

II

Kurzfassung

Elektronische Systeme sind heutzutage überall vorzufinden. Der stetige Fortschritt eröffnet
weitere Möglichkeiten für den Einsatz von Elektronik. Das führt auch dazu, dass die Syste-
me komplexer werden und dadurch auch der jeweilige Rechenaufwand steigt. Für manche
Systeme reicht die Rechenkapazität der Prozessoren nicht aus, um die Tasks echtzeitgetreu
auszuführen. So hilft meist nur mehr die Auslagerung dieser Berechnungen auf speziell er-
stellte Koprozessoren.

Die Firma Durst Phototechnik Digital Technology GmbH entwickelt industrielle Hochlei-
stungsdrucker, wobei sie mit dem Problem des stetig steigenden Rechenaufwands für die
Vorverarbeitung der zu druckenden Bilder konfrontiert ist. Derzeit wird diese Vorverarbei-
tung auf leistungsfähige Workstations ausgeführt. Um die Verarbeitungszeit zu verringern,
wird überlegt die entsprechenden Algorithmen auf Hardwaresystemen wie FPGAs zu im-
plementieren. Für eine einfache und zeitsparende Umsetzung dieses Vorhabens wird die
Verwendung der High-Level Synthese in Betracht gezogen.

High-Level Synthese steht für die automatische Erzeugung eines Modells auf Register-
Transfer Ebene. Ausgangspunkt ist dabei eine entsprechende Implementierung mit einer
Hochsprache wie zum Beispiel C/C++ oder SystemC. Diese Masterarbeit gibt einen Ein-
blick in diese Designmethode. Zudem wird der Nutzen der High-Level Synthese bezüglich
Zeitersparnis während des Designprozesses sowie der Qualität der resultierenden Hard-
wareimplementierung hinsichtlich Design Metriken im Vergleich zur herkömmlichen De-
signmethode mit Hardwarebeschreibungssprachen präsentiert. Neben der Recherche von
bereits ähnlichen veröffentlichten Arbeiten umfasst diese Arbeit den Vergleich der zwei Me-
thoden für ein Datenflussmodul, das in den Drucksystemen der genannten Firma verwen-
det wird, und für ein Verschlüsselungsmodul, um auch die Verwendbarkeit der High-Level
Synthese für die Umwandlung von Algorithmen auf Register-Transfer Ebene zu untersu-
chen.

Das Ergebnis der Arbeit bestätigt, dass die Verwendung der High-Level Synthese für die
Erstellung von Hardwaremodulen von Nutzen sein kann. Zwar erhöhen sich minimal die
Anzahl der allozierten Ressourcen und der Leistungsbedarf, jedoch kann der Zeitaufwand
des Designprozesses für Hardwaremodule, die komplexe Algorithmen ausführen, deutlich
verringert werden. Für einfache Datenflussmodule ist hingegen die Verwendung von Hard-
warebeschreibungssprachen empfehlenswert. Denn der Einsatz der High-Level Synthese
verringert kaum den Aufwand des Designprozesses, aber erhöht trotzdem die allozierte
Ressourcenanzahl um ungefähr ein Drittel.

III

Abstract

Nowadays, electronic systems are everywhere. The steady progress of electronic devices
opens up further possibilities for their usage. This leads to a higher complexity and in-
creasing computational effort for these systems. In some cases, the computing power of
processors is insufficient to perform all tasks in real-time. Therefore, an alternative is the
outsourcing of the CPU-intensive executions to specially designed co-processors.

The company Durst Phototechnik Digital Technology GmbH develops industrial high-
performance printers. They are confronted with the same problem of the increasing
computational effort for the preprocessing of images for their printers. Currently, this
preprocessing is performed on high-performance workstations. For the reduction of pro-
cessing time, they are willing to transfer the algorithms to hardware systems like FPGAs
but this transfer should be done as simple and as time-saving as possible. Therefore, the
use of high-level synthesis is considered.

High-level synthesis means an automatic generation of a model on register-transfer level.
The starting point is a corresponding implementation with high level languages like C/C++
or SystemC. An insight into this design method is provided by this thesis. It presents the
benefits of high-level synthesis in terms of time savings during the design process and the
quality of the resulting register-transfer level model in terms of design metrics compared
to the traditional design method using hardware description languages. Additionally the
research of similar papers, this thesis includes the comparison of the mentioned design
methods for a data flow module used in printing systems of the mentioned company and
an encryption module to present the applicability of high-level synthesis for the conversion
of algorithms to register-transfer level.

The result of this thesis confirms that the use of high-level synthesis can be useful for the
creation of hardware modules. Although the number of allocated resources and the power
consumption is slightly increasing, the required time for the design process of hardware
modules including complex algorithms can be significantly reduced. For simple data flow
modules, the use of hardware description languages is recommended. The use of high-
level synthesis hardly reduces the time exposure of the design process, but increases the
allocated resources by about one third.

IV

Danksagung

Diese Diplomarbeit wurde im Jahr 2018 am Institut für Technische Informatik an der
Technischen Universität Graz durchgeführt.

An dieser Stelle möchte ich mich bei all denjenigen bedanken, die mich während der
Anfertigung dieser Masterarbeit unterstützt und motiviert haben.

Ganz besonders gilt dieser Dank Herrn Ass.Prof. Dipl.-Ing. Dr.techn. Christian
Steger, der mich betreut hat. Nicht nur durch sein kritisches Hinterfragen gab er mir
immer wieder wertvolle Hinweise. Auch seine kontinuierliche Motivation haben einen
großen Teil zur Vollendung dieser Arbeit beigetragen. Vielen Dank für die Geduld und
Mühen.

Daneben gilt mein Dank Herrn Dipl.-Ing. (FH) Mario Ploner und Herrn Dipl.-Ing.
Christian Halbfurter, die als Ansprechpartner seitens der Firma Durst Phototechnik Digital
Technology GmbH fungierten. Ihre Überlegungen und Hinweise waren für den Erfolg dieser
Masterarbeit maßgebend. Deshalb möchte ich ihnen ebenfalls meinen Dank aussprechen.

Auch Herrn Dipl.-Ing. Wolfgang Knotz gilt ein Dank, da er es überhaupt ermöglicht
hatte, diese Masterarbeit in Kooperation mit der Firma Durst Phototechnik Digital Tech-
nology GmbH durchzuführen.

Nicht zuletzt gebührt meiner Mutter, meiner Familie und meiner Freundin Isabel Dank,
ohne die dieses ganze Unternehmen schon im Vorhinein niemals zustande gekommen wäre.

Graz, September 2018 Martin Webhofer, BSc

V

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Goals . 3
1.3 Outline . 3

2 Basics and Principle of High-Level Synthesis 4
2.1 What is High-Level Synthesis? . 4
2.2 Motivation for using High-Level Synthesis 6
2.3 Review of High-Level Synthesis . 7

2.3.1 Generation 1 (about 1980 to 1990) 7
2.3.2 Generation 2 (about 1990 to 2000) 8
2.3.3 Generation 3 (from about 2000) . 8
2.3.4 Commercial Progress of High-Level Synthesis 9
2.3.5 Outlook - fourth Generation . 9

2.4 HLS Kernel . 10
2.4.1 Key Concepts . 10
2.4.2 Compilation and Modeling . 11
2.4.3 Allocation . 12
2.4.4 Scheduling . 12
2.4.5 Binding . 12
2.4.6 Generation . 12

2.5 Resulting Architecture . 12
2.6 HLS-based Development Flow . 13

3 Related Works 15
3.1 HLS generated designs vs. HDL designs . 15

3.1.1 Cryptographic Algorithm . 15
3.1.2 Video Filter Algorithm . 17
3.1.3 Sub-Pixel interpolation filter from the MPEG HEVC standard . . . 19

3.2 BDTI High-Level Synthesis Tool Certification Program 22
3.2.1 Evaluation results of AutoPilot . 22
3.2.2 Evaluation results of Synphony C Compiler 23

3.3 Comparison of different HLS tools . 25

VI

4 Design 27
4.1 Specifications . 27
4.2 Metrics of FPGA Designs . 28
4.3 Generation of a Register-Transfer-Level Design 28

4.3.1 Programming Languages on RTL . 29
4.3.2 Tools for the generation of RTL models 31

4.4 Generation of High-Level Model . 32
4.4.1 Tools for High-Level Synthesis . 32
4.4.2 Programming languages for High-Level Synthesis 35
4.4.3 Cosimulation . 36
4.4.4 Interface Synthesis . 37
4.4.5 Code Optimization . 40
4.4.6 Arbitrary Datatypes . 45

4.5 Module: ”Data flow” . 46
4.5.1 Application field of this module . 46
4.5.2 Module Interface . 46

4.6 Module: ”Cryptography-Algorithm” . 48
4.6.1 Principle of Ascon . 49
4.6.2 Module Interface . 51

4.7 Choice of the Evaluation Kit . 52

5 Implementation and Results 55
5.1 Used Tools for Module Generation . 55
5.2 Implementation of Module: ”data flow” . 56

5.2.1 RTL Implementation . 61
5.2.2 HLS Implementation . 62
5.2.3 Testbench: Generated by HLS . 63

5.3 Implementation of Module: ”cryptographic-algorithm” 64
5.3.1 RTL Implementation . 67
5.3.2 HLS Implementation . 68
5.3.3 Testbench: Generated by HLS and Matlab 70

5.4 Results and Comparison of Designs . 70
5.4.1 Module: ”data flow” . 70
5.4.2 Module: ”cryptography algorithm” 72
5.4.3 Allocated Area . 73
5.4.4 Power Consumption . 74
5.4.5 Design Effort . 76

6 Conclusion 77

A Terminology 79
A.1 Definitions . 79

Bibliography 80

VII

List of Figures

2.1 Abstraction model of digital system design. 4
2.2 Abstraction levels of FPGA design process. 5
2.3 Difference between High-Level Synthesis and Logic Synthesis. 6
2.4 Closing the productivity gap with HLS. 7
2.5 Sales of electronic system-level synthesis tools. 9
2.6 High-Level Synthesis tasks. 11
2.7 Architecture of a HLS generated design. 13
2.8 HLS design flow. 14

3.1 Top-Level of SHA-3 implementation. 16
3.2 Comparison of the results for Altera Spartix IV. 17
3.3 Comparison of the results for Xilinx Virtex 6. 17
3.4 Image filter algorithm description. 18
3.5 Utilized resources for the video filter algorithm. 19
3.6 Horizontal interpolation filter (1-D). 19
3.7 Horizontal interpolation filter (2-D). 20
3.8 Evaluation factors for HLS tools. 25
3.9 Comparison of different HLS tools. 26

4.1 Correlation of throughput and resource cost. 28
4.2 RTL design flow. 29
4.3 Design flow of the Xilinx Vivado Suite. 31
4.4 HLS design flow. 32
4.5 Synthesis process of Vivado HLS. 34
4.6 Procedure of C/RTL Cosimulation. 37
4.7 Interface protocols. 38
4.8 Example for different protocols. 40
4.9 Example ”Pipelining”: Data dependencies between Op1, Op2, and Op3. . . 41
4.10 Example ”Pipelining”: Dataflow graph. 41
4.11 Example ”Pipelining”: Adding registers. 42
4.12 Example ”Pipelining”: Dataflow graph of pipelined stages. 42
4.13 Example for dataflow optimization: without dataflow optimization. 44
4.14 Example for dataflow optimization: with dataflow optimization. 44
4.15 GTP Interface. 47
4.16 Module: ”Data Flow” interface. 48
4.17 Block diagram of encryption. 50

VIII

4.18 Block diagram of decryption. 50
4.19 Process of substitution layer. 51
4.20 Module: ”Cryptography-Algorithm” interface. 52
4.21 PicoZed . 53
4.22 Picozed FMC . 54

5.1 Used tools for the implementation - register-transfer level. 55
5.2 Used tools for the implementation - high-level synthesis. 56
5.3 Implementation of module: ”data flow”. 56
5.4 State diagram of the pre-processing. 57
5.5 State diagram of the print data processing. 58
5.6 State diagram of the configuration data processing. 59
5.7 Implementation of module ”data flow”. 60
5.8 Module: ”cryptography-algorithm”. 64
5.9 Data flow diagram of module: ”cryptography-algorithm”. 65
5.10 Comparison of module: ”cryptography-algorithm”. 67
5.11 RTL implementation of module: ”cryptography-algorithm”. 68
5.12 Testbench of module: ”cryptography-algorithm”. 70
5.13 Check of the complete behavior. 71
5.14 Comparison of print data. 71
5.15 Comparison of config data. 72
5.16 Check of instruction Load P. 72
5.17 Check of instruction Finalization. 73
5.18 Comparison of resource utilization for module: ”data flow”. 73
5.19 Comparison of resource utilization for module: ”cryptography-algorithm”. . 74
5.20 Total power consumption of module: ”data flow”. 75
5.21 Total power consumption of module: ”cryptography-algorithm”. 75

IX

List of Tables

3.1 Results of HLS generated design and RTL design. 16
3.2 Results of the resource utilization. 18
3.3 Results for the sub-pixel interpolation filter. 21
3.4 Design Gain. 21
3.5 Comparison of HLS generated and DSP design - minimizing utilization. . . 22
3.6 Comparison of HLS generated and DSP design - maximizing throughput. . 23
3.7 Comparison of HLS generated and RTL design - maximizing throughput. . 23
3.8 Comparison of HLS generated and DSP design - minimizing utilization. . . 24
3.9 Comparison of HLS generated and DSP design - maximizing throughput. . 24
3.10 Comparison of HLS generated and DSP design - maximizing throughput . . 24

4.1 Available HLS tools on the market. 33
4.2 Properties of different HLS tools. 34
4.3 Standard Datatypes. 45
4.4 Arbitrary Datatypes. 45
4.5 Addition of Constants. 51

5.1 K-words abbreviations. 56
5.2 Number of source lines of code for module: ”data flow”. 76
5.3 Number of source lines of code for module: ”cryptography-algorithm”. . . . 76

X

Listings

4.1 Package for Matrix Multiplication. 30
4.2 Matrix Multiplication. 30
4.3 SystemC: Definition of a module. 35
4.4 SystemC: Creation of a module. 35
4.5 SystemC: Port definition. 35
4.6 SystemC: process type 1. 36
4.7 SystemC: sensitivity list. 36
4.8 SystemC: process type 2. 36
4.9 SystemC: process type 3. 36
4.10 Example: Merging loops (no merging). 43
4.11 Example: Merging loops (merged loops). 43
5.1 VHDL-Code of module ”data flow”. 61
5.2 Parts from C-Code of module ”data flow”. 62
5.3 ”static” usage for variables. 63
5.4 Directives for the automatic synthesis process. 63
5.5 C/C++ implementation of the cryptographic-algorithm module. 68
5.6 Directives for the automatic synthesis process of cryptographic module. . . 69

XI

Chapter 1

Introduction

The increasing capabilities of silicon technology in integrated circuits and the more com-
plex designs lead us to use new methodologies and tools for the generation of such systems.
Acceleration of the design process is also one central point in the generation of embedded
systems. In early days assembler was used to program different processors, but over time
the usage of high level programming languages were introduced, because the increasing
packing density of transistors in integrated circuits was determining this necessity. In
embedded programming the language C/C++ has been established over the years, which
allows to create software applications with relatively low time-to-market.

Sometimes, processors usually haven’t the necessary amount of computational power.
In such cases, Hardware-Software-Codesign is an essential design task. Engineers have
to partition the whole system into hardware and software parts. Tasks, with a huge
computational effort, have to be designed in hardware, whereas control tasks are often
implemented with software on microcontrollers. As we consider the hardware parts, which
are mostly implemented on a FPGA or an ASIC, we have to be aware of their design flow.
Conventional designs are used on Register-Transfer Level (RTL) to implement the sub-
system, but in some cases the complexity of sub-systems is very high and the designing
on RTL will increase the time-to-market significantly. Since some decades, engineers are
researching for new methodologies to increase the abstraction level of the design flow for
hardware implementations like FPGAs or ASICs. Thus, the High-Level Synthesis (HLS)
was developed to decrease the time-to-market for embedded systems and to simplify the
design process. HLS uses high-level programming languages for designing the hardware
on integrated circuits (ICs). The most common used languages are C/C++ or SystemC.
Nowadays, it is also possible to create hardware designs on FPGAs with tools like Matlab
or Labview. [2]

The outcome of this master thesis will be a comparison between possibilities and
opportunities of HLS versus the traditional design flow on RTL for FPGAs and ASICs.
The implemented hardware modules deal on the one hand with a data flow application
for large printing systems and on the other hand with a complex cryptography algorithm.
The aim is an evaluation about the benefits or drawbacks of HLS regarding simple data
flow operations and high sophisticated algorithms.

The master thesis is a cooperation with the company Durst Phototechnik Digital Tech-
nology GmbH, which is one of the market leaders in developing industrial printers. The
headquarter is located in Brixen (South Tyrol) and a further development department

1

CHAPTER 1. INTRODUCTION 2

in Lienz (East Tyrol). The matter for this collaboration is the adoption of better design
methodologies for their embedded systems and the balancing of opportunities to accelerate
the design process.

1.1 Motivation

Since the packing density is increasing and the complexity of digital systems is also rising,
the usage of new tools and methodologies are necessary to keep pace with the technology
progress. Such a methodology for designing hardware in FPGAs or ASICs is as mentioned
before HLS. The distinction to conventional design flow is that we are moving it to a more
abstract level, which leads up to an amount of benefits [13]:

• Improved productivity for hardware designers
Hardware designers can work at a higher level of abstraction while designing of new
hardware modules or hardware systems.

• Improved system performance for software engineers
Software engineers can transfer the CPU-intensive parts of their algorithms to co-
processors like FPGAs or ASICs. This allows to improve the whole performance of
the system.

• Developing algorithms at a higher level like C-level
Raising the abstraction level and in further consequence reducing the implementation
details to get a better overview about the whole system improve the design process.

• Verify at the C-level
Verification of the correct behavior of a system is done much quicker than with
traditional hardware description languages (HDLs).

• High-level Synthesis process controlled by optimization directives
Engineers can define the exact behavior of the system after HLS by assigning direc-
tives instead of defining it on RTL.

• Creation of multiple hardware implementations by assigning different op-
timization directives
The generation of different solutions helps finding the best implementation for a
special system. This is done by assigning various optimization directives before the
HLS process.

• Create readable and portable C source code
Re-usage of C implementations for different FPGAs or ASICs can be done very
easily. In addition, adding parts of an existing C implementation into a new project
can also be achieved without troubles.

”Time is Money”, this is the best argument, why it is very important to look for new
methodologies to keep in pace with the technology evolution. The presented possibilities
and opportunities of HLS give a short overview of this design technique for engineers.

CHAPTER 1. INTRODUCTION 3

1.2 Goals

Before starting a project, it is important to know about the outcome of the whole project.
This master thesis is a cooperation with the company Durst Phototechnik Digital Technol-
ogy GmbH. Therefore it should point out the sense of using new methodologies like HLS
to decrease the time of generating designs or implementations for their printing systems.

Currently, the conventional hardware design flow, which means the designing on RTL,
has been established in this company. While the complexity of digital systems are in-
creasing steadily, it is necessary to consider new tools like HLS. This master thesis is an
approach to compare the results of a design on RTL and a design created by HLS. Regard-
ing results, there will be comparison between the different metrics of a hardware design
(area, power consumption, and time-to-market) and it is possible to see the benefits of
using Cosimulation for the hardware design flow.

In addition the practical outcome of the master thesis should present two different
modules each designed on RTL and generated by HLS. One module deals with a data
flow application, which is used in printing systems of Durst Phototechnik Digital Tech-
nology GmbH and the second module executes the cryptography algorithm called Ascon.
Generally, the benefits and drawbacks of using HLS for simple data flow modules and
computationally intensive applications are presented. The implementations are tested on
a SoC of the company Xilinx Inc. SoCs consist of a FPGA part and a mounted processor,
which acts like a powerful microcontroller. The implemented modules are participated on
the FPGA.

1.3 Outline

In chapter 2 the basics of HLS will be explained. The history and the evolution of HLS
until now are part of this chapter. In addition, there are presented some areas of applica-
tion for HLS, wherein this design methodology has got a major impact on engineering.

In chapter 3 related works about the comparison of designing on RTL and HLS gener-
ated designs are presented. Several papers published in the last few years are summarized
and the most interesting facts about the design quality between this two design techniques
are shown. It gives an insight into expected results for this thesis.

Chapter 4 deals with the design process for the practical part of this master thesis.
The main parts of this chapter are a general description of the generation of RTL im-
plementations and the generation of a hardware module using HLS. In addition, the two
different modules designed and implemented in this thesis are presented in more detail.
This includes a description about the behavior of these modules. The evaluation kit is
also mentioned in the last part of this chapter.

The implementation and the results of the HLS designed system and the RTL system
is presented in chapter 5. Detailed information about the implementation is depicted by
several state diagrams or data flow graphs. Further on, the different modules are compared
accordingly design metrics like acquired area or utilized resources, power consumption, and
time exposure.

A discussion of this topic and an outlook into the future will conclude this master
thesis in chapter 6.

