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Abstract

Time series of global GRACE-derived surface mass variations have become an invalu-
able data source in the field of Earth system science. Prominent examples of subject
areas that have particularly benefited from GRACE data are the study of the conti-
nental hydrological cycle, the cryosphere, and the global ocean mass balance. The
work presented within this thesis is part of the community-wide effort to improve the
quality of global gravity field solutions based on GRACE satellite-to-satellite tracking
observations. Specifically, it is part of and builds on the ITSG-Grace2016 series of
gravity field solutions.

The research within this thesis is divided into three main subjects: the study of
numerical effects in the dynamic orbit integration necessary in computing GRACE
gravity fields; the description and rigorous evaluation of the effect of the spacecraft
orientation uncertainty on a correction applied to the GRACE inter-satellite ranging
observable; and the co-estimation of improved satellite orientations within the least
squares adjustment for the gravity field parameters.

Regarding the topic of dynamic orbits, a modified Encke approach is introduced
which allows for the integration of dynamic orbits at a numerical resolution that is
shown to be sufficient for GRACE-FO processing. To this end, the classical osculating
Encke ellipse is replaced with a rigorously optimized reference ellipse parametrised
in equinoctial elements. The dynamic orbit integrated based on this algorithm and
parametrisation is shown to exhaust machine precision over a large part of the resulting
orbits’ frequency spectrum.

Complete covariance matrices for the satellite orientation are propagated to the GRACE
KBR antenna offset correction. The propagated covariance matrices describe the non-
stationary contribution of noise in the satellite orientation observations on the correc-
tion applied to the inter-satellite ranging observations. This information is incorporated
into the estimation of a complete stochastic model for the inter-satellite ranging ob-
servations, which is computed anew for each month of data. The improved stochastic
model better describes the noise found in real observations, and can thus contribute in
the determination of better gravity field solutions.

The covariance information for the satellite orientation is further used in the co-
estimation of improved orientation parameters in the least squares adjustment for the
gravity field parameters. Departing from the assumption of error-free and fixed satellite
orientations leads to a reduction in temporal variability of the recovered gravity fields
over the oceans. This methodology further improves estimates of the KBR antenna
phase centre coordinates.
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Introduction 1
The Gravity Recovery and Climate Experiment (GRACE) twin satellite mission was a
joint NASA and DLR Earth observation mission, directed at detecting mass transport
signals in the Earth system at an unprecedented accuracy. The mission was an over-
whelming success, collecting data during its operational period spanning from April
2002 until end of science operations in June 2017, much exceeding the initial goal of 5
years of data acquisition.

The successor mission to GRACE, Gravity Recovery and Climate Experiment Follow-
On (GRACE-FO), was successfully launched on May 22, 2018, and is expected to
continue the time series established by GRACE into the future. Further, GRACE-FO
will serve as a technology demonstrator for advanced instrumentation, use of which
could be made in possible future satellite gravimetry missions.

This work has a three-fold purpose. First, the stability of the current state-of-the-art
orbit integration technique used for GRACE processing is analysed. These results
are then compared to the requirements of GRACE-FO and possible future gravity
missions. Improvements to the orbit integration algorithm are proposed and imple-
mented, making it suitable for GRACE-FO processing. Second, an attempt is made to
introduce a stochastic model of GRACE orientation observations into the gravity field
determination, the impact of which is studied in the context of the current GRACE
mission. This is done in hope of improving the quality of the existing time series of
GRACE gravity field solutions. Third, the newly introduced stochastic information is
exploited in the co-estimation of satellite orientations and gravity field parameters in a
total least squares adjustment. All of this is achieved within the context of the gravity
field processing strategy employed at IfG, which is the Institute of Geodesy at Graz
University of Technology, where the ITSG-Grace2016 series of gravity field solutions
was computed.

Chapters 2 to 6 give background on some of the relevant concepts, terminology, and
algorithms. This is then followed by the three chapters 7 to 9 which detail the author’s
contributions to the aforementioned fields of orbit integration, stochastic modelling,
and parameter estimation in the context of GRACE. The individual chapters are as
follows:

Chapter 2 gives information on the employed notation, basic concepts such as the least
squares adjustment, variance propagation, parameter elimination, variance component
estimation, and specific interpolation techniques used in later chapters. This chapter is
held general in nature, and its contents should be mostly familiar to readers with a
background in satellite gravimetry.
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Chapter 3 outlines the fundamentals of gravity signals in the Earth system and how
they relate to the goals of GRACE. Some of the most fundamental disturbing factors
for GRACE observations are presented, followed by a short introduction on the
representation of gravitational potentials and their analysis.

Chapter 4 mainly serves to give comprehensive background on the GRACE satellites,
their construction, and instrumentation. Some of the most relevant reference frames
are introduced, and the reader is referred to the authoritative sources for complete
information on the satellites. Special consideration is made to give a thorough intro-
duction to the observation geometry of the GRACE constellation, as this specific aspect
of the mission is of primary importance to later parts of this thesis.

Chapter 5 gives details on the technique of dynamic orbit integration through varia-
tional equations, with a specific focus on their implementation at IfG. The variational
equations form the basis of both the ITSG-Grace2016 and the ITSG-Grace2018 series of
gravity field solutions.

Chapter 6 aims to give a detailed description of the state of the art of gravity field
processing at IfG, specifically the ITSG-Grace2016 time series of gravity fields. This
series can be considered the basis of this thesis, although the contents of chapter 7
were already included in the final ITSG-Grace2016 processing chain. The functional
model for all GRACE-based observables is derived, followed by a detailed description
of the process used to estimate realistic stochastic models for GRACE observations,
which is a feature unique to the ITSG-Grace series of gravity field solutions. Finally, the
use of these stochastic models to determine a full monthly gravity field is outlined.

The focus of chapter 7 is the improvement of the dynamic orbit integration based on
variational equations, as outlined in chapter 5. First, a criteria is developed to quantify
the quality of a dynamic orbit solution based on its convergence behaviour. This is
followed by a description of the proposed improved algorithm, the heart of which
is a generalization of the well-known orbit integration technique due to Encke. This
approach is extended through rigorous optimization of the initial satellite state used
for orbit integration. The improvements in dynamic orbit quality due to this new
algorithm are analysed using the example of GRACE, and some observations are made
on the applicability of the algorithm to GRACE-FO and other satellite missions.

Chapter 8 gives a thorough analysis of the effects of uncertainty in the satellite
orientation on the GRACE observables. This is followed by the development of a
stochastic model for these effects, based on existing full covariance information on the
satellite orientation as derived in chapter 6, and its application to the processing chain
of ITSG-Grace2016. The impact on the estimated stochastic model as well as a time
series of post-fit residuals is analysed, and the observed changes and improvements
are discussed.

Chapter 9 uses the orientation uncertainty information and updated stochastic model
derived in chapter 8 to co-estimate improved satellite orientations together with
the primary goal, the Stokes coefficients describing the monthly gravity fields. This
estimation is prefaced by a comparison of two different formalisms used to consider
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uncertainty in independent variables in a least squares adjustment. The application of
these formalisms to GRACE is described, followed by a detailed analysis of the results
both in terms of estimated satellite orientations and in terms of estimated gravity field
solutions.

Chapter 10 marks the end of the main body, summarizing the findings and giving an
outlook on possible future avenues for research in this area.
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Mathematical Theory and
Notation 2
This chapter will give a short overview of the most important mathematical concepts
used throughout this thesis. It is written under the assumption that the reader is
familiar with the basic concepts of linear algebra and adjustment theory. A review
of the foundations of the employed concepts will serve as a setting to define the
nomenclature and notation used in the remaining document.

2.1 Variables and Derivatives

Scalars are set in regular type as in “x”, while vectors are set in bold type as in “x”.
Matrices are set in bold type as well, but denoted by capital letters like “X”. For
derivatives of non-scaler operands, the numerator notation is chosen. In this notation,
the derivative of a scalar y with respect to a vector

x =
[

x0 x1 . . . xn

]T
(2.1.1)

is written as

∂ y
∂x

=

[
∂ y
∂x0

∂ y
∂x1

· · · ∂ y
∂xn

]
. (2.1.2)

The derivative of x with regard to another vector

y =
[
y0 y1 . . . ym

]T
(2.1.3)

is

∂x

∂y
=




∂ x0

∂y0

∂ x0

∂y1
· · · ∂ x0

∂ym

∂ x1

∂y0

∂ x1

∂y1
· · · ∂ x1

∂ym

...
... . . . ...

∂ xn

∂y0

∂ xn

∂y1
· · · ∂ xn

∂ym




n×m

. (2.1.4)
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For vector by matrix derivatives, the vec()-operator is used, which stacks the columns
of a matrix. For a k× l matrix

M =




m00 m01 · · · m0l

m10 m11 · · · m1l
...

... . . . ...
mk0 mk1 · · · mkl




k×l

(2.1.5)

this is

vec (M ) =
[
m00 . . . mk0 m01 . . . mk1 · · · m0l . . . mkl

]T
. (2.1.6)

The vector by matrix derivative is then, equivalently to eq. (2.1.4), written as

∂x

∂ vec (M )
=




∂ x0

∂m00

∂ x0

∂m10
· · · ∂ x0

∂mkl

∂ x1

∂m00

∂ x1

∂m10
· · · ∂ x1

∂mkl
...

... . . . ...

∂ xn

∂m00

∂ xn

∂m10
· · · ∂ xn

∂mkl




n×k·l

. (2.1.7)

For differentiation of matrices by scalars, such as the often occurring time derivatives,
Lagrange’s notation using parentheses may be used for brevity, such that

∂nM

∂tn =M (m) (2.1.8)

is the m-th derivative and
∫
M ∂tn =M (−m) (2.1.9)

is the m-th antiderivative.

For a time series of scaler or matrix values a variable with an explicit time point given,
such as x(t), shall refer to that single epoch. The variable given without a specific time
shall refer to the complete time series

x =
[
x(t0)

T x(t1)
T · · · x(tn)T

]T
. (2.1.10)

2.2 Least Squares Adjustment

The fundamental concept in this thesis is the least squares adjustment (LSA), an
algorithm to determine the values of some set of parameters x that “best” fit some
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other set of observations l. The parameters are connected to the observations through a
functional model l = f (x). Exhaustive descriptions of this algorithm can for example
be found in Koch (1997) and Niemeier (2008).

The algorithm prescribes the computation of a design matrix, denoted A, as the Jacobian
of the observations with regard to the parameters

A =
∂ f (x)

∂x

∣∣∣∣
x0

(2.2.1)

at some initial value for the parameters x0. With this linearisation, an equation system

∆l = A∆x+ e (2.2.2)

is set up, where e is the vector of residuals, the misfit of the observations with the
prediction made by the model, and ∆l = l− f (x0) the reduced observations. Given a
matrix of observation weights P , the least squares solution of eq. (2.2.2) is

∆x̂ =
(
ATPA

)−1
ATP∆l . (2.2.3)

The adjusted vector of parameters ∆x̂ is that solution to eq. (2.2.2) that minimizes the
weighted square sum of residuals eTPe. The desired parameters are then x̂ = x0 + ∆x̂.
This process of linearisation and adjustment must be iterated until the additions to the
parameters ∆x̂ are small, signalling convergence. In case the functional relationship
f (x) between observations and parameters is linear, no differences have to be formed
and the adjusted parameters can directly be computed as

x̂ =
(
ATPA

)−1
ATPl . (2.2.4)

The estimated residuals of the observations are

ê = l−Ax̂ . (2.2.5)

The weight matrix P is the inverse of the covariance matrix of the observations Σll:

P = Σ−1
ll (2.2.6)

Equation (2.2.4) can be written as

Nx̂ = n (2.2.7)

with the normal equation of the system

N = ATPA (2.2.8)

and the right hand side

n = ATPl . (2.2.9)
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Multiple observation groups lk for the same set of parameters x can be combined at
the normal equation level by summation

N =
n

∑
k=0
Nk n =

n

∑
k=0
nk . (2.2.10)

The estimated covariance matrix of the adjusted parameters is the inverse of the normal
equation

Σ̂x̂x̂ = N−1 . (2.2.11)

2.3 Decorrelation

For many problems, the stochastic model for the observations is given or estimated as
a covariance matrix Σll, and not as the weight matrix P needed to compute eq. (2.2.4).
As direct inversion of Σll is expensive and, depending on the covariance structure, can
be numerically unstable (Björck, 1996), it is desirable to avoid this operation. If the
given covariance matrix is positive definite, the Cholesky decomposition

Σll =WTW , (2.3.1)

exists, with W an upper triangular matrix. With

P =
(
WTW

)−1
=W−1W−T (2.3.2)

eq. (2.2.4) is

x̂ =
(
ATW−1W−TA

)−1
ATW−1W−Tl . (2.3.3)

With the transformation

Ā =W−TA , l̄ =W−Tl (2.3.4)

this is

x̂ =
(
ĀTĀ

)−1
ĀTl̄ . (2.3.5)

Due to the upper triangular shape of W , the decorrelated observations l̄ and the decorre-
lated observation equations Ā can be computed without knowing the inverse W−1 by
solving the system

WTx̄ = x (2.3.6)

through back-substitution. The normal equation and the right hand side are computed
from the decorrelated matrices as

N = ĀTĀ , n = ĀTl̄ . (2.3.7)
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2.4 Parameter Elimination

Given a normal equation system Nx̂ = n where only some of the parameters x̂1 are
of interest and the remaining parameters x̂2 are only necessary for proper modelling
of the system, these non-target parameters can be eliminated from the system. Let the
normal equation system be partitioned as

[
N11 N12

NT
12 N22

] [
x̂1

x̂2

]
=

[
n1

n2

]
. (2.4.1)

Solving the second matrix equation of eq. (2.4.1) for x̂2 gives

x̂2 = N−1
22

(
n2 −NT

12x̂1

)
, (2.4.2)

assuming that N22 is invertible. Equation (2.4.2) can then be inserted into the first
equation of eq. (2.4.1), giving

N11x̂1+ N12

(
N−1

22

(
n2 −NT

12x̂1

))
= n1

N11x̂1+N12N
−1
22 n2 −N12N

−1
22 N

T
12x̂1 = n1(

N11 −N12N
−1
22 N

T
12

)
x̂1 = n1 −N12N

−1
22 n2 . (2.4.3)

More compactly, this is N ′x̂1 = n′, with

N ′ = N11 −N12N
−1
22 N

T
12 and n′ = n1 −N12N

−1
22 n2 . (2.4.4)

The system eq. (2.4.4) gives the same solution for x̂1 as eq. (2.4.1). Solving for x̂1 in
this manner can be advantageous, depending on the structure and size of the initial
normal equation system.

2.5 Variance Propagation

Given a functional relationship between some dependent variables y and a set of
parameters x with given covariance Σxx, the covariance matrix of the dependent
variables is (e.g. Niemeier, 2008)

Σyy = BΣxxB
T (2.5.1)

with

B =
∂ y

∂x
. (2.5.2)
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2.6 Variance Component Estimation

A problem often encountered when solving for a set of parameters is that the covariance
of the observations Σll is not exactly known. Similarly, when combining several
observation groups at the normal equation level, the relative weight of the observations
must be known to compute the optimal solution x̂. One approach to determine these
unknown weights and correlations is to treat them as unknown parameters in the
adjustment problem and co-estimate the weights in an iterative procedure. This is
known as variance component estimation (VCE). The outline in this section follows
the reasoning given in Niemeier (2008).

The fundamental extension to eq. (2.2.2) is that the single vector of residuals is split
into multiple vectors of residuals ei:

l = Ax+ e0 + e1 + · · ·+ en. (2.6.1)

Each of these residual vectors shall have its own covariance matrix Σi, each a constituent
of the complete covariance of the observations

Σll =
n

∑
i=0

Σi . (2.6.2)

The structure of Σi is given by a known cofactor matrix Q, which is then scaled by an
unknown variance factor σ2

i . Equation (2.6.2) is then

Σll =
n

∑
i=0

σ2
i Qi . (2.6.3)

Using this scheme, an arbitrary covariance matrix Σll can be formed by choosing the
right cofactor matrices and scaling them appropriately. Given an initial guess for the
variance factors the optimal values are determined iteratively by introducing weights
α2

i = 1, writing

Σll =
n

∑
i=0

α2
i

(
σ2

i Qi

)
. (2.6.4)

After computing the least squares solution of eq. (2.6.1) using this initial covariance
matrix, the estimated weights are

α̂2
i =

Ω
s

, (2.6.5)

with

Ω = êTΣ−Tll ΣiΣ
−1
ll ê (2.6.6)

and

s = trace (RΣi) , (2.6.7)
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where R is a symmetric matrix

R = Σ−1
ll − Σ−1

ll AN
−1ATΣ−Tll . (2.6.8)

The estimated variance factors of this iteration

σ̂2
i = α̂2

i σ2
i (2.6.9)

are used as the initial value σ2
i for the next iteration. When the α2

i converge to 1, the
σ2

i are the desired variance factors for the cofactor matrices Qi. Iteration is needed
due to a simplifying assumption in eq. (2.6.5) that the individual σ2

i can be estimated
independently. It can be shown that after convergence, the computed σ2

i are identical
to those resulting from a strict solution (Förstner, 1979).

The algorithm of variance component estimation can also be employed to determine
the optimal respective weights of several uncorrelated observation groups lk of nk
observations each:




l0
...
lm


 =




A0
...
Am


x+




e0
...
em


 (2.6.10)

Here, each observation group has a cofactor matrix Qk with an unknown variance
factor σ2

k . The full covariance matrix of all observations is

Σll =




σ2
0Q0 0 · · · 0

0
. . . . . . ...

... . . . . . . 0

0 · · · 0 σ2
mQm




. (2.6.11)

As the observation groups are assumed to be uncorrelated, all variables pertaining to
the other observation groups disappear when inserting into eq. (2.6.5), except for the
combined normal equation N :

α̂2
k =

êTk Σ−1
k êk

nk − trace (NkN−1)
(2.6.12)

Then, the estimated variance factor for the observation group is

σ̂2
k = α̂2

kσ2
k . (2.6.13)

2.7 Interpolation, Numerical Integration, and Numerical
Differentiation

Techniques for numerical differentiation, integration, and interpolation of discrete
time series of data find many applications in the computation of GRACE gravity field
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solutions. Here, a formalism for these operations based on polynomial interpolation is
introduced. The derivations in this section follow those given by Mayer-Gürr (2006).
Let there be a series of n + 1 values x(t0) . . . x(tn) with constant temporal sampling ∆t.
The coefficients of an n-th degree polynomial

x(τ) =
n

∑
k=0

akτk (2.7.1)

defined by these supports can be computed by solving the system



x(t0 + τ0)
...

x(t0 + τn)




︸ ︷︷ ︸
x

=




τ0
0 τ1

0 · · · τn
0

...
... . . . ...

τ0
n τ1

n · · · τn
n




︸ ︷︷ ︸
A




a0
...

an




︸ ︷︷ ︸
a

, (2.7.2)

for the vector a, with τj = j ·∆t. This polynomial can then be evaluated at any time τ by
inserting into eq. (2.7.1). A longer time series of k > n + 1 values can be interpolated by
a low degree polynomial applied to a moving segment of the time series, as illustrated
in fig. 2.1.

Support

Ev
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ti

on

x(t0) x(t1) x(t2) x(t3) x(tk−3) x(tk−2) x(tk−1) x(tk). . .

. . .

t0

t1
t2

t3

tk−3
tk−2
tk−1
tk

...

Figure 2.1: Evaluation of an interpolation polynomial of degree n = 2. Each
polynomial is defined by three supports, and is evaluated at the times
marked.

The time series can be smoothed by computing a polynomial of degree d < n from
n + 1 supports in a least squares adjustment.

The entries of the matrix A are constant, so it is possible to precompute the weights
used for interpolation once for a specific combination of polynomial degree and
sampling. For the not overdetermined case, the solution to eq. (2.7.2) is

a =Wx , (2.7.3)
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with W = A−1. Inserting eq. (2.7.3) into eq. (2.7.2), the evaluation of the interpolation
polynomial at a specific time t can be written as a vector-matrix-vector product

x(τ) = τWx (2.7.4)

with τ =
[
τ0 . . . τn

]
and τ = t− t0. This has the important property that for a constant

value τ, meaning always evaluating the interpolation polynomial at the same fraction
of its length, e.g. always at the centre support, the n + 1 weights

w = τW (2.7.5)

are constant and only have to be computed once. This is an expression which can
be differentiated and integrated analytically. An arbitrary derivative or integral for
a time series can be computed using these interpolation polynomials. The m-th time
derivative of eq. (2.7.4) is

∂mx(τ)
∂τm = w(m)x = τ (m)Wx . (2.7.6)

The m-th integral is equivalently
∫

x(τ) ∂τm = w(−m)x = τ (−m)Wx , (2.7.7)

plus some integration constants. Both differentiation and integration can thus be
written as a linear operator on a time series x of arbitrary length k, by populating
a matrix of dimensions k× k with the appropriate entries of the respective weight
matrices. This would yield a matrix structure similar to what is illustrated in fig. 2.1.
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Gravity and Other Signals 3
The GRACE satellites orbit Earth under the influence of a complex interplay of conser-
vative and non-conservative forces.

The most important force, gravity, originates from many overlapping sources, only
some of which are of interest when processing data from GRACE. The following
sections give an overview of the acting forces and their origins. They are broadly
categorized into conservative forces due to direct gravitational fields (section 3.1) and
tidal effects (section 3.2), and non-conservative forces (section 3.3).

3.1 Earth’s Mean and Time-Variable Gravitational
Potential

Earth’s gravitational field is determined through the distribution of mass in Earth’s
volume and immediate vicinity. At time scales for which global gravity observations
are available most of Earth’s core and mantle mass can be considered static. Current
space geodetic methods have neither the spatial nor temporal resolution to resolve the
signal that results from its motion. A notable exception is the effect of glacial isostatic
adjustment described below. Along the same lines, horizontal crustal motion along
Earth’s surface is similarly too small to be resolved. Together with the mean state of
the remaining non-static masses on Earth, all features with minimum sampling periods
longer than the time span covered by the available data are lumped together as Earth’s
mean gravitational field.

Complementary to Earth’s mean gravitational field there exists Earth’s time-variable
gravitational field, which encompasses all signals that can be resolved with the current
observational record. The time-variable field is described by the superposition of
signals at increasingly shorter time spans. At the longer end of this spectrum is the
trend, which describes constant-rate change in the gravitational field. Superimposed
on the trend are the annual and semi-annual cycle, covering major portions of the
inter-annual variability of the gravitational field. All signals at shorter wave lengths
make up the gravity variations. These are the target signals for GRACE monthly and
sub-monthly solutions. Signals at wavelengths shorter than the GRACE minimum
sampling period alias into the monthly and sub-monthly solutions. These signals
should be reduced by other observations or models as much as possible.

The following paragraphs give an overview of the constituents of the time-variable
gravitational field. A more detailed description is given by e.g. Dobslaw et al. (2014).
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Atmospheric mass flux The atmospheric mass distribution is changed through winds
at a very high frequency in a complex pattern.

Oceanic mass flux Oceanic mass is redistributed by changing currents at a high fre-
quency. Further, the net mass of the ocean can be changed by run-off of continental
water and evaporation.

Continental water cycle Net mass is added to the continental mass balance through
precipitation and can be lost through run-off, evaporation, or transpiration. Mass
is stored and transported in surface water bodies, groundwater systems, and
aquifers.

Cryosphere The cryosphere acts mainly as a mass store, with mass flux occurring at
longer time scales than in the remaining continental water cycle. Mass is added to
the cryosphere through precipitation and freezing, and lost through evaporation
and melting with subsequent run-off. The major constituents of the cryosphere
are the Antarctic ice caps, continental glaciers, and the Arctic permafrost.

Solid Earth Motion The detectable fractions of solid Earth mass flux are mainly due
to seismic and post-seismic activity. Other fluxes in the solid Earth like tidal
deformation and glacial isostatic adjustment are described separately.

Glacial Isostatic Adjustment Due to isostatic adjustment, mantle material was dis-
placed from below glaciated land surfaces in the past. After ice masses melt, the
crust elastically rebounds towards its initial configuration. Further, the viscous
mantle material slowly flows back to the areas it was previously displaced from.
Glacial isostatic adjustment (GIA) describes the combination of these two effects.

3.2 Tides and Tidal Effects

In addition to gravitational signals due to processes internal to the Earth system, other
solar system bodies induce forces acting on the GRACE satellites through direct and
indirect tidal effects. The individual effects are described in more detail in the IERS
Conventions (2010) (Petit and Luzum, 2010).

Direct tides The gravitational field of other bodies, primarily the Sun and the Moon,
induce a tidal potential which directly influences the GRACE satellites. This
potential varies with time due to the change in the relative positions of the
involved bodies.

Solid Earth tides The direct tidal potential leads to a deformation of the solid Earth
body, the resulting mass redistribution leads to a secondary tidal effect, the solid
Earth tides.

Ocean tides Similarly, the changing direct tidal potential induces a mass flux in the
oceans, with a corresponding gravitational effect from the redistributed masses.

Atmospheric tides Equivalently to the ocean tides, atmospheric masses also move in
response to direct tides, with a corresponding gravitational effect.

Pole tides Polar motion, the motion of Earth’s rotational axis with respect to its solid
body, induces centrifugal forces acting on the solid Earth. These forces in turn
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effect mass flux in the solid Earth. The pole tides are the disturbing potential
generated due to this mass flux.

Ocean Pole tides Similarly, polar motion indirectly induces mass fluxes in the ocean
basins through centrifugal accelerations. These mass redistributions then generate
a disturbing potential, the ocean pole tides.

A secondary effect of tidally-induced mass fluxes is loading, the displacement of mantle
material due to additional weight above the affected area. Where the additional masses
first increase the gravitational attraction of the area, the mass loss due to loading
reduces the net excess of mass, mitigating the initial effect. Further, self-attraction of the
additional and displaced masses contribute to the equilibrium state of the system. Due
to the constant change in tides and tidally generated effects, such an equilibrium is
never reached.

3.3 Non-Conservative Forces

In addition to the various conservative forces due to the effects described above, some
non-conservative forces act directly on the GRACE satellites.

Solar radiation pressure When solar radiation interacts with satellite surfaces, mo-
mentum is imparted on the satellite. This momentum depends on the area and
orientation of the exposed satellite surfaces, as well as the absorption rate of the
radiation and the reflectivity of the material.

Earth albedo Similar to solar radiation pressure, radiation reflected by and emitted
from Earth’s surface also imparts momentum on the satellite.

Atmospheric drag At the altitude of GRACE, the remnant atmosphere slows the
satellites through friction. The density of the remnant atmosphere is strongly
influenced by solar activity. Atmospheric drag is the most important contributor
to the orbital decay of the satellites (Frommknecht, 2008).

3.4 Representation of the Gravitational Potential

Earth’s exterior gravitational potential can be described through a series expansion of
spherical harmonics coefficients. These are the Stokes coefficients cnm and snm of degree n
and order m. The potential is (see e.g. Hofmann-Wellenhof and Moritz, 2005)

V(r, λ, θ) =
GM

R

∞

∑
n=0

(
R
r

)n+1 n

∑
m=0

[cnmCnm (λ, θ) + snmSnm (λ, θ)] (3.4.1)
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In practice, the expansion is terminated at some finite upper degree N. In eq. (3.4.1),
Cnm (λ, θ) and Snm (λ, θ) are functionals of the fully normalized Legendre polynomi-
als P̄nm (cos θ)

Cnm (λ, θ) = cos (mλ) P̄nm (cos θ) (3.4.2)
Snm (λ, θ) = sin (mλ) P̄nm (cos θ) . (3.4.3)

The gravitational attraction g due to Earth’s gravitational potential V is

g(r, λ, θ) = ∇V(r, λ, θ) =

[
∂ V
∂x

∂ V
∂y

∂ V
∂z

]T
. (3.4.4)

See e.g. Mayer-Gürr (2006) for a compact description of the derivatives in eq. (3.4.4).
The gravitational potential is superimposed by other potential fields, the disturbing
potentials T, some of them due to the effects described in sections 3.1 and 3.2. The
largest disturbing potential on Earth is the centrifugal potential Z caused by Earth’s
rotation. The total potential is then the sum of all contributing potentials, e.g.

U = V + ∑
i

Ti (3.4.5)

3.4.1 Level Surfaces

A gravitational field can be described not only by Stokes coefficients, but also by sets
of level surfaces, where

U(r, θ, λ) = constant . (3.4.6)

One such equipotential surface is the geoid W, defined as the equilibrium surface
described by the world’s oceans if they were at rest and continued through the
continents. Specifically, the geoid is the constant level surface described by the above
criteria in the potential due to the superposition of Earth’s static and centrifugal
potential

W(r, θ, λ) = V(r, θ, λ) + Z(r, θ, λ) = constant. (3.4.7)

The geoid can be described in the form of geoid heights, the height of the geoid level
surface with regard to some reference surface, such as the GRS80 reference ellipsoid.
The time variability in gravity fields can then be described in terms of changes in the
geoid height from one point in time to another.

A more intuitive representation of the temporal variability of the gravity field can be
achieved by employing equivalent water heights (EWHs). As many of the short-period
changes of the potential are due to hydrological signals, the idea of EWHs is to
represent these changes as variations in the thickness of a thin layer of liquid water at
Earth’s surface (Wahr, Molenaar, and Bryan, 1998).
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3.4.2 Degree Amplitudes

When analysing and describing gravity fields, they are often compared to some
reference field, usually a mean potential field. This reference field is also given as
a series of Stokes coefficients. The signal degree amplitude of a gravity field for one
degree n, along with its formal error, is defined as

ηn =

√
n

∑
m=0

(c2
nm + s2

nm) and σn =

√
n

∑
m=0

(σ2
nm + σ2

nm) (3.4.8)

where σ2
nm, σ2

nm are the formal errors of the Stokes coefficients. The difference degree
amplitude is, with ∆cnm and ∆snm the difference of the Stokes coefficients to the reference
field,

∆ηn =

√
n

∑
m=0

(∆c2
nm + ∆s2

nm) . (3.4.9)

Figure 3.1 shows the signal and difference degree amplitudes of two arbitrary models.
The GRACE baseline, a pre-launch estimate of the expected accuracy for GRACE
monthly gravity field solutions, is also displayed. This curve will feature in many of
the degree amplitude plots in this thesis, without being labelled in the legend each
time.
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Figure 3.1: Illustration of signal degree amplitudes for a reference field and difference
degree amplitudes for the analysed model.
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3.4.3 Coefficient Triangles

The Stokes coefficients and their formal errors can be displayed as coefficient triangles.
In fig. 3.2a, the deviation of the Stokes coefficients of a monthly GRACE gravity field
from a reference static field is shown. The cosine coefficients cnm are shown in the
right half of the triangle, with their order increasing with growing distance from the
centreline. The sine coefficients snm are displayed in the left half of the triangle. The
degree of the coefficients is zero at the very top of the triangle, and increases in the
downward direction. The deviation from the reference field is shown as the base-10
logarithm of the absolute difference from the reference field.

Figure 3.2b shows the base-10 logarithm of the formal errors of the monthly solution.
The formal errors clearly show some features which are due to the specific GRACE
observation and orbit geometry, such as the bands of increased variance at orders
around multiples of ≈16.
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(a) Deviation from a reference field.
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Figure 3.2: GRACE monthly solution Stokes coefficients displayed as coefficient
triangles.

3.4.4 Filters

Gravity fields determined through GRACE suffer from distinct correlated errors
manifesting as a north-south striping pattern in the spatial domain. These errors are
mainly due to the satellites’ ground track geometry. There exist many algorithms to
filter a gravity field to at least partially remove such aliasing effects, ranging from
simple methods of smoothing using a spherical cap to very sophisticated methods
considering the complete stochastic information of GRACE gravity fields (Swenson
and Wahr, 2006). One implementation of the first approach, smoothing with a spherical
cap, is known as a Gaussian filter (Jekeli, 1981). A gravity field is filtered using a
Gaussian filter by damping the Stokes coefficients with a progressively smaller factor
for progressively higher degrees. The damping factor is determined by the filter radius
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Figure 3.3: (a) Damping factor for Gaussian filters of several radii, and (b) coefficient
triangle after filtering with radius r = 300 km. The scale in (b) is identical
to that of fig. 3.2a.

r in such a way that in the spatial domain, the amplitude of the Gaussian spherical
cap reaches half its initial amplitude at a distance of the filter radius from its centre.
Figure 3.3a shows the damping factor for some example filter radii. Figure 3.3b shows
the coefficient triangle for a solution that has been filtered with a Gaussian filter of
radius 300 km.
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The GRACE Satellites 4
The GRACE twin satellite mission was a joint venture between NASA and DLR with the
primary purpose of mapping Earth’s mean and time-variable gravitational field. The
satellites were launched into near-circular polar orbits at an altitude of approximately
500 km on March 17, 2002 (Tapley et al., 2004). With one satellite trailing the other
on its orbit at a distance of roughly 200 km, the satellites primarily observed their
position, their separation and its change, and the accelerations due to non-gravitational
forces acting on the satellites. From this data, the gravitational acceleration that acts
on the satellites can be inferred, allowing scientists to determine Earth’s gravitational
field. After more than 15 years in orbit, the GRACE science mission ended with the
final acquisition of data for gravity field processing in June 2017. This chapter gives a
summary of the satellites mission, construction, and instrumentation. For authoritative
and detailed descriptions of the satellites, the reader is referred to Bettadpur (2012)
and Stanton et al. (1998).

4.1 Construction and Instrumentation

The two GRACE satellites have an elongated prismatic body with dimensions of
3.1 m× 1.9 m× 0.7 m and a mass of 487.2 kg at launch. The satellites are almost identical
in construction, differing only in the radio frequencies used for ground communications
and the inter-satellite link (Stanton et al., 1998). The GRACE mission realizes both
the high-low and low-low variants of the satellite-to-satellite tracking (SST) principle.
In addition to flight control and instrument processing hardware, the satellites are
equipped with the following science instruments which are of particular interest within
the scope of this thesis (compare fig. 4.1):

Accelerometer A three axis accelerometer (ACC) is mounted close to the center of
mass (COM) of the satellite. The satellite COM is then calibrated through in-orbit
satellite trim manoeuvres to coincide with the accelerometer COM. In addition
to linear accelerations, the accelerometer also records angular accelerations in
three axes. The accelerometer is used to observe satellite accelerations due to
non-conservative forces.

