
Andreas Schulhofer, BSc

Android Mutation Testing using Pitest
and Android Gradle Build Tools in the

case of Paintroid

Master’s Thesis
to achieve the university degree of

Master of Science

Master’s degree programme: Telematik

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Institute for Softwaretechnology
Head: Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Graz, July 2018

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

iii

Abstract

Mutation testing is widely considered to be an effective analysis method
for evaluating and designing tests. However, there is still need for a tool
which enables mutation testing for local unit tests as well as instrumented
tests and can easily be integrated into the Android build system. Problems
arise due to the nature of Android and test execution of UI tests tends
to be slow. This thesis deals with implementing a mutation analysis tool
which is easy to integrate into the current Android build system as a Gradle
plugin. It uses Pitest as an approved tool for mutant creation and analysis of
local unit tests. Additionally, the developed system enables mutation testing
on an emulator or a real device. The implemented tool is subsequently
used to determine the test quality of the Paintroid project. Paintroid is a
drawing and picture editing app for Android, developed by the Catrobat
project at Graz University of Technology (Austria) and is a free and open
source non-profit project. On the one hand, this thesis demonstrates that
mutation testing can easily be integrated in the current build system. On
the other hand, it reveals some problems concerning the execution of test
cases which do not handle resources correctly. Additionally, ways to speed
up the mutation process are presented through the usage of parallel test
execution and intelligent skipping of mutants.

v

Contents

Abstract v

1 Introduction 1

2 Testing Background 3
2.1 Mutation Testing . 3

2.1.1 Fault-based testing . 4

2.1.2 Fundamental Assumptions of Mutation Testing 5

2.1.3 Mutation Analysis Process 6

2.1.4 Difficulties in Mutation Testing 13

2.2 Mutation Analysis Tools for Java 16

2.3 Testing Android Applications 17

2.3.1 Instrumented Tests . 18

2.3.2 Local Unit Tests . 19

2.3.3 Instrumented Unit Tests 20

2.3.4 Automatic User Interface Tests 20

2.4 Test of Paintroid . 21

2.5 Mutation Analysis Tools for Android 22

2.5.1 Proof-of-concept Mutation Analysis Tool by L. Deng,
Mirzaei, et al. (2015) . 23

2.5.2 MDroid+ by Linares-Vásquez et al. (2017) 26

3 Android Build System 27
3.1 Gradle . 27

3.2 Android Gradle Plugin . 30

3.2.1 Android Plugin Types 31

3.2.2 Build Configuration . 32

3.2.2.1 Build Type . 32

3.2.2.2 Product Flavor 33

vii

Contents

3.2.2.3 Build Variant 33

3.2.2.4 Application ID 36

3.3 Android Build Process . 36

3.4 Android Debug Bridge . 37

3.4.1 Query devices . 39

3.4.2 ADB Commands . 40

3.4.2.1 Shell . 40

3.4.2.2 Install . 41

3.4.2.3 Uninstall . 41

3.4.2.4 Clear . 41

3.4.2.5 Pull . 41

3.4.2.6 Run Instrumented Tests 42

4 Pimutdroid Gradle Plugin 43
4.1 Plugin Overview . 43

4.2 Mutation Analysis Tool . 44

4.2.1 Mutation Analysis Process 44

4.2.2 Mutation Identifier - MUID 47

4.2.3 Mutant Markerfile . 49

4.2.4 Mutators . 51

4.2.4.1 Conditionals Boundary Mutator 52

4.2.4.2 Increments Mutator 53

4.2.4.3 Invert Negatives Mutator 53

4.2.4.4 Math Mutator 53

4.2.4.5 Negate Conditionals Mutator 54

4.2.4.6 Return Values Mutator 54

4.2.4.7 Void Method Call Mutator 55

4.2.4.8 Constructor Call Mutator 56

4.2.4.9 Non Void Method Call Mutator 56

4.2.4.10 Remove Conditionals Mutator 57

4.2.4.11 Inline Constant Mutator 57

4.3 Plugin Configuration . 57

4.3.1 Install Plugin . 58

4.3.2 Configure Plugin . 61

4.4 Plugin Report . 65

viii

Contents

5 Implementation Details 73
5.1 Structure . 73

5.2 Mutant Creation . 77

5.3 Mutant Test Execution . 80

6 Conclusion 85

Bibliography 91

ix

List of Figures

3.1 Typical Android build process 38

4.1 Pitest Coverage Report Paintroid 69

4.2 Pitest Coverage Report Class Mutation View 70

4.3 Pitest Coverage Report Class Mutation Summary 71

5.1 Pitest Export Folder Structure 78

5.2 Pimutdroid Mutant Output Folder Structure 80

xi

1 Introduction

Mutation testing is widely considered to be an effective analysis method
for evaluating and designing tests for various programming languages and
other fields of application. In recent years, research also applied this method
to Android applications to assess the quality of a test set. Due to the nature
of Android applications and that tests can be run on an emulator or a
real device in addition to the Java Virtual Machine (JVM), traditional Java
mutation analysis tools can not be used. Various tools have been proposed
by the research community, each approaching the problem in a different
way. Despite the different approaches to mutation analysis for Android,
it is considered to be an effective method for detecting faults in Android
applications.

However, there is a lack of tools for Android applications which allow an
easy integration into the current build system and also support the whole
process of mutation testing. To address this gap, a plugin for the build
system was created. It utilizes the provided tools from the Android Gradle
Build tools to enable mutation testing for Android projects.

The core of this master thesis is the implemented mutation analysis tool
Pimutdroid which has been used to determine the test quality of the
Paintroid project. Paintroid is developed by the Catrobat project at Graz
University of Technology (Austria) and is a drawing and picture editing app
for Android. This thesis does not apply Android specific mutation operators
or evaluate how well traditional mutation operators simulate real faults in
the Android domain.

The thesis is organized as follows. Chapter 2 provides an overview of
mutation testing, its fundamental assumptions, the traditional mutation
analysis process, the different types of Android tests and presents the current
mutation analysis tools for Android. Chapter 3 describes the Android build

1

1 Introduction

system with focus on the Gradle build system and the Android Gradle
plugin. Chapter 4 describes the implemented mutation analysis tool and
a deeper insight of the plugin is provided in chapter 5. Finally, chapter 6

concludes the thesis and suggests future work.

2

2 Testing Background

Chapter 2 provides an overview of mutation testing in section 2.1, it cov-
ers the fundamental assumptions of mutation testing, the typical analysis
process and difficulties which arise using this technique. The result of this
thesis provides a mutation testing framework which can easily be integrated
into the current Android build system. For the implementation details of
the proposed framework see chapter 4. The developed tool makes use of
an existing mutation framework for Java. Therefore, in section 2.2 mutation
analysis tools for Java are discussed. Section 2.3 provides an overview of
testing of Android applications and section 2.4 presents a summary of the
tests used in the Paintroid project and briefly explains the project. In section
2.5 related work on Android mutation analysis tools are discussed.

2.1 Mutation Testing

Mutation testing is a fault-based testing technique to determine the quality
of a test set. This technique is implemented by seeding faults into the pro-
gram and verifying if the test set was able to detect the injected faults. Each
injected fault is a simple change to the original program. These faults either
try to simulate an error that could stem from a programmer or are chosen
from a set of errors which are typically for a specific domain. Mutation
testing provides a test criterion which can be used as a test requirement for
a collection of tests (A. Jefferson Offutt and Untch, 2001a,b).

How well a test criterion is satisfied is often measured as a coverage value.
The test criterion or coverage criteria is defined by Ammann and Jeff Offutt
(2008) as a set of rules which can be used to enforce test requirements on a
test set. Test requirements are defined by Ammann and Jeff Offutt (2008)

3

2 Testing Background

as specific “things” that a test case or test set must satisfy. This supports
the definition of properties which a test set should have. For example, the
branch coverage criteria states that each branch of a control structure within
the program must be executed. For each branch statement such as an if-else
or a switch statement, the true or false outcome must be covered by the test
set (Myers, 1979). Hence the requirement for branch coverage is to execute
each branch of the program. For mutation testing the requirement imposed
on the test set is “finding the injected faults” by killing mutants (see section
2.1.3).

2.1.1 Fault-based testing

In fault-based testing the quality of tests is measured by how many pre-
specified faults are found by the test set, showing how many faults are not
in the program (Morell, 1990). The measured quality can be used as an
indicator to determine the strength of the test set or test strategy which is
used to find faults. Myers (1979) for example states that a successful test case
is a test that detects errors in a program and a test case that does not find
an error is a waste of time and money. Morell (1990) states that fault-based
testing takes a different approach to the traditional test statement by Myers,
as successful tests indicate the absence of pre-specified faults in fault-based
testing. This absence of pre-specified faults is a stopping criterion for testing,
and faults which were not found highlight an area in the code which needs
further investigation and testing.

Each pre-specified fault is used to create an alternative of the original
program. The test data should distinguish the alternatives from the original
program (Morell, 1990). Morell assigns mutation testing to bounded fault-
based arenas, since there exists a set of alternative programs which is
finite. Morell (1990) states that fault-based testing requires two conditions
to show that a program is correct. First, the fault-based arena must be
alternative-sufficient, meaning the arena contains a correct program and
secondly the alternatives are not coupled. Coupled implies that a combination
of alternatives is not detected by a test, whereas the single alternatives are
detected by the same test. The assumption that mutation testing is alternate-
sufficient refers to the Competent Programer Hypothesis (CPH) (Morell, 1990).

4

2.1 Mutation Testing

This hypothesis was first mentioned in a paper by DeMillo, Lipton, and
Sayward (1978) in 1978 and states that the program under test is close to a
correct program. In section 2.1.2 the fundamental assumptions of mutation
testing are explained in more detail.

2.1.2 Fundamental Assumptions of Mutation Testing

As described, the theory of mutation testing is based on two basic as-
sumptions (DeMillo, Lipton, and Sayward, 1978), the Competent Programmer
Hypothesis and the Coupling Effect. They were first introduced in a paper by
DeMillo, Lipton, and Sayward (1978) in 1978. This paper is often cited as
the seminal reference on mutation testing.

In the competent programmer hypothesis, which addresses programmer
behaviour (DeMillo, Lipton, and Sayward, 1978), it is assumed that the
program under test is written by a competent programmer, thus it can
be assumed that the program is “close” to a correct version. Competent
programmers have available two advantages: First, they have a rough idea
about the errors which most likely can occur and second, that the programm
can be examined in greater detail while iterating through multiple steps
in the process of creating a program. Therefore the program written by
a competent programmer may be incorrect, but the errors it contains are
relatively simple errors. The errors made by the programmer can be assumed
to be small errors which can be corrected by small syntactical changes to the
code. The written program differs from the correct program only by simple
syntactical faults, mutation testing uses these faults and applies them on
the program to create the set of alternate programs.

The other basic premise is the so called coupling effect. The coupling effect
says that if the tests are capable of uncovering the simple faulty versions of
the original program, then the tests are also able to detect more complex
errors in a program (DeMillo, Lipton, and Sayward, 1978). Morell (1990)
stated that “simple” and “complex” are not defined precisely enough to be
verifiable, but that the coupling effect holds probabilistically under many
circumstances. Later the coupling effect was supported by A. Jefferson
Offutt (1992a,b). A. Jefferson Offutt precisely defined simple and complex

5

2 Testing Background

faults. According to A. Jefferson Offutt (1992a) simple faults can be fixed
by making a single change to the code, whereas this is not possible for a
complex fault. A. Jefferson Offutt extended the coupling effect by defining
the Coupling Effect Hypothesis in the following way: “Complex faults are coupled
to simple faults in such a way that a test data set that detects all simple faults in a
program will detect a high percentage of the complex faults.” (A. Jefferson Offutt,
1992b). This general statement was restricted to mutation testing defining
the Mutation Coupling Effect as follows: “Complex mutants are coupled to simple
mutants in such a way that a test data set that detects all simple mutants in a
program will detect a large percentage of the complex mutants.” (A. Jefferson
Offutt, 1992b). Simple mutants represent simple faults and are created by
applying a single syntactical change to the source code, whereas a complex
mutant contains multiple changes. Another name used for complex mutants
is high-order mutants. For example a second order mutant is a mutant that
is created by combining two first order or simple mutants. Later Tai (1995,
2000) demonstrated the coupling effect theoretically.

The validity of the coupling effect was later examined in many studies
(Andrews, Briand, and Labiche, 2005; Andrews, Briand, Labiche, and Namin,
2006; Daran and Thévenod-Fosse, 1996a,b; René Just et al., 2014). The studies
generally showed that mutants are a valid substitution for real faults, but
also that there exist faults which can not be simulated by mutants and that
a reduction of tests based on mutation testing could lead to a reduced real
fault detection (René Just et al., 2014).

Only if both the competent programmers hypothesis and the coupling effect
hold, mutation testing or fault-based testing can guarantee fault detection.
The traditional mutation analysis process is described in the following
section 2.1.3.

2.1.3 Mutation Analysis Process

In the traditional mutation analysis process simple mutants are used to
analyse a test set. The alternate programs of the original program are created
by applying mutation operators to the program. Such an operator is also
known as a mutator, mutant operator, mutation transformation or mutation

6

2.1 Mutation Testing

rule (A. Jefferson Offutt and Untch, 2001a,b; Wu et al., 1988). They are
transformation rules which are applied on the original program to create
one or more faulty versions of it, which are the mutants of the program
under test. The operators can be seen as a formal description of a program
transformation to a faulty version (R. Just, Kapfhammer, and Schweiggert,
2012).

The survey by Jia and Harman (2011) on the development of mutation
testing shows that there exist a wide variety of mutation operators for
different programming languages like Fortran, C, C#, Java or SQL. And that
the mutation analysis process is also applied to other fields of application
such as Security Policies or Web Services.

For example a mutation operator for the programming language Java is
the Relational Operator Replacement (ROR) operator, for example available
in the mutation system MuJava by Ma, Jeff Offutt, and Y.-R. Kwon (2006).
A relational operator in Java takes two operands, compares their values
and determines the relationship between them. The operator evaluates for
equality and whether the first operand is lesser than or greater than the
second operand. The six relational operators provided by Java (2018a) are
shown in table 2.1. The ROR operator replaces one relational operator with
another one and additionally replaces the whole predicate with true and
false, so that the outcome of the evaluation of the operator is always true or
false in the program execution (Ma and Offut, 2006).

Relational operator
op1 < op2

op1 <= op2

op1 > op2

op1 >= op2

op1 == op2

op1 != op2

Table 2.1: Shows the six relational operator provided by Java (2018a).

Listing 2.1 shows a method of a program which is using Javas unequal
relational operator to compute its return value. The method checks whether

7

2 Testing Background

the two passed values are unequal, and if so, the first value a is incremented
by one returned to the caller. If both values are equal the method returns
zero. In listing 2.2 the method is shown after the ROR operator was ap-
plied to the program. The unequal operator was replaced with the equal
operator (highlighted in red). This syntactical change created a new version
of the original program that now contains a pre-specified fault which was
introduced into the program.

public int logicZero(int a, int b) {

if (a != b) {
return a + 1;

}

return 0;

}

Listing 2.1: Shows an method using the unequal relational operator. The method checks if
the passed values are unequal and returns the first value a incremented by one
to the caller. If both values are equal the method returns zero.

public int logicZero(int a, int b) {

if (a == b) {
return a + 1;

}

return 0;

}

Listing 2.2: Shows the method from listing 2.1 after the unequal operator was replaced
with the equal operator (in red) by the Relational Operator Replacement (ROR)
mutation operator.

As described in section 2.1.1 the test set is now used to detect the mutated

8

2.1 Mutation Testing

version of the program. If the tests are able to distinguish the original
program from the mutant, than the tests show that the pre-specified fault
is not in the original program. Listing 2.3 displays two unit tests which
verify the method called logicZero from listing 2.1. These two test cases
are sufficient to show that the method is correct and both branches are
covered as well as each program statement is executed. However the mu-
tant from listing 2.2 created by the ROR operator will not be detected by
the test set. The used input parameters of the second test case named log-
icZero_valuesAreNotEqual_returnFirstArgIncremented are not well-chosen and
are not adequate to detect the change to the relational operator. Since the
value of the parameter which will be incremented by the method is minus
one, the return value of the method will be identical to the return value as
if the passed parameters were equal. Hence, a potential bug introduced by
replacing the unequal operator by a programmer would not be detected by
the test set in listing 2.3.

Applying mutation analysis on the program would now show that the
test set is not able to detect the fault introduced into the program. The
undetected mutant highlights a location in the code base that needs further
investigation. This allows a programmer to check the tests again and write
and design better tests. To detect the mutant, the first input argument should
be changed to a value which will not return the same result as in the case
of equality. The adopted test cases are shown in listing 2.4.

The previous example depicts the typical steps performed in a mutation
analysis process as described by A. Jefferson Offutt and Untch (2001b). A
set of mutation operators is selected to create the mutants of the original
program. The operators seed faults described by a transformation rule into
the program. To determine if a test set detects a mutant each mutated
program is built and it is run against the test suite. Prior, the test set is
run on the original not mutated program and the outcome is stored as the
expected result. This result is used to verify whether a mutant was detected
by the test set. The mutated program likewise leads to a result after the tests
are run against it. The actual result of the mutant is subsequently compared
with the expected result. If the results differ, the mutant was so to say killed
by the test set. A mutant is said to be stillborn if the program did not compile
and was not even able to run against the test set. Should both the expected
and actual results be the same, than the mutant lived or survived. This means

9

2 Testing Background

@Test
public void logicZero_valuesAreEqual_returnZero () {

int firstValue = -1;
int secondValue = -1;
int expectedValue = 0;

int actualValue = unitUnderTest.logicZero(firstValue ,
secondValue);

assertThat(actualValue , is(equalTo(expectedValue)));

}

@Test
public void

logicZero_valuesAreNotEqual_returnFirstArgIncremented () {

int firstValue = -1;
int secondValue = 0;
int expectedValue = firstValue + 1;

int actualValue = unitUnderTest.logicZero(firstValue ,
secondValue);

assertThat(actualValue , is(equalTo(expectedValue)));

}

Listing 2.3: Shows two unit tests which verify the method in listing in 2.1. The test cases
are enough to show that the method is correct and both branches are covered
as well as each program statement is executed. However the test cases will not
detect the mutant from listing 2.2.

10

2.1 Mutation Testing

@Test
public void logicZero_valuesAreEqual_returnZero () {

int firstValue = -1;
int secondValue = -1;
int expectedValue = 0;

int actualValue = unitUnderTest.logicZero(firstValue ,
secondValue);

assertThat(actualValue , is(equalTo(expectedValue)));

}

@Test
public void

logicZero_valuesAreNotEqual_returnFirstArgIncremented () {

int firstValue = 4;
int secondValue = 0;
int expectedValue = firstValue + 1;

int actualValue = unitUnderTest.logicZero(firstValue ,
secondValue);

assertThat(actualValue , is(equalTo(expectedValue)));

}

Listing 2.4: Shows two unit tests which verify the method in listing in 2.1. The test cases
are enough to show that the method is correct and both branches are covered
as well as each program statement is executed. Additionally the adopted test
case logicZero_valuesAreNotEqual_returnFirstArgIncremented will allow to
detect the mutant from listing 2.2.

11

2 Testing Background

that the tests were not able to detect the fault which was seeded into the
program. There can be two underlying reasons: The test set was not able to
detect the fault or the created mutant behaves as the original program and
is equivalent. Equivalent mutants are hard to identify and to automatically
find all equivalent mutants is an undecidable problem (A. J. Offutt and Pan,
1996).

The measurement which is used to state how the test set performed is the
mutation score or mutation adequacy score, it indicates the quality of the test
set. It is the number of all killed mutants in relation to the total number of
mutants. If a test set killed all mutants it is said to be adequate. If equivalent
mutants exist and they were not sorted out beforehand, a test set is unable
to be mutation adequate. The mutation score is either given as 0.00 to 1.00

or as in percentage from 0% too 100%. Goal of a developer or tester is to
reach a mutation score of 1.00 or 100% by finding test cases which are able
to achieve this goal (A. Jefferson Offutt and Untch, 2001b).

