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Zusammenfassung
Ein netzwerk-basierter Ansatz zur Identifikation von proteomischen Biomarkern
und Pathway-Analyse bei Myokardinfarkt

Biomarker spielen eine große Rolle bei der Identifizierung von Krankheiten, und haben somit eine
große Bedeutung in der Forschung. Dadurch, dass Herzkrankheiten zu den häufigsten Todesur-
sachen weltweit zählen, wird der Entdeckung von Biomarkern ein großer Teil der Forschung
gewidmet. Diese Masterarbeit beschäftigt sich mit einer aus zwei Schritten bestehenden Methode,
für die Identifizierung von proteomischen Biomarkern bei Myokardinfarkt und deren Wech-
selwirkungen. Durch die Anwendung eines Subset-Selektions-Algorithmus werden die vielver-
sprechendsten Proteine vorselektiert und für die nachfolgende Netzwerkanalyse verwendet. Diese
netzwerk-basierte Methode identifiziert wichtige Interaktionen zwischen diesen Proteinen, wobei
viel neue Information aus den Daten gewonnen wird. Die Schlüsselproteine und deren Inter-
aktionen wurden anhand von Literatur und Datenbanken verifiziert. Bekannte Biomarker bei
Myokardinfarkt konnten mit dieser Methode bestätigt werden, aber auch neue Proteine konnten
als mögliche Biomarker-Kandidaten identifiziert werden, wobei weitere Studien zur biologischen
Interpretation notwendig sind.

Schlüsselwörter: Proteomik, Biomarker, Pathway-Analyse, dynamische Netzwerke, Myokardin-
farkt

Abstract
A dynamic network-based approach for proteomic biomarker discovery and path-
way analysis in myocardial injury

Due to the significance of biomarkers for the identification of diseases, they play an impor-
tant role in the research area. A big part of the research is dedicated to the identification
of biomarkers for cardiovascular diseases being the most common cause of death worldwide.
This thesis introduces a two-step method for the identification of proteomic biomarkers in
myocardial infarction and pathway analysis. By using a subset selection method the most
significant proteins, using data from a longitudinal cohort study and a case-control study, were
preselected and included for the pathway analysis. Subsequently, a network-based approach
to identify crucial relations between proteins was applied. The selected proteins and relations
were analyzed by reviewing literature and different databases. Known biomarkers for myocardial
infarction could be identified, confirming this method, but also some new biomarker candidates
were identified, though, they need further investigation. Substantial amount of biological in-
formation could be added by the networks, showing many unexpected interactions between
the selected proteins, but more research on the biological interpretation and verification is needed.

Key words: proteomics, biomarker, pathway analysis, dynamic networks, myocardial infarction
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1. Assignment

The research dedicated to the biomarker discovery has become more important over time
due to the significance of biomarkers to identify diseases. Biomarkers go back in time long
before high-throughput technologies were invented. However, these technologies have made
it possible to analyze hundreds of molecules to identify specific disease-related signatures
with the objective to recognize a disease as early as possible and to even predict the
outcome of the disease. Knowing all this, the most effective treatment can be selected for
each patient individually.

Cardiovascular diseases belong to the most common causes for death worldwide. For this
reason, a big part of the biomarker research is devoted to cardiovascular diseases along with
cancer research. This thesis focuses on myocardial infarctions and a network-based pathway
analysis of proteomic data. The data originates from a study about planned myocardial
infarction from the Beth Israel Deaconess Medical Center, a Medical Center of the Harvard
University. The model of a planned myocardial infarction represents an accepted approach
for investigating a spontaneous myocardial infarction. The data consists of a derivation
and validation cohort with proteomic data of peripheral blood from different measurement
times, which allows the analysis through time. Additionally, blood was drawn from the
coronary sinus of a small group of patients, allowing another comparison. Furthermore,
proteomic data of peripheral blood from patients with a spontaneous myocardial infarction
and a control group is included.

The goal was to use a two-step network-based method to analyze this data. First a
subset selection method called Biomarker Identifier was applied to prioritize the proteins
and to include the most significant for the network analysis in a second step. These
networks, as a way to visualize the protein interactions through time, were used to analyze
the relations between proteins in addition to verify the proteins selected by the Biomarker
Identifier method.

Thus, the results are eventually discussed and interpreted with the support of the relevant
databases and literature reviews.



2. Biomarker Introduction

The importance of biomarkers has increased drastically over the last few decades as they
are used in many aspects of our lives due to their significance in the medical domain and
the ongoing discovery process has yet more to reveal. This chapter describes the relevance
of biomarkers and outlines the considerable steps of the discovery process in the research
area.

2.1. Preamble
In the ancient Egyptian medicine physicians tried to identify the cause of a disease with
a fraction of the knowledge and understanding of modern medicine. The Edwin Smith
Papyrus (1600 B.C.) is a clear reflection of many medical problems, which illustrates
their most effective treatments and, therefore, a remarkable testament. For instance, an
abnormal pulse rhythm was referred to heart diseases. [1]

Accordingly, biomarkers are a phenomenon that has been around for a very long time.
Also, Sushruta, the “father of surgery”, described in the seventh century B.C., that ants
were attracted by the urine of patients with diabetes. Urine was brought into focus for
many centuries because of its simple availability. Hippocrates (460 - 355 B.C.) is often
mentioned as the founder of uroscopy and he stated the hypothesis of urine as body fluid,
which was filtered through the kidneys. With the observation of bubbles on the surface of
urine he drew the conclusion that it might be a sign of a long-term kidney disease. This
appearance is now known to happen due to proteinuria. The Greek writer Theophilus
Protospatharius observed cloudiness while heating the urine from patients, which showed
signs of a kidney disease. Likewise, Paracelsus discovered the same cloudiness using vinegar
in the sixteenth century. The heat causes the precipitation of proteins, similar to acid.
Bringing it full circle, Richard Bright (1789-1859) discovered the correlation between
kidney disease through the autopsy findings of abnormal kidney and proteinuria. Many
other parameters were discovered and used as biomarkers with the passing of time, like
Roentgen’s discovery of the x-ray in 1895, producing an image which can be used as a
diagnostic tool. [2]



2. Biomarker Introduction

Thus, the biomarker research has steadily been increasing. Nowadays, a PubMed search
of the term biomarker lists more than 745 000 publications and over 19 000 publications
including the term biomarker in the title. i Over the course of time, the same search
was performed and listed more than 765 000 publications and over 20 000 with the term
biomarker in the title.ii

2.2. Definition
The term “biomarker” is composed of the two words “biological marker”. Although
biomarkers have been known for millennia, this term was first used in 1977 by Karpetsky,
Humphrey and Levy in the Journal of the National Cancer Institute [2]. In 1989, the term
biomarker was first introduced as a Medical Subject Heading (MeSH) [3]. In 1998, the
National Institutes of Health Biomarkers Definitions Working Group defined a biomarker
as

“a characteristic that is objectively measured and evaluated as an indicator of
normal biological processes, pathogenic processes, or pharmacologic responses to
a therapeutic intervention.” [4]

The World Health Organization (WHO) similarly defined a biomarker as

“any substance, structure, or process that can be measured in the body or its
products and influence or predict the incidence of outcome or disease.” [4]

There are not only these but also several other precise definitions, which fortunately overlap
considerably. In general, a biomarker refers to a broad range of subcategories of medical
signs. These are objective indications of health or disease states observed from outside,
measured on a sample, an obtained recording from a patient or an imaging test. Hence, a
biomarker can be pulse, blood pressure, urine, an electrocardiogram (ECG), a computed
tomography (CT) scan and much more. A biomarker measured on a biosample indicates
an abnormal condition correlating to a specific disease because of its characteristics. This
biosample can be a tissue test or molecule substances like a gene, metabolite, protein or
more complex chemistries. [3, 4, 5]

Considering all these definitions and examples, the term biomarker compromises a large
field of measurements, which have the common goal to reveal and understand the interaction
between the body and a disease.

iwww.ncbi.nlm.nih.gov/pubmed, as of 31.01.2018
iiwww.ncbi.nlm.nih.gov/pubmed, as of 31.05.2018
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2. Biomarker Introduction

2.3. Characteristics and Categorization
Diseases cause specific changes in tissue and biological fluids indicating to those specific
diseases. The analysis of the genetic, proteomic and metabolomic composition allows the
detection of the diseases as they occur or identification of individuals with predispositions.
The patterns of an overexpression of a substance correlate with important characteristics.
There are many steps from the pathogenesis to the clinical manifestation of a disease and
biomarkers can be used at any level, from the molecular to the organ level. Therefore,
different categories of biomarkers are available. [5, 6]

To identify those patterns and to predict the clinical outcome a biomarker should have
some significant properties to be useful. Some of the most important characteristics are
shortly stated in the following paragraph, nonetheless, it should be mentioned that the
desired properties and their significance are dependent on the intended use of the biomarker
and the disease.

One of the most crucial characteristics are the sensitivity and the specificity. These
two parameters should be as near to 100% as possible for a biomarker to get clinically
accepted and to differentiate health or disease states. The sensitivity is the percentage of
positive test results, given that the disease is truly present. The specificity is defined as
the ability of a marker or test to exclude the disease, given that the disease is truly absent.
Consequently, the clinical value of a new biomarker is only given if it is accurate, repro-
ducibly obtainable and objectively quantifiable, easy to interpret and certainly acceptable
for the patient. Furthermore, the biomarker should be specific to the disease and not due
to biological perturbations or environmental conditions. [3, 4, 5]

Additionally, the positive predictive value (PPV) and the negative predictive value (NPV)
can be a relevant feature for a biomarker. The PPV is defined as the percentage of
individuals with a positive test result and a present disease. The NPV, on the other hand,
is defined as the percentage of individuals with a negative test result and the absence of
the disease. Moreover, false negatives and false positives should be prevented, where the
false negatives indicate the individuals having the disease but a negative test result, and
the false positives, by contrast, indicate the individuals without the disease but with a
positive test result. False positive and false negative conclusions can, therefore, be a risk
for the clinical efficacy. A small summary of the ideal methods and important parameters
is shown in figure 2.1. [5, 7]

4



2. Biomarker Introduction

Figure 2.1.: Summary of ideal methods and significant parameters for disease diagnosis. [5]

As previously mentioned, biomarkers can be used at any level to identify characteristics of
a disease. Accordingly, different types of biomarkers can be distinguished. There are three
major types: antecedent or risk biomarkers, diagnostic and prognostic biomarker. The
antecedent or risk biomarkers are used to identify the risk of a patient to develop a disease.
Diagnostic biomarkers recognize an overt or early disease state and classify the severity of
a disease, whereas prognostic biomarkers are used to predict a future disease course, the
recurrence and response to therapy, but also to monitor the efficacy of a therapy. A small
overview of these three types is shown in table 2.1. More types and subcategories can be
found depending on differentiations in literature. [3, 8]

Types of Biomarkers

Antecedent/Risk biomarkers Identification of the risk of developing a disease

Diagnostic biomarkers Detection of overt disease
Classification of severity of disease

Prognostic biomarkers Prediction of future disease course
Prediction of recurrence and therapy response
Monitoring efficacy of therapy

Table 2.1.: Short overview of the major categorizations of biomarkers. [3, 8]

It is also possible that one biomarker may be used for both diagnostic and prognostic
purposes. However, a biomarker belongs generally to only one category. [9]
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2.4. Biomarker Discovery
Biomarkers have always played a major role in the medical practice since its inception. Most
of the historical biomarkers were externally visible indicators of physiological processes,
like fever, rash or swelling. However, the rise of high-throughput omic technologies over
the last decades has made it possible to search unique molecular biomarkers which are
correlated to diseases. The objective is to improve the early detection, determine the
prognosis, monitor the therapy response or select the most efficient treatments. Even
though the biomarker discovery and characterization process provides opportunities to
improve all of the above-mentioned situations, it also results in large datasets demanding
a variety of sophisticated methods of analysis to identify a biomarker associated with the
disease of interest and to be clinically approved. This discovery-driven biomarker process
and identification are comparable to looking for a needle in a haystack. [8, 10]

2.4.1. Current State

Biomarker research is rising, however, a great number of literature indicates that a lot
of presently used molecular biomarkers are inadequate to replace a clinical test. Even
though many have been suggested, they lack the required specificity or sensitivity for the
early detection of cancer or other diseases. For an early detection biomarkers must possess
such a high specificity to differentiate between cancer, which is clinically significant or just
related and benign. At the same time the sensitivity has to be high enough to ideally
detect small tumor masses before any clinical symptoms. Consequently, many proteomic
and metabolomic biomarkers are, up to the present, only used to detect an advanced stage
cancer with a low survival rate. [8, 5]

The current state of biomarker research may be illustrated with an example of blad-
der cancer biomarkers. Despite the huge effort which was made to find a biomarker, there
have not been any results of an acceptable test or rather biomarker which was specific
and sensitive enough to substitute cystoscopy. Bladder cancer has a recurring nature and
requires monitoring for three to six months, which makes the disease expensive to treat.
There are only some biomarkers which have been approved by the European Medicines
Agency (EMA) or the U.S. Food and Drug Administration (FDA) to monitor the recurrence
of bladder cancer. Some of these biomarkers are the nuclear matrix protein (NMP22) with
a sensitivity of 56% and hyaluronic acid/hyaluronidase measurements with a sensitivity of
92%. However, none of them are sensitive enough to be suited for population screening.
[5]
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Nevertheless, the present state also shows that the biomarker research constantly proposes
many novel promising biomarker candidates for a variety of diseases. Since the focus of
this thesis lies on biomarkers in cardiovascular diseases, a more detailed explanation and
some examples are stated in section 2.5. First, the general approach of the biomarker
discovery process will be explained in the following section.