Star Camera Assembly The star camera assembly (SCA) consists of two star camera
heads on each satellite, observing different views of the sky. The observations
from both heads are combined to determine the satellite attitude.
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Figure 4.1: Interior view of GRACE with most important instruments. Adapted from
NASA (2002).

K/Ka Band Ranging Instrument Mounted on the front panel of the satellite, the
K/Ka band ranging instrument (KBR) horn allows for continuous instantaneous
observations of the separation of the satellites up to some unknown integer
multiple-of-wavelength ambiguity, based on the interferometric principle. Each
satellite transmits two carrier signals at specific frequencies in the K and Ka-Band,
which are independently tracked by the other satellite. This is referred to as
the dual one-way ranging observation, a realization of the low-low satellite-to-
satellite tracking (ll-SST) principle. These observations are then combined and
corrected to yield observations of the satellites’ separation.

Global Positioning System Receiver Realizing the principle of high-low satellite-to-
satellite tracking (hl-SST), GRACE is equipped with two primary global position-
ing system (GPS) antennae, one on the top panel for positioning of the satellite,
and one on the rear panel for radio occultation observations.

Laser Retro-reflector Each satellite is equipped with a laser retro-reflector (LRR) for
tracking through ground-to-space satellite laser ranging (SLR) observations.

4.2 Reference Frames

During acquisition and processing of GRACE data, several different reference frames
are employed. The following paragraphs will give a brief description of the frames that
are of particular relevance in this document, a complete and authoritative list can be
found in (Bettadpur, 2012).
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Science Reference Frame The origin of the science reference frame (SRF) is defined
to coincide with the satellite center of mass. The axes of the SRF are parallel to
the measurement axes of the accelerometer. The axes are enumerated in such a
way that the x-axis of the SRF is the roll axis of the satellite. It is positive in the
in-flight direction for the trailing satellite, and negative in the in-flight direction
for the leading satellite. During flight, the z-axis (yaw rotation) points roughly
nadir. The y-axis (pitch rotation) completes a right-handed coordinate system.
The GRACE science data products are released in the SRF.

Star Camera Frame One star camera frame (SCF) is defined for each star camera head
on the satellite. The x-axes are parallel to the x-axis of the SRF. The z-axis of each
SCF is the optical axis of the respective star camera head. The y-axis completes a
right-handed triad.

K-Frame The origin of the K-Frame (KF) coincides with the origin of the SRF. In
difference to the SRF, the x-axis of the KF points towards the calibrated antenna
phase centre (APC) of the K-band horn, as depicted in fig. 4.2. As such the KF
can change with in-orbit K-band calibration manoeuvres. The z-axis of the KF is
orthogonal to the x-axis of the KF and the y-axis of the SRF. The y-axis completes
the right-handed triad.

Line Of Sight Frame The origin of the line of sight frame (LOSF) coincides with the
satellites’ SRF origin. The x-axis points towards the other satellite’s center of
mass. The y-axis is orthogonal to the position vector of the satellite in the celestial
reference frame and the x-axis, the z-axis completes a right-handed triad.

Celestial Reference Frame The celestial reference frame (CRF) is an earth-centred,
space-fixed reference frame that serves as a quasi-inertial frame for GRACE pro-
cessing. The chosen realisation of the celestial reference frame is the international
celestial reference frame (ICRF) as defined in the IERS Conventions (2010) (Petit
and Luzum, 2010).

Terrestrial Reference Frame The terrestrial reference frame (TRF) is an earth-centred,
earth-fixed reference frame. The chosen realisation of the terrestrial reference
frame is the international terrestrial reference frame (ITRF) as defined in the IERS
Conventions (2010) (Petit and Luzum, 2010).

zSRF

xSRF

COM

APC

xKF

GRACE

Figure 4.2: Exaggerated depiction of the misalignment of the calibrated KBR antenna
phase centre with the SRF x-axis (side view).
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4.3 Observation Geometry

The fundamental quantities when describing GRACE observations are the positions of
the two satellites, rA and rB, given in the CRF, and their orientation in space RA and
RB, giving a rotation from the CRF to the respective SRF. The vectorial difference of
the satellites’ centres of mass is given by

u = rB − rA . (4.3.1)

The satellite range is then

ρCOM = ‖u‖ . (4.3.2)

This is however not what is observed by the KBR system. The KBR observation is
instead the range as observed from the K-band antenna phase centre on GRACE-A to
the K-band antenna phase centre on GRACE-B, as illustrated in fig. 4.3. The range as
observed by the KBR is in fact

ρKBR = ‖(rB +RBcB)− (rA +RAcA)‖ , (4.3.3)

where cA/B are the calibrated coordinates of the GRACE KBR antenna phase centres
given in the respective SRF. More compactly, it is

ρKBR = ‖u+ v‖ (4.3.4)

with

v = RBcB −RAcA . (4.3.5)

The range observation as made by the KBR is thus too small, and must be corrected
with the antenna offset correction (AOC)

∆ρAOC = ρCOM − ρKBR = ‖u‖ − ‖u+ v‖ . (4.3.6)

In addition to this purely geometrical correction, the ranging observation must also
be corrected for the distance the satellites travelled during the signal time-of-flight,

cA

rA rB

cB

ρKBR

ρCOM

zSRF

xSRF xSRF

zSRF

GRACE-A
GRACE-B

Figure 4.3: Observation geometry of the GRACE KBR measurement.
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this is the light-time correction ∆ρTOF. Further, a correction for the delay in the KBR
signal propagation due to the ionosphere ∆ρIono is applied. Also considering the
unknown ambiguity n due to the interferometric nature of the KBR observation and
some random error e, the complete ranging equation is (Kim and Tapley, 2002)

ρCOM = ρKBR + ∆ρAOC + ∆ρTOF + ∆ρIono + n + e . (4.3.7)

GRACE data is often not processed using biased range observations, but using derived
range rate or range acceleration observations (Wu, Kruizinga, and Bertiger, 2006). The
basis vector of the LOSF is

e =
u

‖u‖ . (4.3.8)

As a very good approximation, the range rate is the projection of the differential
velocity u̇ = ṙB − ṙA onto the basis vector

ρ̇COM = 〈e, u̇〉 , (4.3.9)

while the range acceleration is, with the projection of the differential acceleration
ü = r̈B − r̈A,

ρ̈COM = 〈e, ü〉+ 〈ė, u̇〉 . (4.3.10)

The appropriate corrections for range rate or range acceleration observations can be
obtained by differentiating the corrections computed for ranges numerically.

In science mode, the satellites are steered in such a way that the KBR antenna phase
centres are aligned with the satellite baseline u, their line of sight (LOS), to within a
few milliradians. This pointing mode avoids multipath effects in the KBR observa-
tions (Kirschner, Montenbruck, and Bettadpur, 2001). In this mode, the x-axes of the
respective K-frames are not parallel to the satellite velocity vector, instead the satellites
orbit with a pitch angle θA/B of 0.4° to 2.2°, as illustrated in fig. 4.4. In case of perfect
steering to this nominal orientation, the LOSF and the KF coincide.

GRACE-A

LOS

GRACE-B

Flight direction

ṙA

ṙB

xKFxKF
rBrA

θA

θB

Figure 4.4: In-orbit formation of the GRACE satellites in science mode with pitch bias
θA/B. Adapted from Kirschner, Montenbruck, and Bettadpur (2001).
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4.4 Data Flow

GRACE data is processed in several steps, or levels, before being made available to
the science community. This processing occurs under the framework of the SDS, the
GRACE Science Data System. Level 0 data contains raw decommutated telemetry
that has been downloaded from the satellites by the GRACE Raw Data Center at
DLR in Neustrelitz. This data is transformed to engineering units by applying sensor
calibration factors to yield level 1A data. It is then referenced into the SRF, time-tagged,
filtered, and down-sampled, which results in level 1B data. Level 1A and level 1B data
are generated by JPL and GFZ. This is the data source that is available to the general
science community, and on which the results in this thesis are based. The gravity field
solutions computed from level 1B data are level 2 products. Data products derived
from level 2 products, such as mass anomaly grids, are level 3 products.
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Variational Equations 5
Attribution This chapter, as well as chapter 7 of this thesis focusing on orbit
integration, are an extended version of a previous publication by the author:
Ellmer and Mayer-Gürr, 2017. Specifically, this chapter reproduces and expands
on sections 1 to 3.5 of Ellmer and Mayer-Gürr, 2017. These are the sections giving
background on the state-of-the-art of dynamic orbit integration at IfG, as imple-
mented mainly by Torsten Mayer-Gürr. Section 5.3 does not appear in Ellmer and
Mayer-Gürr, 2017, and is first published in this work.

Determining Stokes coefficients from GRACE data requires a functional model con-
necting the target parameters to the satellite observations. In ITSG-Grace2016 and this
work, variational equations (Beutler and Mervart, 2010; Montenbruck and Gill, 2000)
are employed to set up the functional model. This approach combines the integration
of the spacecraft’s dynamic orbit with the set-up of observation equations for Stokes
coefficients or other sought parameters in a numerically efficient procedure.

Where kinematic orbits represent discrete epoch-wise position solutions for the space-
craft, dynamic orbits are computed for a complete orbit arc through integration of
the accelerations acting on the spacecraft. Positions at a later epoch thus implicitly
depend on the spacecraft position at an earlier epoch. Direct position observations of
the spacecraft, such as from GPS, may be used to evaluate background force models to
yield the accelerations to be integrated, but are not used directly in the computation
of the dynamic orbit. Due to the integral nature of the orbit, the spacecraft trajectory
is smooth. On account of unavoidable approximation errors, such as from evaluating
flawed background models, this smooth trajectory does usually not directly coincide
with the true spacecraft position. The divergence increases with growing arc lengths.
The smooth dynamic orbit should thus also be fitted to more accurate but less precise
observations, such as from GPS (Zehentner and Mayer-Gürr, 2016), to ensure that
it is localized correctly. This determination of dynamic orbits in an integrate-and-fit
procedure is an essential component in computing gravity field solutions from GRACE
satellite-to-satellite tracking observations.

The accelerations that are integrated to yield a dynamic orbit can be broadly categorized
into the two groups described in chapter 3: Accelerations due to conservative forces
and accelerations due to non-conservative forces. As conservative forces act on all
masses of the spacecraft equivalently, they can not be measured by the spacecraft
directly. They must be derived from a background model using some approximate
position information. This approximation introduces an error in the integrated orbit
which can be treated by iterating the integration procedure, using the resulting orbit
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of the previous iteration as an input for the next. For spacecraft equipped with
an accelerometer, e.g. GRACE, accelerations due to non-conservative forces can be
measured directly by this instrument. A change in the computed orbit position from
one iteration of orbit determination to the next does not affect the direct accelerometer
observations, and so the integrated non-conservative forces do not change between
iteration steps. The conservative forces, however, do depend on the spacecraft position.
The specific values of the accelerations due to conservative forces being integrated will
thus change from one iteration of integration to the next.

The resulting dynamic orbits are then used at multiple steps of the level 1B to level 2
processing chain to compute observation equations for high-low satellite-to-satellite
tracking and low-low satellite-to-satellite tracking observations, where they are used
as a Taylor point for their linearisation.

The following sections give an overview of the background and process of dynamic
orbit integration as implemented at IfG, as well as an introduction to the variational
equations and their solution.

5.1 Equation of Motion

The fundamental principle in this work is Newton’s second law of motion

F = mr̈ , (5.1.1)

stating that the acceleration experienced by a body is directly proportional to a force F
acting on it. Isolating the acceleration in eq. (5.1.1) yields

r̈ =
F

m
= f (t, r(t),p, . . .) , (5.1.2)

the equation of motion. This equation states that the acceleration experienced by the
body, in this case a GRACE spacecraft, is equal to the specific force exerted on it. For
GRACE, this is the sum of all conservative and non-conservative forces, as described
in chapter 3. As the effective force, the superposition of all component forces, is neither
uniform in space nor constant in time, the acceleration in eq. (5.1.2) depends on the
time of evaluation t, as well as the position of the spacecraft at this time r(t). Further,
it depends on the parameters p of the force-generating functions such as the Stokes
coefficients of Earth’s gravitational field or the density of the remnant atmosphere,
causing drag. Completing this thought, the occurrence of drag in this equation hints
to the specific force also being dependent on more factors, namely the orientation of
the spacecraft, its cross section, and its velocity ṙ(t). When considering albedo and
solar radiation pressure, the characteristics of the satellite surface materials and the
orientation of the surface elements also become relevant. To simplify this increasingly
complex notation, the function describing the specific force is abbreviated to

f (t) = f (t, r(t),p, . . .) , (5.1.3)
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keeping in mind the full breadth of influences contained therein. The analysis of the
satellite orbit is limited to a specific interval of time, with start time tstart and end
time tend. The duration of this interval is T = tend − tstart. Time is normalized to this
interval with

τ =
t− tstart

T
, (5.1.4)

giving the compact form of the equation of motion

r̈(τ) = f (τ) . (5.1.5)

5.1.1 Integrating the Equation of Motion

The position and velocity of the spacecraft can be determined by integrating eq. (5.1.5),
giving

r̈(τ) = f (τ) (5.1.6)

ṙ(τ) = ṙ0 + T
∫ τ

0
f (τ′)dτ′ (5.1.7)

r(τ) = r0 + ṙ0(τT) + T2
∫ τ

0
(τ − τ′)f (τ′)dτ′ . (5.1.8)

The position r(τ) and velocity ṙ(τ) depend on unknown initial values ṙ0 and r0.
Fixing these initial values yields a position and velocity for each epoch n ∈ [1, N] of
the orbit arc (see e.g. Mayer-Gürr, 2006).

The variational equation approach is based on a linearisation of the integrated positions
and velocities with regard to the sought force model parameters. In the formalism
of the variational equations, the partial derivatives of the spacecraft’s position and
velocity for all epochs of the orbit arc with regard to the force model parameters
appear. These partials are computed efficiently through integration from some initial
condition, the explicit evaluation of the complete partials at each epoch is thus avoided.
Dynamic orbits then appear as the linear term in a Taylor expansion of the integrated
equations of motion (eqs. (5.1.7) and (5.1.8)) necessary when setting up the variational
equations.

The position and velocity of the satellite for one epoch are consolidated in the state
vector

y(τ) =

[
r(τ)

ṙ(τ)

]
. (5.1.9)

Taking the partial derivatives of the satellite state at one epoch with regard to the initial
state of the satellite

y0 =

[
r0

ṙ0

]
(5.1.10)
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and the unknown force model parameters p gives the variational equations Ω. The
variational equations

Ω(τ) =
[
S(τ) Φ(τ)

]
(5.1.11)

are divided into the parameter sensitivity matrix

S(τ) =
∂y(τ)

∂p
=




∂r(τ)

∂p

∂ṙ(τ)

∂p


 (5.1.12)

and the state transition matrix

Φ(τ) =
∂y(τ)

∂y0
=




∂r(τ)

∂r0

∂r(τ)

∂ṙ0

∂ṙ(τ)

∂r0

∂ṙ(τ)

∂ṙ0


 . (5.1.13)

The parameter sensitive matrix S describes the influence of a change δp in the force
model parameters p on the satellite orbit. This could for example be due to a change in
Earth’s gravitational potential, or due to a change in the relative position of a celestial
body and a resulting disturbance to its tidal potential. The state transition matrix Φ

in turn describes the influence of changes in the initial state δy0 on each epoch of
the satellite orbit. The linearisation of the satellite state y about these parameters δp
and δy0 is then

ȳ(τ) = y(τ)|p,y0
+
[
S(τ) Φ(τ)

] [ δp

δy0

]
. (5.1.14)

The dynamic orbit is the zero order term of this expansion. The dynamic orbit for the
entire arc τ ∈ (0, 1] can thus be fixed by setting a set of initial conditions y0 and
parameters p. Interestingly, the parameter sensitivity matrices S(τ), τ ∈ (0, 1] can
be computed through integration having knowledge of its initial state S0 as well as
of the full state transition matrix Φ for all epochs τ. This process is explained later
in section 5.3. The full parameter sensitivity matrix can then be used to set up the
observation equations for GRACE hl-SST and ll-SST observations, as described in
section 6.4.

5.2 Orbit Integration and State Transition Matrix

In order to solve for the sought gravity field parameters in the parameter sensitivity ma-
trix S, the state transition matrix for the complete orbit arc, and thus the dynamic orbit,
must be known. These two quantities are computed together through integration.
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This integration, and the determination of the dynamic orbit, requires the equations of
motion for the satellite to be solved. For the simple potential of a point mass or uniform
sphere the equations of motion have a closed solution, described by Kepler’s laws of
planetary motion. For more complex potential fields, no closed solution exists, and
numerical integration methods are used to determine the satellite motion. Classical
examples of such numerical methods are Euler’s algorithm, the family of Runge-Kutta
methods, and multi-step methods of which the Gauss-Jackson family is a prominent
example (Berry and Healy, 2004; Beutler and Mervart, 2010). All of these methods
have one important characteristic in common: The satellite state is propagated from one
epoch to the next. This terminology implies that the integral of the acting accelerations
over one time interval is formed, and then used to determine the updated satellite state
at the end of the interval. In other terms, the new position at the end of the interval
is arrived at by extrapolation. For some methods, such as the aforementioned Gauss-
Jackson method, the extrapolated state is then corrected through an iterative procedure.
This refinement then relies on the previously extrapolated state, and converges on an
estimate of the new state at the end of the interval. After completion of this refinement,
the integration algorithm moves forward in time to the next interval, and continues
the integration following the same procedure.

In the implementation described here, the dynamic orbit is instead determined by
continuous numerical integration of all accelerations along an orbit arc. In this in-
tegration step the satellite state is not fixed at each epoch. Rather only the changes
from one epoch to the next, the integrals in eqs. (5.1.7) and (5.1.8) are computed. In
a sense, the orbit is not extrapolated from epoch to epoch, but rather its complete
geometry is determined at once. This is achieved by taking advantage of a priori
knowledge of all accelerations along the arc, as evaluated from an initial approximate
orbit and, depending on the satellite, observed by an on-board accelerometer. For this
implementation the definite integrals of the accelerations are efficiently determined
using an integration polynomial, as described in section 2.7. The definite integrals for
the new positions are then used in conjunction with the satellite states given by the
initial approximate orbit to estimate the initial state of the integrated dynamic orbit.
The initial state, together with the definite integrals, then completely describes the
satellite state for the integrated arc. The following sections describe this algorithm in
more detail.

5.2.1 Coarse Approximation

The first iteration of dynamic orbit integration requires a coarse approximation of
the spacecraft’s orbit, for example a Kepler ellipsis determined from some mean
ephemerides, or purely kinematic positions determined from GPS observations. These
are the approximate positions rε. The true positions of the spacecraft r are unknown, and
deviate from the approximate positions by some value ε. The employed background
models are evaluated at the approximate positions, giving the accelerations from
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conservative forces at each epoch:

r̈cons
ε (τ) = f (τ, rε(τ),p) (5.2.1)

As GRACE also provides direct accelerometer observations of accelerations due to
non-conservative forces, these are added to the accelerations from conservative forces
to give the complete approximate accelerations r̈ε

r̈ε(τ) = r̈cons
ε (τ) + r̈ACC(τ) . (5.2.2)

Next, the definite integrals from eqs. (5.1.7) and (5.1.8) are computed for the complete
arc using integration polynomials as introduced in section 2.7. This gives the integrated
velocities and positions

ṙint
ε (τ) = T

∫ τ

0
r̈ε(τ

′)dτ′ (5.2.3)

rint
ε (τ) = T2

∫ τ

0
(τ − τ′)r̈ε(τ

′)dτ′ . (5.2.4)

Back-substituting these quantities into eqs. (5.1.7) and (5.1.8) yields the integrated
equations of motion

ṙ
dyn
ε (τ) = ṙ0 + ṙ

int
ε (τ) (5.2.5)

r
dyn
ε (τ) = r0 + τT·ṙ0 + r

int
ε (τ) , (5.2.6)

where rdyn
ε and ṙdyn

ε are the dynamic orbit computed from the initial approximation
of the orbit rε and ṙε. The dynamic orbit must now be fixed in space by determining
its initial state. To this end, the approximate state transition matrix is computed as

Φ̄(τ) =

[
Φ̄r(τ)

Φ̄ṙ(τ)

]
=

[
1 τT
0 1

]
(5.2.7)

by taking the partial derivative of eqs. (5.2.5) and (5.2.6) with regard to the initial
state y0. Although strictly speaking both the position and velocity components must
be introduced as observations in the determination of a rigorous least-squares estimate
of the initial state ŷ0, empirical tests show that it proves sufficient to use positions only
at this point. This allows one to neglect the velocity components of the approximate
and dynamic orbit in the observation equation system, reducing the complexity of the

problem by a small margin. Rearranging eq. (5.2.6) and setting rdyn
ε

!
= rε gives

rε − rint
ε = Φ̄ry0 , (5.2.8)

which can directly be used to compute an estimate ŷ0 for the initial state that best fits
the approximate positions rε in a standard least squares adjustment. The first complete
approximate dynamic orbit is then

ˆ̄y = Φ̄ŷ0 + y
int
ε . (5.2.9)

This orbit is smooth due to its shape being defined by the integrated accelerations. Its
absolute position in space is at this point fixed to be close to the initial approximate
orbit as a result of adjusting the initial state ŷ0 with eq. (5.2.8).
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5.2.2 Refinement

In the determination of the first approximate dynamic orbit, the acting forces due to
the background models were evaluated at the approximate positions rε, not the true
positions of the satellite r. This flaw leads to the derived accelerations deviating from
the true accelerations by some amount. In turn, the computed positions rdyn

ε also
deviate from the true positions. Again evaluating the accelerations at the computed
positions must thus lead to accelerations different from those first evaluated at the
original approximate positions — the orbit is self-consistent neither in positions nor in
accelerations. Mayer-Gürr (2006, section 4.2.4.3) describes a strategy for treating this
problem through an iterative approach, but in the context of phrasing the dynamic
orbit integration as a boundary value problem. The same approach can be applied to
the formulation as an initial value problem used here, with the equivalent apparatus
outlined in the following paragraphs.

Two operators for the definite integrals used in the integration of both the spacecraft
velocities and positions are introduced as

κṙ(τ) = T
∫ τ

0
(·)dτ′ (5.2.10)

κr(τ) = T2
∫ τ

0
(τ − τ′)(·)dτ′ . (5.2.11)

Phrasing the integrals in terms of polynomial integration, as introduced in section 2.7,
the operators κṙ(τ) and κr(τ) can be discretised and written as linear operator matri-
ces Kr,Kṙ. With these integral operator matrices, eqs. (5.2.3) and (5.2.4) can be written
as

ṙint
ε =Kṙr̈ε (5.2.12)

rint
ε =Krr̈ε , (5.2.13)

with r̈ε a vector of all accelerations along the orbit arc and rint
ε and ṙint

ε the integrated
positions and velocities. Symbolically, the difference between a hypothetical perfect
and the actual computed dynamic orbit can be determined by writing eq. (5.2.6) twice,
once with the (unknown) true position r as input, and once with the approximate
positions rε:

r
dyn
ε = Φ̄ry0 +Krr̈ε (5.2.14)

rdyn = Φ̄ry0 +Krr̈ (5.2.15)

Taking the difference of eq. (5.2.14) and eq. (5.2.15) yields

rdyn − rdyn
ε =Kr(r̈− r̈ε) . (5.2.16)

The equation of motion eq. (5.1.5) states that the accelerations acting on the spacecraft
are a function of the force f (r). Making this substitution, eq. (5.2.16) can also be
written as

rdyn − rdyn
ε =Kr [f (r)− f (rε)] . (5.2.17)
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Taking the Taylor expansion of the acting forces f (r) up to the linear term, and
evaluated at the approximate position rε as the Taylor point, gives

f (r) = f (rε) + ∇f |rε
· (r− rε) . (5.2.18)

Inserting eq. (5.2.18) into eq. (5.2.17) gives

rdyn − rdyn
ε =Kr

[
f (rε) + ∇f |rε

· (r− rε)− f (rε)
]

=Kr

[
∇f |rε

· (r− rε)
]

(5.2.19)

Here, ∇f is the Marussi tensor, or gravity tensor. The Marussi tensor is populated
with gravity gradients, the second derivative of the force-generating potential. With a
Matrix

T =




∇f (rε(τ1)) 0
. . .

0 ∇f (rε(τn)))


 , (5.2.20)

containing the Marussi tensors for all epochs of the orbit arc, eq. (5.2.19) can be written
as

rdyn − rdyn
ε =KrT (r− rε) . (5.2.21)

Given a correct implementation, the estimated position can be seen as an approxi-
mation for the true position, or in other terms rdyn !

= r. Inserting the approximate
estimate rdyn

ε of the position from eq. (5.2.14) into eq. (5.2.21) gives

r− Φ̄ry0 −Krr̈ε =KrT (r− rε) . (5.2.22)

Reducing both sides of this equation by the approximate position rε and some reorder-
ing gives

r− rε −KrT (r− rε) = Φ̄ry0 +Krr̈ε − rε , (5.2.23)

which can be solved for the coordinate difference between the true and the approximate
positions ∆rε = r− rε:

[I −KrT ] (r− rε) = Φ̄ry0 +Krr̈ε − rε (5.2.24)

∆rε = (r− rε) = [I −KrT ]
−1 [Φ̄ry0 +Krr̈ε − rε] . (5.2.25)

∆rε is an estimate of the linearisation error made in the dynamic orbit integration due
to the initial evaluation of the accelerations from background models at rε instead of
the true position r. Using this estimate, the position of the spacecraft along the arc can
then be updated:

r = rε + ∆rε (5.2.26)
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5.2.3 State Transition Matrix

In the first derivations of eq. (5.2.7), the approximate state transition matrix Φ̄ is
determined by taking the partial of the integrated velocity and position with regard to
the initial state of the orbit arc y0. This approximation neglects that that the terms ṙint

ε

and rint
ε also depend on the position along the arc, as they are a result of the integration

of the accelerations r̈ε evaluated from the force models at the positions rε. The positions
along the arc in turn depend on the initial state, requiring application of the chain
rule in the determination of Φ. Again dividing the problem into position and velocity
components, the complete state transition matrix for the position Φr is arrived at by
taking the derivative of eq. (5.1.8) with regard to the initial state y0, giving

∂r(τ)

∂y0
=

∂ (r0 + τT · ṙ0)

∂y0
+ T2

∫ τ

0
(τ − τ′)

∂f (τ′)
∂y0

dτ′ . (5.2.27)

Application of the chain rule to the derivative of the force function with regard to the
initial state yields

∂f (τ′)
∂y0

=
∂f (τ′)
∂r(τ′)

∂r(τ′)
∂y0

(5.2.28)

and thus gives, by inserting into eq. (5.2.27),

∂r(τ)

∂ŷ0︸ ︷︷ ︸
Φr

=
∂ (r0 + τT · ṙ0)

∂y0︸ ︷︷ ︸
Φ̄r

+ T2
∫ τ

0
(τ − τ′)

︸ ︷︷ ︸
Kr

∂f (τ′)
∂r(τ′)︸ ︷︷ ︸
T

∂r(τ′)
∂y0︸ ︷︷ ︸
Φr

dτ′ . (5.2.29)

Here, the polynomial integration matrix Kr, the matrix of Marussi Tensors T , and the
initial approximation of the state transition matrix Φ̄r can be identified. In addition,
the complete state transition matrix Φ also appears on both sides of the equation
system. This system can be solved for the complete state transition matrix Φ with

Φr = [I −KrT ]
−1

Φ̄r (5.2.30)

where the same inverse as previously encountered in eq. (5.2.25) appears. In fact, both
eq. (5.2.25) and eq. (5.2.30) are of the form

l = [I −KrT ]
−1 x , (5.2.31)

and can thus be solved in a similar fashion. This inverse is of size 3N × 3N, containing
three position components per epoch. Direct inversion of this matrix is expensive
even for moderate arc lengths of a few hours. For arc lengths of 24 h at a sampling
of 5 s, as used in ITSG-Grace2016, this inverse alone would be responsible for a
large fraction of the computation time in determining the variational equations. The
special blocked structure of the inverse can be exploited to solve the system using
efficient algorithms. As integration up to time τ only depends on accelerations before
that point in time, the discretised integration matrix Kr is only populated on or
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below the main block diagonal. Some values appear above the main diagonal due
to the evaluation of the integration polynomial at the central support. The matrix
of Marussi tensors T is block-diagonal. Each block, one per epoch, has size 3× 3.
Overall, the Matrix I −KrT is asymmetric and only populated on or below the main
block diagonal. An iterative solver, such as the biconjugate gradient stabilized method
(BiCGSTAB) (van der Vorst, 1992), can be used to solve the equation system epoch
by epoch. Due to the ability to programmatically exploit the special structure of the
inverse in a tailored implementation of the solver, this is magnitudes faster and more
efficient than direct inversion. This however comes at the cost of a loss of generality in
the solver implementation.

The complete state transition matrix for the velocity Φṙ can be arrived at by similarly
taking the derivative of eq. (5.1.7) with regard to the initial state. Again using the chain
rule, this is

∂ṙ(τ)

∂y0
=

∂ṙ0

∂y0
+ T

∫ τ

0

∂f (τ)

∂y0
dτ′

=
∂ṙ0

∂y0
+ T

∫ τ

0

∂f (τ)

∂r(τ)

∂r(τ)

∂y0
dτ′ . (5.2.32)

Here, one can identify

Φṙ = Φ̄ṙ + T
∫ T

0
T (τ′)Φr(τ

′)dτ′

= Φ̄ṙ +KṙTΦr

= Φ̄ṙ +KṙΦr̈ , (5.2.33)

directly yielding the desired result from the previously computed state transition matrix
for the positions Φr. In this equation, the state transition matrix for the accelerations Φr̈

appears. This matrix can, in analogy to the previous steps, also be derived by taking
the derivative of eq. (5.1.6) with regard to the initial state:

∂r̈(τ)

∂y0
=

∂f (τ)

∂y0
. (5.2.34)

Application of the chain rule to the derivative of the force function yields

∂r̈(τ)

∂y0
=

∂f (τ)

∂r(τ)

∂r(τ)

∂y0
(5.2.35)

in which one can identify the state transition matrix for the accelerations

Φr̈ = TΦr . (5.2.36)

5.2.4 Final Estimate

All integrated positions and velocities up to this point were integrated from forces
evaluated at the approximate positions f (rε), as determined in eq. (5.2.1). An updated
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estimate for these accelerations can be computed using the estimated coordinate differ-
ence ∆rε from eq. (5.2.25) and the linearisation of the force function from eq. (5.2.18).
These are the corrected accelerations

r̈c = r̈ε + T∆rε . (5.2.37)

These corrected accelerations can then be integrated to corrected velocity and position
components using the previously defined integral kernels with

ṙint
c =Kṙr̈c (5.2.38)

rint
c =Krr̈c . (5.2.39)

A new estimate for the initial state can be determined by repeating the steps from
eq. (5.2.8), but now making use of the knowledge of the complete state transition
matrix for the positions Φr. One arrives at the system

rε − rint
c = Φry0 (5.2.40)

from which ŷ0 can be computed. This newly estimated initial state is then used to fix
the positions and velocities of the spacecraft from the reintegrated accelerations, giving
the final dynamic orbit:

ṙ = Φṙŷ0 + ṙ
int
c (5.2.41)

r = Φrŷ0 + r
int
c . (5.2.42)

As this algorithm relies heavily on linearisations, all steps from eq. (5.2.1) to eq. (5.2.42)
must be repeated. For this re-computation the final dynamic orbit from eqs. (5.2.41)
and (5.2.42) is now rε and ṙε, used to evaluate the background model and fit the
initial state vectors. This is repeated until convergence is achieved. Dynamic orbit
computation following this schema is thus an inherently iterative process.

5.3 Parameter Sensitivity Matrix

With Φ now known, the parameter sensitivity matrix S can be determined. With the P
force model parameters p, e.g. the Stokes coefficients of a monthly mean potential, S
describes the sensitivity of the dynamic orbit to changes in those coefficients δp.
Looking at just one orbit arc, a change of the force model parameters only influences
all epochs τ > 0, but not the initial state of the satellite y0, as the integrals in eqs. (5.1.7)
and (5.1.8) are 0 for τ = 0. The initial value of the parameter sensitivity matrix is
simply a matrix of zeros

S(0) = 06×P . (5.3.1)

To determine the value of S for the remaining epochs, the derivative of the satellite
state

ẏ(τ) = z(τ) (5.3.2)
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is introduced. Taking the derivative of eq. (5.3.2) w.r.t. the initial state gives

∂ ẏ(τ)

∂y0
=

∂ z(τ)

∂y0
=

∂ z(τ)

∂y(τ)

∂ y(τ)

∂y0
. (5.3.3)

Introducing the matrix

Zy =
∂ z(τ)

∂y(τ)
(5.3.4)

eq. (5.3.3) can be compactly written as

Φ̇ = ZyΦ , (5.3.5)

the differential equation of the state transition matrix. Similarly, taking the derivative of
eq. (5.3.2) w.r.t. the force model parameters gives, using first the product rule and then
the chain rule,

∂ ẏ(τ)

∂p
=

∂ z(τ)

∂p
=

∂ z(τ)

∂p
+

∂ z(τ)

∂y(τ)

∂ y(τ)

∂p
. (5.3.6)

Note that z(τ) is a function of p both directly through f (τ, r(τ),p, . . .), as well as
indirectly through the satellite state y(τ), which also depends on p. Introducing the
matrix

Zp =
∂ z(τ)

∂p
(5.3.7)

eq. (5.3.6) can be compactly written as

Ṡ = ZyS +Zp , (5.3.8)

the differential equation of the parameter sensitivity matrix. Looking closer,

Zp(τ) =




∂ ṙ(τ)

∂p

∂ r̈(τ)

∂p


 =




0

∂ f (τ)

∂p


 , (5.3.9)

which can be computed for all times τ. The inhomogeneous differential equation
system formed by eqs. (5.3.5) and (5.3.8)

−ZyΦ + Φ̇ = 0 (5.3.10)

−ZyS + Ṡ = Zp (5.3.11)

can be solved for S(τ) through the approach of variation of constants, yielding

S(τ) = −Φ(τ)

[∫ τ

0
Φ−1(τ′)Zp(τ′)dτ′ +C

]
. (5.3.12)

The integration constant can be fixed to C = 0 due to eq. (5.3.1), resulting in

S(τ) = −Φ(τ)
∫ τ

0
Φ−1(τ′)Zp(τ′)dτ′ , (5.3.13)

Using this equation, the parameter sensitivity matrix for a complete orbit arc can be
computed through integration from a known start value and the known quantities Φ

and Zp.
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ITSG-Grace2016 6
This chapter will give an outline of the state of the art of GRACE data processing
in the frame of the ITSG-Grace2016 gravity field solution. This information will give
important background and context to the later chapters in this thesis, which detail
some of the author’s specific contributions to ITSG-Grace2016 and the subsequent
ITSG-Grace2018 solution.