Chapter 2

Basics and Principle of High-Level
Synthesis

As already mentioned this master thesis deals with designing of modules generated with
HLS. For better understanding of the design steps, this chapter describes the evolution of
HLS and the fundamental principle of the design flow.

2.1 What is High-Level Synthesis?

In the beginning of this chapter, the first part is to clarify the meaning of HLS and there-
fore we consider the principle of abstraction levels in the area of digital system design.
The definition of raising the abstraction level implies the removing of details to simplify
the description of a system. The higher the abstraction level the easier the definition of
the design and also more details of the system are hidden. Figure 2.1 shows the elemen-

Figure 2.1: Abstraction model of digital system design. [7]

4

CHAPTER 2. BASICS AND PRINCIPLE OF HIGH-LEVEL SYNTHESIS 5

tary abstraction model for digital system design. It is called the Y-chart and has been
introduced by Daniel Gajski and Robert Kuhn in 1983. Nowadays, HLS is the automatic
process for the transition from Algorithms to Register Transfers on the behavioral domain.
A detailed description can be found on [7].

Now, we will have a look on current FPGA design practices in more detail. This
abstraction model consists of four levels. These are the following: Structural, Register-
Transfer Level (RTL), Behavioral and High Level as shown in figure 2.2.

Figure 2.2: Abstraction levels of FPGA design process. [3]

The Structural is the lowest level of the abstraction model. It includes the instantiating
and connecting of all components and elements of the hardware design. It is comparable
to the level consisting of lookup tables (LUTs) and flip flops (FFs). On this level the
designer has full control over the design and this leads to less capabilities of using automatic
synthesis processes for optimization.

The abstraction level above is RTL. At this level the design is described by registers
and operations. The technology aspect isn’t considered anymore. Logic synthesis is used
for creating hardware out of the RTL code.

The next abstraction level in order is the Behavioral description. The whole hardware
behavior is designed by an algorithmic description. Hence, the designer has less control
over the implementation, but the creation of a new hardware design can be achieved much
faster. This is a crucial aspect for the establishment of this design level. Generally, HDLs
are used for the implementation.

The uppermost abstraction level is called the High-Level. The design uses high-level
languages instead of HDLs. One of the biggest benefit is, that the system is generated,
simulated and verified as a high-level model, which is implemented in C/C++ or SystemC.
Further on, the hardware architecture is generated by using HLS. So, the HDL code is
generated automatically by this synthesis process.

For better understanding it’s essential to add a short discussion about logic synthesis
and high-level synthesis (HLS). In the literature the notion synthesis is the same as logic
synthesis and their meaning is the translation of HDL code into an associated netlist. In
contrast, HLS is used to generate the HDL code out of a high-level model implemented in
C/C++ or SystemC. In figure 2.3, the differences of high-level synthesis and logic synthesis
are depicted.

CHAPTER 2. BASICS AND PRINCIPLE OF HIGH-LEVEL SYNTHESIS 6

Figure 2.3: Difference between High-Level Synthesis and Logic Synthesis. [3]

2.2 Motivation for using High-Level Synthesis

The time to market is an important aspect in designing of new products. It is defined
from the beginning of the concept phase until the release on market. A long duration for
the design and development process of new products can affect negatively the sales of the
company. Thus, researchers are looking for new methodologies to reduce the development
time and keep up the system quality. Hence, HLS has been introduced some years ago.
More details about the history are presented in chapter 2.3. [24]

One of the key aspects, why HLS is used, is the design productivity gap as depicted
in figure 2.4. Over the years such productivity gaps occurred several times and new
methodologies were introduced to keep pace with the transistor density (blue line) in
integrated circuits, which corresponds also to the complexity of a system. The HLS is
utilized to close the latest design productivity gap, i.e. HLS is an important method for
future electronic designs.

In addition, the target of a high-level implementation is to get a simple and clear
description of the system. It is possible to generate a design for FPGAs faster than using
common hardware description languages (HDLs). One further important aspect during the
design process is the ability to affect the resulting architecture by assigning optimization
directives. More information about directives are presented in chapter 4. Generally, a
redesign of the high-level source code isn’t needed to change the resulting hardware design.
Assigning various optimization directives influences the whole architecture, but it is not as
exact as using HDL for the definition of hardware designs. So, engineers have to trust on
the used HLS tool, because they have only restricted influence on the synthesis process.

CHAPTER 2. BASICS AND PRINCIPLE OF HIGH-LEVEL SYNTHESIS 7

Figure 2.4: Closing the productivity gap with HLS. [5]

From a more practical point of view, engineers are more familiar with high level pro-
gramming languages like C/C++ or SystemC instead of hardware description languages
like VHDL or Verilog. The opportunity to create the basic framework of whole hardware
designs on high level would simplify the design process. To sum up, one can say that the
main benefit of HLS is the rising productivity. [3]

2.3 Review of High-Level Synthesis

The development of HLS is divided into three generations. The starting point was in 1970,
but the first decade brought no seminal success. From 1980 to 1990 the first generation
was developed and used. The next decade was called the second generation and since
2000 the third generation of HLS exists. Today, engineers are talking about a fourth
generation, which should appear in the next few years. In the following, there will be a
short description about the mentioned generations of HLS. [15]

2.3.1 Generation 1 (about 1980 to 1990)

In this decade, many different ideas have been appeared and they were written down
in different research papers. Some important engineers were e.g. Pierre Paulin and John
Knight, who investigated results in the area of scheduling for HLS. Other important results
regarding HLS were presented by Daniel Gajski and his colleagues. They can be found in
[6], [17], and [1]. In summary, the Generation 1 was mainly a development phase.

Further projects in the digital signal processing domain were e.g. the Cathedral and
Cathedral-II project. This projects used a specific high-level language called Silage for
the description of a DSP-system and the resulting tools were the first one, which enter
the market. Although, the projects looked promising, they ultimately failed. The main
reasons were indicated as follows: unnecessary need, unpopular input language and poor

CHAPTER 2. BASICS AND PRINCIPLE OF HIGH-LEVEL SYNTHESIS 8

quality of the results. The first reason ”unnecessary need” is caused by the circumstance,
that engineers were still not familiar with the adoption of RTL synthesis. So a behavioral
synthesis was not successful for high-level models.

Another reason was the must to learn a new unpopular programming language called
Silage. In times of establishing RTL synthesis, engineers were not ready to learn another
language beside the hardware description languages (HDLs). Furthermore the resulting
hardware design allocated much more resources than the traditional design process. So
the poor quality of the implementation is also a reason for the failure of this generation.
[15]

2.3.2 Generation 2 (about 1990 to 2000)

In this decade, companies like Synopsys, Cadence, and Mentor Graphics started the de-
velopment of HLS tools and offered them on the market, although the focus for designing
hardware systems was on the RTL synthesis. The new technology was tested by many
engineers, but it was considered as insufficient in some reasons. The main reasons for the
failure of this generation are listed in the following: [15]

• Criteria like the quality of results regarding area and performance were not improved.
Thus hardware designer were not willing to admit this technology.

• The second generation of HLS used hardware description languages as input lan-
guage. This would be in conflict with logic synthesis, which also uses hardware
description languages as input. Hence, engineers were not satisfied to change their
design process from RTL synthesis to HLS.

• The validation of the resulting RTL code was hard to achieve. The model had maybe
the same behavior, but getting the right timing often evoked some unpredictable
problems.

Finally one can say that the benefits for HLS in generation 2 were not given to replace
the traditional RTL synthesis. Hence, engineers preferred the common design process for
their hardware systems.

2.3.3 Generation 3 (from about 2000)

Through the years, a lot of vendors has brought their HLS tools on the market. Mentor
Catapult C Synthesis, Celoxica, Bluespec or Synfora PICO are some of them, just to name
a few. Many of them are using C/C++ or SystemC as input language. Few tools has also
invented their own description language. In comparison to the previous generations, this
HLS generation was succeeded, because: [15]

• many of the tools deliver a good quality of results, which is the main reason why
this tools are established. In addition, the HLS tools are focusing on the synthesis
of data flow or DSP design applications.

• Previous tools had their own input languages. Now, many tools are using program-
ming languages, which are familiar for engineers, e.g. C/C++. The effort to learn
utilization of this tools will become much lower.

CHAPTER 2. BASICS AND PRINCIPLE OF HIGH-LEVEL SYNTHESIS 9

• Another reason is the technology advance. Today, the demand on data processing
systems are increased. As mentioned in chapter 2.2, keeping up with the increasing
capability of integrated circuits requires new tools to reduce the time-to-market.

2.3.4 Commercial Progress of High-Level Synthesis

In the amount of sales, one can identify the popularity of HLS tools. In figure 2.5, there
is the revenue of electronic system-level synthesis tools listed. If we take a closer look on
the individual years, we can recognize that there was an experimental phase from 1994 to
1996. From 1997 to 1999 the first useful tools were emerged on the market, but they were
oversold. Thus, the interest of engineers decreases, which results in fewer sales.

Figure 2.5: Sales of electronic system-level synthesis tools. [15]

Next the compiler of the third generation were published, which led to higher revenue
for HLS tools again. In the next couple of years a fourth generation will emerge on the
market. About the last few years there are no numbers of the amount of sales available,
but according to some reports of engineers the popularity of HLS tools is still increasing.

2.3.5 Outlook - fourth Generation

As already mentioned the tools of generation three delivers a good quality of results
according to the data flow and control. The actual problem is, that the individual tools
are not perfect for all different domains and that is exactly the point, where the fourth
generation of HLS will have their exploration space. Tools, which cover all application
domains would simplify the whole design process and companies have only to adopt one
new tool to reduce the time-to-market for their systems. [15]

CHAPTER 2. BASICS AND PRINCIPLE OF HIGH-LEVEL SYNTHESIS 10

2.4 HLS Kernel

New methodologies facilitate raising the abstraction level for digital system design. Based
on the increased transistor density looking for new methodologies would be an inalienable
process. The utilization of HLS allows engineers accelerating the design process and still
getting a high efficient hardware.

The first step in every design process is the specification of the system behavior. Start-
ing point is a high-level model of the intended functionality, which should be implemented
on a co-processor or a custom hardware unit. The high-level model contains less impor-
tance on the timing of the behavior. So, the operations of the high-level description don’t
have any delay and the data are processed as a software program. In addition, the variables
and data types of the high-level model are not adjusted for a hardware design. Hardware
designs need bit-accurate data types with an appropriate length. Hence, engineers have
to mind the necessary bit-length of the individual variables to get a good quality and an
optimized hardware design. Standard data types, which are used in software, are mostly
not very suitable, because the variables would be over-sized.

The result of the HLS process is a timed implementation. The HLS tool takes a
high-level model and transforms it into a clocked hardware description. The generated
architecture is created automatically or sometimes semi-automatically and is designed as
efficient as possible. The resulting architecture consists of a data path and a controller,
whereby the data path contains registers, multiplexers, functional units, etc. and the
controller is responsible for the general behavior of the given specifications. [2]

2.4.1 Key Concepts

The process of HLS is depicted in figure 2.6. Starting point is the high-level model with
some design constraints and a RTL component library. During the synthesizing, the
following tasks are executed. Additionally, they will be explained in more detail in chap-
ter 2.4.2 - 2.4.6.

1. Compilation of the high-level model

2. Allocation of the hardware resources like registers, functional units, etc.

3. Scheduling of the individual operations

4. Binding of the operations to functional units

5. Binding of variables to storage elements

6. Binding of data transfers to buses

7. Generation of the whole resulting RTL architecture using HDL

As seen in figure 2.6 the synthesis tasks for allocation, scheduling and binding can be done
in parallel to achieve an optimized architecture, because of their dependences to each other.
However, the computationally intensive effort synthesizing all tasks simultaneously leads
to a specific order of the synthesis process, whereby the chosen order has a big impact on
the quality of the resulting hardware regarding utilized resources. This is a reason, why
every HLS tool works better or worse for different application domains.

CHAPTER 2. BASICS AND PRINCIPLE OF HIGH-LEVEL SYNTHESIS 11

Figure 2.6: High-Level Synthesis tasks. [2]

2.4.2 Compilation and Modeling

As described in [2], first step of HLS is the compilation of the high-level model. This
means, that the model has to be checked out for dead-code, wrong data dependencies
and constant folding and loop transformations have to be done. The resulting model
contains the data and control dependencies, whereby the data dependencies are depicted
with data flow graphs (DFGs). Such DFGs can be generated easily by removing the
control parts of the high-level model, i.e. the loops has to be completely unrolled and
conditional operations have te be substituted with multiplexed definitions. The DFGs
consist of nodes, which represent the operations, and arcs for the definition of input and
output as well as the temporary variables. DFGs are very useful for many designs, but
for models with goto-statements or unbounded number of iterations DFGs have their
problems. Hence, such high-level descriptions are represented by using advanced control
and data flow graphs (CDFGs). The edges depict the control flow and the nodes contain
a sequence of statements without e.g. branches or exit points. Conditional statements
like if or switch are represented by the edges. Summarized, CDFGs are used to show the
data dependencies of basic blocks and the control flow between some of them. A detailed
description of DFGs and CDFGs can be found in [19].

Generally, the benefit of CDFG compared to DFG is that it is more powerful, because as
mentioned before they are able to describe unbounded loops. However, the representation
of parallelism seems to be more difficult. The reason is that it takes place within some
basic blocks. Description of parallelism between different blocks are not so obvious. These
would need additional directives like loop unrolling, loop pipelining, loop merging, etc.
In addition, such directives have impact on the metrics (throughput, area, power) of a
hardware design.

CHAPTER 2. BASICS AND PRINCIPLE OF HIGH-LEVEL SYNTHESIS 12

2.4.3 Allocation

Next synthesis task according to [2] and [3] is allocation. This step maps resources like
functional units, registers, etc. by using the RTL library to each operation of the formal
description of the high-level model. So the generated DFG or CDFG is used for this task.
The exact procedure depends on the HLS tool. Some of them just allocate resources like
buses or connection elements before or after the binding or scheduling task. Thus, the
quality of the resulting hardware architecture varies according to the used HLS tool. The
RTL library consists of all possible components including their metrics like area, delay
and power consumption.

2.4.4 Scheduling

For the timing of the high-level model it is necessary to assign each operation of the DFG
or CDFG into clock cycles. For instance, the variables var1 and var2 of the operation
in equation 2.1 have to be read and executed by the assigned component and the result
has to be written to the destination, which could be a register or another functional unit.
The number of clock cycles depends on manually chosen directives. So, several operations
can be scheduled in such a way that they are executed in parallel as long as no data
dependencies exist. But keep in mind that parallelism results in a higher number of
utilized resources.

res = val1 + val2 (2.1)

2.4.5 Binding

The binding process is used to assign each variable to a storage element like registers. If
there are variables, which have a non-overlapping lifetime, they can use the same element.
In addition, several operations has also to be assigned to functional units. Here, too,
different operations can use the same functional unit as far as it is not assigned to another
operation at the same clock cycle. Otherwise the binding process has to optimize the
scheduling of the functional units to keep the number of it as low as possible to achieve
the same behavior. Furthermore, the binding of connection units affects the binding of
functional and storage units. The order of the individual binding steps depends on the
used HLS tool and binding algorithm.

2.4.6 Generation

The last step of the high-level synthesis is the generation of the RTL architecture. In
this step the HLS kernel creates the HDL-files considering all the defined directives, which
have been made manually during the whole design process.

2.5 Resulting Architecture

The architecture primarily consists of a controller and a data path, whereby the data
path includes storage elements (registers, memories), functional units (multipliers, shifters,
ALUs, etc.) and elements for the interconnection (buses, multiplexers, etc.). The amount
of allocated elements depends on the respective application. The data path is controlled

CHAPTER 2. BASICS AND PRINCIPLE OF HIGH-LEVEL SYNTHESIS 13

by the controller and its control signals. The controller is designed as a finite state machine
(FSM). The changes of the states are affected by input signals. They are controlled by
an user or an other hardware module. In particular, the controller consists of a state
register, a next-state logic and an output logic. A detailed description can be found in [2].
Figure 2.7 shows a simple example. On the left hand side the controller is depicted and
on the right hand side the data path is shown.

Figure 2.7: Architecture of a HLS generated design. [2]

2.6 HLS-based Development Flow

In figure 2.8, the design flow of a HLS generated hardware design is shown. First step is
to implement the intended design with a high-level language like e.g. C/C++. For the
transformation by the HLS tool, some modifications have to be added manually. These
are e.g. defining of the interfaces, adding some directives to the design (pipelining, par-
allelization, defining the latency, etc.). The selected modifications are depending on the
desired design according to metrics. The output equals to the HLS-ready C code and is
verified about their correct behavior by test vectors. As long as everything is correct,
the HLS is performed for transforming the C code into HDL. At this point, the RTL de-
scription is checked again by a hardware functional verification. The further steps equates
to the traditional FPGA design flow. Sometimes the amount of allocated resources for
the hardware design exceeds the specifications, therefore the reference C code has to be
revised to improve the HLS-ready C code. Afterwards, HLS generates another different
RTL design, which acquires the given specifications.

CHAPTER 2. BASICS AND PRINCIPLE OF HIGH-LEVEL SYNTHESIS 14

Figure 2.8: HLS design flow. [9]

Chapter 3

Related Works

The research area of the productivity of different HLS tools is very important for the
customers of commercial HLS tools and also for the vendors of them. Companies, which
are offering systems consisting of FPGAs, know that the traditional way of implementing
FPGAs take a long design time. Hence, they are looking for methods to decrease the
development time. As already mentioned in previous chapters, HLS tools are developed
to raise the abstraction level, to ease the designing and to reduce the time-to-market.
Raising the abstraction level also means to remove design details, which are generated
automatically during HLS. This chapter reflects related publications about the quality of
the hardware design generated by HLS.

3.1 HLS generated designs vs. HDL designs

There exist several papers about a comparison of HLS generated designs versus RTL
designs. The most important publications will be described in the following, which deals
with the comparison of cryptographic algorithms, a video filter algorithm and a sub-pixel
interpolation filter from the MPEG HEVC standard.

3.1.1 Cryptographic Algorithm

The first comparison between HLS generated designs and RTL designs deals with hash
functions (detailed description about hash functions can be found in [14]) or more specif-
ically with the finalists of the SHA-3 contest. On the one hand the hardware of the
algorithms was designed on RTL with traditional HDLs and on the other hand with the
high-level language C using Xilinx Vivado HLS. Figure 3.1 depicts the design, which
consists of three modules: input processor, hash core and output processor. The gray
boxes within the modules contain signals, which are generated automatically by the HLS
tool according to the optimization directive of the interfaces, and the black written signal
names are generated by the engineers. For example port din of the input processor creates
automatically the ports din empty n and din read.

In addition, it is necessary to swap the input data and the outgoing data of the hash
module to the appropriate endianness for getting the right functionality. This is illustrated
in figure 3.1 by the swap-endian symbol.

15

CHAPTER 3. RELATED WORKS 16

Figure 3.1: Top-Level of SHA-3 Implementation. [10]

Moreover, before synthesizing the high-level model adding optimization directives are
unavoidable to get a good quality of the hardware architecture. More details can be found
in [10].

Results of the comparison between HLS and RTL design

The results of the implementations, i.e. RTL design and HLS generated design, for all
different hash functions are shown in table 3.1. Column two to five show the maximal
frequency, throughput, area, and the ratio of throughput over area for the HLS generated
design. The next four columns show the results for the RTL design and in column nine to
13 the ratio of the RTL design over the HLS generated design is presented. It is possible
to see that the results for the RTL model are slightly better according to all mentioned
hash functions. Only in few cases, the required area is a little bit smaller by using the
HLS generated design. Generally, the comparison is done for the implementations of two
different FPGA types: Altera Stratix IV and Xilinx Virtex 6.

Altera Stratix IV
HLS RTL RTL/HLS

Freq. TP1 A2 TP/A3 Freq. TP A TP/A Freq. TP A TP/A
BLAKE 119.6 2040 4557 0.45 132.3 2337 3543 0.66 1.11 1.15 0.78 1.47
Groestl 218.8 4871 7290 0.67 236.9 5776 7404 0.78 1.08 1.19 1.02 1.17

JH 336.8 3919 3256 1.20 399.7 4759 3210 1.48 1.19 1.21 0.99 1.23
Keccak 271.4 11356 4156 2.73 317.7 14401 3541 4.07 1.17 1.27 0.85 1.49
Skein 97.9 2387 5752 0.41 96.2 2592 3936 0.66 0.98 1.09 0.68 1.59

Xilinx Virtex 6
HLS RTL RTL/HLS

Freq. TP A TP/A Freq. TP A TP/A Freq. TP A TP/A
BLAKE 150.6 2570 1289 1.99 126.1 2226 1257 1.77 0.84 0.87 0.98 0.89
Groestl 242.7 5403 2016 2.68 296.1 7220 1870 3.86 1.22 1.34 0.93 1.44

JH 291.8 3395 1141 2.98 454.6 5412 849 6.37 1.56 1.59 0.74 2.14
Keccak 211.2 8838 1494 5.92 261.2 11839 1086 10.90 1.24 1.34 0.73 1.84
Skein 107.3 2616 1426 1.83 125.2 3373 1005 3.36 1.17 1.29 0.70 1.83

Table 3.1: Results of HLS generated design and RTL design (Frequency in MHz, Through-
put (TP) in MBits/s, Area (A) in ALUTs for Altera Stratix IV and in CLB-slices for Xilinx
Virtex 6). [10]

1TP = throughput
2A = area
3TP/A = ratio of throughput over area

CHAPTER 3. RELATED WORKS 17

Better visualization of the presented results are provided in the following two figures.
Figure 3.1.1 shows the relation of throughput to area for the Altera Spartix IV. As one
can see the highest throughput for a specific area is achieved by the hash function called
Keccak, whereby the RTL design achieve a higher throughput than the HLS generated
design.

