254 12.61 35.6 50.61 1223
MOF-5(Mg) 4563 11.42 40.5 54.25 1178
IRMOF-14(Mg) 10634 10.29 19.3 25.90 1208
IRMOF-131(Mg) 3004 15.49 61.0 72.10 912
IRMOF-132(Mg) 5539 14.90 50.0 52.45 1071

The final ingredients are the mode Grüneisen parameters, from which the mean
squared Grüneisen parameters (MSGP) can be calculated according to equation (3.28).
Phonopy provides a quite convenient way of computing the mode Grüneisen constants by
finite differences. The phonon calculation (with the necessary supercell size) is repeated
at slightly increased and decreased volumes. For that, the atomic position for the fixed
new lattice vectors have to be relaxed before. In total, there are three dynamical matri-
ces available, from which the mode Grüneisen parameters are calculated using equation
(3.26). The volumes were changed isotropically, i.e. by scaling the lattice vectors with
a constant close to unity. For MOF-5(Mg), MOF-5(Ca) and IRMOF-14(Mg) the lattice
vectors were rescaled by a factor of (1 ± s) with s = 0.003, resulting in total volume
changes of about 0.9 %. Interestingly, for systems that later turned out to have larger
mean squared Grüneisen parameters, negative frequencies tended to appear for the de-
creased volumes preferentially, suggesting that the volume has been decreased too much.
The parameter s had to be reduced down to a minimum of 0.0001 for IRMOF-131(Mg)
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and IRMOF-132(Mg).
All the important properties for the computation of the phonon lifetimes - except for
the mode Grüneisen parameters - are summarised in table 4.2.
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By making use of the methods and procedures described in sections 3 and 4, the follow-
ing results were obtained. As a first step, the harmonic ingredients of equation (3.9) are
in the focus, as they determine both the group velocities and the heat capacities. The
chosen method to investigate some vibrational properties depending on different con-
stituents and to verify the results also experimentally was to simulate powder Raman
spectra for some systems within the assumptions introduced in section 3.4.2. Since the-
oretical calculations do not necessarily represent the real physical world, it is, of course,
necessary to verify theoretical results by experimental measurements. The results will
be discussed in section 5.1. Raman scattering spectroscopy is not the optimal method
to check the reliability of the simulations for several reasons that will become clear, but
it is sufficient for first tests.
Due to the huge computational effort for the large systems necessary to yield physically
reasonable vibrational properties, it was at some point not possible to stay with the DFT
code VASP anymore. In the least expensive phonon calculation of this study already
a supercell containing 848 atoms had to be considered. The method was changed to
the much cheaper approach of DFTB using the DFTB+ package. Of course, this step
has to be justified. One will usually expect DFTB results to be less accurate than re-
sults obtained with DFT. Therefore, in subsection 5.2 some results for the Γ frequencies
obtained with the two methods are compared. By comparing the DFTB to the DFT
results, which were compared to experimental data, one indirectly is able to draw con-
clusions, how realistic the vibrational modes obtained with DFTB+ really are.
Once the accuracy of the vibrational modes has been discussed, as a next step, the
phonon lifetimes and the thermal conductivities can be calculated with the quasi-harmonic
approach described above. However, a last converge issue has to be resolved before,
which concerns the sampling density of q points in the first Brillouin zone. For that
reason subsection 5.3 will start with the description of how Bayesian probability theory
was used to find the converged values for the thermal conductivity for infinitely dense
meshes.
The last part of this section will then deal with the influences different constituents
(organic linkers and metallic nodes) have on the thermal conductivity obtained with the
described approach. In order to gain some insight into the most important effects, a de-
tailed analysis of all the physical quantities that contribute to the thermal conductivity
will be presented and discussed. In that spirit, the phonon density of states and band
structures, the group velocities, the heat capacities as well as the phonon lifetimes will
be analysed.
To sum up, the first step is to verify the Γ frequencies by means of comparisons to ex-
perimental Raman scattering data. Secondly, the comparison of DFT and DFTB results
is necessary to justify the transition to this usually less accurate method. Finally, the
results of the thermal conductivity for different systems will be discussed in detail and
all relevant components are analysed.
For all the shown results the setting described in section 4 are used unless explicitly
stated otherwise.
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5.1. Raman spectra

As implied above, Raman scattering spectroscopy is not the optimal method to verify
the ingredients for calculating the thermal conductivity. The shortcoming of this method
is that visible light is used, which, on the one hand, guarantees better detectability of
the Raman shift, but, on the other hand, limits the investigated region to the Brillouin
zone centre. Essentially, only the frequencies at Γ can be measured. This is not optimal
in the sense that actually one would need to experimentally test all the occurring fre-
quencies as well as their dependencies on the wave vector q, which would additionally
allow to compute group velocities. The best experiment would thus be inelastic neutron
scattering which would yield the complete phonon band structure.
However, since neutron scattering experiments are quite expensive, an alternative method
was looked for. The biggest limitation for the whole pool of experimental methods being
capable of measuring vibrations in crystals or molecules was the desired measurement
range. Doubtlessly, there are a lot of spectroscopic methods available which would be of
not much use for our purpose. The reason for that is the following: the phonon modes
with the lowest frequencies usually contribute the most to the thermal conductivity of
a crystalline system. Therefore, the biggest challenge is to find an experimental setup
that is able to measure in this region of very low frequencies. Obviously it would make
no sense to test the simulations’ accuracy in frequency regions spectroscopic methods
can typically investigate, since these are not of high importance for the thermal con-
ductivity at the end of the day. Considering all the constraints discussed above, there
are only few groups in the world that have the sufficient equipment to conduct such
experiments. One of those is the group of Elisabetta Venuti and Raffaele Guido Della
Valle at the University of Bologna, Italy. They have a Raman scattering spectrometer
available with the help of which one can at least test the accuracy of phonon modes at
the Γ point of the first Brillouin zone. This provides a useful first check if the simula-
tions are far from reality or not. One can estimate from the thermal energy at room
temperature (kBT ≈ 25 meV) that especially the phonon modes with a frequency of
up to about 200 cm−1 are important due to thermal occupation. Approximately this
frequency range is of experimental interest.
For the purpose of experimental verification, the (powder) Raman spectra for some MOFs
were calculated with VASP and the vasp_raman implemantation. Another group which
we collaborate with is the group of Paolo Falcaro at the Institute of Physical and The-
oretical Chemistry at the Graz University of Technology, who synthesised two of the
systems (MOF-5(Zn) and IRMOF-3(Zn) plus a mixture of both). The MOFs were sent
to Bologna where the Raman scattering experiments were conducted.
Unfortunately, the measurements were still not finished the day this thesis was finalised.
So the comparison to experiments has to be postponed to later work. What can be done,
however, is to discuss the results obtained in the simulations.
As they were not limited by the level of difficulty of any synthesis, Raman spectra were
calculated for more than those systems. Spectra for MOF-5(Zn), IRMOF-3(Zn) and
IRMOF-6(Zn) were computed. Both the spectra and two-dimensional projections of the
crystals’ geometries can be seen in figure 5.1. As it is shown, in IRMOF-6 one can find
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an additional four-membered ring at one side of the organic linkers and an amino group
substituted in the case of IRMOF-3. Due to this substitutions, the symmetry of the
system is decreased compared to that of MOF-5. This is the reason why one can find
considerably more peaks for IRMOF-6 and even more for IRMOF-3.

(a) Raman spectra for the MOFs seen in (b).

(b) MOF-5(Zn), IRMOF-3(Zn), IRMOF-6(Zn)

(c) linkers used in MOF-5, IRMOF-3, and IRMOF-6

Fig. 5.1: Raman spectra for some IRMOFs calculated with the Raman-VASP imple-
mentation according to [45]. The data were broadened with a broadening pa-
rameter σ = 0.5 cm−1 according to eq. (5.2). Colouring scheme: red...oxygen,
black...carbon, blue...nitrogen, white...hydrogen, grey...zinc.
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Consider the linker in IRMOF-6. By adding the additional two carbons and the four
hydrogen that make up the four-membered ring, the symmetry is reduced since the long
molecular axis is no longer a symmetry axis. In the case of IRMOF-3 the decrease in
symmetry is even more distinct. By adding the amino groups neither the long molecular
axis nor the axis orthogonal to it are symmetry axes. This reduction of symmetries
is the reason why more modes correspond to movements for which the polarisability
tensor changes with respect to the normal-mode coordinates. Before some of the most
dominant modes will be discussed, it should be mentioned that the original Raman
activities obtained from the Raman-VASP implementation have to be multiplied with
the following function according to [34, 57] and [58, p. 155] to calculate the intensities.

Φ(ν, T |νin) ∝ (νin − ν)4

ν
(fBE(ν, T ) + 1) (5.1)

By doing so, one accounts for the thermal occupation of the phonons and the frequency
dependence of the intensities relative to the frequency of the incoming light νin. For
the experiments a laser emitting light with a wavelength of 647.1 nm was used. This
corresponds to a wavenumber of νin = 15454 cm−1. Furthermore, the original delta-
shaped intensities were broadened with a Lorentzian function according to equation
(5.2) in order to account for finite lifetimes of the states.

L(ν, ν0, σ) =
1

π

σ

σ2 + (ν − ν0)2
(5.2)

Animations of selected Raman active phonon modes can be downloaded from https://
www.dropbox.com/sh/1w0ioebya6y06do/AAD8S00qExe-KcDbRd_hmNXza?dl=0. Several
further interesting features can be seen in the Raman spectra. For example, one can
see a peak around 100 cm−1 that appears at about the same frequency in all MOFs
in figure 5.1. The constituent that all three systems (MOF-5(Zn), IRMOF-3(Zn) and
IRMOF-6(Zn)) have in common is the metallic node. Therefore, it is likely that this
peak corresponds to a Raman active mode that is related to vibrations of the node.
Indeed, this can be found when the vibrations are visualised. This mode corresponds to
some kind of breathing mode of the metallic nodes, where the linkers are only moved
as rigid parts. This slight motion of the linkers is most probably the reason, why the
frequency of that peak is somewhat reduced in the case of IRMOF-6, which has the
heaviest linkers due to the two additional carbon and hydrogen atoms compared to
MOF-5. For IRMOF-3, where the additional mass due to the substituted amino group
is not that large, the frequency decrease is smaller. Another mode that does not seem
to change between the systems lies around a frequency of 174 cm−1. Although this
frequency range was not calculated for IRMOF-3 for reasons of resources, it can be seen
from respective animations of the modes of MOF-5 and IRMOF-6 that this vibration
corresponds to a nearly pure oscillation within the metallic node. The vibration is nearly
completely localised in the modes without any significant participation of the linkers.
Especially the last discussed vibrational mode is very unlikely to contribute much to
thermal conductivity due to the localised nature of the oscillation.
Localisation can also be observed in another set of modes. The biggest peak of MOF-5
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at about 40 cm−1 corresponds to a torsional mode of the organic linkers around their
long molecular axes. Similar modes can be found around 24 cm−1 for IRMOF-6 and in
a region from 25 to 29 cm−1 for IRMOF-3 (where there are more similar vibrations due
to the broken symmetry). The shift of this torsional frequency between the systems can
be estimated to 0th order from classical mechanics, where the squared eigenfrequency of
a torsional oscillator is given by the ratio of the (torsional) spring constant Cϕ and the
torsional moment of inertia IT . When one assumes the torsional spring constants to be
unaltered for this vibration between the systems, one can compute the expected ratio
between the two frequencies νi/j of two systems labelled with i, j depending on their
moments of inertias IT,i/j.

νi
νj

=

√
IT,j
IT,i

with IT,k =
∑
n

mnr
2
⊥,n (5.3)

In the equation above r⊥,n is the distance of the atom with mass mn perpendicular to
the rotation axis, which is always supposed to be exactly the long molecular axis of
the linkers - i.e. the axis defined by the carbon atoms of the linker that are directly
bonded to the two oxygen atoms. If one computes the frequency ratio by calculating the
torsional moments of inertia for all three linkers and compares those values to the ratios
of the phonon frequencies involved, rather acceptable agreement can be found (see table
5.1).

Tab. 5.1: Frequency ratios of the torsional modes localised in the linkers. Comparison
between the calculated ratio from eq. (5.3) and the direct ratio of the phonon
frequencies calculated using VASP.

system relative to MOF-5 νi
ν
MOF−5

from eq. (5.3) νi
ν
MOF−5

from direct division

IRMOF-6 1.82 1.74
IRMOF-3 1.55 1.51

This shows that these modes can be treated as localised vibrations where the nodes act
as rigid boundaries such that one can use classical mechanics to estimate the frequency
shifts with different linkers. The remaining small deviations have basically two origins.
Firstly, for heavy substituents the axis of rotation will not be the long molecular axis,
but another one slightly shifted towards the centre of mass. This will decrease the mo-
ment of inertia and, therefore, decrease the calculated frequency ratio a bit, approaching
the observed ratio. Secondly, the interatomic force constants are not exactly the same
in all three systems.

Two further systems that do not belong to the family of IRMOFs due to their anisotropic
structure were also investigated in terms of their Raman spectra. Two-dimensional pro-
jections of those MOFs as well as the calculated powder Raman spectra at 300 K can
be found in figure 5.2. One of the systems is MOF-508 which has appeared at some
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points (scaling of computational time in fig. 3.3; MOFs with cavities in fig. 2.1(b)) in
this thesis already.

(a) Raman spectra for the MOFs seen in (b).

