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Abstract

A Brain-Computer Interface (BCI) is a system, that enables the communication between severely
impaired users and their environment via motor imagery (MI), e.g., hand and foot movement
or P300 for example. BCIs are closed loop systems and thus the users can learn how to control
the device with the help of the feedback they get. Present-day studies with BCIs are normally
performed in a laboratory environment. There, the participants sit in a quiet measurement box
to ensure that they can focus completely on the task. In real-life BCI applications are used
in noisy environments, for instance at home while other family members are around. In the
future BCIs may for example be used to control prosthesis or play computer games and thus
it is necessary that users are able to control a BCI when they are stressed. The aim of this
work was to investigate whether people are able to reliably control a BCI outside of a laboratory
environment while under acute stress.
For this thesis, the idea was to open a parachute using a BCI. For this a post-movement beta
event related synchronization was used which is found in nearly every person and appears ap-
proximately one second after a movement or the imagination of such is stopped and the signal
to noise ratio is very high compared to other brain signals. A parachute fell down within five
seconds and thus the participants had just one chance to do the imagination and open the
parachute. To increase the motivation and the level of stress even further there was a compe-
tition within the participants who is able to open the parachute most often. To measure the
stress level of the volunteers in this study everyone had to answer a questionnaire and the ECG
was recorded. The ECG was later used to calculate the heart rate and the heart rate variability.
Results show that the participants were able to open the parachute while feeling stressed and
thus the hypothesis, that users are able to control a BCI reliably in an acute stress situation,
can be accepted.
In the future, the results of the study can be used to investigate if it is also possible to control
a BCI with more than one class under stress or if BCIs can also be controlled in other stressful
situations.



Kurzfassung

Ein Brain-Computer Interface (BCI) ermöglicht es Personen, die in ihrer Kommunikation stark
eingeschränkt sind, über Bewegungsvorstellungen, zum Beispiel der Vorstellung von Hand- und
Fußbewegungen, mit ihrer Umgebung zu interagieren. Durch Feedback aufgrund des geschlosse-
nen Lernkreislaufes können Nutzer lernen, ein solches System zu kontrollieren. Heutige Studien
die ein BCI verwenden, werden in wissenschaftlichen Laborumgebungen durchgeführt. Während
eines Experiments sitzen die Studienteilnehmer in einer ruhigen Messbox, um sicherzustellen,
dass sie sich bestmöglich auf die Durchführung der Aufgaben konzentrieren können. Im Alltag
werden solche Systeme aber in lauteren Umgebungen, zum Beispiel zuhause während weitere
Familienmitglieder anwesend sind, verwendet. In Zukunft könnten BCIs dazu verwendet wer-
den um Prothesen zu kontrollieren oder Computerspiele zu steuern. Dafür ist es wichtig, ein
solches System auch unter Stress verlässlich bedienen zu können. Das Ziel dieser Arbeit war es,
zu zeigen, dass Brain-Computer-Interfaces auch außerhalb von Laborumgebungen in stressigen
Situationen verlässlich bedient werden können.
Die Idee dieser Studie war es, einen Fallschirm mit Hilfe eines BCIs zu öffnen. Zum Öffnen
des Fallschirms wurde eine post-movement beta event related synchronization verwendet. Diese
tritt bei den meisten Menschen circa eine Sekunde nach einer Bewegung, beziehungsweise deren
Vorstellung, auf. Außerdem weist dieses Gehirnsignal, im Gegensatz zu anderen, ein sehr gutes
Signal-Rausch-Verhältnis auf. Die Fallzeit des Fallschirms betrug fünf Sekunden, dadurch hatten
die Versuchsteilnehmer nur einen Versuch die Bewegungsvorstellung durchzuführen um damit
den Fallschirm zu öffnen. Um die Motivation und damit das Stresslevel der Freiwilligen weiter
zu erhöhen, wurde ein Wettkampf zwischen den Teilnehmern veranstaltet. Um festzustellen ob
die Studienteilnehmer gestresst waren musste jeder von ihnen einen Fragebogen ausfüllen und
das EKG wurde aufgezeichnet. Mithilfe des EKGs wurde sowohl die Pulsfrequenz berechnet als
auch die Herzratenvariabilität analysiert.
Die Ergebnisse zeigen, dass die Teilnehmer in der Lage waren das BCI zu kontrollieren obwohl
sie unter stress standen.
In Zukunft können die Ergebnisse dieser Studie dazu verwendet werden, um herauszufinden, ob
auch ein BCI mit mehreren Klassen unter Stress verwendet werden kann, beziehungsweise ob es
auch in anderen stressigen Situationen eingesetzt werden kann.
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1
Introduction

A Brain-Computer Interface (BCI) is a device that enables communication between a human
brain and an external device, e.g., a computer, without using the normal muscular pathways or
peripheral nerves. The communication between the brain and the neuromuscular pathways can
be disabled by different diseases but also by traumas or injuries. If no motor functions are left, a
BCI can be used to provide new communication channels to enable people to interact with their
environment again [1,2]. The first BCI was implemented in 1973 by Vidal J. [1] and since then
numerous different approaches about how to measure and classify brain signals were developed.
There are two ways to record the signals of the brain: invasive and non-invasive methods. To
use invasive BCIs patients need to undergo surgery to implant the electrodes in the cortex. The
electrodes can either be placed in the cortex [3] or an array of electrodes is placed on the surface
of the cortex to record the electrocorticogram (ECoG). There is a number of methods to record
brain signals in a non invasive way; nonetheless, the electroencephalogram (EEG) is the most
common used for BCIs.
To measure EEG, electrodes are placed on the scalp and cortical potentials of the brain are
recorded. Activated brain cells generate action potentials which lead to postsynaptic potentials
(PSP). The excitatory and inhibitory postsynaptic potentials of a group of brain cells are added
spatially and temporally and the resulting signal can be measured using surface electrodes [3,4].
There are different advantages using EEG for BCIs: it is a non-invasive method, which means
that users do not need complicated surgeries as all electrodes are placed on the scalp and thus
the setup can be done within minutes. The temporal resolution of the EEG is in range of mil-
liseconds and it can be used in different environments since the equipment is mobile and also
cheap compared to other methods. The main disadvantages of non-invasive EEG are the poor
signal-to-noise ratio as the measured signals are in range of V and the poor spatial resolution
since one electrode records the signals of millions of neurons due to volume conduction [5].
To control a BCI, different electrophysiological signals can be used: visual evoked potentials
(VEPs), slow cortical potentials, P300 evoked potentials, mu and beta rhythms and cortical
neuronal action potentials [6]. To control a BCI using mu and beta rhythms, which are used for
the Graz BCI system, it is necessary that users are able to modulate their brain signals voluntar-
ily. One possibility to cause oscillatory changes and thus modulate brain signals is the imagery of
simple movements, e.g., right/left hand or feet movement. Due to the motor imageries (MI) the
power in certain frequency bands, especially in the α (8 - 12Hz) and in β-band (13 - 30Hz) either
increases or decreases. During MI the activity of the neural networks is desynchronized which
leads to a decrease of power in a certain frequency band whereas in rest conditions the activity
of the neurons is synchronized which leads to an increase of power in certain frequency bands.
The former phenomenon is called event-related desynchronization (ERD) and the latter is called
event-related synchronization (ERS). Depending on the type of imagery different regions in the
brain are activated and thus this signals can be used to control BCIs. After stopping a move-
ment or the imagination of a movement a post-movement beta ERS (PMBERS) appears. This
signal has a relatively good signal-to-noise ratio compared to other brain signals. It appears in
the β-band approximately one second after the movement is stopped. The so called PMBERS
is found in nearly every person and appears after finger, hand, arm and foot movement but the
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1 Introduction

frequency bands differ from person to person [7].
ERD/S is time-locked but not phase-locked to an event which means that it cannot be extracted
by linear methods. To compute ERD/S, all trials are band-pass filtered in the respective fre-
quency range. To retrieve the signal power the amplitude samples are squared. The averaged
reference signal power before the event is subtracted from the result and divided to obtain the
relative changes in brain activity [7].