HLS generated Design RTL design

Figure 3.2: Comparison of the results for Altera Spartix IV. [10]

The same figure exists for Xilinx Virtex 6. As in figure 3.3 shown, the highest gra-
dient of the curves provides Keccak, again. Generally, the RTL design achieves a higher
throughput for a specific number of allocated chip area.

HLS generated Design RTL design

Figure 3.3: Comparison of the results for Xilinx Virtex 6. [10]

Summarizing, it’s mentionable that Keccar has been the winner of the SHA-3 contest
in 2012. The comparison of RTL models and HLS generated designs presents, that the
creation of HDL-written models provide better results according to area or throughput.

3.1.2 Video Filter Algorithm

A further comparison between HLS generated designs and HDL models for a video filter
algorithm is published in the master thesis [28] of Michael D. Zwagerman. It deals with
the implementation of an image filter technique. In particular, the technique calculates

CHAPTER 3. RELATED WORKS 18

the convolution of an input image and the kernel as depicted in figure 3.4. The high-level
model is written in C and the RTL design is implemented with VHDL. For the HLS of
the high-level model, Xilinx Vivado HLS is used. In earlier years, this tool was called
AutoPilot developed by AutoESL.

Figure 3.4: Image filter algorithm description. [28]

By executing this filter on a full HD film, the convolution of the 9x9 kernel generates
167,961,600 multiplications per color channel and per frame. The procedure starts with
a Hardamard -product, which corresponds to the element-wise multiplication. Further on,
all elements are summed up and finally the sum is normalized.

Results of the comparison between HLS and RTL design

In table 3.2 and figure 3.5, the results for the video filter algorithm are shown. The
amount of utilized LUTs for the HLS generated design are about 61.5% higher than the
RTL design requires. The number of FFs, BRAMs and DSP48s are more or less the same.

RTL HLS Total Available

LUT 2989 4827 53200

FF 6139 5970 106400

BRAM 12 12 140

DSP48 0 0 220

Table 3.2: Results of the resource utilization for Video Filter Algorithms.

CHAPTER 3. RELATED WORKS 19

Figure 3.5: Utilized resources for the video filter algorithm (fmax constrained at
150 MHz). [28]

3.1.3 Sub-Pixel interpolation filter from the MPEG HEVC standard

The publication [23] deals with a comparison of HLS generated hardware design and a
RTL design for a sub-pixel interpolation filter. The high-level model is implemented in
CAPH ([25]) and the RTL design is written in VHDL. The following software tools were
used:

• Altera Quartus II
• Mentor Graphics Modelsim ASE
• CAPH Compiler

The HEVC interpolation filter is used for video compression. The filter consists of a shift
register and eight filter coefficients, which are multiplied with the pixels (figure 3.6). The
block of pixels can be left shifted by 1/4 and 3/4 using seven taps and by 1/2 using eight
tabs (information can be found in [26]).

Figure 3.6: Horizontal interpolation filter (1-D). [23]

For Filtering of a 2-D image eight horizontal 1-D filters are necessary. The result of
each horizontal filter is multiplied with further coefficients to get also an upper shift of
1/4, 1/2, and 3/4. Figure 3.7 shows the block diagram of the whole interpolation filter.

CHAPTER 3. RELATED WORKS 20

Figure 3.7: Horizontal interpolation filter (2-D). [23]

Results

Firstly, for better understanding of the results some definitions have to be explained.
One parameter is the global non-recurring engineering GNRE . The global non-recurring
engineering is the ratio of the design and verification time of the RTL model over the
design and verification time of the HLS generated model (equation 3.1). This parameter
shows the ability to save time by using HLS, i.e. a value greater than one corresponds to
less design effort for HLS generated designs than for RTL designing.

GNRE =
tHDL
design + tHDL

verif

tHLS
design + tHLS

verif

(3.1)

Moreover, the definition of the parameter for the quality loss LQ is a little bit more complex
and is described in equation 3.2, whereby the variable lut is the number of LUTs, reg
corresponds to the number of necessary registers, ram is the number of allocated BRAMs,
lat equals to the latency and prd is the operating period. Additionally, these variables are
normalized and are multiplied with some weights αi. More details are described in [23].

LQ =
α1 · lutHLS

norm + α2 · regHLS
norm + α3 · ramHLS

norm+

α1 · lutHDL
norm + α2 · regHDL

norm + α3 · ramHDL
norm+

α4 · dspHLS
norm + α5 · latHLS

norm + α6 · prdHLS
norm

α4 · dspHDL
norm + α5 · latHDL

norm + α6 · prdHDL
norm

(3.2)

The weights are defined as follows

αi =

{
0 if max(φHLS

i , φHDL
i) = 0

(max(φHLS
i , φHDL

i))−1 otherwise
(3.3)

CHAPTER 3. RELATED WORKS 21

whereby for instance the variable φi are equal to the number of LUTs, REGs, BRAMs,
DSP slices, etc.

φ1 = lutHLS/HDL
norm (3.4)

In table 3.3, the results of all three different versions are listed. Version 1 deals with
a horizontal filter like in figure 3.6. Version 2 is very similar to version 1, but some
distinctions according to the interface type are made. This version is designed for the
modular smart camera called DreamCam. Finally, version 3 is the implementation of the
2-D interpolation filter.

VHDL CAPH VHDL CAPH VHDL CAPH
v1 v1 v2 v2 v3 v3

tdesign 358 103 162 71 232 187

tverification 288 65 783 72 775 169

SLOCs 147 43 333 61 805 194

characters 4114 1351 9465 2395 22072 6099

LUTs 193 226 282 3161 2868 11398

Regs 81 103 115 2209 1252 7557

BRAMs 0 0 0 0 18 14

max. Frequency 64.7 68.0 71.8 83.0 65.2 84.2

Table 3.3: Results for the sub-pixel interpolation filter (Frequency in MHz, time in min-
utes). [23]

Better understanding of the results for the two design methodologies provides table 3.4.
There are listed the values in relation to each other. A value greater than one for parameter
GNRE , which corresponds to the time exposure, means that the HLS design requires
less time for designing and implementation. As one can see, HLS designing is less time
consuming for all three versions then designing of the corresponding RTL model. In
addition, for getting a good HLS generated hardware design the quality loss LQ should be
as low as possible. This means that the higher the value the poorer the HLS generated
design. If this value equals to one, the HLS generated design is qualitative as good as
the RTL design. Finally, the parameter design-productivity PD equals to the ratio of the
global design effort GNRE over quality loss LQ. A value greater than one equals to a
sensible usage of HLS for these system specifications.

CAPH vs. CAPH vs. CAPH vs. Average
VHDL v1 VHDL v2 VHDL v3

GNRE 3.84x 6.60x 2.82x 4.42x

LQ 1.70x 2.53x 1.47x 1.90x

PD 2.26x 2.61x 1.92x 2.26x

Table 3.4: Design Gain. [23]

In summary, considering only resource utilization RTL models achieve better results
than HLS generated models, but considering the whole design process including time
exposure, resource utilization, etc. using HLS for the designing is the better choice.

CHAPTER 3. RELATED WORKS 22

3.2 BDTI High-Level Synthesis Tool Certification Program

The BDTI1 High-Level Synthesis Tool Certification Program (HLSTCP)[20] was initiated
by the Berkeley Design Technology, Inc. The goal is to represent the quality of hardware
designs using HLS. Hence, customer should see the benefits establishing HLS tools in
their product design flow. In particular, this certification program shows on the one hand
the performance and efficiency of designs generated by HLS and on the other hand the
usability for engineers, which includes the ease-of-use and the design productivity. In
addition, the results are not only compared to traditionally handwritten RTL designs, but
also with designs running on a DSP processor. As yet, two different HLS tools are tested.
The first tool is the AutoPilot from AutoESL, whereby nowadays this HLS tool is offered
by Xilinx Inc., and the second is Synopsys C Compiler.

The evaluation consists of two applications. Application one deals with a video pro-
cessing algorithm, which is used for the analysis of motion. In particular, they recognize
the motion of objects by using a movie with a resolution of 720p. The outcome of the
algorithm are matrices for the horizontal and vertical motion in the movie. This applica-
tion is designed twice. On the one hand it should minimize the resource utilization and
on the other hand the throughput should be maximized. The second application consists
of a DQPSK receiver with an input stream of 18.75 MSamples/s at a frequency of 75
MHz. The output data rate equals to 4.6875 Mbits/s. For this application the resource
utilization should be minimized.

3.2.1 Evaluation results of AutoPilot

In this section the results of the HLS tool from AutoESL called AutoPilot are presented.
As already mentioned before, the first application deals with a video processing algorithm.
The corresponding results are shown in the next two tables, whereby table 3.5 contains
the results for minimizing the resource utilization by fixing the throughput to 60 frames
per second and table 3.6 shows the values for maximizing the throughput. [21]

As one can see in table 3.5 (video processing algorithm, minimizing resource utilization,
fixed throughput) the chip cost for a quantity of 10,000 adds up to $ 26.65 and is a little

Chip Unit Cost Chip Resource
Platform (USD, (Lower is Better)

Quantity 10,000) Utilization

AutoESL AutoPilot plus
Xilinx RTL tools targeting

the Xilinx XC3SD3400A FPGA $ 26.65 39%

Texas Instruments software N/A (a minimum
development tools targeting the of 12 DSPs would be required
TMS320DM6437 DSP processor $ 21.25 to meet this operating point)

Table 3.5: Comparison of HLS generated and DSP design for video processing applications
- minimizing resource utilization. [21]

1BDTI = Berkeley Design Technology, Inc.

CHAPTER 3. RELATED WORKS 23

bit more expensive than a design using DSP processors. In addition, 39% of the resources
are allocated.

In comparison to that, the same design for maximizing the throughput yield to the
same design cost. However, the achieved throughput is 183 frames per second for the
HLS generated design and resulting cost per frame is much lower than a DSP design.
Summarizing, RTL designs generated by a HLS tool are more suitable for high speed data
processing.

Chip Unit Cost Chip Resource Cost per
Platform (USD, Maximum Frames FPS (Lower

Quantity 10,000) per Second (FPS) is Better)

AutoESL AutoPilot plus
Xilinx RTL tools targeting

the Xilinx XC3SD3400A FPGA $ 26.65 183 $ 0.14

Texas Instruments software
development tools targeting the
TMS320DM6437 DSP processor $ 21.25 5.1 $ 4.20

Table 3.6: Comparison of HLS generated and DSP design for the video processing appli-
cation - maximizing throughput. [21]

Table 3.7 depicts the results for the hardware design of the DQPSK receiver. This
application was written in C for using the HLS tool and additionally it was hand-written
with RTL code. The comparison shows that the number of allocated resources by the HLS
tool is lower than by the hand-written design. Summarizing, it is difficult to say that this
results are valid for all application, but it’s true to say that this application is suitable for
using HLS. However, the difference of the resource utilization is very small and therefore
both design techniques are sensible.

Platform Chip Resource
Utilization (Lower is Better)

AutoESL AutoPilot plus Xilinx RTL
tools targeting the Xilinx XC3SD3400A FPGA 5.6 %

Hand-written RTL code using Xilinx
RTL tools targeting the Xilinx XC3SD3400A FPGA 5.9 %

Table 3.7: Comparison of HLS generated and DSP design for a DQPSK receiver. [21]

3.2.2 Evaluation results of Synphony C Compiler

The BDTI program provides also the similar results for the Synopsys Synphony C Com-
piler. The chip resource utilization for the video processing algorithm design is nearly the
same as previous. Only 0.6% more resources are allocated in relation to the AutoPilot.
The chip cost is constant.

CHAPTER 3. RELATED WORKS 24

Chip Unit Cost Chip Resource
Platform (USD, (Lower is Better)

Quantity 10,000) Utilization

Synopsys Synphony C Compiler
plus Xilinx RTL tools targeting
the Xilinx XC3SD3400A FPGA $ 26.65 39.6%

Texas Instruments software N/A (a minimum
development tools targeting the of 12 DSPs would be required
TMS320DM6437 DSP processor $ 21.25 to meet this operating point)

Table 3.8: Comparison of HLS generated and DSP design for the video processing appli-
cation - minimizing resource utilization. [22]

Furthermore, the Synopsys Synphony C Compiler delivers better efficiency according
to maximizing the throughput of the same application. The number of frames per second
is increased to 204 FPS and so it is a little bit better than using AutoPilot.

Chip Unit Cost Chip Resource Cost per
Platform (USD, Maximum Frames FPS (Lower

Quantity 10,000) per Second (FPS) is Better)

Synopsys Synphony C Compiler
plus Xilinx RTL tools targeting
the Xilinx XC3SD3400A FPGA $ 26.65 204 $ 0.13

Texas Instruments software
development tools targeting the
TMS320DM6437 DSP processor $ 21.25 5.1 $ 4.20

Table 3.9: Comparison of HLS generated and DSP design for the video processing appli-
cation - maximizing throughput. [22]

Finally, the second application (table 3.10), which deals with the DQPSK receiver, is
analyzed. In this case, the chip resource utilization is higher by using the Synopsys Syn-
phony C Compiler than the traditionally hand-written RTL design. Concluding one can
say, that the difference is very small and therefore the quality of the design methodologies
are quite similar.

Platform Chip Resource
Utilization (Lower is Better)

Synopsys Synphony C Compiler plus Xilinx RTL
tools targeting the Xilinx XC3SD3400A FPGA 6.4 %

Hand-written RTL code using Xilinx
RTL tools targeting the Xilinx XC3SD3400A FPGA 5.9 %

Table 3.10: Comparison of HLS generated and DSP design for the video processing appli-
cation - maximizing throughput. [22]

CHAPTER 3. RELATED WORKS 25

3.3 Comparison of different HLS tools

In paper [16] different HLS tools were considered and compared with each other. The
several scopes are depicted in figure 3.8. They are structured into: design experience,
implementation, tool capabilities and quality of the results. The scope called design ex-
perience deals with the valuation of documentation and easiness of learning HLS tools.
Implementation assesses the ease of implementation and the complexity of the abstraction
level. Furthermore, tool capabilities include the additional features, which are provided
by the HLS tool. Finally, this kind of evaluation for different HLS tools shows also the
quality of the generated RTL model.

Ease of Implementation

Abstraction Level

Data Types

Exploration

Verification

Result Area

Documentation

Learning Curve

Figure 3.8: Evaluation factors for HLS tools. [16]

In figure 3.9 one can see an evaluation of some selected HLS tools. The left upper plot
shows the evaluation of Autopilot. As already mentioned, the AutoPilot was developed by
AutoESL and was purchased by Xilinx Inc. some years ago. Usable input languages are
C, C++ or even SystemC and it is easy to optimize the design according to the desired
metric (throughput, area, power) . Hence, as one can see in the spyder diagram, the imple-
mentation gets a very good assessment. Data types can be designed as arbitrary precision
data types to avoid unnecessary over-sized data types. Apart from that, AutoPilot got
a very good evaluation for the transformation from a high-level description to the RTL
model.

Another popular HLS tool is the Synopsys Synphony C Compiler. According to the
implementation scope, this HLS tool resembles to AutoPilot. The resulting area of the RTL
model generated by this HLS tool is bigger compared to other tools, because additional
input and output buffers are allocated. Generally, one can say that the overall evaluation
for this tool is worser than using the HLS tool mentioned before.

CHAPTER 3. RELATED WORKS 26

Ease of Implementation

Abstraction Level

Data Types

Exploration

Verification

Result Area

Documentation

Learning Curve

Ease of Implementation

Abstraction Level

Data Types

Exploration

Verification

Result Area

Documentation

Learning Curve

AutoPilot Synphony C Compiler

Ease of Implementation

Abstraction Level

Data Types

Exploration

Verification

Result Area

Documentation

Learning Curve

Ease of Implementation

Abstraction Level

Data Types

Exploration

Verification

Result Area

Documentation

Learning Curve

Impulse CoDeveloper C-to-Silicon

Figure 3.9: Comparison of different HLS tools. [16]

The next described tool is Impulse CoDeveloper developed by Impulse Accelerated
Technologies. The high-level model is implemented in ImpulseC, an own extension to
C. The evaluation of the implementation (ease-of-implementation, abstraction level) is
worser, because of adopting a new high level programming language. Other scopes of
evaluation are also much worser. The resulting area of the generated RTL design is very
huge compared to the other HLS tools. So generally one can say, that AutoPilot or
Synopsys Synphony C Compiler are better suited for HLS.

Finally, the last HLS tool picked out of [16] is C-to-Silicon. This tool is developed
by Cadence. It is mainly used for the designing of ASICs, whereas the tools above are
used for generation of FPGA designs. Generally, C-to-Silicon achieves ordinary better
assessment as Impulse CoDeveloper.

Summarizing, AutoPilot delivers the best overall results according to evaluation results
of this paper. Further details about the evaluation itself or about the results can be found
in [16].

Chapter 4

Design

This chapter deals with tasks, which are necessary to reflect before the implementation
can be done, because the differences of generation a RTL model and a HLS generated
design have to be known. First of all the specifications of the resulting hardware module
are defined. Afterwards, some basics about hardware implementations will be described
and then the procedure of RTL and HLS designing is mentioned. Finally, some design
deliberations about the two implemented modules and the choice of the evaluation kit are
done in section 4.5, 4.6 and 4.7.

4.1 Specifications

As mentioned in the beginning of this thesis, target is the comparison of design metrics,
e.g. area, power, and time exposure, for RTL designs and designs generated by HLS. The
following specifications for this master thesis are defined by the electronic development
department of the partner company Durst Phototechnik Digital Technology GmbH :

• Many of the existing FPGA designs of the company deals with controlling of a huge
amount of data. Generally, this modules are designed on RTL with FSMs achieving
a very high data throughput. Part of the thesis is the evaluation of the design results
according to metrics using HLS. In future, it could be useful adopting HLS for the
design of such ”data flow” modules.

• In addition, the image pre-processing, which is essential for printing systems, deals
with very complex algorithms. This requires a lot computational effort. The utiliza-
tion of FPGAs would bring an increase of computational power. Therefore, the sec-
ond specification is the evaluation of using HLS for the generation of hardware mod-
ules implemented different algorithms. A cryptography algorithm is implemented on
RTL and generated by HLS for this evaluation.

The following sections describe the way to the implementation of the two modules. Chap-
ter 5 presents the implementation itself and the results of the comparison of the two
modules.

27

CHAPTER 4. DESIGN 28

4.2 Metrics of FPGA Designs

The metrics of a FPGA design have influence on the implementation. They determine the
design process on RTL and assigning of optimization directives to interfaces, loops, etc.
of the high-level model. Generally their exists three main metrics. They are listed in the
following:

• area
• power
• throughput

In many cases, engineers generate a hybrid solution. Only a low area design without
consideration on the power or throughput don’t achieve a good solution. In addition, the
correlation of throughput and resource cost should be linear. The figure 4.1 shows this
linearity. Designs, which don’t conform to this behavior, are poor solutions. If they are
located under this line, the amount of allocated resources exceeds the necessary number
to achieve the throughput.

Figure 4.1: Correlation of throughput and resource cost. [3]

The target of this master thesis is designing hardware modules with high throughput,
because they are used in printing systems, which have to handle a huge amount of data for
the control of printing headers. Important factors are clock frequency or data latency. It
is useful maximizing the clock frequency and minimizing the data latency of the modules
to achieve this design requirement.

4.3 Generation of a Register-Transfer-Level Design

Figure 4.2 depicts the design flow of a module designed on RTL. Starting point is a de-
scription of the behavior by HDLs like VHDL or Verilog. The implementation process
includes the synthesis, mapping and place/route procedure. This steps generate the re-
sulting hardware module.

CHAPTER 4. DESIGN 29

Implementation
• Synthesis
• Mapping
• Place/Route

VHDL
or

Verilog
Hardware

Figure 4.2: RTL design flow.

4.3.1 Programming Languages on RTL

On RTL, several different programming languages are available for the designing. All of
them has their own benefits and drawbacks. Some of the available languages are listed in
the following:

• ABEL (Advanced Boolean Expression Language)
• AHDL (Altera Hardware Description Language)
• Bluespec
• VHDL
• Verilog

The most popular languages are Verilog and VHDL. Verilog is used mainly in North
America and VHDL is adopted mainly in Europe. In addition, VHDL is suitable for
system level design, whereas Verilog is used for ”low level” hardware implementations.
European universities utilize VHDL, because the trend is towards designing on higher
level or system level. Generally, the choice of the used HDL includes three aspects. First
of all, the experience of the engineers is the main factor. The time, which is necessary to
pick up a new programming language is very time-consuming and can be avoided. Second,
for the usage of VHDL or Verilog different tools are necessary. Sometimes tools are already
available for free or have to be bought. And third, sometimes companies or institutes have
a preference for a specific language, because e.g. other projects use them or libraries are
written by them. [27]

For this master thesis the hardware description language VHDL is used, because all
of the mentioned arguments are true. The following example gives an overview for the
designing of hardware using VHDL.

