
submitted to

Graz University of Technology

DOCTORAL THESIS

Ing. Dipl.-Ing. Richard Schumi, BSc

Predicting and Testing System Response-Times
with

Statistical Model Checking and Property-Based Testing

Ao.Univ.-Prof. Dipl.-Ing. Dr. Bernhard K. Aichernig

Institute of Software Technology (IST)
 Graz University of Technology, Austria

to achieve the university degree of

 Doktor der technischen Wissenschaften

Supervisor

External Reviewer and Examiner
Prof. John Hughes, Ph.D.

Chalmers University of Technology, Gothenburg, Sweden

Graz, October 2018

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all material

which has been quoted either literally or by content from the sources used. The text

document uploaded to TUGRAZonline is identical to the present doctoral thesis.

Date Signature

eingereicht an der

Technischen Universität Graz

Graz, Oktober 2018

DISSERTATION

Ing. Dipl.-Ing. Richard Schumi, BSc

Vorhersage und Testen von Systemantwortzeiten
mit

Statistical Model Checking und Property-Based Testing

Ao.Univ.-Prof. Dipl.-Ing. Dr. Bernhard K. Aichernig
 Betreuer

Institut für Softwaretechnologie
Technische Universität Graz, Österreich

Externer Gutachter und Prüfer
Prof. John Hughes, Ph.D.

Chalmers University of Technology, Göteborg, Schweden

zur Erlangung des akademischen Grades

 Doktor der technischen Wissenschaften

i

Abstract

In recent years, software systems have become increasingly omnipresent. Especially since
the Internet of Things is spreading into the everyday life of millions of people. However, these
systems often fail to satisfy the requirements of the users, both in terms of functionality and
performance. Hence, in order to increase user satisfaction, it is essential to perform a rigorous
quality-assurance process, most importantly in the form of software testing.

A testing technique that became popular in recent years is property-based testing. This
technique relies on randomly generated test data in order to check if functions- or systems-
under-test work as expected. Moreover, it can perform a test-case generation that is based
on a behavioural model of a system. The definition of such a model normally requires a
high manual effort. To deal with this issue, we present a testing technique that works with
business-rule models that are existing system artefacts. Hence, there is no need for a manual
model definition. We apply this method in order to find bugs, to increase the confidence in
the functionality of the system, and also to produce log data, which we apply for performance
testing.

Performance testing comprises a group of techniques that aim to evaluate performance
requirements, like responsiveness or scalability of a system. It usually involves a high number
of tests that are directly executed on a system, which becomes especially cumbersome, when
different usage scenarios should be considered. Therefore, we propose a model-based method
that works with a fast simulation to predict the expected response times for users.

First, we run property-based testing concurrently to obtain log data from simultaneous
system interactions. Based on this data, we learn a stochastic model that we apply for statis-
tical model checking in order to receive predictions with a certain confidence. Moreover, we
propose an efficient evaluation technique for such predictions. By performing hypothesis test-
ing on the system, we can check the accuracy of our model with fewer samples than needed
for the model simulation.

Our method is realised in a property-based testing tool that we have enhanced with algo-
rithms from statistical model checking. This tool allows both, simulating stochastic models
and testing the simulation results directly on a system. We demonstrate the feasibility with
an industrial case study of a web-service application and by performing a comparison of two
protocol implementations from the Internet of Things.

Keywords: Property-Based Testing, Statistical Model Checking, Model-Based Testing, Per-
formance, Response Time, Latency, Web-Service Application, Business-Rule Models, Internet
of Things, MQTT, FsCheck.

ii

iii

Kurzfassung

In den letzten Jahren sind Softwaresysteme zunehmend allgegenwärtig geworden, beson-
ders weil das Internet der Dinge in den Alltag von Millionen einfließt. Diese Systeme erfüllen
jedoch oft nicht die Anforderungen der Benutzer, sowohl hinsichtlich der Funktionalität als
auch der Performance. Um die Benutzerzufriedenheit zu erhöhen, ist es daher wichtig, eine
strenge Qualitätssicherung durchzuführen, vor allem in Form von Softwaretests.

Eine Testtechnik, die in letzter Zeit populär wurde, ist Property-Based Testing. Diese Tech-
nik beruht auf zufällig generierten Testdaten, die verwendet werden, um zu überprüfen, ob
bestimmte Funktionen oder Systeme wie erwartet funktionieren. Darüber hinaus unterstützt
diese Technik eine Testfallgenerierung basierend auf einem Verhaltensmodell eines Systems.
Die Definition eines solchen Modells erfordert normalerweise einen hohen manuellen Auf-
wand. Um diesem Problem zu begegnen, stellen wir eine Testmethode vor, die mit Business-
Rule-Modellen arbeitet, welche bereits vorhandene Systemkomponenten sind. Daher ist keine
manuelle Modelldefinition erforderlich. Wir setzen diese Methode ein, um Fehler zu finden,
um das Vertrauen in die Funktionalität des Systems zu erhöhen, und um Log-Daten zu erzeu-
gen, die wir für Performance-Tests verwenden.

Performance-Testen umfasst eine Gruppe von Techniken, die darauf abzielen, Leistungs-
anforderungen wie Systemreaktionsfähigkeit oder Skalierbarkeit zu bewerten. Dies erfordert
normalerweise eine große Anzahl von Tests, die direkt auf einem System ausgeführt wer-
den, und wird besonders aufwendig, wenn verschiedene Anwendungsszenarien betrachtet
werden. Deshalb präsentieren wir eine modellbasierte Methode, die mit einer schnellen Simu-
lation die erwarteten Antwortzeiten für Benutzer vorhersagt.

Zuerst wenden wir Property-Based Testing in mehreren nebenläufigen Prozessen an, um
Log-Daten von simultanen Systeminteraktionen zu erhalten. Basierend auf diesen Daten ler-
nen wir ein stochastisches Modell, das wir für Statistical Model Checking verwenden, um
Vorhersagen mit einer gewissen Konfidenz zu erhalten. Darüber hinaus schlagen wir eine
effiziente Evaluierungstechnik für solche Vorhersagen vor. Indem wir Hypothesentests am
System durchführen, können wir die Genauigkeit unseres Modells mit weniger Proben, als
für die Modellsimulation erforderlich sind, überprüfen.

Unsere Methode wird in einem Property-Based Testing-Tool realisiert, das wir mit Algo-
rithmen für Statistical Model Checking erweitert haben. Dieses Tool ermöglicht sowohl das
Simulieren von stochastischen Modellen als auch das direkte Testen der Simulationsergebnis-
se auf einem System. Wir demonstrieren die Machbarkeit mit einer industriellen Fallstudie
einer Web-Service-Anwendung und mit einem Vergleich zweier Protokollimplementierungen
aus dem Internet der Dinge.

Schlagworte: Property-Based Testing, Statistical Model Checking, Modellbasiertes Testen,
Performance, Antwortzeit, Latenz, Web-Service-Anwendungen, Business-Rule-Modelle, Inter-
net der Dinge, MQTT, FsCheck.

iv

v

Acknowledgements

Many people helped me during the course of my Ph.D. studies and supported my research
that led to this thesis. I am thankful to all of them and want to mention my biggest supporters.

Most importantly, I am grateful to my supervisor Bernhard K. Aichernig, who inspired me
to start with testing software and systems. Moreover, he was a great mentor during all these
years, and he taught me various skills that were necessary for writing this thesis.

I would like to thank my co-authors and project partners, who helped me to write the pa-
pers that form the basis of this thesis and who supported me in carrying out the experiments.
Especially, I want to mention the following people at AIT: Priska Bauerstätter, Willibald Krenn,
Cristinel Mateis, Rupert Schlick, and at AVL, Elisabeth Jöbstl, Severin Kann, Robert Korošec,
Christoph Schwarz, and Manfred Uschan.

Furthermore, I am grateful to my colleagues Christian Burghard and Martin Tappler, and
my former colleagues Florian Lorber and Stefan Tiran, for their valuable reviews and com-
ments that helped to improve the quality of my work. I would like to thank my external
examiner John Hughes for reviewing this thesis and for serving as an external examiner.

Last but not least, I would like to express my gratitude to my family and friends for their
support during my studies, and because they have accompanied me on the path that led to
this thesis.

The research leading to this thesis was funded by the Austrian Research Promotion Agency
(FFG), project number 845582, “Trust via cost function driven model based test case generation
for non-functional properties of systems of systems” (TRUCONF) and also by Graz University
of Technology, LEAD project “Dependable Internet of Things in Adverse Environments”.

vi

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Property-Based Testing . 1
1.3 Statistical Model Checking . 2
1.4 Research Context . 3

1.4.1 Research Projects . 3
1.4.2 Case Studies . 4

1.5 Problem Statement and Research Questions . 6
1.6 Research Methodology . 7
1.7 Thesis Statements . 8
1.8 Contributions . 9
1.9 Publications . 9
1.10 Structure . 11

2 Background 13
2.1 Property-Based Testing . 13

2.1.1 Overview . 13
2.1.2 FsCheck . 13
2.1.3 Model-Based Testing . 14

2.2 Statistical Model Checking . 16
2.2.1 Standard Monte Carlo Simulation . 16
2.2.2 Monte Carlo Simulation with Chernoff-Hoeffding Bound 16
2.2.3 Sequential Probability Ratio Test . 17
2.2.4 Cumulative Sum . 18

2.3 Linear Regression . 19
2.4 Stochastic Timed Automata . 22

3 Property-Based Testing with Business-Rule Models 25
3.1 Overview . 25
3.2 Business-Rule Models . 26
3.3 Property-Based Testing with Extended Finite State Machines 28

3.3.1 State-Machine Properties . 29
3.3.2 Example of Model-Based Testing with FsCheck 31

3.4 Application-Specific Extensions to the Method . 34
3.4.1 Translating Business-Rule Models into Extended Finite State Machines . 34
3.4.2 Switching Between Rule-Engine Models Objects 35

3.5 Architecture and Implementation . 36
3.5.1 Singleton Rule-Engine Models . 37

3.6 Evaluation . 40
3.6.1 Settings . 41
3.6.2 Test Order Manager Case Study . 41
3.6.3 Test Equipment Manager Case Study . 44
3.6.4 Further Result . 47

3.7 Property-Based Testing with External Test-Case Generators 47
3.8 Discussion . 49

3.8.1 Limitations and Threats to Validity . 49
3.8.2 Future Work . 50

3.9 Concluding Remarks . 50

viii

4 Integrating Statistical Model Checking Into Property-Based Testing 51
4.1 Overview . 51
4.2 Example . 52
4.3 Implementation . 55
4.4 Evaluation . 58

4.4.1 Dining Philosophers Case Study . 58
4.4.2 Randomised Consensus Case Study . 60
4.4.3 Bluetooth Case Study . 61

4.5 Concluding remarks . 62

5 Learning Response-Time Distributions for Extending Functional Models 65
5.1 Model-Based Testing for Log Data . 65

5.1.1 TFMS . 65
5.1.2 MQTT . 66

5.2 Learning Response-Time Distributions with Linear Regression 68
5.2.1 Data Cleaning and Pre-Processing. 68
5.2.2 Feature Selection. 69
5.2.3 Model Evaluation. 70
5.2.4 Integration of the Response-Time Distributions. 71

6 Statistical Model Checking for Predicting and Testing Response-Times 73
6.1 Monte Carlo Simulation of the Model for Predicting Response Times 73
6.2 Hypothesis Testing of the System-Under-Test for Checking Response-Time Pre-

dictions . 76
6.3 Implementation of the Response-Time Prediction and Testing Method 78

7 Evaluation of the Response-Time Prediction and Testing Method 83
7.1 TFMS . 83

7.1.1 Settings. 83
7.1.2 Test Order Manager . 83
7.1.3 Test Equipment Manager . 86
7.1.4 Run Times of the Method . 88

7.2 Deployment Testing . 89
7.3 MQTT . 91

7.3.1 Settings . 91
7.3.2 Results . 92
7.3.3 Run Times of the Method . 94

7.4 Discussion . 95

8 Related Work 97
8.1 Model-Based Testing of Business-Rule Models within a Property-Based Testing

Tool . 97
8.2 Integrating Statistical Model Checking Into Property-Based Testing 100
8.3 Model-Based Prediction and Verification of Performance 102

9 Conclusion 107
9.1 Research Questions . 107
9.2 Contributions . 110
9.3 Conclusions . 111
9.4 Future Work . 112

Bibliography 114

ix

List of Figures

1.1 Taxonomy of MBT in relation to PBT. 3
1.2 Client-server architecture of the TFMS. 5
1.3 Overview of the interactions of an MQTT setup. 6
1.4 Overview of the data flow of our method. 8

2.1 Linear regression example for two-dimensional data points. 22
2.2 Stochastic timed automaton of a faulty slow counter. 23

3.1 Overview of the steps for the test-case generation with business-rule models. . . 26
3.2 Command definition for property-based testing. 30
3.3 EFSM of the Incident Manager. 32
3.4 Translation of a rule-engine model to an EFSM by translating the attributes,

tasks and states of the rule-engine model to the 6-tuple representing an EFSM. . 35
3.5 Switching between objects of the incident object class. 36
3.6 Switching between rule-engine models inside the Test Order Manager. 37
3.7 Switching between modules: Test Order Manager (TOM), Test Factory Sched-

uler (TFS), Test Equipment Manager (TEM). 37
3.8 Class diagram for a model, which is parsed from XML and serves as input to

FsCheck as part of the Spec. 38
3.9 EFSM for Test Orders. 42
3.10 EFSM for Business Process Templates. 42
3.11 EFSM for Test Order Templates. 42
3.12 TFMS form for the AdminEdit task. 43
3.13 Test Order Manager: Transition coverage for increasing number of test cases. . . 44
3.14 Test Order Manager: Transition-pair coverage for increasing number of test cases. 45
3.15 EFSM for the rule-engine models of the Test Equipment Manager module. . . . 45
3.16 Test Equipment Manager: Transition coverage for increasing number of test cases. 47
3.17 Test Equipment Manager: Transition-pair coverage for increasing number of

test cases. 47
3.18 Overview of the steps for the integration of an external test-case generator. . . . 48

4.1 Data flow diagram of an SMC property. 51
4.2 Stochastic model example of a counter. 52
4.3 Simulation results for the property: how likely is it that the stochastic counter

behaves like a normal counter? . 54
4.4 State machine of a philosopher as presented for PLASMA-lab. 58
4.5 Simulation results for the property: can the protocol finish within B steps for

different k values and a process number of 10? . 60
4.6 Bluetooth device discovery as presented for PRISM. 61
4.7 Bluetooth evaluation results for the property: what is the probability that we

can observe k replies within a specified time? . 61

5.1 Functional EFSM model for Business Process Templates. 66

x

5.2 Functional model for an MQTT client. 67

6.1 Stochastic timed automaton of one TFMS Business Process Template object. . . . 74
6.2 Stochastic timed automaton for the timing behaviour of an MQTT client. 75
6.3 Overview of the data flow of our deployment-testing method. 77
6.4 Generator sequence of a task that is executed with a sequence generator. 79

7.1 Test Order Manager simulation results of the model. 85
7.2 Test Order Manager simulation results of the model with filled DB. 85
7.3 Test Equipment Manager simulation results of the model. 87
7.4 Test Equipment Manager simulation results of the model with filled DB. 87
7.5 Test Order Manager Monte Carlo simulation results of the model. 90
7.6 SPRT results of the different deployments. 90
7.7 Average number of samples (test cases) for the SPRTs of our deployments. . . . 91
7.8 UP1 Monte Carlo simulation results for Mosquitto and emqtt. 93
7.9 UP2 Monte Carlo simulation results for Mosquitto and emqtt. 93

xi

List of Tables

2.1 SPRT example execution. 18
2.2 CUSUM example execution. 20

3.1 Number of states, tasks, transitions and attributes of the REMs within the Test
Order Manager. 41

3.2 Average number of commands needed for finding the issues of the Test Order
Manager. 44

3.3 Number of states, tasks, transitions and attributes of the REMs of the Test
Equipment Manager. 45

3.4 Average number of commands needed for finding the issues of the Test Equip-
ment Manager. 47

4.1 Dining philosophers run time comparison for rising table size for Property 1. . 59
4.2 Dining philosophers CUSUM evaluation results with different initial numbers

of philosophers. 60
4.3 Bluetooth property: what is the probability that the receiver sleeps at most s

times until we observe k replies? . 62
4.4 Bluetooth property: is the probability that we can observe k replies within a

certain time closer to x or y? . 62

5.1 Example log data of the TFMS Business Process Template model. 66
5.2 Example log data of the MQTT broker Mosquitto. 67

7.1 Test Order Manager results of the SUT evaluation with the SPRT. 86
7.2 Test Equipment Manager results of the SUT evaluation with the SPRT. 88
7.3 Average simulation time [min:s] of the model for the Test Order Manager and

the Test Equipment Manager for an empty and filled database. 88
7.4 Different system deployments with various hardware/network settings. 89
7.5 Different SPRTs for various numbers of users and thresholds. 90
7.6 Average time [min:s] for the Monte Carlo simulation of the model. 93
7.7 Results of the evaluation of the SUT with the SPRT for usage profile UP1. 94
7.8 Results of the evaluation of the SUT with the SPRT for usage profile UP2. 94

xii

xiii

List of Algorithms

1 Pseudo code of the test-case generation for EFSMs. 31
2 Pseudo code of the test-case execution for EFSMs. 31
3 Incident specification Spec of the incident manager. 32
4 IncidentCreateTask command definition of the incident manager. 33
5 Attribute data generation for the form data of the incident manager. 39
6 Next: generates a Cmd for a given model. 40
7 DynamicCmd: generic Cmd definition. 40
8 Stochastic counter implementation for FsCheck. 53
9 Pseudo code of the MonteCarloProperty. 55
10 Pseudo code of the ChernoffProperty. 56
11 Pseudo code of the SPRTProperty. 56
12 Pseudo code of the CUSUMProperty. 57
13 Pseudo code of a response-time generator for the TFMS. 79
14 Pseudo code of a latency generator for MQTT. 80
15 Pseudo code of the test-case generation for classical PBT and SMC. 81

List of Listings

2.1 FsCheck specification of a counter from the FsCheck website. 15

3.1 Simplified XML representation of a rule-engine model. 28
3.2 Generated command sequences for the incident manager. 34
3.3 Generated form data for a task of the incident manager. 34

5.1 Regression model excerpt for TFMS Business Process Templates. 71
5.2 Linear regression output (excerpt) for the MQTT broker Mosquitto. 72

6.1 Usage profile for the TFMS Business Process Template model. 73
6.2 MQTT usage profile UP1 with time bounds and weights for messages. 74

7.1 Usage profile of the Test Order Manager. 84
7.2 Linear regression model of the Test Order Manager. 84
7.3 Usage profile of the Test Equipment Manager. 87
7.4 Linear regression model of the Test Equipment Manager. 87
7.5 Linear regression output (excerpt) for the MQTT broker emqtt. 92
7.6 MQTT usage profile UP2 with more frequent publish messages. 92

xiv

xv

Abbreviations

CUSUM Cumulative Sum

DB Database

EFSM Extended Finite State Machine

ICM Incident Manager

IoT Internet of Things

MBT Model-Based Testing

MLR Multiple Linear Regression

MQTT Message Queuing Telemetry Transport

OLS Ordinary Least Squares

PBT Property-Based Testing

REM Rule-Engine Models

SMC Statistical Model Checking

SPRT Sequential Probability Ratio Test

STA Stochastic Timed Automata

SUT System-Under-Test

TA Timed Automata

TEM Test Equipment Manager

TFMS Testfactory Management Suite

TFS Test Factory Scheduler

TOM Test Order Manager

xvi

1

1 Introduction

1.1 Motivation

Software systems are becoming increasingly complex, but they still have to satisfy various user
expectations. One of the major user demands is that a software system should provide the
expected functionality. However, besides this functional aspect, a system should also provide
acceptable performance, i.e., it should be fast enough so that the users do not have to wait too
long. It has been shown that users become increasingly dissatisfied, when a system has long
response times [86]. This can lead to a point where users are not willing to reuse a system.
Moreover, studies suggest that response times have a strong influence on the profit of Internet
companies, e.g., adding only 100 ms delay can drop sales in e-commerce by 1% [148].

In order to verify the fulfilment of such functional and non-functional requirements, rig-
orous quality-assurance methods are usually performed during software development. One
of the most common approaches to check functional requirements, are manually written unit
tests. Such unit tests usually contain specific test data in order to evaluate a certain function-
ality of a system. However, their definition requires a high amount of manual effort, and they
only cover limited aspects of the system functionality. Testing is often the largest phase in
a software-development project [134] and it can reach over 50% of the project time and also
50% of the costs [132]. Moreover, it has been shown that only about 55 to 60% of the logic
paths of a software system are covered by manually written test cases, when no automated
coverage analysis tools are applied during the testing phase [70], and that the automation of
the test-case generation can significantly increase the coverage [65].

Property-based testing [47], which is a flexible random testing techniques, can overcome
some of these issues. It can reduce the manual effort by automatically generating test data,
and it can produce tests according to a model of the system behaviour, which helps to cover
various system functionalities. Usually, such models have to be implemented manually, but
we present a method that takes a system component as a basis for a model. This provides an
even higher degree of automation.

In order to evaluate performance requirements of a system, usually techniques like per-
formance testing, stress testing, or load testing are performed [130]. Such techniques analyse
the responsiveness and scalability of a system, e.g., they check if an increasing number of
users is supported. A disadvantage of these approaches is that they usually require many
tests to be executed directly on the real system. This is especially cumbersome when various
usage scenarios should be considered. Fortunately, there exist alternative solutions, like sta-
tistical model checking, that can accelerate such analyses by simulating a model to estimate
the performance of a system.

Statistical model checking [2] is an approximate simulation-based method that can calcu-
late probabilities or perform hypothesis tests of models or systems. We apply statistical model
checking to predict the probability that a system meets certain response-time thresholds un-
der various usage scenarios. Moreover, we illustrate how such predictions can be efficiently
tested on real systems with hypothesis testing. This should help to increase the confidence in
the expected performance of a system.

1.2 Property-Based Testing

Property-based testing (PBT) [47] is a random testing technique that tries to falsify a given
property. A property is defined for a function- or system-under-test (SUT) and it describes
its expected behaviour. In order to test such a property, a PBT tool generates random inputs

2 Chapter 1. Introduction

for the function or SUT and checks if the expected behaviour is observed. PBT can be per-
formed with different types of properties. Simple algebraic properties are predicates that can,
e.g., check the output of a function-under-test. For more complex evaluations, PBT also sup-
ports model-based testing (MBT) [179], where the expected behaviour of a function or SUT
is described with a behavioural model. Such models are usually in the form of a state ma-
chine. In order to perform PBT with such models, it is necessary to implement a state-machine
specification that defines the connection between the model and the SUT. This specification
comprises functions to initialise the model and the SUT, commands that define the possible
actions, and a generator that produces the next command for the current state of the model. A
command has a precondition that specifies when it is enabled, a postcondition that describes
the expected behaviour, and functions to execute the model and the SUT. In order to evaluate
such a specification, a PBT tool produces random command sequences, executes them on the
SUT and checks the postconditions. A command sequence can also incorporate generated test
data (e.g., form data). An advantage of PBT is that it facilitates the generation of complex test
data. It provides default generators (for standard data types) that can be nested, extended,
combined, etc. to form custom generators.

We can characterise MBT with PBT based on a taxonomy of Utting et al. [180] as illustrated
in Figure 1.1, where the applicable categories are coloured in blue. PBT supports a variety of
input-output models that may have non-deterministic characteristics and may include timing
behaviour. It has a pre-post modelling paradigm that is transition-based and can include
stochastic choices. The test-case generation is usually random (with a uniform distribution),
but other stochastic distributions can also be applied for the test selection. The test execution
is usually offline, i.e., a test case is only executed on a system, after it was generated [5].

PBT is especially convenient for applications, where complex test data is needed. Conse-
quently, it has been applied for web-service and protocol testing [22, 67, 118, 144]. Moreover,
PBT is helpful for performance testing as its random input generation enables an analysis
with a variety of different inputs. For example, we apply PBT for load testing [59, 127], where
we run several test-execution processes concurrently in order to simulate the behaviour of
various user populations and to find out the limits of a given SUT. More details about PBT
are given in Section 2.1.

1.3 Statistical Model Checking

Statistical model checking (SMC) [2] is a simulation-based method that can answer both quan-
titative and qualitative questions. For example, questions like “What is the probability that
a model satisfies a property?” or “Is this probability greater, or below a certain threshold?”.
More concretely, a question might be “How likely will a system respond within 100 ms given
a specific usage scenario?” [6].

In order to answer such questions, a statistical model checker will simulate the model (or
system) and check if the property is satisfied for this simulation. A simulation of the model
represents a sample. SMC algorithms either calculate the number of needed samples or a
stopping criterion, which describes when they can finish with a required confidence [6].

The simplest SMC algorithm is a Monte Carlo simulation. For this algorithm, the model is
executed with a fixed number of samples and the portion of the samples that satisfy a given
property gives us an estimate for the probability that the property holds.

Another common SMC algorithm is the sequential probability ratio test (SPRT) [187]. This
sequential algorithm is a form of hypothesis testing, where either a null or an alternative
hypothesis is accepted. We have a stopping criterion based on given error parameters. As
long as the stopping criterion is not true, we are in an indifference region and have to continue
sampling. We can stop, when we are outside this region, i.e., when the stopping criterion

Chapter 1. Introduction 3

PBT

Test Execution On/Offline
Offline

Online

Test Generation

Technology

Constraint Solving

Theorem Proving

Symbolic Execution

Model-Checking

Search-Based Algorithms

Random Generation

Test-Selection Criteria

Fault-Based

Random & Stochastic

Test-Case Specifications

Requirements Coverage

Data Coverage

Structural Model Coverage

Model Specification

Paradigm

Data-Flow

Stochastic

Operational

Functional

History-Based

Transition-Based

Pre–Post or Input Domains

Characteristics

Discrete/Hybrid/Continuous

Deterministic/Non-Det.

Untimed/Timed

Scope Input-only/Input-Output

Figure 1.1: Taxonomy of MBT in relation to PBT based on Utting et al. [180].

holds. When the upper or lower bound of the region was reached, then we accept either the
null or alternative hypothesis. More details about SMC algorithms are given in Section 2.2.

1.4 Research Context

1.4.1 Research Projects

The work of this thesis has been conducted within two research projects. The first project and
major project of this thesis was TRUCONF (Trust via cost function driven model based test
case generation for non-functional properties of systems of systems).1 This research project
was joint work between the Austrian Institute of Technology (AIT)2, AVL List GmbH3 and

1http://truconf.ist.tugraz.at (visited on 2018-09-19)
2https://www.ait.ac.at (visited on 2018-09-19)
3https://www.avl.com (visited on 2018-09-19)

http://truconf.ist.tugraz.at
https://www.ait.ac.at
https://www.avl.com

4 Chapter 1. Introduction

the Graz University of Technology (TU Graz) and it was funded by the Austrian Research
Promotion Agency (FFG). The aim of the project was to verify the reliability of systems-of-
systems, not only in terms of the functionality of the systems, but also the non-functional
reliability, like the performance of the systems. TRUCONF intends to combine cost-function
learning and model-based testing in order to support this kind of verification. Moreover, it was
planned to introduce new modelling notations/languages in order to increase the accessibility
for developers from industry.

The second project of this thesis is called Dependable Things (Dependable Internet of
Things in Adverse Environments)4 and it is funded by TU Graz. It is an ongoing flagship
project that encourages the cooperation among research groups within TU Graz. Therefore,
the project is joint work of ten researchers from different institutes and research fields of
TU Graz, like electrical and information engineering, and computer science. The aim of this
project is to increase the dependability of “Smart Things”, which form the basis for the Internet
of Things (IoT). The IoT is becoming increasingly popular, as technologies, like smart homes,
connected cars and so on, are reaching the end user market. However, dependability aspects
that comprise reliability, safety, and security are still not verified thoroughly enough. Hence,
the Dependable Things project intends to eliminate this problem in order to increase the trust
in the IoT.

Both these projects contributed a case study that was dealt with during this thesis and is
described below.

1.4.2 Case Studies

TFMS. This description is taken from our previous work [5, 9].
Our industrial partner from the automotive industry (AVL) provided us with a web-service

application called testfactory management suite (TFMS). This industrial application was used
as the main case study of the TRUCONF project. The application originates from the auto-
motive domain and is a workflow tool that supports the process of instrumenting and testing
automotive power trains – a core business of AVL. TFMS captures test-bed data, activities,
resources, and workflows. A variety of activities can be realised with the system, like test
definition, planning, preparation, execution, data management, and analysis.

The application is intended for various kinds of automotive test beds for car components,
like engines, gears, power trains, batteries for electric cars or entire cars. For instance, for
testing an engine it is mounted to a pallet and also different test equipment is attached. The
selection of the test equipment depends on the specific use case. Typical test equipment for
an engine might be a measurement device for the power output or the fuel consumption.
After a pallet is configured, it is moved to the test bed, where all devices are connected
and a test is performed. TFMS manages all steps and devices required by such a workflow,
which is also called a test order. It allows the scheduling of car components that need to be
tested, the selection of required test equipment, the definition of the required wiring for the
equipment, and the planning of the sequence of all tasks at a test bed. Moreover, customer
specific requirements, like additional management steps or custom restrictions, can be freely
configured via business rules.

The system has a client-server architecture which is illustrated in Figure 1.2. The “TFMS
Server” is the central component of the system. This server is hosted in Microsoft’s IIS (In-
ternet Information Services) and provides several simple object access protocol (SOAP) web
services, which are described via the web services description language (WSDL). For data
storage, MongoDB5 is used. TFMS offers different types of client applications: one to collect

4https://www.tugraz.at/projekte/dependablethings (visited on 2018-09-19)
5https://www.mongodb.com (visited on 2018-09-19)

https://www.tugraz.at/projekte/dependablethings
https://www.mongodb.com

Chapter 1. Introduction 5

TFMS Clients

Mongo DB

TFMS Server

Test Field Adapter

Test Order Manager

Test Equipment Manager

Unit Under Test Manager

Test Factory Scheduler

CFG Client

Application Pool TFMS_CFG

Application Pool TFMS

Webservice TfaWS

Webservice TomWS

Webservice TemWS

Webservice UutWS

Application Pool TFMS_TFS

Webservice TfsWS

Webservice CfgWS

Figure 1.2: Client-server architecture of the TFMS.

data from the test beds, several office clients for different management activities (e.g., test
order management) and a scheduler to plan the execution of test activities on the test beds.

TFMS is highly configurable and offers an own client application for server configurations
(CFG Client). The web services are driven by a custom implementation of business rules. A
rule engine takes this business logic in the form of business-rule models and interprets them,
which defines the control-flow of the application. The system consists of multiple modules
corresponding to the mentioned clients. Modules can be seen as groups of functionality, and
they consist of multiple business-rule models which describe what tasks can be performed by
a user and how they look like, e.g., what data can be modified. Only one business-rule model
can be active within one client application and it determines, which forms can be opened in
the current state of the system.

A business-rule model is a state machine defining the behaviour of the business objects, so
called TFMS Objects. A TFMS Object class describes objects of our application domain, like
test equipment or test orders. Each object has a state, an identifier, attribute values/data and
is stored in the database of our SUT. TFMS works task-based. Tasks represent the behaviour,
i.e., the actions or events a user may trigger, e.g., creating or editing TFMS objects. Example
business-rule models and a description of tasks and subtasks are presented in Chapter 3.

TFMS is a critical software, because it is essential to efficiently operate test beds. It is
deployed at various customers where it is running under different hardware and network
settings. Moreover, it is applied for several application fields and under varying usage condi-
tions, i.e., with several users and different user types. It is important for AVL that the system
is fast enough to satisfy even high numbers of (concurrent) users. Hence, in this work we
are investigating the performance of TFMS for various usage scenarios and also for different
deployments.

MQTT. A case study that we considered within the Dependable Things project was the
Message Queuing Telemetry Transport (MQTT) protocol [28], which is an important commu-
nication standard within the IoT. This protocol follows a publish-subscribe pattern and allows
clients to subscribe to topics that are maintained on a central broker. A subscriber can, e.g., be
a personal computer, a smart phone or any device that should react to or monitor published
messages. Clients that publish messages are often sensors, e.g., a temperature sensor in a
smart home, but also various other devices may publish messages.

A client can publish a message to a topic by sending the message to the broker. The
broker will then distribute this message to the subscribed clients. Figure 1.3 illustrates the

6 Chapter 1. Introduction

MQTT
Broker

Client 1

Client 2

Client 3
(Subscriber)

Client 4
(Subscriber)

1. subscribe

3. publish

5. publish

1. subscribe3. publish5. publish

2. publish

4. publish

Figure 1.3: Overview of the interactions of an MQTT setup (based on Fujita et al. [68]).

interactions within an MQTT network under the assumption that we only have one topic.
(This figure is based on a concept diagram from Fujita et al. [68].) It can be seen that clients
first subscribe to the given topic by sending a subscribe message to the broker (1). Then,
when a client publishes a message to this topic by sending the message to the broker (2), it is
forwarded to the subscribed clients (3). A further publish message (4) of another client is also
sent to the same subscribed clients (5) by the broker.

There exist various client and broker implementations that follow the MQTT standard.
However, it is not clear if all of them function according to the standard, and which imple-
mentation is the fastest under a specific usage condition. In this work, we are interested in
the performance of specific MQTT broker implementations, i.e., we test the latencies from the
perspective of a client. Additionally, we can also test the functionality and robustness of these
implementations.

1.5 Problem Statement and Research Questions

PBT is a flexible testing technique, especially its model-based testing feature is useful for many
applications. However, like most model-based testing approaches, it still requires manual
effort for the definition of a model. Various related approaches showed how some web-service
descriptions can facilitate the model definition [62, 64, 109, 116], but they do not construct a
complete model with these descriptions.

The challenge of the high modelling effort and the fact that our SUT was driven by a
business-rule engine led to the following research question:

RQ1: Can business-rule models be applied as test models for property-based test-
ing in order to perform load testing and also to find bugs?

• RQ1.1: What kind of bugs and issues can be found?
• RQ1.2: What are the benefits and drawbacks compared to conventional model-based

testing?
• RQ1.3: What are adequate test-case generation strategies for such models?

Another important challenge of this thesis was performance testing. Performance testing
is a difficult task, but it is important to ensure that users are satisfied and do not have to
wait too long for a system response. It becomes especially challenging when various usage
scenarios should be considered. There are existing methods that directly test a system, like
load testing, and estimation techniques that simulate the performance with a model. However,
they both suffer from certain disadvantages. On the one hand, a high number of tests that
are directly executed on the system is needed, and on the other hand, the accuracy of the
models is questionable. In order to cope with these problems, we propose a combination of
these techniques. As explained earlier, we apply PBT for load testing, because it facilitates

Chapter 1. Introduction 7

the generation of test data, and we apply SMC for the model simulation. However, it was not
clear if these methods can work together, which led to the following research question:

RQ2: Is it possible to perform statistical model checking within a property-based
testing tool?

• RQ2.1: What are the differences to conventional statistical model checking?
• RQ2.2: What kind of questions can be answered?

Given a PBT tool with integrated statistical model checking, we wanted to assess the per-
formance of the aforementioned systems (Section 1.4.2), which resulted in the next research
question:

RQ3: Can a property-based testing tool be applied to predict the probability that a
system satisfies certain response-time thresholds for specific user populations?

• RQ3.1: What kind of user populations can be simulated?
• RQ3.1: How fast is the prediction?

The fact that predictions are often inaccurate led to the final research question:

RQ4: Is it possible to verify these predictions about the expected response time by
directly testing a system-under-test?

• RQ4.1: What is an efficient way to test the predictions?
• RQ4.2: How accurate are the predictions?

1.6 Research Methodology

The research of this thesis consists of exploratory, constructive, and empirical steps. First,
we preformed a literature survey of the state-of-the-art in order to find existing approaches
that are related to our research problem. This exploratory research is shown in Chapter 8.
During this stage, we noticed that the exiting approaches have some problems as explained in
Section 1.5.

In order cope with these problems, we applied constructive research. For this, we de-
veloped a tool for business-rule testing (Chapter 3), extended this tool with SMC algorithms
(Chapter 4) and evaluated our implementation by repeating case studies from the literature
and by a performance comparison with existing tools. Furthermore, we developed a simula-
tion and testing method that applies our tool and performs a combination of load testing and
a model-based performance prediction. This method supports fast statistical simulations of a
model and also statistical testing of a real system, both within one tool.

We applied empirical research for the evaluation of this method. It was applied to our two
case studies (Chapter 7) and we tried to falsify our hypotheses that the predicted performance
of the SUT is at least as good as the model. Moreover, we evaluated the run times of the model
simulation and of the hypothesis tests of the SUT in order to highlight the efficiency of our
proposed method.

The phases and the techniques that were applied for our method are illustrated in Fig-
ure 1.4, which outlines the overall process presented in this thesis.

8 Chapter 1. Introduction

Model-Based
TestingSUT Log Files

Linear
Regression

Response-Time
Distributions+

Timed
Model (STA)

Monte Carlo
of the Model
(virtual time)

Probabilities
as Hypotheses

Hypothesis Test
(SPRT) of the

SUT (real time)

Usage
Profiles

Accepted/Rejected
Hypotheses

XML Busines-
Rule Model

Busines Rule
Model Parsing

Functional
Model

Figure 1.4: Overview of the data flow of our method.

1. First, we take business-rule models (XML files) from our SUT as input and parse them
in order to obtain a functional model. Alternatively, the functional model can be defined
manually, which was, e.g., the case for the MQTT case study.

2. With this functional model, we perform model-based testing within a PBT tool to pro-
duce log data. We run several testing processes concurrently and capture log files that
include response times (or latencies) of simultaneous requests (or messages). Note that
with this concurrent test execution, we want to measure the response time for different
system loads. This means that this testing phase is a form of load testing.

3. Next, we perform a linear regression to learn response-time distributions from the log
data.

4. Then, we integrate these distributions and stochastic usage profiles into the functional
model. This gives us a combined model with the semantics of stochastic timed automata
(STA) [25].

5. This combined model is then executed with a Monte Carlo simulation in order to eval-
uate the probability that each user within a given population receives responses within
a certain time threshold.

6. Finally, we evaluate the predicted probabilities with hypothesis testing, namely with the
sequential probability ratio test (SPRT) [187], because this method usually requires fewer
samples than a Monte Carlo simulation.

1.7 Thesis Statements

In the following, we introduce the main statements that summarise the developed techniques
of this thesis and that should also serve as take-home messages.

The application of business-rule models for model-based testing makes sense for finding
bugs and also for load testing. It also supports a higher degree of automation since no manual
model definition is needed, like it is usually the case for model-based testing.

The application of a functional model for model-based testing enables the extension of
the functional model to a model with non-functional behaviour. This can, e.g., be done by
learning non-functional aspects, like the response time, from log data collected during the
execution of model-based testing.

Such an extended model enables a prediction of non-functional properties with a Monte
Carlo simulation and these predictions can be efficiently verified with hypothesis testing, since
this usually can be done with fewer samples.

Chapter 1. Introduction 9

1.8 Contributions

This thesis presents the following major contributions:

• We introduced a model-based testing approach that works with business-rule models
and can perform load testing and is also able to find bugs.

• Another contribution is the extension of a PBT tool with SMC algorithms. This extension
supports the statistical analysis of models and systems. Moreover, it supports confor-
mance testing of a stochastic faulty system by comparing it to an ideal model. The
extension was made for the PBT tool FsCheck, and we made it open-source in order to
contribute to the community.

• We illustrated how a functional model can be applied for model-based testing to produce
log data for learning non-functional aspects. Additionally, we used these non-functional
aspects in order to extend the initial functional model.

• We demonstrated how to apply a learned timed model to simulate the expected response
times of certain usage scenarios.

• Furthermore, we introduced an efficient evaluation method that can test the accuracy
of our learned model by checking the model prediction with hypothesis testing. This
allows us to identify usage scenarios that show a poor performance, which is necessary,
because we want to maximise the user satisfaction.

• Another contribution is the evaluation of our simulation and verification method by
applying it to an industrial web-service application and to open source protocol imple-
mentations.

• We introduced a further application possibility of this method, i.e., for deployment test-
ing, where we derive hypotheses about the expected response times from a reference
system to evaluate the performance of different deployments of this system with vari-
ous hardware and network settings.

1.9 Publications

Most of the work of this thesis has already been published in international workshop pro-
ceedings, conference proceedings, and journals. The published papers have gone through a
rigorous peer review process. One paper [9] has not yet been published, but it has been ac-
cepted with minor revisions. The following publications present the main contributions and
form the basis of this thesis:

A-MOST 2016 [4]. This paper introduced our testing approach that works with business-
rule models. The paper was mostly written by me, under the supervision of Bernhard K.
Aichernig, who wrote some small passages and polished the text. I performed all experiments.
The paper was published in the proceedings of the 12th Workshop on Advances in Model
Based Testing (A-MOST) and I presented it at this workshop in Chicago, USA in 2016.

MEMOCODE 2016 [7]. In this paper, we introduced SMC properties that facilitate exe-
cuting SMC algorithms within a PBT tool. Moreover, we applied this method for a stochastic
conformance analysis of an example implementation with stochastic faults. Most of the work
was done by me, but Bernhard K. Aichernig helped with some polishing and contributed
some small parts of the text to the paper. The work was published in the proceedings of the
14th ACM-IEEE International Conference on Formal Methods and Models for System Design
(MEMOCODE) and I presented it in Kanpur, India in 2016.

ICST 2017 [6]. This work extended the previous paper, where we introduced SMC prop-
erties. In this paper, we presented some optimisations for the evaluation of stochastic models
and we showed an extensive evaluation of this approach. This evaluation was done by re-
peating several case studies from the SMC literature. I did most of the work and Bernhard

10 Chapter 1. Introduction

K. Aichernig contributed small parts of the text, proofread and revised the paper. I presented
the paper at the 10th IEEE International Conference on Software Testing, Verification and
Validation (ICST) in Tokyo, Japan, in 2017.

ICTSS 2017 [162]. We introduced our model-based simulation and verification method in
this paper, and we also presented an evaluation of this method with our TFMS case study.
First, we performed model-based testing in order to obtain log data, which was then applied
to learn response-time distributions with a linear regression. These distributions allowed
us to simulate the expected response times of stochastic usage profiles, and we verified the
simulation results with hypothesis testing on the real system. The paper was joint work with
Priska Bauerstätter (maiden name Priska Lang), Bernhard K. Aichernig, Willibald Krenn, and
Rupert Schlick. I wrote most of the content of the paper, developed the theory, and performed
the experiments. Priska Bauerstätter did the linear regression and wrote the corresponding
sections. The other authors proofread and polished the content. The paper was published in
the proceedings of the 29th IFIP International Conference on Testing Software and Systems
(ICTSS) and I presented it in St-Petersburg, Russia in 2017.

SoSyM 2017 [5]. In this work, we extended our previous paper [4], where we introduced
our MBT approach for business-rule models. We added additional formalisations and algo-
rithms for PBT and for the translation of the TFMS business-rule models to models for PBT.
Moreover, we presented an additional case study. I produced most of the content and did
the experiments. Bernhard K. Aichernig helped with the formalisations, contributed small
texts, and made some textual improvements. The paper was published with open access in
the International Journal on Software and Systems Modeling (SoSyM).

SQJO [9]. This journal paper is an extension of our ICTSS paper [162]. We added a sec-
ond case study, and we also included an extensive description of the response-time learning
phase. The paper was joined work with Bernhard K. Aichernig, Priska Bauerstätter, Elisabeth
Jöbstl, Severin Kann, Robert Korošec, Willibald Krenn, Cristinel Mateis, and Rupert Schlick. I
did most of the paper writing. The authors from AVL contributed a description of the TFMS,
helped with some revising, and Severin Kann executed the experiments in a distributed envi-
ronment at AVL. Cristinel Mateis from AIT contributed the response-time learning technique
and wrote the corresponding sections. The other authors proofread the paper and made some
textual improvements.

SETTA 2018 [12]. This work presents an application of our model-based simulation and
verification method for deployment testing. We learned a model about the expected response
times of a reference system in order to derive hypothesis that we applied to analyse the
performance of deployments of this system that have a different hardware or network setting.
The paper was joint work with Bernhard K. Aichernig and Severin Kann. I wrote most of
the content, designed the experiments and did the necessary implementations. Bernhard K.
Aichernig made a few corrections. Severin Kann helped to run the experiments in an AVL
environment and contributed some small descriptions of our SUT. The paper was published in
the proceedings of the 4th Symposium on Dependable Software Engineering Theories, Tools
and Applications (SETTA) and I presented it in Beijing, China in 2018.

QEST 2018 [3]. In this paper, we applied our model-based simulation and verification
method, which we presented in the ICTSS paper [162], to MQTT implementations in order
to evaluate their performance. Most of the work was done by me under the supervision of
Bernhard K. Aichernig, who revised the paper. I presented this paper at the 15th International
Conference on Quantitative Evaluation of SysTems (QEST) in Beijing, China in 2018.

The following publication is also related to this thesis, but is not part of the main contri-
butions:

A-MOST 2017 [10]. We presented a PBT approach with an external test-case generator
in this paper. We compared the random generation technique of classical PBT with a more

Chapter 1. Introduction 11

targeted test-case generation that is based on model-based mutation testing. The paper was
joint work with Bernhard K. Aichernig and Silvio Marcovic. I wrote some contents of this
paper, Silvio Marcovic supplied most of the content and performed the experiments and
Bernhard K. Aichernig proofread and polished the paper. The paper was published in the
proceedings of the 13th Workshop on Advances in Model Based Testing (A-MOST) and I
presented it at this workshop in Tokyo, Japan in 2017.

1.10 Structure

The rest of this thesis is structured as follows: Chapter 2 explains the necessary background
information for this thesis, like PBT, SMC, linear regression and stochastic timed automata.
In Chapter 3, we present our model-based testing approach with business-rule models. Next,
Chapter 4 illustrates how we integrate SMC algorithms into a PBT tool, and we highlight the
applicability of this approach with examples from the SMC literature. Then, in Chapter 5,
we show how we generate log data that contains response times of simultaneous requests
with MBT. Moreover, we demonstrate how we can learn response-time distribution via linear
regression. Chapter 6 presents our performance prediction and testing method. We show the
construction of our combined model by integrating stochastic usage profiles and the learned
response-time distributions into our existing functional models. We demonstrate how these
models can be executed with a Monte Carlo simulation in order to predict probabilities about
the expected response times. Moreover, we illustrate an analysis of the accuracy of our models
with hypothesis testing, since this can efficiently be done on a real system. Next, in Chapter 7,
we evaluate our model-based simulation and verification method by performing several case
studies with the aforementioned TFMS and MQTT. Chapter 8 presents work related to the
main methods of this thesis. Finally, Chapter 9 gives a summary of the thesis, discusses the
research questions and contributions, explains potential future work, and concludes the work.

12 Chapter 1. Introduction

13

2 Background

This chapter contains parts from our publications in the journal SoSyM 2017 [5], at ICTSS 2017 [6],
at QEST 2018 and in the journal SQJO 2017 [9]. Especially, the linear regression in Section 2.3, was
joint work with Cristinel Mateis from AIT.

2.1 Property-Based Testing

2.1.1 Overview

Property-based testing (PBT) [47] is a random testing technique that evaluates a system by
verifying a given property. A property is a high-level specification of behaviour that should
hold for a range of data points. For example, a property might state that a function should
have a certain output. A test of this property is successful, when the function runs through
as expected, otherwise a counterexample is returned. Simple properties can be expressed as
functions with Boolean return values that are true when the property is fulfilled. These prop-
erties should hold for any input value, hence a high number of random inputs are generated
for the parameters. A simple example of an algebraic property is that the reverse of the reverse
of a list must be equal to the original list:

∀xs ∈ List[T] : reverse(reverse(xs)) = xs

To evaluate this property, a PBT tool will invoke its built-in generator for Lists and generate a
series of random lists xs, execute the reverse function and evaluate the property. A tester may
extend or replace the basic generators with special-purpose generators, e.g., for generating
extremely long lists. Generators are type-based and provide a sample function for the given
type. In the simplest case, a generator Gen[A] for a type A provides a function sample : ()→ A
that returns an instance of this type. For nested data types, generators take other generators
as arguments. For example, a generator for List[T] needs a generator for element values of
type T [89, 143, 158].

Another important aspect of PBT is shrinking, which is used to find a similar simpler
counterexample, when a property fails. In order to shrink a counterexample, a PBT tool
searches for smaller failing counterexamples. The search method can be specified individually
for different data types [89, 143, 158].

When we consider the property from above and assume a faulty reverse function, then
shrinking might help us to reduce a long list with many elements to a list with just two
elements that can still reproduce the same fault.

PBT constitutes a flexible and scalable testing technique, because it is random testing and
it has been shown that it generates a large number of tests in reasonable time [185]. The first
PBT tool was QuickCheck [47] for Haskell. There are many other tools that are based on the
concepts of QuickCheck, e.g., ScalaCheck [136] or Hypothesis6 for Python. For our approach,
we work with FsCheck7.

2.1.2 FsCheck

FsCheck is a PBT tool for .NET based on QuickCheck and influenced by ScalaCheck. Like
ScalaCheck, it extends the basic QuickCheck functionality with support for state-based mod-
els. With FsCheck, properties can be defined both in a functional programming style with F#

6https://pypi.python.org/pypi/hypothesis (visited on 2018-09-19)
7https://github.com/fscheck/FsCheck (visited on 2018-09-19)

https://pypi.python.org/pypi/hypothesis
https://github.com/fscheck/FsCheck

14 Chapter 2. Background

and in an object-oriented style with C#. Similar to QuickCheck, it has default generators for
basic data types and more complex ones can be defined via composition. It enables a simple
introduction of new data types via Arbitrary instances that group together a shrinker and a
generator for a custom data type. This makes it possible to use variables of this data type
as input for properties. New Arbitrary instances can be dynamically registered at run time
and then the new data type can be directly used for the input-data generation. Furthermore,
FsCheck has extensions for unit testing, which support a convenient definition and execution
of properties like normal unit tests.

2.1.3 Model-Based Testing

As already explained in Section 1.2, PBT can be applied for model-based testing (MBT) and it
supports various types of state-based models that may have non-deterministic characteristics
and may include timing behaviour.