A. Jefferson Offutt and Untch (2001b) state that mutation analysis is an
effective way to measure the quality of a test set. As a side effect the software
is tested and it must be tested well or mutants will not be killed, as can
be seen for the test cases in listing 2.3. The effectiveness of the approach is
described by Geist, A. J. Offutt, and Harris (1992) in a fundamental premise:
“if the software contains a fault, it is likely that there is a mutant that can only be
killed by a test case that also reveals the fault.”. And L. Deng, Mirzaei, et al.
(2015) state a source of the strength of mutation analysis as follows: “One
source of that strength is that it does more than just apply local requirements, such
as reach a statement or tour a subpath in the control flow graph (reachability),
but it also requires that the mutated statement result in an error in the program’s
execution state (infection), and that erroneous state propagate to incorrect external
behavior of the mutated program (propagation)”. An example that this statement
is true can be seen as well in the test cases of listing 2.3. In the example it
is necessary to reach the mutant but it is not sufficient enough to kill the
mutant.

Although mutation analysis is widely considered to be an effective criterion
for evaluating and designing tests (Ammann and Jeff Offutt, 2008), there
are a problems that will be discussed in section 2.1.4.

12

2.1 Mutation Testing

public int getLowerValue(int a, int b) {

if (a <= b) {
return a;

} else {
return b;

}

}

Listing 2.5: Shows a method the will return the lesser value or the first value passed
to the method if both are equal. Applying a ROR mutation operator which
replaces the lesser than relational operator with a lesser operator will produce
an equivalent mutant which can not be killed by a test.

2.1.4 Difficulties in Mutation Testing

Mutation testing suffers from a number of problems that prevent it from
being widely used. For larger programs an enormous number of mutants
will be created and for each mutant the whole test set has to be executed
independently and the outcome has to be compared to the expected result.
This leads to a very high computational and execution cost. This is especially
true for Android applications due to the technical nature of how tests are
written and executed for Android (see section 2.3).

Another problem are equivalent mutants. This mutants can not be detected
by the test set as they behave identical to the original program. They are
hard to filter automatically, as it is an undecidable problem to find all
equivalent mutants automatically (A. J. Offutt and Pan, 1996). Therefore
it often involves human effort to detect and remove equivalent mutants.
Listing 2.5 shows a program method that, when the ROR mutation operator
from section 2.1.3 will be applied to it, would produce an equivalent mutant.
When replacing the lesser than operator with a lesser operator the result of
the method will still be unchanged, thus a test will not detect and kill this
mutant.

Additionally trivial mutants are mutants which are easily detected by the

13

2 Testing Background

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_display_message);

Intent intent = getIntent ();
String message = noDecorator.decorate(

intent.getStringExtra(EXTRA_MESSAGE)
);

TextView textView = (TextView)
findViewById(R.id.textView);

textView.setText(message);
}

Listing 2.6: An activity overriding lifecycle methods has to call its super class method,
highlighted in red, in order to work correctly.

test set and do not add value to the analysis. Trivial mutants as a result
increase the already high cost for mutation testing without aiding the
outcome (L. Deng, Mirzaei, et al., 2015). For example in the case of Android
an activity has to follow a pre-defined lifecycle and must invoke certain
lifecycle methods in order to work. If an activity overrides for example
the onCreate method it must call its super class method (see listing 2.6),
otherwise the activity fails to start and will crash. If a mutation operator
now removes this call, the mutant would always be killed when the test set
is executed against the mutant on an emulator or real device.

Often redundant mutants are to blame for the high cost involving mutation
analysis and they tend to misrepresent the mutation score and make it
imprecise. Reducing the number of redundant mutants often increases the
effectiveness and efficiency of the mutation process (R. Just, Kapfhammer,
and Schweiggert, 2012).

Challenges involving mutation testing are the following:

• Very high execution cost due to the enormous number of mutants.

14

2.1 Mutation Testing

• Equivalent mutants can not be detected automatically and have to be
filtered manually.

• Trivial mutants which do not add value to the mutation analysis
process as they are detected easily by a test set. Hence they increase
the computation cost.

• Redundant mutants decrease effectiveness and efficiency of a mutation
analysis system (R. Just, Kapfhammer, and Schweiggert, 2012).

To this day, there exist approaches to reduce the computational cost of
mutation analysis. A. Jefferson Offutt and Untch (2001b) divide these strate-
gies into three approaches calling them “do fewer”, “do smarter” and “do
faster”. The three types are futher classified into reduction of the generated
mutants and reduction of execution cost in the paper by Jia and Harman
(2011).

A. Jefferson Offutt and Untch (2001b) define “do fewer” as the process to
seek possibilities on how to run fewer mutants without reducing the quality
of the outcome. The “do smarter” approaches try to reduce execution time
for mutants or parallelize the execution. “do faster” approaches seek to
generate and run mutants as fast as possible. Jia and Harman (2011) combine
“do faster” and “do smarter” into the reduction of execution cost class and
“do fewer” refers to the reduction of generated mutants class.

There are techniques which focus on reducing redundant mutants by view-
ing mutation operators not as atomic and they only use a subset of the
operators to create mutants (R. Just, Kapfhammer, and Schweiggert, 2012).
Kaminski, Ammann, and Jeff Offutt (2011) showed that the ROR operator
creates redundant mutants when used in a traditional way and suggested
the use of a subset to avoid redundant mutants caused by this operator.

The result of this thesis provides a mutation testing framework which can
easily be integrated into the current Android build system. It makes use
of an existing mutation framework for Java and is used to determine the
test set quality of the Android Paintroid application. Therefore in the next
section 2.2 mutation analysis tools for Java are discussed. The Android build
system is described in chapter 3. Section 2.3 gives an overview of testing of
Android applications and section 2.4 gives an overview of the tests used in

15

2 Testing Background

the Paintroid project. Related work on Android mutation analysis tools are
discussed in section 2.5.

2.2 Mutation Analysis Tools for Java

This section gives an overview of mutation analysis tools for Java appli-
cations. As Android is mainly written in Java programming language a
mutation system which is build for mutation of Java projects is used in the
thesis to measure the test quality of the Paintroid project. In 2013, Delahaye
and Bousquet (2013) compared a variety of mutation analysis tools for Java.
The tools were examined based on their fault model, mutation criteria,
features and performance when applied to different Java projects. Three
usage contexts for these mutation tools were identified, namely teaching,
research and industry. Table 2.2 shows the eight compared tools and their
identified potential contexts.

Mutation Analysis Tool Usage Context
Bacterio research

Jester -
Judy research

Jumble -
Javalanche -

Major research
MuJava research
Pitest teaching, industry

Table 2.2: Shows the eight compared Java mutation analysis tools based on their fault
model, mutation criteria, features and performance when applied on different
Java projects and their identified potential usage contexts (Delahaye and Bousquet,
2013).

From the mutation tools in the paper of Delahaye and Bousquet (2013), Bacte-
rio, Javalanche, Jester and Judy do not seem to be under development anymore

16

2.3 Testing Android Applications

as of May 24, 2018. The latest version of Bacterio dates to 2012
1 (Mateo and

Usaola, 2012; Mateo, Usaola, and J. Offutt, 2010). The latest changes to the
Javalanche mutation anaylsis tool of Schuler and Zeller (2009a,b) were made
in 2012 according to the commit history on the GitHub project (Schuler,
2009). Jester of Moore (2001) is available for download at SourceForge2, the
latest version 1.37 is from 2005 (Moore, 2013). The Judy mutation framework
by Madeyski and Radyk (2010) does not seem to be available anymore. And
the latest version of Jumble was released in 2015 (Utting and Trigg, 2007).

The Major mutation framework is still under development and the latest ver-
sion was released on May 31, 2017 (R. Just, Schweiggert, and Kapfhammer,
2011; René Just, 2018, 2014a,b). The latest commit on the GitHub project
for MuJava by Ma, Jeff Offutt, and Y.-R. Kwon (2006) dates to August, 2016

(Jeff Offutt, 2015). Pitest by Coles (2018c) is currently at version 1.4.0 and
development is ongoing as of May 24, 2018 (Coles, 2018e).

From the mutation tools only Major and Pitest seem to be in ongoing
development. Pitest is an open source project available at GitHub3. It can
easily be integrated in form of a plugin into existing prominent build
systems for Java like Maven4 or Gradle5. It is important to note that it works
well with Gradle as the build system for Android builds upon Gradle (see
chapter 3). Pitest can be used for Java application projects the are build with
Gradle by using the plugin provided by Zajączkowski (2018).

The next section 2.3 gives an overview of the usual ways Android offers to
test Android applications.

2.3 Testing Android Applications

This section and the subsection 2.3.1 to 2.3.4 are based on the Android
testing documentation by Google (2018e) and the Android API reference

1http://www.alarcosqualitycenter.com/index.php/noticias/
306-febrero-2012-nueva-version-de-bacterio-mutation-test-system

2https://sourceforge.net/
3https://github.com/hcoles/pitest
4 https://maven.apache.org/
5https://gradle.org/

17

http://www.alarcosqualitycenter.com/index.php/noticias/306-febrero-2012-nueva-version-de-bacterio-mutation-test-system
http://www.alarcosqualitycenter.com/index.php/noticias/306-febrero-2012-nueva-version-de-bacterio-mutation-test-system
https://sourceforge.net/
https://github.com/hcoles/pitest
https://maven.apache.org/
https://gradle.org/

2 Testing Background

from Google (2018b) and give an overview of the different tests which are
written to test Android applications. As testing for Android differs from
testing traditional Java projects it is important for mutation testing to have
an understanding of how tests are executed. The Android development
environment offers its own testing framework which provides tools and
APIs to build different types of tests and run them. Dependencies of the Test
Support Library can be added to the projects’ development environment.
The test framework allows tests to be written in JUnit3 and JUnit4 style,
whereby JUnit3 tests are to be considered deprecated in newer versions of
Android. Therefore writing tests in JUnit4 style is the recommended way.

Typical Android tests can be grouped into unit tests, integration tests and
user interface (UI) tests. Unit tests can further be divided into local unit
tests and instrumented unit tests. Android additionally labels these test
categories as small tests, medium tests and large tests. The test API offers
Java annotations to mark instrumented test cases as small, medium or large.
When executing the tests a tester can specify the test size which should be
run. This supports grouping and execution of specific tests.

Small tests are typically unit tests which test a component in isolation of its
dependencies and run fast. Medium tests are tests which integrate multiple
components and evaluate whether they work together correctly. However,
they do not test the full stack of an application and increase the confidence
in the application that it runs correctly on an emulator or a real device.
Behavior of external dependencies is typically simulated. Large tests verify
the full application stack by testing along a common workflow.

For automated UI tests Android offers the Espresso testing framework and
UI Automator. External UI testing frameworks can also be used, such as
Robotium (2010).

2.3.1 Instrumented Tests

Instrumented tests are tests which need to be executed on an emulator or a
real device. For their execution they need access to instrumentation infor-
mation or real Android components. Therefore, the Android Application
Package (APK) of the application as well as the test APK are built and

18

2.3 Testing Android Applications

installed onto an emulator or a real device. Instrumented test cases can be
run with the default JUnit runner provided by the test framework (Google,
2010). A custom runner may also be used for test execution. The default
runner named AndroidJUnitRunner can run JUnit3 or JUnit4 test cases as
well as test classes which make use of test frameworks like Espresso or UI
Automator (see section 2.3.4). The runner supports a variety of configuration
options such as running all tests, all tests of a test class, multiple test classes
or single test case.

2.3.2 Local Unit Tests

Local unit tests are test cases which are compiled and run in the Java
Virtual Machine (JVM) on the local machine. Test source files must be stored
under src/test/java when using the default project layout. This greatly
reduces the execution time as it neglects loading and executing the tests
on an emulator or a real device. Unit tests should test a single isolated
unit such as a method, class or single component. External dependencies
or dependencies which are other application components of the unit under
test should be mocked. Their behavior can be controlled by a mocking
framework like Mockito6 or EasyMock7 or by writing self made mock
classes. Unit tests are not suitable for complex UI interactions and should
run fast, so that the developer gets immediate feedback on code changes.

To be able to mock Android system APIs, Android provides a modified
version of android.jar API file for local unit tests. This stubbed version
contains no code and throws exceptions when parts of it are invoked. Thus,
mocking frameworks can be used to mock Android components which are
used by the unit under test.

Another way to execute unit tests on the local JVM, which depend on
Android components, is to use the unit test framework Robolectric (2010).
Robolectric emulates parts of the Android framework classes which can be
run on the local JVM. Unit tests which need Android components can be

6http://site.mockito.org/
7http://easymock.org/

19

http://site.mockito.org/
http://easymock.org/

2 Testing Background

executed without the need for an emulator or a real device, hence reducing
the need to write and maintain mock code.

2.3.3 Instrumented Unit Tests

Instrumented unit tests are unit tests which need to access real Android
components or instrumentation information. Therefore they must be loaded
onto an emulator or a real device. They are significantly slower compared
to local unit tests (Google, 2018f). However they reduce the cost to maintain
and write mock code for Android components or other dependencies,
although mocks can still be used. Test code resides under a different location
than local unit tests, as the instrumented test source files are stored at
src/androidTest/java.

The APIs used in instrumented unit tests can be utilized to write medium
test cases which integrate multiple application components in the test.

2.3.4 Automatic User Interface Tests

Automatic UI tests are instrumented tests which are executed like instru-
mented unit tests on an emulator or a real device (see section 2.3.3). They
allow to simulate user interaction for an application. Test code files are
stored at src/androidTest/java. For a single application the Espresso test-
ing framework can be used to write automated UI tests. Espresso provides
an automatic synchronization of test actions and waits before performing
UI actions until a synchronization condition is met. The framework also
allows stubbing and validation of intents within the application. For testing
across multiple applications and Android system applications, the Android
Test Support Library provides the testing framework UI Automator. UI tests
typically test across multiple layers of an application or even multiple layers
of multiple applications. They typically verify a common workflow which is
offered to a user by the application.

The following section 2.4 gives an overview of the Android tests which exist
in the Paintroid project.

20

2.4 Test of Paintroid

2.4 Test of Paintroid

Paintroid or Pocket Paint is a drawing and picture editing app for Android
(Pocket Paint, 2018b). It is a free and open source non-profit project de-
veloped by the Catrobat (2018) project at Graz University of Technology
(Austria). The source code of Paintroid is available on GitHub (Pocket Paint,
2018a).

Table 2.3 shows the current test set of Paintroid. The test set consists of 41

Espresso test classes having 281 test cases, 17 instrumented unit test classes
having 88 test cases and three local unit test classes having 18 test cases (as
of July, 06 2018). To run all Espresso tests it takes on average 14 minutes on
an average machine and on the continuous integration (CI) server Jenkins 8

used by the Catrobat project. The instrumented unit tests take about one
minute and the local unit tests execute in under one second. It can be
seen that Paintroid makes heavy use of Espresso tests in comparison to
unit tests or instrumented unit tests. Of the 17 instrumented unit tests 10

test classes make use of Espresso to be able launch an activity and have
therefore a much higher execution time. Previously the test cases which are
now written with the Espresso API were written using the Robotium (2010)
testing framework. The cause for nearly no local unit tests is the heavy use
of global static objects throughout the application. These global objects and
states make it hard to mock code parts and to set up a correct state which
can be used for a local unit test. Currently work is done to get rid of these
global objects and reduce calls made to these objects. Removing this hard
coupled dependencies will allow to write more local unit tests in the future.
Currently the distribution of test cases among the different test types form
an inverse test pyramid (Cohen, 2009; Fowler, 2012).

The average execution time of tests is important for mutation testing, as
explained in section 2.1 the test set has to be executed for each mutant. So the
time to run the instrumented tests of Paintroid against four mutants takes
approximately one hour, if executed consecutively. Important for mutation
is also that test cases run stable, so there are no flaky tests involved in the
testing process. Flaky or unstable tests will kill mutants without detecting
them. This will falsify the mutation score for the test set as many mutants

8https://jenkins.io/

21

https://jenkins.io/

2 Testing Background

Test Type Test Classes Test Cases Avg. Execution time
Espresso 41 281 14 minutes

Instrumented unit tests 17 88 40 seconds
Local unit tests 3 18 430 milliseconds

Table 2.3: Shows the set of test for the Paintroid application. For each test type the number
of test classes, number of test cases and average execution time is stated.

will be killed randomly. The execution time of Espresso tests is many times
higher than the instrumented unit tests as an activity needs to be launched.
In case of Paintroid some of the Espresso tests tend to be unstable and are
failing from time to time because a view could not be found or artifacts in
the application state from a previous test cases where present.

The following section 2.5 gives an overview of mutation analysis tools which
are available for the Android platform.

2.5 Mutation Analysis Tools for Android

The in section 2.2 presented Java mutation frameworks including the tools
from the paper by Delahaye and Bousquet (2013) are for Java projects. The
tests for typical Java projects are executed in the Java Virtual Machine
(JVM) on the local machine. The difference to Android projects is that for
Android projects additional types of tests exist which must be run on an
emulator or physical mobile device. Therefore, for each mutated version of
the application an Android Application Package (APK) file has to be built
in order to test instrumented unit tests or UI tests. The different types of
tests are described in section 2.3.

To the best of my knowledge at the time of starting the thesis (November,
2016) the only available mutation analysis system for Android projects,
which is able to run tests on an emulator or a real device, was MuDroid by
Yuan (2016a). Additionally known was a proof-of-concept tool by L. Deng,
Mirzaei, et al. (2015) which creates the mutants from Java code. It likewise
supports mutation analysis for tests which need to run on an emulator or

22

2.5 Mutation Analysis Tools for Android

real device. In comparison MuDroid uses a different approach by creating
the mutants by applying the mutation operators at Smali byte code level,
instead of mutating Java source or byte code. Hence it does not need the
original source code for the mutation analysis (Yuan, 2016b). In addition to
these Android mutation analysis tools a Gradle plugin project for Pitest by
Zajączkowski (2018) exists, as mentioned in section 2.2. For this plugin a
forked and adopted version was available which enabled mutation testing
for local unit tests by Pitest on Gradle Android projects (Wrotniak, 2018).

In the following section 2.5.1 the proof-of-concept tool by L. Deng, Mirzaei,
et al. (2015) is presented. In August 2017 Linares-Vásquez et al. (2017)
presented in a paper the mutation analysis tool MDroid+ for Android
applications. In section 2.5.2 this mutation testing framework is described. A
part of the tool is available but it does not provide a whole test framework
which builds, executes and analyzes the created mutants.

Based on the test cases used in the Paintroid project (see section 2.4), a
mutation analysis tool was needed which could easily be integrated into
the build system and which was able to run mutation analysis on local unit
tests as well as on test cases which need to run on an emulator or a real
device. The tool should analyze the result for each mutant and create a
report containing the mutation score for the test set. The result of this thesis
provides a Gradle plugin for Android projects which enables mutation
testing for these kinds of tests. Since Pitest is in ongoing development and
an integration for Android projects for the mutation analysis tool already
existed, the created plugin utilizes Pitest and its Android Gradle plugin to
create the mutants for an Android project. In addition to Pitest the mutants
can be run against instrumented test cases. The implementation of the
plugin is described in chapter 4.

2.5.1 Proof-of-concept Mutation Analysis Tool by
L. Deng, Mirzaei, et al. (2015)

L. Deng, Mirzaei, et al. (2015) propose eight new mutation operators in
their paper, which are specific to Android applications and they describe
the implementation of a proof-of-concept tool which utilizes these Android

23

2 Testing Background

specific operators as well as traditional Java mutation operators. Parts of
the MuJava (see section 2.5) mutation engine are used in the Android
mutation analysis tool which implements these mutators. It supports 15

method level selective operators from MuJava (Ma, Jeff Offutt, and Y. R.
Kwon, 2005), four deletion operators and eight Android operators. The
tool creates the mutants from Java source code of the Android application.
Additionally three of the eight Android mutators are Extensible Markup
Language (XML) mutation operators which modify the Android manifest
XML file (AndroidManifest.xml) and XML layout files of the applications
user interface.