RTL Example: Matrix Multiplication

The example of a matrix multiplication of [8] has three ports, i.e. two input ports and
one output port. All of them are assigned a specific type, which is defined in the working
package. This package is depicted in listing 4.1. First, the type vec 1d is defined as an
array of std logic vector with a width of eight bits and the final type of the matrix vec 2d
is an array of the type vec 1d.

CHAPTER 4. DESIGN 30

1 l i b r a r y i e e e ;
2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
3 use i e e e . numer ic std . a l l ;
4

5 package mult 2x2 pack i s
6

7 type vec 1d i s array (i n t e g e r range 0 to 1) o f s t d l o g i c v e c t o r (7 downto 0) ;
8 type vec 2d i s array (i n t e g e r range 0 to 1) o f t 1d a r r ay ;
9

10 end mult 2x2 pack ;

Listing 4.1: Package for Matrix Multiplication.

The following Listing 4.2 shows the hand-written code of the matrix multiplication. As
already mentioned, this implementation consists of three ports, which are defined in line
15 to 19 within the entity block. Generally the entity is mainly used for defining the
interfaces. The actual behavior is determined in the architecture block. This part is
defined next after the entity. Within the architecture, there are clarified processes. In the
example, the process calculates the multiplication itself. The sensitivity list contains the
variables in matrix1 and in matrix2. The process is executed, if one of this variables was
changed.

1 l i b r a r y i e e e ;
2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
3 use i e e e . numer ic std . a l l ;
4

5 l i b r a r y work ;
6 use work . mult 2x2 pack . a l l ;
7

8 en t i t y mult 2x2 i s
9 port (

10 i n matr ix1 : in vec 2d ;
11 i n matr ix2 : in vec 2d ;
12 out matr ix : out vec 2d
13) ;
14 end mult 2x2 ;
15

16 a r c h i t e c t u r e r t l o f mult 2x2 i s
17 begin
18

19 proce s s (in matr ix1 , in matr ix2)
20 begin
21 f o r i in 0 to 1 loop
22 f o r j in 0 to 1 loop
23 out matr ix (i) (j) <= s t d l o g i c v e c t o r (
24 s igned (in matr ix1 (i) (j)) ∗ s igned (in matr ix2 (j) (i)) +
25 s igned (in matr ix1 (i) (j)) ∗ s igned (in matr ix2 (j) (i))) ;
26 end loop ;
27 end loop ;
28 end proce s s ;
29 end r t l ;

Listing 4.2: Matrix Multiplication.

This example gives a short introduction for those, who don’t be familiar with VHDL.
Generally, there exists much more functions, which can be used for designing a specific
application. The basics about hardware development on RTL are described very briefly.

CHAPTER 4. DESIGN 31

4.3.2 Tools for the generation of RTL models

A further step in the generation of RTL models is the choice of the design tool. There are
several different vendors. Hence, it is always the first step in the design process of RTL
models to select an appropriate tool. One of the most popular FPGA developer is Xilinx
Inc., which also provides a HLS tool. Since the Durst Phototechnik Digital Technology
GmbH is using FPGA solutions of this vendor in many printing systems, it is obvious
to choose this design tools. The design flow from the RTL design down to the design
debugging is shown in the following picture.

Figure 4.3: Design flow of the Xilinx Vivado Suite. [3]

The design tool of Xilinx Inc. is called Xilinx Vivado Design Suite. As shown in
figure 4.3, the design flow consists of several steps. The behavior of an application is
implemented in the first step. The design tool offers a behavioral simulation on this level.
This is used to verify the correct behavior of the hand-written RTL code. The next step is

CHAPTER 4. DESIGN 32

the logic synthesis or also called synthesis. The RTL code is transformed into logic level.
In further consequence, it is possible to do a post synthesis simulation. Thereby engineers
can distinguish between a functional and a timing simulation. The functional simulation
checks only the behavior of the synthesized implementation and the timing simulation
considers also the parasitics of all gates and the different timing parameters of the storage
elements. Timing parameters are e.g. the setup and hold time of a gate. The setup and
hold time determine the duration of how long the data at a clock edge must be fixed
previously and afterwards at a storage element. Otherwise a wrong behavior appears.
The next step of the FPGA design flow is the implementation. This includes all steps,
which are necessary to place and route the generated netlist, whereby logical, physical and
timing constraints of the design are considered. Likewise the generated implementation
can be simulated on this level. As mentioned before it’s possible to do a functional and/or
a timing simulation. In addition, the implementation generates a bitstream, which will be
uploaded on a FPGA.

4.4 Generation of High-Level Model

Besides the generation of the RTL model, a high-level model with the same behavior
and functionality is part of this master thesis. The way to the final high-level design
is described in the following paragraphs. Due to the fact that hardware generation by
using high level programming languages isn’t as popular as using hardware description
languages. The design steps are explained in more detail.

Implemenation

• Synthesis

• Map

• Place/Route

VHDL
or

Verilog
Hardware

High-Level
Synthesis

C / C++
SystemC

Figure 4.4: HLS design flow.

4.4.1 Tools for High-Level Synthesis

For the HLS process it is necessary to choose an appropriate tool. Generally there exists a
lot of different vendors providing their own tools. This variety leads to difficulties selecting
a suitable HLS Compiler, because all of them has their individual benefits and drawbacks.
The basic feature influencing the choice is the input language. The most famous input
language is C/C++. Some vendors developed their own high level programming language
with the aim to improve resulting RTL designs. Another important feature is the output
language, i.e. it has to correspond to the tool, which is used for the logic synthesis
(transformation of the RTL behavior into gate level). In the following table 4.1 most
commonly used tools are depicted.

In this thesis, the HLS tool called Vivado HLS is used for the synthesis process. It
is described briefly in the following paragraph. The followed description of the high-level

CHAPTER 4. DESIGN 33

Compiler Owner License Input Output

Bambu PoliMi Academic C Verilog

Bluespec BlueSpec Inc. Commercial BSV SystemVerilog

Catapult-C
Calypto

Commercial
C/C++ VHDL/Verilog

Design Systems SystemC SystemC

CHC Altium Commercial C subset VHDL/Verilog

CoDeveloper
Impulse

Commercial Impulse-C VHDL
Accelerated

CtoS Cadence Commercial
SystemC Verilog

TLM/C++ SystemC

CyberWorkbench NEC Commercial BDL, SystemC VHDL/Verilog

Cynthesizer FORTE Commercial SystemC Verilog

DK Design Suite Mentor Graphics Commercial Handel-C VHDL/Verilog

DWARV TU. Delft Academic C/C++ VHDL

eXCite Y Explorations Commercial C VHDL/Verilog

GAUT U. Bretagne Academic C/C++ VHDL

LegUp U. Toronto Academic C Verilog

MaxCompiler Maxeler Commercial MaxJ RTL

ROCCC Jacquard Comp. Commercial C subset VHDL

Synphony C Synopsys Commercial C/C++
VHDL/Verilog

SystemC

VivadoHLS Xilinx Commercial
C/C++ VHDL/Verilog
SystemC SystemC

Table 4.1: Available HLS tools on the market. [18]

modules dealing with a data flow application and a cryptography-algorithm is mainly done
using this HLS tool. Furthermore, Table 4.2 presents more important properties about
different HLS tools. An interesting feature is the generation of a testbench by using high-
level languages. In addition, floating point operations are not supported by every HLS
tools. So, this is also a criteria when choosing the HLS tool. However, in this thesis fixed
point or floating point operations are not used and therefore this is negligible.

Compiler Year TB FP FixP

Bambu 2012 Yes Yes No

Bluespec 2007 No Yes No

Catapult-C 2004 Yes No Yes

CHC 2008 Yes No Yes

CoDeveloper 2003 Yes Yes No

CtoS 2008 Only cycle accurate No Yes

CyberWorkbench 2011 Cycle/Formal Yes Yes

Cynthesizer 2004 Yes Yes Yes

DK Design Suite 2009 No No Yes

DWARV 2012 Yes Yes Yes

eXCite 2001 Yes No Yes

CHAPTER 4. DESIGN 34

GAUT 2010 Yes No Yes

LegUp 2011 Yes Yes No

MaxCompiler 2010 No Yes No

ROCCC 2010 No Yes No

Synphony C 2010 Yes No Yes

VivadoHLS 2013 Yes Yes Yes

Table 4.2: Properties of different HLS tools (TB - Testbench,
FP - Floating Point, FixP - Fixed Point). [18]

Originally, AutoESL developed the HLS tool called AutoPilot. In 2011 Xilinx Inc.
adopted this tool for their design process and was called Vivado HLS [12]. Input lan-
guages are C/C++ or SystemC. In addition, optimizations can be assigned to the design
for controlling the synthesis process, i.e. loops can be merged, unrolled or pipelined. In
addition, the latency, iteration interval (number of cycles to load new data into the com-
putation) or maximal possible frequency for the hardware module can be influenced. The
synthesis process of Vivado HLS is depicted in figure 4.5. It needs C/C++ or SystemC files
as input. These files include the definition of the high level model. A complete high level
design also contains a high level testbench for the verification of the implemented model.
The verification process will be described in 4.4.3. Adding constraints and directives en-
ables user impact on the automated high-level synthesis. Directives and constraints are

Figure 4.5: Synthesis process of Vivado HLS. [3]

CHAPTER 4. DESIGN 35

described in 4.4.3 and 4.4.4. Outcome of the synthesis is the RTL model generated in
SystemC or VHDL/Verilog. In addition, Vivado HLS provide an automatic generation of
a packaged IP, which can be used in Xilinx Vivado Suite for the programming of FPGAs
or additionally in Matlab (System Generator).

4.4.2 Programming languages for High-Level Synthesis

As already mentioned, the used programming language for the high-level model depends
on the selected tool. Most of those support C, C++ or SystemC, whereby SystemC is an
extension of C++. It enables the generation of modules in software, which is very similar
to the generation of hardware on RTL. But there are no experience necessary according
to utilization of hardware description languages like VHDL. Next, SystemC is introduced
and evaluated about the suitability for the implementation of the modules in chapter 5.

SystemC: language for High-Level synthesis

SystemC is an extension to C++ or provides features that improves the productivity for
engineers generating electronic systems. Hardware and Software are developed together.
This means, that the implementation includes the software syntax as well as the hardware
modules and they can be simulated simultaneously. In the following paragraphs the most
important constructs are explained briefly.

Modules define parts of the high-level model, which should be implemented in hard-
ware. The definition looks like shown in listing 4.3. The modules communicate with others
via ports and can also include further modules.

1 SCMODULE (module name) {
2 // module content
3 } ;

Listing 4.3: SystemC: Definition of a module.

An entity will be generated by invoking the constructor. The syntax is depicted in the
following listing.

1 SC CTOR (modul name) { . . . }

Listing 4.4: SystemC: Creation of a module.

As mentioned before, the communication between the modules is done via ports. They
can be defined as input, output and bidirectional (read and write data on the same port)
ports. Additionally, signals can be defined for the communication within modules.

1 s c i n<Porttyp> PortInName ; // input
2 sc out<Porttyp> PortOutName ; // output
3 s c inout<Porttyp> PortInOutName ; // b i d i r e c t i o n a l
4 s c s i g n a l<Signaltyp> SigName ; // s i g n a l

Listing 4.5: SystemC: Port definition.

The actual behavior of the modules are defined as processes. Generally there exists three
different types. One of them is called SC METHOD(). This process is invoked, if a
variable of the sensitivity list is changed.

CHAPTER 4. DESIGN 36

1 SCMETHOD (func t i on name) ;

Listing 4.6: SystemC: process type 1.

The sensitive list is defined as depicted in listing 4.7.

1 s e n s i t i v e << S igna l1 << S igna l2 . . .

Listing 4.7: SystemC: sensitivity list.

Another process is called SC THREAD(). These are started only once and can be
paused by wait-statements.

1 SC THREAD (func t i on name) ;

Listing 4.8: SystemC: process type 2.

At latest, processes called SC CTHREAD() are synchronous. The second parameter
defines trigger of the clock edge. There is no sensitivity list necessary.

1 SC CTHREAD (func t i on name , c l o ck edge) ;

Listing 4.9: SystemC: process type 3.

As one can plainly see, the extension called SystemC enables features for the generation of
hardware. Generally, it is very useful for huge systems containing software and hardware
parts. Within this thesis the functionality of SystemC is not necessary. For the comparison
of RTL designs and HLS generated modules, it’s sufficient to implement them with plain
C++.

4.4.3 Cosimulation

Verification is the foundation of every design. Otherwise the right behavior can’t be en-
sured. The Cosimulation is described in figure 4.6. On the left side, the original testbench
for functional verification is depicted. The testbench itself includes the code for the gen-
eration of the test vectors. These are passed to the C implementation of the modules
and to the golden reference. Alternatively, the input test vectors can be got by reference
files, which include also the golden reference output vectors. The test fails, if the results
of the C implementation doesn’t match the results of the golden reference. Additionally,
implementation of the testbench can include the reporting the number of fails.

Cosimulation implies the automatic test of the generated RTL design. On the right
side of figure 4.6, the test procedure or Cosimulation is depicted. Generally, the testbench
is transformed into RTL like the high-level model. The input test vectors are provided by
the testbench. These are passed to the HLS generated model and to the golden reference.
Finally the outputs are compared and analysed. Like before there exists an alternative
test procedure. The golden reference provides input test vectors and the corresponding
output vectors, which are compared with the output of the implemented module to verify
the correctness.

As already mentioned, the testbench is generated automatically during HLS. Manual
transformation is not necessary. Generally, verification is always absolutely essential.
Vivado HLS provides this automatic step. Thus, the design process can be accelerated
and the automatic RTL testing increases the productivity. The automatic generation of
the testbench also reduces the error-proneness. However, one have to keep in mind that

CHAPTER 4. DESIGN 37

Figure 4.6: Procedure of C/RTL Cosimulation. [3]

Cosimulation takes place on RTL and RTL simulation conforms to behavioral simulation.
Parasitics of gates or other timing impacts on the resulted RTL model are neglected. [3]

4.4.4 Interface Synthesis

Generally, high-level models implemented in C/C++ are designed as functions, whereby
the functional parameters can be defined as input, output or bidirectional. A variable is
called input, if the data is read from the parameter and never written to it. An ouput
is the inverse, data is written to the parameter and never read from it. Some arguments
are bidirectional, they are read from and written to it. In most cases a hardware design
consists only of input and output ports.

Block-level interface define the control between several hardware blocks in a FPGA
design. It ensures the correct data flow in a system. Vivado HLS provides three different
types of protocol, which are listed in the following. [3]

• ap ctrl none: No additional protocol is used for the hardware block. The control of
the data flow between several different blocks is done by manually defined ports. No
ports are generated automatically.

• ap ctrl hs: This protocol provides a handshaking mechanism, i.e. four different
ports are generated automatically during the synthesis. The first one is an input
port called ap start and is used to start the processing of the hardware block. The
other three output ports are used to get information about the actual state of the
block. The signal ap ready indicates that new data can be read, ap idle shows if
data is processing and ap done indicates that data can be read from or data is ready
on the output port.

• ap ctrl chain: Similar to the protocol before, this protocol provides also a hand-
shaking mechanism and additionally a port called ap continue. This port is used to
pause the hardware block. If ap continue is Low, the hardware block will stop the
processing of the current data and waits until the same signal is High. Then the
computation with new data will continue.

CHAPTER 4. DESIGN 38

A further important step during the design process is the interface type definition for the
arguments of a function written in C/C++. There exists several different types, but not
all of them are suitable or can be used for every kind of variable. In figure 4.7, every
combination is depicted, whereby D symbolize the default type. This will be used, if
nothing else is assigned. The letter S stands for supported type. The argument type
variable can be only used as input port, except for the interface type s axilite, which is
together with axis and m axi an own bus protocol developed by Xilinx Inc. and isn’t
taken into account in further consequence. The other three argument types can be used
as input, output, or bidirectional ports like shown in the following figure.

Figure 4.7: Interface protocols (Interface type: I - input port, IO - bidirectional port, O -
output port; Abbreviations: S - supported; D - default). [3]

The following bullet points explain the different interface types:

• ap none: This interface protocol doesn’t generate additional control signals. The
timing between input and output data must be considered during the design process.

• ap stable: This is generally the same protocol as ap none. No additional control
signals are available, but it is useful for input ports, which change very rarely. They

CHAPTER 4. DESIGN 39

haven’t to be stored in registers, because this protocol keeps automatically the input
data as a constant. In addition, it can only be utilized for input ports.

• ap ack : This protocol can be used for input and output ports. For input ports an
additional signal is generated, which equals to High in the same cycle during the port
is read. Output ports with this protocol create an input signal called acknowledge
and is used to identify that the provided data on the output port is used by the next
hardware block before operations resume.

• ap vld : Selecting protocol ap vld implies the automatic generation of an additional
port for validating the data. Data provided on input ports can be confirmed as valid
data with this port. For output ports, it indicates that the provided data is valid in
the same clock cycle and can be read.

• ap ovld : The difference to protocol ap vld mentioned above is that it can only be
used for output ports or the output part of a bidirectional interface port.

• ap hs: A handshaking mechanism is generated by this protocol. Thus, additional
signals like ap ack, ap vld, and ap ovld are created. The meaning of this signals is the
same as described above. This protocol can be utilized for inputs and outputs. The
handshaking control ensures the correct data communication between to different
hardware modules. The drawback is that additional control ports lead to a design
overhead.

• ap memory : This protocol is used for arrays. It is suitable for all three types of
ports. Furthermore, three additional control signals are necessary. These are a
clock, a write signal and an address port to read or write the correct data from the
memory.

• bram: This protocol is similar to the ap memory protocol. The difference is, if the
module is packed into an IP, the control ports are represented by one single port.

• ap fifo: A further protocol for arrays is ap fifo. It is suitable for input and output
ports. The data is passed sequentially to the module. Thus, an address port is not
necessary. The generated control ports are used to check if the buffer is full or empty
and this port stops and continues the processing of the module.

• ap bus: This protocol is not a specific bus type, but it can be used to communicate
with a standard bus via a bus bridge. Several generated control signals ensure the
different operations like single write, single read or burst transfer operations. More
details about this standard can be found in [13]. For this thesis, this type is not
necessary to use because the communication of the two designed modules will be
realized using the other protocol types.

Figure 4.8 shows an example for different protocol types. The example deals with the
computation of the average for a set of numbers. The numbers are stored in an array.
First of all, the block gets ap ctrl hs as block-level interface. It generates automatically a
clock, reset, start, ready, done and idle control signal. Thus, the module can be controlled
with these signals by a processor. The input array of all numbers gets the interface protocol

CHAPTER 4. DESIGN 40

ap memory. It creates an address port to assign the data, which should be read and an
enable signal to indicate if data is read. The output port, which delivers the average is
assigned the protocol ap vld. Therefore, a control signal is generated to symbolize if data
is on the output port and if the data is valid. The input port X represents the number
of samples for the average. It is defined the protocol ap none and therefore no additional
signals are added.

Figure 4.8: Example for different interface protocols and block-level protocol. [3]

4.4.5 Code Optimization

Code optimizations are essential to get a high quality hardware design out of the HLS.
These have to be assigned manually to the high-level model. For different programming
constructs directives are available to optimize the code. The main code snippets for opti-
mizing are arrays and loops. In addition, there are further directives, which are responsible
for the whole behavior of the module. These are e.g. pipelining and dataflow optimiza-
tion. The mentioned optimization types are explained in the following paragraphs. The
adapting on a high-level module is depicted in chapter 5.

Arrays

Different types of directives for arrays are:

• Array Map: This directive merges several arrays to one array with a larger size.
Thus, less control signals, BRAMs or FIFOs are necessary.

• Array Partition: An array is split into several smaller arrays. More control signals
are necessary, but it is possible to read more data at the same clock cycle from an
array.

CHAPTER 4. DESIGN 41

• Array Reshape: An new array with less elements and increased data width is gener-
ated out of an array. Therefore, the array is split into smaller arrays and reshaped
together.

• Resource: This directive allows to assign an array to a specific memory resource.
Engineers can map different arrays to the same memory.

Pipelining

One opportunity to optimize a high-level model is pipelining. Pipelining enables a higher
data throughput, because the function is split into stages and loading new data can be
done in smaller intervals. Thus, the modules, which are implemented in chapter 5, are
used in high-speed printing systems and such systems have to process a huge amount of
data in short time. Therefore, it is necessary to optimize the high-level model according
to achieve a large data throughput. For that reason, pipelining is an essential design step.
So, the meaning of pipelining will be explained below.