The processing, as outlined in fig. 6.1, begins with the download of GRACE level 1B
data from the SDS. Following SCA/ACC sensor fusion and data screening, kinematic
and dynamic orbits are determined for both GRACE-A and GRACE-B. This is followed
by the estimation of stochastic models for both hl-SST and ll-SST observations, which
are then used in the determination of the sought monthly Stokes coefficients. All
computation steps are performed in GROOPS.

GROOPS is is the Gravity Recovery Object Oriented Programming System, an in-
house multi-purpose geodetic software suite developed at IfG. GROOPS is used for all
GRACE data processing at IfG, and is capable of performing all necessary processing
steps to generate level 2 and level 3 products from GRACE level 1B data. To enable
full GRACE-FO processing, level 1A to level 1B processing is also being integrated
into GROOPS. GROOPS is written in C++, and makes extensive use of the low-level
linear algebra routines defined by LAPACK and BLAS (Anderson, 1999; Blackford
et al., 2002).

6.1 Data Preprocessing

The ITSG-Grace2016 gravity field solution is computed from GRACE level 1B release 2.0
data published by GFZ and JPL (GRACE, 2001). The data provided is of high quality,
however some additional screening and preprocessing steps have been found to
improve the gravity field solutions derived from them. These additional steps have
been described in much detail by Klinger (2018). Much of the preprocessing of GRACE
data will remain unchanged for the upcoming ITSG-Grace2018 release, with notable
exception of the sensor fusion step to combine the star camera level 1B product (SCA1B)
with the accelerometer level 1B product (ACC1B) to yield an improved orientation
product. The upcoming release 3.0 of GRACE level 1B data by JPL will already
include an orientation product derived from SCA/ACC sensor fusion (GRACE, 2018),
which was previously computed in-house at IfG. For the purpose of this document,
a SCA/ACC sensor fusion approach refined from the ITSG-Grace2016 approach
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Figure 6.1: Schematic for ITSG-Grace2016 level 1B to level 2 data processing. Φ is the
state transition matrix of the variational equations. xcal are the
co-estimated calibration parameters for the accelerometer.
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described by Klinger, 2018 making use of current release 2.0 level 1B data is presented
in section 6.2.

Initially, the GRACE level 1B data is converted to a GROOPS-internal data format.
The data is then screened for outliers and time periods of reduced data quality,
downsampled, and interpolated, as described by Klinger (2018).

For further processing, the data is divided into continuous segments, or arcs. In ITSG-
Grace2016, arcs of two different lengths are used. For integration of the force models
and determination of the dynamic satellite orbit using variational equations, arcs of no
shorter than 1 h and no longer than 24 h are created. These 24 h-arcs are the variational
arcs. For processing of ll-SST observations, arcs of no shorter than 1 h and no longer
than 3 h are used, these are the short arcs. Both variational and short arcs are divided at
midnight each day, so that no segment spans multiple days. Where data is not available
for at least one continuous hour, it is discarded.

After data preprocessing steps, the following data is available within variational arcs:

Kinematic orbits ITSG-Grace2016 uses an in-house computed kinematic orbit, the
precise orbit determination (POD) product (Zehentner, 2017; Zehentner and
Mayer-Gürr, 2016), computed from level 1B GPS data using the raw observation
approach. In addition to spacecraft positions, this approach also gives a fully
populated 3D covariance matrix at each epoch, which is used in further processing
steps.

Dynamic orbit The level 1B orbit solution delivered by the SDS is used as a priori
information for the in-house dynamic orbit integration.

Linear accelerations The level 1B linear accelerations are pre-calibrated using mod-
elled accelerometer data (Klinger, 2018).

Orientation product This is a result of level 1B star camera and accelerometer sensor
fusion, as described by Klinger, 2018.

In addition, the following data is available in short arcs:

Kinematic orbits The same kinematic orbits that are used in the variational arcs are
also kept at hand in short arcs.

Orientation product The same is true for the orientation, which is required in the
computation of the AOC, the stochastic modelling of the orientation uncertainty
in chapter 8 and for the co-estimation of satellite orientations through a total
least squares algorithm described in chapter 9.

KBR observations As delivered by the SDS.
Time of flight correction As delivered by the SDS.
Antenna offset correction The AOC is computed using the improved orientation

product from the SCA/ACC sensor fusion.

In both the short arcs and the variational arcs, all data is now given with 5 s sampling,
except for the kinematic orbits and their 3D covariance matrices, which are given with
300 s sampling.
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6.2 Sensor Fusion

Klinger and Mayer-Gürr (2016) have shown that the quality of GRACE-derived gravity
field solutions can be enhanced by using an improved orientation product. This orien-
tation product is the result of a sensor fusion algorithm merging information from the
star camera sensors, which is stable at longer wavelengths, with angular accelerations
observed by the on-board accelerometers, which have lower noise than the star cam-
era observations at higher frequencies. These observations are combined through a
weighted least squares adjustment which yields the fused orientation parameters. This
sensor fusion is performed independently for each GRACE spacecraft.

The star camera orientation product gives the rotation from the CRF to the SRF of the
respective spacecraft. This rotation is given per epoch as a quaternion

q =
[
qw qx qy qz

]T
, (6.2.1)

with qw the scalar part and qx to qz the vectorial part of the quaternion. The angular
accelerations of the spacecraft

ω̇ =
[
ω̇x ω̇y ω̇z

]T
(6.2.2)

are given in the SRF. The angular accelerations are the first derivative of the angular
velocities ω, which are in turn the first derivatives of the orientation of the spacecraft α.
These angles α deserve some further discussion, as their value is not immediately
intuitive. They describe the divergence of the actual orientation of the spacecraft from
its nominal orientation with the K-Frame x-axis towards the other satellite, as described
in section 4.3. This divergence is given as a set of three Euler angles roll, pitch, and
yaw, as illustrated in fig. 6.2.

The nominal orientation of the spacecraft as described in section 4.3 is

RNOM
CRF = RSRF

KF R
KF
LOSFR

LOSF
CRF , (6.2.3)

where the rotation from the LOSF to the CRF can be determined from the satellite
positions, e.g. from dynamic orbits. The rotation from the KF to the SRF is computed

zSRF

xSRF

LOS

roll

pitch
yaw

Figure 6.2: GRACE attitude in roll, pitch, and yaw angles. ySRF is orthogonal to image
plane.
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from the calibrated KBR antenna phase centre coordinates. It is of note that for the
nominal orientation, the KF and the LOSF coincide, so the rotation from the KF to the
LOSF is the identity matrix. The nominal orientation can thus be computed analytically,
without relying on orientation observations by the spacecraft. The actual orientation of
the spacecraft R̃SRF

CRF is observed by the SCA. Due to the active steering of the satellites
throughout science operations, the difference between these two rotations

R̃α =
(
RNOM

CRF

)T
R̃SRF

CRF

=
(
RCRF

LOSFR
LOSF
KF RKF

SRF

)
R̃SRF

CRF

=
(
RCRF

LOSFR
KF
SRF

)
R̃SRF

CRF (6.2.4)

is a small angle rotation, on the order of some few milliradians (Herman et al., 2004).
This attitude deviation can be written as an Euler sequence of roll, pitch, and yaw
rotations with respect to the axes of the SRF

R̃α = Rz,SRF(yaw)Ry,SRF(pitch)Rx,SRF(roll) . (6.2.5)

The orientation angles α for one epoch τ are then

α(τ) =
[
roll(τ) pitch(τ) yaw(τ)

]T
. (6.2.6)

6.2.1 Parametrization

The original implementation of the SCA/ACC sensor fusion at IfG was parametrized in
terms of full rotation quaternions. This approach has some caveats: Estimating the full
four quaternion parameters for a three dimensional rotation is an over-parametrization
of the problem. The solution must be constrained in such a way that the length of the
quaternion is unity. Further, when considering the covariance information of a single
epoch’s quaternion, it is clear that this dependency of the quaternion elements leads to
not fully invertible covariance matrices.

The implementation described here is parametrized in terms of small angle rotations
in roll, pitch, and yaw with regard to a reference orientation. This has the advantage
that only three parameters must be determined per epoch. No singularities or gimbal
lock can occur as, due to the active steering of the spacecraft, the rotations are always
small angles. Further, the covariance matrices of each epoch are fully invertible without
additional constraints. The parameter vector is

x =
[
αT

1 αT
2 · · · αT

N xTcal

]T
(6.2.7)

with the αi the orientation at each of the N epochs of a variational arc and xcal some
calibration parameters.
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6.2.2 Star Camera Observations

In addition to the observed orientation of the spacecraft q, the nominal orientation
of the spacecraft as computed from eq. (6.2.3) is also given as a quaternion q0. The
nominal orientation serves as the Taylor point for the iterative adjustment of the
spacecraft orientation. Due to the difference in the rotations ∆α only being small,
multiplication of the quaternions yields

∆q = q−1
0 · q ≈




1
0.5∆αx

0.5∆αy

0.5∆αz


 . (6.2.8)

The linearised observation equation for one epoch of star camera observations is thus

∆q[1:3] = 0.5 · I3×3∆α . (6.2.9)

The full design matrix for the star camera observations is then

ASCA = 0.5 · I3N×3N . (6.2.10)

For optimal results in the data combination, a priori covariance information for the
SCA observations is introduced. According to Romans (2003), one GRACE star camera
head has the nominal noise characteristic

Σ = σ2 ·




1 0 0
0 1 0
0 0 κ2


 , (6.2.11)

expressed in the respective star camera frame. The noise for rotations about the image
plane axes is at the same level, with the noise for rotations about the boresight axis
worse by a factor of κ ≈ 8. The a priori error of the image plane rotations is given
as σ ≈ 6′′. The orientation of the star camera heads in the SRF is known through
calibration and delivered in the QSA record of the GRACE sequence of events file.
Further, the SCA1B data contains information on which SCA head was active for
a particular epoch. This allows for variance propagation of the a priori covariance
matrices to the SRF and their combination. This combined covariance matrix is then
introduced as the observation weight for the SCA observation in the SCA/ACC sensor
fusion.

6.2.3 Accelerometer Observations

The angular acceleration observations of the accelerometer are directly linked to the
Euler angles in the SRF through double differentiation

ω̇(t) =
∂2α(t)

∂t2 . (6.2.12)
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The linearised observations can be written as

∆ω̇ = DACC∆α , (6.2.13)

where ∆ω̇ = ω̇ − ω̇0 and ω̇0 are the angular accelerations derived from q0 through
polynomial differentiation. DACC is a double differentiation matrix based on a poly-
nomial of degree d as described in section 2.7. DACC has a roughly block-diagonal
structure, with each block of size 3× 3 due to there being three angles per epoch. For
a polynomial of degree d = 2, DACC would be

DACC =




D0,0 D0,1 D0,2 0 · · · 0

D1,0 D1,1 D1,2 0

0 D1,0 D1,1 D1,2
. . . ...

. . .
... . . . D1,0 D1,1 D1,2 0

0 D1,0 D1,1 D1,2

0 · · · 0 D2,0 D2,1 D2,2




3N×3N

,

(6.2.14)

with

Di,j = wi,jI3×3 (6.2.15)

and wi,j the j-th weight factor of the differentiation polynomial computed to be
evaluated at the support i. For the accelerometer observations, it is desirable to co-
estimate calibration parameters such as biases or scales. These Pcal parameters are
collected in the 3N × Pcal matrix Acal. The design matrix for the angular accelerations is
then

AACC =
[
DACC Acal

]
3N×3N+Pcal

. (6.2.16)

The initial weights for the angular acceleration observations are set to the values given
by (Klinger, 2018), 5 · 10−6 rad/s2/

√
Hz for the x- and z-axis, and 2 · 10−7 rad/s2/

√
Hz

for the y-axis.

6.2.4 Combination

The two observation groups are combined in an iterative least squares adjustment,
with variance component estimation used to determine their relative weights. The
initial Taylor point for the orientation q0 at each epoch is set to the nominal orientation
of the satellite. The combined observation equation system for both SCA and ACC
observations is

[
∆q[1:3]

∆ω̇

]
=

[
ASCA 0

DACC Acal

] [
∆α

∆xcal

]
. (6.2.17)
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Figure 6.3: Structure of the normal equation system of the improved SCA/ACC sensor
fusion, with contributing design matrices marked.

For performance reasons, the observation equations are set up and decorrelated per
epoch and then combined directly at the normal equation level. The normal equation
system has a kite structure. Depending on the arc length N and the chosen polynomial
degree d, it can be quite sparse. The structure of the normal equation system is
illustrated in fig. 6.3.

The initial orientations are improved with the adjusted ∆α̂ to yield q̂, which is used
as q0 for the next iteration. The estimated calibration parameters ∆x̂cal are applied to
the angular acceleration observations, giving the new ω̇0. After convergence, the q̂ give
the adjusted orientation of the satellite, the result of the SCA/ACC sensor fusion.

A further product of this approach is the covariance matrix of the adjusted parameters.
This matrix is divided along the same lines as the normal equation system set up with
eq. (6.2.17), and has the entries

Σ̂x̂x̂ =

[
Σ̂α̂α̂ Σ̂α̂x̂cal

Σ̂
T
α̂x̂cal

Σ̂x̂calx̂cal

]
. (6.2.18)

Σ̂α̂α̂ is the fully populated complete variance-covariance matrix for the satellite orien-
tation along the orbit arc, given in the SRF. The 3× 3 blocks on the main diagonal are
the covariance matrices of the orientation at that specific epoch.

6.3 Orbit Integration

For ITSG-Grace2016, the GRACE dynamic orbits are integrated using the algorithm
described in chapter 5 with the improvements laid out in chapter 7. The orbits are
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integrated using the models given in table 6.1, as well as the observations of the
GRACE accelerometers.

Where the dynamic orbit integration algorithm as described in chapter 5 only fits the
initial state of each arc to the approximate orbit used as input, GRACE offers more
observations that can be employed here: POD orbits derived from hl-SST observations
by the GPS receiver and the ll-SST observations of the KBR system. In ITSG-Grace2016,
the dynamic orbit is also fit to both of these observation groups. Accelerometer
calibration parameters xcal as described in section 6.4.1 are co-estimated with the initial
satellite state for each arc. The observation system for this orbit fit is



lsst

lpod,A

lpod,B


 =



Asst ΦA ΦB

Apod,A ΦA 0

Apod,B 0 ΦB






xcal

y0,A

y0,B


 , (6.3.1)

where the design matrices A are those described in section 6.4.3. The newly estimated
initial states ŷ0,A and ŷ0,B are then used to improve the dynamic orbit estimates of
GRACE-A and GRACE-B according to eq. (5.1.14). The complete process for integrating
the ITSG-Grace2016 dynamic orbits consists of three steps, as illustrated in fig. 6.4.

Table 6.1: Background models for dynamic orbit integration in ITSG-Grace2016.

Effect Model

Mean earth gravity GOCO05s 1

Trend GOCO05s 1

Annual & semi-annual oscillation GOCO05s 1

Atmosphere & ocean dealiasing AOD1B RL05 2

Earth rotation IERS 2010 3

Solid earth tides IERS 2010 3

Pole tides IERS 2010 3

Relativistic effects IERS 2010 3

Third body forces JPL DE421 4

Ocean tides EOT11a 5

Ocean pole tides Desai, 2002 6

Atmospheric tides Atmospheric tide loading calculator 7

1 Mayer-Gürr, Kvas, et al., 2015 2 Flechtner, Dobslaw, and Fagiolini, 2014 3 Petit and Luzum,
2010 4 Folkner, Williams, and Boggs, 2008 5 The EOT11a model was produced by DGFI based on
multi-mission altimeter data and distributed via OpenADB (http://openadb.dgfi.badw.de). More
details on the product are available in (Savcenko et al., 2012). 6 Using coefficients published in the
IERS Conventions (2010). 7 van Dam and Ray, 2010
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Figure 6.4: Data flow in ITSG-Grace2016 dynamic orbit integration for one spacecraft.
Vcons are the background models from which the accelerations due to
conservative forces are derived, as given in table 6.1. Φ is the state
transition matrix of the variational equations. xcal are the co-estimated
calibration parameters for the accelerometer.

An initial integration step using background models, the level 1B dynamic orbit, and
the accelerometer observations as input is followed by an orbit fit to KBR and POD
data, as described above. The resulting dynamic orbit and calibration parameters are
used to re-integrate the orbit once more to ensure convergence. This results in the final
dynamic orbit and state transition matrix, which are used in the set-up of GRACE
hl-SST and ll-SST observation equations. It is important that all calibration and state
parameters estimated here are also re-estimated when computing the final gravity field
models, so as to not bias the solution towards the a priori models used in the orbit
integration.

6.4 Functional Models

All observation equations for GRACE in ITSG-Grace2016 are derived using variational
equations. After determining the dynamic orbit for both GRACE spacecraft as described
in chapter 5 and section 6.3, the parameter sensitivity matrix for each spacecraft
is computed from eq. (5.3.13). Here, the matrix Zp from eq. (5.3.9) describing the
dependence of the forces acting on the satellite on some parameters p is needed.
At this point, recall that f (τ) is in fact a rather complex function, describing the
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superposition of accelerations due to gravitational, tidal, and non-conservative forces

f (τ) = g(τ) + r̈ACC(τ) . (6.4.1)

In ITSG-Grace2016, the parameters to be estimated are divided in groups along similar
lines. The first parameter group pgrav contains the parameters due to gravitational
effects. These parameters are common to both satellites, as they move in the same
conservative potential field. The second parameter group psat contains the parameters
describing the dependence of the observations on non-conservative forces. These
are specific to each satellite. These two sets of parameters pgrav and psat are force
model parameters, and are computed through integrating the parameter sensitivity
matrix in the variational equations. A third parameter group psst is neither specific
to each satellite nor to the potential fields in which the satellite move, but rather
describes effects due to the specific ll-SST observation system and geometry. The ll-SST
parameters psst are computed using the dynamic orbits resulting from the variational
equations as a Taylor point.

6.4.1 Force Model Parameters

To compute Zp(τ), the partials of the force f (τ) w.r.t. the force model parameters are
needed. The following paragraphs give a short description of how these are obtained
and then integrated.

Gravity Field Parameters

In ITSG-Grace2016, both monthly mean and daily mean Stokes coefficients for each
day of the month k ∈ [1, K] are estimated. The total disturbing potential on the k-th
day of the month Vt

k is modelled as the sum of the monthly mean potential Vm and
the mean of the potential for that day Vd

k

Vt
k = Vm + Vd

k . (6.4.2)

The total potential for the month can be written as a piecewise constant function

Vt(t) = Vm +
K

∑
k=1

δk(t)Vd
k (6.4.3)

as illustrated in fig. 6.5, and with

δk(t) =

{
1 if t is on the k-th day,
0 otherwise.

(6.4.4)
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Figure 6.5: Daily total potential as piecewise constant function.

The monthly coefficients are estimated from degree 2 and order 0 to degree and order
(D/O) 120, while the daily coefficients are only estimated to D/O 40. Schematically,
the observation equations for the Stokes coefficients are




l1

l2
...
lK−1

lK



=




Ad
1 0 · · · · · · 0

0 Ad
2

. . . ...
... . . . . . . . . . ... Am

... . . . Ad
K−1 0

0 · · · · · · 0 Ad
K




·




xd
1
xd

2
...
xd

K−1
xd

K
xm




, (6.4.5)

where Ad
1 . . .Ad

K are the observations equations for the daily Stokes coefficients

xd
k =

[
c2,0 · · · s40,40

]T
, (6.4.6)

and Am are the observation equations for the monthly Stokes coefficients

xm =
[
c2,0 · · · s120,120

]T
. (6.4.7)

Equivalently, l1 . . . lK are the observations for the individual days of the month. For
the case of piecewise constant daily potential coefficients, the observation equations
for the daily coefficients are identical to those of the monthly coefficients of the same
degree and order. This means that the respective partials only need to be computed
once, and can be re-used for both design matrix blocks, as illustrated in fig. 6.6.

The partials of the gravity field w.r.t. the Stokes coefficients are computed once for
GRACE-A and once for GRACE-B (see e.g. Ilk, 1983)

Jgrav,A(τ) =

[
∂ g(τ, rA(τ))

∂c2,0
· · · ∂ g(τ, rA(τ))

∂s120,120

]
, (6.4.8)

Jgrav,B(τ) =

[
∂ g(τ, rB(τ))

∂c2,0
· · · ∂ g(τ, rB(τ))

∂s120,120

]
. (6.4.9)
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Figure 6.6: Schematic of daily and monthly Stokes coefficients design matrix blocks.
Identical colours indicate that the low degree daily coefficient blocks are
identical to the low degree monthly coefficient blocks for the same day.

They are then inserted into eq. (5.3.9) for integration. With the K-day vector of daily
Stokes coefficients

pgrav,d =




xd
1
...
xd

K


 (6.4.10)

and the vector of monthly Stokes coefficients

pgrav,m = xm (6.4.11)

the complete vector of gravity field parameters is

pgrav =

[
pgrav,d

pgrav,m

]
. (6.4.12)

More compactly, eq. (6.4.5) can then be written as

l =
[
Ad Am

] [pgrav,d

pgrav,m

]
(6.4.13)

With this parametrization, the equation system is not solvable directly, as the columns
of Am with the low degree monthly Stokes coefficients are a linear combination of
the daily coefficient blocks, inducing a rank defect in the normal equation system. In
ITSG-Grace2016 this problem is treated by requiring the daily solutions to have zero
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mean. This is sensible, as the mean of the monthly gravity field is parametrized in
the monthly mean coefficients. Further, the temporal and spatial correlations of the
daily gravity fields are loosely constrained to conform to a process model derived from
geophysical models.

This is implemented as a set of pseudo-observations for the geophysical model lgpm = 0
for the daily gravity field parameters, with an associated design matrix Agpm and
cofactor matrix Qgpm:

[
l

lgpm

]
=

[
Ad Am

Agpm 0

] [
pgrav,d

pgrav,m

]
(6.4.14)

A more in-depth description of this procedure is out of scope for this thesis. The
approach is based on the GRACE Kalman filter introduced by Kurtenbach, 2011. A
complete description of the implementation details of this approach with the refine-
ments and further development made for ITSG-Grace2016 will be able to be found in
the upcoming dissertation of Andreas Kvas, expected to be released in 2019.

Satellite Parameters

The observation of the GRACE accelerometers are not only subject to random noise,
but also to systematic effects due to miscalibration and instrument imperfections. In
ITSG-Grace2016, calibration parameters are estimated for each accelerometer using the
calibration equation

r̈cal = Sr̈obs + b . (6.4.15)

Here, S is a fully populated 3× 3 matrix describing the accelerometer scale factors,
cross-talk between the observation axes, and the misalignment of the accelerometer
with the SRF. The vector b parametrizes one bias per accelerometer axis.

In ITSG-Grace2016, the entries in S are estimated as constants per day. The biases b
are estimated daily as uniform cubic basis splines (UCBS) with a knot interval of 6 h.
Klinger (2018) gives a comprehensive analysis of this parametrization. This results in
30 calibration parameters xcal being estimated per day and satellite. The parameter
vector is

psat =
[
xcal,A,1 . . .xcal,A,K xcal,B,1 . . .xcal,B,K

]T
(6.4.16)

with the Jacobians

Jsat,A(τ) =

[
∂ r̈ACC,A(τ)

∂xcal,A,1
· · · ∂ r̈ACC,A(τ)

∂xcal,A,K

]
, (6.4.17)

Jsat,B(τ) =

[
∂ r̈ACC,B(τ)

∂xcal,B,1
· · · ∂ r̈ACC,B(τ)

∂xcal,B,K

]
. (6.4.18)
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Integration of the Parameter Sensitivity Matrix

The parameter sensitivity matrix is integrated for each spacecraft i = A, B using
eq. (5.3.13) with

Zp,i(τ) =

[
0 0

Jgrav,i(τ) Jsat,i(τ)

]
(6.4.19)

and an integration polynomial of degree 7, yielding — for each satellite — the complete
variational equations

Ωi =
[
Sgrav,i Ssat,i Φi

]
. (6.4.20)

The variational equations are now available for all epochs, containing both the deriva-
tives w.r.t. the position and the derivatives w.r.t. the velocity:

Ωi(τ) =

[
Srgrav,i(τ) Srsat,i(τ) Φr

i (τ)

Sṙgrav,i(τ) Sṙsat,i(τ) Φṙ
i (τ)

]
. (6.4.21)

6.4.2 Low-Low SST Parameters

In ITSG-Grace2016, the KBR antenna phase centre coordinates for each spacecraft are
estimated as constants, once per month. The observation equations are computed by
taking the derivative of the ranging equation eq. (4.3.7) w.r.t. the KBR APC coordi-
nates cA and cB. As the APCs only occur in the antenna offset correction, the derivative
for an APC ci is

∂ ρKBR

∂ci
=

∂ ‖u+ v‖
∂ci

. (6.4.22)

The chain rule applies, with

∂ ‖u+ v‖
∂ci

=
∂ ‖u+ v‖

∂v

∂ v

∂ci
. (6.4.23)

Writing

‖u+ v‖ =
√
〈u,u〉+ 〈v,v〉+ 2 · 〈u,v〉 , (6.4.24)

the first partial in eq. (6.4.23) is

∂ ‖u+ v‖
∂v

=
1

2 · ‖u+ v‖
∂

∂v
(〈u,u〉+ 〈v,v〉+ 2 · 〈u,v〉)

=
1

‖u+ v‖ (u+ v)T . (6.4.25)
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The second partials in eq. (6.4.23) are

∂ v

∂cA
= −RA and

∂ v

∂cB
= RB . (6.4.26)

Inserting into eq. (6.4.23) gives

∂ ρKBR

∂cA
= − (u+ v)T

‖u+ v‖RA , (6.4.27)

∂ ρKBR

∂cB
=

(u+ v)T

‖u+ v‖RB , (6.4.28)

which are the observation equations for the 6 ll-SST parameters per month:

psst =

[
cA

cB

]
. (6.4.29)

The complete Jacobian for the ll-SST parameters is then simply

Jsst =

[
∂ ρKBR

∂cA

∂ ρKBR

∂cB

]
. (6.4.30)

6.4.3 Observation Equation System

With all Jacobians available, the observation equation system for the GRACE hl-SST
and ll-SST observations can be set up. The observation equations are set up for each
short arc m ∈ [1, M], using the variational equations integrated for each day of a
month k ∈ [1, K]. The combined parameter vector for one short arc is

xm =
[
pgrav,d pk

sat,A pk
sat,B psst yk

0,A yk
0,B pgrav,m

]T
. (6.4.31)

It is important to note that the estimated parameters can be the same for multiple short
arcs. The monthly Stokes coefficients, for example, are only estimated once per month.
The parameters pk

sat,A, pk
sat,B, yk

0,A, and yk
0,B are estimated once per day k, and are the

same for all short arcs m in this day. This must be considered when accumulating
the normal equations from the individual short arcs. The peculiar ordering of the
parameters, with the daily Stokes coefficients at the beginning of the parameter vector,
and the monthly Stokes coefficients at the end, is due to some optimizations that can
then be employed in eliminating the non-target parameters, namely all but pgrav,m,
from the resulting normal equation system. These optimizations are described in Kvas
(2014).

In ITSG-Grace2016 three observation groups are processed in the LSA for gravity field
determination: The spacecraft positions from kinematic orbits as observed by the GPS,
the ll-SST KBR range-rate observations, and the pseudo-observations constraining the
daily gravity fields. Starting from the sought parameters and the known observations,
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the linearised observation equation system for one short arc can be set up symbolically,
giving




∆lpod,A

∆lpod,B

∆lsst

lgpm


 =




A
grav,d
pod,A Asat

pod,A 0 0

A
grav,d
pod,B 0 Asat

pod,B 0

A
grav,d
sst Asat

sst,A Asat
sst,B Asst

sst

A
grav,d
gpm 0 0 0

· · ·

· · ·

Astate
pod,A 0 A

grav,m
pod,A

0 Astate
pod,B A

grav,m
pod,B

Astate
sst,A Astate

sst,B A
grav,m
sst

0 0 0







∆pgrav,d

∆psat,A

∆psat,B

∆psst

∆y0,A

∆y0,B

∆pgrav,m




, (6.4.32)

or l = Ax in short. The indices for the arc m and day k have been omitted here for
clarity. In eq. (6.4.32), empty matrix segments appear where the observations do not
depend on the sought parameters. The POD observations for GRACE-A, for example,
depend neither on the accelerometer calibration parameters for GRACE-B nor on that
spacecraft’s initial state.

When accumulating the observation equations, care has to be taken to not mix up
parameters referring to only a specific day with other parameters of the same type
referring to another day. An ordering for the parameter vector, and accordingly the
blocks in the normal equation system, has to be chosen that ensures that the correct
observation equations are accumulated together. Table 6.2 gives a summary of all
P = 46 842 parameters estimated for a typical 31 day ITSG-Grace2016 monthly solution.

