
Dipl.Ing. Annemarie Harzl, BSc

On the Combination of FOSS and
Kanban - Insights Gained from a Hybrid

Student Free & Open Source Software
Project

DOCTORAL THESIS

to achieve the university degree of

Doktorin der technischen Wissenschaften

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany
Institute of Software Technology
Graz University of Technology

Graz, September 2018

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-
fasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen
als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene
Textdokument ist mit der vorliegenden Dissertation identisch.

Graz, am

Datum Unterschrift

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master‘s thesis.

Graz,

Date Signature

iii

Abstract

Free and Open Source Software (FOSS) and Agile Software Development
(ASD) are both very important software development methods. They have
many success stories and share some similarities. However, there is a lack of
research regarding the comprehensive integration of ASD and FOSS. This
thesis attempts to consolidate these methods and to answer if FOSS and
ASD can be combined successfully and for the benefit of the contributors,
by studying a large hybrid student FOSS project, the Catrobat project.

First, problems the project experienced due to fast growth of the project
and the internationalization of contributors are described and possible so-
lutions are suggested. The implemented solutions enabled the subsequent
Action Research (AR). Second, AR was conducted with one sub-team of
the Catrobat project, and five AR cycles introducing the Kanban method
into the FOSS project were performed. The Kanban practices visualize the
workflow, make policies explicit, limit Work In Progress (WIP), manage flow, and
implement feedback loops were examined during the AR cycles. The journey
of the team and findings of this research are reported.

This thesis describes a real world situation, where Kanban is applied to
a hybrid student FOSS project, and it determines that the combination is
possible and experienced as beneficial by contributors. Study participants
report a positive effect on communication with stakeholders as well as with
other teams due to the use of the Kanban method. They regard their time
acquiring knowledge about Kanban practices as well spent.

This work increases the knowledge about FOSS and ASD. Furthermore, it
can help other FOSS projects to determine, if they want to introduce agile
practices into their workflow and what they could gain from it. If they
decide to do so, it can support them on their journey of adopting new
practices.

iv

Kurzfassung

Free and Open Source Software (FOSS) und Agile Softwareentwicklung
(ASD) sind beide sehr wichtige Softwareentwicklungsmethoden. Beide wei-
sen zahlreiche Erfolgsgeschichten auf und teilen einige Gemeinsamkeiten.
Jedoch gibt es kaum Forschung zur umfassenden Kombination von beiden
Methoden. Diese Doktorarbeit versucht beide Methoden zu vereinen und
die Frage zu beantworten ob FOSS und ASD erfolgreich und zum Nutzen
der Mitwirkenden kombiniert werden können. Zu diesem Zweck wird ein
großes, hybrides studentisches FOSS Projekt, das Catrobat Projekt, unter-
sucht.

Zuerst werden Probleme beschrieben, die durch das schnelle Wachstum
des Projektes und die Internationalisierung der Mitwirkenden entstanden
sind und mögliche Lösungen vorgeschlagen. Die Umsetzung dieser Lösun-
gen ermöglichte die nachfolgende Action Research (AR). Mit einem Team
des Catrobat Projektes wurden fünf AR Zyklen anhand der Kanbanmeth-
ode durchlaufen. Die Kanbanpraktiken Mach Arbeit sichtbar, mach Prozess-
regeln explizit, limitiere den Work in Progress (WIP), manage flow, und imple-
mentiere Feedback-Mechanismen wurden während der AR Zyklen untersucht.
Die Reise des Teams und die Ergebnisse der AR werden beschrieben.

Diese Doktorarbeit beschreibt eine Situation in der echten Welt, in der Kan-
ban auf ein hybrides studentisches FOSS Projekt angewendet wird. Ergeb-
nisse zeigen, dass die Kombination aus Kanban und FOSS möglich ist und
von den Projektmitgliedern als vorteilhaft wahrgenommen wird. Studien-
teilnehmer berichten positive Effekte auf die Kommunikation mit Inter-
essensvertretern und anderen Teams, die auf die Anwendung der Kan-
banmethode zurückzuführen sind. Des Weiteren erachten sie die Zeit, die
sie investiert haben um sich Wissen über Kanban anzueignen als gut in-
vestierte Zeit.

Diese Arbeit vergrößert das Wissen über FOSS und ASD. Darüberhinaus,
kann sie anderen FOSS Projekten dabei helfen zu entscheiden ob sie ag-
ile Praktiken einführen möchten und was sie dadurch gewinnen können.
Darüberhinaus kann diese Arbeit andere Projekte auf ihrem Weg agile
Praktiken einzuführen unterstützen.

v

Thanks/Acknowledgments

First, I would like to thank my adviser, Professor Dr. Wolfgang Slany for
the great opportunity to work on this topic I care so much about, his en-
couraging comments, endless patience, and help in all aspects.

I would also like to thank Professor Brian Fitzgerald PhD, Peggy Gregory
BA MSc PhD, and Professor Helen Sharp for their insightful feedback, ad-
vice and encouraging comments at the XP 2015 PhD Symposium.

During my research and teaching at Graz University of Technology, I had
the opportunity to meet so many wonderful and impressive students and
I am forever grateful to have had these amazing years together with you.
It was a pleasure working with you and you taught me many things! I
would like to thank all my teaching assistants who helped me managing
classes and therefore enabled me to conduct my research alongside teach-
ing. Thanks also to all students of the Catrobat project, you are the project,
you make all these great things possible. Special thanks to the Catrobat
team, who allowed me to conduct research with them, I could not have
asked for a better group of people to take this journey together. Last, but
not least, my sincerest gratitude goes to Stephan Fellhofer, Markus Ho-
bisch, Adrian Schnedlitz , Raphael Sommer, and Florian Winkelbauer, your
impressive passion and great contributions made all this possible.

In addition, I thank all colleagues at the Institute for Software Technol-
ogy, especially Birgit Hofer, Roxane Koitz-Hristov, Elisabeth Orthofer, Anja
Petri, and Petra Pichler.

Finally, I am forever indebted to my parents, my whole family and friends.
I owe you my deepest gratitude, this thesis would have not been possible
without you.

vi

Thanks to the Catrobat team1: Anja Petri, Mario Kolli, Martina Edelhofer,
Maria Schrack, Melanie Kleindienst, Lisa Kehrer, Davor Kirbis, Katharina
Stadlmayr, Alexander Kalchauer, Othmar Ruprecht, Peter Treitler, Thomas
Holzmann, Tom Spiss, Stefan Hohenwarter, Nikolaus Koller, Tobias Grit-
schacher, Oliver Prentner, Sercan Akpolat, Alexander Gütler, Peter Schmidl,
Maximilian Fellner, Ferdinand Knapitsch, Daniel Markart, David Reisen-
berger, Daniel Burtscher, Jörg Hofer, Christian Hofer, Roman Mauhart, Ste-
fan Mayer, Ainul Husna Abdul Muin, Jia Lin Chong, Denise Hoo, Manuel
Zoderer, Martin Oswald, Dietmar Maurer, Christian Lesjak, Christoph Wo-
ergoetter, Safdar Zaman, Johannes Iber, Hans Peter Gugl, Florian Hubner,
Christoph Kahr, David Kikelj, Jakob Strauss, Pulkit Chouhan, Smiai Ous-
sama, Boris Kanjer, Thomas Rosmarin, Stephan Fellhofer, Alex Nicoara,
Bernhard Trapp, Hans-Jürgen Schröttner, Raphael Sommer, Gerald Wag-
ner, Fatin Ghazi, Deena Mugien, Walter Tang, Thomas Loidolt, Christian
Hartinger, Angelika More, Peter Tielsch, Gerald Musser, Roland Dutzler,
Philipp Taferner, Otto Touzil, Max Löffler, Florian Sumann, Andreas Mau-
reder, Manfred Knapp, Tobias Stumpfl, Markus Hobl, Andrea Höfler, Va-
lentin Rock, Herbert Christian Lierzer, Thomas Kaufmann, Michael Pletz,
Jeton Arifi, Matthias Traub, Patrick Koch, Robert Painsi, Daniel Fritzsch,
Dominik Schleicher, Ilija Simic, Majda Osmic, Marco Steger, Maximilian
Sachs, Michael Münzer, Michael Rieder, Peter Kapfer, Hannes Hasenauer,
Gerhild Grinschgl, Andreas Frühwirt, Christof Stromberger, Markus Schmid,
Mattias Rauter, Stefan Simon, Stefan Oberacher, Vesna Krnjic, Simge Sez-
gin, Artur Termenji, Samitha Priyanath Jayathilaka, Florian Schitter, Markus
Höfer, Petra Pupovac, Ingrid Reip, Patman Ghazi, Suemeyra Mutlu, Bern-
hard Ruttinger, Julia Schönhart, Thomas Huber, Michael Rabko, Daniela
Zierler, Lukas Krisper, Eberhard Ferner, Gerhard Neuhold, Rudolf Andreas
Stumptner, Severin Holzer-Graf, Philipp Koncar, Sandra Fuchs, Thomas
Kugi, Arno Stauder, Tomislav Ausperger, Heimo Ernst Bischofter, Tobias
Oblak, Gerald Gsellmann, Norbert Spot, Sachi Alana Williamson, Saif Al-
deen Alsaifi, Angelika Droisner, Thomas Gruber, Hakan Özkan, Fabian
Tschiatschek, Lukas Resch, Andreas Abraham, Michael Peitler, Bianca Teufl,
Daniel Neuhold, Domenik Melcher, Elisabeth Heschl, Matthias Sebastian
Schlesinger, Rene Obendrauf, Rudolf Josef Wagner, Armin Hutzler, Va-
lentin Kassarnig, Johannes Singer, Stefan Pointner, Andreas Voraberger,

1http://developer.catrobat.org/credits

vii

Alexander Oberegger, Florian Winkelbauer, Karl Koch, Lukas Prokop, Phil-
ipp Weissensteiner, David Kolb, Martin Burtscher, Dominik Mößlang, Phil-
ipp Kremers, Dominik Widnig, Alexander Oberbucher, Christoph Pilz, Da-
vid Strohmaier, Ewald Moitzi, Gottfried Selenko, Markus Hobisch, Mat-
thias Eichhaber, Michael Koweindl, Samir Ramadani, Stefan Padureanu,
Hedwig Höller, Eva-Maria Trummer, Stefan Galler, Simone Lemmerer, Chris-
topher Jelinek, Abdelbasset Amara, Thomas Prem, Paul Melbinger, Maria
Aumann, Rayna Nikolova, Hans Dieter Knaus, Franz Schreiner, Peter Pran-
ter, Jakob Unterkofler, Stefan Jaindl, Bernhard Spitzer, Dominik Ziegler,
Daniel Pail, Christine Pichler, Manuel Wallner, Thomas Fuchs, Marco Meiser,
Andreas Müller, Viktoria Schlaipfer, Armend Zeqiraj, Stefan Neureiter, Tho-
mas Kriechbaumer, Andreas Hofbauer, Philipp Neidhöfer, Richard Schumi,
Max Reinthaler, Max Schafzahl, Daniel Neuhold, Florian Winkelbauer, Mi-
chael Stradner, Artur Knaus, Manuel Jelinek, Martin Erb, Armin Wieser,
Marko Burazer, Matthias Schlesinger, Markus Hartmair, Christopher Im-
mervoll, Christian M. Hofer, Elena Mashkina, Roxane Koitz, Christian Burg-
hard, Thomas Laubreiter, Namik Delilovic, Jasmin Salihovic, Gregor Sitter,
Mirhet Saracevic, Tatiyana Domanova, Roland Urbano, Patrick Trummer,
Ajdin Vihric, Rudolf Weißenbacher, Johannes Lüftenegger, Andreas Gladik,
Marc Slavec, Ralph Samer, Bernhard Winter, Daniel Ladenhauf, Karl Koch,
Theresa Egger, Sebastian Krell, Thomas Anderhuber, Manuel Polzhofer,
Adrian Schnedlitz, Andreas Voraberger, Stefan Pointner, Andrej Müller,
Tobias Ibounig, Johannes Kühnel, Bernd Baumann, Gerald Lohnauer, Tho-
mas Kohl, Thomas Mauerhofer, Daniel Ellmeier, Lukas Radacher, David
Prott, Stephan Frühwirt, Christian Benkovic, Alexander Wieland, Fabian
Hartl, Patrik Maier, Claudio Kirchmair, Michael Herold, Jürgen Wurzinger,
Lukas Mayr, Nikolaus Tiesenhausen, Thomas Fötschl, Christian Reisinger,
Thomas Schranz, Phillip Goriup, Markus Nager, Philipp Pfleger, Andrew
Deutschmann, Matthias Müller, Wolfgang Wintersteller, Alexander Ober-
bucher, Patrick Radkohl, Werner Arnus, Gerulf Binder, Martin Prinz, Marc
Schober, Darjan Salaj, Thomas Lienhart, Laura Bebek, Illya Boyko, Aiman
Awwad, Michael Grebien, Anna Lickl, Mario Lins, David Marogy, Manuel
Haid, Christof Rabensteiner, Bernadette Spieler, Patrick Radl, André Trop-
per, Benjamin Bristow, Christian Schindler, Pascal Steiner, Bianca Jakobitsch,
Samuel Sprung, Josef Filzmaier, Christian Jung, Johannes Zenz, Michael
Pittner, Philipp Eisner, Sebastian Schrimpf, Zulfiqar Ali, Richard Aigner,
Georg Schober, Stefan Bürscher, Kirshan Kumar Luhana, Robert Riedl, Amel

viii

Hamidovic, Adam Ujvari, David Wittenbrink, Thomas Hirsch, Lukas Fritz,
Marco Wallner, Florian Weißensteiner, Lukas Loibnegger, Amra Dzombic,
Wolfgang Karl, Paul Schreiner, Andrej Knaus, Michael Lang, Oliver Zott,
Mario Pagger, Markus Reiter-Haas, Thomas Gruber, Patrick Klampfl, Denis
Munter, Fabian Kofler, Sebastian Gabl, Tobias Striemitzer, Jochen Flachhu-
ber, Harald Schaffernak, Joachim Lesser, David Niederkofler, Martin Ker-
schbaumer, Alexander Kargl, Eric Gergely, Dominik Lindenbauer, Patrik
Hutter, Gregor Liebisch, David Kienreich, Christoph Pozvek, Thomas Leh,
Manuel Schweiger, Reinhold Seiss, Stefan Reichnauer, Julia Viehberger,
Ines Vorraber, Lukas Pichler, Christian Leopold, Benjamin Wullschleger,
Clemens Stary, Dino Keskic, Florian Schneider, Jakov Matic, Christian Hu-
ber, Peter Waldert, Jiaqi Ning, Anja Reibenbacher, Matthias Fuchs, Thomas
Koinig, Josef Kraxner, Johanna Stefanzl, Patrizia Kamp, Kevin Haslinger,
Nishant Thapliyal, Pushkar Sharma, Abduqodiri Qurbonzoda, Nikolaus
Steininger, Christopher Lamprecht, and Michael Musenbrock.

ix

Contents

1. Introduction 1
1.1. Research Questions . 2

1.2. Contributions of this Thesis . 3

1.3. Outline . 4

2. Agile Software Development Methods 5
2.1. Extreme Programming (XP) . 10

2.1.1. XP Values . 11

2.1.2. XP Principles . 12

2.1.3. XP Practices . 13

2.2. Kanban . 20

2.2.1. Kanban Principles . 21

2.2.2. Little’s Law . 22

2.2.3. Kanban Practices . 23

3. Free Libre Open Source Software 29
3.1. Free and Open Source Software (FOSS) Definitions 30

3.1.1. Free Software . 31

3.1.2. Open Source Software 32

3.1.3. Free Software versus Open Software 34

3.1.4. Other Terms for Free and Open Source Software . . . 35

3.2. The FOSS Development Model / Methodology 36

3.3. FOSS Motivation . 39

3.4. FOSS Characteristics . 40

3.5. FOSS Criticism . 44

4. Catrobat 47
4.1. Catrobat History . 50

4.2. Catrobat Characteristics . 51

xi

Contents

4.3. Motivation in FOSS and Catrobat 56

4.4. Software Development Approach 62

4.5. Selection of the Project . 65

4.6. Selection of the Team . 66

4.7. Selection of Kanban . 71

5. Related Work 73
5.1. Educational Settings . 73

5.1.1. Kanban and Academia 73

5.1.2. FOSS and Academia . 75

5.2. FOSS and Agile Software Development 78

5.3. Summary . 84

6. Action Research 85
6.1. Basics of Action Research . 85

6.2. Study Approach . 88

6.3. Selection of Action Research . 89

6.4. Researcher Role . 89

7. Getting Ready for Combining FOSS and Kanban 91
7.1. Abstract . 91

7.2. Introduction . 92

7.3. Related Work . 94

7.4. Optimizing Services for Distributed Participation 94

7.4.1. User Management . 95

7.4.2. Communication . 96

7.4.3. Agile Development Management 98

7.4.4. Knowledge Management 100

7.5. Lessons Learned . 102

7.5.1. Human Related . 102

7.5.2. Technology Related . 102

7.6. Future Work . 103

7.7. Conclusion . 103

8. Combining FOSS and Kanban: An Action Research 107
8.1. Background . 107

8.2. Study Participants . 107

xii

Contents

8.3. Action Research . 108

8.3.1. Data Sources . 109

8.3.2. Data Analysis . 109

8.4. Action Research Cycles . 110

8.4.1. Diagnosing . 110

8.4.2. Cycle Zero . 111

8.4.3. First Cycle . 114

8.4.4. Second Cycle . 115

8.4.5. Third Cycle . 116

8.4.6. Fourth Cycle . 131

8.4.7. Fifth Cycle . 134

8.5. Analysis of Usage of Agile Practices 144

9. Results and Discussion 153
9.1. Results . 153

9.2. Threats to Validity . 155

10.Conclusion and Future Work 159
10.1. Conclusion . 159

10.2. Future Work . 159

A. Papers 163

B. Questionnaires 167

C. Supplementary Material 207

Bibliography 217

xiii

List of Figures

2.1. Modern resolution for all projects 6

2.2. Modern resolution agile versus waterfall from FY2011-2015 . 7

2.3. Waterfall Model . 8

2.4. Kanban board . 24

2.5. Kanban types of work . 25

3.1. Structure and roles in FOSS communities 42

4.1. Pocket Code . 48

4.2. Pocket Paint . 49

4.3. Catrobat Organigram . 51

4.4. Contributions to other FOSS communities 54

4.5. Structure and roles in FOSS communities 55

4.6. Structure and roles in the Catrobat community 55

4.7. Motivators in General 1 . 58

4.8. Motivators for Catrobat members in General 2 59

4.9. Motivators in Catrobat 1 . 60

4.10. Motivators in Catrobat 2 . 61

4.11. Agile knowledge in Catrobat 63

4.12. Agile experience in Catrobat 64

4.13. Team size in Catrobat . 67

4.14. Age distribution in Catrobat . 68

4.15. Age distribution in AR team 68

4.16. Education in Catrobat . 69

4.17. Education in AR team . 69

4.18. Fields of study in Catrobat . 70

4.19. Fields of study in AR team . 70

5.1. Learning of Team Work Competencies with Kanban 75

xv

List of Figures

6.1. The Cyclical Process of Action Research 86

7.1. Default Jira workflow . 98

7.2. Customized Jira workflow . 99

7.3. Areas for improvement selected by the survey participants . . 104

8.1. Exemplary stakeholder analysis 113

8.2. Desired versus actual visualization 117

8.3. Estimated tickets with story points 124

8.4. Estimated tickets with story points desired value 125

8.5. Estimated and desired tickets with T-shirt sizes 126

8.6. Usefulness of story points estimation 127

8.7. Usefulness of T-Shirt size estimation 128

8.8. New workflow . 132

8.9. New Jira workflow . 134

8.10. The team’s CFD . 135

8.11. Is Kanban knowledge beneficial to project work 136

8.12. Is Kanban knowledge beneficial to other work 137

8.13. Is Kanban beneficial to communication to stakeholders 138

8.14. Is Kanban beneficial to communication in team 139

8.15. Time spent learning Kanban well spent? 140

8.16. Usage of customer acceptance tests 147

8.17. Usage of test-first design . 147

8.18. Usage of pair programming . 148

8.19. Usage of short releases . 148

8.20. Usage of meeting . 149

8.21. Usage of growth . 149

8.22. Usage of artifact reduction . 150

8.23. Morale . 150

8.24. Usage of measuring flow . 151

C.1. Usage of unit tests . 208

C.2. Usage of continuous integration 208

C.3. Usage of refactoring . 209

C.4. Usage of release planning . 209

C.5. Usage of on-site customer . 210

C.6. Usage of coding standard . 210

xvi

List of Figures

C.7. Usage of collective code ownership 211

C.8. Usage of sustainable pace . 211

C.9. Usage of simple design . 212

C.10.Usage of metaphor . 212

C.11.Usage of lessons learned . 213

C.12.Usage of visualize workflow . 213

C.13.Usage of WIP . 214

C.14.Usage of making policies explicit 215

xvii

1. Introduction

Free and Open Source Software Development (FOSSD) and Agile Software
Development (ASD) have proven to be successful ways to develop soft-
ware and both have been researched a lot since the publication of the Agile
Manifesto in 2001 (Dingsøyr et al., 2012; Crowston, Wei, et al., 2012). Re-
search about agile topics includes, for example, the adoption of agile meth-
ods (Boehm, 2002), implementation of agile methods in distributed set-
tings (Boland and Fitzgerald, 2004; Ramesh et al., 2006), and research about
Test Driven Development (TDD) (Fucci and Turhan, 2013). Research about
FOSSD includes, for example, motivational factors and participation in Free
and Open Source Software (FOSS) projects (Bonaccorsi and Rossi, 2006).
Not only research, also ASD and FOSSD themselves flourished. Within the
last two decades FOSSD and ASD increased in popularity and by now are
integral processes in software development (Dingsøyr et al., 2012; Crow-
ston, Wei, et al., 2012). Although some studies have been conducted about
combining some aspects of FOSS and ASD (Deshpande and Riehle, 2008;
Düring, 2006a; Ahmad, Liukkunen, and Markkula, 2014; MacKellar, Sabin,
and Tucker, 2015; Koch, 2004), review of literature showed no studies com-
prehensively combining them. This is also supported by the work of Gan-
domani et al. (2013).

Already in 2003 and 2004 Warsta and Abrahamsson (2003) and Koch (2004)
showed that FOSSD and the definition of ASD methods are rather close.
However, in 2009 research about agile development in the context of open
source software was still identified as a future research area by Ågerfalk,
Fitzgerald, and Slaughter (2009). The systematic literature review by Gan-
domani et al. (2013) in 2013 on relationships between ASD and FOSSD
showed that there is still a gap in literature about the comprehensive com-
bination of these methodologies. Nevertheless, the results of Gandomani
et al. (2013) indicate that ASD can support FOSSD, mainly because both

1

1. Introduction

approaches share several concepts and principles. This gap in literature
and the ever increasing use of ASD and FOSSD in industry (Lerner and Ti-
role, 2002; DeKoenigsberg, 2008; VersionOne, 2015) and education (Casson
and Hawthorn, 2011; Ahmad, Liukkunen, and Markkula, 2014; MacKellar,
Sabin, and Tucker, 2015; Pinto et al., 2017) show that there is a need for a
more detailed view of both matters.

1.1. Research Questions

The goal of this thesis is to answer the questions if ASD methods, specifi-
cally the Kanban Method (Anderson, 2010) can be successfully applied to
a specific real world FOSS project and if project members can benefit from
it. Another goal is to determine how the agile process and its introduction
into a FOSS project can be customized to better fit the needs of the project
and its contributors. The following Research Questions will be answered:

1. Research Question (RQ)1 Can FOSS and ASD be comprehensively
combined?

2. RQ2 Can FOSS projects benefit from using agile methods like the
Kanban Method? To answer this question the focus will be split on
different aspects and three sub-questions will be answered.

• RQ2.1 Do FOSS contributors, who are coached in the Kanban
Method, experience this knowledge as beneficial to their work?

• RQ2.2 Do interaction or communication during meetings change
with the use of the Kanban Method?

• RQ2.3 Do FOSS contributors regard their time acquiring Kanban
knowledge well spent?

Because FOSS contributors time is very limited, it is not only interesting
to know, if Kanban is experienced as beneficial (see RQ2.1), but also if
it is so beneficial to their work, that contributors are willing to sacrifice
programming time to learn about Kanban.

As a real world case a hybrid student FOSS project, which is situated at
Graz University of Technology, was selected. Out of the whole project (con-
sisting of more than 100 contributors and more than eight teams) one team

2

1.2. Contributions of this Thesis

was chosen to participate in the study, because conducting the study with
the whole project at once, would not have been feasible. However, one part
of the thesis was done for the whole project. This part is described in Chap-
ter 7. The fact that the FOSS project was situated at the same university as
the researcher, provided the opportunity to observe the research partici-
pants in their natural context and to conduct participatory Action Reseach
(AR) with them. AR provides the possibility to pursue scientific outcomes
and practical outcomes for the research participants at the same time. As
ASD method the Kanban Method (Anderson, 2010; Leopold and Kalte-
necker, 2013) was chosen, because it is the most adaptive method (Kniberg
and Skarin, 2010). The reasoning behind choosing this specific project, AR,
and Kanban for this thesis will be explained in more detail in later chap-
ters. The question, if the Kanban Method is an agile or lean approach or
if the terms agile and lean are interchangeable or not (Fitzgerald, Musial,
and Stol, 2014), is not relevant for this thesis, and will therefore not be
discussed.

1.2. Contributions of this Thesis

This thesis increases the knowledge about ASD and FOSSD, and the pos-
sible integration of both, by applying Kanban to a hybrid student FOSS
project. The main contributions of this thesis are:

• It describes a real world situation, where Kanban is applied to a hy-
brid student FOSS project.

• It determines that it is possible to comprehensively combine ASD and
FOSS, in a specific project.

• It suggests two new Kanban practices specifically targeted at FOSS
projects and their characteristics, which can support FOSS projects in
introducing Kanban.

• It describes five AR cycles, discovering more details about combining
Kanban and FOSS.

• It determines that the combination is experienced as beneficial by
contributors. In fact, so beneficial that some study participants use
personal Kanban to manage all their tasks.

3

1. Introduction

• It reports a positive change in communication and interaction to other
teams and stakeholders due to the use of the Kanban method.

• It shows, that contributors regard their time learning about Kanban
as worth their while.

1.3. Outline

The rest of the thesis is organized as follows: Chapter 2 explains differ-
ent software development methods with a special focus on ASD methods.
Methods relevant for this thesis are explained in greater detail. Chapter 3

discusses different types of Free and Open Source Software and the char-
acteristics of Free and Open Source Software Development. The Free and
Open Source Software project, which is examined in this thesis, is intro-
duced in Chapter 4. Related work is presented in Chapter 5. Chapter 6 in-
troduces the research methodology used in this thesis. Chapter 7 deals with
the lessons learned during the introduction of processes and tools in the
whole organization. The introduction of these processes and tools enabled
the Action Research cycles conducted with one team, which are described
in Chapter 8. The results and threats to validity of the Action Research are
presented in Chapter 9. In Chapter 10 conclusions and future work are dis-
cussed. Appendix A includes the publications about the research and the
author’s contributions to them, as well as the questionnaires B used for this
thesis. Appendix C contains supplementary material.

4

2. Agile Software Development
Methods

There exist various approaches to software development, more traditional
ones like the waterfall or V-model and newer ones like ASD. All of them
have something in common, the four control variables. In software devel-
opment projects four variables are important to control the outcome. These
four are:

• Cost
• Time
• Quality and
• Scope

Managers and customers should determine the values of three of these
four, the project team should choose the fourth value. If managers or cus-
tomers try to prescribe all four values, usually quality of the software suf-
fers. Another effect of trying to control all variables is, that the product
is delivered late, which happens quite often in software development. The
CHAOS Report1 shows that still many software projects fail or are chal-
lenged and only about a third is successful. Figure 2.1 shows the mod-
ern resolution for all software projects. Modern resolution means that the
project was finished not only on time and within the budget, but also with
a satisfactory result. Figure 2.1 shows an up-and-down in the percentage
of successful, challenged and failed projects, but what remains the same is
the general distribution of projects. In general the majority, around 50%, of
all projects is challenged, around a third is successful and all other projects
fail. For agile projects the picture is different. Figure 2.2 compares agile
and waterfall projects and agile projects are far more often successful than

1http://www.standishgroup.com/ – retrieved on 10.01.2017

5

http://www.standishgroup.com/

2. Agile Software Development Methods

Figure 2.1.: The modern resolution (on time, on budget, with a satisfactory result) of all
software projects from FY2011-2015 within the new CHAOS database [Source:
adapted from InfoQ2.]

waterfall projects (around 40% versus around 10%) and are also far less
likely to fail (around 10% versus around 30%). The waterfall model is one
of the traditional software development methods. It was introduced in the
1970s (Royce, 1970). The development stages are passed through sequen-
tially, see Figure 2.3.

Traditional software development methods usually assume all four vari-
ables, cost, time, quality and scope, are fixed and all requirements are
known in advance (Boehm, 2002). This often results in failed or challenged
projects (see Figure 2.2). Budget and/or time are overdrawn, the software
lacks in quality or not all functionality is implemented. The assumption
that all requirements are and can be known in advance is questionable and
even if that were true, often development models are not adhered to (Truex,

6

Figure 2.2.: The modern resolution (on time, on budget, with a satisfactory result) of soft-
ware projects from FY2011-2015 segmented by the agile process and waterfall
method within the new CHAOS database. Total number of software projects
is over 10.000. [Source: adapted from InfoQ3.]

7

2. Agile Software Development Methods

Figure 2.3.: Waterfall Model of Software Development [Source: adapted from Royce
(1970).]

Baskerville, and Travis, 2000), at least not strictly. This additionally dimin-
ishes the chances to successfully finish a project. This is why other devel-
opment methods like ASD were and are still developed.

Agile software development frameworks include but are not limited to:

• Adaptive software development (Highsmith, 2000)
• Agile unified process (AgileUnifiedProcess, 2006)
• Agile modeling (AgileModeling, 2017)
• Agile testing (Crispin and Gregory, 2009)
• Crystal clear methods (Cockburn, 2004)
• Disciplined Agile Delivery (Ambler and Lines, 2012)
• Dynamic systems development method (DSDMConsortium, 2008)
• eXtreme Programming (XP) (Andres and Beck, 1999; Jeffries, Ander-

son, and Hendrickson, 2000; Auer and Miller, 2002; Beck and Andres,
2004)

• Feature driven development (Palmer and Felsing, 2001)

8

• Kanban (Anderson, 2010; Benson and DeMaria, 2011; Kniberg, 2011;
Leopold and Kaltenecker, 2013)

• Lean software development (Ohno, 1988; Poppendieck, 2007)
• Rational unified process (Kruchten, 2004)
• Scrum (Schwaber and Beedle, 2001; Schwaber and Sutherland, 2016;

Kniberg and Skarin, 2010)
• Scrumban (Ladas, 2008; Reddy, 2015)

All ASD frameworks aim to counterbalance the decrease of quality and
failing projects. They also embrace changes in requirements during the
whole product life-cycle (J. Highsmith and A. Cockburn, 2001), which tra-
ditional software development models do not. The roots of the agile evo-
lution (Abrahamsson et al., 2003) can be found in the late in 1990s when
XP (Andres and Beck, 1999) was introduced. In 2001 the publication of the
agile manifesto (Beck, Beedle, et al., 2001) followed. A group of 17 repre-
sentatives from XP, Scrum, Crystal, Feature-Driven Development and other
agile methods formulated and signed the manifesto around February 13

2001 in Utah.

The Agile Manifesto (Beck, Beedle, et al., 2001) states:

“We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we have
come to value:
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value
the items on the left more.”

ASD keeps scope or time negotiable so quality is not sacrificed to meet
deadlines or budget needs. It demands a constant information flow be-
tween development teams, customers and other stakeholders so that prob-
lems are detected earlier and countermeasures can be taken. Feedback is
an integral part, as well as keeping everything as simple as possible and
constantly improving the design, code and tests.

9

2. Agile Software Development Methods

Changes in requirements are expected and welcomed. This is especially
important in today’s fast paced software development environment, where
today’s idea can be tomorrow’s mobile application. Users are used to bug
fixes and new features being released on a regular basis and not only once
a year. Web pages have to be able to serve different kinds and sizes of
devices with a consistent look and feel on all plattforms. Responsive web
design (Bryant and Jones, 2012) is a prerequisite.

Agile projects can fail earlier and restart faster, which makes them more
suitable for today’s fast-paced software release cycles and also more suc-
cessful, see Figure 2.2.

So no wonder ASD is increasingly popular in industry. The Annual State
of Agile Report from VersionOne (now called CollabNet VersionOne), a
company providing enterprise value stream management solutions, shows
this every year (VersionOne, 2011; VersionOne, 2012; VersionOne, 2013; Ver-
sionOne, 2014; VersionOne, 2015). 70% of VersionOne (2015) respondents
use Scrum or Scrum/XP hybrids at team level. And the number of respon-
dents using Kanban grew by 8% from 2014 to 2015 (2015: 39%).

The following sections will describe the software development methods
relevant for this thesis, XP and Kanban, in greater detail.

2.1. Extreme Programming (XP)

All XP values, principles, and practices described in this section are taken
from Andres and Beck (1999) and the Shodan 2.0 Input Metric Survey in
Williams, Krebs, and Layman (2004). This survey was also used to ask
study participants about their use of agile practices. Differences to Beck
and Andres (2004) will only be mentioned briefly, because the FOSS project
Catrobat uses only Andres and Beck (1999).

To better understand the differences and the relationships between val-
ues, principles and practices, we will use Beck and Andres (2004) descrip-
tions.

10

2.1. Extreme Programming (XP)

“Values are the roots of the things we like and don’t like in a
situation. [...] Values are the large-scale criteria we use to judge
what we see, think, and do. [...] Values bring purpose to prac-
tices.” (Beck and Andres, 2004)

Without a purpose and without explicitly stated values, practices might
become meaningless routine tasks only performed, because one has to or
out of habit. If employees do not understand and support the values behind
a practice or if they do not know what a practice is supposed to achieve,
they often perform it half-heartedly or stop using the practice if they can
get away with it (Beck and Andres, 2004).

“Just as values bring purpose to practices, practices bring ac-
countability to values.” (Beck and Andres, 2004)

Practices are concrete, clear but depend on the given situation, whereas
values are universal. Principles bridge the gap between practices and val-
ues.

“Principles are domain-specific guidelines for life.” (Beck and
Andres, 2004)

2.1.1. XP Values

The four values of XP are (Andres and Beck, 1999):

• Communication
• Simplicity
• Feedback
• Courage
• Beck and Andres (2004) contains a fifth value: Respect

Many problems in projects originate from communication problems. Im-
portant information is not passed on or information is misinterpreted. XP
employs practices, which require communication, e.g., pair programming,
task estimation (Andres and Beck, 1999).

Simplicity is the art of building the simplest thing that could possibly work
and not more. Only the requirements of today are met and no guesswork

11

2. Agile Software Development Methods

about the future is done, because one cannot know if one will really need
this functionality later on. You Ain’t Gonna Need It (YAGNI) expresses this
value (Andres and Beck, 1999).

Feedback means feedback of the system which is developed. Unit tests pro-
vide feedback about the system’s state to the developers. Task estimation
provides feedback to customers and functional tests also provide feedback
about the system. Courage must be combined with the other three to be of
value, otherwise it will result in hacking (Andres and Beck, 1999).

2.1.2. XP Principles

The five fundamental principles of XP are (Andres and Beck, 1999):

• Rapid feedback
• Assume simplicity
• Incremental change
• Embracing change
• Quality work

The time between action and feedback is important, the shorter the time
period, the better. So system feedback delivered within seconds or minutes
is better than within days, weeks, or months. So the test suite should be
executable as fast as possible. Customer feedback should be fed back within
days and not weeks or months. Every problem should be solved as simple
as possible. Big changes usually do not work, small incremental changes
do. Embracing change means keeping many options open (Andres and
Beck, 1999).

Quality work is important because nobody wants to do bad work. People
who are forced to deliver substandard work become frustrated and demo-
tivated (Andres and Beck, 1999).

“Projects succeed when good people are allowed to do their
best work.” (Crispin and Gregory, 2009)

Other (less fundamental) principles are (Andres and Beck, 1999):

• Teach learning

12

2.1. Extreme Programming (XP)

• Small initial investment
• Play to win
• Concrete experiments
• Open, honest communication
• Work with people’s instincts, not against them
• Accepted responsibility
• Local adaption
• Travel light
• Honest measurement

The new principles in Beck and Andres (2004) are:

• Humanity
• Economics
• Mutual benefit
• Self-similarity
• Improvement
• Diversity
• Reflection
• Flow
• Opportunity
• Redundancy
• Failure
• Quality
• Baby steps

2.1.3. XP Practices

This section lists and explains the XP practices in the version (Andres and
Beck, 1999), which the researched FOSS project uses. The updated practices
from the second edition (Beck and Andres, 2004), will only be mentioned
in brief detail.

13

2. Agile Software Development Methods

Release Planning / Planning Game

During release planning/planning games all stakeholders, customers and
developers, determine the next release through discussion. Development
issues are moved in or out of the next release based on their business value
and costs. The technical effort necessary to implement the issue is estimated
by the developers. The plan is continually refined (Andres and Beck, 1999;
Williams, Krebs, and Layman, 2004).

Small / Short Releases

The focus is on delivering small meaningful frequent releases in a very
short cycle. It is easier to plan for a few months than for half a year or
more and frequent releases allow for more frequent feedback from the cus-
tomers to the developers. It is also easier to adapt the following releases if
deviations from the plan are detected by the customer (Andres and Beck,
1999; Williams, Krebs, and Layman, 2004).

Metaphor / System of Names

A single overarching metaphor, e.g., assembly line, spreadsheet, is used to
describe the software. If there exists no suitable metaphor for the software
a system of names is used, which describes all system components in a
consistent manner. A metaphor or system of names helps to understand
the basic elements of the project and their relationships to each other. It
is also easier to explain ideas and concepts to the customer (Andres and
Beck, 1999; Williams, Krebs, and Layman, 2004).

Simple Design

At first implement “the simplest thing that could possibly work” (Williams,
Krebs, and Layman, 2004) and do not implement something only based on
the assumption that it might be needed later. The YAGNI principle and the
following quote from Knuth (1979) are often associated with this practice,

14

2.1. Extreme Programming (XP)

although often only the bold highlighted part of the quote is cited, leaving
out the reference to efficiency.