In order to perform MBT with PBT, we need a model of the SUT, an interface to the
SUT, and a state-machine specification that defines the connection between the model and the
SUT. The model is usually in the form of a state machine and it represents the behaviour of
the system in an abstract form. A state-machine specification works with this model (and
the SUT) and serves as a basis for state-machine properties that are applied to generate and
execute test cases. Such a specification has to contain (1) functions to initialise the model and
the SUT, (2) commands that define the possible actions and their execution on the model and
the SUT, and (3) a generator that produces the next command for the current state of the
model.

A command usually represents an input or action of the SUT and it describes how the
model state evolves and which interactions are performed on the SUT. It comprises (1) an
optional precondition that specifies when it is enabled, (2) a postcondition that performs the
verification of the expected behaviour and (3) functions to execute the model and interact
with the SUT. In order to evaluate such a specification, a PBT tool produces random com-
mand sequences (i.e., test cases), executes them on the SUT and checks the postconditions.
A command sequence can also incorporate generated test data (e.g., form data). The data
generation represents a big advantage of PBT, since it facilitates the generation of complex
test data.

Moreover, the generated test cases can be minimised with the shrinking feature of PBT. For
this purpose, shorter command sequences are produced. Additionally, the size of the test data
that can be contained within command instances may be reduced in order to find a simpler
test case that can reproduce a fault.

A more detailed formal definition of the test-case generation and execution will follow in
Chapter 3.

Example. In order to demonstrate state-machine specifications, we present an example for
testing a simple counter that is commonly used in the PBT community [52]. Listing 2.1 illus-
trates the example specification for FsCheck. The counter has three functions: (1) increment
by one, (2) decrement, and (3) retrieving the current value of the counter. The model of this
counter is just a normal integer representing the state of the counter. Line 1 of Listing 2.1
shows that we need to implement an ICommandGenerator interface of FsCheck that takes the
SUT and the model as type parameters. This interface requires functions to initialise the
model (Line 4) and the SUT (Line 5), and a function called Next (Line 8–10) that takes the
current value of the model as input and returns a new generator. In this case, it is an Elements
generator that selects one element of an array of our commands (Line 9). This array contains
two command objects one for the increment IncCmd and one for the decrement DecCmd.

Chapter 2. Background 15

1 public c l a s s CounterSpec : ICommandGenerator<Counter , int > {
2
3 / / I n i t i a l i s a t i o n o f t h e model and SUT
4 public i n t InitialModel { get { return 0 ; } } / / r e t u r n z e r o t o i n i t i l i s e t h e i n t e g e r

model
5 public Counter InitialActual { get { return new Counter () ; } }
6
7 / / G e n e r a t o r f o r t h e nex t Command g i v e n t h e s t a t e o f t h e model
8 public Gen<Command<Counter , int >> Next (i n t m) {
9 return Gen .Elements (new Command<Counter , int > [] {new IncCmd () , new DecCmd () }) ;

10 }
11
12 / / I n c r e m e n t command
13 private c l a s s IncCmd : Command<Counter , int > {
14 public override i n t RunModel (i n t m) { / / E x e c u t e s t h e model t h a t i s g i v e n as i n p u t
15 return m + 1 ;
16 }
17 public override Counter RunActual (Counter c) { / / E x e c u t e s t h e SUT
18 c .Inc () ;
19 return c ;
20 }
21 public override Property Post (Counter c , i n t m) { / / P o s t c o n d i t i o n
22 return (m == c .GetValue ()) .ToProperty () ;
23 }
24 public override s t r i n g ToString () {
25 return " Inc " ;
26 }
27 }
28 / / Decrement command (DecCmd) . . .
29 }

Listing 2.1: FsCheck specification of a counter from the FsCheck website [52].

An example of a command class for an increment is shown in Line 13. As explained
earlier, a command contains functions for the execution of the model (Line 14–16) and the
SUT (Line 17–20). Both these functions take the current model or SUT as input and return a
modified version that, e.g., has an updated internal state. In this example, we just increase
the integer for the model execution and call the Inc() function of the counter for the execution
of the SUT. The postcondition of the command is presented in Line 21–23 and it compares
the state of the model with the state of the SUT. The Boolean result of this comparison is
converted with the ToProperty() function in order to make it applicable for FsCheck. Finally,
the command also contains a ToString() function for its output representation. Note that the
similar DecCmd class was omitted for brevity.

FsCheck can apply such a state-machine specification as a basis for the test-case generation
and also for the test execution on the SUT. An example test case for the Counter specification
is the following:

Inc , Inc , Dec , Inc , Dec , Inc , Inc , Inc , Dec , Inc , Inc Inc , Dec , Dec , Inc

Per default, FsCheck generates 100 such test cases with increasing length. If the test cases are
executed successfully, then we can be confident that our tested implementation might work as
expected, but there is no guarantee. However, in case of a failure during the execution FsCheck
produces a minimal counterexample. For example, if we have a faulty Counter implementation
that fails after two increments, then FsCheck might give us a simple test case with three
increments. Such a minimal counterexample is produced with shrinking, which is especially
helpful when the generated test cases become long and are difficult to analyse manually.

16 Chapter 2. Background

2.2 Statistical Model Checking

Statistical model checking (SMC) [2, 198] is a simulation-based method for checking qualita-
tive and quantitative properties of stochastic models or systems. These properties are usually
defined with (temporal) logics, like with the Bounded Linear Temporal Logic (BLTL), which
enables the expression of logical formulas with time bounded operators [95, 141, 146]. For
example, a property might state “An SUT will eventually be in an error state, when we con-
sider an execution time bound of 10 seconds.” With SMC, we can answer questions about
such properties, like “What is the probability that the model satisfies a property?” or “Is the
probability that the model satisfies a property above or below a certain threshold?”. In order
to answer such questions, a statistical model checker produces samples, i.e., random walks on
the model or system, and checks whether the property holds for these samples. Various SMC
algorithms are applied in order to compute the total number of samples needed to find an
answer for a specific question, or to compute a certain stopping criterion. A stopping criterion
determines when we can stop sampling, because we have found an answer with a required
certainty [2, 113, 115].

A big advantage of SMC is that it enables fast simulations that can easily be parallelised
by generating samples on multiple machines. Moreover, it does not suffer from the state-
space explosion problem like classical model-checking approaches, since the construction of
the state space is not needed for simulation. Hence, it is the only option for many realistic
systems [38]. For example, it has already been applied for the evaluation of protocols [41, 83]
or for biological systems [49, 55].

There exist numerous tools for SMC, like UPPAAL-SMC [42] or PLASMA-lab [38, 94].
Later in Chapter 8, we will discuss further tools and their supported algorithms and also
other application areas of SMC. In this section, we focus on the following algorithms common
in the SMC literature [2, 113, 115].

2.2.1 Standard Monte Carlo Simulation

This is the simplest SMC algorithm. It answers quantitative questions and works as follows.
First, a fixed number of samples and a property are specified by the user. Then, the statistical
model checker simply generates the specified number of samples and counts for how many
of them the property holds. Hence, a sample represents a Bernoulli experiment that has two
possible outcomes: true if the property holds and false otherwise. Finally, the number of
samples that fulfil the property divided by the total number of samples is used to estimate the
probability that the model satisfies the property [38].

Next, we introduce a more sophisticated version of a Monte Carlo simulation that enables
an estimation with a desired confidence and with a specific error bound.

2.2.2 Monte Carlo Simulation with Chernoff-Hoeffding Bound

The algorithm computes the required number of simulations n in order to estimate the prob-
ability γ that a stochastic model satisfies a Boolean property. The procedure is based on the
Chernoff-Hoeffding bound [82] that provides a lower limit for the probability that the estima-
tion error is below a value ε. Assuming a confidence 1− δ the required number of simulations
can be calculated as follows:

n ≥ 1
2ε2 ln

(
2
δ

)
(2.1)

The n simulations represent independent and identically distributed Bernoulli random vari-
ables X1, . . . , Xn with outcome xi = 1 if the property holds for the i-th simulation run and

Chapter 2. Background 17

xi = 0 otherwise. Let the estimated probability be γ̄n = (∑n
i=1 xi)/n, then the probability that

the estimation error is below ε is greater than our required confidence. Formally we have:

Pr(|γ̄n − γ| ≤ ε) ≥ 1− δ. (2.2)

After the calculation of the number of required samples n, a standard Monte Carlo simulation
is performed [113].

Note that this algorithm works, because the Chernoff bound (2.2) gives us the minimum
probability that n independent and identically distributed Bernoulli random variables will
only deviate from the expected value γ by a small error ε. Moreover, it states that more
samples will increase this minimum probability (confidence) or allow us to decrease the error
bound ε. By rearranging the Chernoff bound, we obtain the minimum number of samples
(2.1) for a specific error ε and a confidence 1− δ.

Example. This algorithm can, e.g., be applied to calculate the required number of samples
to make a forecast with a poll for the approval of some political agenda [174]. In particular,
we can calculate how many people have to be asked in order to obtain an estimation with a
desired confidence 1− δ and an error ε. For example, for δ = 0.03 and ε = 0.02, we need to
ask

n ≥ 1
2× 0.022 ln

(
2

0.03

)
= 5249.63 ≈ 5250

people in order to obtain an accuracy of ±2%. This means that our estimation will be correct
in 97 times out of 100 cases. Note that other stricter versions of the Chernoff-Hoeffding
bound exist [174], but we applied this version, because it was used by other SMC tools, like
PLASMA-lab [113].

2.2.3 Sequential Probability Ratio Test (SPRT)

This sequential method [187] is a form of hypothesis testing that can answer qualitative
questions. Given a sequence of independent and identically distributed random variables
X1, X2, . . . with a probability density function f (xi, θ), we want to decide, whether a null hy-
pothesis H0 : θ = θ0 or an alternative hypothesis H1 : θ = θ1 is true for desired type I and II
errors (α, β). In order to make the decision, we start sampling and calculate the log-likelihood
ratio after each observation of xi:

log Λm = log
pm

1
pm

0
= log

m
∏
i=1

f (xi, θ1)

m
∏
i=1

f (xi, θ0)
=

m

∑
i=1

log
f (xi, θ1)

f (xi, θ0)
(2.3)

We continue sampling as long as the ratio (2.3) is inside the indifference region log β
1−α <

log Λm < log 1−β
α . H1 is accepted when log Λm ≥ log 1−β

α , and H0 when log Λm ≤ log β
1−α [72].

The idea behind the SPRT is that we do not have to force a decision based on given data
or a fixed size sample set, but it gives us the option to continue sampling, until we find a
conclusive answer. Hence, it provides us a stopping criterion that allows us to stop when we
have obtained desired probabilities for the type I and II errors (i.e., the false rejection of a
true null hypothesis and failing to reject a false null hypothesis). Note that in contrast to the
Chernoff-Hoeffding bound, the SPRT is not restricted to Bernoulli random variables. It also
works with discrete and continuous random variables.

18 Chapter 2. Background

Table 2.1: SPRT example execution.
i xi f (xi, θ0) f (xi, θ1) log (f (xi, θ1)/ f (xi, θ0)) log Λm

1 1 0.8 0.9 0.051 0.051
2 0 0.2 0.1 −0.301 −0.250
3 1 0.8 0.9 0.051 −0.199
4 0 0.2 0.1 −0.301 −0.500
5 1 0.8 0.9 0.051 −0.449
6 1 0.8 0.9 0.051 −0.397
7 1 0.8 0.9 0.051 −0.346
8 0 0.2 0.1 −0.301 −0.647
9 1 0.8 0.9 0.051 −0.596

10 1 0.8 0.9 0.051 −0.545
11 0 0.2 0.1 −0.301 −0.846
12 1 0.8 0.9 0.051 −0.795
13 0 0.2 0.1 −0.301 −1.096
14 1 0.8 0.9 0.051 −1.045
15 0 0.2 0.1 −0.301 −1.346
16 1 0.8 0.9 0.051 −1.295
17 0 0.2 0.1 −0.301 −1.596
18 1 0.8 0.9 0.051 −1.545
19 0 0.2 0.1 −0.301 −1.846
20 1 0.8 0.9 0.051 −1.794
21 1 0.8 0.9 0.051 −1.743
22 0 0.2 0.1 −0.301 −2.044

Example. With the SPRT we can, e.g., check if the probability that a system can react to an
input sequence (with a fixed size) without failure is closer to 0.9 or 0.8. Such a question can
be expressed with the following hypotheses:

H0 : θ = θ0 | f (xi, θ0) =

{
0.2 if xi = 0
0.8 if xi = 1

H1 : θ = θ1 | f (xi, θ1) =

{
0.1 if xi = 0
0.9 if xi = 1

Moreover, we need to define the bounds for the indifference region. For example, with α =

0.01 and β = 0.01 the bounds are log β
1−α = −2 and log 1−β

α = 2.
In order to perform such a test, we have to run the system with a generated input sequence

to produce a sample, and calculate the log-likelihood ratio (2.3) according to the result.
An example SPRT execution is shown in Table 2.1. The first column indicates the current

sample index, the second column represents the result of the sample (xi = 1 means that
there was no failure), the third and the fourth show the application of the probability density
functions, the fifth shows the log-likelihood ratio, and the last column shows the cumulative
sum of the ratio. It can be seen that it takes 22 samples for the algorithm to reach the lower
bound of our indifference region, which means that H0 was accepted, i.e., the probability was
closer to 0.8.

2.2.4 Cumulative Sum (CUSUM)

CUSUM [114] is a sequential analysis technique similar to SPRT, because it also applies the
log-likelihood ratio. However, in contrast to SPRT, its purpose is to detect a change of an
initial probability. Given a finite set of independent Bernoulli random variables X1, . . . , Xn, a

Chapter 2. Background 19

probability for detecting a change k ∈ [0, 1] and sensitivity threshold λ, we want to decide
between the hypotheses:

H0 : ∀i, 1 ≤ i ≤ N, pi < k and
H1 : ∃i, 1 ≤ i ≤ N and i : ∀n, 0 ≤ n ≤ N, such that n < i =⇒ pn < k and n ≥ i =⇒ pn ≥ k,

where H0 states that no change occurred and H1 that a change occurred at time i, after which
the probability is greater than k. We assume that we know the probability under normal
conditions pinit, which can, e.g., be determined with a Monte Carlo simulation. We calculate
the log likelihood-ratio si and the cumulative sum Si as follows:

Si =
n

∑
i=1

si, si =

{
log(k

pinit
) if xi = 1

log(1−k
1−pinit

) otherwise
(2.4)

We stop sampling when Sn −min1≤i≤n(Sn) ≥ λ, which means that a change pn ≥ k was
detected at time tn or when no change occurred after a specified number of samples.

The CUSUM algorithm works, because of the fact that the cumulative sum (2.4) is globally
decreasing when there is no change and continuously increasing after a change occurred. The
algorithm stops if the increase is high enough, i.e., over the specified sensitivity threshold
λ. Note, to find a good sensitivity threshold, it is necessary to perform several simulations
and observe the maximum increases that are not caused by a change in order to avoid false
positives due to local increases.

Example. With the CUSUM algorithm, we can, e.g., test if a change in the probability that
a system has a failure can be observed. Moreover, if a change occurred, we can find when it
was detected. In order to perform such a test, the initial failure probability without a change,
needs to be known. We obtain it with a standard Monte Carlo simulation. For this example,
we have an initial probability pinit = 0.5 and a change should be detected at probability k = 0.7
with an assumed sensitivity threshold of λ = 2. Table 2.2 demonstrates a run of the CUSUM
algorithm. The first column is the sample index, the second column shows the outcome of
the sample (xi = 1 means there was a failure), the third illustrates the log likelihood-ratio,
the forth the sum of the ratios, the fifth the minimum ratio and the last column shows the
difference of the ratio and the minimum. It can be seen that up to the 20th sample, we have
about the same number of successful and failing system runs. After that, there is a change,
which causes an increase in the failure rate and also in the cumulative sum Sn. This increase
continues up to the point, where Sn −min1≤i≤n(Sn) > λ, which is the case at the 40th sample.
At this point we can stop, because we found the change. Note that in a more realistic setting
much higher values for the sensitivity threshold might be needed.

2.3 Linear Regression

For our model-based prediction method, we need response-time distributions in order to
extend our functional model.

How can we derive such distributions? Implementing a classical rule-based algorithm
is not feasible since appropriate if-then-else rules with the associated conditional expressions
and calculation formulas for the distribution parameters are hard to define a priori in our
context. However, we can recognize that we have all the necessary ingredients for a data-
driven learning approach, more precisely, for supervised learning with regression [190]. We
have log files with a large number of request examples (instances) for which also the response
times (labels) are known. For each request example, the log file specifies the values of a

20 Chapter 2. Background

Table 2.2: CUSUM example execution.
i xi si Sn min1≤i≤n(Sn) Sn − min1≤i≤n(Sn)
1 1 0.146 0.146 0.146 0
2 0 −0.222 −0.076 −0.076 0
3 1 0.146 0.070 −0.076 0.146
4 0 −0.222 −0.151 −0.151 0
5 1 0.146 −0.005 −0.151 0.146
6 1 0.146 0.141 −0.151 0.292
7 1 0.146 0.287 −0.151 0.438
8 0 −0.222 0.065 −0.151 0.217
9 0 −0.222 −0.157 −0.157 0

10 1 0.146 −0.011 −0.157 0.146
11 1 0.146 0.136 −0.157 0.292
12 1 0.146 0.282 −0.157 0.438
13 0 −0.222 0.060 −0.157 0.217
14 0 −0.222 −0.162 −0.162 0
15 1 0.146 −0.016 −0.162 0.146
16 0 −0.222 −0.238 −0.238 0
17 0 −0.222 −0.460 −0.460 0
18 0 −0.222 −0.681 −0.681 0
19 0 −0.222 −0.903 −0.903 0
20 0 −0.222 −1.125 −1.125 0
21 0 −0.222 −1.347 −1.347 0
22 1 0.146 −1.201 −1.347 0.146
23 1 0.146 −1.055 −1.347 0.292
24 1 0.146 −0.909 −1.347 0.438
25 1 0.146 −0.763 −1.347 0.585
26 1 0.146 −0.616 −1.347 0.731
27 0 −0.222 −0.838 −1.347 0.509
28 1 0.146 −0.692 −1.347 0.655
29 0 −0.222 −0.914 −1.347 0.433
30 1 0.146 −0.768 −1.347 0.579
31 1 0.146 −0.622 −1.347 0.725
32 1 0.146 −0.476 −1.347 0.871
33 1 0.146 −0.329 −1.347 1.018
34 1 0.146 −0.183 −1.347 1.164
35 1 0.146 −0.037 −1.347 1.310
36 1 0.146 0.109 −1.347 1.456
37 1 0.146 0.255 −1.347 1.602
38 1 0.146 0.401 −1.347 1.748
39 1 0.146 0.547 −1.347 1.894
40 1 0.146 0.693 −1.347 2.040

number of attributes (features) related to the requests. Our regression task is to learn from
the (labelled) data in the log files, a function which, given the attribute values of a request
instance, returns the parameters (µ, σ) of a normal distribution for the response time for that
instance. An analysis of the probability density functions of specific request types has shown
that a normal distribution fits well enough.

As we will see in Chapter 5, it turns out that the response times can be fairly well ap-
proximated by a linear combination of the request attributes by using the linear regression
method. This is convenient since (i) the statistical properties of the resulting estimators, i.e.,
the weights of the request attributes, are easier to determine with linear regression than with
other learning algorithms, and (ii) we can use these statistical properties to derive the normal
distribution parameters of the response times.

Chapter 2. Background 21

Multiple Linear Regression. The general linear regression model in matrix notation is de-
fined as

y = Xβ + ε (2.5)

where y is the dependent variable (regressand), X is the design matrix of the independent or
explanatory variables (regressors), β contains the model parameters (regressor coefficients or
weights), and ε is the error term (noise) which captures all other factors which influence the
dependent variable other than the regressors [78]. In more detail, in case of p regressors the
ith observation of the dependent variable is given by

yi = 1β0 + Xi,1β1 + ... + Xi,pβp + εi (2.6)

with β0 as the constant or offset term (intercept). The case with more than one independent
variable is called multiple linear regression (MLR). Thus, we use MLR to model the rela-
tionship between the response time, i.e., the dependent variable, and the attributes, i.e., the
independent variables, of a request.

Given a log file with N examples of requests and their response times, y is the N× 1 vector
of the response times and X is the N × p design matrix for p request attributes considered
to linearly influence the response time, where yi is the response time and Xi,1, ..., Xi,p are the
attributes of the ith request example in the log file.

We can use y and X with the equation (2.5) to estimate the model parameters β that
minimise the error term ε. Note that ε is a N × 1 vector and there are various ways to define
what “minimise ε” means. The simplest and most common method is the ordinary least
squares (OLS) which minimises the sum of the squares ε2

i , i = 1, . . . , N.
After we have estimated the parameters β = [β0, β1, . . . , βp], we use the formula

y = 1β0 + x1β1 + . . . + xpβp (2.7)

to predict the response time y of a new (unseen) request with attributes [x1, x2, . . . , xp]. Please
note that the formula (2.7) is similar to (2.6) but without a correction error term ε which
accounts for random variation or other unknown factors. Hence, (2.7) is an approximation of
the real response time which can be evaluated by analysing the statistics (e.g., standard error,
p-value, confidence interval) of the estimated model parameters β computed when applying
the OLS method.

If we consider that the model parameters βk, k = 0, . . . , p, are normally distributed with
the mean and standard deviation estimates (µβk , σβk) given by the model parameters and the
corresponding standard errors computed with OLS, then it follows that the predicted response
time y is normally distributed with the mean µy and standard deviation σy given by

µy =
p

∑
k=0

xkµβk , σ2
y =

p

∑
k=0

x2
kσ2

βk
(2.8)

as a linear combination of the normal distributions N (µβk , σ2
βk
) with weights xi, i = 0, ..., p and

x0 = 1, according to (2.7). Note, this is based on the fact that a linear combination of normal
distributions gives us a normal distribution as well.

The normal distribution N (µy, σ2
y) with parameters given by (2.8) is exactly what we are

looking for. Thus, given a log file of request examples with corresponding response times, we
learn the parameters (µβk , σβk) of a model (2.8) which gives the normal distribution N (µy, σ2

y)
of the response time y for any new request with known attributes [x1, ..., xp] to be associated
to the behavioural model as needed.

22 Chapter 2. Background

1 2 3 4 5

1

2

3

4

Intercept
x

y

Figure 2.1: Linear regression example for two-dimensional data points.

Example. In the case of simple two-dimensional data points, we just need to calculate the
slope (β1) and the intercept (β0) in order to compute a regression line as illustrated in Fig-
ure 2.1. Given the means of the data points (x, y), the slope and the intercept can be calculated
based on the data points (xi, yi) of the figure as follows:

µβ1 =
∑n

i=1(xi − x)(yi − y)
∑n

i=1(xi − x)2 = 0.58, µβ0 = y− µβ1 x = 0.84

By taking µβ0 , µβ1 as estimates for β0, β1 we obtain the regression line y = 0.84 + 0.58x, as
illustrated in Figure 2.1, according to equation (2.7). Based on the predicted values ŷ of the
regression line and the residual standard error σ̂, the standard errors of the slope σβ1 and of
the intercept σβ0 can be computed by:

σβ1 =

√
σ̂2

∑n
i=1(xi − x)2 =

√√√√ ∑n
i=1(yi−ŷ)2

n−2

∑n
i=1(xi − x)2 = 0.11, σβ0 =

√
σ̂2 ∑n

i=1 x2
i

n ∑n
i=1(xi − x)2 = 0.37

In order to obtain the normal distribution for a specific value, e.g., x = 2, we can just need
formula (2.8) to calculate µy = 1σβ0 + 2σβ1 = 2 and σy = 1σ2

β0
+ 22σ2

β0
= 0.19 which gives us

N (2, 0.19) that we can apply to obtain a sample.

2.4 Stochastic Timed Automata

Timed automata (TA) were originally introduced by Alur and Dill [15]. Here, we adopt the
definition of UPPAAL [31]. A timed automaton (TA) is a tuple (L, l0, A, C, I, E), where L is a
finite set of locations, l0 ∈ L is the initial location, A is a finite set of actions, C is a finite set
of non-negative real-value clocks, I : L → B(C) is a finite set of invariants for the locations,
where B(C) is a set of conditions for the clocks, and E ⊆ L× A×B(C)× 2C × L is a finite set
of edges between locations, with an action, a guard and a set of clock resets. Edges can also
be written as l

a,g,r−−→ l′.
Given a location l ∈ L and clock valuation u : C → R≥0 for a TA state (l, u) and the

set of all clock valuations RC, the semantics of a TA is defined by a labelled transition system
(S, s0,→). S ⊆ L×RC is a finite set of states, s0 = (l0, u0) is the initial state with u0 = 0, where
0 means that all clocks c ∈ C are set to zero. The transition relation is: → ⊆ S×{R≥0∪ A}× S,
and we have the following transitions:

Chapter 2. Background 23

• delayed transitions: (l, u) d−→ (l, u + d) if ∀d′ : 0 < d′ ≤ d =⇒ u + d′ ∈ I(l)
• discrete transitions: (l, u) a−→ (l′, u′) if ∃(l a,g,r−−→ l′) : u |= g, u′ = [r 7→ 0]u and u′ ∈ I(l)

Each clock c ∈ C obtains the value u(c) + d when u + d is applied, u |= g means that the
guard g is true for the clock valuation u, and a clock reset [r 7→ 0]u sets all clocks in r to zero.
It can be seen that delayed transitions let time pass, which allow us to represent the sojourn
time, i.e., the delay that can occur in the locations of a TA. Discrete transitions take no time,
but they may reset clocks. Note that we lift the plus operator to the clock valuation as follows:
u + d =def {c 7→ u(c) + d | c ∈ C}.

Several probabilistic extensions of timed automata [15] have been proposed including
stochastically enhanced TA [35] and continuous probabilistic TA [107]. Here, we follow
the definition of stochastic timed automata (STA) by Ballarini et al. [25]: an STA is a tu-
ple (L, l0, A, C, I, E, F, W) comprising a classical timed automaton (L, l0, A, C, I, E), probability
density functions F = (fl)l∈L for the sojourn time, and natural weights W = (we)e∈E for the
edges.

The transition relation can be described as follows. For a state given by the pair (l, u), the
probability density function fl is used to choose the sojourn time d, which changes the state
to (l, u + d). After this change, an edge e is selected out of the set of edges E(l, u + d) that are
enabled in a state (l, u + d) with probability we/ ∑h∈E(l,u+d) wh. Then, a transition to the target
location l′ of e and u′ = u + d is performed. For our models the underlying stochastic process
is a semi-Markov process [92], since we reset our clocks at every transition, but we do not
assume exponentially distributed waiting times, and therefore, the process is not a standard
continuous-time Markov chain [25, 44, 195].

Example. An example stochastic timed automaton of a stochastic faulty counter is illustrated
in Figure 2.2. This counter has increment Inc and decrement Dec transitions that normally
change the value, i.e., the state, by one, but the increment does not always work. It may also
do nothing, which happens in one percent of the cases. This faulty behaviour is represented
by the two branches that are possible after an Inc transition: one branch (IncF) leads back to
previous state with a weight of one and the other branch (IncS) leads to the next (correct) state
with a weight of 99.

Moreover, we have additional states that represent delays for an increment and a decre-
ment. For the increments, these additional states (Ii) apply a uniform distribution given by
an upper and lower bound [a, b] and for the decrements, we have additional states (Di) with
a normal distribution, given by the mean µ and the standard deviation σ. It can be seen
that the parameters of the uniform and normal distributions are increasing, when the counter
value becomes higher. This behaviour represents that the counter slows down, when its value
increases.

0
[30,90]

start

I1
[0,5]

D1
N (3, 1)

1
[30,90]

I2
[0,6]

D2
N (4, 1)

2
[30,90]

I3
[0,7]

D3
N (5, 1)

. . .
1, Inc

1, IncF 99, IncS

DecS 1, Dec

1, Inc

1, IncF 99, IncS

DecS 1, Dec

1, Inc

1, IncF 99, IncS

DecS 1, Dec

Figure 2.2: Stochastic timed automaton of a faulty slow counter.

24 Chapter 2. Background

Note that the Inc, Dec transitions also have weights, which represent the usage behaviour
of the counter. In this example, both Inc, Dec have weight one, hence they are selected with
the same probability. Moreover, we have uniform distributions [30, 90] in the main counter
states, which should illustrate the input time that is needed by the user. Later, we will see
how we combine our stochastic models with more advanced usage profiles.

A run of such a model or of STA in general can be defined as: (l0, u0)
d1,a1−−→ (l1, u1)

d2,a2−−→ . . .
and it produces a timed trace in the form (d1, a1), (d2, a2), . . ., where di is a delay and ai ∈ A.
An example trace for this stochastic counter is the following:

(3 8 . 4 ,Inc) , (2 . 3 ,IncS) , (7 8 . 1 ,Inc) , (3 . 7 ,IncS) , (4 6 . 0 ,Dec) , (3 . 4 ,DecS) ,
(7 3 . 4 ,Inc) , (1 . 1 ,IncF) , (6 7 . 2 ,Dec) , (3 . 9 ,DecS) , (3 4 . 9 ,Inc) , (4 . 1 ,IncS)

25

3 Property-Based Testing with Business-Rule
Models

This chapter is based on our publication in the journal SoSyM 2017 [5], at A-MOST 2016 [4] and at
A-MOST 2017 [10].

3.1 Overview

Property-based testing is well suited for web-service applications, which was already shown
in various case studies [64, 109]. For example, it has been demonstrated that JavaScript Object
Notation (JSON) schemas can be used to automatically derive test-case generators for web
forms. In this chapter, we present a test-case generation approach for a rule engine driven
web-service application. Business-rule models serve as input for property-based testing. We
parse these models to automatically derive generators for sequences of web-service requests
together with their required form data.

In the past, PBT was mostly applied in the context of functional programming. Here, we
define our properties in an object-oriented style in C# and its tool FsCheck. We apply our
method to the business-rule models of an industrial web-service application, i.e., the TFMS
that was introduced in Section 1.4.2.

Many web services store configurations in XML files. Some web services also store work-
flow details and user-access rules in XML business-rule models [155, 156]. These XML defi-
nitions can be seen as an abstract specification of the service behaviour, which may serve as
a basis to verify whether the service complies to this specified behaviour [128]. We present
an automated approach that uses these business-rule models to derive FsCheck8 models and
generators that are applied to generate command sequences with random input data.

The process of our testing approach is illustrated in Figure 3.1. The first step is to parse
and translate the XML business-rule files to input models for FsCheck. FsCheck supports all
kinds of models that have states, transitions, postconditions and optionally preconditions, but
in our case the models were extended finite state machines (EFSMs) [45]. These EFSMs are
used by the specification builder to create generators and FsCheck interface implementations
according to the parsed model. FsCheck transforms these interface implementations into a
property to be tested via randomly generated command sequences. This property requires
that the state of the model is equal to the state of the SUT after each transition (command).
As soon as a command sequence has been generated, it is executed on the SUT as a test
case. When the property holds throughout the execution, then the test case was successful
resulting in a pass-verdict, otherwise a fail-verdict is produced and the test case serves as a
counterexample. The number of test cases can be specified by the user, but if a property fails,
then no further test cases are executed.

For our use case a transition is not a simple action. It represents the opening of a page of
a graphical user interface, the entering of data for form fields and saving the page. In the test-
case generator, the transitions are realised as command classes with attributes representing the
associated form data. Our target is to test the underlying requests of the transitions, which
are necessary for the interaction with the web-service application.

The contributions in this chapter are the following:

1. The main contribution is a new testing approach that uses XML business-rule models in
the form of EFSMs as input for PBT.

8https://fscheck.github.io/FsCheck (visited on 2018-09-19)

https://fscheck.github.io/FsCheck

26 Chapter 3. Property-Based Testing with Business-Rule Models

s1

s2 s3

EFSM

Parser
TranslatorXMLXML

Business-Rule Model

Specification
Builder

FsCheck
Command

Specification

FsCheck

Command
Sequence

Next State
or Exception

SUT

Pass- or Fail-
Verdict with

Counterexample

a

b

c

d

Figure 3.1: Overview of the steps for the test-case generation with business-rule models.

2. We formalise the underlying concepts and algorithms of PBT with EFSMs and present a
detailed definition of our rule-engine models with an abstract grammar.

3. Moreover, we show a formalisation of the translation of our business-rule models to
EFSMs.

4. Another contribution is the application and evaluation of our approach in an industrial
case study.

The rest of the chapter is structured as follows. First, in Section 3.2, we present our
rule-engine system and rule-engine models. In Section 3.3, we introduce PBT with EFSMs,
and we present a small example of model-based testing with FsCheck. Section 3.4 presents
application-specific extensions to our method, like the translation of business-rule models
to EFSMs. Then, in Section 3.5 we describe details about the structure and implementation
of our approach. Section 3.6 shows the results of an evaluation, where we performed two
case studies for two major modules of an industrial web application. Moreover, we present
an extension for PBT that exploits an external test-case generator in Section 3.7. Finally, in
Section 3.8, we discus the limitations, threats to validity and future work, and conclude in
Section 3.9.

3.2 Business-Rule Models

An application may need various modifications depending on the customer or on the coun-
try of deployment. It is infeasible to apply these modifications to the source code, because
it would require the development of different versions for each customer. A business-rule
engine is a good way to apply the different modifications in the form of rules for different
deployments of an application. Business-rule engines are used to integrate these rules in the
business logic. They are often combined with business-rule management systems that can be
used to store, load and easily modify the rules. There are many frameworks, architectures or
systems for web services and applications in general that provide business-rule management
functionality [80, 140, 157].

Most of them only differ by the information that can be encoded in the rules. For exam-
ple, business-rule engines can store constraints, conditions, actions and other business-process
semantics. Even workflow details can be included, although there is a separate technology,
called workflow engine or also business process management system [1, 43, 155]. The major

Chapter 3. Property-Based Testing with Business-Rule Models 27

difference is that workflows/processes define the order or sequence of tasks (actions/opera-
tions) and business rules describe conditions and resulting actions.

Our SUT (i.e., the TFMS) has a custom implementation of a rule management system. This
custom implementation was made, because there were not many existing approaches at the
time, when the application was developed. Our business-rule models are similar to other
rule definitions. For example, the rule markup language (RuleML) [186] could be applied to
encode our models.

Note that we talk about rules and not processes as our models have the main purpose of
storing costumer specific business logic, and they specify conditions for enabling certain tasks,
which can be seen as condition-action pairs. They do not focus on the sequence of tasks and
do not support the composition of services. Moreover, the term rule-engine is used within the
given commercial system.

In this work business-rule, models are also called rule-engine models (REMs) and they
are the primary basis of our approach. An REM is a state machine defining the behaviour of
a TFMS Object Class. A TFMS Object Class describes objects of our application domain, like
incidents or test orders. Each of these objects has a state, an identifier, attribute values/data
and they are stored in the database of our SUT.

The abstract syntax of a rule-engine model can be defined as follows. Its definition corre-
sponds to the concrete XML syntax, but is more concise.

Definition 1 (Rule-Engine Models).

REM=df rem(AllAttributes, AllTasks, AllStates)
AllAttributes=df Attr∗

Attr=df attr(Name, DataType, Parameter∗) | attr(Name, DataType)
DataType=df Integer |Bool | String |Enum |Object |Date |DateTime | Float | File |Reference

Parameter=df MinValue |MaxValue |EnumItem∗ |Query |Regex | . . .
AllTasks=df Task∗

Task=df task(id : Name, attributes : Name∗, possibleNextStates : Name∗)
AllStates=df State∗

State=df state(id : Name, possibleTasks : Name∗)

For easier readability we use record types to define composite data: an REM is defined
as a record rem with three fields: the set of AllAttributes, the set of AllTasks and the set of
AllStates. In fact, these sets are represented as sequences, e.g., the sequence of all attributes
Attr∗. An attribute comprises a Name, a DataType and optionally a sequence of Parameters.
Parameters may further restrict a data type, like a maximum value for an Integer. A more
complex form of restriction of an attribute may be realised via a Query to a database, which
will be further explained in Section 3.5.1 (reference attributes). This allows to implement a
selection of existing values, like e.g., a dynamic drop-down menu in a web-form. Another
restriction can be applied with a regular expression (Regex), which can limit a string attribute
to only allow certain patterns.

Tasks represent the behaviour, i.e., the actions or events a user may trigger. For readability,
we define tasks with field names. A task has an identifier, i.e., a Name, a number of attributes to
be entered into a form and the possible next states a task may reach. If there is more than one
possible state, then it can be selected via an external choice by the user, hence this does not
represent non-determinism. Finally, all States define the complete state-space with each state
being associated with a sequence of tasks that can be triggered in this state.

For illustration, Listing 3.1 shows a simplified version of the XML file of an REM that was
used as basis for the example in Section 3.3.2. It can be seen that these models are structured
very similarly to our abstract syntax. The main components are:

28 Chapter 3. Property-Based Testing with Business-Rule Models

1 <?xml version=" 1 . 0 " encoding=" utf−8" ?>
2 <RuleEngineModel TfmsType=" I n c i d e n t ">
3 <AllAt t r ibutes>
4 < S t a t i c A t t r i b u t e I n f o Name=" ParentFolder " DataType=" Reference ">
5 <Query C r i t e r i a =" Class=Inc identFo lder ">
6 <RequestedAttr ibutes> < s t r i n g >*</ s t r i n g > </RequestedAttr ibutes>
7 </Query>
8 </ S t a t i c A t t r i b u t e I n f o >
9 < S t a t i c A t t r i b u t e I n f o Name=" Descr ipt ion " DataType=" S t r i n g " MaxValue=" 128 " />

10 . . .
11 </AllAt t r ibutes>
12 <AllTasks>
13 <Task Name=" IncidentCreateTask ">
14 <DynamicAttributesInfo>
15 < A t t r i b u t e Name=" ParentFolder " Enabled=" t rue " Required=" t rue " />
16 < A t t r i b u t e Name=" Descr ipt ion " Enabled=" t rue " Required=" t rue " />
17 . . .
18 </DynamicAttributesInfo>
19 < P o s s i b l e N e x t S t a t e s>
20 < S t a t e Name=" Submitted " NoteRequired=" f a l s e " />
21 </ P o s s i b l e N e x t S t a t e s>
22 </Task>
23 . . .
24 </AllTasks>
25 <AllSta tes>
26 < S t a t e Name=" Submitted ">
27 <Poss ib leTasks>
28 <Task>IncidentEditTask</Task>
29 <Task>IncidentCloseTask</Task>
30 </Poss ib leTasks>
31 </ S t a t e >
32 . . .
33 </AllSta tes>
34 </RuleEngineModel>

Listing 3.1: Simplified XML representation of a rule-engine model.

• attribute definitions with data types and constraints (Lines 3 to 11)
• tasks with enabled and required attributes and possible next states (Lines 12 to 24)
• states with possible tasks (Lines 25 to 33)

Optionally the models may also include:

• scripts, which can be executed on certain events
• queries for the selections of specific objects
• reports for a good overview of the entered objects

Note that our REMs do not always represent the actual behaviour of the web application
under test. REMs determine what tasks are currently active and what attributes are required.
However, developers can overrule the constraints that are included in REMs, when they im-
plement a task. For example, a task can lead to different target states that are not specified
in an REM. Moreover, a form of the SUT might require additional attributes for special cases
that are only implemented in the SUT, but not contained in REMs. It makes sense to search
for such cases where REMs are overruled by the implementation in order to find out, if this
behaviour is intentional or was introduced by mistake. In addition, manual adjustments to
the test models had to be made so that these deviations are not found repeatedly.

3.3 Property-Based Testing with Extended Finite State Machines

As already explained in Section 2.1, PBT can be applied for various types of models. Now, we
introduce PBT with extended finite state machines. We formalise the underlying concepts and
algorithms in the first subsection and present concrete examples in the second subsection.

Chapter 3. Property-Based Testing with Business-Rule Models 29

3.3.1 State-Machine Properties

PBT can be applied to models in the form of extended finite state machines (EFSMs) [97].

Definition 2 (EFSM). An EFSM can formally be defined as a 6-tuple (S, s0, V, I, O, T) ∈ State_set
× State×Variable_set× Input_set×Output_set× Transition_set, where
S is a finite set of States,
s0 ∈ S is an initial State,
V is a finite set of Variables,
I is a finite set of Inputs,
O is a finite set of Outputs,
T is a finite set of transitions, t ∈ T can be defined as a 5-tuple (s, i, g, op, s′),
s is the source State,
i is an Input,
g is a guard in the form of a Boolean expression,
op is a sequence of output and assignment operations of the form output := o or v := e, where
output is a keyword, o ∈ O, v ∈ V and e is an expression,
s′ is the target State [97].

Such an EFSM is deterministic if in any state there is at most one enabled transition (via
guards) with the same input [166]. In this thesis, we are concerned with deterministic EFSMs.

An example EFSM is presented in Section 3.3.2 in Figure 3.3. Semantically, a guard g is a
Boolean function that takes the variable valuations v as input and returns a Boolean value. An
operation op is a function mapping the current variable valuations to a pair of new valuations
and an optional output o ∈ O.

In order to perform PBT for an EFSM, a state-machine specification spec has to be provided.
This specification includes functions to set the initial state of the model and the SUT, a set of
commands cmds and a next function that builds a command generator Gen[Cmd] for a given
model state:

Definition 3 (State-Machine Specification).

Spec =df spec(initalModel : ()→ Model, initialActual : ()→ Sut,
cmds : Cmd_set, next : Model→ Gen[Cmd])

Algorithm 3 in Section 3.3.2 outlines an example specification for the incident manager as
it is required for FsCheck.

A Model object consists of fields representing the current EFSM state s, the valuations for
the variables v, the transition set T, the last output o and a doStep function that performs the
execution of a transition.

Model =df model(s : State, v : Variable→ Val, T :
Transition_set, o : Output, doStep : Input→ Model)

doStep(in) =df model(s′, v′, o′, doStep) such that
(s, in, g, op, s′) ∈ T ∧ g(v) = True∧ (v′, o′) = op(v)

Note that the SUT is defined in the same way as the model and is, therefore, omitted.
A command Cmdin ∈ spec.cmds encodes a set of transitions Tin with the same input in.

They encapsulate preconditions, postconditions and the execution semantics of these transi-
tions. Preconditions pre define the permitted transition sequences by enabling the command
only in states where the input in is allowed. Postcondition post can verify the effects of the
command, e.g., by comparing the state of the model and the SUT. The execution semantics are

30 Chapter 3. Property-Based Testing with Business-Rule Models

Cmdin =df cmdin(Tin : Transition_set, prein : Model→ Bool,
postin : (Model, Sut)→ Boolean,
runModelin : Model→ Model, runActualin : Sut→ Sut)

Tin =df {(s, i, g, op, s′) | (s, i, g, op, s′) ∈ T ∧ i = in}

prein(model) =df

{
True if ∃(s, in, g, op, s′) ∈ Tin. s = model.s∧ g(model.v) = True
False otherwise

runModelin(model) =df model.doStep(in)
runActualin(sut) =df sut.doStep(in)

postin(model, sut) =df

{
True if model.s = sut.s∧model.v = sut.v∧model.o = sut.o
False otherwise

Figure 3.2: Command definition for property-based testing.

encoded via the functions runModel and runActual for executing the Model and the SUT. The
definition of a command is shown in Figure 3.2. Note that in this definition we show various
possible checks in the postcondition, i.e., we analyse the current state of the SUT, variable
valuations and the output. In reality this may not be feasible, because the SUT might not
provide all this information. Hence, in many cases it may only be possible to check the output
in the postcondition. An example implementation of a command is presented in Section 3.3.2
in Algorithm 4. This example demonstrates the function definitions for an IncidentCreateTask.

A property of an EFSM is that for each command sequence that is possible with the pre-
conditions, the postcondition of each command must hold. In order to verify this property,
a PBT tool produces random command sequences and checks the postconditions after each
command execution.

The state-machine property must hold in all settings of the model Model_set and the SUT
SUT_set that are reachable via valid command sequences. A command sequence is valid if all
its preconditions are satisfied. Hence, given a specification spec, a state-machine property for
EFSMs can be defined as follows:

Definition 4 (State-Machine Property).

∀cmdin ∈ spec.cmds, model ∈ Model_set, sut ∈ SUT_set :
cmdin.post(model, sut) ∧ cmdin.pre(model) =⇒

cmdin.post(cmdin.runModel(model), cmdin.runActual(sut))

Algorithm 1 shows the pseudo code of the test-case generation for such a property. The
algorithm takes a spec and a size parameter for the length of the test case as input and returns
a testSequence, which is a sequence of (Cmd, Model) pairs. In the first step, the initial model is
created with the initialModel function of the spec. Next, there is a loop over the size parameter.
In each iteration, a command generator gen is built with the next function of the spec. This
function takes the model (Line 9) and creates a subset of all commands by checking their
precondition. The function returns an Elements generator, which selects one element of this
set with a uniform distribution (Line 11). The sample function of this generator is called to
produce a command (Line 4). This command is executed with runModel, which returns a new
model that incorporates the state change. Note that we need a new model and not only change
the current one, because future changes should not affect the old stored model instances. This
new model and the command are stored in the testSequence. Finally, after the loop is finished
we return the testSequence, which represents a test case.

Chapter 3. Property-Based Testing with Business-Rule Models 31

Algorithm 1 Pseudo code of the test-case generation for EFSMs.
Input:

spec: state-machine specification
size ∈N>0:parameter for test-case length

Output:
testSequence : (cmd1, model1), . . . , (cmdn, modeln)

1: model← spec.initialModel()
2: for i← 1 to size do
3: gen← spec.next(model) . next returns a cmd generator
4: cmd← gen.sample() . command is generated
5: model← cmd.runModel(model) . command is executed
6: testSequence[i]← (cmd, model) . build test sequence
7: end for
8: return testSequence

9: function spec.next(model)
10: cmdSet← {cmdin ∈ spec.cmds | cmdin.pre(model) = True}
11: return Gen.Elements(cmdSet)
12: end function

Algorithm 2 shows how such a generated test case can be executed. The test case is the
input of this algorithm together with a spec and the result is a verdict. (Note that shrinking is
omitted in this simplified algorithm.) In the first step, the initial SUT is built by the initialActual
function of the spec. After that we loop over the testSequence. Next, the command is executed
on the SUT with runActual, which results in a modified SUT (Line 3). The postcondition of
the command is applied to compare the SUT with the stored model of the testSequence. If it is
false, then the test failed. Otherwise, the execution continues and if the loop is finished, then
the postconditions of all commands were satisfied and a pass-verdict is returned.

3.3.2 Example of Model-Based Testing with FsCheck

In this subsection, we show how FsCheck can be applied for MBT. A simple example of an
incident manager taken from our industrial case study shall serve to demonstrate how the
necessary interface implementations have to be realised.

FsCheck Modelling. In order to apply FsCheck for MBT, we need a specification class that
implements an ICommandGenerator interface and contains the following elements:

• SUT definition (which is called Actual by FsCheck)

Algorithm 2 Pseudo code of the test-case execution for EFSMs.
Input:

testSequence : (cmd1, model1), . . . , (cmdn, modeln)
spec : state-machine specification

Output:
Pass, if the test case is successful, Fail otherwise

1: sut← spec.initialActual()
2: for each (cmdi, modeli) ∈ testSequence do
3: sut← cmdi.runActual(sut) . command is executed
4: if ¬cmdi.post(modeli, sut) then . check post condition
5: return Fail
6: end if
7: end for
8: return Pass

32 Chapter 3. Property-Based Testing with Business-Rule Models

Algorithm 3 Incident specification Spec of the incident manager.
Input:

SUT class for the connection to the SUT,
Model class

1: function initialActual
2: return new SUT() . create new SUT instance
3: end function

4: function initialModel
5: return new Model()
6: end function

7: cmds← {new IncidentCreateTask(), new IncidentEditTask(),new IncidentCloseTask()}
8: function next(model)
9: return Gen.Elements(cmds) . chose one element

10: end function

• Model definition
• Initial state of the SUT and the model
• Generator for the next command given the current state of the model
• Commands combining preconditions, postconditions and the transition execution se-

mantics of the SUT and the model

Details about the structure of such specifications were already presented in Section 3.3. Now
we give a more concrete example for FsCheck on an object-oriented level. Algorithm 3 out-
lines an example specification. In order to implement the interface for FsCheck, we need the
mentioned elements. The class of the SUT is basically a wrapper that provides methods for
the execution of all tasks and a method to retrieve the current state of one incident object of
the SUT.

An incident object is an element of the application domain. For example, it could be a bug
report. It has a number of attributes (form data), which are stored in the database. In this
example, we assume that the attributes are set statically in the wrapper class of the SUT. In
Section 3.5, we will see, how form data can be generated automatically for these attributes.

Figure 3.3 illustrates the state machine of one incident object. Initially, the machine is in a
global state. The IncidentCreateTask (abbreviated as Create) creates and opens a new incident
object, which can be edited and closed with the corresponding tasks. The transitions are
labelled as follows: input i, an optional guard g / assignment operations op, and an output o.
The assignment operations of this EFSM assign values to the attribute variables and the output
indicates the target state of a transition. The initial global state has a special meaning: tasks of

Global

Submitted

Closed

Create/ , SubmittedParentFolder:=TestFolder
Description:=“TestDes”
...

Edit/ , SubmittedParentFolder:=TestFolder1
Description:=“TestDesc1”
...

Close/ , ClosedComment:=“Finished”
...

Figure 3.3: EFSM of the Incident Manager.

Chapter 3. Property-Based Testing with Business-Rule Models 33

Algorithm 4 IncidentCreateTask command definition of the incident manager.

1: function pre(model)
2: return True
3: end function

4: function post(sut, model)
5: return sut.State = model.State
6: end function

7: function runModel(model)
8: model.doStep(“IncidentCreateTask”)
9: return model

10: end function

11: function runActual(sut)
12: sut.doStep(“IncidentCreateTask”)
13: return sut
14: end function

15: function toString
16: return “IncidentCreateTask”
17: end function

the global state, i.e., IncidentCreateTask, are globally enabled in all states. Hence, it is possible
in every state to create new incident objects. However, to simplify the discussion, we assume
that the state machine only represents a currently opened incident object. Generally, in an
object-oriented system comprising several objects, we need functionality to switch between
active objects. This functionality is discussed in Section 3.4.2.