Figure 1.1: Overview of a standard BCI model.

To control an online BCI an offline training phase to calibrate the system is necessary in
most cases. The online system consists of different parts. Normally, it is a closed-loop system
which provides feedback to the users so that they know if a mental command was classified
correctly or not, which can be seen in Figure 1.1. The first part consists of recording the EEG.
Therefore, electrodes, which are placed on the scalp, are used. Before the signal gets digitized
it needs to be amplified, which is done by the appropriate hardware. The second part contains
the signal processing chain. First, in the preprocessing block, artifacts and noise are removed
and the signal is filtered to prepare it for the feature extraction block. To differentiate mental
tasks, it is necessary to find features which maximize the differences between them. A common
approach is to use the power information of the brain signals in the frequency ranges which are
of interest. For a classifier training, a lot of training data is necessary to get good classification
results. Since a user cannot reproduce the same mental tasks several hundred times, there are
different classifiers, e.g., shrinkage LDA, random forest or Riemannian classifiers; these are able
to classify data after 20-100 trials per class. The classifier also needs to be trained for every
individual subject since brain patterns differ from person to person. The output of the classifier
is used as a control signal to operate with the application and thus feedback is provided to the
user [6, 8].
Stress describes the physical and psychic reaction of living beings on external stressors, e.g.,
threat or challenges, to cope with special demands and the physical and mental loading result-
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ing from them. The autonomic nervous system (ANS) is one of the major systems reacting to
stress, whereby the sympathetic part is activated while the parasympathetic part is suppressed.
Stress has an influence on memory, immune and cognitive functions and chronic stress can cause
certain diseases [9, 10]. There are many different types of stress such as eustress and distress,
whereby the latter can be further divided into acute and chronic stress. Not all types of stress
have a negative impact on people. Eustress for example helps to motivate people and thus
achieve better performances, e.g., in their jobs or during challenges [11]. Stress can be moni-
tored using different methods, e.g., measure the level of cortisol (in blood, urine or saliva), the
heart rate variability (HRV) and the skin conductance. HRV is a feasible and reliable method
and another advantage of it is that it is non-invasive and no special equipment is required. HRV
is the ability of human beings to change the frequency of the heart beat according to physi-
cal or psychical loads. During physical training or mental stress the heart rate increases and
afterwards it decreases. Often, ECG is used to measure HRV since it provides a clear wave-
form and heartbeats can easily be detected. The research of heart rate variability moved into
three main directions. First, understanding of the physiological mechanisms which regulate the
heart rhythms, second, understanding the relationships between HRV and medical conditions
and third, understanding the relationship between physiological processes and HRV [12,13].
The heart rhythm is influenced by the sympathetic and parasympathetic parts of the autonomic
nervous (ANS) system. Both parts of the ANS influence the rate of depolarization and discharge
the cardiac sinoatrial node. The parasympathetic terminals release acetylcholine which slows
down the heart rate whereas the sympathetic terminals release norepinephrine which raises the
heart rate. Besides those two neurotransmitters, there are also different neuropeptides which
influence the heart rate variability [14]. In 1996, the European Society of Cardiology and the
North American Society of Pacing and Electrophysiology constituted a task force to standardize
the nomenclature, develop definitions of terms and specify standard methods of measurement
among other important aspects which are important in clinical use [15]. There are time domain
methods, frequency domain methods, rhythm pattern based methods and non-linear methods to
evaluate the variations in heart rate variability. In this work, time domain as well as frequency
domain methods were used. It can also be recorded in long-term (24h), short-term (5min) and
ultra-short term (¡5min) recordings. To investigate ultra short time recordings methods in the
frequency domain should be preferred. Castaldo et al. presented a systematic review which
shows the correlation between acute stress and HRV measurements to reliably detect stress in
seven different parameters [16].

1.1 Motivation and Aim

Present-day standard BCI experiments are usually tested in a laboratory environment. Partic-
ipants sit in a comfortable chair in front of a monitor in an shielded cabin. They are alone in
the cabin and there is no distraction so they can focus on the task. During the experiments the
participants are relaxed and they have enough time for their tasks. Even if they participate the
first time and are nervous because of that, after some runs they get used to the situation, relax
and do not feel stressed anymore.
The idea of this work was to design an experiment in which users need to focus on a mental
task even though they have to perform it in an acute stress situation. On the one hand they are
stressed because the experiment takes place outside the laboratory environment in the foyer of
the Biomedical Engineering Building at the Graz University of Technology. Due to this unusual
location, people were walking by in irregular intervals and some were asking what we were doing
and if they were allowed to watch. On the other hand, there was time pressure because the
participants had to open a parachute falling from the ceiling within five seconds. An additional
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factor was a competition between the participants to see who is able to open the parachute the
most and the winner was promised to receive a bottle of wine.
The hypothesis of this study was to show that users are able to control a BCI reliably even
though they are performing in an acute stress situation.
Chapter 2 provides an overview of the concept and the methods which were used are described in
more detail. Chapter 3 shows the results of this work and in Chapter 4 the results are discussed
in various aspects. The conclusion of this thesis can be found in Chapter 5. The questionnaires
which were filled out by each of the participants can be found in the appendix.

– 4 –



Opening a Parachute - Usability of a Brain-Computer Interface in a Stressful Situation

2
Methods

2.1 Overview

The goal of this work was to find out if it is possible to control a BCI under acute stress. The
idea was to plan an experiment in which participants have only one chance to open a parachute.
In order to do so, a mental task had to be found that can be imagined just once while the
parachute falls so that there is just one possibility to open it. Mental tasks normally used in
BCI experiments are imagined for around five seconds which makes them unusable for this study.
Hence, the idea was to use a PMBERS to open the parachute. A PMBERS is a strong activity
in the beta band which appears 1 to 2 seconds the imagination of a movement stops. Since it is
more prominent after moving the feet, the motor imagery of one brisk feet movement was chosen
to be the mental task for this study. Since it is not possible to let a parachute fall down in a
laboratory, the experiment was planned to be outside. Therefore, an experimental setup was
necessary that allows the parachute to fall down from the ceiling. To ensure a straight fall, a
steel cable was used as a lead. For the experiment an umbrella was used instead of a parachute.
This turned out to be very handy since the steel cable could be put through the handle of it
and thus ensure that it falls down straight.
To be sure that the experiment worked as it was planned a pilot experiment was planned at the
7th Graz BCI Conference.
A schematic overview of the online BCI can be seen in Figure 2.1. The 16 EEG channels were
first filtered using a combination of filter bank and common spatial pattern; second, the loga-
rithmic bandpower was calculated; third, a random forest was used to classify the data and then
feedback was shown to the users.

Figure 2.1: Schematic overview of the online system which was used in this study.
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2.2 Experimental Setup and Paradigm

This experiment was divided into three parts. In the first one, the classifier was trained, in
the second one the participants were able to practice the opening of the parachute in an online
simulation and in the third part they tried to open the real parachute. Before the actual
experiment a rest recording was performed, to compare the ECG of the different parts to a rest
condition.

In the first part, 60 trials of the motor imagery of a brisk foot movement of each of the subjects
were recorded. It was divided into 3 runs consisting of 20 trials each and took approximately
10 minutes. Thereafter, ERD/S maps were plotted not only to check if the participants showed
a PMBERS but also to find the best time point to train the classifier [7].
In the second part, the participants saw a grey rectangle, which simulated the parachute, falling
down the screen of the monitor. With the same motor imagery as in the first part, they were
able to color it green which indicated that they were able to open the parachute.
In the third part, a real parachute, i.e., an umbrella, fell down from the 5th floor and by imag-
ining the same motor task as before the participants had to open it. To realize the third part
it was necessary to find a way to let the parachute fall down without endangering any people.
Therefore, an umbrella was used as a parachute since the inner part of the tube is hollow when
the top and the handle are removed. This way it could be fixed on a steel cable which is fixated
on both ends so that the umbrella cannot change direction when opened. One end of the steel
cable was fixated on a wooden brick, which was attached to the handrail of the stairs at the 5th
floor (Figure 2.2 left part). The other end was fixated with the help of a box filled with stones
on the bottom of the ground floor, which can be seen on the right part of Figure 2.2.