“There is no doubt that the grail of efficiency leads to abuse.
Programmers waste enormous amounts of time thinking about,
or worrying about, the speed of noncritical parts of their pro-
grams, and these attempts at efficiency actually have a strong
negative impact when debugging and maintenance are consid-
ered. We should forget about small efficiencies, say about 97%
of the time: premature optimization is the root of all evil.
Yet we should not pass up our opportunities in that critical
3%.” (Knuth, 1979)

The design only describes what is needed and nothing more, future iter-
ations are not considered for the current iteration. Simple design passes
all the tests, does not have duplicate code, states every intention important
to programmers and has the fewest possible classes and methods (Andres
and Beck, 1999).

Testing

Every program feature has to have an automated test, unit tests written
by developers and functional tests written by customers (Andres and Beck,
1999). Williams, Krebs, and Layman (2004) divided the practice of testing
into unit tests, customer acceptance tests and TDD for their Shodan 2.0
Input Metric Survey.

• Unit Tests
Automated unit tests must be written and must run flawlessly oth-
erwise development cannot continue (Andres and Beck, 1999). They
verify if the code is working correctly and help determine if the inte-
gration of new code would break existing code (Williams, Krebs, and
Layman, 2004).

• Acceptance Tests
All customer acceptance tests must pass before a product can be de-
livered to the customer (Williams, Krebs, and Layman, 2004).

15

2. Agile Software Development Methods

• Test First Design / Test Driven Development (TDD)
When TDD is employed tests are written before the actual code is
implemented. The three steps of TDD according to Beck (2003) are
red/green/refactor.

– “Red — write a little test that doesn’t work, perhaps doesn’t even
compile at first”

– “Green — make the test work quickly, committing whatever sins
necessary in the process”

– “Refactor — eliminate all the duplication created in just getting
the test to work”

TDD increases the confidence in the code and code is changed more
easily because errors or side-effects are detected through tests which
fail.

Refactoring

Refactoring is the practice of rewriting or restructuring the code without
changing the behavior to improve maintainability, performance, simplic-
ity, flexibility, understandability, or code quality, e.g. code duplications are
removed (Andres and Beck, 1999; Williams, Krebs, and Layman, 2004).

Pair Programming

When pair programming two people share one computer, one keyboard
and one mouse. The person with keyboard and mouse, the driver, is think-
ing tactically, how this part of the code is implemented best. The second
person, the navigator, thinks more strategically, if the approach will work,
if some test cases might not work yet, if the current problem could be dis-
solved by simplifying the whole system. Programming roles, driver and
navigator, and programming pairs should be switched on a regular ba-
sis (Andres and Beck, 1999; Williams, Krebs, and Layman, 2004). Pair pro-
gramming leads to higher code quality (Williams, 2000).

16

2.1. Extreme Programming (XP)

Collective Code Ownership

Collective code ownership means “Anyone can change any code anywhere
in the system at any time.” (Andres and Beck, 1999). People do not have
to wait for the code owner or expert to change a piece of code. Everybody
knows every part of the system and is allowed to change the code if needed.
Knowledge is spread throughout the team and it is no problem if an expert
is busy, sick, on vacation or leaving the team.

Continuous Integration

Code is integrated and tested at least daily, ideally every few hours. Code
integration and synchronization issues are minimized. A build machine
can be used to build and test new code automatically and can notify devel-
opers if a build fails (Andres and Beck, 1999; Williams, Krebs, and Layman,
2004).

Sustainable Pace / 40h Week

People cannot work overtime for many weeks without loosing energy, cre-
ativeness, productivity, confidence and morale. So it is important to keep
the amount of working hours on a normal level (around 40 hours per week)
and to also take vacations to recharge one’s batteries. If the team has to
work overtime on a regular basis, there is probably a serious problem on
the project (Andres and Beck, 1999; Williams, Krebs, and Layman, 2004).

On-Site Customer

To ensure the product meets the needs of the customer, direct quick access
to him or her is very important. The customer creates the requirements of
the system, answers questions, gives feedback, and prioritizes what fea-
tures should be built first. He or she is involved in release planning and is
accessible to the team, ideally in person, or via synchronous communica-
tion tools (Andres and Beck, 1999; Williams, Krebs, and Layman, 2004).

17

2. Agile Software Development Methods

Coding Standards

If collective code ownership, pair programming, and refactoring are prac-
ticed, a common set of coding practices to support those practices is needed.
The team decides on and uses a coding standard collectively (Andres and
Beck, 1999; Williams, Krebs, and Layman, 2004).

Introspection

For their Shodan 2.0 Input Metric Survey Williams, Krebs, and Layman
(2004) created questions concerning additional topics important for teams.

• Stand-Up Meeting
This question checks if stand up meetings are held everyday and are
shorter than 15 minutes. It checks if they are to the point and concerns
and successes are discussed openly (Williams, Krebs, and Layman,
2004).

• Lessons Learned
This question checks if the team reviews after every release how it
can improve (Williams, Krebs, and Layman, 2004).

• Growth
This question checks if the team ensures that their skills are up to
date.

“If you’re not learning, your (sic) falling behind!” (Williams,
Krebs, and Layman, 2004).

• Morale
This question checks if XP is enjoyable (Williams, Krebs, and Layman,
2004).

• Artifact Reduction
This question checks if XP helps the team to have fewer or thinner ver-
sions of artifacts from classic techniques (Williams, Krebs, and Lay-
man, 2004).

18

2.1. Extreme Programming (XP)

XP Practices from the Second Edition

In Beck and Andres (2004) the practices are divided into primary practices,
which can be used independently, e.g. one can start using them in any
order, and corollary practices, which should only be used after mastering
the primary practices.

Practices identical to Andres and Beck (1999) are italic. For evolutionary
practices (Beck and Andres, 2004), which are similar or related to standard
practices (Andres and Beck, 1999) the according standard practice is men-
tioned in parentheses. According to Beck and Andres (2004) the primary
practices are:

• Sit together
• Whole team
• Informative workspace
• Energized work (Sustainable pace)
• Pair programming
• Stories
• Weekly cycle (Planning game)
• Quarterly cycle (Planning game)
• Slack (Sustainable pace)
• Ten-minute build (Continuous Integration)
• Continuous Integration
• Test-first programming
• Incremental design (Simple design)

Most evolutionary practices are similar to the traditional practices, but
names have changed and some traditional practices have been split into
several practices. The practices metaphor and coding standard vanished.

The corollary practices are (Beck and Andres, 2004):

• Real customer involvement (On-site customer)
• Incremental deployment (Small/short releases)
• Team continuity
• Shrinking teams
• Root-cause analysis
• Shared code (Collective code ownership)

19

2. Agile Software Development Methods

• Code and tests
• Single code base
• Daily deployment
• Negotiated scope contract
• Pay-per-use

2.2. Kanban

Kanban is a method for knowledge work, which includes software devel-
opment. There is an ongoing discussion if Kanban is ASD or rather a form
of lean software development, but as this is not the focus of this thesis, this
issue will not be discussed.

Kanban was originally developed for software development but has also
been applied to other areas, e.g. human resources, marketing, organizations
strategy. It can even be used to organize one’s whole life with a personal
Kanban board (Benson and DeMaria, 2011).

Kanban is inspired by the Toyota Production System (Ohno, 1988) and was
first described by Anderson (2010). Anderson (2010) explains how his ap-
proach evolved from a theory of constraints approach (Goldratt and Cox,
1992) into the Kanban method.

Kanban is about changing organizations and not about optimizing people,
which would not lead to huge improvements anyway, because according
to Deming (2000)

“I should estimate that in my experience most troubles and
most possibilities for improvement add up to the proportions
something like this: 94% belongs to the system (responsibility
of management) 6% special”

the longer lever for improvements lies within the organization.

Kanban is based on four principles and six practices, which will be ex-
plained in the following sections. These principles and practices are de-
signed to initiate and constantly support evolutionary change in organiza-

20

2.2. Kanban

tions and help establish a culture of kaizen (continuous improvement) (An-
derson, 2010; Leopold and Kaltenecker, 2013).

Kanban is not a silver bullet, it is not the solution to all problems, it sup-
ports problem solving by identifying existing problems. Kanban can be
used on different flight levels of an organization. Flight level 1 is the op-
erational level, where teams work. Level 2 is coordination and level 3 is
strategic portfolio management (Leopold, 2017). Kanban never stops, there
is always something to improve. People do not suffer changes, they are
driving the change. Stakeholders, management and team are together in
the same boat.

The “One day in Kanban land” comic 4 illustrates nicely how Kanban is
supposed to work.

2.2.1. Kanban Principles

The four principles of Kanban are (Anderson, 2010; Leopold and Kalte-
necker, 2013):

• Start where you are
• Pursue incremental, evolutionary change
• Respect the current processes, roles, responsibilities and titles
• Promote leadership at all levels

This means Kanban can be started without week long trainings for the
whole organization, although a certain training is advantageous. Teams
or organizations do not have to overthrow the whole development pro-
cess. Teams and organizations can start right away with small incremental
steps. They should not try to change everything at the same time, rather
tackle one problem at a time, starting with the most important one. If the
most important one is solved, they should move to the next one, and so on
and so forth. Roles, titles, responsibilities and processes are not changed
“overnight”. Neither do people loose their “power or reputation” because
they get demoted from some kind of manager to team member, nor is “the

4http://blog.crisp.se/2009/06/26/henrikkniberg/1246053060000 – retrieved on
17.05.2017

21

http://blog.crisp.se/2009/06/26/henrikkniberg/1246053060000

2. Agile Software Development Methods

boss” the all knowing all deciding entity. Everyone is invited to put their
head into the process and contribute their knowledge and expertise. The
people affected by the processes decide how to change them for the benefit
of the organization and the people involved (Leopold, 2012; Leopold and
Kaltenecker, 2013).

2.2.2. Little’s Law

Little’s Law will be used to explain the importance of limiting Work In
Progress (WIP), therefore it will be explained shortly.

“Little’s Law says that, under steady state conditions, the av-
erage number of items in a queuing system equals the average
rate at which items arrive multiplied by the average time that
an item spends in the system.” (Little and Graves, 2008)

Little’s Law:
L = λW (2.1)

With:
L = “average number of items in the queuing system”
W = “average waiting time in the system for an item”
λ = “average number of items arriving per unit time”

In operations management and other areas the law is also used in the fol-
lowing form, e.g., Hopp and Spearman (2000):

Cycletime =
WIP

Throughput
(2.2)

With:
Cycle time = “the average time from release of a job at the begin-
ning of the routing until it reaches an inventory point at the end
of the routing (that is, the time the part spends as WIP” (Hopp
and Spearman, 2000)
WIP = “the inventory between the start and end points of a

22

2.2. Kanban

product routing” (Hopp and Spearman, 2000)
Throughput = “the average output of a production process (ma-
chine, workstation, line, plant) per unit time” (Hopp and Spear-
man, 2000)

This form is equivalent to Little’s Law with throughput = λ, WIP = L and
Cycle Time = W (Little and Graves, 2008).

WIP = Throughput ∗ CycleTime (2.3)

2.2.3. Kanban Practices

In this section all Kanban practices are explained in detail.

Visualize the Workflow

Knowledge work is usually invisible, inside people’s heads. Kanban sup-
ports people and organizations to make knowledge work visible. It strives
to establish a continuous flow of work through the systems and to make
problems in the flow visible. WIP limits support the identification of bottle-
necks. Work flowing through the system is not achieved through pushing
work items to the next person, instead persons from a succeeding step pull
work from a preceding step in the workflow, as soon as they are ready.

Limit Work in Progress

Limiting WIP is one of the basic foundations of Kanban. Figure 2.4 shows
a Kanban board with WIP limits. In column A the WIP limit is broken
because there are already two cards in the column. The WIP limit does not
allow a third card in A so the third card, with a red cross, cannot be moved
there and has to be moved back to To do. If one does not limit WIP it will
be difficult to detect bottlenecks. They are where unfinished work piles up
while other work stations have idle time. In knowledge work these work

23

2. Agile Software Development Methods

Figure 2.4.: Example of a Kanban board with WIP Limits. The card with the red cross
cannot be pulled into column A, because this would break the WIP limit of
two for this column.

stations would be colleagues waiting for their successor to finish their work,
so that they can pull a new work item from their predecessor. The workflow
is blocked and bottlenecks become visible to everyone. Because WIP limits
prevent people from continuing their work, motivation is high to resolve
bottlenecks immediately. WIP limits are a prerequisite for creating a pull
system (Leopold, 2012; Leopold and Kaltenecker, 2013).

Another reason why this practice is important is, that unfinished work does
not create revenue. The longer the cycle time the longer until a product can
be sold and shipped. So economically speaking one finished piece of work
is more valuable than ten unfinished pieces of work. As Little’s Law (see
Section 2.2.2) states one can influence cycle time only by reducing the WIP
limit or by increasing a system’s throughput. While increasing throughput
is usually very hard to do, it is rather easy to reduce the WIP limit. So this
should be the lever used to reduce cycle time (Leopold, 2012; Leopold and
Kaltenecker, 2013).

Limiting WIP has another important advantage. It can improve relations
to customers. If cycle time is reduced and feature requests which exceed

24

2.2. Kanban

Figure 2.5.: Example of a Kanban board with swim lanes for different types of work.

the WIP limit are not accepted, promises made to customers can be kept
more easily. As a consequence, customers will put more trust in the orga-
nization, which keeps promises, than in those which constantly fail to keep
them, which is rather usual in software development. One goal of Kan-
ban is to only make promises one can keep (Leopold, 2012; Leopold and
Kaltenecker, 2013).

Manage Flow

Work should flow through the Kanban system as fast as possible. Blockades
and bottlenecks need to be dealt with as quickly as possible. The perfor-
mance of the Kanban system, not the employees, has to be measured, so
one can detect if changes to the system had an effect on the workflow.
If the system’s performance is known, agreements with stakeholders are
more likely to be met, which is important to build trusting relationships. If
the Kanban system satisfies the current needs and demands of the business,

25

2. Agile Software Development Methods

no changes need to be made until new bottlenecks appear. However, in the
more likely case, that the system does not meet all needs and demands, one
has to look for further possibilities to improve it (Leopold, 2012; Leopold
and Kaltenecker, 2013).

To manage the flow one has to know the performance of the system and one
has to determine which types of work have to be done and how urgent they
are, respectively which service level they have. Based on types of works
and service levels Service Level Agreements (SLA) can be made. Within
these agreements cycle times for specific work types or service levels are
guaranteed. For an example see Figure 2.5. Every lane on the Kanban board
could have a different guaranteed cycle time, e.g., one week to resolve a
bug (Leopold, 2012; Leopold and Kaltenecker, 2013).

Communication is key, so all actions taken regarding measuring and con-
trolling the flow go hand in hand. Team members have to communicate
to ensure a constant workflow (Leopold, 2012; Leopold and Kaltenecker,
2013).

Make Process Policies Explicit

All teams use rules to organize their work. Often they are not written down
or communicated clearly. (New) Team members only learn through expe-
rience that, e.g., Jane always writes the tricky tests, John always has the
last word in discussions and so on. Kanban wants to make these informal
rules transparent and visible to everybody. The team decides their rules
jointly and communicates them clearly to everyone involved. Everybody,
including stakeholders, has to stick to these rules, unless they become ob-
solete or have errors in them. Then the rules have to be changed. If stan-
dards and rules are not changed, when necessary, continuous improvement
stops. Only if all stakeholders and the team adhere to the rules, mistakes
in the rules can be recognized and repaired (Leopold, 2012; Leopold and
Kaltenecker, 2013).

Another advantage of transparent roles and policies is, that teams can dis-
cuss problems more objectively and less emotional, because discussions
concern the rules and not the mistakes of individual persons. Blaming

26

2.2. Kanban

should cease to exist, although it might take a while and some profes-
sional moderating help to forsake this habit (Leopold, 2012; Leopold and
Kaltenecker, 2013).

Implement Feedback Loops

Implement feedback loops on team level, e.g., daily stand-up meetings,
retrospective, but also on a higher level along the whole value chain. Feed-
back gives everyone the opportunity to learn and learning is a prerequi-
site for continuous improvement (Leopold, 2012; Leopold and Kaltenecker,
2013).

In ASD feedback is a central part, e.g., tests provide feedback about the
code, iteration releases provide feedback about the current condition of
the project, and retrospectives provide feedback about the way the team
works (Crispin and Gregory, 2009).

“If you don’t have meaningful feedback, then you’re not agile.
You’re just in a new form of chaos.” (Crispin and Gregory, 2009)

Improve Collaboratively, Evolve Experimentally (using models and the
scientific method)

Existing methodologies and models can and should be used to investi-
gate and solve problems. So not everyone has to start from scratch. Many
problems occur in every system and there are models to investigate such
problems. Every organization should use the models and methodologies
relevant for it and the current problem. Kanban does not prescribe specific
models or how they should be applied. It only suggests that something
should be done to improve things (Leopold, 2012; Leopold and Kaltenecker,
2013).

27

3. Free Libre Open Source
Software

FOSSD offers some advantages, like cost savings, high software quality, a
global testing pool, independent peer review and rapid development time,
but it is no silver bullet, which will resolve all problems of the software in-
dustry (Scacchi et al., 2006; Fitzgerald, 2011). FOSSD has its own problems,
e.g., usability is often of low concern (Levesque, 2004), stability and relia-
bility are unpredictable, there is often a lack of documentation (Levesque,
2004; Fitzgerald, 2011) and code quality is sometimes comparable to pro-
prietary software (Stamelos et al., 2002; Rusovan, Lawford, and Parnas,
2005).

Nevertheless FOSS proved that community-driven successful software de-
velopment is possible in a distributed environment and can compete with
traditionally developed software. Some of the large FOSS projects have nu-
merous users and millions of lines of source code, e.g. the GNU Compiler
Collection1, OpenOffice2, Eclipse3, KDE4, GNOME user interface packages5,
Linux distributions6, the Apache web server7, and the Emacs text editor8.
Some FOSS projects attract even people outside the Information and Com-
munications Technology (ICT) community, e.g. GIMP drawing and image

1https://gcc.gnu.org/ – retrieved on 30.05.2017

2https://www.openoffice.org – retrieved on 30.05.2017

3https://www.eclipse.org/ – retrieved on 30.05.2017

4https://www.kde.org/ – retrieved on 30.05.2017

5https://www.gnome.org/ – retrieved on 30.05.2017

6https://www.linux.org/ – retrieved on 30.05.2017

7https://httpd.apache.org/ – retrieved on 30.05.2017

8https://www.gnu.org/s/emacs/ – retrieved on 30.05.2017

29

https://gcc.gnu.org/
https://www.openoffice.org
https://www.eclipse.org/
https://www.kde.org/
https://www.gnome.org/
https://www.linux.org/
https://httpd.apache.org/
https://www.gnu.org/s/emacs/

3. Free Libre Open Source Software

editor9 and Mozilla Firefox10.

Some FOSS projects even grow big enough to start a foundation or simi-
lar organizations, and receive enough donations or have other incomes, so
they can pay some of their contributors. To support projects on this jour-
ney the Software Freedom Conservancy Inc.11 offers their member projects
services like donation handling, payment of key developers from these do-
nations, fiscal oversight, taking care of copyrights, trademarks, and domain
names12.

And although various research exists about free or open source software, is
its not known how many FOSS projects are out there. There are many host-
ing sites, some of the most popular ones include Github.com, GitLab.com,
Assembla.com, SourceForge.net, Google Code, CodePlex.com, and Savan-
nah.gnu.org, and it is impossible to determine the exact number of projects
and contributors (Weber, 2004).

There also exist various terms for free or open source software, which
describe the same set of software, but differ in some details and there
is an ongoing controversy if the terms are interchangeable or not (Kelty,
2008)131415. In this chapter the different terms, their definitions, the devel-
oping methodology, characteristics of FOSS projects and the motivation of
contributors will be explained.

3.1. Free and Open Source Software (FOSS)
Definitions

In this section Free Software (FS), Open Source Software (OSS), Libre Soft-
ware (LS), Free, Libre and Open Source Software (FLOSS) and their relation

9https://www.gimp.org/ – retrieved on 30.05.2017

10https://www.mozilla.org/en-US/firefox/ – retrieved on 30.05.2017

11https://sfconservancy.org – retrieved on 06.06.2017

12https://sfconservancy.org/about/ – retrieved on 06.06.2017

13https://fsfe.org/about/basics/freesoftware.en.html – retrieved on 19.05.2017

14https://opensource.org/faq#free-software – retrieved on 19.05.2017

15https://fsfe.org/freesoftware/basics/comparison.en.html – retrieved on
19.05.2017

30

https://www.gimp.org/
https://www.mozilla.org/en-US/firefox/
https://sfconservancy.org
https://sfconservancy.org/about/
https://fsfe.org/about/basics/freesoftware.en.html
https://opensource.org/faq#free-software
https://fsfe.org/freesoftware/basics/comparison.en.html

3.1. Free and Open Source Software (FOSS) Definitions

to each other will be described.

3.1.1. Free Software

The Free Software Definition (FSD) was first described in 1986 by Richard
Stallman and contained the following two points

“The word ‘free’ in our name does not refer to price; it refers to
freedom. First, the freedom to copy a program and redistribute
it to your neighbors, so that they can use it as well as you. Sec-
ond, the freedom to change a program, so that you can control
it instead of it controlling you; for this, the source code must be
made available to you.” (Stallman, 1986).

In 2010 he wrote the second edition (Stallman, 2010) with the following four
freedoms, which can also be found online at the Free Software Foundation
(FSF) website16:

• “The freedom to run the program, for any purpose.”
• “The freedom to study how the program works, and adapt

it to your needs.”
• “The freedom to redistribute copies so you can help your

neighbor.”
• “The freedom to improve the program, and release your

improvements to the public, so that the whole community
benefits.”

Only if all four freedoms are granted and people do not have to ask for per-
mission or pay for any freedom, the software is regarded as FS (Stallman,
2010). FS is often compared to freedom of speech, “Because of these four
freedoms, Free Software offers freedom to learn, freedom to teach, freedom
of competition, freedom of speech and freedom of choice.” (FSFE, 2017a)

Everybody can use all freedoms or none, whatever the person wants. The
freedoms include commercial use as well, so if a software is forbidding
commercial use, it is not FS (Stallman, 2010).

16https://fsfe.org/about/basics/freesoftware.en.html – retrieved on 19.05.2017

31

https://fsfe.org/about/basics/freesoftware.en.html

3. Free Libre Open Source Software

Although Free Software is ambiguous in English the term is still used, be-
cause, according to the Free Software Foundation Europe (FSFE) free is
easier to understand than open source and accessible source code only ful-
fills two of the four freedoms (FSFE, 2017a). According to the FSFE Free
Software is harder to abuse than Open Source Software (FSFE, 2017a). The
initiative to trademark Open Source for Free Software failed, so companies
can call their software Open Source Software, even if only some parts of
their source code are accessible. This is misleading because it suggests that
that the OSS principle is applied, which is not the case (FSFE, 2017b). An-
other reason for using the term Free Software is, that the Free Software
Definition of the FSF is currently the clearest definition and offers free-
dom (FSFE, 2017a). The FSFE claims that Free Software provides a philos-
ophy from which companies can learn and profit, whereas Open Source
Software “only” provides a technical model (FSFE, 2017a).

Free Software is also seen as a social movement, while Open Source Soft-
ware Development (OSSD) is described as a software development method-
ology by Stallman and the FSF (Stallman and Gay, 2009).

3.1.2. Open Source Software

The Open Source Initiative (OSI) was set up in 1998 as a marketing cam-
paign for FS. According to OSI both FS and OSS mean software with li-
censes, which guarantee certain freedoms and only differ in the way how
they promote it. For OSI software freedom was more a practical issue
whereas for FSF it was rather an ideological one, see the quote from the
1998 OSI FAQ page:

“The Open Source Initiative is a marketing program for free
software. It’s a pitch for ‘free software’ on solid pragmatic grounds
rather than ideological tub-thumping. The winning substance
has not changed, the losing attitude and symbolism have.”17

Open Source (OS) was also seen as solution to the ambiguity of “free”
in the English language. The author of the famous work the Cathedral

17https://web.archive.org/web/20021217003716/http://www.opensource.org/

advocacy/faq.html – retrieved on 23.05.2017

32

https://web.archive.org/web/20021217003716/http://www.opensource.org/advocacy/faq.html
https://web.archive.org/web/20021217003716/http://www.opensource.org/advocacy/faq.html

3.1. Free and Open Source Software (FOSS) Definitions

and the Bazaar, Eric Raymond, also prefers the term OSS over FS because
free is ambiguous and makes companies nervous (Raymond, 1998a; Fink,
2003) partly because of the viral nature of some “free” licenses (see Sec-
tion 3.1.3).

Open source does not only mean the source code is available, it also means
that the open source distribution terms in the license have to adhere to the
Open Source Definition (OSD).

Open Source Definition The OSD was derived from the Debian Free Soft-
ware Guidelines (Public Interest, 2004) and guarantees the four freedoms
(see Section 3.1.1) as well. The OSD contains the following criteria (Perens,
1999; OpenSourceInitiative, 2007):

1. Free redistribution means that the license must not restrict or ask for
fees for publishing or selling the software as part of a software col-
lection with programs from several sources (Perens, 1999; OpenSour-
ceInitiative, 2007).

2. Source code is included in the program and it is allowed to distribute
the program in source code and compiled form. This enables users
to study, experiment with, and modify the code (Perens, 1999; Open-
SourceInitiative, 2007).

3. Derived works have to be allowed and it has to be allowed to distribute
them under the same license as the original program (Perens, 1999;
OpenSourceInitiative, 2007).

4. Integrity of author’s source code enables the author of a program to
restrict distribution of modified source code, if and only if the license
allows other developers to distribute the source code together with
“patch files”, which modify the program at build time. Derived works
must have a different name or version number, if the license requires
it, but it has to be allowed to distribute modified source code in a
compiled form (Perens, 1999; OpenSourceInitiative, 2007).

5. No discrimination against persons or groups is allowed (Perens, 1999;
OpenSourceInitiative, 2007). Everybody can use the software under
the same terms.

6. No discrimination against fields of endeavor is allowed, e.g. commercial
use must not be forbidden (Perens, 1999; OpenSourceInitiative, 2007).

33

3. Free Libre Open Source Software

7. Distribution of license means that no additional licenses, e.g. a Non
Disclosure Agreement (NDA), can be added to close up the soft-
ware (Perens, 1999; OpenSourceInitiative, 2007).

8. License must not be specific to a product closes another loophole regard-
ing licenses. Redistributing a modified software distribution of a pro-
gram grants everyone the same rights as the original software distri-
bution (Perens, 1999; OpenSourceInitiative, 2007).

9. License must not restrict other software in its distribution, e.g., it must
not require that all software distributed on the same medium is open
source (Perens, 1999; OpenSourceInitiative, 2007).

10. License must be technology-neutral and not be based on any specific
technology or type of interface (Perens, 1999; OpenSourceInitiative,
2007).

3.1.3. Free Software versus Open Software

Free Software and Open Source Software Licenses

One of the main differences between FS and OSS stems from licenses: FS
usually uses the GNU general public licenses (GPL), whereas OSS may use
GPL or other licenses, which allow the integration of non FS (Scacchi et al.,
2006).

Otherwise the movements are similar in many aspects, which is also visible
in literature. The GNU Project and the Free Software Foundation (GNU
and FSF, 2017) and Scacchi et al. (2006) describe the relation between FS
and OSS like this:

“[...]nearly all free software is open source, and nearly all open
source software is free.”(GNU and FSF, 2017) and “[...]free soft-
ware is always available as OSS, but OSS is not always free soft-
ware”(Scacchi et al., 2006).

34

3.1. Free and Open Source Software (FOSS) Definitions

Copyleft

A common misunderstanding is that copyleft may be the difference be-
tween FS and OSS, but it is not. Copyleft is protective about the four free-
doms. Even changes in the software do not make it possible to restrict the
original software, e.g. make proprietary software out of FS or OSS. Copyleft
licenses, e.g. the GPL, are sometimes described as having a viral nature be-
cause if FS software is incorporated or integrated into another software, this
software is then also treated as FS (Scacchi, 2007). Non-protective licenses
allow to share the software without the rights to study, share, improve or
use the software. Both licenses are allowed under FS and OSS, so this does
not qualify as a difference (Schiessle, 2017).

The Developing Model

The developing model is also not a distinguishing property of FS and OSS.
Both terms describe the software model and not the development model. It
is not a criterion if FS or OSS are developed in an open community or be-
hind closed doors. It matters if the four freedoms or the OSD are fulfilled.
Proprietary software can be developed in an open, collaborative develop-
ment process and FS or OSS can be developed without a community or
user interaction (FSFE, 2017a). Details about the FOSS Development Model
will be given in Section 3.2.

3.1.4. Other Terms for Free and Open Source Software

Libre Software LS is another term for FS and was coined in 1992 by the
European Commission to avoid the ambiguous term “free software” (see
Paragraph 3.1.4) and the confusion around FS and OSS (FSFE, 2017b).

Freeware and Shareware The terms freeware or shareware are not clearly
defined and are not related to OSS or FS. Users do not have the four free-
doms and the conditions of the OSD are not met. The software is only free
to use for e.g. private use, a 30 day trial period, a certain geographic area

35

3. Free Libre Open Source Software

or user group, or users have to pay a license fee etc. The source code is not
available.

Free, Libre Open Source Software The terms FOSS and FLOSS are often
used to avoid the controversy around FS and OSS, because they include all
free, libre and open source software projects.

For this thesis the term FOSS is used to refer to free software, open source
software, libre software or FLOSS alike, because the differences and con-
troversy around it are not important for this work.

3.2. The FOSS Development Model /
Methodology

One challenge of writing about FOSS, FLOSS, FOSSD, OSS, OSSD, FS, or
LS is, that not only several names and definitions are used for FOSS, but
more importantly

“There is no globally accepted open source software develop-
ment process to define how open source software is developed
in practice.” (Acuña et al., 2012) and “The FOSS development
model does not have a formal, disciplined definition, since it
works based predominantly on voluntary collaboration.” (Mag-
daleno, Werner, and Araujo, 2012)

When talking about the FOSS development model or methodology usu-
ally the text of Raymond (2001) “The Cathedral and the Bazaar: Musings
on Linux and Open Source by an Accidental Revolutionary” is mentioned.
It compares the usual open collaborative FOSS development model, the
bazaar, to the typical closed hierarchical development model of proprietary
software, the cathedral. FOSS is an open collaborative software develop-
ment approach and usually without a formal project management regime,
schedule or budget (Scacchi et al., 2006). Source code, other development
artifacts and development activities are visible and available on the Inter-
net (Scacchi et al., 2006). Often most of the conversation is open as well,

36

3.2. The FOSS Development Model / Methodology

as mailing lists and open Internet Relay Chat (IRC) channels are used for
communication.

West and O’Mahony (2005) identified the following models, how a FOSS
community can be started:

• Community-initiated projects are founded by one or more developers
independently of a company. Some examples are Linux, GNOME
desktop environment project, and the Apache web server.

• Sponsored or spinout projects are initiated by releasing previously pro-
prietary code to the public under a FOSS license. Some examples
are Netscape founding the Mozilla project, IBM founding the Jikes
and Eclipse project, Sun the OpenOffice project, and MySQL AB the
MySQL project. Companies either try to build a community around
the product or to collaborate with a community to receive feedback
from customers (Mäenpää, Kilamo, and Männistö, 2016).

When a project is community-initiated development is often started by a
single developer who wants to “scratch a personal itch” (Raymond, 2001;
West and O’Mahony, 2005) and most FOSS developers, who join the project,
are also end-users of the software. End-users without enough spare time or
without software development skills often contribute through bug report-
ing, writing and maintaining Frequently Asked Questions (FAQ), docu-
mentation, giving feedback or suggesting improvements or new features (Scac-
chi et al., 2006). But how to grow from a one person endeavor to a bazaar?
Raymond (2001) identifies some necessary preconditions for successful bazaar-
style development:

• Programs cannot be started in bazaar style. The community needs
code to test and to play with.

• The program must run and others must see potential in the program.
• Strong attractive basic design is critical, but coordinators must not

have exceptional design skills if they are able to recognize good de-
sign ideas from others.

• Equally important or maybe even more important than good design
skills are good people and communication skills of the project coordi-
nator because they are important for building a strong development
community and attracting many people.

37

3. Free Libre Open Source Software

Raymond (2001) also collected 19 lessons, which give more advice on how
to build a successful project. In general respect and reputation are an im-
portant part of a FOSS community. Another very important lesson is the
importance of tester and user involvement. This is emphasized in lessons 6,
7, 8, 10 and 11. For example, see lesson 10 and 11 from Raymond (2001):

“10. If you treat your beta-testers as if they’re your most valuable
resource, they will respond by becoming your most valuable re-
source.”
“11. The next best thing to having good ideas is recognizing
good ideas from your users. Sometimes the latter is better.”

Gacek and Arief (2004) identified six characteristics of successful FOSS pro-
jects. These are:

• An active Community with common interests which is developing
and/or using the software.

• Motivation to contribute for free. Individuals and companies contribute
for different reasons. Individuals mostly for personal satisfaction and
companies mostly for economic reasons. Both profit from peer recog-
nition when contributing to a FOSS project.

• Developers are always users.
• The process of accepting submissions.
• Development improvement cycles.
• Code Modularity is a prerequisite for distributed software develop-

ment.

The success of FOSS software is highly dependent on the success of its
community, they are codependent (Scacchi et al., 2006). This can also be
a pitfall for sponsored or spinout projects. Releasing the source code to
the public is only a small step. Afterwards it is essential to know how to
build a community, how to engage contributors and keep them motivated.
It is also important to find a balance between the FOSS and proprietary
world (Mäenpää, Kilamo, and Männistö, 2016).

38

3.3. FOSS Motivation

3.3. FOSS Motivation

A number of surveys concern the motivation of FOSS developers. Why do
they contribute? The following reasons were determined:

1. Learning and sharing one’s knowledge about software development
is mentioned as providing the greatest benefit (Lakhani, Wolf, et al.,
2002; Ye and Kishida, 2003; Shah, 2006).

2. FOSS experience and skills can sometimes also lead to a higher aver-
age salary and better employment opportunities compared to developers
without any FOSS background (Hann, Roberts, Slaughter, and Field-
ing, 2002; Lerner and Tirole, 2002; Scacchi et al., 2006), therefore FOSS
is used for career development (Hars and Ou, 2001; Hann, Roberts,
Slaughter, and Fielding, 2002; Orman, 2008).

3. Developers have fun (Ghosh, 1998) and really enjoy their FOSS work
(Hertel, Niedner, and Herrmann, 2003) and Stewart and Gosain (2001)
found that they also enjoy the peer reputation.

4. Peer reputation is a driving factor for contributing to FOSS projects
(Hann, Roberts, and Slaughter, 2004) to deliver high-quality code, be-
cause respected peers will review the code (Fitzgerald, 2011; Melian,
2007).

Other reasons to contribute to a FOSS project include (Lakhani, Wolf, et al.,
2002): Code should be open, work functionality, non-work functionality,
obligation from use, work with team, professional status, beat proprietary
software, paid for contribution, and user needs (Lakhani and V. Hippel,
2003; Lerner and Tirole, 2005).

For paid contributors (Riehle et al., 2014) of course the payment and other
workplace related topics will be a motivating or demotivating factor.

Besides socio-political reasons (e.g. peer reputation, community oriented
idealism) Feller and Fitzgerald (2000) also identified technological (e.g.
need for robust code, higher standards of quality, faster development cy-
cles) and economical (corporate need for shared cost and risk) drivers for
FOSS development.

39

3. Free Libre Open Source Software

3.4. FOSS Characteristics

There is no official comprehensive list of characteristics or processes FOSS
projects should or must have (Fitzgerald, 2011). There is a variety of differ-
ent FOSS projects, small, large, purely volunteer contributors, partly paid
contributors etc. This section describes characteristics, which are often as-
sociated with FOSS like: “open sharing of source code, large-scale indepen-
dent peer review, the community development model, and the expanded
role of users” Fitzgerald (2011). Showing these characteristics does not au-
tomatically make a project FOSS nor does it mean that a project is not FOSS,
if it does not show all of the characteristics.

(No) Formalities Some processes of traditional software development are
often not or hardly present in FOSS projects, e.g., formal design process,
risk assessment, measurable goals, monetary incentives (Fitzgerald, 2011),
project planning (Mockus, Fielding, and Herbsleb, 2002; Scacchi et al., 2006;
Howison, 2009) and deadlines (Shah, 2006).

(No) Management FOSS projects usually do not have management staff,
which organizes, directs or improves the software development processes
(Scacchi et al., 2006). Nevertheless, there is some form of leadership.

Leadership Some projects are lead by a benevolent dictator, often the
project initiator, e.g. Linux (Moon and Sproull, 2000). Others move to a
more democratic model with a voting committee, e.g. Apache (Fielding,
1999) and GNOME (Germán, 2003), or rotating dictatorship, e.g. Perl (Ray-
mond, 1998b). Leadership may also change with time and growth of a
project from a rather centralized decision-making process to a more decen-
tralized one (Fitzgerald, 2006). For all types it is important to be transparent
and considerate in their decision-making process because otherwise people
who were not consulted might be alienated which is bad for the commu-
nity (Jensen and Scacchi, 2005; Crowston, Wei, et al., 2012).

40

3.4. FOSS Characteristics

Strong Community A strong community is important for FOSS projects,
because the success of FOSS software is highly dependent on the success
of its community (Scacchi et al., 2006). However, many FOSS projects have
only one or two contributors, the initiator(s) of the project (Krishnamurthy,
2002; Madey, Freeh, and Tynan, 2005; Krishna and Srinivasa, 2011; Theunis-
sen, Kourie, and Boake, 2007; Scacchi, 2007) and most projects are inactive
or have not yet released the software to end-users (Scacchi et al., 2006).
Often the project initiator is not only the project lead but also the project
maintainer (David, Waterman, and Arora, 2003), and most implementation
is done in isolation (Ghosh, 2005; Koch and Schneider, 2002).

The Core FOSS projects often have a small group of core developers,
which controls the architecture and direction of development and writes
most of the code (Koch and Schneider, 2002; Mockus, Fielding, and Herb-
sleb, 2002; Crowston and Scozzi, 2004; Dinh-Trong and Bieman, 2005; Scac-
chi et al., 2006). This group typically consists of 10% to 20% of a team, and
creates around 80% of the source code (Koch, 2004). Numbers vary from
study to study, e.g. Mockus, Fielding, and Herbsleb (2002) found that 4%
(15 out of 388) of contributors contributed 83% of modification requests
and 66% of problem reports, Dinh-Trong and Bieman (2005) reported that
4% (15 of 354) developed 57% of source code and the top 47 developers are
necessary to develop 80% of code and the top 15 contributed 40% of bug
fixing changes. Although differing in numbers, all of these studies report a
small group which is more active than the rest of the contributors.