2.4.2. Discovery Process

Biomarkers for the early detection and identification of a recurrent disease, but also
biomarkers to predict the outcome of a disease and the response to therapy require many
cooperating fields of expertise. This collaboration of interdisciplinary knowledge usually
includes biologists, clinicians, analytical- and biochemists, but also bioinformaticians. All
of these fields and sometimes more, cover the biomarker discovery process from study
design to biomarker validation. A schematic representation of these significant steps in
the biomarker discovery process is depicted in figure 2.2. [11, 12]

Figure 2.2.: Demonstrative representation of the major stages in the biomarker discovery process.
[11]

The advent of high-throughput technologies has made it possible to easily gather informa-
tion of thousands of individual molecules and generate large amounts of data, which require
many steps in the biomarker discovery process. Although there has been an “explosion”
in the biomarker research and the number of novel biomarker candidates is rising, there
is a low estimated rate of a successful clinical translation and application of biomarkers
due to issues along the numerous stages in the biomarker discovery process. However, the
ultimate goal is to establish these clinically accessible tests with clinical utility. [13, 14, 15]

An illustration of a general possibility of the procedure of the biomarker discovery using
high performance liquid chromatography (HPLC) and mass spectrometry (MS) is shown
in figure 2.3. A speciem is taken from diseased and healthy subjects and after analyzing
and comparing the results the discriminating factors can be determined. [5]
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Figure 2.3.: Generic procedure of a biomarker discovery process using HPLC/MS and statistical
data analysis. [5]

Study Design and Execution

The whole biomarker discovery process requires a careful consideration of various aspects,
hence, the study design is fundamental. Some important steps to consider are the disease
of interest, sample type, number of patients, class of molecule (metabolites, proteins,
nucleotides) and defining a hypothesis. These are some crucial steps in the discovery
process because they affect the integrity of the results. For instance, the number of patients
should be high enough to be statistically significant, and the proper sample collection,
preparation and storage can have a great impact on the specificity and sensitivity, two
parameters, which ideally should be 100%. [5]

Clearly defining the research question and the fundamental use of a biomarker can
be quite challenging in this early stage of the discovery process. Advantageously, in the era
of high-throughput omic technologies it is possible to interrogate thousands of molecules
without a priori hypotheses, but can be defined post hoc. In general there are two types
of development for biomarker identification, the discovery-based or data-driven approach
and the hypothesis-based or knowledge-driven approach. [8, 15]

Data-driven approaches make use of big datasets, which can let researchers face ter-
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abytes of raw data. These datasets are used to facilitate the clarification of the underlying
structure and to get first insights of possible new biomarkers. These large datasets have
to be reduced to a manageable size to obtain and understand the complex biological
information. To contrast with the data-driven approach the knowledge-driven approach
integrates data into available knowledge bases. The understanding of biological processes
and diseases is facilitated this way. A variety of different study designs can be used from
cohort and case-control studies to more complex designs like serial sampling or cross-over
designs. Serial sampling studies investigate kinetic characteristics and patterns of analytes
by tracking changes in levels over time. The most frequently used study design is the
retrospective case-control study, where patients with a particular medical condition (cases)
are compared with individuals without this condition but with other phenotypic and
particular characteristics (controls). Longitudinal cohort studies observe patients over
a period of time and allow them to serve as their own biological control. This reduces
the interindividual variability examined in other cohort studies. The study design is then
followed by the study execution. Also, the sample collection, preparation and storage as
well as the data collection is included here. [8, 16, 11, 17]

Data Mining

Significant effort is being made towards the discovery of novel biomarkers. With the
large toolbox of profiling technologies researchers need to handle immense data volume.
To reduce its dimension and complexity specialized software systems and algorithms are
necessary. In addition, the preprocessing and data mining should take less effort and time
than the data acquisition. [17]

Data preprocessing is the first essential step to ensure completeness and consistency,
because the throughput of various technologies precludes the analysis of the huge amout
of data at once. Some of the various methods of preprocessing is data transformation
(e.g. logarithmic scaling), data normalization (e.g. z-transformation) or data sampling
and outlier detection. Outlier detection is a significant task in order to avoid distortion of
the statistical analysis. [11, 18]

Data reduction is the next important step to reduce the complexity to a manageable
size, make the dataset easier to understand but also to eliminate noise. These include for
example, trend analysis, clustering and feature selection. Trend analysis is used to reveal
patterns which are statistically relevant and can therefore also be applied in population
data. Clustering refers to any approach to group the data according to certain characteris-
tics or criteria, such as specific cancer subtypes, similar expression patterns or to identify
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similar pathways. [8]

The goal of feature selection can be either to improve model predictive accuracy or,
on the other hand, to determine relevance for hypothesis generation. Features, or nu-
merous independent variables, characterize a data instance. For example a patient, who
potentially has cancer, and tumor markers as characterizing features. There might also
be a response variable, for example if the tumor is benign or malignant. Feature selec-
tion can be categorized into supervised, semi-supervised or unsupervised. Supervised
feature selection means that all the response variables are known for the data instances of
the dataset. If only some data instances have known response variables, the feature se-
lection is semi-supervised and unsupervised if none of the response variables are known. [19]

Feature selection methods have a broad classification into filters, wrappers and more
advanced methods like an embedded algorithm, which is commonly accepted in literature.
[11]

A summery of some data mining methods for independent and dependent samples is
shown in table 2.2. The method used in this thesis is the Biomarker Identifier (BI) which
will be explained in detail in section 3.2. A detailed review of the other methods is beyond
the scope of this thesis and can be reviewed in other literature.

Up to this point, these methods belonged to the data-driven approaches, however, the
knowledge-driven approaches make use of existing knowledge to facilitate the understand-
ing of underlying structures and processes. Methods which belong here are, for example,
protein-protein interactions (PPI) or pathway analysis. For the PPI method existing
knowledge of protein interactions with experimental datasets are used to understand
the underlying biological mechanisms since interactions between proteins play a key role
in most cellular processes. PPI studies focus on experimental identification of protein
interactions and their characterization, but also on the application of computational tech-
niques to predict interactions between proteins and domains based on experimental data.
Otherwise, pathway analysis represents another form of knowledge, which can be included
into biomarker discovery studies. The objective is again to develop an understanding of
mechanisms, which are disease-related at a molecular level. Pathway analysis happens in
three steps. First, for example, a set of genes is chosen, usually by a data-driven approach,
then a hypothesis with a biologically relevant question is formulated and eventually, a
statistical test is chosen to answer the question. [8]
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Independent samples

Unpaired Biomarker Identifier (uBI) - univariate filter method
- statistical evaluation score by combining a discriminance measure
with a biological effect term
- quick and effective ranking of features
- uBI scores permit prioritization of features
- uBI scores closely related to pBI scores
- appropriate for two class problems only

Support vector machine-recursive fea-
ture elimination (SVM-REF)

- embedded selection method
- SVM-REF uses optimized weights of SVM classifier to rank features
- appropriate for two class problems only

Random forest models (RFM) - embedded selection method
- RFM uses bagging and random subspace methods to construct a
collection of decision trees aiming at identifying a complete set of
significant features
- appropriate for multiple class problems

Dependent samples

Paired null hypothesis testing (Paired
t-test∗, Wilcoxon signed-rank test4)

- univariate filter method
- P value serves as evaluation measure for the discriminatory ability
of variables
- is an accepted statistical measure
- appropriate for two class problems only
- P value is sample size dependent
- two dependent samples

Paired Biomarker Identifier (pBI) - univariate filter method
- pBI uses a statistical evaluation score by combining a discriminance
measure with a biological effect term
- pBI scores permit prioritization of features
- pBI scores closely related to uBI scores
- appropriate for two class problems only

Table 2.2.: Summary of selected commonly used data mining methods for independent and
dependent samples for the identification of biomarker candidates. [11] ∗ normal distributed
data, 4 non-normal distributed data

Verification and Validation

Upon completion of the data mining and statistical analysis dozens to hundreds of poten-
tial biomarker candidates are selected. Hence, it is necessary to limit the number of the
biomarker candidates and to confirm the potential of each putative biomarker candidate.
Even though the number of publications declaring the identification of new biomarker
candidates is rising, the number of approved biomarkers is actually decreasing. A reason
for this decrease might be the high number of candidates identified as false-positive in the
identification phase or difficulties in the verification and validation phase. The lack of a
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method to verify hundreds of potential biomarkers is described as the “ bottleneck” of
biomarker development. [20, 21]

To reduce the number of candidates appropriate statistical analysis and the compari-
son with available databases are required. This knowledge and data can be obtained from
public repositories such as Kyoto Encyclopedia of Genes and Genomes (KEGG), Universal
Protein database (UniProt), Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) and literature. After the verification phase only a manageable list of biomarker
candidates proceed to the validation phase. This phase is a multifaceted process requiring
the collaboration of various clinical centers. Independent sample cohorts and validation
studies performed in a retrospective and prospective manner would be ideal to ensure
statistical relevance. The biomarker candidates have to be validated in clinical trials with
continuous monitoring of their performance and significance for a period of time before
the final approval. [11, 21]

2.5. Biomarkers in Cardiovascular Disease
Up to this point biomarkers were discussed in general, yet, from now on the focus will lie
on proteins as biomarkers in cardiovascular diseases.

The world’s leading cause of death and hospitalization are cardiovascular diseases in-
cluding stroke and ischemic heart diseases. Hence, a lot of time is spent on biomarker
research to improve early detection and select the most efficient treatments to achieve the
best clinical outcome possible. Proteomic technologies provide opportunities to measure
in a large-scale manner to discover new biomarkers. The human body is expected to have
over 20 000 proteins, based on protein-coding genes. Plasma is often used for proteomic
biomarker studies, since a broad range of proteins from all tissues can be found in this
complex mixture. The smallest abundant proteins in plasma are troponins and cytokines,
which are in the range of a few pg

mL
and less, in contrast to the most abundant protein

albumin which lies in the range of 35− 45 mg
mL

. The following example should illustrate this
broad range and the challenge on finding low-abundant proteins. Looking for a troponin
molecule with an abundance of 5 pg

mL
among albumin molecules at 45 mg

mL
, can be compared

to looking for one human in the entire human population. The first used technologies
to detect proteins were electrophoresis and mass spectrometry, on which many studies
on cardiovascular diseases are based on. Due to the lack and challenges of detecting
low-abundant proteins the number of studies based on more advanced technologies is
increasing. One aptamer-based technology, which is used to generate the data analyzed in

12



2. Biomarker Introduction

this thesis, will be explained shortly in section 3.1.1. [22, 23]

2.5.1. Biomarkers in Myocardial Infarction

Myocardial infarction (MI) is caused by prolonged ischemia resulting in myocardial cell
death, which occurs within hours after the onset of myocardial ischemia, with the highest
risk of fatality. Thus, these first few hours are crucial for the early diagnosis and quick
identification of an acute myocardial infarction (AMI) to initiate a timely treatment. [24]

Two established and used biomarkers for AMI are creatine kinase (CK) and cardiac
troponin. CK was already indicated as a biomarker for cardiac diseases in 1979. It is
primarily found in the cardiac and skeletal muscle, whereas the isoenzym CK-MB is in
the cardiac muscle. Cardiac troponin is highly specific to cardiac tissue and an accepted
diagnostic marker for a MI. It is released when irreversible myocardial damage has occured
and reaches peak values at 12 hours and can have high levels for days. [25, 24]

Another example is the heart-type fatty acid-binding protein (H-FABP). H-FABP has been
identified as early biomarker for ischemia since it is released only 30 minutes after a MI.
B-type natriuretic peptide (BNP) is a well-known biomarker of biochemical stress and is
released if cardiomyocytes are under tension. Copeptin levels increase within minutes after
an AMI and is, therefore, another early biomarker for myocardial necrosis. Interleukin
(IL)-6 is a marker of early atherosclerosis and activates inflammatory cells as a reaction to
ischemia. [25, 24, 26]

Figure 2.4.: Illustration of some biomarkers with their associated pathophysiological process
associated with acute myocardial infarction (AMI). [25] CRP - C-reactive protein, PaPPA
- pregnancy associated plasma protein, H-FABP - heart-type fatty acid-binding protein, BNP - B-type
natriuretic peptide, ANP - atrial natriuretic peptide, GDF-15 - growth differentiation factor-15
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A graphic representation of various associated biomarkers with AMI, including some of
the before mentioned, is shown in figure 2.4. To effectively use the initial hours of an AMI
to reduce the mortality, research of cardiac biomarkers is significant for a rapid diagnosis.
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The method used to analyze the data to ensure a meaningful interpretation is based on
a two-step preprocessing procedure. First, a subset selection method was applied to the
preprocessed data for prioritization purpose. In the next step, the networks were generated
with the before prioritized proteins to show significant interactions. The method for the
subset selection was implemented in the language R, based on the R-package BiomarkeR
from [27] and is publicly available. The implementation of the networks is based on the
approach from [28] and [29]. All of this R-code was adapted and extended to fit for the
relative RFU proteomic data.

3.1. Data Background
The data used in this thesis originates from [22], a study about planned myocardial
infarction (PMI) from the Beth Israel Deaconess Medical Center, a Medical Center of
the Harvard University. The patients of this study suffer from hypertrophic obstructive
cardiomyopathy (HOCM). This hypertrophy of the myocardium obstructs the outflow of
blood from the left ventricle of the heart. During a PMI, patients undergo an alcohol
septum ablation as a treatment of HOCM. The clinical model of PMI represents a sponta-
neous myocardial infarction (SMI), where blood samples can be drawn at different times
to study the changes in molecule levels.