(b) MOF-508, PMOF-508

(c) linkers appearing in the two MOFs: terephthalic acid (PCB), 4,4’-bipyridine
(44BP), pyrazine

Fig. 5.2: Raman spectra for MOF-508 and PMOF-508 calculated with the Raman-
VASP implementation according to [45]. The data were broadened with a
broadening parameter σ = 0.5 cm−1 according to eq. (5.2). Colouring scheme:
red...oxygen, black...carbon, blue...nitrogen, white...hydrogen, grey...zinc
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Compared to MOF-5, the metallic nodes are much simpler as they only consist of two
zinc atoms. The linkers in x and y direction of the tetragonal unit cell are the same as
for MOF-5 - i.e. terephthalic acid in the unreacted form (in the following abbreviated
as PCB). The linker in z direction, however, is a 4,4’-bipyridine (in the following abbre-
viated as 44BP). A similar system that one can think of, is constructed by replacing the
bipyridine with pyrazine - i.e. a heteroaromatic compound having two nitrogen atoms in
opposite positions in a six-membered ring. Here this structure is referred to PMOF-508,
where the P stands for pyrazine.
Although the two systems are very similar, there are some interesting differences ob-
servable in the Raman spectra. Firstly, the modes at about 160 cm−1 correspond to
vibrations in the metallic nodes combined with rigid movement of the PCB linkers.
Since all the involved parts are the same in both systems, the peak does not shift. An-
other interesting observation is that the mode at about 100 cm−1 in MOF-508 shows
some kind of translational standing wave movement along the 44BP axis, where there is
a node between the two pyridine rings. A similar mode can be found for PMOF-508 at
about 160 cm−1 with the node of the wave being in the middle of the pyrazine (see fig.
5.3).

(a) MOF-508, approx. 100 cm−1

(b) PMOF-508, approx. 160 cm−1

Fig. 5.3: Schematic displacement pattern for two similar oscillations (side view). The
envelopes of the movements are only drawn between two neighbouring metal-
lic nodes. Colouring scheme: red...oxygen, black...carbon, blue...nitrogen,
white...hydrogen, grey...zinc

Seeing the vibrations, one is tempted to draw an analogy to a transversal standing
wave. Since the "wavelength" of this vibration is shorter for PMOF-508, the frequency
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has to be higher than for the respective mode in MOF-508, provided that the propaga-
tion speed of those transversal waves is approximately the same for both systems.
Furthermore, the first peaks with the lowest wavenumbers for both systems are again
torsional modes of the 44BP respectively the pyrazine linker. By using the same approx-
imative procedure of how such modes should change (cf. eq. (5.3)) one obtains a not so
good agreement as before. The frequency ratio from the moments of inertia should be√

2 ≈ 1.41 whereas the direct division of the frequencies results in a value of about 1.6
by considering the peak at approximately 21 cm−1 of MOF-508 and the peak at about
13 cm−1 of PMOF-508. This can most probably be explained by the fact that here
the (torsional) force constants are not the same. While the dihedral angle ϕ between
the pyrazine ring and the PCB linkers is about 45◦, both the pyridines of the 44BP
in MOF-508 are closer to the PCBs, showing dihedral angles ϑ1/2 of around 28◦. This
implies that the torsional spring constants are stiffer in the case of MOF-508, thus this
mode is shifted to a higher frequency.

(a) MOF-508 (b) PMOF-508

Fig. 5.4: Top view and dihedral angles of MOF-508 and PMOF-508. Colouring scheme:
red...oxygen, black...carbon, blue...nitrogen, white...hydrogen, grey...zinc

A mode that is in nearly perfect agreement between both systems is the peak at about
34 cm−1. This vibrational mode corresponds again to a torsional mode of the PCB link-
ers. Compared to MOF-5, where only this linker occurs in all three directions of space,
the respective frequency is slightly decreased, suggesting that the torsional stiffness is
larger for the metallic nodes of MOF-5. This makes sense if one remembers that the
nodes of MOF-5 consist of very stable zinc-oxygen tetrahedra.
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(a) Raman spectra for the linker molecules in MOF-508

(b) PCB (c) 44BP

Fig. 5.5: Raman spectra of the linker molecules of MOF-508 calculated with Gaus-
sian09 [59]. PCB...Terephthalic acid (para dicarboxybenzene), 44BP...4,4’-
bipyridine. The data were broadened with a broadening parameter σ =
0.5 cm−1 according to eq. (5.2)

In order to see how the vibrational properties of the free linker molecules change when
they are employed as the building blocks in a MOF, the two linkers of MOF-508 - 44BP
and PCB, which happens to be the same linker as for MOF-5 - were also studied in terms
of their Raman activities with Gaussian09 [59]. The Raman activities were calculated
using a 6-311++G(d,p) basis set and the PBE functional after a geometry optimisation
with the same functional and basis set. The conversion from activities to scattering
intensities was carried out by using equation (5.1).
Interestingly, it seems that most of the low-frequency intramolecular modes of the
isolated molecules are suppressed respectively turned into different modes once the
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molecules are attached to the heavy metallic nodes. Only very few vibrations "sur-
vive" the synthesis to a MOF. The first Raman scattering peak in figure 5.5 of PCB
(terephthalic acid, para dicarboxybenzene) is a vibration where both carboxyl groups
twist in different directions with respect to the plane of the central phenyl ring (anti-
symmetric torsion). When the molecule is fixed to the metallic nodes at both sides,
however, this would only be possible if the phenyl ring changes its geometry to a non-
planar configuration and performs separate oscillations in the left and the right side of
the ring. This antisymmetric torsional mode does not appear if the molecule’s movement
is constrained by the metallic nodes. The symmetric torsional mode, however, that also
occurs in the respective MOFs can be found at about 68 cm−1 which is significantly
higher in frequency than the torsional modes in all the MOFs. Most probably one rea-
son for that is that PCB has a planar configuration when used as a linker in MOFs,
but is not planar as free molecule. In this mode it seems that the central phenyl ring
performs a torsional oscillation inside a smaller dihedral angle range limited by those
of the carboxyl groups. This would mean that the COOH groups exert an additional
force on the phenyl ring, which results in an increased frequency, as it is observed by
comparing the results. Furthermore, in the case of vibrations of the MOF constituents,
the oscillations are supposed to have a higher "effective mass". This increased amount
of inertia is expected to decrease the frequency additionally.
In contrast to PCB, some Raman active vibrations of the 44BP linker survive nearly
unharmed. The distinct peak in the Raman scattering spectrum of MOF-508 at about
68 cm−1 corresponds to an oscillation where the dihedral angle between the pyridine
rings of the 44BP linker periodically changes with time - i.e. the two pyridine rings
twist with a phase shift of π against each other (antisymmetric torsion). Exactly the
same vibration can also be found in the free molecule at approximately 63 cm−1. In
this case the dihedral angle between the pyridine rings in the free molecule is nearly the
same as for the linker in MOF-508 (approx. 36◦). Since the relevant geometric features
seem to be mostly unaltered for this vibrational mode, it is not surprising that also the
frequency stays nearly unaffected.
On the other hand, also certain modes can be distinguished, which are localised in the
linkers of the MOFs, but do not show up in the Raman spectra of the free molecules.
The very first peak of MOF-508 in figure 5.2 corresponds to a torsional mode of the
44BP linker as it was discussed earlier. This mode, however, is a rigid movement of
the whole molecule - i.e. the two pyridine rings perform torsional in-phase movement
(symmetric torsion) - that means that for the free molecule usually a frequency of 0 is
assigned to this mode respectively it is not seen as a vibrational mode at all.
In spite of the fact that simulations of that kind are a convenient method to compare
the results to experiments and that many vibrational properties can be learnt from the
analysis of the Raman spectra, they only provide insight in the phonon modes at the
Γ point. For the thermal conductivity, the phonon band structure has to be known,
though. The large system sizes necessary to achieve that are often too expensive within
DFT approaches. However, Raman spectra calculations and the analysis of the occur-
ring modes are expected to have a high potential for structure investigation of MOFs.
This could be feasible, once one has understood the geometric dependencies and con-
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straints of certain modes. From that, one could predict, how the respective vibrations
would change if the external conditions (pressure, different substrates, defects etc.) were
altered and use the spectra to determine the configuration and constitution of the MOF
crystal.

5.2. Comparison of the phonons obtained with DFTB+ and
VASP

Since for certain systems supercells containing up to nearly 9000 atoms are required to
take into consideration for the phonon calculations, it is absolutely necessary to find
another numerical approach to the problem of calculating the phonons. The chosen
method is DFTB. In order to justify the transition from the more accurate DFT method
to DFTB, one has to make sure that at least the general tendencies of observable results
remain the same. This means that a benchmark concerning the phonon frequencies
obtained with the DFT-based code VASP and the DFTB-based package DFTB+ is
necessary. Note that all the computational settings like energy cutoffs, self-consistency
accuracy, etc. for both codes used here are the same as discussed in section 4.
Obviously, the whole band structure cannot be compared because with VASP the calcu-
lation of the essential supercells is limited by the available resources. Therefore, the next
convincing quantity, which is more accessible with both approaches, was chosen as the
subject of the benchmark: the phonon frequencies at Γ. For reasons of comparability,
the equilibrium lattice constants found with both codes for MOF-5(Zn) and IRMOF-
3(Zn), whose Γ-phonons will be used for the benchmark, are listed in table 5.2. The
reported lattice parameter is the variable a of the following matrix of lattice vectors.

P =

0 a a
a 0 a
a a 0

 (5.4)

By choosing a matrix like that, which contains the primitive lattice vectors of the
face-centred cubic Bravais lattice as the rows, a corresponds to half the edge length of
the cubes in the conventional unit cell.

Tab. 5.2: Equilibrium lattice constants a for two exemplaric systems calculated with
VASP and DFTB+.

a / Å
system DFTB+ VASP

MOF-5(Zn) 13.19 13.03
IRMOF-3(Zn) 13.20 13.06

The comparison of the lattice constants obtained with DFTB+ with the results of
VASP shows that DFTB+ tends to yield increased values of 0.16 Å resp. 0.14 Å. In
both cases, the relative change is approximately 1 %.
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DFTB+ obviously seems to yield reasonable results concerning the geometry of the
systems compared to VASP. One has to keep in mind, however, that even this small
deviations will slightly alter the obtained phonon frequencies in a sense that typically the
frequencies are shifted to higher values for a smaller cell volume. This can be observed
in the Γ-DOS in figure 5.6. Some features that can be seen in the VASP results are
slightly shifted to lower frequencies for DFTB+ partly because of the increased lattice
constants. In figure 5.6 you can see the Γ-phonons of MOF-5(Zn) and IRMOF-3(Zn)
once obtained with VASP and once with DFTB+. Since the frequencies are not supposed
to be in one-to-one agreement between the two codes, a broadening of the modes with
Lorentzians according to equation (5.2) was done. In that way, the general trends and
distinct features can be compared in a more reasonable way.
The comparison reveals that both curves for the Γ-DOS show a similar behaviour for
both systems. Sometimes, frequencies are slightly shifted resulting in minor changes of
the envelope curves. For MOF-5 the agreement between DFTB+ and VASP seems to
be better than for IRMOF-3. For the latter, the relatively small region between about
130 cm−1 and 140 cm−1 differs noticeably. But still, considering the big conceptual
difference between DFT and DFTB the agreement is rather satisfactory. These results
show that DFTB+ has proven to be quite well applicable for calculating vibrational
properties if one is more interested in the general physical behaviour of the system
rather than tight accuracy of the results.
A further way to estimate the reproducibility of relevant quantities calculated with
DFTB+ is to consider the phonon eigenvectors. The eigenvectors are orthonormal for
one system and determine which atoms move with which amplitude in which directions
for a given phonon frequency. That means that vibrations with the same physical origin
and the same symmetry should have the same eigenvector. Therefore, the eigenvectors
obtained with DFTB+ are compared with those of VASP. A convenient way to do this
is to calculate the dot product between the vectors having 3N components each, where
N is the number of atoms in the unit cell. Because the ith eigenvector of VASP does not
necessarily have to correspond to the ith eigenvector of DFTB+, the following procedure
was employed to identify the pair of eigenvectors that most probably have the most in
common. For every eigenvector of VASP, the dot products with all the eigenvectors
obtained with DFTB+ were calculated. The vector with the biggest overlap was then
regarded as the corresponding eigenvector.
In figure 5.7 histograms of the overlap distributions for both compared systems are
displayed. Note that the results of VASP and DFTB+ are in better agreement if only
a restricted frequency region (up to 200 cm−1) is considered. Especially, the carbon-
hydrogen stretching vibrations are not very well described with DFTB+ resulting in
disagreements in high-frequency regions. Despite this shortcoming, this is not seen as
an obstacle for the computation of the thermal conductivity, since only the phonon
modes with very low frequencies will be the main contributors to heat transport.
In short, DFTB+ has been shown to yield plausible results for the general trends of the
physical quantities, which are in the focus of the current work. Therefore, the use of
DFTB+ is justified for further calculations of the thermal conductivity in MOFs. The
latter will be the topic of the next section.
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(a) MOF-5(Zn)

(b) IRMOF-3(Zn)

Fig. 5.6: Phonon frequencies (ν) at the Brillouin zone center Γ calculated with VASP
and DFTB+ for (a) MOF-5(Zn) and (b) IRMOF-3(Zn). The frequency spec-
tra was broadened with a Lorentzian according to eq. (5.2) with a broadening
parameter σ = 2 cm−1 to obtain a density D at Γ.
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5. Results and discussion

(a) all modes MOF-5(Zn) (b) modes up to 200 cm−1 MOF-5(Zn)

(c) all modes IRMOF-3(Zn) (d) modes up to 200 cm−1 IRMOF-3(Zn)

Fig. 5.7: Histograms of the dot product between phonon eigenvectors of (a),(b) MOF-
5(Zn) and (c),(d) IRMOF-3(Zn) calculated with VASP and the eigenvectors
calculated with DFTB+. In (a) and (c) all modes are considered, in (b) and
(d) only low-frequency modes with a frequency up to 200 cm−1 are taken into
account.