The initial states of the model and the SUT are set by creating new objects (Algorithm 3:
Lines 2 and 5). The generator in the next function selects one element of a command set
randomly, which can be accomplished with the default Elements generator of FsCheck (Line 9).

In the standard PBT approach, all command classes need to be defined manually as shown
in Algorithm 4. The classes need to define how the transitions should be executed on the
model and SUT and what postcondition should hold after the execution. In this simple exam-
ple, the execution of the model only changes the state, later we will also see how we handle
form data. For example, the state-changing function of an IncidentCreateTask is defined as
follows:

model.doStep(“IncidentCreateTask”) =df model.s := “Submitted”

Note that in contrast to the previous abstract definition, the postcondition here checks if the
state of the SUT matches the state of the model. Moreover, a toString method can be used to
display various information of the command and optionally a precondition can be defined.
The classes for the IncidentEditTask and the IncidentCloseTask command are similar to this
class and are, therefore, omitted.

For a large model with many transitions it is not practical that all commands have a
separate class. Therefore, it makes sense to implement this definition in a more generic way
for all possible transitions and to automate the process as far as possible.

Command Generation and Execution. The tool FsCheck generates test cases according to
Algorithm 1 with the difference that the specification is provided in an object-oriented style
as shown in Algorithm 3. After a test case is generated it is executed on the SUT and the state
of the SUT is compared to the stored model state after each command execution as explained
in Algorithm 2.

34 Chapter 3. Property-Based Testing with Business-Rule Models

0 :
[IncidentCreateTask ;IncidentCloseTask ;IncidentCreateTask ;
IncidentEditTask ;IncidentCreateTask ;IncidentEditTask]

1 :
[IncidentCreateTask ;IncidentEditTask ;IncidentEditTask ;IncidentCloseTask ;IncidentCreateTask ;
IncidentEditTask ;IncidentCloseTask ;IncidentCreateTask ;IncidentCreateTask ;IncidentEditTask ;
IncidentCreateTask ;IncidentCloseTask ;IncidentCreateTask ;IncidentEditTask ;IncidentCreateTask ;
IncidentEditTask ;IncidentCloseTask ;IncidentCreateTask ;IncidentEditTask ;IncidentCloseTask ;
IncidentCreateTask ;IncidentCreateTask ;IncidentEditTask ;IncidentCloseTask ;IncidentCreateTask ;
IncidentEditTask ;IncidentEditTask ;IncidentEditTask ;IncidentCloseTask ;IncidentCreateTask ;
IncidentEditTask ;IncidentCreateTask ;IncidentCreateTask ;IncidentCloseTask ;IncidentCreateTask ;
IncidentCreateTask ;IncidentEditTask ;IncidentEditTask ;IncidentCreateTask ;IncidentEditTask ;
IncidentCloseTask ;IncidentCreateTask ;IncidentEditTask ;IncidentCloseTask ;IncidentCreateTask ;
IncidentCreateTask ;IncidentCloseTask ;IncidentCreateTask ;IncidentCreateTask]
Ok , passed 2 tests , 50% short sequences (1−6 commands)

Listing 3.2: Generated command sequences for the incident manager.

In order to start testing in FsCheck, the specification has to be converted into a property.
This is achieved with the toProperty() method of FsCheck. The property can then, e.g., be
tested by calling the QuickCheck() method or also with the help of unit testing frameworks:

new Spec () .toProperty () .QuickCheck () ;

By default, 100 test cases will be generated and executed, but this number can be configured.
Listing 3.2 shows two example sequences that were produced by FsCheck for the incident
specification. It can be seen that the sequences have quite different lengths, because FsCheck
generates them randomly with a variety of lengths. Moreover, FsCheck classifies the sequences
according to their lengths, which can be seen in the last line of the listing. These classifications
can be helpful to find out that a certain generator only considers trivial cases. Each of these
generated tasks in the command sequences requires form data for the attributes, which also
needs to be generated. Listing 3.3 shows example form data for some attributes that was
generated randomly for the IncidentCreateTask. Note that this randomly generated strings
form a kind of robustness test in order to check that the SUT can process non-standard input.

3.4 Application-Specific Extensions to the Method

In this section, we present some application-specific extensions, which were needed for the
web-service application that we evaluated. We show the translation of business-rule models
into EFSMs, and we demonstrate how we introduced functionality to switch between applica-
tion objects and REMs.

3.4.1 Translating Business-Rule Models into Extended Finite State Machines

In the following, we show how we translate our business-rule models into EFSMs. In order to
do this, we introduce a function translate which takes an REM as described in Section 3.2 as

IncidentCreateTask :
−− ParentFolder = IncidentTestFolder1
−− Description = /%j6XN−−#Gn8$−bc6_I−@EaB−cfkMNn3−−>eA −sb!−−R−9/{@bXzF−−#o4*LB]SY3 −−r {i−!−

p−x−f
−− CommitNote = HC−−Gz_p ;
. . .

Listing 3.3: Generated form data for a task of the incident manager.

Chapter 3. Property-Based Testing with Business-Rule Models 35

translate : REM→ EFSM

translate(rem(attributes, states, tasks)) =df (names_of (states), “Global′′,
names_of (attributes), names_of (tasks), names_of (states), buildTrans(states, tasks, attributes))

buildTrans : AllStates_set×AllTasks_set×AllAttributes_set→ Transition_set

buildTrans(states, tasks, attributes) =df {(s, i, true, op, s′) | ∃ state(sname, possibleTasks) ∈ states . (s = sname ∧
∃ task(tname, tattributes, nextStates) ∈ tasks . (tname ∈ possibleTasks∧ s′ ∈ nextStates ∧
i = tname ++ optionalSuffix(nextStates, s′) ∧
op = (a1 := v1, . . . , an := vn, output := s′) ∧ ai ∈ tattributes∧ (ai, vi) ∈ translate(attributes)))}

translate : AllAttributes_set→ (Variable× Generator)_set
translate(attributes) =df {(id, gen) | attr(id, type) ∈ attributes ∧ gen = Gen(type) ∨

attr(id, type, par) ∈ attributes ∧ gen = Gen(type, par)}

names_of : AllTasks_set | AllStates_set | AllAttributes_set→ Name
names_of (xs) =df {x.name | x ∈ xs}

optionalSuffix : Name_set×Name→ Name

optionalSuffix(possibleNextStates, nextState) =df

{
“” if card(possibleNextStates) = 1
nextState if card(possibleNextStates) > 1

Figure 3.4: Translation of a rule-engine model to an EFSM by translating the attributes,
tasks and states of the rule-engine model to the 6-tuple representing an EFSM.

input and converts it into an EFSM. Figure 3.4 illustrates this translation. It can be seen that
the translate function is a composition of several sub-functions that convert the individual
parts of the REM. First, we translate the states of the REM by applying the helper function
names_of , which returns the name of all elements of a set of tasks, states or attributes. The
name is a unique identifier for each element of these sets. The same helper function is used to
translate the attributes, tasks and states to variable, input and output sets. The initial state of
the EFSM is set to the constant “Global”. The translation of the transitions is more complex
and is performed with the buildTrans function. For this translation, we take the states, the
tasks and the attributes of the REM as arguments, because we need their fields possibleTasks
and possibleNextStates to form the transitions of the EFSM: the states of the REM form the
source states, the tasks that are enabled in these states (possibleTasks) represent the inputs and
their possible next states define the target states.

Note, there can be multiple possible next states for one task in a specific state. In practice,
one of these states is selected by the user, which represents an additional external input. For
example, in some REMs an AdminEdit task can be performed, where a user can select the next
state of an object, like Created, Available or Deleted, explicitly from a drop-down menu. Since
this selected state forms part of the input, we add the name of the state to the task name to
form the input. The function optionalSuffix appends (++) the next state s′ to the input (task
name), if more than one possible next state exists (cardinality > 1). In the following, we skip
this detail in order to simplify our graphical representations. Furthermore, we translate the
required attributes of the tasks in a separate function, which returns a set of pairs of variables
and generators (id, gen) for the types of the attributes and their optional parameters. These
pairs and an output assignment form the operation sequences of a transition.

3.4.2 Switching Between Rule-Engine Models Objects

In this subsection, we explain how we extended our models to enable the switching be-
tween multiple application objects. The business-rule models only consider the behaviour

36 Chapter 3. Property-Based Testing with Business-Rule Models

Submitted

Closed

Create

Edit

Close

Incident Object O1

Submitted

Closed

Create

Edit

Close

Incident Object O2

. . .

Select(O2)

activeO := O2

Select(O1)
activeO := O1

Create
stateMap[O3.Id] := Submitted

activeO := O3

Figure 3.5: Switching between objects of the incident object class.

of one object of a specific type and not the behaviour of a set of objects. Our application
includes a number of transitions that create new application objects and a user can switch
between these objects before a task is started. Our original implementation only considered
the currently active object, which is automatically changed to inactive when a new object
is created. In order to also support the switch functionality, we extended our models. We
changed the original variable set V of the EFSM to V = Vattr ∪ activeObj∪ stateMap, where
Vattr : Obj.Id→ Variable_set are the variables for our attributes. They are now represented in a
map, so that different variables can be maintained for the different objects. The activeObj is a
variable that marks the currently opened object and it contains an identifier and a state. The
variable stateMap : Obj.Id→ State was added to map object identifiers to object states in order
to keep track of the current states of all objects. Moreover, we added additional transitions for
selecting an object. These transitions are only enabled when at least two objects are available,
and they are chosen randomly in the same way as other transitions. The decision, which object
is selected, is also performed by a generator. Figure 3.5 illustrates the select functionality with
the additional transitions, which is repented as a hierarchical state machine [77]. Note that
transitions that create objects are always enabled, i.e., they are enabled globally in all states.
In the following display of EFSMs, we skip this global initial state of the REMs.

In the same way as we added transitions to switch between objects of an REM, we also
added transitions to switch between different REMs within a module. Figure 3.6 demon-
strates, how a switch between multiple REMs of the Test Order Manager can be accomplished
with SelectREM transitions. In this example, we have three EFSMs for the different REMs of
this module, which are explained in more detail in Section 3.6.2. Each EFSM in this figure
also has the select functionality to switch between objects of the REM as shown in Figure 3.5.

On top of the switching between REMs, we may also switch between modules as illus-
trated in Figure 3.7. In this figure, we have three modules: Test Order Manager, Test Equip-
ment Manager and Test Factory Scheduler. The first two modules are both models we used
for case studies in Section 3.6. The Test Factory Scheduler module is for scheduling of test
orders on the test beds. It can automatically check the availability of resources like test beds
and equipment. Test orders can be assigned according to priorities and to meet certain dead-
lines. We have not implemented the switch functionality at this level, because we wanted to
test the modules separately, but it would be straightforward and very similar to the switch
functionality of REMs within a module.

3.5 Architecture and Implementation

In this section, we discuss the architecture and the relevant implementation details of our
test-case generator.

Chapter 3. Property-Based Testing with Business-Rule Models 37

Created

ToCreate

Duplicate
AdminEdit

EditCreated

InWork

MakeReady AdminEdit

Executed

AdminEdit

Finished
AdminEdit

Cancelled

AdminEdit

CancelInCreated

DeletedAdminEdit

Invalid

Invalidate Duplicate Reject AdminEdit

AdminEditEditStandardWorkInWork

AdminEdit

AdminEdit

AdminEditCancelInStandardWorkInWork

AdminEdit

Duplicate AdminEdit

AdminEdit

AdminEditEditStandardWorkExecuted

Finish AdminEdit

AdminEdit CancelInStandardWorkExecuted

AdminEdit

DuplicateAdminEdit

AdminEdit

AdminEdit

AdminEdit

AdminEdit CancelInFinished

AdminEdit

Duplicate AdminEdit

AdminEdit

AdminEdit

AdminEdit

AdminEdit

AdminEdit

Activate

CancelInInvalid

EFSM for Test Orders

Created

BptCreate

Available

BptCreate AdminEditEditChangeState

AdminEdit Edit ChangeState

Invalid

AdminEdit

Deleted

AdminEdit ChangeState

AdminEdit ChangeState

AdminEditChangeState

AdminEdit

AdminEdit ChangeState

AdminEdit ChangeState

AdminEdit ChangeState

AdminEdit

AdminEditChangeState

EFSM for Business Process Templates

Created

TotCreate

Available

TotCreate TotPropagate AdminEditChangeState

AdminEdit ChangeState

Invalid

AdminEdit

Deleted

AdminEdit ChangeState

AdminEdit ChangeState

AdminEditChangeState

AdminEdit

AdminEdit ChangeState

AdminEdit ChangeState

AdminEdit ChangeState

AdminEdit

AdminEditChangeState

EFSM for Test Order Templates

Se
le

ct
RE

M

Se
le

ct
R

EM

SelectR
E

M

SelectREM

SelectREM

SelectREM

Figure 3.6: Switching between rule-engine models inside the Test Order Manager. For
details about the EFSMs see Figures 3.9, 3.10 and 3.11.

3.5.1 Singleton Rule-Engine Models

As explained before, we parse the business-rule models from XML files and translate them
into an EFSM. It should be noted that our model representation does not strictly follow the
EFSM definition, because we used optimised data structures for the application of FsCheck.
However, the semantics of our model combined with FsCheck correspond to an EFSM. While
the translation to an EFSM (in Figure 3.4) provides the abstract syntax and the formal seman-
tics of our models, we now focus on the concrete model implementation in the object-oriented
context of FsCheck.

Our model is encoded as an object tree, i.e., an abstract syntax tree that serves as input to
FsCheck as part of the Spec shown in Definition 3. The class diagram for this object structure
is shown in Figure 3.8. It can be seen that the model consists of an attribute dictionary (i.e., a
map), an initial state, a current state, a list of states and a dictionary of tasks. The transition
relation is represented by a class called Task that contains hash sets for the possible source
and target states of a task, a name and a flag, which indicates that the state should not change

Introduction and Basics about TFMS18

AVL TFMS 2014 — User’s Guide

Most modules have a large number of functions or input options and comprise
several tabs.
The chart below illustrates the tasks than can be carried out with the respective
TFMS-module(s):

Test Equipment Manager (TEM): managing of the test equipment such as test-
beds, pallets, I/O-panels, measurement devices and sensors. Storage site and
position as well as state of the devices and data on the calibration and mainte-
nance of the registered devices are stored.

Test Factory Scheduler (TFS): planning of the test orders and the equipment
on the testbeds of the entire test field by means of a graphic, interactive inter-
face. The TFS collects all necessary data from the information managed in the
TFMS that are made available by TOM and TEM.

o

Unit Under Test Manager (UUT): testbed-oriented managing of the technical
data of the UUTs (such as chassis, engine, transmission, components, etc.).

Electronic Logbook Manager (ELO): recording and analysis of various infor-
mation in the test field; this information is either time-slot related (e.g. between
10:15 and 10:45) or event-related information (at 10:44:33) or information/oper-
ator notes communicated via platforms. Logbook types: TOM, TEM, UUT and
application logbook.

Usage Tracker: traceability of the equipment used in the test field, such as
sensors & actuators, I/O-modules, I/O-panels, measurement devices, pallets,
testbeds or load units.

Security Manager: creating and managing of users and user rights (such as
logins, passwords, etc.) and definition of the role sets and/or adding of roles for
users.

Standard Manager: managing of standards. Standards are collections of
specific information created and/or managed by users. In the Standard
Manager , new standards can be created, existing ones can be edited, copied
or deleted.

Report Manager: The Reports folder in the TFE contains all report templates.
From here new reports can be created and existing ones changed.
For all TFMS modules, a basic set of reports, in other words report templates,
are supplied along with the product. These reports can be activated from each
specific module via the Report area in the task pane (see Task Pane on
page 40).

Master Data Editor (MDE): managing of master data. Master data are centrally
managed, general and technical that can be referenced by the different modules
in the TFMS. The master data attributes may reference each other.

Introduction and Basics about TFMS18

AVL TFMS 2014 — User’s Guide

Most modules have a large number of functions or input options and comprise
several tabs.
The chart below illustrates the tasks than can be carried out with the respective
TFMS-module(s):

Test Equipment Manager (TEM): managing of the test equipment such as test-
beds, pallets, I/O-panels, measurement devices and sensors. Storage site and
position as well as state of the devices and data on the calibration and mainte-
nance of the registered devices are stored.

Test Factory Scheduler (TFS): planning of the test orders and the equipment
on the testbeds of the entire test field by means of a graphic, interactive inter-
face. The TFS collects all necessary data from the information managed in the
TFMS that are made available by TOM and TEM.

o

Unit Under Test Manager (UUT): testbed-oriented managing of the technical
data of the UUTs (such as chassis, engine, transmission, components, etc.).

Electronic Logbook Manager (ELO): recording and analysis of various infor-
mation in the test field; this information is either time-slot related (e.g. between
10:15 and 10:45) or event-related information (at 10:44:33) or information/oper-
ator notes communicated via platforms. Logbook types: TOM, TEM, UUT and
application logbook.

Usage Tracker: traceability of the equipment used in the test field, such as
sensors & actuators, I/O-modules, I/O-panels, measurement devices, pallets,
testbeds or load units.

Security Manager: creating and managing of users and user rights (such as
logins, passwords, etc.) and definition of the role sets and/or adding of roles for
users.

Standard Manager: managing of standards. Standards are collections of
specific information created and/or managed by users. In the Standard
Manager , new standards can be created, existing ones can be edited, copied
or deleted.

Report Manager: The Reports folder in the TFE contains all report templates.
From here new reports can be created and existing ones changed.
For all TFMS modules, a basic set of reports, in other words report templates,
are supplied along with the product. These reports can be activated from each
specific module via the Report area in the task pane (see Task Pane on
page 40).

Master Data Editor (MDE): managing of master data. Master data are centrally
managed, general and technical that can be referenced by the different modules
in the TFMS. The master data attributes may reference each other.

17Introduction and Basics about TFMS

AVL TFMS 2014 — User’s Guide

2.3 Who Works With TFMS?
The following charts shows a common sequence of a work process with persons

involved and their main activities. Implementation of the process with TFMS is

described in chapter How Does TFMS Work? on page 17.

You can create and manage specific rights for the individual users.

2.4 How Does TFMS Work?
After logging on, you can use the Test Factory Explorer (TFE) to access all other

functions and modules of TFMS. In the TFE, you navigate through the directo-

ries similarly to the MS Windows® Explorer (see User Interface on page 21).

The individual TFMS applications are divided up in modules. All modules have a

uniform structure to enable the user to apply identical methods of operation and

procedures. The list below provides a brief overview of the modules and their

use. For more detailed information, refer to chapter Working With Modules in
TFMS on page 37.

Fig. 2 Who Operates TFMS?

Test Factory Explorer (TFE): central data store with filter and find function.

navigation through all directories and start of all modules.

Test Order Manager (TOM): management of the test orders and all work areas

involved in the test process: from definition to execution of the test order. All

associated data are managed centrally.

Se
lec

tM
odule

Se
le

ct

M
odule SelectM

odule

SelectModule

SelectModule

SelectModule

Figure 3.7: Switching between modules: Test Order Manager (TOM), Test Factory Sched-
uler (TFS), Test Equipment Manager (TEM).

38 Chapter 3. Property-Based Testing with Business-Rule Models

Model
Class

Fields

currentState : string
initialState : string
name : string
states : HashSet<string>

Methods

doStep() : void
getPossibleTasks() : Task[]
getPossibleTasksWithWeight() : IEnumer…
Model()
reset() : void

Task
Class

Fields

from : HashSet<string>
name : string
stayInState : bool
to : HashSet<string>
weight : int

Methods

Attribute
Class

Fields

dataType : DataT…
fullName : string
name : string

Methods

Attribute() (+ 1 o…
Generator() : Ge…

Nested Types

AttachmentAttri…

Attribute
Class

BoolAttribute

Attribute
Class

DateTimeAttribute

Attribute

Class
EnumAttribute

Attribute

Class

IntegerAttribute

Attribute
Class

Fields

maxValue : int?
minValue : int?

Methods

Generator() : Gen<ob…
IntegerAttribute()

ObjectAttribute

Attribute
Class

ReferenceAttrib…

Attribute
Class

StringAttribute

Attribute
Class

Fields

isUnique : bool
maxValue : int?
minValue : int?
regExRule : string

Methods

Generator() : Gen<object>
StringAttribute()

DoubleAttribute

IntegerAttribute

Class
TimeSpanAttrib…

Attribute

Class

tasks : …

attributes …

requiredAtt…

Figure 3.8: Class diagram for a model, which is parsed from XML and serves as input to
FsCheck as part of the Spec.

after the execution of the task. Furthermore, the class includes a dictionary for the required
attributes. The attributes represent the form data of a web-service operation. All attributes
have a common base class, which has fields like name and data type. The derived classes
for specific data types extend this base class by adding possible constraints and a custom
generator for the data type that respects these constraints. For example, an integer attribute
class can have constraints for the minimum and maximum value, and the generator chooses
a number between these boundaries or an arbitrary number if no constraints are given. We
have implemented attribute classes for simple data types, like enumerations, floating-point
numbers, dates and times, but we also support more complex data types:

• Reference attributes: a reference to another object of the SUT can also be an attribute
for a task. The possible options for this object are given by a query, which represents a
search string for the database. The interface to the SUT provides a method to get results
for a valid query and an element generator chooses one of the results randomly. This
generator, was already explained in Section 3.3.2.

• Object attributes: an object attribute can group multiple attributes in a struct or a list.
The generator for this type recursively calls the generators of included types, which can
again be object attributes.

• Attachment attributes: some tasks require files of certain file types. The generator for
this attribute chooses one of the possible file types and generates a random file name.
The generation of the actual file is added to the wrapper class of the SUT, because the
file should also be deleted after the test execution.

• String attributes: a string attribute may include restrictions like a minimum/maximum
length or a regular expression. In order to generate strings that match these regular

Chapter 3. Property-Based Testing with Business-Rule Models 39

Algorithm 5 Attribute data generation for the form data of the incident manager.
Input:

Attributes: an array of attribute instances
Output:

attributeData: a generator for maps (Attribute.Name→ Val)
1: function GenerateData(Attributes)
2: for each attr ∈ Attributes do
3: genArray.Add(attr.Generator()) . fill genArray with Attribute Generators.
4: end for
5: return Gen.Sequence(genArray).Select(Values→ (

6: for i← 1 to length_o f (Attributes) do
7: attributeData[Attributes[i].Name]← Values[i]
8: end for
9: return attributeData))

10: end function

expressions, we apply a .NET port of the Xeger library.9 This library can generate text
that matches a given regular expression.

The object representation of the model is also used for the interface specifications for FsCheck.
For example, preconditions for the restriction of the tasks are automatically created by the
model class. The generator for the next command also includes information of the model to
generate commands with possible next states and attribute data.

Algorithm 5 shows how attribute data can be generated. First, an array of generators is
created by iterating over the attributes and adding the generators to the array. This array
is then given to a sequence generator as input, which creates an array of values for all the
generators in the array (Line 5). In order to store them in a map, we use the select function
of the generator. This function takes an anonymous function, which takes the values as input
and returns an object that should be created by the generator. It can be applied to convert a
generator of certain type A to a generator of a different type B by processing the generating
values of the first generator. Hence, the select function has the following signature:

Gen[A].select : (A→ B)→ Gen[B]

In our case, we build a map generator from a sequence generator in order to enable the gener-
ation of maps with attribute names as keys and the data as values (Lines 6 to 9). This attribute
data generation is required for the command generation, which is shown in Algorithm 6. First,
an array of possible tasks is created in the model class, which considers the preconditions for
this creation (Line 2). An element generator is used to choose one of these tasks and with the
selectMany function we process the chosen task (Line 3). The selectMany function is similar
to the select function. It can be applied to a generator and requires an anonymous function as
argument. This anonymous function takes a value of the generator as input and has to return
a new generator.

Gen[A].selectMany : (A→ Gen[B])→ Gen[B]

Therefore, selectMany makes it possible to nest generators and also to pass the generated
value to the inside generator.

A chosen task can lead to multiple next states, hence, we also choose a next state with an
element generator (Line 4). Then, the attribute data generation of Algorithm 5 is applied. With
the generated data we create a DynamicCommand object which takes the task, the model, the
attribute data and the next state as arguments for the constructor (Line 6).

9https://code.google.com/archive/p/xeger (visited on 2018-09-19)

https://code.google.com/archive/p/xeger

40 Chapter 3. Property-Based Testing with Business-Rule Models

Algorithm 6 Next: generates a Cmd for a given model.
Input:

model: model instance that incorporates the state
Output:

gen: a generator for commands
1: function spec.next(model)
2: ts← model.getPossibleTasks() . possible tasks
3: return Gen.Elements(ts).selectMany(t→
4: Gen.Elements(t.PossibleNextStates()).selectMany(s→
5: GenerateData(t.requiredAttributes).select(data→
6: new DynamicCmd(t, data, s)))
7: end function

The outline of the DynamicCommand class is shown in Algorithm 7. This generic com-
mand class can handle the execution of all tasks of the parsed model. The class has the task,
the model, attribute data and the next state as constructor arguments and as fields. They are
required for the execution of the transition. Running a transition on the model is realised with
a function of the model class (Line 5). The execution on the SUT in runActual calls the wrap-
per class of the SUT (Line 9). This wrapper class uses reflection to call the actual methods on
the SUT and it also sets the attributes. In the postcondition, we check if the post-state of the
model is equal to the post-state of the SUT. Note that our SUT allows an explicit observation
of the state. This information can be accessed via the wrapper class of the SUT, which allowed
us to easily compare the state of the model and the SUT in the postcondition. In other SUTs,
this information might not be accessible, e.g., only the output might be comparable.

3.6 Evaluation

Our approach was developed for a web-service application called TFMS as discussed in Sec-
tion 1.4.2. This system is a composition of various modules. We performed an evaluation of
two representative modules of the application, the Test Order Manager and the Test Equip-
ment Manager. Moreover, we also tested other small modules like the Incident Manager,
which was shown in the example of Section 3.3.2, but the major part was the Test Order Man-
ager. The goal of the evaluation was to analyse the applicability and bug-finding ability of our

Algorithm 7 DynamicCmd: generic Cmd definition.
Input:

t : task instance,
data : map (Attribute.Name→ generated value),
s : nextState (the selected next state from the next function)

1: function post(sut, model)
2: return sut.State = model.State
3: end function

4: function runModel(model)
5: model.doStep(t, s);
6: return model
7: end function

8: function runActual(sut)
9: sut.DefaultTask(t, data, s);

10: return sut
11: end function

Chapter 3. Property-Based Testing with Business-Rule Models 41

Table 3.1: Number of states, tasks, transitions and attributes of the REMs within the Test
Order Manager.

Model States Tasks Transitions Attributes
Test Order 8 16 49 15
Business Process Template 5 4 25 58
Test Order Templates 5 4 24 53
Test Order Manager 18 24 98 126

method for industrial use cases. The human effort of the evaluation was primarily the imple-
mentation of the parsing process of the business-rule models and the connection to the SUT.
The human effort for the testing process itself was insignificant, due to the high automation.

We found several issues in the systems under test that are listed in the following sections.

3.6.1 Settings

We performed our experiments in a virtual machine with Windows Server 2008, 4 GB RAM
and one CPU on a MacBook Pro (late 2013 version) with 8GB RAM and a 2.6 GHz Intel
Core i5. The system was running TFMS 1.7 and we applied FsCheck 2.4 as PBT tool.

First, we ran the default test settings of FsCheck, which produces 100 test cases with an
average length of 51. When an issue in the SUT had been found, we repeated the whole test
process until no more issues were detected.

Additionally, we performed test runs with an increasing number of test cases and a fixed
length of ten in order to evaluate the coverage on the models. This ensured that all relevant
parts of the SUT were covered. Furthermore, this coverage analysis helped in regression
testing. When fixing a detected issue, it gave us confidence that the randomly re-generated
test sequences were covering the affected parts of the SUT. The results of this evaluation are
presented in the following sections.

3.6.2 Test Order Manager Case Study

The Test Order Manager module controls individual work steps and preparations for auto-
motive test orders and corresponding templates. A test order is a composition of multiple
processes that are necessary for a test sequence at an automotive test field. It consists of both
organisational and technical processes, which are defined in templates. Organisational pro-
cesses, like accepting a test order, are defined in a Business Process Template, and a Test Order
Template defines technical processes, like preparing a test cell on the test bed. For a test order
we need to select both, a Business Process Template and a Test Order Template. Test Orders,
Business Process Templates and Test Order Templates can be managed individually, and they
have separate REMs as shown in Figure 3.6.

A state machine of a test order is shown in Figure 3.9. The figure displays only states
and transitions, because there are too many attributes to show them. It can be seen that the
model contains a number of states for the workflow or life cycle of a test order. The REMs of
Business Process Templates and Test Order Templates are similar, but they have fewer states
and transitions. They are illustrated in Figure 3.10 and Figure 3.11.

Table 3.1 displays the size of the models within the Test Order Manager module. It shows
the number of states, tasks, transitions and attributes. It can be seen that the number of pos-
sible transitions is high. Therefore, our automated approach makes sense, because otherwise
the test of all these transitions would be impractical, especially, since the transitions are not
simple actions in this case study. Each transition represents the opening of a page, entering
data for form fields and saving the page. One example page of an AdminEdit task can be

42 Chapter 3. Property-Based Testing with Business-Rule Models

Created

ToCreate

Duplicate
AdminEdit

EditCreated

InWork

MakeReady AdminEdit

Executed

AdminEdit

Finished
AdminEdit

Cancelled

AdminEdit

CancelInCreated

DeletedAdminEdit

Invalid

Invalidate Duplicate Reject AdminEdit

AdminEditEditStandardWorkInWork

AdminEdit

AdminEdit

AdminEditCancelInStandardWorkInWork

AdminEdit

Duplicate AdminEdit

AdminEdit

AdminEditEditStandardWorkExecuted

Finish AdminEdit

AdminEdit CancelInStandardWorkExecuted

AdminEdit

DuplicateAdminEdit

AdminEdit

AdminEdit

AdminEdit

AdminEdit CancelInFinished

AdminEdit

Duplicate AdminEdit

AdminEdit

AdminEdit

AdminEdit

AdminEdit

AdminEdit

Activate

CancelInInvalid

Figure 3.9: EFSM for Test Orders.

Created

BptCreate

Available

BptCreate AdminEditEditChangeState

AdminEdit Edit ChangeState

Invalid

AdminEdit

Deleted

AdminEdit ChangeState

AdminEdit ChangeState

AdminEditChangeState

AdminEdit

AdminEdit ChangeState

AdminEdit ChangeState

AdminEdit ChangeState

AdminEdit

AdminEditChangeState

Figure 3.10: EFSM for Business Process Templates.

Created

TotCreate

Available

TotCreate TotPropagate AdminEditChangeState

AdminEdit ChangeState

Invalid

AdminEdit

Deleted

AdminEdit ChangeState

AdminEdit ChangeState

AdminEditChangeState

AdminEdit

AdminEdit ChangeState

AdminEdit ChangeState

AdminEdit ChangeState

AdminEdit

AdminEditChangeState

Figure 3.11: EFSM for Test Order Templates.

seen in Figure 3.12. This page is part of the graphical user interface of a client application
that connects to web services on a server. It contains a number of form fields and tables that
require generated data.

For the case study AVL provided us with a test framework that was specifically devel-
oped for the SUT and performs the communication with the web services on the server. It
basically represents an abstraction of the graphical user interface and is intended to allevi-
ate the testing effort. A tester should not need to know any web-service details in order to

Chapter 3. Property-Based Testing with Business-Rule Models 43

Figure 3.12: TFMS form for the AdminEdit task.

run tests. Hence, the framework offers functions, which perform web-service requests in the
background in order to execute the required steps of the test cases. The framework is written
in C# and has interfaces to modules that provide functions for login/logout, executing tasks,
opening domain objects, retrieving data and so on. We call these functions, e.g., to start tasks
(representing the opening of forms), to set attributes (of form data), and to save forms.

The case study revealed the following problems and bugs:

1. There was a bug in the original testing framework that was provided by our industrial
partner. The expected state after a task execution was sometimes wrong, because in
some cases an old version of the object was used by the testing framework.

2. Another issue we detected concerns our test-case generation method. In some rare
cases, the business models do not contain enough information. For example, there were
reference attributes that could not be changed to a different subtype after an object was
created. The query for these attributes needed an additional restriction for the subtype.
This information was correctly implemented in the code, but is missing in the rule-
engine model. Hence, the tool reported a bug that in fact was not a bug. It is rather a
limitation of the approach of relying on the business-rule models as primary source for
the test-case generation.

The following bugs were found in hidden tasks that were not enabled in the user interface.
These tasks remained in the business-rule models, and they would cause problems when they
were enabled again. Therefore, we also tested them.

3. There were tasks that first resulted in an exception, which stated that certain attributes
are missing. However, when the attributes were set, it resulted in an exception that said
that the attributes are not enabled.

44 Chapter 3. Property-Based Testing with Business-Rule Models

Table 3.2: Average number of commands needed for finding the issues of the Test Order
Manager.

Issue Number of Cmds
1 -
2 1.4
3 23.8
4 9.4

4. There was a problem with a task that had a next state in the model, which was not
permitted by the SUT. Furthermore, the error message of the SUT was wrong in this
case. It should list possible next states. However, the list did not contain states, but
tasks.

Table 3.2 presents the average number of commands that were needed to find the issues. The
average was computed over five test runs. Note that for the first issue no data is available,
as the bug in the testing framework was fixed in an early state of the evaluation. The data
shows that Issue 3 is especially hard to find as it requires on average of more than 23 input
commands to be executed until its detection.

We monitored the coverage of our tests on the model in order to obtain confidence that we
tested thoroughly enough. The states and tasks of the model were covered with a few tests
and are, therefore, omitted. The transition coverage for an increasing number of test cases
is illustrated in Figure 3.13. The test case length is fixed to ten and the coverage is given as
the average percentage of the transitions that are visited during 100 test runs with the same
number of samples. Due to the high number of transitions we need about 4.000 test cases in
order to obtain an average transition coverage that is close to 100%. We performed the same
evaluation for transition-pair coverage, which is also called 1-switch coverage after Chow [46].
For this coverage criterion, we evaluate how many sequences of two consecutive transitions are
observable within our test cases. The results are shown in Figure 3.14. Transition-pair coverage
requires even more test cases, e.g., 5.000 test cases only produce an average transition-pair
coverage of 75%.

3.6.3 Test Equipment Manager Case Study

Similar to the Test Order Manager we performed a case study for the Test Equipment Man-
ager module. The main function of this module is the administration of all equipment that
is relevant for the test field, like test beds, measurement devices, sensors, actuators and var-
ious input/output modules. All these test equipment can be created, edited, calibrated and
maintained with the Test Equipment Manager. A hierarchy of test equipment types is used
to classify the test equipment. Test configurations, which are compositions of different test
equipment, can also be administrated and also the connection of devices via channels can be
controlled with this module.

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

0.7

0.8

0.9

1

number of test cases

co
ve

ra
ge

Figure 3.13: Test Order Manager: Transition coverage for increasing number of test cases
(with test cases of length ten).

Chapter 3. Property-Based Testing with Business-Rule Models 45

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
0.2

0.4

0.6

0.8

number of test cases
co

ve
ra

ge

Figure 3.14: Test Order Manager: Transition-pair coverage for increasing number of test
cases (with test cases of length ten).

Table 3.3: Number of states, tasks, transitions and attributes of the REMs of the Test
Equipment Manager.

Model States Tasks Transitions Attributes
Test Equipment Type 5 10 21 43
Test Equipment 7 13 39 23
Test Equipment Manager 12 23 60 66

Figure 3.15 illustrates the main REMs and the complexity of the Test Equipment Manager.
It can be seen that the EFSM for test equipment has many transitions for maintenance and
administration purposes. Most of the state names are self-explanatory. The state Invalid
describes an object that was copied and has to be adapted. Mounted is a state that means that
the equipment was installed in the test field. The EFSM for test equipment types is smaller
but similar, because it does not contain maintenance operations. Details about the behaviour
of the REMs are omitted, because they are too specific for the SUT and not relevant for this
work. The size of the module and its REMs is summarised in Table 3.3, which shows the
number of states, tasks, transitions and attributes. In contrast to the Test Order Manager, we
only have two REMs and the module is not as complex.

Created

CreateTestEquipment

Available

CreateTestEquipment
TeEditGeneral

TeChangeState

TeDuplicateTeMultipleDuplicate

Invalid

Invalidate

TeEditGeneral TeChangeState TeDuplicateTePropagate

Deleted

TeDelete

TeActivate

TeActivate

TeDuplicate TeMultipleDuplicateTeAdminEdit

TeMaintenance

TeMaintenanceAdminEdit

TeDuplicate

TeAdminEdit
TePropagate

TeDelete

Defect

MarkAsDefect

Mounted

TeMaintenance TeMaintenanceAdminEdit

TeAdminEdit

TeAdminEdit

TeChangeState

TeChangeState TePropagate

TeDuplicate

TeMultipleDuplicate

TeMaintenance TeMaintenanceAdminEdit TeDuplicate TePropagate

TeMaintenance

TeMaintenanceAdminEdit

EFSM for Test Equipment

Created

TetCreate

Available

TetCreate

TetEditGeneral

TetDuplicate
TetChangeState

Invalid

Invalidate

TetEditGeneral TetDuplicate TetChangeState

Deleted

TetDelete

TetActivate

TetActivate

TetAdminEdit TetDuplicate

BaseTypeEditTask
TetAdminEdit

TetDuplicate
TetPropagate

TetDelete

TetAdminEdit

TetAdminEdit

EFSM for Test Equipment Types

SelectREM

Se
le

ct
RE

M

Figure 3.15: EFSM for the rule-engine models of the Test Equipment Manager module.

46 Chapter 3. Property-Based Testing with Business-Rule Models

We found a number of issues which are listed below. It should be noted that the case study
was performed with test rule-engine files, which are not used by actual customers and which
were not inspected as intensively as productive rule-engine files. However, if productive rule-
engines would contain these kinds of issues, then our tests could also find them. The following
two issues could be found with strings by utilising our string generators, which support the
generation of strings with regular expressions.

1. Inconsistency regarding the use of tab characters in names could be found. It was never
planned that the object names should support tabs. On some occasions these characters
were replaced with blanks, but not consistently. Blanks were still saved in the database
and only replaced, when they were sent to the graphical user interface. Therefore, two
entries could be created that were indistinguishable, because both a name containing a
tab and a blank were presented in the same way by the SUT.

2. Another problem found was that the regular expressions for several names in our REMs
were insufficient. We assume that these regular expressions were designed to prevent
certain special characters and no blanks should be allowed at the end and at the begin-
ning. However, the regular expressions were written so that they allowed all non-white
space characters at the beginning and at the end of the string, even characters that are
not allowed in the middle of the string. We could observe this issue when we tested the
copy functionality, which duplicates an object and appends an underline and a number
to its name. When certain special characters were at the end of the string, then the name
was not valid any more, after a copy operation. This was, because the special character
moved from the end to the middle of the string, where they were not allowed due to the
regular expressions.

Further issues could be found concerning misconfigurations in the REMs and unsupported
functionality of the provided test framework.

3. An issue was found with required attributes. In a particular task, an attribute was
required, but it could not be edited, because it was not enabled for this task. Therefore,
it was not possible to complete this task, except the user returned to a previous task and
edited the attribute there.

4. We found a task that was not supported by the test framework. The task could be
triggered with the test framework, but resulted in an exception. In the graphical user
interface, the task could be executed normally. Hence, we found a task that was not
completely implemented in the test framework and could not be tested automatically,
because without support of the test framework only a manual test via the graphical user
interface was possible.

Table 3.4 illustrates the average number of commands that were needed to find the issues.
The numbers were computed in the same way as described for the Test Order Manager module
in Section 3.6.2. The first issue was particularly hard to find. The reason is that the generator
for strings does not generate a tab character very often, because it is only one of many options
and the same string with a blank was also generated very rarely.

We also monitored the average transition and transition-pair coverage for an increasing test
case number, as already shown for the Test Order Manager module. The results are shown in
Figure 3.16 and Figure 3.17. Due to the lower complexity of this module, only about 150 test
cases are needed to reach a transition coverage that is close to 100% and about 2.500 test cases
for transition-pair coverage.

Chapter 3. Property-Based Testing with Business-Rule Models 47

Table 3.4: Average number of commands needed for finding the issues of the Test Equip-
ment Manager.

Issue Number of Cmds
1 467.4
2 12.4
3 17.6
4 9

3.6.4 Further Result

Another bug was not directly found with our test cases, but during the extensions of our
models with the select functionality as described in Section 3.4.2. In order to implement this
functionality, we had to evaluate the behaviour of the SUT, because it is not described in the
rule-engine models. During this evaluation we could observe a bug that occurred when we
tried to open a window for a module while a task was executed in an already open window. In
this case, the window crashed and it was not possible to open a new window for the module
until it was terminated via the task manager. Note, this bug was not directly found with our
automated method, but during the model design. However, in other MBT approaches, it is
also often the case that bugs are found in this phase. Hence, finding such bugs can be seen as
a positive by-product of applying MBT in general.

3.7 Property-Based Testing with External Test-Case Generators

We also showed how PBT can be extended in order to support other sources for the test-case
generation instead of the default random walks on the model [10]. This gives the tester more
control on how to produce meaningful command sequences for the test cases. For example, it
can be applied to combine random testing with a mutation-based test-case generation method,
which results in a powerful testing strategy [8].

By integrating an external test-case generator into a PBT tool, we can combine the dynamic
test-data generation feature of PBT with the ability to generate command sequences (test cases)
according to various coverage criteria.

0 20 40 60 80 100 120 140 160
0.6
0.7
0.8
0.9

1

number of test cases

co
ve

ra
ge

Figure 3.16: Test Equipment Manager: Transition coverage for increasing number of test
cases (with test cases of length ten).

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600

0.6
0.7
0.8
0.9

1

number of test cases

co
ve

ra
ge

Figure 3.17: Test Equipment Manager: Transition-pair coverage for increasing number of
test cases (with test cases of length ten).

48 Chapter 3. Property-Based Testing with Business-Rule Models

Rule Engine
Model

Transformation
Extended Finite
State Machines

Property-Based
Testing Tool

Model-
Based Tests

External Test
Case Generator

Abstract
Test Cases

Property-Based
Testing Tool
Integration

Extension

Original

Figure 3.18: Overview of the steps for the integration of an external test-case generator.

Figure 3.18 illustrates how we integrated an external test-case generator into our existing
rule-engine-based testing technique. The first step works as already explained in the previ-
ous sections, i.e. we translate XML business-rule files to EFSM input models for FsCheck.
As an alternative to directly using our EFSMs within FsCheck, we can also further trans-
form the models in order to provide them to an external test-case generator. We applied the
model-based mutation testing tool MoMuT::UML [102] in order to generate abstract test cases
based on mutation coverage. This enabled the generation of smaller test suites that still cover
important model parts.

An externally generated abstract test case can serve as input for a state-machine property,
where it is executed instead of performing a random walk on the model. Additionally, we
can enrich the command sequences from the external generator with test data generated with
classical PBT. The reason why we do not also apply the external generators for the test-data
generation is that they are often limited regarding the supported data types. Moreover, PBT
is more suitable for this task, because it has powerful generators that can be combined very
flexibly and thereby facilitate the generation of complex test data like attributes for web-
forms. In order to execute externally generated abstract test cases, we extend the state-machine
specification with new functionality for external data sources.

We evaluated this approach by applying MoMuT as an external test-case generator and
by comparing it to FsCheck. We supplied MoMuT with observer automata that guaranteed a
certain coverage of the model, like state or transition coverage. The most notable difference
between the test generation with MoMuT and the random approach with FsCheck was the
computation time. The test suite generation time with MoMuT is very high. It can take
several minutes to hours to generate useful sequences, hence it becomes infeasible for bigger
models.10 This is a known limitation of the approach. FsCheck can generate a large number
of test cases within one second.

We applied observer automata for MoMuT in order to perform a test-case generation that
enables the fulfilment of a coverage criterion with just a single test case. Hence, the test
suites generated with MoMuT were able to cover more of the model with fewer test cases as
compared to plain FsCheck. This advantage becomes negligible as soon as the number and
length of test cases is increased. However, it is evident that a smaller test suite will need
less execution time. Therefore, it makes sense to optimize for a small test suite if the test-
execution time is expensive. The short MoMuT sequences cover most parts of the model and
are therefore well suited for regression testing.

Implementations details and the results of the evaluation where presented in our previous
work [10]. Additionally, a more detailed description of this method can also be found in the
master’s thesis of Silvio Marcovic [123].

10Note this only holds for the old version of this tool. MoMuT::UML has been reimplemented and the run time
is not an issue any more [63, 131].

Chapter 3. Property-Based Testing with Business-Rule Models 49

3.8 Discussion

3.8.1 Limitations and Threats to Validity

The evaluation demonstrated that our method of using business-rule models for PBT is able to
find bugs in a real system. Moreover, we showed that our randomly generated test cases are
able to achieve a high transition coverage with an acceptable number of tests. A limitation of
random testing is that certain coverage criteria cannot be guaranteed and so important aspects
of the SUT might not be tested. Hence, a more targeted test-case generation strategy might be
able to find more bugs. We evaluated another strategy as explained in the previous section,
but it was not able to find more bugs, because the random strategy already covered most of
the model with just a few tests. Moreover, the random generation was especially helpful for
the creation of complex form data, which was required for our SUT.

Another limitation of our approach is that we rely on business rules as test models and
oracles. In an ideal implementation, we could only test if the business rules are interpreted
correctly. However, for our SUT, we saw that there are a number of deviations of the SUT from
the business rules. In other applications, this might not be the case. Furthermore, it should be
noted that we are only able to find bugs that are caused from a deviation of the SUT from the
business rules. A manually crafted model might be able to find more bugs, but it is expensive
to create a model manually.

A limitation of relying on the business rules can also be that they might not contain enough
information, e.g., not all data constraints that are present in the SUT might be encoded in the
business-rule models. In such cases, a manual intervention might be needed. This was already
mentioned in Issue 2 of the Test Order Manager case study in Section 3.6.2.

An external threat to the validity of our method is that the random generation of a PBT
tool might not be random enough. For example, there can be problems when the random
generation is based on the system time or when multiple threats share a common random
generator. In order to eliminate this threat, we analysed our generated command sequences
for suspicious patterns, like repeatedly occurring sequences. Moreover, we made sure that the
random generation functionality was implemented according to common practice.

An internal threat to the validity of our evaluation might be the research bias, which can
come in different shapes. (1) We might have selected an SUT that has particular faults in order
to support our approach. However, we did not select the SUT for our evaluation. It was given
to us by our industrial partner AVL and this was done before we had a particular testing
method in mind. Hence, we had no influence over the choice of the SUT. (2) We could have
found issues that are no real problems of the SUT. The fact that we had to present our findings
to AVL and also that they had to confirm our found issues before we were allowed to publish
them, dissolves this threat. (3) We could have targeted our testing method towards specific
bugs that were present in the SUT. This would limit the type of faults that can be found, but
we did not know the bugs of the SUT beforehand. They were revealed by our evaluation.
Hence, it was not possible for us to target our testing method towards specific known bugs of
the SUT.

Another internal threat to the validity is that we only tested our method with a specific
system. One could argue that one case study is not enough to evaluate the applicability or gen-
erality of our method. However, we did evaluate two modules of one big web-service appli-
cation. These modules have different functionality and can be used independently. Therefore,
we think that the evaluation of two modules is sufficiently representative for this application
domain.

50 Chapter 3. Property-Based Testing with Business-Rule Models

3.8.2 Future Work

Additional case studies are an interesting option for future work. In order to analyse the
generality of our method, it would make sense to test further applications that are driven by
rule engines. Moreover, a comparison with other testing methods, like manual unit testing,
would make sense. This might help to assess the bug-finding performance of our approach.

Another potential topic for future work would be fuzzing. With our current method, we
only test the behaviour of the SUT that is allowed by the business rules. However, it would
also be important to test behaviour that is outside the scope of the business rules, i.e., invalid
behaviour. This could be done by specifying generators that generate data that is not allowed
by the business rules, e.g., tasks that are not enabled in a specific state, or form data that does
not meet certain restrictions. By generating invalid data, we could check if the error handling
works as expected and also if the business rules are applied correctly.

3.9 Concluding Remarks

We have developed an automatic test-case generation approach for business-rule models of a
web-service application. The approach is based on property-based testing and written in C#
with the tool FsCheck.

First, we presented our business-rule models, and we introduced property-based testing,
formalised its underlying concepts and algorithms. Next, we discussed how our approach
works in detail. It takes XML files with the business-rule models as input and converts them
into an EFSM in the form of an object representation that is used for FsCheck specifications
and as model. We evaluated our approach in a case study with an industrial web-service
application. Finally, we introduced an alternative test-case generation strategy that works
with external test-case generators.

With our method, we were able to find eight issues that were confirmed by our industrial
partner AVL. This demonstrates the effectiveness of our approach.

In the next chapters, we will see how this method can be applied for load testing.

51

4 Integrating Statistical Model Checking Into
Property-Based Testing

This chapter is primarily based on our publications at MEMOCODE 2016 [7] and ICST 2017 [6].
Some small parts are from our papers at QEST 2018 [3] and in the SQJO journal 2017 [9].

4.1 Overview

In recent years, SMC (Section 2.2) has become increasingly popular, because it scales well to
larger stochastic models and is relatively simple to implement. In this chapter, we show how
SMC can be easily integrated into a PBT framework, like FsCheck for C#. As a result we obtain
a very flexible testing and simulation environment, where a programmer can define models
and properties in a familiar programming language. The advantages are that no external
modelling language is needed and that both, stochastic models and implementations, can be
checked. In addition, we have access to the powerful test-data generators of a PBT tool. We
demonstrate the feasibility of our approach by repeating three experiments from the SMC
literature.

A number of tools exist that perform SMC for different kinds of models. For example,
UPPAAL-SMC checks priced timed automata [42] or PLASMA-lab supports a number of dif-
ferent modelling languages, like the Reactive Module Language or Matlab Simulink [38, 94].
However, the existing SMC tools are not as flexible as some situations or users may require.
They are limited by the modelling language and the properties are limited by the used logics.
Therefore, we propose a new SMC approach that builds on PBT.