Modularity The code base is usually modular so developers can work
as independently from each other as possible. This modular approach is
often also present in the project structure. Larger projects consist of smaller
projects (Fitzgerald, 2011; Crowston and Howison, 2005).

Onion Model Many FOSS projects can be described by the onion model
(Mockus, Fielding, and Herbsleb, 2002; Crowston and Howison, 2005; Mas-
moudi et al., 2009; Teixeira, Robles, and González-Barahona, 2015), where

41

3. Free Libre Open Source Software

Figure 3.1.: Structure and roles in FOSS communities [Source: (Sommer, 2016) adapted
from (Ye and Kishida, 2003; Crowston and Howison, 2005)]

every layer of the onion is larger by an order of magnitude. Figure 3.1
shows such an onion structure.

Voluntariness Although companies are sometimes paying employees to
contribute (Riehle et al., 2014), see also Section 3.5, FOSS developers often
volunteer their time, skills and hardware to contribute to a project (Scacchi
et al., 2006).

Freedom of Choice In FOSS projects not only the four freedoms of FS
are important, but also freedoms which are not explicitly formulated or
protected by FS or OSS, namely the freedom of expression and the freedom
of choice (Scacchi, 2007). They manifest themselves in the choices

42

3.4. FOSS Characteristics

• for what to develop. Tasks are self-selected not assigned by a supe-
rior (Mockus, Fielding, and Herbsleb, 2000; Mockus, Fielding, and
Herbsleb, 2002; Crowston, Howison, et al., 2005; Crowston, Li, et al.,
2007; Crowston and Scozzi, 2008). Nobody has the administrative au-
thority to assign tasks to developers or to tell them what to do, how
to do it or when to do it.

• how to develop it. The software development method is self-selected
by the team versus prescribed by the employer.

• of which tools to use. Everyone uses tools they like most, not what is
required by the employer.

• for when to release a product. Work quality is valued higher than
keeping a deadline.

• of deciding yourself when and what to review
• and who to talk to with or without reservation (Scacchi, 2007).

Additionally, FOSS projects enable contributors to self-select their role (Ye
and Kishida, 2003; Gacek and Arief, 2004; Fitzgerald, 2011) which might be
more motivating than having a role assigned at the workplace. FOSS pro-
jects are partly characterized by believing in these freedoms of expression
and choice and practicing them in their virtual organizations (Elliott and
Scacchi, 2005; Scacchi, 2007).

User equals Developer Developers of the software are usually also end-
users of the software (O’Reilly, 1999; Warsta and Abrahamsson, 2003),
which is not the case in traditional software development. This has changed
a little bit over the time, because FOSS software attracts many users, who
are not developers, e.g. Firefox, GIMP, OpenOffice, but user involvement in
the development process is generally higher in FOSS projects than in tradi-
tional software development (Gaughan, Fitzgerald, and Shaikh, 2009).

Multi-contribution FOSS developers often contribute to multiple FOSS
projects, a few even contribute to ten or more (Hars and Ou, 2001).

Distributed Development Development is often globally distributed (Crow-
ston, Wei, et al., 2012) and achieved by loosely coordinated software de-

43

3. Free Libre Open Source Software

velopers and contributors using complex software development processes
(Hippel, 2001; Hippel and Krogh, 2003; Scacchi et al., 2006).

Tools Fogel (2005) identified tools, which are used in most FOSS projects,
namely a project repository, a version control system, an issue tracking
system, mailing lists and chat channels as team communication tools.

Electronic communication Developers interact through computer medi-
ated communications tools like websites, email and online discussion (e.g.
forums, mailing lists) (Raymond, 1998a; Monge et al., 1998; Wayner, 2000;
Yamauchi et al., 2000). They have many values, beliefs and technical com-
petencies in common (Crowston and Scozzi, 2002; Espinosa et al., 2002;
Elliott and Scacchi, 2005). A specific pattern of centralized or decentralized
communication is not a distinguishing characteristic of FOSS projects, at
least not for bug-fixing tasks (Crowston and Howison, 2005).

3.5. FOSS Criticism

As already mentioned in the beginning of this chapter FOSS develop-
ment is no silver bullet and has its own shortcomings. Usability is of-
ten disregarded (Levesque, 2004), often there is no documentation avail-
able (Levesque, 2004; Fitzgerald, 2011), code quality is not necessarily bet-
ter than in proprietary software (Stamelos et al., 2002; Rusovan, Lawford,
and Parnas, 2005), and knowledge and concepts (good and bad) from pro-
prietary software development are rejected (Levesque, 2004). Development
is usually feature-centric, because features are more fun (Levesque, 2004)
and programmers often have other programmers as target audience and
the software is designed accordingly (Levesque, 2004).

The high-quality feedback claim from FOSS proponents is called into ques-
tion as well. Jørgensen (2001) found that simpler code gets feedback, but it
is not that useful and design issues receive very little feedback. Moreover,
they found that, while 99% of developers can identify 80% of the bugs, only

44

3.5. FOSS Criticism

1% of developers can identify the remaining, probably more difficult, 20%
of bugs (Fitzgerald, 2011; Jørgensen, 2001).

Not only FOSS promises are challenged, also the popular Cathedral and
Bazaar metaphor is under investigation. Elferink, Griffiths, and Zondergeld
(2016) found that the metaphors generate confusion because they are in-
terpreted differently by different people and both can have positive or
negative emotional connotations. Elferink, Griffiths, and Zondergeld (2016)
propose a revised pair of metaphors, where both vehicles are comparable
items from the same domain. This allows for comparison between soft-
ware development approaches. They use “the process which constitutes
and maintains a Bazaar as an institution, and the process which constitutes
and maintains a Shopping Mall.”

Voluntariness Although most FOSS developers are volunteers, there are
also many people receiving payment for contributing. Some companies
pay employees to contribute to a FOSS project (Scacchi et al., 2006). Hars
and Ou (2001) found that 45% of contributors are directly or indirectly
paid by companies to contribute. Regardless of the reasons for paid FOSS
contributions, many people earn their living with FOSS (Lakhani and Wolf,
2003). In 2014 Riehle et al. (2014) reported similar results. They studied data
from the Linux kernel between 2005 and 2011 and data from 5000 active
projects from Ohloh (now called Black Duck Open Hub), a web service
providing statistics about FOSS projects, between 2000 and 2007 and found
that around 50% of all FOSS software development had been done during
working hours, suggesting that the contributors were paid for their work.
The ratio between paid and volunteer work did not change over the years
although the combined Ohloh project data grew at a near exponential rate
and the Linux kernel grew at a polynomial rate. Many small projects (one
to two persons) consist only of paid developers, while larger projects have a
paid work rate of 10% to 20%. The same range, 10% to 20%, of developers of
the studied projects only contributed during working hours, when they are
presumably paid for it. They made no contributions outside the working
hours (Riehle et al., 2014).

45

4. Catrobat

Catrobat is a hybrid student FOSS project, which develops a visual pro-
gramming language targeted at children and teenagers to acquire compu-
tational thinking skills. It also supports teachers, who want to use Pocket
Code in their classes with educational material1. For an example program
see Figure 4.1. Catrobat is inspired by the Scratch programming system
(Resnick et al., 2009) developed by the Lifelong Kindergarten Group at the
MIT Media Lab. Although inspired by Scratch Catrobat is an independent
FOSS project situated at Graz University of Technology (TUG) and focuses
on mobile devices, which means children and teenagers do not need a com-
puter to develop programs with Pocket Code (Slany, 2012; Harzl, Krnjic,
et al., 2013a; Slany, 2014).

The Catrobat teams develop Integrated Development Environment (IDE)
and interpreter apps natively for Android, iOS, Windows Phone (Harzl,
Neidhoefer, et al., 2013) (canceled in January 2017), and HTML5 capable
browsers. The Android version, Pocket Code, and the connected paint app,
Pocket Paint are available on Google Play Store23. All other versions are in
development or only available to Beta testers. See Figures 4.1 and 4.2 for
the user interfaces of Pocket Code and Pocket Paint.

1https://edu.catrob.at – retrieved on 12.06.2017

2https://play.google.com/store/apps/details?id=org.catrobat.catroid – re-
trieved on 20.01.2017

3https://play.google.com/store/apps/details?id=org.catrobat.paintroid –
retrieved on 20.01.2017

47

https://edu.catrob.at
https://play.google.com/store/apps/details?id=org.catrobat.catroid
https://play.google.com/store/apps/details?id=org.catrobat.paintroid

4. Catrobat

Figure 4.1.: Pocket Code Bricks.

48

Figure 4.2.: Pocket Paint Tools View.

49

4. Catrobat

4.1. Catrobat History

The project was initiated as Catroid in 2010 by University professor Wolf-
gang Slany and five students of TUG. In 2013 the first public beta was re-
leased to Google Play Store. The project’s name was changed from Catroid
to Catrobat. By 2017 the project has around 120 developers (January 2017),
10 Usability and User Experience (UX) members, and 90 translators. Over
the years more than 300 people have written more than 750.000 lines of
code 4 in more than 10 different programming languages 5.

Between 100.000 and 500.000 people have downloaded Pocket Code from
Google Play Store. Between 2013 and 2017 Catrobat has won the following
awards:

• Reimagine Education Award Europe from the Wharton School of the
University of Pennsylvania in Philadelphia, USA

• Internet for Refugees Award from the Internet Foundation Austria
• ICT 2015 “Young Minds” Grand Prix Best Connect Exhibitor Award

from the European Commission
• Silver Winner of the Lovie Awards and a winner of the People’s Lovie

Awards from the International Academy of Digital Arts and Sciences,
London, UK

• Austrian National Innovation Award for Multimedia and e-Business
from the Austrian Ministry for Economics and Youth Development

Catrobat takes part in Google Summer of Code (GSoC)6, Google CS4HS7,
Google Code-in8 and has many partners, e.g. Google, Samsung Austria,
and the No One Left Behind project9.

4https://www.openhub.net/p/catrobat – retrieved on 20.01.2017

5https://www.openhub.net/p/catrobat/analyses/latest/languages_summary –
retrieved on 20.01.2017

6https://summerofcode.withgoogle.com/ – retrieved on 12.06.2017

7https://www.cs4hs.com/ – retrieved on 12.06.2017

8https://codein.withgoogle.com/ – retrieved on 10.12.2017

9http://no1leftbehind.eu/ – retrieved on 12.06.2017

50

https://www.openhub.net/p/catrobat
https://www.openhub.net/p/catrobat/analyses/latest/languages_summary
https://summerofcode.withgoogle.com/
https://www.cs4hs.com/
https://codein.withgoogle.com/
http://no1leftbehind.eu/

4.2. Catrobat Characteristics

Figure 4.3.: Catrobat Organigram.

4.2. Catrobat Characteristics

Catrobat has a very flat organizational structure, as can be seen in Fig-
ure 4.3. There is only minimal central management. It is limited to the
project head and one project manager, who takes care of all organizational
activities, e.g. managing users, their accounts, project infrastructure, soft-
ware licenses. There are a few supportive roles, e.g., taking care of interac-
tions with schools or supporting the Continuous Integration (CI) (Jenkins)
team. In the future the project manager responsibilities will be distributed
between more people.

Work in Catrobat is accomplished in teams. Every platform, e.g. Android,
iOS, is serviced by a team. There are also sub-teams, which develop a spe-
cial functionality for the super-team, e.g., supporting Arduino elements,
Lego NXT, or Parrot drones. There are also teams, which take care of CI,
usability, design, marketing and education. Every team has a coordinator
who takes care of organizational tasks (e.g. supervise Jira board), who has
a good overview what everybody is doing and who is the primary contact
person for the team. Other roles within a team are seniors, who are more
experienced team members and are allowed to merge code into the main
repository and contributors, who are team members without special rights
and responsibilities. Contributors have to prove their technical abilities be-

51

4. Catrobat

fore they can become senior members. The team itself decides who is ready
to assume senior responsibilities. The same is true for the coordinator role.
Team members can volunteer for this role and the team collectively decides
on their coordinator.

All development teams use an agile approach using elements of XP (An-
dres and Beck, 1999; Williams, Krebs, and Layman, 2004) and Kanban (An-
derson, 2010). This approach will be explained in detail in Section 4.4.

Lack of knowledge and experience are in general a challenge for Catrobat.
Because almost all Catrobat developers are students, the skill level is rather
low. Skills about software development range from beginner to intermedi-
ate, depending on the work experience of contributors. Knowledge about
agile methods is not wide-spread, some know very little and some only
a fair amount about it. This is a problem, because “agile methods tend to
need a richer mix of higher-skilled people.” (Boehm and Turner, 2003a).
The best known methods are Scrum and Kanban (Sommer, 2016), see Sec-
tion 4.4 for more details.

Another challenge is the high turnover rate. People are leaving and joining
the project constantly which means a loss of experience and some initial
effort to get new people started. Other FOSS projects also struggle with
member retention. Shah (2006) reported that contributors to large projects
leave within one year and David, Waterman, and Arora (2003) determined
the median length of project participation as 1.2 years for large and small
projects.

Catrobat and FOSS Characteristics

Catrobat adheres to the OSD, see Section 3.1.2, and therefore is a FOSS
project.

Regarding the characteristics and processes, which FOSS projects often
show the picture is not so clear. In this section we will discuss how Catrobat
compares to the characteristics mentioned in Section 3.4. Table 4.1 shows a
short summary of FOSS and Catrobat characteristics and some characteris-
tics will be discussed in more detail.

52

4.2. Catrobat Characteristics

Table 4.1.: Comparing FOSS characteristics and Catrobat.
FOSS Characteristic Catrobat

(No) Formalities Sometimes soft deadlines.
(No) Management Minimal management staff.

Leadership

Project initiator as benevolent dictator and
project coordinator for organizational issues.
After the study a voting committee (Product
Owner group) was added.

Strong Community Community is still in development.

The Core
Contributions are more evenly distributed be-
cause students have to contribute to receive a
certificate.

Modularity Project structure is modular, code base not al-
ways.

Onion model
Onion model, but layers are not larger by an or-
der of magnitude.

Voluntariness

Most developers are students. Volunteers are
mostly contributing in bug reports, feature re-
quests and translations. Some contributors re-
ceive funding via the GSoC program.

Freedom of choice

Tasks are sometimes assigned to students (not to
volunteers), if they are important and nobody
volunteers. Software development method was
chosen by project initiator. Free choice of tools,
but team only supports certain tools, e.g. pro-
vides help with setting up the development en-
vironment. Release dates are determined by the
project initiator. Free choice of review, talking to
others and self-selection of role.

User equals Devel-
oper

Mostly through creation of Pocket Code pro-
grams, feature requests, bug reports and trans-
lations. UX team helps focusing on user needs.

Multi-contribution
Most Catrobat developers contribute only to
Catrobat, see Figure 4.4.

Distributed develop-
ment

Main development takes place in Austria, but
team members are usually not co-located. In-
ternational contributors come from all over the
world.

Tools All usual tools are present in Catrobat.
Electronic communi-
cation

Most communication is electronic, but direct
personal communication is possible.

53

4. Catrobat

Figure 4.4.: Have you already contributed to another FOSS project? [Source: (Sommer,
2016)].

Catrobat does not exactly match the onion model as described in Mockus,
Fielding, and Herbsleb (2002), Crowston and Howison (2005), Masmoudi et
al. (2009), and Teixeira, Robles, and González-Barahona (2015). The layers
are similar, see Figures 4.5 and 4.6, but some are named differently e.g.
Project Head versus Project Leader and others do not exist in Catrobat, e.g.
Core Members, Bug fixers. The project coordinator role is responsible for
organizational things, like user accounts and giving a short introduction
into the overall project. Catrobat’s outer layers of the onion are not larger
by an order of magnitude. The number of developers (120) is almost the
same as translators (around 90) and bug reporters (around 40) combined.
Translators and bug reporters were not checked for duplicates.

Most developers are students at TUG e.g. doing their bachelor thesis, mas-
ter project or master thesis within the project. Therefore code contribu-

54

4.2. Catrobat Characteristics

Figure 4.5.: Structure and roles in FOSS communities [Source: (Sommer, 2016) adapted
from (Ye and Kishida, 2003; Crowston and Howison, 2005)].

Figure 4.6.: Structure and roles in the Catrobat community [adapted from (Sommer, 2016)].

55

4. Catrobat

tions are more evenly distributed in Catrobat than in usual FOSS projects,
where a small percentage of project members develops most of the soft-
ware (Kagdi, Hammad, and Maletic, 2008).

Students sometimes work at the university, but most of the development
work is accomplished at home or anywhere on earth. Catrobat has no core
team or core developers (Torres et al., 2011), because developers change
all the time, and students only stay with the project from six month to
two years (with breaks). So there are (hardly) any developers who stay
with the project for several years who have experience and tacit knowledge
about the project. This is a big disadvantage for the project. A wiki system
helps to keep important information, but still every time someone leaves
the project, something is lost.

International contributors are working mostly on translations for the user
interface, provide bug reports or feature requests, and create tutorials,
Youtube videos or example projects. Young users mainly contribute indi-
rectly through sharing their projects on the Pocket Code website 10 under
an Open Source and Creative Commons license. Some engage in bug re-
ports or feature requests.

4.3. Motivation in FOSS and Catrobat

Motivation in FOSS settings is described in detail in Section 3.3. In this
section we will compare motivating factors in FOSS projects in general
and motivating factors for student contributors in Catrobat. Motivation in
Catrobat was studied in 2016 by Sommer (2016). Answers of 66 Catro-
bat members were collected and analyzed. Studies about FOSS motivation
often mention learning, reputation, career development and fun as main
motivational factors to contribute to FOSS. Although learning and career
path are also motivators in Catrobat, only learning is under the top five.
Reputation is only rather present in Catrobat and is only a minor motivating
factor for the survey respondents in general. Fun was not in the survey.

10http://pocketcode.org – retrieved on 12.06.2017

56

http://pocketcode.org

4.3. Motivation in FOSS and Catrobat

The motivational factors most present in Catrobat are trust/respect, work-
ing conditions and autonomy. Figures 4.7 and 4.8 show the motivational
factors, which are most important for Catrobat members in general sorted
by their general motivational effect in descending order.

Figures 4.9 and 4.10 show to what extent they are present in Catrobat. Mo-
tivators are sorted by their presence in the Catrobat project in descending
order.

57

4. Catrobat

Figure 4.7.: Importance of Motivators for Catrobat members in General Part 1 [Source:
(Sommer, 2016)].

58

4.3. Motivation in FOSS and Catrobat

Figure 4.8.: Importance of Motivators in General Part 2 [Source: (Sommer, 2016)].

59

4. Catrobat

Figure 4.9.: Presence of Motivators in Catrobat Part 1 [Source: (Sommer, 2016)].

60

4.3. Motivation in FOSS and Catrobat

Figure 4.10.: Presence of Motivators in Catrobat Part 2 [Source: (Sommer, 2016)].

61

4. Catrobat

4.4. Software Development Approach

Catrobat uses a software development approach closely related to XP in
Andres and Beck (1999), but not all practices are applied. XP, its val-
ues, principles and practices are explained in detail in Section 2.1. Catro-
bat teams use the following practices: automated unit tests, pair program-
ming, refactoring, release planning, short releases, CI, coding standards, collec-
tive code ownership, simple design, and regular meetings, and a Kanban board.
These practices are used to a greater or lesser extent, depending on the
team. Other XP practices, like acceptance tests, TDD, customer access, sustain-
able pace, system metaphor, lessons learned, growth, artefact reduction (Williams,
Krebs, and Layman, 2004) are hardly used or are not used at all. Meetings
are usually held weekly, the coordinator meeting ist held every two weeks,
release planning occurs in irregular intervals, some teams do it every few
months, others do it not even once a year. Testing is an important issue
for the project head and all teams should employ TDD (Beck, 2003), but
students often lack the experience to do so and write the tests only after
finishing the code and sometimes code is not tested. Figures 4.11 and 4.12

show the detailed answers of the respondents of the 2016 survey for best
known and most used ASD methods.

62

4.4. Software Development Approach

Figure 4.11.: Answers to the question: How well do you know the following software de-
velopment methods? [Source: Sommer (2016)]

63

4. Catrobat

Figure 4.12.: Answers to the question: How much experience do you have with the follow-
ing software development methods? [Source: Sommer (2016)]

64

4.5. Selection of the Project

4.5. Selection of the Project

This part is based on Harzl (2016) and Harzl (2017).

The Catrobat project was selected due to the following reasons:

• Personal contact: The setting with most developers at TUG allows
direct personal contact. Written information, e.g., in mailing lists,
only conveys a small fraction of human communication and inter-
action and is often misunderstood (Schafer, 2000), if not used cor-
rectly. If somebody wants to change a process, people affected by
these changes need to trust this person and trust is easier established
through personal contact. Furthermore, it is easier to receive feedback
on multiple levels and to refine the research methodology and re-
searcher skills through personal contact. Personal contact is not seen
as prerequisite, but as facilitating the research process.

• Experiments and evaluation: Evaluations and experiments are an im-
portant part of AR. Students are often used to research and to ex-
perimenting with different approaches and willing to evaluate them.
Non-student contributors may be more reluctant to do so. Although
this setting with mainly student developers is rather unusual, it al-
lows to conduct more questionnaires and evaluations, which is impor-
tant for research purposes. Moreover, students work on many FOSS
projects and are not atypical FOSS contributors.

• Time and access: Reduced bonding time and easy access to team
members and artifacts are other reasons to select this project. It can
take a very long time to build a good reputation within a FOSS project
and to gain enough trust to be allowed to change work processes.
A basic trusting relationship with members was already established
hence the bonding period could be minimized and made it possible
to conduct the AR within a reasonable time frame. If one has direct
access to people and artifacts, e.g., whiteboards and flip charts, dis-
cussions can be done in a shorter time and it is easier to acquire all
material used in the discussion for later analysis.

• FOSS Characteristics: Many characteristics are the same or similar to
other FOSS projects, see Section 4.2. Even the rather unusual face-
to-face gatherings are not unprecedented in FOSS projects (Düring,

65

4. Catrobat

2006a).

Therefore, this project is a good starting point to explore Kanban in the
context of FOSS development. It should of course not remain the only case,
due to its limitations, which will be discussed in Section 9.2.

4.6. Selection of the Team

The actual team was co-selected by the participants of the AR. The team
coordinator asked for help regarding the team’s motivation and work-
flow, probably because of the researcher’s supporting role in the umbrella
project, which is described in more detail in Section 6.4. The team did not
know how to overcome their problems and agreed to participate in research
to achieve practical outcomes, which would hopefully improve their situa-
tion. This resulted in a bias for action, which contributed to the decision to
select AR as the research methodology.

Asking for help shows some commitment, which is usually needed to
achieve action outcomes. This contributed to the decision to conduct the
study with this team. Other factors for the decision were that the team (six
to eight people, varying over time) has roughly the average size of teams
in this FOSS project (see Figure 4.13), it uses the same agile workflow as
the other teams and direct personal contact with the members of the team
is possible. All team members are students, the only non-student devel-
oper left the project before the AR started. Apart from team size also other
demographic details, like age, studies, and education, are quite similar to
the whole Catrobat project, see Figures 4.14, 4.15, 4.16, 4.17, 4.18, and 4.19

for comparison between the demographics of Catrobat as a whole and the
studied team.

Initially the AR team was a stand-alone team but was transferred into a
sub-team of another team. It implements a larger feature within the super-
team’s mobile application, so the team has to coordinate their efforts with
the super-team. The part developed by the sub-team has not been released
to the public, therefore end users are not part of the sub-team’s workflow

66

4.6. Selection of the Team

Figure 4.13.: Answers to the question: What is the size of your team? [Source: Sommer
(2016)]

for now. From the beginning the team used elements of XP and a Kan-
ban board, like all other sub-projects. The applied XP practices include
automated unit tests, pair programming, refactoring, release planning (occurs in
irregular intervals), short releases, continuous integration, coding standards, col-
lective code ownership, simple design and regular meetings (weekly). Visualize
the workflow was the only Kanban practice applied, in the form of an agile
board, but members did not know, that this was a Kanban practice. The
Shodan 2.0 Input Metric Survey in Williams, Krebs, and Layman (2004)
was used to determine the use of agile practices within the team. Other XP
practices, like acceptance tests, TDD, customer access, sustainable pace, system
metaphor, lessons learned, growth, artifact reduction (Williams, Krebs, and Lay-
man, 2004) were initially not known, hardly used or not used at all by team
members.

67

4. Catrobat

Figure 4.14.: Age distribution in Catrobat [Source: Sommer (2016)]

Figure 4.15.: Age distribution in AR team

68

4.6. Selection of the Team

Figure 4.16.: Highest education in Catrobat [Source: Sommer (2016)]

Figure 4.17.: Highest education in AR team

69

4. Catrobat

Figure 4.18.: Fields of study in Catrobat [Source: Sommer (2016)]

Figure 4.19.: Fields of study in AR team

70

4.7. Selection of Kanban

4.7. Selection of Kanban

Catrobat teams already use Kanban-like boards. They are Jira Kanban boards,
but without WIP limits, swim lanes or SLA. By choosing the Kanban method,
the team could keep existing tools and the initial changes to its workflow
would not be overwhelming.

Literature suggests that Kanban is useful for teaching inexperienced devel-
opers about software engineering and a good pedagogical tool (Ahmad,
Liukkunen, and Markkula, 2014). Furthermore in this study Kanban exhib-
ited a short learning curve and low adoption threshold and helped students
to improve their team work skills, e.g. improved collaboration and com-
munication. Because many inexperienced software developers contribute
to Catrobat, it also serves teaching purposes. This makes Kanban an ap-
propriate and lightweight approach for the student and the FOSS part of
Catrobat. The entrance barrier for the FOSS part is kept low, so potential
contributors will no be scared off, and additionally Kanban fosters collab-
oration, which is important for both parts and the project as a whole.

According to Kniberg and Skarin (2010) Kanban is the most adaptive method.
It does not require an all or nothing approach, where all processes have to
be introduced at the same time, instead small evolutionary changes are
welcome. No expensive week-long up-front training is necessary. Initial job
titles and responsibilities stay the same, so people do not feel demoted
because their job titles vanish. Small incremental changes enable an adop-
tion speed appropriate for the team versus steamrollering the team with all
changes at once. This would require positional power, which is not avail-
able in a FOSS community. In Kanban people are encouraged to use their
own mind. People affected by changes are actively involved and participate
in the process and do not simply endure the changes. This active involve-
ment of affected parties makes Kanban also a good fit for AR as a research
methodology, which is discussed in more detail in Chapter 6.

71

5. Related Work

Extensive literature review did not reveal previous work comprehensively
combining Kanban and FOSS, so related work regarding Kanban or FOSS
in academia and work about the relation between FOSS and ASD will be
presented.

5.1. Educational Settings

5.1.1. Kanban and Academia

Ahmad, Liukkunen, and Markkula (2014) investigated students’ percep-
tions of the Oulu Software Factory Laboratory including the constructs of
Kanban boards and collaborative learning. A Software Factory provides
students with a realistic environment with close customer involvement,
where they work intensively in teams and use modern software develop-
ment tools and processes, thus, improving their learning experience (Fager-
holm, Oza, and Münch, 2013). Students worked on real projects with real
customers. Apart from the mandatory use of Kanban boards, students were
free to use any agile or lean software development practices. Students over-
all perceived the Kanban boards as positive and one respondent (out of 19

responses) even suggested that they should be used more in school, which
would help students to keep track of their on-going work.

Ahmad, Markkula, and Oivo (2014) reported positive results regarding the
usability and effectiveness of Kanban as a pedagogical tool for teaching
software engineering in Software Factory projects. Students had to answer
various questions about the use of Kanban on a five-point Likert scale rang-
ing from 1 (strongly disagree) to 5 (strongly agree). Students had in general

73

5. Related Work

a very positive perception of Kanban. The majority said it helped them un-
derstand project activities, identify bottlenecks and provided them with a
better view of the project. 38 out of 51 (approx. 75%) respondents agreed or
strongly agreed with Kanban helps to identify bottlenecks in project and only 4

out of 51 (approx. 8%) disagreed or strongly disagreed. Also 38 out of 51

(approx. 75%) agreed or strongly agreed with Kanban helps in understanding
project activities, and only 5 out of 51 (approx. 10%) disagreed or disagreed
strongly. When answering Kanban provides a better project view 40 out of 51

(approx. 78%) agreed or agreed strongly and only 2 out of 51 (approx. 4%)
disagreed. 39 students (approx. 76%) intend to use Kanban in the future
in real software engineering projects. Answers to open-ended questions in-
cluded

• “One can see the progress of the project at one glance.”
• “The timing for internal deadlines among project members

was also aided by the use of board.”
• “...the Kanban board helps me follow my project procedure

when I am lost.”
• “The Kanban board is a very good tool for task manage-

ment. The boards were good to use for discussion in my
project. It was good to use, we discussed the problems of
our project when they occurred. It serves us well and we
use it to analyze the task at hand. It is also good when work
is not going forward due to some problem.”

Ahmad, Markkula, and Oivo (2014) concluded that Kanban appears to be
useful for inexperienced software developers like students, provides them
with a good overview of the project progress, makes problems immedi-
ately visible, and helps them understand project activities rather easily,
thus, supporting their learning experience. Team work competencies were
improved in the Software Factory Kanban projects. Students reported pos-
itive effects of the projects on their team working skills. They were able to
acquire and practice their skills within this setting. Figure 5.1 shows the an-
swers to the questions if Kanban Software Factory projects helped students
to acquire team work competencies.

Ahmad, Markkula, and Oivo (2014) concluded after a 1.5 year long study
with Master’s degree students, that Kanban is a good pedagogic tool for

74

5.1. Educational Settings

Figure 5.1.: Learning of Team Work Competencies in Kanban Software Factory Projects
[Source: adapted from (Ahmad, Markkula, and Oivo, 2014)]

teaching software engineering in practical project courses and that students
find Kanban relevant to their learning. Software Factories using Kanban are
effective for teaching software engineering, because students are enabled to
acquire important interpersonal skills. Moreover, Kanban helps students to
achieve their goals in their project work, helps them to understand software
projects and practices currently applied throughout the industry. “Kanban
also facilitates project development, promotes team communication and
supports collaboration.” (Ahmad, Liukkunen, and Markkula, 2014). Kan-
ban should have a low adoption threshold and short learning curve, be-
cause it is easy to learn and and to apply, for professionals and inexperi-
enced software engineers.

5.1.2. FOSS and Academia

Liu (2005) describes GROW (Gradually Ripen Open-source Software) an
educational software process, which is cross-term, cross-team and enables

75

5. Related Work

teachers to use complex, real-world projects in one-term courses. This soft-
ware process was tested in a senior-level software engineering course in
2004. Partner organizations visited the class and presented their initial re-
quirements. Students worked with the partner organizations and devel-
oped software projects for them. To ensure that the software reaches a level,
where actual users feel comfortable using it, project artifacts had to be re-
leased as OSS and were reused by subsequent courses, which improved
and extended the project. So students did not contribute to a pre-existing
FOSS project, only their course artifacts were provided as OSS to students
of the following years.

Pedroni et al. (2007) describe a programming course where students had
to contribute to an existing FOSS project. They evaluated the experience
through a motivation measuring technique and analyzed students’ effi-
ciency and commitment over time. The study shows that students were
more anxious about their success than the control group, working on a
“toy” project, but they rated their achievements higher (compared to the
control group) and considered to keep contributing to the assigned project
after the course. There was no information given which software develop-
ment approach was or which practices were used.

Gehringer (2011) reports the result of a survey of managers of FOSS pro-
jects. Managers of projects, which successfully included contributions of
students, were asked how they interacted with classes and what instruc-
tors could do to improve interaction. Most of these projects were either
started by faculty or caught the attention of members of the faculty, e.g. the
H-FOSS project (Humanitarian Free & Open-Source Software). The study
indicates that course instructors should contact the specific projects weeks
or months in advance and should also be personally involved in FOSS de-
velopment. They should prepare their students especially in the areas of
design and testing, so they can contribute more easily. Because students
usually need more help getting started than more experienced developers,
some projects created tutorials especially for students or support pages for
new developers. Others had an IRC channel for students or provided day
long code sprints. The paper gives some examples of FOSS projects, which
worked with students.

Marmorstein (2011) describes a software engineering course during which

76

5.1. Educational Settings

small student teams contributed to a FOSS project. Students should famil-
iarize themselves with the FOSS community, the design strategies and work
flow of a large project. In contrast to academic “toy” projects, where code
is often developed from scratch, students could implement new features,
do software maintenance tasks, e.g., bug fixing, or write documentation.
Almost all students rated the project as instructive and most of them an-
swered in a survey that they had learned about the design phase, as well as
the implementation and maintenance of a project. One problem was com-
munication with the FOSS projects, many students rated the helpfulness of
community members as rather low.

MacKellar, Sabin, and Tucker (2015) developed a teaching approach which
uses open source development practice(s) and client-oriented hands-on
software development. Instead of writing code for small “toy projects” sim-
ply for educational purposes, company-sponsored proprietary software,
internship courses, or large FOSS projects, students developed relatively
small projects for local non-profit organizations. The developed code is
open source and can be re-used, extended or adapted by other students
or organizations. MacKellar, Sabin, and Tucker (2015) call this approach
Client-Oriented Free and Open Source Software Development (CO-FOSS).
Local non-profit organizations received software tailored to their needs
without draining their budgets, students gained valuable real world expe-
rience and the open source code enabled instructors, students and organi-
zations to re-use, extend or adapt the software for different clients over sev-
eral semesters or at other universities. MacKellar, Sabin, and Tucker (2015)
adapted the framework from Allen Tucker Morelli, Lanerolle, and Tucker
(2012) to their institutions. They present their framework, their adaptation
experiences and guidelines on how to incorporate the CO-FOSS approach
into software engineering courses. Advantages of CO-FOSS include flexi-
ble team size and task assignment, FOSS tools, which are open source as
well and therefore affordable for universities, and FOSS practices, which
are suitable for students because they support asynchronous, distributed
work. Because the code can be re-used, adapted and extended, project
parts and team sizes can be adapted to the actual course. For example,
if a course focuses on databases, students of this course can implement
only the database part, whereas another course can involve development
for several parts of a project, e.g. user interface, database and help system.

77

5. Related Work

Team size is also flexible. Larger teams enable team members to split up
to work on parts of the system, they are comfortable with, smaller teams
enable team members to work on all parts of a project. Students familiarize
themselves with FOSS tools, which are often used in companies as well,
e.g., version control and issue tracking systems, and FOSS practices, e.g.,
code reviews, testing, team communication in geographically distributed
teams, which are also important in industrial settings.

Ellis, Morelli, et al. (2007), Ellis, Purcell, and Hislop (2012), Ellis, Hislop,
and Purcell (2013), Hislop and Ellis (2015), Ellis and Hislop (2016), Ellis
and Hislop (2017), and Ellis, Hislop, and Burdge (2017) report on students
contributing to Humanitarian Free and Open Source Software (HFOSS)
projects. The goal was to prepare students for the real-world through en-
gaging them in large real-world projects, where they could gain the techni-
cal (e.g. programming, development processes) and social (e.g. teamwork)
skills needed to work in the fast-paced software development industry.
They identified one major challenge for teachers, to identify appropriate
HFOSS projects. Important factors for choosing the right project are the
license, programming language, rate of activity, number of contributors,
availability of an issue tracker, size of the project, openness towards / wel-
coming of new contributors, community norms and user base.

5.2. FOSS and Agile Software Development

Koch (2004) compares the ASD and FOSS movements based on several
criteria taken from the principles of ASD and the FOSS description of
Raymond (2001). Data, wherever appropriate, was sampled from Apache
and Mozilla (Mockus, Fielding, and Herbsleb, 2002), GNOME (Koch and
Schneider, 2002), and Sourceforge 1. There is no practical application of
combining ASD and FOSS included, nor does the paper mention pro-
jects which comprehensively combine ASD and FOSS. Nevertheless, he
concluded that they show many similarities, e.g. craftsmanship and self-
organization, and only a few differences, e.g. team co-location, self-selection

1https://sourceforge.net/ – retrieved on 02.09.2017

78

https://sourceforge.net/

5.2. FOSS and Agile Software Development

of tasks. This is also supported by Warsta and Abrahamsson (2003) and
Gandomani et al. (2013).

Theunissen, Kourie, and Boake (2005) studied the chances of combining ag-
ile and open source practices in the context of corporate software develop-
ment and suggested an approach how to accomplish this. They identified
several tensions between FOSS and corporate culture as well as between
ASD and FOSS, e.g. monitoring developers vs. volunteers without super-
vision and adaption to remote communication vs. co-located developers’
communication face-to-face. Theunissen, Boake, and Kourie (2005) propose
a theoretical hybrid approach including the best of ASD and FOSSD, while
minimizing the tension points, which is suitable for companies. This work
was extended by Theunissen, Kourie, and Boake (2007) who report about
a fictional ASD development team focusing on using FOSS products. Both
papers do not report on any practical application of this hybrid approach
to an actual company or FOSS project.

Turnu, Melis, Cau, Marchesi, et al. (2004) and Turnu, Melis, Cau, Setzu,
et al. (2006) introduced TDD to their open source simulation model to re-
search the effects of TDD on FOSS. They used a simulation model for their
research, because empirical data of FOSSD with and without TDD are very
difficult to obtain. Turnu, Melis, Cau, Marchesi, et al. (2004) made the fol-
lowing assumptions to introduce TDD into their simulation model: While
the average time necessary to write a line of production code increases (au-
tomated tests have to be written as well), the number of defects injected
during coding and the debugging time to fix a single bug decrease (Turnu,
Melis, Cau, Marchesi, et al., 2004; Turnu, Melis, Cau, Setzu, et al., 2006).
The model simulated the evolution of a FOSS project after the initial kernel
of the system was developed by a small number of core contributors before
it was released to the public to join development (Turnu, Melis, Cau, Setzu,
et al., 2006). For more details regarding the calibration of the model read
Turnu, Melis, Cau, Marchesi, et al. (2004) and Turnu, Melis, Cau, Setzu, et
al. (2006). Their simulations predicted a higher code quality for the model
with TDD than for the model without it, while productivity of the average
contributor stayed the same. Introducing TDD to the simulation model had
no effect on the number of contributors. Only one practice was introduced
to the FOSS simulation.

79

5. Related Work

Düring (2006b) and Düring (2006c) and Sigfridsson et al. (2007) studied the
PyPy FOSS project, an alternative implementation of the Python language.
Düring (2006c) studied the effects sprint-driven development had on the
project. PyPy is a hybrid project employing practices from Agile and Dis-
tributed Development in the context of an Open Source community. It uses
tools and practices from both parts, e.g., sprint-driven development, TDD,
open communication climate, focus on collaborative approaches, a public
issue tracker, continuous integration, and code review. It was partly funded
by the European Union from 2004 to 2006. In the case of PyPy sprint-driven
development means, that people meet in person for up to one week and
jointly work on the code base. These sprint meetings were supplemented
by 30 minute time-boxed weekly sync-meetings, which provided a time for
regular discussions and integration of ongoing work.