5.3. Thermal conductivity

By using the more affordable DFTB approach, one can obtain the desired phonon band
structures, which are essential to know for the computation of the thermal conductivities.
From the band structure, one is able to compute the harmonic ingredients of the thermal
conductivity: the group velocities, the heat capacities and the phonon DOS. Although
the computational effort to obtain those is relatively high, the anharmonicities are even
more challenging to consider properly. In this study the model of Bjerg et al. is then
used to obtain the phonon lifetimes from the mode Grüneisen parameters. The results
as well as a detailed analysis are presented in the following section.
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5.3. Thermal conductivity

5.3.1. Brillouin zone sampling

In principle, all the necessary ingredients for calculating the thermal conductivity have
been discussed already. However, there is a last technical issue that is crucial to think
about before reporting any results. The general expression for the thermal conductivity
(cf. eq.(3.9)) includes an integral over the first Brillouin zone. Of course, this integral
has to be approximated as a sum over discrete q points. As a consequence, the thermal
conductivity tensor is approximated by the following double sum.

κij ≈
1

V

∑
n

∑
q

τn,q C(ωn,q) vg,n,q,ivg,n,q,j (5.5)

With the transition from the continuous integral to the discrete sum another problem
arises. How many q points should one chose? Which sampling density of the first Bril-
louin zone is necessary to see convergence of the sum formulation towards the integral
expression?
The answer to this question is rather unsatisfying. It turns out that it depends on the
system. Therefore, one has to investigate the convergence behaviour of every system
separately. Since one could not even be sure if exactly the same convergence speed with
respect to the q mesh density for different temperatures will be observed, every temper-
ature for each system is tested.
Essentially, one can think of two approaches to compute the thermal conductivity for
a infinitely dense mesh. Either, one can simply increase the number of q points in the
first Brillouin zone further and further until there are no significant changes anymore.
The downside of this approach is that it could become quite time consuming to calculate
the phonons, group velocities and the Grüneisen parameters for highly dense meshes5.
Alternatively, one can fit different functions to the dependence of the thermal conduc-
tivity on the mesh and extract the "saturation value" from those fits. This approach
was considered to be the more reasonable one.
The drawback of this approach is, however, that one has to think about possible fit
functions (models). It was found that the following functions usually reproduce the
convergence trends best.

f1(nq|κ∞, nq, N,∆N) = κ∞

(
1− exp

{
−nq −∆N

N

})
(5.6)

f2(nq|κ∞, nq, N,∆N) = κ∞

(
tanh

{
nq −∆N

N

}
+ 1

)
(5.7)

The fit functions f1 and f2 both have κ∞ as the limit for nq → ∞ for nq × nq × nq
meshes. The parameters ∆N respectively N describe the offset respectively the conver-
gence "speed". In order to find out which of the proposed models fits best, Bayesian
model comparison is employed, assuming additive Gaussian noise of unknown standard
deviation on the data. In all the reported cases the model according to equation (5.6)

5Especially because the MESH_SYMMETRY = .FALSE. option has to be used.
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5. Results and discussion

clearly outperforms the model according to (5.7). Furthermore, by using a Bayes ap-
proach one can extract uncertainties and even full probability density functions for the
fit parameters.

Fig. 5.8: Thermal conductivity (κ) over different q point meshes for three temperatures
of MOF-5(Mg).

In figure 5.8 one can see the comparison of the discrete data points that were obtained
with different q point meshes and the fits of model 1 according to equation (5.6). The
shown data were calculated for MOF-5(Mg) at some selected temperatures. Doubtlessly,
the behaviour is well described with the respective convergence model.
It must be mentioned that for sampling the q points one has the opportunity to calculate
the desired quantities only for an irreducible set of (properly weighed) wave vectors,
which result from symmetry considerations of the system, or for the whole first Brillouin
zone. For scalar quantities like energies, frequencies or the mode Grüneisen parameters it
suffices to consider only the irreducible part, whereas for vector quantities like the group
velocities one has to take the whole Brillouin zone into account or apply symmetry
transformations afterwards. Therefore, the calculations of the Grüneisen parameters
were conducted for the irreducible set of q points considering their weights, while the
group velocities were obtained by q point sampling of the whole first Brillouin zone.
With phonopy this can be done by setting the tag MESH_SYMMETRY to .FALSE. so that
no symmetries are considered.
To sum up, the finally reported thermal conductivities seen in figure 5.11 and 5.21 as
a function of temperature are the expectation values 〈κ∞〉 of the respective probability
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5.3. Thermal conductivity

distributions separately computed for each shown temperature and system with the
convergence model according to equation (5.6). With that final step we are in the
position to report and discuss the thermal conductivities for several MOFs, where the
constituents are varied systematically.

5.3.2. Influence of the organic linkers

First, the influence of different organic linkers will be discussed. In order to obtain some
kind of structure-to-property relationship concerning the thermal conductivity, several
systems were investigated. Based on MOF-5(Mg) the linkers were changed to other
linkers showing similarly high degrees of symmetry. What is meant by this is that for
IRMOF-3, for instance, there are much fewer symmetry operations due to the additional
amino group as it was illustrated in section 5.1. The clear advantage of systems with more
symmetries is that one can significantly reduce the number of displacements necessary
to calculate the force constants. Making use of symmetries one, therefore, can map the
interatomic interactions onto symmetry-equivalent atoms.
The chosen systems are rather simple so that the analysis steps can yield physically
meaningful results. The systems of interest are depicted in figure 5.10. For a better
understanding of the chemical differences of the linkers, the respective molecules are
shown in their unreacted form in figure 5.9.

(a) linker in MOF-5 (b) linker in IRMOF-14

(c) linker in IRMOF-131 (d) linker in IRMOF-132

Fig. 5.9: Structural formulae of the unreacted linker molecules used in the studied
IRMOFs.
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Note that all four systems have magnesium as the metal components in the nodes. In
spite of the fact that their zinc containing equivalents are said to be synthesised more
easily, magnesium is less challenging to treat in the calculations because the d-orbitals
do not have to be considered. For the sake of understanding the influence of the linkers
separated from that of the nodes, it was decided to study the variation of the organic
constituents with the easiest and cheapest systems first. Since obviously all of the sys-
tems discussed here have the same metallic node, the indicator of the metal in the MOFs
name will be omitted in the following.

(a) MOF-5(Mg) (b) IRMOF-14(Mg)

(c) IRMOF-131(Mg) (d) IRMOF-132(Mg)

Fig. 5.10: Three-dimensional views of MOFs which differ only in the organic linkers,
but not in the metallic nodes. The influences of the linkers on the thermal
conductivity is discussed based on those four systems. Colouring scheme:
red...oxygen, green...magnesium, black...carbon, white...hydrogen
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Two of the systems, MOF-5 and IRMOF-14, have aromatic linkers. It should be em-
phasised that IRMOF-14 is the non-interpenetrated variant of this MOF. Due to the
large free volume in the cavity of larger MOFs, there is usually another structure pos-
sible, where two frameworks interpenetrate each other. This is especially common for
IRMOFs because the regular lattice can be maintained due to the cubic symmetry. For
the case of the pyrene-containing linker of IRMOF-14 there is also an interpenetrated
version that is usually referred to as IRMOF-13 which is not the subject of the present
study.
The other two systems, IRMOF-131 and IRMOF-132, have alkynes as linkers. In the
case of IRMOF-131 but-2-yne was attached to the oxygens of the linkers. Since the four
carbons in the linear chain of this molecule form a single, a triple and another single
bond (1-3-1), the isoreticular MOF was labelled with the number 131 as another system-
atic name could not be found in literature. IRMOF-132 contains hexa-2,4-diyne in its
linkers, which was simply numbered with 132 as the structural successor of IRMOF-131.
These systems are interesting for some reasons. Firstly, they contain fewer atoms and
are seemingly easier to calculate. Secondly, the torsional movement of the organic linkers
is completely suppressed for those alkyne systems as the linkers are totally rotationally
symmetric. Moreover, there are no hydrogen atoms in the unit cell for which the (stretch-
ing) oscillations are not so well described with DFTB+. Another advantage of that type
of linker is that one can study the effect of cell lengths on the thermal conductivity of
MOFs. Although the cell of IRMOF-14 is also larger than that of MOF-5, the linker of
IRMOF-14 introduces ten carbon and four additional hydrogen atoms along each edge
of the cubic cell. As a consequence, the calculations are more expensive and the analysis
is more challenging. By using alkyne linkers, like in IRMOF-131 and IRMOF-132, the
distance of the metallic nodes can be increased without adding too many further atoms.
Since all systems in figure 5.10 have an fcc Bravais lattice, it follows from symmetry that
all rank 2 tensors that describe materials properties are diagonal with the same value
for all three entries. For that reason, whenever the thermal conductivity κ is plotted or
mentioned, it is actually one of this components κxx = κyy = κzz = κ. In other words,
the thermal conductivity formally reduces to a scalar so that the heat flux density is
always aligned with the temperature gradient.
In figure 5.11 one can find the temperature dependent thermal conductivities for the
mentioned systems. As can be seen from the graphs, MOF-5 shows much better thermal
transport properties than all the other systems. Another interesting feature is that the
temperature dependence of the thermal conductivity seems to be much weaker in the
case of IRMOF-14 compared to the other systems. According to the results, the thermal
transport will be more pronounced in IRMOF-132 at temperatures below 200 K com-
pared to IRMOF-14. The situation changes, however, for T > 200 K, where the thermal
conductivity decreases faster with the temperature than for IRMOF-14.
In order to understand the main influences, one has to decompose the results for κ into
its ingredients. For the sake of simplicity, the following analysis will be conducted only
for one fixed temperature of T = 300 K. The choice of temperature changes the thermal
conductivity, the heat capacities and the phonon lifetimes, whereas the group velocities
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Fig. 5.11: Calculated thermal conductivity (κ) as a function of temperature (T ) of some
IRMOFs with different organic linkers.

stay unaltered6. The first step is to highlight the modes in the phonon band structure
that contribute most to the thermal conductivity. Such band structure plots can be seen
in figure 5.12 and 5.13. As equation (3.9) states, modes with the higher group velocities
will contribute more effectively. This can be clearly seen in the band structures. Another
observation is that the biggest contributions are centred around the Γ point. Since these
modes usually have large group velocities and also long lifetimes, this is not surprising.
Noticeably, MOF-5 shows a large degree of dispersion - i.e. many bands with non-
vanishing slopes - also away from the Γ point, whereas for the other systems (especially
IRMOF-14) only few contributions from q points farther away from the Brillouin zone
centre play a role. Possibly this is already the key to the high thermal conductivity in
case of MOF-5.
In order to verify this assessment a bit more quantitatively, one can convert the integral
over q points in equation (3.9)) to an integral over frequencies using the density of states
(DOS(ν)).

κxx =

∫
dν τ(ν) C(ν) v2

g,x(ν)DOS(ν) =

∫
dν κxx(ν)DOS(ν) (5.8)

One can, therefore, calculate the product of the phonon density of states and the
mode contribution per frequency (κxx(ν)) to the thermal conductivity to find out, which
phonon frequencies are the most important ones. Further relevant quantities to analyse
are the squared group velocities v2

g,x(ν), the heat capacities C(ν), and the phonon life-
times τ(ν) as well as the products of those with the DOS: v2

g,x(ν)·DOS(ν), C(ν)·DOS(ν),

6If one neglects the influence of thermal expansion of the unit cell, which would have an influence on
the band structure determined by the Grüneisen parameters.
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and τ(ν) · DOS(ν). For the DOS, a broadening with the same width as for the Raman
spectra was used (σ = 0.5 cm−1).

(a) MOF-5(Mg)

(b) IRMOF-14(Mg)

Fig. 5.12: Phonon band structure of the studied systems with aromatic linkers. All the
systems have a face-centred cubic Bravais lattice. The bands are coloured in
a logarithmic scale showing the contribution to the thermal conductivity κ
per q point and mode.
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(a) IRMOF-131(Mg)

(b) IRMOF-132(Mg)

Fig. 5.13: Phonon band structure of some of the studied systems with alkyne link-
ers. All the systems have a face-centred cubic Bravais lattice. The bands
are coloured in a logarithmic scale showing the contribution to the thermal
conductivity κ per q point and mode.