For our SMC approach, we introduce new SMC properties that are integrated into a PBT
tool. These SMC properties take a PBT property, configurations for the PBT execution, and
parameters for the specific SMC algorithm as input. Then, our properties perform an SMC
algorithm by utilising the PBT tool as simulation environment, and they return either a quanti-
tative or qualitative result, depending on the algorithm. Figure 4.1 illustrates how we evaluate
a PBT state-machine property within an SMC property.

With our approach we can do both, SMC by simulating stochastic models and conformance
testing of an SUT with stochastic failures. For classical SMC, we evaluate our stochastic models
with PBT state-machine properties, but we only exploit the model part of these state-machine
properties, the part for the SUT is neglected. Additionally, conformance testing can be done
by utilising the default state-machine properties for comparing faulty systems with a correct
model within our SMC properties. This allows us to analyse stochastic failures of an SUT, e.g.,
we can estimate the probability of the occurrence of a failure with a Monte Carlo simulation.

PBT provides the tester with generators that enable the generation of test data with certain
probability distributions. For example, it is possible to choose between multiple transitions
by assigning weights to each of them. The default behaviour for checking PBT state machines

State-Machine
Property

SUT

Model

SMC Property

SMC Algorithm

Configurations

Parameters

Result

Figure 4.1: Data flow diagram of an SMC property.

52 Chapter 4. Integrating Statistical Model Checking Into Property-Based Testing

0start 1 2 ...Inc

1 99

Inc

1 99

Inc

1 99

Dec Dec Dec

Figure 4.2: Stochastic model example of a counter.

is to make random walks through the model by generating (input) command sequences. The
generation of these sequences can also be controlled with custom generators. For SMC, we
need a discrete-event simulation, which can be realised via the random walks in PBT. Hence,
PBT has a number of features that are helpful to implement a statistical model checker. For
the demonstration of our approach we use the PBT tool FsCheck and C# as a programming
language.

The contributions of this chapter are the following:

1. The main contribution is a new SMC approach that uses the modelling notations from
PBT and checks PBT properties instead of logical formulas that are used in conventional
SMC approaches. It can also be seen as a novel extension of PBT with SMC functionality
providing testers who are already familiar with a PBT tool the option to analyse the
stochastic properties of their SUT.

2. We present the application of our approach for an assessment of stochastic failures of an
SUT by a comparison with an ideal model.

3. Moreover, we present an optimised PBT approach for classical SMC. The optimisation
is that we only exploit the model part of a state-machine property in order to avoid the
overhead of running both a model and an SUT, and it also gives us the possibility to
stop during the generation of a sample.

4. We evaluate this approach by repeating three typical SMC examples from the literature.

The rest of this chapter is structured as follows. First, in Section 4.2 we demonstrate how
SMC methods can be applied to a small example of a stochastic counter with faulty behaviour.
Then, in Section 4.3 we present the implementation details. In Section 4.4, we evaluate our
approach. Finally, we draw our conclusions in Section 4.5.

4.2 Example

In this section, we demonstrate our approach with a simple example of a counter, which is
commonly used in the PBT community in order to illustrate model-based testing with state
machine properties.

Figure 4.2 shows the state machine of our counter implementation. It can be seen that
we added stochastic faulty behaviour to the increment function (Inc) of the counter. This
behaviour was achieved by adding a probabilistic choice: the function can either do a normal
increment (99%) or do nothing (1%). The decrement function (Dec) works as usual.

Algorithm 8 shows the implementation of the counter with the stochastic behaviour. A
Random instance rand, which is a pseudo-random number generator from the .NET frame-
work, is given as input and allows us to implement the stochastic behaviour. The counter has
an integer s to store the state, which is initialised to zero (Line 1). In the Inc function, we call
random.Next(100), which gives us numbers from 0 to 99. If the number is greater than zero,
then we perform a normal increase, otherwise no increase occurs which represents a failure.
The Dec function works as usual and there is a Get function to obtain the value of the counter.

Chapter 4. Integrating Statistical Model Checking Into Property-Based Testing 53

Algorithm 8 Stochastic counter implementation for FsCheck.
Input:

rand: Random instance (from .NET) for the generation of random numbers,
1: s← 0 . s ∈N is a number for the internal state of the counter
2: function Inc
3: if rand.Next(100) > 0 then . generate a random number between 0 and 99 with a uniform

distribution
4: s← s + 1
5: end if
6: end function
7: function Dec
8: if s > 0 then
9: s← s− 1

10: end if
11: end function
12: function Get
13: return s . the internal state is returned for an external inspection
14: end function

The main property we wanted to check for this example is how likely it is that the counter
with the stochastic behaviour behaves like a normal counter. In order to check such properties,
we implemented new properties that are based on the properties from PBT with the difference
that they perform an SMC algorithm instead of normal property checks. Our new SMC
properties take a normal PBT property and parameters for an SMC algorithm as input and
apply this SMC algorithm on the input property. More details about the implementation of
these properties are discussed in Section 4.3.

The state-machine specification for such a counter is similar to the one illustrated in List-
ing 2.1 in Section 2.1.3, with the only difference that we have to set a fixed length for each
sample (or test case). This length can be supplied through the constructor of the state-machine
specification.

We can evaluate our counter with a property for a Monte Carlo simulation as explained in
Section 2.2.1 as follows:

Property p = new CounterMachine (1 0) .ToProperty () ;
new MonteCarloProperty (p , config , 1000) .QuickCheck () ;

It can be seen that we first define an FsCheck state-machine property, and we set the sample
length to ten commands with the constructor argument. Then, we check this property by
performing a standard Monte Carlo simulation with 1000 runs. This is done by defining a
MonteCarloProperty that takes the state-machine property and configuration parameters as
input and executing the QuickCheck method. The output of this method was that the property
holds in 94.5% of the cases.

Another example of a property for the sequential probability ratio test (SPRT) that was
introduced in Section 2.2.3 is shown in the following listing:

new SPRTProperty (p , config , 0 . 9 5 , 0 . 9 , 0 . 0 1 , 0 . 0 1)

The four arguments of the SPRT method are: the probability for the null hypothesis, the
probability for the alternative hypothesis and the type I and type II error parameters. The
example demonstrates an SPRTProperty, which can check if the probability that the stochastic
counter works like a normal counter is closer to 0.95 or 0.9. When we check this property for
samples of length 10, we obtain the result that the null hypothesis H0 was accepted, which
means that the probability was closer to 0.95.

54 Chapter 4. Integrating Statistical Model Checking Into Property-Based Testing

−2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
85

90

95

100

sample length

pr
ob

ab
ili

ty
[%

]

Figure 4.3: Simulation results for the property: how likely is it that the stochastic counter
behaves like a normal counter?

Similar to the SPRT, a property for the Cumulative Sum (CUSUM) as discussed in Sec-
tion 2.2.4 can be defined as follows:

new CusumProperty (p , config , 0 . 9 4 5 , 0 . 8 5 , 5 , 5000)

This property also requires four arguments: the initial probability, the probability to detect a
change, the sensitivity threshold and a maximum sample number to stop, when no change
was detected. When we run this CusumProperty with samples of length 10, then, as expected,
no change is detected. After the model was adapted so that the probability of a correct incre-
ment is decreased once after 1000 Inc commands, we were able to observe this change after
345 samples. CUSUM is useful for testing systems with random failures where the probability
of failure changes after a while. Knowing when the change occurs helps at localising the fault.

Figure 4.3 shows the evaluation results of our counter that were obtained in the same
way as explained for the MonteCarloProperty example, but with various sample lengths. We
performed a Monte Carlo simulation with 100,000 samples for each data point in order to
compute the probability that the stochastic counter acts like a normal counter. It can be
seen that the probability decreases with increasing sample length. This behaviour met our
expectations because with a larger sample length, i.e., longer random walks on the model, it
is more likely that we see a faulty increment.

The concrete testing of properties that we want to check happens in the state-machine
specification of FsCheck. We propose the following optimised approach for SMC. In conven-
tional PBT, a state-machine property has a part for the model and for the SUT, which are both
executed and compared. Due to the overhead of running both the model and the SUT, we
utilise only the model part of these properties to simulate stochastic models, the SUT part is
ignored. We instrument the model with observer functions that monitor the state of the model
during execution. With these observer functions we form the conditions that are checked dur-
ing run time (run-time verification). These conditions can be directly inserted in the runModel
function of a command, which is responsible to perform the execution of an action on the
model. By performing checks in the runModel, we can stop the sample execution (or test-case
generation) prematurely, when we observe that the property fails. If we see that the property
is already fulfilled, we can also terminate the sample execution with a stop command.

Additionally, it is also possible to make a conformance test between an ideal model and an
SUT with stochastic failures. In this setting, we provide the default state-machine property of
FsCheck as input to our SMC properties. As mentioned, the default state-machine property
runs both a model and an SUT and checks, if the state of the SUT conforms to the model. For
example, we can use the stochastic counter as SUT and a regular counter as model and test if
we can find a difference for a certain number of generated command sequences. This approach
is useful if an SUT has failures that occur irregularly or if a black-box system is tested that
cannot be easily instrumented with additional observer functions. In the following, we will
apply our optimised SMC approach, i.e., only using the model part, because it is better suited
for classical SMC.

Chapter 4. Integrating Statistical Model Checking Into Property-Based Testing 55

Algorithm 9 Pseudo code of the MonteCarloProperty.

Input: prop: PBT property, config: configuration for the property check, n: number of samples
1: function QuickCheck
2: passCnt← 0 . Counter for the passed property checks
3: for i← 1 to n do
4: if prop.Check(config) then
5: passCnt← passCnt + 1 . increase pass counter
6: end if
7: end for
8: return passCnt/n
9: end function

4.3 Implementation

In this section, we illustrate how we implemented our SMC approach by introducing SMC
properties that are based on PBT properties. Furthermore, we want to highlight the ad-
vantages like flexibility and user convenience of our proposed approach. The mathematical
background of our implemented SMC algorithms was already briefly discussed in Section 2.2.

We propose properties for each SMC algorithm. These properties are based on properties
from PBT with the difference that they perform an SMC algorithm instead of a normal test
that only checks if a property holds or fails. We want to know the probability that a property
holds, and we want to assess which of two given probabilities is closer to the probability of the
property. Our SMC properties take a normal PBT property, a configuration object for the check
of the PBT property and parameters for an SMC algorithm as constructor arguments. They
provide a QuickCheck function that performs the SMC algorithm by simulating the input PBT
property, which is used to generate samples and also to evaluate them. When the simulation
is finished, the result is presented to the user. The SMC properties for the different SMC
algorithms have the same structure, but they require different parameters for the algorithms
and different stopping criteria for the simulation.

A simple code example of an SMC property that performs a Monte Carlo simulation is
outlined in Algorithm 9. This SMC property takes a PBT property, configurations for the
property check and the required number of samples n as input. First, we initialise a counter
for the number of passing samples passCnt. Then, we run a for-loop that creates samples with
the specified number of samples. The actual evaluation is done with the Check method of the
PBT property, which takes the config object as input and generates a sample. A config object
contains FsCheck configurations like Boolean flags to control the output/exception behaviour
of properties and the required number of tests. The result of the Check method is true, if the
property was fulfilled and false otherwise. In the case that it was true, we increase the counter
for the passed samples. Finally, after the desired number of samples was evaluated, the result
is the value of this counter divided by the total number of samples.

Algorithm 10 shows the pseudo code of a ChernoffProperty, which performs a Monte Carlo
simulation with Chernoff-Hoeffding bound as described in Section 2.2.2. It can be seen that
this property is very similar to a MonteCarloProperty of Algorithm 9. The only difference is
that for the standard Monte Carlo simulation we need the total number of samples as input.
For the version with Chernoff-Hoeffding bound, we need to specify the required accuracy
and confidence with the parameters epsilon and delta. Then, the algorithm computes the
required number of samples and performs a Monte Carlo simulation. Due to the fact that this
property is so similar to a MonteCarloProperty, we can reuse the behaviour by inheritance.
In our object-oriented setting, we can derive from the MonteCarloProperty and only add the
additional calculation of the required number of samples (Line 2). All other steps are the
same.

56 Chapter 4. Integrating Statistical Model Checking Into Property-Based Testing

Algorithm 10 Pseudo code of the ChernoffProperty.

Input: prop: PBT property, config: PBT configuration, ε: required error bound, δ: confidence parameter
1: function QuickCheck
2: n←

⌈
1

2ε2 log 2
δ

⌉
. Calculate the required number of samples

3: passCnt← 0 . Counter for the passed property checks
4: for i← 1 to n do
5: if prop.Check(config) then
6: passCnt← passCnt + 1 . increase pass counter
7: end if
8: end for
9: return passCnt/n

10: end function

Algorithm 11 shows an SPRTProperty that performs the sequential probability ratio test
(Section 2.2.3). The inputs of this algorithm are a PBT property, configurations for PBT, prob-
abilities for H0/H1 and the type I and type II error parameters α, β. The algorithm produces
samples (Line 4) and calculates the log likelihood ratio (Line 5 & 7) repeatedly, until we are
outside the indifference region, which is defined by α and β (Line 9). Finally, when we are
outside the indifference region, we return H1 as result, when the ratio is below the lower
bound and H0 otherwise.

A CUSUMProperty that performs the CUSUM algorithm (Section 2.2.4) is illustrated by
Algorithm 12. As parameters this property requires a PBT property, configurations for PBT,
an initial probability p_init, a probability k for detecting a change, a sensitivity threshold λ,
and a maximum number of samples n for stopping when no change was detected. The first
steps of the algorithm are the same as for the SPRT, because we also need to calculate the log
likelihood ratio (Lines 6 & 8). The difference is that we calculate the minimum of the ratio
sums (Lines 10–14) and check if the difference to the current value is greater than λ in order
to detect a change (Lines 15–17). This inspection is done inside a loop over the maximum
number of samples n. If no change was detected and the loop is finished, then the algorithm
produces a corresponding output (Line 19).

The architecture of our SMC properties makes it easy to check all kinds of PBT properties.
Although our focus is on stochastic models and state-machine properties, it is also possible
to check the stochastic behaviour of other kinds of properties, like algebraic properties. For

Algorithm 11 Pseudo code of the SPRTProperty.

Input: prop: PBT property for producing a sample, config: configuration for checking the property with
PBT, p0, p1: probabilities for H0 and H1 α, β: type I and type II error parameters

1: function QuickCheck
2: ratio← 0
3: do
4: if prop.Check(config) then . produces sample and checks result of PBT property
5: ratio← ratio + log(p1

p0
) . calculate the log likelihood ratio

6: else
7: ratio← ratio + log(1−p1

1−p0
) . calculate the log-likelihood ratio

8: end if
9: while β

1−α < ratio∧ ratio < 1−β
α . stop when threshold was reached

10: if ratio ≥ 1−β
α then

11: return H1 . H1 is accepted
12: else
13: return H0 . H0 is accepted
14: end if
15: end function

Chapter 4. Integrating Statistical Model Checking Into Property-Based Testing 57

Algorithm 12 Pseudo code of the CUSUMProperty.

Input: prop: PBT property for sampling, config: configuration for checking the property with PBT, pinit:
initial probability without a change, k: probability that represents a change λ: sensitivity threshold
n: max. number of samples for the algorithm

1: function QuickCheck
2: Si ← 0
3: min← 0
4: for i← 1 to n do
5: if prop.Check(config) then
6: Si ← Si + log(k

pinit
) . calculate the log likelihood ratio

7: else
8: Si ← Si + log(1−k

1−pinit
) . calculate the log-likelihood ratio

9: end if
10: if i = 0 then
11: min← Si
12: else
13: min← Min(Si, min)
14: end if
15: if Si −min ≥ λ then
16: return “Change detected after ” ++ i ++ “ samples!”
17: end if
18: end for
19: return “No change detected after ” ++ n ++ “ samples!”
20: end function

example, one might want to check properties of a stochastic function or a call to an operation
with stochastic failures. Our properties can easily be implemented in other PBT tools. As
already explained in Section 2.1, there exist various PBT tools for different programming
languages. It does not require much effort to apply our approach for other tools since the
structure is simple and works for other languages as well.

The definition of stochastic models and properties in a high level programming language
provides some benefits like flexibility. For example, the models can be easily extended to
include observer functionality like counting certain incidents. Counters can then be evaluated
within the FsCheck specification in order to decide if a sample fails. We looked at existing
SMC approaches and noticed that they are quite limited in some areas, e.g., if one wants to
check models with different numbers of instances or if instances should be created dynam-
ically. In a high-level programming language, it is quite easy to create a fixed number of
instances via a loop or even dynamically add instances during the execution of a model. Fur-
thermore, we noticed that often very long formulas are required for the properties within the
models of existing SMC approaches, because the used notations often do not support loop
functionality. We will give examples and further details about these issues in Section 4.4. It
should be noted that we used a new experimental version of the FsCheck state machine speci-
fication. The advantage of this version is that it enables the generation of samples with a fixed
length and that it supports stop commands, which allows us to stop during the command
generation. These two features are quite important for our implementation, because we have
to ensure that the generated samples are long enough, but it is also important that we can
stop, when we know the result of a sample. More details about this new experimental version
can be found in the documentation.11

11https://fscheck.github.io/FsCheck/StatefulTestingNew.html (visited on 2018-09-19)

https://fscheck.github.io/FsCheck/StatefulTestingNew.html

58 Chapter 4. Integrating Statistical Model Checking Into Property-Based Testing

0

0.2
1

0.8
20.5

3

0.5
¬lfree

4lfree

¬rfree

5rfree

6

¬rfree

8rfree

7
¬lfree

lfree

9
eat

10

Figure 4.4: State machine of a philosopher as presented for PLASMA-lab.

4.4 Evaluation

In this section, we evaluate our SMC approach by applying it to three existing case studies
from the SMC community and discuss differences to PLASMA-lab. We report performance re-
sults, because they formed part of an original PLASMA-lab case study. However, our primary
focus is not performance, but the usability and flexibility of our modelling style.

4.4.1 Dining Philosophers Case Study

In a first case study, we applied our approach to a probabilistic version of the dining philoso-
phers by Pnueli and Zuck [147]. We based our implementation on a case study which was
presented on the PLASMA-lab website.12 A similar example was also shown for PRISM [105].

The implementation for this example was straightforward. We have a simple philosopher
state machine, which is illustrated in Figure 4.4. A philosopher first decides if he wants to
remain thinking or if he becomes hungry. In the States 1 – 7 he is hungry and in States 8
and 9 he is eating. The guards lfree and rfree determine if the left and right fork are free. Our
model is basically a circle of individual philosophers which all have a right and left neighbour,
but it also contains observation and control functionality like a counter for steps and Boolean
variables to check, if someone was eating in the past. A generator serves as a scheduler
that randomly selects a philosopher that should be executed or generates a stop command
when we know the outcome of a sample. The generator is part of the FsCheck state-machine
specification that serves as our simulation environment. Only one command class is needed
for this specification, which is responsible for the execution of the model and also performs
the evaluation of our properties.

We checked the same quantitative properties as used for the PLASMA-lab case study.

1. What is the probability that any philosophers will be hungry within 1000 steps and that
any philosopher will eat within 1000 steps after a philosopher was hungry?

2. What is the probability that a given philosopher will eat within 30 steps (for a table size
of 150)?

We performed our evaluation in a virtual machine with 4 GB RAM and one CPU on a Mac-
Book Pro (late 2013 version) with 8 GB RAM and a 2.6 GHz Intel Core i5. The first property

12https://project.inria.fr/plasma-lab/examples/dining-philosophers
(visited on 2018-09-19)

https://project.inria.fr/plasma-lab/examples/dining-philosophers

Chapter 4. Integrating Statistical Model Checking Into Property-Based Testing 59

Table 4.1: Dining philosophers run time comparison for rising table size for Property 1.
#Philosophers Resulting Probability Run Time [s] PLASMA-lab Run Time [s]

3 1 969 6
10 1 991 14
30 1 1031 47

100 1 1145 256
300 1 1538 2151

1000 1 2676 17,057

was evaluated for different numbers of philosophers by applying a Monte Carlo simulation
with Chernoff-Hoeffding bound. The parameter settings were as follows: ε = 0.003 and
δ = 0.01, which results in a required number of samples of 294, 351. The property was
checked with our approach and with PLASMA-lab version 1.4.0 with the same parameters
and thus the same number of samples.

The results are shown in Table 4.1. The property was always true both with our technique
and with PLASMA-lab. For philosopher tables with a small size our approach is slower than
PLASMA-lab, but for a larger number of philosophers our approach performs better. We
assume the reason for this is that we can check the property in a more efficient way. We do
not always check if all philosophers become hungry or are eating, we only check the currently
executed philosopher.

We checked the second property with a Monte Carlo simulation with 30 million samples.
The property was true for 29 samples, which means the probability is 9.6× 10−7. The run
time was 110 minutes. The results are similar to those of PLASMA-lab. In contrast to them,
we used a smaller number of samples, and we did not implement parallelisation.

Additionally, we checked two qualitative properties:

1. Is the probability that a given philosopher will eat within 50 steps closer to 0.1 or 0.15
(for a table size of 20)?

2. Can a change in the probability that a given philosopher eats within 50 steps be detected,
when the number of philosophers rises? (We start with a certain number of philosophers
and add a philosopher every 300 samples.)

We checked the first property with the SPRT with value 0.01 for the type I and type II error
parameters (α and β). The result was that the alternative hypothesis H1 was accepted, which
means that the probability that a given philosopher will eat within 50 was closer to 0.15.

The second property was evaluated with the CUSUM algorithm with different initial num-
bers of philosophers. Initially, we performed a Monte Carlo simulation to obtain the probabil-
ity pinit for a constant number of philosophers. Then, we adapted the original model so that
a new philosopher was added every 300 samples. We wanted to detect when the probabil-
ity is 10% below the initial probability, which gives us the threshold k = pinit − 0.1. For the
sensitivity threshold we selected the value eight, which was enough to prevent false positives,
and we chose 5000 as a maximum number of samples. The results are shown in Table 4.2. It
can be seen that a change can be detected quite fast, for example, for five philosophers we
can detect a change after 319 samples, when the number of philosophers was increased to
six. For a higher initial philosopher number the CUSUM algorithm takes longer, because the
probability change is smaller when one philosopher is added.

We compared our modelling style in the programming language to the models defined for
PLASMA-lab and noticed several differences. PLASMA-lab needs separate models for settings
with different numbers of philosophers. We have only one model that contains a parameter
for the table size. Furthermore, our model supports a dynamic change of the number of
philosophers. Another observation are the long formulas in the PLASMA-lab models. The
models contain formulas that include variables for each philosopher, e.g.:

60 Chapter 4. Integrating Statistical Model Checking Into Property-Based Testing

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800 3,000
0

50

100

bound B

pr
ob

ab
ili

ty
[%

]

k = 2
k = 4
k = 6
k = 8

Figure 4.5: Simulation results for the property: can the protocol finish within B steps for
different k values and a process number of 10?

label " hungry " = ((p1>0)&(p1<8)) | . . . | ((pn>0)&(pn<8)) ;

For a model with 300 philosophers this quickly becomes impracticable. This can be avoided
with an abstraction layer added to PLASMA-lab, e.g., by introducing a custom DSL [16]. In
contrast, modelling in a programming language allows us to formulate these (quantified)
formulas with loops. Consequently, in our object-oriented framework it is very easy to create
models and to adjust them to different settings. For example, the philosopher case study was
implemented within an hour and it can be easily adjusted to different settings.

On the other hand, PLASMA-lab provides a nice graphical user interface that helps the
user to become familiar with the SMC techniques. Moreover, it provides a helpful simulation
feature for debugging, which makes it possible to execute a model step by step and inspect
all variables.

4.4.2 Randomised Consensus Case Study

The second case study is the randomised consensus shared coin protocol by Aspnes and Her-
lihy [23]. Our model is inspired by a PRISM case study [104]. It is also a PLASMA-lab case
study, which is presented at its website.13 The protocol describes an algorithm for achieving
consensus among a number of processes that can communicate via shared memory. The pro-
tocol needs a constant parameter k that is required for the computation and influences the
probability that the protocol finishes within a certain number of steps B.

The results of our case study are presented in Figure 4.5. Each data point in this figure
was computed with a Monte Carlo simulation with 1000 samples. The fluctuations could be
avoided with a larger number of samples. We performed simulations with PLASMA-lab in
order to compare our results. The results of our SMC approach are consistent with the results
obtained when running PLASMA-lab.

Additionally, we applied the SPRT in order to check the following property: is the prob-
ability that the protocol finishes within 500 steps closer to a null hypothesis 0.2 or to an
alternative hypothesis 0.3, when we consider k = 2 and ten processes? We used the value 0.01
for the type I and type II error parameters (α, β) and the result was that the null hypothesis
H0 was accepted, which means that the value is closer to 0.2.

13https://project.inria.fr/plasma-lab/examples/consensus-protocol
(visited on 2018-09-19)

Table 4.2: Dining philosophers CUSUM evaluation results with different initial numbers
of philosophers.

Initial
#Philosophers pinit k Change detected at

Sample #Philosophers
5 0.712 0.612 319 6

10 0.387 0.287 961 13
15 0.250 0.150 1072 18
20 0.157 0.057 1337 24

https://project.inria.fr/plasma-lab/examples/consensus-protocol

Chapter 4. Integrating Statistical Model Checking Into Property-Based Testing 61

sleep

2048 slots

scan

start
36 slots

reply

2 slots

wait

Rand(0...127) × 2 slots

hear

reply

Figure 4.6: Bluetooth device discovery as presented for PRISM [60].

4.4.3 Bluetooth Case Study

We performed the third case study for a device discovery phase of Bluetooth, which is a
wireless telecommunication standard [125]. This standard tries to avoid interference problems
by applying a frequency hopping scheme. For this scheme, the devices use pseudo-random
jumps between common sets of frequencies. Figure 4.6 illustrates the phases of the scheme.

It can be seen that there is a scan state, in which devices are listening for requests. When
a device receives a request, then it enters a reply state, where it answers a request after two
time slots. (A time slot has a duration of 312.5 µs.) Then, the device must wait for a random
number of time slots. After this waiting time, the device goes back to the scan or the sleep state.
In the scan state, a device can also start a sleep state to reduce the energy consumption, when
no request was received. The case study was originally presented for PRISM [60] and later
also for UPPAAL-SMC [56]. We based our implementation on the PRISM model. Compared
to our previous case studies, the model was more complex, because it has a number of differ-
ent modules, which interact through synchronisations. PRISM models support synchronised
actions, which enable two or more modules to perform actions simultaneously. The model
comprises modules for a sender, a receiver and for the frequency calculation. For our model
implementation, we had to add functionality for the synchronisation. This was done by exe-
cuting the corresponding actions on all modules when they were part of the synchronisation.
We also had to make sure that the variable updates during these actions had no influence on
the guards of the other executed actions. The rest of the implementation was similar to the
one for the dining philosopher case study.

We checked the following properties:

1. What is the probability that we can observe k replies within a specified time?
2. What is the probability that the receiver sleeps at most s times until we observe k replies?

We performed a Monte Carlo simulation with 10000 samples to check the first property. The
results are shown in Figure 4.7. It can be seen that the data points have a stair-like structure.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

60

80

100

time (sec)

pr
ob

ab
ili

ty
[%

]

k = 1
k = 2
k = 3

Figure 4.7: Bluetooth evaluation results for the property: what is the probability that we
can observe k replies within a specified time?

62 Chapter 4. Integrating Statistical Model Checking Into Property-Based Testing

Table 4.3: Bluetooth property: what is the probability that the receiver sleeps at most s
times until we observe k replies?

Max Sleep
Count s

Probability of Finishing [%]
k = 1 k = 2 k = 3

0 52.733 51.853 50.812
1 65.895 64.593 61.426
2 77.280 75.664 71.308
3 86.147 84.569 79.613
4 94.821 92.126 87.411
5 97.505 94.957 91.462
6 100.000 97.947 96.018
7 100.000 98.773 97.780
8 100.000 99.649 99.245

This is because of the sleep phases, which occur at certain probabilities and cause a sharp
increase of the required time.

The second property was checked with a Monte Carlo simulation with Chernoff-Hoeffding
bound with ε = 0.01 and δ = 0.01, which requires 26, 492 samples. Table 4.3 shows the results
for this property. We performed the evaluation until we observed k replies, and we checked
in how many cases we can observe this number of replies before the receiver sleeps s times.
As expected we see an increase of the probability of observing k replies, when the number of
allowed sleep phases rises. The results we obtained for both properties were corresponding
to the results of the case study from PRISM. Hence, our approach could also reproduce the
simulation of a more complex stochastic model.

Furthermore, we performed an evaluation with the SPRT in order to check the property:
is the probability that we can observe k replies within a certain time closer to x or y? We used
the value 0.01 for α and β, and we checked the property for different time limits and values
for x and y. The results are shown in Table 4.4. It can be seen that the alternative hypothesis
was accepted in all cases for k = 1 and k = 2 and that the null hypothesis was always accepted
for k = 3.

4.5 Concluding remarks

We have demonstrated that statistical model checking can quite easily be integrated into a PBT
tool. We have implemented four commonly used SMC algorithms in the form of SMC prop-
erties and evaluated them on standard examples from the literature: the dining philosophers,
a randomised consensus shared coin protocol and a Bluetooth device discovery protocol. The
results are encouraging. The case studies revealed that our approach enables the definition
of stochastic models and properties in a high-level programming language, which provides
some benefits in the modelling style and should be easier to use for developers who are not
familiar with (temporal) logics.

Table 4.4: Bluetooth property: is the probability that we can observe k replies within a
certain time closer to x or y?

Time [s] H0 : p0 = x H1 : p1 = y Accepted Hypothesis
k = 1 k = 2 k = 3

1 0.60 0.65 H1 H1 H0
2 0.80 0.85 H1 H1 H0
3 0.85 0.95 H1 H1 H0

Chapter 4. Integrating Statistical Model Checking Into Property-Based Testing 63

The elegance of our integration is due to the fact that our new SMC properties take a
classical property to be checked as input parameter. This results in a very flexible SMC
approach where, e.g., state-machine properties as well as algebraic properties can be checked.

Moreover, we demonstrated that our SMC properties also support conformance testing of
implementations with stochastic failures against a correct model. This allows the assessment
of the failure probability.

In the next chapters, we will demonstrate how we utilise this method for performance
analyses.

64 Chapter 4. Integrating Statistical Model Checking Into Property-Based Testing

65

5 Learning Response-Time Distributions
for Extending Functional Models

This chapter is based on our publications at ICTSS 2017 [162], at QEST 2018 [3], at SETTA 2018 [12],
and in the journal SQJO 2017 [9].

In this chapter, we illustrate how we learn response-time distributions that are applied for
the extension of our functional models. First, we explain how we perform MBT to produce
log data that contains response times of concurrent requests. With this data, we illustrate how
we apply a linear regression to obtain response-time distributions that are integrated into our
models. We demonstrate both these phases with our TFMS and MQTT case studies that were
described in Section 1.4.2.

5.1 Model-Based Testing for Log Data

First, we perform model-based testing with PBT in order to produce log data that serves as
a basis for learning response-time distributions, which will be explained in Section 5.2. This
initial testing phase is conducted with a functional EFSM model. With this functional model,
we perform classical PBT, which generates random command sequences that include test
data. We run several testing processes concurrently in order to produce log data that includes
response times of simultaneous system requests. Put differently, we perform load testing with
concurrent PBT threads that interact with the system-under-test and log the resulting response
times.

How the test-case generation works exactly and what properties we check was already
discussed in Section 3.3.1. Now, we apply this approach to produce log data for the TFMS
and for an MQTT broker implementation.

5.1.1 TFMS

As explained in Section 1.4.2, we investigate a web-service application called TFMS from our
research projects that consists of various modules. One simplified model out of the Test Order
Manager module that was introduced in Section 3.6.2 serves us as an example. The evaluation
of the whole module will later be presented in more detail in Chapter 7. The example model
supports tasks, like creating or editing Business Process Templates, which are objects of the
application domain. These objects include attributes (form data) that are stored in a database
and have to be set by the users. The model of this SUT is illustrated in Figure 5.1. This model
is a hierarchical state machine, as explained in Section 3.4.2. There are sub-state machines for
each Business Process Template object and select transitions can switch between these objects.
We have a variable activeObj that identifies the currently open object and a map (stateMap)
from object identifier to object state that stores the state of all objects. Each sub-state machine
shows the tasks that can be performed for a Business Process Template object. In reality, each
of these tasks represents a page of the system with required form fields (attributes). Hence,
the transitions require attributes, which we omit for brevity. Note that the tasks of the sub-
state machines in Figure 5.1 consist of multiple subtasks, e.g., for opening the page (StartTask),
for setting attributes (SetAttribute), and for saving the page (Commit). Since most of these
subtasks are requests to the web-server, we record them in our logs, which we will see later.

In Chapter 3, we have demonstrated how such functional models can be derived from
business-rule models of the server implementation and how they can be applied for PBT. Now,
we also utilise these models for PBT in order to generate random sequences of commands with

66 Chapter 5. Learning Response-Time Distributions for Extending Functional Models

Created

Available

Create

AdminEdit

Edit
ChangeStateAdminEdit

AdminEditEdit

AdminEdit

Business Process Template Obj1

Created

Available

Create

AdminEdit

Edit
ChangeStateAdminEdit

AdminEditEdit

AdminEdit

Business Process Template Obj2

. . .

Select(Obj2)

activeObj := Obj2

Select(Obj1)
activeObj := Obj1

Create
stateMap[Obj3.Id] := Created

activeObj := Obj3

Figure 5.1: Functional EFSM model for Business Process Templates.

form data (attributes). In contrast to the previous chapter, our aim is to create log data that
captures the response times of individual requests. The functional test of the SUT is only a
positive side effect of this phase.

We run several testing processes concurrently on the SUT in order to obtain response
times of multiple simultaneous requests. This represents the behaviour of multiple active
users. An example log from a non-productive test system with low computing resources
(virtual machine) is represented in Table 5.1. We record response times of tasks, subtasks,
simultaneous requests (#ActiveUsers), the attribute name if the request considers only one
attribute and otherwise the number of attributes (#Attributes), the generated form-data size
(ObjSize), and the cumulative sum of the data size (CumulativeObjSize) (which represents the
database fill level of the SUT). For this initial logging phase the test-case generator chooses
the transitions, i.e., the tasks, with uniform distribution.

5.1.2 MQTT

We applied the method that we used to test the TFMS similarly for an MQTT broker imple-
mentation. The difference was that the broker did not have business-rule models. Hence,
we created the functional model manually. Our model was inspired by learned models from
Tappler et al. [173].

MQTT brokers allow clients to connect/disconnect, subscribe/unsubscribe to topics and
publish messages for such topics. Each of these actions can be performed with a correspond-
ing control message, which is defined by the MQTT standard [28]. We treat the broker as a
black box and test it from a client’s perspective.

The upper state machine in Figure 5.2 represents the messages that we test. We run mul-
tiple of these state machines concurrently in order to produce log data that includes latencies
for simultaneous messages of several clients. Each transition of the state machine is labelled
with an input i, an optional guard g / assignment operations op, and an output o. Some tran-
sition inputs are parametrised with generated data, e.g., a topic for subscribe. We apply PBT
generators in order to produce inputs and their required data in the same way as explained

Table 5.1: Example log data of the TFMS Business Process Template model.

Task Subtask #Active-
Users Attribute #Attributes ObjSize Cumulative-

ObjSize
Response
Time [ms]

Create StartTask 5 - - - 7,115,966 21
Create SetRefAttr 4 Responsible - 0 7,119,938 17
ChangeState StartTask 2 - - 0 7,119,938 22
Create Commit 5 - 5 3985 7,123,923 31
ChangeState Commit 4 - 2 3372 7,181,842 25

Chapter 5. Learning Response-Time Distributions for Extending Functional Models 67

disconnectedstart

connected

connect, -
-, ConnAck

disconnect, -
-, ConnClosed

subscribe(topic), -
Subs[topic] := Subs[topic]+1, SubAck

unsubscribe(topic), -
Subs[topic] := Subs[topic]-1, UnSubAck

publish(topic,msg), -
-, PubAck

start

publish(topic,msg), Subs[topic] < Received[topic&msg]
Received[topic&msg] := Received[topic&msg]+1, MsgRec

publish(topic,msg), Subs[topic] = Received[topic&msg]
Received[topic&msg] := 0, PubFin

Figure 5.2: Functional model for an MQTT client.

in Chapter 3. To keep it simple, we assume that a client can only subscribe to topics to which
it did not subscribe before (the same for unsubscribe).

In order to manage the subscriptions, we have a global map Subs that stores the subscrip-
tion numbers for each topic. This map is needed when publishing, because we want to check
if the number of received messages corresponds to the number of subscribed clients. In order
to perform this check, we have a second state machine (Figure 5.2 bottom) that represents the
message receivers. This machine stores the number of received messages in a map Received
that takes the topic concatenated with the message (topic&msg) as key. The map is updated
for each message receiver, and when all messages were delivered, then a PubFin output is
produced. For simplicity, we omit some assignment operations, e.g., for a subscriptions set.

Based on this functional model, we perform MBT with a PBT tool, which generates random
test cases that are executed on an MQTT broker. During this testing phase, we capture the
latencies of messages in a log file. Note that the latency is the duration that a client must
wait until it receives a response to a sent message from the broker or until the message is
delivered to all receivers in case of a publish. To simplify the discussion, we often only talk
about response times, although we mean latencies and response times.

An example log excerpt from the MQTT implementation Mosquitto is presented in Ta-
ble 5.2. It shows that we record the message type (Msg), the number of active clients or open
message exchanges (#ActiveMsgs), the total number of subscriptions (#TotalSubs), the size of
the topic (TopicSize) and message string (MsgSize), the number of subscribers for a topic when
a publish occurs (#Subs), the number of receivers of a published message (#Receivers), and the
latency. For this initial logging phase, the available transitions in the current state of the func-
tional model (Figure 5.2 top) are chosen with a uniform distribution. In the disconnected state,
the only choice is a connect message and in the connected state all other messages are selected
with equal frequency. We do not apply any sojourn times between sending messages in this
phase, since we want to capture the latencies in situations with many concurrent messages.

Table 5.2: Example log data of the MQTT broker Mosquitto.
Msg #ActiveMsgs #TotalSubs TopicSize MsgSize #Subs #Receivers Latency [ms]
connect 47 266 0 - - - 110.82
subscribe 47 270 14 - - - 2.45
publish 47 270 14 52 7 7 32.72
unsubscribe 45 12 14 - - - 1.25
publish 46 272 14 74 1 1 2.13

68 Chapter 5. Learning Response-Time Distributions for Extending Functional Models

5.2 Learning Response-Time Distributions with Linear Regression

For our case studies, we did not have the possibility to obtain log data from real users. The
reasons were that (1) it was not feasible to obtain permission from TFMS customers to use
their data from a productive environment, (2) for MQTT it would have been necessary to
build a huge network with various real devices in order to form an interesting setup, and
(3) the time for the log data generation would have been too high in such realistic conditions
where the usage frequency is typically low.

Hence, we applied an MBT approach that is based on PBT as explained in the previous
section in order to produce log data. The advantages of this approach are that we can run it on
demand, with various settings that may be needed, and we have high flexibility, e.g., we can
record all kinds of attributes. However, a disadvantage of this approach is that our generated
logs might be biased. For example, a bias might be caused by log data generation that is not
random enough. In this case, we could obtain an artificial correlation between variables (or
features). We had to be careful with our test setup in order to avoid such biases [53].

Furthermore, the measurements might be perturbed by: (1) network delays and interrup-
tions, or hardware utilisation influences when test clients run on the same machine as the
SUT, (2) the run time of the testing tool for the log data generation. We tried to avoid these
issues by performing the experiments on a machine with sufficient system resources so that
there are no shortages, and the network was selected fast enough to reduce the influence of
network aspects, like delays. Moreover, we made sure that the time overhead of our testing
tool was negligible.

Note that we also had to keep in mind the following requirements for our learning method:

1. A prediction should be fast enough, i.e., it must not take more than a fraction of the
predicted response time. This is necessary, because the prediction is needed to simulate
the requests to SUT with a virtual time that is a fraction of real time. More specifically,
our simulation would not make sense, if the prediction took longer than actually per-
forming the requests to the SUT, because then we could just execute the SUT instead of
using a prediction model.

2. The integration of the prediction model into our testing tool should be simple, since we
want to apply this tool for both simulating the expected response times of the SUT and
testing the simulation result on the real system.

For learning response times with multiple linear regression (Section 2.3) [152], we apply
a process that consists of several phases, i.e., data cleaning and pre-processing, feature selec-
tion, model evaluation, and model integration. These phases are described in the following
subsection.

5.2.1 Data Cleaning and Pre-Processing.

In this phase, we check for biases and perform data cleaning, i.e., we remove invalid or
problematic log entries [101].

A bias could be that the data generation might not be random enough or that it might
unintentionally be set up in a way, where relevant scenarios for the prediction were not tested
frequently enough. Both these issues can result in a regression model that has a good perfor-
mance for the training data, but it would not produce reliable predictions for our simulation
with SMC. In order to reduce the risk of biases, it is helpful to carefully analyse the data
with visualisations, e.g., with scatter plots, histograms or correlation matrices. For example,
if a correlation matrix shows correlations that should not be there, then this might indicate a
problem during the initial test-case generation.

For the data cleaning, data visualisations also helped to find issues with the data. In this
phase, we performed the following steps.

Chapter 5. Learning Response-Time Distributions for Extending Functional Models 69

• We remove entries with long response times, i.e., outliers. For example, we are not
interested in unusually long response times that are caused by network disruptions.
Our aim is to maximise the user satisfaction. Hence, we are mainly interested in average
response times under normal conditions, but not in worst-case scenarios. We consider
the top 5% of the entries per message or request type as outliers.

• We skip entries of the log files that are generated during the first minutes of the testing
process, because there are various initialisation steps, like a cache setup, which lead to
unrepresentative data at the beginning.

• Moreover, we flag and remove entries where exceptions were raised, e.g., due to time-
outs or connection failures, since they are rare, and we are primarily interested in suc-
cessful requests or message exchanges.

• We restart the testing phase, when the data indicates that there was a crash, e.g., when
a testing process of a user stopped unexpectedly.

• Finally, we set missing values for required request attributes to a standard value, e.g., for
categorical attributes we set them to NOTSET, which represents an additional category.

5.2.2 Feature Selection.

Next, we applied feature selection, where we select variables that have a significant influence
on the target variable, i.e. the response-time or latency in our log data [78].

In this phase, it is important to have a good understanding of the SUT and the correspond-
ing data in order to select features that lead to an accurate model [172]. We can again inspect
data visualisation to facilitate this phase. For example, we can apply correlation matrices and
look for features that are correlated with the target variable. The correlation can be measured
with a correlation coefficient r, e.g., a common one was introduced by Pearson [145] and gives
us a value r ∈ [−1, 1], where 1 is a total positive correlation and −1 a negative correlation.
Features that have a medium or strong correlation r ≥ 0.3 are most important for the regres-
sion, but sometimes also features with a weak correlation 0.1 < r ≤ 0.3 can help to improve
the regression model.

Table 5.1 and Table 5.2 show the attributes that we recorded during the data-generation
phase, since we found that they are important for learning the response times. However, we
performed several feature-engineering steps in order to build a better prediction model.

• We checked if certain features only have an effect on specific request or message types.
For example, we noticed that the database fill level only has an influence on specific
requests of the TFMS. Multiplying this feature with a Boolean variable (evaluating to
one in case that it has an influence and zero otherwise) allowed us to enable or disable
this feature for specific requests. This helped to further improve the performance of the
model. We also applied this approach for the #ActiveMsgs variable of MQTT.

• We combine features in order to form a new combined feature, when certain features
belong together and when this shows an improvement. For example, we combine the
features Task and Subtask to form a new feature, called Task_Subtask, because we ob-
served that the same subtask can have a completely different behaviour depending on
the corresponding task.

• We avoid features that have a high correlation among each other, since they might be
redundant. For example, the number of subscribers to a topic of a published message
is highly correlated with the number of message receivers. Hence, we only select one of
these.

• We duplicate a feature when we notice that it has different correlations depending on
the request or message type. Thereby, we can enable or disable one copy of this feature
for a specific type in order to represent the different correlations.

70 Chapter 5. Learning Response-Time Distributions for Extending Functional Models

For the TFMS, we selected all features that were presented in Table 5.1 for our regression
model, and we applied the mentioned feature-engineering steps. For the MQTT case study,
we selected only a subset of the attributes of Table 5.2 and applied the following regression
formula:

Latency ∼ Msg + #ActiveMsgs + #TotalSubs + #Subs

Note that categorical variables, like Msg, cannot be directly used for the regression. They
need to be encoded first. This can, e.g., be done with a dummy coding, where each category
is represented by a binary dummy variable that is set to one if the record has this category
and to zero otherwise [152].

We performed multiple linear regression as explained in Section 2.3 to learn a predic-
tion model that produces response-time distributions for our given log data. This algorithm
was able to fulfil the requirements of our learning method that were mentioned earlier and
still produced predictions that worked well enough for our method, as we will later see in
Chapter 7.

The well-known statistic tool R with the standard lm function was applied to produce the
regression model for MQTT.14 For the TFMS, a custom tool was implemented by Cristinel
Mateis that facilitates the described data cleaning and pre-processing steps. This tool was
developed in the programming language python 2.7, and it applies the scikit-learn15 0.19.1
machine-learning package in order to produce a prediction model.

Next, we show how to measure the prediction power of our generated regression models.

5.2.3 Model Evaluation.

The data that is taken as input for a learning algorithm is called the training data. Although
our model might work well with this training data, we cannot be sure if it will also be reliable
for new data. Hence, we apply a method called k-fold cross validation [78] that allows us to
estimate how our model will work for unseen data. For this method, we randomly split the
training data into k subsets of equal size. Then, we perform our learning algorithm by only
taking k − 1 of these subsets as training data. The last subset is applied to check, how our
model will perform on unseen data. We repeat these steps k times and in each iteration we
omit a different subset from the selected training data. When the prediction of a model is
reliable in all iterations, then we can be confident that our model did not work well just by
chance, and it is likely that it will also predict well for unseen data.

The quality of the regression model can be measured with the coefficient of determination
(R2-score) [133, 194], which describes how well a regression model fits given data. This score
can be calculated as follows:

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − ȳ)2

, (5.1)

where N is the number of log entries, yi is the response time of the ith entry, ŷi is the predicted
response time of the model for the attributes of the ith log entry, and ȳ is the mean of all N
response times of our log data. The value of R2 ∈ [0, 1] is high when the model produces
good predictions and the value 1 represents a perfect prediction.

Our obtained R2-scores were in the range [0.7, 0.95], depending on the selected setup of
the initial testing phase. We also computed the R2-scores for the k-fold cross-validation. The
validation was performed with k = 5 and had comparable R2-scores for all iterations of this
method. This gives us confidence that we have no overfitted model, which could have a high
R2-score, but would perform bad for unseen data.

14https://www.r-project.org (visited on 2018-09-19)
15http://scikit-learn.org (visited on 2018-09-19)

https://www.r-project.org
http://scikit-learn.org

Chapter 5. Learning Response-Time Distributions for Extending Functional Models 71

1 Estimate Std . Error t value Pr(>|t|)
2 (Intercept) 26 .2752 0 .1714 153 .2138 0 . 0
3 #Users 4 .4268 0 .0149 297 .0559 0 . 0
4 #Attributes 0 .8998 2 .1773 0 .4132 0 .6793
5 ObjectSize 0 .0023 0 .0028 0 .8253 0 .4091
6 CumulativeObjSize 1 .2698e−06 4 .3829e−09 289 .7210 0 . 0
7 AdminEdit_SetRefAttribute 4 .9903 0 .1359 36 .7000 4 .9008e−294
8 AdminEdit_StartTask 0 .8427 0 .5624 1 .4985 0 .1340
9 Create_Commit −7.9862 0 .2186 −36.5286 2 .5241e−291

10 Create_SetRefAttribute 4 .5492 0 .1452 31 .3174 7 .4209e−215
11 Create_StartTask 0 .6055 0 .5650 1 .0716 0 .2838
12 ChangeState_Commit −4.6380 4 .6892 −0.9890 0 .3226
13 ChangeState_SetRefAttribute 4 .6955 0 .2157 21 .7593 7 .1371e−105
14 ChangeState_StartTask 1 .0689 0 .5769 1 .8528 0 .0638
15 Edit_Commit −2.7279 0 .3268 −8.3468 7 .0478e−17
16 Edit_SetRefAttribute 5 .2434 0 .3042 17 .2366 1 .5486e−66
17 Edit_StartTask 4 .1145 0 .6213 6 .6217 3 .5560e−11
18 Attribute_NOTSET −15.4171 0 .5172 −29.8043 7 .8762e−195
19 Attribute_Responsible −18.6690 0 .2332 −80.0309 0 . 0
20 . . .

Listing 5.1: Regression model excerpt for TFMS Business Process Templates.

Note that we also tested other algorithms, like a polynomial regression or random forests,
but they only achieved slightly better R2-scores and have a higher complexity. Hence, we
still kept using the multiple linear regression, since it is a simple method that allows an easy
integration in our simulation environment. However, the investigation of further learning
algorithms is still a promising topic for future work.

5.2.4 Integration of the Response-Time Distributions.

Listing 5.1 illustrates a regression model that was generated for our TFMS example. The
left column shows the intercept and the regressors [x0, . . . , xp] from the model (2.8), which
was explained in Section 2.3. Note that for categorical variables, like Task_Subtask, we have
multiple entries. The second column lists the estimates for the means (µβk) and the third
shows the standard errors of these estimates (σβk) that represent the average variation of an
estimate from the actual mean value. The fourth column are the t-values that show the ratio
of the estimate and the standard error, and the last column are p-values that indicate the
significance of our estimates, i.e., a small p-value shows a high significance. These p-values
can be applied to simplify the model, which can be done by omitting features with a high
p-value.

For MQTT, the regression model has a similar form as the one for the TFMS, but in contrast
to the TFMS it was produced with R. The regression was performed with log data from
Mosquitto, which contained 100 test cases with a random number of clients (3–100) and a
length of 50 messages. This produced log files with about 300,000 entries. The required
number of test cases was determined by increasing the dataset size in a stepwise manner and
by executing the regression, until the R2-score did not increase any further. (For the TFMS,
we had about two million entries in our logs, due to the higher complexity.)