Between 2003 and 2004 six sprints were arranged in different European
cities, which encouraged participation. After the EU-funding sprinting was
carried out every 6th week. As a consequence of the sprinting the number
of subscribers on the development list increased from around 150 to over
250. Düring (2006c) concluded that the PyPy sprint-driven approach makes
Agile and Distributed Development more combinable and helps ensur-
ing quality in projects with hybrid cultures and methodologies. Moreover
sprints improved the cohesion as well as the community through personal
contact (with core developers), served as training sessions for coding and in
the development methods, and supported design decisions, high-level re-
quirements discussions, while at the same time they minimized the risks of
Distributed Development. Düring (2006c) also concluded that sprint-driven
development as a methodology needs an agile group of people, so called
CRACK performers (“Collaborative, Representative, Authorized, Commit-
ted, Knowledgeable”) (Boehm and Turner, 2003b). She even went so far as
to say that in some sense the people are the methodology and cites Alistair
Cockburn

“The fundamental characteristics of ‘people’ have a first-order
effect on software development, not a lower-order effect.”

Only some XP practices were integrated into PyPy and

“I think it would be a mistake to say this is a combination of
agile and open source. I think it has applied one of the ideas of

80

5.2. FOSS and Agile Software Development

agile development to the very difficult problem of distributed
software development.”

said James Shore, a leading practitioner of agile methodology, in Goth
(2007).

Sigfridsson et al. (2007) studied the effects of sprint-driven development on
learning, the dissemination of knowledge and the expansion of the FOSS
community in PyPy. They saw PyPy sprints as a perfect example of situated
learning. At the same time they ensured the sustainability of the PyPy
community by introducing newcomers to the project through mentoring.
Only some XP practices were integrated into PyPy and only sprinting was
evaluated regarding its effects on learning.

Porruvecchio et al. (2007) studied the relationship between ASD and FOSS
by integrating a Health Information System into an Italian hospital follow-
ing an XP approach. XP was not introduced to a FOSS project, it was used
by a software development team developing code extending the function-
ality of the FOSS project.

Deshpande and Riehle (2008) analyzed the code contribution size of more
than 5000 active FOSS projects over the projects’ life spans. They concluded
that FOSSD did not change code integration practices and claimed that CI
did not significantly influence FOSS developers behavior up until then.
Either FOSS projects did not adopt CI or that they always used it, so that
the appearance of agile methods did not change anything.

Adams and Capiluppi (2009) investigated the effects of sprinting on pro-
ductivity in two FOSS projects, Plone and KDE PIM. Sprinting in this con-
text means, that a small group of people co-locates for a short period of
time to work on a specific aspect of the overall project. They wanted to
determine if sprinting increases productivity and if FOSS projects remain
more productive after sprints. To this end code repository logs were an-
alyzed and average commits per day were used as metric. Productivity
was measured 7 days before, 7 days after the sprint and during the sprint.
For Plone no overall increase in general productivity could be measured
during the sprint for the selected six sprints. For KDE PIM sprints an in-
crease in general productivity could be found for the majority of the se-
lected sprints. After the sprints the productivity of the Plone project was

81

5. Related Work

not larger than compared to before the sprint for the majority of the sprints,
which changed slightly for the last sprint events. For the KDE PIM project
an increase of productivity (compared to the general base rate) was still
accomplished during the week after the sprints.

Tsirakidis, Koebler, and Krcmar (2009) studied success and failure factors of
two agile teams of a FOSS organization regarding their team performance.
For both teams the following agile practices were assumed: Scrum, TDD,
collective code ownership, refactoring, coding standards, and co-located
and distributed pair programming. Preliminary results showed four suc-
cess factors: constant and synchronous communication, FLOSS develop-
ment experience in accepting and handling the environmental limitations,
consistency in the methodological development approach, geographical
dispersion management through an extensive testing culture, and two fail-
ure factors: information hiding in separate mailing lists, inconsistency in
the methodological development approach (Tsirakidis, Koebler, and Krc-
mar, 2009). The practices were only assumed and did not include all XP or
Scrum practices.

Wusteman (2009) studied the OJAX project, where open source design
methods and usability testing were used iteratively. The results of the tests
were used to develop agile uses cases. Apart from iterative design and us-
ability testing, they did not report on a specific ASD methodology or agile
practices. As the next step the adoption of agile development methods by
the library community was mentioned.

Lavazza et al. (2010) report their experiences of using Scrum (Schwaber and
Beedle, 2001) for the development of a FOSS Java tool. Only the tool was
FOSS, the people involved were paid for their contributions. Lavazza et al.
(2010) applied a modified Scrum process to the development of MacXim
(Model And Code Xml-based Integrated Meter), a tool in the QualiPSo2

project. MacXim extracts static measures from source code (Crisà, Bianco,
and Lavazza, 2006). There was a distinct project manager monitoring project
requirements and deadlines. This role later changed to product owner i.e.,
“the QualiPSo manager in charge of tool development”. This role worked
three days per week on the project. After one year a dedicated development
team was formed, including two (later three) junior developers working

2http://qualipso.icmc.usp.br/OMM/ – retrieved on 02.09.2017

82

http://qualipso.icmc.usp.br/OMM/

5.2. FOSS and Agile Software Development

full-time on MacXim. Developers were spread over several kilometers. For
daily stand-ups a forum and a video conferencing system were used. The
team met online every two weeks (four hour meetings in video conference)
and additionally they met in person every month to mitigate risks due to
lack of direct interaction. Lavazza et al. (2010) concluded that it seems to
be possible to integrate Scrum into an ongoing distributed FOSS project
process and it supported the control of the development process, but did
not change the quality of the product or the productivity of the team signif-
icantly. They also reported improved communication between developers.
Regarding the introduction of Scrum into a FOSS development community
they concluded

“As a final consideration, applying the pure Scrum methodol-
ogy to an OSS development community is not possible because
of geographical, cultural, and communication problems.”

Gary, Enquobahrie, et al. (2011) describe a case study of the IGSTK (Image-
Guided Surgical Toolkit) project, which is a safety-critical system (Bowen
and Stavridou, 1993) and a FOSS project. A set of best practices (Gary,
Ibáñez, et al., 2006) was used. To ensure code quality there was a code
review at the end of every sprint, unit testing, CI and full code cover-
age were employed. To accommodate the safety-critical domain the best
practices lightweight requirements management, safety-by-design, CI and
testing, and architecture validation were used. IGSTK adapted two ASD
approaches to their needs, Scrum management practices and XP coding
practices. A FOSS community supports their work.

Magdaleno, Werner, and Araujo (2012) conducted a quasi-systematic lit-
erature review of papers regarding the reconciliation of plan-driven, ASD
and FOSS software development models. Their review indicates, that

• there are very view studies reconciling all three software development
models.

• the large number of studies is reconciling plan-driven and agile mod-
els.

• work about reconciling ASD and FOSS development models is still
incipient. In general, only one particular practice is integrated, e.g.,
introducing TDD into FOSS.

83

5. Related Work

• organizations can reconcile them on organizational, group or process
level.

Okoli and Carillo (2012) compared FOSSD, ASD and plan-driven software
development by comparing their pragmatic perspective in the different
stages of a software development project and not specific projects. For ex-
ample, number of developers is usually larger (>20 people) in plan-driven
methodologies than in ASD (<20 people), and FOSS communities can have
one or hundreds of contributors. Regarding the organizational culture in
plan-driven approaches it is usually centralized and well-organized, in
ASD decentralized and highly flexible and FOSS can work with central-
ized and decentralized cultures.

5.3. Summary

Some FOSS projects apply certain agile practices, e.g., Eclipse employs
TDD, refactoring and Feature Driven Development since the beginning,
Netbeans employs Behavior/Feature Driven Development since the begin-
ning and partially uses automatic testing (Murgia et al., 2009), and CI, PyPy
employs TDD and CI, and PyPy, Plone and Canonical use sprint-driven
development. But all of them apply only a few ASD practices (sometimes
only one) (Magdaleno, Werner, and Araujo, 2012) to a university course or
a FOSS project or use FOSS elements for university courses.

This makes Harzl (2016) and Harzl (2017), the first study about compre-
hensively combining ASD and FOSS. Gandomani et al. (2013) confirm the
lack of literature regarding the combination of both methods.

84

6. Action Research

This chapter describes the research methodology used for this thesis.

6.1. Basics of Action Research

The term AR was initially coined by Kurt Lewin in 1946 (Lewin, 1946)
to describe a new approach in social research. This approach combined
the change of a social system through research acting in or on the social
system and theory creation (Susman and Evered, 1978). Rapoport (1970)
defines AR like this:

“Action research aims to contribute both to the practical con-
cerns of people in an immediate problematic situation and to
the goals of social science by joint collaboration within a mutu-
ally acceptable ethical framework.”

Susman and Evered (1978) extend this definition by a third aim, “to develop
the self-help competencies of people facing problems”. In AR researchers
and practitioners collaborate to solve real world problems through theoret-
ically informed actions (Greenwood and Levin, 2007; Harzl, 2016). Another
view of AR is that of a cyclical process containing five phases; diagnosing,
action planning, action taking, evaluating, and specified learning (see Fig-
ure 6.1).

The characteristics of AR according to Susman and Evered (1978) are:

• “AR is future oriented”, because it strives to solve real-world prob-
lems of people and to create a more desirable future for them.

• “AR is collaborative”, because researchers and the client system work
together and determine the direction of the research process jointly.

85

6. Action Research

Figure 6.1.: The Cyclical Process of Action Research [adapted from (Susman and Evered,
1978)].

86

6.1. Basics of Action Research

• “AR implies system development”, because it generates an infrastruc-
ture of the system, which alleviates the current, sub-optimal or prob-
lematic, situation and generates new knowledge about the system’s
processes.

• “AR generates theory grounded in action.” Theory informs the diag-
nosis of an organization and appropriate actions to take. In turn the
evaluation of the consequences of these actions can inform theory.

• “AR is agnostic.” Theory and prescriptions for actions have to be re-
examined and reformulated, based on the consequences of the actions
taken, throughout the research process because they are the product
of actions previously taken. The researcher cannot fully know the
consequences of selected actions ahead of time.

• “AR is situational.” Every research situation is unique based on peo-
ple, relationships between people and so on. The AR researcher takes
actions based on the current understanding of the situation and the
stakeholders involved. Actions are planned in consensus with stake-
holders, so they are going to produce the intended outcomes.

Chein, Cook, and Harding (1948) differentiate between different types of
AR, depending on how many or which phases are carried out together by
the researcher and the client system.

• Diagnostic AR: Researcher is only involved in data collection for di-
agnosis, and feeding the data back to the client system.

• Empirical AR: Researcher evaluates the client system’s actions and
feeds data back to it.

• Participant AR: Researcher and client system jointly conduct diagnos-
ing and action planning.

• Experimental AR: Researcher and client system jointly conduct (al-
most) all phases.

AR is usually conducted in iterative cycles of plan, act, observe, and re-
flect (Lewin, 1948) or variations of this approach, e.g., the spiral of self-
reflective cycles (Kemmis, McTaggart, and Nixon, 2014) with planning, act-
ing and observing, reflecting, re-planning, acting and observing or the ap-
proach from Susman and Evered (1978). For more information on this ap-
proach see Section 6.2. Often the stages of the cycles overlap and are not

87

6. Action Research

clearly separated. The AR methodology is more responsive to the situa-
tion than other methodologies (Kemmis, McTaggart, and Nixon, 2014). As
Kemmis, McTaggart, and Nixon (2014) puts it

“For critical participatory action research, the criterion of suc-
cess is not whether participants have followed the steps faith-
fully, but whether they have a strong and authentic sense of de-
velopment and evolution in their practices, their understandings
of their practices, and the situations in which they practice.”

This was very important for this study, because the study participants had
a strong interest in improving their situation and work practices.

6.2. Study Approach

For this thesis a participatory AR approach, namely a modified version of
Susman and Evered’s approach (Susman and Evered, 1978), was used as a
research method. Figure 6.1 shows this cyclical model with its five stages
diagnosing, action planning, action taking, evaluating, and specified learning. All
steps were discussed and conducted together with the study participants.
In the classification of Chein, Cook, and Harding (1948) it would be an
experimental AR.

The following phases were conducted:

• Diagnosing
• Cycle zero including a user analysis and a stakeholder analysis. It

was added after the diagnosing phase at the beginning of the study.
• Five AR cycles consisting of action planning, action taking, evaluation

and specified learning.
• Two coaching sessions, one at the beginning of cycle zero and one at

the beginning of the second AR cycle, see Section 8.3.

Finally the results were analyzed, presented to the team and published in
Harzl (2016) and Harzl (2017).

88

6.3. Selection of Action Research

6.3. Selection of Action Research

Several reasons contributed to the selection of AR as research methodology.
The main reasons are:

• Strong focus on practical outcomes and not only scientific outcomes
by the research participants. According to Dick (2000) AR is well
suited to achieve both at the same time.

• Increased commitment of the study participants through participa-
tion in the research (Dick, 2000).

• AR is a flexible approach, which allows to explore areas, where theory
is not fully developed yet (Edmondson and McManus, 2007; Kamp-
enes, Anda, and Dybå, 2008).

• AR allows for changes in later cycles, if the observations from earlier
cycles suggest them.

• AR investigates the actual practices, not proclaimed practices.

“It involves learning about the real material, concrete, par-
ticular practices of particular people in particular places.” (Kem-
mis, McTaggart, and Nixon, 2014)

6.4. Researcher Role

The AR is designed as insider in collaboration with other insiders, but
power relations could still play a part. In Catrobat the researcher was re-
sponsible for organizational and supporting processes, see Project Coor-
dinator in Figure 4.6, for example creating user accounts and giving a
short introduction into the overall project. Other roles like developer, se-
nior member or team coordinator were not taken on. However, project co-
ordinator and project founder, Mr. Slany, work closely together. Mr. Slany
is not only an integral part of the project, but also the professor grading
the students, who do their Bachelor thesis or Master project in the FOSS
project. Thus, although researcher and project coordinator are not official
hierarchical roles, contributors probably see the roles as having informal
power within the organization.

89

7. Getting Ready for Combining
FOSS and Kanban

This chapter describes phenomena and improvements for the whole Catro-
bat organization and not only for the studied sub-team. Because the issues
discussed in this chapter did concern all teams and the solutions were
rather time and resource consuming it did not make sense to apply them
just to one team.

FOSSD is highly distributed software development, very knowledge in-
tensive and community-based. Because of these characteristics FOSSD has
to tackle knowledge management challenges (Ciborra and Andreu, 2001;
Edwards, 2001; Becking et al., 2005; Crowston, Wei, et al., 2012). In this
chapter changes to the organization and tools of the Catrobat project will
be described. They were changed to address knowledge management (see
Section 7.4.4) and other challenges. Basic project management tools and
processes were introduced, which helped enable future research. Before
these improvements were put into place the number of project members
was unknown, development information was scattered over different plat-
forms and other information e.g. meeting notes, to-do lists were stored
over various services. Nobody knew which information was available and
much information was lost in private cloud services when a member left
the project. This chapter is based on Fellhofer, Harzl, and Slany (2015).

7.1. Abstract

This chapter describes problems that arose with the scaling and interna-
tionalization of the FOSS project Catrobat. Problems included lack of a

91

7. Getting Ready for Combining FOSS and Kanban

centralized user management, insufficient scaling of communication chan-
nels, and the necessity to adapt agile development techniques to remote
collaboration. To solve the problems a mix of open source tools (Git, IRC,
LDAP) and commercial solutions (Jira, Confluence, GitHub) was chosen,
because this mix fitted the needs of the project best. Other projects can
benefit from the lessons learned during the reorganization of Catrobat’s
knowledge base and communication tools, as infrastructure changes can
be very labor-intensive and time-consuming.

7.2. Introduction

Scaling and internationalizing a FOSS project is not an easy task. The
project grew from five contributors in 2010 to over 130 contributors in 2014,
which lead to various organizational problems. In this paper experienced
problems will be shared, as well as approaches to solve them, and lessons
learned along the way. Other FOSS projects can profit from these experi-
ences.

Details about Catrobat can be found in Chapter 4. Catrobat was initiated
by Wolfgang Slany and a team of students from Graz University of Tech-
nology, seeking challenges besides their studies and ways to practice what
they learned at the university. This eagerness to apply software develop-
ment principles taught in courses heavily influenced the basic structure of
the project, with all its advantages and disadvantages.

On the positive side the usage of agile development methods such as Kan-
ban (Anderson, 2010; Hiranabe, 2008) enabled project members to stay flex-
ible and to easily adjust the scope of the project on the fly. XP, especially
pair programming (Andres and Beck, 1999), facilitated knowledge trans-
fer between developers. TDD (Beck, 2003) ensured that the code remained
working and testable while new developers joined and former developers
left the project. A dedicated UX team applying the personas method (Hus-
sain et al., 2012) and other usability techniques focused on the users. This
is particularly important because, in contrast to most FOSS projects, Catro-
bat’s developers (mostly university students) are not a subgroup of Catro-

92

7.2. Introduction

bat’s targeted users (mostly children and teenagers). The UX team helps to
create an understanding of user needs in all developing teams.

On the negative side most of Catrobat’s contributors are more or less inex-
perienced as software developers and they have to familiarize themselves
with the principles used, which steepened the learning curve. Communi-
cation was mainly face-to-face, which is good for localized agile teams,
but leaves many decisions undocumented, which is disadvantageous for a
larger, distributed FOSS project. Discussions tend to get started over and
over again, when nobody remembers why and based on what information
a decision was made in the first place. Communication problems will be
discussed later in more detail, because they are at the core of Catrobat’s
difficulties with scaling and internationalizing.

The increasing number of contributors from five contributors in 2010 to
over 130 contributors in 2014, and the participation of international con-
tributors in the project made organizational problems visible. Documenta-
tion was not equally available for everyone, the entire current project status
was not visible online and important communication channels were miss-
ing. For example most of the contributors did not use IRC, which is often
an integral infrastructure of FOSS projects and compulsory for the partic-
ipation in GSoC1, in which Catrobat participates since 2011. To address
these problems and to be able to integrate more and international contrib-
utors, the project infrastructure, the ways to communicate and some tools
had to be changed.

In Section 7.4 the problems will be identified in greater detail and ap-
proaches to solve them will be described. Section 7.5 contains the lessons
learned on the way from a small, localized project to a larger, more inter-
national project.

1A global program from Google to support FOSS projects by sponsoring students and
pairing them with mentors to develop given tasks over summer (https://developers.
google.com/open-source/soc/)

93

https://developers.google.com/open-source/soc/
https://developers.google.com/open-source/soc/

7. Getting Ready for Combining FOSS and Kanban

7.3. Related Work

The main goal was to enable and facilitate contributions from contribu-
tors around the world. Various studies ((Korkala and Abrahamsson, 2007;
Layman et al., 2006; Poole, 2004; Scacchi, 2010; Schümmer and Schümmer,
2000)) highlight how important communication is in a FOSS project or in
projects which use agile development techniques.

The work done focused on optimization of communication for FOSS and
agile software development projects. Layman et al. (2006) recommended
among other things that “when face-to-face, synchronous communication is in-
feasible, use an email listserv” and “use globally-available project management
tools”. Korkala and Abrahamsson (2007) recommended to “enable and sup-
port direct communication between the developers”. Some technologies and
common practices used in FOSS development such as instant messaging,
IRC, news postings, how-to guides, FAQ, or Wikis are listed in Scacchi
(2002) and Scacchi (2010). In Yamauchi et al. (2000) technologies such as
versioning systems and to-do lists are mentioned. Difficulties for newcom-
ers like “selection of a suitable task”, “lack of up-to-date development documents”,
or “no response from core developers for their doubts” are mentioned in Shibuya
and Tamai (2009).

Section 7.4 contains the implementation of recommendations from this Sec-
tion.

7.4. Optimizing Services for Distributed
Participation

The Catrobat project grew faster than the supporting infrastructure, which
led to organizational problems. For each part of the infrastructure the ini-
tial situation will be described first, then problems which occurred over
time and finally how the problems were resolved. Usually solutions were
determined through collecting requirements and looking for appropriate
tools and researching other FOSS projects. One important criterion was,
that software solutions should be free of charge for FOSS projects.

94

7.4. Optimizing Services for Distributed Participation

7.4.1. User Management

Initial Situation. In the beginning there was no user management. Every
piece of infrastructure (for example: instant messaging, source code repos-
itory) had its own built-in user management, and accounts were created
manually on demand. Some services were used through shared user ac-
counts. This made accountability impossible.

Resulting Problems. The effort necessary for user management and main-
tenance increased tremendously with the increasing number of contribu-
tors, because every user account had to be created manually and every
change had to be populated manually to all platforms. This resulted in
missing and outdated account information. Rights management was not
even a topic. Sometimes this lack of rights management caused inexperi-
enced contributors to inadvertently change or delete infrastructure. Shared
accounts made it impossible to trace who made changes to project services.
On the side of the contributors the account management was elaborate too,
as for every service, contributors had to use different credentials.

The goal was to simplify the management of user databases and to sup-
port contributors by providing them with only one account for (almost) all
Catrobat infrastructure.

Method of Resolution. Most parts of the project’s infrastructure have
a built-in support for Lightweight Directory Access Protocol (LDAP), so
LDAP was the most suitable solution to simplify user management. LDAP
groups are used for various reasons:

• different experience levels need different rights
• different contributor groups need different resources and services
• no shared accounts, so there are clear responsibilities
• infrastructure administration should be left to experienced contribu-

tors

The goal was to design a user management which serves experts and be-
ginners. Experts should have all the rights they need, and beginners should
not be overwhelmed by too many services and rights too soon.

95

7. Getting Ready for Combining FOSS and Kanban

Unfortunately not all services support LDAP. For example externally hosted
services such as GitHub do not support foreign user directories and still
need extra maintenance. Other services like Crowdin2 support OAuth3 as
authentication method, but to take the user groups and corresponding
rights needed for Catrobat into account, the service’s Application Program-
ing Interface (API) or an additional configuration interface must be used.

7.4.2. Communication

Catrobat is allowed to use a room at TUG, where local contributors can
meet, discuss, and code. In the beginning all contributors fit in the room,
and communication was mainly face-to-face. The reliance on face-to-face
was very beneficial in the beginning but caused some communication and
documentation problems later on as already mentioned in Section 7.2.

Instant Messaging

Initial Situation. Other means of communication were and still are e-
mail, mailing lists4 as recommended in Layman et al. (2006) and Instant
Messaging (IM). In the beginning a Skype group chat was used for project
discussions with all contributors.

Resulting Problems. Many contributors joined the Skype group chat but
did not participate actively, because they preferred face-to-face communi-
cation, e-mail, or were overwhelmed by the number of messages that did
not concern them. This massive number of messages was a direct result of
the growing number of contributors.

One problem with Skype is that group chats are invite-only, which makes
it difficult for aspiring contributors to join the discussion. They first had
to find a project member to invite them. Another problem with the Skype

2Tool to help non-developers to translate texts (https://crowdin.com/)
3http://oauth.net/
4http://catrob.at/mailinglist – retrieved on 20.02.2015

96

https://crowdin.com/
http://oauth.net/
http://catrob.at/mailinglist

7.4. Optimizing Services for Distributed Participation

group was the language used. Almost all messages were in German, be-
cause all of the initial team members spoke German.

In an attempt to open up the project and allow for internationalization, an
IRC channel was created, which was open to everyone and where it was
obligatory to use English.

This attempt failed, because project issues were, as a matter of habit, still
discussed in Skype and hardly anyone used IRC. So theoretically the project
maintained an IRC channel, but interested contributors still got “no response
from core developers for their doubts and support request” (Shibuya and Tamai,
2009).

As a consequence the project appeared nontransparent to remote contribu-
tors, and it became obvious that face-to-face communication and chats on
Skype, as useful and familiar as they are in everyday life, are not enough
for an international FOSS project.

Method of Resolution. A decision was made to switch the whole syn-
chronous communication to IRC and to delete the Skype group chat. The
reasons for this decision were:

• One IM platform for all purposes.
• Everybody can join channels, he or she is interested in.
• “Irrelevant” messages are reduced, because messages are posted only

to the channels where they belong.
• Faster responses to questions from aspiring contributors due to in-

creased online time of project members.
• Topic specific channels can be created and deleted easily, when needed.

To make the communication with IRC more attractive for the contributors
they were provided with an IRC bouncer which records all messages when
the user is offline and replays them when the user goes online.

One disadvantage of IRC as communication platform is that the technol-
ogy seems old-fashioned to Catrobat’s contributors and most of them have
never used IRC before. Another disadvantage is that it is more time con-
suming to configure IRC with the bouncer than it is to configure Skype.

97

7. Getting Ready for Combining FOSS and Kanban

Figure 7.1.: The default Jira workflow for issues.

Contributors have to authenticate to freenode5 and to the project bouncer
with different credentials.

Meanwhile IRC is widely accepted by the community and the communi-
cation improved compared to Skype because contributors only have to join
and read channels they are interested in and people are by now used to
IRC.

7.4.3. Agile Development Management

Initial Situation. As already mentioned Catrobat is allowed to use a room
at the TUG for the project. There several things are available to the project
contributors, like, whiteboards serving as Kanban boards, as well as story
cards on paper. Initially every software development team had its own

5IRC network where the project runs all its channels (https://freenode.net/)

98

https://freenode.net/

7.4. Optimizing Services for Distributed Participation

Figure 7.2.: This is the customized workflow for issues with additional steps for reviewing
by experienced developers, the UX team, and code acceptance.

Kanban board in the room, though this became impossible as the number
of projects grew. The project uses GitHub6 as source code repository. The
integrated issue tracker was used not just to track bugs and issues reported
by users but also as a digital version of the local Kanban boards. Labels of
issues were used to indicate which kind of issue it was (bug, story, enhance-
ment, . . .), the current working status (to do, in development, done, . . .),
the priority (low, medium, high, or critical) and which part it affected (de-
velopment environment or interpreter). To enable children and teenagers
to report bugs and issue requests without bothering with Github, a Google
Group 7 was created.

Resulting Problems. User stories and bug reports had to be synchronized
between three different platforms (local Kanban board, Github, Google
Group). It is not hard to imagine that this had negative consequences: the
local Kanban board was often outdated and the issue tracker did not cover
stories, which were created locally on the Kanban board. The Github issue

6https://github.com/Catrobat – retrieved on 20.02.2015

7http://catrob.at/PocketCodeUserForum – retrieved on 20.02.2015

99

https://github.com/Catrobat
http://catrob.at/PocketCodeUserForum

7. Getting Ready for Combining FOSS and Kanban

tracker did not support the Kanban board and lacked the functionality of
hiding security relevant issues from the public.

Method of Resolution. In 2013 the decision was made to test distributed
agile development with online agile boards. The choice fell on Jira8, because
it is used by other FOSS projects like Apache9 or Cyanogenmod10, is free
for FOSS projects and provides much more functionality like, for example
Redmine11, a FOSS version of online agile boards.

As a pilot test Jira was used during GSoC 2013. Every mentor/student
pair received their own project with a simple Kanban board. Over this
trial period it became apparent, that the original workflow of issues had to
be customized to fit Catrobat’s developing principles (specifically review
of newly created issues and code acceptance by experienced developers)
and to integrate usability reviews into the workflow. Figure 7.1 shows the
original workflow and Figure 7.2 shows the customized workflow.

After the successful pilot test Jira was introduced as a globally-available
project management tool (recommended by Layman et al. (2006)) and as
replacement for the local whiteboards. This proved to be another important
step towards becoming an international FOSS project.

7.4.4. Knowledge Management

Initial Situation. Initially Google Docs, Dropbox, and a Wiki system were
used for distributing documents and information. The Wiki system grew
more or less naturally and the structure was seldom revised. For a group
of five people, which communicates mainly face-to-face, a less formal doc-
umentation management is useful, but once the number of contributors
grew, severe problems surfaced.

8Planning and tracking tool for agile project management by Atlassian (https://www.
atlassian.com/software/jira)

9https://issues.apache.org/jira/secure/Dashboard.jspa – retrieved on
20.02.2015

10https://jira.cyanogenmod.org/secure/Dashboard.jspa – retrieved on 20.02.2015

11https://www.redmine.org/ – retrieved on 20.02.2015

100

https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
https://issues.apache.org/jira/secure/Dashboard.jspa
https://jira.cyanogenmod.org/secure/Dashboard.jspa
https://www.redmine.org/

7.4. Optimizing Services for Distributed Participation

Resulting Problems. Document owners left the project and the owner
rights were not transferred. Documents were not updated, became out-
dated, and there was no general overview of documents and their content.
File sharing tools like Google Drive and Dropbox are neither integrated in
the Wiki nor are they supporting the new user management with LDAP.
These facts make it harder to share and find current information, docu-
ments, and their owners.

The Wiki is not well maintained on all of its pages, and the organically
grown structure can be an additional hurdle if one does not take the time
to learn how to use the included tools. As discussed in Shibuya and Tamai
(2009), outdated development documents lead to difficulties for newcom-
ers. Even some of the experienced project members tend to avoid using the
Wiki because of its partly outdated content and complex structure.

Method of Resolution. Current systems would need major rework and
would not integrate well with Jira, therefore the decision was made to use
Confluence12 instead. Confluence is used in FOSS projects like Apache13,
and issues from Jira can be easily referenced. The switch of systems pro-
vides the opportunity to revise the structure and to eliminate or correct
outdated information. This will make it easier to find up-to-date and use-
ful information.

Scacchi (2010) introduced FOSSD informalisms, which are easy to use and
publicly accessible resources like: threaded discussion forums, group blogs,
news postings, how-to guides, to-do lists, and FAQ. Most of these tech-
nologies are supported either by Jira or Confluence and they will support
contributors in their search for information.

12Wiki system by Atlassian which is free for FOSS projects - https://www.atlassian.
com/software/confluence

13https://cwiki.apache.org/confluence/dashboard.action – retrieved on
20.02.2015

101

https://www.atlassian.com/software/confluence
https://www.atlassian.com/software/confluence
https://cwiki.apache.org/confluence/dashboard.action

7. Getting Ready for Combining FOSS and Kanban

7.5. Lessons Learned

7.5.1. Human Related

Introducing and switching to IRC as the new IM service was time consum-
ing and resulted in resistance. The confusions described in Section 7.4.2, the
out-dated and uncomfortable user interface of IRC clients, and the under-
estimation of the need for change management were mainly responsible for
the long (and still ongoing) resistance. To reduce this resistance to change
techniques described in Aladwani (2001) and Kotter and Schlesinger (1979)
were used during the introduction of Jira. More developers were involved
during the configuration period of Jira and the workflow adaptation. The
benefits of the new system were communicated more clearly. This commu-
nication of benefits, training, involvement of GSoC mentors and optimizing
the workflow probably led to a smooth change of the issue tracker and the
introduction of Jira as a project management tool.

7.5.2. Technology Related

Centralized management of team member accounts and information about
them should ideally be introduced from the very beginning as it tremen-
dously simplifies the administration of contributors and saves a lot of time
later. User rights management should be well structured and at the same
time adjustable to future changes. Integrated services are preferable from
a maintenance perspective, because they save time and effort related to or-
ganizational tasks. This time can then be spend on project goals. Not all
external services, e.g., GitHub support LDAP. But if an API is available for
that service, and user maintenance for this service consumes a lot of time,
at least some parts should be automated by scripts.

102

7.6. Future Work

7.6. Future Work

At the publication of this paper the transition of the services was not fin-
ished for every team, but will be finished later. Nevertheless, improvements
never stop and further tool and process changes are happening and are go-
ing to happen. The new Wiki contains how-to guides, FAQ, blog-like news
entries, and meeting notes to be more transparent and to provide new con-
tributors with the most relevant and up-to-date information (Scacchi, 2010).
To support the change (Aladwani, 2001; Kotter and Schlesinger, 1979) of the
Wiki system a survey was conducted to detect main concerns and problems
with the current Wiki and senior contributors were involved in the develop-
ment of the new Wiki. The survey was answered by 25 members. Figure 7.3
shows the main areas for improvement selected by the survey participants.
The most selected topics were clear arrangement, up-to-dateness of the in-
formation and completeness of the information.

Answers to the open ended question “Please describe in detail what should
be improved, so we can derive concrete improvements” most often in-
cluded the suggestion to group similar topics under one umbrella term so
to provide a more hierarchical structure and a neatly arranged start page.
These two points were then implemented in the new system, Confluence.
Also implemented were the improvement ideas of a section for newcom-
ers with information how to get started and distinct team pages. The issue
of up-to-dateness of information, which was also mentioned very often in
the open-ended question is and will remain a constant challenge. At least
Confluence offers convenience features like automatic notifications, when
pages are changed or blog entries, which automatically disappear from the
start page after a while, making it less overloaded with outdated informa-
tion. The whole survey can be found in Appendix B.

7.7. Conclusion

As explained in Section 7.3 communication and documentation are es-
sential parts of ASD and even more important in distributed develop-
ment (Shibuya and Tamai, 2009). Face-to-face communication is suitable

103

7. Getting Ready for Combining FOSS and Kanban

Figure 7.3.: Areas for improvement selected by the survey participants. Multiple answers
could be selected.

104

7.7. Conclusion

at the beginning, but with the growth and internationalization of a project,
good communication channels and project management tools have to be
introduced. Every change of workflow or established tools is time consum-
ing and needs proper change management to succeed. So before changing
major aspects it should be properly considered, if the changes are worth
the effort. Appropriate user and rights management simplifies the admin-
istration of infrastructure and contributors. It saves time and supports con-
tributors by giving them access to the project’s services ideally with one
account.

105

8. Combining FOSS and Kanban:
An Action Research

This chapter is based on Harzl (2016) and Harzl (2017).

8.1. Background

The FOSS project under study is described in Chapter 4, the researchers’
role within the project is explained in Section 6.4, and reasons for integrat-
ing Kanban into a hybrid student FOSS project are given in Section 4.7. The
research methodology is described in Section 6.2.

8.2. Study Participants

Nine people in total participated in the study, but due to people leaving and
joining the project, only six to eight people were part of the team at any
time time. Initially six people started the AR, two people joined the team
after cycle zero, so eight team members took part in the first and second
cycle. Eight people took part in the third cycle, but individual members
changed, one person left the team after the second cycle was completed,
but filled in the questionnaires about agile estimating and motivation of
the third cycle, due to extensive experience with story point estimation.
Questions about T-shirt size estimation were not answered or answered
neutrally (did not use it, undecided) by this person. One person joined in
the beginning of the third cycle, but did not take part in the agile estimation
and motivation questionnaires due to lack of experience in the team. The

107

8. Combining FOSS and Kanban: An Action Research

fourth and fifth cycle were finished by seven people, because one person
left after the third cycle.

8.3. Action Research

As already explained in Section 6.2, a modified version of Susman and Ev-
ered’s approach (Susman and Evered, 1978) was used as a research method.
The cyclical model contains the five stages diagnosing, action planning, action
taking, evaluating, and specified learning. One distinct diagnosing phase and
five regular AR cycles consisting of action planning, action taking, evalua-
tion and specified learning were realized. Apart from the distinct diagnos-
ing phase, diagnosing was performed continuously. For this purpose data
from the online ticket system Jira were examined and questionnaires and
meeting notes were analyzed. Results of the continuous diagnosing will be
discussed in the related cycles. An additional cycle zero was added after
the diagnosing phase at the beginning of the study. A participatory AR ap-
proach was used, all steps were discussed with the study participants and
decided jointly.

As already described in Section 4.4 the sub-project uses elements of XP
and Kanban. However, an initial questionnaire showed, that team mem-
bers assess their knowledge about both methods quite differently. While
all members think that they have average to very good knowledge about
XP, only 17% think that they have very good knowledge about Kanban. The
other 83% think that they possess little to no knowledge about Kanban.

This supported the decision to conduct a Kanban coaching session at the
beginning of cycle zero and the second cycle. In these sessions topics like
Kanban in general, its principles and practices, and terms like flow and
kaizen were explained. These sessions were based on two books (Ander-
son, 2010; Leopold and Kaltenecker, 2013) and one video1. It was necessary
to provide the participants with some theoretical background about Kan-
ban so they could understand its principles and practices. Furthermore,
it was also important to enable them to decide how to integrate Kanban

1https://youtu.be/6nOUa6E0250

108

https://youtu.be/6nOUa6E0250

8.3. Action Research

practices into their workflow in a way, which would allow them to bene-
fit from these changes. Due to observations made during the diagnosing
phase, a cycle zero was added. It included a user analysis and a stake-
holder analysis. The first AR cycle was designed to introduce two prac-
tices into the team, namely visualize (the workflow) and make policies explicit.
The second AR cycle should then familiarize the team with the principles
limit WIP and manage flow. Before the third cycle participants were pro-
vided with a video (Leopold, 2012) and the opportunity to discuss Kanban
with the coach during meetings to refresh their Kanban knowledge. The
next three cycles examined the following Kanban practices again, visualize
the workflow; make policies explicit and the new practice implement feedback
loops. Initially it was planned to also introduce improve collaboratively, evolve
experimentally, this plan was revised during the study, because AR cycles
showed, that some practices had to be revisited.

8.3.1. Data Sources

Various types of data sources were used as empirical basis: questionnaires,
weekly notes from team meetings written by the participants, researcher
notes taken during meetings and discussions, the artifacts produced as
part of the user and stakeholder analysis, as well as the artifacts (pictures
of the whiteboards) produced during the workflow meeting and the feed-
back meetings, the team’s Kanban board and Cumulative Flow Diagram
(CFD).

8.3.2. Data Analysis

Firstly, all questionnaires were statistically analyzed. Secondly, all researcher
notes taken during meetings and discussions, were examined for issues of
interest to the research and recurring topics or problems. For this purpose
statements were “coded” (Corbin and Strauss, 1998) and grouped together,
if they had a theme or problem in common, e.g., communication, inter-
action. These themes then inspired topics for new AR cycles. Thirdly, the
results of the team’s user analysis and information about the sub-project’s

109

8. Combining FOSS and Kanban: An Action Research

target group, retrieved from the project head, were compared. For this pur-
pose statements from the team and the project head were compared one
by one and discrepancies identified. Finally, to accomplish a better visu-
alization of the team’s workflow, the Kanban board was analyzed for its
adherence to Kanban principles and practices, e.g. pull instead of push
and limiting work in progress.

8.4. Action Research Cycles

This section explains cycle zero, the five AR cycles and their phases as
described in Section 8.3.