Since the phonon DOS is included in the products discussed before, it is useful to
consider the DOS alone, at first. The DOS for the four studied IRMOFs can be seen in
figure 5.14. Note that the integrated density of states (normalised with 3N) is plotted
on the secondary ordinate. Additionally, the low-frequency region is shown explicitly..
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5.3. Thermal conductivity

(a) Full range

(b) Zoomed in range

Fig. 5.14: Density of states (DOS) of selected IRMOFs with different organic linkers in
(a) full and (b) the low-frequency (ν) range. The cumulative integrals are
plotted as dotted lines on the secondary ordinates.
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For all the investigated systems, the DOS is usually characterised by rather sharp
peaks instead of the comparably smooth behaviour known from typical inorganic crys-
tals. Since the DOS was calculated for at least 40 × 40 × 40 q point meshes, this fact
cannot result from too coarse sampling in reciprocal space, but rather from the band
structure, which shows only little dispersion.
The first quantity to analyse is the integrand of the last equality in equation (5.8), which
can be seen in figure 5.16. The solid lines are the mode contributions κxx multiplied
with the DOS, whereas the dotted lines are the cumulative integrals, which converge to
the total thermal conductivity. From the full range plot over all occurring frequencies
in figure 5.16 one can find that basically every contribution to the thermal conductiv-
ity has its origin in a phonon mode with a frequency below 25 cm−1. However, for
MOF-5 all the contributions per frequency are significantly higher than for all the other
systems, which finally results in the higher total thermal conductivity. One obvious dif-
ference between the analysis results for IRMOF-14 and IRMOF-131 is that the relevant
contributions decay faster with the frequency for IRMOF-14. Although the product
of the DOS and the mode contributions to the thermal conductivity are the relevant
quantity for the integral in equation (5.8), it can be misleading to analyse this prod-
uct, since peaks can have their origin in either a high DOS or a high κxx(ν). Therefore,
the mode contributions without multiplication with the DOS can be found in figure 5.15.

Fig. 5.15: Mode contributions to the thermal conductivity (κxx) (solid lines, left ordi-
nate) and their products with the density of states (DOS) (dotted lines, right
ordinate) of selected IRMOFs with different organic linkers in low-frequency
(ν) range at 300 K.
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(a) Full range

(b) Zoomed in range

Fig. 5.16: Mode contributions to the thermal conductivity (κ) multiplied with the den-
sity of states (DOS) of selected IRMOFs with different organic linkers in (a)
full and (b) the low-frequency (ν) range at 300 K. The cumulative integrals
are plotted as dotted lines on the secondary ordinates.
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It can be seen in figure 5.15 that the high contributions at frequencies above 5 cm−1

rather result from the gradually increasing DOS, since the mode contributions κxx(ν)
decay more quickly.
With this kind of analysis one can deduce some interesting qualitative relations, but for
a more quantitative statement, what limits the thermal conductivity to that relatively
small frequency region, and why the mode contributions for certain systems outweigh
those of others, one has to analyse all the ingredients of the thermal conductivity ac-
cording to equation (3.9) respectively (5.8): the heat capacities, the group velocities and
the phonon lifetimes. This will be the topic of the following discussion. For each of these
quantities the contributions per mode for both, the full range and for the range that is
obviously most important for thermal transport, will be shown and discussed. As it was
done for the thermal conductivity in figure 5.15 always the respective quantity and the
product with the phonon density of states are plotted in the following graphs. By doing
that, one prevents being misled by peaks at certain frequencies and simultaneously gains
understanding of the spectral weight of the contributions.
The first element of the components analysis is the heat capacity C (cf. eq. (3.10)).
Having its mathematical origin in the derivative of the Bose-Einstein distribution with
respect to temperature, it is the only harmonic ingredient of the thermal conductivity,
which accounts for temperature. The comparison of the heat capacity function with the
Bose-Einstein distribution was shown in section 3.1 in figure 3.1(a). Since the heat ca-
pacity becomes narrower with decreasing temperature, it dictates, which phonon modes
a priori come into question for contributing to the thermal conductivity. This quantity,
therefore, can be seen as a filter selecting the low-frequency phonons up to a certain en-
ergy, which increases with temperature. As can be seen in figure 5.17(a) at the present
temperature, some modes with higher frequencies will be suppressed by a vanishing heat
capacity. However, the full width at half maximum (FWHM) at 300 K is about 622 cm−1.
Therefore, this quantity is not a limiting factor for the thermal conductivity for any of
the systems discussed here. If one would go to really low temperatures, however, this
could be different, as the plot in figure 3.1 implies. Moreover, in the frequency region,
which is relevant for the thermal conductivity, the heat capacities are nearly constant
and close to unity7 since they only decrease by 10−4kB. This means that the heat capac-
ities are completely irrelevant for explaining the differences of thermal conductivity in
the present case at 300 K. In the low-frequency region the product of the DOS with the
heat capacities essentially reproduces the density of states (see figure 5.14). That means
that none of the relevant phonon modes is a priori restricted by the heat capacities at
the temperature of 300 K.
The next analysed quantity is the group velocity which is tremendously more important
than the heat capacities for the thermal conductivity. Since only the κii components
do not vanish, no mixed products of the group velocities vg,ivg,j are relevant, but only
those with the same component vg,ivg,i = v2

g,i. It, therefore, suffices to consider only
the squared group velocities in one direction (for instance x). Compared to the heat
capacities the analysis of the (squared) group velocities is slightly more difficult.

7In units of the Boltzmann constant kB
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5.3. Thermal conductivity

(a) Full range

(b) Zoomed in range

Fig. 5.17: Mode heat capacities (C) (solid lines, left ordinate) and their products with
the density of states (DOS) (dotted lines, right ordinate) of selected IRMOFs
with different organic linkers in (a) full and (b) the low-frequency (ν) range
at 300 K.

63 / 117



5. Results and discussion

The frequency dependence of the group velocities in x direction as well as their prod-
ucts with the DOS can be seen in figure figure 5.18. Since the group velocities per
definition vanish at Γ, the frequency range ν > 0 is shown. In the full range plot of
figure 5.18(a) it can be seen that there would be contributions from bands at around
1500 cm−1, although the biggest part obviously comes from the low-frequency region of
up to 500 cm−1. One can observe some interesting features here. First, for IRMOF-131
and IRMOF-132 having alkyne linkers, the group velocities seem to be greater for the
larger system up to a certain frequency. This can be qualitatively understood by looking
at the analytical expression for the phonon dispersion of a one-dimensional chain of one
atom per unit cell. Here the analytical relation for the group velocity is determined by
the unit cell length a, the interatomic force constant C and the mass of the atom m.

vg = a

√
C

m
cos
(q a

2

)
∀q ∈

(
0,
π

a

]
(5.9)

For very small wave vectors q > 0 the cosine term is approximately unity and a linear
dependence on the lattice parameter a can be found. This yields a qualitative argument
why larger systems have the tendency to show greater group velocities. The reason,
why this quantitative argument does not apply for IRMOF-14, is probably the higher
vibrational mass m in the case of IRMOF-14 compared to MOF-5. Whereas the gain of
cell length a between IRMOF-131 and IRMOF-132 can be attributed to the introduction
of only a few additional atoms, one increases the number of atoms in the system much
more by replacing the linkers of MOF-5 with those of IRMOF-14. This is supposed to
increase the effective vibrational mass more than the length of the cell parameter. As a
result, the acoustic group velocities decrease, as it is observed for IRMOF-14. Accord-
ing to these considerations, if one wants to have higher (acoustic) group velocities, it is
beneficial to use molecules as linkers that, on the one hand, have as few branchings as
possible and, on the other hand, increase the distance between the nodes as much as
possible.
Furthermore one can see from the zoomed in frequency range in figure 5.18 that there
is a region of significantly decreased

{
v2
g ·DOS

}
in IRMOF-14 at about 15 cm−1. This

can be explained by looking at the band structure of figure 5.12(b). In exactly that
region IRMOF-14 has several quite flat bands, for which the group velocities are close to
zero. However, the DOS is relatively high due to the same flat optical bands (between
10 and 15 cm−1), which could compromise the low group velocities in the product with
the DOS. The more convincing argument for the dip is the fact that the acoustic bands
flatten out in this region as well. Therefore, fewer bands show a relevant dispersion.
One can clearly see in the left ordinates (solid lines) in figure 5.18 that the group veloc-
ities increase up to certain frequencies, before they rather abruptly decrease. This can
be assigned to the interference of the flat optical bands and the flattening out of the
acoustic ones. Interestingly, neither the group velocities are the limiting factor for the
thermal conductivity, since there would be contributions far above 25 cm−1, which are
obviously suppressed by the remaining quantity that has not been discussed yet.
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(a) Full range

(b) Zoomed in range

Fig. 5.18: Mode contributions of the squared group velocities in x direction (vg,x) (solid
line, left ordinate) and their products with the density of states (DOS) (dot-
ted lines, right ordinate) of selected IRMOFs with different organic linkers
in (a) full and (b) the low-frequency (ν) range.
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The phonon lifetimes according to the used models depend (inversely) on the mean
squared Grüneisen parameter (MSGP) 〈γ2〉 (cf. eq. (3.29)), which is the average squared
mode Grüneisen parameter weighted with the heat capacities (cf. eq. (3.28)). In this
model, a higher MSGP will also result in shorter phonon lifetimes. This is under-
standable by the fact that the MSGP is an indicator of how anharmonic a system is.
For perfectly harmonic systems, one would find only vanishing Grüneisen parameters.
Therefore, one has to consider the MSGP first before discussing the phonon lifetimes.
The mean squared Grüneisen parameters for the studied systems are displayed in figure
5.19. The left hand side of the plot shows the evolution of this quantity for MOF-5 with
different metallic nodes, whereas the influence of the varied linkers are plotted in the
right hand side, with only the latter being relevant for the current discussion.

Fig. 5.19: Mean squared Grüneisen parameters at a temperature of 300 K for the stud-
ied MOFs according to eq. (3.28).

Tab. 5.3: Quantities relevant for the calculation of the phonon lifetimes according to
the model of Bjerg et al. (cf. eq. (3.25).)

System 〈γ2〉|T=300 K Θ / K Θ
Tp(〈γ2〉) exp

{
Θ
3T

}∣∣∣
T=300 K

/ THz

MOF-5(Zn) 77 33.12 4.99
MOF-5(Ca) 17 50.95 55.61
MOF-5(Mg) 20 54.25 43.28
IRMOF-14(Mg) 25 25.90 10.00
IRMOF-131(Mg) 114 72.10 12.35
IRMOF-132(Mg) 225 52.45 5.12
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It can be seen in figure 5.19 that the systems with aromatic linkers show MSGP
that are about one order of magnitude less than those for the alkyne linker systems.
This means that IRMOF-131 and IRMOF-132 appear to have a significantly larger
degree of internal anharmonicity compared to MOF-5 and IRMOF-14, with the tendency
increasing with the linker length. However, the MSGP are not the only factor of influence
for the phonon lifetimes according to the used model. Considering equation (3.25),
the temperature scaling factor Θ and the empirical function p(〈γ2〉) (also containing
the unit cell volume, the average mass, the temperature scaling factor and the Debye
frequency; see eq. (3.29)) play an important role. Since the individual mode information
in this equation for the phonon lifetimes τn(q) has its origin in the ωn(q)−2 term, the
remaining factors can be combined to a common prefactor, which is constant for every
band and mode at a given temperature. The temperature scaling factors, the MSGP
and this prefactor τn(q) ω2

n(q) = Θ
Tp(〈γ2〉) exp

{
Θ
3T

}
are shown in table 5.3. The frequency

dependence of the phonon lifetimes as well as their products with the respective DOS
can be seen in figure 5.20. Note that according to the model function (see eq. (3.25))
the lifetimes diverge at 0 cm−1. This divergence is counteracted by vanishing group
velocities at Γ.
In the full range plot of the respective figure the expectation is confirmed that the
lifetimes are the crucial quantities, which limit the thermal conductivity to that narrow
frequency region. From the low-frequency range plot in figure 5.20(b) one also can
find the same ranking for the lifetimes as the prefactors in the last column of table
5.3 suggest. Several interesting features can be observed. First, for similar linkers -
i.e. aromatic or alkyne - always the system with a larger unit cell respectively more
atoms in the unit cell shows decreased phonon lifetimes and greater anharmonicities.
This is somehow obvious since more atoms will contribute to the total PES in a way
that the harmonic approximation is even less fulfilled. Alternatively, one can think of
it in the following picture. If there are more atoms in the unit cells, there are more
modes which others can scatter at, which decreases their lifetimes as a result. It would
be interesting, however, to study hypothetical systems that have the same number and
species of atoms, but different lattice parameters in order to separate the two possible
influences from each other. This is one of the reasons why the metallic nodes were varied
as well as described in section 5.3.3. Furthermore, it can be seen that IRMOF-131 shows
only slightly increased phonon lifetimes compared to IRMOF-14. However, for IRMOF-
131, the optical bands appear at higher frequencies (approx. 15 cm−1) compared to
IRMOF-14 (approx. 10 cm−1). Therefore, the small difference in thermal conductivity
between IRMOF-131 and IRMOF-14 is determined by the group velocities, since the
lifetimes are very similar and the heat capacities do not play a role in that narrow
frequency region for that temperature. Although IRMOF-132 shows the highest degree
of anharmonicity, resulting in the lowest phonon lifetimes, the absolute values of the
group velocities are relatively high. As a result, the thermal conductivity is not much
lower than for IRMOF-131 and IRMOF-14. Comparing IRMOF-132 with IRMOF-14,
one can see that, although the lifetimes are higher for IRMOF-14, there are contributions
from the group velocities up to higher frequencies for IRMOF-132. Thus, κ of IRMOF-
132 is not that much lower as one would expect after seeing only the lifetimes.