Figure 2.2: (left) Wooden brick which is attached to the handrail at the 5th floor. The steel cable is fixated
on the right part of it. (right) steel cable fixated with the help of a box filled with stones and the
umbrella which was used as parachute.

To automatically open the umbrella a servo motor was used. Since it is not possible to press
the button which opens the umbrella with a servo motor, the spring that keeps the umbrella
closed was removed. Thereby, the umbrella opened automatically. To keep the umbrella closed in
the beginning, a string was wrapped around the stretchers of it and attached to the servo motor.
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The servo motor was screwed to the shaft to keep the umbrella closed. To interact with the
servo, a Raspberry Pi Zero W was used for two reasons. First, it is very small and can connect
to the internet via WiFi and second, there is a Matlab toolbox which means that commands
can easily be sent to the Raspberry Pi. As the space on the umbrella is very limited and the
Raspberry Pi also needs a power supply, a soft toy was bent to the umbrella. The Raspberry Pi
and the power bank were placed in the head of the stuffed toy rabbit. The modified umbrella
with the attached rabbit can be seen on the left side of Figure 2.3. To open the umbrella, the
servo motor turned 180➦ to release the string and afterwards turned back into its initial position.
The umbrella was not closed completely because it would fall down too fast and the users would
not have a chance to open it. Thus, it was opened a bit so that the duration of the fall was 5
seconds.

Figure 2.3: The left side shows the modified umbrella with the attached stuffed toy rabbit. On the right side
the servo which releases the umbrella can be seen.

To release the umbrella on top of the rope, a second servo motor was used. It was screwed to
the right end of the wooden brick, which was mounted on the hand rail. The brick was fixated
using two screw clamps. To be sure that it cannot fall down, the brick was additionally fixated
with a steel rope. The rope was lead through a hole in the wood and around the handrail and
bound together using a rope clamp. To interact with this servo, a second Raspberry Pi Zero
W was used. The Raspberry Pi was fixated on the wooden brick using cable ties. When the
command to release the umbrella was sent, the servo turned 180◦ for the umbrella to fall down
and afterwards it turned back into the initial position. This setup can be seen on the right side
of Figure 2.3.
At the end of each trial, the umbrella needed to be lifted up again. Therefore, a second person
assisted during the experiment. A long rope, which was mounted on the brick, was let down
after each trial and the umbrella was attached to it via a carbine. The rope had a diameter of
3mm and can be seen on the right side of Figure 2.3. Since the umbrella was very lightweight,
it could be lifted up by hand. At the top, the umbrella needed to be hooked to the servo motor
again and after that the next trial could start.
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2 Methods

2.2.1 Paradigm and Feedback

To test this study, three different paradigms were used. The first one to train the classifier, the
second one to simulate the fall of the parachute on the PC and thus train the participants for
the third part, which was the actual falling of the parachute.

First Paradigm

As a first paradigm, the standard Graz-BCI paradigm [17] was used. An overview of it can be
seen in Figure 2.4. It contained three runs, each run contained 20 trials which made 60 trials in
total and each trial took 10s. At second 0, a green cross appeared on the black screen and the
participants were instructed to focus on the middle of it. At second 2, there was a beep to get
the user’s attention and at second 3, a visual cue in form of a foot appeared. The volunteers
were instructed to imagine just one brisk foot movement (plantar flexion and extension of their
feet) as soon as they saw the foot and stay focused until the green cross disappeared at second
8. After that, there was a short pause of 2 to 3 seconds and then the next trial started.
To reduce artifacts to a minimum the participants were instructed to avoid blinking, eye move-
ments and swallowing during the trials.

Figure 2.4: Standard Graz BCI paradigm.

Second Paradigm

The second paradigm was used to simulate the falling of the parachute to give the participants
an opportunity to practice and also compare if the participants are more stressed within the
real fall compared to the simulation. It consisted of 2 runs of 20 trials each and each trial took
10s. Figure 2.5. shows what the paradigm looked like. At the beginning of the trial, there was a
small gray rectangle on top of the screen, similar to the cross in the first paradigm. After 2 to 3
seconds, the rectangle started to fall down and the participants were instructed to imagine the
same movement as in the first part as soon as they recognizee that the rectangles falls. During
this part of the experiment, feedback was given to the participants. When the classifier was
able to detect a PMBERS, the rectangle became green to show the participant that they would
have been able to open the parachute. This can be seen in the upper part of the right side of
Figure 2.5. If the classifier was not able to detect the PMBERS, the rectangle stayed gray. The
participants were instructed to stay focused until the rectangle reached the ground and to not
repeat the imagination of the movement, even if the PMBERS was not detected. To avoid eye
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movements during the trial, the participants were instructed to focus on the logo centered at
the bottom of the screen instead of following the rectangle with their eyes.

Figure 2.5: Paradigm with feedback for the second part of the experiment.

Third Paradigm

In the third part of the experiment, the participants had to open the falling parachute. Thus,
the screen was black during each trial. As the breaks between two trials were around 1 minute
because the umbrella had to be lifted up and hooked on the servo motor again each time,
the black screen was shown between 11 and 13 seconds before the umbrella fall to give the
participants the possibility to focus and concentrate again after the long break. The volunteers
were instructed to imagine the same movement as before as soon as they heard that the parachute
was released.

2.2.2 Mental Task

There are two reasons why a PMBERS was chosen as a mental task for this experiment. First, it
is very prominent after motor imagery, i.e., motor imagery of feet movement. Second, it appears
approximately one second after the motor imagery which means that a participant had just one
chance to induce a PMBERS and open the parachute. It was shown before that a PMBERS can
be used to implement a brain switch [18][19] and that this brain switch also works in combination
with a neuroprosthesis [20].
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2.2.3 Participants

Ten healthy volunteers (five females, five males) participated in this study. They were aged
between 24 to 28 and were informed about the aim of the study. Nine of them were non-naive
users.

2.2.4 EEG and ECG Recording

All experiments took place in the foyer of the Biomedical Engineering Building (Stremayrgasse
16) at Graz University of Technology. The participants sat on a chair in front of a laptop,
approximately 1.5 meter distance. They were able to see the parachute reaching the ground
but they could not see where it was placed on the 5th floor. The first and second paradigm
were presented on the screen of the laptop and a black screen was shown as a third paradigm.
The experiments were performed on weekends so that the normal University processes were not
disturbed. The experimental setup on the ground floor can be seen on Figure 2.6.

Figure 2.6: Experimental setup at the ground floor of the Biomedical Engineering Building at the Graz
University of Technology.

EEG was recorded using 16 active electrodes placed in an equidistant manner over the motor
cortex using one biosignal amplifier (g.USBamp, g.GAMMAsys, g.tec OG, Austria). The posi-
tions of the electrodes were: FCzb, FC3a, FCza, FC4a, C5a, C3, C1b, C1a, Cz, C2a, C2b, C4,
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C6a, CP3a, CPza and CP4a. The ground electrode was placed at AFzb and the reference clip
at the ear. Data was sampled with 512Hz and filtered using a filter-bank. The electrode setup
can be seen on the left side of Figure 2.7. To record the ECG one Kendall➋ ECG electrode was
placed at the left anterior axillary line at the 5th intercostal space. The position of this elec-
trode is represented as a red circle on the right side of Figure 2.7. To measure ECG according
to Goldberger, the ground and reference electrode of the EEG setup were used. Therefore, a
second g.USBamp which was connected to the first one was used to record the ECG data.

Figure 2.7: (left) Electrode positions of the experiment. The blue circles show the electrode positions, the
yellow circle the position of the ground electrode and the green circle represents the reference
electrode which was placed on the right ear lobe. (right) The red circle represents the position of
the ECG electrode.