Figure 4.9 shows a simple example with data dependencies. This example is used to
be optimized by pipelining. As already mentioned, there are data dependencies. Thus,
Op1 has to be finished before Op2, and Op2 has to be finished before Op3 can start.
All three operations together are called processing stage. The computation of the whole

Figure 4.9: Example ”Pipelining”: Data dependencies between Op1, Op2, and Op3. [3]

processing stage requires one clock cycle. This leads to a data latency of one clock cycle.
Figure 4.10, depicts the processing of data and their latency. Latency means the number of

Figure 4.10: Example ”Pipelining”: Dataflow graph. [3]

necessary clock cycles to offer the corresponding data at the output. Since the operations
are executed all in one clock cycle, the clock period is very high. Pipelining is used for
the reduction of the clock period. Registers are added between the operations. Thus,

CHAPTER 4. DESIGN 42

the whole function doesn’t consist of one processing stage, but every operation represents
an own processing stage. Every processing stage requires a clock cycle and since the

Figure 4.11: Example ”Pipelining”: Adding registers. [3]

complexity (number of operations) of a processing stage is reduced, the clock period can
be decreased. Figure 4.12 depicts the data flow graph of the resulting pipelined function.
Data can be already loaded after the completion of processing stage ”Op1”. As one can
see in this figure, the clock period is shorter, but the latency (measured in clock cycles)
is increased. Overall the time during loading data and providing it on the output equals
to the example in figure 4.10. Using this directive leads to the mentioned increase of the

Figure 4.12: Example ”Pipelining”: Dataflow graph of pipelined stages. [3]

data throughput. It cannot only be used for whole functions, but also for e.g. single loops
of a model. More information are provided in the following paragraph.

Loops

Optimization of loops comprises three types. These are called loop merging, loop unrolling
and loop pipelining, which was mentioned before. This section presents a short example
for each type to understand the utilization. [3]

Merging of loops of a function leads to a reduction of the latency. The example in
listing 4.10 includes a loop for the addition of variables and a loop for the multiplication of
the same variables. Assuming that an addition takes one clock cycle and a multiplication
two clock cycles, this example requires 12 clock cycles for loop add loop and 24 clock
cycles for loop mult loop. Additionally, entering and closing the loops need four clock
cycles. Overall 40 clock cycles are necessary without any loop optimization.

CHAPTER 4. DESIGN 43

1 void add mult (shor t c [1 2] , shor t m[1 2] , shor t a [1 2] , shor t b [1 2]) {
2 shor t j ;
3

4 add loop : f o r (j =0; j <12; j++) {
5 c [j] = a [j] + b [j] ;
6 }
7

8 mult loop : f o r (j =0; j <12; j++) {
9 m[j] = a [j] ∗ b [j] ;

10 }
11 }

Listing 4.10: Example: Merging loops (no merging).

By using loop merging, the two loops are combined together, because there are no data
dependencies. The required number of clock cycles for additions are avoided. The addition
takes place simultaneously with the multiplication. So, overall only 28 clock cycles are
necessary for the completion of this example.

1 void add mult (shor t c [1 2] , shor t m[1 2] , shor t a [1 2] , shor t b [1 2]) {
2 shor t j ;
3

4 add mult loop : f o r (j =0; j <12; j++) {
5 c [j] = a [j] + b [j] ;
6 m[j] = a [j] ∗ b [j] ;
7 }
8 }

Listing 4.11: Example: Merging loops (merged loops).

The addition of two matrices is done by iterating over every element in a matrix. For
two dimensional arrays two for loops are necessary. Since the effort and latency increases
enormously without any optimizations, it is possible to flatten the loops. This means
that more resources are allocated to calculate the individual additions simultaneously.
The order of flattening can be adjusted manually. The whole addition can be executed in
one single clock cycle or it is possible to flatten only the inner loop. In this way a hybrid
solution can be created according to the number of utilized resources and latency.

c00 c01 c02 c03
c01 c11 c12 c13
c02 c21 c22 c23
c03 c31 c32 c33

 =


a00 a01 a02 a03
a01 a11 a12 a13
a02 a21 a22 a23
a03 a31 a32 a33

 +


b00 b01 b02 b03
b01 b11 b12 b13
b02 b21 b22 b23
b03 b31 b32 b33

 (4.1)

The third type of loop optimization is Loop Pipelining. Generally, a loop iteration
starts after the previous loop iteration is finished. Sometimes, many operations are done
during an iteration. In such cases, it is useful to add loop pipelining, because the data
throughput can be increased and the computation of the loop doesn’t lead to be a bot-
tleneck of the whole module. A short description of general pipelining is already noted in
this thesis, whereas no further definitions are added in this section.

CHAPTER 4. DESIGN 44

Dataflow

The optimization directive called Dataflow is similar to Pipelining. It is used to increase
the data throughput. The difference is that it takes place on a higher level in the design
process. Generally, a design contains different functions. In example of figure 4.13 there
exists F1 (take order), F2 (food), F3 (coffee) and F4 (payment). Dataflow optimization
leads to a reduction of the latency. As depicted in the example, using only one resource

Figure 4.13: Example for dataflow optimization: Without dataflow optimization. [3]

(called Penelope) would take 12 time units to finish the execution. First, she has to take
order, which requires three time units. After that, the food (two time units) and the
coffee (four time units) are prepared and finally, she has to cash the customer. Then she
can serve the next person. Dataflow optimization does a reduction of the overall latency.
Therefore, more resources are used to execute all tasks.

Figure 4.14: Example for dataflow optimization: With dataflow optimization. [3]

CHAPTER 4. DESIGN 45

Now, Penelope gets three assistants called Cameron, Hamish and Isla. Each of them
handles one task. So, every four time units a new customer can be served. However, the
data dependencies have to be taken into account. The task of preparing a coffee cannot
start before ordering the type of coffee. Preparing the food can just start after ordering
the kind of food, too. These data dependencies are considered automatically by the HLS
tool. So, engineers have the opportunity to assign manually this directive to increase the
data throughput. Everything else is done automatically by the synthesis process.

4.4.6 Arbitrary Datatypes

A further important part of the design process is the choice of the bit width for variables. In
hardware development, standard bit widths are not very suitable, but they are available.
Table 4.3 shows the standard size in Vivado HLS. Generally, the size is not fixed in C
programming definition, so engineers have to take care about the selection of standard
types. Furthermore, Vivado HLS provides arbitrary precision integer types. Therefore,

Type Number of Bits Range

char 8 -128 to 127

short int 16 -32,768 to 32,767

int 32 -2,147,483,648 to 2,147,483,647

long int 32 -2,147,483,648 to 2,147,483,647

long long int 64
-9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

Table 4.3: Standard Datatypes. [3]

two header files are availabe. One can be used for the programming of the high-level model
in C and is called ”ap cint.h” and the other called ”ap int.h” is used for C++ models.
They provide unsigned and signed data types. The following table 4.4 shows the usage
of this arbitrary precision integer types. In addition, also fixed point and floating point

Language Integer Data Type Description Required Header

C

intN signed integer of N

#include ”ap cint.h”
(e.g. int7) bits precision
uintN unsigned integer of N
(e.g. uint7) bits precision

C++

ap int〈N 〉 signed integer of N

#include ”ap int.h”
(e.g. ap int〈7〉) bits precision
ap uint〈N 〉 unsigned integer of N
(e.g. ap uint〈7〉)) bits precision

Table 4.4: Arbitrary Datatypes. [3]

arbitrary precision datatypes are available. These are not necessary for the implementation
of the modules in chapter 5. Information is available in [3].

CHAPTER 4. DESIGN 46

4.5 Module: ”Data flow”

This section describes the design process of the protocol interface, which is used as the
module called ”data flow” in the further progress of this thesis. Thereby, the usage in large
industry printing systems is explained as well as the basic behavior of this module. In the
corresponding section of chapter 5, tighter implementation definitions are presented.

4.5.1 Application field of this module

Generally, a printing system consists of several print heads and one control electronic is
necessary for each eight print heads, i.e. the control electronic receives the printing data
and processes them to actuate the print heads for achieving the correct behavior. Finally,
the desired image should be printed. The GTP (Gigabit Transceiver) ring is used for the
distributing of the print data. So each control electronic has implemented a GTP interface,
to collect the corresponding data from the GTP ring. By the way, the printing data are
already rehashed. So the control electronic gets the information and data for each print
head instead of the pure image data.

Figure 4.15 shows the block diagram of the GTP interface of the control electronic. The
block ax7 GTP is the common interface, which is provided by the producer or developer
of the FPGA chip. In this thesis, a FPGA evaluation kit from Xilinx Inc. is used. The
abbreviation ax7 stands for for the FPGA family called Artix 7. Chapter 4.7 presents
more information about the evaluation kit choice. This block processes the input data
and delivers the receiving data and the receiving charisk data word. Thereafter, the
Alignment FIFO buffers the input data, which is in further progress provided to the
protocol interface. This part of the overall GTP interface is implemented in this master
thesis in two different ways. As already mentioned, one implementation is done with the
hardware description language VHDL and for the second implementation HLS is used as
design tool. This module analyses the incoming data from the fifo buffer and determines,
if the data are print data (p data s) or configuration data (c data o, c data flag o). Print
data is forwarded to the corresponding print head. Configuration data is used to change
the behavior of the control electronic. If the protocol interface recognizes the appearance
of configuration data in the receiving data stream and in the receiving charisk port,
the configuration block will be changed according to the new incoming data. In further
chapters, this module is described with the label ”data flow”. The reason is, that no
complex algorithm is implemented within this module. It is only used to detect some
keywords in the input buffer of the charisk stream and it has to forward the incoming
data to the corresponding output port. No mathematical complexity like signal processing,
image processing, or cryptography algorithms are implemented in this module.

4.5.2 Module Interface

During the design process, deliberations have to be done according to the number of
interface ports. Figure 4.16 depicts all necessary ports. On the left-hand side the input
ports are illustrated and on the right-hand side the output ports are shown. These are
pooled into five groups. The RX stream includes the receiving data and the receiver for the
charisk data word. The configuration consists of some signals, which control the protocol
interface. Status is conducive to get some information about the actual state. Tx stream

CHAPTER 4. DESIGN 47

ax7_GTP

Alignment FIFO

Protocol Interface

Dataflow

Config_Block

Register_IF MB

c_data_o
c_data_flag_o

gt_rxdata_s
gt_charisk_s

buffer_fifo_data_out_s
buffer_fifo_type_out_s

bram_signals
pulse_count_s

[ctrl_reg(3)]

p_mode_o

p_data_s

PH1-PH8

ph_data_s[1-8]

GTP-Ring

GTP_IF

Used in Master Thesis

Figure 4.15: GTP Interface (data flow block diagram).

CHAPTER 4. DESIGN 48

is the contrary to Rx stream. The principle, wherefore each control electronic needs a
receiver and a transmitter, is explained in the following. The GTP interface is connected
to a GTP ring. Therefore all the data is received by the first control electronic. Afterwards,
for closing the GTP ring this electronic has to forward the data to the next GTP interface.
Therefore, a tx stream part of this module is always necessary. Furthermore, extracted data
includes the output ports for either print data or configuration data.

configuration

rx stream

32

4

2

4

14

4

14

status

1

1

tx stream
32

4

gtp_txdata_o

gtp_txcharisk_o

status
1

10

status_bram_en_o

status_bram_addr_o

extracted data

32

32

p_data_o

c_data_o

1

1

wr_p_data_o

wr_c_data_o

4

4

c_data_type_o

module_address_o

clk reset

Module: „Data flow“

Testbench

Figure 4.16: Module: ”Data Flow” interface.

The verification of the implemented module is done by a testbench. It can be imple-
mented with hardware description languages like VHDL or by using HLS. In this thesis, the
design methodology for the testbench is HLS. So the behavior is implemented in C/C++
and afterwards it is synthesized automatically into a VHDL testbench. The implemented
modules, either the conventional module with VHDL or the generated module by HLS,
is connected with the testbench. Thus, these modules can be verified simultaneously and
their output can be compared. More details about the implementation and about the
verification is presented in the chapter 5. There, a comparison between the two modules
is listed according to the utilization of resources, power consumption, etc.

4.6 Module: ”Cryptography-Algorithm”

The second module for the comparison between HDL designs and HLS generated mod-
ules is a cryptography module. The preprocessing of images for the industrial printing
systems requires a huge computational effort for the workstation of each system. Since
the quality of images is increasing and so the computational complexity also raises, the

CHAPTER 4. DESIGN 49

change of using FPGA boards for the preprocessing could be inevitable. Therefore, the
module ”Cryptography-Algorithm” presents the quality of using HLS versus the conven-
tional design methodology using VHDL for CPU-intensive tasks. In addition, it is also
necessary to get a knowledge of the design speed using HLS, because the best way is that
already used algorithms for the preprocessing can be reused, partly modified and finally
implemented on a FPGA. In this master thesis, a cryptography algorithm is used to show
the design differences between these two design methods.

4.6.1 Principle of Ascon

The algorithm implemented in the ”Cryptography-Algorithm” module is called Ascon and
has been designed at Institute for Applied Information Processing and Communications of
the University of Technology Graz for the current CAESAR competition. The CAESAR
competition tends to develop a new standard, which includes all security aspects to become
a very secure algorithm. Over the years, different types of competitions were started. The
team, developing Ascon, is taking part of the competition for a new advanced encryption
standard (AES). In the following paragraphs the principle of Ascon is described.

Encryption Procedure

Generally, the encryption and decryption procedure of Ascon is very similar. First, the
encryption (figure 4.17) includes a state register with a data width of 320 bits, which
includes a 64 bit IV data word (0x80400c0600000000), the 128 bit width key, and the 128
bit width nonce. Afterwards the round function is executed a times. A description about
the round function follows after the decryption part. Last task of the initialization is a
XOR operation of the key and the last 128 bits of the state register. Next part is the
processing of the associated data. Therefor, the first 64 bits of the state and the first 64
bits of the associated data stream are executed by a XOR operation. Then the round
function is run b times. Afterwards a new block of associated data is loaded. This is
done until the last block of associated data (maximal 64 bits) is processed. Last part of
this task is a XOR operation of the last bit of the state with the value 0x1. Thereafter,
the main encryption part takes place. 64 bit width data words are loaded and a XOR
execution is done with the first 64 bits of the state register. The result appears on the
64 bit width output data port (figure 4.20) and equates to the cipher text of the first 64
bits of plaintext. Next step is the execution of b times the round function. This part
continues until the whole plaintext is encrypted. Keep in mind, that no execution of the
round function follows to the last 64 bits of plaintext. Finally, a tag is generated in the
finalization part of the encryption process. First task is a XOR operation of bits 65 to
192 from the state register and the key. Afterwards, the round function is executed again
a times. Before the tag appears on the output port, the last 128 bits of the state and the
key are loaded into the XOR operation again.

Decryption Procedure

The decryption procedure (figure 4.18) differs only in a few tasks. The initialization and
the processing of the associated data have no distinctions. The main decryption part
starts with a XOR operation of the first 64 bits from the state register and the 64 bit

CHAPTER 4. DESIGN 50

Figure 4.17: Block diagram of encryption. [4]

width cipher text block. The result appears at the output port and is the plain text of the
corresponding cipher text. In addition, the first 64 bits of the state register are replaced
by the cipher text. Afterwards, the round function is executed and then the same task is
done again. This is the only part, which differs to the encryption procedure.

Figure 4.18: Block diagram of decryption. [4]

Round Function

The round function is one of the main parts of the encryption and decryption procedure. It
consists of three tasks: linear diffusion layer, substitution layer and addition of constants.

The first task is the linear diffusion layer. The state register is split into five
individual registers x0 to x4. A mathematical function including shift and XOR operations
is applied on each register. The function for each register is listed in the following:

x0 = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28) (4.2)

x1 = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39) (4.3)

x2 = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6) (4.4)

x3 = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17) (4.5)

x4 = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41) (4.6)

Generally, the linear diffusion layer shifts the bits within the individual registers parti-
tioned of the whole state register.

The second task of the round function is the substitution layer. This calculation is
applied bit-slice. This means, that one bit is taken out of each individual register. So five

CHAPTER 4. DESIGN 51

Figure 4.19: Process of substitution layer. [4]

bits conform one bit-slice. The mathematical substitution process is shown in figure 4.19.
It consists of some XOR, AND, and NOT operations.

The last task is the addition of constants. For every round number a different
constant is used. The addition means a XOR operation of the third individual register
of the state register and the corresponding constant. The different constants are listed in
the following table. More information about the algorithm and the security features of

p12 p8 p6 Constant p12 p8 p6 Constant

0 000000000000000000f0 6 2 0 00000000000000000096
1 000000000000000000e1 7 3 1 00000000000000000087
2 000000000000000000d2 8 4 2 00000000000000000078
3 000000000000000000c3 9 5 3 00000000000000000069
4 0 000000000000000000b4 10 6 4 0000000000000000005a
5 1 000000000000000000a5 11 7 5 0000000000000000004b

Table 4.5: Addition of Constants. [4]

Ascon can be found in [4]. Additionally, the input data blocks like associated data and
the plain text or cipher text are preprocessed. This means that the last data block has
to be padded, but since this is part of the controlling processor of this module, no further
details are described in this thesis. The description about padding can also be found in
[4].

4.6.2 Module Interface

The definition of the interface ports of the module is a basic deliberation during the design
process. Figure 4.20 depicts the input and output ports of the module ”cryptography-
algorithm”. The input data port and output data port are defined as 64 bit width ports
to achieve a high throughput design with consideration of a sensible amount of allocated
area and utilized resources. Increasing the bit width of this ports would also raise the
throughput, but the quality of this design is sufficient.

As already mentioned, the module includes an input data port and an output data

CHAPTER 4. DESIGN 52

port. The input port is responsible for loading new data blocks like the associated data,
plaintext, cipher text, the key, which has to be stored in the module during the processing,
and the nonce loaded into the state register. The output port is used to write out the
generated cipher text, or in case of decryption the plaintext as well as the tag, if the
encryption or decryption is finished. In addition, the module have got some control signals:
start, instruction and length last signal. The start signal is used to initiate the encryption
or decryption procedure. By using the instruction signal the processor, which is connected
to the cryptography-algorithm module, can control this module. The different types of
instructions is presented in chapter 5. The third port of the control signals is called
length last. It is used to indicate the last input data block and to indicate the length of
the last block in bits (maximal value is 64), which is necessary to write out the correct
corresponding cipher text or plain text. In addition, also three status signals are necessary
to indicate the validation of the output data, the finishing of the instruction and the
indication of the tag, whereby the port out is tag o is two bit width, because the tag has
128 bits and the output data port has a data width of 64. So the tag has to be written out
in two clock cycles and this port marks the least significant bits or the most significant
bits. More information about the exact implementation is provided in chapter 5.

Control Signals

Input Data Stream

64

4

1

6

Output Data Stream

64 output_data_o

Status Signals

1

2

output_valid_o

out_is_tag_o

1 instruction_ready_o

clk reset

Module:
„Cryptography- algorithm“

Testbench

Figure 4.20: Module: ”Cryptography-Algorithm” interface.

For the verification of this module a testbench is designed. It is written in C/C++
and transformed into a HDL testbench by using HLS.

4.7 Choice of the Evaluation Kit

The designed module have to be implemented on an evaluation kit, to get a precise re-
port about the quality and a comparison of the HDL modules and the HLS generated
implementations. Criteria according to the choice of the evaluation kit is the amount of
available resources. This number has to correspond with the implemented designs. Since
this thesis is a cooperation with the company Durst Phototechnik Digital Technology GmbH
and they are using more often system-on-chip boards for their implementations, using an

CHAPTER 4. DESIGN 53

evaluation board including a system-on-chip for this thesis is a sensible choice. So the
benefits and drawbacks of using HLS in the design process can be shown directly by using
a system-on-chip.

A very good and powerful evaluation kit is developed by Avnet, Inc. It is called
PicoZed (figure 4.21), whereby different versions are available and for this thesis version
7Z015 is used. This board includes a system-on-chip called Zynq7015, which consists
of a processing system and a programmable logic. The processing system (PS) can be
utilized as a processor and the programmable logic (PL) corresponds to a simple FPGA,
whereby this part is used for the implementation of the described modules. For the sake of
completeness all further features a presented briefly. However, these are not necessary for
the implementation. The PicoZed 7Z015 includes 148 user I/O. 135 pins are connected to
the PL part and 13 pins to PS. These 148 user I/O pins are grouped into three connectors
(JX1 - JX3) on the backside of this board. These connectors are responsible for the access
of the ethernet, USB and JTAG interface as well as power and other control signals.
Additionally, a 128MB quad serial peripheral interface (QSPI), 1GB DDR3 RAM, an
interface for a 4GB embedded multi media card (eMMC), and an oscillator of 33.33 MHz
are available. The mentioned three connectors JX1 to JX3 are used for the connection of
the PicoZed 7Z015 with the corresponding PicoZed FMC Carrier Card V2.

a) PicoZed 7Z015 b) Block diagram of PicoZed

Figure 4.21: PicoZed. [11]

Figure 4.22 depicts a) the PicoZed FMC Carrier Card V2 and b) the corresponding
block diagram. The FMC Carrier Card V2 provides all interfaces, which can be used
by the PicoZed. For this thesis the JTAG interface and the USB-UART connection is
necessary, whereby the JTAG is used to flash the system-on-chip and the USB-UART
connection is used for debugging. Further features are listed below:

Memory

• MicroSD card socket with 8GB microSD Card
• Clock Synthesizer configuration EEPROM
• I2C MAC ID EEPROM
• 1-wire MAC ID EEPROM

CHAPTER 4. DESIGN 54

Communication

• x1 PCIe Gen 2
• SFP+
• SMA port for GTX/GTP
• 10/100/1000 Ethernet connector
• USB 2.0 Type A connector
• USB UART

User I/O

• FMC (Low Pin Count)
• PS Pmod (Shared with SOM eMMC)
• PL Pmods #1,#2 (7015/20/30 only)
• PL Pmod #3 (7015/30 only)
• Software
• PetaLinux
• Wind River Pulsar Linux pre-loaded on microSD card

a) PicoZed FMC Carrier Card
V2 b) Block Diagram

Figure 4.22: Picozed FMC. [11]

Chapter 5

Implementation and Results

This chapter deals with implementation details of the two different modules and their dif-
ferent design methods, whereby only parts of the implementation code are presented. The
beginning of this chapter starts with the description of the module ”data flow”. It is split
into the design on RTL and the HLS generated design. Afterwards, the ”cryptography-
algorithm” module is presented, whereby the two different design methods are covered
individually. Finally, the comparison of the quality, power demand, design effort, etc. are
published in this thesis.