67 / 117



5. Results and discussion

(a) Full range

(b) Zoomed in range

Fig. 5.20: Mode dependent phonon lifetimes (τ) (solid lines, left ordinate) and their
products with the density of states (DOS) (dotted line, right ordinate) of
some IRMOFs with different organic linkers in (a) full and (b) the low-
frequency (ν) range at 300 K.68 / 117
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In summary, MOF-5 shows the highest thermal conductivity compared to the other
three investigated systems with different linkers. Quantitatively, it can be said that the
thermal conductivity is higher for shorter organic linkers, provided that the anharmonic-
ities are not too large. By analysing the mode contributions of all physically relevant
quantities, the following observations can be made.
Regarding the heat capacities, it can be seen that at higher temperatures (cf. fig. 5.17)
they are not a limiting factor for the frequency region of mode contributions, since the
FWHM at 300 K is about 622 cm−1. In other words, the heat capacity function decays
so slow with increasing frequency that the low-frequency modes stay nearly unaffected.
Concerning the analysis of the group velocities, the tendency that was found is that for
systems with larger lattice constant, greater (squared) group velocities for low frequen-
cies up to a certain point can be expected. This statement, however, has to be seen with
caution. For IRMOF-131 and IRMOF-132 there are only a few carbon atoms that make
the difference between the structures and mainly influence the length of the unit cell.
For IRMOF-14 there are two effects. On the one hand, the larger unit cell quantitatively
yields higher group velocities according to equation (5.9). Secondly, by introducing a
higher number of atoms (84 more than MOF-5) one increases the degree of inertia of
the system (higher effective vibrational mass m in equation (5.9)), what counteracts the
effect of an increased lattice constant. Moreover, the additional atoms result in further
optical bands. These bands correspond to vibrations within the aromatic linkers. There-
fore, some of the bands do not appear for MOF-5 due to the smaller number of linker
atoms compared to IRMOF-14.
Regarding the phonon lifetimes, the two main influences were found to be the mean
squared Grüneisen parameter(MSGP) and the temperature scaling factor Θ of equation
(3.25). In all studied cases, the temperature scaling factor was observed to decrease as
the cell volume increases. This trend can be put down to the fact that in those systems
the acoustic bands flatten out at lower frequencies, thus, reducing the cutoff frequency
for the evaluation of equation (3.30). Furthermore, it could be observed that the sys-
tems with alkyne linkers show a much larger degree of anharmonicities of the PES.
This can be found by analysing the mean squared Grüneisen parameters (cf. fig. 5.19),
which are about one order of magnitude higher for IRMOF-131 resp. IRMOF-132 com-
pared to MOF-5 resp. IRMOF-14. The presence of these anharmonicities decreases the
phonon lifetimes of the system considerably. By this effect, the mode contributions to
the thermal conductivity of the group velocities of IRMOF-131, which are comparable
in magnitude to that of MOF-5, are suppressed by the low phonon lifetimes. In order to
see whether the tendency of increasing mean squared Grüneisen parameters continues
for longer linkers in the same manner, it would be interesting to study thermal transport
also for a MOF with linkers containing oct-2,4,6-triyne and even longer linear alkyne
chains or more extended aromatic molecules. A very brief discussion of a MOF with an
even shorter linker can be found in appendix A.4.
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5.3.3. Influence of the metallic nodes

Besides the influence of different organic linkers on the thermal transport properties of
MOFs, one can also study the effects of different metals in the system. Varying metal
atoms introduce more or less additional mass to the systems. From the simplistic model
of the one-dimensional chain with two atoms in the primitive unit cell, which was intro-
duced in section 1, one can learn the basic effect of higher masses: the phonon bands
flatten out and the degree of dispersion is reduced. This is another way of saying that
the vibrations in real space become more localised. Increasing localisation of phonons
suggests inhibited thermal conductivity. Therefore, the MOF-5 structure was investi-
gated with Mg, Ca, and Zn atoms in the metallic nodes. According to the IUPAC [60],
the respective masses of those atoms are 24.305 u, 40.078(4) u, respectively 65.38(2) u.

Fig. 5.21: Calculated thermal conductivity (κ) as a function of temperature (T ) of
MOF-5 with different metallic nodes.

The first observation one can make concerns the lattice parameters a as defined for
an fcc lattice in equation (5.4). By searching for the optimal size of the systems with
DFTB+ and Bayesian probability theory as described in section 4.3, the lattice parame-
ter of MOF-5(Mg) could be determined as a = (13.165±0.001) Å, a = (13.798±0.003) Å
for MOF-5(Ca) and a = (13.189±0.001) Å for MOF-5(Zn). The given uncertainty is the
square root of the respective probability density function as described earlier. It might
appear contra-intuitive that Ca with a lower atomic number than Zn causes an increased
volume. However, when one considers the size8 of the atoms in terms of their covalent

8The author is well aware of the fact that quantum-mechanically speaking an atom does not have a
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atomic radii, one can see that Ca tends to bind to other atoms with larger distances
than Zn and Mg, which are relatively similar in this comparison of their atomic radii
[17, p. 141].
The resulting thermal conductivities are displayed in figure 5.21. It can be seen that
the intuitive expectation one would have, is confirmed since the thermal conductivity
decreases with increasing mass of the metal atoms, although no straightforward relation
can be observed.

In figure 5.22 the phonon band structure for all three studied systems is shown. By
comparing the plots for each system, one can find that for MOF-5(Mg) the acoustic
bands have the biggest slopes i.e. larger group velocities. Especially at the high symme-
try point W the band minimum reaches to lower frequencies compared to MOF-5(Ca)
and MOF-5(Zn), and the acoustic band along the path X-W-K shows considerably more
dispersion. Furthermore, the (transversal) acoustic bands flatten out at higher frequen-
cies in the case of MOF-5(Mg) compared to the other two systems. Another interesting
feature concerns the optical band that has a nearly constant frequency for all q points in
MOF-5(Mg) at about 20 cm−1. This band corresponds to torsional modes of the phenyl
rings along the linker axis. It seems to go down in energy for increasing atomic mass
of the metal. For the system of MOF-5(Zn) it can be seen that the phonon modes of
this band seem to interact with the acoustic band. Avoided crossings are present, the
most distinct one being near Γ along the Γ-X path. This mode interaction results in an
overall flattening of the bands that occurs at lower frequencies compared to the systems
with the alkaline earth metal systems. Due to the lower frequency, at which the acoustic
bands hit the Brillouin zone boundary, the cutoff frequency νcut is reduced, which is
used to truncate the integrals in the calculation of the temperature scaling factor ac-
cording to equation (3.30). As a consequence, this circumstance has an influence on the
Θ temperature scaling factor, having a direct impact on the phonon lifetimes according
to equation (3.25).
Another interesting feature, which one can recognise from visual inspection of the band
structure, is that along the q point path Γ-X there is a splitting of the two transversal
acoustic bands in the case of MOF-5(Zn). After it has been assured, by comparison
of the band structure with the one computed with a larger super cell, that the reason
for the splitting of the transversal acoustic bands is not insufficient convergence of the
force constants, the symmetries of the systems were compared. It turned out that the
symmetry in the relaxed geometry of MOF-5(Zn) is reduced compared to MOF-5(Mg)
and MOF-5(Ca) and that no increased tolerance of phonopy could restore it. While for
MOF-5 with the alkaline earth metals the symmetry analysis revealed the space group
Fm3̄m (225), the slightly less symmetric cubic space group Fm3̄ (202) was found for
MOF-5(Zn). This can be explained by investigating the geometry of MOF-5(Zn) in
more detail. It turns out that in the systems with higher symmetry (MOF-5(Mg) and
MOF-5(Ca) with space group Fm3̄m), all phenyl rings of the linkers lie in planes, which
are aligned along the face diagonals of the cubic cell. The phenyl rings of MOF-5(Zn)
show a slightly different dihedral angle, what obviously disturbs the symmetry of the

defined size, but rather its extent in space decays with distance, with approaching 0 at infinity.
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(a) MOF-5(Mg)

(b) MOF-5(Ca)

(c) MOF-5(Zn)

Fig. 5.22: Phonon band structure of the MOF-5 structure where the metallic nodes were
varied. All the systems have an fcc Bravais lattice. The bands are coloured
in a logarithmic scale showing the contribution to the thermal conductivity
κ per q point and mode.
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system. A measure for this misalignment is the dihedral angle between the face diagonal
plane and the plane of the phenyl ring ∆φ ≈ 4.6◦ For better understanding, the geome-
try of MOF-5(Zn) is compared with that of MOF-5(Mg) in figure 5.23. Interestingly, for
lattice constants a > 13.4 Å, much larger than the found equilibrium value, the space
group with more symmetries is restored. This means that the symmetries and the band
structure could be manipulated by varying the external pressure.

(a) MOF-5(Zn)

(b) MOF-5(Mg)

Fig. 5.23: Geometries of MOF-5(Zn) and MOF-5(Mg) relaxed with DFTB+. The link-
ers of MOF-5(Zn) pointing out of the paper plane are not perfectly aligned
with the planes, which correspond to the lines drawn with an angle of 45◦
between the long molecular axes of the linkers of one face of the cubes. The
result is the dihedral misalignment ∆φ.
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(a) Full range

(b) Zoomed in range

Fig. 5.24: Density of states (DOS) of MOF-5 with with different metallic nodes in (a)
full and (b) the low-frequency (ν) range. The cumulative DOS is plotted as
dotted line on the secondary ordinates.
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Finally, it can be seen in the band structures that the longitudinal acoustic bands -
i.e. in the present cases, the acoustic bands with the highest frequency - contribute more
to the thermal conductivity than the transversal acoustic bands. This can be explained
by the fact that the longitudinal ones have greater slopes, which enter squared in the
equation of the thermal conductivity.
By converting the integral over the q points of the first Brillouin zone to an integral
over frequencies by using the phonon DOS (cf. eq. (5.8)), the contribution per phonon
frequency can be obtained, as it was done for the linker variation in the previous section.
The DOS for the three investigated systems is shown in figure 5.24, broadened in the
same way as in section 5.3.2 (σ = 0.5 cm−1). As it could have been expected by now,
the relevant frequency region is a small part of the spectra, restricted to an interval of 0
to approximately 25 cm−1. Both, the full and a zoomed in range of the products of the
contributions to the thermal conductivity and the phonon density of states {κxx ·DOS}
can be seen in figure 5.26 in order to illustrate that absolutely no effect comes from
higher frequency. The mode contribution without multiplication with the DOS can be
found in figure 5.25 so that one can distinguish between frequencies with just a high
density of states and ones, which really tend to be more important for the thermal con-
ductivity.

Fig. 5.25: Mode contributions to the thermal conductivity (κxx) (solid lines, left or-
dinate) and their products with the density of states (DOS) (dotted lines,
right ordinate) of MOF-5 with different metallic nodes in low-frequency (ν)
range at 300 K.
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(a) Full range

(b) Zoomed in range

Fig. 5.26: Mode contributions to the thermal conductivity (κ) multiplied with the den-
sity of states (DOS) of MOF-5 with different metallic nodes in (a) full and (b)
the low-frequency (ν) range at 300 K. The cumulative integrals are plotted
as dotted lines on the secondary ordinates.

These plots show that the general behaviours of the contributions for MOF-5(Mg) and
MOF-5(Ca) are very similar, except for the region from about 3 to 8 cm−1 with slightly
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enhanced contributions in the case of MOF-5(Mg). This can be understood by looking
at the band structure plots of figure 5.22. The enhanced contributions are assumed
to stem from the regions of higher dispersion along the X-W path and from the band
minimum at W, which happens to extend far down to lower frequencies, where besides
the group velocities also the phonon lifetimes are larger within the assumed model. This
region up to about 8 cm−1 seems to be the main reason why the thermal conductivity
of MOF-5(Ca) is not quite as high as for MOF-5(Mg).
For MOF-5(Zn), however, the situation is rather different. Apart from the relatively
large contributions at 0 to 3 cm−1, there is only a more or less extended background
of thermal conductivity contributors which have already decayed when the frequency of
25 cm−1 is reached. Note that even the initial high contributions are reduced by a factor
of approximately 3 compared to MOF-5(Ca) in that region. It is, therefore, obvious
that the thermal conductivity is so much lower in MOF-5(Zn) compared to the other
systems. Why exactly this is the case, is the topic of the following discussion.
Conducting the same analysis for the variation of the metallic nodes as before, one
can start with discussing the quantity that is least likely to have a huge impact on the
contributions. The mode-dependent contributions to the heat capacity at a temperature
of 300 K can be seen in full and the low-frequency range in figure 5.27. The heat capacity
function (solid lines) at this temperature is still broad enough to cover a region extending
to much higher frequencies than the relevant region for the thermal conductivity. Like
it has been found when comparing different organic linkers, the heat capacity is nearly
completely irrelevant for the differences of thermal conductivities between the three
systems at this temperature.
Much more important is the influence of the group velocities which can be seen in
figure 5.28. As for the MOFs with different linkers, both, the squared x-component of
the group velocities and their products with the DOS (normalised with