2.2.5 Pilot Experiment

To be sure that the experimental setup worked as planned, a pilot study was executed. The
7th Graz BCI conference was used as an opportunity to on the one hand show the conference
participants that it is possible to open a parachute using a BCI and on the other hand to see if
a participant is able to concentrate on a mental task even though several people are watching.
The experimental setup was done as described above. The participant sat on the ground floor of
the Biomedical Engineering Building in front of a laptop and was able to see the landing of the
parachute but not the start of the fall. The paradigms were slightly different in the pilot study.
To train the classifier, the same paradigm as described in chapter 2.6.5.1 was used. Therefore,
60 trials of the imagination of a brisk foot movement were recorded and thereafter ERD/S maps
were calculated to find the best time point to train the classifier. In the second paradigm, a
countdown was shown so that the participant knew when the rectangle starts to fall. After
simulating the fall 40 times, the demonstration of the real fall started. In the third paradigm
again a countdown was displayed so that the user knew when the parachute falls down. Since
the time at the conference was limited, the last part of the experiment was just performed five
times. In the pilot experiment, ECG was not recorded because it was just performed to see if
the setup works.
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2.3 System Setup

2.3.1 Software and Toolboxes

The following software and toolboxes were used in this work:

❼ Matlab 2016b (Mathworks Inc., Natick, USA) for implementing the system and data anal-
ysis

❼ TCP/UDP/IP Toolbox 2.0.6 [21]

❼ TOBI SignalServer + Client [22]

❼ Random Forest mex implementation [23]

❼ GRAZ-BCI libraries [24]

❼ BioSig toolbox [24,25]

❼ MATLAB Support Package for Raspberry Pi Hardware [26]

2.3.2 Online System

The online system for this work was implemented in Matlab and Simulink and the TOBI Sig-
nalServer was used to feed raw EEG data recorded from 16 electrode channels into the system.
The EEG data was filtered by 8 parallel bandpass filters and each output was multiplied by a
CSP filter. Thereafter, the logarithmic bandpower features were calculated. Afterwards, the
signal was fed into the random forest classifier. Since the EEG signal was recorded with 512Hz,
there were 512 class labels predicted each second which is computationally expensive. To avoid
that the system gets too slow, the signal is downsampled to 16Hz before being classified by the
random forest. Finally, feedback is given according to the classifier output. After each run,
a mat file including the processed EEG, the raw ECG, the true classlabels and the predicted
classlabels were saved to analyse the data after the experiment. The Simulink model of the
online system can be seen in Figure 2.8.
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Figure 2.8: Simulink model of the online system which was used in this work.
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The online system was also used in the third part of the experiment to send a command to the
two Raspberry Pi Zero W which were needed to control the two servo motors. The first released
the umbrella so it could fall down automatically and the second one opened the parachute.
When a command with Matlab was sent via WiFi to one of the Raspberry Pis a servo motor
started to rotate and the umbrella was either released or opened.

2.4 Preprocessing and Feature Extraction

2.4.1 Common Spatial Pattern

Since the spatial resolution of EEG signals is very poor because the scalp and the skull cause
spatial smearing of the cortical signals it is necessary to preprocess the signal to improve the clas-
sification results. By decompensation of raw EEG signals into spatial patterns using a method
called common spatial pattern (CSP) the separability of two different classes can be maximized
[16,17]. CSP was first used in 1990 to classify normal vs. abnormal EEG [16–18] and was than
applied to classify movement related EEG.
In brief, multi-channel EEG data is projected into a low-dimensional spatial subspace using a
projection matrix. The rows of this matrix consists of the weights for each of the channels. For
both classes the covariance matrices are diagonalized simultaneously [19].

More detailed, the matrices containing preprocessed EEG data from two different conditions,
e.g., feet and rest, are called XF and XR. Both matrices have dimensions NxT, where N is the
number of channels and T is the number of samples per channel. With this, the normalized
spatial covariance matrices of the EEG can be calculated as:

RF =

(

XFX
T
F

)

trace
(

XFX
T
F

) and RR =

(

XRX
T
R

)

trace
(

XRX
T
R

) (2.1)

By averaging the normalized covariance RF and RR over all trials of each group, the composite
spatial covariance can be factorized as follows:

R = RF +RR = U0 · Σ · UT
0 (2.2)

With U0 as matrix of eigenvectors and Σ diagonal matrix of eigenvalues. A whitening trans-
formation matrix equalizes the variances in the space extended by UT

0

P = Σ−1/2 · UT
0 (2.3)

and can be used to transform the average covariance matrices:

SF = PRFP
T and SR = PRFP

T . (2.4)
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Since SF and SR share their eigenvectors, the sum of their corresponding eigenvalues will
always be one:

SF = UΣFU
T ,SR = UΣRU

T and ΣF +ΣR = I (2.5)

Because of that, the eigenvector with the largest eigenvalues for SF has the smallest eigenvalues
for SRand vice versa. Thus, the eigenvectors U can be used to classify the two different classes.
To get feature vectors which can be used to achieve the highest discriminability between two
populations, the whitened EEG has to be projected onto the first and last eigenvectors of U.
The projection matrix can be calculated as follows:

W = UTP (2.6)

Using W, the original EEG can be transformed into uncorrelated components:

Z = WX. (2.7)

The matrix Z consists of source components of the EEG and also specific components of the
different tasks.

By using W−1 which can be seen as EEG source distribution vector one can reconstruct the
original EEG X. Since the first and the last columns of W−1 contain the spatial pattern they
explain the largest variance of one task and the smallest one of the other task [27,28].

2.4.2 Filter Bank CSP

The performance of the CSP depends on the selected frequency range of the EEG and also dif-
fers between subjects. To achieve a high performance either a broad frequency range is used or
the frequency bands are chosen manually for each of the subjects. There are several algorithms
to select the individual frequency bands, e.g., Common Spatio-Spectral Pattern (CSSP) [29],
Common Sparse Spectral Spatial Pattern (CSSSP) [30], Sub-band Common Spatial Pattern
(SBCSP) [31] or Filter Bank Common Spatial Pattern (FBCSP) [32].
For this work, a filter bank CSP was chosen. Therefore, the measured EEG was bandpass-filtered
into multiple frequency bands, CSP filters were applied to each of those bands, the discrimina-
tive CSP features of the filter bank were chosen and lastly the CSP features were classified [32].
To detect a beta rebound the frequency range from 12 - 37Hz was divided into eight overlapping
frequency bands of 4Hz bandwidth. The overlapping of the filters was necessary to compensate
the slopes of the filters. For the filterbank eight IIR bandpass filters of order 4 were used.

2.4.3 Logarithmic Bandpower Features

2.4.3 Logarithmic Bandpower Features As a last step before classifying the data, features have
to be extracted from the CSP-filtered signals. Imagination of a movement induces oscillatory
changes in frequency as well as in the amplitude of the EEG signals. For these features to be
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extracted, the logarithmic bandpower is applied to the signal. Therefore, the samples of the
EEG are squared, a sliding window of one second is used to calculate the bandpower of the
features and afterwards the samples are logarithmized.

2.5 Classification: Random Forest

Random forest (RF) is a classification method which is based on several uncorrelated decision
trees. It was developed by Leo Breiman and first published in 2001 [33]. Breiman et al. defined
it as a classifier consisting of a collection of tree-structured classifiers {h(x, k), k = 1, ...} where
the {k} are independent identically distributed random vectors and each tree casts a unit vote
for the most popular class at input x [33].