The proposed mutation analysis process in the paper consists of the follow-
ing nine steps:

1. At first, the user selects the mutation operators which should be used
by the tool. The user chooses from the 27 available operators.

2. First the tool executes mutation operators which work on Java source
code. It applies them on the code and compiles each mutated source
file to Java byte code class files.

3. Next the XML mutation operators are applied to the Android manifest
and layout files, each mutator creates a modified copy of the original
file.

4. For each mutated file generated by the engine an APK file is cre-
ated. The stillborn mutants are not used in the result. These “stillborn”
mutants do not compile and are discarded by the system. For XML mu-
tants the original AndroidManifest.xml or layout definition is swapped
out with the mutated file when packaging the APK.

5. Next the configured tests which should be run are packaged into the
test APK file. The system supports instrumented tests written with
the Android testing framework as well as tests from external test
frameworks, such as Robotium (2010).

6. After compiling every mutant APK file, the original application is
packaged as well and installed into an emulator or onto a real device.
Additionally the test APK file is installed and the tests are executed

24

2.5 Mutation Analysis Tools for Android

against the original application. The test result is than stored as the
expected result. It is used to identify killed mutants.

7. After creating the expected result, each mutant is installed into an
emulator or onto a real device and all test cases are executed. The
result for the mutant is stored as the actual result.

8. Afterwards the expected result is compared with each actual result. If
they differ the mutant is marked as killed.

9. The mutation analysis process is finished by computing the mutation
score as a percentage value.

The mutation analysis tool by L. Deng, Mirzaei, et al. (2015) does not
implement any mechanism to detect equivalent mutants. They have to be
evaluated manually as the tool does not help by identifying these mutants.
Trivial mutants, these are versions of the application that crash on startup,
are counted towards killed mutants. The proposed process differs from a
traditional Java mutation process since it applies mutation operators to none
Java source code or byte code files as well. By mutating the manifest or a
layout file and it must package the application as an APK file and install it
on an emulator or real device. The same applies to the test set which should
be run. This has to be considered as well as the test execution time of UI
test cases using Espresso or Robotium, as they are very time-consuming. As
listed in section 2.4 for the Paintroid project the existing instrumented unit
tests and Espresso test cases take about 15 minutes to run. The test set is
executed for each mutant created by the mutation tool. The paper does not
explain how the mutation analysis tool is implemented, nor how the APK
files are packaged and loaded onto an emulator or a real device.

The set of eight proposed mutation operators for Android was extended
by three additional operators in 2017 by Lin Deng et al. (2017a,b). In 2017

L. Deng, J. Offutt, and Samudio (2017) used their mutation analysis tool
to evaluate if mutation testing is effective for Android applications. Their
results indicate that it is effective. Six new mutation operators for Android
were added to the set of the previous 11 operators.

25

2 Testing Background

2.5.2 MDroid+ by Linares-Vásquez et al. (2017)

Linares-Vásquez et al. (2017) presented a mutation analysis tool MDroid+
for Android applications. The code which is used to generate the mutants
is available online9. From a fault study 38 Android mutation operators were
derived and are available in the tool. Only two of the eight proposed android
mutation operators which were suggested in 2015 by L. Deng, Mirzaei, et
al. (2015) overlap with the 38 operators defined by Linares-Vásquez et al.
The complete MDroid+ analysis tool consits of MDroid+ that identifies
and creates the mutants and a parallel execution architecture for running
the mutants against the tests on Android emulators called the “Execution
Engine”. For each mutant MDroid+ creates a mutated application which is
compilable and can be packaged as an APK file which then can be installed
onto an emulator or a real device. For each mutant it clones the whole
target project and applies the single syntactical change on the source code or
XML file (Moran et al., 2018). The available tool does not provide a way to
transform the Android project to APK files nor a way to execute the test set
against the mutants and evaluate the results in form of a mutation score.

9https://gitlab.com/SEMERU-Code-Public/Android/Mutation/MDroidPlus

26

https://gitlab.com/SEMERU-Code-Public/Android/Mutation/MDroidPlus

3 Android Build System

Chaper 3 gives an overview of the Android build system and the system it
is based upon. Hence in section 3.1 the build management system Gradle
(2018a) is described. Section 3.2 describes the Android plugin for Gradle,
used in the build process of Android, which is described in section 3.3.
Section 3.4 describes the Android Debug Bridge tool which supports con-
nection to devices via command line and explains important commands
which are used by the work in this thesis. The following chatper 4 describes
the implementation details of the proposed mutation analysis tool using the
technologies explained in chapter 3.

3.1 Gradle

Section 3.1 is based on the Gradle User Manual (Gradle, 2018c) and gives
an overview of the important concepts of Gradle with regard to Android
and plugin development. Gradle is a general purpose build management
system that supports build automation for multiple programming languages
and platforms. Gradle is structured into projects and tasks. A project is
something that should be built like a JAR file or should be done like the
deployment of a web-application. What and how it should be built is defined
in the build script of the project. Gradle build scripts are script files written
in code and can be created in either Groovy (2018) or Kotlin (2018) language.
The build script is compiled on execution and uses the Gradle project API
to drive the build process. Gradle builds consist of one or more projects,
known as a single project build or a multi-project build. A project consists
of tasks where each task is a single piece of work within the project. A
project is basically a collection of tasks and a build executes these tasks in
a certain order to built the project. A task can be an ad-hoc task that has

27

3 Android Build System

no predefined logic or an instance of a task class which can be configured
to perform a predefined execution logic for different parameters. Multiple
instances of the same task class can be added to the build. Tasks have a fully
qualified unique name across all tasks within the build. This unique name
is called the path. Likewise a project also has a unique qualified name. A
task has a local name as well which is unique within the project the task is
defined in. It can be used to identify and execute the task within the project.
Tasks may have dependencies on other tasks in the build. Additionally
tasks may be configured to run in a specific order, so that a task should
run after another task or should finalize a specific task. Gradle ensures that
each task will be executed only once and that tasks are executed in correct
order. For that reason Gradle creates a directed acyclic graph (DAG) called
the Task Execution Graph (TEG). The TEG is constructed and populated
before any task is executed. This gives the possibility to hook into the build
life cycle and configure tasks before their execution. For instance when
the configuration of a task depends on the presence of other tasks that are
scheduled to be executed or the configuration depends on certain build
properties which are not known in advance. A task which is configured at
execution can be configured in different phases of the build. For example
a task can be configured before any of the scheduled tasks is run or after
a task has finished execution. Another important configuration moment is
when the TEG is ready. Hence all tasks that will be executed in the current
build are known and configured. The graph manages the execution of the
task instances and maintains an execution plan of the tasks which are part
of the current build.

The Gradle build life cycle has three specific phases:

1. Initialization Phase: In this phase it is determined which projects are
going to be built, those can be multiple in the case of a multi-project
build. For each project an instance of the Gradle project API is created.
Each instance will be configured in the next phase by executing its
build script file against the instance.

2. Configuration Phase: The project instances created in the initialization
phase will get configured and the build scripts are executed against
the project instances. All tasks of the involved projects get created and

28

3.1 Gradle

configured in this phase.

3. Execution Phase: To execute tasks, a single task or multiple tasks can
be passed as command line arguments to Gradle. Gradle determines
the subset of tasks which have to be executed from the whole set
of tasks which are created and get configured in the configuration
phase. Each task of the subset is then executed with regard to the
dependencies and rules to order the tasks, as stored in the TEG.

To start a Gradle build from the command line it is recommended to use the
Gradle Wrapper (2018). The wrapper consists of multiple files. It downloads
a declared version of Gradle and executes the project build script for this
specific version. This allows an execution independent of any installed
Gradle versions on the machine. On installation of the Gradle Wrapper a
shell script will be created as well as a batch file for Windows. These scripts
should be used to build the Gradle project using the Gradle Wrapper, to
ensure that the correct Gradle version is used.

It is possible to listen and respond to the build life cycle by implementing
listener interfaces or using closures as event callback methods. An important
notification is the event that the project has been evaluated. It allows to create
tasks or configure tasks depending on project properties like extensions
which are added by plugins or project properties which are passed as
arguments.

Gradle supports plugins to add predefined tasks to the build of a project.
The build system ships with a number of default plugins that can be added
to a project. Like the Java Plugin which adds tasks to a Java project which
allow for example to:

• compile source files,

• assemble a JAR file,

• test the code or

• generate the Javadoc.

Gradle plugins extend the capabilities of a project by typically applying
a default configuration based on a predefined convention. Additionally

29

3 Android Build System

they allow the reuse of build logic across multiple projects which need
the same or similar tasks to be performed. A plugin can be added to
the project by applying it to the build script of the project. They can be
added using additional build scripts that are linked into the projects build
script. These script plugins can be applied from the local file system or
remotely by specifying an HTTP URL. Another way to add a plugin is to
use binary plugins, these plugins are classes which implement the Gradle
Plugin interface. Binary plugins that are not shipped with build system are
known as no-core binary plugins. They have to be resolved first. Binary
plugins can be included from an external JAR file defined as a dependency
to the build script or using the plugin portal by defining it in the plugins
configuration block of the build script. Furthermore a binary plugin can
be include using an inline class in the build script. Additionally the plugin
sources can be placed under a specific folder named buildSrc, Gradle will
look for this directory and compile the sources in it and will add the
compiled plugin to the build script.

The work in this thesis is implemented as a binary plugin that can be added
to an Android project (see chapter 4). A plugin has a unique plugin ID that
is used to apply it to the build script. The next section 3.2 gives an overview
of the Gradle plugin for Android and important configuration elements
and concepts which have an effect on the created artifacts, task names and
output directories. This is important to know for the provided plugin as it
uses tasks of the Android Gradle plugin and the created output files.

3.2 Android Gradle Plugin

This section is based on the user guide by Google (2018h) on the Gradle plu-
gin for Android. Android uses Gradle as the foundation for its application
build system. The Android Gradle plugin adds Android specific capabilities
such as a flexible build configuration, a variety of tasks for development,
verification, release and default configurations. On the basis of Gradle it is
easy to add project dependencies to an Android application such as external
binaries or other Android library modules. They can be included from the
local file system, a remote repository or as a separate local project module.

30

3.2 Android Gradle Plugin

Android offers Android Studio as its official Integrated Development En-
vironment (IDE). Gradle is an integrated tool of Android Studio, however
Android Gradle plugin and Gradle can be used independently from the IDE.
Besides the Android Studio, an application can be built using the command
line by utilizing the Gradle wrapper on a local machine or on a remote
machine like a continuous integration (CI) server such as Jenkins 1 (see
section 3.1). The output is always the same when using Gradle to build the
project, whether using Android Studio or not.

A typical Android project is a Gradle multi-project. The build files are
plain text Gradle build script files that use Groovy or Kotlin language
to describe and to manage build logic. The Android Gradle plugin adds
domain-specific language (DSL) elements to the build script which are
used to configure the build. To use the plugin a classpath dependency to
com.android.tools.build:gradle:<version> has to be set in the buildscript
block of the root project. Where <version> is the version of the Android
Gradle plugin that should be used.

3.2.1 Android Plugin Types

Different plugin types can be added to the build file of a sub project
(Google, 2018d). The following plugins can be added by using the plugin
ID belonging to a certain type of module:

• com.android.application: Configures the sub project to be an An-
droid app module that builds Android Application Package (APK)
files.

• com.android.library: Configures the sub project to be an Android
library module that builds Android Archive (AAR) files.

• com.android.test: Configures an Android test-only module. Here the
target project which should be tested is set using the DSL property
targetProjectPath.

1https://jenkins.io/

31

https://jenkins.io/

3 Android Build System

• com.android.feature: Configures the sub project to be a feature mod-
ule. Builds an AAR or APK file depending in which module it is
referenced.

3.2.2 Build Configuration

Android Gradle plugin gives the possibilty to define custom flexible build
configurations by using build types and product flavors. These are explained
in the following sections 3.2.2.1 and 3.2.2.2. This section and its subsections
are based on the user guide on build variants by Google (2018g). They allow
to create different versions of the application by using a common code base
and by adding additional code, resources and configurations for a specific
version only.

3.2.2.1 Build Type

A build type allows to define certain properties that are typically for a
specific type of build. Gradle uses these properties when assembling and
packaging the APK file of the application. They normally get configured for
a different stage in a development process. By default the Android Gradle
plugin creates the debug and release build types. Build types are defined
in the buildTypes block of the Android Gradle plugin DSL. Neither debug
nor the release build type must be present in the buildTypes block to be
available, however they can be added to the block to change the default
settings of the type.

Furthermore a build type has an impact on the names and the number
of available tasks and on output directory names created under the build
directory as well as names of created files. By default the APK file for
running the instrumented tests is created for the debug build type, when
running the corresponding task. By specifying the property testBuildType
to the name of a build type, the name of this task changes and the test APK
is built for another build type under a different output location.

32

3.2 Android Gradle Plugin

3.2.2.2 Product Flavor

To create a different version of an application a so called product flavor can
be configured. This allows to use additional or specific source code and
resources for this version of the application, while still be able to share a
common base of code and resources among the different product flavors.
Product flavors are optional and must be created manually by adding the
configuration to the productFlavors block of the plugin configuration. The
defaultConfig block provides the default configuration for product flavors.
Since Android Gradle plugin version 3.0.0 or higher a product flavor must be
assigned to a flavor dimension. A flavor dimensions assigns a product flavor
to a logical group of flavors. This means that at least one flavor dimension
must be defined. By default if only one flavor dimension is specified, each
defined product flavor is assigned to this flavor dimension. Otherwise all
flavors must be assigned to one flavor dimension manually by settings the
property dimension in the product flavors configuration block.

Multiple flavor dimensions enable the combination of product flavors. Gra-
dle combines for each dimension the product flavors of the other dimensions.
Product flavors of the same dimension are not combined. Furthermore a
product flavor and the flavor dimensions have, as the build type, an impact
on the number or the naming of tasks, directories as well as names of created
files by the build process.

3.2.2.3 Build Variant

Build variants allow to build different versions of an application using a
single project. They result from the specified build types (see section 3.2.2.1)
and product flavors (see section 3.2.2.2). Build variants are not configured
manually. A build variant is the configuration Gradle uses to build the
application.

The Android Gradle plugin identifies the available build variants by apply-
ing the cross product to the product flavors and build types. Any specified
flavor dimensions also are taken into account. The number of build variants
is equal to the product of product flavors per flavor dimension times the
number of build types. For example using the configuration in listing 3.1

33

3 Android Build System

the product flavors normal, premium, free, early and full for flavor dimensions
base and status will result in combination with the configured build types
debug, staging and release in 12 build variants.

A build variant affects the naming of specific source sets, build tasks, output
directories and output files such as the built APK file. The name of a build
variant is built from the name of the product flavor finished by the build
type. The build type is always applied after a product flavor. If multiple
flavor dimensions are specified then each combination of flavor names
resulting from the different dimensions is used instead of the single product
flavor name.

The names of the build variants for the configuration in listing 3.1 are built
of the following parts:

[free, early, full][Normal, Premium][Debug, Staging, Release]

For example this adds, to the application variants the Android Gradle plugin
can build, the build variant freeNormalDebug. The task to assemble the appli-
cations APK file is named assembleFreeNormalDebug. The path of the output
directory for the build is dependent on the build variant parts. The APK file
will be stored under the output location <apk-output-directory>/freeNormal/debug.

...

flavorDimensions "base", "status"

productFlavors {
normal {

dimension "status"
}

premium {
dimension "status"

}

free {
dimension "base"

34

3.2 Android Gradle Plugin

}

early {
dimension "base"

}

full {
dimension "base"

}
}

buildTypes {
debug {

testCoverageEnabled true
}

staging {
}

release {
minifyEnabled false
proguardFiles

getDefaultProguardFile("proguard -android.txt"),
"proguard -rules.pro"

}
}

...

Listing 3.1: Shows a configuration using two flavor dimensions, five product flavors and
three build types. The Android Gradle plugin combines these to create build
variants which are used to build the application. 12 build variants will result
from the two flavor dimensions, five product flavors and three build types.
A build variant affects the name of the APK file, output directories and task
names.

Undesired build variants can be filtered out by configuring a variantFilter
logic block. Custom logic can be defined to ignore those build variants that
make no sense or are not needed. The next section 3.2.2.4 describes the
application ID and how it is affected by a product flavor.

35

3 Android Build System

3.2.2.4 Application ID

This section is based on the user guide for the Android application ID
by Google (2018i). Every Android application needs a unique identifier to
uniquely identify the application on a device. The naming rule for an appli-
cation ID is in analogy to the Java package naming convention, but more
restrictive. The application ID can be defined with applicationId prop-
erty in the defaultConfig block. Every product flavor inherits the properties
from defaultConfig, to change the application ID for a flavor, a suffix can be
added to the base application ID using the property applicationidSuffix.
This property is also available for build types. Furthermore product fla-
vors can overwrite the defaultConfig application ID using applicationId
property in the product flavors configuration block. Here the ordering of
flavor dimensions has an effect on the final ID. When the application ID
is configured using applicationId in product flavors of different flavor
dimensions, the base application ID is set to the higher ordered dimensions
flavor. Suffixes are appended normally.

The ID of the instrumented test APK is by default set to application ID
for the build variant and appended with “.test”. It can be changed using
the property testApplicationId in the product flavors configuration block
or in the defaultConfig block. The test application ID is used to run the
instrumentation test from the command line using the command line tool
explained in section 3.4.

3.3 Android Build Process

This section is based on the user guide by Google (2018h) on the build
process for Android. The general build process is shown in figure 3.1.
Various tools and tasks are involved in the process of building the final APK
file. In a typical application build first the compilers converts the source
code and resources to Dalvik Executable (DEX) files and compiled resources
as can be seen in figure 3.1. The java source files are compiled to “.class”
files using javac. The class files are then transformed to “.dex” files using

36

3.4 Android Debug Bridge

the DEX compiler. DEX files contain the Dex byte code that is executed on
an Android device.

For each build variant described in section 3.2.2.3, a corresponding task
exists which compiles the Java sources to Java byte code. The build variants
name is used in the task name, the generic name is compile<buildVariant>Sources.
After the compile sources task the output files are located under <build-
dir>/intermediates/classes/<buildVariant>. The task to transform “.class” files
to DEX byte code uses the files from this directory as its input. This task
has the generic name transformClassesWithDexBuilderFor<buildVariant>.
The DEX files and compiled resources are then combined into a single APK
file by the APK Packager. Using a debug or release keystore the packager
signs the APK file. The application file must be signed first in order to be
able to install it on an Android device. A debug keystore is automatically
configured by Android, the sign the release version a keystore has to be cre-
ated manually. After packaging and signing the application is optimized to
use less memory using a tool called zipalign2. Following the APK Packager
creates the final signed APK file which can be installed on a device. The file
is either a debug or release APK.

Section 3.4 describes a tool which supports to connect and to run commands
on Android devices. Additionally important commands that are used by
the provided Android plugin for mutation testing are described.

3.4 Android Debug Bridge

This section and its subsections are based on the user guide for the Android
Debug Bridge (ADB) by Google (2018c). ADB tool is command line tool
provided by the Android Platform SDK. ADB allows to communicate with
a connected device via a server process. ADB gives the possibility to execute
device actions without the need to open a shell on the device. The tool
has three components, an ADB client and a server which both run on a

2https://developer.android.com/studio/command-line/zipalign

37

https://developer.android.com/studio/command-line/zipalign

3 Android Build System

Application Module

Managed by Gradle
and the Anroid Plugin

Dependencies

Source Code Library Modules

Debug or Release
Keystore

DEX File(s)

Compiled Resources

Compilers

APK Packager

Debug or Release APK

Resource Files AAR Libraries

AIDL Files JAR Libraries

Figure 3.1: Google (2018). The typical Android build process using various tools and
processes to build the final signed APK file from the application module and its
dependencies. Note. Reprinted from: https://developer.android.com/studio/
build/#build-process, Available at: https://developer.android.com/images/
tools/studio/build-process_2x.png, Accessed 20 May 2018.