∫
dνD(ν) = 3N)

are shown. For all three systems, high-frequency contributions around 1500 cm−1 exist
that will be cancelled by vanishing phonon lifetimes and mode-dependent contributions
to the heat capacity in that region. In the detailed plot of figure 5.28 one can see that
MOF-5(Mg) shows the greatest group velocities of the three investigated systems. A
small dip in the frequency-dependent (squared) group velocities can be found between 5
and 10 cm−1 in every case. The origin of this small minimum is probably the flattening
out of the transversal acoustic bands, which can be seen in figure 5.22 along the Γ-X-W
path. For MOF-5(Zn) the group velocities are not reduced so drastically as one would
expect from seeing the relatively low thermal conductivity. In the interesting frequency
region it is comparable to MOF-5(Mg) and MOF-5(Ca), with the squared absolute
values differing by about a factor of 2 between MOF-5(Mg)and MOF-5(Zn). So, the
group velocities alone would not be able to explain the rather significant differences in
thermal conductivities between the systems. The last group velocity related feature that
should be discussed is that MOF-5(Zn) shows relatively large peaks at about 500 and
1400 cm−1. This means that there are band slopes for those higher frequencies that are
even comparable with those of the acoustic bands near Γ. If one could find a temperature
(< 300 K), where, on the one hand, the phonon lifetime decays slowly enough to make
these vibrations accessible and, on the other hand, the heat capacity function
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(a) Full range

(b) Zoomed range

Fig. 5.27: Mode heat capacities (C) (solid lines, left ordinate) and their products with
the density of states (DOS) (dotted lines, right ordinate) of MOF-5 with
different metallic nodes in (a) full and (b) the low-frequency (ν) range at
300 K.
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(see eq. (3.10), fig. 3.1) still extends to high enough frequencies, it is very likely that
the thermal conductivity of MOF-5(Zn) increases more than those of MOF-5(Mg) and
MOF-5(Ca) would.
Finally, the most interesting quantities that appear to constrain the relevant contribu-
tions from the group velocities to that rather small frequency range, the phonon lifetimes,
are shown as the (properly normalised) product with the density of states in figure 5.29.
The main reason for the decreased thermal conductivity of MOF-5(Zn) compared to the
other two systems are, therefore, the lower phonon lifetimes that are reduced by about
a factor of 10. This can be rationalised by looking at the relatively large MSGP of
MOF-5(Zn) as displayed in figure 5.19 and the prefactors according to equation (3.25)
listed in table 5.3. The higher MSGP, which are a measure of anharmonicities in the
system, and the lower temperature scaling factor Θ directly decrease the phonon life-
times. If this was not the case, MOF-5(Ca) and MOF-5(Zn) would have very similar
thermal conductivities as their group velocities are both in the same range, while those
of MOF-5(Mg) are slightly higher.
Another very interesting feature that is directly related to the previous discussion about
the phonon lifetimes is the fact that for low temperatures (< 100 K) MOF-5(Ca) ap-
pears to have a higher thermal conductivity than MOF-5(Mg). This can be understood
in the following way. Obviously, MOF-5(Ca) has a lower degree of anharmonicity, which
results in a slightly smaller mean squared Grüneisen parameter (MSGP) than MOF-
5(Mg). Therefore, for low temperatures the phonon lifetimes increase, while the heat
capacity envelope becomes narrower and narrower. When the heat capacities become
the limiting quantity, only the group velocities of the very low frequency modes can
contribute. Those modes, however, are then mainly the acoustic ones, where the group
velocities do not differ significantly between MOF-5(Mg) and MOF-5(Ca). If the group
velocity influences are (roughly) the same for both systems, the only remaining effect is
that of the phonon lifetimes, which is higher for MOF-5(Ca) due to the lower MSGP.
Therefore, for low temperatures, MOF-5(Ca) supersedes MOF-5(Mg) as the system with
the highest thermal conductivity.
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(a) Full range

(b) Zoomed in range

Fig. 5.28: Mode contributions of the squared group velocities in x direction (vg,x) (solid
line, left ordinate) and their products with the density of states (DOS) (dot-
ted line, right ordinate) of MOF-5 with different metallic nodes in (a) full
and (b) the low-frequency (ν) range.
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(a) Full range

(b) Zoomed in range

Fig. 5.29: Mode dependent phonon lifetimes (τ) multiplied with the density of states
(DOS) of MOF-5 with different metallic nodes in (a) full and (b) the low-
frequency (ν) range at 300 K.
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Another kind of analysis that especially makes sense when one considers different
atoms, but the same geometries - i.e. linkers - is to evaluate the projected phonon
density of states (PDOS). By making use of a PDOS analysis one can assign the degree
of participation of certain atoms in each part of the density of states. Since a separate
PDOS for every atom in the considered systems (106 atoms in the primitive unit cell)
would be rather unclear, the PDOS is calculated for atoms of the same species which are
in chemically inequivalent positions, though. The (arbitrary) labelling of the inequivalent
atoms can be seen in figure 5.30.

Fig. 5.30: Indication of how atoms that are in chemically inequivalent positions in the
MOF-5 geometries are labelled in the projected density of states plots in
fig. 5.31, 5.32, and 5.33.

All the hydrogen and metal (Mg, Ca or Zn) atoms in the cell are equivalent, whereas
for oxygen and carbon there are different chemical environments, as can be seen in the
sketch above. In the case of oxygen, there is one atom in the middle of the metallic nodes
participating in the structure of all four metal-oxygen tetrahedra, while all the others
are acting as the connection between the metal atoms and the organic linkers. For the
carbon species one can even find three different chemical environments depending on the
position within the linker.
The general definition of the phonon PDOS according to [61] contains the squared ab-
solute value of the projection of the complex eigenvectors en (corresponding to a certain
eigenmode ωn) onto a unit vector, representing the direction along which the projection
is accomplished. Here, no distinction will be made between different directions of the os-
cillations, but rather between the participation of certain atoms in order to see, which of
the atoms are the most important ones for the thermal transport properties. Therefore,
the PDOS for an atom j, as it is used here, will be defined as the sum of the general
PDOS expression over the cartesian directions x, y, z. This can be mathematically
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expressed by equation (5.10). In this relation the summation is to be performed over
all the bands indices n and q points in the first Brillouin zone, which label the eigenfre-
quencies ωn,q and orthonormal eigenvectors en,q

9. The summation over n,q means to
sum over every band and wavevector. Therefore, all occurring phonon modes sampled
on a discrete mesh in the first Brillouin zone are considered. Note that by the variables
ejn,q,i with i = x, y, z it is meant that only those three components of the full eigenvector
(of length 3N) are considered that correspond to the atom labelled as j.

PDOSj(ω) =
∑
n,q

δ(ω − ωn,q)
(∣∣ejn,q,x∣∣2 +

∣∣ejn,q,y∣∣2 +
∣∣ejn,q,z∣∣2) (5.10)

Fig. 5.31: Projected density of states (PDOS) for MOF-5(Mg). The PDOS is normal-
ized in such a way that the integration over the wavenumber ν gives three
times the number of the respective atoms. The labelling of the chemically in-
equivalent atoms can be found in fig. 5.30. A broadening has been introduced
by means of eq. (5.2) with σ = 2 cm−1.

Like it was done at several points earlier, the delta distribution of equation (5.10) is re-
placed by a Lorentzian function (see eq. (5.2)) with a broadening parameter σ = 2 cm−1

9The eigenvectors of the dynamical matrix have to be multiplied with the square roots of the respective
atomic masses in order to obtain the real space displacements.
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to account for finite linewidths, or similar deviations from the perfect situation. In con-
trast to previously applied broadening, which was consistently chosen with σ = 0.5 cm−1,
a higher width was used in the analysis of the PDOS because a larger region of the spec-
trum is considered.
The PDOS for MOF-5(Mg), MOF-5(Ca), and MOF-5(Zn) can be found in figures 5.31,
5.32, and 5.33. As before, the normalisation of the DOS is defined in such a way that
the integration should yield three times the total number of atoms in the system. Sim-
ilarly, by using equation (5.10) it is assured that the integration of a particular PDOS,
corresponding to Na atoms, yields 3Na. Note that the PDOS contributions are displayed
in a stacked way so that the outermost contour can be directly interpreted as the total
phonon DOS.

Fig. 5.32: Projected density of states (PDOS) for MOF-5(Mg). The PDOS is normal-
ized in such a way that the integration over the wavenumber ν gives three
times the number of the respective atoms. The labelling of the chemically in-
equivalent atoms can be found in fig. 5.30. A broadening has been introduced
by means of eq. (5.2) with σ = 2 cm−1.

It is obvious that in the case of MOF-5(Mg) especially the oxygen atoms O2 partic-
ipate in all the shown modes up to about 150 cm−1 at a high percentage. The central
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oxygen, however, appears to be rather reluctant to movement at all. There are only tiny
contributions coming from O1 at about 140 cm−1 and slightly above. This means that
this atom does not contribute to the thermal transport properties, which were found to
be significant only up to a frequency of 25 cm−1 for 300 K, at all. Its purpose is only
that of a structural element stabilising the metallic nodes. This trend can be observed
also for MOF-5(Ca) and MOF-5(Zn).

Fig. 5.33: Projected density of states (PDOS) for MOF-5(Mg). The PDOS is normal-
ized in such a way that the integration over the wavenumber ν gives three
times the number of the respective atoms. The labelling of the chemically in-
equivalent atoms can be found in fig. 5.30. A broadening has been introduced
by means of eq. (5.2) with σ = 2 cm−1.

Furthermore, one can learn from the PDOS that the different metal atoms participate
in the low-frequency modes to a varying extent. While Mg seems to contribute to phonon
modes only negligibly in the displayed frequency range, there is a larger overlap of the Ca
parts of the eigenvectors and even larger ones for Zn. There is obviously a tendency that
the heavier the metal atom is, the larger are its projected contributions to low-frequency
modes. This observation fits well to the simple picture of the one-dimensional chain with
different masses. With heavier atoms being involved, the phonon modes tend to be more
localised. This usually goes hand in hand with an increase in the relative amplitude of
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the heavier atoms compared to the lighter ones. This means, when the mass of the
heavier atom is increased, the vibrations become more localised - i.e. only certain parts
of the chains move. The low-frequency modes typically correspond to vibrations, in
which the heavier atoms move with larger amplitudes than the lighter ones. For heavier
metals in MOF-5, the modes become more localised and the amplitudes of the heavier
atoms increase, resulting in larger components in the eigenvectors and, therefore, higher
contributions to the PDOS (at lower frequencies).
Another observations one can make by comparing the contributions from the different

species for each MOF is that the relative participation of the carbon atoms is usually
the highest at low frequencies, up to 100 cm−1. For higher frequencies the relative con-
tributions from the carbon atoms decrease and oxygen related modes with increasing
involvement of the metals seem to dominate. Noticing that the high participation of car-
bon atoms can be mostly attributed to movement of the C3 atoms and that exactly for
those modes there is a non-vanishing involvement of the hydrogen atoms, it is clear that
the linker constitution and configuration is crucial for this part of the DOS. Therefore,
it clearly makes sense to vary the linker molecules in order to achieve different thermal
transport properties.
The hydrogen contributions start to be significant only at considerably higher frequen-
cies, what renders this species as well rather unimportant for thermal transport.

In summary, the analysis of the results from the variation of the metallic nodes re-
vealed the following tendencies. First, using metals with higher atomic mass does not
necessarily bring about an increase in volume of the unit cell, since for MOF-5(Ca) a
larger lattice parameter a than MOF-5(Zn) was obtained. This could sometimes be
useful to remember if one needs MOF geometries that are more open and provide more
cavity space, without changing, for example, the thermal transport properties too much.
Second, a correlation between the atomic mass of the metals in the nodes and the ther-
mal conductivity was found as one would qualitatively expect. The thermal conduc-
tivity decreases with increasing mass, mainly due to a flattening of the phonon bands
and, therefore, decreasing group velocities. However, no straightforward quantitative
relationship can be observed. It turns out that especially deep minima in the bands
- like that one at the high symmetry point W in the band structure of MOF-5(Mg) -
are beneficial for thermal transport in two ways: such band minima can show increased
phonon lifetimes if they are deep enough. This usually goes hand in hand with higher
group velocities along the path towards the minimum. This was found to be the main
reason for the higher thermal conductivity of MOF-5(Mg) compared to MOF-5(Ca) be-
cause the gradients of the bands are greater.
It could be shown that the presence of heavier atoms can lead to changes in the band
structures, which results in decreased group velocities and a larger degree of anharmonic-
ity. The mean squared Grüneisen parameters (MSGP) of MOF-5(Zn) was significantly
greater than those of the other two systems (cf. fig. 5.19 and tab. 5.3). From the calcu-
lation of the MSGP it emerged that by introducing Ca as metal in the MOF-5 geometry,
the harmonic approximation is restored to some extent compared to MOF-5(Mg). As a
result, the phonon lifetimes of MOF-5(Ca) are higher. At temperatures higher than ap-
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proximately 100 K, the longer lifetimes are compensated, however, by the slightly smaller
group velocities of MOF-5(Ca). Therefore, for temperatures T > 50 K MOF-5(Mg) has
the highest thermal conductivity. For lower temperatures, the low-frequency modes be-
come increasingly relevant because the heat capacity function gets narrower with higher
temperatures, favouring low-frequency phonons. The acoustic bands, which usually
have the smallest frequencies, show comparable group velocities between MOF-5(Mg)
and MOF-5(Ca). Additionally, the phonon lifetimes, which are larger in MOF-5(Ca)
than in MOF-5(Mg), increase with decreasing temperature, compensating the vanishing
difference in group velocities between the two systems at those temperatures. Therefore,
the thermal conductivity in MOF-5(Ca) exceeds that of MOF-5(Mg) at low tempera-
tures. It would be interesting to study the influence of the metal mass, separated from
other influences. This could be achieved by studying hypothetical systems, containing
(unrealistic) isotopes of the respective metal atoms.
By analysing the projected density of states (PDOS) of the systems, it was shown that
the metal atoms participate in the low-frequency modes to different extents. The found
tendency is that the heavier the metal is, the greater are the respective eigenvector com-
ponents for lower vibrational energies. A further observation is that a significant amount
of the DOS can be be attributed to oscillations, in which the oxygen atoms connecting
the linkers to the nodes are involved, whereas the central oxygen atom contributes to
a negligible extent. Therefore, it would be interesting to study also the influence of
those atoms in particular by attempting to (partly) replace them with other species
like sulphur, if possible. The carbon contribution to the PDOS is noticeably present in
the low-frequency region, resulting from oscillations that are low in vibrational energy.
Therefore, if one tries to tailor the thermal transport properties of a MOF, it is crucial
to consider both main constituents, the linkers and the nodes, with the linker being
expected to usually have a larger impact.