The data includes 1129 different proteins and consists of a derivation and a validation
cohort, each containing data from 15 patients. Peripheral blood was drawn before the
alcohol septum ablation, which represents the baseline (BL) value, 10 minutes (10min),
1 hour (1h) and 24 hours (24h) after the ablation. As a longitudinal cohort study each
patient could serve as their own biological control to reduce the interindividual variability.
With the placement of a catheter into the coronary sinus blood was drawn at baseline,
10 minutes and 1 hour from an additional 6 patients, allowing the comparison of two
different measurement locations and serving as a second validation cohort. Furthermore,
the data includes patients with a SMI and a control group, which underwent a cardiac
catheterization without having a myocardial ischemia, with each 23 individuals. To ensure
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the principles of the Good Clinical Practice (GCP), informed consent was obtained from
all participants and [22] offers more details about the inclusion criteria. [22]

3.1.1. Data Generation

The data was generated by a high-throughput proteomic aptamer-based technology called
SOMAscan R© assay by SomaLogic. It is a powerful tool for discovering biomarkers measur-
ing over 1.300 proteins in an exceptional dynamic range across eight orders of magnitude
in abundance, from femtomolar (fM) to micromolar (µM). The here used SOMAmer R©

(Slow-Off-rate Modified Aptamer) reagents benefit from aptamer technology. Aptamers
are oligonucleotides of short single-stranded DNA or RNA molecules able to bind protein
targets with high specificity because of a specific sequence. However, identifying aptamers
is difficult because the more limited chemical diversity of nucleic acid than that of proteins.
To overcome this, chemically modified nucleotides are added expanding the chemical
diversity and, therefore, enhancing the specificity. [30, 31]

A SOMAmer assay quantitatively measures the proteins in a biological sample by trans-
forming them into a specific SOMAmer-based DNA signal. This signal is quantified by
fluorescence, leading to relative fluorescent units (RFU), which is directly proportional to
the amount of protein in the initial biological sample. [30, 31]

3.1.2. Data Preprocessing

Before the data could be used, it had to be prepared for further analysis. This first step of
the data preprocessing usually includes handling of missing values and outlier detection.
Because of the high-quality data, there were no missing values which had to be filled in.
To ensure statistical significant results outlier detection was performed by detecting and
replacing outliers with the upper or lower limit.

The whole dataset included more information, which was not all needed for these analyses.
Therefore, only the required information was extracted and used. This included the sample
IDs for each patient, the time points at which the measurement was done and all the raw
RFU values of the proteins. It should be noted, that the RFU values are relative values
and, therefore, also the results and, especially, the interactions between the proteins should
be interpreted as interactions in terms of expression and concentration changes, changes
in function and changes of conformity. All these parameters can play an important role in
the interpretation of the results.

16



3. Methods

The preprocessing of the data also included the separation in a non-targeted and targeted
approach. For the non-tageted approach all 1129 proteins were considered for the subset
selection, which will be explained in section 3.2. This subset of proteins from the derivation
cohort was then validated in the validation cohorts. For reasons of simplification, the
validation cohort with the measurement of the peripheral blood will from now on be
referred to as validation cohort 1 and the cohort with the measurement in the coronary
sinus will be referred to as validation cohort 2. For the targeted approach, on the other
hand, a subset of proteins was selected from the SMI data, and these proteins were
validated based on the PMI data.

3.2. Subset Selection Method
The subset selection method, called Biomarker Identifier, used in this thesis originates from
Baumgartner et al. [16]. The objective is to use this score to prioritize the protein data
and select a subset of proteins for further analysis. There are two different variations of
this model for paired and unpaired data, which will be explained in the following sections.

3.2.1. Paired Biomarker Identifier

The paired Biomarker Identifier (pBI) is defined for paired data and incorporates two
main features of the diagnostic test, the discriminatory ability (DA) and the coefficient of
variation (CV). These parameters in combination with the scaling factor λ and the effect
term

√
|∆change|/|CV | result in equation 3.1. [16]

pBI = λ ·DA∗ ·

√√√√ |∆change|
|CV |

· sign(∆change)

∆change =

∆ if ∆ > 1

− 1
∆ else

(3.1)

λ represents a scaling factor and is 100 by default. The DA is defined as percentage
change in one direction versus baseline. For instance, if 50% of the protein levels are
increasing, the DA is calculated as 0.5, likewise, if 75% of protein levels are increasing the
DA is 0.75. This parameter is usually defined in the range of [0.5, 1] and is rescaled to
be in the range of [0, 1] which is represented by DA∗, weighted by the biological effect
term

√
|∆change|/|CV |. If CV > 1, CV is set to be 1 by default, to only consider data
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distributions with a smaller variance. The mean percentage change of one point in time
versus BL is represented by ∆change and the direction of change by the sign function. [16]

This pBI score was used for the PMI time-series data and each patient served as their own
biological control. In order to calculate the pBI score the data was split up to each one
measurement time ti (i = 1, 2, 3; representing 10min, 1h, 24h) and t0 for the BL value as
reference. A positive value indicates an increasing level, while, a negative value indicates a
decreasing protein level compared to BL.

3.2.2. Unpaired Biomarker Identifier

The unpaired Biomarker Identifier (uBI) is defined for unpaired data and incorporates in
addition to the CV another two significant features from the diagnostic test, the sensitivity
and the specificity. These two parameters are combined in the true-positive rate (TP 2)
and the resulting equation is stated in 3.2. [16]

uBI = λ · TP 2∗ ·
√
|∆change|

CVref

CV
· sign(∆change)

∆change =

∆ if ∆ > 1

− 1
∆ else

with ∆ = x

xref

(3.2)

λ is again a scaling factor and 100 by default. The TP 2 is defined as the product
of sensitivity and specificity and represents an objective measure of discrimination between
two independent groups. The interpretation of this parameter is the following: TP 2 is 0.25
if sensitivity and specificity is 0.5, which does not indicate any valuable discrimination,
comparable with DA of 0.5. Note that TP 2 is set 0, indicating no discriminatory value,
if either sensitivity or specificity is < 0.5. TP 2 is defined in the range of [0.25, 1] and is
rescaled to [0, 1], represented by the parameter TP 2∗. Likewise to the pBI equation 3.1,
the biological effect term is represented by

√
|∆change| · (CVref/CV ). ∆change represents

the relative percentage change from one point in time to the reference and the division
of the CV of the two independent groups represents changes in the variance of the data.
The sign function displays as well the direction of change and x the mean value in either
of the groups. [16]
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The uBI score was used for the SMI data, consisting of two independent groups. The
control group served as the reference for the group of patients, who suffered from a SMI.
A positive value, again, indicates an increasing and a negative value a decreasing level.

3.2.3. Interpretation and Visualization

The rescaling of the parameters DA and TP 2 makes it possible to compare the absolute
pBI and the uBI and results in generalizing this subset selection method for both paired
and unpaired data. [16]

The use of this subset selection method was the first step to prioritize and to only
include the most significant proteins. Therefore, a threshold τ had to be defined to
exclude pBI scores, which are not high enough and, thus, proteins which are not suitable
for further analyses. The threshold could be chosen as the 0.5, 0.75 or 0.9 quantile
τ = {q50, q75, q90}, whereas, a lower threshold includes a higher number of proteins
for further analyses, but a higher threshold results in a more significant selection of proteins.

First, the pBI scores were calculated for all proteins for every time point ti versus BL, then
the threshold τ was computed of the absolute values and only proteins with |pBI| > τ

were included. Likewise, the uBI score was calculated for the two groups, the threshold
τ was computed and only proteins with |uBI| > τ were considered. τ was selected as
τ = q75, to include a moderate number but also to ensure a reasonably significant set of
proteins.

To show the changes of the pBI scores for the PMI data throughout time, barplot diagrams
were generated for each time point ti. In order to select the highest scores, the absolute
values were ranked and a selected subset of these scores were considered in the diagrams.
For reasons of visualization the subset of selected proteins included 30 proteins, which were
then also considered for the further network analysis. In that way, the diagrams illustrate
the most significant proteins based on the pBI score at each time point ti. Also, a barplot
diagram was constructed for the highest uBI scores, representing the most significant
proteins in the SMI data. These scores indicate the ability of a protein to be a good
biomarker, in other words, the higher the score in either direction, the higher the chance
of a protein to be a good candidate as a novel biomarker.
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3.3. Dynamic Network Generation
The subset selection was the first step to prioritize the proteins and to include a subset for
the further network-based analysis. Networks are a useful tool to analyze the interactions
between proteins and discover relationships of different pathways. Different genes inter-
acting in a network to regulate biological processes and, therefore, also regulate specific
diseases represent the basis for a network-based approach [32].

Since one of the objectives of this thesis is to analyze the proteomic data in a network-based
approach through time, only the PMI time-series data was considered for the second step
in the analysis. For the non-targeted approach the top 30 proteins from the derivation
cohort were used for the network analysis in all cohorts. For the targeted approach the uBI
score was first computed for the SMI data and only this subset of those 30 proteins with
the highest uBI score was considered in the analysis for the PMI data. Consequently, the
pBI scores were only computed for this small subset of proteins and, also, the networks
include solely those selected proteins.

The following sections focus on how the networks were constructed and visualized, which
can then be seen in chapter 4.

3.3.1. Dynamic Network Construction

After selecting the most significant proteins for the network construction, the next step
was to determine and visualize the interactions between them.

In order to do so, a network G with a set of vertices V and edges E, connecting the
vertices, was constructed. A network G is, therefore, defined as G = (V,E), where the
vertices V or nodes represent the proteins and the edges E the interactions between the
proteins. At first, the logarithmic ratios R of all proteins P , using the RFU values, were
calculated, as rij = |log2( pi

pj
)| with i > j, r ∈ R, p ∈ P and p must be positive (p > 0).

The logarithm was used to induce the symmetry of the protein ratios and their reciprocals.
[27]

Next, the pBI score was calculated for all ratios r according to equation 3.1 and de-
scribed in section 3.2.1, which will be referred to as pBI∗ score. To determine if an
interaction between two proteins took place, a threshold had to be defined. Once again,
the threshold τ could be defined as τ = {q50, q75, q90}. If |pBI∗| > τ an interaction
between these two protein was assumed and an edge was constructed to connect the two
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nodes corresponding to these two proteins. As a threshold τ the 0.75 and 0.9 quantile
was used to guarantee significant results. This process was performed for every time
point ti, resulting in i networks for each cohort allowing the analysis of the changes of the
interactions around each protein between the cohorts and at each time point ti individually.

3.3.2. Dynamic Network Visualization

So far, networks were created representing the interactions around each protein for each
time point ti. These networks were combined in a final step of the analysis, which allows
the investigation of the interactions through time. The edges can be weighted by two
different methods, which will be introduced in this section.

The first method to combine the networks is by discretely weighting the edges. Hereto, a
binary adjacency matrix A is created for each time step ti with a 0 if there has been no
connection and a 1 if there has been a connection between two proteins pi. An example of
such an adjacency matrix A is illustrated below. [28]

A =



p1 p2 p3 p4 p5

p1 0 0 1 0 1
p2 1 0 0 1 1
p3 0 1 0 0 0
p4 1 0 1 0 1
p5 0 0 1 1 0


(3.3)

All the adjacency matrices for each time point ti are summed up over time, therefore, an
entry can have values from zero to i, the number of time points and, hence, the number
of networks combined. This final matrix is normalized to make the weight distribution
independent from the number of networks combined. To visualize this weight distribution
in the combined network, the edges are displayed in different thicknesses. The thicker
the line in the network between two proteins the more often an interaction has occurred
between them. If the edge is displayed as a thin line, fewer interactions have taken
place. In other words, a network with discrete weighted edges represents the frequency of
interactions between this set of proteins. [28]

The second method is by continuously weighting the edges by combining the networks
over time. This method is based on the pBI∗ scores, which are computed for each time
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point ti. In order to combine the networks over time, the scores are normalized to ensure
comparability. Equivalent to the discrete weighted edges, an adjacency matrix is created for
every time point. The only difference is, that the entries can now take values in the range
from [0,1]. All these adjacency matrices are, again, summed over time and normalized to
make the weight distribution independent from the number of networks combined. The
higher the pBI∗ scores have been for two proteins for every time point ti, the thicker
the edge will be displayed in the network. Consequently, a thin line illustrates a weaker
interaction between two proteins through time. In contrast to the discrete weighting,
the continuous weighting represents the strength of the interaction between two proteins
throughout all the time points. For reasons of visualization, the edges of all the combined
network graphs were weighted by a polynomial function of fourth degree. Consequently,
significant relations are illustrated in a more evident way. [28]

3.4. Protein Verification and Pathway Analysis
To achieve the best possible and significant results different cohorts were used to analyze
the most relevant proteins. As a first verification step only the most significant proteins
from the derivation cohort were selected and validated in a validation cohort. Due to
the extensive dataset, this selected subset of proteins could be validated in two different
validation cohorts, leading to more significant results.

After reducing the data to the most promising proteins and validating them in different
cohorts, these findings had to be verified in one more step. The verification of these results
is a meaningful task which should be done carefully to confirm the findings with already
known biomarkers and newly published biomarker candidates. Not only literature can be
used for this crucial task, but there are many publicly available databases like UniProt,
STRING and KEGG, just to mention a few.

To ensure various sources of information, not only literature was reviewed to confirm
already known proteins as biomarkers, but also the different databases were used to
gather additional information and to investigate pathways. Additionally, to guarantee a
wide-reaching and meaningful verification the software Ingenuity R© Pathway Analysis
(IPA R©), a powerful analysis software, was used for the verification of proteins and proteomic
pathways.
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This chapter provides an overview of the results which are based on the method described
in chapter 3. These results include different barplot diagrams showing the distribution of
the highest pBI scores, the networks at different time points and the combined networks
for the non-targeted and the targeted approach.