Table 6.2: Estimated parameters for a month of K = 31 days

Type Parameter Parametrization Intervals Per Interval Total

Potential cnm, snm D/O 2 to 40 Daily 957 29 967
Potential cnm, snm D/O 2 to 120 Monthly 14 637 14 637
ACC bias b UCBS Daily 21 / sat 1302
ACC scale S Constant Daily 9 / sat 558
APC vector c Constant Monthly 3 / sat 6
Initial State y0 - Daily 6 / sat 372

Total 46 842
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Observation Equations for hl-SST

The observable in hl-SST POD is the spacecraft position. The equations describing the
dependence of the spacecraft position at time τ on the sought parameters x are exactly
the variational equations. In ITSG-Grace2016, only the spacecraft position is used as
an observable for POD. The velocity is not used, as it is only derived from the POD
positions, not determined directly. The linearised observation difference is then the
POD position rpod reduced by the dynamic orbit position rdyn:

∆lpod = rpod − rdyn (6.4.33)

The design matrix for the monthly gravity field parameters for each spacecraft i is
simply the appropriate parameter sensitivity matrix

A
grav,m
pod,i = Srgrav,i . (6.4.34)

The design matrices for the daily Stokes coefficients can be computed herefrom accord-
ing to section 6.4.1. The design matrices for the satellite parameters are similarly

Asat
pod,i = Srsat,i . (6.4.35)

The design matrices for the satellite states are the state transition matrices

Astate
pod,i = Φr

i . (6.4.36)

Observation Equations for ll-SST

In ITSG-Grace2016, ll-SST observations are processed at the range rate level. The range
rate for the satellites COMs is given in eq. (4.3.8) as

ρ̇COM(τ) = 〈e(τ), u̇(τ)〉 = eT(τ)u̇(τ) =
1

‖u(τ)‖u
T(τ)u̇(τ) . (6.4.37)

The range rate depends on both the positions of the spacecraft, as components of u,
and their velocities, as components of u̇. For brevity, the index for the COM is omitted
in the following derivations, while understanding that all ranges and range rates refer
to the spacecraft COM. Similarly, the time index is also dropped. The derivative of the
range rate w.r.t. to some parameters x is

∂ ρ̇

∂x
=

∂ ρ̇

∂u

∂u

∂x
+

∂ ρ̇

∂u̇

∂ u̇

∂x
. (6.4.38)

The derivative of the range rate w.r.t. the satellite baseline is

∂ ρ̇

∂u
=

∂

∂u
〈e, u̇〉 = ∂

∂u
eTu̇ =

∂

∂u

(
1
‖u‖u

Tu̇

)
(6.4.39)
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Now, due to ‖u‖ =
(
uTu

)1/2

∂

∂u

1
‖u‖ = − 1

‖u‖3u
T (6.4.40)

and

∂

∂u
uTu̇ =

∂

∂u
u̇Tu = u̇T . (6.4.41)

Putting together the chain rule, eq. (6.4.39) is

∂ ρ̇

∂u
=

1
‖u‖ u̇

T − 1

‖u‖3u
T ·
(
uTu̇

)

=
1
ρ
u̇T − 1

‖u‖e
T ·
(
eTu̇

)

=
1
ρ
u̇T − ρ̇

ρ
eT (6.4.42)

The derivative of the range rate w.r.t. the differential velocity is

∂ ρ̇

∂u̇
=

∂

∂u̇
eTu̇ = eT (6.4.43)

In eq. (6.4.38), the derivatives of the baseline and differential velocity can be further
expanded to

∂u

∂x
=

∂u

∂rA

∂ rA

∂x
+

∂u

∂rB

∂ rB

∂x
, (6.4.44)

∂ u̇

∂x
=

∂ u̇

∂ṙA

∂ ṙA

∂x
+

∂ u̇

∂ṙB

∂ ṙB

∂x
. (6.4.45)

With

∂u

∂rA
=

∂ u̇

∂ṙA
= −1 , (6.4.46)

∂u

∂rB
=

∂ u̇

∂ṙB
= 1 , (6.4.47)

this simplifies to

∂u

∂x
=

∂ rB

∂x
− ∂ rA

∂x
, (6.4.48)

∂ u̇

∂x
=

∂ ṙB

∂x
− ∂ ṙB

∂x
. (6.4.49)

Going from generic parameters x to the specific parameters set up in ITSG-Grace2016,
the derivatives of the positions and velocities of the spacecraft w.r.t. the gravity field
parameters, satellite parameters, and the initial state are the variational equations from
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eq. (6.4.21). With this information, the appropriate row of matrices in eq. (6.4.32) can
be determined by inserting the correct partials in eq. (6.4.38). One row of the design
matrix, corresponding to one point in time τ, for the monthly gravity field parameters
from ll-SST observations is

A
grav,m
sst =

(
1
ρ
u̇T − ρ̇

ρ
eT
)(

Srgrav,B −Srgrav,A

)
+ eT

(
Sṙgrav,B −Sṙgrav,A

)
, (6.4.50)

again with the time τ omitted. The design matrices for the daily Stokes coefficients
can be computed herefrom according to section 6.4.1. The design matrices w.r.t. to the
satellite parameters for GRACE-A and GRACE-B are

Asat
sst,A =

(
1
ρ
u̇T − ρ̇

ρ
eT
) (
−Srsat,A

)
+ eT

(
−Sṙsat,A

)
, (6.4.51)

Asat
sst,B =

(
1
ρ
u̇T − ρ̇

ρ
eT
) (

Srsat,B
)
+ eT

(
Sṙsat,B

)
, (6.4.52)

and equivalently for the satellite states

Astate
sst,A =

(
1
ρ
u̇T − ρ̇

ρ
eT
) (
−Φr

sat,A
)
+ eT

(
−Φṙ

sat,A
)

, (6.4.53)

Astate
sst,B =

(
1
ρ
u̇T − ρ̇

ρ
eT
) (

Φr
sat,B

)
+ eT

(
Φṙ

sat,B
)

. (6.4.54)

Only the observation equations for the ll-SST parameters remain. The equations in
section 6.4.2 were computed for range observations, while the observation equations
for ITSG-Grace2016 are set up for range rates. The required range rate observation
equations can be computed trough

∂ ρ̇

∂psst
=

∂ ρ̇

∂ρ

∂ ρ

∂psst
. (6.4.55)

As ρ̇ = ∂ ρ/∂τ, eq. (6.4.55) can be written as

∂ ρ̇

∂psst
= D

∂ ρ

∂psst
, (6.4.56)

with D a polynomial derivative matrix. In ITSG-Grace2016, a polynomial of degree 2
is used. The complete design matrix for the ll-SST parameters is (with eq. (6.4.30))

Asst
sst = DJsst . (6.4.57)

The reduced observation vector for the KBR observations ρ̇KBR is, from the ranging
equation (eq. (4.3.7)),

∆lsst = ρ̇KBR + ∆ρ̇AOC + ∆ρ̇TOF + ∆ρ̇Iono − ρ̇COM . (6.4.58)

The sum ρ̇KBR + ∆ρ̇TOF + ∆ρ̇Iono is given in the level 1B KBR product. ρ̇COM is com-
puted according to eq. (4.3.9). The derivative ∆ρ̇AOC is computed from ∆ρAOC using
polynomial differentiation, as above, with orientations from the SCA/ACC sensor
fusion.
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6.5 Fit of Stochastic Model

To compute an optimal least squares solution of the daily and monthly Stokes coef-
ficients, the stochastic characteristics of the observation data must be considered. In
ITSG-Grace2016, four observation groups are present: the hl-SST POD observations
for both GRACE-A and GRACE-B, the ll-SST KBR observations, and the pseudo-
observations used to constrain the daily Stokes coefficients. Each observation group
has associated residuals




∆lpod,A

∆lpod,B

∆lsst

lgpm


 = Ax+




epod,A

epod,B

esst

egpm


 (6.5.1)

which are distributed according to their respective covariance matrices




epod,A

epod,B

esst

egpm


 ∼ N


0,




ΣpodA 0 0 0

0 ΣpodB 0 0

0 0 Σsst 0

0 0 0 Σgpm





 . (6.5.2)

In ITSG-Grace2016, it is assumed that the observation groups are not cross-correlated.
Only the structure of the covariance matrix due to the geophysical model Qgpm is
known a priori, the remaining covariance matrices are determined in ITSG-Grace2016
through variance component estimation.

The stochastic model is re-estimated for each generated monthly solution in a multi-step
process. To this end, a GRACE monthly gravity field solution of decreased degree and
order of only 60 is computed while iteratively adjusting the weights of the observation
groups and refining the covariance structure of each observation group. The gravity
field solution is computed at a reduced fidelity to speed up the time-consuming
iteration of the computation.

6.5.1 Toeplitz Covariance Structure

The noise of the POD and KBR observations is assumed to be the result of a wide-sense
stationary process, meaning that the autocovariance function of the noise signal does
not vary with time, or in the case of ITSG-Grace2016, within one month. Such a process
can be fully described by its autocovariance function (Etten, 2006)

Cxx(t1, t2) = Cxx(t2 − t1) = Cxx(∆t) . (6.5.3)

This covariance function is estimated once per observation type and month. The re-
estimation for every month implies that the estimated noise model is stationary for
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one month only, and can differ between any two months. Let ∆t be the sampling in
seconds and N the number of epochs in the arc. The covariance function for the arc
can then be discretised as

Cn
xx = Cxx(n · ∆t) , n ∈ [0, N) . (6.5.4)

The observations for the month have at this point been split into short arcs

l =
[
l1 . . . lM

]T
, (6.5.5)

each of length Nm ≤ Nmax. For one arc of Nm POD or KBR observations, the cofactor
matrix then has a Toeplitz structure

Qm
ll =




C0
xx C1

xx C2
xx · · · CNm−1

xx

C1
xx C0

xx C1
xx CNm−2

xx

C2
xx C1

xx C0
xx CNm−3

xx
... . . . ...
CNm−1

xx CNm−2
xx CNm−3

xx · · · C0
xx




(6.5.6)

with the entries determined by the time lag and the autocovariance function of the
noise signal from eq. (6.5.4). This cofactor matrix is identical for all arcs of the same
observation type and the same length N. All cofactor matrices are slices of the longest
possible cofactor matrix of size Nmax × Nmax. The elements of the discretised covariance
function Cxx completely define all of these cofactor matrices. This necessitates that
the covariance function is also estimated for a length of Nmax, even though some arcs
do not allow for the estimation of some of the longer time lags due to their shorter
length Nm < Nmax.

Additionally, a variance factor is computed per observation type for each of the M
short arcs of the month, giving appropriate weights to the individual arcs. These
are the arc-wise variance factors σ2

m, which together with the cofactor matrix give the
complete covariance matrix for the arc

Σm
ll = σ2

m ·Qm
ll . (6.5.7)

A simplifying assumption is made that observations are not correlated between short
arcs. This then gives the following block-diagonal covariance structure for a complete
month of observations in one observation group:

Σll =




Σ1
ll 0 · · · 0

0
. . . . . . ...

... . . . . . . 0

0 · · · 0 ΣM
ll




. (6.5.8)

As observations are treated as uncorrelated across observation groups and across
individual short arcs, the observation equations for each arc can be computed and
decorrelated independently of each other, and finally be accumulated at the normal
equation level to compute a gravity field solution.
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6.5.2 Covariance Function and Power Spectral Density

For a wide-sense stationary process such as the assumed observation noise, the co-
variance function of the process and the power spectral density (PSD) of the process
form a Fourier pair (Etten, 2006). As the covariance function describing the observation
noise is only estimated and known in its discretised form, a discrete transform to the
spectral domain is used to compute the PSD. For ITSG-Grace2016, the type I discrete
cosine transform (DCT) is used (Rao and Yip, 1990). This transform implies that the
covariance function is even at the origin, with

C−n
xx = Cn

xx (6.5.9)

and also even at the upper boundary of the domain, with

CNmax−n
xx = CNmax+n

xx . (6.5.10)

As the DCT is a linear operator, it can be written as

x̃ = Xx , (6.5.11)

with X the N × N matrix of DCT coefficients, x an N × 1 vector of equidistant data
points in the time domain, and x̃ the N × 1 DCT of x. The elements of the DCT
matrix X are (see e.g. Rao and Yip, 1990, p. 11)

Xmn =

√
2

N − 1

(
kmkn cos

(
mnπ

N − 1

))
, m, n ∈ [0, N) , (6.5.12)

with

ki =

{
1 if i 6= 0

1√
2

otherwise.
(6.5.13)

The PSD of the observation noise is then, in terms of the covariance function,

Sxx = XCxx . (6.5.14)

The elements of the PSD are

Sj
xx = Sxx( f j) , j ∈ [0, N) . (6.5.15)

with f0 = 0 Hz and fN−1 the Nyquist frequency of the signal. Each entry gives the
amplitude of the observation noise at that specific frequency.

6.5.3 Estimation of Covariance Function

The Toeplitz cofactor matrix for each observation type can be written as a sum of Nmax
individual cofactor matrices, each only dependent on the covariance function of one
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specific time lag. Let Vn be the Nmax × Nmax identity matrix for n = 0, and a zero
matrix with only the n-th lower and upper diagonal ones otherwise, e.g. for Nmax = 5

V2 =




0 0 1 0 0
0 0 0 1 0
1 0 0 0 1
0 1 0 0 0
0 0 1 0 0




. (6.5.16)

The cofactor matrix eq. (6.5.6) is then

Qm
ll =

Nm−1

∑
n=0

Cn
xx · Vn . (6.5.17)

Each value of the discretised covariance function corresponds to one specific covariance
component Vn, and as such they can be separated using VCE. The arc-wise variance
factors, the variance factor determining the weight of one individual short arc of one
observation type w.r.t. all other arcs of that observation type, depend on the sum of all
individual cofactor matrices associated with all time lags:

Σm
ll = σ2

m ·
Nm−1

∑
n=0

Cn
xx · Vn (6.5.18)

To fit the stochastic model to the observation noise, the amplitude of the covariance
function for each time lag Cn

xx must be determined.

If the covariance function were estimated directly in the time domain, the value for one
specific time lag Cn

xx could however never change its sign, as the appropriate variance
factor is always estimated as its square (compare eq. (2.6.8)). As the PSD is by definition
always positive, this restriction does not impact its estimation. Negative values of the
covariance function can then occur in the inverse DCT that give the covariance function
from the estimated PSD. Thus, in ITSG-Grace2016, the PSD is estimated instead of the
covariance function, even though the two are functionally interchangeable. This can
be achieved in the spectral domain by determining the amplitude of the PSD at each
frequency Sj

xx. Using VCE, the estimated amplitude for each frequency j ∈ [0, N) can
be written as

Ŝj
xx = α̂2

j Sj
xx , (6.5.19)

with Sj
xx an a priori value for the amplitude of the PSD at that frequency, and

α̂2
j =

Ω̃j

s̃j
. (6.5.20)

As the time lag of the covariance function, or conversely the frequency of the PSD,
can appear in any of the covariance matrices Σm

ll of the M short arcs, depending
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on their length, the estimator for the variance factor must also consider all of these
contributions. Therefore,

Ω̃j =
M

∑
m=1

Ω̃m
j and s̃j =

M

∑
m=1

s̃m
j . (6.5.21)

The contributions to each frequency can be determined in two ways. The first is to
transform the residuals and covariance components Vn to the spectral domain and
then directly compute the Ω̃j and s̃j. The second option is to compute the Ωn and sn
in the temporal domain, and then transform these to the spectral domain afterwards.
The second approach is chosen, as it enables the exploitation of some time-domain
symmetries in the computation, as is later explained in section 6.5.6. To this end, the
contributors for each time lag n ∈ [0, N) must be computed. With the covariance matrix
for one time lag from eq. (6.5.18) and eq. (2.6.6), the square sum of residuals for one
time lag in one arc is

Ωm
n =

{
σ2

mCn
xx ·
(
êTΣ−Tll VnΣ−1

ll ê
)

if n < Nm ,

0 otherwise,
(6.5.22)

while the redundancy is

sm
n =

{
σ2

mCn
xx · trace (RVn) if n < Nm ,

0 otherwise.
(6.5.23)

In both eqs. (6.5.22) and (6.5.23), it is important to note that ê = êm, Σll = Σm
ll ,

and R = Rm. This index has only been omitted for clarity. With

Ωm =
[
Ωm

0 . . . Ωm
N−1

]T
and sm =

[
sm

0 . . . sm
N−1

]T
, (6.5.24)

the contributors to the individual frequencies of the PSD to be inserted into eq. (6.5.21)
are the entries of the N × 1 vectors

Ω̃
m
= XΩm (6.5.25)

s̃m = Xsm (6.5.26)

6.5.4 Estimation of Arc-wise Variance Factors

The arc-wise variance factors σ2
m (m ∈ [1, M]) can be estimated from the equations

given in section 6.5.3. Specifically, where the covariance function was determined by
estimating the amplitude of a specific frequency over all arcs, the arc-wise variance
factors are determined by estimating the cumulative amplitude over all frequencies for
one specific arc. The estimated variance factor for one arc is then

α̂2
m =

∑N−1
j=0 Ω̃m

j

∑N−1
j=0 s̃m

j

. (6.5.27)
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The estimated arc-wise variance factor is however not directly σ̂2
m = α̂2

mσ2
m. As the

absolute magnitude of the covariance matrix has already been modified by adjusting
the individual frequencies in the PSD, computing σ̂2

m in this way would lead to a
double consideration of the respective variance components. Instead, an intermediate
quantity

γ2
m = α̂2

mσ2
m (6.5.28)

is determined. The arc-wise variance factor is then this intermediate value normalized
by the mean over all arcs with

γ̄ =
1
M

M

∑
m=1

γm (6.5.29)

as

σ̂2
m =

γ2
m

γ̄2 . (6.5.30)

The mean of the arc-wise variance factors is thus 1. The arc-wise variance factors
only give the relative weighting of the arcs w.r.t. each other within the observation
group. The covariance function determines the overall magnitude and structure of the
covariance matrix for the observations.

6.5.5 Geophysical Signal

In addition to the complete stochastic model estimated for the satellite instruments,
one variance factor per month is estimated for the stochastic model of the geophysical
pseudo-observations. The standard apparatus for VCE given in section 2.6 is used to
optimally scale the covariance matrix

Σgpm = σ̂2
gpmQgpm . (6.5.31)

6.5.6 Implementation Notes

The variance component estimation as described in the previous sections is a computa-
tionally expensive algorithm, especially as multiple iterations are usually necessary to
achieve good convergence. In GROOPS, the software used to compute ITSG-Grace2016,
some optimizations have been implemented to reduce this computational effort. The
following pages will give an overview of some of the most impactful of these optimiza-
tions. Further, some aspects will be shown where for practical reasons the computation
strategy deviates from the strict theoretical derivations of the previous subsections.
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Solution of Normal Equation System

After setting up and decorrelating the observation equations for each short arc, these
are accumulated into the normal equation system Nx̂ = n (see eq. (2.2.7)). At this
point,N contains the full normal equation system for all parameters x from eq. (6.4.32).
This includes the monthly Stokes coefficients, the daily Stokes coefficients for all days
of the month, as well as the satellite and state parameters. Similarly to the algorithm for
decorrelation described in section 2.3, the inversion of N can be avoided by computing
its Cholesky factorization

N = UTU (6.5.32)

giving

UTUx̂ = n . (6.5.33)

The least squares solution to the equation system can then be computed by sequentially
solving two triangular systems:

x̂ = U−1U−Tn = U−1n̄ . (6.5.34)

In computing the Cholesky factorization eq. (6.5.32) use can be made of the special
blocked structure of N (see e.g. Higham, 2002).

Matrix of Redundancies

In the process of determining the stochastic model, the matrix of redundancies R from
eq. (2.6.8) must be computed for each short arc. Here, N is the completely accumulated
normal equation system from all arcs, all other matrices refer to the m-th arc:

R = Σ−1
ll − Σ−1

ll AN
−1ATΣ−Tll (6.5.35)

Especially the product AN−1AT is expensive in this expression, as it involves the in-
verse of a large P× P normal equation, as well as two products with N × P matrices.

As R is never needed directly, but only in the form of the trace of the product of R
with some covariance matrix Vn

sn = trace (RVn)

= trace
((

Σ−1 − Σ−1AN−1ATΣ−T
)
Vn

)

= trace
(

Σ−1Vn − Σ−1AN−1ATΣ−TVn

)
, (6.5.36)

some optimizations can be introduced in the computation. First, note that the trace of
a sum of matrices is equal to the sum of the traces, giving

sn = trace
(

Σ−1Vn

)
− trace

(
Σ−1AN−1ATΣ−TVn

)
. (6.5.37)
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Further, circular permutation of the product in the trace does not change the trace.
Inserting the Cholesky factorization of N , and then permuting the second trace in
eq. (6.5.37) gives

sn = trace
(

Σ−1Vn

)
− trace

(
Σ−1AU−1U−TATΣ−TVn

)

= trace
(

Σ−1Vn

)
− trace

(
U−TATΣ−TVnΣ−1AU−1

)
. (6.5.38)

At this point the rightmost trace can be approximated by using a Monte-Carlo trace
estimator (Hutchinson, 1990). Hutchinson shows that for a P× P matrix X ,

trace (X) ≈ 1
Z

Z−1

∑
z=0

zTzXzz , (6.5.39)

for sufficiently large Z. Here each zz is a random P× 1 vector, with entries only 1 and
−1, each with a probability of 0.5:

zz =
[
−1 1 . . . 1 −1

]T
(6.5.40)

At this point, an evil maths trick is used in rewriting eq. (6.5.39). Let Z be a P× Z
matrix of Monte Carlo vectors zz, then the sum in eq. (6.5.39) can be written as

trace (X) ≈ 1
Z

trace
(
ZTXZ

)
. (6.5.41)

Here, the diagonal elements of the matrix product are exactly the component sums
from eq. (6.5.39). The trace operator performs the sum over these diagonal components,
neglecting the off-diagonal products of all combinations of two non-identical Monte
Carlo vectors. To clarify this approach, consider a simple example where Z = 2. Here

trace (X) ≈ 1
2

trace

([
zT0
zT1

]
X
[
z0 z1

])
=

1
2

trace

([
zT0Xz

T
0 zT0Xz

T
1

zT1Xz
T
0 zT1Xz

T
1

])

=
1
2

(
zT0Xz

T
0 + zT1Xz

T
1

)
=

1
2

1

∑
z=0
zTzXzz , (6.5.42)

which is exactly the result from eq. (6.5.39). This can be further simplified by nor-
malizing the Monte Carlo vectors to the number of realizations with Z̄ = 1√

Z
Z,

giving

trace (X) ≈ trace
(
Z̄TXZ̄

)
. (6.5.43)

Applying this trick to the second trace in eq. (6.5.38) gives

sn = trace
(

Σ−1Vn

)
− trace

(
Z̄TU−TATΣ−TVnΣ−1AU−1Z̄

)
, (6.5.44)
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Where the left-hand trace is the simple trace from before, but the right-hand trace
is now a rewritten form of the Monte-Carlo trace estimator. The right-hand trace is
shifted back to its original permutation, after which the traces are combined, giving

sn = trace
(

Σ−1Vn

)
− trace

(
Σ−1AU−1Z̄Z̄TU−TATΣ−TVn

)

= trace
((

Σ−1 − Σ−1AU−1Z̄Z̄TU−TATΣ−T
)
Vn

)

= trace (R̄Vn) . (6.5.45)

This new quantity is an estimator for the matrix of redundancies

R̄ = Σ−1 − Σ−1AU−1Z̄Z̄TU−TATΣ−T , (6.5.46)

or

R̄ = Σ−1 − R̃R̃T (6.5.47)

with

R̃ = Σ−1AU−1Z̄

=W−1W−TAU−1Z̄

=W−1ĀU−1Z̄ . (6.5.48)

With W , A, and U known from previous computations, R̃ can be computed efficiently
and quickly. First the triangular system U−1Z̄ is solved, giving a P× Z temporary
matrix. As U is computed from the accumulated normal equations and is identical for
all short arcs, U−1Z̄ only needs to be computed once, and can then be reused for all
short arcs. After determining the product ĀU−1Z̄, only one more triangular system
needs to be solved, giving the N × Z matrix R̃. In GROOPS, Z = 100, giving a very
manageably small matrix R̃, which is then used to determine R̄ using eq. (6.5.47). To
summarize, this implementation avoids the explicit computation of N−1 in eq. (6.5.35).
Further the computation of R̄ is reduced in complexity through exploitation of sym-
metries in eq. (6.5.46). Elegant application of the Monte Carlo trace estimator reduces
the operations needed to compute R̃.

Overall, this algorithm reduces the computational cost to determine R considerably, at
the expense of a small error due to the approximation introduced by the Monte Carlo
trace estimator. As the stochastic model is determined through multiple iterations, this
uncertainty does however not affect the resulting model significantly.

Computation of Variance Factors

The computation of Ωm
n and sm

n from eqs. (6.5.22) and (6.5.23) can be optimized by not
explicitly computing all matrix products involved. For a time lag n = 0, trace (R̄mVn) is
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trivial, as it is simply trace (R̄m), with no need to compute the product. For lags n > 0
the trace used to compute the redundancy can be written as

trace (R̄mVn) = trace
(
R̄m

(
V −n + V +

n
))

= trace
(
R̄mV

−
n
)
+ trace

(
R̄mV

+
n
)

(6.5.49)

where V −n is only the lower half of Vn, and V +
n the upper half. For e.g. Nmax = 5,

these would be

V −2 =




0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0




and V +
2 =




0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0




. (6.5.50)

With V +
n = (V −n )

T and R̄ being a symmetric matrix

trace (R̄mVn) = 2 · trace
(
R̄mV

−
n
)

. (6.5.51)

As Vn is large and sparse, it is efficient to unroll the trace of the matrix product and
directly write it as a sum

trace
(
R̄mV

−
n
)
=

Nm−n

∑
i=0

R̄m(i + n, i) . (6.5.52)

The square sum of residuals can similarly be optimized by smartly computing

êTΣ−Tll VnΣ−1
ll ê . (6.5.53)

First, let

ẽ = Σ−1
ll ê =W−1W−Tê =W−1 ˆ̄e (6.5.54)

which is again efficiently computed by solving a triangular system. Then

êTΣ−Tll VnΣ−1
ll ẽ = ẽTVnẽ

= ẽT
(
V −n + V +

n
)
ẽ

=

{
ẽTẽ if n = 0,
2 · ẽTV −n ẽ otherwise.

. (6.5.55)

This loop can again be unrolled, avoiding the product with the sparse matrix V −n , as

ẽTV −n ẽ =
Nm

∑
i=n
ẽ(i) · ẽ(i− n) . (6.5.56)
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Arc-wise Variance Factors

As described in section 6.5.4, the arc-wise variance factors are normalized to remove
a double-consideration of the amplitude determination. To this end, the mean of
the arc-wise variance factors is determined in eq. (6.5.29). In the implementation in
GROOPS, this mean is not the direct arithmetic mean of all variance factors. Instead,
the mean is computed robustly by only employing the central half of the sorted values,
ignoring outliers at either tail of the distribution. With the γm sorted according to their
magnitude, the mean is then

γ̄ =
2
M

3 ·M/4

∑
m=M/4

γm . (6.5.57)

Variance Factor for Geophysical Pseudo-Observations

The variance factor for the geophysical pseudo-observations σ̂2
gpm from eq. (6.5.31) is

computed using eq. (2.6.12). As the pseudo-observations lgpm are 0, the residuals are
directly

êgpm = −Agpmx̂gpm . (6.5.58)

Dropping the index for the geophysical process, the square sum of residuals is

Ω = êTΣ−1ê = x̂TATΣ−1Ax̂ = x̂TNgpmx̂ . (6.5.59)

The redundancy is

s = Ngpm − trace
(
NgpmN

−1
)

. (6.5.60)

Here, the Monte Carlo trace estimator from eq. (6.5.41) can be employed again, with

trace
(
NgpmN

−1
)
= trace

(
NgpmU

−1U−T
)

= trace
(
U−TNgpmU

−1
)

= trace
(
Z̄TU−TNgpmU

−1Z̄
)

(6.5.61)

Importantly, U−1Z̄ is the same as in eq. (6.5.48), and can be reused directly.

Estimation of the Zero-Frequency

For a zero-mean random process, the theoretical expected value of the zero frequency
of the PSD is well defined. Through discretisation and approximation effects, the actual
zero frequency amplitude for the PSD of such a time series can be close, or equal to,
zero. In practice, this means that the estimation of the zero frequency amplitude can
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be unstable, due to the quotient eq. (6.5.19) becoming ill-defined for some values of Ω̃0
and s̃0. To work around this issue in ITSG-Grace2016, the zero frequency amplitude
was set to the same value as that of the lowest non-zero frequency of the estimated
power spectral density.

6.5.7 Summary

The input to the algorithm for the estimation of the stochastic model are the observa-
tions for hl-SST, lpod,A, lpod,B, and the ll-SST observations lsst. Further, an approximation
of the stochastic model for these observation types is needed. If no information is
available, white noise can be assumed, with

Sj
xx = 1 , j ∈ [0, Nmax) and σ2

m = 1 , m ∈ [1, M] . (6.5.62)

In addition, the cofactor matrix for the geophysical process model Qgpm is needed, the
scale of which can also be assumed to be σ2

gpm = 1.

With this data in place, the determination of the stochastic model can begin. The
iteration roughly follows the scheme presented in fig. 6.7, where the location of the
individual steps in the following algorithm are marked with their respective Arabic
numerals. To determine the stochastic model, for each arc and observation group

1. compute ∆l, A, using the functional models from section 6.4 and the parametriza-
tion described in table 6.2, but only up to degree and order 60.

2. compute the covariance matrix Σ using eq. (6.5.62), and store the Cholesky
decomposition Σ =WTW .

3. decorrelate the reduced observation vector and the Design matrix using eq. (2.3.4),
giving ∆l̄, Ā.

4. compute and accumulate the normal equations N and right hand sides n.
5. compute the Cholesky decomposition N = UTU , and solve for ∆x̂.
6. create a matrix of Monte Carlo vectors Z̄, and compute U−1Z̄.
7. compute the decorrelated residuals as ˆ̄e = ∆l̄− Ā∆x̂.
8. compute R̃, ẽ, and, using them, Ω̃ and s̃.
9. compute updated estimates of Ŝj

xx, σ̂2
m for all observation groups, as well as σ̂2

gpm.
10. if these quantities have not sufficiently converged, compute an updated covariance

matrix Σ̂ and its Cholesky decomposition, continue from the 2nd step.

Figure 6.8 gives an example of the estimated PSDs Ŝxx and the arc-wise variance
factors σ2 for the month of June 2010. Figure 6.8a shows the estimated PSD of the
ll-SST observation noise, derived from the KBR residuals. The PSD exhibits a structure
typical for GRACE ll-SST data. The noise spectrum shows an ascending branch above
1 · 10−2 Hz, which is due to the processing of the KBR data in the range rate domain.
As the range rates are derived from the observed biased ranges through differentiation,
noise at higher frequencies is amplified, while noise at lower frequencies is damped.
At frequencies below 1 · 10−2 Hz, noise due to a combination of ACC observation
errors and residual geophysical signals dominates. Both the ACC observations, and
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Figure 6.7: Summary of estimation of the observation covariance functions Ĉxx and
arc-wise variance factors σ̂2 for KBR and POD observations. Φ are the state
transition matrices from the dynamic orbit determination, r, ṙ are the
dynamic orbits of the two spacecraft.
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the acceleration due to conservative forces derived from the background models are
integrated in the determination of the GRACE dynamic orbits (eq. (5.2.2)). Due to the
integration, noise at lower frequencies is amplified, while noise at higher frequencies
is damped.

Figure 6.8b shows the estimated arc-wise variance factors σ2
m for the ll-SST observations.

Their mean is 1, due to the normalization applied in eq. (6.5.29). A systematic increase
of the arc-wise variance factors can be observed during the third quarter of the month.
According to Flechtner (2010), GRACE-A was commanded into attitude hold mode
(AHM) on June 17, 2010, during which the pointing towards GRACE-B is not enforced
as strictly, and can undergo larger variations. The time period that GRACE-A spent
in AHM is shaded with a grey backdrop, and corresponds well with a period of
increased arc-wise variance factors. This demonstrates how a drop in data quality
was automatically detected through VCE. The arc-wise variance factors increase in
value, meaning the weight of the corresponding arcs in the LSA decreases accordingly.
Figures 6.8d and 6.8f show the arc-wise variance factors for the POD observations on
GRACE-A and GRACE-B. As the GPS observations are not affected by the AHM, their
arc-wise variance factors do not show a corresponding change during this period.

Figures 6.8c and 6.8e show the PSDs for the GRACE-A and GRACE-B POD observa-
tions. The PSDs are estimated separately for each coordinate axis in the orbit system,
giving the three curves shown.

6.6 Complete solution

With the dynamic orbits determined, a functional model set up, and the stochastic
characteristics of the signals estimated, a complete GRACE gravity field solution can
be determined. For ITSG-Grace2016, this comprises both monthly and daily gravity
fields. An ITSG-Grace2016 monthly solution is computed from all data available for
that specific calendar month, beginning at 00:00:00 UTC on the 1st day of the month,
and up to, but not including, 24:00:00 UTC on the last day of the month. For months
with large data gaps no attempt is made to combine data from multiple months. The
resulting gravity field is then the temporal mean of the time-variable gravity signal for
that month. Together with the static field and long-term time-variable signal, which
were introduced as a priori reference fields in the dynamic orbit integration, this gives
the full mean potential for the month. This corresponds to the required step of adding
the adjusted parameters to the Taylor point in any LSA, with x̂ = x0 + ∆x̂. Monthly
gravity fields are computed up to D/O 120. Expansions up to D/O 90 and 60 are then
determined through truncation of the full normal equation system. All three solutions
are then provided to the user community.

Daily gravity field solutions are determined using GRACE observations from 00:00:00
UTC of that day up to, but not including, 24:00:00 UTC on the same day. In addition
to the GRACE observations, additional information in the form of the stochastic
information on the temporal variability of gravity due to geophysical processes is
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(f) POD arc-wise variance factors for GRACE-B

Figure 6.8: Examples of estimated PSDs (left column) and arc-wise variance factors
(right column (right column)) for June 2010. The shaded areas in (b), (d)
and (f) mark a time period where GRACE-A was commanded to attitude
hold mode, resulting in anomalously large pointing variations.
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introduced for the daily gravity field solutions. The published ITSG-Grace2016 daily
gravity field solutions are determined in a separate adjustment, independently of
the monthly solutions. This process is based on Kalman filtering as described by
Kurtenbach, 2011, and is not presented here. A more detailed description will be given
in the upcoming dissertation of Andreas Kvas, expected to be released in 2019.

6.6.1 High Degree Monthly Gravity Fields

To determine a monthly gravity field solution, observation equations are set up for the
parameters listed in table 6.2, including all monthly Stokes coefficients up to degree
and order 120. This is done for all observation groups, ll-SST KBR observations, and
hl-SST POD observations for both GRACE-A and GRACE-B. The observation equations
are decorrelated with the stochastic model derived in section 6.5, and then accumulated
into a normal equation system.

Figure 6.9 illustrates the ordering of the parameters in the normal equation system,
and shows the blocks containing correlations between the parameter groups. For the
monthly solutions, ultimately only the monthly Stokes coefficients are of interest. To
this end, all other parameters are eliminated from the normal equation system before
determining its solution, as described in section 2.4. An efficient algorithm to perform
this elimination specifically in the context of the ITSG-Grace2016 gravity field solution
is described by Kvas (2014).

Figure 6.10 shows two gravity field solutions. The lower degree solution, determined
up to D/O 60, is the solution determined in the estimation of the stochastic model, as
described in section 6.5. The D/O 120 solution is the complete monthly solution as
described here. The degree amplitudes of the two solutions are nearly identical up
to D/O 30, where short-term temporal variations in the gravity field dominate the
recovered signal. Above D/O 40, the lower degree solution shows a lower amplitude.
This effect can be observed in all low-degree solutions. It is due to the truncation of the
spherical harmonics expansion at too low a degree, which constrains the associated
solution space and results in aliasing or leakage of unresolved signal into the solved-for
Stokes coefficients (Sneeuw, 2000).

6.6.2 Lower Degree Solutions

The normal equation system for the D/O 120 solution, where all parameters but
the monthly Stokes coefficients were eliminated, is reused to compute both the final
D/O 90 and D/O 60 solution by simple truncation. First, all parameters for Stokes
coefficients from degree 91 and order 0 to D/O 120 are cut from the normal equation
system, not using the parameter elimination algorithm mentioned in section 6.6.1. The
normal equation system is then solved, giving a monthly gravity field up to D/O 90.
The process is repeated, truncating the Stokes coefficients from degree 61 and order 0
to D/O 90, then again solving the remaining system to determine a D/O 60 solution.
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Satellite Parameters

Inter-group correlations

Figure 6.9: Symbolic illustration of the normal equation structure of an
ITSG-Grace2016 monthly gravity field solution. Only the upper triangle is
stored, as the normal equation matrix is symmetric. The individual blocks
are not to scale.
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Figure 6.10: Degree Amplitude plot for June 2010. The pictured low degree and order
field is a by-product of determining the stochastic model of the
observables. The high degree and order field is the final product for this
month.
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Numerical Optimization in Orbit
Integration 7

Attribution This chapter, as well as chapter 5 of this thesis focusing on the
variational equations and dynamic orbit integration, are an extended version of a
previous publication by the author: Ellmer and Mayer-Gürr, 2017. Specifically, this
chapter reproduces and expands on sections 3.6 to 5 of Ellmer and Mayer-Gürr,
2017. The content of this chapter is the result of original research carried out by
the author of this thesis. Section 7.2.3 does not appear in Ellmer and Mayer-Gürr,
2017, and is first published in this work.