5.4. Concluding remarks

Aside from the analysis of the results obtained with the presented methods and models,
there remain some technical issues that have to be discussed at this point. The biggest
source of inaccuracy is supposed to be the phonon lifetimes according to the model in-
troduced in section 3.3. The main concern about the model of Bjerg et al. is that it was
not designed for organic or metal-organic systems. Especially critical is the question,
whether the empiric expression of the phonon lifetimes according to equation (3.25) can
be used straightforwardly for this class of materials. A more or less simple solution is
to adapt the fit parameters α and β in that equation in order to reproduce measured
results. The complication simply is that there are only few experimental results avail-
able yet. Wang et al. studied the thermal conductivity of another MOF (MOF-74) with
anisotropic geometry used the "exact" way to determine the phonon lifetimes via the
third order derivatives of the PES [25]. They observe a deviation from the τ−1

n ∝ ω2
n

relation for low frequencies.
Furthermore, the way in which the phonon lifetimes are calculated from the Grüneisen
parameters heavily relies on the Debye model and an empirically found relation for the
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thermal conductivity in noble gas crystals. Moreover, a possible anisotropy of the system
is not contained in the lifetime model. Some steps in the model would have to be adapted
in order to be able to use it for anisotropic systems. One has to scrutinise the calculation
of the mode Grüneisen parameters at first, which is performed after isotropic expansion
or compression of the system volume. Furthermore, the prefactor in the lifetimes model
depends on the mean squared Grüneisen parameter. This quantity can neither account
for anisotropy. For cubic systems, such as those that were discussed in section 5.3.2 and
5.3.3, the insufficient treatment of anisotropy is not a problem. However, it would be
interesting to study the change of the mode Grüneisen parameters with the (isotropic)
expansion/compression of the system. Since this step is the computationally most ex-
pensive one of the whole calculation procedure to obtain the thermal conductivity, as it
relies on three phonon calculations, this test could not be conducted. In principle, one
can even verify the mean Grüneisen parameter γ(T ) experimentally. According to equa-
tion (5.11) (cf. [17, p. 242]) the Grüneisen parameter is related to the linear thermal
expansion coefficient α(T ) via the isochoric heat capacity CV (T ), the bulk modulus B
and the volume V . Therefore, the Grüneisen parameter can be evaluated in practice by
measuring these properties that are usually experimentally accessible.

α(T ) =
γ(T )CV (T )

3V B
(5.11)

Obviously, there is room for improvement in the used phonon lifetimes model. Especially
the Debye model is problematic for systems with numerous rather flat optical bands. In
the Debye model, every band is supposed to have a linear dispersion relation, which is
not the case here. Already in the original model this was accounted for to some extent by
not using the Debye temperature as the temperature scaling factor Θ in equation (3.25),
but rather scaling it with N−1/3, with N being the number of atoms in the unit cell,
although the correct derivation would require the Debye temperature ΘD to be Θ. The
introduction of the additional factor N−1/3, which Bjerg et al. suggested, is mathemat-
ically equivalent to using a different value than 3 for β in equation (3.25) and rescaling
p accordingly. The way which is used here to define Θ for our systems, as described in
section 4.5, is somewhat different as the definition of the Debye temperature via equation
(3.30) is used employing the second and zeroth momenta of the phonon DOS. However,
the integral is truncated at the highest frequency an (longitudinal) acoustic band hits
the boundary of the first Brillouin zone. This is actually in better agreement to the
fundamental idea of the Debye model of linear dispersion relations for the bands. Up
to now, the way how to obtain this truncation frequency (νcut), however, is not very
sophisticated: the band structure is displayed and νmax is read from the plot. The high
symmetry point at which this frequency should be read out is problematic, because it
changes with factors like the symmetries of the systems, the presence of avoided cross-
ings etc. A better method one can think of would be to employ a routine to search for
modes which fulfil two essential criteria: the same symmetry in the eigenvector as the
acoustic bands emerging from Γ (considering the complex exponentials) and vanishing
group velocities. The maximum frequency of the found modes should then be the trun-
cation frequency νcut.
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In order to test the reliability of the model to compute the phonon lifetimes, it is planned
to employ molecular dynamics (MD) simulations. In those calculations, one can track
the total energy of the system for each time step and determine the relaxation times
from its autocorrelation function. The challenge is, however, to obtain this quantity for
a q point grid that is dense enough to be representative. In order to obtain the phonon
lifetimes for a 10× 10× 10 q mesh in reciprocal space, one has to run a MD simulation
with a 10× 10× 10 supercell, which is computationally very expensive. It is planned to
conduct simulations of that kind with DFTB+ using the same Slater-Koster files that
were used to calculate the phonon etc. to assure comparability between the results. The
results of the MD simulations should then be used to benchmark the model of Bjerg et
al. and adapt it if necessary.
Before this method has been verified, the results should be seen in such a way that
the general qualitative trends for the thermal conductivity for different systems are de-
scribed, but the absolute values are most probably not very accurate yet. Experimental
data as well as comparisons with different approaches like MD would be beneficial for
this benchmarking. Huang et al. published two studies, one experimental and another
employing MD calculations, where they investigated the thermal conductivity of MOF-
5(Zn) [55, 56]. They report values for the thermal conductivity of about 0.3 Wm−1K−1,
whereas the result presented here was about 0.03 Wm−1K−1 at 300 K. Their results are
actually in better agreement with the ones obtained for MOF-5(Mg) and MOF-5(Ca). It
has to be mentioned, however, that Huang et al. performed MD simulations for 1×1×1,
2× 2× 2, and 3× 3× 3 super cells, amongst which the reported thermal conductivities
still vary by about 10 %. Although their solution might not be converged yet with re-
spect to the system size, it is very improbable that even the converged solution would
be in agreement with the results presented here. Nevertheless, the tendency that the
temperature dependence of the thermal conductivity is very weak, was also found by
them (within certain uncertainties).
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6. Summary

Metal-organic frameworks (MOFs) are crystalline systems with a nearly unlimited num-
ber of different constitutions and configurations. By varying the main constituents - the
metallic nodes or the organic linkers connecting those - one can control their proper-
ties in a convenient manner. Due to the high porosity of MOFs, people came up with
numerous applications exploiting the large amount of internal surface area in fields like
catalysis, gas storage, and cooling. In most applications of MOFs, temperature gradients
are present. So the question arises, how efficient (fast) heat can be transported through
such materials. The origin of that heat can be exothermal reactions, the latent heat of
adsorption and many others. Although the thermal transport aspect of the applications
is one of the most crucial ones in practice, the fundamental relations and main influences
on the thermal conductivity have been hardly investigated yet. It is, therefore, vital to
study the thermal transport behaviour for this class of materials, which has gained a
lot of scientific attention in recent years. The biggest potential of MOFs can be most
probably attributed to the variety of possible structures using the tool box of organic
chemistry. If one can understand what governs thermal transport in detail, one can
make use of that knowledge and construct even anisotropic systems with the desired
properties in specific directions.
Since both, the synthesis and the experimental evaluation of the thermal conductivity
in MOFs can be rather expensive and challenging in practice, it is beneficial to predict
the properties of certain structures based on simulation results. The approach that was
chosen to model the thermal conductivity of MOFs is that of quasi-harmonic lattice
dynamics. Therefore, the lattice vibrations (phonons) are considered as being the dom-
inant thermal transport mechanism present in this kind of material. As a consequence,
to understand thermal transport, the vibrational properties have to be investigated as
a first step. From the Boltzmann transport equation within the relaxation time ap-
proximation, an expression for the thermal conductivity is derived by comparison to the
classical law of Fourier. Most of the required quantities can be calculated from phonon
band structure calculations. This was done with first-principle calculations based on
density functional theory (DFT) and density functional tight binding (DFTB) within
the harmonic approximation.
In order to be able to compare the results of the simulations to experimental data without
having to measure the entire phonon band structure, powder Raman scattering spectra
were calculated for some MOFs according to the method proposed by Porezag et al.
[34]. The frequency shifts of phonon modes are rationalised by structural considerations
of different linkers and nodes for various systems. By studying how and why certain
vibrational modes change between different MOF geometries, one can understand the
modified band structures and, therefore, estimate the expected changes in the thermal
conductivity. The shifts of some Raman active peaks from one MOF to another can
be understood by considerations based on classical properties of the constituents like
atomic mass, bond angles and lengths etc.
However, it was found at a relatively early point that large supercell sizes are necessary
to calculate the lattice vibration by means of the finite differences approach - sometimes
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requiring 8000 atoms and more in the cells. This can be rationalised by looking at the
pairwise interaction between the involved atoms in the system, which is modelled as a
set of linear springs the atoms are connected by. In the finite differences method for cal-
culating phonons, the Fourier transform of the force constants (the dynamical matrix) is
calculated, whose eigenvalues are the squared phonon frequencies. If one considers too
small supercells, one risks truncating the Fourier series too early, introducing artefacts in
the calculations, which usually appear as negative or imaginary frequencies. The longer
distances it takes to make the interatomic force constants decay, the larger supercells
are needed for a converged solution. In all the studied cases, the systems are too big to
be handled with the DFT based programme VASP [18, 19, 20]. This is where DFTB
had to be employed, using the DFTB+ code [46].
As the DFT calculations can be compared to experimentally obtained Raman scattering
spectra, it had to be made sure that also DFTB+ yields results with acceptable accu-
racy. A brief benchmark of the vibrational properties at the Brillouin zone centre Γ for
MOF-5(Zn) and IRMOF-3(Zn) obtained with VASP and DFTB+ is presented. Besides
a direct comparison of the phonon frequencies, where it is possible to reproduce the
general tendencies and the envelope of the density of states (DOS) at Γ (cf. fig. 5.6),
also an analysis evaluating the eigenvectors of the dynamical matrix was carried out.
The purpose of comparing the overlap of the eigenvectors from different calculations is
to test, whether the vibrational motion of the nodes could be reproduced. If one restricts
oneself to the very low frequency region of up to 50 cm−1, one can find that more than
50 % of the eigenvectors of VASP and DFTB+ have overlaps ≥ 0.9. The eigenvectors
characterised by their scalar products could be shown to be in not so perfect agreement
for higher frequencies, with the most significant deviations being found at the carbon
hydrogen valence stretch oscillations at about 3100 cm−1. It is shown, however, that
such high frequencies are completely irrelevant for thermal transport for several reasons.
In conclusion, the benchmark shows that DFTB+ can be used without a too significant
loss of accuracy as long as the relevant frequency range is low enough in vibrational
energy. Since those low-frequency modes typically contribute more to the thermal con-
ductivity, one can neglect the differences at very high frequencies.
Up to this point it has been discussed, how to obtain the harmonic phonon modes in a
relatively cheap way and how to verify the results by comparing them with experiments
or more accurate simulations. However, the question about the last missing quantity
has been completely neglected yet, namely the phonon lifetimes. Since the procedure
using the analytical expression usually is infeasible in terms of available resources, the
model of Bjerg et al. [16] has been employed. The central part of this model is a re-
lation for the phonon lifetimes in which the Grüneisen parameters enter, which can be
seen as measures for the degree of anharmonicities present in the system. Using this
model, which has been verified several times for inorganic crystals [16, 27], the thermal
conductivity for some selected MOFs has been calculated.
As a first step to deduce structure-to-property relationships for the thermal transport
behaviour of MOFs, a systematic concept to vary the constituents had to be introduced.
MOF-5(Mg) is regarded as the reference structure based on which certain constituents
are substituted. One can think of two possible directions: vary the metallic nodes or the
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organic linkers. In order to study the influence of the metal atoms, Mg is replaced with
Ca or Zn. The linkers are substituted by a larger aromatic molecule (IRMOF-14(Mg))
or by alkyne chains (IRMOF-131(Mg), IRMOF-132(Mg)) as displayed in figure 5.10.
Summarising the results for the variation of the organic linkers, it could be found that
the MOF-5 structure shows the highest thermal conductivity of all systems with differ-
ent linkers (cf. fig. 5.11). The three essential quantities - the heat capacities, the group
velocities, and the phonon lifetimes - were analysed in detail. The heat capacities, which
are related to the temperature occupation factors, do not limit the mode contributions
to the thermal conductivity at room temperature. The stronger constraint is exerted
by the phonon lifetimes, which limit the relevant frequency region to a range from 0 to
approximately 25 cm−1. The alkyne linkers show much larger mean squared Grüneisen
parameters (cf. eq. (3.28), fig. 5.19, tab. 5.3). Obviously, the degree of anharmonicity
is much larger in the alkyne MOFs resulting in decreased phonon lifetimes. It could
be seen that if two MOFs with similar linkers are compared, usually the system with
the larger lattice constant shows increased group velocities, provided that not too many
additional atoms are introduced. The overall temperature dependence of the thermal
conductivity of IRMOF-14 was shown to be the weakest of the studied systems.
Regarding the variation of the metallic nodes, the results are in qualitative agreement
with intuition. The higher the mass of the metal atoms, the lower the thermal conduc-
tivity. Although the group velocities are observed to be in the same range for Zn, Mg or
Ca nodes, MOF-5(Zn) has a lower thermal conductivity than the other systems by about
a factor of 10. The analysis shows that the reason for that can be found in very low
phonon lifetimes having its origin in a significantly increased mean squared Grüneisen
parameter of MOF-5(Zn). An interesting finding is that MOF-5(Ca) has higher phonon
lifetimes than MOF-5(Mg). This increases the thermal conductivity of MOF-5(Ca) more
rapidly for decreasing temperatures than for MOF-5(Mg). Therefore, at low tempera-
tures MOF-5(Ca) has the highest thermal conductivity of the three systems. One can
even go a step further and study the contributions of every species to the phonon DOS
to see, which atoms are more important than others for the relevant oscillations. It
turns out that for the low frequency modes, the carbon atoms of the linkers contribute
the most to the projected DOS (PDOS). Therefore, it appears to be more important
to vary the linkers than the metals in order to observe strong changes in the thermal
conductivity. However, the low-frequency bands of the linker oscillations are typically
relatively flat, which does not result in large thermal conductivity contributions. The
relative participation of the metal in low-frequency vibration increases with increasing
atomic mass.
It shall be stressed that the results are to be seen as qualitative tendencies, but not
as quantitative ones. For these classes of materials the model for the phonon lifetimes
still has to be verified using, for example, experimental data. In order to test the
semi-empirical relations, the phonon lifetimes are planned to be compared to molecular
dynamics simulations or to exact anharmonic lattice dynamics calculations.
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A.1. Heat capacitiy for a system of harmonic oscillators