Listing 5.2 shows the results of the multiple linear regression for MQTT. The columns are
the same as in the previous model. Note that the label *** at the end of each line shows that
the variables are all highly significant.

In order to use this regression model in our method for MQTT, we encode it in a latency
function that takes the message type, the number of active messages, the total number of

72 Chapter 5. Learning Response-Time Distributions for Extending Functional Models

1 Estimate Std .Error t value Pr(>|t|)
2 (Intercept) −8.009707 0 .1106356 −72.397 < 2e−16 * * *
3 Msgdisconnect 8 .084679 0 .1234019 65 .515 < 2e−16 * * *
4 Msgpublish 9 .066681 0 .1395017 64 .993 < 2e−16 * * *
5 Msgsubscribe 8 .771242 0 .1419899 61 .774 < 2e−16 * * *
6 Msgunsubscribe 9 .294850 0 .1294843 71 .784 < 2e−16 * * *
7 #ActiveMsgs 1 .358794 0 .0033433 406 .417 < 2e−16 * * *
8 #TotalSubs 0 .002503 0 .0002084 12 .011 < 2e−16 * * *
9 #Subs 0 .294270 0 .0307663 9 .5 65 < 2e−16 * * *

Listing 5.2: Linear regression output (excerpt) for the MQTT broker Mosquitto.

subscribers, and the number of subscribers for the currently published message as input and
returns the parameters µy and σy of the normal distribution of the latency as result:

latency : Msg×N>0 ×N≥0 ×N≥0 → R×R

For the TFMS, we have a similar function called rtime:

rtime : Task× Subtask×N>0 ×Attribute×N>0 ×N>0 ×N>0 → R×R

This function takes a task, a subtask, the number of active users, an (optional) attribute, the
number of attributes, the size of the generated form data for the request, and the cumulative
sum of the generated data sizes as input and returns the parameters of a normal distribution
for the response time.

In both these functions, we perform a linear combination of the distributions given by
the estimates and standard errors of the associated regression coefficients for the inputs. This
gives us a combined normal distribution that depends on the inputs of this function. We apply
the formulas (2.8) from Section 2.3, with the input parameters [x0, . . . , xp] of these functions,
and the parameters (µβk , σβk) of the regression model. As a result we obtain the mean µy and
the standard deviation σy of the normal distribution.

For example, when we apply our regression model for MQTT (Listing 5.2) and consider a
subscribe message that happens when 15 other messages are active and when there are zero
subscribers, the linear combination works as follows. The associated regression coefficients
(Lines 2, 5 & 7 in Listing 5.2) are combined in order to obtain parameters for a normal distri-
bution:

µy = −8.010 + 8.771 + 15× 1.359 σy =
√

0.1112 + 0.1422 + (15× 0.003)2

In the next chapter, we show how we integrate these functions into our functional models,
and we combine these models with usage profiles in order to form combined models that we
can evaluate with SMC.

Note that in our previous work on TFMS [162], we named the distribution as cost distri-
butions, because we wanted to highlight that our approach may be generalised for predicting
other types of performance indicators, like the energy consumption. In this thesis, we explic-
itly talk about response time in order to avoid confusions.

73

6 Statistical Model Checking for Predicting
and Testing Response-Times

This chapter contains parts of our publications at ICTSS 2017 [162], at QEST 2018 [3], at SETTA
2018 [12], and in the journal SQJO 2017 [9].

In this chapter, we demonstrate the simulation of usage profiles by integrating them into
our functional model. Additionally, we add the learned response-time distributions that were
presented in the previous chapter. Based on this combined model, we illustrate a prediction
method that computes probability results of queries about the expected response time of
users. Moreover, we introduce a hypothesis-testing technique that allows us to evaluate such
predictions directly on the SUT. Finally, we discuss the implementation of our method that
was realised via PBT.

6.1 Monte Carlo Simulation of the Model for Predicting Response
Times

In order to apply SMC for a realistic usage scenario, we integrate given usage profiles and
response-time distributions derived using linear regression into the functional models that
were explained in Section 5.1. An example usage profile for the Business Process Template
model that was introduced in the previous chapter is shown in Listing 6.1. The usage profile
is encoded in the JavaScript Object Notation (JSON) format. It includes weights for tasks,
user input (waiting) time intervals between tasks/subtasks that represent the time that a user
needs for the input and data specific waiting factors, e.g., a delay per character, or a delay per
reference for the number of options of a drop-down menu.

For MQTT, we also a have usage profile (UP1) in a similar form, which is shown in List-
ing 6.2. This profile describes the behaviour of an MQTT client, i.e., how long it should wait
between sending messages, and with what probabilities it should send certain messages. The
time between messages is selected uniformly inside the bounds [MinTimeBetwMsg, MaxTime-
BetwMsg], and we have weights that define the message frequency.

The extension of the initial functional model with a usage profile and response-time dis-
tributions gives us a combined model that is a stochastic timed automaton as explained in
Section 2.4. Figure 6.1 illustrates such an automaton for our TFMS example. Note, we only
show the combined model of one sub-state machine of the hierarchical EFSM in Figure 5.1 for
brevity. All locations (states) l in this combined model include a sojourn time that is defined
with a probability density function fl . The tasks of the functional model where separated
into subtasks in order to represent the response times of individual requests. Each subtask
comprises an edge that calls the rtime function to receive the parameters (µ, σ) and a location
(di) that defines fdi as a normal distribution with these parameters. All other locations define
fl as a uniform distribution given by an upper and lower bound [a, b]. The locations Submitted
and Closed have bounds from the user input time intervals between tasks of the usage profile
and for the other locations (wi), the bounds are calculated in a separate edge with a function

{ TaskWeights : { Create : 35 , Edit : 65 , AdminEdit : 1 , ChangeState : 1 , Select : 5 } ,
TaskWaitIntervalStart : 500 , TaskWaitIntervalEnd : 1500 , SubTaskWaitIntervalStart : 300 ,
SubTaskWaitIntervalEnd : 500 , WaitPerReference : 10 , WaitPerCharacter : 30 }

Listing 6.1: Usage profile for the TFMS Business Process Template model.

74 Chapter 6. Statistical Model Checking for Predicting and Testing Response-Times

d1
N (µ, σ)

w1
[a, b]

d2
N (µ, σ)

w2
[a, b]

. . .d3
N (µ, σ)

Create

Created
[500, 1500]

d4
N (µ, σ)

d5
N (µ, σ)

w3
[a, b]

. . .

AdminEdit

d6
N (µ, σ)

d7
N (µ, σ)

w4
[a, b]

. . .

Edit

Available
[500, 1500]

d8
N (µ, σ)

. . .

d9
N (µ, σ)

AdminEdit

d10
N (µ, σ)

. . .

d11
N (µ, σ)

ChangeState

d12
N (µ, σ)

. . .

d13
N (µ, σ)

Edit

d15
N (µ, σ)

. . .

d14
N (µ, σ)

AdminEdit

d16
N (µ, σ)

. . . d17
N (µ, σ)

AdminEdit

35. StartTask
(µ, σ) := rtime(. . .) (a, b) := utime(. . .)

SetAttribute1
(µ, σ) := rtime(. . .)

(a, b) := utime(. . .)

SetAttribute2
(µ, σ) := rtime(. . .)

Commit
(µ, σ) := rtime(. . .)

1. StartTask(µ, σ) := rtime(. . .)

(a, b) := utime(. . .)

SetAttribute1
(µ, σ) := rtime(. . .)

Commit
(µ, σ) := rtime(. . .)

65. StartTask

(µ, σ) := rtime(. . .) (a, b) := utime(. . .)

SetAttribute1
(µ, σ) := rtime(. . .)

Commit
(µ, σ) := rtime(. . .)

1.
St

ar
tT

as
k

(µ
, σ
)

:=
rt

im
e(

. .
.)

(a, b) := utime(. . .)

Commit
(µ, σ) := rtime(. . .)

1. StartTask

(µ, σ) :=
rtim

e(. . .)
(a, b) := utime(. . .)

Commit
(µ, σ) := rtime(. . .)

65. StartTask
(µ, σ) := rtime(. . .)

(a, b) := utime(. . .)

Commit
(µ, σ) := rtime(. . .)

1. StartTask(µ, σ) := rtime(. . .)

(a, b) := utime(. . .)

Commit
(µ, σ) := rtime(. . .)

1. StartTask
(µ, σ) := rtime(. . .)

(a, b) := utime(. . .)
Commit
(µ, σ) := rtime(. . .)

Figure 6.1: Stochastic timed automaton of one TFMS Business Process Template object.

utime (user time). This function takes into account the user-time intervals between subtasks
and the data-dependent time, e.g., the delay per character, from the usage profile, and returns
according bounds. The task weights of the usage profile are attached to the edge weights we
and they are shown before an edge name (in bold). It can be seen that each transition or task
of the initial functional model is now represented as a sequence of edges with a silent edge
at the end. Note that the Create and Select tasks are also possible in the Created and Available
location, but we omit additional edges for these in order to keep the figure simple. We also
omit parameters and their assignments for the rtime and utime functions. The parameters for
rtime were already explained before and utime takes the generated attribute data as input and
returns associated intervals for the user-input time.

A similar extension is applied to the functional MQTT model that is shown in the top
of Fig 5.2. For this purpose, latency distributions and our usage profile (Listing 6.2) are
integrated into the functional MQTT model. As a result, we also obtain a combined timed
model in the form of a stochastic timed automaton, as illustrated in Figure 6.2. It can be seen
that the connected and disconnected locations have a uniform distribution given by an upper
and lower bound [a, b]. These bounds come from our usage profile. All other locations have a
normal distribution for the sojourn time. The parameters for this distribution are computed by

{ MinTimeBetwMsg : 0 , MaxTimeBetwMsg : 500 ,
MsgWeights : { connect : 1 , disconnect : 1 , publish : 5 , subscribe : 3 , unsubscribe : 2 } }

Listing 6.2: MQTT usage profile UP1 with time bounds and weights for messages.

Chapter 6. Statistical Model Checking for Predicting and Testing Response-Times 75

disconnected
[0, 500]start

d1
N (µ, σ)

d5
N (µ, σ)

connected
[0, 500]

d2
N (µ, σ)

d3
N (µ, σ)

d4
N (µ, σ)

!ConnClosed

!ConnAck

!SubAck

!UnSubAck

!PubFin

?connect
(µ, σ) := latency()

?disconnect
(µ, σ) := latency()

1

?subscribe
(µ, σ) := latency()

3

?unsubscribe
(µ, σ) := latency()

2
?publish
(µ, σ) := latency()

4

Figure 6.2: Stochastic timed automaton for the timing behaviour of an MQTT client.

the latency function introduced in the previous chapter. In contrast to the functional model, we
have additional locations that apply the message latencies. These locations have one incoming
edge that represents sending a message and an outgoing edge for the response. Moreover, the
weights we from our usage profile are added to the transitions for sending messages. Note
that we have omitted the parameters of the latency function and also some assignments that
are necessary for these parameters, in order to keep the figure more readable.

With such combined stochastic timed automata models, we can evaluate usage profiles
by simulating the expected response times or latencies. Furthermore, we can analyse a user
population or setup consisting of multiple users or clients, by running several models concur-
rently. While we execute the model, we can check properties to answer questions, like “What
is the probability that the response time of all requests within a task sequence of a fixed length,
i.e., a test case, is under a specific threshold for each user within a population?”, or “What is
the probability that the latency of each interaction of a client within a given MQTT setup is
under a certain threshold?”.

Such questions can be answered with a Monte Carlo simulation with Chernoff-Hoeffding
bound as explained in Section 2.2.2. For example, predicting the probability that the response
time of all subtasks is under a threshold of 50 ms for each user of a population of 20 users
with parameters ε = 0.05 and δ = 0.01, requires 1060 samples and returns a probability of
0.806, when a test-case length of four tasks is considered for the TFMS example.

Checking the probability that a latency threshold of 50 ms is satisfied for each client of an
MQTT setup with 130 clients with the same parameters (ε = 0.05, δ = 0.01) requires also 1060
samples, and returns a probability of 0.84, when a test-case length of ten is considered.

Such evaluations require too many samples to be efficiently executed on the SUT, and
hence, we only run them on the model. Fortunately, the sequential probability ratio rest
(SPRT) requires fewer samples, and is therefore better suited for evaluating the SUT as we
will see in the next section.

76 Chapter 6. Statistical Model Checking for Predicting and Testing Response-Times

6.2 Hypothesis Testing of the System-Under-Test for Checking
Response-Time Predictions

The SPRT, which was described in Section 2.2.3, is a form of hypothesis testing. It allows
to check if the probability of a property is closer to a probability that is defined by a null
hypothesis or to one that is defined by an alternative hypothesis. We apply this algorithm
in order to check our predictions that were computed with the model as explained in the
previous section. The predicted probabilities serve as hypotheses for testing the performance
of real systems.

For example, we perform three different types of evaluations in order to assess the proba-
bility of a property about the expected response time of the SUT.

Evaluation 1. We check if the SUT is at least as good as our model predicted, i.e., if we can
observe a probability on the SUT that is greater or approximately equal to the predicted
probability of the model.

Evaluation 2. We test the prediction power of our model by checking if the probability of
the SUT is only marginally lower or higher than the predicted probability of the model.
In other words, we check if the SUT is at least as good as our model predicted and
additionally we test if the SUT is not much better.

Evaluation 3. We evaluate if the probability prediction of a reference SUT is also observable
on SUT deployments or configurations that have a different hardware or network setup.
More specifically, the probability that was computed on the model serves as a hypothesis
in order to check, if other SUT deployments are at least as good as the reference SUT.

For all these evaluations, we select the probability that was computed with the model pm as
alternative hypothesis H1. Then, for Evaluation 1, we select a null hypothesis that is smaller
(by a value ∆), because we want to be able to reject the hypothesis that the SUT has a smaller
probability. The hypotheses can be defined similar as described in Section 2.2.3 and look like
this:

H0 : θ = θ0 | f (xi, θ0) =

{
1− pm − ∆ if xi = 0
pm − ∆ if xi = 1

H1 : θ = θ1 | f (xi, θ1) =

{
1− pm if xi = 0
pm if xi = 1

Evaluation 2 works similar, but includes an additional hypothesis test with a larger null
hypotheses, which allows us to reject the hypothesis that the SUT has a higher probability
than the predicted one from the model. This additional hypothesis test has the following
hypotheses:

H0 : θ = θ0 | f (xi, θ0) =

{
1− pm + ∆ if xi = 0
pm + ∆ if xi = 1

H1 : θ = θ1 | f (xi, θ1) =

{
1− pm if xi = 0
pm if xi = 1

Moreover, also Evaluation 3 is similar to the Evaluation 1, with the only difference that
we test other SUT deployments. In this case, the model is derived from data from a reference
SUT, and we want to know if a comparable performance can be achieved, when the system is
deployed on a different hardware or network setup. The data flow of the overall process of
this evaluation is illustrated in Figure 6.3.

1. We perform MBT with a functional model and capture the response times of requests of
a reference SUT as log data as described in Section 5.1.

2. The log files are then taken as input for a linear regression, which gives us response-time
distributions (see Section 5.2).

Chapter 6. Statistical Model Checking for Predicting and Testing Response-Times 77

Model-Based
Testing

Reference
SUT

Functional
Model

Log Files
Linear

Regression

Response-Time
Distributions+

Timed
Model (STA)

Monte Carlo
of the Model
(virtual time)

Probabilities
as Hypotheses

Hypothesis Test
(SPRT) of SUTs

(real time)

Usage
Profiles

Accept. Hy-
potheses

SUT
Deployments

Figure 6.3: Overview of the data flow of our deployment-testing method.

3. The distributions and stochastic usage profiles are integrated into the functional model,
resulting in a combined stochastic timed automata (STA) model.

4. Next, we perform a Monte Carlo simulation of this model to answer queries about the
expected response time of users as demonstrated in the previous section.

5. Finally, the resulting probabilities serve us as hypotheses in order to check if deploy-
ments of the SUT can satisfy the same response-time thresholds as the reference system.

Note that in order to obtain an average number of needed samples, we run the SPRT
concurrently for each user or client of a specified population and calculate the average of
these runs. Multiple independent SPRT runs would produce a better average, but these tests
have a high computation time, and we only have limited time in the test environment. We
apply the SPRT algorithm with 0.01 as type I and II error parameters (α and β) in all the
following examples.

Evaluation 1 was performed with our MQTT example, where we consider the predicted
probability 0.84 of the model as alternative hypothesis and select a probability of 0.74 as null
hypothesis, which is 0.1 smaller. As a result, the alternative hypothesis (probability 0.84) was
accepted for all clients and on average 41.15 samples (test cases) were needed for the decision.
The acceptance of the alternative hypothesis means that the SUT was at least as good as the
model predicted in this case.

We applied Evaluation 2 to our TFMS example. The computed probability of the model
(0.806) served as alternative hypothesis, and we select a probability of 0.556 as null hypothesis,
which is 0.25 smaller. Additionally, we tested a probability of 1, which is about 0.2 larger than
the computed probability, as a null hypothesis with a second SPRT and the same alternative
hypotheses. The alternative hypotheses were accepted for both SPRTs and for all users, which
means that the model’s prediction was accurate, and on average only 17.55 and 11 samples
were needed for the first and second SPRTs, respectively.

Moreover, we applied Evaluation 3 (deployment testing) to the TFMS. After we have eval-
uated the hypotheses on the reference SUT, we can reuse the hypotheses to check if different
deployments of this SUT provide a similar performance. For example, we reused the hypothe-
ses that were shown for Evaluation 2 (a probability of 0.806 as alternative hypothesis and of
0.556 as null hypothesis) and applied them to a deployment that had 4 GB instead of 15 GB
that were installed in the reference SUT. The result was the same as for the reference system,
i.e., the alternative hypothesis was accepted by all clients, and about the same number of
samples was needed.

The acceptance of the same hypotheses means that the deployment provides the same
or a similar performance as the reference SUT for our specific usage scenario, otherwise the

78 Chapter 6. Statistical Model Checking for Predicting and Testing Response-Times

deployment has worse response time. Detailed results with different deployment evaluations
follow in Section 7.2.

Note that the selected difference for the null hypothesis has an effect on the number of
samples, i.e., the smaller the difference the more samples are usually required. We selected
a difference of 0.25 for the TFMS, since we wanted to detect a noticeable difference from the
user’s perspective. For MQTT, we work with a smaller difference of 0.1, because we wanted
to detect differences of MQTT implementations with similar performance, which we will see
in the next chapter.

In summary, it can be said that the SPRT allowed us check properties with a practicable
number of samples, which is especially important when the test-case execution on the SUT
is costly. The examples showed that we only needed a fraction of the samples compared to
the 1060 samples that were required for the Monte Carlo simulation with Chernoff-Hoeffding
bound.

In the next chapter, we will see an extensive evaluation of our method, but first we discuss
the implementation in the following section.

6.3 Implementation of the Response-Time Prediction and Testing
Method

In this section, we illustrate how our timed models can be executed with PBT. We introduce
custom generators for the simulation of response times and also for latencies, which work
similarly for the user-input times of our usage profiles. Moreover, we illustrate how they are
applied to generate test cases. Note that we released the source code of our implementation
for MQTT in order to make our method available to the public.16

In Chapter 3, we already presented an implementation for model-based testing with
FsCheck, which supports automatic form-data generation and EFSMs. In this previous imple-
mentation, we had command instances for transitions and generators for different data types
(e.g., for form data).

Based on this existing implementation, we developed the following extensions in order
to support our new method. The first extension is a parser that reads the learned response-
time distributions and integrates them into the model. In the previous implementation, we
had command instances, which represent the tasks and generators for different data types
(of form data). Now, we introduce response-time generators for the simulation of requests,
which can be applied in the same way as normal generators for test data. During the test-case
generation, the generated response times can be evaluated within the commands, which is
useful for our response-time analyses.

Algorithm 13 represents the implementation of a response-time generator that we applied
for the evaluation of the TFMS. The inputs are a task, a subtask, an attribute (for requests that
are only concerned with one attribute), an array of encapsulated attributes (for requests that
transfer multiple attributes), and the rtime function, which returns the parameters µ and σ of
the normal distribution and was introduced in the previous chapter. Additionally, there are
global variables ActiveUserNum for the number of active users and CumulativeObjSize for the
representation of the database size, which are shared by all users. The generator is expressed
as a function that is called during the generation process and it works as follows. First, a
sequence generator is applied to generate values for the encapsulatedAttr array, and the select
function further processes the generated values and constructs a new generator that is then
returned. select was already explained in Section 3.5. This function takes an anonymous
function, which takes the value of the original generator as input, and returns a new value

16https://github.com/schumi42/mqttCheck (visited on 2018-09-19)

https://github.com/schumi42/mqttCheck

Chapter 6. Statistical Model Checking for Predicting and Testing Response-Times 79

Algorithm 13 Pseudo code of a response-time generator for the TFMS.
Inputs: Task t,

Subtask st,
Attribute a, . this variable is needed for requests that are only concerned with one attribute
Attribute[] encapsulatedAttr, . attribute array for requests that transfer multiple attributes
rtime : (. . .)→ (µ, σ) . function for the simulation of the response-time

Global Variable: ActiveUserNum ∈N, . number of users that have an open request
CumulativeObjSize ∈N . sum of the data sizes of the created objects

1: function Generator
2: return Gen.sequence(encapsulatedAttr).select(data→{
3: ActiveUserNum← ActiveUserNum + 1 . should be locked (Mutex)
4: delay← sample(rtime(t, st, ActiveUserNum, a, encapsulatedAttr.length,

sizeOf (data), CumulativeObjSize)) . sample normal distribution
5: sleep(delay) . thread should sleep
6: ActiveUserNum← ActiveUserNum− 1 . should be locked (Mutex)
7: return delay}
8: end function

that can have a different type. It can be applied to construct a new generator based on the
generated value of the original generator. Inside this function, the number of active users is
increased to simulate a request. (The access to ActiveUserNum should be locked to avoid race
conditions.) Then, a value is sampled according to the normal distribution and assigned to the
delay variable. The sample is created with the parameters µ and σ from the rtime function that
was explained before. Note that encapsulatedAttr.length represents the number of attributes
that are set by a subtask (#Attributes), and sizeOf (data) is the size of the generated attribute
data, i.e., the ObjSize argument of the rtime function. Next, the thread is put to sleep for the
duration that was generated with the sample function. Then, the number of users is decreased
again. Finally, the generated delay is returned so that it can be checked outside the generator.

Note that this generator function also applies the generated delay. This is done, because
we need to know the number of active users for the generation of a sample. In order to
know which user is active, it is necessary to directly execute this behaviour, so that we have
active users during the generation step. Multiple users are executed concurrently in different
threads in an independent way. However, their shared variable ActiveUserNum causes a certain
dependency between the user threads, because when one user increases this variable, then this
affects the response-time distributions of the other users.

The usage profiles are also parsed and the extracted user behaviour is added into the com-
bined model. The user input-durations that represent the time needed for filling web forms
can be integrated in a similar way as the rtime functions by introducing input-duration genera-
tors. Their implementation details are omitted, as they work in the same way as response-time
generators except that they do not change the number of active users, and they use a uniform
distribution instead of a normal distribution. With both these generators, we are able to imple-
ment the sequence of subtasks of tasks as represented in Figure 6.4. Input-duration generators
represent the time that a user needs for the input (e.g., for filling forms) and response-time
generators simulate the response times of different requests. These generators are instantiated
with different parameters depending on the request type. Algorithm 13 shows the necessary

Response-Time
Generator

StartTask
Response Time

Input-Duration
Generator

Simulated User
Input Time

Response-Time
Generator

SetAttribute(X)
Response Time

. . . Input-Duration
Generator

Simulated User
Input Time

Response-Time
Generator

Commit
Response Time

Figure 6.4: Generator sequence of a task that is executed with a sequence generator.

80 Chapter 6. Statistical Model Checking for Predicting and Testing Response-Times

Algorithm 14 Pseudo code of a latency generator for MQTT.
Inputs: Message msg,

encapsulatedGens, . a map (String→ Gen) for the data generators of a message
latency : (. . .)→ (µ, σ) . function for the simulation of the latency

Global Variable: #ActiveMsgs ∈N≥0, . number of MQTT interactions that are currently open
#TotalSubs ∈N≥0 . number of total subscriptions that are managed on the broker
Subs : Topic→N>0 . map for the subscription numbers of a client

1: function Generator
2: return Gen.map(encapsulatedGens).select(data→{

3: #subs←
{

Subs[data[“topic”]], if msg = “publish”
0, otherwise

. only set #subs for publish

4: #ActiveMsgs← #ActiveMsgs + 1 . should be locked (Mutex)
5: delay← sample(latency(msg, #ActiveMsgs, #TotalSubs, #subs) . sample normal distr.
6: sleep(delay) . thread should sleep
7: #ActiveMsgs← #ActiveMsgs− 1 . should be locked (Mutex)
8: return delay}
9: end function

parameters for the instantiation. It is important to point out that the model can be simulated
with a virtual time, i.e., a fraction of the actual time. Hence, the delay variable of Algorithm 13
should normally be divided by a constant value, but we omitted this detail for the sake of
simplicity.

For MQTT, we implemented latency generators that simulate the timing behaviour of
MQTT. These generators work in a similar way as response-time generators.

Algorithm 14 represents the implementation of a latency generator. The inputs are a
message, a map of encapsulated generators with identifier strings as keys (e.g., for the topic
and message content generation), and the latency function that returns the parameters µ and
σ of the normal distribution and that was introduced in the previous chapter. Additionally,
there are global variables #ActiveMsgs for the open message exchanges, #TotalSubs for the total
number of subscriptions of the broker, and a map Subs for the number of subscriptions per
topic. The generator is expressed as a function that is called during the generation process
and it works as follows. First, Gen.map(encapsulatedGens) is applied to build a generator that
produces a map for the message data, which includes entries, like “topic” → “test”. Gen.map
takes a map that contains generators as input, and returns a generator that has values for
these generators:

Gen.map : (A→ Gen[B])→ Gen[A→ B]

The select function is applied to the resulting map generator in order to further process the
generated data. Inside this function, we have access to the generated message data map.
In case of a publish message, #subs is set to the number of subscribers for the generated
topic data[“topic”], or set to zero otherwise. Next, the number of active message exchanges
#ActiveMsgs is increased. (The access to this variable should be locked to avoid race condi-
tions.) Then, a value is sampled according to the normal distribution and assigned to the
delay variable. The sample is created with the parameters µ and σ from the latency function
that was explained before. Next, the thread is put to sleep for the generated latency. Finally,
#ActiveMsgs is decreased again and the delay is returned so that it can be checked outside the
generator.

Note that this generator also executes the generated delay (Line 6) for the same reason as
for the response-time generator, i.e., we need to know the number of active messages during
the generation of a sample.

The simulation of time between messages, defined in the usage profile, is much simpler
than the latencies. A sample of a uniform distribution suffices to execute this delay with a

Chapter 6. Statistical Model Checking for Predicting and Testing Response-Times 81

Algorithm 15 Pseudo code of the test-case generation for classical PBT and SMC.
Input: spec, . PBT state-machine specification

size ∈N≥0 . parameter for test-case length
1: model← spec.initialModel()
2: for i← 1 to size do
3: gen← spec.next(model) . next returns a command generator
4: cmd← gen.sample() . command is generated
5: model← cmd.runModel(model) . command is executed
6: end for

7: function spec.next(model)
8: set← model.getTransitionsWithWeights() . set of (weight, Gen[Transition])
9: return Gen.frequency(set).selectMany(transition→

10: Gen.map(transition.Generators).selectMany(data→ . generate data or response times/latencies
11: CmdGenerator(transition, data))) . generator for a command
12: end function

sleep-statement. This can be done in a dedicated generator or just in the execution functions
of commands, which handle the execution of messages or requests and which were explained
in Section 3.3.1.

The selection of tasks or messages according to weights of the usage profile was imple-
mented with a standard frequency generator. It takes a set of weight-generator pairs and
selects one of the generators according to the weights.

Gen.frequency : P(R>0 ×Gen)→ Gen

This generator was applied in the next function of the state-machine specification, which
performs the selection of commands in order to produce command sequences, as explained in
Section 3.3.1. The generator for commands does not only generate commands, but also their
required data.

We implemented a test-case generation process that can do both, classical PBT for produc-
ing log data, as well as SMC of our timed models. For the log creation, we apply normal data
generators to produce test cases that are executed on the SUT. For SMC of the timed model,
we apply latency generators and analyse the produced test cases.

Algorithm 15 outlines this process. It requires a state-machine specification spec, which
includes a generator for commands and the initial state of the model. First, the initial model
is retrieved from a function of the spec. Then, there is an iteration over the size parameter and
in each iteration the next function of the spec is called to obtain a command generator for the
current model state. A command cmd is produced with this generator (Line 4) and executed
on the model cmd.runModel in order to retrieve a new model, which incorporates the applied
state change. Then, this new model (state) is given to the next function in each iteration in
order to produce a command sequence. The next function works as follows: First, a set of pairs
of weights and transition generators is retrieved from the getTransitionsWithWeights function.
Based on this set, a frequency generator is built (Line 8).

The function selectMany of this generator is called to further process the selected value.
This function was already explained in Section 3.5. It is applied to a generator in order to
build a new generator. Within this function, a map generator is built that generates a data
map for the transition. For example, the map can contain a topic for a message, when we
directly test an MQTT broker, or a latency for the analysis of our timed model. The selectMany
function is applied again on this generator and within this function, a command generator is
created for the given transition and data. A resulting test case is a sequence of command and
model instances, e.g., it contains all the information of a timed trace that can be analysed with
SMC.

82 Chapter 6. Statistical Model Checking for Predicting and Testing Response-Times

We apply the state-machine specification with the described next function in order to pro-
duce a state-machine property that performs the aforementioned test-case generation. Then,
we execute this property within our SMC properties that perform an SMC algorithm. SMC
properties were introduced for the integration of SMC into PBT as described in Chapter 4.
More specifically, for prediction with our models, we apply ChernoffProperties that are de-
picted in Algorithm 10, and for testing the predictions we apply SPRTProperties as illustrated
in Algorithm 11.

In the next chapter, we present the evaluation of our method, which is supported by our
implemented generators and by the developed test-case generation algorithm.

83

7 Evaluation of the Response-Time Prediction
and Testing Method

This chapter is based on our publications at QEST 2018 [3], at SETTA 2018 [12], and in the journal
SQJO 2017 [9].

In this chapter, we present the evaluation of our response-time prediction and testing
method. We illustrate the viability and generality of our method with our two case studies
(TFMS and for MQTT). For the TFMS, we show how to assess the prediction power of our
models by performing two hypothesis tests. Moreover, we demonstrate a further application
of our method for deployment testing in order to test if system deployments with a different
hardware or network setup have a performance comparable to that of a reference SUT. For
MQTT, we present a performance comparison between different broker implementations. The
utilisation of our method for this application area allows us to check which broker shows the
better performance, depending on a specific usage scenario. In order to perform such a check,
we evaluate both broker implementations with two different usage profiles.

7.1 TFMS

We evaluated our method for two major modules of the TFMS, the Test Order Manager and the
Test Equipment Manager. These modules were already discussed in Section 3.6, where we also
presented their underlying functional models in detail. Now, we demonstrate a performance
evaluation of these modules. We focus on the response times and the number of samples
needed, and also present run times of the simulation and testing process.

7.1.1 Settings.

The evaluation was performed in a distributed environment at AVL. The TFMS server (version
1.8) was running on a virtual machine with Windows Server 2012, 15 GB RAM and 7 Intel
Xeon E5-2690v4 2.6 GHz CPUs. The test clients that simulated the users were executed in a
separate virtual machine with Windows Server 2008, 6 GB RAM and 3 Intel Xeon E5-2690v4
2.6 GHz CPUs. The logs for the linear regression were created on these test clients, and they
were applied to evaluate our models. For both, the test-case generation to create the logs and
the simulation with SMC, we applied FsCheck version 2.8.2.

7.1.2 Test Order Manager

The Test Order Manager is the main module of our SUT. It enables the configuration and
execution of test orders, which are basically a composition of steps that are necessary for a
test sequence at an automotive test bed. The functional models of this module were already
presented in Section 3.6.2 and the extension of these models to stochastic timed automata
works in the same way as illustrated with the example in Section 6.1.

We applied our method in order to answer the following question: “What is the probability
that the response time of all requests within a task sequence of a fixed length, i.e., a test case,
is under a specific threshold for each user within a population?”. For this evaluation, a usage
profile was created in cooperation with domain experts from AVL. This profile was similar to
the one shown in Section 4.2, and is illustrated in Listing 7.1. The multiple linear regression
model was similar to the one of Section 4.2 as well and it is shown in Listing 7.2. The only
major difference is that this regression model is larger due to the higher number of transitions

84 Chapter 7. Evaluation of the Response-Time Prediction and Testing Method

{TaskWeights : {
TestOrder : { ToCreate : 3 5 , MakeReady : 1 , Finish : 1 , Activate : 1 , Duplicate : 1 , Reject : 1 ,

AdminEdit : 1 , EditCreated : 6 5 , EditStandardWorkInWork : 6 5 ,
EditStandardWorkExecuted : 6 5 , CancelInCreated : 1 ,CancelInStandardWorkInWork : 1 ,
CancelInStandardWorkExecuted : 1 ,CancelInFinished : 1 , CancelInInvalid : 1 ,
Invalidate : 1 , Select : 5 ,SelectREM : 1 } ,

BusinessProcessTemplate : { BptCreate : 3 5 , AdminEdit : 1 , Edit : 6 5 , ChangeState : 1 , Select : 5 ,
SelectREM : 5 } } ,

TaskWaitIntervalStart : 5 0 0 , TaskWaitIntervalEnd : 1 5 0 0 , SubTaskWaitIntervalStart : 3 0 0 ,
SubTaskWaitIntervalEnd : 5 0 0 , WaitPerReference : 1 0 , WaitPerCharacter : 3 0 }

Listing 7.1: Usage profile of the Test Order Manager.

Estimate Std . Error t−value Pr(>|t|)
(Intercept) 25 .570 0 .194 131 .200 0 . 0
#Users 4 .980 0 .016 299 .814 0 . 0
#Attributes 2 .473 2 .477 0 .998 0 .318
ObjectSize 0 .000 0 .003 0 .054 0 .956
CumulativeObjectSizeForRisingTasks 1 .291e−06 4 .972e−09 259 .800 0 . 0
AdminEdit_SetRefAttribute 4 .890 0 .154 31 .592 1 .302e−218
AdminEdit_StartTask 0 .728 0 .639 1 .138 0 .254
BptCreate_Commit −7.968 0 .248 −32.027 1 .343e−224
BptCreate_SetRefAttribute 4 .353 0 .165 26 .349 8 .694e−153
BptCreate_StartTask 0 .371 0 .642 0 .577 0 .563
CancelInCreated_Commit 3 .474 1 .455 2 .387 0 .016
CancelInCreated_StartTask 1 .278 0 .678 1 .885 0 .059
CancelInFinished_Commit 3 .483 1 .663 2 .094 0 .036
CancelInFinished_StartTask −4.583 1 .038 −4.414 1 .013e−05
CancelInStandardWorkExecuted_Commit 2 .102 1 .941 1 .082 0 .278
CancelInStandardWorkExecuted_StartTask −3.765 1 .428 −2.636 0 .008
CancelInStandardWorkInWork_Commit 3 .337 1 .517 2 .199 0 .027
CancelInStandardWorkInWork_StartTask −4.357 0 .792 −5.500 3 .794e−08
ChangeState_Commit −1.231 5 .335 −0.230 0 .817
ChangeState_SetRefAttribute 4 .484 0 .245 18 .267 1 .677e−74
ChangeState_StartTask 1 .055 0 .656 1 .608 0 .107
Duplicate_Commit 56 .725 0 .243 233 .013 0 . 0
Duplicate_SetRefAttribute 4 .779 0 .227 21 .032 4 .099e−98
Duplicate_StartTask 2 .405 0 .653 3 .683 0 .000
EditCreated_Commit 2 .253 0 .315 7 .149 8 .720e−13
EditCreated_SetRefAttribute 4 .627 0 .289 16 .004 1 .267e−57
EditCreated_StartTask 0 .855 0 .680 1 .256 0 .208
EditStandardWorkExecuted_Commit 3 .400 1 .712 1 .985 0 .047
EditStandardWorkExecuted_StartTask −4.032 1 .123 −3.588 0 .000
EditStandardWorkInWork_Commit 4 .678 1 .521 3 .075 0 .002
EditStandardWorkInWork_StartTask −3.125 0 .793 −3.937 8 .232e−05
Edit_Commit −2.849 0 .371 −7.661 1 .847e−14
Edit_SetRefAttribute 5 .042 0 .346 14 .572 4 .389e−48
Edit_StartTask 4 .038 0 .706 5 .713 1 .108e−08
Finish_Commit 4 .223 1 .773 2 .381 0 .017
Finish_StartTask −2.666 1 .208 −2.206 0 .027
MakeReady_Commit 4 .294 1 .451 2 .958 0 .003
MakeReady_SetRefAttribute 5 .717 0 .335 17 .050 3 .794e−65
MakeReady_StartTask 1 .395 0 .671 2 .076 0 .037
Reject_Commit 4 .792 1 .515 3 .162 0 .001
Reject_StartTask −4.272 0 .784 −5.442 5 .264e−08
SelectREM_Load −9.469 0 .637 −14.848 7 .449e−50
SelectREM_Open −5.106 0 .637 −8.007 1 .178e−15
Select_Load −9.177 0 .636 −14.410 4 .675e−47
Select_Open −5.456 0 .636 −8.567 1 .064e−17
ToCreate_Commit −4.903 0 .335 −14.617 2 .272e−48
ToCreate_SetRefAttribute 6 .886 0 .141 48 .576 0 . 0
ToCreate_StartTask −2.340 0 .714 −3.278 0 .001
Attribute_NOTSET −15.211 0 .588 −25.847 4 .094e−147
Attribute_ParentFolder −31.078 0 .220 −140.743 0 . 0
. . .

Listing 7.2: Linear regression model of the Test Order Manager.

Chapter 7. Evaluation of the Response-Time Prediction and Testing Method 85

10 20 30 40 50 60 70 80 90 100
0

0.2
0.4
0.6
0.8

1

threshold [ms]

pr
ob

ab
ili

ty 5 Users Test-Case Length 3
25 Users Test-Case Length 3
45 Users Test-Case Length 3
5 Users Test-Case Length 4
25 Users Test-Case Length 4
45 Users Test-Case Length 4

Figure 7.1: Test Order Manager simulation results of the model.

in the Test Order Manager model. Note that more accurate usage profiles could be obtained
by monitoring a live system with real users. Unfortunately, this was not possible in our case,
because we did not receive approval from TFMS customers.

We applied the profile to form user populations of different sizes, and we applied our
evaluation for test cases with increasing lengths via a Monte Carlo simulation with Chernoff-
Hoeffding bound with parameters ε = 0.05 and δ = 0.01. (This requires 1060 samples per
data point.) The results for an empty database (CumulativeObjSize = 0) and for a database
size that represents about 14,000 test orders (CumulativeObjSize = 80, 000, 000) are shown in
Figure 7.1 and Figure 7.2. Note, we selected the user-population sizes (5, 25, 45) by starting
from a trivial size of five and by choosing a step size that showed a significant difference.

As expected, a decrease in the probability of our given question can be observed, when the
test-case length or the population size increases. Moreover, it is apparent that the size of the
database has an important influence on the response times. We can see that the response times
increase when the database size rises. The advantage of the simulation on the model-level is
that it runs much faster than on the SUT. With a virtual time of 1/10 of the actual time, we
can perform simulations that would take days on the SUT within hours.

It is also important to check the probabilities that we received through model simulation
on the SUT. This was done as explained in Section 4.2 by applying the SPRT with the same
parameters. Table 7.1 shows the results. Due to the high computation effort, we only check a
limited selection of data points of Figure 7.1. The table shows the hypotheses and evaluation
results for different thresholds, different numbers of users and for the two database fill levels
(CumulativeObjSize). As explained in Section 6.2, we perform two SPRTs, one to check if the
SUT is not much worse than the model, and one to check if the SUT is not much better than the
model. The alternative hypothesis H1 is produced via the model simulation and is the same
in both SPRTs, but the null hypotheses are different (smaller: 1. H0 or larger: 2. H0). As result,
we report the accepted hypotheses. When not all users accepted the same hypothesis, we
report the respective number how often H0 and H1 have been accepted. Moreover, we show
the average number of samples that were needed for the SPRT (#Samples) and the total run
time for all clients of this evaluation. We only perform one SPRT if the predicted probability of
the model is close to one or zero, because then we are already close enough to the minimum
or maximum probability.

80 90 100 110 120 130 140 150 160 170 180
0.4

0.6

0.8

1

threshold [ms]

pr
ob

ab
ili

ty 5 Users Test-Case Length 3
25 Users Test-Case Length 3
45 Users Test-Case Length 3
5 Users Test-Case Length 4
25 Users Test-Case Length 4
45 Users Test-Case Length 4

Figure 7.2: Test Order Manager simulation results of the model with filled DB.

86 Chapter 7. Evaluation of the Response-Time Prediction and Testing Method

Table 7.1: Test Order Manager results of the SUT evaluation with the SPRT.
Thresh-
old [ms]

#Users
Cumulative

ObjSize
H1 1. H0 Result

#Sam-
ples

2. H0 Result
#Sam-
ples

Time
[min:s]

50 5 0 0.728 0.478 H1 20.6 0.978 1H1 4H0 14.6 17:56
50 25 0 0.653 0.403 H1 11.76 0.902 H0 29.48 51:30
50 45 0 0.456 0.206 H1 7.68 0.705 H0 17 22:02

100 5 0 0.997 0.747 H1 16 - - - 11:22
100 25 0 0.995 0.745 H1 16 - - - 11:56
100 45 0 0.986 0.736 H1 17.84 - - - 22:08
100 5 80,000,000 0.428 0.178 H1 27 0.678 H1 37.6 28:46
100 25 80,000,000 0.425 0.175 H1 35.56 0.675 H1 29.16 38:54
100 45 80,000,000 0.419 0.169 7H0 38H1 62.82 0.669 H1 18.22 55:37
150 5 80,000,000 1 0.750 2H0 3H1 12.8 - - - 10:25
150 25 80,000,000 0.999 0.749 16H0 9H1 9.64 - - - 22:40
150 45 80,000,000 0.972 0.722 H0 5.78 - - - 6:52
200 5 80,000,000 1 0.750 H1 16 - - - 11:32
200 25 80,000,000 1 0.750 H1 12.72 - - - 11:56
200 45 80,000,000 1 0.750 H1 13.82 - - - 32:46

We can see that the alternative hypotheses were accepted in many cases, which means
that the predicted probability was close enough to the real probability of the SUT. In some
cases, H0 was accepted, which means that our model was too optimistic or pessimistic in these
cases. We will discuss this later in Section 7.4. Moreover, it is apparent that in contrast to the
execution on the model, fewer samples are needed, since the SPRT stops when it has sufficient
evidence. The smaller number of required samples of the SPRT (max. appr. 62) compared to
Monte Carlo simulation (1060 samples) allowed us to analyse the SUT within a feasibly short
time. For example, in the worst case it took only about an hour to apply the SPRT.

7.1.3 Test Equipment Manager

The Test Equipment Manager is another important module of our SUT. This module enables
the administration of equipment that is relevant for the test beds, like measurement devices,
sensors, actuators and various input/output modules. The functional models and a detailed
description of this module were already presented in Section 3.6.3.

We performed the same evaluation for the Test Equipment Manager as for the Test Or-
der Manager. The usage profile (Listing 7.3) and the regression model (Listing 7.4) were also
similar to the one shown in Section 4.2. The results of the Monte Carlo simulation for an
empty database (CumulativeObjSize = 0) and for a database size that represents about 9,200
test equipment objects (CumulativeObjSize = 30, 000, 000) are presented in Figure 7.3 and Fig-
ure 7.4. We can see that the curves for an empty database are similar to that of the Test Order
Manager. The curves for a filled database are different, i.e., we can see that there is a larger
gap between the curves for specific numbers of users and that the response times with the
filled database are much higher than those with the empty database. This difference is caused
by a higher number of subtasks that are dependent on the database size in this module.

We also evaluated the results of the Monte Carlo simulation in the same way as before
by applying the SPRT. Table 7.2 shows the results. For the empty database, we see that H1
was accepted in most of the cases, but for the filled database, H0 was accepted more often.
The model seems to be too optimistic for this database size. We think the reason for this is
that we have much more subtasks that are dependent on the database size. In addition, more
data is transferred over the network in comparison with the Test Order Manager. This causes
more network interference and makes the linear regression more difficult. Nevertheless, it
was again possible to evaluate the SUT by applying the SPRT with an acceptable number of
samples (max. ca. 20) and with a decent run time (max. ca. 13 minutes).

Chapter 7. Evaluation of the Response-Time Prediction and Testing Method 87

{TaskWeights : {
TestEquipmentType : { TetCreate : 2 0 , TetEditGeneral : 8 0 , TetAdminEdit : 1 , TetChangeState : 1 ,

Select : 5 , SelectREM : 1 } ,
TestEquipment : { CreateTestEquipment : 2 0 , TeEditGeneral : 8 0 , MarkAsDefect : 1 , Select : 5 ,

SelectREM : 5 } } ,
TaskWaitIntervalStart : 5 0 0 , TaskWaitIntervalEnd : 1 5 0 0 , SubTaskWaitIntervalStart : 3 0 0 ,
SubTaskWaitIntervalEnd : 5 0 0 , WaitPerReference : 1 0 , WaitPerCharacter : 3 0 }

Listing 7.3: Usage profile of the Test Equipment Manager.

Estimate Std . Error t value Pr(>|t|)
(Intercept) 24 .170 0 .735 32 .873 8 .301e−236
#Users 12 .583 0 .079 158 .534 0 . 0
#Attributes −18.201 11 .522 −1.579 0 .114
ObjectSize 0 .007 0 .014 0 .507 0 .611
CumulativeObjectSizeForRisingTasks 2 .962e−06 1 .604e−08 184 .665 0 . 0
CreateTestEquipment_SetRefAttribute 33 .426 0 .789 42 .360 0 . 0
CreateTestEquipment_StartTask 1 .713 2 .550 0 .671 0 .501
MarkAsDefect_Commit 12 .167 6 .812 1 .786 0 .074
MarkAsDefect_StartTask 12 .630 2 .618 4 .823 1 .414e−06
SelectREM_Load −1.909 2 .539 −0.751 0 .452
SelectREM_Open −4.122 2 .539 −1.623 0 .104
Select_Load −1.096 2 .538 −0.432 0 .665
Select_Open −1.701 2 .538 −0.670 0 .502
TeEditGeneral_Commit −2.073 14 .436 −0.143 0 .885
TeEditGeneral_StartTask 11 .302 2 .641 4 .279 1 .876e−05
TetAdminEdit_Commit −21.109 24 .536 −0.860 0 .389
TetAdminEdit_SetRefAttribute 7 .646 0 .500 15 .279 1 .187e−52
TetAdminEdit_StartTask 8 .616 2 .582 3 .336 0 .000
TetChangeState_Commit −36.918 6 .842 −5.395 6 .837e−08
TetChangeState_StartTask 6 .045 2 .627 2 .300 0 .021
TetCreate_Commit −12.211 10 .486 −1.164 0 .244
TetCreate_SetRefAttribute 12 .538 0 .450 27 .808 1 .416e−169
TetCreate_StartTask 0 .856 2 .553 0 .335 0 .737
TetEditGeneral_Commit −46.019 6 .847 −6.720 1 .817e−11
TetEditGeneral_StartTask 9 .978 2 .622 3 .805 0 .000
Attribute_NOTSET −29.440 1 .840 −15.993 1 .653e−57
Attribute_ParentType 20 .184 0 .530 38 .078 0 . 0
. . .

Listing 7.4: Linear regression model of the Test Equipment Manager.

10 20 30 40 50 60 70 80 90 100
0

0.2
0.4
0.6
0.8

1

threshold [ms]

pr
ob

ab
ili

ty 5 Users Test-Case Length 3
25 Users Test-Case Length 3
45 Users Test-Case Length 3
5 Users Test-Case Length 4
25 Users Test-Case Length 4
45 Users Test-Case Length 4

Figure 7.3: Test Equipment Manager simulation results of the model.

100 120 140 160 180 200 220 240
0

0.2
0.4
0.6
0.8

1

threshold [ms]

pr
ob

ab
ili

ty 5 Users Test-Case Length 3
25 Users Test-Case Length 3
45 Users Test-Case Length 3
5 Users Test-Case Length 4
25 Users Test-Case Length 4
45 Users Test-Case Length 4

Figure 7.4: Test Equipment Manager simulation results of the model with filled DB.

88 Chapter 7. Evaluation of the Response-Time Prediction and Testing Method

Table 7.2: Test Equipment Manager results of the SUT evaluation with the SPRT.
Thresh-
old [ms]

#Users
Cumulative

ObjSize
H1 1. H0 Result

#Sam-
ples

2. H0 Result
#Sam-
ples

Time
[min:s]

50 5 0 0.973 0.723 H1 19.6 - - - 10:52
50 25 0 0.936 0.686 H1 16.2 - - - 9:46
50 45 0 0.671 0.421 H1 11.11 0.921 H0 18.58 13:11

100 5 0 1 0.750 H1 16 - - - 5:46
100 25 0 0.998 0.748 H1 16 - - - 6:10
100 45 0 0.962 0.712 H1 16 - - - 7:49
100 5 30,000,000 0.013 0.125 H0 14 0.625 H1 9 3:39
100 25 30,000,000 0.114 - - - 0.364 H1 14.4 2:59
100 45 30,000,000 0.014 - - - 0.264 H1 16.24 3:11
150 5 30,000,000 0.999 0.749 H0 5 - - - 3:19
150 25 30,000,000 0.820 0.570 H0 6 1 H1 5 3:55
150 45 30,000,000 0.137 0.387 H0 14.27 - - - 3:15
200 5 30,000,000 1 0.750 3H0 2H1 12.8 - - - 4:41
200 25 30,000,000 0.997 0.747 H0 5.68 - - - 4:58
200 45 30,000,000 0.496 0.246 H0 13.56 0.746 H1 7.69 6:00

7.1.4 Run Times of the Method

Our method consists of several phases that have different computation times. Here, we give
an overview of the timings of these phases in order to illustrate the overall run time of our
method and to demonstrate its effectiveness.