8.4.1. Diagnosing

The sub-project of the FOSS project was inspired by a programming ex-
ercise done during a university programming course in 2012. The results
showed some promising ideas for a new application, which would fit nicely
into the portfolio of the umbrella project Catrobat. However, the code was
neither finished (many functions were only rudimentarily implemented)
nor was it as structured and neat as it should be, because the course was
part of a Bachelor study program and lasted only one semester. Thus, only
the ideas remained and the code had to be rewritten.

Some of the students of the programming course decided to do their Bach-
elor thesis within the scope of the FOSS project. Together with some other
students they started to develop the software anew. After a while it became
apparent, that the team had been too ambitious and had ignored agile prin-
ciples, such as working in small iterations and implementing the simplest
thing that could possibly work. The team tried to implement too many
features in parallel and was overwhelmed by the amount of work neces-
sary to finish it. This situation became even worse when some contributors
decided not to use the XP practice pair programming and accomplished
most of their work alone, leaving the rest of the team clueless about their
contribution to the code. As a result the team ended up with a heap of

110

8.4. Action Research Cycles

unfinished code and after around a year the sub-project came to a halt. The
team decided to start over again.

The second attempt to restart was not successful either. The application did
not meet its usability goals and was abandoned again.

By this time the team members’ motivation was understandably very low.
They struggled with the code, their workflow and their team spirit. Dis-
illusioned by the failed attempts the team coordinator of this sub-project
thought that the team could not solve their problems all by themselves and
asked me for help.

The main problems of this team seemed to be: no clear goals, underesti-
mation of the tasks at hand, insufficient adoption of agile practices and the
overall workflow resulting in frustration and lack of motivation.

In the diagnosing phase regular attendance at weekly meetings made ob-
servations of interactions in the team possible. Additionally it helped in es-
tablishing more frequent contact and better relationships with team mem-
bers. Observations made during diagnosing indicated that the team was
targeting a different main user group than the project head envisioned.
Previous conversations with him about the sub-project and its target group
painted a clear picture. He wanted to target beginners in the domain and
the team seemed to target people with at least intermediate knowledge in
the domain. This observation strongly suggested to investigate this topic
further. Therefore, a cycle zero was added to the study. Before starting the
AR cycles it was important to determine if there was indeed a misunder-
standing between the team and the project head.

8.4.2. Cycle Zero

In cycle zero a user analysis was conducted with the team. It yielded some
unforeseen results and led to a re-positioning of the sub-project within the
umbrella project with some major changes for the team and its interaction
with other teams. As a consequence, a stakeholder analysis was performed
as well.

111

8. Combining FOSS and Kanban: An Action Research

Action Planning and Action Taking

The user analysis was done as a simple brainstorming exercise, where all
possible user groups team members could think of were collected on a
whiteboard. Afterwards, the team chose the main user groups for which
they were developing the application.

The stakeholder analysis was conducted according to Leopold and Kalte-
necker (2013). First, the team determined all stakeholders and listed them
on individual pieces of paper. Each paper was sized differently, reflecting
the importance of the stakeholder for the team’s long-term success. Then,
the pieces were put on a table and arranged around the team’s mission,
which is at the center of the analysis. Stakeholders, who are affected more
by the team’s day to day work and possible changes, are placed nearer
to the center. Stakeholders, who are affected less, are placed further away.
Afterwards, the frequency of relationships between all stakeholders was
determined. The stronger the relationship, the more lines were drawn be-
tween two stakeholders. At last the quality of these relationships was deter-
mined as friendly, adversarial, love-hate or unknown. For an exemplary stake-
holder analysis see Figure 8.1. The actual stakeholder analysis will not be
published, because it would threaten the anonymity of the study partici-
pants and other project members.

Evaluating and Specified Learning

The user analysis showed some discrepancy between the main user group
the team was targeting and the main user group the project head envi-
sioned. This was pointed out to the team and they arrived at the conclusion
that the team had to talk to the project head. Luckily he was available at the
time of the user analysis and joined the discussion. And indeed there was a
misunderstanding. He gave invaluable input, explained to the team which
user group they should target and why and it became obvious, that due to
a misunderstanding the team had been developing their application for a
different target group. This was a very unexpected result for the team and
the whole software development came to a halt. Together with the project
head the team had to redefine their goals and to rethink their application.

112

8.4. Action Research Cycles

Figure 8.1.: Exemplary stakeholder analysis, adapted from Leopold and Kaltenecker
(2013).

113

8. Combining FOSS and Kanban: An Action Research

Two meetings with the project head followed and the UX team was con-
tacted as well. The project head and the team discussed the goals for their
sub-project in detail. The UX team did a user inquiry with four members
of the targeted user group. The results of the user inquiry were discussed
with the developing team. Based on the input of the four possible users,
the developing team and the project head, the UX team designed a digital
mock-up of the application. This mock-up showed an absolutely different
Graphical User Interface (GUI) than the current application. It was more
intuitive for novice users, but more elaborate to develop. Thus, the team
had to re-implement the whole GUI. More importantly the former inde-
pendent stand-alone application was integrated into another application of
the umbrella project. This decision was made jointly by the sub-team, the
super-team and the project head. The main reasons for this decision were:
the sub-project will extend the functionality of the super-application with
some very important features. The sub-project will reach more users as an
extension than as a stand-alone application because the super-application
is already publicly available and has a steadily growing user base.

As a result of this repositioning from stand-alone application to extension
and because it is recommended in Leopold and Kaltenecker (2013), the
team performed a stakeholder analysis. The analysis showed that the in-
tensity and quality of some relationships between stakeholders were un-
known to the team and that the team had to work on intensifying some
relationships, especially the one with the new super-team.

8.4.3. First Cycle

Action Planning and Action Taking

The team already used a Jira Kanban board to visualize the workflow. The
board contained the following columns: backlog, in development, done, done
and accepted.

Team policies were determined in an open discussion. Team members col-
lected all policies on a white board and discussed their meaning and im-
portance jointly. After agreeing on a set of policies, they were transferred

114

8.4. Action Research Cycles

to the project wiki, so everybody could look them up easily and they were
not forgotten after the meeting.

Evaluating and Specified Learning

The main focus in this cycle was making policies explicit. Visualize the workflow
was regarded as finished, because the team already used a board. Addition-
ally, as a consequence of cycle zero the software development was put on
hold and the team focused on redefining their goals, hence there was no
activity on the board at the time.

Making policies explicit yielded some interesting effects: Team members dis-
cussed their unspoken policies for the first time and discrepancies showed.
Some were of semantic nature others reflected a different view of processes.
During the discussion some problematic habits were identified and im-
mediately discussed. To prevent these habits from reoccurring, new team
policies were stipulated jointly and team members agreed to honor those
policies.

8.4.4. Second Cycle

Action Planning and Action Taking

Limiting work in process and managing flow were introduced to the team dur-
ing the second Kanban coaching session. Different visualization possibili-
ties were shown and the importance of limiting WIP and its effect on transi-
tion time, based on Little’s Law (Little and Graves, 2008), were explained. It
was also discussed how WIP limits could be used to make problems visible
and improve flow.

Evaluating and Specified Learning

Limiting WIP put the focus again on the Jira board. This focus uncovered
something that should have been uncovered during the first cycle. The cur-

115

8. Combining FOSS and Kanban: An Action Research

rent board did not model a pull system. It was rather a push system. While
team members pulled tasks from the backlog into development, the transi-
tion from development to code acceptance was a push process. Developers
pushed the task from development to done where senior developers had to
take them and move them to done and accepted. There was not even a state
for being in acceptance. It was not possible to determine whether a task was
already in the process of being accepted, or if it was still simply marked as
done. This oversight might be ascribed to the focus on redefining the goal,
which was still in progress during the first cycle.

To repair this flaw in the Jira workflow, a new state was introduced into the
workflow and the column in acceptance was added to the board, now reflect-
ing a real pull system. The columns in development and done were merged
into one column. Initially, the team wanted to create two sub-columns for
in development, but Jira does not offer this functionality. Therefore different
possibilities of visualization were tried out. Figure 8.2 depicts on the one
hand the desired visualization and on the other hand the current visual-
ization, which is realizable within the constraints of Jira.

Afterwards, WIP limits were set and monitored. They soon revealed a bot-
tleneck at the acceptance state. The root cause was quickly identified and
team members were working hard to resolve this bottleneck. Due to the
merge with the super-project the team now depended on the senior de-
velopers of the super-project to accept the sub-team’s code. The senior
members of the sub-team were and still are working hard to familiarize
themselves with the slightly different acceptance process of the super-team
and thus dissolving the bottleneck as soon as possible and improving flow.
Another positive effect of the focus on the board is, the team now uses their
Kanban board during each meeting, which it did not do prior to the AR
cycles.

8.4.5. Third Cycle

Every team member watched the earlier mentioned Kanban video before
starting this cycle. Implement feedback loops was introduced to the team dur-
ing this AR cycle. Different forms of feedback and how the team’s work

116

8.4. Action Research Cycles

Figure 8.2.: The desired visualization on the left side and the actual visualization, which
is possible in Jira, on the right side. The different states are highlighted in
different colors.

processes could be improved were discussed. To receive feedback about
motivation within the project a questionnaire, see Appendix B, was issued
to team members.

Action Planning and Action Taking

For the first feedback cycle focus was put on two aspects. First, information
about a new Jira workflow (created during (Harzl, 2016)) was fed back to
the super-team and the UX team. Previously the board was partly a push
system, this new workflow implemented a pull system. To inform the other
teams, an informal meeting with the coordinators of both teams was held
and the changes and their rationales were explained. The coordinators were
also asked for feedback about the new Jira workflow.

Second, the team wanted to eliminate superfluous activities. Were there any
activities in their work process, which did not deliver value to the team,
their stakeholders or users? To explore this topic, the following aspects
were explored with the team: is there anything in their work process which

117

8. Combining FOSS and Kanban: An Action Research

they deem unnecessary or hindering. What could be improved in the work
process in the next iteration? All topics were collected on a whiteboard
and after that every team member voted for his or her most important one.
The topic with the most votes was estimating Jira issues, therefore, it was
selected. First, it was analyzed why estimation was identified as an issue,
second, alternatives were determined and third, the initial approach was
compared with a possible new method.

Evaluating and Specified Learning

Inter-team Feedback

Both coordinators, from the super-team and the UX team, reacted positively
to the new workflow. The super-team coordinator even showed some inter-
est in adopting it for his team. The new workflow also seemed to trigger
a thought and discussion process for the coordinators, as both approached
the researcher about additional changes to the workflow. The UX coordina-
tor had suggestions to better integrate the UX team into the workflow and
the super-team coordinator suggested new workflow states for the code re-
view part. These conversations determined the theme for the fourth cycle,
visualize the workflow.

Estimating Jira Issues

In ASD effort of issues is usually estimated by the team to acquire some
knowledge about the size and complexity of an issue. These estimates are
then often used to determine a team’s velocity, to predict if a goal can be
achieved within the next iteration and to trade work items of similar size
in and out of an iteration, if a time-boxed ASD approach is used. Different
estimating techniques exist, e.g., story point estimation, Ideal Days (ID)
estimation, T-shirt or even dog size estimation.

Kanban teams often do not estimate issues, because estimates do not de-
liver customer value and therefore do not fulfill a purpose. However, in
this project story point estimation is used.

118

8.4. Action Research Cycles

“A story-point estimate is an amalgamation of the amount of
effort involved in developing the feature, the complexity of de-
veloping it, the risk inherent in it, and so on.” (Cohn, 2005).

Typical scales are derived from the Fibonacci sequence and contain values
between one and ten, 21 or 100.

Advantages of story point estimation are:

• It is more accurate than other estimation methods.
• It is independent of time units.
• One can calculate team velocity directly (without needing to convert

sizes to numerical values).
• A more fine-grained scale offers more detailed information.

Disadvantages of story point estimation are:

• Many articles about agile estimating specifically mention that joint
experience as a team is a key factor to accurately determine story
point estimates.

• New teams often struggle with estimating stories effectively, and it
takes some iterations until a team’s velocity becomes stable.

• In the beginning estimates vary too much and velocity is therefore
unstable as well.

• If you cannot determine velocity, you cannot derive duration.

The story point scale used in this hybrid student FOSS project contains the
values 1, 2, 5, 10, 20, 50, 100, 200, and 500. The story points are not used
to determine velocity, to determine the amount of issues for one iteration,
or anything of this nature. In fact, right now it is not possible to calcu-
late an average team velocity because iterations are very different in the
amount of features implemented and time duration. Hence estimates do
not fulfill one of the usual purposes. Team members of the studied team
only use estimates to determine, if an issue is small enough to fit into their
schedule.

The major problems for the team with this kind of estimating were:

• The concept of story points is unknown to most contributors and this
will probably not change, due to transient team members. Estimating
by story points has to be explained before every planning meeting,

119

8. Combining FOSS and Kanban: An Action Research

which consumes quite some time and still this concept stays too ab-
stract for some.

• The scale is too far reaching, making it very difficult to compare the
efforts, i.e., what does it mean, if an issue is 200 or 500 times the
effort of another issue? Humans have difficulties comparing values
over more than one order of magnitude (Miranda, 2001; Saaty, 1996).

• Issues and their effort were only compared within one iteration. The
values were assigned more or less arbitrary and there was no consis-
tency between planning meetings. This reduced the informative value
of the effort estimation to a minimum and team members were unable
to use it to select an issue which fitted into their schedule, because the
meaning of the different values changed distinctively between two it-
erations.

• Thus, story points delivered no value to the team or anyone else.
Effort estimation just “had to be done”.

• Effort estimation did not provide the information team members wanted.
For them the most important information concerning effort is con-
nected to the time necessary to resolve an issue. However, relative
sizing with story points is not intended to convey information about
time. The duration of an iteration is only derived from the total amount
of story points divided by the team’s velocity.

The team could not determine velocity and therefore could not derive du-
ration and, thus, not determine how long an issue would take. As a result
team members saw no meaning in estimating issues and regarded it as
unnecessary. To give estimating a meaning for the team alternatives were
investigated. Two of them will be shortly explained here, because they mo-
tivated the new estimation scale.

First T-shirt sizing, issues are assigned a T-shirt size between, e.g., XS and
XXL. Other methods relate size to cars or dogs, but they share the same
principle, removing the implied precision of numbers. Theses sizes (T-
shirts, cars, dogs) can be related to story point values, e.g., M = 5, L =
10, which can be used in metrics.

Advantages of T-shirt sizing:

• It can expedite the voting processes, because it provides fewer op-
tions.

120

8.4. Action Research Cycles

• It does not suggest precision because of a non-numerical score.
• It allows to think in a more abstract way about effort. It even allows

for creativity and fun during estimation, if more unconventional sizes
are used.

• It can also be beneficial to start with a simpler approach than story
points for new teams, e.g., T-shirt sizes, dog sizes and to slowly move
towards a numerical scale, when a team has some experience with
estimating.

Disadvantages of T-shirt sizing:

• The accuracy of velocity estimates might be reduced, because the es-
timation scale is less detailed.

• There is no clear mathematical correlation between the different sizes.
• If you want to track effort and velocity over time, you need to convert

the sizes to numerical values.

Another method is estimating in units of time. If you approximate time,
you can either estimate in elapsed days or in ID. Elapsed days contain
all interruptions, which might occur, while working on an issue, whereas
ID contain only the amount of time an issue will take, without any inter-
ruptions, organizational overhead etc. Since one can never anticipate all
possible interruptions estimating in ID is easier than in elapsed days. Be-
cause ID only consider the time necessary to finish an issue, they are also
an estimate of size, but less strictly than story points (Cohn, 2005).

The team liked the idea of estimating in time, because this information is
important to them. But they did not want to estimate an exact number of
ID, because this would suggest that their estimates are more precise than
they actually are. They preferred a less detailed classification and wanted
the estimate to convey some information about time duration. Thus, the
decision was made to combine both methods and create a proposal for a
future scale containing three values, S, M, and L. Similar to story points, for
every team these sizes can mean something different, e.g., S = one to three
ID, or S = up to one ID. This could lead to misunderstandings between
teams, when they collaborate on larger features, but this is true for all
team-specific estimation techniques and because there are only three sizes,
differences between teams should be negligible.

121

8. Combining FOSS and Kanban: An Action Research

In the context of this team ID usually are not successional, e.g., if an issue
is estimated to take two ID, they can in fact stretch over a few weeks, as
people usually do not work full time on the project. One ID can contain
several smaller units, which take place on different week days in different
weeks, whenever people have time to work on the project.

The team decided to use the following units in the beginning and to adapt
them in the future, if necessary: S = up to one ID, M = two to three ID,
and L = four to five ID. Larger issues would be divided into smaller issues
before working on them. The team decided that this scale should be de-
tailed enough for their purposes. A more in depth classification would not
be needed and would have unnecessarily prolonged time expenditure for
estimating issues. Although, the direct correlation of issue size to time is
not ideal, it is a starting point and provides some information about time
duration, which is currently the only information used by team members.
This proposal was compared with the story points method. Table 8.1 shows
the results of this comparison.

The story points approach was used for several iterations in the past. For
future iterations the team switched their estimating scale to T-shirt sizes,
because they deemed this approach more appropriate for them, because
it reduces the time needed for voting due to the reduced number of op-
tions. After one iteration with estimating in T-shirt sizes, including plan-
ning meeting, estimating issues and code development, the team filled in
a questionnaire, see Appendix B, about their experiences in this iteration
with T-shirt sizes, and their experiences with story points in the iterations
before the last. The questionnaire was answered by seven people. It was
statistically analyzed. In one question contributors were asked to rate how
many of their issues they estimated on a scale of 0% to 100% (adapted from
Shodan Input Metric Survey (Williams, Krebs, and Layman, 2004) with:

• 0% being never,
• 10% hardly ever,
• 20% rarely,
• 30% sometimes,
• 40% common,
• 50% half & half,
• 60% usually,

122

8.4. Action Research Cycles

Table 8.1.: Characteristics of story points and T-shirt sizes as estimating units as seen by
team members.
Criteria Story points T-shirt sizes

Simplicity/Complexity

Estimation depends on the
reference issue(s), which
has to stay the same over
time. Otherwise estima-
tions are not meaningful.

Simpler, intuitive,
not interdependent,
relates to working
time, easier. Ev-
erybody can do
it.

Level of detail

More exact. If it is not cor-
rectly done, it is less mean-
ingful. It is more compli-
cated to assign issues a
correct value.

It is less detailed.
Estimation and real-
ity are closer to each
other.

Usefulness

Useful if it is done cor-
rectly. More experience
needed to estimate cor-
rectly. If there are too
many different units,
estimating becomes im-
possible. Usefulness
depends on project and
team size. Our estima-
tion procedure delivered
useless estimates.

Always useful. A
rough estimation is
always helpful. It is
sufficient if a more
detailed planning is
not necessary.

Informative value

It is more exact but also
more error-prone. One
needs to know the estima-
tion system. A finish date
can be determined more
exactly.

Less granular.

Makes use of
learning effects

Estimates become more
accurate with experience. No.

Time expenditure
It is much more time-
consuming, especially in
the beginning.

It is faster.

123

8. Combining FOSS and Kanban: An Action Research

Figure 8.3.: How many of your tickets did you estimate with story points technique?

• 70% often,
• 80% regular,
• 90% always, and
• 100% fanatic

Another question asked how many of their tickets they would like to have
estimated (desired value) with the same scale.

For the story points method the actual mean value was 48% (Standard De-
viation (SD)=36%), see Figure 8.3, two people did not answer this question.
For the desired value the mean value was 64% (SD=32%), see Figure 8.4.

For the T-shirt size method the actual average value was 92% (SD=4%)
and the desired value was 93% (SD=5%) for all respondents. Because these
questions were answered by all participants, the results are presented to-
gether in Figure 8.5.

124

8.4. Action Research Cycles

Figure 8.4.: How many of your tickets would you have liked to estimate with story points
technique (desired value)?

125

8. Combining FOSS and Kanban: An Action Research

Figure 8.5.: How many of your tickets did you estimate (actual value) and how many
would you have liked to estimate (desired value) with the T-shirt size tech-
nique?

126

8.4. Action Research Cycles

Figure 8.6.: How useful do you think the story point estimation of tickets was?

Regarding the usefulness of both methods team members had to select
between:

• absolutely not useful = 1
• hardly useful = 2
• neutral / undecided = 3
• rather useful = 4 and
• very useful=5

Ratings for the story points method were: hardly useful and absolutely not
useful were selected by 50%, 33% selected rather useful and very useful, and
17% were neutral / undecided (Mean Value (MV)=2.8, SD=1.5), one person
did not answer this question. See Figure 8.6.

127

8. Combining FOSS and Kanban: An Action Research

Figure 8.7.: How useful do you think the T-shirt size estimation of tickets was?

Ratings for the T-shirt sizes method (one person did not answer this ques-
tion) were: 50% were neutral / undecided and 50% selected rather useful and
very useful (MV=3.8, SD=1). Thus, the use of estimation has improved and
team members regard estimation as more useful than before.

This is also supported by the analysis of the Jira issues. With story point
estimation 63% issues were not estimated or had the default value. “Not
estimated” was added as default option only shortly before switching from
story point estimation. With T-shirt size estimation only 3% of issues are
not estimated. The accuracy of the estimations cannot be determined, be-
cause team members do not log their working hours for issues.

Despite the advantages of story points and the shortcomings of T-shirt

128

8.4. Action Research Cycles

sizes, for this hybrid student FOSS team a time related estimation seems
to be more desirable. And because story points and velocity are not used
in the value chain the team was able to switch to a simpler approach. It
is more efficient for them, because the scale is less detailed, more intuitive
to them, because they are more used to estimating in units of time, and
it provides all the information the team requires, i.e., if an issue fits into
their schedule. Hence, in the context of FOSS projects using simpler meth-
ods can sometimes be more useful, than intending to use more elaborate
methods and have people not use them, because they are perceived as too
complicated, too time-consuming, and as to not deliver value.

An additional result of this questionnaire was, that planning meetings were
conducted too rarely. Some new team members had not taken part in one
up to this point. This finding called for a closer investigation of that topic.
Analysis of previous planning meetings showed that they were conducted
only twice a year and lasted three hours on average. The long duration
made it difficult in the past to set a date, where everybody could partici-
pate. Thus, the planning was sometimes conducted in the late evening, after
students’ working hours in their day jobs and various university courses,
making it difficult to concentrate the whole time and making the whole
planning meeting strenuous. Therefore, team members were not looking
forward to planning meetings. A new approach was proposed to the team.
They could consider their average number of finished issues per month
and plan iterations accordingly, which in their case would mean to plan
fewer issues. It was also proposed to plan smaller iterations, which would
yield two positive effects. They would become more experienced regard-
ing planning and the meeting would be shorter, making it easier to fit it
in everybody’s schedule. The team tried it and the following meeting took
only one and a half hours, all necessary information for the next iteration
was gathered and afterwards one member said “This was fun, can we do it
more often.”

Motivation Feedback

The questionnaire about the motivation within the project, see Appendix B,
was answered by seven people and shows a diverse picture of motivation
for team members. It ranges from up and downs, an increase in motiva-
tion, a decrease, and no change in motivation. Some are more motivated in

129

8. Combining FOSS and Kanban: An Action Research

the beginning, some rather at the end, when they recognize all the possi-
bilities the project offers. Drops in motivation were experienced in phases,
when the project stagnated or major changes took place. Work and exam
times also have an impact on contributors motivation. In general if the
motivation improves, respondents report having more fun, less stress, a
clearer view of the goals, they are self-reportedly more productive and cre-
ative. Reasons for changes in motivation ranged from better team spirit,
general mood of the team, coaching, status of the project, work, exams, to
frustration at work. When asked about the specific impact of the Kanban
coaching all respondents answered that Kanban coaching and all its results
improved their motivation. They have rather more (70%) or much more
(30%) motivation than before. Positive comments include: “I knew what
has to be done and where problems might come from.”, “Transparency
and overview with the Kanban board improved the basic motivation.”, “I
always like structure in my work, therefore I liked this a lot.”, “Defining the
roles of project members within the team was very insightful for me and
for sure improved my motivation. Practices like WIP limits and a meaning-
ful segmentation of the board were also good.”, “In my opinion the team
grew together, the goal became clear. Work became fun and had a ‘mean-
ing’.” Other comments included: “For the moment, Kanban coaching did
not lead to a change in my motivation”, “Kanban coaching did not influ-
ence my motivation, because I was at the end of my contributing time. I
think the concept is very interesting, but I did not see it in real action.”
The following reasons for the previous answers were given: “flow was vi-
sualized, team work improved”, “fits better for the team, especially the
change of visualizing techniques”, “Plus: transparency, division of work,
overview, workflow”, “the initial effort is higher, but one can see what is
done or has to be done”, “it became more fun and motivating”. When asked
how much they benefited from the newly acquired knowledge all respon-
dents answered that they rather profited (57%) or profited very much (
43%). As reasons were given: “positive results in the project, used Kanban
knowledge also for work, change of mindset, trying to increase efficiency
in general, can be applied to other group work or projects, practices have a
positive impact on motivation, no possibility to apply it actively elsewhere,
left the project shortly after”. A positive influence of the Kanban coaching
can be seen in Figure 8.23 as well. It shows the morale of the study partic-
ipants throughout the AR. In the beginning, during the diagnosing phase,

130

8.4. Action Research Cycles

they enjoyed their work around 60% of the time, at the end of the study
this value increased to almost 80%.

8.4.6. Fourth Cycle

Based on the feedback from the super-team and UX team received during
the third cycle the Kanban practices visualize the workflow and make policies
explicit were also the theme of the fourth cycle.

Action Planning and Action Taking

During a regular meeting previously created policies were reviewed and
discussed by the team, if they were still valid, if some became obsolete or
if they should add new ones.

To revise the Jira workflow all coordinators from all teams within the um-
brella project were invited. The coordinator of the super-team and the UX
team because they are directly connected to the team and the others be-
cause they could deliver different points of view on the matter and at the
same time were informed about possible workflow changes. A meeting was
held and whiteboards were used to draft the new workflow. All possible
states within a new workflow were collected and discussed. Afterwards,
they were put into an order and it was discussed which transitions were
needed, who should be allowed to use the transitions, e.g., code review
transitions should only be done by experienced team members. Finally, the
whole workflow was sketched on a whiteboard and everyone was asked if
they could think of any more improvements or if they approved of it this
way, until consensus was reached. The whiteboard drawing can be seen in
Figure 8.8. This workflow was then implemented in Jira.

Evaluating and Specified Learning

Only a few policies had to be changed, but reviewing them refreshed ev-
erybody’s memory. The team realized that they should reconsider them on

131

8. Combining FOSS and Kanban: An Action Research

Figure 8.8.: The new workflow as sketched on the whiteboard.

132

8.4. Action Research Cycles

a regular basis to keep the policies alive and present.

The new workflow (see Figure 8.9) is more elaborate than the previous
one and allows for a more thorough division of labor and a more de-
tailed view of the current work items. The Issues Pool is a mixture of user
feature requests and bug reports, issues created by the project head and
the team. Between the Issues Pool and Ready for Development issues are
sorted through, e.g. for duplicates, and requirements are defined. Code re-
views are split into two parts, one being the actual review and the other
one being the actual merge into the master branch. Previously code review
and merging code were combined in one state. Because the project requires
the code to be tested, before it is merged (ideally a test-driven approach
is used), this also means that code and tests have to be reviewed. As it
turned out contributors sometimes are afraid of the responsibility which
comes with merging new code into the master branch, because they are
not very experienced in using Git, and because of that, were reluctant to
conduct code reviews at all. Now they can start with reviewing code and
slowly step up to also merging code. This separation of review and merge
also provides the opportunity to include UX reviews of new features neatly
into the workflow after the code has been approved technically and before
the code is merged into the master branch. This was an important request
from the UX team. Before this change, developers often forgot to ask them
for feedback before merging code, because the UX review was not repre-
sented in the workflow. As a result sometimes new features were merged,
that did not meet UX specifications and had to be repaired. Now if an
issue received UX input in the beginning, before developing it, it has to
undergo UX review as well before it can be merged. Transitions between
UX specific states can only be used by UX members. Some transitions are
restricted to seniors members, because the actions connected to those tran-
sitions require a certain amount of knowledge about the project. Actions
necessary for a release are only executed by a handful of persons. These
steps are not represented in the Jira workflow.

The new workflow was initially intended for the AR team and only meant
to be distributed to other teams if it proved beneficial, but many coordi-
nators wanted to test it with their teams as well, so the new Jira workflow
was adopted throughout the whole umbrella project. Some teams are al-
ready considering introducing WIP limits and one team even started its

133

8. Combining FOSS and Kanban: An Action Research

Figure 8.9.: The new workflow for the whole umbrella project in Jira.

own improvement initiative. It is about improving code reviews, not in-
troducing Kanban, but it is a first step into actively improving their work
process. Thus, it can be observed that the effects of the Kanban initiative
have spread beyond the original team and triggered changes in other teams
as well.

8.4.7. Fifth Cycle

The fifth cycle was again about implement feedback loops but this time it
was similar to a retrospective. What did the team achieve so far? Do they
recognize improvements or not? Has something changed for the worse?
What could be the next steps?

134

8.4. Action Research Cycles

Figure 8.10.: The team’s Cumulative Flow Diagram (CFD).

Action Planning and Action Taking

The team’s CFD, a questionnaire and a feedback meeting were used to
answer these questions. The questionnaire included the topics communi-
cation, feedback about Kanban, and the importance of a designated coach
role. During the feedback meeting the team should collect issues which
they would like to improve in their work process. Arising topics were
discussed. Team members gave examples and reasons why things should
change. After the major topics were collected, the team decided in consen-
sus on concerns to work on.

Evaluating and Specified Learning

Jira Board and CFD The analysis of the Jira board and CFD (see Fig-
ure 8.10) showed, that the team was not developing more issues than
before, only the distribution was slightly more even. Before the Kanban
coaching the team sometimes binge-worked or updated their Jira board
irregularly.

Questionnaires

135

8. Combining FOSS and Kanban: An Action Research

Figure 8.11.: Answers to the question: Do you think that the knowledge about Kanban and
its practices is beneficial/useful/advantageous for your work in the project?

136

8.4. Action Research Cycles

Figure 8.12.: Answers to the question: Do you think, that the knowledge about Kanban
and its practices is beneficial/useful/advantageous for your work outside
the project?

137

8. Combining FOSS and Kanban: An Action Research

Figure 8.13.: Answers to the question: Did communication/interaction with the most im-
portant stakeholders of your team change through the use of Kanban prac-
tice?

138

8.4. Action Research Cycles

Figure 8.14.: Answers to the question: Did communication/interaction within your team
change through the use of Kanban practices?

139

8. Combining FOSS and Kanban: An Action Research

Figure 8.15.: Answers to the question: Do you regard the benefit from using Kanban as
worth the time for all the coaching sessions and Kanban meetings?

140

8.4. Action Research Cycles

In the questionnaire about Kanban (see Appendix B) AR participants had
to decide if they experience their Kanban knowledge as:

• very beneficial = 1
• rather beneficial = 2
• undecided = 3
• rather useless = 4
• very useless = 5

to their work within the project and outside the project. The same choices
were given to rate the usefulness of a coach. 29% rated Kanban knowledge
as very beneficial for their work within the project and 71% rated it beneficial
(MV=1.7, SD=0.48). 57% rated it as very beneficial and 43% as beneficial for
their work outside the project (MV=1.4, SD=0.53). See Figures 8.11, 8.12.
Interestingly, more people rated Kanban knowledge as very beneficial for
their work outside the project (57%) than within the project (29%). The
following answers may explain this discrepancy. 28% created a personal
Kanban board (Benson and DeMaria, 2011), which contains tasks concern-
ing their whole life and not only the project, which makes Kanban outside
the project more important for them than within the project. Another rea-
son was that sometimes the time spent on Kanban practices reduced the
available time for writing code. Team members often work in companies
while studying and therefore have only a very limited amount of hours to
work on the project and sometimes spent more time on Kanban practices
than coding. One team member responded: “I think Kanban is generally
very beneficial to the team. However, I think the programming vs. Kanban
work ratio is not perfect right now”. Additionally, he talked to his boss at
his workplace to introduce Kanban to the company. He spends more time
working at the company than in the FOSS project, so he rated the use-
fulness of Kanban knowledge outside the project higher than within the
project.

The presence of a Kanban coach was rated very beneficial by all team mem-
bers. On the one hand team members appreciate the role of a coach and on
the other hand are aware of the risks a (missing) coach entails: “The board
is now up-to-date but in my opinion the reason is more the presence of the
coach than Kanban”, “Without a coach this could end in chaos”, “Without
a coach there is a greater risk of leaving important things out or to ignore

141

8. Combining FOSS and Kanban: An Action Research

them because it’s easier”, “You can become dependent on the coach, so you
don’t achieve anything without him or the coach could take on a leading
role instead of a coaching role or he might be seen that way by some team
members”, “The team would have never dealt this intensely with the topic
without a coach”, “Feedback from outside the team is great, because inside
the team you often develop tunnel vision”, “The coach points out possibil-
ities for improvement we may not have discovered otherwise”, “Whenever
you try to change something, you are easily tempted to fall back into old
habits. In these moments someone who puts you back on the right path is
very precious”.

In general, team members seem to experience the use of the Kanban method
as beneficial to their work inside and even outside the project, which an-
swers RQ 2.1 “Do FOSS contributors, who are coached in the Kanban
Method, experience this knowledge as beneficial to their work or not?”.

Regarding the communication, AR participants had to rate their communi-
cation with stakeholders and within the team on the following scale:

• very positive change = 1
• rather positive change = 2
• unchanged/undecided = 3
• rather negative change = 4
• very negative change = 5

The communication to stakeholders outside the team changed positively
or very positively according to 71%, and 29% said it did not change or they
are undecided (MV=2.1, SD=0.69). As most important changes, communi-
cation with the super-team, the project head, the UX team and users were
mentioned. Team members are aware that there is still plenty of room for
improvement, but thanks to the stakeholder analysis in cycle zero they
now know who they need to talk to and which relations they need to
cultivate more. Within the team itself changes were not that distinct. 43%
said it changed positively or very positively and 57% said it did not change or
they were undecided (MV=2.3, SD=0.95). Text comments showed that team
members consider the communication within the team generally as very
good, so it is not so surprising, that changes were not as evident. Some
team members noticed that meetings were held more regularly and at-
tendance improved, although they could not say if it was due to Kanban

142

8.4. Action Research Cycles

or the coach’s presence. In general, team members recognized a positive
change regarding communication and interaction within the team and to
other teams. This is a strong indication that the communications behav-
ior changed and RQ 2.2 Do interaction or communication during meetings
change with the use of the Kanban Method? can be confirmed. Concerning
the interaction during meetings, the most visible change is, that the team
now almost always uses their Jira board, when discussing issues. Previ-
ously they only seldom looked at it.

Regarding RQ 2.3 Do FOSS contributors regard their time acquiring Kan-
ban knowledge well spent? Team members had to answer if they regard the
benefit from using Kanban, as worth the time for all the coaching sessions
and Kanban meetings. Possible answers were:

• yes, definitively = 1
• yes = 2
• undecided = 3
• no = 4
• no, definitively not = 5
• other

29% answered yes, definitively and 71% answered yes (MV=1.7, SD=0.48), so
this team regards their time well spent learning about Kanban.

Feedback Meeting

During this meeting several concerns arose, e.g., scope of issues is too ex-
tensive, the most important ones which were selected to be worked on
will be discussed here. A major issue was that team members wanted to
be more proactive when dealing with problems and bottlenecks. Although
they identified a major bottleneck in their workflow, they ignored it for a
while and waited for someone else to resolve it for them. This was men-
tioned by team members as both an advantage and disadvantage of Kan-
ban. On the pro side problems and bottlenecks become visible quite early,
but on the con side, if nobody feels responsible and the bottleneck is not
resolved, the WIP limit stops the whole development process. We talked
about this and it was explained to them, that this is one purpose of WIP
limits, to make it impossible to ignore problems and bottlenecks so they
have to be resolved and not linger on for all eternity. If they still choose

143

8. Combining FOSS and Kanban: An Action Research

to ignore it, they will soon see the consequences. They understood this ex-
planation and consequently they made a time-phased plan how to resolve
this bottleneck and immediately took the first steps. Another effect of this
situation was, that they want to give the work on the project more priority,
so this “Waiting for Godot” will not happen again. As this is a more vague
resolution this strategy should be examined in the future.

8.5. Analysis of Usage of Agile Practices

Over the course of the AR participants filled in the Usage of Agile Prac-
tices (UAP) questionnaire. It is based on the Shodan 2.0 Input Metric Sur-
vey from Williams, Krebs, and Layman (2004). Study participants filled in
the UAP questionnaire several times over the course of the study. First in
the diagnosing phase, second after Cycle Zero, third after the second cy-
cle, fourth after the fifth cycle and fifth around three month after the fifth
cycle. The first UAP questionnaire was answered by six people, the second
by only three people, therefore, it is not included in the analysis, the third
by eight, the fourth by seven, and the fifth by six people. The number of
respondents is included in square brackets for each UAP in all the figures.
For every XP and Kanban practice there was an initial question how much
the person knows about the practice. If the answer was “Nothing” sub-
sequent questions about the practice were not shown to the user. If more
than half of the respondents did not know the practice the usage was not
evaluated. As a consequence some practices are only evaluated for a part
of the questionnaires.

According to the questionnaires usage of the following practices shows a
change (more than 10 points):

• Customer acceptance tests, see Figure 8.16: Possible reasons for the
change could be: Increased user focus due to the user analysis in
cycle zero. Introduction of acceptance criteria for tickets as new team
policy.

• TDD, see Figure 8.17: Possible reasons for the change could be: In-
troduction of a team policy that every ticket needs to be tested. More
focus on code reviews due to workflow changes in the fourth cycle.

144

8.5. Analysis of Usage of Agile Practices

• Pair programming, see Figure 8.18: Possible reasons for the change
could be: More focus on the team and joint work, due to regular meet-
ings, focus on team spirit with team rules, joint decisions regarding
workflow and so on. Interestingly this is the only practice for which
the desired value is below the actual value at one point. This could be
due to programming days where the whole group worked together
on one topic.

• Small / Short releases, see Figure 8.19: Possible reasons for the change
could be: A new GUI was necessary, which meant a longer time span
without an internal release.

• Meeting (taken from Williams, Krebs, and Layman (2004)), see Fig-
ure 8.20: Possible reasons for the change could be: Meetings were
held more regularly and the Jira board was used. Hence, meetings
were shorter and focused on the current topics.

• Artifact reduction, see Figure 8.22: Possible reasons for the change
could be: Usage of pair programming and TDD increased, as a con-
sequence artifact reduction improved as well.

• Morale (taken from Williams, Krebs, and Layman (2004)), see Fig-
ure 8.23 Morale increased by around 20 points.: Possible reasons for
the change could be: Probably all larger and smaller improvements
contributed to the improved morale. Improving team spirit and mood
was an important issue for the team, so this is a very positive out-
come.