The following derivation of the heat capacity of a system of independent harmonic
oscillators is inspired by [63, p. 140], although it is not done comprehensively there. One
starts by expressing the Hamiltonian, Ĥ, as a sum of its eigenenergies ~ωj multiplied
with the respective number operator of the jth oscillator, N̂j. The index j can be seen
as a shorthand notation for the quantum numbers q and n that are used in section 3.

Ĥ =
∑
j

~ωj
(
N̂j +

1

2
1̂

)
(A.1)

In the above equation the Hamiltonian has been expressed in its eigenbasis, in which it
is diagonal. The term including the identity operator 1̂ will be neglected in the following
derivation since it only shifts the energy scale by a constant which is irrelevant, if one
is interested in the heat capacity, i.e. the derivative if the energy with respect to the
temperature.
In the canonical ensemble the partition sum Z is defined as the trace of the density
operator ρ̂.

Z = tr {ρ̂} with ρ̂ = exp
{
−βĤ

}
and β =

1

kBT
(A.2)

Using the Hamiltonian of equation (A.1) and evaluating the trace in its eigenbasis, one
obtains the following result for the partition sum. The occupation number nj is the
respective eigenvalue of the number operator N̂j.

Z =
∑
n1

∑
n2

· · ·
∑
nM

exp

{
−β
∑
j

~ωjnj

}
(A.3)

=
∏
j

∞∑
nj=0

exp {−β~ωjnj}

=
∏
j

1

1− exp {−β~ωj}

The natural logarithm of the partition sum can, therefore, be written as:

lnZ = −
∑
j

ln {1− exp {−β~ωj}} (A.4)

This expression is helpful, when one wants to calculate the internal energy U according
to the following equation.
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U = 〈Ĥ〉 = tr
{
ρ̂Ĥ
}

=
1

Z

∑
n1

∑
n2

· · ·
∑
nM

~ωjnj exp

{
−β
∑
j

~ωjnj

}
(A.5)

=
1

Z

∏
j

∞∑
nj=0

~ωjnj exp {−β~ωjnj} = −∂ lnZ

∂β
= −

∑
j

~ωj
exp {β~ωj} − 1

From this expression of the internal energy, one can easily compute the heat capacity as
the derivative with respect to temperature:

C =
∂U

∂T
=
∂U

∂β

∂β

∂T
= kB

∑
j

(~ωjβ)2 exp {~ωjβ}
(exp {~ωjβ} − 1)2 (A.6)

A.2. DFTB3

DFTB3 is the acronym for a density functional tight binding method that expands the
DFT energy to third order with respect to the charge density[64]. In ordinary DFTB
this expansion is truncated after the second order. There are certain Slater-Koster files
available that offer the possibility to use the DFTB3 approach, where one has to set
further special parameters. In order to estimate the influence of the method on the
phonon frequencies, the vibrations at Γ were calculated for MOF-5(Mg) with DFTB
and DFTB3. This was done with the DFTB+ code. All simulation parameters were the
same as those reported in section 4.2. The additional parameters for DFTB3 are listed
in the following table.

Tab. A.1: DFTB3 parameters of the 3ob Slater-Koster files [48]. The Hubbard deriva-
tives are listed in atomic units.

Type of parameter Value of parameter

Short range damping ζ 4.00
Hubbard derivative Mg -0.02
Hubbard derivative O -0.1575
Hubbard derivative C -0.1492
Hubbard derivative H -0.1857

Comparing the lattice parameter a (cf. eq. (5.4)) for the two methods, DFTB3 yields
a slightly increased value of 13.175 Å compared to the result with ordinary DFTB of
13.165 Å. As can be seen in the following figures, neither the Γ point frequencies nor the
eigenvectors change significantly between the results obtained with DFTB and DFTB3.
The biggest relative change in the frequencies was a carbon-hydrogen vibration. This
makes sense, since there is this special treatment of interactions of hydrogen with other
atoms, based on a damping of short range interactions. However, this frequency is so high
(approx. 3000 cm−1) so that it has absolutely no influence on the thermal conductivity
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that depends only on modes in the low-frequency region. The biggest relative deviation
of DFTB from DFTB3 was less than 4 % in the range of 0 - 200 cm−1.

Fig. A.1: Phonon frequencies (ν) at the Brillouin zone centre Γ calculated within DFTB
and DFTB+ for MOF-5(Mg). Both simulations were carried out with the
DFTB+ package. The frequency spectra was broadened with a Lorentzian
according to eq. (5.2) with a broadening parameter σ = 2 cm−1 in order to
obtain a density D at Γ.

(a) all modes (b) modes up to 200 cm−1

Fig. A.2: Histograms of the dot product between phonon eigenvectors of MOF-5(Mg)
calculated within DFTB and the eigenvectors calculated within DFTB3.
Both simulations were carried out with the DFTB+ package. In (a) all modes
are considered, in (b) only modes low-frequency modes with a frequency up
to 200 cm−1.
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The only case, where it was essential to use DFTB3 together with a van der Waals
(vdW) correction (D3 with Becke-Johnson damping and the standard parameters for
DFTB3) was the geometry relaxation of MOF-508. The third order correction is sup-
posed to improve the description of non-covalent interactions, which are important for
the alignment of the 4,4’-bipyridine linker (44BP). The 44BP linker was therefore ro-
tated once around the axis defined by the two nitrogen atoms and the total energy of
the system was recorded every 0.5 ◦ in order to compute the PES with respect to the
dihedral angle ϕ which is measured between the symmetry plane in the middle of the
pyridine rings of 44BP and one of the terephthalic acid linkers in MOF-508.

(a) DFTB geometry (top view)

(b) DFTB3 geometry (top view) (c) PES w.r.t. the dihedral angle ϕ

Fig. A.3: PES with respect to the dihedral angle ϕ measured between the symmetry
plane between the pyridine rings of 44BP and one of the terephthalic acid
linkers in MOF-508 obtained with DFTB and DFTB3. The tetragonal sym-
metry is kept by the better description of the hydrogen-hydrogen interaction
of DFTB3.

From this plot it is obvious that without employing the DFTB3 with D3 vdW cor-
rection the 44BP is preferentially oriented along one of the axes of MOF-508. However,
different situation would be the angle ϕ = 135◦. This can only be achieved by the
aforementioned corrections and is also in agreement with the geometry obtained with
VASP. It shall be stressed that it was only possible to obtain the described geometry
(with ϕ = 135◦) by including both, the vdW correction and the DFTB3 functional.
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A.3. First Brillouin zone and high symmetry point of a fcc Bravais lattice

A.3. First Brillouin zone and high symmetry point of a fcc
Bravais lattice

Fig. A.4: First Brillouin zone of an fcc Bravais lattice. By courtesy of Elsevier [62]
.
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A. Appendices

A.4. Linear linkers: IRMOF-130, IRMOF-131, and IRMOF-132

Contrary to increasing the linker length, one can could alternatively shorten it, resulting
in a MOF that will be called IRMOF-130 (cf. fig. A.5(a)) in the following context. The
general trends discussed in section 5 are validated by the following observations.

(a) IRMOF-130(Mg) (b) IRMOF-131(Mg) (c) IRMOF-132(Mg)

(d) unreacted linker in
IRMOF-130(Mg)

(e) unreacted linker in
IRMOF-131(Mg)

(f) unreacted linker in
IRMOF-132(Mg)

Fig. A.5: Two-dimensional views of IRMOFs which differ only in the length of the linear
organic linkers, but not in the metallic nodes.

The linker used for IRMOF-130 is oxalic acid. The decreased length of this molecule
compared to the alkynes of IRMOF-131 and IRMOF-132 results in an equilibrium lattice
parameter a = (8.84640±0.00001) Å (cf. eq. (5.4)) obtained with DFTB+ for the afore-
mentioned settings. This lattice parameter results in a unit cell volume of about 1385 Å3

and an average mass for the primitive cell of M = 16.40 u, considering the 46 atoms
per unit cell. Further important parameters were the Debye frequency obtained from
phonopy (νD = 1165 cm−1) and the cutoff frequency (νcut = 98.3 cm−1), with which
the temperature scaling factor (Θ = 105.99 K) was calculated according to equation
(3.30). A constant product of phonon lifetime and squared frequency (cf. eq. (3.25)) of
76.21 THz was obtained.
The temperature dependent thermal conductivity can be seen in figure A.11. The con-
tribution per phonon frequency and q point can be found in the band structure plot in
figure A.7. The phonon DOS is shown in figure A.8.
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A.4. Linear linkers: IRMOF-130, IRMOF-131, and IRMOF-132

Fig. A.6: Calculated thermal conductivity (κ) as a function of temperature (T ) of some
IRMOFs with different linear organic linkers.

Fig. A.7: Phonon band structure of IRMOF-130(Mg) with a fcc Bravais lattice. The
bands are coloured in a logarithmic scale showing the contribution to the
thermal conductivity κ per q point and mode.

The same trends, as discussed before, can be observed, including a reduced mean
squared Grüneisen parameter (MSGP) for IRMOF-130 of approx. 38 (cf. fig. A.9),
resulting in larger phonon lifetimes, as can be seen in figure A.14. Interestingly, the
region of important contributions is extended to higher frequencies (approx. ≤ 60 cm−1)
as can be seen in figure A.6. The group velocities are somewhat reduced compared to
IRMOF-131 and IRMOF-132 (cf. fig. A.13).
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(a) Full range

(b) Zoomed in range

Fig. A.8: Density of states (DOS) of the IRMOFs with linear linkers in (a) full and (b)
the low-frequency (ν) range. The cumulative DOS is plotted as dotted line
on the secondary ordinates.
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A.4. Linear linkers: IRMOF-130, IRMOF-131, and IRMOF-132

Fig. A.9: Mean squared Grüneisen parameters at a temperature of 300 K for the studied
IRMOFs with linear linkers according to eq. (3.28).

Fig. A.10: Mode contributions to the thermal conductivity (κxx) (solid lines, left or-
dinate) and their products with the density of states (DOS) (dotted lines,
right ordinate) of the IRMOFs with linear linkers in low-frequency (ν) range
at 300 K.
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(a) Full range

(b) Detailed range

Fig. A.11: Mode contributions to the thermal conductivity (κ) multiplied with the
density of states (DOS) of the IRMOFs with linear linkers in (a) full and
(b) detailed frequency (ν) range at 300 K. The cumulative integrals are
plotted as dotted lines on the secondary ordinates.
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A.4. Linear linkers: IRMOF-130, IRMOF-131, and IRMOF-132

(a) Full range

(b) Detailed range

Fig. A.12: Mode heat capacities (C) (solid line, left ordinate) and their product with
the the density of states (DOS) (dotted line, right ordinate) of the IRMOFs
with linear linkers in (a) full and (b) detailed frequency (ν) range at 300 K.
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(a) Full range

(b) Detailed range

Fig. A.13: Mode contributions of the squared group velocities in x direction (vg,x) (solid
line, left ordinate) and their product with the the density of states (DOS)
(dotted line, right ordinate) of the IRMOFs with linear linkers in (a) full
and (b) the low-frequency (ν) range.
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A.4. Linear linkers: IRMOF-130, IRMOF-131, and IRMOF-132

(a) Full range

(b) Zoomed in range

Fig. A.14: Mode dependent phonon lifetimes (τ) (solid line, left ordinate) and their
product with the density of states (DOS) (dotted line, right ordinate) of the
IRMOFs with linear linkers in (a) full and (b) the low-frequency (ν) range
at 300 K. 117 / 117
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