In the first step, we generate log data with MBT. This initial testing phase took about an
hour for both our tested modules, i.e., about 63 minutes for the Test Order Manager and about
65 minutes for the Test Equipment Manager. The next step was the linear regression, which
took only about 70 to 100 seconds including the time for data cleaning and preprocessing.

The model-simulation times are illustrated in Table 7.3. Note that these timings were
measured on the client machine that was described in the setting. It can be seen that they
were very similar for the empty and the filled database. The reason for this is that the user-
input times from the usage profiles accounted for the bulk of the simulation time. For the
same reason, we only see a small increase in the simulation time, when the number of users
rises. In summary, the simulation time was about 9 to 13 minutes for the Test Order Manager
and 6 to 9 minutes for the Test Equipment Manager.

The last columns of Table 7.1 and Table 7.2 show the run times of the SPRTs. Note that
during the execution of a sample, we stopped when we already observed a higher response
time than our threshold, and we only have one run time for both SPRTs, since we check them
in one execution. The run times of the Test Order Manager were about one hour in two cases.
In all other cases, run times were mostly shorter than half an hour and the fastest experiments

Table 7.3: Average simulation time [min:s] of the model for the Test Order Manager and
the Test Equipment Manager for an empty and filled database.

#Users
Test-
Case

Length

Simul. Time (Empty DB) Simul. Time (Filled DB)
Test Order
Manager

Test Equipment
Manager

Test Order
Manager

Test Equipment
Manager

5 3 9:24 6:40 9:23 6:40
25 3 9:31 6:51 9:41 6:51
45 3 9:37 7:08 9:45 7:08

5 4 12:46 8:56 12:45 8:57
25 4 12:52 9:09 12:58 9:09
45 4 13:02 9:37 13:04 9:37

Chapter 7. Evaluation of the Response-Time Prediction and Testing Method 89

Table 7.4: Different system deployments with various hardware/network settings.

Deployment Hardware Network
#CPUs RAM [GB] Bandwidth [Mbps] Delay [ms]

D0 7 15 1000 0
D1 7 4 1000 0
D2 2 15 1000 0
D3 7 15 500 0
D4 7 15 100 0
D5 7 15 50 0
D6 7 15 1000 25
D7 7 15 1000 10

took about 10 minutes The run times of the Test Equipment Manager were shorter due to its
lower complexity, i.e., a smaller number attributes for the form data. They were always below
15 minutes and in the fastest cases about 3 minutes.

Executing the Monte Carlo simulation that we applied for the model directly on the SUT
would take about one day. By applying the SPRT, we can perform such an evaluation within
less than an hour in the worst case.

7.2 Deployment Testing

A further application area of our method is deployment testing. For this technique, we apply
the same steps as for the evaluation of the previous section, which are described in Chapter 5
and Chapter 6. The only difference is that we perform the hypothesis tests on deployments
with different hardware settings and that we generate the log data for the linear regression on
a reference system.

Our aim is to evaluate the performance on this reference system and then based on this
evaluation, we check if deployments with different hardware or network settings have a com-
parable performance. Therefore, we simulate the model of the reference system in order to
derive hypotheses about the expected performance that can then be tested on the deployments.
For these tests, the sequential probability ratio test is performed as described in Section 2.2.3,
because it enables an efficient evaluation with a small number of samples.

In order to evaluate this approach, we applied it to the Test Order Manager similarly as
explained in Section 7.1.2.

Test Setup. We evaluated a TFMS server (version 1.8) that was running on a virtual machine
with Windows Server 2012. Our reference SUT (D0) had 15 GB of RAM and 7 Intel Xeon
E5-2690v4 2.6 GHz CPUs. A similar virtual machine with 6 GB RAM and 3 CPUs was used
to run the test clients. We defined a set of deployments by varying values for the CPUs, the
RAM size, the network bandwidth, and the network delay. These deployments (Di) are shown
in Table 7.4. Since the server was running on a virtual machine, the hardware settings could
easily be changed. A tool called Network Emulator for Windows helped us to configure the
network setup of the test client, e.g., it allowed us to decrease the network bandwidth.

Monte Carlo Simulation of the Model. We applied our method in the same way as for the
Test Order Manager case study of the previous section, i.e., to answer the question: “What is
the probability that the response time of all requests within a task sequence of a fixed length
(a test case) is under a specific threshold for each user within a population?”. For this analysis,
we used the same usage profile (Listing 7.1) and also the same model as in Section 7.1.

90 Chapter 7. Evaluation of the Response-Time Prediction and Testing Method

20 30 40 50 60 70 80 90 100 110 120
0

0.2
0.4
0.6
0.8

1

threshold [ms]

pr
ob

ab
ili

ty 5 Users
25 Users
45 Users

Figure 7.5: Test Order Manager Monte Carlo simulation results of the model.

We evaluated user populations of different sizes and checked a number of response-time
thresholds with a fixed test-case size of four tasks. The evaluation was performed with a
Monte Carlo simulation with Chernoff-Hoeffding with 1060 samples, but this time we are
only interested in a smaller set of data points than in the previous section. Figure 7.5 shows
the results. Same as in the last section, a decrease in the probability of our given question can
be observed, when the number of users increases or the threshold decreases.

Hypothesis Testing with the SPRT. Next, we used the probabilities of the Monte Carlo
simulation as hypotheses (H1) for SPRTs of the different deployments. We selected six data
points of Figure 7.5 with interesting thresholds and different user numbers in order to form
the hypotheses shown in Table 7.5. We evaluated all deployments as explained in Section 6.2
by applying the SPRT with the same parameters. Figure 7.6 summarises the results in three
groups: one for the deployments (and SPRTs), where all clients accepted H1, one where there
was no clear consensus among the clients, and one where all clients accepted H0. It can be
seen that H1 was accepted by most of the deployments, which means that they provide a
similar performance. For one deployment (D5), only SPRT 1–4 were successful, SPRT 5–6
were inconclusive, i.e., 48 % of the clients accepted H1 for SPRT 5 and 44 % for SPRT 6. For
two deployments, H0 was accepted, which means that their response times were worse than
that of the reference SUT. In summary, it can be said that a change in the server hardware
did not adversely affect the performance, as H1 was accepted for all deployments with a
changed hardware. Also, a change in the network bandwidth had only a weak influence on
the performance. A clear change in the performance was only observed for deployments with
a higher network delay.

Table 7.5: Different SPRTs for various numbers of users and thresholds.
SPRT No. #Users Threshold [ms] H0 H1

1 5 50 0.478 0.729
2 25 50 0.400 0.650
3 45 50 0.201 0.451
4 5 100 0.746 0.996
5 25 100 0.744 0.994
6 45 100 0.738 0.988

InconclusiveH1 accepted by all clients H0 accepted by all clients

D5

(SPRT 5–6)

D6 D7D0

D1

D2

D3

D4

D5

(SPRT 1–4)

Figure 7.6: SPRT results of the different deployments.

Chapter 7. Evaluation of the Response-Time Prediction and Testing Method 91

D0 D1 D2 D3 D4 D5 D6 D7

10

20

30
av

er
ag

e
#s

am
pl

es

SPRT 1 SPRT 2 SPRT 3 SPRT 4 SPRT 5 SPRT 6

Figure 7.7: Average number of samples (test cases) for the SPRTs of our deployments.

Additionally, we evaluated the number of needed samples from the SPRTs. Note that in
order to obtain an average number of needed samples, we run the SPRT concurrently for each
user of the population and calculate the average of these runs. Multiple independent SPRT
runs would produce a better average, but the computation time was too high. Figure 7.7 shows
the average number of needed samples for the SPRTs of different deployments. It can be seen
that certain SPRTs are quite easy to check, e.g., SPRT 3 only needs about 6–13 samples, other
SPRTs take more than twice as many samples. However, a maximum of about 30 samples is
still very low compared to the 1060 samples of the Monte Carlo simulation. This low number
of samples allows us to evaluate multiple SUT deployments within a feasible time.

7.3 MQTT

We performed another evaluation of our method for testing protocols of the Internet of Things.
More precisely, we tested two open-source MQTT implementations: Mosquitto and emqtt.

7.3.1 Settings

The evaluation was performed with Mosquitto version 1.4.15 and emqtt version 2.3.5, running
with quality of service level one and in their default configurations. We analyse the needed
number of samples and the run times. MQTT implementations typically have various settings,
e.g., the length of the in-flight message queue or an option to group together TCP packets (Na-
gle’s algorithm [135]). The influence of such settings might be a potential threat to the validity
of our comparison. We worked with the default settings as this is commonly done, and we
also tried to adapt the mentioned settings to face this threat. A comparison of the regression
models and response-time visualisations did not show a difference for the adapted settings.
Note that Nagle’s algorithm has no effect, because it only groups messages if acknowledge-
ments are pending. This situation does not occur, since our tests are synchronous, i.e., we
always wait for an acknowledgement before sending a new message.

The evaluation was performed on a Windows server (version 2008 R2) with a 2.1 GHz Intel
Xeon E5-2620 v4 CPU with 8 Cores and 32 GB RAM. This machine was running the clients
and the broker in order to avoid an influence of the network. However, a possible influence
of the client processes on the broker might cause a threat to the validity of our evaluation. To
face this issue, we measured the CPU load, to make sure that it is not a bottleneck. During
the evaluation, the CPU load was below 60% most of the time, and there were only some rare
peaks, where the CPU load was over 90%. We also tried to increase the priority of the broker
process, but this showed no difference. The RAM usage of the brokers was insignificant since
the total RAM of the servers was more than enough.

92 Chapter 7. Evaluation of the Response-Time Prediction and Testing Method

1 Estimate Std . Error t value Pr(>|t|)
2 (Intercept) −4.7215355 0 .0746994 −63.207 <2e−16 * * *
3 Msgdisconnect 4 .8297199 0 .0830489 58 .155 <2e−16 * * *
4 Msgpublish 5 .6995651 0 .0941305 60 .550 <2e−16 * * *
5 Msgsubscribe 5 .7603881 0 .0957232 60 .178 <2e−16 * * *
6 Msgunsubscribe 5 .3875122 0 .0870509 61 .889 <2e−16 * * *
7 #ActiveMsgs 1 .2086416 0 .0032501 371 .880 <2e−16 * * *
8 #TotalSubs −0.0001275 0 .0001398 −0.912 0 .362
9 #Subs 0 .1726546 0 .0197298 8 .751 <2e−16 * * *

Listing 7.5: Linear regression output (excerpt) for the MQTT broker emqtt.

We applied Visual Studio 2012 with .NET framework 4.5, NUnit 2.64, and FsCheck 2.92
in order to run the tests and for SMC. The library M2Mqtt17 served as a client interface to
facilitate the interaction with the brokers.

7.3.2 Results

We follow the method of Section 4.2 in order to answer the question “What is the probability
that the message latency is under a certain threshold?”. Hence, we check the probability that
all messages within a sequence of ten messages for all clients of an MQTT setup have a latency
under this threshold. We perform the analysis as shown in Section 4.2, with the difference
that we test Mosquitto and emqtt, and we check various thresholds and different numbers of
clients. We apply the same usage profile as before and the regression model for emqtt was
similar to the one shown for Mosquitto that was presented in Section 5.2.4. It is displayed in
Listing 7.5 and the only major difference to Mosquitto was that the #TotalSubs feature showed
no significance as indicated by the missing *** at the end of the line. Therefore, it could
be omitted as explained before. Additionally, we evaluated another usage profile (UP2), as
shown in Listing 7.6, that has a higher weight for publish messages and different bounds for
the time between messages.

As shown before, we apply a Monte Carlo simulation with 1060 samples to evaluate the
timed model. The results for Mosquitto and emqtt for both usage profiles are shown in
Figure 7.8 and Figure 7.9. Table 7.6 shows the average time needed for these evaluations.

As expected, a decrease in the probability can be observed, when the number of clients
increases, and a higher threshold causes a higher probability. It can be seen that the curves in
the figures for both usage profiles (and both brokers) are similar. The reason is that for both
usage profiles costly message types, like connect or publish, are selected frequently and have
a similar impact on the resulting probability in both cases.

The advantage of applying SMC on a model is that it runs much faster than on the SUT.
With a virtual time of 1/10 of the actual time, we can perform evaluations that would take
hours on the SUT within minutes.

It is also important to check the probabilities that we received through SMC of the timed
model on the SUT. This was done as explained in Section 4.2 with hypothesis testing with the

17https://m2mqtt.wordpress.com (visited on 2018-09-19)

MinTimeBetwMsg : 50 , MaxTimeBetwMsg : 250 ,
MsgWeights : { connect : 1 , disconnect : 1 , publish : 7 , subscribe : 1 , unsubscribe : 1 }

Listing 7.6: MQTT usage profile UP2 with more frequent publish messages.

https://m2mqtt.wordpress.com

Chapter 7. Evaluation of the Response-Time Prediction and Testing Method 93

20 40 60 80 100 120
0.6
0.7
0.8
0.9

1

threshold [ms]

pr
ob

ab
ili

ty

20 40 60 80 100 120
threshold [ms]

50 Clients
70 Clients
90 Clients
110 Clients
130 Clients
150 Clients

Figure 7.8: UP1 Monte Carlo simulation results for Mosquitto (left) and emqtt (right).

20 40 60 80 100 120
0.6
0.7
0.8
0.9

1

threshold [ms]

pr
ob

ab
ili

ty

20 40 60 80 100 120
threshold [ms]

50 Clients
70 Clients
90 Clients
110 Clients
130 Clients
150 Clients

Figure 7.9: UP2 Monte Carlo simulation results for Mosquitto (left) and emqtt (right).

SPRT. Table 7.7 and Table 7.8 show the results for both usage profiles and brokers. We focused
on some of the more interesting data points for the evaluation. The tables show hypotheses,
test results, the needed number of samples and execution times for different numbers of clients
and thresholds. Note that, in order to obtain an average number of needed samples, we run
the SPRT concurrently for each client and calculate the average of these runs.

In most cases, hypothesis H1 was accepted for almost all clients, which means that the
probability of the SUT was at least as high, as the predicted one from the model. However,
the prediction was not always accurate. H0 was also sometimes accepted and in some cases
H1 was only accepted by a fraction of the clients that tested this hypothesis, e.g., for Mosquitto
with a threshold of 30 ms and 90 clients, only 60% of the clients accepted H1 for UP1. The
prediction was sometimes inaccurate for small latency thresholds. The reason might be that
we mainly learned the latency distributions under conditions with high load, and hence,
our model might not be completely accurate for small latencies. Moreover, the prediction
performed rather poorly for high numbers of clients (≥ 130), especially for UP2. This might
be caused by the fact that the initial testing phase for log data had only a maximum of 100
clients and the higher number of clients might be too different from this initial test phase.
However, H1 was still accepted for most data points, which means that the model was good
enough in these cases. Furthermore, it is apparent that the SPRT can be performed with fewer
samples, i.e., we need mostly about 50 samples (except for some outliers), compared to the
1060 for the Monte Carlo simulation.

By comparing the results of Mosquitto and emqtt, it can be seen that predicted probabilities
are too similar to make a clear distinction. However, the evaluation of the SUT with hypothesis
testing was able to find some differences, i.e., in some cases emqtt showed a slightly better
performance. For example, the second data row of Table 7.7 shows that Mosquitto was not
able to accept H1, where emqtt accepted it, although the same hypotheses were tested. This

Table 7.6: Average time [min:s] for the Monte Carlo simulation of the model.
#Clients UP1 Mosquitto UP1 emqtt UP2 Mosquitto UP2 emqtt

50 4:27 4:28 2:39 2:39
70 4:48 4:49 3:03 3:02
90 4:54 4:57 3:16 3:18

110 5:00 5:05 3:22 3:27
130 5:09 5:15 3:40 3:41
150 5:25 5:23 3:51 3:55

94 Chapter 7. Evaluation of the Response-Time Prediction and Testing Method

Table 7.7: Results of the evaluation of the SUT with the SPRT for usage profile UP1.

Thresh-
old [ms]

#Clients
Mosquitto emqtt

H0 H1 Result
#Sam-
ples

Time
[min:s]

H0 H1 Result
#Sam-
ples

Time
[min:s]

30 50 0.90 1 H1 44 2:31 0.90 1 H1 44 2:28
30 70 0.88 0.98 H0 22.47 5:43 0.88 0.98 H1 44.14 2:51
30 90 0.79 0.89 60% H1 276.31 39:12 0.80 0.90 H1 41.02 2:56
30 110 0.74 0.84 H1 73.26 7:22 0.72 0.82 H1 42.55 3:40
30 130 0.68 0.78 H0 46.68 11:33 0.64 0.74 H1 77.92 9:21
50 50 0.90 1 H1 44 2:10 0.90 1 H1 44 2:06
50 70 0.90 1 73% H1 43.53 10:01 0.90 1 H1 44 2:09
50 90 0.88 0.98 H1 50.47 4:18 0.88 0.98 H1 43 2:30
50 110 0.80 0.90 H1 41.35 3:19 0.84 0.94 H1 41.25 2:50
50 130 0.74 0.84 H1 41.15 3:12 0.75 0.85 H1 38.41 2:37
70 50 0.90 1 H1 44 2:04 0.90 1 H1 44 2:33
70 70 0.90 1 H1 44 2:10 0.90 1 H1 44 2:08
70 90 0.90 1 H1 44 2:37 0.90 1 H1 44 2:29
70 110 0.88 0.98 H1 43.16 2:57 0.89 0.99 H1 44.38 3:14
70 130 0.78 0.88 H1 39.32 3:00 0.83 0.93 H1 41.21 2:37

means that emqtt had a better performance in this case. For UP1, this was the case especially
for small thresholds, for UP2 the performance was more similar for both implementations and
there is also a case where Mosquitto showed better performance. (Row 13 of Table 7.8, shows
that only 90% of the clients accepted H1 for emqtt, but all clients for Mosquitto.)

7.3.3 Run Times of the Method

We analysed the execution times of the different phases of our method. The initial testing
phase took about 5–8 minutes and the linear regression about 10–12 seconds. Note that these
two phases have to be performed only once, and the resulting model can then be applied for
various evaluations.

A Monte Carlo simulation of the model required about 3–5 minutes for 1060 samples as
shown in Table 7.6. The evaluation of the SUT with hypothesis testing took 2–4 minutes in

Table 7.8: Results of the evaluation of the SUT with the SPRT for usage profile UP2.

Thresh-
old [ms]

#Clients
Mosquitto emqtt

H0 H1 Result
#Sam-
ples

Time
[min:s]

H0 H1 Result
#Sam-
ples

Time
[min:s]

30 50 0.90 1 96% H1 42.88 1:18 0.90 1 96% H1 43.42 1:16
30 70 0.88 0.98 H0 17.60 1:15 0.88 0.98 H1 46.40 2:07
30 90 0.80 0.90 H0 17.18 3:55 0.80 0.90 H1 44.98 1:42
30 110 0.72 0.82 H0 13.43 1:39 0.72 0.82 H0 14.61 1:14
30 130 0.65 0.75 H0 14.55 0:56 0.70 0.80 H0 12.68 0:24
50 50 0.90 1 H1 44 1:17 0.90 1 H1 44 1:19
50 70 0.90 1 67% H1 37.94 3:48 0.90 1 H1 44 1:44
50 90 0.88 0.98 H1 51.36 3:01 0.89 0.99 H1 46.20 1:54
50 110 0.79 0.89 H1 41.42 1:46 0.81 0.91 87% H1 152.34 8:34
50 130 0.72 0.82 H0 16.46 0:58 0.76 0.86 H0 9.51 0:23
70 50 0.90 1 H1 44 2:07 0.90 1 H1 44 1:16
70 70 0.90 1 H1 44 2:11 0.90 1 H1 44 1:18
70 90 0.90 1 H1 46.04 2:41 0.90 1 90% H1 52.81 2:47
70 110 0.87 0.97 H1 65.55 4:39 0.88 0.98 H1 43.82 1:58
70 130 0.79 0.89 H0 48.18 5:28 0.81 0.91 H0 9.58 0:34

Chapter 7. Evaluation of the Response-Time Prediction and Testing Method 95

most cases, in some cases about 10 minutes and only in one case 39 minutes. Hence, most of
our predictions could be tested efficiently in about the same time that was needed to make
the prediction with the timed model.

Running a Monte Carlo simulation with 1060 samples directly on the SUT would take ap-
proximately 2–3 hours. Performing this simulation becomes quickly impractical when various
data points should be analysed. Therefore, it is reasonable to use our model-based approach,
because it can be executed faster.

7.4 Discussion

The evaluation showed that our simulation approach allows us to estimate the probability that
a user or client can perform a sequence of system interactions without having to wait longer
than a specific threshold for a response. Moreover, we demonstrated that we can check if the
estimated probability is close to the real probability of the SUT with an acceptable number
of samples. In some cases, however, the models were not able to estimate the probability
accurately enough: the estimates were either too optimistic or too pessimistic. This indicates
that the prediction errors, i.e., the deviation of the predicted from the actual response times,
might be too large. Such prediction errors might have an obvious explanation, if the R2-
score was too small. However, they might also emerge, when the R2-score appears to be high
enough. These occurrences with high prediction errors and a reasonable R2-score are hard
to resolve, especially when a distributed experimental setting is considered. They might be
caused by several sources:

1. Measurement Errors. There might be interference or noise during the test-data generation
that could artificially and unintentionally increase the response times of our log data.
For example, this may be caused by memory or cache misses, by varying network delays
or interruptions, by blocking effects of our SUT or by operating-system influences, like
scheduling.
With such data, it might be possible to obtain an R2-score that seems to be acceptable, if
coincidently there are linear dependencies. However, our simulations with SMC would
not be as accurate as the R2-score might suggest, because these influences might not
always occur in a uniform way. Such measurement errors are lower in a non-distributed
environment where there are no network influences. We observed that we obtain a better
model in such environments.
For the TFMS evaluation, we had to work with the less favourable case of the distributed
environment, because this was a more interesting setup for our industrial partner AVL.
The MQTT evaluation was performed within a local environment, but there were other
potential interference factors caused by the high number of clients.

2. Sampling Bias. The data generation might not be random enough, i.e., it might be unin-
tentionally set up in a way, where relevant scenarios for the prediction were not tested
frequently enough. Hence, the log data would not contain equally many entries for these
scenarios, which might cause a regression model that only performs well for dominant
data examples, but not for examples that are insufficiently represented in the data.
Moreover, the test-data generation might be biased in a way, where false dependencies
were introduced that do not occur in general. In this case, we might obtain an artificial
correlation between variables (or features), e.g., when the number of users would be
monotonically increasing over the course of an experiment, then this would cause a
deceiving correlation with the database size. A random selection of the number of users
would help to avoid such an issue. Additionally, it is advised to thoroughly inspect the
log data with visualisations, like scatter plots, and histograms. This can help to reduce
the risk of such a bias, but generally it is not possible to completely eliminate all sources
for this bias [53].

96 Chapter 7. Evaluation of the Response-Time Prediction and Testing Method

An interesting observation, which might be seen also as a weakness of our approach, is
that SMC seems to be inefficient when the given threshold of the response-time property to be
tested is far below or far above the actual response time. In these cases, the probability of the
response-time property does not vary in a significant way with the user population size. SMC
wastefully computes the probability for various user population sizes, even if a single run
with a fixed user population size, say one user, would be sufficient to get a similar result. This
phenomenon can be clearly observed in Figure 7.2, where the probability curves of different
user population sizes are very close to each other for low and high thresholds, whereas they
only go apart for thresholds close to the actual response times where the user population size
seems to make a difference.

Finally, it is worth mentioning that other non-linear learning approaches might also be able
to further improve the prediction power of our model. Especially, if our method is applied for
other application areas, then it might make sense to investigate other learning methods when
the accuracy of the obtained model is not high enough. Hence, this might be a potential topic
for future work.

97

8 Related Work

This chapter partially contains contents from our previous publications that were discussed before in
Section 1.9 [3, 5, 6, 9, 12, 162].

In this section, we present related work for the major contributions of this thesis, which
were presented in the previous chapters. First, we illustrate related work of our PBT approach
with business-rule models, and also for MBT and PBT in general. Then, we focus on our
combination method for SMC and PBT and also SMC in general. Finally, we present related
approaches for our model-based performance prediction and verification method, and we also
discuss performance testing and performance engineering.

8.1 Model-Based Testing of Business-Rule Models within
a Property-Based Testing Tool

Model-Based Testing. MBT is a popular testing technique. Various surveys and overviews
were conducted on this topic [34, 40, 58, 84, 159, 179, 180]. MBT approaches have in common
that they rely on a model of a system, which is applied to generate test cases that are exe-
cuted on the system to find bugs. There is an abundance of different modelling formalisms,
like state chart diagrams, sequence diagrams, or process algebras. A survey of MBT that in-
cludes different modelling (or specification) formalisms was presented by Dias Neto et al. [58].
Moreover, van Lamsweerde [110] characterised different formal specification paradigms and
compared their strengths and weaknesses.

All these modelling formalisms are applied to define an abstract model of an SUT. Such a
model serves as a source for the test-case generation in order to produce tests that can eval-
uate the behaviour of the SUT. There are also numerous test-case generation techniques, like
random generation, search-based techniques, generation based on coverage criteria, mutation-
based techniques, etc. Utting et al. [180] gave an extensive overview of these techniques.

The test-case generation, the test-case execution, and also sometimes the model definition,
are supported by tools. Various tools have been presented for different types of models and
for numerous test-case generation methods. Saifan and Dingel [159] gave an overview of
MBT tools and also the taxonomy of Utting et al. [180] described a number of tools. Several
well-known tools are the following.

TGV [93] is a tool that takes an extended form of labelled transition systems as model, and
generates test cases that can be applied for conformance testing. A similar tool that performs
online conformance testing is TorX [178] (or the newer version JTorX [32]). Also Microsoft
Spec Explorer [181] performs conformance testing, but with Spec# model programs.

The MBT tool Conformiq [91] takes UML state charts as input and applies symbolic ex-
ecution to generate test cases that fulfil certain coverage criteria. A random search-based
approach for the test-case generation is applied by Modbat [17], which works with extended
finite state machines.

The UPPAAL tool family can generate test cases for timed automata models. This fam-
ily contains three tools that have a focus on MBT. UPPAAL Tron [111] generates test cases
randomly for online testing, where test cases are directly executed while they are generated.
UPPAAL Cover [81] applies coverage-based test-case generation and UPPAAL Yggdrasil [98]
creates tests offline and allows the annotation of additional scripts to the model, which can
then be included in the generated test cases.

Another tool family called MoMuT (model-based mutation testing) [102] applies a test-case
generation technique that is mutation-based, and it supports different kinds of input mod-
els, like timed automata (MoMuT::TA [13]), assume-guarantee contracts (MoMuT::REQS [11]),
object-oriented action systems, and UML state charts (MoMuT::UML [102]).

98 Chapter 8. Related Work

The tool called sal-atg [75] uses models that are defined with guarded commands, and it
applies symbolic model checking for the test-case generation. MaTeLo [61] applies Markov
chain usage models for statistical usage testing and it has a random generation technique. A
similar statistical testing tool is JUMBL [150], which also works with Markov chains.

A graphical testing tool called TPT (Time Partition Testing) [39], allows graphical mod-
elling of hybrid systems and has graphical support for the test-case design.

AETG [50] is a testing tool that generates test data based on combinatorial testing, i.e., it
generates various combinations of input parameters in order to test different scenarios.

The closest related work in the area of MBT are approaches that also apply existing system
artefacts as test models or for the test-data generation. For example, some testing methods
work with web-service descriptions in order to produce requests and associated test-data. Bai
et al. [24], Sneed and Huang [170], and Bartolini et al. [29] presented testing approaches that
take the web-service description language (WSDL) as a source for the test-case generation.
In contrast to our work, WSDL only includes limited information about the system, e.g. no
system states are included. Our business-rule models also include the resulting system (or
object) states after a task is performed. Hence, we can also check if the resulting states are
correct during the test-case execution. This enables a better inspection of the functionality of
the SUT.

Several approaches have illustrated that the XML-based business process execution lan-
guage (BPEL) [124, 175] or BPEL for web services (WS-BPEL) [117] can be applied as a source
for testing. However, in contrast to our work, the focus of these approaches is on testing
the composition of services. With our business-rule models, we can perform a more fine-
grained evaluation, which includes a check of the states of individual domain objects and an
assessment of the form data that is stored in the database.

A similar testing approach to our business-rule testing method was presented by Wetherall
and Woodhead [191]. The approach applies an extended version of the rule markup language
RuleML [186] in order to test schedules of a scheduling application against the business rules.
In contrast to our method, this approach is only intended for a limited application domain,
i.e., for scheduling systems. Moreover, they do not apply their rules for generating test data,
they just execute the rules as tests.

Property-Based Testing. PBT is a flexible random testing technique that originates from the
functional programming community, where it was applied to check algebraic properties of
functions-under-test. The strength of this testing technique lies in its flexible generators that
can easily be combined or extended and that facilitate the generation of complex test data.

In recent years, PBT was extended with the support for MBT, i.e., it can evaluate state-
machine properties, which were explained in Section 2.1. The advantage of the MBT feature
of PBT is that it allows for a flexible model definition in a high-level programming language.
Unlike PBT, many other MBT approaches require the tester to learn specific modelling lan-
guages.

As already explained in Section 2.1, PBT was originally introduced by Claessen and
Hughes with a tool called QuickCheck [47]. Various reimplementations followed that are
based on the concepts of QuickCheck, e.g., ScalaCheck [136], Hypothesis18 for Python or
FsCheck19 for .NET, the latter of which works with object-oriented languages (C#), as well as
with functional programming languages (F#).

A commercial PBT tool called Quviq QuickCheck was introduced by Hughes [89] for
Erlang, and it was targeted towards the needs of the industry. The tool was enhanced with a

18https://pypi.python.org/pypi/hypothesis (visited on 2018-09-19)
19https://fscheck.github.io/FsCheck (visited on 2018-09-19)

https://pypi.python.org/pypi/hypothesis
https://fscheck.github.io/FsCheck

Chapter 8. Related Work 99

graphical user interface that enables the creation of models with state-machine diagrams [20].
Moreover, it has been shown that it can be applied for large scale automotive systems [88].

Another PBT tool is called PropEr (Property-based testing for Erlang)20. This open-source
tool works closely together with Erlang’s type system [142]. Moreover, it has an interesting
extension for targeted PBT [119], which improves the random test-case generation method of
PBT by applying a search strategy.

PBT was already performed for various applications domains, like testing safety-critical
software [21, 66, 182] or protocol testing [22, 144]. Furthermore, it is especially suited for
testing web-service applications, because it provides a good way to verify that a variety of
form inputs are supported without problems. This application domain contains numerous
approaches related to our work that are described below.

López et al. [118] presented a domain-specific language (DSL) that allows non-experts to
perform automatic test-data generation with QuickCheck. The DSL reuses syntax from the
web services description language (WSDL) in order to generate well-formed XML for the
input of web services. It supports constraints for different data types and combinators that
enable the application of constraints to all kinds of data. The difference between this approach
and our work is that it does not consider state machines and that the generator definition must
be created manually.

Lampropoulos and Sagonas [109] present a similar approach that automatically reads the
WSDL specification of a web service and makes web-service calls with generated data. The
approach was implemented with PropEr. They support many data types, but only a few con-
straints for the data. However, they show how additional constraints can be added manually.
In contrast to our work, they also do not use state machines to test the service behaviour. They
only test if the web-service result is valid and if no error occurred.

A similar approach was presented by Li et al. [116]. They also show how WSDL can be
applied to automatically derive generators, but the focus of their work is primarily on evolving
web services. Their approach facilitates adapting the test environment to a new version of a
web service. This is achieved by automatically generating refactoring scripts for the evolving
test code. The difference to our work is that their models have to be created manually by the
user and that their focus lies on evolving web services.

Frelund et al. [67] present a library for testing web services called Jsongen, which can
generate data in the JavaScript Object Notation (JSON), i.e., a compact data format. Many
web services communicate via JSON because it is a convenient language to encode data. Their
library uses JSON schemas with the structure of the data, data types and data constraints
to automatically create QuickCheck generators. They apply these QuickCheck generators to
produce input data that fulfils the requirements of a web-service call. Their library is evaluated
by testing a small service, where users can post questions and answers.

Benac Earle et al. [62] extend this library so that the JSON schema also includes an abstract
specification of the service behaviour. This specification is in the form of a finite state machine
(FSM). In the previous work, the FSM definition had to be created separately from the JSON
schema for the web-service data. In this work, they show how it can be encoded in the JSON
schema. Their FSM is defined with hyperlinks that represent the events of the FSM and the
states can be chosen dynamically. In contrast to our work, the JSON schema for the service
has to be produced manually and it is not part of the system, like our rule engine models.
Furthermore, their approach was only evaluated with a small test web service; they have not
made a comprehensive case study.

The most similar work to ours was presented by Francisco et al. [64]. They show a frame-
work that automatically derives QuickCheck models from a WSDL description and OCL se-
mantic constraints. They show how the models can be applied to automatically test both

20http://proper.softlab.ntua.gr (visited on 2018-09-19)

http://proper.softlab.ntua.gr

100 Chapter 8. Related Work

stateless and stateful web services with generated input data. The WSDL description contains
information about the required data, the data structures, data types and the possible opera-
tions. The OCL constraints define pre- and postconditions for the operations and can describe
a state machine for the service behaviour. The used service description is very similar to our
business-rule models, but their generators consider only data types, while we also support
constraints for the data, like a minimum value for an integer. Another difference is that the
OCL semantic constraints are added manually. Our business-rule models were already part
of the web-service architecture.

Summary. To the best of our knowledge, there is no other work that uses inherent web-
service artefacts, i.e., business-rule models to automatically derive PBT models. Although
there are some similar publications that show how PBT models can be used for web services,
they mostly rely on a manual specification of a model separate from the web-service imple-
mentation. Apart from that, our approach can directly be applied to a system artefact, which
is also used directly on the server-side to verify if a command is permitted in the current
state and if the attributes are fitting to the model. Furthermore, the other approaches were all
implemented with functional programming languages. Our approach uses C# to define the
properties in an object-oriented way.

It should be mentioned that it usually does not make sense to generate tests from system
artefacts, since there needs to be redundancy for the test oracle. However, in the case that the
system artefacts are not perfectly integrated into the SUT, it is worth to apply them for testing.
Moreover, such artefacts can be exploited for load testing, where the missing redundancy is
not an issue.

8.2 Integrating Statistical Model Checking Into Property-Based
Testing

A related technique that can perform similar evaluations as our SMC integration is called
statistical software testing [69, 177, 189, 192]. This testing method works with randomly
generated inputs that are produced according to certain probability distributions or a specific
usage model, like a Markov chain. The generated inputs are given to a software-under-
investigation, and a statistical analysis is performed with the intention to find faults or for
forecasting faults, e.g., for a reliability assessment of software. In contrast, our combined
method can check models as well as (software) systems, and we are able to apply sophisticated
SMC algorithms and utilise PBT features, like its powerful generators.

Further related work is also the statistical analysis of black-box probabilistic systems by
Younes [196] and Sen et al. [164]. Similar to our work, these approaches support the evaluation
of systems that can only be passively observed, and they also apply Monte Carlo simulations
and hypothesis testing. However, in contrast to our method, they work with probabilistic
systems that do not allow any control over the sample generation, i.e., samples cannot be
generated on demand and only a fixed set of samples is available. Additionally, they do not
aim at the evaluation of both models and systems.

A related approach that also works with probabilistic models is probabilistic programming
[71, 138, 188], which introduces probability distributions into normal programming languages.
There exist numerous probabilistic programming languages and probabilistic programming
systems that enable the definition of probabilistic models, like Infer.NET [188] from Microsoft
or PyMC3 [160] for Python. These models can be applied for different inference techniques,
like Bayesian inference [100] or Markov chain Monte Carlo inference [129]. The difference
to our approach, or to SMC in general, is that probabilistic programming does not aim to

Chapter 8. Related Work 101

evaluate quantitative properties, but targets probabilistic inference. Most importantly, it does
not support PBT.

As already explained, PBT is a flexible random testing technique that facilitates the gen-
eration of complex test data. However, it does not support statistical evaluations, except for
simple algorithms like Monte Carlo simulation that are already supported by existing PBT
tools. For example, with ScalaCheck [136] the required number of samples can be specified
and it can report the number of failing samples. This enables a simple Monte Carlo simulation.
In contrast, our focus is also on more sophisticated algorithms, like hypothesis testing, but we
also apply Monte Carlo methods, because they are common and useful SMC algorithms.

Statistical Model Checking. SMC [2, 115, 198] is an evaluation method that can answer
both qualitative and quantitative questions. In order to answer these questions, it includes
various algorithms, like Monte Carlo or hypothesis testing methods, which were explained
in Section 2.2. SMC was applied in several case studies. Common application areas are the
evaluation of protocols [41, 83], biological systems [49, 55] and real-time systems [56, 108].
Moreover, there exist various tools that implement different SMC algorithms and are related
to our approach.

A tool that provides similar functionality is UPPAAL-SMC [42]. This tool supports SMC
for priced timed automata, which can have weights on transitions and probability distribu-
tions for the dwell time in locations. It supports hypothesis testing and probability comparison
and estimation by applying Wald’s sequential probability ratio test (SPRT) [187] and Monte
Carlo simulation with Chernoff-Hoeffding bound [79].

The probabilistic model checker PRISM was also extended with SMC functionality [106].
Similar to UPPAAL-SMC it supports priced timed automata, but it also supports discrete- and
continuous-time Markov chains, Markov decision processes and probabilistic automata. They
also support the same algorithms as UPPAAL-SMC, i.e., the SPRT and Monte Carlo simulation
with Chernoff-Hoeffding bound.

VESTA is another SMC tool that supports hypothesis testing of properties in probabilis-
tic computation tree logic (PCTL) and continuous stochastic logic (CSL) [165]. For mod-
elling, VESTA uses a language, which is related to PRISM in order to specify discrete-time
and continuous-time Markov chains. Furthermore, the tool includes an interface to describe
models in probabilistic rewrite theories with the algebraic specification language PMAUDE.
AlTurki and Meseguer [14] presented an extension of VESTA called PVESTA. This extension
includes parallel algorithms for SMC and client-server support.

Another statistical model checker called Ymer was presented by Younes [197]. It is sim-
ilar to PVESTA and supports properties in PCTL and CSL and uses the SPRT. For mod-
elling, it applies an extension of the PRISM language, which allows for the definition of time-
homogeneous generalised semi-Markov processes.

The most similar to our work is from Jegourel et al. [94] and Boyer et al. [38]. First, they
had developed the SMC platform PLASMA, which was later replaced by the PLASMA-lab
library. The library can perform SMC for multiple modelling languages. For example, it
supports the PRISM language and biological languages, it has plugins for Matlab, SystemC
and further plugins can be implemented for other modelling languages. This is a nice feature,
because it allows for the creation of a custom statistical model checker. However, in order to
write a plugin for PLASMA-lab, a user has to be familiar with the architecture of the library
and also with the logics for the property definition. The library uses bounded linear temporal
logic (BLTL) for the definition of properties and as SMC algorithms it supports simple Monte
Carlo, Monte Carlo with Chernoff-Hoeffding bound and SPRT. Furthermore, Legay et al. [114]
presented an algorithm for change detection called cumulative sum (CUSUM), which was also
added to the PLASMA-lab library.

102 Chapter 8. Related Work

Summary. Existing SMC tools often have a rather limited modelling language. In order
to reduce the effort in modelling and specification an additional layer of abstraction, i.e.,
“syntactic sugar”, can be added. For example, David et al. presented a simulation method
for biological systems for UPPAAL-SMC by translating these systems to timed automata [55].
Another approach that enables a high-level specification of Systems of Systems (SoS) and SoS
requirements was presented by Arnold et al. [16]. They show how a contract language can be
used to define properties, which they translate to BLTL formulas for PLASMA-lab. In contrast,
we do not introduce a new language for the model or property definition and hence do not
need translators. With C#, we utilise an existing high-level programming language familiar to
many developers in the industry. We show that the models and the properties to be checked
can be easily defined in an object-oriented programming language. There is no need to learn
a new notation or (temporal) logic.

Another advantage is the powerful test-data generators, which are the major ingredient
of PBT. These generators can be freely combined and are especially useful for applications,
which require a large amount of complex input data, like information systems. Additionally,
they support the generation of data with certain probability distributions, which is necessary
for stochastic models.

To the best of our knowledge, no existing work combines SMC with PBT, except for pa-
pers on PBT tools that report the number of passed and failed test-cases using Monte Carlo
simulation.

8.3 Model-Based Prediction and Verification of Performance

A number of related approaches in the area of PBT are concerned with testing concurrent soft-
ware [19, 36, 48, 87, 90, 137]. For example, Claessen et al. [48] presented a testing method that
can find race conditions in Erlang with QuickCheck and a user-level scheduler called PULSE.
A similar approach was shown by Norell et al. [137]. They demonstrated an automated way
to test blocking operations, i.e., operations that have to wait until a certain condition is met.

Another concurrent PBT approach was demonstrated by Hughes et al. [90]. They showed
how PBT can be applied to test distributed file-synchronisation services, like Dropbox. The
closest related work we found in this area was from Arts [18]. It shows a load-testing approach
with QuickCheck that can run user scenarios on an SUT in order to determine the maximum
supported number of users. In contrast to our approach, Arts does not consider stochastic
usage profiles and the user scenarios are only tested on an SUT, but not simulated at model-
level.

Performance Testing. Related work is also in the area of performance testing [57, 126, 130,
184], which is a class of testing techniques for checking performance requirements that are
concerned with responsiveness, resource utilisation, availability, scalability, and reliability of
a system. The most common performance testing methods are load testing, where a system is
tested under an expected load that is usually achieved by simulating multiple users, and stress
testing, which aims to test the upper limits of a system and to find bottlenecks. Moreover,
there is a method called soak, endurance, or stability testing that produces expected load over
a long period in order to find issues, like memory leaks. Another technique, called volume
testing [132] tries to assess if a system supports large volumes of data, e.g., a large database.

There exist various tools for performance testing and load generation [153, 184], which
are related to our approach, since they also support the simulation of user populations. For
example, Neoload21 is a performance testing and measurement tool for mobile and web appli-
cations that can simulate user populations. A similar open source tool is Apache JMeter [74].

21https://www.neotys.com/neoload/overview (visited on 2018-09-19)

https://www.neotys.com/neoload/overview

Chapter 8. Related Work 103

Initially, it was only built for websites, but since recently it also supports other applications
areas. Another tool called LoadRunner [96] from HP supports the simulation of thousands
of users and it works for various software platforms, like .NET or Java. The load-testing tool
LoadUI22 has its focus on web-service testing. It enables a flexible test execution that can be
modified while running, and it has an interactive graphical interface that supports an easy
configuration for the user. The tool was originally open source, but newer versions are only
commercially available.

The most related approaches are mainly in the area of load or stress testing. For example,
Menascé [127] presented a load testing approach for web sites that works with user interaction
scripts to simulate the user behaviour.

A similar approach for benchmarking web servers was illustrated by Banga and Dr-
uschel [27]. Their work introduced a new request generation strategy, and they measured
the effect of packet losses and network delays on the performance.

Another load-testing method was introduced by Draheim et al. [59]. They showed the
simulation of realistic user behaviour with stochastic models and workload models in order to
estimate the performance of web applications. A similar approach was presented by Lutteroth
and Weber [121].

A related stress testing approach was presented by Krishnamurthy et al. [103]. The work
shows a synthetic workload-generation technique that is based on request logs, and should
mimic real user behaviour. Moreover, the technique considers inter-request dependencies
and is intended for session-based systems. The approach is evaluated with a case study that
analysed response times of an e-commerce system.

Another stress testing methodology for finding load-limit points or bottlenecks of game
servers was illustrated by Kim et al. [99]. They applied a large number of virtual clients and
monitored hardware, network and response times. Their method was evaluated by applying
it to a massively multi-player online role-playing game.

In contrast to our work, classical performance or load testing is mostly performed directly
on an SUT. With our approach, we want to simulate user populations on the model-level as
well.

A related performance testing method with PBT was presented by Handley and Hut-
ton [76]. The work showed the combination of QuickCheck with the Criterion benchmarking
library in order to enable a run-time analysis of PBT properties. Moreover, they applied a
ridge regression to estimate the time complexity of properties in relation to the input size. In
contrast to our work, they do not consider user behaviour and their focus is on time com-
plexity of non-simultaneous run times, but we are interested in expected response times of
concurrent requests.

Performance Engineering. The area of performance engineering [149, 167, 168, 193] covers
further related work, i.e., various approaches were presented that focus on simulation on
model-level in order to predict performance.

For example, Becker et al. [30] presented a prediction method with a Palladio component
model, which is a meta-model for component-based software architectures that can include
performance indicators. With their method, they predicted response times of an online mu-
sic repository for concurrent system usage. Moreover, they compared their prediction with
measurements from a real system.

Book et al. [37] presented a similar model-based approach for the prediction of response
times and communication costs of a web application that is accessed over a mobile channel.
Their approach works with dialog flow models and with log data including data volume

22https://www.soapui.org/professional/loadui-pro.html (visited on 2018-09-19)

https://www.soapui.org/professional/loadui-pro.html

104 Chapter 8. Related Work

and time. They apply it to simulate typical user interaction sequences for different mobile
channels.

Lu et al. [120] demonstrated a statistical response-time analysis. Their approach takes
response-time samples for the construction of a statistical model that is applied to derive
upper bounds for response-time estimates. The work is evaluated with a case study of an
industrial robotic control system.

Nourikhah et al. [139] show a model-based forecast method for quality of service values,
like response times. The method works with time series models and it considers long-range
dependencies in the quality of service data. For the evaluation, they took data from ten real
Internet web services in order to build their models, and they made predictions for a forecast
horizon of up to 48 hours.

Furthermore, there are various SMC approaches [54, 56, 200] that apply a performance
analysis or prediction with stochastic timed automata models.

Most of these approaches only apply a model-based analysis, and do not present an auto-
mated technique for the evaluation of their model on an SUT. In contrast, with our method we
can perform a model-based prediction, and we can also check the accuracy of our predictions
by directly testing an SUT within the same tool.

There are also some approaches or tools that can do both, a simulation with a model and
testing an SUT. Balsamo et al. [26] gave an overview of various model-based performance-
prediction approaches and tools, and they also categorised the features of these tools. For
example, the performance-modelling tool SPE·ED [169] is one of these tools. It works with
message sequence charts and supports a model-based simulation, as well as an evaluation of
object-oriented systems. Another similar tool is called TwoTowers [33]. It is an open-source
software tool that can analyse both functional and performance properties. The tool works
with models defined in an architectural description language that is based on stochastic pro-
cess algebras, and it can perform different analyses, like symbolic model checking or discrete
event simulation. A disadvantage of these approaches is that they still require a lot of man-
ual effort, e.g., performance data is often only defined manually, since they are applied in an
early phase of the software-development life-cycle. In contrast, we also include an automated
approach for response-time learning with linear regression, and we can exploit PBT features,
because our approach is realised within a PBT tool.

Statistical Model Checking. In the area of SMC, there are also related tools that support
similar performance evaluations as our approach. The most related tool is UPPAAL SMC [42].
Similar to our approach, it provides SMC of priced timed automata, which can simulate user
populations. It also supports testing real implementations, but for this a test adapter needs
to be implemented, which, e.g., handles the form-data creation. In contrast, we can use PBT
features, like data generators, in order to automatically generate form data. In Addition, we
can model in a programming language. This helps testers, who are already familiar with this
language, as they do not have to learn new notations.

Related approaches also utilise learning techniques. For example, Grinchtein [73] learns
time-deterministic event-recording automata via active automata learning, which are similar
to our models. The learning method works with membership and equivalence queries that
are given to a teacher and it applies observation tables or timed decision trees, which are
minimised. A similar approach was presented by Verwer et al. [183]. They passively learn
probabilistic real-time automata from positive timed strings by applying statistical state merg-
ing and transition splitting. Schmidt et al. [161] also present a learning technique for positive
time-labelled data. They learn process models that are probabilistic real-time automata with a
state merging method that is based on clustering. In contrast to these learning approaches, we
learn response-time distributions and add them to existing automata models, and we present
a statistical performance prediction and testing method with SMC.

Chapter 8. Related Work 105

Deployment Testing. Another domain with related work is deployment testing. For exam-
ple, various approaches apply a performance analysis of system deployments [122, 154, 199].
However, in contrast to our work, they do not apply a model that is derived from a reference
SUT in order to evaluate the performance of SUT deployments under specific usage scenarios.

Evaluation of MQTT. Some other work already showed how MQTT can be tested function-
ally [151, 173] and even performance analyses have been performed for MQTT. For example,
Lee et al. [112] analysed the effects of the message payload size and the quality of service level
on the end-to-end delay and the packet loss rate. A similar analysis has been presented by
Thangavel et al. [176]. They compared MQTT to another similar protocol, called constrained
application protocol (CoAP), and evaluated the delay for different packet loss rates. Collina
et al. [51] also compared MQTT to an alternative solution, and they analysed the delay for
different subscriber numbers. However, these approaches did not apply a performance model
for simulating MQTT under different usage scenarios.

The most similar work to ours that also applied a performance evaluation of MQTT was
presented by Houimli et al. [85]. They modelled MQTT with probabilistic timed automata
and checked performance properties with UPPAAL SMC. However, they did not validate
their model against real implementations, and hence, it did not include real timing behaviour.

Summary. To the best of our knowledge, our work is novel. (1) No other work applies PBT
for evaluating stochastic properties of both real systems and stochastic models that include
learned response-time distributions. (2) We are the first who apply SMC to the performance
analysis of MQTT brokers with learned latency distributions, and who check the results from
the model against real MQTT brokers by performing hypothesis testing. (3) No other work
performs SMC on a learned timed model of a reference SUT to derive hypotheses that are
verified on SUT deployments in order to check, if they provide comparable response times for
given usage profiles.

106 Chapter 8. Related Work

107

9 Conclusion

This chapter partially contains contents from all our previous publications that were discussed before
in Section 1.9 [3, 5, 6, 9, 12, 162].

In this chapter, we give answers to our research questions based on the experiments and
results of the previous chapters. We introduced our research questions in Section 1.5, now
we explain what was necessary to find answers for these questions. Moreover, we discuss
the contributions of this thesis, which consist of several new techniques that support our
performance evaluation method. Finally, we conclude the work and present potential future
work.