4.1. SMI vs. Controls

Figure 4.1.: Barplot diagram of the top 30 ranked proteins (uBI scores) of the SMI data vs.
controls at baseline.
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Figure 4.1 shows a barplot diagram of the uBI scores of the unpaired SMI data. The uBI
scores were calculated with equation 3.2 of the group of patients who suffered a SMI and a
control group. Shown are the top 30 proteins with the highest uBI score in either direction,
where a positive score represents an increasing level and a negative score represents a
decreasing level, which is illustrated by the red and blue bars.

The diagram shows the uBI scores at baseline, where it should be noted that all pa-
tients with a SMI came into the hospital at different times within the first few hours. The
proteins shown in figure 4.1 were used for the targeted approach. These results can be
seen in section 4.3.

4.2. Non-targeted Approach
For the non-targeted approach all 1129 proteins were used for the first verification step.
These proteins were prioritized and the most significant ones selected for further anal-
ysis. The following subsections will provide an overview of the pBI scores and the networks.

Also, as a general summary a table was created, which show the top 20 percentage
changes, calculated from the RFU values in each cohort at each measurement time ti
versus baseline. This table outlines the most significant changes for each cohort individually
including all proteins and can be seen in the supplement A.3.

4.2.1. Visualization of pBI Scores

The following barplot diagrams show the 30 highest pBI scores of the derivation and the
validation cohorts 1 and 2 at a measurement time of 10 minutes. Like mentioned in section
3.2.3 the barplot diagrams are a way to visualize the distribution of the highest pBI scores
of the selected subset of proteins, where the absolute values of the scores were ranked
beforehand. The red bars represent an increasing level and the blue bars a decreasing level
of the protein values. The barplot diagrams for all cohorts for the additional measurement
times can be seen in A.1, whereat there are barplot diagrams at 1 hour and 24 hours for
the derivation and validation cohort 1 and one more barplot diagram at 1 hour for the
validation cohort 2.

These barplot diagrams allow the comparison of the most significant proteins in dif-
ferent cohorts as a first verification step.
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Figure 4.2.: Barplot diagram of the top 30 ranked proteins (pBI scores) of the derivation cohort
at 10 minutes using the non-targeted approach.

Figure 4.3.: Barplot diagram of the top 30 ranked proteins (pBI scores) of the validation cohort
1 at 10 minutes using the non-targeted approach.
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Figure 4.4.: Barplot diagram of the top 30 ranked proteins (pBI scores) of the validation cohort
2 at 10 minutes using the non-targeted approach.

4.2.2. Dynamic Network Graphs

The dynamic network graphs illustrate the interactions around each protein of the selected
subset at each measurement time ti. The subfigures in figure 4.5 show all the single
networks at all time points ti for the derivation cohort and the validation cohort 1 allowing
a direct comparison of the interactions. Additionally, the interactions can be analyzed
through time for one cohort or in comparison with another cohort. The two networks at
10 minutes and 1 hour for the validation cohort 2 are shown in figure 4.6, which gives the
opportunity for a second verification with another cohort at two different measurement
times.

All these networks with a different threshold of τ = q75 are shown in A.6. A lower
threshold includes more interactions for a broader analysis.
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(a) (d)

(b) (e)

(c) (f)

Figure 4.5.: Network representation of the selected subset of proteins of the derivation cohort
(a-c) and validation cohort 1 (d-f) using the non-targeted approach at different
measurement times with a threshold of τ = q90. (a) derivation at 10min, (b) derivation at 1h,
(c) derivation at 24h, (d) validation 1 at 10min, (e) validation 1 at 1h, (f) validation 1 at 24h
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(a) (b)

Figure 4.6.: Network representation of the selected subset of proteins of the validation cohort 2
using the non-targeted approach at different measurement times with a threshold of
τ = q90. (a) validation 2 at 10min, (b) validation 2 at 1h

4.2.3. Combined Dynamic Network Graphs

To visualize the interactions around each protein through time in one single network, the
combined networks were created, explained in section 3.3.2. The two different approaches,
discrete and continuous weighted edges, are displayed in figure 4.7.

The continuous weighted edges are a method to show the strength of the interaction
through time, and the discrete weighted edges, on the other hand, are a representation
of the frequency of the interactions between the proteins through time. It should be
noted, that for the derivation cohort and validation cohort 1 three networks were combined
(10min, 1h, 24h) and for the validation cohort 2 two networks were combined (10min, 1h).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7.: Combined network representation of the selected subset of proteins with continuous
(a,c,e) and discrete (b,d,f) weighted edges using the non-targeted approach with
a threshold of τ = q90. derivation continuous (a) and discrete (b) weighted edges, validation 1
continuous (c) and discrete (d) weighted edges, validation 2 continuous (e) and discrete (f) weighted edges
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4.3. Targeted Approach
In the targeted approach a selected subset of proteins was used for the analysis of the PMI
data. This subset was extracted from the SMI data by calculating the uBI scores and
using the top 30 proteins with the highest score for the further analysis. Therefore, the
pBI score was only calculated for this subset and also the networks were created in the
same way like in section 4.2 for the non-targeted approach.

As an overview another table with the top 20 percentage changes of these 30 proteins was
created and can be seen in table A.2 in the supplement.

4.3.1. Visualization of pBI Scores

As in section 4.2.1 the following barplot diagrams show the distribution of the pBI scores
of the selected proteins. Again, the red bars represents an increasing and the blue bars a
decreasing level. The barplot diagrams show the pBI scores at 10 minutes for all cohorts.
The additional diagrams are illustrated in the supplement A.2, whereat there are barplot
diagrams at 1 hour and 24 hours for the derivation and validation cohort 1 and one diagram
for the validation cohort 2 at 1 hour.

Figure 4.8.: Barplot diagram of the top 30 ranked proteins (pBI scores) of the derivation cohort
at 10 minutes using the targeted approach.
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Figure 4.9.: Barplot diagram of the top 30 ranked proteins (pBI scores) of the validation cohort
1 at 10 minutes using the targeted approach.

Figure 4.10.: Barplot diagram of the top 30 ranked proteins (pBI scores) of the validation cohort
2 at 10 minutes using the targeted approach.
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4.3.2. Dynamic Network Graphs

To analyze the interactions around each protein through time for each cohort of the
selected proteins, dynamic network graphs were inferred and are shown in figure 4.10 for
the derivation and validation cohort 1 at each time point ti. Figure 4.11 illustrates the
networks for the validation cohort 2 at 10 minutes and 1 hour.

As well as for the targeted approach, additional networks with a threshold of τ = q75 are
shown in the supplement A.2.

(a) (d)

(b) (e)
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(c) (f)

Figure 4.10.: Network representation of the selected subset of proteins of the derivation cohort (a-
c) and validation cohort 1 (d-f) using the targeted approach at different measurement
times with a threshold of τ = q90. (a) derivation at 10min, (b) derivation at 1h, (c) derivation
at 24h, (d) validation 1 at 10min, (e) validation 1 at 1h, (f) validation 1 at 24h

(a) (b)

Figure 4.11.: Network representation of the selected subset of proteins of the validation cohort
2 using the targeted approach at different measurement times with a threshold of
τ = q90. (a) validation 2 at 10min, (b) validation 2 at 1h

4.3.3. Combined Dynamic Network Graphs

Like in section 4.2.3, the combined networks of the targeted approach represent the
interactions through time in a single network graph. Figure 4.12 shows the graphs for all
cohorts with the continuous and discrete weighted edges.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12.: Combined network representation of the selected subset of proteins with continuous
(a,c,e) and discrete (b,d,f) weighted edges using the targeted approach with a
threshold of τ = q90. derivation continuous (a) and discrete (b) weighted edges, validation 1
continuous (c) and discrete (d) weighted edges, validation 2 continuous (e) and discrete (f) weighted edges
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The last part focuses on the discussion of the results showed in chapter 4. Thereby, the
focus lies on the single proteins, which were identified using the Biomarker Identifier
method by comparing them to the results of the SMI data, literature and databases, but
also the interactions around the proteins by analyzing the networks shall be discussed.

A list of the verified proteins for the non-targeted and the targeted approach is dis-
played in the supplement in table A.3 with the used protein name, the full protein name,
the gene name and the UniProt ID.

5.1. Protein Verification
The paired Biomarker Identifier score was the first step to prioritize the proteins and,
therefore, gives also a first verification possibility of the proteins. The barplot diagrams
are used in this step to analyze the changes of the protein scores over time in different
cohorts. Figure 4.1 can be used as a comparison of any relevant and significant proteins.

The best known biomarker to detect a myocardial infarction is troponin I, which is
also clinically used. However, also CK-MB and Myoglobin are known biomarkers, in this
instance. Figure 5.1 shows a graphical representation of the relative changes of those three
known biomarkers after the onset of an acute myocardial infarction. This illustration is
supposed to give a general overview of the relative changes of these three biomarkers over
the course of a few days, but does not show an exact representation.

Figure 5.1 is intended to illustrate the significance of troponin I, which can also be
seen in the barplot diagram 4.1 of the SMI data. Troponin I is widely used because it has
a sensitivity of 100% and a specificity of 96.3% [33]. The uBI score of troponin I exceeds
the other scores, considerably. Prolonged myocardial ischemia results in myocardial cell
death, which is the reason why troponin I gets spilled in the blood leading to the increase
of troponin I levels in the first few hours and the level can stay increased for a few days.
CK-MB and Myoglobin also appear in the top 30 proteins having a high uBI score. The
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second highest uBI score in figure 4.1 belongs to the fatty acid-binding protein (FABP)
which is a previously identified marker of myocardial injury by various groups [22]. The
next sections will focus on the verification and discussion of the barplot diagrams using
the non-targeted and targeted approach.

Figure 5.1.: Illustrative diagram of the relative changes of Myoglobin, CK-MB and Troponin I
after the onset of an acute myocardial infarction (AMI). [33]

5.1.1. Non-targeted Approach

Table A.1 gives a general overview of the highest relative changes in each cohort. As
expected, the change of troponin I levels increase over the course of time, consequently,
it can be found on top of the list for the derivation and validation cohort 1, followed by
CK-MB. Since the level increases in the first few hours, troponin I can be found in the first
third for the validation cohort 2, because only two time points are available. Nonetheless,
the rapid increase of the level can be seen by comparing it to other levels like CK-MB. Table
A.1 shows, that Myoglobin just appears to play a role in the derivation cohort 2, where
blood was drawn from the coronary sinus. Figure 5.1 shows that Myoglobin levels decrease
fast, which might be the reason why Myoglobin is not included in the table for the deriva-
tion and validation cohort 1, since it does not play an important role anymore after 24 hours.

The increase of troponin I levels can also be observed by looking through the barplot
diagrams of the derivation and validation cohort 1 over the course of time. After 10
minutes the troponin I level is rather low, seen in figure 4.2, after 1 hour in figure A.1 the
level increases and reaches a peak value at 24 hours, seen in figure A.4. Thus, individual
protein levels can be analyzed through time using the barplot diagrams in addition to
comparing them to the other cohorts.
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In contrast to the table, the barplot diagrams in section 4.2.1 show the highest pBI
scores and include some features of a diagnostic test into the score and show, therefore,
another way of evaluating the proteins. By comparing the barplot diagrams for all cohorts
at 10 minutes in figures 4.2, 4.3 and 4.4 some proteins can be verified in all diagrams. Tro-
ponin I and CK-MB are yet to rise, therefore, in the lower part of the diagrams. Proteins
like GFRa-1, CCL28, TWEAK, HGF and sFRP-3 appear in the upper half of the diagrams
for every cohort. Certain proteins in the barplot diagrams are known biomarkers, and
there are many novel proteins, which are not (yet) associated with myocardial infarction
or atherosclerosis.

However, by checking different databases, the IPA database confirms that TWEAK,
for instance, plays a role in the atherosclerosis signaling pathway. It is also involved in
apoptosis (programmed cell death), which is increasingly observed upon plaque devel-
opment, though, the exact involvement of apoptosis in the development and the course
of atherosclerosis is controversial [34]. FABP appears also in all diagrams and can be
confirmed by different literature, see [22, 24, 25]. Examining the diagrams at 1 hour in
figures A.1,A.2 and A.3, it can be seen that the level of FABP increases over the course of
time. In the IPA database TFPI is associated with myocardial ischemia and PECAM1 is
involved in fluid shear stress and atherosclerosis according to the KEGG database and in
coronary artery diseases according to IPA.

Leucocytes play an essential role in atherosclerotic plaque rupture and, therefore, my-
oeloperoxidase in leucocytes might have an impact, since myoeloperoxidase has been found
in atheromatous plaques. The level of Myoeloperoxidase peaks early after an AMI and
decreases over time, which can be obseverd in the different barplot diagrams. However, it
does not predict heart failure, but high levels can predict MI after one year. These current
findings still need further studies to analyze the actual role of Myoeloperoxidase. [25]

The decreasing levels, shown by the blue bars in the diagrams, are an interesting appear-
ance which could not yet be further verified. However, it is noticeable, that the same
proteins show a decreasing level at 10 minutes but also at 1 hour. These proteins include
the Apo-B and Apo-E, and PF-4. According to IPA aspirin, given to patients after a
MI, decreases the release of human PF-4, which might be a possible explanation for the
decrease of PF-4. This decrease is very low at 24 hours for the derivation and shows a
slight increase in the validation cohort 1, since the influence of aspirin has vanished after
the first few hours. According to the IPA database, Apo-B and Apo-E are associated with
the atherosclerosis signaling pathway and Apo-E is involved in the negative regulation
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of inflammatory response, according to UniProt. The decrease of those proteins needs
further investigation, though.