38

https://developer.android.com/studio/build/#build-process
https://developer.android.com/studio/build/#build-process
https://developer.android.com/images/tools/studio/build-process_2x.png
https://developer.android.com/images/tools/studio/build-process_2x.png

3.4 Android Debug Bridge

development machine as well as an ADB daemon (ADBD) that runs as a
background process on a device. Through the client commands can be sent
to a device, the server process manages the connection to a device and the
daemon on the device executes the commands on the device. Furthermore
access to a UNIX shell on the device is possible. Commands can be executed
on the command line using the program adb.

3.4.1 Query devices

ADB allows to query for connected devices. To retrieve a list of connected
devices the command devices has to be executed. This command creates a
serial number for each connected device which allows to identify the device
when issuing commands. The output of adb devices command lists the
connected devices by showing their serial number and connection status as
can be seen in listing 3.2.

List of devices attached
323048 cb61c870dd device
emulator -5556 device
emulator -5554 device

Listing 3.2: Output of the adb devices command. Lists the serial number and connection
status of all connected devices.

To retrieve more information about the device or emulator the command
can be executed using the -l flag. The output of adb devices -l command
lists the connected devices showing their serial number and additional
information in order to distinguish between devices as can be seen in listing
3.3. The command can be used to create a list of available devices from the
output.

List of devices attached
323048 cb61c870dd device product:m0xx

model:GT_I9300 device:m0 transport_id :5

39

3 Android Build System

emulator -5556 device product:sdk_gphone_x86
model:Android_SDK_built_for_x86 device:generic_x86
transport_id :3

emulator -5554 device product:sdk_gphone_x86
model:Android_SDK_built_for_x86 device:generic_x86
transport_id :1

Listing 3.3: Output of the adb devices -l command. Lists the serial number of all connected
devices with additional information to be able to distinguish between devices.

3.4.2 ADB Commands

This section explains the use of ADB commands, besides the query devices
command in section 3.4.1, which are used by the implemented solution in
chapter 4. They are used to automate the mutation testing process. This
section does not list all available commands. When issuing a command
while multiple devices are connected, the target device must be defined. To
specify the target device the serial number of the device has to be passed to
the command using the -s flag. The serial number can be taken from the
output of the query devices command as shown in listing 3.2.

The following sections 3.4.2.1 - 3.4.2.6 explain the install command to install
an APK file on a device, the uninstall command to remove a package from
a device, the pull command to copy files and directories from the device to
a local location and the shell command using the Activity Manager am and
Package Manager pm tools.

3.4.2.1 Shell

The ADB shell command can be used to open a UNIX shell on the device
to issue commands or to directly run commands without opening a shell.
For example the command adb shell rm <path-to-file> allows to delete
a file on the device. The Activity Manager tool am on the device allows to
execute system actions such as start a service, start an activity or start a test
runner for instrumented tests. To start instrumented tests see section 3.4.2.6.

40

3.4 Android Debug Bridge

The Package Manager tool pm can be used to perform actions on installed
packages such as uninstall or clear data.

3.4.2.2 Install

The ADB install command allows to install or reinstall an existing installa-
tion of an APK file. To simply install an APK the following command has to
be run adb install <apk-file>, where <apk-file> is the path to the APK
file. By setting the -r option an existing installation is replaced but the data
is kept. To allow installation of an instrumented test APK file for running
tests on the device the -t option has to be set. This command can also be
executed using the am tool.

3.4.2.3 Uninstall

The pm command to uninstall a package from a device takes the application
package as an argument and additionally removes the data of the package.
The command is invoked using the shell. To run the command the appli-
cation package which is normally the application ID has to be used. adb
shell pm uninstall <package>. See section 3.2.2.4 for the application ID.

3.4.2.4 Clear

The pm command clear can be used to remove the data for a package from
the system without the need to uninstall the package. As the uninstall
command the application package has to be supplied to the clear command.
The command is invoked using the shell. The command can be used to clear
all package data after a test run.

3.4.2.5 Pull

The ADB pull command allows to copy files and whole directories from
the device to a location on the local machine. For example the command

41

3 Android Build System

can be used to copy files after a test execution for further processing on a
local machine.

3.4.2.6 Run Instrumented Tests

This section describes how to run instrumented tests using the ADB shell
command from section 3.4.2.1 to execute the am instrument command. To
run the tests the application and test APK files have to be installed on the
emulator or mobile device first (see section 3.4.2.2 for installation with ADB).
Subsequently the am instrument must be executed for the test package, see
listing 3.4 for the general syntax of the command. The command has the
ability to control which tests should be run.

adb shell am instrument [flags] <test -package >/<runner >

Listing 3.4: General syntax of the am instrument command to run tests from a test package.
<test-package> is the package name of the test application and <runner> the
class of the Android test runner that should be used.

The arguments <test-package> and <runner> in listing 3.4 are the package
name of the test application and the class of the Android test runner that
should be used to run the tests such as android.support.test.runner.AndroidJUnitRunner.
AndroidJUnitRunner can run JUnit3 or JUnit4 test classes as well as test
classes that use test frameworks like Espresso or UI Automator (see section
2.3).

Important flags for am instrument are -w that forces the shell to keep open
and wait until the tests finish and the -e flag to provide test options as key
value-pairs to the specified instrumentation runner.

42

4 Pimutdroid Gradle Plugin

This chapter describes the implemented solution to perform mutation testing
for an Android project. In section 4.1 a general overview of the plugin is
described, section 4.2.1 displays the implemented mutation process and
important concepts used by the plugin. The configuration of the developed
plugin is described in section 4.3. Finally, section 4.4 provides on overview
of the available reports concerning the mutation analysis which are created
by the plugin. In chapter 5 a more detailed view on the implementation on
the plugin is given.

4.1 Plugin Overview

In order to perform mutation testing for an Android application that is
easy to use and easy to integrate into the current Android development
environment a Gradle plugin named Pimutdroid has been developed. Section
4.2 provides an overview of the implemented analysis process and important
concepts, as well as the configuration of the plugin. The developed plugin
serves as a bridge between local Android unit tests and tests that are run on
an emulator or a real device. The plugin uses the Android SDK Platform
Tools and Android Gradle Build Tools, which were explained in chapter 3,
to build the APK files for the application under test and enables mutation
testings for local unit tests as well as instrumented unit tests and UI tests.

Pimutdroid uses Pitest mutation framework, also known as PIT, to mutate
the code base of the project and to perform mutation testing for local unit
tests (Coles, 2018c). To integrate Pitest into the Gradle build system, the
developed plugin uses the in section 2.5 mentioned Gradle integration
for Pitest by Wrotniak (2018). The plugin allows to run the Pitest mutation

43

4 Pimutdroid Gradle Plugin

analysis for local unit tests on Android projects. This plugin is an augmented
version of the Pitest Gradle integration plugin for traditional Java projects
by Zajączkowski (2018). To export the mutated files from Pitest, a Pitest
plugin by Coles (2018d) is used, because Pimutdroid uses an Pitest version
which does not provide this functionality by default.

For every mutant created by Pitest, Pimutdroid builds an APK file and
tests the APK against chosen tests from the test APK on an emulator or
a real device. A user can configure the developed plugin via Gradle DSL
and for example define which classes the user wants to mutate, which
mutators should be used and which tests the user wants to run the mutants
against (see section 4.3). After running the tests against the mutants, an
Extensible Markup Language (XML) report is created which includes a
general overview and a detailed view on the mutation outcome as well as
the overall mutation score of the test set 4.4.

4.2 Mutation Analysis Tool

Pimutdroid is a Gradle plugin which is written in Java (2018b) and Groovy
(2018), it uses the Gradle public API to provide tasks for mutation testing
which are added in addition to Android Gradle plugin tasks to the develop-
ment environment. The user can run these tasks independently to perform
different steps of the mutation analysis process for the Android application.
The steps of the mutation analysis done by Pimutdroid are described in sec-
tion 4.2.1. Additionally in sections 4.2.2, 4.2.3 and 4.2.4 important concepts
and terms are explained for the implementation details in chapter 5.

4.2.1 Mutation Analysis Process

This section describes the process of how Pimutdroid runs mutation analysis
on an Android project. Of the following steps which are performed by the
plugin in order to generate the mutation result, steps 2 to 8 can be executed
by the user as a Gradle task, step 1 is the configuration of the plugin using
Gradle DSL:

44

4.2 Mutation Analysis Tool

1. First the user decides which classes should be mutated and configures
the used mutation operators and defines how many mutants per
class should be created maximally. The configuration of the plugin is
described in section 4.3. The mutation operators the user can choose
from are explained in section 4.2.4.

2. Next the plugin assembles the application APK of the current project
and assembles the test APK against which all mutant APK files and
the original application created by the plugin are tested. To create the
APK files, Pimutdroid uses the Android Gradle assemble tasks and
performs following steps:

a) Assemble application APK using assemble task for the configured
product flavor and build type.

b) Assemble test APK using assemble task for androidTest for the
configured product flavor and build type.

c) Store assembled application APK and test APK files for later use.

d) Backup compiled application class files. The backup is used to
restore the correct byte code in the mutation phase after a mutant
was created.

3. Using Pitest, the application source code for the configured build vari-
ant is compiled and the byte code of the defined classes are mutated.
The mutated class files and additional metadata created by the Pitest
export plugin are stored for later use. They are used when the mutant
APK files are assembled and the Pimutdroid report is created. The
following steps are performed:

a) Mutate byte code by running the Gradle Pitest task for the con-
figured product flavor and build type.

b) Run mutation analysis on local unit tests and create the Pitest
mutation report. Reports in Hypertext Markup Language format
and XML format are created.

c) Store the mutated class files and metadata files by Pitest for later
use.

45

4 Pimutdroid Gradle Plugin

4. Create mutation metadata for the mutated class files. The plugin as-
signs an identifier to every mutant called MUID (see Mutant Identifier
section 4.2.2) and creates a file containing information about the mu-
tant (see section 4.2.3). The data stored for each mutant consist of its
MUID, mutated class data, the mutation operator used and whether
the mutant was already killed by the local unit tests. This metadata
is later used in the creation of the mutation report and in the build
process of the mutants.

5. For each mutant an APK file is built using the Android Gradle assem-
ble task for the configured product flavor and build type. Each APK
file is stored in combination with its metadata file under the mutant
output directory. Additionally, a log file of each build is stored in a
separate build log directory.

6. Next the unmutated original application APK as well as the test APK
are installed onto an emulator or a real device. The application is
tested against all configured tests and the generated result is stored as
the expected result for comparison with mutant test results.

7. Each mutant APK file is than installed onto an emulator or a real
device and the tests are executed. The mutant test result is pulled from
the device and is stored as the actual test result under the directory
containing the mutant APK and its metadata.

8. Each actual mutant result is compared with the expected result to
determine whether the mutant was killed by the test set or not. If the
results differ, the mutant is marked as killed. The plugin gathers the
outcome for each mutant and creates a mutation result report in XML
format under the report directory and prints the mutation score to the
console. Equivalent mutants are not detected by the process.

The Pimutdroid mutation process is inspired by the proposed proof-of-
concept tool by L. Deng, Mirzaei, et al. (2015) in section 2.5.1. They differ
from each other as the developed plugin does not support XML mutation
operators and does not swap out layout files or the Android manifest file in
order to create mutants. All steps in the developed plugin can be executed

46

4.2 Mutation Analysis Tool

using the Gradle wrapper from the command line (see section 3.1) or from
the Android Studio IDE using the Android Gradle plugin (see section 3.2).
The mutants can be executed in parallel on configured devices or on all
connected devices. By default Pimutdroid uses the device defined in the
Java system variable ANDROID_SERIAL. This behaviour is inspired by the
Android Gradle plugin by Google (2018d), listing 4.1 display the use of the
variable by the Android Gradle plugin to pass one or more serial numbers
of devices to the plugin. If the system variable is not set, the first device
found will be used instead.

4.2.2 Mutation Identifier - MUID

An unique identifier is assigned to each mutant created by Pimutdroid. This
mutation identifier is called MUID. The MUID is used to identify a mutant
by the plugin and to find the associated files needed for mutation analysis.
Furthermore it is used as the name of a file referred to as markerfile, which
stores the metadata of the mutant in XML format. The markerfile will be
explained in the following section 4.2.3. Using the MUID it is easier for a
user to find the mutant and the data stored with it. Additionally the MUID
is used by the build task of the plugin which will be explained in section
5.2. Pitest exports the generated mutants and assigns to each mutant an
arbitrary consecutive number per single class it mutated (Coles, 2018d).
Pimutdroid creates the MUID from the full class name of the mutant and
the number assigned from Pitest on export, referred to as sub identifier. The
structure of the MUID is as follows:

<full class name>_<number of PIT export>

For example the following MUID is the identifier of the first mutant of a class
named “DisplayMessageActivity” from package “at.woodstick.mysampleapp”,
the sub identifier “0” is the assigned number from the Pitest export:

at.woodstick.mysampleapp.DisplayMessageActivity_0

47

4 Pimutdroid Gradle Plugin

...
IDevice [] devices = bridge.getDevices ();

if (devices.length == 0) {
throw new DeviceException("No connected devices!");

}

final String androidSerialsEnv =
System.getenv("ANDROID_SERIAL");

final boolean isValidSerial = androidSerialsEnv !=
null && !androidSerialsEnv.isEmpty ();

final Set <String > serials;
if (isValidSerial) {

serials =
Sets.newHashSet(Splitter.on(',').split(androidSerialsEnv));

} else {
serials = Collections.emptySet ();

}
...

Listing 4.1: Shows a code snippet from the class ConnectedDeviceProvider of
com.android.tools.build/builder JAR file in version 3.0.1 of the Android
Gradle plugin by Google (2018d). It displays how the system variable
ANDROID_SERIAL is used to pass the serial number of a deivce or comma
separated serial numbers which should be used by the plugin. Pimutdroid uses
a similar approach but only supports passing one serial number by the system
variable ANDROID_SERIAL.

48

4.2 Mutation Analysis Tool

For the application packages and classes, Pitest creates a HTML report
which displays the line coverage value and the according mutation value
for local unit tests. The MUID can be used to locate the referenced mutant
and identify its mutation in the source code. The Pitest report is described
in section 4.4.

4.2.3 Mutant Markerfile

For each mutant, the plugin creates a file called markerfile which stores the
metadata of the mutant. The name of the file is the MUID of the mutant as
described in section 4.2.2. The file uses the filename extension “.muid”.

The structure of the name is the following:

<full class name>_<number of PIT export>.<filename extension>

Using the example MUID at.woodstick.mysampleapp.DisplayMessageActivity_0
from section 4.2.2, the name of the corresponding markerfile is:

at.woodstick.mysampleapp.DisplayMessageActivity_0.muid

The metadata of a mutant is stored in XML format as can be seen in
listing 4.2. The data the markerfile contains is composed of the following
information:

• <muid>: Mutation Identifier of the mutant.

• <clazzPackage>: Package name of the mutated java class.

• <clazzName>: Class name of the mutated java class.

• <clazz>: The full class name consisting of package and class name.

• <method>: The name of the affected method where the mutation was
applied.

• <mutator>: The full class name of the applied mutation operator also
called mutator.

49

4 Pimutdroid Gradle Plugin

• <filename>: The filename the java class resides in.

• <lineNumber>: The linenumber in source the mutation was applied at1.

• <description>: A description of the applied mutation.

• <indexes>: First index of the indexes field which contain the instruc-
tions within the method a mutation (Coles, 2018b).

• <killedByUnitTest>: Indicates whether the mutant is killed by the
local unit tests or not, after mutation analysis by Pitest.

The markerfile is stored under the same location as the mutated class
file it is associated to. It is created from a file called “details.txt” that
contains the serialized instance of the Pitest class MutantDetails (Coles,
2018a). Additionally the XML report created by Pitest is used to find out
whether a mutant was already killed by the local unit test or not.

1Only as a reference because Pitest does not mutate the source code directly

50

4.2 Mutation Analysis Tool

<MutantDetails >
<muid>

at.woodstick.mysampleapp.DisplayMessageActivity_0.muid
</muid>
<clazzPackage >at.woodstick.mysampleapp </clazzPackage >
<clazzName >DisplayMessageActivity </clazzName >
<clazz>

at.woodstick.mysampleapp.DisplayMessageActivity
</clazz>
<method >onCreate </method >
<mutator >

org.pitest.mutationtest.engine.gregor
.mutators.VoidMethodCallMutator

</mutator >
<filename >DisplayMessageActivity.java</filename >
<lineNumber >12</lineNumber >
<description >

removed call to
android/support/v7/app/AppCompatActivity :: onCreate

</description >
<indexes >5</indexes >
<killedByUnitTest >false</killedByUnitTest >

</MutantDetails >

Listing 4.2: Content of a mutant markerfile created by Pimutdroid for a mutant of a class
named DisplayMessageActivity. It contains metadata of a mutant like its MUID,
the applied mutation operator, what code part got mutated, what class was
affected and whether the mutant was killed by the local unit tests or not.

In the following section 4.2.4 the mutators available in PIT will be explained.
These mutation operators are used by Pimutdroid and can be configured by
the user.

4.2.4 Mutators

The following sections describe the non-experimental mutators or mutation
operators available in Pitest (Coles and Penndorf, 2018g). Pimutdroid can
be configured to use a set of these operators for the mutation analysis.

51

4 Pimutdroid Gradle Plugin

The configuration of the plugin is explained in section 4.3. The mutations
of Pitest are performed on the byte code rather than on the source code,
which is generally faster than source code mutation (Coles, 2018c; Coles
and Penndorf, 2018g; Jia and Harman, 2011). The mutants created with the
configured mutation operators are used for local unit tests, instrumented
unit tests and UI tests. The following subsections (4.2.4.1) - (4.2.4.11) are
based on the work of Coles and Penndorf (2018g) and briefly explain the
mutators. For each operator the key which is used to configure the mutation
operator is listed.

4.2.4.1 Conditionals Boundary Mutator

This mutator is activated per default and can be configured individually
using the key CONDITIONALS_BOUNDARY. It replaces a relational operator like
<, <=, >, >= with its boundary counterpart (Coles and Penndorf, 2018a).
This is used to seed mutations that simulate for example an Off-by-one-Error.
This mutator is a subset of the ROR operator explained in section 2.1.3. The
negate conditionals mutator and remove conditionals in sections 4.2.4.5 and
4.2.4.10 likewise belong to the set of the ROR operator. The operator does
not mutate every operand with all operands which results in the creation
of lesser redundant mutants (R. Just, Kapfhammer, and Schweiggert, 2012;
Kaminski, Ammann, and Jeff Offutt, 2011).

For “lesser” and “lesser than” this means:

< will be mutated to <=

and

<= will be mutated to <

For “greater” and “greater than” this means:

> will be mutated to >=

and

>= will be mutated to >

52

4.2 Mutation Analysis Tool

4.2.4.2 Increments Mutator

This mutator is activated by default and can be configured individually
using the key INCREMENT. It replaces increments, decrements, assignment
increments and assignment decrements with its counterpart. The mutation
operator is only applied to local variables (Coles and Penndorf, 2018c).

If increments on member variables should also be mutated, the Math Muta-
tor in section 4.2.4.4 must be applied in combination with the Increments
Mutator.

4.2.4.3 Invert Negatives Mutator

This mutator is activated by default and can be configured individually
using the key INVERT_NEGS. It removes the negation of integer or floating
point numbers (Coles and Penndorf, 2018e).

4.2.4.4 Math Mutator

This mutator is activated by default and can be configured individually
using the key MATH. An integer or floating-point operation is replaced with
an operation selected from a mapping table which is shown in table 4.1.
The mutator does not mutate the +-operator for strings, but it mutates
increments, decrements, assignment increments and assignment decrements
on member variables (Coles and Penndorf, 2018f).