9.1 Research Questions

RQ1: Can business-rule models be applied as test models for property-based testing in
order to perform load testing and also to find bugs?

In Chapter 3, we have introduced an automated testing method that works with business-rule
models and is realised with a property-based testing (PBT) tool. We have illustrated, how to
translate business-rule models to extended finite state machines (EFSMs) in order to use them
as a source for test-case generation with PBT. We have formalised the underlying concepts
and algorithms of our method and presented an evaluation with an industrial web-service
application.

A question that might come up concerns the missing redundancy when generating the test
models from the business rules. If a rule engine would be implemented optimally, then our
approach would only test the interpreter of the business-rule models. However, in practice
programmers often change the source code without considering the rules. Hence, it makes
sense to verify that the system-under-test (SUT) still conforms to the model. Especially for
custom rule-engine implementations and evolving applications, it is important to test this
conformance. Therefore, we have developed an automated approach that verifies this confor-
mance efficiently.

The evaluation has shown that our method is able to reveal bugs and issues that needed
to be fixed. Next, we discuss the kind of bugs we found.

RQ1.1: What kind of bugs and issues can be found?

We found eight issues that were confirmed by our industrial partner AVL. The issues con-
cerned the SUT, the testing framework and the business-rule models. In the following, we
give an overview of the issues that we were able to find with our testing approach.

The business-rule models partially underspecified the SUT’s behaviour and there were de-
viations of the SUT from the business rules. For example, the business-rule models contained
queries for drop down menus that were less strict than the ones of the SUT.

Another issue was that the SUT produced wrong error messages and exceptions in some
cases, i.e., an error message contained wrong information.

We found problems with the string handling, e.g., tab characters were inconsistently re-
placed in the system. Additionally, there were insufficient regular expressions for the input
validation, which unintentionally allowed unwanted special characters.

Finally, the testing framework did not support all the functionality of the system. For
example, we found a task that worked normally, when it was performed with the graphical
user interface, but it was not possible to execute the task with the testing framework. More
details about these issues are given in Section 3.6.

108 Chapter 9. Conclusion

RQ1.2: What are the benefits and drawbacks compared to conventional model-based test-
ing?

For conventional model-based testing (MBT), a model is usually created manually, which
requires a lot of effort and is prone to error.

With our approach, we can utilise an existing system artefact of the SUT as a source for
MBT. Hence, we have the advantage that we can nearly fully automate the testing process and
hereby reduce the manual effort. There is only the need for some human interventions, when
the business-rule models have underspecified behaviour.

A disadvantage of our approach is that our test oracle is only contained within our
business-rule models, and therefore the ability of finding bugs might be limited due to the
missing redundancy that was explained before. In contrast to this, for classical MBT the or-
acle is defined by the user, which allows the detection of a broader range of bugs. However,
we have shown that our approach is still able to reveal various bugs and issues. Hence, it
makes sense to apply business-rule models for testing, even if only limited types of bugs can
be found.

RQ1.3: What are adequate test-case generation strategies for such models?

The business-rule models were translated to EFSMs that were applied for PBT. With PBT, test
cases are generated with a random walk on the model. Additionally, we tested a test-case
generation strategy that works with model-based mutation testing. We applied MoMuT as an
external test-case generator for our PBT approach and combined the generated test sequences
with form data that was produced with FsCheck. The evaluation of this approach showed
that we can decrease the test-suite size compared to the random strategy, but the generation
time was much higher. Hence, this testing strategy would primarily make sense when the test
execution is costly and has to be reduced. However, we prefer the random strategy, because
the test-case generation is much faster and it can already cover most of the model with just a
few test cases. More details about these generation methods are explained in Chapter 3.

Other test-case generation strategies, like search-based or coverage-based methods, might
also be suited for business-rule models. The investigation of such methods is a potential topic
for future work.

RQ2: Is it possible to perform statistical model checking within a property-based testing
tool?

In Chapter 4, we have illustrated that statistical model checking (SMC) algorithms can be
integrated into a PBT tool. For this integration, we introduced new SMC properties that take
a classical PBT property, parameters for an SMC algorithm and configurations for PBT as
input and produce a quantitative or qualitative result. They apply the PBT property in order
to produce samples, which are utilised for the evaluation with SMC. We have implemented
the SMC properties for commonly used SMC algorithms: for the Monte Carlo simulation
(with Chernoff-Hoeffding bound), for the sequential probability ratio test (SPRT) and for the
cumulative sum (CUSUM) algorithm.

RQ2.1: What are the differences to conventional statistical model checking?

By repeating case studies from the SMC literature, we have demonstrated that we can perform
evaluations like conventional SMC. The major difference is that we do not need a specialised
language for the model or property definition, since we can utilise a high level programming
language. This is especially helpful for testers from industry, who do not have to learn new

Chapter 9. Conclusion 109

notations to apply our method. Moreover, defining the properties in a programming language
has the advantage that we can include features, like loop functionality. Conventional temporal
logics that are used to define properties often do not support such features. More details about
this issue are given in Section 4.4.1.

RQ2.2: What kind of questions can be answered?

With our SMC approach we can evaluate various questions about the probability of properties
of both stochastic models and systems, which is also an advantage of our integration, since
most other tools do not provide this feature. We have implemented SMC algorithms that allow
us to compute the probability of a given property with a required confidence and a maximum
error, we can assess which of two given probabilities is closer to the true probability of the
property, and we can evaluate if a change in the probability can be detected. Further SMC
algorithms might allow us to answer additional types of questions, but in this work our focus
was to show the feasibility of an SMC integration into PBT.

RQ3: Can a property-based testing tool be applied to predict the probability that a
system satisfies certain response-time thresholds for specific user populations?

We have demonstrated that we can predict the probability of questions about the expected re-
sponse time of an SUT as described in Section 6.1. In order to simulate a user population, we
apply several stochastic timed automata models concurrently. These models include learned
response-time distributions and are combined with usage profiles, which represent the be-
haviour of real users. We apply these models for a Monte Carlo simulation with Chernoff-
Hoeffding bound, which allows us to compute the answer for questions, like “What is the
probability that the response time of all requests within a task sequence of a fixed length, i.e.,
a test case, is under a specific threshold for each user within a population?”, or “What is the
probability that the latency of each interaction of a client within a given MQTT setup is under
a certain threshold?”.

RQ3.1: What kind of user populations can be simulated?

We have shown that we can simulate user populations of various sizes. The populations
consist of users that interact with the system according to given usage profiles, which describe
how frequent certain inputs should be performed and also how much time is required for the
input. Example usage profiles were illustrated in Section 6.1. Ideally such profiles should be
based on recordings of the real usage of a system. Unfortunately, this was not possible in our
case. Hence, we created these profiles in cooperation with domain experts.

RQ3.1: How fast is the prediction?

In order to speed up the simulation in comparison to the real execution of the SUT, we applied
a virtual time that is a fraction of real time. For our experiments, we used a virtual time of
1/10 of the actual time. This allowed us to run models 10 times as fast as the execution of
the SUT. This was especially important, since we applied a Monte Carlo simulation with a
high number of samples for the prediction. Concrete run-time examples of our method are
presented in Chapter 7.

Note that different virtual time settings are possible, but it is important to select the setting
in a way such that the sample-generation time does not negatively influence the simulation.
Hence, we can only accomplish a limited speed up by applying a virtual time.

110 Chapter 9. Conclusion

RQ4: Is it possible to verify these predictions about the expected response time by
directly testing a system-under-test?

In Section 6.2, we have shown how we can apply hypothesis testing in order to evaluate the
predicted probability of our model simulation. We test the prediction power of our model
by checking if the probability of the SUT is not much worse and not much higher than the
predicted probability of the SUT. Hence, we check if the SUT is at least as good as our model
predicted and additionally we test if the SUT is not much better.

RQ4.1: What is an efficient way to test the predictions?

We apply the sequential probability ratio test (SPRT), which is a hypothesis testing method, as
explained in Section 2.2.3. This algorithm allows us to stop sampling, when there is enough
evidence to decide for a hypothesis. Hence, we need fewer samples as required for the initial
Monte Carlo simulation, which is especially important since a direct test of the SUT is costly,
when we apply realistic user-input times.

The evaluation has shown that we only need about 276 samples in the worst case and
usually less than 50 samples, which is much better than the 1060 samples that we need for a
Monte Carlo simulation.

RQ4.2: How accurate are the predictions?

In order to assess the accuracy of our predictions, we have performed two SPRTs, one for
checking probability of the SUT is not much worse, and one for testing if it is not much higher.
We applied this method in order to evaluate the learned models for the TFMS. The results are
illustrated in Section 7.1. The evaluation showed that our predictions were inaccurate in a
few cases, i.e., they were either too optimistic or pessimistic. In Section 7.4, we discuss the
possible reasons for the limitations of our models. However, our prediction were still accurate
in most of the cases and moreover, we were still able to efficiently verify predictions with our
proposed method.

9.2 Contributions

Next, we summarise the major contributions of this thesis that were presented in the previous
chapter.

A main contribution is a new MBT approach that applies XML business-rule models in
the form of EFSMs for PBT. The aim of this method is to perform load testing, but it was also
able to find functional bugs. A partial contribution of this approach, was the formalisation
of the underlying concepts and algorithms of PBT with EFSMs and of the translation of the
business-rule models to EFSM. Moreover, we presented an extended description of our rule-
engine driven SUT and evaluated it in an industrial case study.

Another fundamental contribution is the extension of a PBT tool with SMC algorithms.
We integrated the SMC algorithms into PBT by introducing SMC properties that enable a
statistical evaluation of PBT properties. With this integration, we can apply the modelling
notations from PBT and evaluate PBT properties instead of logical formulas that are used
in conventional SMC approaches, and we can analyse both stochastic models and systems.
Another partial contribution of this extension is the support for a statistical conformance
analysis of a stochastic faulty system by comparing it to an ideal model. The approach was
demonstrated for the PBT tool FsCheck, and we published the source in order to contribute to
the community. Moreover, we illustrated the applicability of this approach by implementing
common SMC algorithms, and we repeated evaluations from the SMC literature.

Chapter 9. Conclusion 111

The next essential contribution is our method of extending a functional model with learned
non-functional aspects in order to perform SMC. We have shown how we can apply model-
based testing to produce log data that includes response times of simultaneous requests.
Based on this data, we learned response-time distributions via linear regression and integrated
them into our functional model. Hence, we have illustrated an automated method that enables
the enhancement of functional models with non-functional timing aspects.

Building upon our extended functional models, the next central contribution is a model-
based simulation method that can predict the expected performance of a system. We demon-
strated that these models can be applied to evaluate the response time of different usage
scenarios. The evaluation is performed with a Monte Carlo simulation, which allows us to
find approximate answers to questions about the expected performance, like “How likely will
the system satisfy certain response-time thresholds?”.

Moreover, another major contribution is an efficient evaluation method that can test the
accuracy of our computed model predictions with hypothesis testing. We apply the sequential
probability ratio test to check if probabilities that were computed with a model simulation are
close to the true probabilities of the SUT. With this prediction and evolution approach, we aim
to maximise the user satisfaction by identifying usage scenarios that show a poor performance.

Finally, the last main contribution is the evaluation of our performance prediction and
testing approach with two case studies. We applied our method to an industrial web-service
application (the TFMS) and also to IoT protocol implementations (for MQTT). An additional
interesting contribution of the evaluation is a new application possibility of our method for
deployment testing. We demonstrated that we can apply computed hypotheses from a ref-
erence system in order to test the performance of various system deployments with different
hardware or network settings.

9.3 Conclusions

In order to conclude this work, we come back to the thesis statements that were introduced
in Section 1.7 and explain why we think that they are valid. The thesis statements were the
following:

1. The application of business-rule models for model-based testing makes sense for finding
bugs and also for load testing. It also supports a higher degree of automation since no
manual model definition is needed, like it is usually the case for model-based testing.

2. The application of a functional model for model-based testing enables the extension
of the functional model to a model with non-functional behaviour. This can, e.g., be
done by learning non-functional aspects, like the response time, from log data collected
during the execution of model-based testing.

3. Such an extended model enables a prediction of non-functional properties with a Monte
Carlo simulation and these predictions can be efficiently verified with hypothesis testing,
since this usually can be done with fewer samples.

We believe that these statements were already supported by the previous sections of this
chapter, but we want to highlight the most important points once again.

In order to substantiate the first statement, we have developed an automatic test-case
generation approach for business-rule models of a web-service application. We applied this
approach to an industrial case study and showed that we can find bugs and that it enables
capturing of log data for load testing. In our opinion, this approach makes sense, because it
can be nearly fully automated, it can perform important consistency checks, and it facilitates
the generation of load data.

112 Chapter 9. Conclusion

For the second statement, we have demonstrated that we can enhance a functional model
with response-time distributions, which were learned form log data that we obtained from
model-based testing. This method is useful, because it can further exploit already existing
functional models for the evaluation of non-functional properties, like performance.

In order to support the third statement, we have introduced a simulation method that
applies a timed model for predicting the expected system response-times for users. Moreover,
we have shown how such predictions can efficiently be evaluated with hypothesis testing.
We believe that this method is helpful, because it enables a fast performance prediction for
various usage scenarios, and because it can reduce the testing time that is needed on the real
system.

To sum up, this thesis presented various novel techniques, and we have evaluated their
usefulness with several case studies. The results were promising. We demonstrated that we
can efficiently test functional and non-functional properties of industrial systems. Addition-
ally, our techniques support a high degree of automation and are applicable for testers from
industry, since they can be performed with common programming languages.

Finally, we are happy to report that we received positive feedback from our industrial
partner AVL. They are pleased with our developed techniques and will integrate them into
their regular test cycles. Moreover, it is planned that our methods will be further applied and
extended in future projects.

9.4 Future Work

In this section, we will describe potential future work that could be applied to further improve
the methods that were discusses in this thesis. We limit this description to the following points
that we consider the most promising.

An interesting extension for our testing method with business-rule models that might
enhance the bug detection capability is fuzzing [171]. In order to apply this technique, it
is necessary to produce inputs and test data that are invalid according to the business-rule
models. For example, we could test tasks that are not enabled in the current system state
or produce form data that does not meet the restrictions of the business-rule models, like
values that are larger than an allowed maximum value. This extension could be realised by
introducing custom generators for invalid data and it might reveal faults that are caused by a
wrong implementation of the business-rule models. However, our existing approach was still
effective for finding bugs and our focus was on producing load data. Hence, we were more
interested in producing valid data.

Furthermore, a potential topic for future work is another comparison with a different test-
case generation strategy for our business-rule models. In this thesis, we have evaluated the
default random generation approach and compared it to a generation strategy that is based
on model-based mutation testing. The benefits of the mutation-based approach were that the
test suite size could be reduced, but the generation time was much higher. However, other
generation strategies might overcome this drawback and provide other advantages.

Another enhancement that can be implemented for our SMC integration are additional
SMC algorithms. There are some other algorithms, like an alternative hypothesis testing
method [163], that support other application areas or have some advantages compared to the
conventional algorithms. The investigation of such methods would make sense, because it
might increase the efficiency or enlarge the scope of applications. With our SMC approach,
new algorithms can be easily integrated into a PBT tool by introducing a new SMC property.

An improvement that is possible for our performance evaluation method is the integration
of all steps of the process into one tool. Now, we nearly perform all the steps in C# and
FsCheck. Only the learning phase is done externally with a different tool. Integrating this

Chapter 9. Conclusion 113

phase into our C# tool could further increase the usability and efficiency of our approach. It
would reduce the communication effort between the tools, like parsing the regression models,
and make the application of our approach easier, since no additional tool would need to be
installed.

Alternative learning methods [78, 190] are also promising future work. Since linear regres-
sion still requires high manual effort, e.g., for feature engineering or data preprocessing, it
might make sense to apply other learning methods that allow a higher degree of automation.
Moreover, they could also help to further improve the accuracy of our performance prediction.
However, for our approach it is important that the learning method produces a fast prediction
in order support our simulation that is accelerated by using a virtual time, i.e., a fraction of
real time. Hence, the selection of the learning algorithms is limited to methods that fulfil
this requirement. We are currently in the process of investigating if neural networks can be
applied within our performance evaluation approach.

Another interesting extension of our method, is an analysis of the applicability for perfor-
mance indicators other than response times, e.g., for energy consumption. In this work, we
only illustrated the evaluation of timing aspects, but in principle our method can also be ap-
plied for other non-functional properties or costs. In order to perform this extension, it would
be necessary to record the desired properties in the log files and it may also be necessary to
implement a different integration of the learned results into the functional model.

In summary, it can be said that this thesis presented several novel contributions to the field
of property-based testing and statistical model checking. However, there is still potential for
improvements and extensions. We are currently working on some of these points, and we
hope that also other researchers will take up our ideas and continue our research.

114 Chapter 9. Conclusion

115

Bibliography

[1] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Mathias Weske. “Business pro-
cess management: A survey”. In: Business Process Management, International Conference,
BPM 2003, Eindhoven, The Netherlands, June 26-27, 2003, Proceedings. Vol. 2678. Lecture
Notes in Computer Science. Springer, 2003, pp. 1–12. doi: 10.1007/3-540-44895-0_1
(cit. on p. 26).

[2] Gul Agha and Karl Palmskog. “A survey of statistical model checking”. In: ACM
Transactions on Modeling and Computer Simulation (TOMACS) 28.1 (2018), 6:1–6:39. doi:
10.1145/3158668 (cit. on pp. 1, 2, 16, 101).

[3] Bernhard K. Aichernig and Richard Schumi. “How fast is MQTT? - statistical model
checking and testing of IoT protocols”. In: Quantitative Evaluation of Systems - 15th
International Conference, QEST 2018, Beijing, China, September 4-7, 2018, Proceedings.
Vol. 11024. Lecture Notes in Computer Science. Springer, 2018, pp. 36–52. doi: 10.
1007/978-3-319-99154-2_3 (cit. on pp. 10, 51, 65, 73, 83, 97, 107).

[4] Bernhard K. Aichernig and Richard Schumi. “Property-based testing with FsCheck by
deriving properties from business rule models”. In: Ninth IEEE International Conference
on Software Testing, Verification and Validation Workshops, ICST Workshops 2016, Chicago,
IL, USA, April 11-15, 2016. IEEE Computer Society, 2016, pp. 219–228. doi: 10.1109/
ICSTW.2016.24 (cit. on pp. 9, 10, 25).

[5] Bernhard K. Aichernig and Richard Schumi. “Property-based testing of web services
by deriving properties from business-rule models”. In: Software & Systems Modeling
(Dec. 2017). issn: 1619-1374. doi: 10.1007/s10270-017-0647-0 (cit. on pp. 2, 4, 10,
13, 25, 97, 107).

[6] Bernhard K. Aichernig and Richard Schumi. “Statistical model checking meets
property-based testing”. In: 2017 IEEE International Conference on Software Testing, Verifi-
cation and Validation, ICST 2017, Tokyo, Japan, March 13-17, 2017. IEEE Computer Society,
2017, pp. 390–400. doi: 10.1109/ICST.2017.42 (cit. on pp. 2, 9, 13, 51, 97, 107).

[7] Bernhard K. Aichernig and Richard Schumi. “Towards integrating statistical model
checking into property-based testing”. In: 2016 ACM/IEEE International Conference on
Formal Methods and Models for System Design, MEMOCODE 2016, Kanpur, India, Novem-
ber 18-20, 2016. IEEE, 2016, pp. 71–76. doi: 10.1109/MEMCOD.2016.7797748 (cit. on
pp. 9, 51).

[8] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, Willibald Krenn, Rupert
Schlick, and Stefan Tiran. “Killing strategies for model-based mutation testing”. In:
Journal of Software Testing, Verification and Reliability (STVR) 25.8 (2015), pp. 716–748.
doi: 10.1002/stvr.1522 (cit. on p. 47).

[9] Bernhard K. Aichernig, Priska Bauerstätter, Elisabeth Jöbstl, Severin Kann, Robert Ko-
rošec, Willibald Krenn, Cristinel Mateis, Rupert Schlick, and Richard Schumi. “Learn-
ing and statistical model checking of system response times”. In: Software Quality Jour-
nal (Dec. 2017). Accepted with minor revisions. (cit. on pp. 4, 9, 10, 13, 51, 65, 73, 83,
97, 107).

[10] Bernhard K. Aichernig, Silvio Marcovic, and Richard Schumi. “Property-based testing
with external test-case generators”. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation Workshops, ICST Workshops 2017, Tokyo, Japan, March
13-17, 2017. IEEE Computer Society, 2017, pp. 337–346. doi: 10.1109/ICSTW.2017.62
(cit. on pp. 10, 25, 47, 48).

https://doi.org/10.1007/3-540-44895-0_1
https://doi.org/10.1145/3158668
https://doi.org/10.1007/978-3-319-99154-2_3
https://doi.org/10.1007/978-3-319-99154-2_3
https://doi.org/10.1109/ICSTW.2016.24
https://doi.org/10.1109/ICSTW.2016.24
https://doi.org/10.1007/s10270-017-0647-0
https://doi.org/10.1109/ICST.2017.42
https://doi.org/10.1109/MEMCOD.2016.7797748
https://doi.org/10.1002/stvr.1522
https://doi.org/10.1109/ICSTW.2017.62

116 Bibliography

[11] Bernhard K. Aichernig, Klaus Hörmaier, Florian Lorber, Dejan Nickovic, and Stefan
Tiran. “Require, test, and trace IT”. In: International Journal on Software Tools for Tech-
nology Transfer (STTT) 19.4 (2017), pp. 409–426. doi: 10.1007/s10009-016-0444-z
(cit. on p. 97).

[12] Bernhard K. Aichernig, Severin Kann, and Richard Schumi. “Statistical model checking
of response times for different system deployments”. In: Dependable Software Engineer-
ing. Theories, Tools, and Applications - 4th International Symposium, SETTA 2018, Beijing,
China, September 4-6, 2018, Proceedings. Vol. 10998. Lecture Notes in Computer Science.
Springer, 2018, pp. 153–169. doi: 10.1007/978-3-319-99933-3_11 (cit. on pp. 10, 65,
73, 83, 97, 107).

[13] Bernhard K. Aichernig, Florian Lorber, and Dejan Nickovic. “Time for mutants - model-
based mutation testing with timed automata”. In: Tests and Proofs - 7th International
Conference, TAP 2013, Budapest, Hungary, June 16-20, 2013. Proceedings. Vol. 7942. Lec-
ture Notes in Computer Science. Springer, 2013, pp. 20–38. doi: 10.1007/978-3-642-
38916-0_2 (cit. on p. 97).

[14] Musab AlTurki and José Meseguer. “PVESTA: a parallel statistical model checking and
quantitative analysis tool”. In: Algebra and Coalgebra in Computer Science - 4th Interna-
tional Conference, CALCO 2011, Winchester, UK, August 30 - September 2, 2011. Proceed-
ings. Vol. 6859. Lecture Notes in Computer Science. Springer, 2011, pp. 386–392. doi:
10.1007/978-3-642-22944-2_28 (cit. on p. 101).

[15] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: Theoretical Computer
Science (TCS) 126.2 (1994), pp. 183–235. doi: 10.1016/0304-3975(94)90010-8 (cit. on
pp. 22, 23).

[16] Alexandre Arnold, Benoît Boyer, and Axel Legay. “Contracts and behavioral patterns
for SoS: the EU IP DANSE approach”. In: Proceedings 1st Workshop on Advances in Sys-
tems of Systems, AiSoS 2013, Rome, Italy, 16th March 2013. Vol. 133. EPTCS. Open Pub-
lishing Association, 2013, pp. 47–66. doi: 10.4204/EPTCS.133.6 (cit. on pp. 60, 102).

[17] Cyrille Valentin Artho, Armin Biere, Masami Hagiya, Eric Platon, Martina Seidl, Yoshi-
nori Tanabe, and Mitsuharu Yamamoto. “Modbat: A model-based API tester for event-
driven systems”. In: Hardware and Software: Verification and Testing - 9th International
Haifa Verification Conference, HVC 2013, Haifa, Israel, November 5-7, 2013, Proceedings.
Vol. 8244. Lecture Notes in Computer Science. Springer, 2013, pp. 112–128. doi: 10.
1007/978-3-319-03077-7_8 (cit. on p. 97).

[18] Thomas Arts. “On shrinking randomly generated load tests”. In: Proceedings of the Thir-
teenth ACM SIGPLAN workshop on Erlang, Gothenburg, Sweden, September 5, 2014. ACM,
2014, pp. 25–31. doi: 10.1145/2633448.2633452 (cit. on p. 102).

[19] Thomas Arts, John Hughes, Ulf Norell, Nicholas Smallbone, and Hans Svensson. “Ac-
celerating race condition detection through procrastination”. In: Proceedings of the 10th
ACM SIGPLAN workshop on Erlang, Tokyo, Japan, September 23, 2011. ACM, 2011, pp. 14–
22. doi: 10.1145/2034654.2034659 (cit. on p. 102).

[20] Thomas Arts, Kirill Bogdanov, Alex Gerdes, and John Hughes. “Graphical editing sup-
port for QuickCheck models”. In: Eighth IEEE International Conference on Software Test-
ing, Verification and Validation, ICST 2015 Workshops, Graz, Austria, April 13-17, 2015.
IEEE Computer Society, 2015, pp. 1–6. doi: 10.1109/ICSTW.2015.7107473 (cit. on
p. 99).

[21] Thomas Arts, John Hughes, Ulf Norell, and Hans Svensson. “Testing AUTOSAR soft-
ware with QuickCheck”. In: Eighth IEEE International Conference on Software Testing,
Verification and Validation, ICST 2015 Workshops, Graz, Austria, April 13-17, 2015. IEEE
Computer Society, 2015, pp. 1–4. doi: 10.1109/ICSTW.2015.7107466 (cit. on p. 99).

https://doi.org/10.1007/s10009-016-0444-z
https://doi.org/10.1007/978-3-319-99933-3_11
https://doi.org/10.1007/978-3-642-38916-0_2
https://doi.org/10.1007/978-3-642-38916-0_2
https://doi.org/10.1007/978-3-642-22944-2_28
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.4204/EPTCS.133.6
https://doi.org/10.1007/978-3-319-03077-7_8
https://doi.org/10.1007/978-3-319-03077-7_8
https://doi.org/10.1145/2633448.2633452
https://doi.org/10.1145/2034654.2034659
https://doi.org/10.1109/ICSTW.2015.7107473
https://doi.org/10.1109/ICSTW.2015.7107466

Bibliography 117

[22] Thomas Arts, John Hughes, Joakim Johansson, and Ulf T. Wiger. “Testing telecoms
software with Quviq QuickCheck”. In: Proceedings of the 2006 ACM SIGPLAN Workshop
on Erlang, Portland, Oregon, USA, September 16, 2006. ACM, 2006, pp. 2–10. doi: 10.
1145/1159789.1159792 (cit. on pp. 2, 99).

[23] James Aspnes and Maurice Herlihy. “Fast randomized consensus using shared mem-
ory”. In: Journal of Algorithms 11.3 (1990), pp. 441–461. doi: 10.1016/0196-6774(90)
90021-6 (cit. on p. 60).

[24] Xiaoying Bai, Wenli Dong, Wei-Tek Tsai, and Yinong Chen. “WSDL-based automatic
test case generation for web services testing”. In: 2005 IEEE International Workshop on
Service-Oriented System Engineering (SOSE 2005), 20-21 October 2005, Beijing, China. IEEE
Computer Society, 2005, pp. 207–212. doi: 10.1109/SOSE.2005.43 (cit. on p. 98).

[25] Paolo Ballarini, Nathalie Bertrand, András Horváth, Marco Paolieri, and Enrico Vicario.
“Transient analysis of networks of stochastic timed automata using stochastic state
classes”. In: Quantitative Evaluation of Systems - 10th International Conference, QEST 2013,
Buenos Aires, Argentina, August 27-30, 2013. Proceedings. Vol. 8054. Lecture Notes in
Computer Science. Springer, 2013, pp. 355–371. doi: 10.1007/978-3-642-40196-
1_30 (cit. on pp. 8, 23).

[26] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni. “Model-
based performance prediction in software development: A survey”. In: IEEE Transac-
tions on Software Engineering 30.5 (2004), pp. 295–310. doi: 10.1109/TSE.2004.9 (cit.
on p. 104).

[27] Gaurav Banga and Peter Druschel. “Measuring the capacity of a web server un-
der realistic loads”. In: World Wide Web 2.1-2 (1999), pp. 69–83. doi: 10.1023/A:
1019292504731 (cit. on p. 103).

[28] Andrew Banks and Rahul Gupta. MQTT version 3.1.1. OASIS Standard. Dec. 2014. url:
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

(visited on 2018-09-19) (cit. on pp. 5, 66).

[29] Cesare Bartolini, Antonia Bertolino, Eda Marchetti, and Andrea Polini. “WS-TAXI: A
WSDL-based testing tool for web services”. In: Second International Conference on Soft-
ware Testing Verification and Validation, ICST 2009, Denver, Colorado, USA, April 1-4, 2009.
IEEE Computer Society, 2009, pp. 326–335. doi: 10.1109/ICST.2009.28 (cit. on p. 98).

[30] Steffen Becker, Heiko Koziolek, and Ralf H. Reussner. “The Palladio component model
for model-driven performance prediction”. In: Journal of Systems and Software 82.1
(2009), pp. 3–22. doi: 10.1016/j.jss.2008.03.066 (cit. on p. 103).

[31] Gerd Behrmann, Alexandre David, and Kim Guldstrand Larsen. “A tutorial on up-
paal”. In: Formal Methods for the Design of Real-Time Systems, International School on For-
mal Methods for the Design of Computer, Communication and Software Systems, SFM-RT
2004, Bertinoro, Italy, September 13-18, 2004, Revised Lectures. Vol. 3185. Lecture Notes in
Computer Science. Springer, 2004, pp. 200–236. doi: 10.1007/978-3-540-30080-9_7
(cit. on p. 22).

[32] Axel Belinfante. “Jtorx: A tool for on-line model-driven test derivation and execution”.
In: Tools and Algorithms for the Construction and Analysis of Systems, 16th International
Conference, TACAS 2010, Held as Part of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings. Vol. 6015.
Lecture Notes in Computer Science. Springer, 2010, pp. 266–270. doi: 10.1007/978-
3-642-12002-2_21 (cit. on p. 97).

https://doi.org/10.1145/1159789.1159792
https://doi.org/10.1145/1159789.1159792
https://doi.org/10.1016/0196-6774(90)90021-6
https://doi.org/10.1016/0196-6774(90)90021-6
https://doi.org/10.1109/SOSE.2005.43
https://doi.org/10.1007/978-3-642-40196-1_30
https://doi.org/10.1007/978-3-642-40196-1_30
https://doi.org/10.1109/TSE.2004.9
https://doi.org/10.1023/A:1019292504731
https://doi.org/10.1023/A:1019292504731
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://doi.org/10.1109/ICST.2009.28
https://doi.org/10.1016/j.jss.2008.03.066
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-642-12002-2_21
https://doi.org/10.1007/978-3-642-12002-2_21

118 Bibliography

[33] Marco Bernardo, Rance Cleaveland, Steve Sims, and W. Stewart. “Twotowers: A tool
integrating functional and performance analysis of concurrent systems”. In: Formal
Description Techniques and Protocol Specification, Testing and Verification, FORTE XI / PSTV
XVIII’98, IFIP TC6 WG6.1 Joint International Conference on Formal Description Techniques
for Distributed Systems and Communication Protocols (FORTE XI) and Protocol Specification,
Testing and Verification (PSTV XVIII), 3-6 November, 1998, Paris, France. Vol. 135. IFIP
Conference Proceedings. Kluwer, 1998, pp. 457–467 (cit. on p. 104).

[34] Mark R. Blackburn, Robert Busser, Aaron Nauman, and Travis R. Morgan. “Model-
based testing in practice”. In: Informatik 2006 - Informatik für Menschen, Band 2, Beiträge
der 36. Jahrestagung der Gesellschaft für Informatik e.V. (GI), 2.-6. Oktober 2006 in Dresden.
Vol. 94. LNI. Gesellschaft für Informatik, 2006, pp. 197–203 (cit. on p. 97).

[35] Lynne Blair, Trevor Jones, and Gordon S. Blair. “Stochastically enhanced timed au-
tomata”. In: Formal Methods for Open Object-Based Distributed Systems IV, IFIF TC6/WG6.1
Fourth International Conference on Formal Methods for Open Object-Based Distributed Sys-
tems (FMOODS 2000), September 6-8, 2000, Stanford, California, USA. Vol. 177. IFIP Con-
ference Proceedings. Kluwer, 2000, pp. 327–347. doi: 10.1007/978-0-387-35520-
7_17 (cit. on p. 23).

[36] Joseph Blomstedt. “Hansei: property-based development of concurrent systems”. In:
Proceedings of the Eleventh ACM SIGPLAN Erlang Workshop, Copenhagen, Denmark,
September 14, 2012. ACM, 2012, pp. 73–80. doi: 10.1145/2364489.2364505 (cit. on
p. 102).

[37] Matthias Book, Volker Gruhn, Malte Hülder, André Köhler, and Andreas Kriegel. “Cost
and response time simulation for web-based applications on mobile channels”. In: Pro-
ceedings Fifth International Conference on Quality Software (QSIC 2005), 19–20 September
2005, Melbourne, Australia. IEEE Computer Society, 2005, pp. 83–90. doi: 10.1109/
QSIC.2005.21 (cit. on p. 103).

[38] Benoît Boyer, Kevin Corre, Axel Legay, and Sean Sedwards. “PLASMA-lab: a flexible,
distributable statistical model checking library”. In: Quantitative Evaluation of Systems
- 10th International Conference, QEST 2013, Buenos Aires, Argentina, August 27-30, 2013.
Proceedings. Vol. 8054. Lecture Notes in Computer Science. Springer, 2013, pp. 160–164.
doi: 10.1007/978-3-642-40196-1_12 (cit. on pp. 16, 51, 101).

[39] Eckard Bringmann and Andreas Krämer. “Systematic testing of the continuous behav-
ior of automotive systems”. In: Proceedings of the 2006 International Workshop on Software
Engineering for Automotive Systems, Shanghai, China, May 20-28, 2006. ACM, 2006, pp. 13–
20. isbn: 1-59593-402-2. doi: 10.1145/1138474.1138479 (cit. on p. 98).

[40] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexander
Pretschner, eds. Model-Based Testing of Reactive Systems, Advanced Lectures. Vol. 3472.
Lecture Notes in Computer Science. Springer, 2005. isbn: 3-540-26278-4. doi: 10.1007/
b137241 (cit. on p. 97).

[41] Peter E. Bulychev, Alexandre David, Kim Guldstrand Larsen, Axel Legay, Marius
Mikucionis, and Danny Bøgsted Poulsen. “Checking and distributing statistical model
checking”. In: NASA Formal Methods - 4th International Symposium, NFM 2012, Norfolk,
VA, USA, April 3-5, 2012. Proceedings. Vol. 7226. Lecture Notes in Computer Science.
Springer, 2012, pp. 449–463. doi: 10.1007/978-3-642-28891-3_39 (cit. on pp. 16,
101).

https://doi.org/10.1007/978-0-387-35520-7_17
https://doi.org/10.1007/978-0-387-35520-7_17
https://doi.org/10.1145/2364489.2364505
https://doi.org/10.1109/QSIC.2005.21
https://doi.org/10.1109/QSIC.2005.21
https://doi.org/10.1007/978-3-642-40196-1_12
https://doi.org/10.1145/1138474.1138479
https://doi.org/10.1007/b137241
https://doi.org/10.1007/b137241
https://doi.org/10.1007/978-3-642-28891-3_39

Bibliography 119

[42] Peter E. Bulychev, Alexandre David, Kim Guldstrand Larsen, Marius Mikucionis,
Danny Bøgsted Poulsen, Axel Legay, and Zheng Wang. “UPPAAL-SMC: statistical
model checking for priced timed automata”. In: Proceedings 10th Workshop on Quan-
titative Aspects of Programming Languages and Systems, QAPL 2012, Tallinn, Estonia, 31
March and 1 April 2012. Vol. 85. EPTCS. Open Publishing Association, 2012, pp. 1–16.
doi: 10.4204/EPTCS.85.1 (cit. on pp. 16, 51, 101, 104).

[43] Anis Charfi and Mira Mezini. “Hybrid web service composition: business processes
meet business rules”. In: Service-Oriented Computing - ICSOC 2004, Second International
Conference, New York, NY, USA, November 15-19, 2004, Proceedings. ACM, 2004, pp. 30–
38. isbn: 1-58113-871-7. doi: 10.1145/1035167.1035173 (cit. on p. 26).

[44] Taolue Chen, Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre. “Quantita-
tive model checking of continuous-time Markov chains against timed automata specifi-
cations”. In: Proceedings of the 24th Annual IEEE Symposium on Logic in Computer Science,
LICS 2009, 11-14 August 2009, Los Angeles, CA, USA. IEEE Computer Society, 2009,
pp. 309–318. doi: 10.1109/LICS.2009.21 (cit. on p. 23).

[45] Kwang Ting Cheng and A. S. Krishnakumar. “Automatic functional test generation
using the extended finite state machine model”. In: Proceedings of the 30th Design Au-
tomation Conference. Dallas, Texas, USA, June 14-18, 1993. Dallas, Texas, USA: ACM Press,
1993, pp. 86–91. isbn: 0-89791-577-1. doi: 10.1145/157485.164585 (cit. on p. 25).

[46] Tsun S. Chow. “Testing software design modeled by finite-state machines”. In: IEEE
Transactions on Software Engineering 4.3 (1978), pp. 178–187. doi: 10.1109/TSE.1978.
231496 (cit. on p. 44).

[47] Koen Claessen and John Hughes. “QuickCheck: a lightweight tool for random testing
of Haskell programs”. In: Proceedings of the Fifth ACM SIGPLAN International Conference
on Functional Programming (ICFP’00), Montreal, Canada, September 18-21, 2000. ACM,
2000, pp. 268–279. isbn: 1-58113-202-6. doi: 10.1145/351240.351266 (cit. on pp. 1, 13,
98).

[48] Koen Claessen, Michal H. Palka, Nicholas Smallbone, John Hughes, Hans Svensson,
Thomas Arts, and Ulf T. Wiger. “Finding race conditions in Erlang with QuickCheck
and PULSE”. In: Proceeding of the 14th ACM SIGPLAN international conference on Func-
tional programming, ICFP 2009, Edinburgh, Scotland, UK, August 31 - September 2, 2009.
ACM, 2009, pp. 149–160. doi: 10.1145/1596550.1596574 (cit. on p. 102).

[49] Edmund M. Clarke, James R. Faeder, Christopher James Langmead, Leonard A. Harris,
Sumit Kumar Jha, and Axel Legay. “Statistical model checking in biolab: applications to
the automated analysis of t-cell receptor signaling pathway”. In: Computational Methods
in Systems Biology, 6th International Conference, CMSB 2008, Rostock, Germany, October
12-15, 2008. Proceedings. Vol. 5307. Lecture Notes in Computer Science. Springer, 2008,
pp. 231–250. doi: 10.1007/978-3-540-88562-7_18 (cit. on pp. 16, 101).

[50] David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gardner C. Patton.
“The AETG system: an approach to testing based on combinatiorial design”. In: IEEE
Transactions on Software Engineering 23.7 (1997), pp. 437–444. doi: 10.1109/32.605761
(cit. on p. 98).

[51] Matteo Collina, Giovanni Emanuele Corazza, and Alessandro Vanelli-Coralli. “Intro-
ducing the QEST broker: scaling the IoT by bridging MQTT and REST”. In: 23rd IEEE
International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC
2012, Sydney, Australia, September 9-12, 2012. IEEE, 2012, pp. 36–41. doi: 10.1109/
PIMRC.2012.6362813 (cit. on p. 105).

https://doi.org/10.4204/EPTCS.85.1
https://doi.org/10.1145/1035167.1035173
https://doi.org/10.1109/LICS.2009.21
https://doi.org/10.1145/157485.164585
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/1596550.1596574
https://doi.org/10.1007/978-3-540-88562-7_18
https://doi.org/10.1109/32.605761
https://doi.org/10.1109/PIMRC.2012.6362813
https://doi.org/10.1109/PIMRC.2012.6362813

120 Bibliography

[52] FsCheck Community. Model-based testing with FsCheck. url: https : / / fscheck .

github.io/FsCheck/StatefulTesting.html (visited on 2018-09-19) (cit. on pp. 14,
15).

[53] Corinna Cortes, Mehryar Mohri, Michael Riley, and Afshin Rostamizadeh. “Sample
selection bias correction theory”. In: Algorithmic Learning Theory, 19th International Con-
ference, ALT 2008, Budapest, Hungary, October 13-16, 2008. Proceedings. Vol. 5254. Lecture
Notes in Computer Science. Springer, 2008, pp. 38–53. doi: 10.1007/978-3-540-
87987-9_8 (cit. on pp. 68, 95).

[54] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikucionis, Danny Bøgsted
Poulsen, Jonas van Vliet, and Zheng Wang. “Statistical model checking for networks
of priced timed automata”. In: Formal Modeling and Analysis of Timed Systems - 9th In-
ternational Conference, FORMATS 2011, Aalborg, Denmark, September 21-23, 2011. Proceed-
ings. Vol. 6919. Lecture Notes in Computer Science. Springer, 2011, pp. 80–96. doi:
10.1007/978-3-642-24310-3_7 (cit. on p. 104).

[55] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikucionis, Danny Bøgsted
Poulsen, and Sean Sedwards. “Statistical model checking for biological systems”. In:
International Journal on Software Tools for Technology Transfer (STTT) 17.3 (2015), pp. 351–
367. doi: 10.1007/s10009-014-0323-4 (cit. on pp. 16, 101, 102).

[56] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikucionis, and Zheng Wang.
“Time for statistical model checking of real-time systems”. In: Computer Aided Verifi-
cation - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings. Vol. 6806. Lecture Notes in Computer Science. Springer, 2011, pp. 349–355.
doi: 10.1007/978-3-642-22110-1_27 (cit. on pp. 61, 101, 104).

[57] Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich. “Early performance testing
of distributed software applications”. In: Proceedings of the Fourth International Workshop
on Software and Performance, WOSP 2004, Redwood Shores, California, USA, January 14-16,
2004. ACM, 2004, pp. 94–103. doi: 10.1145/974044.974059 (cit. on p. 102).

[58] Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guilherme H. Travassos.
“A survey on model-based testing approaches: a systematic review”. In: Proceedings
of the 1st ACM International Workshop on Empirical Assessment of Software Engineering
Languages and Technologies: Held in Conjunction with the 22Nd IEEE/ACM International
Conference on Automated Software Engineering (ASE) 2007, Atlanta, Georgia, November 5,
2007. ACM, 2007, pp. 31–36. isbn: 978-1-59593-880-0. doi: 10.1145/1353673.1353681
(cit. on p. 97).

[59] Dirk Draheim, John C. Grundy, John G. Hosking, Christof Lutteroth, and Gerald We-
ber. “Realistic load testing of web applications”. In: Proceedings of the 10th European Con-
ference on Software Maintenance and Reengineering (CSMR 2006) Bari, Italy, 22-24 March
2006. IEEE, 2006, pp. 57–70. doi: 10.1109/CSMR.2006.43 (cit. on pp. 2, 103).

[60] Marie Duflot, Marta Kwiatkowska, Gethin Norman, and David Parker. “A formal anal-
ysis of Bluetooth device discovery”. In: International Journal on Software Tools for Technol-
ogy Transfer (STTT) 8.6 (Oct. 2006), pp. 621–632. issn: 1433-2779. doi: 10.1007/s10009-
006-0014-x (cit. on p. 61).

[61] Winfried Dulz and Fenhua Zhen. “Matelo - statistical usage testing by annotated se-
quence diagrams, Markov chains and TTCN-3”. In: 3rd International Conference on Qual-
ity Software (QSIC 2003), 6-7 November 2003, Dallas, TX, USA. IEEE Computer Society,
2003, pp. 336–342. doi: 10.1109/QSIC.2003.1319119 (cit. on p. 98).

https://fscheck.github.io/FsCheck/StatefulTesting.html
https://fscheck.github.io/FsCheck/StatefulTesting.html
https://doi.org/10.1007/978-3-540-87987-9_8
https://doi.org/10.1007/978-3-540-87987-9_8
https://doi.org/10.1007/978-3-642-24310-3_7
https://doi.org/10.1007/s10009-014-0323-4
https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1145/974044.974059
https://doi.org/10.1145/1353673.1353681
https://doi.org/10.1109/CSMR.2006.43
https://doi.org/10.1007/s10009-006-0014-x
https://doi.org/10.1007/s10009-006-0014-x
https://doi.org/10.1109/QSIC.2003.1319119

Bibliography 121

[62] Clara Benac Earle, Lars-Åke Fredlund, Ángel Herranz-Nieva, and Julio Mariño.
“Jsongen: a QuickCheck based library for testing JSON web services”. In: Proceedings
of the Thirteenth ACM SIGPLAN workshop on Erlang, Gothenburg, Sweden, September 5,
2014. ACM, 2014, pp. 33–41. isbn: 978-1-4503-3038-1. doi: 10.1145/2633448.2633454
(cit. on pp. 6, 99).

[63] Andreas Fellner, Willibald Krenn, Rupert Schlick, Thorsten Tarrach, and Georg Weis-
senbacher. “Model-based, mutation-driven test case generation via heuristic-guided
branching search”. In: Proceedings of the 15th ACM-IEEE International Conference on For-
mal Methods and Models for System Design, MEMOCODE 2017, Vienna, Austria, September
29 - October 02, 2017. ACM, 2017, pp. 56–66. doi: 10.1145/3127041.3127049 (cit. on
p. 48).

[64] Miguel A. Francisco, Macías López, Henrique Ferreiro, and Laura M. Castro. “Turning
web services descriptions into QuickCheck models for automatic testing”. In: Proceed-
ings of the Twelfth ACM SIGPLAN Erlang Workshop, Boston, Massachusetts, USA, Septem-
ber 28, 2013. ACM, 2013, pp. 79–86. isbn: 978-1-4503-2385-7. doi: 10.1145/2505305.
2505306 (cit. on pp. 6, 25, 99).

[65] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg. “Does
automated unit test generation really help software testers? A controlled empirical
study”. In: ACM Transactions on Software Engineering and Methodology (TOSEM) 24.4
(2015), 23:1–23:49 (cit. on p. 1).

[66] Lars-Åke Fredlund, Ángel Herranz-Nieva, and Julio Mariño. “Applying property-
based testing in teaching safety-critical system programming”. In: 41st Euromicro Con-
ference on Software Engineering and Advanced Applications, EUROMICRO-SEAA 2015,
Madeira, Portugal, August 26-28, 2015. IEEE Computer Society, 2015, pp. 309–316. doi:
10.1109/SEAA.2015.53 (cit. on p. 99).

[67] Lars-Åke Fredlund, Clara Benac Earle, Ángel Herranz-Nieva, and Julio Mariño-
Carballo. “Property-based testing of JSON based web services”. In: 2014 IEEE Inter-
national Conference on Web Services, ICWS, 2014, Anchorage, AK, USA, June 27 - July 2,
2014. IEEE Computer Society, 2014, pp. 704–707. doi: 10.1109/ICWS.2014.110 (cit. on
pp. 2, 99).

[68] Jiro Fujita, Dmitry Arkhipkin, Michael Cherney, and Jerome Lauret. “Development of
MQTT-channel access bridge”. In: Proceedings, 16th International Conference on Acceler-
ator and Large Experimental Physics Control Systems (ICALEPCS 2017): Barcelona, Spain,
October 8-13, 2017. JACoW Publishing, 2018, pp. 1916–1918. doi: 10.18429/JACoW-
ICALEPCS2017-THPHA198 (cit. on p. 6).

[69] Stewart N Gardiner. “Statistical software testing”. In: Testing Safety-Related Software.
Springer, 1999, pp. 155–170 (cit. on p. 100).

[70] Robert L Glass. Facts and Fallacies of Software Engineering. Addison-Wesley Professional,
2002 (cit. on p. 1).

[71] Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani.
“Probabilistic programming”. In: Proceedings of the on Future of Software Engineering,
FOSE 2014, Hyderabad, India, May 31 - June 7, 2014. ACM, 2014, pp. 167–181. doi: 10.
1145/2593882.2593900 (cit. on p. 100).

[72] Zakkula Govindarajulu. Sequential Statistics. World Scientific, 2004. isbn: 978-981-238-
905-3 (cit. on p. 17).

[73] Olga Grinchtein. “Learning of Timed Systems”. PhD thesis. Uppsala University, Swe-
den, 2008 (cit. on p. 104).

https://doi.org/10.1145/2633448.2633454
https://doi.org/10.1145/3127041.3127049
https://doi.org/10.1145/2505305.2505306
https://doi.org/10.1145/2505305.2505306
https://doi.org/10.1109/SEAA.2015.53
https://doi.org/10.1109/ICWS.2014.110
https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA198
https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA198
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1145/2593882.2593900

122 Bibliography

[74] Emily H Halili. Apache JMeter: A practical beginner’s guide to automated testing and perfor-
mance measurement for your websites. Packt Publishing Ltd, 2008 (cit. on p. 102).

[75] Grégoire Hamon, Leonardo De Moura, and John Rushby. Automated test generation with
SAL. Tech. rep. Computer Science Laboratory, SRI International, 2005 (cit. on p. 98).

[76] Martin A. T. Handley and Graham Hutton. “AutoBench: comparing the time perfor-
mance of Haskell programs”. In: Proceedings of the 11th ACM SIGPLAN International
Symposium on Haskell, St. Louis, MO, USA, September 27-28, 2018. ACM, 2018, pp. 26–37.
isbn: 978-1-4503-5835-4. doi: 10.1145/3242744.3242749 (cit. on p. 103).

[77] David Harel. “Statecharts: A visual formalism for complex systems”. In: Science of Com-
puter Programming 8.3 (1987), pp. 231–274. doi: 10.1016/0167-6423(87)90035-9 (cit.
on p. 36).

[78] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The Elements of Statisti-
cal Learning: Data Mining, Inference, and Prediction, 2nd Edition. Springer, 2009. isbn:
9780387848570 (cit. on pp. 21, 69, 70, 113).