Decision trees build the basis of a random forest but they are often combined with a method
called bagging which leads to higher classification accuracies. Classification trees divide the
feature space into non-overlapping rectangular regions and for every observation which falls into
the same region, the same decision is made. This process is called growing of a tree and is
performed as follows: each tree starts at the root, where the entire feature space is available.
To classify the data, each node of the tree represents a criterion and splits the data into two
different regions depending on the condition of the node. At each node, the data is further
splitted and the trees grow iteratively until either a stopping criterion is reached or there is only
one observation left at each node. The Gini index or cross-entropy are used to decide if the tree
should split up further because these approaches are sensitive to node purity. In the end, all
leaves or terminal nodes represent a set of training data of the same class. Training the tree as
described above leads to very high accuracies for the training data but may lead to overfitting
since the trees are very complex. Therefore, using a smaller tree with fewer splits would be
beneficial. To find such a tree a very complex one is grown and then pruned back to obtain
a subtree. To prune the tree the classification error rate should be used when the prediction
accuracy of the final pruned tree is the goal otherwise the Gini index or cross-entropy can be
used.
Decision trees show a high variance which means that if training data is split up into two parts
and each of the parts is used to train a decision tree, both trees would be very different. To
reduce the variance of trees a method called bagging, or bootstrap aggregation, is used. Boot-
strapping is used to generate B different training sets and each of this sets is used to build a
prediction model. Each of the trees has a high variance but a low bias and by averaging the B
trees the variance can be reduced. For classification problems a majority vote is used to predict
the class label.
Random forests can further decrease the variance by reducing the correlation between the sin-
gular trees. Before each split during the tree growing process, a random set of input variables
(m ≤ p) is chosen to split the tree. In classification problems, m is typically p and the minimum
node size is 1. To classify data, a majority voting is again used to predict the class label.
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Summed up, the following algorithm can be used as classifier for this work:

1. for b = 1 to B:

(a) bootstrapping: drawing a bootstrap sample (size N) from the training data

(b) grow a random forest tree Tb for each bootstrapped data using the following steps for
each terminal node repeatedly until the stop criterion is reached:

(i) select m random variables from p

(ii) pick the best splitting point among m

(iii) split node into two nodes

2. output: ensemble of trees {Tb}B1

For classification problems let Ĉb(x) be the class prediction of the bth random forest tree.
Then, ĈB

rf (x) equals the majority vote {Ĉb(x)}B1 [34][35][36].
The accuracy of random forests is mainly influenced by two parameters, namely the number
of tree classifiers and the number of randomly chosen data dimensions per node. On the one
hand a certain number of trees is necessary to reduce the variance but on the other hand the
computational expenses rise with the number of trees. Steyrl et al. [36] concluded that a number
of 1000 trees and

√
#numberoffeatures should be used which was followed in this work.

2.6 Artifact Removal

Since the amplitudes of the EEG signals are very small (➭V), artifacts have a very high impact
on them. These can be divided into biological artifacts, e.g., blinking, sweating, swallowing,
and non-biological artifacts, e.g., power-line noise or moving electrodes. Non-biological artifacts
can be reduced to a minimum by a careful preparation of the experimental setup, but biological
artifacts are hard to avoid. Since artifacts have a wide influence on the EEG and can, in worst
case, control the BCI, it is crucial to deal with them.
In this work, a statistical outlier rejection was applied and thus every trial, which showed
artifacts, was excluded. The outlier rejection is based on the work of Delorome et al. [37]. Four
statistical methods were used to detect artifacts:

❼ rejection by amplitude threshold: each trial that includes at least one data point, which
exceeds a threshold is excluded. The threshold is set to ±100➭V

❼ rejection by channel variance: each trial that has a standard variance, which is higher than
5 times the standard variance, is excluded

❼ rejection by probability: trials which show a unusual behavior over time are excluded.
Therefore, the joint probability of one column of a trial are compared to the probability
distribution of all columns

❼ rejection by kurtosis: each trial, which shows an unusual probability behavior of the
kurtosis compared to a threshold, is excluded
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2.7 Event-Related Desynchronization/Synchronization

During motor imagery, the brain changes from a synchronized mode into an desynchronized
one and changes back in resting phases. These changes could be either time- and phase locked
(ERP) or time- but not phase-locked which is known as event-related synchronization or desyn-
chronization. To control applications which are based on ERD/S, it is necessary to find the
frequency band which is the most reactive at different electrode positions. Thus, processing and
visualization of multichannel EEG is very important. Therefore, a bootstrap based method is
used which calculates a time-frequency map for the significant changes of power increase (ERS)
or decrease (ERD) of each electrode. All maps can be combined in a topographic plot to receive
an overview of the significant ERD/S patterns in EEG recordings. To calculate ERD/S maps, at
least 30 trials of several seconds per class are necessary and between two trials there should be a
pause of some seconds. ERD/S is defined as the proportional power decrease or power increase
in relation to a specific reference interval. To calculate ERD/S maps each trial is bandpass
filtered, the samples are squared and there is a subsequent averaging over the trials and sample
points.

2.8 Questionnaire

To find out if the participants felt stressed during the experiment, each of them had to fill
out a questionnaire. They were asked how stressed/nervous they are in their daily lives, how
stressed/nervous they are because of the experiment and before each part of the experiment,
they were asked how stressed they are compared to the part before. For the answers a visual
analogue scale [38] was used and the answers were between “not at all” on the left side to “very
much” on the right site. The questionnaire can be seen on Figure 2.9.
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Figure 2.9: Questionnaire the participants had to answer during the experiment.

2.9 Electrocardiogram

To proof if the participants of this study were stressed during the experiment, ECG was measured
during the study. Detecting the R peaks necessary to firstly, calculate the heart rate and
secondly, to analyse the HRV.
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2.9.1 R-Peak-Detection

As a R-peak detection a second order derivatives algorithm was used. It was implemented
according to the practical course of the lecture Biosignal Processing at Graz University of Tech-
nology [39]. An overview of this algorithm can be seen in Figure 2.10. First, the drift was
removed by subtracting the mean of the ECG of the ECG. Then the signal was zero-phase
filtered with a second order bandpass butterworth filter between 10 and 30Hz. Next step, the
signal was differentiated and low pass filtered using a second order butterworth filter with a
cutoff frequency of 15Hz. Thereafter, the signal was normalized between ± and every sample
point between ±0.5 was set to zero. Afterwards, the signal was differentiated again and then
all samples which were not zero were marked. Then, the QRS complexes were marked. If the
distance between two marked points was higher than 0.6 seconds, two QRS complexes were
separated. Finally, the R peak was detected as the maximum of each QRS complex.

Figure 2.10: Overview of the R-peak detection.

2.9.2 Heart Rate Variability

In this work, the length of ECG recording varied between 20s in the last parts of the experiment
and 200s in the first parts. Since only ultra-short term recordings were investigated, frequency
domain methods should be preferred but also some time domain methods can be used. It is
necessary that the recorded ECGs have the same length to calculate HRV and compare them
afterwards. Therefore, the HRV parameter were calculated for each of the three recording and
the two simulation runs and afterwards the mean was calculated. The trials of the last part
were merged at the R-peaks [15][40]. The following time domain and frequency domain methods
were used in this thesis to analyse the HRV.

❼ Time Domain Methods

The calculation of HRV using time domain methods is very simple. Using this methods
one can measure the heart rate or the intervals between sequential QRS complexes. Time
domain methods are separated in statistical and geometrical methods but just statistical
methods were used in this work since they can also be used for ultra-short term recordings
[15]. There are several variables which can be calculated:

◦ meanRR in ms: mean of RR intervals

◦ SDNN in ms: standard deviation of RR intervals

◦ RMSSD in ms: square root of the mean squared differences of successive RR intervals

◦ NN50: number of pairs of adjacent RR intervals which differ by more than 50 seconds
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◦ pNN50 in %: dividing the total number of RR intervals by the number of interval
differences of successive RR intervals greater than 50ms

Frequency Domain Methods

Using frequency domain methods, the ECG data is decomposed into its frequency com-
ponents, which can be expressed as spectral density function (PSD) which describes the
spectral power as a function of frequency. There are two common approaches to do a
spectral analysis of the HRV: fast Fourier transformation (FFT) and autoregressive (AR)
modeling but the latter was not used in this work [14]. To analyze short-term record-
ings three main spectral components can be distinguished: very low frequency (VLF, ¡=
0.04Hz), low frequency (LF, 0.04-0.15Hz) and high frequency (HF, 0.15-0.4Hz) compo-
nents. All three components are absolute values of power (ms2) but they can also be
presented in normalized units (nu) [15].
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3
Results

The following section shows the results of this thesis. It begins with the results from the offline
analysis and the pilot study and thereafter the online results can be seen.