Dynamic orbits are an integral part of determining a gravitational field using the
variational equations. All forces that are known a priori, both from reference models
and from direct observations, are encapsulated in the integrated positions and velocities
of the GRACE satellites along their respective orbit arcs. The use of dynamic orbit
positions to determine the accelerations due to conservative forces however means that
dynamic orbit integration for GRACE must be an iterative procedure.

Only when positions, velocities, and accelerations derived from an integrated dynamic
orbit equal those used in its computation can one say that an equilibrium state has
been reached. The dynamic orbit can then be described as self-consistent. Using a
dynamic orbit as input for the orbit integration routine must then result in the same
dynamic orbit as output. Any difference in the positions from the input orbit to the
result can be regarded as either a defect in the orbit integration algorithm, a defect in
its implementation, or as a manifestation of insufficient convergence.

This chapter details an approach to characterize the quality and analyse the conver-
gence of the dynamic orbit integration described in chapter 5. Building on this result,
the improved algorithm used in ITSG-Grace2016 will be presented. The improved
algorithm ensures self-consistency of the dynamic orbits at a level that allows for
consistent processing of data from the GRACE-FO laser ranging interferometer (LRI),
which is expected to surpass the accuracy provided by the GRACE KBR instrument
(Sheard et al., 2012).

7.1 Quality of Convergence

For real data processing, such as in the context of GRACE, the true position of the
spacecraft is unknown. The obvious path for a quality check on orbit determination, the
computation of position differences to some absolute ground truth, is thus not available.
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Use can however be made of the iterative nature of the dynamic orbit integration.
An alternative quality check can be derived from the position corrections applied at
each iteration l to give the new positions at iteration l + 1. These are the ∆rε from
eq. (5.2.26). Given a perfect dynamic orbit integration process consisting of a correct
orbit integration implementation and error-free data, it is expected that the ∆rε must
grow smaller with each iteration. The integrated dynamic orbit approaches the true
satellite orbit, and the difference between subsequent iterations of orbits must thus
vanish:

lim
l→∞

∆rε = 0 . (7.1.1)

For all practical considerations, constraints such as flawed algorithms or the limited
precision of computations set a lower bound for the achievable repeatability of the
orbit integration. This precludes the differences in eq. (7.1.1) from disappearing entirely.
Instead, even as more iterations of computation are performed, the differences ∆rε

stop to grow smaller after some computational threshold is reached. This convergence
limit can be used as a benchmark to test the quality of orbit determination strategies
both amongst different implementation and on their own merit, always given the same
input data. The better the algorithm is designed and implemented, the smaller the
ultimate limit of the position differences becomes.

Figure 7.1 shows the convergence in terms of ∆rε for 100 iterations of computation,
based on simulated data. The exact specifications of the simulation are given later in
section 7.3. At this point the magnitude of the remaining variability between iterations
is of primary interest. It can be clearly seen that even after convergence, ∆rε does not
drop much below 10 µm. As the expected ranging accuracy of the GRACE-FO LRI
is expected to be smaller than 100 nm (Heinzel et al., 2012), it is worth investigating
avenues to improve on this result.
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Figure 7.1: Unsatisfying convergence of dynamic orbit integration after several
iterations l, expressed as the RMS of ‖∆rε‖. From simulated data.
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7.2 Improved Algorithm

An especially challenging aspect of the integration procedure presented in chapter 5 is
the retention of full numerical precision in the determination of the integrated positions
and velocities of eqs. (5.2.3) and (5.2.4). For longer arc lengths the numeric values of
especially the integrated positions rint

ε can become very large. As these integrals are
accumulated, the numerical resolution of a standard double precision floating point
number can cease to be sufficient to hold all of the necessary information, leading to a
loss of precision in the least significant digits.

One promising approach to regaining this precision is to split the integral into two
parts: The first part is numerically large, and should be solved analytically. The second
part of the integral should be smaller in magnitude, and is integrated numerically.
This can be seen as a more general formulation of the well-known Encke method for
perturbed orbit propagation (Encke, 1852), which was also independently developed
by Bond (Bond, 1849). Writing the larger part of the integral to be due to a reference
force f0(τ), and the smaller due to a perturbing force ∆f (τ), the acceleration due to
their sum is the full acceleration

r̈(τ) = f (τ) = f0(τ) + ∆f (τ) . (7.2.1)

Equivalently to the original equation of motion, this partitioned equation can also
be integrated. The reference acceleration is, along with its integrals, equivalent to
eqs. (5.1.6) to (5.1.8):

r̈ref(τ) = f0(τ) (7.2.2)

ṙref(τ) = ṙref,0 + T
∫ τ

0
f0(τ

′)dτ′ (7.2.3)

rref(τ) = rref,0 + ṙref,0(τT) + T2
∫ τ

0
(τ − τ′)f0(τ

′)dτ′ . (7.2.4)

In these equations, the initial values of the reference motion

yref,0 =

[
rref,0

ṙref,0

]
(7.2.5)

appear. The reference force f0 should be chosen in such a way that the integrals in
eqs. (7.2.2) to (7.2.4) have analytical solutions. Computing the complete integrals of
both the reference force and accelerations due to perturbing forces gives the true
motion of the spacecraft, defined by

r̈(τ) = f0(τ) + ∆f (τ) , (7.2.6)

r(τ) = ṙ0 + T
∫ τ

0

[
f0(τ

′) + ∆f (τ′)
]

dτ′ , (7.2.7)

r(τ) = r0 + ṙ0(τT) + T2
∫ τ

0
(τ − τ′)

[
f0(τ

′) + ∆f (τ′)
]

dτ′ . (7.2.8)
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Here, the original initial state y0 appears. The difference between the true motion and
the reference motion is given by the Encke vectors ∆r̈, ∆ṙ, and ∆r. Using eqs. (7.2.2)
to (7.2.4) for the true motion and eqs. (7.2.6) to (7.2.8) for the reference motion they
are

∆r̈(τ) = r̈(τ)− r̈ref(τ) = ∆f (τ) , (7.2.9)

∆ṙ(τ) = ṙ(τ)− ṙref(τ) = ∆ṙ0 + T
∫ τ

0
∆f (τ′)dτ′ , (7.2.10)

∆r(τ) = r(τ)− rref(τ) = ∆r0 + ∆ṙ0(τT) + T2
∫ τ

0
(τ − τ′)∆f (τ′)dτ′ . (7.2.11)

The vectors ∆ṙ0 = ṙ0 − ṙref,0 and ∆r0 = r0 − rref,0 are the differential initial state
between the reference motion and the true motion. This formulation is now very similar
to the original integration problem treated in chapter 5, with only two differences to
be found: First, the original initial values of the true motion y0 are replaced by the
differential initial values

∆y0 =

[
∆r0

∆ṙ0

]
. (7.2.12)

Second, the full force f (τ) is replaced by the disturbing force ∆f (τ). This system can
be solved with only minor adjustments to the algorithm presented in chapter 5. The
complete steps are as follows:

1. Select a reference force f0 with an associated analytically determinable reference
trajectory. Compute rref and ṙref for the entire orbit arc. Compute the disturbing
forces ∆f at the approximate position rε according to eq. (7.2.1).

2. Following eqs. (5.2.12) and (5.2.13), compute the integrated Encke position and
velocity

∆rint
ε =Kr∆r̈ε . (7.2.13)

3. With Φ̄r as in eq. (5.2.7), solve the system

rε − rref − ∆rint
ε = Φ̄r∆y0 (7.2.14)

to compute an estimate of the differential state ∆ŷ0.
4. In analogy to eq. (5.2.25), the estimated coordinate difference to the true position

is

∆rε = [I −KrT ]
−1
[
Φ̄r∆ŷ0 + ∆rint

ε + rref − rε

]
. (7.2.15)

5. Compute Φr, Φṙ, and Φr̈ according to eqs. (5.2.30), (5.2.33) and (5.2.36).
6. Following eq. (5.2.37), use ∆rε to correct the accelerations due to the disturbing

forces

∆r̈c = ∆r̈ε + T∆rε . (7.2.16)
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7. Integrate the corrected accelerations as in eqs. (5.2.38) and (5.2.39) with

∆ṙint
c =Kṙ∆r̈c , (7.2.17)

∆rint
c =Kr∆r̈c , (7.2.18)

and, similar to eq. (5.2.40), compute a new estimate ∆ŷ0 of the differential state
from

rε − rref − ∆rint
c = Φr∆y0 . (7.2.19)

8. Compute the final dynamic orbit as in eqs. (5.2.41) and (5.2.42) with

ṙ = ṙref + Φṙ∆ŷ0 + ∆ṙint
c (7.2.20)

r = rref + Φr∆ŷ0 + ∆rint
c (7.2.21)

This is a general formulation of what could be termed a reduced initial value approach to
dynamic orbit determination.

7.2.1 Reference Motion

These derivations are fully independent of the choice of reference force f0. The only
prerequisite is that the equation of motion due to the reference force should be
analytically solvable. If this condition were not fulfilled, the given formulations would
still hold, but the numerical advantages attributed to the method might disappear. If,
for example, one were to choose f0(τ) = 0 and ∆y0 = y0, the approach would simplify
into the same apparatus as presented in sections 5.2.1 to 5.2.4. In this case, the reference
motion is a linear unperturbed motion through space, tangent to the satellite orbit at
the first epoch. The classical choice for an analytically solvable reference motion is the
Kepler ellipse, with the reference force that of a point-like or spherical Earth, or more
generally the acceleration due to the central term of a more complex gravitational
potential:

f0(τ) = −GM
r(τ)

‖r(τ)‖3 (7.2.22)

In his work on the perturbation of planets, Encke suggests to compute the perturbed
orbit relative to such a Keplerian reference motion (Encke, 1852, 1857). Encke defines
the ellipse by requiring that the position and velocity at the first epoch of the reference
trajectory are identical to that of the perturbed orbit at the first epoch, or

rref,0 = rε(0) and ṙref,0 = ṙε(0) . (7.2.23)

Such an ellipse is termed an osculating ellipse. Setting the reference motion to an
osculating ellipse has the undesirable effect that the reference motion and the per-
turbed orbit will diverge significantly, usually after only a short period of integration.
This leads to the integrals of the perturbing accelerations in eqs. (7.2.10) and (7.2.11)
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becoming large again, and in consequence to the loss of any numerical advantages
attributed to the method.

The separation of the reference motion and the perturbed motion is commonly quanti-
fied in the Encke ratio

ε =
‖∆r‖
‖r‖ , (7.2.24)

the ratio of the magnitude of the Encke vector in relation to the magnitude of the
position vector. A large Encke ratio indicates a relatively speaking large numerical inte-
grand, and consequently the loss of the numerical precision associated with the Encke
method. Lundberg, Bettadpur, and Eanes (2000) state that the general recommendation
is to aim for ε < 1 %.

The general approach to treating large Encke ratios ε is rectification. Rectification
means that the integration is interrupted at a certain epoch and then continued from
there using a newly defined reference trajectory. In essence, this implies restarting the
orbit integrator with new initial values, which are defined by the last epoch of the
previous integration arc. This entails possibly negative effects on precision of the orbit
arc (Milani and Nobili, 1987). The new trajectory will however again have a small ε, at
least for some time until the deviation of the new reference trajectory from the true
trajectory starts to grow again.

The first efforts to reduce the Encke ratio for long arc orbit determination, or dynamic
orbit integration in general, were based on the premise of considering the secular terms
induced in the satellite motion by Earth’s oblateness in the reference force (Escobal,
1966; Kyner and Bennett, 1966). Closed equations exist for such a trajectory. The drift
induced by Earth’s oblateness in some of the Kepler elements, notably the argument of
perigee and the right ascension of the ascending node, contribute significantly to the
deviation of the reference trajectory from the true trajectory, especially for longer arc
lengths. Liu and Hu (1997) later focused on considering higher order terms of Earth’s
potential, as well as higher-order secular terms, in the reference force. Lundberg,
Bettadpur, and Eanes (2000) developed a long arc model that allows general variations
in all six orbital elements, mentioning successful results with Encke ratios on the order
of 10 % to 20 %. All of these studies have in common that they consider medium to
high orbiting laser ranging satellites like the laser geodynamics satellite (LAGEOS)
(Liu and Hu, 1997; Lundberg, Bettadpur, and Eanes, 2000; Lundberg, Schutz, et al.,
1990) or the Satellite de Taille Adaptée avec Réflecteurs Laser pour les Etudes de la Terre
(STARLETTE) (Lundberg, Bettadpur, and Eanes, 2000). The arc lengths considered in
these works are on the order of multiple years or decades, not hours as is usual in
GRACE processing.

For the considered GRACE case of a low-earth orbiter with moderate arc lengths of
at most 24 h, a distinctly simpler and more elegant solution presents itself. Where
the methods mentioned above consider ever-more precise refinements of the refer-
ence force, the initial parameters are always kept to be those of an osculating ellipse
for the reference epoch. For GRACE, a mean static Kepler ellipse, with no temporal
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modification of the Kepler parameters due to higher order terms or external perturba-
tions proofs completely sufficient. Instead, the choice of the initial parameters of the
reference orbit yref,0 is reconsidered.

To formulate a constraint for the initial state of the reference orbit, consider that the
Encke ratio ε(τ) is small if the Encke vector ∆r(τ) is small. The goal must thus be to
minimize the magnitude of the Encke vectors over the whole arc. This can be written
as

N

∑
n=0
‖∆r(τn)‖2 → min . (7.2.25)

Knowing that the hypothetical true position of the spacecraft is arrived at by taking
the sum of the reference position as a function of its initial values and the Encke vector,
these positions can be written as

r = rref(yref,0) + ∆r . (7.2.26)

Recognizing eq. (7.2.25) as the minimisation criteria of a classical least squares ad-
justment, eq. (7.2.26) can be solved in a least squares sense. To this end, the Encke
vector ∆r is treated as if it represented the residuals e of the least squares fit. The true
positions are however not available, instead the approximate positions are used as
observations for the spacecraft state at each epoch, giving

rε = rref(yref,0) + e . (7.2.27)

This finds the initial values of the reference ellipse

ŷref,0 =

[
r̂ref,0
ˆ̇rref,0

]
(7.2.28)

that lead to the minimal square sum ∆rT∆r, fulfilling the condition in eq. (7.2.25). The
resulting differential initial values are then

∆y0 = y0 − ŷref,0 =

[
r0

ṙ0

]
−
[
r̂ref,0
ˆ̇rref,0

]
. (7.2.29)

As ∆rT∆r is minimized and the Encke ratio is by definition positive, the solution ŷref,0
also minimizes the sum of all Encke ratios over the complete orbit arc. Figure 7.2
illustrates this optimized best-fit reference ellipse.

[r0, ṙ0]

∆y0

Osculating

Best-fit

Figure 7.2: Osculating ellipse (in pink) and best-fit ellipse (in green).
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7.2.2 Parametrization of Reference Motion

Traditionally, an orbital ellipse in a spherically symmetric potential is parametrised
using Kepler parameters

ξ =
[

a e I ω Ω M
]T

. (7.2.30)

Numerical tests have shown that this parametrisation for the reference trajectory is not
sufficiently stable when using standard double precision arithmetic. This statement
is supported by the results later presented in section 7.3.2. This instability could
potentially be remedied by computing all parameters relating to the reference trajectory
in quadruple precision arithmetic, and then converting the computed state at each
epoch to double precision for the further steps. It is undesirable to port the complete
orbit integration algorithm to quadruple precision arithmetic, as this is sure to lead to
significant performance penalties, with expected slowdowns on the order of a factor of
5 to 10 (Bailey and Borwein, 2015).

Another solution is to parametrise the reference motion with a more stable set of
orbital elements. Here, the equinoctial elements

ξe =
[

a h k p q λ
]T

(7.2.31)

as given in Broucke and Cefola (1972) are an attractive option. In these elements, a is the
semi-major axis of the ellipse. The elements h and k define the eccentricity and perigee
of the orbit. The elements p and q encode the inclination of the orbital plane and
the position of the ascending node. λ is the classical mean longitude. The equinoctial
elements are a non-canonical set of orbit elements, with the Poincaré elements their
canonical counterpart (Vallado and McClain, 2001). Danielson et al. (1995, Section
2.1) gives a concise but comprehensive introduction to their derivation and use. The
transformation from an equinoctial state vector to a Cartesian state vector can be
performed completely without relying on the evaluation of trigonometric functions,
making this transformation very numerically stable.

In this work all computations relating to the equinoctial elements are performed in
double precision arithmetic, with the exception of the computation of λ, the mean
longitude. This is the fast-moving variable defining the position of the satellite along
the equinoctial orbit arc. λ is computed and stored in quadruple precision. As λ is not
used in any expensive operations, the impact on overall performance is negligible. With
this parametrization and implementation, the conversion from equinoctial elements
to Cartesian coordinates shows sufficiently high stability. The results presented in
sections 7.3.3 and 7.3.4 illustrate this statement.

7.2.3 Determination of Best-Fit Orbit

To determine the best-fit Kepler ellipse from eq. (7.2.27), the partial derivatives of
the position and velocity of the satellite in the CRF w.r.t. the equinoctial elements are
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needed. This is the state transition matrix of the equinoctial elements

Φe =

[
Φe,r

Φe,ṙ

]
=




∂ r

∂ξe

∂ ṙ

∂ξe


 . (7.2.32)

Similarly to the state transition matrix Φ introduced in chapter 5, Φe describes the
change in the position and velocity of a spacecraft due to a change in the equinoctial el-
ements describing its orbit. This state transition matrix contains exactly the observation
equations needed to determine a best-fit equinoctial orbit ξ̂e that satisfies eq. (7.2.25) in
a linearised least squares adjustment.

Danielson et al. (1995) gives the derivatives needed to compute eq. (7.2.32) in a clear
and concise formalism. Beware however of wrong partial derivatives of the equinoctial
element a with regard to Cartesian position and velocity as given by Danielson et al.
(1995, section 2.1.6, eqs. 2 and 4). Comparison with Broucke and Cefola (1972) gives
the correct partials in Danielson et al.’s notation. These are

∂r

∂a
=

1
a
·
(
r− ṙ3t

2

)
and

∂ṙ

∂a
= − 1

2a
·
(
ṙ−GM

3r

‖r‖3 · t
)

. (7.2.33)

In this work, one equinoctial best-fit orbit is determined for each 24 h variational orbit
arc. It has proven unnecessary to introduce positions and velocities from all 17 280
epochs in the orbit arc as observations. Instead, only positions from up to 100 epochs
are used. The algorithm to determine the best-fit orbit is:

Select observations: Select N = 100 epochs from the orbit arc. Start with the first
epoch, then select epochs spaced at regular intervals from the remaining arc,
giving even coverage of the observations. These positions are inserted into the
observation vector

l =
[
r(τ1)

T · · · r(τN)
T
]T

(7.2.34)

Compute approximate solution: The initial guess for the best-fit equinoctial elements
ξe,0 is taken to be the osculating orbit at the first epoch.

Reduced observations: Compute the unperturbed equinoctial orbit

l0 =
[
rref(τ1)

T · · · rref(τN)
T
]T

(7.2.35)

and then ∆l = l− l0.
Observation equations: The observation equation system is

A =




∂ r(τ1)

∂ξe

...

∂ r(τN)

∂ξe



=




Φe,r(τ1)
...

Φe,r(τN)


 (7.2.36)
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Update estimate: Compute the least squares estimate ∆x̂ using ∆l and A. The up-
dated estimate for the best-fit orbit is then

ξ̂e = ξe,0 + ∆x̂ . (7.2.37)

Iterate: Until convergence is achieved. The equinoctial orbit ξ̂e is then used to deter-
mine the reference force f0 in eq. (7.2.1) and as the reference orbit in eq. (7.2.4).

7.3 Results

The following pages will give results from two separate sets of computations. The first
results, presented in sections 7.3.1 to 7.3.3 are purely from simulations and illustrate
the algorithms performance under ideal conditions. To this end, an orbit was simulated
for a single spacecraft using the GOCO05s static gravitational potential (Mayer-Gürr,
Kvas, et al., 2015). No further conservative or non-conservative forces were considered
in the orbit propagation. The static potential was expanded to degree and order 60.
The simulated orbit was computed using an in-house orbit propagator based on the
integration polynomials presented in section 2.7.

The second set of results, given in sections 7.3.4 and 7.3.5, illustrate the performance of
the algorithm for real data processing. The results were determined using real GRACE
data in the context of dynamic orbit integration for the ITSG-Grace2016 gravity field
solution.

All orbits, both for the simulation and for real data, were determined for an arc length
of 24 h at a sampling of 5 s resulting in N = 17 280 epochs. Where applicable, the
Marussi tensor T was expanded to degree and order 10.

When absolute differences between coordinates are shown, such as between iterations,
they are given for the along-track axis only. In all presented results the along-track axis
shows, in accordance to theory (Huang and Innanen, 1983), the largest errors.

7.3.1 Encke Ratio

Figure 7.3 shows the Encke ratio for the two reference ellipses described in section 7.2.1.
The first case (in pink) represents the classical Encke configuration of an osculating
reference ellipse. Here, the differential initial state is ∆y0 = 0. The ellipse is congruent
to the approximate orbit at the first epoch. The second case (in green) represents the
best-fit reference ellipse for the orbit arc as derived in section 7.2.3. Here, the initial
state is the least squares estimate ∆ŷ0.

The Encke ratio for the osculating orbit is 0 % at the start of the 24 h arc. It grows to
larger than 1 % within 1 h, finally reaching 20 % towards the end of the arc. The Encke
ratio at the final epoch corresponds to an Encke vector of 1240 km.
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Figure 7.3: Encke ratio over one orbit arc for osculating reference orbit (in pink) and
best-fit orbit (in green).

The Encke ratio for the best-fit orbit is in general much smaller, never increasing much
beyond 0.1 %. The upper bound of 1 % given by Lundberg, Bettadpur, and Eanes (2000)
is never reached. The Encke ratio shows approximately time-symmetric behaviour,
with the lowest ratio at the centre of the orbit arc, and the largest ratios at the beginning
and end. In absolute terms, the largest observed deviation of the best-fit ellipse from
the perturbed motion is 8.2 km, a reduction of 99.3 % from the osculating case.

7.3.2 Convergence

As outlined in section 7.1, the convergence of the dynamic orbit solution can be taken
as a benchmark indicating the correctness of the algorithm. To determine the number
of iterations necessary for convergence to occur, the simulated orbit was deteriorated
with Gaussian white noise. The standard deviation for the position component was set
to σr = 50 m, that for the velocity component to σṙ = 0.5 m/s.

The deteriorated orbit was inserted as the first approximate position rε into the orbit
integration routine. Then, 100 iterations of integration and correction were computed
for five configurations which differ in the choice and parametrisation of the refer-
ence trajectory. The first is a configuration with no reference motion, or f0 = 0 in
brown. The second pair consists of osculating reference ellipses, defined by ∆y0 = 0,
parametrised in either Kepler elements (pink) or equinoctial elements (purple). The
last pair represents the best-fit ellipses with ∆y0 = ∆ŷ0, also parametrised in either
Kepler elements (green) or equinoctial elements (orange). Figure 7.4 shows the root
mean square (RMS) of the corrections ∆rε applied for these five configurations in each
iteration cycle.
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Figure 7.4: Simulated data. RMS of 3D coordinate difference ‖∆rε‖ for a complete arc
after each iteration l.

For the first two iterations, no difference in convergence between the configurations is
apparent, with the changes in positions for all configurations quickly shrinking from
tens of metres to around 1 cm. The convergence behaviour starts to differ from the third
iteration. Here, the configuration with no reference acceleration (brown) can be easily
identified as the one with the worst convergence. The RMS of the corrections never
decreases below 10 µm. The two configurations using the osculating reference ellipse
and Kepler elements (pink) or equinoctial elements (purple) also exhibit comparatively
large position differences between iterations, never falling much below 10 µm. The two
configurations using a best-fit reference ellipse, either with Kepler elements (green) or
equinoctial elements (orange), show the smallest differences, reaching an equilibrium
at changes below 100 nm. All configurations have converged after four iterations,
showing no significant reduction in inter-iteration differences thereafter.

7.3.3 Absolute Differences from Simulated Data

The following results are based on the corrections ∆rε obtained after a generous
number of 80 iterations, picked at random from the available results. The exact numeric
values are only representative, as they of course change from iteration to iteration. The
spectral behaviour of the differences is however rather consistent. Figure 7.5 shows
the differences ∆r

along
ε of the in-track coordinate component for one complete day.

Figures 7.5a and 7.5b show the coordinate differences in the spatial domain at two
different scales. Figure 7.5c shows the PSDs of the coordinate differences, allowing for
interpretation of frequency-dependent patterns therein.
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(a) Spatial domain for all configurations.
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(b) Spatial domain for best-fit configurations.
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(c) Spectral domain for all configurations.

Figure 7.5: Simulated data. In-Track coordinate differences ∆r
along
ε between iterations

in both the spatial and spectral domain after convergence. The vertical grey
lines in (c) denote multiples of the orbital frequency, with the leftmost line
showing one cycle per revolution. Colours denoting the configurations are
the same as in fig. 7.4.
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In fig. 7.5a, the configuration using no reference acceleration (brown) can be identified
as the one with the largest coordinate differences. This matches the observations from
fig. 7.4. The configurations using the osculating reference ellipse (pink and purple)
also show comparatively large errors. For all configurations the magnitude of the
differences is smallest at around 8 h and 20 h, not at the beginning of the arc as might
be expected. This is due to the re-estimation of the initial state from eqs. (5.2.40)
and (7.2.19), fitting the integrated orbit to the approximate positions rε. The corrections
applied to the best-fit configurations (green and orange) can not be seen at this scale.
Figure 7.5b shows a magnification of only the best-fit cases. Here it becomes clear that
the corrections for the best-fit configuration using equinoctial elements (orange) are
smaller than those for the best-fit configuration using Kepler elements (green).

The differences and similarities between the five configurations become most clear
not in the spatial domain but when observing the PSDs of the corrections ∆r

along
ε .

The PSDs were computed using Welch’s method with a segment length of 6 h, and
are displayed in fig. 7.5c. The vertical grey lines in fig. 7.5c denote multiples of the
orbital frequency, starting at approximately one cycle per 89 min for the leftmost
line. The best-performing configuration of a best-fit reference ellipse parametrised
in equinoctial elements (orange) shows white noise behaviour at frequencies higher
than two cycles per revolution. Significantly, the magnitude of the corrections in the
high-frequency part of the spectrum is at the level of the numerical resolution of
a double precision floating point number at orbital altitude. For this configuration,
machine precision is completely exhausted here. This is not the case for the best-fit
ellipse parametrised in Kepler elements (green), which shows a consistently higher
power for all frequencies above two cycles per revolution. This clearly illustrates the
advantages of the equinoctial parametrisation over the Kepler parametrisation. Both
configurations show some residual error at very long wavelengths.

At low frequencies, the configurations based on the osculating reference orbit (pink
and purple) show much larger deviations. The corrections for these orbits at one
cycle per revolution are two orders of magnitude larger than those of the two best-fit
ellipse configurations (green and orange). At higher frequencies, the corrections of the
osculating configuration using Kepler elements (pink) asymptotically approach those
of the best-fit configuration also using Kepler elements (green). The same holds true for
the two equinoctial ellipses, with the osculating configuration (purple) almost reaching
the level of the best-fit ellipses (orange) at the Nyquist frequency. Also at higher
frequencies, the osculating configuration employing equinoctial elements (purple)
displays corrections smaller than those of the best-fit orbit with Kepler elements
(green). At very high frequencies close to the Nyquist frequency, the configurations
employing Kepler elements (pink and green) show no significant improvements over
using no reference acceleration at all (brown).

Not shown in fig. 7.5, the coordinate differences ∆rε in the cross-track and radial axes
show similar spectral behaviour. The magnitude of the differences is however smaller
by approximately two orders of magnitude.
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7.3.4 Application to real GRACE data

In addition to the simulations discussed in sections 7.3.2 and 7.3.3 the dynamic orbit
computation was also carried out with real data in the context of the ITSG-Grace2016
gravity field solutions (Klinger, Mayer-Gürr, et al., 2016; Mayer-Gürr, Behzadpour,
et al., 2016). In addition to the static GOCO05s potential, these orbits now include
accelerations due to conservative forces from several more background models (see ta-
ble 6.1 for details). Further, direct observations of accelerations due to non-conservative
forces from the GRACE accelerometers are included in the integration. The orbits are
fit to GRACE ll-SST and hl-SST observations as described in section 6.3.

Figure 7.6 shows that neither of the Kepler-parametrised configurations (pink and
green) shows any improvement over the implementation not employing a reference
acceleration (brown). For real data, the superiority of the best-fit reference trajectory is
confirmed when studying the configurations using equinoctial elements. Neither of the
equinoctial configurations (purple and orange) show the large drop in quality when
switching to real data that was observed in the Kepler-parametrised configurations
(pink and green). The increase in residual power at one cycle per revolution is still
present in all solutions, but the magnitude remains smallest for the best-fit equinoctial
configuration (orange).

Overall, the best-fit trajectory parametrised in equinoctial elements (orange) is superior
to the other configurations in the same way as could be seen in the simulated data.
The comparative impact of this improved methodology is significantly larger for real
data than could be expected from the less complex data used in the simulations of
section 7.3.3.
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Figure 7.6: Real data. In-Track coordinate differences after convergence for real
GRACE orbits. Colours denoting the configurations are the same as in
figs. 7.4 and 7.5.
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7.3.5 Propagation to Ranging Measurement

The final integrated dynamic GRACE orbits are used at many steps in gravity field
determination, as laid out in chapter 5. In eq. (6.4.58) a linearisation of the GRACE
ll-SST KBR observations is computed from the dynamic orbits using eq. (4.3.9). Here,
both orbits rA and rB for GRACE-A and GRACE-B are used. The impact of the dynamic
orbit noise on the term used to reduce the ranging measurement can be computed
from eq. (4.3.2),

ρCOM = ‖u‖ = ‖rB − rA‖ .

The norm of the position difference is

‖rB − rA‖ =
√

∆x2 + ∆y2 + ∆z2 (7.3.1)

regardless of the choice of reference frame. Let both rA and rB be given in the SRF
of either satellite, for example arbitrarily GRACE-A. Then x is approximately the
along-track, y the cross-track, and z the radial difference in position. From eq. (7.3.1),
simple error propagation gives

σ2
ρCOM

= 2

[(
∆x
‖u‖

)2

σ2
x +

(
∆y
‖u‖

)2

σ2
y +

(
∆z
‖u‖

)2

σ2
z

]
. (7.3.2)

With x being the along-track axis, the partials can be approximated with

∆x
‖u‖ ≈ 1 (7.3.3)

and

∆y
‖u‖ ≈

∆z
‖u‖ ≈ 0 . (7.3.4)

This gives the standard deviation of the derived baseline as

σρCOM =
√

2σx . (7.3.5)

The uncertainty of the orbit in the along-track axis due to the integration algorithm is
given by the PSDs displayed in fig. 7.6. After variance propagation with eq. (7.3.5), the
PSDs can directly be differentiated in the frequency domain to compute the uncertainty
of the reduction term in the range rate domain:

σρ̇COM( f ) = 2π f · σρCOM( f ) (7.3.6)

The resulting PSDs are displayed in fig. 7.7. Here, the solid black line shows an error
estimate for the GRACE KBR instrument. The dashed black line is an error estimate
for the GRACE-FO laser ranging interferometer. All tested configurations lead to a
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Figure 7.7: Real data. Propagation of orbit noise to range rate measurement ρ̇. Solid
black is a noise model for the GRACE KBR and ACC instrument noise,
Dashed black is a noise model for the GRACE-FO LRI and ACC
instruments. The other colours are the same as in figs. 7.4 to 7.6.

range-rate error smaller than the precision of the current KBR instrument on GRACE
(solid black line) across the entire frequency spectrum.

In the branch of the error spectrum that is dominated by the KBR noise, above≈10 mHz,
the accuracy of the configuration using no reference motion (brown) as well as the
uncertainty of both the Kepler configurations (pink and green) are well above the
performance estimate for the LRI (dashed black line). Both configurations using
equinoctial elements (purple and orange) are below the LRI noise level over the
complete spectrum. As could be expected, the equinoctial configuration based on the
best-fit reference ellipse (orange) also shows the lowest noise in this domain.

The KBR noise spectrum in fig. 7.7 is based on spectral analysis of real GRACE SST
residuals. The performance estimate for the LRI is based on real GRACE ACC data,
a description of the noise characteristics of the LRI (Heinzel et al., 2012), and an
optimistic assumption of a 50-fold improvement of the ranging accuracy with regard
to the KBR instrument (Flechtner, 2012).

7.4 Discussion

An improved algorithm for dynamic orbit determination was developed, paying
particular attention to its applicability to GRACE-FO data processing. The existing
methodology was refined by applying Encke’s method, directly eliminating the large
contribution of the central term of Earth’s gravitational potential on the numerically
integrated accelerations. Encke’s method was then refined in two separate ways: First,
the osculating reference ellipse proposed by Encke was replaced by a rigorously
optimized best-fit reference ellipse. Such a best-fit ellipse significantly reduces the
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uncertainty observed at low frequencies in the dynamic orbits. Complicated higher-
order or time-variable parametrizations of the reference ellipse can thus be avoided,
keeping the complexity of the implementation low. Further, the reference ellipse was
transformed from a parametrisation in classical Kepler elements to a parametrisation
in equinoctial elements. Without changing the geometry of the ellipse, this improved
the stability of the derived reference motion mainly at higher frequencies. The resulting
orbits combining both of these improvements reach machine precision at frequencies
above two cycles per orbital revolution.

The uncertainty of the original and improved dynamic orbits were compared with
the uncertainty of GRACE and GRACE-FO ll-SST ranging observations through error
propagation to the range rate domain. It was shown that the improved orbits are now
self-consistent to well below the expected precision of the GRACE-FO LRI instrument.
This represents an improvement of several orders of magnitude over previous results
achieved at IfG. Such an improvement can be important as the dynamic orbits are
used as a Taylor point in the linearisation of the observation equations for gravity field
recovery from GRACE, and later GRACE-FO. Any extraneous errors that originate
in the processing chain, and do not arise directly from the observations, should be
avoided.