[79] Thomas Hérault, Richard Lassaigne, Frédéric Magniette, and Sylvain Peyronnet. “Ap-
proximate probabilistic model checking”. In: Verification, Model Checking, and Abstract
Interpretation, 5th International Conference, VMCAI 2004, Venice, January 11-13, 2004, Pro-
ceedings. Vol. 2937. Lecture Notes in Computer Science. Springer, 2004, pp. 73–84. doi:
10.1007/978-3-540-24622-0_8 (cit. on p. 101).

[80] Holger Herbst. Business Rule-oriented Conceptual Modeling. Physica-Verlag HD, 1997.
isbn: 978-3-642-59260-7. doi: 10.1007/978-3-642-59260-7 (cit. on p. 26).

[81] Anders Hessel and Paul Pettersson. “Cover-a test-case generation tool for timed sys-
tems”. In: Testing of Software and Communicating Systems: Work-in Progress and Position
Papers, Tool Demonstrations, and Tutorial Abstracts of TestCom/FATES 2007, Tallinn, Estonia
June 26-29, 2007. Mälardalen University Embedded Systems Institute, 2007, pp. 31–34
(cit. on p. 97).

[82] Wassily Hoeffding. “Probability inequalities for sums of bounded random variables”.
In: Journal of the American Statistical Association 58.301 (1963), pp. 13–30. issn: 01621459
(cit. on p. 16).

[83] Peter Höfner and Annabelle McIver. “Statistical model checking of wireless mesh rout-
ing protocols”. In: NASA Formal Methods, 5th International Symposium, NFM 2013, Mof-
fett Field, CA, USA, May 14-16, 2013. Proceedings. Vol. 7871. Lecture Notes in Computer
Science. Springer, 2013, pp. 322–336. doi: 10.1007/978-3-642-38088-4_22 (cit. on
pp. 16, 101).

[84] Hans-Martin Hörcher and Jan Peleska. “Using formal specifications to support soft-
ware testing”. In: Software Quality Journal 4.4 (1995), pp. 309–327. doi: 10 . 1007 /

BF00402650 (cit. on p. 97).

[85] M. Houimli, L. Kahloul, and S. Benaoun. “Formal specification, verification and evalu-
ation of the MQTT protocol in the Internet of Things”. In: 2017 International Conference
on Mathematics and Information Technology (ICMIT), December 04-05 2017, Adrar, Algeria.
IEEE, Dec. 2017, pp. 214–221. doi: 10.1109/MATHIT.2017.8259720 (cit. on p. 105).

[86] John A Hoxmeier and Chris DiCesare. “System response time and user satisfaction: an
experimental study of browser-based applications”. In: Proceedings of the Association of
Information Systems Americas Conference (AMCIS), New Orleans, Louisiana, USA, August
16-18, 2018. Vol. 347. AIS Electronic Library (AISeL), 2000, pp. 140–145. url: http:
//aisel.aisnet.org/amcis2000/347 (visited on 2018-09-19) (cit. on p. 1).

https://doi.org/10.1145/3242744.3242749
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1007/978-3-540-24622-0_8
https://doi.org/10.1007/978-3-642-59260-7
https://doi.org/10.1007/978-3-642-38088-4_22
https://doi.org/10.1007/BF00402650
https://doi.org/10.1007/BF00402650
https://doi.org/10.1109/MATHIT.2017.8259720
http://aisel.aisnet.org/amcis2000/347
http://aisel.aisnet.org/amcis2000/347

Bibliography 123

[87] John M. Hughes and Hans Bolinder. “Testing a database for race conditions with
QuickCheck”. In: Proceedings of the 10th ACM SIGPLAN workshop on Erlang, Tokyo, Japan,
September 23, 2011. ACM, 2011, pp. 72–77. doi: 10.1145/2034654.2034667 (cit. on
p. 102).

[88] John Hughes. “Experiences with QuickCheck: testing the hard stuff and staying sane”.
In: A List of Successes That Can Change the World - Essays Dedicated to Philip Wadler on the
Occasion of His 60th Birthday. Vol. 9600. Lecture Notes in Computer Science. Springer,
2016, pp. 169–186. doi: 10.1007/978-3-319-30936-1_9 (cit. on p. 99).

[89] John Hughes. “QuickCheck testing for fun and profit”. In: Practical Aspects of Declarative
Languages, 9th International Symposium, PADL 2007, Nice, France, January 14-15, 2007.
Vol. 4354. Lecture Notes in Computer Science. Springer, 2007, pp. 1–32. doi: 10.1007/
978-3-540-69611-7_1 (cit. on pp. 13, 98).

[90] John Hughes, Benjamin C. Pierce, Thomas Arts, and Ulf Norell. “Mysteries of Dropbox:
property-based testing of a distributed synchronization service”. In: 2016 IEEE Inter-
national Conference on Software Testing, Verification and Validation, ICST 2016, Chicago, IL,
USA, April 11-15, 2016. IEEE Computer Society, 2016, pp. 135–145. doi: 10.1109/ICST.
2016.37 (cit. on p. 102).

[91] Antti Huima. “Implementing Conformiq Qtronic”. In: Testing of Software and Commu-
nicating Systems, 19th IFIP TC6/WG6.1 International Conference, TestCom 2007, 7th Inter-
national Workshop, FATES 2007, Tallinn, Estonia, June 26-29, 2007, Proceedings. Vol. 4581.
Lecture Notes in Computer Science. Springer, 2007, pp. 1–12. doi: 10.1007/978-3-
540-73066-8_1 (cit. on p. 97).

[92] Jacques Janssen and Raimondo Manca. Applied semi-Markov processes. Springer Science
& Business Media, 2006. isbn: 9780387295480 (cit. on p. 23).

[93] Claude Jard and Thierry Jéron. “TGV: theory, principles and algorithms”. In: Interna-
tional Journal on Software Tools for Technology Transfer (STTT) 7.4 (2005), pp. 297–315. doi:
10.1007/s10009-004-0153-x (cit. on p. 97).

[94] Cyrille Jégourel, Axel Legay, and Sean Sedwards. “A platform for high performance
statistical model checking - PLASMA”. In: Tools and Algorithms for the Construction and
Analysis of Systems - 18th International Conference, TACAS 2012, Held as Part of the Eu-
ropean Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia,
March 24 - April 1, 2012. Proceedings. Vol. 7214. Lecture Notes in Computer Science.
Springer, 2012, pp. 498–503. doi: 10.1007/978-3-642-28756-5_37 (cit. on pp. 16, 51,
101).

[95] Sumit Kumar Jha, Edmund M. Clarke, Christopher James Langmead, Axel Legay, An-
dré Platzer, and Paolo Zuliani. “A bayesian approach to model checking biological sys-
tems”. In: Computational Methods in Systems Biology, 7th International Conference, CMSB
2009, Bologna, Italy, August 31-September 1, 2009. Proceedings. Vol. 5688. Lecture Notes
in Computer Science. Springer, 2009, pp. 218–234. doi: 10.1007/978-3-642-03845-
7_15 (cit. on p. 16).

[96] Cao Jinyuan. “The application of Load Runner in software performance test”. In: Com-
puter Development & Applications 5 (2012), p. 014 (cit. on p. 103).

[97] Abdul Salam Kalaji, Robert M. Hierons, and Stephen Swift. “Generating feasible tran-
sition paths for testing from an extended finite state machine (EFSM)”. In: Second
International Conference on Software Testing Verification and Validation, ICST 2009, Den-
ver, Colorado, USA, April 1-4, 2009. IEEE Computer Society, 2009, pp. 230–239. doi:
10.1109/ICST.2009.29 (cit. on p. 29).

https://doi.org/10.1145/2034654.2034667
https://doi.org/10.1007/978-3-319-30936-1_9
https://doi.org/10.1007/978-3-540-69611-7_1
https://doi.org/10.1007/978-3-540-69611-7_1
https://doi.org/10.1109/ICST.2016.37
https://doi.org/10.1109/ICST.2016.37
https://doi.org/10.1007/978-3-540-73066-8_1
https://doi.org/10.1007/978-3-540-73066-8_1
https://doi.org/10.1007/s10009-004-0153-x
https://doi.org/10.1007/978-3-642-28756-5_37
https://doi.org/10.1007/978-3-642-03845-7_15
https://doi.org/10.1007/978-3-642-03845-7_15
https://doi.org/10.1109/ICST.2009.29

124 Bibliography

[98] Jin Hyun Kim, Kim G. Larsen, Brian Nielsen, Marius Mikucionis, and Petur Olsen.
“Formal analysis and testing of real-time automotive systems using UPPAAL tools”.
In: Formal Methods for Industrial Critical Systems - 20th International Workshop, FMICS
2015, Oslo, Norway, June 22-23, 2015 Proceedings. Vol. 9128. Lecture Notes in Computer
Science. Springer, 2015, pp. 47–61. doi: 10.1007/978-3-319-19458-5_4 (cit. on
p. 97).

[99] Ju Young Kim, Jin Ryong Kim, and Chang Joon Park. “Methodology for verifying the
load limit point and bottle-neck of a game server using the large scale virtual clients”.
In: 10th International Conference on Advanced Communication Technology ICACT, Phoenix
Park, Korea, Feb. 17-20, 2008. Vol. 1. IEEE. 2008, pp. 382–386. doi: 10.1109/ICACT.
2008.4493783 (cit. on p. 103).

[100] Daphne Koller, David A. McAllester, and Avi Pfeffer. “Effective Bayesian inference for
stochastic programs”. In: Proceedings of the Fourteenth National Conference on Artificial
Intelligence AAAI 97 and Ninth Innovative Applications of Artificial Intelligence Conference,
IAAI 97, July 27-31, 1997, Providence, Rhode Island. AAAI Press / The MIT Press, 1997,
pp. 740–747 (cit. on p. 100).

[101] SB Kotsiantis, D Kanellopoulos, and PE Pintelas. “Data preprocessing for supervised
leaning”. In: International Journal of Computer Science 1.2 (2006), pp. 111–117 (cit. on
p. 68).

[102] Willibald Krenn, Rupert Schlick, Stefan Tiran, Bernhard K. Aichernig, Elisabeth Jöbstl,
and Harald Brandl. “MoMut::UML model-based mutation testing for UML”. In: 8th
IEEE International Conference on Software Testing, Verification and Validation, ICST 2015,
Graz, Austria, April 13-17, 2015. IEEE Computer Society, 2015, pp. 1–8. doi: 10.1109/
ICST.2015.7102627 (cit. on pp. 48, 97).

[103] Diwakar Krishnamurthy, Jerome A. Rolia, and Shikharesh Majumdar. “A synthetic
workload generation technique for stress testing session-based systems”. In: IEEE
Transactions on Software Engineering 32.11 (2006), pp. 868–882. doi: 10.1109/TSE.2006.
106 (cit. on p. 103).

[104] M. Kwiatkowska, G. Norman, and R. Segala. “Automated verification of a randomized
distributed consensus protocol using Cadence SMV and PRISM”. In: Computer Aided
Verification, 13th International Conference, CAV 2001, Paris, France, July 18-22, 2001, Pro-
ceedings. Vol. 2102. Lecture Notes in Computer Science. Springer, 2001, pp. 194–206.
doi: 10.1007/3-540-44585-4_17 (cit. on p. 60).

[105] M. Kwiatkowska, G. Norman, and D. Parker. “Verifying randomized distributed al-
gorithms with PRISM”. In: Proc. of the Workshop on Advances in Verification, WAVe 2000,
Post-Workshop of the Computer Aided Verification Computer: 12th International Conference,
CAV 2000, Chicago, IL, USA, July 15-19, 2000. University of Birmingham, 2000 (cit. on
p. 58).

[106] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. “PRISM 4.0: verification of
probabilistic real-time systems”. In: Computer Aided Verification - 23rd International Con-
ference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings. Vol. 6806. Lecture
Notes in Computer Science. Springer, 2011, pp. 585–591. doi: 10.1007/978-3-642-
22110-1_47 (cit. on p. 101).

[107] Marta Z. Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy Sproston. “Verify-
ing quantitative properties of continuous probabilistic timed automata”. In: CONCUR
2000 - Concurrency Theory, 11th International Conference, University Park, PA, USA, August
22-25, 2000, Proceedings. Vol. 1877. Lecture Notes in Computer Science. Springer, 2000,
pp. 123–137. doi: 10.1007/3-540-44618-4_11 (cit. on p. 23).

https://doi.org/10.1007/978-3-319-19458-5_4
https://doi.org/10.1109/ICACT.2008.4493783
https://doi.org/10.1109/ICACT.2008.4493783
https://doi.org/10.1109/ICST.2015.7102627
https://doi.org/10.1109/ICST.2015.7102627
https://doi.org/10.1109/TSE.2006.106
https://doi.org/10.1109/TSE.2006.106
https://doi.org/10.1007/3-540-44585-4_17
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/3-540-44618-4_11

Bibliography 125

[108] David Kyle, Jeffery P. Hansen, and Sagar Chaki. “Statistical model checking of dis-
tributed adaptive real-time software”. In: Runtime Verification - 6th International Con-
ference, RV 2015 Vienna, Austria, September 22-25, 2015. Proceedings. Vol. 9333. Lecture
Notes in Computer Science. Springer, 2015, pp. 269–274. doi: 10.1007/978-3-319-
23820-3_17 (cit. on p. 101).

[109] Leonidas Lampropoulos and Konstantinos F. Sagonas. “Automatic WSDL-guided test
case generation for PropEr testing of web services”. In: Proceedings 8th International
Workshop on Automated Specification and Verification of Web Systems, WWV 2012, Stock-
holm, Sweden, 16th July 2012. Vol. 98. EPTCS. Open Publishing Association, 2012, pp. 3–
16. doi: 10.4204/EPTCS.98.3 (cit. on pp. 6, 25, 99).

[110] Axel van Lamsweerde. “Formal specification: a roadmap”. In: 22nd International Confer-
ence on on Software Engineering, Future of Software Engineering Track, ICSE 2000, Limerick
Ireland, June 4-11, 2000. ACM, 2000, pp. 147–159. doi: 10.1145/336512.336546 (cit. on
p. 97).

[111] Kim Guldstrand Larsen, Marius Mikucionis, Brian Nielsen, and Arne Skou. “Testing
real-time embedded software using UPPAAL-TRON: an industrial case study”. In: EM-
SOFT 2005, September 18-22, 2005, Jersey City, NJ, USA, 5th ACM International Conference
On Embedded Software, Proceedings. ACM, 2005, pp. 299–306. doi: 10.1145/1086228.
1086283 (cit. on p. 97).

[112] Shinho Lee, Hyeonwoo Kim, Dong-kweon Hong, and Hongtaek Ju. “Correlation anal-
ysis of MQTT loss and delay according to QoS level”. In: The International Conference on
Information Networking 2013, ICOIN 2013, Bangkok, Thailand, January 28-30, 2013. IEEE
Computer Society, 2013, pp. 714–717. doi: 10.1109/ICOIN.2013.6496715 (cit. on
p. 105).

[113] Axel Legay and Sean Sedwards. “On statistical model checking with PLASMA”. In:
2014 Theoretical Aspects of Software Engineering Conference, TASE 2014, Changsha, China,
September 1-3, 2014. IEEE Computer Society, 2014, pp. 139–145. doi: 10.1109/TASE.
2014.20 (cit. on pp. 16, 17).

[114] Axel Legay and Louis-Marie Traonouez. “Statistical model checking with change de-
tection”. In: Transactions on Foundations for Mastering Change 1 (2016), pp. 157–179. doi:
10.1007/978-3-319-46508-1_9 (cit. on pp. 18, 101).

[115] Axel Legay, Benoît Delahaye, and Saddek Bensalem. “Statistical model checking: an
overview”. In: Runtime Verification - First International Conference, RV 2010, St. Julians,
Malta, November 1-4, 2010. Proceedings. Vol. 6418. Lecture Notes in Computer Science.
Springer, 2010, pp. 122–135. doi: 10.1007/978-3-642-16612-9_11 (cit. on pp. 16,
101).

[116] Huiqing Li, Simon Thompson, Pablo Lamela Seijas, and Miguel Angel Francisco. “Au-
tomating property-based testing of evolving web services”. In: Proceedings of the ACM
SIGPLAN 2014 workshop on Partial evaluation and program manipulation, PEPM 2014, Jan-
uary 20-21, 2014, San Diego, California, USA. ACM, 2014, pp. 169–180. isbn: 978-1-4503-
2619-3. doi: 10.1145/2543728.2543741 (cit. on pp. 6, 99).

[117] Chien-Hung Liu, Shu-Ling Chen, and Xue-Yuan Li. “A WS-BPEL based structural test-
ing approach for web service compositions”. In: The Fourth IEEE International Sympo-
sium on Service-Oriented System Engineering, SOSE 2008, 18-19 December 2008, Jhongli,
Taiwan. IEEE Computer Society, 2008, pp. 135–141. doi: 10.1109/SOSE.2008.30 (cit.
on p. 98).

https://doi.org/10.1007/978-3-319-23820-3_17
https://doi.org/10.1007/978-3-319-23820-3_17
https://doi.org/10.4204/EPTCS.98.3
https://doi.org/10.1145/336512.336546
https://doi.org/10.1145/1086228.1086283
https://doi.org/10.1145/1086228.1086283
https://doi.org/10.1109/ICOIN.2013.6496715
https://doi.org/10.1109/TASE.2014.20
https://doi.org/10.1109/TASE.2014.20
https://doi.org/10.1007/978-3-319-46508-1_9
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1145/2543728.2543741
https://doi.org/10.1109/SOSE.2008.30

126 Bibliography

[118] LMC Macıias López, Henrique Ferreiro, and T Arts. “A DSL for web services auto-
matic test data generation”. In: Draft Proceedings of the 25th International Symposium on
Implementation and Application of Functional Languages, Nijmegen, Netherlands, August 28 -
30, 2013. Radbound University Institute for Computing and Information Sciences, 2013
(cit. on pp. 2, 99).

[119] Andreas Löscher and Konstantinos Sagonas. “Targeted property-based testing”. In:
Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and
Analysis, Santa Barbara, CA, USA, July 10 - 14, 2017. ACM, 2017, pp. 46–56. doi: 10.
1145/3092703.3092711 (cit. on p. 99).

[120] Yue Lu, Thomas Nolte, Iain Bate, and Liliana Cucu-Grosjean. “A statistical response-
time analysis of real-time embedded systems”. In: Proceedings of the 33rd IEEE Real-Time
Systems Symposium, RTSS 2012, San Juan, PR, USA, December 4-7, 2012. IEEE Computer
Society, 2012, pp. 351–362. doi: 10.1109/RTSS.2012.85 (cit. on p. 104).

[121] Christof Lutteroth and Gerald Weber. “Modeling a realistic workload for performance
testing”. In: 12th International IEEE Enterprise Distributed Object Computing Conference,
ECOC 2008, 15-19 September 2008, Munich, Germany. IEEE Computer Society, 2008,
pp. 149–158. doi: 10.1109/EDOC.2008.40 (cit. on p. 103).

[122] Haroon Malik and Elhadi M. Shakshuki. “Classification of post-deployment perfor-
mance diagnostic techniques for large-scale software systems”. In: The 5th International
Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN-2014)/ The 4th
International Conference on Current and Future Trends of Information and Communication
Technologies in Healthcare (ICTH 2014)/ Affiliated Workshops, September 22-25, 2014, Hal-
ifax, Nova Scotia, Canada. Vol. 37. Procedia Computer Science. Elsevier, 2014, pp. 244–
251. doi: 10.1016/j.procs.2014.08.036 (cit. on p. 105).

[123] Silvio Marcovic. “Integrating an External Test-Case Generator into a Property-Based
Testing Tool for Testing Web-Services”. MA thesis. Graz University of Technology, 2017
(cit. on p. 48).

[124] Philip Mayer and Daniel Lübke. “Towards a BPEL unit testing framework”. In: Pro-
ceedings of the 2006 Workshop on Testing, Analysis, and Verification of Web Services and
Applications, held in conjunction with the ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis (ISSTA 2006), TAV-WEB 2006, Portland, Maine, USA, July 17,
2006. ACM, 2006, pp. 33–42. doi: 10.1145/1145718.1145723 (cit. on p. 98).

[125] P. McDermott-Wells. “What is Bluetooth?” In: IEEE Potentials 23.5 (Dec. 2005), pp. 33–
35. issn: 0278-6648. doi: 10.1109/MP.2005.1368913 (cit. on p. 61).

[126] J Meier, Carlos Farre, Prashant Bansode, Scott Barber, and Dennis Rea. Performance
Testing Guidance for Web Applications. Microsoft Press, 2010. isbn: 9780735646001 (cit. on
p. 102).

[127] Daniel A. Menascé. “Load testing of web sites”. In: IEEE Internet Computing 6.4 (2002),
pp. 70–74. doi: 10.1109/MIC.2002.1020328 (cit. on pp. 2, 103).

[128] Nikola Milanovic and Miroslaw Malek. “Current solutions for web service composi-
tion”. In: IEEE Internet Computing 8.6 (2004), pp. 51–59. doi: 10.1109/MIC.2004.58
(cit. on p. 25).

[129] Brian Milch and Stuart J. Russell. “General-purpose MCMC inference over relational
structures”. In: UAI’06, Proceedings of the 22nd Conference in Uncertainty in Artificial In-
telligence, Cambridge, MA, USA, July 13-16, 2006. AUAI Press, 2006 (cit. on p. 100).

[130] Ian Molyneaux. The Art of Application Performance Testing: Help for Programmers and Qual-
ity Assurance. Theory in practice. O’Reilly Media, 2009. isbn: 9780596555436 (cit. on
pp. 1, 102).

https://doi.org/10.1145/3092703.3092711
https://doi.org/10.1145/3092703.3092711
https://doi.org/10.1109/RTSS.2012.85
https://doi.org/10.1109/EDOC.2008.40
https://doi.org/10.1016/j.procs.2014.08.036
https://doi.org/10.1145/1145718.1145723
https://doi.org/10.1109/MP.2005.1368913
https://doi.org/10.1109/MIC.2002.1020328
https://doi.org/10.1109/MIC.2004.58

Bibliography 127

[131] “Mutation-driven test case generation using short-lived concurrent mutants - first re-
sults”. In: Computing Research Repository (CoRR) abs/1601.06974 (2016). Withdrawn.
arXiv: 1601.06974 (cit. on p. 48).

[132] Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of Software Testing. John
Wiley & Sons, 2011 (cit. on pp. 1, 102).

[133] Nico JD Nagelkerke. “A note on a general definition of the coefficient of determina-
tion”. In: Biometrika 78.3 (1991), pp. 691–692 (cit. on p. 70).

[134] Suresh Nageswaran. “Test effort estimation using use case points”. In: 14th in the con-
tinuing series of International Internet & Software Quality Week QW 2001, San Francisco,
California, USA, 29 May - 1 June, 2001. Vol. 6. 2001, pp. 1–6 (cit. on p. 1).

[135] J. Nagle. Congestion Control in IP/TCP Internetworks. RFC 896. RFC Editor, 1984. url:
https://tools.ietf.org/html/rfc896 (visited on 2018-09-19) (cit. on p. 91).

[136] R. Nilsson. ScalaCheck: The Definitive Guide. IT Pro. Artima Incorporated, 2014. isbn:
9780981531694 (cit. on pp. 13, 98, 101).

[137] Ulf Norell, Hans Svensson, and Thomas Arts. “Testing blocking operations with
QuickCheck’s component library”. In: Proceedings of the Twelfth ACM SIGPLAN Erlang
Workshop, Boston, Massachusetts, USA, September 28, 2013. ACM, 2013, pp. 87–92. doi:
10.1145/2505305.2505310 (cit. on p. 102).

[138] Aditya V. Nori, Chung-Kil Hur, Sriram K. Rajamani, and Selva Samuel. “R2: an efficient
MCMC sampler for probabilistic programs”. In: Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada. AAAI
Press, 2014, pp. 2476–2482. url: http://www.aaai.org/ocs/index.php/AAAI/
AAAI14/paper/view/8192 (visited on 2018-09-19) (cit. on p. 100).

[139] Hossein Nourikhah, Mohammad Kazem Akbari, and Mohammad Kalantari. “Model-
ing and predicting measured response time of cloud-based web services using long-
memory time series”. In: The Journal of Supercomputing 71.2 (2015), pp. 673–696. doi:
10.1007/s11227-014-1317-4 (cit. on p. 104).

[140] Bart Orriëns, Jian Yang, and Mike P. Papazoglou. “A framework for business rule
driven service composition”. In: Technologies for E-Services, 4th International Workshop,
TES 2003, Berlin, Germany, September 8, 2003, Proceedings. Vol. 2819. Lecture Notes in
Computer Science. Springer, 2003, pp. 14–27. doi: 10.1007/978-3-540-39406-8_2
(cit. on p. 26).

[141] Susan S. Owicki and Leslie Lamport. “Proving liveness properties of concurrent pro-
grams”. In: ACM Transactions on Programming Languages and Systems (TOPLAS) 4.3
(1982), pp. 455–495. doi: 10.1145/357172.357178 (cit. on p. 16).

[142] Manolis Papadakis. “Automatic Random Testing of Function Properties from Specifi-
cations”. Diploma thesis. National Technical University of Athens, School of Electrical
and Computer Engineering, 2010 (cit. on p. 99).

[143] Manolis Papadakis and Konstantinos Sagonas. “A PropEr integration of types and
function specifications with property-based testing”. In: Proceedings of the 10th ACM
SIGPLAN Workshop on Erlang, Erlang’11, Tokyo, Japan, September 23, 2011. Tokyo, Japan:
ACM, 2011, pp. 39–50. isbn: 978-1-4503-0859-5. doi: 10.1145/2034654.2034663 (cit.
on p. 13).

[144] Javier Paris and Thomas Arts. “Automatic testing of TCP/IP implementations using
QuickCheck”. In: Proceedings of the 8th ACM SIGPLAN Workshop on Erlang, Edinburgh,
Scotland, UK, September 5, 2009. ACM, 2009, pp. 83–92. doi: 10.1145/1596600.1596612
(cit. on pp. 2, 99).

https://arxiv.org/abs/1601.06974
https://tools.ietf.org/html/rfc896
https://doi.org/10.1145/2505305.2505310
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8192
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8192
https://doi.org/10.1007/s11227-014-1317-4
https://doi.org/10.1007/978-3-540-39406-8_2
https://doi.org/10.1145/357172.357178
https://doi.org/10.1145/2034654.2034663
https://doi.org/10.1145/1596600.1596612

128 Bibliography

[145] Karl Pearson. “Note on regression and inheritance in the case of two parents”. In:
Proceedings of the Royal Society of London 58 (1895), pp. 240–242 (cit. on p. 69).

[146] Amir Pnueli. “The temporal logic of programs”. In: 18th Annual Symposium on Foun-
dations of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977.
IEEE Computer Society, 1977, pp. 46–57. doi: 10.1109/SFCS.1977.32 (cit. on p. 16).

[147] Amir Pnueli and Lenore Zuck. “Verification of multiprocess probabilistic protocols”. In:
Distributed Computing 1.1 (1986), pp. 53–72. issn: 1432-0452. doi: 10.1007/BF01843570
(cit. on p. 58).

[148] Nicolás Poggi, David Carrera, Ricard Gavaldà, Eduard Ayguadé, and Jordi Torres. “A
methodology for the evaluation of high response time on e-commerce users and sales”.
In: Information Systems Frontiers 16.5 (2014), pp. 867–885. doi: 10.1007/s10796-012-
9387-4 (cit. on p. 1).

[149] Rob Pooley and Peter King. “The unified modelling language and performance engi-
neering”. In: IEE Proceedings-Software 146.1 (1999), pp. 2–10 (cit. on p. 103).

[150] Stacy J. Prowell. “JUMBL: A tool for model-based statistical testing”. In: 36th Hawaii In-
ternational Conference on System Sciences (HICSS-36 2003), Proceedings, January 6-9, 2003,
Big Island, HI, USA. IEEE Computer Society, 2003, p. 337. doi: 10.1109/HICSS.2003.
1174916 (cit. on p. 98).

[151] Santiago Hernández Ramos, M. Teresa Villalba, and Raquel Lacuesta. “MQTT secu-
rity: a novel fuzzing approach”. In: Wireless Communications and Mobile Computing 2018
(2018). doi: 10.1155/2018/8261746 (cit. on p. 105).

[152] A.C. Rencher and W.F. Christensen. Methods of Multivariate Analysis. third. Wiley Series
in Probability and Statistics. John Wiley & Sons, 2012. isbn: 9781118391679 (cit. on
pp. 68, 70).

[153] Rina and Sanjay Tyagi. “A comparative study of performance testing tools”. In: Interna-
tional Journal of Advanced Research in Computer Science and Software Engineering Research
3.5 (2013), pp. 1300–1307 (cit. on p. 102).

[154] Eduardo Roloff, Matthias Diener, Alexandre Carissimi, and Philippe Olivier Alexandre
Navaux. “High performance computing in the cloud: deployment, performance and
cost efficiency”. In: 4th IEEE International Conference on Cloud Computing Technology and
Science Proceedings, CloudCom 2012, Taipei, Taiwan, December 3-6, 2012. IEEE Computer
Society, 2012, pp. 371–378. doi: 10.1109/CloudCom.2012.6427549 (cit. on p. 105).

[155] F. Rosenberg and S. Dustdar. “Business rules integration in BPEL - a service-oriented
approach”. In: Seventh IEEE International Conference on E-Commerce Technology (CEC
2005), 19-22 July 2005, München, Germany. IEEE Computer Society, 2005, pp. 476–479.
doi: 10.1109/ICECT.2005.25 (cit. on pp. 25, 26).

[156] Florian Rosenberg and Schahram Dustdar. “Design and implementation of a service-
oriented business rules broker”. In: 7th IEEE International Conference on E-Commerce
Technology Workshops (CEC 2005 Workshops), 19 July 2005, München, Germany. IEEE Com-
puter Society, 2005, pp. 55–63. doi: 10.1109/CECW.2005.10 (cit. on p. 25).

[157] Ronald G. Ross. Principles of the Business Rule Approach. Boston, MA, USA: Addison-
Wesley Professional, 2003. isbn: 978-0201788938. doi: 10.1016/j.ijinfomgt.2003.
12.007 (cit. on p. 26).

[158] Colin Runciman, Matthew Naylor, and Fredrik Lindblad. “SmallCheck and lazy Small-
Check: automatic exhaustive testing for small values”. In: Proceedings of the 1st ACM
SIGPLAN Symposium on Haskell, Haskell’08, Victoria, BC, Canada, 25 September 2008.
ACM, 2008, pp. 37–48. isbn: 978-1-60558-064-7. doi: 10.1145/1411286.1411292 (cit.
on p. 13).

https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/BF01843570
https://doi.org/10.1007/s10796-012-9387-4
https://doi.org/10.1007/s10796-012-9387-4
https://doi.org/10.1109/HICSS.2003.1174916
https://doi.org/10.1109/HICSS.2003.1174916
https://doi.org/10.1155/2018/8261746
https://doi.org/10.1109/CloudCom.2012.6427549
https://doi.org/10.1109/ICECT.2005.25
https://doi.org/10.1109/CECW.2005.10
https://doi.org/10.1016/j.ijinfomgt.2003.12.007
https://doi.org/10.1016/j.ijinfomgt.2003.12.007
https://doi.org/10.1145/1411286.1411292

Bibliography 129

[159] Ahmad A. Saifan and Jürgen Dingel. “A survey of using model-based testing to im-
prove quality attributes in distributed systems”. In: Advanced Techniques in Computing
Sciences and Software Engineering, Volume II of the proceedings of the 2008 International
Conference on Systems, Computing Sciences and Software Engineering (SCSS), part of the
International Joint Conferences on Computer, Information, and Systems Sciences, and En-
gineering, CISSE 2008, Bridgeport, Connecticut, USA. Springer, 2008, pp. 283–288. doi:
10.1007/978-90-481-3660-5_48 (cit. on p. 97).

[160] John Salvatier, Thomas V. Wiecki, and Christopher Fonnesbeck. “Probabilistic program-
ming in Python using PyMC3”. In: PeerJ Computer Science 2 (2016), e55. doi: 10.7717/
peerj-cs.55 (cit. on p. 100).

[161] Jana Schmidt, Asghar Ghorbani, Andreas Hapfelmeier, and Stefan Kramer. “Learning
probabilistic real-time automata from multi-attribute event logs”. In: Intelligent Data
Analysis 17.1 (2013), pp. 93–123. doi: 10.3233/IDA-120569 (cit. on p. 104).

[162] Richard Schumi, Priska Lang, Bernhard K. Aichernig, Willibald Krenn, and Ru-
pert Schlick. “Checking response-time properties of web-service applications under
stochastic user profiles”. In: Testing Software and Systems - 29th IFIP WG 6.1 International
Conference, ICTSS 2017, St. Petersburg, Russia, October 9-11, 2017, Proceedings. Vol. 10533.
Lecture Notes in Computer Science. Springer, 2017, pp. 293–310. doi: 10.1007/978-
3-319-67549-7_18 (cit. on pp. 10, 65, 72, 73, 97, 107).

[163] Koushik Sen, Mahesh Viswanathan, and Gul Agha. “On statistical model checking of
stochastic systems”. In: Computer Aided Verification, 17th International Conference, CAV
2005, Edinburgh, Scotland, UK, July 6-10, 2005, Proceedings. Vol. 3576. Lecture Notes in
Computer Science. Springer, 2005, pp. 266–280. doi: 10.1007/11513988_26 (cit. on
p. 112).

[164] Koushik Sen, Mahesh Viswanathan, and Gul Agha. “Statistical model checking of
black-box probabilistic systems”. In: Computer Aided Verification, 16th International Con-
ference, CAV 2004, Boston, MA, USA, July 13-17, 2004, Proceedings. Vol. 3114. Lecture
Notes in Computer Science. Springer, 2004, pp. 202–215. doi: 10.1007/978-3-540-
27813-9_16 (cit. on p. 100).

[165] Koushik Sen, Mahesh Viswanathan, and Gul A. Agha. “VESTA: a statistical model-
checker and analyzer for probabilistic systems”. In: Second International Conference on
the Quantitative Evaluaiton of Systems (QEST 2005), 19-22 September 2005, Torino, Italy.
IEEE Computer Society, 2005, pp. 251–252. doi: 10.1109/QEST.2005.42 (cit. on
p. 101).

[166] Che-Hua Shih, Juinn-Dar Huang, and Jing-Yang Jou. “Stimulus generation for interface
protocol verification using the nondeterministic extended finite state machine model”.
In: Tenth IEEE International High-Level Design Validation and Test Workshop 2005, Napa
Valley, CA, USA, November 30 - December 2, 2005. IEEE Computer Society, 2005, pp. 87–
93. doi: 10.1109/HLDVT.2005.1568819 (cit. on p. 29).

[167] Connie U. Smith. “Software performance engineering then and now: A position paper”.
In: Proceedings of the 2015 Workshop on Challenges in Performance Methods for Software
Development, WOSP-C’15, Austin, TX, USA, January 31, 2015. ACM, 2015, pp. 1–3. doi:
10.1145/2693561.2693567 (cit. on p. 103).

[168] Connie U. Smith. “Software performance engineering tutorial”. In: 16th International
Computer Measurement Group Conference, December 10-14, 1990, Orlando, FL, USA, Pro-
ceedings. Computer Measurement Group, 1990, pp. 1311–1318 (cit. on p. 103).

https://doi.org/10.1007/978-90-481-3660-5_48
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.3233/IDA-120569
https://doi.org/10.1007/978-3-319-67549-7_18
https://doi.org/10.1007/978-3-319-67549-7_18
https://doi.org/10.1007/11513988_26
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1109/QEST.2005.42
https://doi.org/10.1109/HLDVT.2005.1568819
https://doi.org/10.1145/2693561.2693567

130 Bibliography

[169] Connie U. Smith and Lloyd G. Williams. “Performance engineering evaluation of
object-oriented systems with SPE·ED”. In: Computer Performance Evaluation: Modelling
Techniques and Tools, 9th International Conference, St. Malo, France, June 3-6, 1997, Proceed-
ings. Vol. 1245. Lecture Notes in Computer Science. Springer, 1997, pp. 135–154. doi:
10.1007/BFb0022203 (cit. on p. 104).

[170] Harry M. Sneed and Shihong Huang. “The design and use of WSDL-Test: a tool for
testing web services”. In: Journal of Software Maintenance 19.5 (2007), pp. 297–314. doi:
10.1002/smr.354 (cit. on p. 98).

[171] M. Sutton, A. Greene, and P. Amini. Fuzzing: Brute Force Vulnerability Discovery. Pearson
Education, 2007. isbn: 9780321680853 (cit. on p. 112).

[172] Jiliang Tang, Salem Alelyani, and Huan Liu. “Feature selection for classification: A
review”. In: Data Classification: Algorithms and Applications. CRC Press, 2014, pp. 37–64
(cit. on p. 69).

[173] Martin Tappler, Bernhard K. Aichernig, and Roderick Bloem. “Model-based testing IoT
communication via active automata learning”. In: 2017 IEEE International Conference on
Software Testing, Verification and Validation, ICST 2017, Tokyo, Japan, March 13-17, 2017.
IEEE Computer Society, 2017, pp. 276–287. doi: 10.1109/ICST.2017.32 (cit. on
pp. 66, 105).

[174] Robert E Tarjan. Lecture 10: more Chernoff bounds, sampling, and the Chernoff + Union bound
method. 2009. url: http://www.cs.princeton.edu/courses/archive/fall09/
cos521/Handouts/probabilityandcomputing.pdf (visited on 2018-09-19) (cit. on
p. 17).

[175] Maurice H. Ter Beek, Antonio Bucchiarone, and Stefania Gnesi. “Formal methods for
service composition”. In: Annals of Mathematics, Computing & Teleinformatics 1.5 (2007),
pp. 1–10 (cit. on p. 98).

[176] Dinesh Thangavel, Xiaoping Ma, Alvin C. Valera, Hwee-Xian Tan, and Colin Keng-
Yan Tan. “Performance evaluation of MQTT and CoAP via a common middleware”.
In: 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP), Singapore, April 21-24, 2014. IEEE, 2014, pp. 1–6. doi:
10.1109/ISSNIP.2014.6827678 (cit. on p. 105).

[177] Pascale Thévenod-Fosse and Hélène Waeselynck. “An investigation of statistical soft-
ware testing”. In: Journal of Software Testing, Verification and Reliability (STVR) 1.2 (1991),
pp. 5–25 (cit. on p. 100).

[178] G.J. Tretmans and Hendrik Brinksma. “Côte de resyste – automated model based test-
ing”. In: 3rd PROGRESS Workshop on Embedded Systems 2002 - Utrecht, Netherlands, 24
Oct 2002. STW Technology Foundation, 2002, pp. 246–255. isbn: 90-73461-34-0 (cit. on
p. 97).

[179] Mark Utting and Bruno Legeard. Practical Model-Based Testing - A Tools Approach. Mor-
gan Kaufmann, 2007. isbn: 978-0-12-372501-1 (cit. on pp. 2, 97).

[180] Mark Utting, Alexander Pretschner, and Bruno Legeard. “A taxonomy of model-based
testing approaches”. In: Journal of Software Testing, Verification and Reliability (STVR) 22.5
(2012), pp. 297–312. doi: 10.1002/stvr.456 (cit. on pp. 2, 3, 97).

[181] Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram Schulte, Nikolai Till-
mann, and Lev Nachmanson. “Model-based testing of object-oriented reactive systems
with Spec Explorer”. In: Formal Methods and Testing, An Outcome of the FORTEST Net-
work, Revised Selected Papers. Vol. 4949. Lecture Notes in Computer Science. Springer,
2008, pp. 39–76. doi: 10.1007/978-3-540-78917-8_2 (cit. on p. 97).

https://doi.org/10.1007/BFb0022203
https://doi.org/10.1002/smr.354
https://doi.org/10.1109/ICST.2017.32
http://www.cs.princeton.edu/courses/archive/fall09/cos521/Handouts/probabilityandcomputing.pdf
http://www.cs.princeton.edu/courses/archive/fall09/cos521/Handouts/probabilityandcomputing.pdf
https://doi.org/10.1109/ISSNIP.2014.6827678
https://doi.org/10.1002/stvr.456
https://doi.org/10.1007/978-3-540-78917-8_2

Bibliography 131

[182] Benjamin Vedder, Henrik Eriksson, Daniel Skarin, Jonny Vinter, and Magnus Jonsson.
“Towards collision avoidance for commodity hardware quadcopters with ultrasound
localization”. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS)
2015, Denver, Colorado, USA, Jun 9-12, 2015. IEEE. 2015, pp. 193–203. doi: 10.1109/
ICUAS.2015.7152291 (cit. on p. 99).

[183] Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen. “A likelihood-ratio test for iden-
tifying probabilistic deterministic real-time automata from positive data”. In: Grammat-
ical Inference: Theoretical Results and Applications, 10th International Colloquium, ICGI 2010,
Valencia, Spain, September 13-16, 2010. Proceedings. Vol. 6339. Lecture Notes in Computer
Science. Springer, 2010, pp. 203–216. doi: 10.1007/978-3-642-15488-1_17 (cit. on
p. 104).

[184] Pallavi M S Vinayak Hegde. “Web performance testing: methodologies, tools and chal-
lenges”. In: International Journal of Scientific Engineering and Research (IJSER) 2 (1 2014).
issn: 2347–3878 (cit. on p. 102).

[185] Yusuke Wada and Shigeru Kusakabe. “Performance evaluation of a testing frame-
work using QuickCheck and Hadoop”. In: Journal of Information Processing 20.2 (2012),
pp. 340–346. doi: 10.2197/ipsjjip.20.340 (cit. on p. 13).

[186] Gerd Wagner, Grigoris Antoniou, Said Tabet, and Harold Boley. “The abstract syntax
of RuleML - towards a general web rule language framework”. In: 2004 IEEE/WIC/ACM
International Conference on Web Intelligence (WI 2004), 20-24 September 2004, Beijing, China.
IEEE Computer Society, 2004, pp. 628–631. doi: 10.1109/WI.2004.134 (cit. on pp. 27,
98).

[187] Abraham Wald. Sequential Analysis. Courier Corporation, 1973 (cit. on pp. 2, 8, 17, 101).

[188] S. S. J. Wang and M. P. Wand. “Using Infer.NET for statistical analyses”. In: The Amer-
ican Statistician 65.2 (2011), pp. 115–126. doi: 10.1198/tast.2011.10169 (cit. on
p. 100).

[189] Robert J. Weber. “Statistical software testing with parallel modeling: A case study”. In:
15th International Symposium on Software Reliability Engineering (ISSRE 2004), 2-5 Novem-
ber 2004, Saint-Malo, Bretagne, France. IEEE Computer Society, 2004, pp. 35–44. doi:
10.1109/ISSRE.2004.37 (cit. on p. 100).

[190] Brady T. West, Kathleen B. Welch, and Andrzej T. Galecki. Linear Mixed Models. CRC
Press, 2006. isbn: 9781420010435 (cit. on pp. 19, 113).

[191] Jodie Wetherall and Steve Woodhead. Investigation into a modular rule-based testing
method for testing business rules in scheduling applications. 2008. url: http://gala.
gre.ac.uk/2679/ (visited on 2018-09-19) (cit. on p. 98).

[192] James A. Whittaker and Michael G. Thomason. “A Markov chain model for statistical
software testing”. In: IEEE Transactions on Software Engineering 20.10 (1994), pp. 812–
824. doi: 10.1109/32.328991 (cit. on p. 100).

[193] C. Murray Woodside, Greg Franks, and Dorina C. Petriu. “The future of software per-
formance engineering”. In: International Conference on Software Engineering, ISCE 2007,
Workshop on the Future of Software Engineering, FOSE 2007, May 23-25, 2007, Minneapolis,
MN, USA. IEEE Computer Society, 2007, pp. 171–187. doi: 10.1109/FOSE.2007.32
(cit. on p. 103).

[194] Sewall Wright. “Correlation and causation”. In: Journal of Agricultural Research 20 (1921),
pp. 557–585 (cit. on p. 70).

[195] G. George Yin and Qing Zhang. Continuous-Time Markov Chains and Applications: A
Two-Time-Scale Approach. Vol. 37. Springer Science & Business Media, 2012. isbn:
9781461443469 (cit. on p. 23).

https://doi.org/10.1109/ICUAS.2015.7152291
https://doi.org/10.1109/ICUAS.2015.7152291
https://doi.org/10.1007/978-3-642-15488-1_17
https://doi.org/10.2197/ipsjjip.20.340
https://doi.org/10.1109/WI.2004.134
https://doi.org/10.1198/tast.2011.10169
https://doi.org/10.1109/ISSRE.2004.37
http://gala.gre.ac.uk/2679/
http://gala.gre.ac.uk/2679/
https://doi.org/10.1109/32.328991
https://doi.org/10.1109/FOSE.2007.32

132 Bibliography

[196] Håkan L. S. Younes. “Probabilistic verification for "black-box"systems”. In: Computer
Aided Verification, 17th International Conference, CAV 2005, Edinburgh, Scotland, UK, July
6-10, 2005, Proceedings. Vol. 3576. Lecture Notes in Computer Science. Springer, 2005,
pp. 253–265. doi: 10.1007/11513988_25 (cit. on p. 100).

[197] Håkan L. S. Younes. “Ymer: a statistical model checker”. In: Computer Aided Verification,
17th International Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005, Proceed-
ings. Vol. 3576. Lecture Notes in Computer Science. Springer, 2005, pp. 429–433. isbn:
978-3-540-31686-2. doi: 10.1007/11513988_43 (cit. on p. 101).

[198] Håkan L. S. Younes and Reid G. Simmons. “Probabilistic verification of discrete event
systems using acceptance sampling”. In: Computer Aided Verification, 14th International
Conference, CAV 2002, Copenhagen, Denmark, July 27-31, 2002, Proceedings. Vol. 2404. Lec-
ture Notes in Computer Science. Springer, 2002, pp. 223–235. doi: 10.1007/3-540-
45657-0_17 (cit. on pp. 16, 101).

[199] Jian Yu, Jun Han, Jean-Guy Schneider, Cameron M. Hine, and Steve Versteeg. “A Petri-
net-based virtual deployment testing environment for enterprise software systems”.
In: The Computer Journal 60.1 (2017), pp. 27–44. doi: 10.1093/comjnl/bxw055 (cit. on
p. 105).

[200] Fengling Zhang, Lei Bu, Linzhang Wang, Jianhua Zhao, Xin Chen, Tian Zhang, and
Xuandong Li. “Modeling and evaluation of wireless sensor network protocols by
stochastic timed automata”. In: Electronic Notes in Theoretical Computer Science 296
(2013), pp. 261–277. doi: 10.1016/j.entcs.2013.09.001 (cit. on p. 104).

https://doi.org/10.1007/11513988_25
https://doi.org/10.1007/11513988_43
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1093/comjnl/bxw055
https://doi.org/10.1016/j.entcs.2013.09.001

	1 Introduction
	1.1 Motivation
	1.2 Property-Based Testing
	1.3 Statistical Model Checking
	1.4 Research Context
	1.4.1 Research Projects
	1.4.2 Case Studies

	1.5 Problem Statement and Research Questions
	1.6 Research Methodology
	1.7 Thesis Statements
	1.8 Contributions
	1.9 Publications
	1.10 Structure

	2 Background
	2.1 Property-Based Testing
	2.1.1 Overview
	2.1.2 FsCheck
	2.1.3 Model-Based Testing

	2.2 Statistical Model Checking
	2.2.1 Standard Monte Carlo Simulation
	2.2.2 Monte Carlo Simulation with Chernoff-Hoeffding Bound
	2.2.3 Sequential Probability Ratio Test
	2.2.4 Cumulative Sum

	2.3 Linear Regression
	2.4 Stochastic Timed Automata

	3 Property-Based Testing with Business-Rule Models
	3.1 Overview
	3.2 Business-Rule Models
	3.3 Property-Based Testing with Extended Finite State Machines
	3.3.1 State-Machine Properties
	3.3.2 Example of Model-Based Testing with FsCheck

	3.4 Application-Specific Extensions to the Method
	3.4.1 Translating Business-Rule Models into Extended Finite State Machines
	3.4.2 Switching Between Rule-Engine Models Objects

	3.5 Architecture and Implementation
	3.5.1 Singleton Rule-Engine Models

	3.6 Evaluation
	3.6.1 Settings
	3.6.2 Test Order Manager Case Study
	3.6.3 Test Equipment Manager Case Study
	3.6.4 Further Result

	3.7 Property-Based Testing with External Test-Case Generators
	3.8 Discussion
	3.8.1 Limitations and Threats to Validity
	3.8.2 Future Work

	3.9 Concluding Remarks

	4 Integrating Statistical Model Checking Into Property-Based Testing
	4.1 Overview
	4.2 Example
	4.3 Implementation
	4.4 Evaluation
	4.4.1 Dining Philosophers Case Study
	4.4.2 Randomised Consensus Case Study
	4.4.3 Bluetooth Case Study

	4.5 Concluding remarks

	5 Learning Response-Time Distributions for Extending Functional Models
	5.1 Model-Based Testing for Log Data
	5.1.1 TFMS
	5.1.2 MQTT

	5.2 Learning Response-Time Distributions with Linear Regression
	5.2.1 Data Cleaning and Pre-Processing.
	5.2.2 Feature Selection.
	5.2.3 Model Evaluation.
	5.2.4 Integration of the Response-Time Distributions.

	6 Statistical Model Checking for Predicting and Testing Response-Times
	6.1 Monte Carlo Simulation of the Model for Predicting Response Times
	6.2 Hypothesis Testing of the System-Under-Test for Checking Response-Time Predictions
	6.3 Implementation of the Response-Time Prediction and Testing Method

	7 Evaluation of the Response-Time Prediction and Testing Method
	7.1 TFMS
	7.1.1 Settings.
	7.1.2 Test Order Manager
	7.1.3 Test Equipment Manager
	7.1.4 Run Times of the Method

	7.2 Deployment Testing
	7.3 MQTT
	7.3.1 Settings
	7.3.2 Results
	7.3.3 Run Times of the Method

	7.4 Discussion

	8 Related Work
	8.1 Model-Based Testing of Business-Rule Models within a Property-Based Testing Tool
	8.2 Integrating Statistical Model Checking Into Property-Based Testing
	8.3 Model-Based Prediction and Verification of Performance

	9 Conclusion
	9.1 Research Questions
	9.2 Contributions
	9.3 Conclusions
	9.4 Future Work

	Bibliography