3.1 Offline Analysis

Before starting the experiment, it was tested if a CSP before the random forest has an positive
impact on the classification accuracy.

❼

Figure 3.1: Classifier output of the the system. The orange line represents the accuracy of the random forest
and the blue line shows the accuracy of csp and a random forest.

Figure 3.1 shows the accuracy curves of the system whereby two different classifiers were used.
The orange curve shows the accuracy of a random forest as classifier and the blue line shows
the combination of a CSP and a RF. The accuracy was calculated using a five times five cross
validation and 60 trials in total were recorded. To find the second in which the PMBERS was
the most prominent the classifier was trained on three different seconds. In the plot on top,
the classifiers were trained on second 2 to 3, in the middle plot the classifiers where trained on
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second 2.5 to 3.5 and on the bottom, the classifier was trained on second 3 to 4. The x-axis shows
the time in seconds. At second -3 the cross appeared, at second 0 the cue was shown and the
dotted line shows in which second the classifiers were trained. The accuracies were statistically
tested using a Wilcoxon rank-sum test at a significance level of α = 0.05. The accuracies of the
CSPRF classifier are significantly higher than the accuracies of the RF classifier. The means of
the three accuracies classified by CSPRF are not significantly different. The peak accuracies are
86%, 88% and 92% for the RF from top to bottom and 100%, 96% and 98% for the CSPRF.

3.2 ERD/S Maps

The time-frequency maps of all subjects of the laplace-deviations of channels C3, Cz and C4
were calculated and can be seen in Figures 3.2 to 3.12. The colors yellow to red indicate weak to
strong event-related desynchronization, the colors green to blue indicate weak to strong event-
related synchronization. The y-axis shows the frequency inHz and the x-axis shows the time in
s. At second 0 the motor imagery period starts. The sampling frequency of all ERD/S maps
was 512Hz, as a reference period second -2.5 to -1.5 was used and the bootstrap significance test
was α = 0.05.

3.2.1 Pilot Study

Figure 3.2 shows the ERD/S maps of the participant of the pilot study over the electrodes
C3, Cz and C4. In the reference period no clear ERD/S can be seen. On channel Cz a clear
event-related desynchronization in the β-band between 16 and 22Hz can be seen. Since the
channel Cz represents the cortical area which is correlated with the motor imagery of the feet
the desynchronization indicates the imagination of the brisk foot movement. Directly after the
desynchronization there is a synchronization, in the same frequency range which represents the
PMBERS. Electrodes C3 and C4 do not show clear ERD/S in the β-band.

Figure 3.2: ERD/S map of the participant in the pilot study.
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3.2.2 Online Study

The Figures 3.3 to 3.12 show the ERD/S maps of the 10 participants of this study. In the time-
frequency maps of S1, S4 and S6 (Figure 3.3, 3.6 and 3.10) no distinct patterns are evident.
The ERD/S maps of the other seven participants show distinct synchronization in the channel
Cz in the β-band around two seconds after the cue. The PMBERS of S7 is the most prominent
one. The synchronization in Cz of S10 appears already 1 second after the cue. There are no
distinct patterns in the channels C3 and C4 for all but one subject. The ERD/S maps of S3
show distinct desynchronization at C3 from second 0 to 2. In Figure 3.11 artifacts on C4 are
apparent.

Figure 3.3: ERD/S maps of participant S1.
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Figure 3.4: ERD/S maps of participant S2.

Figure 3.5: ERD/S maps of participant S3.
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Figure 3.6: ERD/S maps of participant S4.

Figure 3.7: ERD/S maps of participant S5.
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Figure 3.8: ERD/S maps of participant S6.

Figure 3.9: ERD/S maps of participant S7.

– 27 –



3 Results

Figure 3.10: ERD/S maps of participant S8.

Figure 3.11: ERD/S maps of participant S9.
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Figure 3.12: ERD/S maps of participant S10.

3.3 High Score List

Table 3.1: Number of opened parachutes of each of the subjects.

subject number of opened parachutes

S3* 20
S1 20

S8* 19

S9* 19

S10* 17

S7* 16
S4 15

S5* 15
S6 15

S2* 14

Table 3.1 shows how often each of the participants was able to open the parachute. All subjects
were able to open the parachute at least 14 times. Participants marked with a * showed a
PMBERS.
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3.4 Accuracy Plots

Figures 3.13 to 3.22 show the accuracy of detected motor imagery after the brisk feet movement
for all subjects. On the x-axis the time in seconds is represented and the y-axis shows the
accuracy in %. At second zero the cue was presented to the subject, the dashed line shows the
chance level. The the top plot of each Figure shows the accuracy while simulating the fall of the
parachute and the bottom plot shows the accuracy while the parachute fell down. During the
simulation, 40 trials were recorded, whereas the parachute fell down only 20 times. For the three
subjects who did not showed a PMBERS no increase in the accuracy after the motor imagery is
recognizable. Even though S2 and S10 show an ERS in the ERD/S maps their accuracy curves
do not show an increase in the accuracy after the motor imagery. In all other Figures an increase
in the accuracy is visibel. Three of the subjects, namely S3, S7 and S8, were able to achieve
accuracies higher than the chance level, which was 62.5% in the simulation and 70% in the fall
experiment.

Figure 3.13: Accuracy plots of S1. The plot on top shows the accuracy of the simulation and the plot on the
bottom the accuracy of the fall.
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Figure 3.14: Accuracy plots of S2. The plot on top shows the accuracy of the simulation and the plot on the
bottom the accuracy of the fall.

Figure 3.15: Accuracy plots of S3. The plot on top shows the accuracy of the simulation and the plot on the
bottom the accuracy of the fall.
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Figure 3.16: Accuracy plots of S4. The plot on top shows the accuracy of the simulation and the plot on the
bottom the accuracy of the fall.

Figure 3.17: Accuracy plots of S5. The plot on top shows the accuracy of the simulation and the plot on the
bottom the accuracy of the fall.
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Figure 3.18: Accuracy plots of S6. The plot on top shows the accuracy of the simulation and the plot on the
bottom the accuracy of the fall.

Figure 3.19: Accuracy plots of S7. The plot on top shows the accuracy of the simulation and the plot on the
bottom the accuracy of the fall.
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Figure 3.20: Accuracy plots of S8. The plot on top shows the accuracy of the simulation and the plot on the
bottom the accuracy of the fall..

Figure 3.21: Accuracy plots of S9. The plot on top shows the accuracy of the simulation and the plot on the
bottom the accuracy of the fall.
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Figure 3.22: Accuracy plots of S10. The plot on top shows the accuracy of the simulation and the plot on
the bottom the accuracy of the fall.

3.5 Questionnaire

Table 3.2 shows the stress level of the participants according to their answers in the questionnaire.
It shows how stressed they are in general, how stressed they are because of the experiment, if
they are more stressed before the second part of the experiment than before the first part, if
they are more stressed before the third part than before the second part and if they are stressed
because of the competition. The last row displays the mean of all participants. The values in
the table are between 0 and 100 on VAS.

Table 3.2: Subjective stress response of each participant.

subject
stress
general

stress
experiment

more stressed

(2nd part)

more stressed

(3rd part)

stressed
competition

S1 5 31 60 18 19
S3 13 0 13 0 10
S8 3 13 36 27 71
S9 57 0 85 28 0
S10 55 33 64 70 59
S7 21 26 38 61 73
S4 4 4 29 25 28
S5 0 15 26 39 55
S6 5 4 17 50 80
S2 60 30 47 66 65

mean 22,3 15,6 41,5 38,4 46
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Table 3.3 shows how nervous the participants felt according to their answers in the question-
naire. It shows how nervous they are in general, how nervous they are because of the experiment,
if they are more nervous because of the second part than the first part and if they are more
nervous because of the third part than the second part. The last row displays the mean of all
participants. The values in the table are between 0 and 100 on VAS.