The largest significance of this work can be found in the reduction of the in-track
variability between iterations by several orders of magnitude, as it is the component
with the largest influence on the GRACE ll-SST ranging observations. It is conceivable
to further reduce this error using an ensemble approach. In such an approach, the
results of each iteration after convergence would be treated as a separate realisation
of the dynamic orbit. An ensemble of such realisations could then be directly used to
compute an orbit of best agreement, possibly reducing the integration error at each
individual epoch.

The assessment of the effectiveness of the equinoctial best-fit reference ellipse presented
in this work is very specific to the GRACE orbital configuration and chosen arc length.
For the case of GRACE precession of the orbital plane during the integration period is
negligible, which ensures a consistently small Encke ratio. The method is thus directly
applicable to satellites in similar orbital configurations such as the European Space
Agency’s gravity field and steady-state ocean circulation explorer (GOCE) mission
(Drinkwater et al., 2003) or the Swarm constellation (Friis-Christensen, Lühr, and Hulot,
2006). For satellites in other orbits, or for longer arcs, the effect of nodal precession
might need to be considered. The nodal precession of the orbital plane is dependent
on the spacecraft’s inclination (Brouwer, 1959), and is smallest for polar orbits. The
Encke ratio would thus increase at a faster rate for a satellite at any other inclination
than GRACE. A better approximation of such an orbit could be made by introducing a
co-precessing ellipse, which would keep the Encke ratio smaller for longer integration
periods. Such an ellipse would also again allow for longer integration periods, as
shown by Escobal, 1966; Kyner and Bennett, 1966. Jezewski (1983a,b) gives an analytical
solution for such a reference motion, where the precession of the ellipse is due to
Earth’s oblateness.
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Importantly, this method improves only on the processing of the data, leading to a
dynamic orbit that is more compatible with the observations and models used in its
integration. The method is not able to compensate for deficiencies in the input data.
Given noisy accelerometer data or imperfect background models, application of this
method would not lead to dynamic orbits that are necessarily closer to the true position
of the spacecraft, but merely fit the noisy observations and models better.

Spectral analysis of orbit differences from real GRACE data after convergence shows
that some extraneous oscillations remain in the orbits. These oscillations are largest
at frequencies at or below one cycle per revolution. They can also be attributed to
the static nature of the employed reference ellipse. The presented results are however
satisfactory for applications in GRACE processing. For this use, the critical part of the
error spectrum begins only at much higher frequencies, where stability better than that
expected of the GRACE-FO LRI instrument was achieved (cf. fig. 7.7).

The applicability of the often suggested method of rectifying the reference orbit to
GRACE dynamic orbit integration is uncertain. Continuous orbit arcs are of high
desirability in the context of integrating the variational equations and dynamic orbits,
as the number of satellite states to be estimated is kept low. Milani and Nobili (1987)
give a refined algorithm for an orbit rectification method which can be used without
restarting the integration procedure and thus introducing a new satellite state at that
epoch. In the integration method presented in this text, the state transition matrix of
the variational equations is modified using corrections computed from the Marussi
tensor. Given this circumstance, it is not immediately clear how the method outlined
by Milani and Nobili can be applied to the presented modified Encke approach.
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Star Camera Observations and
Uncertainties 8
In the processing strategy employed for ITSG-Grace2016, an accurate stochastic model
is indispensable to determining a high-quality gravity field solution. In the regime
used to estimate the stochastic model, which was described in section 6.5, the complete
noise spectrum for the ll-SST observations was modelled as resulting from exactly one
stationary process. The estimated covariance function was subsequently scaled by an
arc-wise variance factor. This scaling equally affects all time lags of the covariance func-
tion, or equivalently all frequencies of the PSD. It does not change the assumption of
stationarity within one arc, but only scales the variance of the stationary process. These
arc-wise variance factors, in effect, can be regarded as a fudge factor for unmodelled
variations in the observation noise.

Analysis of the arc-wise variance factors for ITSG-Grace2016 has shown that they are
at times correlated with the magnitude and change of the satellite pointing angles with
respect to the line of sight frame. The magnitude of these angles maps directly into
the magnitude of the antenna offset correction. As the satellites are subject to active
steering and pointing variations due to environmental effects, the variance in the AOC
over one month of observations, or even one arc, can decidedly not be regarded as the
result of a stationary process.

This chapter introduces an additional non-stationary stochastic model for the antenna
offset correction. This new AOC stochastic model is derived from the full orientation
covariance matrices obtained in the improved sensor fusion described in section 6.2.
The impact of introducing this a priori information on the non-stationary AOC noise
alongside the estimated stationary stochastic model (see section 6.5) is analysed. The
combined stochastic models are used to estimate a time series of GRACE monthly
gravity field solutions, based on the ITSG-Grace2016 processing chain. The focus in
the analysis will not be on the gravity field solutions themselves, but on the stochastic
model and post-fit residuals in the ll-SST observable. The impact on the estimated
Stokes coefficients will be analysed in chapter 9, together with the gravity field solutions
estimated therein.

8.1 The Antenna Offset Correction in the ll-SST
Observation Equation

The antenna offset correction is one of many corrections applied to the ll-SST KBR
observations. The reduced observation vector for the low-low satellite-to-satellite
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tracking observable (see eq. (6.4.58)) can be condensed to

∆lsst = ρ̇sst + ∆ρ̇AOC + e (8.1.1)

with ρ̇sst the reduced range rate

ρ̇sst = ρ̇KBR + ∆ρ̇TOF + ∆ρ̇Iono − ρ̇COM . (8.1.2)

Before, only one stochastic model was estimated for the ll-SST observations under the
assumption of stationarity. A priori knowledge of the spacecraft orientation uncertain-
ties can be exploited to separate the noise due to the non-stationary AOC process from
the remaining noise. The remaining noise sources will continue to be treated under the
assumption of stationarity.

In effect, the stochastic model will be

ˆ̇ρsst = ρ̇sst + êsst , êsst ∼ N (0, Σsst) (8.1.3)

∆ ˆ̇ρAOC = ∆ρ̇AOC + êAOC , êAOC ∼ N (0, Σ∆ρ̇AOC) (8.1.4)

with Σsst determined through VCE as discussed in section 6.5, and Σ∆ρ̇AOC to be
discussed in the following sections. The complete stochastic model for the reduced
observations ∆lsst is obtained through variance propagation as

Σll = Σsst + Σ∆ρ̇AOC . (8.1.5)

8.1.1 Uncertainties in Computing the Antenna Offset Correction

As discussed in section 6.2, the adapted ITSG-Grace2016 sensor fusion algorithm gives
complete variance-covariance matrices for the orientation of the GRACE satellites. Let
these be Σ̂A

α̂α̂ for GRACE-A and Σ̂B
α̂α̂ for GRACE-B. These covariances represent the

uncertainty of the small angle rotation from the nominal orientation of the satellite to
the observed instantaneous orientation. This is the rotation R̃α from eq. (6.2.4).

For one epoch, the AOC as given in eq. (4.3.6) can be approximated through

∆ρAOC = 〈RAcA, e〉+ 〈RBcB, e〉 , (8.1.6)

where Rs, s ∈ A, B is the observed rotation from the SRF to the CRF, R̃SRF
CRF, for that

satellite. The APC vectors are given in the SRF, the satellite baseline e in the CRF.
Rewriting eq. (8.1.6), the AOC can also be expressed in terms of the three-dimensional
opening angle β between the APC vector and the satellite baseline:

∆ρAOC = ‖cA‖ · cos βA + ‖cB‖ cos ·βB , βs = arccos
〈

1
‖cs‖

Rscs, e
〉

. (8.1.7)

The opening angle for GRACE-A is visualized in fig. 8.1. This formulation is useful to
keep in mind as, due to the small values of β, the opening angle can often be used as a
proxy for the magnitude of the AOC that is intuitive to conceptualize and classify.
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Figure 8.1: Opening angle for GRACE-A antenna phase centre vector.

In theory, all quantities involved in the computation of the AOC are subject to some
uncertainty. The uncertainty of the spacecraft orientation is known to some extent from
the SCA/ACC sensor fusion, but as this fusion is based on a priori assumptions on the
noise of the SCA and ACC observables, it can only be regarded as an approximation
of the true uncertainties. The APC vectors cA and cB are determined through in-orbit
calibration manoeuvres, and as such can not be expected to be error-free. Similarly,
the baseline e is determined from the integrated dynamic orbits, and is certain to not
represent the true relative positions of the satellites.

The remainder of this chapter will focus on the uncertainty in the satellite orientation
and its consideration in the gravity field adjustment, based on the formulation given
in eq. (8.1.6).

8.1.2 AOC Covariance From Sensor Fusion

The AOC as described in eq. (8.1.6) is a sum of two identical component summands,
with only the rotation and APC vector specific to each satellite. It is thus sufficient to
investigate variance propagation for only one summand, as the result for the other
is then trivially obtained through substitution of these two quantities. To make this
derivation easier to follow, the APC vector c and the satellite baseline e will be
subscripted with the coordinate system they are given in. The contribution to the AOC
for one satellite is

∆ρs
AOC =

〈
R̃SRF

CRFcSRF, eCRF

〉

=
(
R̃SRF

CRFcSRF

)T
eCRF

= cTSRF

(
R̃SRF

CRF

)T
eCRF . (8.1.8)

The SCA/ACC sensor fusion gives uncertainties for small angle rotations in the SRF,
but the rotary R̃SRF

CRF is a large rotation. So for variance propagation purposes, a suitable
transformation is needed. To this end, a similar decomposition of the rotation as used
in eq. (6.2.5) is employed, with

R̃SRF
CRF = RNOM

CRF R̃
SRF
NOM . (8.1.9)
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Here, RNOM
CRF is the rotation to the CRF from the nominal orientation of the spacecraft

as described in section 4.3, with the KBR antenna pointing to the other spacecraft.
This rotary is computed from the satellite orbits and the calibrated APC coordinates
and is assumed to be error-free. The remaining rotation R̃SRF

NOM from the SRF to the
nominal orientation is the inverse of the small-angle Euler rotation sequence described
in eqs. (6.2.4) and (6.2.5):

R̃SRF
NOM = R̃T

α (8.1.10)

This is the rotation for which the covariance matrix was determined in the sensor
fusion algorithm of section 6.2. Substituting these rotations in eq. (8.1.8) gives

∆ρs
AOC = cTSRF

(
RNOM

CRF R̃
SRF
NOM

)T
eCRF

= cTSRF

(
R̃SRF

NOM

)T (
RNOM

CRF

)T
eCRF

= cTSRFR̃
NOM
SRF RCRF

NOMeCRF . (8.1.11)

The rightmost product in eq. (8.1.11), RCRF
NOMeCRF, is the satellite baseline expressed in

the nominal orientation of the spacecraft. There is no need to explicitly calculate this
vector, though, as by definition it is exactly the direction of the APC vector expressed
in the SRF, as illustrated in fig. 8.2. In other words, the satellite baseline in the nominal
orientation is

RCRF
NOMeCRF =

cSRF

‖cSRF‖
. (8.1.12)

Inserting into eq. (8.1.11) then gives

∆ρs
AOC =

1
‖cSRF‖

· cTSRFR̃
NOM
SRF cSRF , (8.1.13)

and finally, using eq. (8.1.10)

∆ρs
AOC =

1
‖cSRF‖

· cTSRFR̃αcSRF . (8.1.14)

The partial derivative of the AOC w.r.t. the small angle rotations α is then, via the
chain rule

∂ ∆ρs
AOC

∂α
=

∂ ∆ρs
AOC

∂ vec
(
R̃α
) ∂ vec

(
R̃α
)

∂α
. (8.1.15)

With the APC vector c now understood to be given in the SRF, and using the ordering
for matrix derivatives as described in eq. (2.1.7), the first partial is

∂ ∆ρs
AOC

∂ vec
(
R̃α
) =

1
‖c‖ · c

T ⊗ cT

=
1
‖c‖ ·

[
cxcx cxcy cxcz cycx cycy cycz czcx czcy czcz

]
.

(8.1.16)

Chapter 8 Star Camera Observations and Uncertainties102



GRACE-A
GRACE-B

zSRF

xSRF
eNOM

cA

Figure 8.2: Orientation of spacecraft in nominal attitude with APC vector

The second partial depends on the chosen Euler sequence used to represent the small-
angle rotation R̃α. After analytically forming the complete rotary as described in
eq. (6.2.5), partials w.r.t. to roll, pitch, and yaw are taken. For the Euler sequence from
eq. (6.2.5) used here, these can for example be found in Diebel, 2006, section 8.11. For
the individual Euler rotations, the derivatives are

∂ R̃α
∂roll

=




0 spitchcrollcyaw − srollsyaw spitchsrollcyaw + syawcroll

0 −spitchsyawcroll − srollcyaw −spitchsrollsyaw + crollcyaw

0 −cpitchcroll −srollcpitch


 , (8.1.17)

∂ R̃α
∂pitch

=



−spitchcyaw srollcpitchcyaw −cpitchcrollcyaw

spitchsyaw −srollsyawcpitch syawcpitchcroll

cpitch spitchsroll −spitchcroll


 , (8.1.18)

∂ R̃α
∂yaw

=



−syawcpitch −spitchsrollsyaw + crollcyaw spitchsyawcroll + srollcyaw

−cpitchcyaw −spitchsrollcyaw − syawcroll spitchcrollcyaw − srollsyaw

0 0 0


 ,

(8.1.19)

with sroll = sin(roll), croll = cos(roll), and equivalently for pitch and yaw. Using the
correct ordering, the full matrix-vector derivative is

∂ vec
(
R̃α
)

∂α
=




0 −spitchcyaw −syawcpitch

0 spitchsyaw −cpitchcyaw

0 cpitch 0
spitchcrollcyaw − srollsyaw srollcpitchcyaw −spitchsrollsyaw + crollcyaw

−spitchsyawcroll − srollcyaw −srollsyawcpitch −spitchsrollcyaw − syawcroll

−cpitchcroll spitchsroll 0
spitchsrollcyaw + syawcroll −cpitchcrollcyaw spitchsyawcroll + srollcyaw

−spitchsrollsyaw + crollcyaw syawcpitchcroll spitchcrollcyaw − srollsyaw

−srollcpitch −spitchcroll 0




.

(8.1.20)
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With these derivatives, the variance of the satellite orientation observation from the
SCA/ACC sensor fusion can be propagated to the AOC for one spacecraft. As the
AOC at one epoch only depends on the orientation at that epoch, the matrix of partials
is block diagonal, with

F s
α =




∂ ∆ρs
AOC(τ1)

∂α(τ1)
0

. . .

0 ∂ ∆ρs
AOC(τN)

∂α(τN)




N×3N

. (8.1.21)

With ∆ρ̇AOC = ∂ ∆ρAOC/∂τ the full AOC covariance matrix in the range rate domain for
one spacecraft is

Σs
∆ρ̇AOC

= DF s
αΣ̂

s
α̂α̂ (DF

s
α)

T , (8.1.22)

with D the polynomial differentiation matrix from eq. (6.4.56). The complete AOC
covariance matrix considering the influence of both GRACE-A and GRACE-B is

Σ∆ρ̇AOC = ΣA
∆ρ̇AOC

+ ΣB
∆ρ̇AOC

. (8.1.23)

Figure 8.3 shows the AOC covariance matrices due to the orientation uncertainty
together with the Toeplitz covariance matrix constructed from the estimated covariance
function for one short arc in June 2010. In ITSG-Grace2016, this is arc 134 of the month,
containing data from 13:35:45 UTC to 16:35:40 UTC on June 17, 2018. Figures 8.3b
and 8.3c show that the overall magnitude of the AOC covariance matrices is much
smaller than that of the Toeplitz covariance matrix, displayed in fig. 8.3a. Figures 8.3d
and 8.3e show magnified views of the AOC covariance matrices. Due to blinding by
the sun or the moon, there are times when only one SCA head is active and considered
in the sensor fusion. These times are marked in red in the margins of the matrix plots.
They correspond well to larger variances on the off-diagonal elements of the covariance
matrices.

During this arc, at around 15:00:00, GRACE-A was commanded to attitude hold mode.
Due to the deteriorated pointing accuracy, the opening angle βA for GRACE-A starts
to increase. This can be observed in the increased magnitude of the AOC covariance
matrix in fig. 8.3b. The effect is much clearer when focusing only on the main diagonal
elements of the covariance matrices, as displayed in fig. 8.4. Here, the relation of the
increased opening angle and the increase in the propagated standard deviation σ for
GRACE-A (in green) can be clearly seen. Note that the standard deviation is given on
a logarithmic scale. The increase in opening angle for GRACE-A by a factor of ≈2 to
≈3 leads to an increase in the AOC standard deviation for GRACE-A of approximately
one order of magnitude. The main diagonal elements of the AOC covariance matrix
for GRACE-A (in green) are however still smaller than those of the Toeplitz matrix (in
blue). The timing of the increase in opening angle corresponds to the beginning of the
increase in the arc-wise variance factors previously observed in fig. 6.8.
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Figure 8.3: Full temporal covariance matrices in the range-rate domain for one short
arc in June 2010. (a) shows the estimated Toeplitz matrix due to the
assumed stationary noise component. (b) and (c) show the covariances due
to orientation uncertainty in the AOC at the same scale. (d) and (e) show a
magnified view of the AOC covariance matrices. Here, periods where only
one SCA head was active on the respective spacecraft are marked in red.
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Figure 8.4: Square root of main diagonal elements of covariance matrices in fig. 8.3, σ,
and opening angle β for both spacecraft. In the top panel, the blue line
shows the zero time-lag variance factor of the estimated stationary
covariance function. The main diagonal of the AOC covariance matrix due
to GRACE-A is shown in green, and that of the covariance matrix due to
GRACE-B in orange. The bottom panel shows the opening angle β for the
two satellites in the same colours. The darker shaded area indicates the
nominal active steering deadband.

8.2 Updated Stochastic Model

Having obtained detailed knowledge of the structure of the AOC covariance ma-
trix, this information can be taken into consideration in defining and estimating the
stochastic model for the ll-SST observation equations, as outlined in eq. (8.1.5). The
stochastic model defined in eq. (6.5.18) is extended with the AOC covariance matrices
for GRACE-A and GRACE-B to give

Σm
ll = σ2

m ·
Nm−1

∑
n=0

Cn
xx · Vn + σ2

AOC,AΣA
∆ρ̇AOC

+ σ2
AOC,BΣB

∆ρ̇AOC
(8.2.1)

The variance propagation from the orientation uncertainty to the AOC was performed
independently for each spacecraft, and for each short arc. The covariance matrices are
then introduced into the stochastic model as cofactor matrices. This extends the model
defined by the purely stationary process described by eq. (6.5.18) with information
on the non-stationary behaviour of the AOC noise. To allow for imperfections in the
result of the SCA/ACC sensor fusion algorithm, one additional variance factor σ2

AOC,s
was estimated per spacecraft s ∈ [A, B], per month. As the propagation of variances
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from the orientation uncertainty to the AOC is purely linear, this variance factor can
also be taken to represent a scaling of the uncertainty in the satellite orientation, as
obtained from the SCA/ACC sensor fusion.

The estimation of the ll-SST covariance function as described in section 6.5 remains
unchanged, with one variance factor per time lag. The total number of estimated
variance factors for all ll-SST observations in one month is thus: Nmax = 2160 variance
factors, one for for each time lag (3 h arcs at 5 s sampling); M = 248 arc-wise variance
factors (31 days with eight 3 h arcs each); and 2 additional variance factors for the AOC
covariance matrices.

8.3 Results

The GRACE time series was reprocessed with the updated stochastic model described
in the previous sections. For some months, especially in 2002, this was not possible
due to issues with the release 2.0 level 1B data. In December 2002, for example, the
sca id field in the SCA1B data file is set to the value 5, which is not defined in the
level 1B user documentation (Case, Kruizinga, and Wu, 2010). As this is the flag that
describes which SCA heads were used in the determination of the satellite attitude
no meaningful AOC covariance can be computed for this period. These months were
thus excluded from further analysis. In total, 152 monthly solutions were processed
spanning the period from February 2003 to June 2017.

The following sections will give an overview of the AOC covariance matrices’ impact on
several aspects of the stochastic model. Further, the post-fit residuals of one particularly
interesting month will be analysed. As the improved stochastic model does not have as
strong of an impact on the overall monthly gravity field solution as the co-estimation
of the satellite orientation later introduced in chapter 9 this aspect will not be discussed
here explicitly. For compactness, it will be illuminated together with the results in
section 9.3.

8.3.1 AOC Variance Factors

The distribution of the monthly AOC variance factors for the processed GRACE time
series is illustrated in fig. 8.5. The displayed probability density functions (PDFs) were
determined using a non-parametric kernel density estimator (e.g. Rosenblatt, 1956).

If the a priori orientation uncertainty estimate from the SCA/ACC sensor fusion were
accurate, and no other unmodelled effects were present, the expected values for the
monthly AOC variance factors would be 1. The estimates, however, show a mean of
slightly above 2 (2.30 for GRACE-A and 2.26 for GRACE-B). These increased means
indicate that the estimates of the orientation uncertainty from the SCA/ACC sensor
fusion are possibly too optimistic.
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Figure 8.5: Kernel density estimate of PDFs of estimated AOC variance
factors σ̂AOC, A/B for complete GRACE time series. Each barb represents
one variance factor for one month.

8.3.2 Arc-wise Variance Factors

The AOC covariance matrices, scaled by their variance factors, are expected to model
some of the increased noise in observations with large opening angles. It is thus
expected that the increase in the arc-wise variance factors for the stationary noise com-
ponent previously observed for these time periods should, to some extent, disappear.
One such period is the time that GRACE-A spent in attitude hold mode in June 2010,
mentioned before in section 6.5 and seen in the arc-wise variance factors displayed in
fig. 6.8b.

Figure 8.6a illustrates the arc-wise variance factors for the same data in June 2010,
using the improved stochastic model. The arc-wise variance factors for the stochastic
model considering only the estimated stationary covariance function (in brown) again
shows the increase in arc-wise variance factors during the period of increased opening
angles (darker shaded area). Introducing the a priori AOC covariance information for
this month (in blue), the estimated arc-wise variance factors are noticeably closer to
1 during this period. The same effect can be observed in other periods of increased
opening angles, for example the orbit swap manoeuvre in December 2005 when both
GRACE-A and GRACE-B were commanded to attitude hold mode. In addition the
1° pitch bias that keeps the KBR horns in alignment was removed, leading to very
large angles during the periods when a KBR link was established. Figure 8.6b shows
that during this period the arc-wise variance factors for the processing using the AOC
covariance information (in blue) are again much improved.
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(a) Arc-wise variance factors for June 2010. The shaded area indicates the period that
GRACE-A spent in attitude hold mode.
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(b) Arc-wise variance factors for December 2005. The shaded area indicates the period during
which GRACE-A and GRACE-B were in attitude hold mode, and where some data was lost
due to a GRACE-B orbit trim manoeuvre.

Figure 8.6: Ll-SST arc-wise variance factors σ̂2
m for two months with periods of

deteriorated data quality. (a) GRACE-A was commanded to AHM to allow
investigation of a system anomaly. (b) Increased opening angles for both
spacecraft during a scheduled orbit swap manoeuvre.
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Correlation with Opening Angle

The presented results from June 2010 and December 2005 suggest that the arc-wise
variance factors are indeed correlated with periods of larger opening angles. This
hypothesis can be tested by computing Pearson’s product-moment correlation coeffi-
cient r between the arc-wise variance factors and the mean opening angles for each
month. The distribution of all correlation coefficients, one for each month, is then
studied. The mean of the opening angle for both satellites for one arc m with Nm
epochs is

β̄m =
1

2Nm

Nm

∑
n=1

(
βA

n + βB
n

)
. (8.3.1)

Figure 8.7 shows the distribution of the monthly correlation coefficients for the pro-
cessed GRACE time series. If the observation geometry, represented through the
mean opening angle, had no impact on the arc-wise variance factors, the correlation
coefficients would be expected to scatter around 0. Due to the distribution of both
the mean opening angle and the arc-wise variance factor estimates, some spurious
correlation is to be expected. The probability distribution for the old model considering
only the stationary covariance function (in brown) is not centred at 0. The shift of the
distribution towards positive correlations indicates that arc-wise variance factors and
the mean opening angles are positively correlated. Introducing the AOC covariance
information largely eliminates this shift (in blue). This indicates that the correlation of
observation geometry and arc-wise variance factors is largely removed by use of the
improved stochastic model.

Numerically, the mean of the correlation coefficients is reduced from 0.15 in the original
processing to 0.03 when considering the AOC covariance matrices.
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Figure 8.7: Distribution of correlation coefficients r between arc-wise variance
factors σ̂2

m and mean opening angles β̄m. One correlation coefficient was
estimated per month.
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8.3.3 Covariance Function

When only considering a stationary covariance function in the determination of the
stochastic model, this covariance function will be estimated to best fit all power in the
residuals, both from stationary and non-stationary noise processes. The non-stationary
effects thus alias into the stationary covariance function, as there is no avenue to
model them in this framework. The newly introduced information about some of the
non-stationary noise in the form of the AOC covariance matrices should model some
of this observed power in the residuals, reducing aliasing into the stationary covariance
function.

Figure 8.8a shows the estimated covariance functions, displayed as PSDs, for the
previously discussed month of December 2005. In the PSD estimated according to the
old noise model (in brown), such aliasing is clearly visible in the shaded area. The lower
bound of the shaded area is set to 3.3 mHz, which is the dominant frequency in the
GRACE pointing variations after February 2004 for GRACE-A and after January 2005
for GRACE-B (Bandikova, 2015). The upper bound of the shaded area is at 20 mHz,
where noise in the SCA observations at harmonics of the orbital frequency of the
spacecraft starts to be dominated by purely stochastic effects (Inácio et al., 2015).

This result can be compared to a month of “good” data without such abnormally
large opening angles, e.g. April 2008 (cf. fig. 8.8b). Here, the PSD for the old model
is virtually identical to that of the new model determined using the AOC covariance
matrices. During this normal operation, the effect due to the orientation uncertainty is
small enough to be dominated by other noise sources.

It could be argued that the strict modelling of the AOC uncertainty is not necessary,
as the arcs most affected by these errors are down-weighted in the VCE through
application of large arc-wise variance factors. Comparison of the PSDs in fig. 8.8a
shows that this is however not correct. The aliasing in the PSD estimated in the old
model is not only present in the arcs affected by large opening angles, but in all arcs
of the month. While arcs with large opening angles are downweighted, and thus lose
influence on the monthly solution, all remaining arcs are decorrelated with a clearly
wrong covariance function, introducing systematic effects into the solution. It has
been demonstrated here that correct modelling of the AOC covariance mitigates this
undesired effect of aliasing into the stationary covariance function.

The overall magnitude of the average change in the PSD can be observed in the mean
of all monthly PSDs for the processed time series. The mean of the PSDs is computed
once per frequency, per processing strategy. These PSDs are displayed in fig. 8.9. The
lower noise level in the highlighted band is clearly visible in the mean PSD obtained
when using AOC covariance matrices (in brown). It is also interesting to note that
the PSD computed under consideration of the AOC covariance information (in blue)
follows the expected linear progression of the KBR-branch of the noise spectrum to
a lower frequency, down to ≈10 mHz, as opposed to ≈20 mHz for the old model (in
brown).
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(a) Estimated PSDs for December 2005.

0.1 1 10 100

Frequency [mHz]

10−7

10−6

10−5

P
S
D
[ m

/
s/
√
H
z]

Old model
Incl. AOC

(b) Estimated PSDs for April 2008.

Figure 8.8: Estimated stationary noise PSD, without considering full AOC covariance
matrices (in brown) and when taking them into account (in blue). (a)
shows the PSDs for a month containing “bad” data with large opening
angles, (b) shows the PSDs for a “good” month without such anomalies.
The shaded area spans from 3.3 mHz to 20 mHz and indicates the band
where a strong influence of non-stationary errors due to orientation
uncertainty is expected.
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Figure 8.9: Mean PSDs for the old processing model (in brown) and considering full
AOC covariance matrices (in blue). The new model shows decreased power
in the band strongly influenced by uncertainties in the spacecraft
orientation. The shaded frequency band has the same bounds as in fig. 8.8.

8.3.4 Impact on Residuals

As the estimated residuals ê are a superposition of residuals due to a stationary noise
process and due to the non-stationary AOC noise, they can be disentangled to give the
residuals attributed to each of the individual sources with

êsst = Σsst (Σsst + Σ∆ρ̇AOC)
−1 ê (8.3.2)

and

êAOC = Σ∆ρ̇AOC (Σsst + Σ∆ρ̇AOC)
−1 ê . (8.3.3)

Figure 8.10 shows the PSDs of all three groups of residuals — combined, stationary,
and non-stationary — for June 2010. It can be seen that the power in the non-stationary
residuals (blue) is even larger than that of the stationary residuals (green) in the
highlighted frequency-band, where a large impact of the orientation uncertainty is
expected.

It must be said, however, that a PSD is decidedly the wrong instrument to display
this information, as stationarity of the signal is a fundamental assumption when
computing the PSD. Figure 8.10 could lead one to assume that the AOC residuals
have the same quite high power at a frequency of ≈6 mHz to ≈10 mHz throughout
the complete month, with no discernible variability from one time segment to another.
This is however not true, as will be illustrated in fig. 8.11. The non-stationary nature of
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Figure 8.10: PSDs of the residuals for June 2010. The combined residuals ê are shown
in red. The PSD for the disentangled residuals due to stationary
effects êsst is shown in green. The PSD for the residuals due to the
non-stationary effects êAOC is shown in blue. The shaded frequency band
has the same bounds as in fig. 8.8.

the noise due to the AOC uncertainty must be taken into account when studying these
residuals.

To capture the variability of the power in the estimated residuals not only in the
frequency domain but also with time, a wavelet decomposition is computed for ê, êsst,
and êAOC using the Daubechies 5 wavelet (see e.g. Mallat, 2009) . The length of the
time series allows for 11 levels of decomposition, where each level corresponds to
a specific frequency band. Each of these levels is then re-synthesized individually,
giving 11 time series of residuals, each only containing signals at the frequency band
corresponding to the decomposition level. These residual series were then divided
into 3 h intervals. The power of the signal in each frequency band and each interval
was then computed as the RMS over the residuals in that bin. Figure 8.11 shows the
resulting time-frequency-power diagram for the ll-SST residuals of June 2010.

The top panel of fig. 8.11 shows the power of the combined residuals ê (red). During the
time periods of an increased opening angle (vertical grey lines), a small but consistent
increase in power is visible at frequencies above ≈3 mHz (top horizontal grey line). A
further increase in power can be observed on June 2, 2010, where no correspondingly
large increase in opening angle is observed (cf. fig. 8.6a). A third, smaller, increase
occurs on June 13, 2010.

The middle panel of fig. 8.11 shows the power of the residuals due to stationary
processes êsst (green). The power distribution is mostly homogeneous over time, as
would be expected from a stationary process. Several small spikes of power can still be
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Figure 8.11: Time-frequency-power diagram of combined (top panel) and disentangled
(lower two panels) residuals due to stationary and non-stationary effects
for June 2010. The fill colour of each small rectangle represents the power
in the estimated residuals for that specific 3 h interval and frequency
range. The right margin displays the PSDs from fig. 8.10 corresponding to
the respective diagram. The vertical grey lines mark the area of increased
opening angle β, corresponding to the shaded area in fig. 8.6a. The
horizontal grey lines mark the frequency band where a larger power is
expected, corresponding to the shaded areas in figs. 8.8 to 8.10.
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identified, most prominent amongst them the spike on June 13, 2010. The first and last
increase in power can however not be identified in the plot any more.

These increases in power are prominently visible in the lower panel of fig. 8.11, which
shows the power of the residuals due to the AOC uncertainty êAOC (blue). The increase
in power over a large range of frequencies during the long period of large opening
angles starting on June 17, 2010 is now clearly identifiable here. Indeed, the increase
in power is not limited to the frequency band identified previously (horizontal grey
lines), but can also be observed at frequencies above 20 mHz. KBR system noise is
dominant in this frequency band and obscures this signal during normal operations.
The PSD for the non-stationary AOC contribution (blue in fig. 8.10, also right margin of
bottom panel in fig. 8.11) actually shows a consistent decrease in power with increased
frequency, illustrating the unsuitability of the tool “PSD” to study this signal.

A similar increase in power over a wide frequency spectrum can be observed in the
peak on June 2, 2010, which is clearly visible in the AOC contribution to the residuals.
As opposed to the period of increased opening angle later in the month, which is
noted in the SDS monthly report for June 2010 (Flechtner, 2010), there is no indication
of anomalous observations given for this time period. Possible sources of the increased
AOC residual power at this time could also be found not in the observation geometry
but in the SCA/ACC sensor fusion covariance matrices. Larger than normal SCA
noise due to e.g. increased blinding could lead to reduced accuracies in the orientation
estimate and in turn the AOC. Similarly, an origin in the angular rate observations
could also play a role.

Figure 8.12 shows the time-frequency-power diagram for the AOC contribution during
the first days of June 2010 in the upper panel. The lower panel shows the opening
angle β for GRACE-A and GRACE-B. The increase in power on June 2, 2010 corre-
sponds roughly to some attitude excursions for GRACE-B. In general, the pointing for
GRACE-B seems to undergo larger variations during this time span. For these two days,
peaks in the opening angle could possibly be interpreted to correspond roughly to
increased power in the residuals, although such a generalization should only be made
cautiously and be subjected to further analysis. This is however a further indication that
the AOC covariance matrices to some extent represent the true stochastic behaviour of
the AOC, and that they are a valuable addition to the stochastic model for processing
GRACE data.

8.4 Discussion

This chapter focused on investigating the effects of uncertainties in the satellite orienta-
tion on the determination of the antenna offset correction used in correcting GRACE
KBR ll-SST data. The impact of the orientation uncertainty on other uses of the satellite
orientation, such as in rotating the on-board accelerometer observations to the CRF for
force integration, were not studied.
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Figure 8.12: Time-frequency-power diagram of disentangled residuals due to
non-stationary effects for the first two days of June 2010 (top panel,
colourbar identical to fig. 8.11). The bottom panel shows the opening
angle β for GRACE-A and GRACE-B during the same time period.