The Increments Mutator in section 4.2.4.2 only applies to local variables,
if both local and member variable increments should be mutated, both
operators Increments Mutator and Math Mutator must be active in the
mutation analysis.

53

4 Pimutdroid Gradle Plugin

Original Mutated
+ -
- +
* /
/ *
% *
& |
| &
^ &
<< >>
>> <<
>>> <<

Table 4.1: Binary arithmetic operations mapping table used by the Math Mutator. Note.
Reprinted from (Coles and Penndorf, 2018f).

4.2.4.5 Negate Conditionals Mutator

This mutator is activated by default and can be configured individually
using the key NEGATE_CONDITIONALS. It will negate conditionals like ==,
!=, <=, >=, <, > and replace them according to a mapping table as
shown in table 4.2. In comparison to the Conditionals Boundary Mutator
in section 4.2.4.1 a mutation done by the Negate Conditionals Mutator is
easier to detect for a test suite, hence it is less stable (Coles and Penndorf,
2018h; Kaminski, Ammann, and Jeff Offutt, 2011). As the negate conditionals
mutator and remove conditionals in sections 4.2.4.5 and 4.2.4.10, this mutator
is a subset of the ROR operator explained in section 2.1.3.

4.2.4.6 Return Values Mutator

This mutator is activated by default and can be configured individually us-
ing the key RETURN_VALS. It replaces the return value of a method depending
on the return type of the affected method (Coles and Penndorf, 2018k).

54

4.2 Mutation Analysis Tool

Original Mutated
== !=
!= ==
<= >
>= <
< >=
> <=

Table 4.2: Conditional negation mapping table used by th Negate Conditionals Mutator.
Note. Reprinted from (Coles and Penndorf, 2018h).

For a return value of type boolean the unmutated value true will be replaced
with false and vice versa. The unmutated return value x of type int, byte or
short will be replaced with zero. With the exception that if value x is zero it
will be replaced with one. A return value of type long will be replaced with
its incremented value. The unmutated value of an object will be replace with
null if the value is a non-null value, otherwise a Java RuntimeException
will be thrown instead of the null return value. For floating-point numbers
of type float or double the unmutated return value x which is not NAN will
be replaced with -(x+1.0). A value of NAN will be replaced with zero (Coles
and Penndorf, 2018k).

4.2.4.7 Void Method Call Mutator

This mutator is activated by default and can be configured individually us-
ing the key VOID_METHOD_CALLS. It removes calls to void methods, exceptions
in this regard are constructors of classes, these calls will not be removed
(Coles and Penndorf, 2018l). To mutate calls to constructurs the Constructor
Call Mutator in section 4.2.4.8 has to be used. To mutate non void method
calls the see Non Void Method Call Mutator in section 4.2.4.9.

This mutator tends to create trivial mutants for Android classes if the
mutated class is a type of an Android activity, as shown in an example in
section 2.1.4. If the class implements a life cycle it should always call the
superclass method (Google, 2018a). These methods are void methods and

55

4 Pimutdroid Gradle Plugin

E/AndroidRuntime: FATAL EXCEPTION: main
Process: at.woodstick.mysampleapplication , PID: 28803
android.util.SuperNotCalledException: Activity
{at.woodstick.mysampleapplication/

at.woodstick.mysampleapplication.MainActivity}
did not call through to super.onStart ()
at android.app.Activity.performStart(Activity.java :6698)
at android.app.ActivityThread.

performLaunchActivity(ActivityThread.java :2628)
...

Listing 4.3: Shows the fatal android exception which is thrown when an activity does not
call its superclass life cycle method when implementing it. The Void Method
Call mutator in section 4.2.4.7 tends to create trivial mutants for activity classes
when remove these void life cycle methods.

when removed by the mutator the application will crash on startup or when
the application is paused or stopped and a fatal exception is thrown as
shown in listing 4.3. The life cycle methods onStart, onRestart, onResume,
onPause and onStop are affecting the tests, the only exception is onDestroy
as it does not crash the application.

4.2.4.8 Constructor Call Mutator

This mutator is not activated by default and can be activated using the
key CONSTRUCTOR_CALLS in the configuration. It removes calls to constructors
with new and replaces them with null valus (Coles and Penndorf, 2018b).

4.2.4.9 Non Void Method Call Mutator

This mutator is not activated by default and can be activated using the key
NON_VOID_METHOD_CALLS in the configuration. It replaces calls to non void
methods with the default value of the Java type of the methods return value.
This does not affect constructor or void method calls (Coles and Penndorf,
2018i).

56

4.3 Plugin Configuration

For constructor mutation see previous section 4.2.4.8 and for void method
calls see section 4.2.4.7.

4.2.4.10 Remove Conditionals Mutator

This mutator is not activated by default and can be activated using the
key REMOVE_CONDITIONALS in the configuration. The mutator replaces whole
conditional statements with a boolean true or false to ensure that either
the if or else block is executed (Coles and Penndorf, 2018j).

REMOVE_CONDITIONALS activates the four following specialized versions which
can be configured independently of one another (Coles and Penndorf,
2018j):

• REMOVE_CONDITIONALS_EQ_IF: Force equality check (==, !=) to execute
if block, expression is replaced with true

• REMOVE_CONDITIONALS_EQ_ELSE: Force equality check (==, !=) to execute
else block, expression is replaced with false

• REMOVE_CONDITIONALS_ORD_IF: Force order check (for example: <= or
>) to execute if block, expression is replaced with true

• REMOVE_CONDITIONALS_ORD_ELSE: Force order check (for example: <=
or >) to execute else block, expression is replaced with flase

4.2.4.11 Inline Constant Mutator

This mutator is not activated by default and can be activated using the key
INLINE_CONSTS in the configuration. It replaces the inline constant value of
non-final variables (Coles and Penndorf, 2018d).

4.3 Plugin Configuration

Section 4.3.1 decribes how the plugin can be installed in order to perform
mutation testing for an Android application. Furthermore, important con-

57

4 Pimutdroid Gradle Plugin

figuration properties are explained in section 4.3.2. Pimutdroid supports
the configuration of all input and output directories which are used by the
plugin. It is possible to enable parallel test execution on multiple emulators
by the configuration as well as definition of the classes which should be
mutated and which tests should be run.

4.3.1 Install Plugin

The developed Gradle plugin is a binary plugin as explained in section 3.1
and available as a JAR file which can be added to a Gradle project. Therefore
the plugin is added to the classpath configuration of the build script of
the root project as shown in listing 4.4. The dependencies of the plugin
have to be on the classpath as well, if supplying the JAR file from a local
directory the three dependencies have to be set in the build script as can
be seen in listing 4.4. The plugin uses the library Jackson (2018) to serialize
and deserialize XML files, the Pitest Android Gradle plugin by Wrotniak
(2018) to integrate Pitest and the Pitest export plugin by Coles (2018d) to
have access to the mutated class files. Alternatively the JAR of Pimutdroid
and the export plugin could be installed into an artifact repository such as
Maven2, then the dependencies would be resolved by Gradle and the build
script configuration only needs the definition for Pimutdroid and the Pitest
export plugin, as can be seen in listing 4.5.

When the plugin and its dependencies are available to the build script the
plugin can be integrated into the project. As shown in listing 4.6 Pimutdroid
is applied using the “apply” method of Gradle. The ID of the plugin is
“at.woodstick.pimutdroid". The code in listing 4.6 suffices to add the tasks
for mutation testing using default configurations. Pimutdroid offers an
extension closure named “pimut” which can be used to adopt default
values, additionally Pitest can also be configured using this closure.

2 https://maven.apache.org/

58

https://maven.apache.org/

4.3 Plugin Configuration

buildscript {
repositories {

jcenter ()
google ()

}

configurations.maybeCreate("pitest")

dependencies {
classpath 'com.android.tools.build:gradle :3.0.1 '
classpath 'com.dicedmelon.gradle:jacoco -android :0.1.2 '

// Add pimutdroid mutation testing dependencies
classpath group: "com.fasterxml.jackson.dataformat",

name: "jackson -dataformat -xml", version: "2.9.2"
classpath group: "pl.droidsonroids.gradle", name:

"gradle -pitest -plugin", version: "0.1.5"
classpath

files("mutationLibs/gradle -pimutdroid -plugin -0.0.1. jar")
pitest

files("mutationLibs/pitest -export -plugin -0.1- SNAPSHOT.jar")
}

}

Listing 4.4: Shows the buildscript block of the root project build.gradle file of the Paintroid
project. Pimutdroid and its dependencies are added to the build script in order
to be able to apply the plugin to the project. The binary plugin is applied from
a local directory “mutationLibs”.

59

4 Pimutdroid Gradle Plugin

buildscript {
repositories {

jcenter ()
google ()
mavenLocal ()

}

configurations.maybeCreate("pitest")

dependencies {
classpath 'com.android.tools.build:gradle :3.0.1 '
classpath 'com.dicedmelon.gradle:jacoco -android :0.1.2 '

// Add pimutdroid mutation testing dependencies
classpath group: "at.woodstick", name:

"gradle -pimutdroid -plugin", version: "0.0.1"
pitest group: "org.pitest.plugins", name:

"pitest -export -plugin", version: "0.1- SNAPSHOT"
}

}

Listing 4.5: Shows the buildscript block of the root project build.gradle file of the Paintroid
project. Pimutdroid and its dependencies are added to the build script in order
to be able to apply the plugin to the project. The binary plugin is applied from
a the local maven repository using the repository “mavenLocal()”.

apply plugin: "at.woodstick.pimutdroid"

Listing 4.6: Shows how Pimutdroid is applied to a build script using the apply method of
Gradle. In order to install the plugin the plugin ID “at.woodstick.pimutdroid”
is needed to reference the main plugin class to load.

60

4.3 Plugin Configuration

4.3.2 Configure Plugin

Pimutdroid offers an extension object named “pimut” which is associated
with the project the plugin has been applied to. The plugin wraps the Pitest
Gradle integration and exposes an extension property “pitest” which enables
to configure the default values of Pitest. If no additional configuration to the
default configuration is supplied, then using the default mutation operators
of Pitest from section 4.2.4 are used to create the mutants for all classes under
the main Java package. By default all tests of the test APK are executed
against the original and mutated APK files, if a mutant was killed by a
local unit test it will still be tested against the tests which have to run on an
emulator or a real device. The plugin executes the mutants consecutively on
a single emulator or device.

Pimutdroid gives the possibility to exclude mutants that were already killed
by a local unit test from test execution against the instrumented unit tests
and UI tests. This approach is inspired by the “do fewer” mutation testing
approaches from section 2.1.4. This tackles the problem that an enormous
amount of mutants has to be assembled as APK files and that each has
to run against the tests on an emulator or a real device. In the resulting
report the mutant is still listed and marked as killed, so the property
named “ignoreKilledByUnitTest” speeds up mutation testing for Android
applications if local unit tests which already kill mutants exist.

Another approach to tackle the execution cost problem from section 2.1.4 is
to run the tests in parallel. This “do smarter” approach can be configured
using the “devices” extension property as can be seen in listing 4.7. As
explained in section 4.2.1 by default Pimutdroid is reading the serial number
of the device on which the tests should be executed from the Java system
variable named ANDROID_SERIAL. This feature can be ignored setting the
property “ignoreAndroidSerial”. Now the first available device returned by
the ADB query devices command from section 3.4.1 will be used. When the
property “parallelExecution” is enabled, all available devices will be used to
execute the tests in parallel. If parallel execution is enabled and the system
variable is ignored, the user can define the devices which should be used by
defining their serial numbers in the “serialNumbers” list property. If this
property is not empty, the plugin favors this serial numbers, however it is

61

4 Pimutdroid Gradle Plugin

pimut {
devices {

serialNumbers = []
parallelExecution = true
ignoreAndroidSerial = true

}
}

Listing 4.7: Shows the configuration for parallel execution of the tests on all available
devices. This “do smarter” approach from section 2.1.4 can be to tackle the
execution cost problem.

checked on execution if the device is available or not. Unavailable devices
defined in “serialNumbers” will be ignored by the plugin.

The defined mutation operators control which and how many mutants
are created by Pitest. By default the Pitest default mutation operators
are used, however they can be customized using the extension property
“pitest.mutators”. Listing 4.8 shows the configuration of the increments,
return values, negate conditionals, invert negatives and conditionals bound-
ary operators using their respective keys from section 4.2.4. Pitest gives the
possibility to set a maximum number of mutants which should be created
per class using the “pitest.maxMutationsPerClass” property as shown in
listing 4.8. By default, the value is set to zero which means that there is no
restriction in place.

Using the “instrumentationTestOptions” configure closure the target classes
for mutation as well as the target instrumented tests can be configured
globally. The closure takes a list of package or full class globs to for example
target a subset of the main package. Using the “!” character whole packages
or classes can be excluded from the resulting set of globs. At the moment
the glob to exclude mutants only affects the build or test execution task
provided by Pimutdroid and not the mutation analysis of the local unit
tests and export of mutant files by Pitest. Listing 4.9 displays an example
configuration using the glob and exclude glob to target mutants under the
“command” and its sub packages, except the “implementation” package.
By default all tests of the assembled test APK file will be run, using the
property “targetTests” these tests can be restricted. This configuration is

62

4.3 Plugin Configuration

pimut {
pitest {

mutators = [
"INCREMENTS",
"RETURN_VALS",
"NEGATE_CONDITIONALS",
"INVERT_NEGS",
"CONDITIONALS_BOUNDARY",

]
maxMutationsPerClass = 20

}
}

Listing 4.8: Shows the configuration of the mutation operators from section 4.2.4 as well as
the restriction to create a maximum of 20 mutants per class by setting a value
to the “maxMutationsPerClass” property.

used in conjunction with AndroidJUnitRunner instrumentation as described
in section 3.4.2.6 which supports execution options to run specific tests
(Google, 2010). At the moment the supported options for test restriction
are:

• Run all tests of the test APK.
• Run a single test class.
• Run multiple test classes.
• Run all tests under a Java package.
• Test timeout in milliseconds to prevent infinite loops (by default 10

seconds).

In listing 4.9 the “targetTests” property is configured to run all tests under a
Java package. The “packages” property of “targetTests” closure supports
only one package without “*” characters. The “classes” list property can
be used to run a single test class or multiple test classes. If both extension
fields are configured the “packages” property is favored by Pimutdroid.
Furthermore the test timeout is set to 20 seconds to prevent that mutants
which cause an infinite loop are stalling the test execution.

Finally an important configuration provided by Pimutdroid is the definition
of build configurations. They can be used to define subsets of the targeted

63

4 Pimutdroid Gradle Plugin

pimut {
instrumentationTestOptions {

targetMutants = [
"org.catrobat.paintroid.command .*",
"!org.catrobat.paintroid.command.implementation .*",

}

targetTests {
packages = [

"org.catrobat.paintroid.test.junit.command"
]
classes = []

}
}
testTimeout = 20000

}

Listing 4.9: Shows a configuration of target mutants for classes under the “command”
and its sub packages, except the “implementation” package. Additionally
instrumented tests under a single package and its sub packages are configured.
The “packages” property of “targetTests” closure supports only one package
without “*” characters. In the “classes” list multiple test classes can be
configured which should be executed. Furthermore the test timeout is set
to 20 seconds to prevent against a mutant which causes an infinite loop.

mutants and allow to independently define target mutants in combination
with the mutation operators and the maximum of mutants which should be
created. Each build configuration then adds its custom tasks under the name
of the configuration which can be chosen freely. The build configurations
can be used to achieve that the mutant APK files are created in parallel, as
per default they are created subsequently. By using build configurations
they can be build and tested in parallel. To achieve this the project has
to be cloned for every build configuration which should run in parallel
and the task for the specific configuration has to be executed. This tackles
the problem that for each mutant the APK file has to be assembled and is
in line with the “do smarter” approach from section 2.1.4. Alternatively
they can be used to analyze the test set for different mutation operators
without the need to change the global definition of the operators under

64

4.4 Plugin Report

“pitest.mutators”. Listing 4.10 displays an example configuration where the
“buildConfiguration” closure is used to define four build configurations
named “commandsMath”, “standard”, “math” and “voidCalls”. The “com-
mandsMath” definition shows how a subset of the classes are configured
to be mutated only by the math mutation operator of section 4.2.4.4. The
configurations “standard”, “math” and “voidCalls” can be used to analyze
the test set against different mutation operators, if desired, also in parallel.

4.4 Plugin Report

This section describes how the mutation analysis XML report is created by
Pimutdroid. Furthermore the HTML report for local unit tests of Pitest is
explained. In order to generate the mutation result the build process steps
1. to 7. explained in section 4.2.1 have to be executed first. To run all steps
including the creation of the report, only the Gradle task “generateMu-
tationResult” has to be executed. This task will trigger several tasks, one
is the Pitest task to analyze local unit tests and export the mutant class
files. Another task assembles the original application and test APK files and
creates the expected result file. Additionally tasks prepare the metadata
files for the mutants, build the mutants and run them on the configured
devices against the test set. Finally, each mutant result file is compared with
the expected result file and the report file is written to the result output
directory. By default this is “<buildDir>/reports/mutation”, however it
can be configured using the plugin extension explained in section 4.3. The
default name of the report file is “mutation-result-yyyyMMdd-hhmmss.xml”
where “yyyy” is the year, “MM” the number of the month, “dd” they day
of the month and “hhmmss” the time it was created. Pimutdroid offers
a task “generateMutationResultOnly” which creates the report and only
compares the mutant result files with the expected result files, this task does
not trigger any other task.

The Pitest report is an HTML page which can be opened in a browser to
navigate to each mutated class. The report gives an overview of the total
mutation result as well as on per package and per class basis. Figure 4.1
shows the project summary of the Pitest report. It shows the total mutation

65

4 Pimutdroid Gradle Plugin

pimut {
buildConfiguration {

commandsMath {
targetMutants = [

"org.catrobat.paintroid.command .*",
"!org.catrobat.paintroid.command.implementation .*",

]
mutators = [

"MATH"
]

}

standard {
targetMutants = [

"org.catrobat.paintroid .*"
]
mutators = [

"INCREMENTS",
"RETURN_VALS",
"NEGATE_CONDITIONALS",
"INVERT_NEGS",
"CONDITIONALS_BOUNDARY",

]
}

math {
targetMutants = [

"org.catrobat.paintroid .*"
]
mutators = [

"MATH"
]

}

voidCalls {
targetMutants = [

"org.catrobat.paintroid .*"
]
mutators = [

"VOID_METHOD_CALLS"
]

}
}

}

Listing 4.10: Shows four build configurations “commandsMath”, “standard”, “math” and
“voidCalls” which can be used to create and test mutants for different mutation
operators, a subset of the target classes or use the configuration to assemble
the mutant APK files in parallel.

66

4.4 Plugin Report

coverage of the test set and displays the mutation score as a percentage
value (see section 2.1). In this example, from the 1460 mutants created,
the three local unit tests killed 18 mutants, which results in a mutation
score of 1%. It can be seen that there is nearly no test coverage using local
unit tests. A mutated class can be inspected in detail by navigating to the
class, this opens a view where the mutated lines are highlighted showing
what mutation was applied to the line and whether the test set was able
to detect the mutant as can be seen in figure 4.2. The lines are colored in
green and red color, a darker green color means that the mutated statement
was reached by the test set and that the mutant was killed. A darker red
indicates that the line was not reached and the mutant lived, which can
be used to write a test case or to optimize an existing test case to detect
the mutant. Additionally, as shown in figure 4.3, a summary is listed at the
end of the class level view. It consists of the applied mutation operators,
the mutants and the outcome for each mutant as well as which tests were
examined and killed a mutant.

The XML report created by Pimutdroid lists the mutation score for the
project including how many mutants were tested and killed by the test
set. Additionally the mutation score and the numbers concerning the mu-
tants are displayed for every package and class file, inner class mutants are
counted towards the outer class. Furthermore, the test setup is included in
the report consisting of the used instrumentation runner class, the targeted
mutants and the test package or test classes which were configured (see
section 4.3.2). For each class, as can be seen in listing 4.11, the created mu-
tants with their corresponding MUID from section 4.2.2 and their outcome
are listed. Additionally the information of the mutation is displayed, which
described which operation was applied to create the mutant. The mutants
are grouped together into a section concerning the class of the mutant. Inner
classes are displayed in their own mutation group. This “mutantGroup” of
a class provides an additional overview of the overall mutants, it shows
for the group how many mutants were killed and the resulting mutation
score.