Table 3.3: Subjective nervousness of each participant.

subject
nervous
general

nervous
experiment

more nervous

(2nd part)

more nervous

(3rd part)

S1 5 32 41 10
S3 0 0 0 18
S8 3 10 34 47
S9 72 0 86 30
S10 39 51 57 76
S7 27 27 40 63
S4 10 10 32 24
S5 0 16 36 52
S6 6 9 18 49
S2 34 22 59 65

mean 19,6 17,7 40,3 43,4

3.6 Electrocardiogram

3.6.1 Heart Rate

In Figure 3.23, the heart rate during the different parts of the experiments of all the subjects
can be seen. On the x-axis, the different parts of the experiment are displayed, the y-axis
indicates the corresponding heart rate in beats per minute.The red line represents the mean of
all participants. During the experiment, the heart rate of all participants decreased. To check
if the heart rate decreased within the second and the third part, the heart rate was separately
calculated for the first 20 trials of the simulation and the first five trials of the falling part. The
ECG electrode of S2 and S4 stopped working in the last part of the experiment so that it was
not possible to calculate the heart rate for the fall. Since it stopped working at the end, it was
possible to calculate it for the first five trials.
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Figure 3.23: Heart rate of each of the participants.

3.6.2 Heart Rate Variability

Table 3.4 shows the mean of the different parameters of the heart rate variability for all subjects.
MeanRR, RMSSD and LF increases in the different parts of the experiment whereas HF decreases
from the rest to simulation but increases in the last part again. The ratio of HF to LF increases
from the rest to simulation but since HF increases in the last part, the LF it decreases in the
last part. Because the ECG electrodes of two participants stopped working during the fall
experiment, they are excluded in the calculation of the mean.

Table 3.4: Mean heart rate variability of all subjects for each part of the experiment.

meanRR SDRR pRR50 RMSSD LF HF LF/HF

experiment ms ms % ms ms2 ms2

rest 810,77 52,01 0,19 37,28 494,43 482,47 1,45
recording 799,25 48,53 0,11 30,64 669,18 217,06 4,35
simulation 809,98 48,79 0,1 30,15 664,18 195,09 4,43

fall 881,74 63,51 0,26 55,16 725,71 579,63 1,54
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In Table 3.5, the different parameters of the heart rate variability of each of the subjects
during the rest recording can be seen.

Table 3.5: Heart rate variability of each subject during rest recording.

meanRR SDRR pRR50 RMSSD LF HF LF/HF

subject ms ms % ms ms2 ms2

S1 817,3 47,52 0,.04 23,64 294,36 128,06 2,3
S3 774,73 52,54 0,07 27,95 596,13 235,3 2,53
S8 777,99 51,95 0,1 29,81 594,38 331,05 1,8
S9 967,93 64,84 0,5 58,52 771,01 891,06 0,87
S10 816,81 67,96 0,45 59,77 445,36 1.307,56 0,34
S7 774,27 55,16 0,28 44,04 702,84 494,47 1,42
S4 843,39 50,5 0,05 73,48 132,16 441,22 0,3
S5 627,19 39,06 0,03 24,31 284,53 238,01 1,2
S6 929,91 37,09 0,07 30,22 266,82 234,26 1,14
S2 839,89 58,88 0,22 46,24 815,66 443,78 1,84

Table 3.6 represents the parameters of the heart rate variability for each participant during
the recording part of the study. Three sessions of 200 seconds were recorded. Since the length
of the recorded ECG data needed to be the same to make the HRV parameters comparable, the
mean of the three sessions was calculated.

Table 3.6: Mean heart rate variability of each subject during classifier training.

meanRR SDRR pRR50 RMSSD LF HF LF/HF

subject ms ms % ms ms2 ms2

S1 819,8 47,52 0,07 26,39 576,17 127,45 4,67
S3 782,67 44,01 0,05 24,18 505,83 110,85 4,65
S8 785,92 50,03 0,07 27,45 836,03 130,12 6,14
S9 823,41 50,71 0,12 32,42 790,54 223,45 4,95
S10 800,98 49,63 0,12 32,63 713,87 258,6 4,17
S7 805,78 50,67 0,16 35,51 698,38 314,49 3,65
S4 813,46 50,27 0,15 34,54 673,24 287,7 3,71
S5 790,86 48,55 0,13 33,08 623,66 273,15 3,45
S6 801,61 47,13 0,12 32,36 586,51 260,74 3,28
S2 798,25 48,84 0,13 32,81 683,74 253,36 3,87
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Table 3.7 represents the parameters of the heart rate variability for each participant during
the simulation. Two sessions of 200 seconds were recorded. Since the length of the recorded
ECG data needed to be the same to make the HRV parameters comparable, the mean of the
three sessions was calculated.

Table 3.7: Mean heart rate variability of each subject during simulation.

meanRR SDRR pRR50 RMSSD LF HF LF/HF

subject ms ms % ms ms2 ms2

S1 839,75 48,01 0,1 28,86 544,68 153,02 4
S3 808,19 46,06 0,07 26,61 537,23 135,69 4,28
S8 799,51 48,4 0,08 27,33 699,51 136,32 5,17
S9 814,04 49,6 0,1 29,83 733,15 177,3 4,99
S10 808,14 49,69 0,11 30,85 724,46 207,72 4,67
S7 808,88 50,01 0,13 32,4 714,86 240,24 4,35
S4 810,57 50,09 0,13 32,83 700,12 250,09 4,17
S5 805,23 49,71 0,13 32,84 680,16 255,17 4,00
S6 805,28 49,13 0,13 32,71 659,67 255,44 3,85
S2 804,33 49,22 0,13 32,81 668,71 255,85 3,85

Table 3.8 represents the parameters of the heart rate variability for each participant during
the last part of the experiment. 20 trials of 20 seconds were recorded. Since the length of the
recorded ECG needed to be same for each of the different parts to make the HRV parameters
comparable, the different trials were merged together at the R-peaks. The ECG electrodes of
S2 and S4 stopped working during this part of the study and thus the HRV parameters could
not be calculated correctly.

Table 3.8: Mean heart rate variability of each subject during simulation.

meanRR SDRR pRR50 RMSSD LF HF LF/HF

subject ms ms % ms ms2 ms2

S1 901,79 53,95 0,23 51,82 710,52 433,26 1,64
S3 855,31 54,33 0,24 41,53 553,62 234,73 2,36
S8 837,14 74,29 0,18 47,45 1398,61 349,46 4
S9 1007,04 47,39 0,31 48,57 310,46 399,53 0,78
S10 839,07 89,57 0,37 60,88 855,08 795,35 1,08
S7 950,39 53,92 0,45 58,83 402,63 637,39 0,63
S4 # # # # # # #
S5 675,3 35,86 0,04 24,16 168,37 170,54 0,99
S6 987,93 98,76 0,31 108,09 1406,38 1616,79 0,87
S2 # # # # # # #
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Discussion

In this thesis, we could show that a BCI can be controlled in acute stress situations using a
brisk foot movement as a motor imagery. Seven out of the ten subjects showed a PMBERS. All
of them were able to fulfill the mental task at least 14 out of 20 times. Besides the performance
of the subjects, the increase of their stress level was also analyzed. Therefore, a questionnaire
was evaluated and the heart rate variability was investigated.

4.1 Random Forest vs. Common Spatial Pattern + Random Forest

The combination of a CSP and a RF significantly increases the classification accuracy compared
to only the RF classifier, which agrees with the study of Steyrl et al. [36]. The mean of the
classification accuracy of the CSPRF classifier trained on the different seconds is statistically not
different. Hence, for the later study the second on which the classifier was trained was chosen
based on the ERD/S maps instead of calculating a five times five cross validation each time.

4.2 Hardware

To perform the experiment, a notebook with Windows 10 as an operating system, an Intel Core
i7 and 6GB of RAM was used. To control the two servo motors, two Raspberry Pis which were
connected to the laptop via WiFi were used. The communication between the computer and the
Raspberry Pis worked without time loss, so the servo motors could be controlled in real time.
With this setup no performance issues occurred during the experiment. Since the BCI system
did not need any special equipment, it could be easily performed in the foyer of the Biomedical
Engineering Building at the Graz University of Technology.