5.1 Used Tools for Module Generation

Figure 5.1 shows the used tools for the implementation of the RTL model. The VHDL code
is written by using Vivado Design Suite. This tool provides all steps for the generation of
the bitstream, which is loaded onto the evaluation kit.

Generation of

Hardware System
Loading onto

Evaluation Kit

Logic

Synthesis

Vivado Design Suite PicoZed

Figure 5.1: Used tools for the implementation - register-transfer level.

The design process of the HLS designed module includes one further tool. The high-
level model is implemented in C/C++ by using Vivado HLS from Xilinx Inc. This tool
enables the automatic synthesis to RTL. The further steps are equal to the design flow of
the modeling on RTL. The output of the HLS is loaded into Xilinx Vivado Design Suite.
Afterwards, the bitstream for the implementation on the evaluation kit is generated.

55

CHAPTER 5. IMPLEMENTATION AND RESULTS 56

Generation of

High-Level Model

Generation of

Hardware System

High-Level

Synthesis

Loading onto

Evaluation Kit

Logic

Synthesis

Vivado HLS Vivado Design Suite PicoZed

Figure 5.2: Used tools for the implementation - high-level synthesis.

5.2 Implementation of Module: ”data flow”

The hardware module called ”protocol interface”, which is also mentioned as the ”data
flow” module in this thesis, is used to filter the incoming data stream. According to the
received K-words on the input port called rx data, the following data words are indicated
as print data or configuration data. K-words have an 8-bit and a 10-bit representation
and are used to recognize the clock out of the receiving data stream, because they achieve
a DC-balance. So this is very useful for serial data transmissions. Additionally, they are
usable to mark the data stream, because they are preceded to the data stream and in this
way the receiver knows the type of the following data words. The table below includes all
K-words of this module.

Code Name 8-bit representation 10-bit representation hex representation

K23 7 11101 111 111010 1000 0xF7
K28 5 00111 101 001111 1010 0xBC
K28 6 00111 011 001111 0110 0xDC
K29 7 10111 111 101110 1000 0xFD
K30 7 01111 111 011110 1000 0xFE

Table 5.1: K-words abbreviations.

Generally, the ”data flow” module consists of three state diagrams: Pre-Processing,
Processing of Printing Data and Processing of Configuration Data. These are shown in
figure 5.3. A detailed description of each state machine is done in the following paragraphs.

print_data_processing=1

config_data_processing = 1
Processing of Configuration Data

Pre-ProcessingPre-Processing

Processing of Printing Data

Figure 5.3: Implementation of module: ”data flow”.

CHAPTER 5. IMPLEMENTATION AND RESULTS 57

The first state diagram depicts the pre-processing of the incoming data (figure 5.4). If
the K-word called K28 5 appears in the data stream, the following data equates to printing
data. Otherwise, it is configuration data. Beyond the data receiving stream rx data, the
signal rx charisk has to be High to indicate a K-word, because in some cases data words
look like K-words. Regarding the type of the K-word, the signal print data processing or
config data processing is set to logic one. As in figure 5.4 shown, the pre-processing state
diagram consists of three states. The state uninit sets the control signals to zero. The idle
state verifies the rx data and the rx charisk stream and sets the signal print data processing
or config data processing. Finally the set flag state resets the two control signals to zero.
The whole implementation includes some additionally signals to get no errors during exe-
cution in this module, but the basic principle is explained above.

Pre-Processing

uninit

print_data_processing = 0
config_data_processing = 0

uninit

print_data_processing = 0
config_data_processing = 0

initial

idleidle

Print Data

print_data_processing = 1

Print Data

print_data_processing = 1

Configuration Data

config_data_processing_s = 1

Configuration Data

config_data_processing_s = 1

rx_charisk = 1 && rx_data != K28_5rx_charisk = 1 && rx_data = K28_5

set_flag

print_data_processing = 0
config_data_processing = 0

set_flag

print_data_processing = 0
config_data_processing = 0

else

Pre-Processing

uninit

print_data_processing = 0
config_data_processing = 0

initial

idle

Print Data

print_data_processing = 1

Configuration Data

config_data_processing_s = 1

rx_charisk = 1 && rx_data != K28_5rx_charisk = 1 && rx_data = K28_5

set_flag

print_data_processing = 0
config_data_processing = 0

else

Figure 5.4: State diagram of the pre-processing.

CHAPTER 5. IMPLEMENTATION AND RESULTS 58

The processing of the printing data is a further state machine in this module. It has two
states: idle and extract data. The default state is idle. If the signal print data processing
is high, the state is changed to extract data. So, the following receiving data is forwarded
as print data to the next module (figure 4.15). The next change of state takes place after
receiving ”1111” on the rx charisk port.

Processing of Printing Data

inital

idle

extract_data

until: rx_charisk = "1111"

extract_data

until: rx_charisk = "1111"

Print_data_processing = 1

Figure 5.5: State diagram of the print data processing.

The third state machine is responsible for the processing of the configuration data and it
is active after setting signal config data processing to logic one. This state machine consists
of five states: idle, addressing, check address, extract data and status update. Generally,
the default state is idle. No special operations are executed in this state. If the K-word
K29 7 is received, the state machine changes to addressing mode. This state assigns an
address to the corresponding GTP interface and sends the next address via the transmitter
ports (tx data and tx charisk) to the GTP ring respectively to the next GTP interface.
This procedure enables the identification of each interface by an unique address. If the
receiving data doesn’t equate to the K-word K29 7, but either K28 6, K30 7 or K23 7,
the next state is check address. The receiving data is forwarded to the corresponding
transmitter ports to send the same data to the next GTP interface on the GTP ring as
well. In addition, this state also checks if the K-word equates to K23 7. In this case,
the next state is called status update. The state status update is used to get information
from the individual GTP interfaces, e.g. the assigned module address or firmware version
number. Otherwise the data is extracted and forwarded as configuration data on the
corresponding output ports of this module, which are connected to the following module
as shown in figure 4.15.

CHAPTER 5. IMPLEMENTATION AND RESULTS 59

Processing of Configuration Data

idle

tx_data = rx_data
tx_charisk = rx_charisk

idle

tx_data = rx_data
tx_charisk = rx_charisk

check_address

tx_data = rx_data
tx_charisk = rx_charisk

check_address

tx_data = rx_data
tx_charisk = rx_charisk

addressing

if (first module):
 module_address = 0;
else:
 module_address = rx_data;

gtp_txdata <= module_address + 1;
gtp_txcharisk <= 1;

addressing

if (first module):
 module_address = 0;
else:
 module_address = rx_data;

gtp_txdata <= module_address + 1;
gtp_txcharisk <= 1;

rx_data = (K28_6 || K30_7 || K23_7)

rx_data = K29_7

extract_data

tx_data = rx_data
tx_charisk = rx_charisk

c_data = rx_data

extract_data

tx_data = rx_data
tx_charisk = rx_charisk

c_data = rx_data

status_updatestatus_update

rx_data(15...8) = module_address_s
rx_data(7...0) = K23_7

rx_data(15...8) = module_address_s
rx_data(7...0) != K23_7

else

rx_charisk = „1111"

else

else

Figure 5.6: State diagram of the configuration data processing.

As already mentioned, this module is implemented in two different design methodolo-
gies, which are compared in this thesis. Therefore, an useful test system was designed,
which is shown in figure 5.7. It consists of eight modules for the comparison of the two
modules called ”data flow”, because they have to set all outputs identically to ensure the
correct behavior at every clock cycle. In addition, the two modules are connected with
these comparator modules and an automatically generated (by Xilinx Vivado) reset block
is added. This test system is uploaded on the described evaluation kit. More details about
the results will be presented in the chapter 5.4.

CHAPTER 5. IMPLEMENTATION AND RESULTS 60

gt
p_

rx
da

ta
_a

nd
_c

ha
ris

k_
i_

gt
p_

da
ta

_V
_0

[3
1:

0]
gt

p_
rx

da
ta

_a
nd

_c
ha

ris
k_

i_
gt

p_
ch

ar
is

k_
V

_0
[3

:0
]

p_
m

od
e_

i_
V

_0
[3

:0
]

p_
m

od
e_

ad
v_

i_
V

_0
[1

:0
]

dw
or

ds
_p

er
_m

od
ul

e_
i_

V
_0

[9
:0

]
en

try
_p

oi
nt

s_
p_

da
ta

_0
_V

_0
[1

3:
0]

en
try

_p
oi

nt
s_

p_
da

ta
_1

_V
_0

[1
3:

0]
st

at
us

_M
B

la
ze

_i
_V

_0
[0

:0
]

st
at

us
_b

ra
m

_d
at

a_
i_

V
_0

[3
1:

0]
ap

_c
lk

_0

re
se

t_
rtl

rs
t_

ap
_c

lk
_0

_1
25

M

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
ow

es
t_

sy
nc

_c
lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t
dc

m
_l

oc
ke

d

m
b_

re
se

t
bu

s_
st

ru
ct

_r
es

et
[0

:0
]

pe
rip

he
ra

l_
re

se
t[0

:0
]

co
nn

ec
t_

ar
es

et
n[

0:
0]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

pr
ot

oc
ol

_i
f_

1_
0

pr
ot

oc
ol

_i
f_

1_
v1

_0

re
se

t_
i

cl
k_

i
gt

p_
rx

da
ta

_i
[3

1:
0]

gt
p_

rx
ch

ar
is

k_
i[3

:0
]

gt
p_

tx
da

ta
_o

[3
1:

0]
gt

p_
tx

ch
ar

is
k_

o[
3:

0]

p_
m

od
e_

i[3
:0

]
p_

m
od

e_
ad

v_
i[1

:0
]

dw
or

ds
_p

er
_m

od
ul

e_
i[9

:0
]

en
try

_p
oi

nt
s_

p_
da

ta
_i

1[
13

:0
]

en
try

_p
oi

nt
s_

p_
da

ta
_i

2[
13

:0
]

p_
da

ta
_o

[3
1:

0]
c_

da
ta

_o
[3

1:
0]

w
r_

p_
da

ta
_o

w
r_

c_
da

ta
_o

c_
da

ta
_t

yp
e_

o[
3:

0]
m

od
ul

e_
ad

dr
es

s_
o[

3:
0]

st
at

us
_M

B
la

ze
_i

st
at

us
_b

ra
m

_e
n_

o
st

at
us

_b
ra

m
_a

dd
r_

o[
9:

0]
st

at
us

_b
ra

m
_d

at
a_

i[3
1:

0]

pr
ot

oc
ol

_i
f_

0

P
ro

to
co

l_
if

(P
re

-P
ro

du
ct

io
n)

ap
_c

lk
ap

_r
st

gt
p_

rx
da

ta
_a

nd
_c

ha
ris

k_
i_

gt
p_

da
ta

_V
[3

1:
0]

gt
p_

rx
da

ta
_a

nd
_c

ha
ris

k_
i_

gt
p_

ch
ar

is
k_

V
[3

:0
]

p_
m

od
e_

i_
V

[3
:0

]
p_

m
od

e_
ad

v_
i_

V
[1

:0
]

dw
or

ds
_p

er
_m

od
ul

e_
i_

V
[9

:0
]

en
try

_p
oi

nt
s_

p_
da

ta
_0

_V
[1

3:
0]

en
try

_p
oi

nt
s_

p_
da

ta
_1

_V
[1

3:
0]

st
at

us
_M

B
la

ze
_i

_V
[0

:0
]

st
at

us
_b

ra
m

_d
at

a_
i_

V
[3

1:
0]

gt
p_

tx
da

ta
_a

nd
_c

ha
ris

k_
o_

gt
p_

da
ta

_V
[3

1:
0]

gt
p_

tx
da

ta
_a

nd
_c

ha
ris

k_
o_

gt
p_

ch
ar

is
k_

V
[3

:0
]

p_
da

ta
_o

_V
[3

1:
0]

p_
da

ta
_o

_v
ld

_V
[0

:0
]

c_
da

ta
_o

_V
[3

1:
0]

c_
da

ta
_o

_v
ld

_V
[0

:0
]

c_
da

ta
_t

yp
e_

o_
V

[3
:0

]
m

od
ul

e_
ad

dr
es

s_
o_

V
[3

:0
]

st
at

us
_b

ra
m

_e
n_

o_
V

[0
:0

]
st

at
us

_b
ra

m
_a

dd
r_

o_
V

[9
:0

]

ch
ec

k_
ou

tp
ut

_p
ro

to
co

l_
vl

d_
0

ch
ec

k_
ou

tp
ut

_p
ro

to
co

l_
vl

d_
v1

_0

cl
k

da
ta

1[
31

:0
]

da
ta

2[
31

:0
]

da
ta

1_
vl

d
da

ta
2_

vl
d

re
s_

vl
d_

in
te

r

ch
ec

k_
ou

tp
ut

_p
ro

to
co

l_
vl

d_
1

ch
ec

k_
ou

tp
ut

_p
ro

to
co

l_
vl

d_
v1

_0

cl
k

da
ta

1[
31

:0
]

da
ta

2[
31

:0
]

da
ta

1_
vl

d
da

ta
2_

vl
d

re
s_

vl
d_

in
te

r

ch
ec

k_
ou

tp
ut

_p
ro

to
co

l_
no

ne
_5

ch
ec

k_
ou

tp
ut

_p
ro

to
co

l_
no

ne
_v

1_
0

cl
k

da
ta

1[
9:

0]
da

ta
2[

9:
0]

re
s_

vl
d_

in
te

r

ch
ec

k_
ou

tp
ut

_p
ro

to
co

l_
no

ne
_4

ch
ec

k_
ou

tp
ut

_p
ro

to
co

l_
no

ne
_v

1_
0

cl
k

da
ta

1[
0:

0]
da

ta
2[

0:
0]

re
s_

vl
d_

in
te

r

ch
ec

k_
ou

tp
ut

_p
ro

to
co

l_
no

ne
_2

ch
ec

k_
ou

tp
ut

_p
ro

to
co

l_
no

ne
_v

1_
0

cl
k

da
ta

1[
3:

0]
da

ta
2[

3:
0]

re
s_

vl
d_

in
te

r

ch
ec

k_
ou

tp
ut

_p
ro

to
co

l_
no

ne
_6

ch
ec

k_
ou

tp
ut

_p
ro

to
co

l_
no

ne
_v

1_
0

cl
k

da
ta

1[
3:

0]
da

ta
2[

3:
0]

re
s_

vl
d_

in
te

r

ch
ec

k_
ou

tp
ut

_p
ro

to
co

l_
no

ne
_0

ch
ec

k_
ou

tp
ut

_p
ro

to
co

l_
no

ne
_v

1_
0

cl
k

da
ta

1[
31

:0
]

da
ta

2[
31

:0
]

re
s_

vl
d_

in
te

r

ch
ec

k_
ou

tp
ut

_p
ro

to
co

l_
no

ne
_3

ch
ec

k_
ou

tp
ut

_p
ro

to
co

l_
no

ne
_v

1_
0

cl
k

da
ta

1[
3:

0]
da

ta
2[

3:
0]

re
s_

vl
d_

in
te

r

re
s_

vl
d_

pr
in

t_
da

ta

re
s_

vl
d_

co
nf

ig
_d

at
a

re
s_

br
am

_a
dd

re
ss

re
s_

br
am

_e
n

re
s_

c_
da

ta
_t

yp
e

re
s_

tx
_c

ha
ris

k

re
s_

tx
_d

at
a

re
s_

m
od

ul
e_

ad
dr

es
s

F
ig

u
re

5.
7:

Im
p

le
m

en
ta

ti
on

of
m

o
d

u
le

”d
at

a
fl

ow
”.

CHAPTER 5. IMPLEMENTATION AND RESULTS 61

5.2.1 RTL Implementation

The entity of the module ”data flow” designed on RTL is shown in listing 5.1. Generally,
every hardware module with memory elements includes a reset and a clock signal. First-
named is used to reset the module to the default state. Further on, the data words are
received on the receiver (rx) stream and sent to the next GTP interface via the transmitter
(tx) stream. The data port width is 32 bits and the rx charisk port is 4 bits width, whereby
every bit refers to each eight bits of the data port. Principally, the GTP ring is a serial
transmission. After 32 bits are received, they are forwarded over the gtp rxdata port to
the module. So the data processing is done by a 32 bit architecture.

The group of input ports called configuration is used to control this module. These sig-
nals are connected all to the configuration module (in figure 4.15 only the signal p mode i
is depicted). The stored configuration data set the value of these signals and the module
”data flow” is controlled by them. The signal p mode i and p mode adv i is used to send
information about a special mode to this module. The other three signals are used to in-
form the ”data flow” module about the number of data words read from the GTP ring and
processed in the module. entry points p data iX mark the first data word which should
be forwarded to the next module and the signal dwords per module i assigns the maximal
number of data words. Additionally, these control signals are used for the processing of
the printing data.

The group of signals called extracted data includes output ports, which provide the
processed data to the next modules. The first two signals are used to forward either the
printing or the configuration data. p data o and c data o ports are used for forwarding of
the received data. Additionally, the signal c data type o indicate the type of the config-
uration data, e.g. live update of configuration data, whole configuration data file, status
request, etc. Finally, the output port module address o is used for forwarding the infor-
mation about actual GTP interface address. The bit width of this port is fixed to 4 bits,
but it depends on the actual number of GTP interfaces on the GTP ring.

The last signal group is called status and it includes all signals to get information
about the state of the Config-Block in figure 4.15. These are all necessary control signals
to read out of a BRAM, i.e. an address, data and enable signal and a signal to indicate
the availability of the BRAM.

1 en t i t y p r o t o c o l i f 1 i s
2 port (
3 r e s e t i : in s t d l o g i c ;
4 c l k i : in s t d l o g i c ;
5 −−−−−−−−−−− rx stream −−−
6 g tp rxda t a i : in s t d l o g i c v e c t o r (31 downto 0) ;
7 g t p r x c h a r i s k i : in s t d l o g i c v e c t o r (3 downto 0) ;
8 −−−−−−−−−−− tx stream −−−
9 gtp txdata o : out s t d l o g i c v e c t o r (31 downto 0) ;

10 g tp t x cha r i s k o : out s t d l o g i c v e c t o r (3 downto 0) ;
11 −−−−−−−−−−− c on f i gu r a t i on −−
12 p mode i : in s t d l o g i c v e c t o r (3 downto 0) ;
13 p mode adv i : in s t d l o g i c v e c t o r (1 downto 0) ;
14 dwords per module i : in s t d l o g i c v e c t o r (9 downto 0) ;
15 e n t r y po i n t s p da t a i 1 : in s t d l o g i c v e c t o r (13 downto 0) ;
16 e n t r y po i n t s p da t a i 2 : in s t d l o g i c v e c t o r (13 downto 0) ;
17 −−−−−−−−−− ex t rac t ed data −−−

CHAPTER 5. IMPLEMENTATION AND RESULTS 62

18 p data o : out s t d l o g i c v e c t o r (31 downto 0) ;
19 c data o : out s t d l o g i c v e c t o r (31 downto 0) ;
20 wr p data o : out s t d l o g i c ;
21 wr c data o : out s t d l o g i c ;
22 c da ta type o : out s t d l o g i c v e c t o r (3 downto 0) ;
23 module address o : out s t d l o g i c v e c t o r (3 downto 0) ;
24 −−−−−−−−−−− s t a tu s −−−
25 s ta tus MBlaze i : in s t d l o g i c ;
26 s tatus bram en o : out s t d l o g i c ;
27 s tatus bram addr o : out s t d l o g i c v e c t o r (9 downto 0) ;
28 s t a tu s b ram data i : in s t d l o g i c v e c t o r (31 downto 0)
29) ;
30 end p r o t o c o l i f 1 ;

Listing 5.1: VHDL-Code of module ”data flow”.