The provided MUID of a mutant and the line number can be used in
conjunction with the Pitest report to take a closer look at the mutant on
source code level. All mutants by the test set are included in the report,
whether the “ignoreKilledByUnitTest” configuration property from section

67

4 Pimutdroid Gradle Plugin

<mutantGroup package="org.catrobat.paintroid.command"
file="UndoRedoManager.java" class="UndoRedoManager"
mutants="41" killed="0" score="0.000000">

<mutant
id="org.catrobat.paintroid.command.UndoRedoManager_0.muid"
outcome="LIVED">
<mutation

method="getInstance"
line="48" description="negated conditional"
mutator="org.pitest.mutationtest.engine.gregor.mutators

.NegateConditionalsMutator"
/>
</mutant >
...

<mutantGroup package="org.catrobat.paintroid.command"
file="UndoRedoManager.java" class="UndoRedoManager$1"
mutants="7" killed="0" score="0.000000">

<mutant
id="org.catrobat.paintroid.command.UndoRedoManager$1_0.muid"
outcome="LIVED">

...

Listing 4.11: Shows the mutant information displayed in the XML report created by
Pimutdroid. For each class which was mutated the created mutants and
their corresponding information about the mutation are stored. Inner classes
are displayed in their own mutation group. The “mutantGroup” provides an
overview of how many mutants were created and killed by the test set, leading
to the mutation score for the class.

4.3.2 was set or not. When the property is set the report marks this mutants
as killed in the report and the plugin does not execute the instrumented
tests against these mutants. Thus, the report can give a combined view on
local and instrumented test cases.

68

4.4 Plugin Report

Figure 4.1: Shows the Pitest HTML report which gives a summary of the mutation analysis
executed on the local unit tests of the Paintroid project. The percentage value
mutation coverage is the mutation score for the test set (see section 2.1). It can
be seen that there is nearly no test coverage using local unit tests and that the
three existing test classes killed 18 of 1460 mutants.

69

4 Pimutdroid Gradle Plugin

Figure 4.2: Shows the Pitest HTML report view on class level. It displays the line coverage,
shows on which line number a mutation occurred and whether the mutant was
killed by the test set, using the darker green color to indicate that the mutation
was reached and the mutant was killed. The darker red color indicates that the
mutation statement was not reached by the test set and the mutant lived.

70

4.4 Plugin Report

Figure 4.3: Shows the Pitest HTML report summary under a class view which lists the
mutation applied to the class and which mutants were killed. Furthermore the
used mutation operators are shown and which tests were examined and killed
a mutant.

71

5 Implementation Details

Chapter 5 describes the basic structure of the implemented plugin in section
5.1. In section 5.2 the process of creating mutant APK files utilizing Gradle
and the Android Gradle plugin is displayed. Finally, in section 5.3 test
execution for the mutated APK files is described.

5.1 Structure

The mutation analysis tool is structured into three separate plugins. A
Pimutdroid base plugin, a Pimutdroid Pitest wrapper plugin for local unit
tests and the full Pimutdroid plugin, which is described in chapter 4, to
enable mutation testing for instrumented tests.

The base plugin defines constants used throughout the plugin (see listing
5.1). The constants defined by the base plugin are the name of the directory
to store the report (1), the command line project property to pass a MUID
to a build (2), the default Android test runner class (3), the extension
name for plugin configuration (4), the task group of the Gradle tasks (5)
and the default Pitest version (6). Furthermore, when the base plugin is
applied to the project, the plugin verifies that the Android Gradle plugin
is already applied to the project as can be seen in listing 5.2 and applies
the Pitest Gradle plugin afterwards, if it is not yet activated. If the Android
plugin is not added to the project Pimutdroid ends the Gradle configuration
phase with an exception (see section 3.1 for Gradle build phases). When
applying the full plugin of Pimutdroid as described in section 4.3, the
Pimutdroid Pitest wrapper plugin is additionally applied to the project.
The wrapper plugin likewise applies the base plugin to the project to
verify that the Android plugin is used. The wrapper plugin supports build

73

5 Implementation Details

static final String REPORTS_DIR_NAME = "reports"; (1)
public static final String PROPERTY_NAME_MUID =

"pimut.muid"; (2)
public static final String RUNNER =

"android.support.test.runner.AndroidJUnitRunner"; (3)
public static final String PLUGIN_EXTENSION = "pimut"; (4)
public static final String PLUGIN_TASK_GROUP = "Mutation";

(5)
public static final String PITEST_VERSION = "1.2.2"; (6)

Listing 5.1: The constants predefined by the base plugin are the name of the directory
to store the report (1), the command line project property to pass a MUID to
a build (2), the default Android test runner class (3), the extension name for
plugin configuration (4), the task group of the Gradle tasks (5) and the default
Pitest version (6).

configurations, the configuration of Pitest and enables to analyze the local
unit tests. Therefore, a task called “mutateClasses” is added to the project
which configures and triggers the according task of Pitest. The full plugin
uses the complete configuration which is offered by the plugin and adds
in total 29 tasks under the task group “mutation” as defined by the base
plugin. For each build configuration defined additional nine task are created
which are specific to the configuration.

The following 29 tasks are added by the full plugin:

1. availableDevices: Helper task which displays the connected devices,
uses ADB query devices command from section 3.4.1.

2. backupApks: Depends on the assemble tasks for the application APK
and test APK and copies the assembled files from the Android output
folder to the mutation application directory.

3. backupCompiledClasses: Copies the compiled class files of the appli-
cation to the mutation application directory from where they can be
restored later.

4. buildMutantApks: For each configured target mutant it starts the
build task of the APK file. Triggers the Pitest task and tasks that
prepare mutation files.

74

5.1 Structure

5. buildMutantApksOnly: Same as “buildMutantApks” but does not
depend on any task.

6. buildOnlyMutantApk: For a given MUID it builds the mutant APK
file, this task is executed from “buildMutantsApks”.

7. cleanActualResultFiles: Helper task to remove all mutant result files.

8. cleanMutantAppFiles: Helper task to clean the mutant application
directory (remove backup of class files, APK files and expected result
file).

9. cleanMutantBuildLogFiles: Helper task which removes the mutant
build log files.

10. cleanMutantClasses: Helper task which removes the Pitest ouput
directory.

11. cleanMutantResultFiles: Helper task which removes all generated
Pimutdroid XML reports.

12. cleanMutation: Helper task which triggers “cleanMutantClasses”,
“cleanMutationOutput” and “cleanMutantClasses” tasks.

13. cleanMutationOutput: Helper task to remove complete mutation out-
put folder.

14. configuredDevices: Displays the configured available devices, to verify
that “devices” is configured properly.

15. generateExpectedResult: Installs the origin application APK and test
APK file on a device and creates the expected result file.

16. generateMutationResult: Executes the whole mutation analysis pro-
cess from section 4.2.1.

17. generateMutationResultOnly: Generates the XML report only.

18. injectMutantAfterCompileByMarkerFile: Injects the mutated class
file into the compiled class files.

19. mutantClassesList: Helper task which lists all mutated class files.

20. mutantMarkerList: Helper task which lists markerfiles.

21. mutantXmlResultList: Helper task which lists mutant result files.

75

5 Implementation Details

22. mutateClasses: Triggers Pitest mutation analysis task.

23. pimutInfo: Info task of the plugin which displays configuration infor-
mation.

24. prepareApplicationMutationData: Triggers the assemble, backup class
files and generated expected result task.

25. prepareMutationFiles: Creates MUID and markerfiles for the mutated
class files.

26. restoreCompiledClasses: Task to restore the origin class files after a
mutant was assembled.

27. testMutants: Triggers test execution on configured devices of the
mutant APK files. Depends on “prepareApplicationMutationData”
and “buildMutantApks” tasks.

28. testMutantsGenerateResultOnly: Task to only run the test execution
and create the XML report.

29. testMutantsOnly: Task to only run the test execution. Depends on no
other task.

For each build configuration the following nine tasks are added additionally
by the full plugin:

1. buildMutantApksOnly<buildConfig>
2. buildMutantApks<buildConfig>
3. generateMutationResultOnly<buildConfig>
4. generateMutationResult<buildConfig>
5. mutateClasses<buildConfig>
6. prepareMutationFiles<buildConfig>
7. testMutantsGenerateResultOnly<buildConfig>
8. testMutantsOnly<buildConfig>
9. testMutants<buildConfig>

76

5.2 Mutant Creation

...
@Override
public void apply(Project project) {

PluginContainer pluginContainer = project.getPlugins ();

if(! pluginContainer.hasPlugin(AndroidBasePlugin.class)) {
throw new GradleException(String.format("Android plugin

must be applied to project"));
}

if(! pluginContainer.hasPlugin(PitestPlugin.class)) {
project.getPluginManager ().apply(PitestPlugin.class);

} else {
LOGGER.info("pitest plugin already applied.");

}
}
...

Listing 5.2: Pimutdroid base plugin verifies if the Android Gradle plugin is applied to the
project and applies the Pitest Gradle plugin if it not yet activated.

5.2 Mutant Creation

This section describes the process of creating an APK file for a mutated
version of the application. As described in chapter 4 Pimutdroid uses Pitest
to create mutated versions of the source code. In order to have access to
the byte code an export plugin is used. The class files are exported under
using a folder structure which follows the Java package of the classes, as
can be seen in figure 5.1. The export is triggered when executing the task
“mutateClasses” from section 5.1 as this task depends on the Pitest Gradle
task “pitest<buildVariant>”, which runs mutation analysis for local unit tests
under “src/test/java”. The build variant (see section 3.2.2.3) is determined
from the configured product flavor and build type in Pimutdroid. After
Pitest has finished, the markerfiles are created for each mutant class file.
To determine whether a mutant was killed by a local unit test, Pimutdroid
looks into the XML result “mutations.xml” file from Pitest and verifies
the mutation status. When all markerfiles are created the APK files can be

77

5 Implementation Details

Figure 5.1: Shows the folder structure under which Pitest exports the mutated byte code
and metadata files.

assembled.

The task to build the files is named “buildMutantApks”, it determines
the Gradle wrapper file from the root project directory and starts a new
process for each mutant and runs the task “buildOnlyMutantApk”, using
the MUID of the mutant and the Gradle wrapper file (see section 3.1).
Additionally for each mutant created the task creates a log file containing
the output of the Gradle task. The task “buildOnlyMutantApk” depends
on the Android Gradle plugin task to assemble the application APK file
“assemble<buildVariant>”. Since the build task is scheduled, Gradle executes
the assemble task in addition. The “buildOnlyMutantApk” task is not an
ad-hoc task and has the task class “BuildMutantApkTask", which is used
to determine whether a mutant APK file should be created or not. If no
task of this specific class is scheduled, the plugin disables the task which is
responsible to replace the correct byte code file with the mutated version, as
can be seen in listing 5.3. The method “configureTasks” from listing 5.3 is
executed when the TEG from section 3.1 is ready. The plugin adds a callback

78

5.2 Mutant Creation

protected void configureTasks(TaskGraphAdaptor graph) {
if(graph.hasNotTask(BuildMutantApkTask.class)) {

LOGGER.debug("Disable replace class with mutant
class task (no mutant build task found)");

taskFactory.named(TASK_MUTATE_AFTER_COMPILE_NAME).setEnabled(false);
}

}

Listing 5.3: Shows the method “configureTasks” which is executed when the TEG from
section 3.1 is ready. It checks if the task has a task of type “BuildMutantApkTask”
to handle the build of a mutated APK file. If no mutant APK is build, the task
responsible for injecting the mutated byte code file is disabled.

public void whenTaskGraphReady(final
Action <TaskGraphAdaptor > readyAction) {
getTaskGraph ().whenReady ({ TaskExecutionGraph graph ->

readyAction.execute(TaskGraphAdaptor.forGraph(graph));
});

}

Listing 5.4: Shows the method “whenTaskGraphReady” which executes a passed callback
“readyAction” when the TEG from section 3.1 is ready.

to the TEG as can be seen in listing 5.4.

The Android Gradle plugin compiles the Java source files using the task
“compile<buildVariant>Sources” as described in section 3.3. Pimutdroid
plugs a task into the life cycle of the Android Gradle plugin which executes
after the compile sources task and injects the mutated class file. “inject-
MutantAfterCompileByMarkerFile” is the name of this task and it takes a
MUID as a parameter to determine the mutant it should inject. Afterwards
the byte code is transformed to DEX byte code from the Android Gradle
plugin and the DEX code as well as the compiled resources are packaged to
an APK file. Finally the APK file and the markerfile are copied to the output
folder of the mutant and the original byte code files are restored. The folder
structure of the mutant as shown in figure 5.2 mirrors the folder structure
containing the mutated class files, displayed in figure 5.1.

The approach to replace the files within the task execution speeds up the

79

5 Implementation Details

Figure 5.2: Shows the folder structure under which the mutation files per mutant are
stored. The plugin mirrors the folder structure containing the mutated class
files displayed in figure 5.1

process of mutant creation, as Gradle checks for a task whether the defined
input and output files have changed or not. If they changed the task is run,
otherwise the task is “up to date” and is skipped (Gradle, 2018b). During
the assemble task, only the class files always have to be transformed to DEX
files. As after the first mutant APK file created, the other files do not change
and the Android tasks are skipped.

5.3 Mutant Test Execution

Section 5.3 describes how mutants are tested on an emulator or a real de-
vice. Pimutdroid uses the ADB commands described under section 3.4 to
install APK files, instrument test cases, fetch result files and determines
the devices to use. Additionally the plugin adds a dependency to the

80

5.3 Mutant Test Execution

int numMutants = mutantApks.size();
int numDevices = deviceList.size();
List <String > fullMutantApkFilepathList =

mutantApks.collect ({ File file ->
file.getPath ().toString () }).toList ();

def mutantPartition =
getMutantPathsPerDevice(fullMutantApkFilepathList ,
numDevices);

Listing 5.5: Shows how the targeted APK files are partitioned for a the number of devices,
on test exection.

test APK build which is an implementation of an Android instrumen-
tation run listener by Schröpf (2018). This run listener creates a JUnit
compatible XML report file which is used for the expected and mutant
result files. The listener is added to the ADB instrumentation command
by supplying the listener class using the argument “-e listener <full class
name”>. The XML result file is stored on the device under "/storage/em-
ulated/0/Android/data/<application package>/files” and has the name
“report-0.xml” by default. In case of Paintroid the file is located under
"/storage/emulated/0/Android/data/org.catrobat.paintroid/files”.

Using the ADB query devices command from section 3.4.1 and the “de-
vices” plugin configuration as explained in section 4.3.2, the devices for test
execution are determined. The targeted mutant APK files are then evenly
partitioned among the devices using the Groovy method “collate”1, as can
be seen in listing 5.5 and listing 5.6. A list of mutant APK files which should
be tested is passed to each device.

The workflow to install the mutants and run the tests for each device consists
of the following steps:

• Install and replace test APK file using the ADB command to install an
APK file with the “-t” option, see section 3.4.2.2.

1http://docs.groovy-lang.org/2.4.3/html/groovy-jdk/java/lang/Iterable.html#
collate(int)

81

http://docs.groovy-lang.org/2.4.3/html/groovy-jdk/java/lang/Iterable.html#collate(int)
http://docs.groovy-lang.org/2.4.3/html/groovy-jdk/java/lang/Iterable.html#collate(int)

5 Implementation Details

private List <List <String >>
getMutantPathsPerDevice(List <String >
fullMutantApkFilepathList , int numDevices) {
int numMutants = fullMutantApkFilepathList.size();
int partitionSize = (int)(numMutants / numDevices);
int remainderSize = (numMutants % numDevices);

List <List <String >> mutantPartition =
fullMutantApkFilepathList.collate(partitionSize);

List <String > remainderList = (remainderSize > 0) ?
mutantPartition.pop() : new ArrayList <String >();

remainderList.eachWithIndex { String path , int index ->
mutantPartition.get(index).add(path);

}

return mutantPartition;
}

Listing 5.6: Shows the method “getMutantPathsPerDevice” which partitions a given list
of APK file paths for a given number of devices using the Groovy function
“collate”.

• Remove any existing XML result file created by the run listener from
the device.

• For each mutant:

1. Install and replace the current installation of the mutated applica-
tion APK file. For this ADB call a timeout of four minutes exists, if
the time runs out the test for this APK file is aborted, the mutant
outcome will be “NO_RESULT” and counts as not killed.

2. Run tests using instrument command from section 3.4.2.6. The
process waits until test execution finishes and after this step the
XML result file is created. As described in 4.3.2 the default test
timeout is set to 10 seconds.

3. Copy mutant result file from the device to the mutant folder, see
figure 5.2.

82

5.3 Mutant Test Execution

...
Partition mutants 54 on 2 devices.
Submit worker for device 'emulator -5554'... work on '27'

mutants
Submit worker for device 'emulator -5556'... work on '27'

mutants

On device 'emulator -5554': (1/27) |(took: 00m:03s)|(tests
took: 00m:01s) - finished testing
'E:\ mutants\org\catrobat\paintroid\command\UndoRedoManager
\mutants \0\ Paintroid -debug.apk'

(inst: true , test: true , fetch: true , remove: true , clear
test: true , clear app: true)

On device 'emulator -5556': (1/27) |(took: 00m:43s)|(tests
took: 00m:41s) - finished testing
'E:\ mutants\org\catrobat\paintroid\command\UndoRedoManager
\mutants \33\ Paintroid -debug.apk'

...

Listing 5.7: Shows the log output by the “testMutants” task, which displays how long test
execution for a specific APK file took and if the test commands were successful.

4. Remove test result file on device.

5. Clear package data of the test package.

6. Clear package data of the application.

• Finally, when all mutants are tested, uninstall application APK file.

The task to start the test execution is named “testMutants” and waits until
all tests finished on the configured devices. For each mutant tested a log
output is printed, showing how long the complete test took and how long
the tests ran as can be seen in listing 5.7. Using this log it is possible to
re-run failed test execution for certain mutants.

83

6 Conclusion

The thesis shows that the developed plugin Pimutdroid is easy to integrate
into the current Android build system and that it enables to run mutation
analysis on local unit tests as well as instrumented test cases. It offers several
options to speed up the mutation analysis process but it depends on the
actual test set. The mutation analysis tool was used to evaluate the test set of
the Paintroid project. The performed test analysis shows the lack of local unit
tests, which would be also important for faster feedback on changes of the
program. As described in section 2.4, Espresso tests are heavily used in the
test set. They tend to be slow and unstable, depending on execution order
as well as on the device the tests are executed on. Based on this information,
the plugin option “ignoreKilledByUnitTest” was implemented and the tool
offers the ability to skip mutants which are already killed by local unit tests.
This provides the possibility to implement local unit tests in order to reduce
the number of mutants which must be assembled into an APK file and be
tested on an emulator or a real device. Using Pimutdroid to run mutation
analysis while creating these local unit tests helps in writing effective test
cases. It should be used in the Paintroid project to build up an effective
base of local unit tests which kill most of the mutants created by Pitest and
only tests which increase the mutation score should be added to the test set.
Subsequent work needs do be done to write more real instrumented unit
test cases and remove the Espresso APIs from the existing tests. Likewise
this should be supported by mutation testing to guarantee robust test cases.
Mutants which then can not be killed by test set should be run against the
UI tests. For each mutant, Pimutdroid stores the test result which can be
used to identify test cases which are able to detect mutants and which are
not. This could be used to reduce the number of Espresso tests by removing
test cases which do not kill any mutant and hence do not decrease the
mutation score. Earlier runs of the mutation analysis on the mutant set of
Paintroid ended in a hung up test case, as problems with infinite loops

85

6 Conclusion

resulting from mutations were previously not detected. The Android Junit
runner used in the execution process offers a configuration option to set a
timeout for tests, Pimutdroid uses this option and sets it by default to 10

seconds, though it can be configured in the projects build script. Another
problem was the fact that sometimes the ADB install command did not
finish and stalled the test process on a device. For this situation another
timeout was introduced by Pimutdroid which aborts the install command,
by default the timeout triggers after four minutes, to guarantee that test
execution finishes.