4.3 Experimental Setup

To perform this experiment it was necessary to build a setup so it could be performed outside
the laboratory. The umbrella fell down along a steel rope which was fixated on a wooden brick
in the fifth floor and the brick was mounted on the handrail. The umbrella was released by a
servo motor which was controlled by a Raspberry Pi. The same mechanism was used to open
the umbrella while falling. WiFi was used to send commands from the laptop to the user. The
setup and the system were tested before starting the experiment and proved to be very robust
and reliable.
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4.4 Pilot Experiment

The pilot experiment at the 7th Graz BCI Conference 2017 showed that it is possible to perform
the experiment as planned. The pilot was able to open the umbrella in each of the five repetitions.
This showed that people are able to focus in a noisy environment, compared to the measurement
box. The pilot was able to concentrate and perform very well, even though there were people
around watching and talking to each other. The countdown, which indicated when the parachute
started to fall, was removed for two reasons. First, the participants were not able to start the MI
too early since they did not know when it would fall. Second, the stress level increased because
of this uncertainty and thus they had to focus more on the task so they would not miss when
the parachute starts to fall.

4.5 Performance

Time-frequency maps were calculated for each participant. Based on those maps, the second in
which the classifier should be trained was chosen. As seen in Figures 3.3 to 3.12, seven out of
the ten subjects showed an event-related synchronization in the β-band at channel Cz. This is
conform with the studies concerning ERS of the PMBERS Pfurtscheller et al. [41]. The second
in which the event-related synchronization was the strongest was chosen to train the classifier.
For the three subjects who did not show any significant event-related synchronization, second
2.5 to 3.5 after the cue are chosen to train the random forest. Artifacts in the ➭-band, as can
be seen in Figures 3.4, 3.7, 3.8 and 3.11, did not influence the training of the classifier because
it was only trained on the β-band.

Table 3.1 shows the high score list of this experiment. Nine of the subjects were able to open
the parachute at least 14 times, which means that they performed at least as good as chance
level (70%). One of the subjects who did not show a PMBERS was able to open the parachute
20 times. The reason for that could be that the classifier was not able to differentiate between
“rest” and MI since there was no clear PMBERS. The subject who performed worst was able to
open the umbrella 14 times even though PMBERS could be seen in the ERD/S maps (Figure
3.4). The poor performance might be attributed to an increase of the stress level or less concen-
tration than in the beginning of the measurement.

When looking at accuracy plots (Figure 3.13 to 3.21), it can be seen that five out of the ten
subjects showed a clear increase in the detection of the brisk foot movement after the rectangle or
the parachute started to fall. The classifier output for the subjects who did not show a PMBERS
is around chance level which means that the classifier was not able to distinguish between “rest”
and motor imagery. Despite the fact that two subjects showed clear PMBERS in ERD/S maps
high classification accuracy could not be achieved. This might be the case because of changes in
performing the mental strategy or timing changes. By comparing the accuracies of the second
and third part, it can be seen that the detection of motor imagery increases around two seconds
later in the third part. The reason for this might be a difference in the processing of visual
and auditory cues. Furthermore, three of the five participants were not able to perform better
than chance level, even though their accuracy plots indicate that they were able to control the
BCI. There are two possible reasons for this: first, the chance level for this experiment was very
high, namely 62.5% for the simulation and 70% for the part in which the parachute fell down.
Due to the small number of trials in the two parts of the experiment. Second, the timing of
imagining the brisk foot movement was not same within the runs, so in one trial the PMBERS
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appears earlier than in others. Since the PMBERS lasts for approximately two seconds the
classifier output can be blurred if the timing varies within the trials. S7 achieved the highest
accuracy in the simulation as well as in the last part of the experiment. Also, the PMBERS
of this participant is very prominent and it lasted for four seconds. Hence, timing differences
within the trials did not have a large influence on the classifier output.

Looking at the analysis of the questionnaire in Tables 3.2 and 3.3, one can see that the sub-
jective level of stress as well as the level of nervousness increased during the different parts of
the experiment. All of the subjects felt more stressed before the second part compared to the
first part and all except one felt more stressed before the third part compared to the second
part. The same is true for the nervousness of the participants.

The heart rate of the participants was higher in the beginning of the experiment than during
the simulation or the part were the umbrella fell down. The heart rate of four participants
was higher during the first run of the simulation. In the first five trials of the fall experiment
however, nine out of the ten subjects had a higher heart rate. One possible reason for this could
be that the participants were more stressed because of the unfamiliar situation. After the first
trials, they knew what was happening and they were more confident about their performance
because they were able to control the parachute during the first trials.
According to Castaldo et al. RMSSD, meanRR, pRR50, SDRR and HF decrease during stress
whereas LF and the ratio from LF to HF increase in stressful situations [16]. When looking at
Table 3.4, it can be seen that our findings agree with this if the rest is compared to recording
and to the simulation. However, if the rest is compared to the fall, our results agree just
partially. A possible reason for this could be that according to the Task Force of the European
Society of Cardiology and the North American Society of Pacing and Electrophysiology HRV
parameters which are compared to each other must have the same length [15]. Thus, the trials
of the last part of the experiment had to be merged to get one ECG stream of 200s. This could
have influenced the calculation of the HRV parameters. Another possible reason could be that
the pauses between the trials were relatively long compared to the length of the trials. Also,
the parasympathetic and the sympathetic nervous systems needed some time to adapt to new
situations and thus it is possible that the length of one trial was too short for their adaptation.
Although, it would be interesting to compare the stress level of the simulation to the stress level
of the last part of the experiment this is not possible because of the reasons mentioned before.
The comparison of the individual HRV parameters, which are displayed in Table 3.5, 3.6 and 3.7
of the rest compared to recording and the rest compared to the simulation based on LF shows
that the parameters of eight out of the ten participants agree with the findings of Castaldo et
al. [16]. A comparison between the individual HRV parameters of the rest recording compared
to the last experiment shows that five of the participants showed an increase of the LF.

4.6 Further Improvements

Several points for further improvements for pursuing experiments can be addressed.
First of all, the pause within the different trials of the last part of the experiment was very long
compared to the length of the trial. It could be possible to combine the releasing mechanism
with a rope winch. This way, the experiment can be executed by only one person because there
is no need to attach it to servo motor again. Also other experiments which are performed under
stress can be executed.
Second, there are more possibilities to measure if participants are stressed. Apart from the heart
rate and the HRV also the skin conductance, the cortisol level in salivary or blood and the size
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of the pupils can assess stress levels. The skin conductance can be measured by devices which
can be combined to the EEG system. To measure the level of cortisol it is necessary that saliva
or blood samples are analyzed by a laboratory. The change of size of the pupil can be measured
using a camera.
Another interesting aspect for further experiments would be to find out if people are also able to
control a BCI with more than one class. For example, experiments in which participants have
to control an robot arm or a prosthesis under time pressure could be performed.
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Conclusion

The goal of this thesis was to show that users are able to reliably control a brain-computer
interface under acute stress. Therefore, an experiment in which participants feel stressed needed
to be planned. The idea was to open a parachute while it fell down from the fifth floor of the
Biomedical Engineering Building of the University of Technology. A PMBERS was chosen
as mental task because it appears approximately one second after a motor imagery and thus
the participants had just one chance to open the parachute. To be sure that the experiment
works as it was planned, a pilot study at the 7th Graz BCI conference was performed. In the
study nine out of ten participants were able to open the parachute 15 times. According to the
questionnaire all of them felt more nervous and nine of them felt more stressed in the last part
of the experiment. The calculated parameter also showed that the stress level increased from
the rest recording to the simulation but they do not indicate that the stress level was higher
during the last part of the experiment.
All in all, the results of this study show that a BCI can be controlled by users in acute stress
situations and the findings can be used to proceed the research in this direction.
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6
Appendix

In this Chapter, the questionnaires which were filled out by each of the participants can be
found.
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