Growth, see Figure 8.21, (taken from Williams, Krebs, and Layman (2004))
and measure and manage flow, see Figure 8.24 show a smaller change,
around 10 points increase. This could be due to either the general focus,
which was put on improving the way of work or on “natural fluctuation”,
for example, if a participant thinks a practice is used between 40% and 50%
of the time the selected answer might be alternating between both options
between questionnaires.

According to the questionnaires usage of the following practices seems to
be stable. Fluctuations are around or smaller than 10 points and probably
due to change in respondents or “natural fluctuations” in answers as well.
Therefore, these practices will not be discussed and the according figures
can be found in the Appendix C:

145

8. Combining FOSS and Kanban: An Action Research

• Unit tests, see Figure C.1
• CI, see Figure C.2
• Refactoring, see Figure C.3
• Release planning / Planning game, see Figure C.4
• On-site customer, see Figure C.5
• Coding standards, see Figure C.6
• Collective code ownership, see Figure C.7
• Sustainable pace, see Figure C.8
• Simple design, see Figure C.9
• Metaphor / System of names, see Figure C.10

• Lessons learned (taken from Williams, Krebs, and Layman (2004)),
see Figure C.11

• Visualize the workflow, see Figure C.12

• Limit WIP, see Figure C.13

• Make process policies explicit, see Figure C.14

Interestingly the usage of Kanban practices did not change drastically over
time. The reason could be that first team members did not know about
them, resulting in no data points for the first and second UAP question-
naire. Afterwards, as soon as a practice was introduced it was used on a
relatively constant level.

146

8.5. Analysis of Usage of Agile Practices

Figure 8.16.: How important are customer acceptance tests to the development of your
product?

Figure 8.17.: What percentage of the time do you employ test-first design?

147

8. Combining FOSS and Kanban: An Action Research

Figure 8.18.: What percentage of your work (design, analysis, coding) is done in pairs?

Figure 8.19.: How close are you to having releases about every 6 months with interim
iterations of a couple of weeks?

148

8.5. Analysis of Usage of Agile Practices

Figure 8.20.: What percentage of your meetings is shorter than 30 minutes?

Figure 8.21.: To what extent are you up to date with the latest tools and practices in your
area?

149

8. Combining FOSS and Kanban: An Action Research

Figure 8.22.: To what extent have you been able to: Have fewer code reviews (Pair-
ing instead), thinner design specs (Test First Design), and lighter com-
ments/internal docs (Simple Design, Refactoring)?

Figure 8.23.: How often can you say you’re enjoying your work?

150

8.5. Analysis of Usage of Agile Practices

Figure 8.24.: To what extent do you measure / manage flow?

151

9. Results and Discussion

This chapter is based on Harzl (2016) and Harzl (2017).

9.1. Results

Research results show some promising outcomes regarding the possible
benefits of integrating Kanban practices into FOSS development and also
some possible challenges. While this research cannot conclusively answer
the research question RQ1 “Can FOSS and ASD be comprehensively com-
bined?” for all FOSS projects, it shows some promising outcomes. Inte-
grating Kanban and FOSS has so far been successful and beneficial for
the research participants. New insights, e.g. on the target user group, have
been gained and the team’s workflow has become more effective. Also mo-
tivation of team members improved due to the positive effects the Kanban
coaching had on the team and its processes.

RQ2.1 asks if FOSS contributors experience Kanban knowledge as bene-
ficial to their work and all study participants answered yes. Interestingly,
some study participants even use personal Kanban after the AR and one
person wants to introduce it to the work place environment. In this case the
use of Kanban transferred over into other parts of the participants’ lives.

RQ2.2 raises the question whether interaction or communication during
meetings change with the use of the Kanban method. The majority ob-
served a positive change in interaction and communication especially with
other teams and stakeholders. Changes within the team were not experi-
enced as that distinctive.

153

9. Results and Discussion

RQ2.3 asks if contributors see their time learning about Kanban as well
spent or not. All of them regard their time as well spent.

Interesting to note is the role of the coach. It was rated as very beneficial by
all study participants, which begs the question, if integration of an ASD
method can be accomplished in other FOSS settings where a coach is not
available to the team and if the observed benefits are stemming more from
the coach’s presence than the use of Kanban practices. Reliance on a coach
could also become a problem, if a team depends on the coach too much,
as one participant stated in Section 8.4.7. Another challenge may be, that
a team decides to ignore problems, despite all Kanban practices, and one
has to figure out how to overcome such blockades. Adding a new role to
already established FOSS roles (Tatham, 2010) could be one way to solve
both problems. Someone with interest in the topic could gather teaching
materials, e.g., videos, which are already available online, and could re-
mind contributors to pay attention to the WIP limits and flow, very similar
to inspecting code and giving feedback on the code. This role could also be
mindful of possible blockades and speak out, if one is discovered.

Although these results do not provide comprehensive proof that all FOSS
projects can profit from using agile methods, they show a case where a
project profited from integrating agile methods. The introduction of new
methods most probably takes longer than in companies due to the limited
amount of time contributors can spend on a project per week, so one needs
patience and endurance to introduce Kanban. The team will probably ex-
perience some problems with fall-backs into old habits, e.g., trying to sit
problems out instead of resolving them quickly, before people develop a
sense of kaizen.

Extending the Kanban practices Based on the experiences described in
Section 8.4, two additional Kanban practices for FOSS projects are pro-
posed.

• Conduct regular user interviews or feedback sessions with your users
• Review your assumptions about your current development practices

154

9.2. Threats to Validity

These recommendations are of course based on a hybrid student FOSS
project, but usual FOSS projects could benefit from these additional prac-
tices as well. While most companies applying agile and lean practices have
a marketing and sales team or even a user focus group, FOSS projects tend
not to have this kind of resources. Nowadays, many FOSS solutions are em-
ployed by a large number of people, who do not contribute to the code, e.g.
Mozilla Firefox or Linux. Thus, FOSS developers are not simply “scratch-
ing their own itch” anymore, they serve many people all over the world,
who must not share the developer’s requirements and domain knowledge.
Therefore, it could be beneficial for FOSS projects to investigate their users’
needs. As for the second recommendation: Although, the Kanban princi-
ples allow to “start where you are”, it could be beneficial for FOSS projects
to review their current development practices before embarking on the en-
deavor of integrating Kanban, or any other agile or lean method, into their
development process. FOSS projects usually do not have Scrum masters,
process experts or in general someone, who controls whether software de-
velopment practices are exercised correctly. An honest and critical reflec-
tion about the current practices can clear some misconceptions, can further
a joint understanding of the current situation and it is a first step into the
direction of kaizen.

9.2. Threats to Validity

The main threats to the validity of this research will be discussed in this
section.

Internal validity Response bias, might have led to a more positive feed-
back about Kanban and its possible benefits, because team members know
the researcher personally. In an attempt to counterbalance this response
bias, study participants were assured, that negative feedback is valuable
feedback and that nobody is looking for unwarranted praise.

Another limitation could be the researchers positionality (Herr and Ander-
son, 2015) in the setting. Herr and Anderson (Herr and Anderson, 2015)
describe positionality as asking the question, “Who am I in relation to

155

9. Results and Discussion

my participants and my setting?”. In Subsection 6.4 power distance was
already identified as a possible limitation. Participants perceiving the re-
searcher as someone with informal power, may result in research bias, since
suggestions the researcher makes could be accepted due to this perceived
power distance and not only because team members agree with sugges-
tions. In an attempt to counterbalance this bias somewhat, for all necessary
decisions at least two alternatives were proposed whenever possible and
the final decision was made by the team.

External validity The research is limited to a single case of a hybrid stu-
dent FOSS project, so the external validity is very limited. Further research
is needed to achieve more generalizable results, which are applicable to
other teams and other FOSS projects.

Although a

“frequent misconception is that empirical research within one
company or one project is not good enough, provides little value
for the academic community, and does not contribute to scien-
tific development” (Shihab, Bird, and Zimmermann, 2012),

the authors of Shihab, Bird, and Zimmermann (2012) cite publications,
which show a different picture. Flyvbjerg (2006) shows examples from so-
cial sciences, physics and economics and Basili, Shull, and Lanubile (1999)
argue that both kinds of studies, those from single cases and those of large
samples are essential (Teixeira, Robles, and González-Barahona, 2015).

Setting The special setting of a hybrid student FOSS project may be seen
as a limiting factor as well, because some characteristics differ from tradi-
tional FOSS projects. Developers want to earn course credits and not only
earn reputation among other developers, contribute to a bigger cause or
“scratch a personal itch” (Raymond, 2001). There exists no group of core
developers, which in typical FOSS projects consists of 10% to 20% of a team,
and which creates around 80% of the source code (Koch, 2004), and student
members change regularly. This could be a future area of research, deter-
mining if and how these different characteristics impact a FOSS project.

156

9.2. Threats to Validity

Students as main developers of this project may also be considered as a lim-
iting factor, because they have not finished their studies. However, many
people without a formal education in software engineering and from var-
ious backgrounds are FOSS contributors, regardless of their formal edu-
cation. IT students work as normal developers on many FOSS projects. In
2000 Höst, Regnell, and Wohlin (2000) already concluded that last-year soft-
ware engineering students are relevant when considering experimentation
in software engineering. The use of students as study objects for establish-
ing a trend is quite acceptable, e.g. Madeyski (2010) describes the benefit of
students as study objects. And according to Salman et al. (Salman, Misirli,
and Juzgado, 2015) when a development approach is new to both groups,
students and professionals, show similar performances in carefully scoped
software engineering experiments.

The setting with changing participants is also a limitation of the study.
Conditions and questionnaire outcomes might have changed due to peo-
ple leaving and joining the project. Also people not answering all ques-
tionnaires while working on the project, might impact the outcomes. That
is why for UAP evaluations only changes of more than 10 points, were
regarded as actual changes. Values below that are regarded as “natural
fluctuation”. Apart from reminding people on a regular basis to answer
questionnaires, there is no good way of keeping the number of question-
naire respondents and team members constant. Not taking on new mem-
bers would negatively impact the team and stopping people from leaving
the project is not possible at all. One could only limit the length of the
study to a few weeks to minimize the risk of loosing members. However,
this would probably not yield meaningful insights.

157

10. Conclusion and Future Work

This chapter is based on Harzl (2016) and Harzl (2017).

10.1. Conclusion

This thesis describes a practical integration of Kanban through AR in the
context of a hybrid student FOSS project. Studying the integration of ASD
and FOSS furthered the understanding of both worlds. It could be shown
that Kanban and the hybrid student FOSS could be combined and that
the project members benefited from it. Based on the findings of this work
additional Kanban practices for FOSS projects were proposed, which could
support FOSS projects on their way of adopting agile practices. There is
a lack of research regarding integration of ASD in the FOSS development
context (Gandomani et al., 2013). Thus, this work contributes by offering
some insights on the matter.

10.2. Future Work

As this AR was done with only one team of a hybrid student FOSS project,
further steps are required to strengthen the results and to increase the va-
lidity of the contributions. Possible future work could include one ore more
of the following topics.

• Monitor the studied team to see if the changes are permanent.
• Extend AR to more teams of the same project, to evaluate if the out-

come depended on the specific team.

159

10. Conclusion and Future Work

• Use unfamiliar and separate persons as agile coach and researcher to
reduce response bias.

• Repeat the AR with various other FOSS projects to assure the validity
of the findings so far.

• Research community-initiated projects and sponsored or spinout pro-
jects, if they respond differently to the introduction of Kanban.

• Investigate the role of the agile coach. Is this role necessary to inte-
grate an ASD method into a FOSS project? What could be alternatives
to convey the knowledge and to support the use of the practices?

• Investigate if an additional FOSS role could replace an on-site coach.
• Investigate if the observed benefits stem from the use of Kanban or

the coach.
• Investigate if or how the (non) existence of a core group and ever

changing (student) members impact a FOSS project.

Finally I would like to conclude with a quote:

“As with all qualitative research, we do not intend to portray a
generalized view of all free software development projects.” (El-
liott and Scacchi, 2005)

160

Appendix

161

Appendix A.

Papers

This chapter summarizes all peer-reviewed and published papers. Con-
tributions of co-authors will be explicitly listed, everything else was the
contribution of the author of this thesis.

• Harzl, Krnjic, et al. (2013a). “Comparing Purely Visual with Hybrid
Visual/Textual Manipulation of Complex Formula on Smartphones.”
In: Proceedings of the 19th International Conference on Distributed Multi-
media Systems, DMS 2013, August 8-10, 2013, Holiday Inn, Brighton, UK.
Knowledge Systems Institute, pp. 198–201. isbn: 1-891706-34-9
Wolfgang Slany motivated the paper. Franz Schreiner implemented
the formula editor. Vesna Krnjic wrote major parts of the paper. I
helped with writing and provided major contributions in terms of
literature research and proof-reading the paper.
Referring to Chapter 4.

• Harzl, Neidhoefer, et al. (2013). “A Scratch-like visual programming
system for Microsoft Windows Phone 8.” In: CoRR abs/1310.1390.
url: http://arxiv.org/abs/1310.1390
Wolfgang Slany motivated the paper. Philipp Neidhoefer, Valentin
Rock and Maximilian Schafzahl implemented the application and
wrote about the application and typical usage example. I wrote about
Pocket Code and provided major contributions in terms of literature
research and proof-reading the paper.
Referring to Chapter 4.

163

http://arxiv.org/abs/1310.1390

Appendix A. Papers

• Harzl, Krnjic, et al. (2013b). “Purely Visual and Hybrid Visual/Textual
Formula Composition: A Usability Study Plan.” In: Proceedings of Pro-
gramming for Mobile and Touch PRoMoTo 2013
Wolfgang Slany motivated the paper. Franz Schreiner implemented
the formula editor. Vesna Krnjic wrote major parts of the paper. I
helped with writing and provided major contributions in terms of
literature research and proof-reading the paper.
Referring to Chapter 4.

• Fellhofer, Harzl, and Slany (2015). “Scaling and Internationalizing
an Agile FOSS Project: Lessons Learned.” In: Open Source Systems:
Adoption and Impact - 11th IFIP WG 2.13 International Conference, OSS
2015, Florence, Italy, May 16-17, 2015, Proceedings. Ed. by Damiani et al.
Vol. 451. IFIP Advances in Information and Communication Technol-
ogy. Springer, pp. 13–22. isbn: 978-3-319-17836-3. doi: 10.1007/978-
3-319-17837-0_2. url: http://dx.doi.org/10.1007/978-3-319-
17837-0_2

I had the idea for and motivated the paper. Stephan Fellhofer real-
ized the technical implementation. Stephan Fellhofer and I equally
contributed to writing the paper. Additionally I provided major con-
tributions in terms of literature research and proof-reading the paper.
Wolfgang Slany helped in proof-reading the paper.
Referring to Chapters 4 and 7.

• Harzl (2015). “Combining Kanban and FOSS: Can it work?” In: Agile
Processes, in Software Engineering, and Extreme Programming. ., pp. 352–
353

Wolfgang Slany helped in proof-reading the paper.
Referring to Chapter 1.

• Harzl (2016). “Combining FOSS and Kanban: An Action Research.”
In: Open Source Systems: Integrating Communities - 12th IFIP WG 2.13
International Conference, OSS 2016, Gothenburg, Sweden, May 30 - June 2,
2016, Proceedings. Ed. by Kevin Crowston et al. Vol. 472. IFIP Advances
in Information and Communication Technology. Springer, pp. 71–84.
isbn: 978-3-319-39224-0. doi: 10.1007/978-3-319-39225-7_6. url:
http://dx.doi.org/10.1007/978-3-319-39225-7_6

Sole author.
Referring to Chapter 8.

• Harzl (2017). “Can FOSS projects benefit from integrating Kanban: a

164

https://doi.org/10.1007/978-3-319-17837-0_2
https://doi.org/10.1007/978-3-319-17837-0_2
http://dx.doi.org/10.1007/978-3-319-17837-0_2
http://dx.doi.org/10.1007/978-3-319-17837-0_2
https://doi.org/10.1007/978-3-319-39225-7_6
http://dx.doi.org/10.1007/978-3-319-39225-7_6

case study.” In: Journal of Internet Services and Applications 8.1, p. 7.
issn: 1869-0238. doi: 10.1186/s13174-017-0058-z. url: http://dx.
doi.org/10.1186/s13174-017-0058-z

Sole author.
Referring to Chapter 8.

165

https://doi.org/10.1186/s13174-017-0058-z
http://dx.doi.org/10.1186/s13174-017-0058-z
http://dx.doi.org/10.1186/s13174-017-0058-z

Appendix B.

Questionnaires

167

TWiki Survey

1. Have you ever used some kind of knowledge management system?

O Yes

O No

2. If yes, which topics, kind of data were in the system?

3. If yes, which technologies were used (multiple answers possible)?

O Collection of documents

O Wiki

O SharePoint

O Other:

4. If yes, how helpful do you think the knowledge management was?

O Very helpful

O Helpful

O Not very helpful

O Not helpful

5. How often do you use the Catrobat TWiki?

O Seldom or never

O Once a month

O Several times a month

O Once a week

O Several times a week

O Daily

O Other

6. How helpful do you think the TWiki is?

O Very helpful (I always find what I’m looking for)

O Helpful (I often find what I’m looking for)

O Not very helpful (I seldom find what I’m looking for or the information is hardly in the

TWiki/up-to-date/helpful)

O Not helpful (I almost never find what I’m looking for or the information is not in the

TWiki/up-to-date/helpful)

O Other:

Appendix B. Questionnaires

168

7. What areas could be improved in the TWiki (multiple selections possible)?

O Clear arrangement

O Up-to-dateness of the information

O Completeness of the information

O Correctness of the information

O In all areas

O In no areas

O Other:

8. Please describe in detail what should be improved, so we can derive concrete improvements.

E.g. the structure of the start page should look like this…. I would like…. This & that should be

done this way….

9. Which topics / information are missing in the TWiki from your point of view?

10. Which topics / information are overrepresented in the TWiki or should be removed from

your point of view?

11. Would you use the TWiki more often in the future, if your aforementioned topics would be

taken into consideration and implemented?

O Yes

O Rather yes

O Rather no

O No

12. If rather no or no, why?

13. What other organizational changes / improvements would you like to see in the project (e.g.

to spend as little time as possible on administration)?

14. What other wishes do you have towards the project? What do you expect from the project,

teammates, supervision…?
169

Kanban Questionnaire

1. Do you think, that knowledge about Kanban and its practices is beneficial to your work in the

project?

1 = very beneficial

2 = rather beneficial

3 = undecided

4 = rather useless

5 = very useless

Please only select one of the following options:

O 1

O 2

O 3

O 4

O 5

2. In what way? Please give an example.

In which case did you benefit from your knowledge about Kanban or from applying Kanban practices,

in which case did you not benefit? Was there a practical benefit?

If you benefited from Kanban, please reflect on your example, if the experienced benefit was due to

the use of Kanban practices or due to having a coach. The role of the coach will be examined later in

the questionnaire.

Appendix B. Questionnaires

170

3. Do you think the benefit, you may have gained from using Kanban, is worth the time you put into

the Kanban training and meeting sessions or not? (Please do not take into account the time you

needed to fill in the questionnaires.)

Please only select one of the following options:

O yes, definitively

O yes

O marginally / undecided

O no

O no, definitively not

O other:

4. Do you think, that knowledge about Kanban and its practices is beneficial to your work outside the

project?

1 = very beneficial

2 = rather beneficial

3 = undecided

4 = rather useless

5 = very useless

Please only select one of the following options:

O 1

O 2

O 3

O 4

O 5

5. In what way? Please give examples.

171

6. Do you think, it is beneficial to have a coach in your team?

Please do not rate the coach personally (or his abilities). Please rate if you think it is beneficial to

have someone at team meetings who keeps an eye on work processes and how to improve them.

1 = very beneficial

2 = rather beneficial

3 = undecided

4 = rather useless

5 = very useless

Please only select one of the following options:

O 1

O 2

O 3

O 4

O 5

7. In what way? Please give examples.

Which suggestions, ideas, actions were helpful, which were not?

What did you experience as supportive, what was rather impedimentary?

Please try to distinguish between the person and the role.

Appendix B. Questionnaires

172

8. Did the team’s communication/interaction with the most important stakeholders change due to

the use of Kanban practices?

1 = very positive change

2 = rather positive change

3 = unchanged / undecided

4 = rather negative change

5 = very negative change

Please only select one of the following options:

O 1

O 2

O 3

O 4

O 5

9. What did change? For better? For worse? What are the consequences of the change?

173

10. Did the team’s communication/interaction within the team change due to the use of Kanban

practices?

1 = very positive change

2 = rather positive change

3 = unchanged / undecided

4 = rather negative change

5 = very negative change

Please only select one of the following options:

O 1

O 2

O 3

O 4

O 5

11. What did change? For better? For worse? What are the consequences of the change?

12. Would you like to add something, about Kanban, the team, work, the project, anything else?

Appendix B. Questionnaires

174

Feedback Effort Estimation

1. What is effort estimation meant to achieve? Why does one need it in general?

Agile Estimating – Story Points Method with 1, 2, 5, 10, 20, 50, 100, 200, 500

2. How many of your tickets did you actually estimate? (no quasi-estimating, using default

value)

X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

3. What is your desired value for Agile Estimating – Story Points Method?

X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

175

4. Did you use the effort estimation for e.g. planning, deciding to take a ticket? Please describe

why and how you used it, respectively, did not use it?

Agile Estimating – Story Points Method

5. How did you conduct effort estimation? Agile Estimating – Story Points Method

6. How did you use the ratios? Agile Estimating – Story Points Method

Appendix B. Questionnaires

176

7. Did you use a consistent base item or baseline for estimating over time?

Agile Estimating – Story Points Method

8. How much time did you spend on average to estimate a ticket? Agile Estimating – Story

Points Method

9. In your opinion, how useful was estimating the tickets? Agile Estimating – Story Points

Method

Absolutely not useful

Hardly useful

Neutral/Undecided

Rather useful

Very useful

10. Please give a reason for your previous answer (9) Agile Estimating – Story Points Method

177

Agile Estimating – T-Shirt Size Method with sizes S, M, L

S: You can do it at once

M: You will need 2-3 days

L: You will need one week or more

1. How many of your tickets do you actually estimate? (no quasi-estimating, using default

value) Agile Estimating – T-Shirt Size Method

X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

2. What is your desired value for Agile Estimating – T-Shirt Size Method?

X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

Appendix B. Questionnaires

178

3. Do you use the effort estimation for e.g. planning, deciding to take a ticket? Please describe

why and how you used it, respectively, did not use it? Agile Estimating – T-Shirt Size

Method

4. How do you conduct effort estimation? Agile Estimating – T-Shirt Size Method

5. How do you use the ratios? Agile Estimating – T-Shirt Size Method

 179

6. Do you use a consistent base item or baseline for estimating over time? Agile Estimating –

T-Shirt Size Method

7. How much time do you spend on average to estimate a ticket? Agile Estimating – T-Shirt

Size Method

8. In your opinion, how useful is estimating the tickets? Agile Estimating – T-Shirt Size Method

Absolutely not useful

Hardly useful

Neutral/Undecided

Rather useful

Very useful

9. Please give a reason for your previous answer (8) Agile Estimating – T-Shirt Size Method

Appendix B. Questionnaires

180

Feedback Motivation

1. (How) Did your motivation/mood within the Catrobat project change over time?

much less motivation

rather lower motivation

unchanged

rather more motivation

much more motivation

2. If there have been different phases, please describe them chronologically, what characterized

them und what were triggering circumstances (if there were any)?

3. How do changes in your motivation show? E.g. more fun, you take more time for the project, in

general more content, less stress…

4. What do you think could be the reasons for the changes in motivation?

E.g. less exam stress, workload outside of work, private circumstances…

5. Did the Kanban coaching contribute to changes in your motivation? If yes, how?

6. How would you assess the changes due to the Kanban coaching and its consequences?

much less motivation

rather lower motivation

unchanged

rather more motivation

much more motivation

7. Please give reasons for your answer

8. To what extent do you benefit from your knowledge about Kanban practices?

influenced me negatively / did not want to know

not at all

indifferent – no advantage or disadvantage

rather benefitted

benefitted very much

9. Please give reasons for your answer

181

Usage of Agile Practices

adapted from Shodan 2.0 Input Metric Survey

This survey is designed to evaluate to what extent you are using eXtreme Programming and other practices in

your Catrobat team (not at work). If a question is aimed at the general use of a practice and not restricted to

Catrobat, it is stated in the question. Knowledge questions are of course aimed at your general knowledge and

not restricted to knowledge you acquired through Catrobat.

The survey will also help teach you a bit about XP and Kanban practices and hopefully provide insights into

what the various practices may involve. Even though you may not be fully into XP and Kanban yet, you may use

a few of these practices to some extent as a part of your personal software process. Furthermore, it is very

common for XP teams not to score perfectly on all of the practices, and a perfect score is by no means a

prerequisite for the successful use of XP or Kanban.

In the survey you will find a list of XP and Kanban practices. Next to each question will be a dropbox for

selecting a score from 1-10 which will be used in the computation of XPness. Alongside each practice is a

question and several items to help you consider and gauge the score you select for that practice. Please put

down your scores according to your personal programming practices; not the team as a whole.

P.S. Low scores are okay!

Appendix B. Questionnaires

182

1. Automated Unit Tests

How much do you know about this Practice? *

Please choose only one of the following:

Nothing

Heard about

Read about

Done it

Everything

2. Automated Unit Tests (only shown if previous answer is not “Nothing”)
Automated unit tests (such as JUnit) are an essential part of the development
process. They provide a testbed for verifying the correctness of software and
allow code to be safely integrated and disseminated among team members.
To what extent do you employ automated unit tests?
- Automated unit tests exist for production code.
- A tool is used to measure test coverage.
- There is an automated way to run the entire suite of unit tests for an entire program.
- All unit tests are run and passed when a task is finished and before checking in/integrating.
- When fixing bugs, unit tests are used to capture the bug before fixing.
- Unit tests are refactored.
- Unit tests are fast enough to be run all the time.
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

3. What is your desired value for this specific practice mentioned directly above?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%) 183

4. Customer Acceptance Tests

How much do you know about this Practice? *

Please choose only one of the following:

Nothing

Heard about

Read about

Done it

Everything

5. Customer Acceptance Tests (only shown if previous answer is not “Nothing”)
Customer acceptance tests exist to ensure both the developers and the customer know what they
want. All acceptance tests must be passed before the product can be delivered to the customer.
How important are customer acceptance tests to the development of your product?
- Acceptance tests are used to verify system functionality and customer requirements.
- Customer provides acceptance criteria.
- Customer uses acceptance test to determine what has been accomplished at the end of an iteration.
- Acceptance testing is automated.
- A User Story is not finished until its acceptance tests pass.
- Acceptance tests are run automatically every night.
- A test environment that matches our end-user's environment is used to test.
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

6. What is your desired value for this specific practice mentioned directly above?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

Appendix B. Questionnaires

184

7. Test-First Design/Test-Driven Development
How much do you know about this Practice? *
Please choose only one of the following:
Nothing
Heard about
Read about
Done it
Everything

8. Test-First Design (only shown if previous answer is not “Nothing”)
Test-first design is the practice by which a test case is written before the code is implemented. The
implemented code is written to pass the test case. This practice produces higher quality code and
higher programmer confidence in their code.
What percentage of the time do you employ test-first design?
- Code is only written after a unit test (that fails) has been written first.
- All production code is written using test first design.
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

9. What is your desired value for this specific practice mentioned directly above?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

185

10. Pair programming
How much do you know about this Practice? *
Please choose only one of the following:
Nothing
Heard about
Read about
Done it
Everything

11. Pair programming (only shown if previous answers is not “Nothing”)
Two people, one computer. One thinks strategy, the other thinks tactics. This practice produces higher quality
code at the same level of productivity.
What percentage of your work (design, analysis, coding) is done in pairs?
- People can go on vacation without regard to what work needs to be done.
- Drivers keep Navigators engaged.
- Drivers and Navigators switch roles often.
- Navigators keep a to do list.
- People switch pairing partners regularly.
- The team has work stations conducive to pair programming.
- Practices are enforced by peer pressure.
- Production code is not written without a pair.
- Repetitive and dull tasks that would not gain from pair programming are automated.
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

12. What is your desired value for this specific practice mentioned directly above?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

Appendix B. Questionnaires

186

13. Refactoring
How much do you know about this Practice? *
Please choose only one of the following:
Nothing
Heard about
Read about
Done it
Everything

14. Refactoring (only shown if previous answers is not “Nothing”)
Rewrite code that 'smells bad' to improve future maintenance and flexibility without changing its
behavior.
How often do you stop to cleanup code that has already been implemented without changing
functionality?
- Code contains minimal or no duplication.
- Team refactors often or when applicable.
- There are enough unit tests and/or automated acceptance tests to allow merciless refactoring.
- Any code is open to refactoring.
- Refactoring is done only to improve existing code and not to anticipate future tasks.
- Future refactorings have been identified.
- Long term refactorings are going on now.
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

15. What is your desired value for this specific practice mentioned directly above?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

 187

16. Release Planning / Planning Game
How much do you know about this Practice? *
Please choose only one of the following:
Nothing
Heard about
Read about
Done it
Everything

17. Release Planning / Planning Game (only shown if previous answers is not “Nothing”)
The planning game is a highly interactive process between all stakeholders wherein customers and developers
trade items in and out of the plan based on current priorities and costs. Adaptation is favored over following a
plan. Do you allow for changes in release plans/requirements after each iteration based on customer feedback
and current implementation? How well does planning correspond to the criteria below?
- There is a release plan.
- The whole team including coach, customer, developer, etc. is present during release planning.
- The customer picks the order of the User Stories in the release plan.
- When stories are added to a release, stories of equal value may be re-prioritized.
- Developers estimate the time needed to complete the User Stories.
- Developers break down User Stories into tasks. Each developer signs up for tasks and estimates the ones he/she
owns.
- The release plan is used to determine how much can be done by a certain time.
- Past User Story experience aids in determining how much can be done by a certain time.
- Release points have been identified and communicated to all stakeholders
- At least one User Story is created for automating acceptance tests.
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

18. What is your desired value for this specific practice mentioned directly above?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

Appendix B. Questionnaires

188

19. On-Site Customer
How much do you know about this Practice? *
Please choose only one of the following:
Nothing
Heard about
Read about
Done it
Everything

20. On-Site Customer & Small Releases (only shown if previous answer is not “Nothing”)
The customer is the body for whom the product is being developed and may be either internal or
external. Customer access is imperative to developing a product that satisfies the customers' needs as
well as clear up requirement ambiguity/incompleteness. On-Site Customer is best, but you can use
chat, e-mail, telephone, etc., to quickly verify requirements and get feedback. Ideally, the customer is
always available.
What percentage of the time do you get quick interaction with your customers when needed?
- Customer is involved in release planning.
- The developers have direct access (telephone/email/video conference) to the customer.
- The developers have same day responses from customer.
- The customer is on-site.
- Fast and consistent feedback between customer and developer.
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

21. What is your desired value for this specific practice mentioned directly above?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)
 189

22. Short Releases
How much do you know about this Practice? *
Please choose only one of the following:
Nothing
Heard about
Read about
Done it
Everything

23. Short Releases (only shown if previous answer is not “Nothing”)
You have frequent smaller releases instead of larger less frequent ones. This lets the customer see the
progress of the project and allows the developer to get feedback.
How close are you to having releases about every 6 months with interim iterations of a couple of
weeks?
- The customer has identified release points.
- The product is releasable (internally or externally) every six months or less.
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

24. What is your desired value for this specific practice mentioned directly above?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

Appendix B. Questionnaires

190

25. Continuous Integration
How much do you know about this Practice? *
Please choose only one of the following:
Nothing
Heard about
Read about
Done it
Everything

26. Continuous Integration (only shown if previous answers is not “Nothing”)
Continuous integration works in concert with collective code ownership to ensure that developers
have the most recent version of code available. Code is checked in quickly to avoid code
synchronization/integration hassles.
How often to you synchronize and check in your code on average?
- Source control/VCS is used.
- A build machine automatically builds at least once per day.
- Unit tests and acceptance tests are run as a part of each build.
- The build machine informs developers when the build fails.
- The build process is fast enough to support continuous integration.
- The team integrates at least once per day, preferably several times per day (on days they are
working).
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

27. What is your desired value for this specific practice mentioned directly above?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)
 191

28. Coding Standards
How much do you know about this Practice? *
Please choose only one of the following:
Nothing
Heard about
Read about
Done it
Everything

29. Coding Standards (only shown if previous answer is not “Nothing”)
Do you have and adhere to team coding standards? Besides brace placement, this may include things
like logging and performance idioms. Strong standards make collaboration, refactoring, and collective
ownership an easier process.
Is there a coding standard in place and how often is it followed?
- There is a coding standard for all used languages.
- The coding standard is known and used by the whole team.
- A tool exists to format the code in accordance with the coding standards.
- The coding standard is short and covers readability issues and not design issues.
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

30. What is your desired value for this specific practice mentioned directly above?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

Appendix B. Questionnaires

192

31. Collective Code Ownership
How much do you know about this Practice? *
Please choose only one of the following:
Nothing
Heard about
Read about
Done it
Everything

32. Collective Code Ownership (only shown if previous answer is not “Nothing”)
You can change anyone's code and they can change yours. This allows for stronger knowledge transfer
amongst the team and ensures that you don't get stuck when the expert is busy or on vacation. People
know many parts of the system.
Can people change code they did not originally write, and how often do they do so?
- Some form of VCS is used that allows multiple people to work on the same file at the same time.
-Everyone is allowed to change any code.
- Everyone has the knowledge to change any code or can pair with a person that has the knowledge.
- There are enough unit tests and/or automated acceptance tests to allow people to safely change any
code.
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

33. What is your desired value for this specific practice mentioned directly above?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

 193

34. Sustainable Pace
How much do you know about this Practice? *
Please choose only one of the following:
Nothing
Heard about
Read about
Done it
Everything

35. Sustainable Pace (only shown if previous answers is not “Nothing”)
People need to be effective over the long haul. Overworking has negative impacts on productivity,
morale, and home life.
How well do you pace yourself? What percentage of the development time is evenly paced (for
example working the same number of hours each week)
- High-rate of productivity is maintained without being overworked.
- Vacations or classes are never postponed or canceled due to work.
Examples Scores: 10- I maintain a sustainable pace and the same high rate of output. 5 - I work longer
than what I consider a sustainable pace, but still produce at a high rate and feel only a little burnt out.
2 - I work beyond a sustainable pace and feel burnt out. My code isn't at its usual high quality.
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

36. What is your desired value for this specific practice mentioned directly above?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

Appendix B. Questionnaires

194

37. Simple Design
How much do you know about this Practice? *
Please choose only one of the following:
Nothing
Heard about
Read about
Done it
Everything

38. Simple Design (only shown if previous answers is not “Nothing”)
Keep it simple at first; do the simplest thing that could possibly work. You don't follow the philosophy
of "I'll include this because the customer might possibly need it later" even though the feature isn't in
the requirements. Also, you do not spend a lot of time on design documents.
How often do you succeed in 'Keeping it Simple'?
- Always do "the simplest thing that can possibly work".
- Follow the principle of YAGNI, "You aren't going to need it!" --Only build what is currently necessary.
- Refactoring is used to keep design clean.
- There is no unused or commented-out code.
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

39. What is your desired value for this specific practice mentioned directly above?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

 195

40. Metaphor & System of Names
How much do you know about this Practice? *
Please choose only one of the following:
Nothing
Heard about
Read about
Done it
Everything

41. Metaphor & System of Names (only shown if previous answer is not “Nothing”)
A single, overarching metaphor is used to describe the system, such as an "assembly line." In the event that this is
not possible, the team may use a "system of names" to describe the various components of the project in a
consistent manner. For example, all items related to the database are prefaced by Database. The
metaphor/system of names is used by developers to help communicate ideas and to explain concepts to
customers.
How often do you feel this is true of the systems you develop?
- Classes and methods have good, descriptive names.
- Classes and methods have names relative to one another.
- New members of the team do not need to often ask or refer to a document to understand the architecture.
- The customer understands/can explain the metaphor.
- The developer understands/can explain the metaphor.
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

42. What is your desired value for this specific practice mentioned directly above?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

Appendix B. Questionnaires

196

43. Meeting
What percentage of your meetings is shorter than 30 minutes?
- Meetings take place regularly.
- Meetings are short and to the point, focusing only on what has been done and needs to be done over
the next days.
- Team members exhibit courage in discussing concerns and successes.
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

44. What is your desired value for this specific practice mentioned directly above?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

197

45. Lessons Learned
To what extent does the team review how to get better after every release?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

46. What is your desired value for this specific practice mentioned directly above?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

Appendix B. Questionnaires

198

47. Growth
Consider the latest tools and practices in addition to skills. If you're not learning, you’re falling behind!
To what extent are you up to date with the latest tools and practices in your area?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

48. What is your desired value for this specific practice mentioned directly above?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

199

49. Artifact Reduction
With agile methods you have fewer/thinner versions of artifacts from classic techniques. This saves
time, which can be invested in better tests, new code, refactoring, etc.
To what extent have you been able to: Have fewer code reviews (Pairing instead), Thinner design
specs (Test First Design), and Lighter comments/internal docs (Simple Design, Refactoring)
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

50. What is your desired value for this specific practice mentioned directly above?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

Appendix B. Questionnaires

200

51. Morale
How often can you say you're enjoying your work? Ok, this is not really an output of your process,
but it's collected here for validation and to see if XP is enjoyable.
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

52. What is your desired value for this specific practice mentioned directly above?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

201

53. Visualize the workflow
How much do you know about this Practice? *
Please choose only one of the following:
Nothing
Heard about
Read about
Done it
Everything

54. Visualize the workflow (only shown if previous answer is not “Nothing”)
You cannot improve what you cannot see. Knowledge work needs a way to show progress. Kanban
boards are one of the ways to display progress.
What percentage of your work items is displayed on your Kanban board?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

55. What is your desired value for this specific practice mentioned directly above?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

Appendix B. Questionnaires

202

56. Work in progress (WIP) Limit
How much do you know about this Practice? *
Please choose only one of the following:
Nothing
Heard about
Read about
Done it
Everything

57. Work in progress (WIP) Limit (only shown if previous answers is not “Nothing”)
The number of issues, which can be in one state (column) is limited. That leads to a pull system where
every subsequent station pulls work from the previous station, in contrast to pushing finished work to
the next station.
To which extent do you limit WIP?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

58. What is your desired value for this specific practice mentioned directly above?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

203

59. Measuring the flow
How much do you know about this Practice? *
Please choose only one of the following:
Nothing
Heard about
Read about
Done it
Everything

60. Measure and manage flow (only shown if previous answers is not “Nothing”)
Things like lead time, cycle time and throughput are measured and used to determine how well work
is organized and where is room for improvement. This facilitates planning and improves the reliability.
To what extent do you measure these values?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

61. What is your desired value for this specific practice mentioned directly above?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

Appendix B. Questionnaires

204

62. Make policies explicit
How much do you know about this Practice? *
Please choose only one of the following:
Nothing
Heard about
Read about
Done it
Everything

63. Make policies explicit (only shown if previous answer is not “Nothing”)
To ensure everybody knows with which rules and assumptions work is done, all rules are made
explicit. For example the term 'done' is defined, similar to 'Definition of Done in Scrum', meaning of
the different columns on the board etc.
What percentage of your rules are explicit stated, so everybody knows them?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

64. What is your desired value for this specific practice mentioned directly above?
Please choose only one of the following:
X - Disagree with using this practice
0 - Never (no disagreement, just don't do it)
1 - Hardly ever (10%)
2 - Rarely (20%)
3 - Sometimes (30%)
4 - Common (40%)
5 - Half & Half (50%)
6 - Usually (60%)
7 - Often (70%)
8 - Regular (80%)
9 - Always (90%)
10 - Fanatic (100%)

*Compulsory question

Questions “How much do you know about this Practice” were removed as soon as nobody selected “Nothing”

in the previous survey.