During the use of Pimutdroid the problem emerged that Paintroid allocates
resources such as bitmaps, as it is a drawing application and has several
background threads and asynchronous tasks, but does not free all resources
correctly. This problem is present in the application as well as test cases.
Espresso launches an activity for every test which led to the problem that
based on the resource allocation after several test runs, the used emulator
got significantly slower and that the test execution time increased with
every mutant tested. After some hours system applications on the emulator
will stop working and the emulator hangs up. Using the default mutation
operators of Pitest, Pimutdroid created 3995 mutants of which 35 were
killed by local unit tests. Running the whole espresso test set takes about 14

minutes which would result in an execution time on a single emulator of
about 38 days for the complete test set. Execution of the instrumented unit
tests would take, if they are able to run in about 40 seconds on average, about
1.5 days. However, 10 test classes of the 17 instrumented unit test classes
use Espresso APIs which again resulted in an increasing test execution time.
The seven “real” instrumented unit tests had the problem that they allocated
Android bitmaps for each test case and likewise were not released properly,
which again resulted in an emulator that stalled. For these test cases the
resource allocation was fixed and than they ran on average in 1 second on a
device, with installation of the mutant APK file and gathering of the result,
on average in about seven seconds. To reduce the amount of mutants, two of
the seven default mutation operators were not used. The five used operators
were the increments, return values, negate conditional, invert negatives and
conditional boundary mutators. Resulting in 1460 mutants for 76 classes
of which 18 where killed by local unit tests. The math mutation operator
created 961 mutants of which one was killed and the void method calls

86

mutator gained a mutation score of only one percent, as of the 1574 mutants
created only 16 where killed by the local unit tests.

Using the “ignoreKilledByUnitTest” option, 1442 mutated APK files of
the 1460 mutants were assembled with Pimutdroid. This took about 2

hours and 9 seconds to finish, as the plugin utilizes the incremental build
feature of Gradle, it takes about only five seconds to assemble the APK
file. Subsequently the seven instrumented unit test were assembled into an
APK file and were executed in parallel on 2 emulators, using the parallel
test execution configuration. It took 5 hours and 31 minutes to finish test
execution. 51 mutants were killed by the test set, from which 18 were already
killed by local unit tests. Resulting in a mutation score of 3.5%. Tests were
written for the “org.catrobat.paintroid.command.implementation” package
and 30 mutants of this package were killed. Two mutants of the class “FileIO”
of package “org.catrobat.paintroid” were killed as the mutation resulted
in an infinite loop of the program execution, which the used test timeout
detected. One more mutant of package “org.catrobat.paintroid.tools" for
class “Layer” was killed by the instrumented unit tests.

Finally, additional work on the plugin should be done, however they were
beyond the scope of this thesis, hence they were not covered. Pimutdroid
should implement some of the proposed Android specific mutation opera-
tors by Lin Deng et al. (2017b) and Linares-Vásquez et al. (2017), to better
simulate faults which are specific for Android applications. Pitest supports
the addition of custom mutation operators to the set of available operators,
however the mutation has to be applied to the byte code. Alternatively,
the mutation framework by Linares-Vásquez et al. (2017) could be used
to generate Android specific mutants and run with Pimutdroid, as only
the markerfile must be created for the APK file in order to be able to run
it. Additional work needs to be done for the test execution to better han-
dle memory and resource related issues on test execution. For example, a
restart of the emulator after several mutants have been tested, to free any
allocated resources. Pimutdroid should offer a mutation report in HTML
format as well to give a better overview of the mutation outcome, it could be
combined with the report created by Pitest. Additionally, Android supports
to gather information on line coverage for instrumented test cases, this
data could be linked to the report created by Pimutdroid to add additional
information to the report. So that the outcome of a mutant does not only

87

6 Conclusion

indicate whether it was killed or not, but also includes if the mutant was
reached and survived or the mutant was not even covered by the test set.
Furthermore Pimutdroid could be used to perform high-order mutation
and inject not only one mutated class file but multiple at once into an APK
file.

Final Words From The Author

There are many ways to improve the current plugin, unfortunately the test
set of Paintroid consisted of so many Espresso test cases. But I hope that
Pimutdroid will aid in the process of improving or implementing the local
and instrumented unit tests of the project. Although it does not support
Android specific mutation operators, it will be a good start to kill mutants
created from the traditional Java operators. In retrospect it would have been
great if support for XML mutation operators got included in the current
plugin, to test the effect on the Android build process and which additional
Gradle tasks would have been needed. However mutation testing is a great
method to improve ones test cases and additionally improve yourself on
how to write such test cases.

88

Appendix

89

Bibliography

Ammann, Paul and Jeff Offutt (2008). Introduction to Software Testing. 1st ed.
New York, NY, USA: Cambridge University Press. isbn: 0521880386,
9780521880381 (cit. on pp. 3, 12).

Andrews, J. H., L. C. Briand, and Y. Labiche (May 2005). “Is mutation
an appropriate tool for testing experiments? [software testing].” In:
Proceedings. 27th International Conference on Software Engineering, 2005.
ICSE 2005. Pp. 402–411. doi: 10.1109/ICSE.2005.1553583 (cit. on p. 6).

Andrews, J. H., L. C. Briand, Y. Labiche, and A. S. Namin (Aug. 2006). “Using
Mutation Analysis for Assessing and Comparing Testing Coverage
Criteria.” In: IEEE Transactions on Software Engineering 32.8, pp. 608–624.
issn: 0098-5589. doi: 10.1109/TSE.2006.83 (cit. on p. 6).

Catrobat (2018). Free educational apps for children and teenagers. url: https:
//www.catrobat.org/ (visited on 07/01/2018) (cit. on p. 21).

Cohen, Mike (2009). The Forgotten Layer of the Test Automation Pyramid. url:
https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-
of- the- test- automation- pyramid (visited on 05/27/2018) (cit. on
p. 21).

Coles, Henry (2018a). Github: Pitest MutationDetails class. url: https://
github.com/hcoles/pitest/blob/pitest-parent-1.2.2/pitest/src/
main/java/org/pitest/mutationtest/engine/MutationDetails.java
(visited on 07/05/2018) (cit. on p. 50).

Coles, Henry (2018b). Github: Pitest MutationIdentifier class. url: https :
//github.com/hcoles/pitest/blob/pitest-parent-1.2.2/pitest/src/
main/java/org/pitest/mutationtest/engine/MutationIdentifier.
java (visited on 07/05/2018) (cit. on p. 50).

Coles, Henry (2018c). PIT. url: http://pitest.org/ (visited on 05/15/2018)
(cit. on pp. 17, 43, 52).

Coles, Henry (2018d). PIT Export Pluin. url: https://github.com/pitest/
export-plugin (visited on 05/15/2018) (cit. on pp. 44, 47, 58).

91

https://doi.org/10.1109/ICSE.2005.1553583
https://doi.org/10.1109/TSE.2006.83
https://www.catrobat.org/
https://www.catrobat.org/
https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid
https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid
https://github.com/hcoles/pitest/blob/pitest-parent-1.2.2/pitest/src/main/java/org/pitest/mutationtest/engine/MutationDetails.java
https://github.com/hcoles/pitest/blob/pitest-parent-1.2.2/pitest/src/main/java/org/pitest/mutationtest/engine/MutationDetails.java
https://github.com/hcoles/pitest/blob/pitest-parent-1.2.2/pitest/src/main/java/org/pitest/mutationtest/engine/MutationDetails.java
https://github.com/hcoles/pitest/blob/pitest-parent-1.2.2/pitest/src/main/java/org/pitest/mutationtest/engine/MutationIdentifier.java
https://github.com/hcoles/pitest/blob/pitest-parent-1.2.2/pitest/src/main/java/org/pitest/mutationtest/engine/MutationIdentifier.java
https://github.com/hcoles/pitest/blob/pitest-parent-1.2.2/pitest/src/main/java/org/pitest/mutationtest/engine/MutationIdentifier.java
https://github.com/hcoles/pitest/blob/pitest-parent-1.2.2/pitest/src/main/java/org/pitest/mutationtest/engine/MutationIdentifier.java
http://pitest.org/
https://github.com/pitest/export-plugin
https://github.com/pitest/export-plugin

Bibliography

Coles, Henry (2018e). State of the art mutation testing system for the JVM. url:
https://github.com/hcoles/pitest (visited on 05/25/2018) (cit. on
p. 17).

Coles, Henry and Stefan Penndorf (2018a). PIT Conditionals Boundary Mu-
tator. url: http://pitest.org/quickstart/mutators/#CONDITIONALS_
BOUNDARY (visited on 05/16/2018) (cit. on p. 52).

Coles, Henry and Stefan Penndorf (2018b). PIT Constructor Call Mutator. url:
http://pitest.org/quickstart/mutators/#CONSTRUCTOR_CALLS (visited
on 05/16/2018) (cit. on p. 56).

Coles, Henry and Stefan Penndorf (2018c). PIT Increments Mutator. url:
http://pitest.org/quickstart/mutators/#INCREMENTS (visited on
05/16/2018) (cit. on p. 53).

Coles, Henry and Stefan Penndorf (2018d). PIT Inline Constant Mutator. url:
http://pitest.org/quickstart/mutators/#INLINE_CONSTS (visited on
05/16/2018) (cit. on p. 57).

Coles, Henry and Stefan Penndorf (2018e). PIT Invert Negatives Mutator. url:
http://pitest.org/quickstart/mutators/#INVERT_NEGS (visited on
05/16/2018) (cit. on p. 53).

Coles, Henry and Stefan Penndorf (2018f). PIT Math Mutator. url: http:
//pitest.org/quickstart/mutators/#MATH (visited on 05/16/2018)
(cit. on pp. 53, 54).

Coles, Henry and Stefan Penndorf (2018g). PIT Mutators. url: http://
pitest.org/quickstart/mutators/ (visited on 05/16/2018) (cit. on
pp. 51, 52).

Coles, Henry and Stefan Penndorf (2018h). PIT Negate Conditionals Mutator.
url: http://pitest.org/quickstart/mutators/#NEGATE_CONDITIONALS
(visited on 05/16/2018) (cit. on pp. 54, 55).

Coles, Henry and Stefan Penndorf (2018i). PIT Non Void Method Call Mutator.
url: http://pitest.org/quickstart/mutators/#NON_VOID_METHOD_
CALLS (visited on 05/16/2018) (cit. on p. 56).

Coles, Henry and Stefan Penndorf (2018j). PIT Remove Conditionals Mutator.
url: http://pitest.org/quickstart/mutators/#REMOVE_CONDITIONALS
(visited on 05/16/2018) (cit. on p. 57).

Coles, Henry and Stefan Penndorf (2018k). PIT Return Values Mutator. url:
http://pitest.org/quickstart/mutators/#RETURN_VALS (visited on
05/16/2018) (cit. on pp. 54, 55).

92

https://github.com/hcoles/pitest
http://pitest.org/quickstart/mutators/#CONDITIONALS_BOUNDARY
http://pitest.org/quickstart/mutators/#CONDITIONALS_BOUNDARY
http://pitest.org/quickstart/mutators/#CONSTRUCTOR_CALLS
http://pitest.org/quickstart/mutators/#INCREMENTS
http://pitest.org/quickstart/mutators/#INLINE_CONSTS
http://pitest.org/quickstart/mutators/#INVERT_NEGS
http://pitest.org/quickstart/mutators/#MATH
http://pitest.org/quickstart/mutators/#MATH
http://pitest.org/quickstart/mutators/
http://pitest.org/quickstart/mutators/
http://pitest.org/quickstart/mutators/#NEGATE_CONDITIONALS
http://pitest.org/quickstart/mutators/#NON_VOID_METHOD_CALLS
http://pitest.org/quickstart/mutators/#NON_VOID_METHOD_CALLS
http://pitest.org/quickstart/mutators/#REMOVE_CONDITIONALS
http://pitest.org/quickstart/mutators/#RETURN_VALS

Bibliography

Coles, Henry and Stefan Penndorf (2018l). PIT Void Method Call Mutator. url:
http://pitest.org/quickstart/mutators/#VOID_METHOD_CALLS (visited
on 05/16/2018) (cit. on p. 55).

Daran, Murial and Pascale Thévenod-Fosse (1996a). “Software Error Anal-
ysis: A Real Case Study Involving Real Faults and Mutations.” In:
Proceedings of the 1996 ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis. ISSTA ’96. San Diego, California, USA: ACM,
pp. 158–171. isbn: 0-89791-787-1. doi: 10.1145/229000.226313. url:
http://doi.acm.org/10.1145/229000.226313 (cit. on p. 6).

Daran, Murial and Pascale Thévenod-Fosse (May 1996b). “Software Error
Analysis: A Real Case Study Involving Real Faults and Mutations.”
In: SIGSOFT Softw. Eng. Notes 21.3, pp. 158–171. issn: 0163-5948. doi:
10.1145/226295.226313. url: http://doi.acm.org/10.1145/226295.
226313 (cit. on p. 6).

Delahaye, M. and L. du Bousquet (July 2013). “A Comparison of Mutation
Analysis Tools for Java.” In: 2013 13th International Conference on Quality
Software, pp. 187–195. doi: 10.1109/QSIC.2013.47 (cit. on pp. 16, 22).

DeMillo, R. A., R. J. Lipton, and F. G. Sayward (Apr. 1978). “Hints on Test
Data Selection: Help for the Practicing Programmer.” In: Computer 11.4,
pp. 34–41. issn: 0018-9162. doi: 10.1109/C-M.1978.218136 (cit. on p. 5).

Deng, L., N. Mirzaei, et al. (Apr. 2015). “Towards mutation analysis of
Android apps.” In: 2015 IEEE Eighth International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), pp. 1–10. doi:
10.1109/ICSTW.2015.7107450 (cit. on pp. 12, 14, 22, 23, 25, 26, 46).

Deng, L., J. Offutt, and D. Samudio (July 2017). “Is Mutation Analysis
Effective at Testing Android Apps?” In: 2017 IEEE International Conference
on Software Quality, Reliability and Security (QRS), pp. 86–93. doi: 10.1109/
QRS.2017.19 (cit. on p. 25).

Deng, Lin et al. (2017a). Mutation Operators for Testing Android Apps. url:
https://pdfs.semanticscholar.org/5afa/a2dfade323a433056e294dcc9bf8b0173cf4.
pdf (visited on 05/24/2018) (cit. on p. 25).

Deng, Lin et al. (Jan. 2017b). “Mutation Operators for Testing Android
Apps.” In: Inf. Softw. Technol. 81.C, pp. 154–168. issn: 0950-5849. doi:
10.1016/j.infsof.2016.04.012. url: https://doi.org/10.1016/j.
infsof.2016.04.012 (cit. on pp. 25, 87).

Fowler, Martin (2012). TestPyramid. url: https://martinfowler.com/bliki/
TestPyramid.html (visited on 05/27/2018) (cit. on p. 21).

93

http://pitest.org/quickstart/mutators/#VOID_METHOD_CALLS
https://doi.org/10.1145/229000.226313
http://doi.acm.org/10.1145/229000.226313
https://doi.org/10.1145/226295.226313
http://doi.acm.org/10.1145/226295.226313
http://doi.acm.org/10.1145/226295.226313
https://doi.org/10.1109/QSIC.2013.47
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/ICSTW.2015.7107450
https://doi.org/10.1109/QRS.2017.19
https://doi.org/10.1109/QRS.2017.19
https://pdfs.semanticscholar.org/5afa/a2dfade323a433056e294dcc9bf8b0173cf4.pdf
https://pdfs.semanticscholar.org/5afa/a2dfade323a433056e294dcc9bf8b0173cf4.pdf
https://doi.org/10.1016/j.infsof.2016.04.012
https://doi.org/10.1016/j.infsof.2016.04.012
https://doi.org/10.1016/j.infsof.2016.04.012
https://martinfowler.com/bliki/TestPyramid.html
https://martinfowler.com/bliki/TestPyramid.html

Bibliography

Geist, R., A. J. Offutt, and F. C. Harris (May 1992). “Estimation and enhance-
ment of real-time software reliability through mutation analysis.” In:
IEEE Transactions on Computers 41.5, pp. 550–558. issn: 0018-9340. doi:
10.1109/12.142681 (cit. on p. 12).

Google (2010). AndroidJUnitRunner documentation. url: https://developer.
android.com/reference/android/support/test/runner/AndroidJUnitRunner
(visited on 05/27/2018) (cit. on pp. 19, 63).

Google (2018a). Android Activity. url: https://developer.android.com/
reference/android/app/Activity (visited on 06/01/2018) (cit. on p. 55).

Google (2018b). Android API reference. url: https://developer.android.
com/reference/ (visited on 06/01/2018) (cit. on p. 18).

Google (2018c). Android Debug Bridge (adb). url: https://developer.android.
com/studio/command-line/adb (visited on 05/17/2018) (cit. on p. 37).

Google (2018d). Android Plugin DSL Reference. url: http://google.github.
io/android-gradle-dsl/3.1/ (visited on 06/01/2018) (cit. on pp. 31, 47,
48).

Google (2018e). Testing Documentation. url: https://developer.android.
com/training/testing/ (visited on 06/01/2018) (cit. on p. 17).

Google (2018f). Testing Documentation. url: https://developer.android.
com/training/testing/fundamentals#on-device-unit-tests (visited
on 06/01/2018) (cit. on p. 20).

Google (2018g). User Guide: Configure build variants. url: https://developer.
android.com/studio/build/build-variants (visited on 06/01/2018)
(cit. on p. 32).

Google (2018h). User Guide: Configure your build. url: https://developer.
android.com/studio/build/ (visited on 06/01/2018) (cit. on pp. 30, 36).

Google (2018i). User Guide: Set the application ID. url: https://developer.
android.com/studio/build/application-id (visited on 06/01/2018)
(cit. on p. 36).

Gradle (2018a). Gradle Build System. url: https://docs.gradle.org/ (visited
on 05/17/2018) (cit. on p. 27).

Gradle (2018b). Gradle Docs: Up-to-date checks (AKA Incremental Build). url:
https://docs.gradle.org/4.8.1/userguide/more_about_tasks.html#
sec:up_to_date_checks (visited on 05/27/2018) (cit. on p. 80).

Gradle (2018c). Gradle User Manual. url: https://docs.gradle.org/4.8.1/
userguide/userguide.html (visited on 05/27/2018) (cit. on p. 27).

94

https://doi.org/10.1109/12.142681
https://developer.android.com/reference/android/support/test/runner/AndroidJUnitRunner
https://developer.android.com/reference/android/support/test/runner/AndroidJUnitRunner
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/
https://developer.android.com/reference/
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
http://google.github.io/android-gradle-dsl/3.1/
http://google.github.io/android-gradle-dsl/3.1/
https://developer.android.com/training/testing/
https://developer.android.com/training/testing/
https://developer.android.com/training/testing/fundamentals#on-device-unit-tests
https://developer.android.com/training/testing/fundamentals#on-device-unit-tests
https://developer.android.com/studio/build/build-variants
https://developer.android.com/studio/build/build-variants
https://developer.android.com/studio/build/
https://developer.android.com/studio/build/
https://developer.android.com/studio/build/application-id
https://developer.android.com/studio/build/application-id
https://docs.gradle.org/
https://docs.gradle.org/4.8.1/userguide/more_about_tasks.html#sec:up_to_date_checks
https://docs.gradle.org/4.8.1/userguide/more_about_tasks.html#sec:up_to_date_checks
https://docs.gradle.org/4.8.1/userguide/userguide.html
https://docs.gradle.org/4.8.1/userguide/userguide.html

Bibliography

Gradle Wrapper (2018). Gradle Docs: The Gradle Wrapper. url: https://
docs.gradle.org/4.8.1/userguide/gradle_wrapper.html (visited on
05/27/2018) (cit. on p. 29).