5.1.2. Targeted Approach

The targeted approach was used to verify a selected subset of proteins in the PMI data.
The barplot diagrams at 10 minutes shown in figures 4.8, 4.9 and 4.10 include some of
the already discussed proteins for the non-targeted approach in section 5.1.1. Again, the
increase of troponin I and CK-MB can be observed over time. Myoglobin plays a role
in the targeted approach, since it appears in the upper half of the uBI scores in figure
4.1. The same effect of PF-4 can be seen in the barplot diagrams at the different time
points. FGF-18 is a novel protein in the context of early myocardial injury [22], which
also appears and shows an increasing level at 10 minutes and 1 hour and decreases again
at 24 hours in the derivation and validation cohort 1.

The objective of the targeted approach was to select a subset of proteins, which are
relevant for a SMI and verify them in the PMI data over time. Therefore, some proteins
which did not appear in the non-targeted approach play a role here. If figure 4.1 is
compared to the other barplot diagrams of the targeted approach, it can be seen, that
proteins, which have a high uBI score do not necessarily also appear in the upper half of
the barplot diagrams of the PMI data. These proteins are, for instance, PTN, MDHC and
Midkine. Solely, MDHC levels seem to increase and can be seen in the barplot diagrams
in figures A.11 and A.12 at 24 hours with a high score. Whereas, PTN and Midkine can
mostly be found in the middle section of the barplot diagrams.

Another interesting protein is HGF, which is involved in the negative regulation of
inflammatory processes and Endocan, which is involved in angiogenesis, according to
UniProt. Angiogenesis, the formation of new microvessels, could possibly contribute to the
salvage of ischemic myocardium at a early stage after a MI and, therefore, proangiogenic
therapies have prompted numerous clinical trials to investigate this promising strategy
[35]. Annexin A6 shows a decreasing level in the barplot diagrams at 10 minutes and 1
hour and according to IPA, annexin A6 is involved in the apoptotic signaling pathway.
Also by IPA, BMP-10 plays a role in cardiac hypertrophy by the negative regulation of
cardiac muscle hypertrophy. BMP-10 shows an increasing level in all cohorts and for all
time points in the middle section of the barplot diagrams. Nevertheless, the role of these
and other proteins in myocardial infarction needs to be further verified.
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5.2. Dynamic Network Verification
The dynamic networks represent the second step of the analysis, after selecting a subset of
proteins based on the pBI score. The creation of the networks is based on the pBI* score,
calculated of the logarithmic ratio of the proteins, explained in section 3.3. Since this is a
new way to analyze the relations between proteins, the represented interaction has to be
interpreted in different ways as it might be an interaction in terms of change of expression
and concentration, changes in function and changes of conformity. Thus, the interpretation
of these networks and the interactions pose a challenge, which requires further investigation.

The single networks at each time step for the non-targeted and targeted approach show
the change of the interactions through time, which can be validated in the validation
cohorts. In addition to the single networks, the combined networks were created, whereas,
the continuous weighted edges are a method to show the strength of the interaction
through time and the discrete weighted edges, on the other hand, represent the frequency
of the interaction between two proteins. For the continuous weighted edges a thick line
could represent one strong interaction at one time point or a continuous, moderate strong
interaction through time. The thicker the line for the discrete weighted edges, the more
frequent an interaction has taken place between two proteins.

5.2.1. Non-targeted Approach

Figure 4.5 shows the networks at each time point for the derivation and validation cohort
1. By examining subfigures (a-c) and (d-f), the changes of interactions for the individual
cohorts can be seen through time. The shift of the interactions to troponin I and CK-MB
at 24 hours is clearly visible. While these two proteins do not show many interactions at a
early stage, they dominate the networks at 24 hours. For the derivation cohort Apo-E
plays a significant role, while for the validation cohort 1 other proteins like GFRa-1, HGF,
sFRP-3 and TGF-b1 show the most interactions at an early stage. Figure 4.6 represents
the networks for the validation cohort 2, where a similar domination of interactions can
be observed as in validation cohort 1. Thus, by examining the networks carefully some
common interactions can be filtered out. For instance, the interaction of GFRa-1 and
Apo-E2 appears for all cohorts at 10 minutes and the interaction of HGF and TGF-b1
even appears for all cohorts at 10 minutes and 1 hour. The networks in figures 4.5 and 4.6
were constructed with a threshold of τ = q90, more networks with a threshold of τ = q75
are illustrated in the supplement A.1. A lower threshold includes more interactions, and
therefore, enables a more detailed interpretation and verification phase.
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The combined networks in figure 4.7 summarize all the interactions through time into
one single network in a clear way. This way to visualize the networks brings additional
information to the interpretation. By comparing subfigure (a) and (b), the thick lines in
subfigure (b) show that these interactions appeared at every time point, but by looking
at subfigure (a), they did not happen to be that strong over time. A stronger and more
frequent interaction between GFRa-1 and TGF-b1 and between MFGM and FGF7 can be
observed in subfigures (c) and (d) of the validation cohort 1, though. The connection of
FGF7 and MFGM in subfigures (e) and (f) of the validation cohort 2, appears to be the
strongest over time, followed by TFPI and CCL28.

5.2.2. Targeted Approach

For the targeted approach the single networks are depicted in figures 4.10 and 4.11. Unlike
for the non-targeted approach, troponin I already shows some interactions at an early stage
in all cohorts. Again, GFRa-1 plays a significant role at 10 minutes. In addition to that,
HGF shows many interactions at 10 minutes. The networks at 24 hours are dominated
by the interactions of troponin I, CK-MB and CK-MM. By taking a close look, common
interactions can also be found, like GFRa-1 and Midkine, which shows an early interaction
at 10 minutes. Like for the non-targeted approach, these networks were created with a
threshold of τ = q90, for a more detailed interpretation, the networks with a threshold
τ = q75 are illustrated in the supplement A.2.

For a better overview, the combined networks in figure 4.12 can be taken into account.
It can be noticed, that the networks for the derivation in subfigures (a-b) and validation
cohort 1 in subfigures (c-d) look similar between the continuous and discrete weighted
edges. This can be interpreted, that the interactions over time appear to be frequent in a
continuous strength for both cohorts. On the contrary, the most significant interactions
for the validation cohort 2 in subfigures (e-f) appear to happen frequently but they show
a low strength.

It needs to be mentioned, that all these interactions for the non-targeted just as for
the targeted approach need further investigation and studies to be verified. Also, not only a
strong interaction could be relevant but also single interactions could be of importance for
a myocardial infarction. Like mentioned before, this poses a challenge in the interpretation
and verification of these results.

40



5. Discussion

5.2.3. Shared Genetics

Further research was conducted to investigate some of the interactions, which appear
at an early stage. Because of the high amount of interactions, a few single ones were
chosen from the non-targeted approach to gain a closer insight. The goal was to identify
significant interactions, which appear at 10 minutes and 1 hour in all cohorts and play
a role in myocardial infarction. Therefore, the networks with the threshold τ = q75 was
taken into account to get a list of common interactions. This list included, for example
HGF/MFGM, GFRa-1/PECAM-1, TWEAK/Apo-E, Spondin-1/MFGM, Apo-E4/TFPI
and 6-Ckine/Apo-B. First of all, data from a genome-wide association study (GWAS)
was consulted to identify if the two proteins showing the interaction, share common
SNPs (single nucleotide polymorphisms) on a gene. The above listed interactions were all
identified to share some SNPs. Next, another GWAS database was downloaded, including
SNPs related to cardiovascular diseases and myocardial infarction. This database is freely
available online.i Some of the SNPs shared by two proteins could actually be found
in this database. These include the proteins with the interactions of TWEAK/Apo-E,
Spondin-1/MFGM, Apo-E4/TFPI and 6-Ckine/Apo-B, however they were not statistically
relevant.

5.3. Annotations
Finally, there are some things which have to be considered for the interpretation. Patients
undergoing a PMI are given heparin, which can have an influence on some proteins the
first few hours. After 6-8 hours this influence is gone and the results, especially at 24
hours, can be seen as clinically relevant. Also, the sample size differs between the cohorts,
validation cohort 2 only includes 6 patients, in contrast, the derivation and validation
cohort 1 include each 15 patients. But, the interindividual variability can be reduced,
since the patients could serve as their own biological control. Patients which suffered
from a SMI came into the hospital at different times, which does not result in an exact
baseline value, nonetheless, for convenience this value was considered as the baseline.
Regarding the interpretation and verification of the proteins, the findings also depend on
the databases and literature used. Most databases refer to other databases, and therefore,
do not necessarily always include all the information found in another database. Finally, it
should be noted, that the objective of this method is to analyze data through time, thus,
it can only be used if a minimum of two time points are available.

iCARDIoGRAMplusC4D 1000 Genomes-based GWAS,
downloaded from www.cardiogramplusc4d.org/data-downloads as of 29.05.2018
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The method and the results presented in this thesis show, that the Biomarker Identifier
score and the networks, as a visualization of the interactions between the proteins, are
a new promising strategy for analyzing proteomic data in a different way. It has been
shown, that by taking some features of the diagnostic test into the score the proteins can
be prioritized and selected to not just add information to already known biomarkers but
also to select novel biomarker candidates.

Another dimension of information is added by looking at the proteins and their in-
teractions through time by creating the network graphs of a selected subset of proteins,
based on the interactions between them. These interactions, interpreted in different ways,
can be analyzed around each protein at a each time point and through time in one single
network. Additionally, not only the strength of the interaction but also the frequency can
be visualized in specific network graphs. By using different thresholds, a more or less strict
analysis can be achieved.

Proteins identified in this thesis could be validated as already known biomarkers in
the context of cardiovascular diseases, but there have been many proteins which are
new and are in need of further investigation and verification. Also, the networks and
interactions between the proteins shown in this thesis are new in terms of proteomic
analyses. A careful interpretation, verification and validation are necessary to verify and
draw conclusions. The further investigation of some interactions with shared genetics has
shown, that this is a promising method to discover new information, even though, so far
these results were not statistically relevant. In the course of this thesis much new and
interesting information was revealed, which will be pursued by further investigation.



A. Appendix: Figures and
Tables

Additional tables and figures are illustrated in this section for each the non-targeted and
the targeted approach, including barplot diagrams at more time points and networks with
a different threshold τ .

A.1. Figures: Non-targeted Approach

Figure A.1.: Barplot diagram of the top 30 ranked proteins (pBI scores) of the derivation cohort
at 1 hour using the non-targeted approach.
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Figure A.2.: Barplot diagram of the top 30 ranked proteins (pBI scores) of the validation cohort
1 at 1 hour using the non-targeted approach.

Figure A.3.: Barplot diagram of the top 30 ranked proteins (pBI scores) of the validation cohort
2 at 1 hour using the non-targeted approach.
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Figure A.4.: Barplot diagram of the top 30 ranked proteins (pBI scores) of the derivation cohort
at 24 hours using the non-targeted approach.

Figure A.5.: Barplot diagram of the top 30 ranked proteins (pBI scores) of the validation cohort
1 at 24 hours using the non-targeted approach.
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(a) (d)

(b) (e)

(c) (f)

Figure A.6.: Network representation of the selected subset of proteins of the derivation cohort
(a-c) and validation cohort 1 (d-f) using the non-targeted approach at different
measurement times with a threshold of τ = q75. (a) derivation at 10min, (b) derivation at
1h, (c) derivation at 24h, (d) validation 1 at 10min, (e) validation 1 at 1h, (f) validation 1 at 24h
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(a) (d)

Figure A.7.: Network representation of the selected subset of proteins of the validation cohort 2
using the non-targeted approach at different measurement times with a threshold of
τ = q75. (a) validation 2 at 10min, (b) validation 2 at 1h

A.2. Figures: Targeted Approach

Figure A.8.: Barplot diagram of the top 30 ranked proteins (pBI scores) of the derivation cohort
at 1 hour using the targeted approach.
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Figure A.9.: Barplot diagram of the top 30 ranked proteins (pBI scores) of the validation cohort
1 at 1 hour using the targeted approach.

Figure A.10.: Barplot diagram of the top 30 ranked proteins (pBI scores) of the validation cohort
2 at 1 hour using the targeted approach.
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Figure A.11.: Barplot diagram of the top 30 ranked proteins (pBI scores) of the derivation cohort
at 24 hours using the targeted approach.