205

Appendix C.

Supplementary Material

207

Appendix C. Supplementary Material

Figure C.1.: To what extent do you employ automated unit tests?

Figure C.2.: How often to you synchronize and check in your code on average?

208

Figure C.3.: How often do you stop to cleanup code that has already been implemented?

Figure C.4.: Do you allow for changes in release plans/requirements after each iteration
based on customer feedback and current implementation? How well does
planning correspond to the criteria below?

209

Appendix C. Supplementary Material

Figure C.5.: What percentage of the time do you get quick interaction with your customers
when needed?

Figure C.6.: Is there a coding standard in place and how often is it followed?

210

Figure C.7.: Can people change code they did not originally write, and how often do they
do so?

Figure C.8.: How well do you pace yourself? What percentage of the development time is
evenly paced (for example working the same number of hours each week)?

211

Appendix C. Supplementary Material

Figure C.9.: How often do you succeed in ’Keeping it Simple’?

Figure C.10.: A single, overarching metaphor is used to describe the system. How often
do you feel this is true of the systems you develop?

212

Figure C.11.: To what extent does the team review how to get better after every release?

Figure C.12.: What percentage of your work items is displayed on your Kanban board?

213

Appendix C. Supplementary Material

Figure C.13.: To which extent do you limit Work in Progress?

214

Figure C.14.: What percentage of your rules are explicit stated, so everybody knows them?

215

Bibliography

Abrahamsson, Warsta, Siponen, and Ronkainen (2003). “New directions
on agile methods: a comparative analysis.” In: 2003 Proceedings. 25th
International Conference on Software Engineering. Ieee, pp. 244–254 (cit.
on p. 9).

Acuña, Castro, Dieste, and Juristo Juzgado (2012). “A systematic mapping
study on the open source software development process.” In: 16th In-
ternational Conference on Evaluation & Assessment in Software Engineer-
ing, EASE 2012, Ciudad Real, Spain, May 14-15, 2012. Proceedings. Ed. by
Maria Teresa Baldassarre, Marcela Genero, Emilia Mendes, and Mario
Piattini. IET - The Institute of Engineering and Technology / IEEE
Xplore, pp. 42–46. isbn: 978-1-84919-541-6. doi: 10.1049/ic.2012.0005.
url: https://doi.org/10.1049/ic.2012.0005 (cit. on p. 36).

Adams and Capiluppi (2009). “Bridging the Gap between Agile and Free
Software Approaches: The Impact of Sprinting.” In: IJOSSP 1.1, pp. 58–
71. doi: 10.4018/jossp.2009010104. url: https://doi.org/10.4018/
jossp.2009010104 (cit. on p. 81).

Ågerfalk, Fitzgerald, and Slaughter (2009). “Introduction to the Special Is-
sue - Flexible and Distributed Information Systems Development: State
of the Art and Research Challenges.” In: Information Systems Research
20.3, pp. 317–328. doi: 10.1287/isre.1090.0244. url: http://dx.doi.
org/10.1287/isre.1090.0244 (cit. on p. 1).

AgileModeling (2017). url: http://agilemodeling.com/ (cit. on p. 8).
AgileUnifiedProcess (2006). url: http://www.ambysoft.com/unifiedprocess/

agileUP.html (cit. on p. 8).
Ahmad, Liukkunen, and Markkula (2014). Student perceptions and attitudes

towards the software factory as a learning environment. Undetermined (cit.
on pp. 1, 2, 71, 73, 75).

217

https://doi.org/10.1049/ic.2012.0005
https://doi.org/10.1049/ic.2012.0005
https://doi.org/10.4018/jossp.2009010104
https://doi.org/10.4018/jossp.2009010104
https://doi.org/10.4018/jossp.2009010104
https://doi.org/10.1287/isre.1090.0244
http://dx.doi.org/10.1287/isre.1090.0244
http://dx.doi.org/10.1287/isre.1090.0244
http://agilemodeling.com/
http://www.ambysoft.com/unifiedprocess/agileUP.html
http://www.ambysoft.com/unifiedprocess/agileUP.html

Bibliography

Ahmad, Markkula, and Oivo (Jan. 2014). “Kanban for software engineering
teaching in a software factory learning environment.” In: 12, pp. 338–
343 (cit. on pp. 73–75).

Aladwani (2001). “Change management strategies for successful ERP im-
plementation.” In: Business Process management journal 7.3, pp. 266–275

(cit. on pp. 102, 103).
Ambler and Lines (2012). Disciplined Agile Delivery: A Practitioner’s Guide to

Agile Software Delivery in the Enterprise. 1st ed. IBM Press (cit. on p. 8).
Anderson (2010). Kanban - Successful Evolutionary Change for Your Technology

Business. Seattle, USA: Blue Hole Press (cit. on pp. 2, 3, 9, 20, 21, 52, 92,
108).

Andres and Beck (1999). Extreme Programming Explained: Embrace Change.
Addison-Wesley (cit. on pp. 8–19, 52, 62, 92).

Auer and Miller (2002). Extreme Programming Applied: Playing to Win. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc. isbn: 0-201-
61640-8 (cit. on p. 8).

Basili, Shull, and Lanubile (1999). “Building Knowledge through Families
of Experiments.” In: IEEE Trans. Software Eng. 25.4, pp. 456–473. doi:
10.1109/32.799939. url: https://doi.org/10.1109/32.799939 (cit.
on p. 156).

Beck (2003). Test-Driven Development: By Example. Addison-Wesley Profes-
sional (cit. on pp. 16, 62, 92).

Beck and Andres (2004). Extreme Programming Explained: Embrace Change
(2Nd Edition). Addison-Wesley Professional. isbn: 0321278658 (cit. on
pp. 8, 10, 11, 13, 19).

Beck, Beedle, Van Bennekum, Cockburn, Cunningham, Fowler, Grenning,
Highsmith, Hunt, Jeffries, et al. (2001). The agile manifesto. url: http:
//agilemanifesto.org/ (cit. on p. 9).

Becking, Course, van Enk, Hangyi, Lahaye, Ockeloen, Peters, Rosbergen,
and van Wendel de Joode (2005). “MMBase: An open-source content
management system.” In: IBM Systems Journal 44.2, pp. 381–398. doi:
10.1147/sj.442.0381. url: https://doi.org/10.1147/sj.442.0381
(cit. on p. 91).

Benson and DeMaria (2011). Personal Kanban: Mapping Work, Navigating Life.
Seattle, USA: Modus Cooperandi Press (cit. on pp. 9, 20, 141).

218

https://doi.org/10.1109/32.799939
https://doi.org/10.1109/32.799939
http://agilemanifesto.org/
http://agilemanifesto.org/
https://doi.org/10.1147/sj.442.0381
https://doi.org/10.1147/sj.442.0381

Bibliography

Boehm (2002). “Get Ready for Agile Methods, with Care.” In: IEEE Com-
puter 35.1, pp. 64–69. doi: 10 . 1109 / 2 . 976920. url: http : / / doi .

ieeecomputersociety.org/10.1109/2.976920 (cit. on pp. 1, 6).
Boehm and Turner (2003a). Balancing Agility and Discipline: A Guide for the

Perplexed. 7th ed. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc. isbn: 0321186125 (cit. on p. 52).

Boehm and Turner (2003b). “Observations on Balancing Discipline and
Agility.” In: 2003 Agile Development Conference (ADC 2003), 25-28 June
2003, Salt Lake City, UT, USA. IEEE Computer Society, pp. 32–39. isbn:
0-7695-2013-8. doi: 10.1109/ADC.2003.1231450. url: https://doi.
org/10.1109/ADC.2003.1231450 (cit. on p. 80).

Boland and Fitzgerald (May 2004). “Transitioning from a co-located to a
globally-distributed software development team: A case study at Ana-
log Devices, Inc.” In: Proceedings of 3rd Workshop on Global Software De-
velopment. ICSE ’04. Edinburgh, UK, pp. 4–7. doi: http://dx.doi.org/
10.1049/ic:20040303 (cit. on p. 1).

Bonaccorsi and Rossi (Dec. 2006). “Comparing motivations of individual
programmers and firms to take part in the open source movement:
From community to business.” In: Knowledge, Technology & Policy 18.4,
pp. 40–64. issn: 0897-1986. doi: 10.1007/s12130- 006- 1003- 9. url:
http://dx.doi.org/10.1007/s12130-006-1003-9 (cit. on p. 1).

Bowen and Stavridou (1993). “Safety-critical systems, formal methods and
standards.” In: Software Engineering Journal 8.4, pp. 189–209. doi: 10.
1049/sej.1993.0025. url: https://doi.org/10.1049/sej.1993.0025
(cit. on p. 83).

Bryant and Jones (2012). “Responsive Web Design.” In: Pro HTML5 Perfor-
mance. Berkeley, CA: Apress, pp. 37–49. isbn: 978-1-4302-4525-4. doi:
10.1007/978-1-4302-4525-4_4. url: http://dx.doi.org/10.1007/
978-1-4302-4525-4_4 (cit. on p. 10).

Casson and Hawthorn (2011). “Introducing the Oregon State University
Open Source Lab.” In: Open Source Business Resource August 2011 (cit.
on p. 2).

Chein, Cook, and Harding (1948). “The field of action research.” In: Ameri-
can Psychologist 3.2, p. 43 (cit. on pp. 87, 88).

Ciborra and Andreu (2001). “Sharing knowledge across boundaries.” In:
JIT 16.2, pp. 73–81. doi: 10 . 1080 / 02683960110055103. url: https :

//doi.org/10.1080/02683960110055103 (cit. on p. 91).

219

https://doi.org/10.1109/2.976920
http://doi.ieeecomputersociety.org/10.1109/2.976920
http://doi.ieeecomputersociety.org/10.1109/2.976920
https://doi.org/10.1109/ADC.2003.1231450
https://doi.org/10.1109/ADC.2003.1231450
https://doi.org/10.1109/ADC.2003.1231450
https://doi.org/http://dx.doi.org/10.1049/ic:20040303
https://doi.org/http://dx.doi.org/10.1049/ic:20040303
https://doi.org/10.1007/s12130-006-1003-9
http://dx.doi.org/10.1007/s12130-006-1003-9
https://doi.org/10.1049/sej.1993.0025
https://doi.org/10.1049/sej.1993.0025
https://doi.org/10.1049/sej.1993.0025
https://doi.org/10.1007/978-1-4302-4525-4_4
http://dx.doi.org/10.1007/978-1-4302-4525-4_4
http://dx.doi.org/10.1007/978-1-4302-4525-4_4
https://doi.org/10.1080/02683960110055103
https://doi.org/10.1080/02683960110055103
https://doi.org/10.1080/02683960110055103

Bibliography

Cockburn (2004). Crystal Clear a Human-powered Methodology for Small Teams.
First. Addison-Wesley Professional. isbn: 0201699478 (cit. on p. 8).

Cohn (2005). Agile Estimating and Planning. Upper Saddle River, USA: Pear-
son Education. isbn: 9780132703109 (cit. on pp. 119, 121).

Corbin and Strauss (1998). Basics of Qualitative Research: Grounded Theory
Procedures and Techniques (2nd Edition). Thousand Oaks, USA: Sage pub-
lications (cit. on p. 109).

Crisà, Del Bianco, and Lavazza (2006). “A tool for the measurement, stor-
age, and pre-elaboration of data supporting the release of public datasets.”
In: Workshop on Public Data about Software Development (WoPDaSD 2006),
Como (cit. on p. 82).

Crispin and Gregory (2009). Agile Testing: A Practical Guide for Testers and
Agile Teams. 1st ed. Addison-Wesley Professional (cit. on pp. 8, 12, 27).

Crowston, Kevin, Imed Hammouda, Björn Lundell, Gregorio Robles, Jonas
Gamalielsson, and Juho Lindman, eds. (2016). Open Source Systems: In-
tegrating Communities - 12th IFIP WG 2.13 International Conference, OSS
2016, Gothenburg, Sweden, May 30 - June 2, 2016, Proceedings. Vol. 472.
IFIP Advances in Information and Communication Technology. Springer.
isbn: 978-3-319-39224-0. doi: 10.1007/978-3-319-39225-7. url: http:
//dx.doi.org/10.1007/978-3-319-39225-7.

Crowston and Howison (2005). “The social structure of free and open
source software development.” In: First Monday 10.2. url: http : / /

firstmonday.org/ojs/index.php/fm/article/view/1207 (cit. on
pp. 41, 42, 44, 54, 55).

Crowston, Howison, Masango, and Eseryel (2005). “Face-to-face interac-
tions in self-organizing distributed teams.” In: Academy of Management
Conference, Honolulu, HI (cit. on p. 43).

Crowston, Li, Wei, Eseryel, and Howison (2007). “Self-organization of teams
for free/libre open source software development.” In: Information and
software technology 49.6, pp. 564–575 (cit. on p. 43).

Crowston and Scozzi (2002). “Open source software projects as virtual or-
ganisations: competency rallying for software development.” In: IEE
Proceedings-Software 149.1, pp. 3–17 (cit. on p. 44).

Crowston and Scozzi (2004). “Coordination practices for bug fixing within
FLOSS development teams.” In: 1st International Workshop on Computer
Supported Activity Coordination (CSAC) (cit. on p. 41).

220

https://doi.org/10.1007/978-3-319-39225-7
http://dx.doi.org/10.1007/978-3-319-39225-7
http://dx.doi.org/10.1007/978-3-319-39225-7
http://firstmonday.org/ojs/index.php/fm/article/view/1207
http://firstmonday.org/ojs/index.php/fm/article/view/1207

Bibliography

Crowston and Scozzi (2008). “Coordination practices within free/libre open
source software development teams: The bug fixing process.” In: 19.2,
pp. 1–30 (cit. on p. 43).

Crowston, Wei, Howison, and Wiggins (2012). “Free/Libre open-source
software development: What we know and what we do not know.”
In: ACM Comput. Surv. 44.2, p. 7. doi: 10.1145/2089125.2089127. url:
http://doi.acm.org/10.1145/2089125.2089127 (cit. on pp. 1, 40, 43,
91).

David, Waterman, and Arora (2003). “FLOSS-US the free/libre/open source
software survey for 2003.” In: Stanford Institute for Economic Policy Re-
search, Stanford University, Stanford, CA (http://www. stanford. edu/group/floss-
us/report/FLOSS-US-Report. pdf) (cit. on pp. 41, 52).

Davoli, Renzo, Michael Goldweber, Guido Rößling, and Irene Polycarpou,
eds. (2017). Proceedings of the 2017 ACM Conference on Innovation and
Technology in Computer Science Education, ITiCSE 2017, Bologna, Italy, July
3-5, 2017. ACM. isbn: 978-1-4503-4704-4. doi: 10.1145/3059009. url:
http://doi.acm.org/10.1145/3059009.

DeKoenigsberg (2008). “How Successful Open Source Projects Work, and
How and Why to Introduce Students to the Open Source World.” In:
Proceedings 21st Conference on Software Engineering Education and Train-
ing, CSEET 2008, 14-17 April 2008, Charleston, South Carolina, USA. Ed.
by Hossein Saiedian and Laurie A. Williams. IEEE Computer Society,
pp. 274–276. isbn: 978-0-7695-3144-1. doi: 10.1109/CSEET.2008.42.
url: https://doi.org/10.1109/CSEET.2008.42 (cit. on p. 2).

Deming (2000). Out of the Crisis. Massachusetts Institute of Technology,
Center for Advanced Engineering Study. isbn: 9780262541152. url: https:
//books.google.at/books?id=LA15eDlOPgoC (cit. on p. 20).

Deshpande and Riehle (2008). “Continuous Integration in Open Source
Software Development.” In: Open Source Development, Communities and
Quality, IFIP 20th World Computer Congress, Working Group 2.3 on Open
Source Software, OSS 2008, September 7-10, 2008, Milano, Italy. Ed. by
Barbara Russo, Ernesto Damiani, Scott A. Hissam, Björn Lundell, and
Giancarlo Succi. Vol. 275. IFIP. Cham, Switzerland: Springer, pp. 273–
280. isbn: 978-0-387-09683-4 (cit. on pp. 1, 81).

Dick (2000). A beginner’s guide to action research. url: http://www.aral.
com.au/resources/guide.html (cit. on p. 89).

221

https://doi.org/10.1145/2089125.2089127
http://doi.acm.org/10.1145/2089125.2089127
https://doi.org/10.1145/3059009
http://doi.acm.org/10.1145/3059009
https://doi.org/10.1109/CSEET.2008.42
https://doi.org/10.1109/CSEET.2008.42
https://books.google.at/books?id=LA15eDlOPgoC
https://books.google.at/books?id=LA15eDlOPgoC
http://www.aral.com.au/resources/guide.html
http://www.aral.com.au/resources/guide.html

Bibliography

Dingsøyr, Torgeir, Sridhar P. Nerur, Venugopal Balijepally, and Nils Brede
Moe (2012). “A decade of agile methodologies: Towards explaining
agile software development.” In: Journal of Systems and Software 85.6,
pp. 1213–1221. doi: 10.1016/j.jss.2012.02.033. url: http://dx.doi.
org/10.1016/j.jss.2012.02.033 (cit. on p. 1).

Dinh-Trong and Bieman (2005). “The FreeBSD Project: A Replication Case
Study of Open Source Development.” In: IEEE Trans. Software Eng. 31.6,
pp. 481–494. doi: 10.1109/TSE.2005.73. url: https://doi.org/10.
1109/TSE.2005.73 (cit. on p. 41).

DSDMConsortium (2008). DSDM Atern: the Handbook (cit. on p. 8).
Düring (2006a). “Sprint Driven Development: Agile Methodologies in a

Distributed Open Source Project (PyPy).” In: Extreme Programming and
Agile Processes in Software Engineering, 7th International Conference, XP
2006, Oulu, Finland, June 17-22, 2006, Proceedings. Ed. by Pekka Abra-
hamsson, Michele Marchesi, and Giancarlo Succi. Vol. 4044. Lecture
Notes in Computer Science. Berlin Heidelberg, Germany: Springer-
Verlag, pp. 191–195. isbn: 3-540-35094-2 (cit. on pp. 1, 65).

Düring (2006b). “Sprint Driven Development: Agile Methodologies in a
Distributed Open Source Project (PyPy).” English. In: Extreme Program-
ming and Agile Processes in Software Engineering. Ed. by Pekka Abrahams-
son, Michele Marchesi, and Giancarlo Succi. Vol. 4044. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, pp. 191–195. isbn: 978-
3-540-35094-1. doi: 10.1007/11774129_22. url: http://dx.doi.org/
10.1007/11774129_22 (cit. on p. 80).

Düring (July 2006c). “Trouble in paradise: the open source project PyPy,
EU-funding and agile practices.” In: Agile Conference, 2006. doi: 10.
1109/AGILE.2006.58 (cit. on p. 80).

Edmondson and McManus (2007). “Methodological Fit in Management
Field Research.” In: Academy of Management Review 32, no. 4 (cit. on
p. 89).

Edwards (2001). “Epistemic communities, situated learning and open source
software development.” In: Epistemic Cultures and the Practice of Interdis-
ciplinarity (cit. on p. 91).

Elferink, Griffiths, and Zondergeld (2016). “Comparing Software Develop-
ment Models: Structural Problems in the Cathedral and Bazaar methaphors.”
In: Open Source for Education in Europe, Research & Practise Conference

222

https://doi.org/10.1016/j.jss.2012.02.033
http://dx.doi.org/10.1016/j.jss.2012.02.033
http://dx.doi.org/10.1016/j.jss.2012.02.033
https://doi.org/10.1109/TSE.2005.73
https://doi.org/10.1109/TSE.2005.73
https://doi.org/10.1109/TSE.2005.73
https://doi.org/10.1007/11774129_22
http://dx.doi.org/10.1007/11774129_22
http://dx.doi.org/10.1007/11774129_22
https://doi.org/10.1109/AGILE.2006.58
https://doi.org/10.1109/AGILE.2006.58

Bibliography

Proceedings. Open University of the Netherlands, Heerlen, Educational
Technology Expertise Centre (cit. on p. 45).

Elliott and Scacchi (2005). “Free software development: cooperation and
conflict in a virtual organization.” In: Free/open source software develop-
ment 152 (cit. on pp. 43, 44, 160).

Ellis and Hislop (2016). “Pathways to Student Learning within HFOSS.”
In: Proceedings of the 17th Annual Conference on Information Technology
Education and the 5th Annual Conference on Research in Information Tech-
nology, SIGITE/RIIT 2016, Boston, MA, USA, September 28 - October 1,
2016. Ed. by Deborah Boisvert and Stephen J. Zilora. ACM, p. 168.
isbn: 978-1-4503-4452-4. doi: 10.1145/2978192.2978242. url: http:
//doi.acm.org/10.1145/2978192.2978242 (cit. on p. 78).

Ellis and Hislop (2017). “A Course Based on Open Organization Princi-
ples.” In: Proceedings of the 2017 ACM Conference on Innovation and Tech-
nology in Computer Science Education, ITiCSE 2017, Bologna, Italy, July 3-
5, 2017. Ed. by Renzo Davoli, Michael Goldweber, Guido Rößling, and
Irene Polycarpou. ACM, p. 378. isbn: 978-1-4503-4704-4. doi: 10.1145/
3059009 . 3072998. url: http : / / doi . acm . org / 10 . 1145 / 3059009 .

3072998 (cit. on p. 78).
Ellis, Hislop, and Burdge (2017). “Courseware: HFOSS Project Evaluation.”

In: Proceedings of the 2017 ACM Conference on Innovation and Technology
in Computer Science Education, ITiCSE 2017, Bologna, Italy, July 3-5, 2017.
Ed. by Renzo Davoli, Michael Goldweber, Guido Rößling, and Irene
Polycarpou. ACM, pp. 90–91. isbn: 978-1-4503-4704-4. doi: 10.1145/
3059009 . 3072975. url: http : / / doi . acm . org / 10 . 1145 / 3059009 .

3072975 (cit. on p. 78).
Ellis, Hislop, and Purcell (2013). “Project selection for student involvement

in humanitarian FOSS.” In: 26th International Conference on Software En-
gineering Education and Training, CSEE&T 2013, San Francisco, CA, USA,
May 19-21, 2013. Ed. by Tony Cowling, Shawn Bohner, and Mark A.
Ardis. IEEE, pp. 359–361. doi: 10.1109/CSEET.2013.6595279. url:
https://doi.org/10.1109/CSEET.2013.6595279 (cit. on p. 78).

Ellis, Morelli, de Lanerolle, and Hislop (2007). “Holistic Software Engi-
neering Education Based on a Humanitarian Open Source Project.” In:
20th Conference on Software Engineering Education and Training (CSEE&T
2007), 3-5 July 2007, Dublin, Ireland. IEEE Computer Society, pp. 327–

223

https://doi.org/10.1145/2978192.2978242
http://doi.acm.org/10.1145/2978192.2978242
http://doi.acm.org/10.1145/2978192.2978242
https://doi.org/10.1145/3059009.3072998
https://doi.org/10.1145/3059009.3072998
http://doi.acm.org/10.1145/3059009.3072998
http://doi.acm.org/10.1145/3059009.3072998
https://doi.org/10.1145/3059009.3072975
https://doi.org/10.1145/3059009.3072975
http://doi.acm.org/10.1145/3059009.3072975
http://doi.acm.org/10.1145/3059009.3072975
https://doi.org/10.1109/CSEET.2013.6595279
https://doi.org/10.1109/CSEET.2013.6595279

Bibliography

335. isbn: 0-7695-2893-7. doi: 10.1109/CSEET.2007.26. url: https:
//doi.org/10.1109/CSEET.2007.26 (cit. on p. 78).

Ellis, Purcell, and Hislop (2012). “An approach for evaluating FOSS pro-
jects for student participation.” In: Proceedings of the 43rd ACM techni-
cal symposium on Computer science education, SIGCSE 2012, Raleigh, NC,
USA, February 29 - March 3, 2012. Ed. by Laurie A. Smith King, Da-
vid R. Musicant, Tracy Camp, and Paul T. Tymann. ACM, pp. 415–420.
isbn: 978-1-4503-1098-7. doi: 10.1145/2157136.2157260. url: http:
//doi.acm.org/10.1145/2157136.2157260 (cit. on p. 78).

Espinosa, Kraut, Slaughter, Lerch, Herbsleb, and Mockus (2002). “Shared
mental models, familiarity, and coordination: A multi-method study
of distributed software teams.” In: ICIS 2002 Proceedings, p. 39 (cit. on
p. 44).

Fagerholm, Oza, and Münch (2013). “A platform for teaching applied dis-
tributed software development: The ongoing journey of the Helsinki
software factory.” In: 3rd International Workshop on Collaborative Teaching
of Globally Distributed Software Development, CTGDSD 2013, San Fran-
cisco, CA, USA, May 25, 2013. IEEE Computer Society, pp. 1–5. isbn:
978-1-4673-6294-8. doi: 10.1109/CTGDSD.2013.6635237. url: https:
//doi.org/10.1109/CTGDSD.2013.6635237 (cit. on p. 73).

Feller and Fitzgerald (2000). “A framework analysis of the open source soft-
ware development paradigm.” In: Proceedings of the Twenty-First Inter-
national Conference on Information Systems, ICIS 2000, Brisbane, Australia,
December 10-13, 2000. Ed. by Soon Ang, Helmut Krcmar, Wanda J. Or-
likowski, Peter Weill, and Janice I. DeGross. Association for Informa-
tion Systems, pp. 58–69. url: http://aisel.aisnet.org/icis2000/7
(cit. on p. 39).

Fellhofer, Harzl, and Slany (2015). “Scaling and Internationalizing an Ag-
ile FOSS Project: Lessons Learned.” In: Open Source Systems: Adoption
and Impact - 11th IFIP WG 2.13 International Conference, OSS 2015, Flo-
rence, Italy, May 16-17, 2015, Proceedings. Ed. by Damiani, Frati, Riehle,
and Wasserman. Vol. 451. IFIP Advances in Information and Commu-
nication Technology. Springer, pp. 13–22. isbn: 978-3-319-17836-3. doi:
10.1007/978-3-319-17837-0_2. url: http://dx.doi.org/10.1007/
978-3-319-17837-0_2 (cit. on pp. 91, 164).

224

https://doi.org/10.1109/CSEET.2007.26
https://doi.org/10.1109/CSEET.2007.26
https://doi.org/10.1109/CSEET.2007.26
https://doi.org/10.1145/2157136.2157260
http://doi.acm.org/10.1145/2157136.2157260
http://doi.acm.org/10.1145/2157136.2157260
https://doi.org/10.1109/CTGDSD.2013.6635237
https://doi.org/10.1109/CTGDSD.2013.6635237
https://doi.org/10.1109/CTGDSD.2013.6635237
http://aisel.aisnet.org/icis2000/7
https://doi.org/10.1007/978-3-319-17837-0_2
http://dx.doi.org/10.1007/978-3-319-17837-0_2
http://dx.doi.org/10.1007/978-3-319-17837-0_2

Bibliography

Fielding (1999). “Shared Leadership in the Apache Project.” In: Commun.
ACM 42.4, pp. 42–43. doi: 10.1145/299157.299167. url: http://doi.
acm.org/10.1145/299157.299167 (cit. on p. 40).

Fink (2003). The business and economics of Linux and open source. Prentice Hall
Professional (cit. on p. 33).

Fitzgerald (2006). “The Transformation of Open Source Software.” In: MIS
Quarterly 30.3, pp. 587–598. url: http://misq.org/the-transformation-
of-open-source-software.html (cit. on p. 40).

Fitzgerald (2011). “Open Source Software: Lessons from and for Software
Engineering.” In: IEEE Computer 44.10, pp. 25–30. doi: 10.1109/MC.
2011.266. url: https://doi.org/10.1109/MC.2011.266 (cit. on pp. 29,
39–41, 43–45).

Fitzgerald, Musial, and Stol (2014). “Evidence-based decision making in
lean software project management.” In: 36th International Conference on
Software Engineering, ICSE ’14, Companion Proceedings, Hyderabad, India,
May 31 - June 07, 2014. Ed. by Pankaj Jalote, Lionel C. Briand, and André
van der Hoek. ACM, pp. 93–102. isbn: 978-1-4503-2768-8. doi: 10.1145/
2591062 . 2591190. url: http : / / doi . acm . org / 10 . 1145 / 2591062 .

2591190 (cit. on p. 3).
Flyvbjerg (2006). “Five Misunderstandings About Case-Study Research.”

In: Qualitative Inquiry 12.2, pp. 219–245. doi: 10.1177/1077800405284363.
eprint: http://dx.doi.org/10.1177/1077800405284363. url: http:
//dx.doi.org/10.1177/1077800405284363 (cit. on p. 156).

Fogel (2005). Producing open source software - how to run a successful free
software project. O’Reilly. isbn: 978-0-596-00759-1. url: http://www.
oreilly.de/catalog/producingoss/index.html (cit. on p. 44).

FSFE (2017a). We speak about Free Software. English. url: https://fsfe.
org/documents/whyfs.en.html (cit. on pp. 31, 32, 35).

FSFE (2017b). What is Free Software? English. url: https://fsfe.org/
about/basics/freesoftware.en.html (cit. on pp. 32, 35).

Fucci and Turhan (2013). “A Replicated Experiment on the Effectiveness of
Test-First Development.” In: 2013 ACM / IEEE International Symposium
on Empirical Software Engineering and Measurement, Baltimore, Maryland,
USA, October 10-11, 2013. IEEE Computer Society, pp. 103–112. isbn:
978-0-7695-5056-5. doi: 10.1109/ESEM.2013.15. url: http://dx.doi.
org/10.1109/ESEM.2013.15 (cit. on p. 1).

225

https://doi.org/10.1145/299157.299167
http://doi.acm.org/10.1145/299157.299167
http://doi.acm.org/10.1145/299157.299167
http://misq.org/the-transformation-of-open-source-software.html
http://misq.org/the-transformation-of-open-source-software.html
https://doi.org/10.1109/MC.2011.266
https://doi.org/10.1109/MC.2011.266
https://doi.org/10.1109/MC.2011.266
https://doi.org/10.1145/2591062.2591190
https://doi.org/10.1145/2591062.2591190
http://doi.acm.org/10.1145/2591062.2591190
http://doi.acm.org/10.1145/2591062.2591190
https://doi.org/10.1177/1077800405284363
http://dx.doi.org/10.1177/1077800405284363
http://dx.doi.org/10.1177/1077800405284363
http://dx.doi.org/10.1177/1077800405284363
http://www.oreilly.de/catalog/producingoss/index.html
http://www.oreilly.de/catalog/producingoss/index.html
https://fsfe.org/documents/whyfs.en.html
https://fsfe.org/documents/whyfs.en.html
https://fsfe.org/about/basics/freesoftware.en.html
https://fsfe.org/about/basics/freesoftware.en.html
https://doi.org/10.1109/ESEM.2013.15
http://dx.doi.org/10.1109/ESEM.2013.15
http://dx.doi.org/10.1109/ESEM.2013.15

Bibliography

Gacek and Arief (Jan. 2004). “The many meanings of open source.” In:
IEEE Software 21. ”We determined a set of characteristics that are almost
always present and others that vary among open source projects, and
this serves as the core of this work” ”Section 3 describes some open
source characteristics that can be used in determining whether a project
is or not open source”, pp. 34–40. issn: 0740-7459. doi: 10.1109/MS.
2004.1259206 (cit. on pp. 38, 43).

Gandomani, Taghi Javdani, Hazura Zulzalil, Abdul Azim Abdul Ghani,
and Abu Bakar Md Sultan (2013). “A Systematic Literature Review on
relationship between agile methods and Open Source Software Devel-
opment methodology.” In: CoRR abs/1302.2748, pp. 1602–1607. url:
http://arxiv.org/abs/1302.2748 (cit. on pp. 1, 79, 84, 159).

Gary, Enquobahrie, Ibáñez, Cheng, Yaniv, Cleary, Kokoori, Muffih, and
Heidenreich (2011). “Agile methods for open source safety-critical soft-
ware.” In: Softw., Pract. Exper. 41.9, pp. 945–962. doi: 10.1002/spe.1075.
url: https://doi.org/10.1002/spe.1075 (cit. on p. 83).

Gary, Ibáñez, Aylward, Gobbi, Blake, and Cleary (2006). “IGSTK: An Open
Source Software Toolkit for Image-Guided Surgery.” In: IEEE Computer
39.4, pp. 46–53. doi: 10.1109/MC.2006.130. url: https://doi.org/10.
1109/MC.2006.130 (cit. on p. 83).

Gaughan, Fitzgerald, and Shaikh (2009). “An Examination of the Use of
Open Source Software Processes as a Global Software Development So-
lution for Commercial Software Engineering.” In: 35th Euromicro Con-
ference on Software Engineering and Advanced Applications, SEAA 2009,
Patras, Greece, August 27-29, 2009, Proceedings. IEEE Computer Society,
pp. 20–27. isbn: 978-0-7695-3784-9. doi: 10.1109/SEAA.2009.86. url:
https://doi.org/10.1109/SEAA.2009.86 (cit. on p. 43).

Gehringer (2011). “From the manager’s perspective: Classroom contribu-
tions to open-source projects.” In: 2011 Frontiers in Education Conference,
FIE 2011, Rapid City, SD, USA, October 12-15, 2011. IEEE, p. 1. isbn: 978-
1-61284-468-8. doi: 10.1109/FIE.2011.6143028. url: https://doi.
org/10.1109/FIE.2011.6143028 (cit. on p. 76).

Germán (2003). “The GNOME project: a case study of open source, global
software development.” In: Software Process: Improvement and Practice
8.4, pp. 201–215. doi: 10.1002/spip.189. url: https://doi.org/10.
1002/spip.189 (cit. on p. 40).

226

https://doi.org/10.1109/MS.2004.1259206
https://doi.org/10.1109/MS.2004.1259206
http://arxiv.org/abs/1302.2748
https://doi.org/10.1002/spe.1075
https://doi.org/10.1002/spe.1075
https://doi.org/10.1109/MC.2006.130
https://doi.org/10.1109/MC.2006.130
https://doi.org/10.1109/MC.2006.130
https://doi.org/10.1109/SEAA.2009.86
https://doi.org/10.1109/SEAA.2009.86
https://doi.org/10.1109/FIE.2011.6143028
https://doi.org/10.1109/FIE.2011.6143028
https://doi.org/10.1109/FIE.2011.6143028
https://doi.org/10.1002/spip.189
https://doi.org/10.1002/spip.189
https://doi.org/10.1002/spip.189

Bibliography

Ghosh (1998). “FM Interviews: Interview with Linus Torvalds: What moti-
vates software developers.” In: First Monday 3.3 (cit. on p. 39).

Ghosh (2005). “Understanding free software developers: Findings from the
FLOSS study.” In: Perspectives on free and open source software, pp. 23–46

(cit. on p. 41).
GNU and FSF (2017). Categories of free and nonfree software. url: https :

//www.gnu.org/philosophy/categories.html.en (cit. on p. 34).
Goldratt and Cox (1992). The Goal: A Process of Ongoing Improvement. North

River Press. isbn: 9780884270614. url: https://books.google.at/
books?id=0T5EAAAAMAAJ (cit. on p. 20).

Goth (2007). “Sprinting toward Open Source Development.” In: IEEE Soft-
ware 24.1, pp. 88–91. doi: 10.1109/MS.2007.28. url: https://doi.org/
10.1109/MS.2007.28 (cit. on p. 81).

Greenwood and Levin (2007). Introduction to Action Research: Social Research
for Social Change. SAGE Publications (cit. on p. 85).

Hann, Roberts, and Slaughter (2004). “Why developers participate in open
source software projects: An empirical investigation.” In: ICIS 2004 Pro-
ceedings, p. 66 (cit. on p. 39).

Hann, Roberts, Slaughter, and Fielding (2002). “Economic incentives for
participating in open source software projects.” In: ICIS 2002 Proceed-
ings, p. 33 (cit. on p. 39).

Hars and Ou (2001). “Working for Free? - Motivations of Participating in
Open Source Projects.” In: 34th Annual Hawaii International Conference
on System Sciences (HICSS-34), January 3-6, 2001, Maui, Hawaii, USA.
IEEE Computer Society. isbn: 0-7695-0981-9. doi: 10.1109/HICSS.2001.
927045. url: http://dx.doi.org/10.1109/HICSS.2001.927045 (cit. on
pp. 39, 43, 45).

Harzl (2015). “Combining Kanban and FOSS: Can it work?” In: Agile Pro-
cesses, in Software Engineering, and Extreme Programming. ., pp. 352–353

(cit. on p. 164).
Harzl (2016). “Combining FOSS and Kanban: An Action Research.” In:

Open Source Systems: Integrating Communities - 12th IFIP WG 2.13 Inter-
national Conference, OSS 2016, Gothenburg, Sweden, May 30 - June 2, 2016,
Proceedings. Ed. by Kevin Crowston, Imed Hammouda, Björn Lundell,
Gregorio Robles, Jonas Gamalielsson, and Juho Lindman. Vol. 472. IFIP
Advances in Information and Communication Technology. Springer,
pp. 71–84. isbn: 978-3-319-39224-0. doi: 10.1007/978-3-319-39225-

227

https://www.gnu.org/philosophy/categories.html.en
https://www.gnu.org/philosophy/categories.html.en
https://books.google.at/books?id=0T5EAAAAMAAJ
https://books.google.at/books?id=0T5EAAAAMAAJ
https://doi.org/10.1109/MS.2007.28
https://doi.org/10.1109/MS.2007.28
https://doi.org/10.1109/MS.2007.28
https://doi.org/10.1109/HICSS.2001.927045
https://doi.org/10.1109/HICSS.2001.927045
http://dx.doi.org/10.1109/HICSS.2001.927045
https://doi.org/10.1007/978-3-319-39225-7_6
https://doi.org/10.1007/978-3-319-39225-7_6
https://doi.org/10.1007/978-3-319-39225-7_6

Bibliography

7_6. url: http://dx.doi.org/10.1007/978-3-319-39225-7_6 (cit. on
pp. 65, 84, 85, 88, 107, 117, 153, 159, 164).