The basic principle about the behavior and the usage is already mentioned. Further
on, in the next section, a description of the same module designed with HLS is presented.

5.2.2 HLS Implementation

The second design method is the generation of the RTL model by HLS. The whole coding
is done in C/C++ and automatically transformed into VHDL code. This section describes
the most interesting parts of the code. The transformation is done with Xilinx Vivado
HLS.

The following listing 5.2 depicts the interface definition of the ”data flow” module in
C/C++. The number and type of input and output ports equates to all ports of the RTL
model. As already mentioned, Xilinx Vivado HLS provides some arbitrary precision data
types. The post-posed number indicates the width of this data type, e.g. p data o is an
unsigned integer with 32 bits data width.

1 void p r o t o c o l i f (
2 g tp in out s t r eam gtp rxda ta and cha r i s k i ,
3 uint4 p mode i ,
4 uint2 p mode adv i ,
5 uint10 dwords per module i ,
6 uint14 en t ry po in t s p da ta [2] ,
7 uint1 s tatus MBlaze i ,
8 uint32 s ta tus bram data i ,
9 g tp in out s t r eam ∗ gtp txdata and char i sk o ,

10 uint32 ∗ p data o ,
11 uint1 ∗ p data o v ld ,
12 uint32 ∗ c data o ,
13 uint1 ∗ c da ta o v ld ,
14 uint4 ∗ c data type o ,
15 uint4 ∗module address o ,
16 uint1 ∗ s tatus bram en o ,
17 uint10 ∗ s tatus bram addr o) ;
18

Listing 5.2: Parts from C-Code of module ”data flow”.

One important keyword, which is very often used in C/C++ implementations for
HLS, is static. Generally, after finishing the execution of a function, all variables loss
their information. However, the implementation of state machines requires the storage

CHAPTER 5. IMPLEMENTATION AND RESULTS 63

of the current state until the next call of this function. static-defined variables solve this
problem, because the data is not volatile anymore. In this implementation, the keyword
is used for the state of the pre-processing, state of the print data processing, state of the
configuration data processing and for the incoming data samples on the receiver stream.

1 s t a t i c s t a t e p r o c e s s i n g s t a t e ;
2 . . .
3 s t a t i c s t a t e p r i n t s t a t e p ;
4 . . .
5 s t a t i c s t a t e p r i n t s t a t e c ;
6 . . .
7

Listing 5.3: ”static” usage for variables.

Further on, the synthesis process needs some additional information about the behavior
of the module. VHDL enables the programming of simultaneously running tasks. However,
HLS provides the assigning of some directives to achieve the same behavior. These are
shown in the following listing. A description about the type of the directives is already
presented in chapter 4.4. The mainly used optimization directives in listing 5.4 define the
type of the interfaces, except the directive ”pipeline” and ”latency”. Pipelining means,
that data is loaded into the module and provided at the output ports at every clock cycle
and the latency define the number of clock cycles while the first data is processed.

1 ##
2 ## This f i l e i s generated automat i ca l l y by Vivado HLS.
3 ## Please DO NOT ed i t i t .
4 ## Copyright (C) 1986−2017 Xi l inx , Inc . Al l Rights Reserved .
5 ##
6 s e t d i r e c t i v e a r r a y p a r t i t i o n −type complete −dim 1 ” p r o t o c o l i f ”

en t r y po in t s p da ta
7 s e t d i r e c t i v e i n t e r f a c e −mode ap c t r l n one ” p r o t o c o l i f ”
8 s e t d i r e c t i v e i n t e r f a c e −mode ap none ” p r o t o c o l i f ” p data o
9 s e t d i r e c t i v e p i p e l i n e ” p r o t o c o l i f ”

10 s e t d i r e c t i v e i n t e r f a c e −mode ap none ” p r o t o c o l i f ” c data o
11 s e t d i r e c t i v e i n t e r f a c e −mode ap none ” p r o t o c o l i f ” s tatus bram addr o
12 s e t d i r e c t i v e i n t e r f a c e −mode ap none ” p r o t o c o l i f ” s tatus bram en o
13 s e t d i r e c t i v e i n t e r f a c e −mode ap none ” p r o t o c o l i f ” module address o
14 s e t d i r e c t i v e i n t e r f a c e −mode ap none ” p r o t o c o l i f ” c da ta type o
15 s e t d i r e c t i v e i n t e r f a c e −mode ap none ” p r o t o c o l i f ” g tp txda ta and cha r i s k o
16 s e t d i r e c t i v e i n t e r f a c e −mode ap none ” p r o t o c o l i f ” p da ta o v ld
17 s e t d i r e c t i v e i n t e r f a c e −mode ap none ” p r o t o c o l i f ” c da t a o v l d
18 s e t d i r e c t i v e l a t e n c y −min 2 −max 2 ” p r o t o c o l i f ”

Listing 5.4: Directives for the automatic synthesis process.

5.2.3 Testbench: Generated by HLS

A testbench is used for the verification of the modules designed by two different methods.
Since the testbench is not part of a whole system, the quality respective amount of utilized
resources and power demand is not relevant. Therefore, it can be designed on RTL or by
HLS, whereby the designing in VHDL is generally very time consuming, because of the
complexity of this programming language compared to a high-level language.

CHAPTER 5. IMPLEMENTATION AND RESULTS 64

The testbench assigns a data word to each input port of the function or module at
every clock cycle. Thus, the receiving stream includes different K-words followed by a
different number of data words to check every single state of the implementation. In
further consequence, the testbench is connected to the system of figure 5.7.

5.3 Implementation of Module: ”cryptographic-algorithm”

The second module, which is designed for the comparison between the two design methods
(design on RTL, HLS generated design), deals with the cryptographic algorithm called
Ascon. Figure 5.8 shows the input and output ports of this module. This algorithm is
already explained in chapter 4.6.

ASCON-Algorithm

Start

Reset

Instr [3:0]

Length_last [5:0]

Clk

Output_valid

Tag_SO [1:0]

Instruction_ready

Data_in [63:0]

Data_out [63:0]

Figure 5.8: Module: ”cryptography-algorithm”.

The data flow graph of the implementation is depicted in figure 5.9. The data flow
graph includes only the most important parts of the algorithm. This module is controlled
via instructions. Altogether, twelve different instructions are available. All operations can
be executed by them as described in chapter 4.6. The individual instructions are explained
in the following paragraph. The input port input data is used for the loading of key,
nonce, associated data or plaintext/ciphertext. Port output data provides the encrypted
or decrypted text as well as the tag generated in the finalization. In addition, the module
consists of different parts. The controller processes the incoming instruction and forwards
the individual assignments to the other parts of the module. The state register includes
five registers with a data width of 64 bits. Furthermore, the round function consists of
three different parts: substitution layer, constant addition and shift operation layer. These
are all implemented separately on RTL. Which part is active and what data are provided
on the individual connections is determined by the controller. The last part is the XOR
operation. It has a connection back to the state register and to the output port. According
to the definition of the algorithm in chapter 4.6, the controller defines the data flow in
this part.

CHAPTER 5. IMPLEMENTATION AND RESULTS 65

Round Function

Controller

Substitution
layer

Constant
Addition

Shift Operation
Layer

XOR Operation

State Register

x3

x2

x0

x1

x4

input data instruction

Output data

Figure 5.9: Data flow diagram of module: ”cryptography-algorithm”.

As already mentioned, twelve different instructions are available to control this hard-
ware module. The following list describes all of them with their characteristic:

•
”
0000“ – Load IV: The IV is loaded into the first 64 bits of the state register x0.

•
”
0001“ – Load Key1: The first 64 bits of the key, which are provided at port data in,

are loaded into the second 64 bits of the state register (register x1). Additionally,
these part of the key is also stored in the controller, because the key has to be
available at a later point again.

CHAPTER 5. IMPLEMENTATION AND RESULTS 66

•
”
0010“ – Load Key2: The second part of the key (64 bits) is read from the data in

port and stored in the third register x2 of the state register. As for the first part of
the key, this data word is also stored in the controller to complete the storage of the
key.

•
”
0011“ – Load Nonce1: In register x4 of the state register the first half of the nonce

data word is stored, which is provided on the input data port.

•
”
0100“ – Load Nonce 2: The second 64 bits of the Nonce is stored in the fifth register

x4. As before, it is read from the port input data.

•
”
0101“ – Initialization: This instruction starts the initialization process. All opera-

tions are described in chapter 4.6.

•
”
0110“ – Load A: A 64 bit block of the associated data is loaded into the module

and processed.

•
”
0111“ – Load last A: The last part of the associated data is provided at the input

data port and is processed as described in chapter 4.6.

•
”
1000“ – Load P: A 64 bit width data word from the plaintext is read from the

input data port and is processed. The Flag Output Valid gets high after finishing
the processing.

•
”
1001“ – Load last P: Since the processing of the last block is different, this instruc-

tion is used for the processing of the last plaintext-block. The signal Output Valid
is set to logic one after providing the result at the output data port.

•
”
1010“ – Load C: This instruction is similar to ”Load P”. A 64 bit data word of

the cipher text is provided at the input data port. After the processing, the result
appears at the output data port and the corresponding flag is set to High.

•
”
1011“ – Load last C: The last cipher block is processed as described in chapter 4.6.

The result is provided at the output data port and the Output Valid gets high.

•
”
1100“ – Finalization: The last step of encryption or decryption is the finalization. It

generates the tag, which is provided at the output data port in two cycles, because it
is 128 bit width and the output data port has only a width of 64 bits. Corresponding
to the tag, the flag Output Tag is set to ”10” for indicating the MSB-Bits of the tag
or ”01” for the indicating of the LSB-Bits of the tag.

•
”
1101“ – NOP: no operation

•
”
1110“ – NOP: no operation

•
”
1111“ – NOP: no operation

CHAPTER 5. IMPLEMENTATION AND RESULTS 67

The test system loaded on the evaluation kit is depicted in figure 5.10. The same
input data is forwarded to both modules: the RTL design and the HLS generated design.
Different from the ”data flow” module, the output ports of these two modules are not
compared at the same clock cycle, because they include a cryptography algorithm, and it
is unnecessary and impossible to design them completely identically.

ap_clk_0
data_di_V_0[63:0]

Last_Size_V_0[5:0]
ap_rst_0

ap_ctrl_0
instruction_0[3:0]

start_V_0[0:0]

xlconstant_0

Constant

dout[0:0]

vhdl_ascon_wrapper_0

vhdl_ascon_wrapper_v1_0

Clk_CI_0

Control_Data_DI_0[63:0] Control_IsTag_SO_0[1:0]

Control_LastCSize_SI_0[5:0] Control_Out_Valid_SO_0

Control_Ready_SO_0Instruction_SI_0[3:0]

Rst_BI_0

START_SI_0

XOR_Output_DO_0[63:0]

ascon_0

Ascon (Pre-Production)

ap_ctrl

ap_clk

ap_rst

data_di_V[63:0]

Last_Size_V[5:0]

instruction[3:0]

start_V[0:0]

out_isTag_V[1:0]

out_val_V[0:0]

out_ready_V[0:0]

data_do_V[63:0]

Control_IsTag_SO_0_0[1:0]
Control_Out_Valid_SO_0_0
Control_Ready_SO_0_0
XOR_Output_DO_0_0[63:0]

out_isTag_V_0[1:0]
out_val_V_0[0:0]
out_ready_V_0[0:0]
data_do_V_0[63:0]

Figure 5.10: Comparison of module: ”cryptography-algorithm”.

5.3.1 RTL Implementation

As described before, the RTL implementation consists of different parts: Controller, State
Register, Substitution Layer, Constant Addition, Shift Layer and XOR Operation. In
addition to the data flow graph in figure 5.9, all control signals between the mentioned
parts of this module are shown in figure 5.11.

CHAPTER 5. IMPLEMENTATION AND RESULTS 68

Clk_CI_0
Rst_BI_0

START_SI_0
Control_LastCSize_SI_0[5:0]

Control_Data_DI_0[63:0]
Instruction_SI_0[3:0]

XO
R

_O
ut

pu
t_

D
O

_0
[6

3:
0]

C
on

tro
l_

Is
Ta

g_
SO

_0
[1

:0
]

ascon_control_0

ascon_control_v1_0

Clk_CI
Rst_BI
START_SI

Control_StateReg_EnableWrite_SO
Control_StateReg_EnableRead_SO

Control_StateReg_Row_SO[2:0]
Control_StateReg_Col_SO[5:0]

Control_StateReg_SelIn_SO[2:0]
Control_StateReg_SelOut_SO[1:0]

Control_LastCSize_SI[5:0]

Control_StateReg_LastCSize_SO[5:0]
Control_IsTag_SO[1:0]

Control_ConstAdd_Round_SO[3:0]
Control_ShiftOp_Row_SO[2:0]

Control_Data_DI[63:0]

Control_XOR_DataOut_SO[1:0]
Control_XOR_Data_DO[63:0]

Control_StateReg_Data_DO[63:0]

Instruction_SI[3:0]

Control_Ready_SO
Control_Out_Valid_SO

C
on

tro
l_

R
ea

dy
_S

O
_0

C
on

tro
l_

O
ut

_V
al

id
_S

O
_0

ASCON_XOR_0

ASCON_XOR_v1_0

Clk_CI
Rst_BI
XOR_DATAO_SI[1:0]
XOR_State_DI[63:0]
XOR_Data_DI[63:0]

XOR_State_DO[63:0]
XOR_Output_DO[63:0]

ASCON_SHIFT_OP_0

ASCON_SHIFT_OP_v1_0

ShiftOp_ShiftRow_SI[2:0]
ShiftOp_Data_DI[63:0]

ShiftOp_Data_DO[63:0]

ASCON_CONST_ADD_0

ASCON_CONST_ADD_v1_0

ConstAdd_Round_SI[3:0]
ConstAdd_Data_DI[63:0]

ConstAdd_Data_DO[63:0]

ASCON_SBOX_0

ASCON_SBOX_v1_0

SBox_Data_DI[4:0] SBox_Data_DO[4:0]

ASCON_STATE_REG_0

ASCON_STATE_REG_v1_0

Clk_CI
Rst_BI
StateReg_EnableWrite_SI
StateReg_EnableRead_SI
StateReg_Row_SI[2:0]
StateReg_Col_SI[5:0]
StateReg_SelIn_SI[2:0]
StateReg_SelOut_SI[1:0]
StateReg_LastCSize_SI[5:0]
StateReg_SBoxRes_DI[4:0]
StateReg_ConstAddRes_DI[63:0]
StateReg_ShiftRes_DI[63:0]
StateReg_Data_DI[63:0]
StateReg_XOR_DI[63:0]

StateReg_SBox_DO[4:0]
StateReg_ConstAdd_DO[63:0]

StateReg_Shift64_DO[63:0]
StateReg_XOR_DO[63:0]

Figure 5.11: RTL implementation of module: ”cryptography-algorithm”.

5.3.2 HLS Implementation

The C/C++ code for the HLS of this module looks a little bit different to the described
data flow graph. All instructions of this module are defined as a switch-case statement. So,
no control signals between the individual parts of this module has to be added. Therefor,
the module design is more clear and less effort is needed. But more information about the
quality and complexity is described in chapter 5.4.

1 . . .
2 void ascon (u int64 data di , u int6 Las t S i ze , i n s t r u c t i o n t yp e i n s t r u c t i on ,
3 uint1 s ta r t , u int2 ∗ out isTag , u int1 ∗ out va l , u int1 ∗ out ready ,
4 uint64 ∗ data do) {
5

6 switch (i n s t r u c t i o n) {
7 case WAITING:
8 . . .
9 break ;

10 case LOAD IV:
11 . . .

CHAPTER 5. IMPLEMENTATION AND RESULTS 69

12 break ;
13 case LOAD KEY1:
14 . . .
15 break ;
16 case LOAD KEY2:
17 . . .
18 break ;
19 case LOADNONCE1:
20 . . .
21 break ;
22 case LOADNONCE2:
23 . . .
24 break ;
25 case INITIALIZATION :
26 . . .
27 break ;
28 case LOAD A:
29 . . .
30 break ;
31

32 . . . // f u r t h e r i n s t r u c t i o n s are implemented
33 }
34 }

Listing 5.5: C/C++ implementation of the cryptographic-algorithm module.

Directives have to be added for the synthesis process like described for the ”data flow”
module. Mainly, the ports are defined as ap none, which defines no additional signals for
the corresponding port, e.g. no valid signal. In addition, the interface type of the function
is ap ctrl chain, whereby signals like start, reset or finished are generated automatically.
Further on, the for-loop for calling the round function is defined as a pipeline. The state
register is split into individual 64 bit width registers, because in the C/C++ code it is
implemented as an array.

1 ##
2 ## This f i l e i s generated automat i ca l l y by Vivado HLS.
3 ## Please DO NOT ed i t i t .
4 ## Copyright (C) 1986−2017 Xi l inx , Inc . Al l Rights Reserved .
5 ##
6 s e t d i r e c t i v e i n t e r f a c e −mode ap none ” ascon” data d i
7 s e t d i r e c t i v e i n t e r f a c e −mode ap none ” ascon” La s t S i z e
8 s e t d i r e c t i v e i n t e r f a c e −mode ap none ” ascon” i n s t r u c t i o n
9 s e t d i r e c t i v e i n t e r f a c e −mode ap none ” ascon” s t a r t

10 s e t d i r e c t i v e i n t e r f a c e −mode ap none ” ascon” out i sTag
11 s e t d i r e c t i v e i n t e r f a c e −mode ap none ” ascon” out va l
12 s e t d i r e c t i v e i n t e r f a c e −mode ap none ” ascon” out ready
13 s e t d i r e c t i v e i n t e r f a c e −mode ap none ” ascon” data do
14 s e t d i r e c t i v e i n t e r f a c e −mode ap c t r l c h a i n ” ascon”
15 s e t d i r e c t i v e p i p e l i n e ” ascon/ a s c on l ab e l 0 ”
16 s e t d i r e c t i v e a r r a y p a r t i t i o n −type complete −dim 1 ”ascon” s t a t e r e g
17 s e t d i r e c t i v e p i p e l i n e ” round funct ion ”

Listing 5.6: Directives for the automatic synthesis process of cryptographic module.

CHAPTER 5. IMPLEMENTATION AND RESULTS 70

5.3.3 Testbench: Generated by HLS and Matlab

The test bench is also written in C/C++ code and translated into RTL by HLS. The
testbench includes the correct order of instructions to achieve the described behavior of
this algorithm. The test data is generated by Matlab and is stored in text files. The
C/C++ testbench can load this text files and uses this data for their instructions, e.g.
executing of instruction load key1 splits the 128 bit width key stored in textfile key.txt
and provides the first 64 bit at the input data port. The same procedure is done for the
other possible instructions. Figure 5.12 depicts schematically this procedure.

Key.txt
nonce.txt
associated_data.txt
plaintext.txt
ciphertext.txt

Generation of
test data Testbench

instructions using
textfiles for
input data

Cryptography-
Module
„Ascon“

Input Ports

Output Ports

Figure 5.12: Testbench of module: ”cryptography-algorithm”.

After the synthesis process of the C testbench, the test data is stored in the corre-
sponding VHDL files of the testbench. This procedure for achieving a test system for
several hardware modules is very time-saving and less complex compared to generate the
whole testbench on RTL.

5.4 Results and Comparison of Designs

First of all, the behavior of the two different generated modules are compared. The first
part of this chapter deals with figures showing the behavior. Finally, the report about the
quality of the designs is presented.

5.4.1 Module: ”data flow”

The testbench provides data to the individual input ports of the module. Generally, the
receiver data stream (ports rx charisk and rx data) consists of a K-word followed by some
data, whereby all possible K-words appear once in the test procedure. So every state is
reached during the execution of the testbench and the behavior can be checked. Since the
output of both modules with different design methodology is connected to comparators,
the identical behavior of them can be additionally checked. Figure 5.13 shows the output
of the comparators (signal name starts with res ...). The output is set to logic high during
the whole test, except at the beginning some glitches appear, because the initialization
wasn’t finished. But these are not relevant for the whole test.

CHAPTER 5. IMPLEMENTATION AND RESULTS 71

Figure 5.13: Check of the complete behavior.

As already mentioned, special K-words control the behavior of the module, if the
following data stream is print data or config data. Figure 5.14 shows an excerpt of a print
data stream. Starting point is the K-word K28 5 or in hexadecimal code ”0xbc”. The
module has a latency of five clock cycles. The data appears at the output port p data o
of the RTL design and at p data o V of the HLS generated module. In addition, the
corresponding valid signal is set to logic high. Further on, the received data stream is

Start

K-word

Print Data

 K28_5

Received Data

forwarded as Print

Data

Figure 5.14: Comparison of print data.

forwarded to the transmitter output ports, because several GTP interfaces include one
module like this and are connected together over the GTP ring. Sending data from one
to another GTP interface requires the forwarding of the received data at the transmitter
port.

Receiving configuration data is indicated by one of the K-words of table 5.1, except
K-word K28 5. In figure 5.15 K28 6 appears in the data stream. According to the design
description for the processing of configuration data mentioned in chapter 5.2 all output
ports are controlled. In addition, the transmitter output ports forward the received data
as well.