Figure A.12.: Barplot diagram of the top 30 ranked proteins (pBI scores) of the validation cohort
1 at 24 hours using the targeted approach.
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(a) (d)

(b) (e)

(c) (f)

Figure A.13.: Network representation of the selected subset of proteins of the derivation cohort (a-
c) and validation cohort 1 (d-f) using the targeted approach at different measurement
times with a threshold of τ = q75. (a) derivation at 10min, (b) derivation at 1h, (c) derivation
at 24h, (d) validation 1 at 10min, (e) validation 1 at 1h, (f) validation 1 at 24h
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(a) (d)

Figure A.14.: Network representation of the selected subset of proteins of the validation cohort 2
using the targeted approach at different measurement times with a threshold of
τ = q75. (a) validation 2 at 10min, (b) validation 2 at 1h

A.3. Tables
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Protein Full Protein Name Gene Name UniProt ID

annexin.VI Annexin A6 ANXA6 P08133

Apo.B Apolipoprotein B APOB P04114

Apo.E Apolipoprotein E APOE P02649

Apo.E2 Apolipoprotein E2 APOE P02649

Apo.E3 Apolipoprotein E3 APOE P02649

Apo.E4 Apolipoprotein E4 APOE P02649

BAFF.Receptor Tumor necrosis factor receptor superfamily member
13C

TNFRSF13C Q96RJ3

BGN Biglycan BGN P21810

BMP10 Bone morphogenetic protein 10 BMP10 O95393

C3b Complement C3b C3 P01024

Caspase.3 Caspase-3 CASP3 P42574

CCL28 C-C motif chemokine 28 P42574 Q9NRJ3

CK.BB Creatine kinase B-type CKB P12277

CK.MB Creatine kinase M-type:Creatine kinase B-type het-
erodimer

CKB
CKM

P12277
P06732

CK.MM Creatine kinase M-type CKM P06732

DMP1 Dentin matrix acidic phosphoprotein 1 DMP1 Q13316

EDA Ectodysplasin-A EDA Q92838

Endocan Endothelial cell-specific molecule 1 ESM1 Q9NQ30

Ephrin.B3 Ephrin-B3 EFNB3 Q15768

FABP Fatty acid-binding protein, heart FABP3 P05413

FCGR1 High affinity immunoglobulin gamma Fc receptor I FCGR1A P12314

FGF.18 Fibroblast growth factor 18 FGF18 O76093

FGF7 Fibroblast growth factor 7 FGF7 P21781

GFRa.1 GDNF family receptor alpha-1 GFRA1 P56159

HGF Hepatocyte growth factor HGF P14210

HSP.90a.b Heat shock protein HSP 90-alpha/beta HSP90AA1
HSP90AB1

P07900
P08238

IF4G2 Eukaryotic translation initiation factor 4 gamma 2 EIF4G2 P78344

MDHC Malate dehydrogenase, cytoplasmic MDH1 P40925

MFGM Lactadherin MFGE8 Q08431

Midkine Midkine MDK P21741

MMP.17 Matrix metalloproteinase-17 MMP17 Q9ULZ9

MMP.9 Matrix metalloproteinase-9 MMP9 P14780

Myeloperoxidase Myeloperoxidase MPO P05164

Myoglobin Myoglobin MB P02144
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OPG Tumor necrosis factor receptor superfamily member
11B

TNFRSF11B O00300

PDE5A cGMP-specific 3’,5’-cyclic phosphodiesterase PDE5A O76074

PECAM.1 Platelet endothelial cell adhesion molecule PECAM1 P16284

PF.4 Platelet factor 4 PF4 P02776

PHI Glucose-6-phosphate isomerase GPI P06744

PKC.Z Protein kinase C zeta type PRKCZ Q05513

PlGF Placenta growth factor PGF P49763

Protease.nexin.I Glia-derived nexin SERPINE2 P07093

PTN Pleiotrophin PTN P21246

SARP.2 Secreted frizzled-related protein 1 SFRP1 Q8N474

sFRP.3 Secreted frizzled-related protein 3 FRZB Q92765

Spondin.1 Spondin 1 SPON1 Q9HCB6

tau Microtubule-associated protein tau MAPT P10636

TFPI Tissue factor pathway inhibitor TFPI P10646

TGF.b1 Transforming growth factor beta-1 TGFB1 P01137

Troponin.I Troponin I, cardiac muscle TNNI3 P19429

TWEAK Tumor necrosis factor receptor superfamily member
12A

TNFSF12 O43508

X6Ckine C-C motif chemokine 21 CCL21 O00585

XPNPEP1 Xaa-Pro aminopeptidase 1 XPNPEP1 Q9NQW7

Table A.3.: List of the validated proteins used for the non-targeted and the targeted approach
with their full name, gene name and UniProt ID.
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B. Appendix: R-Code

The following R-Code originates from [28] and was adapted and extended accordingly,
whereas the package BiomarkeR can be downloaded from [27].

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# R S c r i p t f o r t h e a n a l y s i s o f p a i r e d p r o t e o m i c d a t a
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# INITIAL SETTINGS
#removing e v e r y t h i n g i n w o r k i n g environment
rm( l i s t=l s ( ) )

source ( " Functions .R" )
source ( " pBIFunctions .R" )
source ( " pBIGraphFunctions .R" )

l ibrary (RBGL)
l ibrary (QuACN)
l ibrary ( igraph )
l ibrary ( graph )
l ibrary (Hmisc )
l ibrary ( gp l o t s )
l ibrary ( RColorBrewer )
l ibrary ( in te rg raph )
l ibrary ( devtoo l s )
l ibrary ( pracma )
l ibrary ( gr idExtra )
l ibrary ( grid )

today = Sys . Date ( )
today = format ( today , format="%Y−%m−%d" )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# READING IN DATA
cohort = " Der ivat ion "
input = read . csv ( "Data/PMI_pe r i ph e r a l_August . csv " , header = TRUE, sep = " ; " )
input = input [ , 2 : ncol ( input ) ]

cohort = " Va l idat ion "
input = read . csv ( "Data/PMI_pe r i ph e r a l_Oct . csv " , header = TRUE, sep = " ; " )
input = input [ , 2 : ncol ( input ) ]

cohort = " Va l idat ion_CS"
input = read . csv ( "Data/PMI_coronarySinus . csv " , header = TRUE, sep = " ; " )
input = input [ , 2 : ncol ( input ) ]

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# CREATING (SUB)FOLDERS AND FILEPATHS
dir . create (paste ( today , "_Plots " , sep = " " ) )
dir . create (paste ( today , "_Plots/ " , cohort , sep = " " ) )
dir . create (paste ( today , "_Plots/ " , cohort , "/01_pBI " , sep = " " ) )
dir . create (paste ( today , "_Plots/ " , cohort , "/02_Graphs " , sep = " " ) )
dir . create (paste ( today , "_Plots/ " , cohort , "/02_Graphs/DynThresh " , sep = " " ) )

#s e t t i n g f i l e p a t h s
pathGeneral = paste ( " . / " , today , "_Plots/ " , sep = " " )
pathPlots = paste ( " . / " , today , "_Plots/ " , cohort , "/ " , sep = " " )
pathpBI = paste ( " . / " , today , "_Plots/ " , cohort , "/01_pBI/ " , sep = " " )
pathGraphs = paste ( " . / " , today , "_Plots/ " , cohort , "/02_Graphs/ " , sep = " " )
pathGraphDynThres = paste ( " . / " , today , "_Plots/ " , cohort , "/02_Graphs/DynThresh/ " , sep = " " )
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# PARAMETERS
i f ( cohort == " Val idat ion_CS" )
{

a l lT imepo int s = c ( "BL" , " 10min " , " 1h" )
t imepo ints = c ( " 10min " , " 1h" )

} e l s e {
a l lT imepo int s = c ( "BL" , " 10min " , " 1h" , " 24h" )
t imepo ints = c ( " 10min " , " 1h" , " 24h" )

}

dynamicThreshold = c ( q50 = ’ q50 ’ , q75 = ’ q75 ’ , q90 = ’ q90 ’ )
toVa l idate = FALSE
topProteinsFromSMI = FALSE

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# DATA PREPROCESSING
Data = prep roc e s s i ng ( input , a l lTimepoints , toVal idate , topProteinsFromSMI , pathGeneral )
combinedData = Data$combinedData
sortedData = Data$ sortedData

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# CALCULATING PERCENTAGE CHANGES
ToInclude = 20
pe r c In c r ea s e = 10
plotTable = TRUE
width = 500
he ight = 500

proteinPercChange = calcPercentageChangeTable ( sortedData , a l lTimepoints ,
p e r c In c r ea s e = perc Inc rease , numToInclude = ToInclude ,
p lotTable = plotTable , f i l e p a t h = pathPlots , width = width , he ight = he ight )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# CALCULATING pBI SCORES
Quanti leToInclude = 0.75
numberToInclude = 100

pbiCalcAl l = pBIcalc ( combinedData = combinedData , useMedian = FALSE, lambda = 100 ,
Quanti leToInclude = Quanti leToInclude ,
numberToInclude = numberToInclude )

combinedDataTop = pbiCalcAl l$combinedDataRanked
pbiScoresTop = pbiCalcAl l$pbiRankedScores
pb iSco r e sA l l = pbiCalcAl l$pbiScore s

i f ( topProteinsFromSMI == TRUE)
{

combinedDataTop = combinedData
}

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# BARPLOT DIAGRAMS OF pBI SCORES
numberToPlot = 30

pbiMatrix = matrix (NA, nrow = length ( pb iSco r e sA l l [ [ 1 ] ] ) , ncol = length ( pb iSco r e sA l l ) )
colnames ( pbiMatrix ) = t imepo ints
rownames( pbiMatrix ) = names( pb iSco r e sA l l [ [ 1 ] ] )
scoreNames = vector ( " l i s t " , length = length ( dynamicThreshold ) )

for ( i in 1 : length ( pb iSco r e sA l l ) )
{

pbiMatrix [ , i ] = pb iSco r e sA l l [ [ i ] ]
}

for ( i in 1 : ncol ( pbiMatrix ) )
{

for ( j in 1 : length ( dynamicThreshold ) )
{

png ( f i l ename = paste ( pathpBI , ’ 30_barp lo t_pBI_ ’ , t imepo ints [ i ] , ’ . png ’ , sep = " " ) ,
width = 1300 , he ight = 750)

scoreNames [ [ i ] ] = p l o tSco r e s ( pbiMatrix [ , i ] , numTopRankedToPlot = numberToPlot ,
method = ’pBI ’ , bars . c o l s = c ( " f i r e b r i c k 3 " , " dodgerblue3 " ) , t imepo ints [ i ] )

dev . o f f ( )

}
}
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# NETWORK GRAPHS WITH DYNAMIC THRESHOLDS
numToPlotDynStatThreshold = 30
combinedDataToPlot = vector ( " l i s t " , length = length ( combinedDataTop ) )

i f ( toVa l idate == TRUE)
{

for ( i in 1 : length ( combinedData ) )
{

combinedDataToPlot [ [ i ] ] = combinedData [ [ i ] ] [ , 1 : numToPlotDynStatThreshold ]
}

} e l s e {
for ( i in 1 : length ( combinedData ) )
{

combinedDataToPlot [ [ i ] ] = combinedDataTop [ [ i ] ] [ , 1 : numToPlotDynStatThreshold ]
}

}

i f ( cohort == " Der ivat ion " )
{

write . csv (names( combinedDataToPlot [ [ 1 ] ] [ 3 : length ( combinedDataToPlot [ [ 1 ] ] ) ] ) ,
paste ( pathGeneral , " ProteinNamesFromDerivation . csv " ) )

}

mNamesAll = colnames ( combinedDataToPlot [ [ 1 ] ] ) [ 3 : ncol ( combinedDataToPlot [ [ 1 ] ] ) ]

f i l e p a t t e r n = s p r i n t f ( "∗%iM . txt " , numToPlotDynStatThreshold )

i f ( length ( l i s t . f i l e s ( pattern = f i l e p a t t e r n ) ) != 0)
{

fname = l i s t . f i l e s ( pattern = f i l e p a t t e r n )
myCoords = read . table ( f i l e = fname , sep=’ ; ’ )

} e l s e {myCoords = NULL}

for ( i in 1 : length ( dynamicThreshold ) )
{

LallGraphsDyn = calcGraph ( d a t a l i s t = combinedDataToPlot , time = timepoints ,
th r e sho ld = dynamicThreshold [ i ] )

i f ( i s . null (myCoords ) )
{

tempCoords = gp lot ( in te rg raph : : asNetwork ( LallGraphsDyn$g [ [ 1 ] ] ) ,
mode = " c i r c l e " , gmode =’ graph ’ , main = paste ( ’ Network␣ at ’ ,
t imepo ints [ 1 ] ) , l a b e l . cex = 1 , ver tex . cex = 1 . 5 )

myCoords = tempCoords
dev . o f f ( )

}

i f ( length ( l i s t . f i l e s ( pattern = " \\. txt$ " ) ) == 0)
{

fname = s p r i n t f ( " NodeCoordsCircle%iM . txt " , numToPlotDynStatThreshold )
write (myCoords , f i l e = fname , sep = " ; " , ncolumns = 2)

}

dir . create (paste ( today , "_Plots/ " , cohort , "/02_Graphs/DynThresh/ " , dynamicThreshold [ i ] ,
sep = " " ) )

pathTemp = paste ( pathGraphDynThres , dynamicThreshold [ i ] , "/ " , sep = " " )

pbiAllRatiosDyn = LallGraphsDyn$ r a t i o s

plotGraphs ( graphList = LallGraphsDyn$g , numGraphToCombine = 5 , mycoord = myCoords ,
thresh = dynamicThreshold [ i ] , pb iA l lRat io s = pbiAllRatiosDyn ,
time = timepoints , f i l epa thToSto r eP l o t s = pathTemp ,
proteinNames = mNamesAll , calcMode = ’ dynamic ’ )

}

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# R S c r i p t f o r t h e a n a l y s i s o f u n p a i r e d p r o t e o m i c d a t a
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# INITIAL SETTINGS

input = read . csv ( "Data/SMI_pe r i ph e r a l . csv " , header = TRUE, sep = " ; " )
input = input [ , 2 : ncol ( input ) ]