Groovy (2018). Groovy: A multi-faceted language for the Java platform. url:
http://www.groovy-lang.org/ (visited on 07/02/2018) (cit. on pp. 27,
44).

Jackson (2018). Extension for Jackson JSON processor that adds support for
serializing POJOs as XML (and deserializing from XML) as an alternative to
JSON. url: https://github.com/FasterXML/jackson-dataformat-xml
(visited on 07/07/2018) (cit. on p. 58).

Java (2018a). Java: Equality, Relational, and Conditional Operators. url: https:
//docs.oracle.com/javase/tutorial/java/nutsandbolts/op2.html
(visited on 06/23/2018) (cit. on p. 7).

Java (2018b). Java. url: https://www.java.com/ (visited on 07/02/2018)
(cit. on p. 44).

Jia, Y. and M. Harman (Sept. 2011). “An Analysis and Survey of the Develop-
ment of Mutation Testing.” In: IEEE Transactions on Software Engineering
37.5, pp. 649–678. issn: 0098-5589. doi: 10.1109/TSE.2010.62 (cit. on
pp. 7, 15, 52).

Just, R., G. M. Kapfhammer, and F. Schweiggert (Apr. 2012). “Do Redundant
Mutants Affect the Effectiveness and Efficiency of Mutation Analysis?”
In: 2012 IEEE Fifth International Conference on Software Testing, Verification
and Validation, pp. 720–725. doi: 10.1109/ICST.2012.162 (cit. on pp. 7,
14, 15, 52).

Just, R., F. Schweiggert, and G. M. Kapfhammer (Nov. 2011). “MAJOR: An
efficient and extensible tool for mutation analysis in a Java compiler.”
In: 2011 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2011), pp. 612–615. doi: 10.1109/ASE.2011.6100138
(cit. on p. 17).

Just, René (2018). The Major mutation framework. url: http://mutation-
testing.org/ (visited on 05/22/2018) (cit. on p. 17).

Just, René (2014a). “The Major Mutation Framework: Efficient and Scalable
Mutation Analysis for Java.” In: Proceedings of the 2014 International
Symposium on Software Testing and Analysis. ISSTA 2014. San Jose, CA,
USA: ACM, pp. 433–436. isbn: 978-1-4503-2645-2. doi: 10.1145/2610384.
2628053. url: http://doi.acm.org/10.1145/2610384.2628053 (cit. on
p. 17).

95

https://docs.gradle.org/4.8.1/userguide/gradle_wrapper.html
https://docs.gradle.org/4.8.1/userguide/gradle_wrapper.html
http://www.groovy-lang.org/
https://github.com/FasterXML/jackson-dataformat-xml
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/op2.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/op2.html
https://www.java.com/
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/ICST.2012.162
https://doi.org/10.1109/ASE.2011.6100138
http://mutation-testing.org/
http://mutation-testing.org/
https://doi.org/10.1145/2610384.2628053
https://doi.org/10.1145/2610384.2628053
http://doi.acm.org/10.1145/2610384.2628053

Bibliography

Just, René (2014b). The Major Mutation Framework: Efficient and Scalable Muta-
tion Analysis for Java. url: https://people.cs.umass.edu/~rjust/publ/
major_issta_2014.pdf (visited on 05/22/2018) (cit. on p. 17).

Just, René et al. (2014). “Are Mutants a Valid Substitute for Real Faults in
Software Testing?” In: Proceedings of the 22Nd ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering. FSE 2014. Hong
Kong, China: ACM, pp. 654–665. isbn: 978-1-4503-3056-5. doi: 10.1145/
2635868.2635929. url: http://doi.acm.org/10.1145/2635868.2635929
(cit. on p. 6).

Kaminski, Gary, Paul Ammann, and Jeff Offutt (2011). “Better Predicate
Testing.” In: Proceedings of the 6th International Workshop on Automation
of Software Test. AST ’11. Waikiki, Honolulu, HI, USA: ACM, pp. 57–
63. isbn: 978-1-4503-0592-1. doi: 10.1145/1982595.1982608. url: http:
//doi.acm.org/10.1145/1982595.1982608 (cit. on pp. 15, 52, 54).

Kotlin (2018). Kotlin: Statically typed programming language for modern multiplat-
form applications. url: https://kotlinlang.org/ (visited on 07/02/2018)
(cit. on p. 27).

Linares-Vásquez, M. et al. (July 2017). “Enabling Mutation Testing for An-
droid Apps.” In: ArXiv e-prints. arXiv: 1707.09038 [cs.SE] (cit. on pp. 23,
26, 87).

Ma, Yu-Seung and Jeff Offut (2006). Description of muJava’s Method-level Muta-
tion Operators. url: https://cs.gmu.edu/~offutt/mujava/mutopsMethod.
pdf (visited on 06/23/2018) (cit. on p. 7).

Ma, Yu-Seung, Jeff Offutt, and Yong Rae Kwon (June 2005). “MuJava: An
Automated Class Mutation System: Research Articles.” In: Softw. Test.
Verif. Reliab. 15.2, pp. 97–133. issn: 0960-0833. doi: 10.1002/stvr.v15:2.
url: http://dx.doi.org/10.1002/stvr.v15:2 (cit. on p. 24).

Ma, Yu-Seung, Jeff Offutt, and Yong-Rae Kwon (2006). “MuJava: A Mutation
System for Java.” In: Proceedings of the 28th International Conference on
Software Engineering. ICSE ’06. Shanghai, China: ACM, pp. 827–830. isbn:
1-59593-375-1. doi: 10.1145/1134285.1134425. url: http://doi.acm.
org/10.1145/1134285.1134425 (cit. on pp. 7, 17).

Madeyski, L. and N. Radyk (Feb. 2010). “Judy - a mutation testing tool for
java.” In: IET Software 4.1, pp. 32–42. issn: 1751-8806. doi: 10.1049/iet-
sen.2008.0038 (cit. on p. 17).

Mateo, P. R. and M. P. Usaola (Sept. 2012). “Bacterio: Java mutation testing
tool: A framework to evaluate quality of tests cases.” In: 2012 28th IEEE

96

https://people.cs.umass.edu/~rjust/publ/major_issta_2014.pdf
https://people.cs.umass.edu/~rjust/publ/major_issta_2014.pdf
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
http://doi.acm.org/10.1145/2635868.2635929
https://doi.org/10.1145/1982595.1982608
http://doi.acm.org/10.1145/1982595.1982608
http://doi.acm.org/10.1145/1982595.1982608
https://kotlinlang.org/
https://arxiv.org/abs/1707.09038
https://cs.gmu.edu/~offutt/mujava/mutopsMethod.pdf
https://cs.gmu.edu/~offutt/mujava/mutopsMethod.pdf
https://doi.org/10.1002/stvr.v15:2
http://dx.doi.org/10.1002/stvr.v15:2
https://doi.org/10.1145/1134285.1134425
http://doi.acm.org/10.1145/1134285.1134425
http://doi.acm.org/10.1145/1134285.1134425
https://doi.org/10.1049/iet-sen.2008.0038
https://doi.org/10.1049/iet-sen.2008.0038

Bibliography

International Conference on Software Maintenance (ICSM), pp. 646–649. doi:
10.1109/ICSM.2012.6405344 (cit. on p. 17).

Mateo, P. R., M. P. Usaola, and J. Offutt (Apr. 2010). “Mutation at System
and Functional Levels.” In: 2010 Third International Conference on Software
Testing, Verification, and Validation Workshops, pp. 110–119. doi: 10.1109/
ICSTW.2010.18 (cit. on p. 17).

Moore, Ivan (2001). “Jester - a JUnit test tester.” 2nd International Con-
ference on eXtreme Programming and Flexible Processes in Software
Engineering (XP). Villasimius, Italy. url: http : / / ciclamino . dibe .
unige.it/xp2001/conference/papers/Chapter20-Moore.pdf (visited
on 05/24/2018) (cit. on p. 17).

Moore, Ivan (2013). Jester Sourceforge Project Page. url: https://sourceforge.
net/projects/jester/ (visited on 05/24/2018) (cit. on p. 17).

Moran, K. et al. (Feb. 2018). “MDroid+: A Mutation Testing Framework for
Android.” In: ArXiv e-prints. arXiv: 1802.04749 [cs.SE] (cit. on p. 26).

Morell, L. J. (Aug. 1990). “A theory of fault-based testing.” In: IEEE Trans-
actions on Software Engineering 16.8, pp. 844–857. issn: 0098-5589. doi:
10.1109/32.57623 (cit. on pp. 4, 5).

Myers, Glenford J. (1979). Art of Software Testing. New York, NY, USA: John
Wiley & Sons, Inc. isbn: 0471043281 (cit. on p. 4).

Offutt, A. J. and Jie Pan (June 1996). “Detecting equivalent mutants and
the feasible path problem.” In: Computer Assurance, 1996. COMPASS
’96, Systems Integrity. Software Safety. Process Security. Proceedings of the
Eleventh Annual Conference on, pp. 224–236. doi: 10.1109/CMPASS.1996.
507890 (cit. on pp. 12, 13).

Offutt, A. Jefferson (Jan. 1992a). Investigations of the Software Testing Coupling
Effect. url: https://cs.gmu.edu/~offutt/rsrch/papers/coupl.pdf
(visited on 05/24/2018) (cit. on pp. 5, 6).

Offutt, A. Jefferson (Jan. 1992b). “Investigations of the Software Testing
Coupling Effect.” In: ACM Trans. Softw. Eng. Methodol. 1.1, pp. 5–20. issn:
1049-331X. doi: 10.1145/125489.125473. url: http://doi.acm.org/10.
1145/125489.125473 (cit. on pp. 5, 6).

Offutt, A. Jefferson and Ronald H. Untch (2001a). Mutation 2000: Uniting
the Orthogonal. url: https://cs.gmu.edu/~offutt/rsrch/papers/mut00.
pdf (visited on 05/24/2018) (cit. on pp. 3, 7).

Offutt, A. Jefferson and Ronald H. Untch (2001b). “Mutation Testing for the
New Century.” In: ed. by W. Eric Wong. Norwell, MA, USA: Kluwer

97

https://doi.org/10.1109/ICSM.2012.6405344
https://doi.org/10.1109/ICSTW.2010.18
https://doi.org/10.1109/ICSTW.2010.18
http://ciclamino.dibe.unige.it/xp2001/conference/papers/Chapter20-Moore.pdf
http://ciclamino.dibe.unige.it/xp2001/conference/papers/Chapter20-Moore.pdf
https://sourceforge.net/projects/jester/
https://sourceforge.net/projects/jester/
https://arxiv.org/abs/1802.04749
https://doi.org/10.1109/32.57623
https://doi.org/10.1109/CMPASS.1996.507890
https://doi.org/10.1109/CMPASS.1996.507890
https://cs.gmu.edu/~offutt/rsrch/papers/coupl.pdf
https://doi.org/10.1145/125489.125473
http://doi.acm.org/10.1145/125489.125473
http://doi.acm.org/10.1145/125489.125473
https://cs.gmu.edu/~offutt/rsrch/papers/mut00.pdf
https://cs.gmu.edu/~offutt/rsrch/papers/mut00.pdf

Bibliography

Academic Publishers. Chap. Mutation 2000: Uniting the Orthogonal,
pp. 34–44. isbn: 0-7923-7323-5. url: http://dl.acm.org/citation.cfm?
id=571305.571314 (cit. on pp. 3, 7, 9, 12, 15).

Offutt, Jeff (2015). Mutation system for Java programs, including OO mutation
operators. url: https://github.com/jeffoffutt/muJava/ (visited on
05/22/2018) (cit. on p. 17).

Pocket Paint (2018a). GitHub Pocket Paint project: The standard image manip-
ulation app for Catroid. url: https://github.com/Catrobat/Paintroid
(visited on 07/01/2018) (cit. on p. 21).

Pocket Paint (2018b). Pocket Paint: draw and edit! url: https://play.google.
com/store/apps/details?id=org.catrobat.paintroid (visited on
07/01/2018) (cit. on p. 21).

Robolectric (2010). Robolectric: test-drive your Android code. url: http://
robolectric.org/ (visited on 05/27/2018) (cit. on p. 19).

Robotium (2010). Android UI Testing. url: http://www.robotium.org (visited
on 05/27/2018) (cit. on pp. 18, 21, 24).

Schröpf, Tobias (2018). An AndroidJUnitRunner RunListener implementation
which will create JUnit compatible XML report files containing the results
of Andorid Instrumentation tests. url: https://github.com/schroepf/
TestLab/tree/master/android (visited on 05/14/2018) (cit. on p. 81).

Schuler, David (2009). Javalanche: Efficient Mutation Testing for Java. url:
https://github.com/david-schuler/javalanche (visited on 05/24/2018)
(cit. on p. 17).

Schuler, David and Andreas Zeller (2009a). “Javalanche: Efficient Mutation
Testing for Java.” In: Proceedings of the the 7th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering. ESEC/FSE ’09. Amsterdam, The
Netherlands: ACM, pp. 297–298. isbn: 978-1-60558-001-2. doi: 10.1145/
1595696.1595750. url: http://doi.acm.org/10.1145/1595696.1595750
(cit. on p. 17).

Schuler, David and Andreas Zeller (2009b). Javalanche: Efficient Mutation
Testing for Java. url: http://javalanche.org (visited on 05/24/2018)
(cit. on p. 17).

Tai, Wah K. S. How (1995). “Fault coupling in finite bijective functions.” In:
Software Testing, Verification and Reliability 5.1, pp. 3–47. doi: 10.1002/
stvr.4370050103. eprint: https://onlinelibrary.wiley.com/doi/pdf/

98

http://dl.acm.org/citation.cfm?id=571305.571314
http://dl.acm.org/citation.cfm?id=571305.571314
https://github.com/jeffoffutt/muJava/
https://github.com/Catrobat/Paintroid
https://play.google.com/store/apps/details?id=org.catrobat.paintroid
https://play.google.com/store/apps/details?id=org.catrobat.paintroid
http://robolectric.org/
http://robolectric.org/
http://www.robotium.org
https://github.com/schroepf/TestLab/tree/master/android
https://github.com/schroepf/TestLab/tree/master/android
https://github.com/david-schuler/javalanche
https://doi.org/10.1145/1595696.1595750
https://doi.org/10.1145/1595696.1595750
http://doi.acm.org/10.1145/1595696.1595750
http://javalanche.org
https://doi.org/10.1002/stvr.4370050103
https://doi.org/10.1002/stvr.4370050103
https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.4370050103
https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.4370050103
https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.4370050103

Bibliography

10.1002/stvr.4370050103. url: https://onlinelibrary.wiley.com/
doi/abs/10.1002/stvr.4370050103 (cit. on p. 6).

Tai, Wah K. S. How (2000). “A theoretical study of fault coupling.” In:
Software Testing, Verification and Reliability 10.1, pp. 3–45. doi: 10.1002/
(SICI)1099-1689(200003)10:1<3::AID-STVR196>3.0.CO;2-P. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291099-
1689%28200003%2910%3A1%3C3%3A%3AAID-STVR196%3E3.0.CO%3B2-P. url:
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291099-
1689%28200003%2910%3A1%3C3%3A%3AAID-STVR196%3E3.0.CO%3B2-P
(cit. on p. 6).

Utting, Mark and Len Trigg (2007). Jumble Sourceforge Project Page. url:
https://sourceforge.net/projects/jumble/ (visited on 05/22/2018)
(cit. on p. 17).

Wrotniak, Karol (2018). Gradle plugin for PIT Mutation Testing in Android
projects. url: https://github.com/koral-- /gradle- pitest- plugin
(visited on 05/15/2018) (cit. on pp. 23, 43, 58).

Wu, D. et al. (July 1988). “A practical method for software quality control via
program mutation.” In: [1988] Proceedings. Second Workshop on Software
Testing, Verification, and Analysis, pp. 159–170. doi: 10.1109/WST.1988.
5371 (cit. on p. 7).

Yuan, Wei (2016a). Github project of MuDroid: Mutation Testing tool for Android
Integration Testing. url: https://github.com/Yuan-W/muDroid (visited
on 05/17/2018) (cit. on p. 22).

Yuan, Wei (2016b). MuDroid: Mutation Testing for Android Apps. url: http:
//www0.cs.ucl.ac.uk/staff/Yue.Jia/resources/studentprojects/
Yuan_Wei_MuDroid_Mutation_Testing_for_Android_Apps.pdf (visited
on 05/17/2018) (cit. on p. 23).

Zajączkowski, Marcin (2018). Gradle plugin for PIT Mutation Testing. url:
https://gradle-pitest-plugin.solidsoft.info/ (visited on 05/15/2018)
(cit. on pp. 17, 23, 44).

99

https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.4370050103
https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.4370050103
https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.4370050103
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.4370050103
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.4370050103
https://doi.org/10.1002/(SICI)1099-1689(200003)10:1<3::AID-STVR196>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1099-1689(200003)10:1<3::AID-STVR196>3.0.CO;2-P
https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291099-1689%28200003%2910%3A1%3C3%3A%3AAID-STVR196%3E3.0.CO%3B2-P
https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291099-1689%28200003%2910%3A1%3C3%3A%3AAID-STVR196%3E3.0.CO%3B2-P
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291099-1689%28200003%2910%3A1%3C3%3A%3AAID-STVR196%3E3.0.CO%3B2-P
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291099-1689%28200003%2910%3A1%3C3%3A%3AAID-STVR196%3E3.0.CO%3B2-P
https://sourceforge.net/projects/jumble/
https://github.com/koral--/gradle-pitest-plugin
https://doi.org/10.1109/WST.1988.5371
https://doi.org/10.1109/WST.1988.5371
https://github.com/Yuan-W/muDroid
http://www0.cs.ucl.ac.uk/staff/Yue.Jia/resources/studentprojects/Yuan_Wei_MuDroid_Mutation_Testing_for_Android_Apps.pdf
http://www0.cs.ucl.ac.uk/staff/Yue.Jia/resources/studentprojects/Yuan_Wei_MuDroid_Mutation_Testing_for_Android_Apps.pdf
http://www0.cs.ucl.ac.uk/staff/Yue.Jia/resources/studentprojects/Yuan_Wei_MuDroid_Mutation_Testing_for_Android_Apps.pdf
https://gradle-pitest-plugin.solidsoft.info/

	Abstract
	Introduction
	Testing Background
	Mutation Testing
	Fault-based testing
	Fundamental Assumptions of Mutation Testing
	Mutation Analysis Process
	Difficulties in Mutation Testing

	Mutation Analysis Tools for Java
	Testing Android Applications
	Instrumented Tests
	Local Unit Tests
	Instrumented Unit Tests
	Automatic User Interface Tests

	Test of Paintroid
	Mutation Analysis Tools for Android
	Proof-of-concept Mutation Analysis Tool by OffutMut1
	MDroid+ by VasqMD1

	Android Build System
	Gradle
	Android Gradle Plugin
	Android Plugin Types
	Build Configuration
	Build Type
	Product Flavor
	Build Variant
	Application ID

	Android Build Process
	Android Debug Bridge
	Query devices
	ADB Commands
	Shell
	Install
	Uninstall
	Clear
	Pull
	Run Instrumented Tests

	Pimutdroid Gradle Plugin
	Plugin Overview
	Mutation Analysis Tool
	Mutation Analysis Process
	Mutation Identifier - MUID
	Mutant Markerfile
	Mutators
	Conditionals Boundary Mutator
	Increments Mutator
	Invert Negatives Mutator
	Math Mutator
	Negate Conditionals Mutator
	Return Values Mutator
	Void Method Call Mutator
	Constructor Call Mutator
	Non Void Method Call Mutator
	Remove Conditionals Mutator
	Inline Constant Mutator

	Plugin Configuration
	Install Plugin
	Configure Plugin

	Plugin Report

	Implementation Details
	Structure
	Mutant Creation
	Mutant Test Execution

	Conclusion
	Bibliography