CHAPTER 5. IMPLEMENTATION AND RESULTS 72

Start

K-word

Config Data

 K28_6

Received Data forwarded

as Config Data

Figure 5.15: Comparison of config data.

5.4.2 Module: ”cryptography algorithm”

The cryptography-algorithm module is also verified by a test bench generated with HLS.
It includes the correct order of the required instructions. After the finishing of an instruc-
tion, the next is executed. The input data is provided by Matlab. Matlab translates a
random text into 64 bit width data words. According to the number of data words for
e.g. plaintext, the same number of Load P instructions are executed.

Figure 5.16 shows an example of this instruction (instruction 8: Load P).The output
data or the encrypted text is provided at the output port data do V 0 from the HLS
generated module or at XOR Output DO 0 0 of the corresponding RTL module. It is
possible to see, that the data latency for the RTL module is higher. It takes two clock
cycles, whereby the HLS generated module provides the data at the same clock cycle like
the instruction is loaded into the module. The data itself is equal on both output data
ports. Therefore, the behavior has also to be the same. Additionally, this result equates
to the output data, which was also generated in Matlab.

Figure 5.16: Check of instruction Load P.

The second example for the verification is the result of the tag. The calculation of
the corresponding tag for the encrypted text takes a little bit longer for both modules.
Figure 5.17 depicts, that the tag is provided using the HLS generated module after about 25
clock cycles. The RTL module needs much more clock cycles, after about 8000 ns the result

CHAPTER 5. IMPLEMENTATION AND RESULTS 73

of the Tag appears, whereby one clock cycles equates to 10 ns. As obvious in figure 5.17,
the implementation of the control signal Control isTag SO 0 0 and out isTag V 0 is a
little bit different, because the control signal Control isTag SO 0 0 is shifted by one clock
cycle. This is a design error which will be solved in future work.

Data latency

...

Figure 5.17: Check of instruction Finalization.

5.4.3 Allocated Area

The important part of the whole thesis is the resulting quality of the different modules.
The goal is to achieve the same number of resource utilization for HLS generated designs
as for the corresponding RTL module. In addition, also the power consumption of the
individual modules is considered and finally the reduction of the overall design time of
each module is listed and compared among themselves.

The resource utilization for the ”data flow” module is shown in figure 5.18. Generally,
the number of required resources are lower for RTL design. The number of slice LUTs is

Figure 5.18: Comparison of resource utilization for module: ”data flow”.

CHAPTER 5. IMPLEMENTATION AND RESULTS 74

about 28% lower as for HLS designs. Other types of resources like slice registers, slices,
and LUT Flip Flop Pairs are 30%, 18%, and 23% lower.

The same type of results for the ”cryptography-algorithm” module are depicted in
figure 5.19. The number of utilized resources is also lower for the RTL module as for the
HLS generated design.

Figure 5.19: Comparison of resource utilization for module: ”cryptography-algorithm”.

In summary, it can be stated that HLS generated designs require a higher number of
resources to achieve the same behavior as RTL modules. If a module has to provide high
quality according to area and resource utilization, designers have to choose the traditional
design method on RTL.

5.4.4 Power Consumption

The second parameter, which is compared to each other is the power consumption. In
mobile applications, the single available power source is often a battery pack. So it is very
significant to keep it as low as possible. The following two pictures show the comparison
between the power consumption of RTL designed and HLS generated modules.

Figure 5.20 shows the results of power consumption of the ”data flow” module. Since
no sophisticated calculations are done, the power consumption is very low. A comparison
makes no sense.

The comparison of power consumption for the ”cryptography-algorithm” module is
more expressive. An algorithm includes much more switching tasks for the complex op-
erations. These tasks also require much more energy. Thus, the power consumption for
the RTL design is seven times higher as before for the ”data flow” module. The HLS

CHAPTER 5. IMPLEMENTATION AND RESULTS 75

Figure 5.20: Total power consumption of module: ”data flow”. (Power consumption in W)

generated design requires far more power - about 30 times more power. However, keep in
mind that the smaller data latency on the output data port for HLS designs affects this
result additionally.

Figure 5.21: Total power consumption of module: ”cryptography-algorithm”. (Power
consumption in W)

Generally, for very low power applications designers should prefer the traditional de-
signing on RTL, because it’s possible to define the behavior of a design more accurate.
HLS does many definitions by itself.

CHAPTER 5. IMPLEMENTATION AND RESULTS 76

5.4.5 Design Effort

The last parameter for comparison of RTL designs and HLS generated designs is the
number of source lines of code (SLOC). Generally, that way shows the effort of spending
time for each module. So it is one of the best way to compare each module for a meaningful
evaluation. In the following two tables the associated number of code lines for each module
is listed.

First, the comparison of module ”data flow” is presented. The RTL module and the
HLS generated module have almost a similar number of code lines. The RTL module is
designed with 23% more code lines. The HLS generated module consists of a header file
*.h and a *.cpp file, on the other hand the RTL module is defined in one single *.vhdl file.

Design Effort: Module ”data flow”

RTL HLS

files # of code lines files # of code lines

*.vhdl 404 *.h 63
*.cpp 265

overall 404 overall 328

Table 5.2: Number of source lines of code for module: ”data flow”.

The second module dealing with the cryptography algorithm called ”Ascon” presents a
huge difference between the two design methods. The module designed on RTL is written
in 1214 code lines, whereas the HLS generated design is created writting 320 code lines.

Design Effort: Module ”cryptography-algorithm”

RTL HLS

files # of code lines files # of code lines

ascon const add.vhdl 41 *.h 42
ascon shift op.vhdl 45 *.cpp 278
ascon sbox.vhdl 94
ascon control.vhdl 464
ascon state reg.vhdl 270
ascon xor.vhdl 59
ascon top.vhdl 241

overall 1214 overall 320

Table 5.3: Number of source lines of code for module: ”cryptography-algorithm”.

So, this table depicts the big advantage of HLS. For very large designs like different
algorithms the design time can be reduced significantly. HLS can decrease the number of
source lines of code, which are necessary for a cryptography algorithm, by about 73%. Fi-
nally, the biggest benefit of using HLS is the much lower time exposure against traditional
designing methods on RTL.

Chapter 6

Conclusion

As already mentioned, this thesis is done in cooperation with co. Durst Phototechnik
Digital Technology GmbH in Lienz, Austria. It is a company, which designs huge printing
systems for industrial applications. All of the images loaded into these systems have
to be pre-processed. Image processing has a very high computational effort, whereby
this effort is rapidly increasing since the size of images and the complexity of processing
algorithms raises. Therefore, this company is willing to transfer the computational effort
from standard processor to hardware processing systems running on FPGAs, but the
adoption should not utilize to much time or effort. So the usage of HLS is verified and
compared to the conventional design method on RTL. The output of this thesis presents
the benefits or disadvantages of HLS in relation to the use of it for hardware development.

Generally, this thesis includes also a description about the basics of HLS for a better
understanding. It is beneficial to be familiar with HLS, because the quality of the evalu-
ation for this two design methods (HLS generated design and design on RTL) gets more
validity. During the research for this thesis, also several papers about this comparison was
discovered. The results were presented in chapter 3 and are likened in chapter 5.4. The
whole design process includes a description for generation of designs on RTL and HLS
generated designs.

Generally, the comparison shows, that designs generated by HLS enable the same
behavior of any hardware as it is possible to design on RTL. The ”data flow” module was
designed completely equal for both methods. The output ports provide the same data after
a specific number of clock cycles. So this module is very useful for an exact comparison.
This module shows, that the number of utilized resources is about a third higher for HLS
designed modules than for the design on RTL. The power consumption is approximately
equal for both design methods. The second module deals with a cryptography algorithm
called ”Ascon”. The module designed on RTL is not identical to the HLS generated design,
because it’s to complex to achieve completely the same behavior. According to the resource
utilization, the HLS generated module performs worse than the RTL model. Additionally,
the power consumption is very bad using HLS for the design process. However, the design
effort, which is measured in number of source lines of code, is significant lower using HLS
than for the designing on RTL. This is the most expressive argument for using HLS in
the design process. Although the previous aspects signifies the RTL design technique, the
aspect of reducing the time effort for designing a hardware model is significant. Therefore
it is sensible to use HLS for the generation of hardware modules for complex algorithms.

77

CHAPTER 6. CONCLUSION 78

This results conforms also to the results of the presented works in chapter 3. HLS is very
useful for complex systems, because the time exposure can be reduced, but the quality of
the resulting hardware is a little bit worse according to resource utilization.

The result of this thesis could be an impulse for the adoption of HLS in the hardware
design process. For the co. Durst Phototechnik Digital Technology GmbH, this means that
the transfer of the execution of image processing algorithms from standard processors or
from the workstation to FPGA units could be solved by HLS very easily and time-saving.
The algorithms can be generally reused without many modifications and synthesized into
hardware description. In further consequence, this is able to be loaded on a FPGA or a
system-on-chip.

Appendix A

Terminology

A.1 Definitions

AES Advanced Encryption Standard
ALU Arithmetic Logic Unit
BRAM Block Random-Access Memory
CAPH Language for Implementing Stream-Processing Applications
CDFG Control- and Data-Flow Graph
DFG Data-Flow Graph
DSP Digital Signal Processor
FF Flip-Flop
FIFO First-In, First-Out
FPGA Field Programmable Gate Array
FSM Finite State Machine
GTP Gigabit Transceiver (defined by Xilinx Inc.)
HDL Hardware Description Language
IC Integrated Circuit
LUT Look-Up Table
HLS High-Level Synthesis
REG Register
RTL Register-Transfer Level
SLoC Source Code of Lines
SoC System-on-Chip
uC Microcontroller
VLSI Very-Large-Scale Integration

79

Bibliography

[1] R. Camposano and W. Wolf. High-Level VLSI Synthesis. The Springer International
Series in Engineering and Computer Science. Springer US, 2012. URL: https://

books.google.at/books?id=yTbSBwAAQBAJ.

[2] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach. An Introduction to High-Level
Synthesis. IEEE Design Test of Computers, 26(4):8–17, July 2009. doi:10.1109/

MDT.2009.69.

[3] L. H. Crockett, R. A. Elliot, M. A. Enderwitz, and R. W. Stewart. The Zynq Book:
Embedded Processing Withe ARM R© Cortex R©-A9 on the Xilinx R© Zynq R©-7000 All
Programmable SoC. Strathclyde Academic Media, 2014. URL: https://books.

google.at/books?id=9dfvoAEACAAJ.

[4] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer. Ascon. Institute for
Applied Information Processing and Communications, v1.2, 2016.

[5] J. Erickson and M. Warren. Modern system on chip challenges demand devel-
opment of new skills in electronic engineering graduates. In 2013 3rd Interdisci-
plinary Engineering Design Education Conference, pages 32–35, March 2013. doi:

10.1109/IEDEC.2013.6526755.

[6] D. D. Gajski, N. D. Dutt, A. C. H. Wu, and S. Y. L. Lin. High — Level Synthesis:
Introduction to Chip and System Design. Springer US, 2012. URL: https://books.
google.at/books?id=1BTaBwAAQBAJ.

[7] D. D. Gajski and R. H. Kuhn. Guest Editors’ Introduction: New VLSI Tools. Com-
puter, 16(12):11–14, Dec 1983. doi:10.1109/MC.1983.1654264.

[8] habeebq. Writing a 2x2 Matrix Multiplier in VHDL. http://habeebq.github.io/

writing-a-2x2-matrix-multiplier-in-vhdl.html, 2016.

[9] E. Homsirikamol and K. G. George. Toward a new HLS-based methodology for FPGA
benchmarking of candidates in cryptographic competitions: The CAESAR contest
case study. In 2017 International Conference on Field Programmable Technology
(ICFPT), pages 120–127, Dec 2017. doi:10.1109/FPT.2017.8280129.

[10] Ekawat Homsirikamol and Kris Gaj. Hardware Benchmarking of Cryptographic Al-
gorithms Using High-Level Synthesis Tools: The SHA-3 Contest Case Study. In

80

https://books.google.at/books?id=yTbSBwAAQBAJ
https://books.google.at/books?id=yTbSBwAAQBAJ
http://dx.doi.org/10.1109/MDT.2009.69
http://dx.doi.org/10.1109/MDT.2009.69
https://books.google.at/books?id=9dfvoAEACAAJ
https://books.google.at/books?id=9dfvoAEACAAJ
http://dx.doi.org/10.1109/IEDEC.2013.6526755
http://dx.doi.org/10.1109/IEDEC.2013.6526755
https://books.google.at/books?id=1BTaBwAAQBAJ
https://books.google.at/books?id=1BTaBwAAQBAJ
http://dx.doi.org/10.1109/MC.1983.1654264
http://habeebq.github.io/writing-a-2x2-matrix-multiplier-in-vhdl.html
http://habeebq.github.io/writing-a-2x2-matrix-multiplier-in-vhdl.html
http://dx.doi.org/10.1109/FPT.2017.8280129

BIBLIOGRAPHY 81

Kentaro Sano, Dimitrios Soudris, Michael Hübner, and Pedro C. Diniz, editors, Ap-
plied Reconfigurable Computing, pages 217–228, Cham, 2015. Springer International
Publishing.

[11] Avnet Inc. Picozed. AVNET Reach Further, 2017. URL: http://picozed.org/

product/picozed.

[12] Xilinx Inc. Vivado Design Suite: VivadoHLS. [online], 2013. URL: http://www.
xilinx.com/products/design-tools/vivado/index.htm.

[13] Xilinx Inc. Vivado Design Suit User Guide, High-Level Synthesis, UG902
(v2017.1), 2017. URL: https://www.xilinx.com/support/documentation/sw_

manuals/xilinx2017_1/ug902-vivado-high-level-synthesis.pdf.

[14] Books Llc, S. Wikipedia, and B. Group. Hashing: Hash Functions, Hash Table, Pear-
son Hashing, Hmac, Collision, Rabin-karp String Search Algorithm, Bloom Filter.
General Books, 2010. URL: https://books.google.at/books?id=sB2ZSQAACAAJ.

[15] G. Martin and G. Smith. High-Level Synthesis: Past, Present, and Future. IEEE
Design Test of Computers, 26(4):18–25, July 2009. doi:10.1109/MDT.2009.83.

[16] J. Michael and M. Chinnadurai. High Level Synthesis Tools-an Overview from Model
to Implementation. Middle East Journal of Scientific Research, 22:241 – 254, 01 2014.

[17] D. Micheli. Synthesis & Optimization Of Dig. Circuits. McGraw-Hill series in elec-
trical and computer engineering. McGraw-Hill Education (India) Pvt Limited, 2003.
URL: https://books.google.at/books?id=aNoSUQiCD8MC.

[18] R. Nane, V. M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao,
S. Brown, F. Ferrandi, J. Anderson, and K. Bertels. A Survey and Evaluation of
FPGA High-Level Synthesis Tools. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 35(10):1591–1604, Oct 2016. doi:10.1109/TCAD.
2015.2513673.

[19] R. Niemann and P. Marwedel. Hardware/Software Co-Design for Data Flow Dom-
inated Embedded Systems. Springer US, 1998. URL: https://books.google.at/
books?id=ZHdId5u0GCYC.

[20] Staff of Berkeley Design Technology. BDTI High-Level Synthesis Tool Certification
Program (HLSTCP). Berkeley Design Technology, Inc. URL: https://www.bdti.
com/Services/Benchmarks/HLSTCP.

[21] Staff of Berkeley Design Technology. The AutoESL AutoPilot High-Level Synthesis
Tool. Technical report, Berkeley Design Technology, Inc., 2010. URL: https://www.
bdti.com/MyBDTI/pubs/AutoPilot.pdf.

[22] Staff of Berkeley Design Technology. The Synopsys Synphony C Compiler. Techni-
cal report, Berkeley Design Technology, Inc., 2010. URL: https://www.bdti.com/
Resources/BenchmarkResults/HLSTCP/Synphony.

http://picozed.org/product/picozed
http://picozed.org/product/picozed
http://www.xilinx.com/products/design-tools/vivado/index.htm
http://www.xilinx.com/products/design-tools/vivado/index.htm
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug902-vivado-high-level-synthesis.pdf
https://books.google.at/books?id=sB2ZSQAACAAJ
http://dx.doi.org/10.1109/MDT.2009.83
https://books.google.at/books?id=aNoSUQiCD8MC
http://dx.doi.org/10.1109/TCAD.2015.2513673
http://dx.doi.org/10.1109/TCAD.2015.2513673
https://books.google.at/books?id=ZHdId5u0GCYC
https://books.google.at/books?id=ZHdId5u0GCYC
https://www.bdti.com/Services/Benchmarks/HLSTCP
https://www.bdti.com/Services/Benchmarks/HLSTCP
https://www.bdti.com/MyBDTI/pubs/AutoPilot.pdf
https://www.bdti.com/MyBDTI/pubs/AutoPilot.pdf
https://www.bdti.com/Resources/BenchmarkResults/HLSTCP/Synphony
https://www.bdti.com/Resources/BenchmarkResults/HLSTCP/Synphony

BIBLIOGRAPHY 82

[23] M. Pelcat, C. Bourrasset, L. Maggiani, and F. Berry. Design Productivity of a High-
Level Synthesis Compiler versus HDL. In 2016 International Conference on Embedded
Computer Systems: Architectures, Modeling and Simulation (SAMOS), pages 140–
147, July 2016. doi:10.1109/SAMOS.2016.7818341.

[24] S. Sinha and T. Srikanthan. High-Level Synthesis: Boosting Designer Productivity
and Reducing Time to Market. IEEE Potentials, 34(4):31–35, July 2015. doi:10.

1109/MPOT.2013.2292957.

[25] J. Sérot, editor. A lightweight implementation of dependently sized types for a func-
tional hardware description language. Workshop on Trends in Functional Program-
ming, 2015. URL: http://caph.univ-bpclermont.fr/papers/articles/tfp2015.
pdf.

[26] G. J. Sullivan, J. Ohm, W. Han, and T. Wiegand. Overview of the High Efficiency
Video Coding (HEVC) Standard. IEEE Transactions on Circuits and Systems for
Video Technology, 22(12):1649–1668, Dec 2012. doi:10.1109/TCSVT.2012.2221191.

[27] P. Wilson. Design Recipes for FPGAs: Using Verilog and VHDL. Elsevier Science,
2015. URL: https://books.google.at/books?id=RuH5AwAAQBAJ.

[28] Michael D. Zwagerman. High Level Synthesis, a Use Case Comparison with Hardware
Description Language. Master’s thesis, Grand Valley State University, 2015. URL:
https://scholarworks.gvsu.edu/theses/755/.

http://dx.doi.org/10.1109/SAMOS.2016.7818341
http://dx.doi.org/10.1109/MPOT.2013.2292957
http://dx.doi.org/10.1109/MPOT.2013.2292957
http://caph.univ-bpclermont.fr/papers/articles/tfp2015.pdf
http://caph.univ-bpclermont.fr/papers/articles/tfp2015.pdf
http://dx.doi.org/10.1109/TCSVT.2012.2221191
https://books.google.at/books?id=RuH5AwAAQBAJ
https://scholarworks.gvsu.edu/theses/755/

	Introduction
	Motivation
	Goals
	Outline

	Basics and Principle of High-Level Synthesis
	What is High-Level Synthesis?
	Motivation for using High-Level Synthesis
	Review of High-Level Synthesis
	Generation 1 (about 1980 to 1990)
	Generation 2 (about 1990 to 2000)
	Generation 3 (from about 2000)
	Commercial Progress of High-Level Synthesis
	Outlook - fourth Generation

	HLS Kernel
	Key Concepts
	Compilation and Modeling
	Allocation
	Scheduling
	Binding
	Generation

	Resulting Architecture
	HLS-based Development Flow

	Related Works
	HLS generated designs vs. HDL designs
	Cryptographic Algorithm
	Video Filter Algorithm
	Sub-Pixel interpolation filter from the MPEG HEVC standard

	BDTI High-Level Synthesis Tool Certification Program
	Evaluation results of AutoPilot
	Evaluation results of Synphony C Compiler

	Comparison of different HLS tools

	Design
	Specifications
	Metrics of FPGA Designs
	Generation of a Register-Transfer-Level Design
	Programming Languages on RTL
	Tools for the generation of RTL models

	Generation of High-Level Model
	Tools for High-Level Synthesis
	Programming languages for High-Level Synthesis
	Cosimulation
	Interface Synthesis
	Code Optimization
	Arbitrary Datatypes

	Module: "Data flow"
	Application field of this module
	Module Interface

	Module: "Cryptography-Algorithm"
	Principle of Ascon
	Module Interface

	Choice of the Evaluation Kit

	Implementation and Results
	Used Tools for Module Generation
	Implementation of Module: "data flow"
	RTL Implementation
	HLS Implementation
	Testbench: Generated by HLS

	Implementation of Module: "cryptographic-algorithm"
	RTL Implementation
	HLS Implementation
	Testbench: Generated by HLS and Matlab

	Results and Comparison of Designs
	Module: "data flow"
	Module: "cryptography algorithm"
	Allocated Area
	Power Consumption
	Design Effort

	Conclusion
	Terminology
	Definitions

	Bibliography