#c r e a t i n g f o l d e r s and s u b f o l d e r s f o r p l o t s
dir . create (paste ( today , "_Plots_uBI " , sep=" " ) )
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#s e t t i n g f i l e p a t h s
path_uBIPlots = paste ( " . / " , today , "_Plots_uBI/ " , sep = " " )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# PARAMETERS
a l lTypes = c ( " Ctl " , "SMI" )
types = c ( "SMI" )
dynamicThreshold = c ( q50 = ’ q50 ’ , q75 = ’ q75 ’ , q90 = ’ q90 ’ )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# DATA SORTING
datase t = outl ierRemovaluBI ( input , a l lTypes )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# CALCULATING uBI SCORES
ubiScore s = matrix ( " numeric " , nrow = (ncol ( datase t )−2) , ncol = 1)

ub iScore s = uBI ( datase t = t ( datase t [ , 3 : ncol ( datase t ) ] ) , c l a s s l a b e l s =
as . vector ( datase t$Type ) , r e f e r e n c e c l a s s l a b e l = " Ctl " )

ub iScore s = ubiScore s [ abs ( ub iScores ) > 0 ]

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# BARPLOT DIAGRAMS OF uBI SCORES
numberToPlot = 30

png ( f i l ename = paste (path_uBIPlots , ’ 30_barp lo t_uBI_SMI . png ’ , sep = " " ) , width = 1000 ,
he ight = 750)

scoresRanked = p lo tSco r e s ( ubiScores , numTopRankedToPlot = numberToPlot , method = ’uBI ’ ,
bars . c o l s = c ( " f i r e b r i c k 3 " , " dodgerblue3 " ) , type = "SMI" )

dev . o f f ( )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# GENERAL FUNCTIONS

prep roc e s s i ng = function ( input , t imepoints , toVal idate , topProteinsFromSMI , pathGeneral )
{

# p r e p r o c e s s i n g d a t a : combining s e l e c t e d columns , removing o u t l i e r s , combining d a t a
# w i t h b a s e l i n e as r e f e r e n c e
# Arguments :
# i n p u t raw d a t a
# t i m e p o i n t s v e c t o r w i t h a l l t ime p o i n t s
# topProteinsFromSMI l o g i c a l , i f TRUE o n l y i n c l u d e t o p 40 p r o t e i n s from SMI d a t a
# p a t h G e n e r a l f i l e p a t h
#
# Return :
# combinedData combined d a t a w i t h BL as r e f e r e n c e

i f ( topProteinsFromSMI == TRUE)
{

namesSMI = read . csv ( " RankedProteinsFromSMI . csv " , header = TRUE)
namesSMI = as . character (namesSMI [ , 2 ] )

topProte ins = namesSMI [ 1 : 4 0 ]

temp = intersect ( topProte ins , names( input ) )

input_30 = vector ( ’ l i s t ’ )
input_30 = cbind ( SampleID = input$SampleID )
for ( i in 1 : length ( temp ) )
{

input_30 = cbind ( input_30 , input [names( input ) == temp [ i ] ] )
}
input = cbind ( TimePoint = input$TimePoint , input_30)

}

i f ( toVa l idate == TRUE)
{

namesToInclude = read . csv (paste ( pathGeneral , " ProteinNamesFromDerivation . csv " ) ,
header = TRUE, sep = " , " )

namesToInclude = namesToInclude [ , 2 ]

temp = vector ( ’ l i s t ’ )
temp = cbind ( SampleID = input$SampleID )
for ( i in 1 : length ( namesToInclude ) )
{

temp = cbind ( temp , input [names( input ) == namesToInclude [ i ] ] )
}
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input = cbind ( TimePoint = input$TimePoint , temp)
}

sortedData = vector ( ’ l i s t ’ , length = length ( t imepo ints ) )
bool = vector ( " l i s t " , length = length ( t imepo ints ) )

for ( i in 1 : length ( t imepo ints ) )
{

bool [ [ i ] ] = input$TimePoint == t imepo ints [ i ]
sortedData [ [ i ] ] = input [ bool [ [ i ] ] , ]
n = nrow( sortedData [ [ i ] ] )
num = rep ( i , each=n)
sortedData [ [ i ] ] $TimePoint = num

}
sortedData = out l ierRemoval ( sortedData )
combinedData = vector ( ’ l i s t ’ , length = ( length ( t imepo ints )−1))

for ( j in 1 : ( length ( t imepo ints )−1))
{

combinedData [ [ j ] ] = rbind ( sortedData [ [ 1 ] ] , sortedData [ [ j +1 ] ] )
rownames( combinedData [ [ j ] ] ) = seq (1 , nrow( combinedData [ [ j ] ] ) )

}
return ( l i s t ( combinedData = combinedData , sortedData = sortedData ) )

}

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
out l ierRemoval = function (data )
{

# d e t e c t and r e p l a c e o u t l i e r s w i t h t h e l o w e r l i m i t or t h e upper l i m i t
# Arguments :
# d a t a d a t a l i s t w i t h d a t a o f each t ime p o i n t
#
# Return :
# d a t a d a t a l i s t w i t h no o u t l i e r s

for ( i in 1 : length (data ) )
{

for ( k in 1 : ( ncol (data [ [ i ] ] ) −2) )
{

qnt = quantile (data [ [ i ] ] [ , ( k+2)] , probs = c ( . 2 5 , . 7 5 ) , na .rm = TRUE)
h = 1.5 ∗ IQR(data [ [ i ] ] [ , ( k+2)] , na .rm = TRUE)
data [ [ i ] ] [ , ( k+2) ] [data [ [ i ] ] [ , ( k+2)] < ( qnt [ 1 ] − h ) ] = qnt [ 1 ] − h
data [ [ i ] ] [ , ( k+2) ] [data [ [ i ] ] [ , ( k+2)] > ( qnt [ 2 ] + h ) ] = qnt [ 2 ] + h

}
}
return (data )

}

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
outl ierRemovaluBI = function ( dataset , types )
{

# d e t e c t and r e p l a c e o u t l i e r s w i t h t h e l o w e r l i m i t or t h e upper l i m i t
# Arguments :
# d a t a d a t a l i s t w i t h d a t a o f each t ime p o i n t
#
# Return :
# d a t a d a t a l i s t w i t h no o u t l i e r s

for ( i in 1 : length ( types ) )
{

data = dataset [ datase t [ , 1 ] == types [ i ] , ]
for ( k in 1 : ( ncol (data )−2))
{

qnt = quantile (data [ , k+2] , probs = c ( . 2 5 , . 7 5 ) , na .rm = TRUE)
h = 1.5 ∗ IQR(data [ , k+2] , na .rm = TRUE)

data [ data [ , k+2] < qnt [ 1 ] − h , k+2] = qnt [ 1 ] − h
data [ data [ , k+2] > qnt [ 2 ] + h , k+2] = qnt [ 2 ] + h

}
datase t [ datase t [ , 1 ] == types [ i ] , ] = data

}
return ( datase t )
}

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
calcPercentageChangeTable = function ( sortedData , a l lTimepoints , p e r c In c r ea s e = 10 ,

numToInclude = 20 , p lotTable = TRUE,
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f i l e p a t h = pathPlots , width = 500 , he ight = 500)
{

# t o c h e c k i f s a m p l e s come from p o p u l a t i o n w i t h normal d i s t r i b u t i o n
# Arguments :
# s o r t e d D a t a d a t a l i s t w i t h d a t a o f each t ime p o i n t
# a l l T i m e p o i n t s t ime p o i n t s o f each measurement p o i n t
# p e r c I n c r e a s e minimum p e r c e n t a g e change [%]
# numToInclude number o f p r o t e i n s t o i n c l u d e i n t a b l e , d e f a u l t = 20
# p l o t T a b l e l o g i c a l , i f TRUE p l o t t a b l e , d e f a u l t = TRUE
# f i l e p a t h p a t h t o s a v e t a b l e
# w i d t h w i d t h o f t a b l e p l o t , d e f a u l t = 500
# h e i g h t h e i g h t o f t a b l e p l o t , d e f a u l t = 500
#
# Return :
# d e l t a I n c l u d e d l i s t w i t h p r o t e i n p e r c e n t a g e c h a n g e s

de l t a = vector ( " l i s t " , length = ( length ( sortedData )−1))
deltaMeans = vector ( " l i s t " , length = ( length ( sortedData )−1))
de l ta Inc luded = vector ( " l i s t " , length = ( length ( sortedData )−1))
allNames = vector ( " l i s t " , length = ( length ( sortedData )−1))
temp = NULL

for ( i in 1 : ( length ( sortedData )−1))
{

de l t a [ [ i ] ] = ( sortedData [ [ i + 1 ] ] [ , 3 : ncol ( sortedData [ [ i ] ] ) ] / sortedData [ [ 1 ] ]
[ , 3 : ncol ( sortedData [ [ i ] ] ) ] ) ∗10

deltaMeans [ [ i ] ] = colMeans ( de l t a [ [ i ] ] )
temp = deltaMeans [ [ i ] ] > pe r c In c r ea s e
de l ta Inc luded [ [ i ] ] = deltaMeans [ [ i ] ] [ temp [TRUE] ]
de l t a Inc luded [ [ i ] ] = sort ( de l t a Inc luded [ [ i ] ] , d e c r ea s ing = TRUE)
allNames [ [ i ] ] = names( de l t a Inc luded [ [ i ] ] )

}

uniqueNames = unique ( allNames [ [ 3 ] ] [ allNames [ [ 3 ] ]% in%allNames [ [ 1 ] ]
[ allNames [ [ 1 ] ]% in%allNames [ [ 2 ] ] ] ] )

i f ( length ( uniqueNames ) < numToInclude )
{

numToInclude = length ( uniqueNames )
}
for ( i in 1 : ( length ( sortedData )−1))
{

de l ta Inc luded [ [ i ] ] = de l ta Inc luded [ [ i ] ] [ uniqueNames [ 1 : numToInclude ] ]
}

de l taMatr ix = matrix ( " numeric " , nrow = length ( de l t a Inc luded [ [ 1 ] ] ) ,
ncol = length ( de l t a Inc luded ) )

col_names = NULL

for ( i in 1 : ( length ( sortedData )−1))
{

col_names = c ( col_names , paste ( a l lT imepo int s [ i +1] , "/ " , a l lT imepo int s [ 1 ] ,
" ␣ [%] " , sep = " " ) )

}

colnames ( de l taMatr ix ) = col_names
rownames( de l taMatr ix ) = names( de l t a Inc luded [ [ 1 ] ] )

for ( i in 1 : length ( de l t a Inc luded ) )
{

de l taMatr ix [ , i ] = round( de l t a Inc luded [ [ i ] ] , 2)
}

i f ( p lotTable == TRUE)
{

table = tableGrob ( de l taMatr ix )
grid . newpage ( )
h = grobHeight ( table )
w = grobWidth ( table )
main = paste ( "Top" , numToInclude , " p ro t e in ␣ percentage ␣ changes ␣ a f t e r ␣PMI" ,

sep = " ␣ " )
t i t l e = textGrob (main , y = unit ( 0 . 5 , " npc " ) + 0.97∗h ,

v ju s t = 0 , gp = gpar ( f o n t s i z e = 13L) )
gt = gTree ( ch i l d r en=gL i s t ( table , t i t l e ) )
png ( f i l ename = paste ( f i l e p a th , "/ " , " ProteinPercentageChangesTop " , numToInclude ,

" . png " , sep = " " ) , width = width , he ight = he ight )
grid . draw ( gt )
dev . o f f ( )
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}
return ( de l t a Inc luded )

}

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
pBIcalc = function ( combinedData , useMedian = TRUE, lambda = 100 , Quanti leToInclude ,

numberToInclude )
{

# c a l c u l a t e pBI s c o r e s
# Arguments :
# combinedData d a t a l i s t w i t h each t ime p o i n t and r e f e r e n c e
# useMedian l o g i c a l , s t a t e s i f median s h o u l d be used , TRUE by d e f a u l t
# lambda parameter f o r c a l c u l a t i o n , 100 by d e f a u l t
# Q u a n t i l e T o I n c l u d e q u a n t i l e i n which p r o t e i n s s h o u l d be i n c l u d e d
# numberToInclude number o f p r o t e i n s which s h o u l d be c o n s i d e r e d
#
# Return :
# combinedDataRanked l i s t o f ranked p r o t e i n s , i n c l u d e d f o r e v e r y t ime p o i n t
# p b i S c o r e s l i s t o f pBI s c o r e s o f a l l p r o t e i n s
# p b i R a n k e d S c o r e s l i s t o f ranked pBI s c o r e s , i n c l u d e d f o r e v e r y t ime p o i n t
# pbiRankedScoresEach l i s t o f ranked pBI s c o r e s o f each t ime p o i n t

column_end = ncol ( combinedData [ [ 1 ] ] )
pb iScore s = vector ( " l i s t " , length = length ( combinedData ) )
pbiRankedScores = vector ( " l i s t " , length = length ( combinedData ) )
pbiRankedScoresEach = vector ( " l i s t " , length = length ( combinedData ) )
combinedDataRanked = vector ( " l i s t " , length = length ( combinedData ) )
tempAll = NULL

for ( i in 1 : length ( combinedData ) )
{

pb iScore s [ [ i ] ] = . pBI ( datase t = t ( combinedData [ [ i ] ] [ , 3 : column_end ] ) ,
c l a s s l a b e l s = combinedData [ [ i ] ] $TimePoint ,

r e f e r e n c e c l a s s l a b e l = combinedData [ [ i ] ] $TimePoint [ 1 ] ,
i d s = combinedData [ [ i ] ] $SampleID , useMedian = TRUE, lambda = 100)

pbiTemp = pbiScores [ [ i ] ]
quant i l eThresho ld = quantile (abs (pbiTemp ) , Quanti leToInclude )
inc ludedScore s = pbiTemp [ abs (pbiTemp) > quant i l eThresho ld ]

p o s i t i o n s = match( sort (abs ( inc ludedScore s ) , dec r ea s ing = TRUE) , abs ( inc ludedScore s ) )
rankedScores = inc ludedScore s [ p o s i t i o n s ]
pbiRankedScoresEach [ [ i ] ] = rankedScores

tempAll = c ( tempAll , i nc ludedScore s )
}

scoresRanked = tempAll [match( sort (abs ( tempAll ) , de c r ea s ing = TRUE) , abs ( tempAll ) ) ]
uniqueScoresRanked = unique (names( scoresRanked ) )
i f ( length ( uniqueScoresRanked ) < numberToInclude )
{

numberToInclude = length ( uniqueScoresRanked )
}
prote insToInc lude = uniqueScoresRanked [ 1 : numberToInclude ]
for ( i in 1 : length ( combinedData ) )
{

combinedDataRanked [ [ i ] ]= cbind ( combinedData [ [ i ] ] [ c ( 1 , 2 ) ] , combinedData [ [ i ] ]
[ ,na . omit ( prote insToInc lude ) ] )

pbiRankedScores [ [ i ] ]= pb iScores [ [ i ] ] [ na . omit ( prote insToInc lude ) ]
}
return ( l i s t ( combinedDataRanked = combinedDataRanked , pb iScore s = pbiScores ,

pbiRankedScores = pbiRankedScores , pbiRankedScoresEach = pbiRankedScoresEach ) )
}