The noise due to the AOC uncertainty was shown to be non-stationary, and can
thus not be described using the purely stationary noise model estimated in ITSG-
Grace2016. A rigorous stochastic model for the AOC was developed through variance
propagation based on full variance-covariance information for the satellite orientations.
This information, with one covariance matrix per short arc per spacecraft, was then
introduced into the stochastic model for the GRACE ll-SST observations.

This additional information had several positive effects on the estimated stochastic
model. The arc-wise variance factors for arcs with larger than normal opening angles
no longer show consistently and abnormally large values. The previous stochastic
model correctly identified these arcs to have inferior data quality, but the approach of
simple scaling of the stationary covariance function does not do justice to the complex
and time-variable characteristics of the AOC signal during these arcs. The presented
augmented approach correctly models periods of increased variances and correlations
in the AOC, leading to improved results in the estimation of the stationary component
of the stochastic model.

The estimated stationary covariance functions for months with periods of increased
opening angles no longer show aliasing in the frequency band most affected by the
AOC uncertainty. In turn, the remaining arcs of these months are now decorrelated
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with a “cleaner” covariance function. This not only improves the stochastic model for
the few arcs that do contain anomalous data, but for all remaining arcs of the month
as well.

It is important to note that modelling the errors in the antenna offset correction
correctly does not necessarily lead to a reduction of the overall residuals. What this new
model does allow for is the attribution of a certain fraction of the observed residuals
to one of the two noise sources: The stationary noise due to the ll-SST system, or the
non-stationary noise due to the AOC.
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Co-Estimation of Orientation
Parameters 9
The full orientation covariance matrix from the SCA/ACC sensor fusion not only
allows for the disentanglement of the AOC residuals from the stationary ll-SST resid-
uals. Having a complete stochastic model of both observation types — ll-SST KBR
observations as well as the orientation observations — there is no longer a need to
consider the orientation of the spacecraft as fixed.

This chapter will describe the process of co-estimating improved orientations of the
GRACE satellites at each epoch, together with the Stokes coefficients, in one least
squares adjustment. Where the previous chapter only focused on the effects of the ori-
entation uncertainty on the derived antenna offset correction, the following pages will
outline a strategy of directly targeting improvements in the original noisy observations
from the SCA/ACC sensor fusion.

The assumption of a fixed, non-stochastic, perfectly observed orientation must of
course introduce errors into the recovered gravity field. An attempt was made to model
these errors in chapter 8 by describing the uncertainty in the AOC. Taking this thought
to its logical conclusion, estimation of an improved “best-fit” satellite orientation will
further allow for the computation of an improved AOC, reducing the resulting error in
the recovered gravity field.

The complete ll-SST observable and the estimated Stokes coefficients depend on the
AOC. The ultimate independent variable for the AOC is the spacecraft orientation.
To properly model this dependency, an algorithm must be employed that allows for
variations in both the dependent and independent variables. Many such approaches
exist, known by several names. Amongst them are total least squares, error-in-variables,
the generalized case of adjustment theory, mixed model, or Gauß-Helmert model
(see e.g. Amiri-Simkooei and Jazaeri, 2012; Golub and van Loan, 1980; Koch, 1997;
L. Lenzmann and E. Lenzmann, 2004; Niemeier, 2008; Reinking, 2008; Schaffrin, 2007;
Snow, 2012). In essence, these algorithms describe the same approach: the linearisation
of the functional relationship is not only computed about the Taylor point for the
unknowns x0, but also about approximate values for both dependent and independent
observables l0. Both parameters and observables are then improved iteratively.

This chapter will start by presenting the theoretical basis of one such algorithm, the
total least squares (TLS) algorithm as outlined by Reinking, 2008. This approach will
be contrasted to a formulation of the problem in the classical Gauß-Markov apparatus.
The practical constraints in implementing a TLS algorithm for GRACE gravity field
recovery will be enumerated, leading to a summary of the strategy employed to
reprocess the GRACE time series.
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Results of the performed reanalysis will be presented, focusing on time series of
estimated Stokes coefficients, their formal errors, and derived quantities such as
equivalent water heights. Monthly estimates for the GRACE antenna phase centre
vectors will be given and contrasted with those from the ITSG-Grace2016 processing
chain. The sections regarding Stokes coefficient and APC vectors will include results
from the processing chain including AOC covariance matrices only, as described in
chapter 8.

9.1 Uncertainties in Independent Variables

This section will outline two formalisms that can be used to treat the problem of inde-
pendent variables of a stochastic nature. Their outlines will be given in a generalized
notation, before the application to GRACE processing is discussed in section 9.2. For
both formulations, there shall be two sets of observations, a set of independent obser-
vations lind, and a set of associated dependent observations ldep. These observations
are used to estimate some parameters x̂. The classical example for such a configuration
is the estimation of a straight line, with the independent variable the ordinate of an
observed point xn, the dependent variable the coordinate of the point yn, and the
sought parameters the intercept and slope of the line.

The functional model connecting the observation groups and the parameter vector is

ldep = f (lind,x) + edep , (9.1.1)

which in the classical linearisation in the Gauß-Markov model according to eq. (2.2.1)
would lead to the observation equations

ldep − f (lind,x0) =
∂ f (lind,x)

∂x

∣∣∣∣
x0

(x− x0) + edep (9.1.2)

or

∆ldep = A∆x+ edep . (9.1.3)

The residuals in eq. (9.1.3) are attributed exclusively to a misfit in the dependent
observations ldep. The uncertainty in the independent variables is not considered in
this formalism. The fundamental idea behind the approach commonly termed TLS is
to introduce a second matrix of residuals EA as

∆ldep = (A+EA)∆x+ edep . (9.1.4)

The norm of both edep and EA is then minimized together (see e.g. Golub and van
Loan, 1980). Here, EA allows for variations in A due to the uncertainty in lind.
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9.1.1 Total Least Squares as Gauß-Markov Model with Derived
Observations

Reinking gives a derivation of the solution to the TLS problem in eq. (9.1.4) that
relies on the removal of the distinction between dependent and independent variables.
Rather, all variables are collected in one vector

l =

[
ldep

lind

]
. (9.1.5)

This section will give a summary of the algorithm published in Reinking, 2008. Building
on this summary, the resulting normal equation system is analysed in preparation for
later comparisons with the algorithm presented in section 9.1.2. Reinking’s algorithm
begins by restating the problem eq. (9.1.1) in the Gauß-Helmert model as

G
(
x̂, l̂
)
= l̂dep − f

(
l̂ind, x̂

)
= 0 . (9.1.6)

The functional G is then linearised about both the parameters and observations,
giving

G (x0, l0) +
∂G

∂x

∣∣∣∣
x0,l0

∆x+
∂G

∂l

∣∣∣∣
x0,l0

∆l = 0 (9.1.7)

or, more compactly,

G0 +Ax∆x+F∆l = 0 . (9.1.8)

With ∆l = l̂− l0 = l− e− l0, eq. (9.1.8) is

G0 +Ax∆x+F (l− e− l0) = 0 (9.1.9)
−F l− (G0 −F l0) = Ax∆x−Fe (9.1.10)

Here, it is important to note that the residuals e are actually residuals in both the
dependent and independent variables:

e =

[
edep

eind

]
. (9.1.11)

Reinking now defines the derived observations λ as

λ = −F l . (9.1.12)

With

λ0 = (G0 −F l0) , (9.1.13)
eλ = −Fe , (9.1.14)
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and ∆λ = λ− λ0 this gives the equation system

∆λ = Ax∆x+ eλ . (9.1.15)

Equation (9.1.15) is a reformulation of the Gauß-Helmert problem eq. (9.1.6) as a Gauß-
Markov problem with derived observations. Given covariance information for lind
and ldep as

Σll =

[
Σdep Σcro

ΣT
cro Σind

]
(9.1.16)

the covariance matrix for the derived observations λ follows from eq. (9.1.12) through
variance propagation as

Σλλ = FΣllF
T . (9.1.17)

The solution to eq. (9.1.15) is then simply that of eq. (2.2.3),

∆x̂ =
(
AT
xΣ−1

λλAx

)−1
AT
xΣ−1

λλ∆λ . (9.1.18)

Neitzel and Petrovic, 2008; Reinking, 2008 assert that this gives the same solution as
directly solving for the TLS problem formulated in eq. (9.1.4) using classical methods
such as those presented by e.g. Golub and van Loan, 1980.

Estimated Residuals and Observations

Evaluating eq. (9.1.18) gives estimated residuals êλ in the derived observations λ. From
eq. (9.1.14) it is known that eλ = −Fe. Direct comparison with the identity

eλ = ΣλλΣ−1
λλeλ

= FΣllF
TΣ−1

λλeλ (9.1.19)

allows one to identify that

ê = −ΣllF
TΣ−1

λλêλ . (9.1.20)

Having computed ê = [ êdep êind ]T using eq. (9.1.20), the estimated dependent and
independent observations are

l̂dep = ldep − êdep and l̂ind = lind − êind . (9.1.21)

The Taylor points for the observations in the next iteration of the adjustment are
then l̂dep and l̂ind. Note that the residuals are always added to the original observations,
not the Taylor point of the current iteration.
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Normal Equation System

Going beyond the derivations given by Reinking, 2008, his apparatus can be taken
to completion by directly setting up the normal equation system for the sought
parameters x̂. To this end, the matrices in eq. (9.1.8) are analysed and expanded, so
that they can later be substituted into eq. (9.1.18). First, note that

Ax =
∂G

∂x

∣∣∣∣
x0,l0

= − ∂ f

∂x

∣∣∣∣
x0,l0

= −A . (9.1.22)

Further,

F =

[
∂G

∂ldep

∣∣∣
x0,l0

∂G
∂lind

∣∣∣
x0,l0

]
=
[
I − ∂ f

∂lind

∣∣∣
x0,l0

]
=
[
I −Find

]
. (9.1.23)

With eqs. (9.1.17) and (9.1.23), the covariance matrix of the derived observations is

Σλλ =
[
I −Find

] [Σdep Σcro

ΣT
cro Σind

] [
IT

−FT
ind

]

= Σdep −FindΣT
cro − ΣcroF

T
ind +FindΣindF

T
ind , (9.1.24)

giving the normal equation in the Reinking apparatus

NR = AT
(

Σdep −FindΣT
cro − ΣcroF

T
ind +FindΣindF

T
ind

)−1
A . (9.1.25)

To compute the right-hand side nR, eqs. (9.1.12) to (9.1.14) must be expanded. With

λ = −
[
I −Find

] [ldep

lind

]
= −ldep +Findlind (9.1.26)

F l0 =
[
I −Find

] [ldep,0

lind,0

]
= ldep,0 −Findlind,0 (9.1.27)

G0 = ldep,0 − f0 (9.1.28)

the reduced derived observations are

∆λ = λ− λ0 = λ− (G0 −F l0) = λ−G0 +F l0
= −ldep +Findlind − ldep,0 + f0 + ldep,0 −Findlind,0

= −ldep + f0 +Findlind −Findlind,0

= −
(
ldep − f0

)
+Find (lind − lind,0)

= −
((
ldep − f0

)
−Find (lind − lind,0)

)

= −
(
∆ldep −Find∆lind

)
. (9.1.29)

At this point it is important to note that ∆ldep is the reduced observation as it appears
in the classical Gauß-Markov model in section 2.2, not simply ldep − ldep,0. In fact, the
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Taylor point for the dependent observations ldep,0 completely cancels from eq. (9.1.29).
In the equation for the reduced derived observations, the term concerning the inde-
pendent observations can be considered as a correction term for the reduced dependent
observations, or

∆∆ldep = Find∆lind . (9.1.30)

With eqs. (9.1.22), (9.1.24) and (9.1.29) the right-hand side of the normal equation
system is

nR = AT
(

Σdep −FindΣT
cro − ΣcroF

T
ind +FindΣindF

T
ind

)−1 (
∆ldep −Find∆lind

)
.

(9.1.31)

9.1.2 Total Least Squares as Gauß-Markov Model with Eliminated
Observations

In this section, a different formulation for the treatment of uncertainties in the depen-
dent variables is proposed. Where Reinking, 2008 started from an extended observation
vector (eq. (9.1.5)), this formulation, perhaps equivalently, will begin with introducing
the independent variables into an extended parameter vector

ξ =

[
x

lind

]
. (9.1.32)

This formulation pursues the goal of not only estimating the adjusted parameters x̂
and the adjusted dependent variable l̂dep, but to also determine a least squares estimate
for the independent variable l̂ind. The functional model eq. (9.1.1) is extended with a
second relationship describing the observations of the independent variable

ldep = f (lind,x) + edep (9.1.33)

lind = g (lind) + eind . (9.1.34)

This second relationship is of course simply

g (lind) = lind . (9.1.35)

This results in an extended observation vector identical to that of Reinking,

l =

[
ldep

lind

]
. (9.1.36)

Linearising eqs. (9.1.33) and (9.1.34) at the Taylor point of the approximate values for
the parameters and the independent variable yields

ldep = f (lind,0,x0) +
∂ f

∂x

∣∣∣∣
x0,lind,0

∆x+
∂ f

∂lind

∣∣∣∣
x0,lind,0

∆lind + edep , (9.1.37)

lind = g (lind,0) +
∂ g

∂x

∣∣∣∣
x0,lind,0

∆x+
∂ g

∂lind

∣∣∣∣
x0,lind,0

∆lind + eind . (9.1.38)
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More compactly, this is
[

∆ldep

∆lind

]
=

[
A Find

0 I

] [
∆x
∆lind

]
+

[
edep

eind

]
. (9.1.39)

It is important to note that the two occurrences of ∆lind in eq. (9.1.39) refer to two
separate variables. The first is the linearisation of the independent variable about the
Taylor point, ∆lind = lind− g (lind,0). The second is the parameter to be estimated in the
LSA. The independent variable does not depend on the parameters x. The covariance
matrix of the combined observation vector is the same as in the previous model, given
in eq. (9.1.16). The weight matrix for the combined observation vector is then

P = Σ−1
ll =

[
Σdep Σcro

ΣT
cro Σind

]−1

=

[
Pdep Pcro

PT
cro Pind

]
. (9.1.40)

Using the matrix inversion lemma (see e.g. Bernstein, 2009, Proposition 2.8.7), the
elements of P are:

Pdep = Σ−1
dep + Σ−1

depΣcro

(
Σind − ΣT

croΣ−1
depΣcro

)−1
ΣT

croΣ−1
dep

=
(

Σdep − ΣcroΣ−1
indΣT

cro

)−1
(9.1.41)

Pcro = −Σ−1
depΣcro

(
Σind − ΣT

croΣ−1
depΣcro

)−1

= −
(

Σdep − ΣcroΣ−1
indΣT

cro

)−1
ΣcroΣ−1

ind (9.1.42)

PT
cro = −

(
Σind − ΣT

croΣ−1
depΣcro

)−1
ΣT

croΣ−1
dep

= −Σ−1
indΣT

cro

(
Σdep − ΣcroΣ−1

indΣT
cro

)−1
(9.1.43)

Pind =
(

Σind − ΣT
croΣ−1

depΣcro

)−1

= Σ−1
ind + Σ−1

indΣT
cro

(
Σdep − ΣcroΣ−1

indΣT
cro

)−1
ΣcroΣ−1

ind (9.1.44)

Normal Equation System

The normal equation for this Gauß-Markov model is
[
N11 N12

NT
12 N22

]
=

[
AT 0

FT
ind I

] [
Pdep Pcro

PT
cro Pind

] [
A Find

0 I

]

=

[
ATPdep ATPcro

FT
indPdep +PT

cro FT
indPcro +Pind

] [
A Find

0 I

]

=

[
ATPdepA ATPdepFind +ATPcro

FT
indPdepA+PT

croA Pind +PT
croFind +FT

indPcro +FT
indPdepFind

]
.

(9.1.45)
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The right-hand side of the system is
[
n1

n2

]
=

[
AT 0

FT
ind I

] [
Pdep Pcro

PT
cro Pind

] [
∆ldep

∆lind

]

=

[
ATPdep ATPcro

FT
indPdep +PT

cro FT
indPcro +Pind

] [
∆ldep

∆lind

]

=

[
ATPdep∆ldep +ATPcro∆lind(
FT

indPdep +PT
cro
)

∆ldep +
(
FT

indPcro +Pind
)

∆lind

]
. (9.1.46)

Parameter elimination

Now the independent parameters are eliminated from the normal equation system as
given by eq. (9.1.45) (see section 2.4). After some simplification, this gives

NE = ATPEA . (9.1.47)

with

PE = Pdep−
(
PdepFind +Pcro

)
(
Pind +PT

croFind +FT
indPcro +F

T
indPdepFind

)−1 (
FT

indPdep +PT
cro

)
.

(9.1.48)

For the right-hand side as given by eq. (9.1.46), parameter elimination yields

nE =ATPdep∆ldep +ATPcro∆lind

−
(
ATPdepFind +ATPcro

) (
Pind +PT

croFind +FT
indPcro +F

T
indPdepFind

)−1

((
FT

indPdep +PT
cro

)
∆ldep +

(
FT

indPcro +Pind

)
∆lind

)

=ATPE∆ldep +ATPl∆lind , (9.1.49)

with

Pl = Pcro−
(
PdepFind +Pcro

)
(
Pind +PT

croFind +FT
indPcro +F

T
indPdepFind

)−1 (
FT

indPcro +Pind

)
.

(9.1.50)

9.1.3 Equivalence of Approaches

Given the simplifying assumption that

Σcro = 0 , (9.1.51)
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the two approaches from sections 9.1.1 and 9.1.2 are identical. The proof is obtained
by comparing the normal equation systems for both approaches under the condition
that Σcro = 0. For the approach due to Reinking, the simplified normal equation system
is obtained directly from eqs. (9.1.25) and (9.1.31) as

NR = ATPRA and nR = ATPR
(
∆ldep −Find∆lind

)
(9.1.52)

with the weight matrix in the Reinking system

PR =
(

Σdep +FindΣindF
T
ind

)−1
. (9.1.53)

For the normal equation system derived using parameter elimination with

NE = ATPEA and nE = ATPE∆ldep +ATPl∆lind , (9.1.54)

letting Σcro = 0 results in the weights from eqs. (9.1.41) to (9.1.44) simplifying to

Pdep = Σ−1
dep , Pind = Σ−1

ind and Pcro = 0 . (9.1.55)

Again using the matrix inversion lemma, this gives a simplified version of eq. (9.1.48).
The first weight matrix for the normal equation system due to the parameter elimination
algorithm is

PE = Σ−1
dep − Σ−1

depFind

(
Σ−1

ind +FT
indΣ−1

depFind

)−1
FT

indΣ−1
dep

=
(

Σdep +FindΣindF
T
ind

)−1

= PR . (9.1.56)

With PE ≡ PR, it directly follows that NE ≡ NR. It remains to show that the right-hand
side of the systems are identical as well. When letting Σcro = 0 the weight matrix Pl
from eq. (9.1.50) is

Pl = −Σ−1
depFind

(
Σ−1

ind +FT
indΣ−1

depFind

)−1
Σ−1

ind

= −
(

Σdep +FindΣindF
T
ind

)
FindΣindΣ−1

ind

= −
(

Σdep +FindΣindF
T
ind

)
Find

= −PRFind (9.1.57)

Inserting eqs. (9.1.56) and (9.1.57) into eq. (9.1.49) gives

nE = ATPR∆ldep +AT (−PRFind)∆lind

= ATPR∆ldep −ATPRFind∆lind

= ATPR
(
∆ldep −Find∆lind

)

= nR (9.1.58)

With NR ≡ NE and nR ≡ nE, it is proven that both approaches give the same results.
It stands to reason that this equivalence should also hold for Σcro 6= 0. Numerical tests
support this hypothesis, but a rigorous proof for this conjecture is not known to the
author.
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9.2 Application to GRACE

GRACE KBR range-rate observations are described by the ranging equation (compare
eq. (4.3.7))

f (x,α) = ρ̇KBR = ρ̇COM(x)− ∆ρ̇AOC(x,α)− ∆ρ̇TOF − ∆ρ̇Iono + e . (9.2.1)

Here, the dependent observable is the ll-SST KBR range rate ρ̇KBR. The independent
observables are the satellite orientation αs for both GRACE spacecraft. The sought
parameters x are those described in section 6.4: The force model parameters, the
satellite parameters, and the ll-SST parameters. The observation equations for these
parameters, as summarized in eq. (6.4.32), are unchanged. They are collected and
linearised in the Taylor point for the parameters and the satellite orientation

f0(x0,α0) = ρ̇COM(x0)− ∆ρ̇AOC(x0,α0)− ∆ρ̇TOF − ∆ρ̇Iono . (9.2.2)

The Taylor point for the force model parameters is given by the background models
and the dynamic orbits integrated therein. The Taylor point for the satellite orientation
is simply the observed satellite orientation as obtained from the SCA/ACC sensor
fusion. The influence of the linearisation about the Taylor point on the time-of-flight
correction and the ionospheric correction is omitted.

The design matrix for the ll-SST observations A is unchanged from the equations
laid out in section 6.4, with the exception of the entries for the APC coordinates in
eq. (6.4.30). The observation equations for the APC must now be linearised about the
current Taylor point for the orientation at every iteration. The expanded observation
vector is

l =




ρ̇KBR

αA

αB


 . (9.2.3)

The Jacobian of the AOC in the range rate domain w.r.t. the orientation of one spacecraft
was previously computed in chapter 8. With D the polynomial differentiation matrix
and F s

α = ∂ ∆ρs
AOC/∂αs from eq. (8.1.21), the full Jacobian for both the ll-SST and the

orientation observations in the Reinking model (compare eq. (9.1.23)) is

F =
[
I −DFA

α −DF B
α

]
. (9.2.4)

With the full covariance matrix

Σll =




Σsst 0 0

0 ΣA
α̂α̂ 0

0 0 ΣB
α̂α̂


 (9.2.5)
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the weight matrix of the equation system is

PR =

(
Σsst +DF

A
α ΣA

α̂α̂

(
DFA

α

)T
+DF B

αΣB
α̂α̂

(
DF B

α

)T)−1

=
(

Σsst + ΣA
∆ρ̇AOC

+ ΣB
∆ρ̇AOC

)−1
. (9.2.6)

Here, Σsst is the estimated stationary covariance matrix for the ll-SST observations,
and ΣA

∆ρ̇AOC
and ΣB

∆ρ̇AOC
are the AOC covariance matrices from chapter 8. The obser-

vation groups are uncorrelated. The covariance matrix of the derived observations is
thus identical to the complete arc-wise covariance matrix of the improved stochastic
model described in eq. (8.2.1). Also identical to the approach of chapter 8, a complete
set of variance factors, one for each time lag in the stationary covariance function,
one for each short arc, and one for each spacecraft’s AOC covariance per month, are
co-estimated.

The reduced derived observation from eq. (9.1.29) is then

∆λ = −
(

ρ̇KBR − f0(x0,α0)−DFA
α (αA −α0A)−DF B

α (αB −α0B)
)

, (9.2.7)

with the Taylor point for the orientation the observations thereof in the first iteration,
and the estimated orientation thereafter. With this information, the normal equa-
tion system can be formed, and ∆x̂ and êλ are determined in the usual way. Using
eqs. (9.1.20) and (9.1.21), the estimated additions to the satellite orientation are

∆α̂A = Σ̂
A
α̂α̂

(
DFA

α

)T
PRêλ and ∆α̂B = Σ̂

B
α̂α̂

(
DF B

α

)T
PRêλ , (9.2.8)

with the final updated estimated orientations

α̂A = αA − ∆α̂A and α̂B = αB − ∆α̂B . (9.2.9)

Practical Considerations

The algorithm used to co-estimate orientation parameters only affects the covariance
matrix and reduced observations for the ll-SST observables. The hl-SST component
of the equation system remains unaffected. In GROOPS, the co-estimation of the
satellite orientation has been implemented in parallel to the iterative estimation of
the stochastic model with a degree and order 60 gravity field solution. This means
that the updated orientation is not used to re-integrate the dynamic orbits, as this
step is already completed at this point. Further, the updated estimates for the KBR
antenna phase centre vectors are not used in the linearisation of the observation
equations or for computing the updated AOC. Under regular observation conditions
the opening angle β is small for both spacecraft. This is an unfavourable configuration
for a stable estimate of the APC vectors. Until convergence of the stochastic model and
the spacecraft orientation is achieved, estimates of the APC vectors fluctuate wildly.
Allowing these vectors to vary at this point prohibits convergence of the system and
leads to chaotic results.
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For each iteration in this estimation, the updated orientation is used to recompute

1. the design matrix for the APC vectors, as in eq. (6.4.30);
2. an updated antenna offset correction, as in eq. (4.3.6);
3. updated AOC covariance matrices Σs

∆ρ̇AOC
, linearised at the new estimated orien-

tation as in eq. (8.1.22);
4. and an updated correction term for the ll-SST observation, as in eq. (9.1.30).

These additional steps lengthen the computation time per iteration significantly. The
stochastic model estimated in section 8.2 is used as a priori information to speed up
convergence. The estimated stochastic model and the estimated orientations are then
used in the computation of the full high degree and order gravity field solution.

9.3 Results

The GRACE time series was again reprocessed, using the updated stochastic model
as first introduced in chapter 8 and co-estimating improved satellite orientations
as described in section 9.2. The following sections will give analysis of this time
series, focusing on the estimated stochastic model, the estimated orientations, and
the estimated monthly gravity fields. In addition to again highlighting some specific
months representing several levels of data quality, the complete time series will also be
analysed and contrasted to the previously computed solutions.

9.3.1 Stochastic Model and Residuals

The initial inclusion of the stochastic information on the non-stationary AOC in the
form of AOC covariance matrices had a large impact on the estimated stochastic model.
The impact was noticeable both in terms of PSD and in terms of arc-wise variance
factors. The same disentanglement of stationary and non-stationary noise sources is
also present and unchanged in the TLS approach. The estimated stochastic models are
consequently largely identical. The additional co-estimation of the satellite orientation
is of course expected to have an effect on the ll-SST residuals, as in total a larger number
of parameters is estimated. Figure 9.1 gives an indication that this effect can not be
very large, as the PSD estimated from the new residuals (pink) is largely identical to
that computed only under consideration of the AOC covariances (blue). Figure 9.1
shows the PSD for a month of sub-par data quality, the PSDs for months of good data
quality are similarly identical to those computed with AOC covariances only.

A small improvement can however be observed when studying the correlation between
the arc-wise variance factors and the mean opening angles for the respective arcs, as
displayed in fig. 9.2. For the TLS solution, the mean of the correlation coefficients
is reduced from 0.03 to 0.01. This is a much smaller improvement than what was
previously achieved by introducing the AOC covariance matrices. Nevertheless, it is
important to note that the co-estimation of the satellite orientation does not have a
negative impact on either component of the stochastic model.
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Figure 9.1: Estimated stationary noise PSD without considering full AOC covariance
matrices (in brown), when taking them into account (in blue), and when
co-estimating satellite orientation (in pink), for June 2010. The shaded area
is the same as in fig. 8.8.
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Figure 9.2: Distribution of correlation coefficients r between arc-wise variance
factors σ̂2

m and mean opening angles β̄m. One correlation coefficient was
estimated per month.
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9.3.2 Estimated Satellite Orientation

The TLS algorithm gives a least squares estimate for improved orientation quaternions
for the two GRACE spacecraft. Investigating noise in the orientation through numerical
simulations has shown that two processing steps are particularly sensitive to orientation
uncertainties. These are the computation of the antenna offset correction, and the
computation of the design matrix for parameters that directly depend on the satellite
orientation such as the antenna phase centre vectors. The rotation of the accelerometer
data into the CRF, as required for dynamic orbit integration, is for example not as
sensitive to noise in the orientation.

As shown by Harvey, 2016, the release 2.0 spacecraft orientations are subject to a bug
in the on board star camera software, leading to defective data in the SCA1B data files.
As of the time of this writing, no corrected data is generally available. This known
deficiency in the source data, together with the sensitivity of certain parameters to the
spacecraft orientation discussed above, serves as motivation for the co-estimation of
the satellite orientations.

Where the SCA/ACC sensor fusion only considers sensors on one GRACE spacecraft,
the TLS estimate of the orientation also includes observations by the very high precision
ll-SST KBR link in the orientation estimate. The KBR range rate observations give
an additional constraint on the relative motion of the satellites w.r.t. each other. Full
covariance information on both the orientation parameters and on the KBR observable
allows for the combination of these heterogeneous observation types. It must be
expected that the additional KBR observations would have a negligible impact on
the adjusted orientation parameters if their noise were too high with respect to the
orientation observations from the SCA/ACC sensor fusion.

Figure 9.3 shows the TLS estimate of the satellite orientation of both GRACE spacecraft
for a 3 hour segment of data on June 11, 2010. This particular segment was chosen as it
shows rather unremarkable satellite orientations. No large excursions from the steering
deadband occur during this time period. The SCA/ACC sensor fusion orientation α,
used as a Taylor point in the estimation, is plotted in the background (brown), overlaid
by the TLS result α̂ (in pink) and the difference between the two ∆α̂ (in blue). The
areas shaded with a darker background mark periods of time where only one SCA
head was active on the respective spacecraft. During these times, the uncertainty of
the satellite orientation resulting from the SCA/ACC sensor fusion is naturally higher
(compare e.g. fig. 8.3).

The top row of fig. 9.3 shows the roll angles of the two GRACE spacecraft. The
TLS estimate for this angle is virtually unchanged from the SCA/ACC sensor fusion
estimate. This result is reassuring as, due to the geometry of the observations, the
inter-satellite link is comparatively insensitive to changes in satellite roll. The lower
two rows of fig. 9.3 show the satellite pitch and yaw rotations, respectively. For these
angles the difference between the a priori fusion orientation and the TLS estimate
is consistently small for periods where both SCA heads are active. It is only when
observations are based on only one SCA head that the TLS estimate significantly
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Figure 9.3: TLS estimate of satellite orientation (in pink), orientation from sensor
fusion (in brown), and difference (in blue), for 3 hours on June 11, 2010.
The roll, pitch, and yaw angles are given w.r.t. the nominal attitude. Darker
shaded areas show times where only one star camera head was active on
the respective spacecraft. Note the different scales for each angle.

diverges. This is striking, as it suggests that the noise floor of the KBR instrument in
the frequency band affecting the satellite orientation is located exactly between the
noise levels achievable with only one or with two SCA heads. The deviation of the
TLS estimate from the a priori orientation is still mostly small, though. For the whole
month of June 2010, the largest corrections observed are 0.7 mrad for GRACE-A and
1.9 mrad for GRACE-B. In general, it can be observed that the corrections are larger for
GRACE-B.

Figure 9.4 gives the distributions of the estimated improvements for the satellite
orientations ∆α̂s for the complete processed GRACE time series. The left column
is limited to a statistic of the periods where only one SCA head was active on the
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Figure 9.4: TLS estimate of improvement of satellite orientation for one active SCA
head (left column), and two active heads (right column). The estimate for
GRACE-A is plotted in green, that for GRACE-B in orange. Note that the
scale is different for the roll angle (top row).

respective spacecraft, covering 37.8 % of the total timespan for GRACE-A and 37.1 % of
the total timespan for GRACE-B. The right column gives the statistics for the remaining
time periods, where observations from both SCA heads are included in the SCA1B
product.

Note that in fig. 9.4, the correction for roll is given in µrad, while those for pitch and
yaw are given in mrad. For periods where both heads are active, shown in the right
column of fig. 9.4, there is no noticeable difference in the distribution of the corrections
for the two satellites. For all three angles, the correction is on average smaller when
both heads are active, which confirms the observations made in fig. 9.3. When only one
SCA head is active, the correction in roll is larger for GRACE-A (green) than it is for
GRACE-B (orange). This behaviour is reversed for the pitch and yaw angles, where the
correction for GRACE-B (orange) is larger. The overall magnitude of the correction is,
on average, rather small. For the complete time series corrections larger in magnitude
than 1 mrad, as observed in fig. 9.3, are uncommon.
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9.3.3 Effect on Antenna Offset Correction

After each iteration of the TLS adjustment the estimated orientations are used to
re-compute the antenna offset correction. This leads to a new improved antenna offset
correction that is slightly different from the initial AOC computed from the SCA/ACC
sensor fusion orientation. As the AOC is a non-stationary process, analysing its change
in the spectral domain would be fallacious. Instead, the change of magnitude of the
AOC at each epoch is analysed, which is not dependent on the absolute value of the
AOC. For a month of regular data, e.g. April 2008, the mean magnitude of the AOC
is ≈3.8 · 10−8 m/s. The mean of the estimated correction due to the improved TLS
orientation estimate for the same month is ≈3.5 · 10−9 m/s, which is roughly one order
of magnitude smaller. For other months, the magnitude of both the AOC and the
correction can be significantly larger.

Figure 9.5 shows the distribution of these deviations

dAOC(τ) =
AOCnew(τ)

AOCold(τ)
− 1 (9.3.1)

in percent. A value below 0 % indicates that the new AOC for that epoch is smaller
than the original, a value larger than 0 % represents an increased AOC. As these
deviations are computed in the range-rate domain, a translation of this change into a
statement on the magnitude of the opening angle β is not directly possible. Instead,
a smaller value for dAOC indicates a slower change in the opening angle, with a
larger value representing a faster change. All curves are skewed very slightly towards
negative values, indicating that the TLS estimate of the orientation tends to dampen
high-velocity motion in the satellite pointing.
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Figure 9.5: Distribution of change in AOC due to improved orientation in relation to
the magnitude of the original AOC. The data sets underlying the separate
distributions were selected according to how many SCA heads were active
for the respective epochs.
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Figure 9.5 shows that the change in AOC is smallest when all SCA heads are active
(black, 57.8 % of epochs), and largest when both spacecraft operate on one head only
(red, 33.7 % of epochs). Not conforming with the results from section 9.3.2, the change
is almost identical when one SCA head is inactive on GRACE-B only (orange, 5.27 %
of epochs), as when GRACE-A is the sole spacecraft operating with one SCA head
(green, 3.2 % of epochs).