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
plotGraphs = function ( graphList , numGraphToCombine , mycoord , thresh , time ,

f i l epa thToStoreP lo t s , proteinNames , pb iAl lRat ios , calcMode = ’dyn ’ )
{

# Funct ion t o p l o t t h e g r a p h s
# Arguments :
# g r a p h L i s t l i s t c o n t a i n i n g graph e l e m e n t s f o r a l l measurement t i m e s
# numGraphToCombine number o f network g r a p h s f o r t h e combined p l o t
# mycoord m a t r i x c o n t a i n i n g t h e node c o o r d i n a t e s f o r p l o t t i n g
# t h r e s h mector o f t h r e s h o l d s
# time mector c o n t a i n i n g t h e measurement t ime p o i n t s
# f i l e p a t h T o S t o r e P l o t s f i l e p a t h f o r s t o r i n g t h e network p l o t s
# proteinNames v e c t o r c o n t a i n g t h e p r o t e i n names
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# p b i A l l R a t i o s pBI∗ s c o r e s
# calcMode i n d i c a t e s i f dynamic or s t a t i c t h r e s h o l d s s h o u l d be used

combGraph = vector ( ’ l i s t ’ , length = 2)
names( combGraph) = c ( ’ d i s c r e t e ’ , ’ cont inuous ’ )

combGraph [ [ 1 ] ] = . binWeights ( graphList )
combGraph [ [ 2 ] ] = . dynWeights ( graphList , pb iA l lRat io s )

for ( i in 1 : length ( graphList ) )
{

png ( f i l ename = paste ( f i l epa thToSto reP lo t s , ’ Network_ ’ , time [ i ] , ’_ ’ , names( thresh ) ,
calcMode , ’ . png ’ , sep =" ␣ " ) , width = 800 , he ight = 750)

gp lo t ( in te rg raph : : asNetwork ( graphList [ [ i ] ] ) , mode = " c i r c l e " , gmode = ’ graph ’ ,
coord = mycoord , usearrows = FALSE, main =paste ( ’ Network␣ at ␣ ’ , time [ i ] ,
’ ␣ ( th re sho ld ␣ ’ , names( thresh ) , ’ ) ’ , sep = " " ) , l a b e l = names(V( graphList [ [ i ] ] ) ) ,
l a b e l . pos = 3 , l a b e l . cex = 1 , ver tex . cex = 1 .5 , ver tex . col = ’ f i r e b r i c k 3 ’ ,
cex . main = 1 .5 , edge . col = ’ azure3 ’ )

dev . o f f ( )
}
pathAdd = c ( ’ quad ’ , ’ poly4 ’ )
weightFac = c (2 , 4 )

for ( j in 1 : length ( weightFac ) )
{

dir . create (paste ( f i l epa thToSto reP lo t s , pathAdd [ j ] , "/ " , sep = " " ) )
for ( i in 1 : length ( combGraph ) )
{

png ( f i l ename = paste ( f i l epa thToSto reP lo t s , pathAdd [ j ] , ’/ ’ , ’ Network_ ’ ,
names( combGraph [ i ] ) , numGraphToCombine , ’_graphs_ ’ , names( thresh ) , calcMode ,
’ . png ’ , sep = " " ) , width = 800 , he ight = 750)

gp lo t ( in te rg raph : : asNetwork ( combGraph [ [ i ] ] ) , mode = " c i r c l e " , gmode=’ graph ’ ,
coord = mycoord , usearrows = FALSE, main = paste ( "Combined␣Network␣with␣ " ,
names( combGraph [ i ] ) , ’ ␣weighted ␣ edges ␣ ’ , ’ ( th r e sho ld ␣ ’ , names( thresh ) , ’ ) ’ ,
sep = " " ) , l a b e l = names(V(combGraph [ [ i ] ] ) ) , l a b e l . pos = 3 , l a b e l . cex = 1 ,
cex . main = 1 .5 , ver tex . cex = 1 .5 , ver tex . col = ’ f i r e b r i c k 3 ’ , edge . lwd = 7.75∗

(E(combGraph [ [ i ] ] ) $weights )^ weightFac [ j ] + 0 .25 , edge . col = ’ azure3 ’ )
dev . o f f ( )

}
}

}

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
. binWeights = function ( graphList )
{

# Funct ion t o c a l c u l a t e d i s c r e t e w e i g h t s f o r combined network p l o t s
# Arguments :
# g r a p h L i s t l i s t c o n t a i n i n g graph e l e m e n t s f o r a l l measurement t i m e s
#
# Return :
# g a l l combined graph e l e m e n t w i t h d i s c r e t e w e i g h t e d e d g e s

g a l l = igraph : : graph . empty (n = 0 , d i r e c t ed = FALSE)
adjsum = 0

for ( i in 1 : length ( graphList ) )
{

i f ( length (V( g a l l ) ) == 0)
{

g a l l = graphList [ [ i ] ]
} e l s e {

g a l l = igraph : : union ( ga l l , g raphList [ [ i ] ] )
}
adjsum = adjsum + get . adjacency ( graphList [ [ i ] ] , spar s e = FALSE)

}
adjsum = adjsum/max( adjsum )

nodeEdgeFrom = get . e d g e l i s t ( g a l l ) [ , 1 ]
nodeEdgeTo = get . e d g e l i s t ( g a l l ) [ , 2 ]
posx = NA
posy = NA
for ( i in 1 : length ( nodeEdgeFrom ))
{

posy [ i ] = which (rownames( get . adjacency ( g a l l ) ) == nodeEdgeFrom [ i ] )
posx [ i ] = which (colnames ( get . adjacency ( g a l l ) ) == nodeEdgeTo [ i ] )

}
for ( i in 1 : length ( posx ) )
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{
E( g a l l )$weights [ i ] = adjsum [ posx [ i ] , posy [ i ] ]

}
return ( g a l l )

}

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
. dynWeights = function ( graphList , pb iA l lRat io s )
{

# Funct ion t o c a l c u l a t e c o n t i n u o u s w e i g h t s f o r combined network p l o t s
# Arguments :
# g r a p h L i s t l i s t c o n t a i n i n g graph e l e m e n t s f o r a l l measurement t i m e s
# p b i A l l R a t i o s m a t r i x c o n t a i n i n g a l l pBI∗ s c o r e s o f p r o t e i n r a t i o s
# a t a l l t ime p o i n t s
#
# Return :
# g a l l combined graph e l e m e n t w i t h c o n t i n o u s w e i g h t e d e d g e s

weightedAdjMat = vector ( ’ l i s t ’ , length ( graphList ) )
names( weightedAdjMat ) = colnames ( pb iA l lRat io s )

for ( i in 1 : ncol ( pb iA l lRat io s ) )
{

tempGraph = graphList [ [ i ] ]
th r e sho ld = quantile (abs ( pb iA l lRat io s [ , i ] ) , 0 . 75 )
ratiosAboveThresh = abs ( pb iA l lRat io s [which (abs ( pb iA l lRat io s [ , i ] ) > thre sho ld ) , i ] )
normRatios = vector ( ’ numeric ’ , length = length ( rat iosAboveThresh ) )
names( normRatios ) = names( rat iosAboveThresh )
for ( j in 1 : length ( rat iosAboveThresh ) )
{

normRatios [ j ] = ratiosAboveThresh [ j ] /max( rat iosAboveThresh )
}
adjMat = get . adjacency ( tempGraph , spar se = FALSE)

for ( k in 1 : length (names( normRatios ) ) )
{

splitName = s t r s p l i t (names( normRatios ) [ k ] , ’/ ’ )
rowName = splitName [ [ 1 ] ] [ 1 ]
colName = splitName [ [ 1 ] ] [ 2 ]
adjMat [ rowName , colName ] = normRatios [ k ]
adjMat [ colName , rowName ] = normRatios [ k ]

}
weightedAdjMat [ [ i ] ] = adjMat

}
sumAdjMat = matrix (0 , nrow = nrow( weightedAdjMat [ [ 1 ] ] ) , ncol=ncol ( weightedAdjMat [ [ 1 ] ] ) )
for ( i in 1 : length ( weightedAdjMat ) )
{

sumAdjMat = sumAdjMat + weightedAdjMat [ [ i ] ]
}
sumAdjMat = sumAdjMat/max( sumAdjMat)
g a l l = igraph : : graph . empty (n = 0 , d i r e c t ed = FALSE)

for ( i in 1 : length ( graphList ) )
{

i f ( length (V( g a l l ) ) == 0)
{

g a l l = graphList [ [ i ] ]
} e l s e {

g a l l = igraph : : union ( ga l l , g raphList [ [ i ] ] )
}

}
nodeEdgeFrom = get . e d g e l i s t ( g a l l ) [ , 1 ]
nodeEdgeTo = get . e d g e l i s t ( g a l l ) [ , 2 ]
posx = NA
posy = NA
for ( i in 1 : length ( nodeEdgeFrom ))
{

posy [ i ] = which (rownames( get . adjacency ( g a l l ) ) == nodeEdgeFrom [ i ] )
posx [ i ] = which (colnames ( get . adjacency ( g a l l ) ) == nodeEdgeTo [ i ] )

}
for ( i in 1 : length ( posx ) )
{

E( g a l l )$weights [ i ] = sumAdjMat [ posx [ i ] , posy [ i ] ]
}
return ( g a l l )

}
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
. t rans f e rRat ioVec = function ( pb i a l l , Scores )
{

# Funct ion t o a d a p t t h e form o f t h e pBI∗ r a t i o s f o r heatmap c o n s t r u c t i o n
# Arguments :
# p b i a l l l i s t c o n t a i n i n g p r e p r o c e s s e s d a t a a t a l l measurement t i m e s
# S c o r e s m a t r i x c o n t a i n i n g s c o r e v a l u e s o f p r o t e i n s a t a l l t i m e s
#
# Return :
# p r o t e i n r a t i o s i n a d a p t e d form

n = ncol ( p b i a l l [ [ 1 ] ] [ 4 : ncol ( p b i a l l [ [ 1 ] ] ) ] )
Prote inRat ios = vector ( " l i s t " , n )
pos = numeric (n)
for ( i in 1 : ( n−1))
{

pos [ i +1] = pos [ i ]+n−i
}
for ( j in 1 : ncol ( Scores ) )
{

Rat ioScores = Scores [ , j ]
k = length ( Rat ioScores )

for ( i in 1 : length (pos ) )
{

i f ( i==1)
{

tmp = Rat ioScores [ ( pos [ i ]+1) :pos [ i +1] ]
tmpname = names( Rat ioScores ) [ ( pos [ i ]+1) :pos [ i +1] ]
names(tmp) = unl ist ( s t r s p l i t (tmpname , "/ " ) ) [ 2 ∗ ( 1 : ( length ( Prote inRat ios )−1))]

} e l s e i f ( i==length (pos ) )
{

tmp = −Rat ioScores [ pos [ 2 : i ]−(n−i ) ]
tmpname = rownames( as . matrix ( Rat ioScores ) ) [ pos [ 2 : i ]−(n−i ) ]
names(tmp) = unl ist ( s t r s p l i t (tmpname , "/ " ) ) [ 2 ∗ ( 1 : ( length ( Prote inRat ios )−1))−1]

} e l s e {
tmp = c(−Rat ioScores [ pos [ 2 : i ]−(n−i ) ] , Rat ioScores [ ( pos [ i ]+1) :pos [ i +1 ] ] )
tmpname1 = rownames( as . matrix ( Rat ioScores ) ) [ pos [ 2 : i ]−(n−i ) ]
tmpname1 = unl ist ( s t r s p l i t ( tmpname1 , "/ " ) ) [ 2 ∗ ( 1 : ( i −1))−1]
tmpname2 = rownames( as . matrix ( Rat ioScores ) ) [ ( pos [ i ]+1) :pos [ i +1] ]
tmpname2 = unl ist ( s t r s p l i t ( tmpname2 , "/ " ) ) [ 2 ∗ ( 1 : ( length ( Prote inRat ios )− i ) ) ]
names(tmp) = c ( tmpname1 , tmpname2)

}
Prote inRat ios [ [ i ] ]= cbind ( Prote inRat ios [ [ i ] ] , as . matrix (tmp) )

}
}
names( Prote inRat ios ) = colnames ( p b i a l l [ [ 1 ] ] [ 4 : ncol ( p b i a l l [ [ 1 ] ] ) ] )
return ( Prote inRat ios )

}
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