9.3.4 Estimated Antenna Phase Centre Vectors

In the least squares adjustment for the Stokes coefficients, the KBR antenna phase
centre vectors for GRACE-A and GRACE-B were co-estimated (compare section 6.4.2).
The following results are based on the APC estimates obtained from within the
determination of the stochastic model. The estimated APC vector for one satellite s
is

ĉs = cs + ∆ĉs , (9.3.2)

where cs is the a priori calibrated KBR APC for the satellite, which was used as a Taylor
point in the estimation. The in-orbit calibrated APC coordinates obtained from the
GRACE sequence of events file are given in table 9.1. Alongside the calibrated values,
the formal errors from the adjustment for ∆ĉ are given for an example month of good
data quality. The formal errors are given for the adjustment using the old stochastic
model, the model including AOC covariance matrices, and the TLS solution. Note that
the formal errors do not vary much between months, and that they are small, on the
order of some micrometres. The estimated improvements ∆ĉ to the published calibrated
APCs for the processed time series are displayed in fig. 9.6. Results for the period
after August 2016, which are very strongly affected by the disabled accelerometer on
GRACE-B (Flechtner, 2016), are excluded from the analysis in this section.

Table 9.1: Calibrated KBR APC coordinates and formal errors from their estimation for
April 2008.

Calibrated value σOld model σIncl. AOC σWith TLS

GRACE-A
xAPC 1.445 m 5.241 µm 5.308 µm 5.437 µm
yAPC −0.423 µm 0.018 µm 0.018 µm 0.018 µm
zAPC 2.278 µm 0.021 µm 0.021 µm 0.020 µm
GRACE-B
xAPC 1.444 m 10.062 µm 10.052 µm 10.095 µm
yAPC 0.576 µm 0.031 µm 0.030 µm 0.030 µm
zAPC 3.304 µm 0.041 µm 0.041 µm 0.041 µm
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Table 9.2: Empirical mean and standard deviation of KBR APC estimates computed
from complete time series. Values relative to published calibrated APCs.

∆x̂APC [cm] ∆ŷAPC [mm] ∆ẑAPC [mm]

GRACE-A
Old model −23.35 ±15.51 0.74 ±0.20 −1.12 ±0.36
Incl. AOC −25.28 ±12.88 0.72 ±0.18 −1.15 ±0.33
With TLS −2.50 ±20.48 0.50 ±0.18 −0.86 ±0.52

GRACE-B
Old model −22.96 ±18.23 −0.46 ±0.16 −0.37 ±0.64
Incl. AOC −24.03 ±15.60 −0.44 ±0.14 −0.40 ±0.57
With TLS −4.44 ±14.22 −0.29 ±0.19 0.04 ±0.54

The panels in fig. 9.6 show the difference ∆ĉs from the calibrated KBR APC vectors
to the estimated APC vectors in the SRF. The top two panels show the differences
in the x-coordinate for GRACE-A and GRACE-B. It is immediately obvious that the
original estimate for the x-coordinate (brown) has a strong negative bias for both
GRACE-A and GRACE-B. This bias is much larger than the formal errors given in
table 9.1 would suggest. Introducing the AOC covariance information (blue) does
not eliminate this bias but does reduce the spread of the estimates slightly (compare
table 9.2). The estimate using TLS (pink) almost completely eliminates this bias. The
estimate does however retain a rather large standard deviation. This can to some
extent be explained by the unfavourable observation geometry, as the APC vector is
better determinable with larger opening angles β, which overall are uncommon during
science operations. The discrepancy between formal errors and empirical standard
deviation is however not fully explained by this circumstance, suggesting the continued
presence of some unmodelled systematics. This might still well be due to the systematic
errors in the SCA1B data described by Harvey, 2016.

The estimated y component on both GRACE-A and GRACE-B shows a clear signal
with a roughly annular period. At least for GRACE-A, this is much reduced when
employing the TLS estimate. In general, the co-estimation of the APC vectors gives best
results in time periods of “good” data quality, roughly from 2006 to 2011. Outside of
these periods, the scatter is higher, especially towards the end of the mission lifetime,
where the accelerometer on GRACE-B was powered off (not pictured).

The estimated APC vectors can also be interpreted as a misalignment of the K-Frame
with the SRF (e.g. Horwath et al., 2011). The rotation from the SRF to the K-Frame
expressed by the estimated APCs is described by the relationship

ĉ = ‖ĉ‖ ·RKF
SRF

[
1 0 0

]T
, (9.3.3)

with RKF
SRF a small angle rotation as in eq. (6.2.5).
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Figure 9.6: Monthly estimates for the KBR APC vectors for the old model (brown),
when using AOC covariance matrices (blue), and for the TLS estimate
(pink), given in the SRF. The red ∆ĉ = 0 line indicates no deviation from
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GRACE-B, but differ between the x, y, and z-coordinates.
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angles. Results given for the old model (brown), when using AOC
covariance matrices (blue), and for the TLS estimate (pink). The vertical red
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Figure 9.7 shows the Euler angles computed from the estimates ĉA and ĉB for the
studied period. In this representation, some characteristics of the estimated APCs
appear much clearer than in the Cartesian representation of fig. 9.6. The stabilizing
effect of the TLS estimate can clearly be observed, especially in the roll and yaw angles
for GRACE-A, and to a lesser extent in the same angles for GRACE-B. Compared to
later data, the first months of 2003 show a noticeably more unstable estimate of the
APC vectors. An attempt was made to correlate the large jumps in June 2003 with
important events, such as COM or KBR calibration manoeuvres, but this was not
successful. The jump could possibly be simply due to the inferior data quality at the
beginning of the mission lifetime.

The estimated pitch angle misalignments for both spacecraft show a striking symme-
try, with the misalignment angle for GRACE-A decreasing when that for GRACE-B
increases, and vice versa. Comparison with important events in the GRACE mission
lifetime reveals that the large jumps in the estimated pitch angle misalignment occur
at the same times as orbit swaps of the satellites. This strongly indicates that this effect
depends on a systematic effect in the GRACE attitude determination, and not on a
geophysical effect aliasing into the estimate. It also partly confirms previous results
by Horwath et al., 2011, where a similar jump was observed in estimated daily pitch
and yaw misalignment biases at the 2005 satellite swap manoeuvre. Horwath et al.
however do not observe the mirrored behaviour in the pitch jump, rather both pitch
angles decrease in their estimate. Further, the yaw angle misalignment has a much
larger magnitude for Horwath et al., on the order of 2 mrad. In the presented solution
the estimate is, in first approximation, median-free. Where Horwath et al., 2011 did
not make a statement on the temporal variability of the misalignment angles, apart
from the jump at the December 2005 satellite swap, the longer time series estimated
here allows for the identification of such behaviour.

In general, the periodicity in the roll and yaw estimates are much more easily identifi-
able in this representation, as opposed to the Cartesian plot in fig. 9.6. Spectral analysis
revealed that the largest amplitude is found at one cycle per 322 d, which corresponds
to one full revolution of the longitude of the ascending node for the GRACE orbital
plane. The observed period indicates an influence of the orientation of the spacecraft
in inertial space on the APC estimate. The most obvious explanation would be an
effect on the satellites due to the changing angles of incidence of solar radiation. This
would also explain the jumps in the pitch angle at orbit swap manoeuvres, when
the satellites quickly rotate by 180° in their orbit. The effect of such a rotation on the
inertial orientation is the same as that of a rotation of the orbital plane by 180°. Other
sources, like an origin in e.g. the field of view of the star camera assembly or the
miscalibrated release 2.0 SCA1B data can however not be discounted outright.

Due to the dependency on the leader-follower configuration, the pitch misalignment
estimates for both GRACE-A and GRACE-B show a bimodal distribution. Both other
misalignment angles are unimodally distributed. The spread of the TLS estimates
of the misalignment angles over the time series is either comparable to or smaller
than that of the other two approaches. Interestingly, the reduction of active thermal
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management in 2011 does not seem to have a strong impact on most of the estimated
misalignment angles, with the exception being the roll angle on GRACE-B.

9.3.5 Gravity Field Solutions

This section presents the final full degree and order gravity field solutions first com-
puted using the original ITSG-Grace2016 stochastic model, then incorporating AOC
covariance matrices, and finally using the TLS approach.

Degree Amplitudes

Figure 9.8 shows degree amplitude graphs for two representative months. In a month
of good data, shown in fig. 9.8a, the solution computed using the non-stationary AOC
covariance matrices (blue) is almost identical to the standard old solution (brown). The
TLS solution (pink) shows slightly lower amplitudes above degree and order ≈50. The
magnitude of the improvement (dotted pink) is on the order of the expected GRACE
baseline accuracy.

The improvement is much more pronounced for June 2010, shown in fig. 9.8b, where
data quality is deteriorated due to larger than normal opening angles. Here, both
of the new solutions differ from the old model by more than the GRACE baseline
accuracy. Especially the TLS solution (pink) shows much smaller amplitudes at very
high degrees, where noise is expected to dominate the recovered signal.

In general, the TLS solution shows larger differences than the solution using the AOC
covariances only. This also holds for the months not pictured here.

Spatial Domain

Figures 9.9 and 9.10 show equivalent water height maps for the same two example
months of good and deteriorated data quality. The reference mean field and long-term
signals — both from the GOCO05s model — were removed from the monthly solutions.
A 300 km Gaussian filter was applied to the datasets. The isotropic Gaussian filter was
chosen instead of one of the more advanced non-isotropic filters (see e.g. Kusche,
2007; Swenson and Wahr, 2006) to retain information on the change of the potential in
north-south direction. For similar reasoning, a conservatively small filter radius was
selected, which allows for the retention of some high-frequency patterns in the signal
after smoothing.

For both shown months, the major spatial features of the monthly gravity variations
are recovered in all three configurations (top and left columns). For the month of good
data, the differences between the old stochastic model and the model including AOC
covariance matrices, shown in fig. 9.9c, is small and mostly globally homogeneous.
Figure 9.9e shows the differences of the TLS solution w.r.t. the old stochastic model,
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(a) Degree amplitudes for April 2008 (good data).
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(b) Degree amplitudes for June 2010 (bad data).

Figure 9.8: Degree amplitudes in geoid height using the old stochastic model (in
brown), when taking AOC covariances into account (in blue), and for the
TLS solution (in pink). (a) shows a month of good data quality. (b) shows a
month of deteriorated quality due to larger than usual opening angles.
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Figure 9.9: Equivalent water height maps for April 2008, a month of good data. The
top and left column shows the monthly gravity field variations for the
three computed solutions. The right column shows the difference of the
improved solutions w.r.t. the reference solution. A 300 km Gaussian filter
was applied to the data. Note the different scale for (c), (e).

9.3 Results 143



60°S

30°S

0°

30°N

60°N

180°W 90°W 0° 90°E 180°E

(a) Old stochastic model.

1

(b) Using AOC covariance.

1

(c) Difference AOC covariance - old model.
1

(d) TLS solution.

1

(e) Difference TLS solution - old model.

−20−15−10 −5 0 5 10 15 20

Equivalent water height [cm] (a,b,d)

−4 −2 0 2 4

Equivalent water height [cm] (c,e)

Figure 9.10: Equivalent water height maps for June 2010, a month of deteriorated data.
The top and left column shows the monthly gravity field variations for the
three computed solutions. The right column shows the difference of the
improved solutions w.r.t. the reference solution. A 300 km Gaussian filter
was applied to the solutions. Note the different scale for (c), (e).
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which is similarly homogeneous, but larger in magnitude. It could be argued that in
both figs. 9.9c and 9.9e some systematic differences (compare red markers) can be seen
at ≈50 °N and at ≈30 °N, here especially in Mexico and off the west coast of North
America. This signal on its own is however not strong enough to draw any definitive
conclusion from it.

For June 2010, the month of deteriorated quality due to larger opening angles, the
differences are in general larger and more spatially distinct. Especially at southern mid-
latitudes, two bands of increased differences can be seen in both figs. 9.10c and 9.10e,
representing the differences due to the AOC covariance matrices and TLS respectively
(compare red markers). The latitudes of these bands correspond roughly to the latitudes
of the northern bands observed in figs. 9.9c and 9.9e. These northern bands are not as
distinct for June 2010, but they are still present.

Table 9.3 gives the average EWH RMS for these two monthly solutions, for all three
processing strategies and for different geographical areas. The RMS is evaluated
globally and separately over the continents and oceans. Using perfect background
models and flawless processing, the RMS over the oceans would be expected to be
close to zero, as no time-variable signal should remain in this area. Over the continents
however, the signal of the hydrological cycle and the other processes described in
chapter 3 should remain visible in the results. To further isolate the ocean signal from
possible interference from continental signals, a separate remote area in the south
Pacific was analysed. This is the area marked in red in figs. 9.9a and 9.10a.

Table 9.3: Global and geographically restricted RMS of recovered equivalent water
heights for April 2008, a month of good data; and June 2010, a month of
deteriorated data. A 300 km Gaussian filter was applied to the data.

Period / Area Old model [cm] Incl. AOC [cm] With TLS [cm]

April 2008
Global 3.81 3.81 3.72
Continents 4.60 4.60 4.55
Ocean 3.44 3.43 3.33
Pacific patch 3.43 3.41 3.19

June 2010
Global 3.95 3.97 3.76
Continents 4.79 4.82 4.66
Ocean 3.55 3.57 3.33
Pacific patch 3.22 3.27 2.97
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Table 9.3 shows that for all areas, the RMS of the solution using AOC covariance
matrices is not much smaller than that of the solution computed using the old stochastic
model. For June 2010, it is even larger in all areas, though within a margin that is
difficult to attach a qualitative meaning to. The TLS solution shows reduced RMSs for
all study areas in both months. Here, the RMS reduction over the continents is smaller
than that over the ocean, and it is largest for the pacific patch area. This supports the
conclusion that the TLS solution reduces orientation-induced noise in the solution
without overly damping the magnitude of the recovered signal.

Temporal Domain

The time series of computed monthly solutions is also analysed in the temporal domain.
Some months of reduced data quality were excluded from this analysis. The inclusion
of these outliers strongly skewed the results and prohibited meaningful interpretation
of the created time series and statistics. Specifically, the excluded months were 2004-01,
2004-09, 2012-04, 2012-06, 2015-01, and 2015-02 due to repeat or near-repeat orbit
geometry; as well as 2017-03 and 2017-06 due to unavailability of ACC observations
for GRACE-B and the subsequent use of “transplanted” ACC observations from
GRACE-A.

Temporal variability - spatial domain Figure 9.11 shows the temporal variability of
the three computed time series. The variability was computed as the RMS for each
point on a 1°× 1° geographical grid, once for each complete time series. Only the
inter-monthly variability was considered. Annual, semi-annual, and secular signals
were removed prior to computation of the variability. A 300 km Gaussian filter was
applied. Figure 9.11e shows that the variability in the TLS solution is clearly reduced in
distinct bands in the northern and southern mid-latitudes, and around the equator. The
reduction in variability is larger over the oceans than over land. For the solution using
the AOC covariance matrices, the reduction has a mean of 0.015 cm over land and
0.020 cm over the ocean. For the TLS solution, the reduction is 0.111 cm and 0.165 cm
over land and the ocean, respectively. In opposition to the overall trend of a reduction
in variability, some areas of large signals, especially the Amazon basin and southern
Africa, show a slight increase in variability.

Overall, the magnitude of the reduction in variability is not very large. It is encouraging
that variability over land is reduced by a smaller factor than over the ocean. This
supports the theory that correct handling of the non-stationary errors due to the
satellite pointing leads to a better recovery of the sought signal, while noise in the
recovered solution is damped. The reduction is larger for the TLS case than for the AOC
covariance only case. As a larger number of parameters is estimated, it is reasonable
to expect less noise remaining in the solution. What cannot be seen in fig. 9.11e is
a systematic damping of temporal variability where large hydrological signals are
expected, which is encouraging.
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Figure 9.11: Global temporal variability of monthly gravity field solutions in
equivalent water height. The top and left column shows the variability of
the computed solution as the RMS over the time series. The right column
shows the difference of the variability of the improved solutions w.r.t. the
reference solution. A 300 km Gaussian filter was applied to all solutions.
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Time series of RMS ratios Table 9.3 presented the RMSs of several geographically
restricted areas for two selected months. The same RMSs were also computed for the
remaining months of the time series, again using a 300 km Gaussian filter. Then, for
both of the improved solutions, a ratio was formed between the RMSs of the improved
solutions (blue and pink) and the RMS of the reference solution (old stochastic model,
brown). These ratios are displayed in fig. 9.12.

The ratio is displayed instead of absolute RMS values for two main reasons: Due to a
variety of factors such as observation geometry and gaps in the underlying data, the
magnitude of the RMS for one area can vary considerably from month to month. This
makes inter-monthly comparisons of absolute differences difficult to interpret, as these
in turn also vary from month to month. Further, the differences in EWH RMS between
the solutions are small compared to their magnitude, which makes them disappear at
these larger scales.

When considering the ratios, a value of less than 100 % indicates that the RMS of
the reprocessed solution is smaller than that of the reference solution. The value for
the solution computed using the old model is always 100 %, as this is the reference
solution. Figure 9.12 shows that for all areas, the RMS of the solution including AOC
covariance matrices (blue) is of comparable magnitude as that of the reference solution.
Within the scatter of the time series, neither a clear increase nor a distinct decrease
of the RMS can be observed. This does not hold for the time series of TLS solutions
(pink), where the ratio is below 100 % for almost all months. The mean of the RMS
reduction for the TLS series is 3.3 % globally, 2.3 % over land, 4.1 % over the oceans,
and 5.1 % for the pacific patch. This confirms that for the TLS solution the reduction in
RMS is higher in areas where noise is expected to be a larger factor of the recovered
gravity field, and smaller where signal is expected to be larger.

For the solution using AOC covariances only (blue), the mean reductions in RMS are
0.36 % globally, 0.25 % over land, 0.44 % over the oceans, and 0.46 % for the pacific
patch. Although the patterns in the magnitude of the reductions match those of the
TLS solution, the means are small in relation to the scatter of the time series, and
caution should be applied when drawing qualitative conclusions from this data.

Temporal variability - spectral domain Where observing the temporal variability in
the spatial domain allows for insights into the geographical localisation of specific
features, the required filtering hides a lot of the variability at small spatial scales. To
give a fuller impression of the characteristics of the computed solutions at these scales,
the temporal RMS for each solution was also computed in the spectral domain, once for
each Stokes coefficient. For the improved solutions, a ratio was again formed with the
reference solution using the old stochastic model. Values below 100 % again indicate a
RMS reduction. These results are shown in fig. 9.13.

The ratio for the solution using AOC covariance matrices is shown in fig. 9.13c. The
most striking feature here is a reduction of the variability in the zonal and near-zonal
coefficients above roughly degree 40. Correspondingly, a small increase in variability
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Figure 9.12: Time series of ratios of geographically restricted root mean squares of
each solution w.r.t. the reference solution using the old stochastic model
(brown). Prior to computation of the RMSs, a 300 km Gaussian filter was
applied to the solutions.
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can be observed at the first orbital resonant frequency of approximately order 16. For
higher degrees, a reduction in variability can also be observed for tesseral coefficients.

The ratio for the TLS solution, displayed in fig. 9.13e, shows similar features, but with
a larger magnitude. The reduction in variability in the zonal and high-order tesseral
Stokes coefficients is again present. In contrast to the ratios for the solution using AOC
covariance matrices only, there does not appear to be an increase in variability at the
first orbital resonant frequency. For medium orders, a decrease in variability can be
observed between multiples of the resonant frequency, while Stokes coefficients at the
resonant frequencies themselves show relatively little change. Higher degree non-zonal
Stokes coefficients of all orders decrease in variability at a similar magnitude, with no
obvious correlation to the resonant frequencies.

It is expected that the variability should remain relatively unchanged at degrees below
approximately 30, as strong temporal signals are expected at these scales. In general,
this is the case for both solutions. The TLS solution however shows a strong reduction
in variability for the zonal Stokes coefficients of degrees 17 to 20 (see inset in fig. 9.13e).
Because of the sharp jump of variability and the strict limitation to zonal Stokes
coefficients, a geophysical origin of this signal can be ruled out. A back-of-the-envelope
calculation gives the temporal frequency that these Stokes coefficients correspond to for
the GRACE spacecraft on their polar orbits. For a revolution period of Trev ≈ 89 min,
the lower bound of the affected frequency spectrum, where the reduction in variability
is smaller (c17,0), is 1/(Trev/17) ≈ 3.2 mHz. The corresponding frequency for the upper
bound, formed by the degree 20 zonal Stokes coefficient is 1/(Trev/20) ≈ 3.7 mHz. This
band encompasses, again, the dominant frequency in the pitch angle variations of the
GRACE spacecrafts, 3.3 mHz (Bandikova, Flury, and Ko, 2012), which was previously
encountered in section 8.3.3. This leads to the conclusion that the TLS estimate reduces
noise in these Stokes coefficients, and that this noise originated in GRACE pointing
variations at the appropriate frequencies.

Figure 9.13e shows a sharp decrease in temporal variability for the TLS solution
between near-zonal Stokes coefficients of degree 60 and 61. A geophysical source for
this pattern is unlikely. Instead, the chosen processing strategy is the most likely origin
for this artefact. The estimation of the stochastic model and the satellite orientation
was only performed while co-estimating a gravity field up to D/O 60. The resulting
orientations were used together with the stochastic model to compute a full D/O
120 field. As no such jump exists in the solution considering AOC covariances only
(fig. 9.13c), it stands to reason that this approach is not suitable in the process of TLS
orientation estimation. Rather, the iterative co-estimation of the orientation should be
performed with a full D/O 120 gravity field.

9.4 Discussion

This chapter described the application of the total least squares approach of least
squares adjustment to the combined estimation of GRACE-derived gravity fields and
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Figure 9.13: (a), (b) and (d) show the temporal variability of the computed monthly
gravity field solutions as RMS over the time series in the spectral domain.
(c) and (e) show the ratio of the RMS of the respective improved solution
and the reference solution for each Stokes coefficient. No filter was
applied to the solutions.
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improved satellite orientations. Importantly, it was shown that the TLS approach
described by Reinking, 2008 is equivalent to the widely used practice of parameter
elimination in a classical Gauß-Markov model, given correct linearisation at every
iteration step and uncorrelated observation groups.

The estimation of the satellite orientations was integrated into the processing strategy at
the same stage where the stochastic model for GRACE SST observations is determined.
In this context, the full SCA/ACC sensor fusion and AOC covariance matrices derived
in chapter 8 formed important building blocks. Without these prerequisites, using
ll-SST observations in the determination of the improved orientations would not be
possible.

The estimated stochastic model was not strongly affected by use of the TLS algorithm.
The estimated orientations are plausible, and the variations in orientation estimated
by the algorithm follow the constraints introduced through the a priori covariance
information. Over the complete analysed time span, the estimates differ more from
the orientation provided through SCA/ACC sensor fusion for periods where only one
SCA head is active on the respective spacecraft.

One major result is the improvement in the estimate of the antenna phase centre
vectors through this approach. Where the estimate contained a large bias in the
previous scenarios, using the TLS algorithm almost completely eliminates the bias. A
large standard deviation remains, however. Crucially, this standard deviation is larger
than that obtained through the formal errors of the least squares adjustment. This leads
to the conclusion that further investigation is needed to either locate and model the
remaining factors leading to this biased estimate, or to conclusively show the limits of
co-estimation of the GRACE APC vectors in normal science operations. One promising
avenue could be to follow the approach laid out by Horwath et al., 2011 and only
estimate the deviations of the pitch and yaw components of the APC. The length of
the APC vector would then be held constant at the value obtained from dedicated
in-orbit KBR calibration manoeuvres. This approach could be combined with the TLS
orientation estimate, which was shown to provide a more stable estimate of exactly
these two angles.

At the level of monthly gravity field solutions, the TLS estimate showed improve-
ments especially for months containing non-nominal observations, such as periods
of increased opening angles due to operational constraints on the GRACE satellites.
The influence of the TLS estimate can be studied most clearly not at the level of
individual monthly solutions, but when analysing their temporal variability. In the
spatial domain, the variability is decreased more over the oceans than over land,
which in first approximation indicates a reduction of noise, and not a damping of
signal. Analysis in the spectral domain clearly showed that the variability of the Stokes
coefficients corresponding to the GRACE pitch angle variations in geographical extent
and frequency were amongst those most improved. However, some clear processing
artefacts were visible for Stokes coefficients of degrees higher than 60, indicating that
there is a need to further refine the processing chain incorporating a TLS estimate of
the satellite orientations.
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Conclusion and Outlook 10
The presented research, building on the foundation of the state of the art GRACE
level 1B to level 2 data pipeline at IfG, furthers diverse aspects of GRACE data
processing. The improved stochastic model described in chapter 8 and the treatment
of uncertainties in independent variables outlined in chapter 9 can bring immediate
observable improvements to the processing of GRACE data. This is not the case for the
first presented topic, the optimization of the dynamic orbit integration (chapter 7).

The previously existing implementation of dynamic orbit integration is of sufficient
fidelity for traditional GRACE processing. This was proven by variance propagation of
an error estimate for the dynamic orbits to the range-rate domain, and comparison with
GRACE ll-SST noise models. The same investigation showed that the stability of the
classical approach could prove insufficient for GRACE-FO processing, where the new
laser ranging interferometer is expected to provide higher-precision observations of
the inter-satellite separation. To ameliorate this deficiency, an improved dynamic orbit
integration algorithm based on a modified Encke method using a rigorously optimized
reference trajectory parametrised in equinoctial elements was introduced. Using this
parametrisation, the stability of the integration is expected to be sufficient for GRACE-
FO processing. This implementation was already used in the ITSG-Grace2016 series of
gravity field solutions. It is also expected to be used for the upcoming ITSG-Grace2018
solutions. At the time of writing, GRACE-FO was successfully launched, and initial
data from the early operations phase showed the satellite instrumentation to work as
expected. Should GRACE-FO LRI data become available towards the end of 2018, the
results presented in chapter 7 will be able to be verified using real data.

The description and rigorous evaluation of the effect of the spacecraft orientation
uncertainty on the ll-SST antenna offset correction, outlined in chapter 8, has improved
understanding of the error spectrum of real GRACE observations. The derived stochas-
tic model for the AOC explains spurious power observed in the estimated monthly KBR
PSDs, located in the frequency band associated with inter-satellite pointing variations.
This power was shown to be the result of aliasing of the unmodelled non-stationary
noise of the AOC into the estimated monthly stationary PSD. Disentanglement of
these noise sources allows for the decorrelation of all observations in the month with a
more appropriate PSD, unaffected by transient noise in only parts of the observations.
Further, the variance factors used to weigh individual observation arcs were strongly
correlated with the inter-satellite opening angle. Arcs with higher opening angles were
consistently downweighted. This is of course desired behaviour, as the observations in
these arcs are affected by higher noise. Describing the variations of the ll-SST uncer-
tainty on an epoch-by-epoch basis is however highly preferable, as it allows for a more

153



granular weighting of observations, not necessarily downweighing parts of one arc
because anomalous data was detected at other times during the same arc.

Even though the method of deriving AOC covariance matrices from the results of
an in-house SCA/ACC sensor fusion was proven to be helpful in the analysis of
GRACE data, its applicability to e.g. the ITSG-Grace2018 release is uncertain. The ITSG-
Grace2018 series of gravity field solutions will be based on the release 3.0 dataset of
GRACE level 1B data provided by JPL. The SCA1B product of the release 3.0 data will
contain satellite orientations derived from a SCA/ACC sensor fusion computed at JPL
(GRACE, 2018). The fusion computed at JPL will be based on a Kalman filter approach,
and full covariance matrices will not be available to the processing community. This
prohibits the computation of a meaningful SCA/ACC sensor fusion at IfG, as the
necessary raw data is no longer available in unprocessed form. It could be possible to
compute an approximate orientation covariance matrix using available data and use
this information to derive the AOC covariance matrices. This approach has not yet been
studied in detail. For GRACE-FO, full level 1A data is expected to be released (Wen
et al., 2018). This will again allow for the determination of the spacecraft orientation
through sensor fusion, but now based on directly employing level 1A data. The
resulting covariance matrices can then be used in the determination of AOC covariance
matrices for GRACE-FO.

Building on the full arc-wise information of the orientation uncertainty, the satellite
orientation was co-estimated in the least squares adjustment for the Stokes coeffi-
cients. In previous solutions up to ITSG-Grace2016, the orientations of the spacecraft
were assumed fixed and error-free, which is clearly not true. The equivalence of two
formalisms for the treatment of uncertainties in independent variables was proven,
namely the TLS algorithm as formulated by Reinking, 2008 and a formulation based on
classical parameter elimination. Employing this apparatus, co-estimation of spacecraft
orientations led to a more stable estimate of the KBR antenna phase centres, especially
improving on the previously strongly biased length estimate. The main impact of the
changed parametrisation on the recovered gravity field solutions was a reduction in
temporal variability over the ocean. This can reasonably be interpreted to correspond to
a reduction in noise. In the spectral domain, the reduction in variability was especially
prominent for some Stokes coefficients whose spatial patterns correspond to the domi-
nant pitch-motion of the GRACE satellites. Spectral analysis shows an abrupt drop in
temporal variability at spherical harmonics of order 61. This is cause for caution, as it
implies that the chosen processing strategy — co-determination of the stochastic model
and initial approximation of the satellite orientations in an adjustment up to D/O
60, followed by a full adjustment up to D/O 120 — is the cause of these processing
artefacts. Further studies are needed to investigate this effect, preferably recomputing
the stochastic model and orientations together with a full D/O 120 solution. The
conclusions drawn in the spatial domain should however remain largely unaffected by
this artefact, as the 300 km Gauss filter applied to the solutions prior to analysis has a
cut-off far below the D/O 60 threshold.

As the TLS algorithm depends on somewhat accurate covariance information, this
approach will not be used in the ITSG-Grace2018 gravity field solutions, due to the
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reasons mentioned above. Further, the release 3.0 SCA1B data product will include im-
provements in the provided satellite orientations. Particularly, several errors previously
present in the orientation determination chain were found and fixed in this release
(GRACE, 2018). It remains to be investigated whether these large improvements to
the SCA1B data can make a co-estimation of the satellite orientation unnecessary. As
the fundamental data needed to form the orientation covariance matrices will again
be available for GRACE-FO, the orientation co-estimation could be applied for this
mission.
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Björck, Åke (1996). Numerical Methods for Least Squares Problems. Society for Industrial
and Applied Mathematics. doi: 10.1137/1.9781611971484 (cit. on p. 8).

Blackford, L. Susan et al. (2002). “An Updated Set of Basic Linear Algebra Subprograms
(BLAS).” In: ACM Transactions on Mathematical Software 28.2, pp. 135–151. doi:
10.1145/567806.567807 (cit. on p. 41).

Bond, William Cranch (1849). “Encke’s Comet.” In: Monthly Notices of the Royal Astro-
nomical Society 9.5, pp. 106–107. doi: 10.1093/mnras/9.5.106 (cit. on p. 81).

Broucke, R. A. and P. J. Cefola (1972). “On the Equinoctial Orbit Elements.” In: Celestial
mechanics 5.3, pp. 303–310. doi: 10.1007/BF01228432 (cit. on pp. 86, 87).

Brouwer, Dirk (1959). “Solution of the Problem of Artificial Satellite Theory without
Drag.” In: The Astronomical Journal 64, p. 378. doi: 10.1086/107958 (cit. on p. 96).

161

https://doi.org/10.2478/v10156-011-0036-5
https://doi.org/10.3390/math3020337
https://doi.org/10.1016/j.asr.2012.03.011
http://hdl.handle.net/1903/2202
ftp://podaac.jpl.nasa.gov/allData/grace/docs/ProdSpecDoc_v4.6.pdf
ftp://podaac.jpl.nasa.gov/allData/grace/docs/ProdSpecDoc_v4.6.pdf
https://doi.org/10.1137/1.9781611971484
https://doi.org/10.1145/567806.567807
https://doi.org/10.1093/mnras/9.5.106
https://doi.org/10.1007/BF01228432
https://doi.org/10.1086/107958


Case, Kelley, Gerhard Kruizinga, and Sien-Chong Wu (2010). GRACE Level 1B Data
Product User Handbook. url: ftp://podaac.jpl.nasa.gov/allData/grace/docs/
Handbook_1B_v1.3.pdf (visited on 2014-07-22) (cit. on p. 107).

Danielson, Donald A. et al. (1995). Semianalytic Satellite Theory. Monterey, CA, USA:
Naval Postgraduate School. url: http://hdl.handle.net/10945/24428 (visited
on 2015-06-12) (cit. on pp. 86, 87).

Desai, Shailen D. (2002). “Observing the Pole Tide with Satellite Altimetry.” In: Journal
of Geophysical Research 107.C11. doi: 10.1029/2001JC001224 (cit. on p. 49).

Diebel, James (2006). Representing Attitude: Euler Angles, Unit Quaternions, and Rota-
tion Vectors. url: https://www.astro.rug.nl/software/kapteyn/_downloads/
attitude.pdf (visited on 2018-07-04) (cit. on p. 103).

Dobslaw, Henryk et al. (2014). Updating ESA’s Earth System Model for Gravity Mission
Simulation Studies: 1. Model Description and Validation. Scientific Technical Report
STR14/07. doi: 10.2312/GFZ.b103-14079 (cit. on p. 15).

Drinkwater, M. R. et al. (2003). “GOCE: ESA’s First Earth Explorer Core Mission.” In:
Earth Gravity Field from Space — From Sensors to Earth Sciences. Ed. by G. Beutler et al.
Vol. 18. Space Sciences Series of ISSI. Dordrecht, Netherlands: Kluwer Academic
Publishers, pp. 419–432. doi: 10.1007/978-94-017-1333-7_36 (cit. on p. 96).
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