Harzl (2017). “Can FOSS projects benefit from integrating Kanban: a case
study.” In: Journal of Internet Services and Applications 8.1, p. 7. issn:
1869-0238. doi: 10.1186/s13174-017-0058-z. url: http://dx.doi.
org/10.1186/s13174-017-0058-z (cit. on pp. 65, 84, 88, 107, 153, 159,
164).

Harzl, Krnjic, Schreiner, and Slany (2013a). “Comparing Purely Visual with
Hybrid Visual/Textual Manipulation of Complex Formula on Smart-
phones.” In: Proceedings of the 19th International Conference on Distributed
Multimedia Systems, DMS 2013, August 8-10, 2013, Holiday Inn, Brighton,
UK. Knowledge Systems Institute, pp. 198–201. isbn: 1-891706-34-9 (cit.
on pp. 47, 163).

Harzl, Krnjic, Schreiner, and Slany (2013b). “Purely Visual and Hybrid Vi-
sual/Textual Formula Composition: A Usability Study Plan.” In: Pro-
ceedings of Programming for Mobile and Touch PRoMoTo 2013 (cit. on p. 164).

Harzl, Neidhoefer, Rock, Schafzahl, and Slany (2013). “A Scratch-like vi-
sual programming system for Microsoft Windows Phone 8.” In: CoRR
abs/1310.1390. url: http://arxiv.org/abs/1310.1390 (cit. on pp. 47,
163).

Herr and Anderson (2015). The Action Research Dissertation - A Guide for Stu-
dents and Faculty 2nd Edition. Thousand Oaks, USA: SAGE Publications
(cit. on p. 155).

Hertel, Niedner, and Herrmann (2003). “Motivation of software developers
in Open Source projects: an Internet-based survey of contributors to the
Linux kernel.” In: Research policy 32.7, pp. 1159–1177 (cit. on p. 39).

Highsmith (2000). Adaptive Software Development: A Collaborative Approach to
Managing Complex Systems. New York, NY, USA: Dorset House Publish-
ing Co., Inc. isbn: 0-932633-40-4 (cit. on p. 8).

Highsmith, Jim and Alistair Cockburn (2001). “Agile Software Develop-
ment: The Business of Innovation.” In: IEEE Computer 34.9, pp. 120–
122. doi: 10.1109/2.947100. url: https://doi.org/10.1109/2.947100
(cit. on p. 9).

Hippel (July 2001). “Innovation by User Communities: Learning from Open-
Source Software.” In: MIT Sloan management review 42.4, p. 82 (cit. on
p. 44).

228

https://doi.org/10.1007/978-3-319-39225-7_6
https://doi.org/10.1007/978-3-319-39225-7_6
https://doi.org/10.1007/978-3-319-39225-7_6
http://dx.doi.org/10.1007/978-3-319-39225-7_6
https://doi.org/10.1186/s13174-017-0058-z
http://dx.doi.org/10.1186/s13174-017-0058-z
http://dx.doi.org/10.1186/s13174-017-0058-z
http://arxiv.org/abs/1310.1390
https://doi.org/10.1109/2.947100
https://doi.org/10.1109/2.947100

Bibliography

Hippel and Krogh (2003). “Open Source Software and the ”Private-Collective”
Innovation Model: Issues for Organization Science.” In: Organization
Science 14.2, pp. 209–223. doi: 10.1287/orsc.14.2.209.14992. url:
http://dx.doi.org/10.1287/orsc.14.2.209.14992 (cit. on p. 44).

Hiranabe (2008). Kanban Applied to Software Development: from Agile to Lean.
[Online; accessed 15-December-2014]. url: http://www.infoq.com/
articles/hiranabe-lean-agile-kanban (cit. on p. 92).

Hislop and Ellis (2015). “Practical Experiences for IT Students in Human-
itarian Free and Open Source Software Projects.” In: Proceedings of the
16th Annual Conference on Information Technology Education, SIGITE 2015,
Chicago, Illinois, USA, September 30 - October 3, 2015. Ed. by Amber Settle,
Terry Steinbach, and Deborah Boisvert. ACM, p. 99. isbn: 978-1-4503-
3835-6. doi: 10.1145/2808006.2808042. url: http://doi.acm.org/10.
1145/2808006.2808042 (cit. on p. 78).

Hopp and Spearman (2000). Factory Physics: Foundations of Manufacturing
Management. Second. IrwinlMcGraw Hill (cit. on pp. 22, 23).

Höst, Regnell, and Wohlin (2000). “Using Students as Subjects-A Compar-
ative Study of Students and Professionals in Lead-Time Impact Assess-
ment.” In: Empirical Software Engineering 5.3, pp. 201–214 (cit. on p. 157).

Howison (2009). Alone Together: A socio-technical theory of motivation, coordi-
nation and collaboration technologies in organizing for free and open source
software development. Syracuse University (cit. on p. 40).

Hussain, Lechner, Milchrahm, Shahzad, Slany, Umgeher, Vlk, Koeffel, Tsche-
ligi, and Wolkerstorfer (2012). “Practical Usability in XP Software De-
velopment Processes.” In: ACHI 2012, The Fifth International Conference
on Advances in Computer-Human Interactions, pp. 208–217 (cit. on p. 92).

Jeffries, Anderson, and Hendrickson (2000). Extreme Programming Installed.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc. isbn:
0201708426 (cit. on p. 8).

Jensen and Scacchi (2005). “Collaboration, Leadership, Control, and Con-
flict Negotiation and the Netbeans.org Open Source Software Devel-
opment Community.” In: 38th Hawaii International Conference on System
Sciences (HICSS-38 2005), CD-ROM / Abstracts Proceedings, 3-6 January
2005, Big Island, HI, USA. IEEE Computer Society. isbn: 0-7695-2268-8.
doi: 10.1109/HICSS.2005.147. url: https://doi.org/10.1109/HICSS.
2005.147 (cit. on p. 40).

229

https://doi.org/10.1287/orsc.14.2.209.14992
http://dx.doi.org/10.1287/orsc.14.2.209.14992
http://www.infoq.com/articles/hiranabe-lean-agile-kanban
http://www.infoq.com/articles/hiranabe-lean-agile-kanban
https://doi.org/10.1145/2808006.2808042
http://doi.acm.org/10.1145/2808006.2808042
http://doi.acm.org/10.1145/2808006.2808042
https://doi.org/10.1109/HICSS.2005.147
https://doi.org/10.1109/HICSS.2005.147
https://doi.org/10.1109/HICSS.2005.147

Bibliography

Jørgensen (2001). “Putting it all in the trunk: incremental software devel-
opment in the FreeBSD open source project.” In: Inf. Syst. J. 11.4, p. 321.
doi: 10.1046/j.1365-2575.2001.00113.x. url: https://doi.org/10.
1046/j.1365-2575.2001.00113.x (cit. on pp. 44, 45).

Kagdi, Hammad, and Maletic (2008). “Who can help me with this source
code change?” In: 24th IEEE International Conference on Software Main-
tenance (ICSM 2008), September 28 - October 4, 2008, Beijing, China. IEEE
Computer Society, pp. 157–166. isbn: 978-1-4244-2613-3. doi: 10.1109/
ICSM.2008.4658064. url: http://dx.doi.org/10.1109/ICSM.2008.
4658064 (cit. on p. 56).

Kampenes, Anda, and Dybå (2008). “Flexibility in Research Designs in Em-
pirical Software Engineering.” In: 12th International Conference on Eval-
uation and Assessment in Software Engineering, EASE 2008, University of
Bari, Italy, 26-27 June 2008. Ed. by Giuseppe Visaggio, Maria Teresa Bal-
dassarre, Stephen G. Linkman, and Mark Turner. Workshops in Com-
puting. BCS. url: http://ewic.bcs.org/category/16334 (cit. on
p. 89).

Kelty (2008). Two bits: The cultural significance of free software. Duke Univer-
sity Press (cit. on p. 30).

Kemmis, McTaggart, and Nixon (2014). The Action Research Planner - Doing
Critical Participatory Action Research. Springer Singapore. doi: 10.1007/
978-981-4560-67-2 (cit. on pp. 87–89).

Kniberg (2011). Lean from the Trenches: Managing Large-Scale Projects with
Kanban. Pragmatic Bookshelf (cit. on p. 9).

Kniberg and Skarin (2010). Kanban and Scrum - making the most of both. USA:
C4Media (cit. on pp. 3, 9, 71).

Knuth (1979). “Classics in Software Engineering.” In: ed. by Edward Nash
Yourdon. Upper Saddle River, NJ, USA: Yourdon Press. Chap. Struc-
tured Programming with Go to Statements, pp. 257–321. isbn: 0-917072-
14-6. url: http://dl.acm.org/citation.cfm?id=1241515.1241535
(cit. on pp. 14, 15).

Koch (2004). “Agile Principles and Open Source Software Development: A
Theoretical and Empirical Discussion.” In: Extreme Programming and Ag-
ile Processes in Software Engineering, 5th International Conference, XP 2004,
Garmisch-Partenkirchen, Germany, June 6-10, 2004, Proceedings. Springer-
Verlag, pp. 85–93. doi: 10.1007/978-3-540-24853-8_10. url: http:

230

https://doi.org/10.1046/j.1365-2575.2001.00113.x
https://doi.org/10.1046/j.1365-2575.2001.00113.x
https://doi.org/10.1046/j.1365-2575.2001.00113.x
https://doi.org/10.1109/ICSM.2008.4658064
https://doi.org/10.1109/ICSM.2008.4658064
http://dx.doi.org/10.1109/ICSM.2008.4658064
http://dx.doi.org/10.1109/ICSM.2008.4658064
http://ewic.bcs.org/category/16334
https://doi.org/10.1007/978-981-4560-67-2
https://doi.org/10.1007/978-981-4560-67-2
http://dl.acm.org/citation.cfm?id=1241515.1241535
https://doi.org/10.1007/978-3-540-24853-8_10
http://dx.doi.org/10.1007/978-3-540-24853-8_10
http://dx.doi.org/10.1007/978-3-540-24853-8_10
http://dx.doi.org/10.1007/978-3-540-24853-8_10

Bibliography

//dx.doi.org/10.1007/978-3-540-24853-8_10 (cit. on pp. 1, 41, 78,
156).

Koch and Schneider (2002). “Effort, co-operation and co-ordination in an
open source software project: GNOME.” In: Information Systems Journal
12.1, pp. 27–42 (cit. on pp. 41, 78).

Korkala and Abrahamsson (2007). “Communication in distributed agile de-
velopment: A case study.” In: 33rd EUROMICRO Conference on Software
Engineering and Advanced Applications , EUROMICRO-SEAA 2007. IEEE,
pp. 203–210 (cit. on p. 94).

Kotter and Schlesinger (1979). Choosing strategies for change. Harvard Busi-
ness Review (cit. on pp. 102, 103).

Krishna and Srinivasa (2011). “Analysis of projects and volunteer partic-
ipation in large scale free and open source software ecosystem.” In:
ACM SIGSOFT Software Engineering Notes 36.2, pp. 1–5. doi: 10.1145/
1943371 . 1943389. url: http : / / doi . acm . org / 10 . 1145 / 1943371 .

1943389 (cit. on p. 41).
Krishnamurthy (2002). “Cave or Community?: An Empirical Examination

of 100 Mature Open Source Projects.” In: First Mon. url: http : / /

firstmonday.org/ojs/index.php/fm/article/view/1477/1392 (cit.
on p. 41).

Kruchten (2004). The rational unified process: an introduction. Addison-Wesley
Professional (cit. on p. 9).

Ladas (2008). Srumban Essays on Kanban Systems for Lean Software Developm.
Modus Cooperandi Press (cit. on p. 9).

Lakhani and Von Hippel (2003). “How open source software works:’free’
user-to-user assistance.” In: Research policy 32.6, pp. 923–943 (cit. on
p. 39).

Lakhani and Wolf (2003). “Why hackers do what they do: Understanding
motivation and effort in free/open source software projects.” In: (cit. on
p. 45).

Lakhani, Wolf, Bates, and DiBona (July 2002). The Boston Consulting Group
Hacker Survey. url: http://ftp3.au.freebsd.org/pub/linux.conf.
au/2003/papers/Hemos/Hemos.pdf (cit. on p. 39).

Lavazza, Morasca, Taibi, and Tosi (2010). “Applying SCRUM in an OSS
Development Process: An Empirical Evaluation.” In: Agile Processes in
Software Engineering and Extreme Programming, 11th International Confer-
ence, XP 2010, Trondheim, Norway, June 1-4, 2010. Proceedings, pp. 147–

231

http://dx.doi.org/10.1007/978-3-540-24853-8_10
http://dx.doi.org/10.1007/978-3-540-24853-8_10
http://dx.doi.org/10.1007/978-3-540-24853-8_10
https://doi.org/10.1145/1943371.1943389
https://doi.org/10.1145/1943371.1943389
http://doi.acm.org/10.1145/1943371.1943389
http://doi.acm.org/10.1145/1943371.1943389
http://firstmonday.org/ojs/index.php/fm/article/view/1477/1392
http://firstmonday.org/ojs/index.php/fm/article/view/1477/1392
http://ftp3.au.freebsd.org/pub/linux.conf.au/2003/papers/Hemos/Hemos.pdf
http://ftp3.au.freebsd.org/pub/linux.conf.au/2003/papers/Hemos/Hemos.pdf

Bibliography

159. doi: 10.1007/978-3-642-13054-0_11. url: https://doi.org/10.
1007/978-3-642-13054-0_11 (cit. on pp. 82, 83).

Layman, Williams, Damian, and Bures (2006). “Essential communication
practices for Extreme Programming in a global software development
team.” In: Information and software technology 48.9, pp. 781–794 (cit. on
pp. 94, 96, 100).

Leopold (Apr. 2012). Kanban im Schnelldurchlauf. url: https://youtu.be/
6nOUa6E0250 (cit. on pp. 22, 24–27, 109).

Leopold (Apr. 2017). Flight Levels: Die Verbesserungsebenen der Organisation.
German. url: https://www.leanability.com/de/blog-de/2017/04/
flight-levels-die-verbesserungsebenen-der-organisation/ (cit.
on p. 21).

Leopold and Kaltenecker (2013). Kanban in der IT - Eine Kultur der kontinuier-
lichen Verbesserung schaffen. Hanser (cit. on pp. 3, 9, 21, 22, 24–27, 108,
112–114).

Lerner and Tirole (2002). “Some Simple Economics of Open Source.” In:
Journal of Industrial Economics 50, pp. 197–234. url: http://dx.doi.
org/10.1111/1467-6451.00174 (cit. on pp. 2, 39).

Lerner and Tirole (2005). “The scope of open source licensing.” In: Journal
of Law, Economics, and Organization 21.1, pp. 20–56 (cit. on p. 39).

Levesque (2004). “Fundamental issues with open source software develop-
ment.” In: First Monday 2. url: http://firstmonday.org/ojs/index.
php/fm/article/view/1484/1399 (cit. on pp. 29, 44).

Lewin (1946). “Action research and minority problems.” In: Journal of social
issues 2.4, pp. 34–46 (cit. on p. 85).

Lewin (1948). Resolving social conflicts. Harper and Rowe (cit. on p. 87).
Little and Graves (2008). “Little’s Law.” English. In: Building Intuition. Ed.

by Dilip Chhajed and TimothyJ. Lowe. Vol. 115. International Series in
Operations Research & Management Science. Springer US, pp. 81–100.
isbn: 978-0-387-73698-3. doi: 10.1007/978-0- 387- 73699-0_5. url:
http://dx.doi.org/10.1007/978-0-387-73699-0_5 (cit. on pp. 22, 23,
115).

Liu (2005). “Enriching software engineering courses with service-learning
projects and the open-source approach.” In: 27th International Conference
on Software Engineering (ICSE 2005), 15-21 May 2005, St. Louis, Missouri,
USA. Ed. by Gruia-Catalin Roman, William G. Griswold, and Bashar

232

https://doi.org/10.1007/978-3-642-13054-0_11
https://doi.org/10.1007/978-3-642-13054-0_11
https://doi.org/10.1007/978-3-642-13054-0_11
https://youtu.be/6nOUa6E0250
https://youtu.be/6nOUa6E0250
https://www.leanability.com/de/blog-de/2017/04/flight-levels-die-verbesserungsebenen-der-organisation/
https://www.leanability.com/de/blog-de/2017/04/flight-levels-die-verbesserungsebenen-der-organisation/
http://dx.doi.org/10.1111/1467-6451.00174
http://dx.doi.org/10.1111/1467-6451.00174
http://firstmonday.org/ojs/index.php/fm/article/view/1484/1399
http://firstmonday.org/ojs/index.php/fm/article/view/1484/1399
https://doi.org/10.1007/978-0-387-73699-0_5
http://dx.doi.org/10.1007/978-0-387-73699-0_5

Bibliography

Nuseibeh. ACM, pp. 613–614. doi: 10.1145/1062455.1062566. url:
http://doi.acm.org/10.1145/1062455.1062566 (cit. on p. 75).

MacKellar, Sabin, and Tucker (2015). “Bridging the Academia-Industry Gap
in Software Engineering: A Client-Oriented Open Source Software Pro-
jects Course.” In: Open Source Technology: Concepts, Methodologies, Tools,
and Applications. Hershey USA: IGI Global. Chap. 99, pp. 1927–1950.
doi: 10.4018/978-1-4666-7230-7.ch099 (cit. on pp. 1, 2, 77).

Madey, Freeh, and Tynan (2005). “Modeling the Free/Open Source soft-
ware community: A quantitative investigation.” In: Free/Open Source
Software Development, pp. 203–221 (cit. on p. 41).

Madeyski (2010). Test-Driven Development - An Empirical Evaluation of Agile
Practice. Springer. isbn: 978-3-642-04287-4. doi: 10.1007/978-3-642-
04288-1. url: https://doi.org/10.1007/978-3-642-04288-1 (cit. on
p. 157).

Mäenpää, Kilamo, and Männistö (2016). “In-between Open and Closed -
Drawing the Fine Line in Hybrid Communities.” In: Open Source Sys-
tems: Integrating Communities - 12th IFIP WG 2.13 International Confer-
ence, OSS 2016, Gothenburg, Sweden, May 30 - June 2, 2016, Proceedings.
Ed. by Kevin Crowston, Imed Hammouda, Björn Lundell, Gregorio
Robles, Jonas Gamalielsson, and Juho Lindman. Vol. 472. IFIP Advances
in Information and Communication Technology. Springer, pp. 134–146.
isbn: 978-3-319-39224-0. doi: 10.1007/978-3-319-39225-7_11. url:
https://doi.org/10.1007/978-3-319-39225-7_11 (cit. on pp. 37, 38).

Magdaleno, Lima Werner, and Mendes de Araujo (2012). “Reconciling soft-
ware development models: A quasi-systematic review.” In: Journal of
Systems and Software 85.2. Special issue with selected papers from the
23rd Brazilian Symposium on Software Engineering, pp. 351–369. issn:
0164-1212. doi: http : / / dx . doi . org / 10 . 1016 / j . jss . 2011 . 08 .

028. url: http://www.sciencedirect.com/science/article/pii/
S0164121211002287 (cit. on pp. 36, 83, 84).

Marmorstein (2011). “Open source contribution as an effective software en-
gineering class project.” In: Proceedings of the 16th Annual SIGCSE Con-
ference on Innovation and Technology in Computer Science Education, ITiCSE
2011, Darmstadt, Germany, June 27-29, 2011. Ed. by Guido Rößling, Tho-
mas L. Naps, and Christian Spannagel. ACM, pp. 268–272. isbn: 978-
1-4503-0697-3. doi: 10.1145/1999747.1999823. url: http://doi.acm.
org/10.1145/1999747.1999823 (cit. on p. 76).

233

https://doi.org/10.1145/1062455.1062566
http://doi.acm.org/10.1145/1062455.1062566
https://doi.org/10.4018/978-1-4666-7230-7.ch099
https://doi.org/10.1007/978-3-642-04288-1
https://doi.org/10.1007/978-3-642-04288-1
https://doi.org/10.1007/978-3-642-04288-1
https://doi.org/10.1007/978-3-319-39225-7_11
https://doi.org/10.1007/978-3-319-39225-7_11
https://doi.org/http://dx.doi.org/10.1016/j.jss.2011.08.028
https://doi.org/http://dx.doi.org/10.1016/j.jss.2011.08.028
http://www.sciencedirect.com/science/article/pii/S0164121211002287
http://www.sciencedirect.com/science/article/pii/S0164121211002287
https://doi.org/10.1145/1999747.1999823
http://doi.acm.org/10.1145/1999747.1999823
http://doi.acm.org/10.1145/1999747.1999823

Bibliography

Masmoudi, Héla, Matthijs den Besten, Claude de Loupy, and Jean-Michel
Dalle (2009). “”Peeling the Onion”.” In: Open Source Ecosystems: Di-
verse Communities Interacting, 5th IFIP WG 2.13 International Conference
on Open Source Systems, OSS 2009, Skövde, Sweden, June 3-6, 2009. Pro-
ceedings. Ed. by Boldyreff, Crowston, Lundell, and Wasserman. Vol. 299.
IFIP Advances in Information and Communication Technology. Springer-
Verlag, pp. 284–297. isbn: 978-3-642-02031-5. doi: 10.1007/978-3-642-
02032-2_25. url: http://dx.doi.org/10.1007/978-3-642-02032-
2_25 (cit. on pp. 41, 54).

Melian (2007). “Progressive Open Source: The Construction of a Devel-
opment Project at Hewlett-Packard.” PhD thesis. Stockholm School of
Economics (cit. on p. 39).

Miranda (Jan. 2001). “Improving Subjective Estimates Using Paired Com-
parisons.” In: IEEE Softw. 18.1, pp. 87–91. issn: 0740-7459. doi: 10.1109/
52.903173. url: http://dx.doi.org/10.1109/52.903173 (cit. on
p. 120).

Mockus, Fielding, and Herbsleb (2000). “A case study of open source soft-
ware development: the Apache server.” In: Proceedings of the 22nd Inter-
national Conference on on Software Engineering, ICSE 2000, Limerick Ireland,
June 4-11, 2000. Ed. by Carlo Ghezzi, Mehdi Jazayeri, and Alexander L.
Wolf. ACM, pp. 263–272. isbn: 1-58113-206-9. doi: 10.1145/337180.
337209. url: http://doi.acm.org/10.1145/337180.337209 (cit. on
p. 43).

Mockus, Fielding, and Herbsleb (2002). “Two case studies of open source
software development: Apache and Mozilla.” In: ACM Trans. Softw. Eng.
Methodol. 11.3, pp. 309–346. doi: 10.1145/567793.567795. url: http:
//doi.acm.org/10.1145/567793.567795 (cit. on pp. 40, 41, 43, 54, 78).

Monge, Fulk, Kalman, Flanagin, Parnassa, and Rumsey (1998). “Produc-
tion of collective action in alliance-based interorganizational communi-
cation and information systems.” In: Organization Science 9.3, pp. 411–
433 (cit. on p. 44).

Moon and Sproull (2000). “Essence of Distributed Work: The Case of the
Linux Kernel.” In: First Monday 5.11. url: http://firstmonday.org/
htbin/cgiwrap/bin/ojs/index.php/fm/article/view/801 (cit. on
p. 40).

Morelli, Lanerolle, and Tucker (2012). “The Humanitarian Free and Open-
Source Software Project: Engaging Students in Service-Learning through

234

https://doi.org/10.1007/978-3-642-02032-2_25
https://doi.org/10.1007/978-3-642-02032-2_25
http://dx.doi.org/10.1007/978-3-642-02032-2_25
http://dx.doi.org/10.1007/978-3-642-02032-2_25
https://doi.org/10.1109/52.903173
https://doi.org/10.1109/52.903173
http://dx.doi.org/10.1109/52.903173
https://doi.org/10.1145/337180.337209
https://doi.org/10.1145/337180.337209
http://doi.acm.org/10.1145/337180.337209
https://doi.org/10.1145/567793.567795
http://doi.acm.org/10.1145/567793.567795
http://doi.acm.org/10.1145/567793.567795
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/801
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/801

Bibliography

Building Software.” In: Service-Learning in the Computer and Information
Sciences. John Wiley & Sons, Inc., pp. 117–136. isbn: 9781118319130.
doi: 10.1002/9781118319130.ch5. url: http://dx.doi.org/10.1002/
9781118319130.ch5 (cit. on p. 77).

Murgia, Concas, Pinna, Tonelli, and Turnu (2009). “Empirical study of soft-
ware quality evolution in open source projects using agile practices.”
In: CoRR abs/0905.3287. url: http://arxiv.org/abs/0905.3287 (cit.
on p. 84).

O’Reilly (1999). “Lessons from Open-Source Software Development - In-
troduction.” In: Commun. ACM 42.4, pp. 32–37. doi: 10.1145/299157.
299164. url: http://doi.acm.org/10.1145/299157.299164 (cit. on
p. 43).

Ohno (1988). Toyota Production System: Beyond Large-Scale Production. Port-
land, OR: Productivity. isbn: 0-915299-14-3 (cit. on pp. 9, 20).

Okoli and Carillo (2012). “The best of adaptive and predictive methodolo-
gies: open source software development, a balance between agility and
discipline.” In: IJITM 11.1/2, pp. 153–166. doi: 10.1504/IJITM.2012.
044071. url: https://doi.org/10.1504/IJITM.2012.044071 (cit. on
p. 84).

OpenSourceInitiative (Mar. 2007). The Open Source Defintion Version 1.9. En-
glish. Open Source Initiative. url: https://opensource.org/osd-
annotated (cit. on pp. 33, 34).

Orman (2008). “Giving it away for free? The nature of job-market signal-
ing by open-source software developers.” In: The BE Journal of Economic
Analysis & Policy 8.1, pp. 1–33 (cit. on p. 39).

Palmer and Felsing (2001). A Practical Guide to Feature-Driven Development.
1st. Pearson Education. isbn: 0130676152 (cit. on p. 8).

Pedroni, Bay, Oriol, and Pedroni (2007). “Open source projects in pro-
gramming courses.” In: Proceedings of the 38th SIGCSE Technical Sympo-
sium on Computer Science Education, SIGCSE 2007, Covington, Kentucky,
USA, March 7-11, 2007. Ed. by Ingrid Russell, Susan M. Haller, J. D.
Dougherty, and Susan H. Rodger. ACM, pp. 454–458. isbn: 1-59593-
361-1. doi: 10.1145/1227310.1227465. url: http://doi.acm.org/10.
1145/1227310.1227465 (cit. on p. 76).

Perens (1999). “The open source definition.” In: Open sources: voices from the
open source revolution 1, pp. 171–188 (cit. on pp. 33, 34).

235

https://doi.org/10.1002/9781118319130.ch5
http://dx.doi.org/10.1002/9781118319130.ch5
http://dx.doi.org/10.1002/9781118319130.ch5
http://arxiv.org/abs/0905.3287
https://doi.org/10.1145/299157.299164
https://doi.org/10.1145/299157.299164
http://doi.acm.org/10.1145/299157.299164
https://doi.org/10.1504/IJITM.2012.044071
https://doi.org/10.1504/IJITM.2012.044071
https://doi.org/10.1504/IJITM.2012.044071
https://opensource.org/osd-annotated
https://opensource.org/osd-annotated
https://doi.org/10.1145/1227310.1227465
http://doi.acm.org/10.1145/1227310.1227465
http://doi.acm.org/10.1145/1227310.1227465

Bibliography

Pinto, Lima, Figueira Filho, Steinmacher, and Gerosa (2017). “Training Soft-
ware Engineers Using Open-Source Software: The Professors’ Perspec-
tive.” In: 30th IEEE Conference on Software Engineering Education and
Training, CSEE&T 2017, Savannah, GA, USA, November 7-9, 2017. Ed. by
Hironori Washizaki and Nancy Mead. IEEE, pp. 117–121. isbn: 978-1-
5386-2536-1. doi: 10.1109/CSEET.2017.27. url: https://doi.org/10.
1109/CSEET.2017.27 (cit. on p. 2).

Poole (2004). “Distributed Product Development Using Extreme Program-
ming.” In: Extreme Programming and Agile Processes in Software Engineer-
ing, 5th International Conference, XP 2004, Garmisch-Partenkirchen, Ger-
many, June 6-10, 2004, Proceedings, pp. 60–67. doi: 10.1007/978-3-540-
24853-8_7. url: https://doi.org/10.1007/978-3-540-24853-8_7
(cit. on p. 94).

Poppendieck (2007). “Lean Software Development.” In: 29th International
Conference on Software Engineering (ICSE 2007), Minneapolis, MN, USA,
May 20-26, 2007, Companion Volume. IEEE Computer Society, pp. 165–
166. doi: 10.1109/ICSECOMPANION.2007.46. url: http://doi.ieeecomputersociety.
org/10.1109/ICSECOMPANION.2007.46 (cit. on p. 9).

Porruvecchio, Concas, Palmas, and Quaresima (2007). “An Agile Approach
for Integration of an Open Source Health Information System.” In: Ag-
ile Processes in Software Engineering and Extreme Programming, 8th Inter-
national Conference, XP 2007, Como, Italy, June 18-22, 2007, Proceedings.
Ed. by Giulio Concas, Ernesto Damiani, Marco Scotto, and Giancarlo
Succi. Vol. 4536. Lecture Notes in Computer Science. Springer, pp. 213–
218. isbn: 978-3-540-73100-9. doi: 10.1007/978-3-540-73101-6_39.
url: http://dx.doi.org/10.1007/978-3-540-73101-6_39 (cit. on
p. 81).

Public Interest, Software in the (Apr. 2004). Debian Free Software Guidelines
Version 1.1. English. Software in the Public Interest. url: https://www.
debian.org/social_contract.en.html (cit. on p. 33).

Ramesh, Cao, Mohan, and Xu (Oct. 2006). “Can Distributed Software De-
velopment Be Agile?” In: Commun. ACM 49.10, pp. 41–46. issn: 0001-
0782. doi: 10.1145/1164394.1164418. url: http://doi.acm.org/10.
1145/1164394.1164418 (cit. on p. 1).

Rapoport (1970). “Three dilemmas in action research: with special reference
to the Tavistock experience.” In: Human relations 23.6, pp. 499–513 (cit.
on p. 85).

236

https://doi.org/10.1109/CSEET.2017.27
https://doi.org/10.1109/CSEET.2017.27
https://doi.org/10.1109/CSEET.2017.27
https://doi.org/10.1007/978-3-540-24853-8_7
https://doi.org/10.1007/978-3-540-24853-8_7
https://doi.org/10.1007/978-3-540-24853-8_7
https://doi.org/10.1109/ICSECOMPANION.2007.46
http://doi.ieeecomputersociety.org/10.1109/ICSECOMPANION.2007.46
http://doi.ieeecomputersociety.org/10.1109/ICSECOMPANION.2007.46
https://doi.org/10.1007/978-3-540-73101-6_39
http://dx.doi.org/10.1007/978-3-540-73101-6_39
https://www.debian.org/social_contract.en.html
https://www.debian.org/social_contract.en.html
https://doi.org/10.1145/1164394.1164418
http://doi.acm.org/10.1145/1164394.1164418
http://doi.acm.org/10.1145/1164394.1164418

Bibliography

Raymond (1998a). Goodbye, ”free software”; hello, ”open source”. url: http:
//www.catb.org/~esr/open-source.html (cit. on pp. 33, 44).

Raymond (1998b). “Homesteading the Noosphere.” In: First Monday 3.10.
url: http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/
fm/article/view/621 (cit. on p. 40).

Raymond (2001). The Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary. Sebastopol, CA, USA: O’Reilly &
Associates, Inc. isbn: 0596001088. url: http://www.catb.org/~esr/
writings/cathedral-bazaar/cathedral-bazaar/ (cit. on pp. 36–38,
78, 156).

Reddy (2015). The Scrumban [R]Evolution: Getting the Most Out of Agile,
Scrum, and Lean Kanban. 1st. Addison-Wesley Professional (cit. on p. 9).

Resnick, Mitchel, John Maloney, Andrés Monroy-Hernández, Natalie Rusk,
Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay
Silver, Brian Silverman, et al. (2009). “Scratch: programming for all.”
In: Communications of the ACM 52.11, pp. 60–67 (cit. on p. 47).

Riehle, Riemer, Kolassa, and Schmidt (2014). “Paid vs. Volunteer Work in
Open Source.” In: 47th Hawaii International Conference on System Sciences,
HICSS 2014, Waikoloa, HI, USA, January 6-9, 2014. IEEE Computer Soci-
ety, pp. 3286–3295. isbn: 978-1-4799-2504-9. doi: 10.1109/HICSS.2014.
407. url: https://doi.org/10.1109/HICSS.2014.407 (cit. on pp. 39,
42, 45).

Royce (1970). “Managing the development of large software systems.” In:
proceedings of IEEE WESCON. Vol. 26. 8. Los Angeles, pp. 1–9 (cit. on
pp. 6, 8).

Rusovan, Lawford, and Parnas (2005). “Open source software development:
future or fad.” In: Perspectives on free and open source software, pp. 107–
122 (cit. on pp. 29, 44).

Saaty (1996). Multicriteria Decision Making: The Analytic Hierarchy Process.
Analytic Hierarchy Process Series. R W S Publications. isbn: 9780962031717

(cit. on p. 120).
Salman, Tosun Misirli, and Juristo Juzgado (2015). “Are Students Represen-

tatives of Professionals in Software Engineering Experiments?” In: 37th
IEEE/ACM International Conference on Software Engineering, ICSE 2015,
Florence, Italy, May 16-24, 2015, Volume 1. Piscataway, NJ, USA: IEEE
Press, pp. 666–676. isbn: 978-1-4799-1934-5. doi: 10.1109/ICSE.2015.
82. url: http://dx.doi.org/10.1109/ICSE.2015.82 (cit. on p. 157).

237

http://www.catb.org/~esr/open-source.html
http://www.catb.org/~esr/open-source.html
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/621
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/621
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
https://doi.org/10.1109/HICSS.2014.407
https://doi.org/10.1109/HICSS.2014.407
https://doi.org/10.1109/HICSS.2014.407
https://doi.org/10.1109/ICSE.2015.82
https://doi.org/10.1109/ICSE.2015.82
http://dx.doi.org/10.1109/ICSE.2015.82

Bibliography

Scacchi (2002). “Understanding the requirements for developing open source
software systems.” In: Software, IEE Proceedings-. Vol. 149. IET, pp. 24–
39 (cit. on p. 94).

Scacchi (2007). “Free/open source software development: recent research
results and emerging opportunities.” In: Proceedings of the 6th joint meet-
ing of the European Software Engineering Conference and the ACM SIG-
SOFT International Symposium on Foundations of Software Engineering,
2007, Dubrovnik, Croatia, September 3-7, 2007, Companion Papers. Ed. by
Ivica Crnkovic and Antonia Bertolino. ACM, pp. 459–468. isbn: 978-1-
59593-812-1. doi: 10.1145/1295014.1295019. url: http://doi.acm.
org/10.1145/1295014.1295019 (cit. on pp. 35, 41–43).

Scacchi (2010). “Collaboration practices and affordances in free/open source
software development.” In: Collaborative software engineering. Springer,
pp. 307–327 (cit. on pp. 94, 101, 103).

Scacchi, Feller, Fitzgerald, Hissam, and Lakhani (2006). “Understanding
Free/Open Source Software Development Processes.” In: Software Pro-
cess: Improvement and Practice 11.2, pp. 95–105. doi: 10.1002/spip.255.
url: https://doi.org/10.1002/spip.255 (cit. on pp. 29, 34, 36–42, 44,
45).

Schafer (2000). “Office E-Mail: It’s Fast, Easy and All Too Often Misunder-
stood.” In: International Herald Tribune (cit. on p. 65).

Schiessle (2017). Free Software, Open Source, FOSS, FLOSS - same same but
different. English. url: https : / / fsfe . org / freesoftware / basics /

comparison.en.html (cit. on p. 35).
Schümmer and Schümmer (2000). “Support for Distributed Teams in eX-

treme Programming.” In: Proceedings of eXtreme Programming and Flexi-
ble Processes Software Engineering - XP2000. Addison Wesley, pp. 355–377

(cit. on p. 94).
Schwaber and Beedle (2001). Agile Software Development with Scrum. 1st.

Upper Saddle River, NJ, USA: Prentice Hall PTR. isbn: 0130676349 (cit.
on pp. 9, 82).

Schwaber and Sutherland (2016). The Scrum Guide. url: http : / / www .

scrumguides.org/ (cit. on p. 9).
Shah (2006). “Motivation, governance, and the viability of hybrid forms

in open source software development.” In: Management Science 52.7,
pp. 1000–1014 (cit. on pp. 39, 40, 52).

238

https://doi.org/10.1145/1295014.1295019
http://doi.acm.org/10.1145/1295014.1295019
http://doi.acm.org/10.1145/1295014.1295019
https://doi.org/10.1002/spip.255
https://doi.org/10.1002/spip.255
https://fsfe.org/freesoftware/basics/comparison.en.html
https://fsfe.org/freesoftware/basics/comparison.en.html
http://www.scrumguides.org/
http://www.scrumguides.org/

Bibliography

Shibuya and Tamai (2009). “Understanding the process of participating in
open source communities.” In: Emerging Trends in Free/Libre/Open Source
Software Research and Development, 2009. FLOSS’09. ICSE Workshop on.
IEEE, pp. 1–6 (cit. on pp. 94, 97, 101, 103).

Shihab, Bird, and Zimmermann (2012). “The effect of branching strategies
on software quality.” In: 2012 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM ’12, Lund, Swe-
den - September 19 - 20, 2012. Ed. by Per Runeson, Martin Höst, Emilia
Mendes, Anneliese Amschler Andrews, and Rachel Harrison. ACM,
pp. 301–310. isbn: 978-1-4503-1056-7. doi: 10.1145/2372251.2372305.
url: http://doi.acm.org/10.1145/2372251.2372305 (cit. on p. 156).

Sigfridsson, Avram, Sheehan, and Sullivan (2007). “Sprint-driven develop-
ment: working, learning and the process of enculturation in the PyPy
community.” In: Open Source Development, Adoption and Innovation, IFIP
Working Group 2.13 on Open Source Software, June 11-14, 2007, Limerick,
Ireland. Ed. by Joseph Feller, Brian Fitzgerald, Walt Scacchi, and Alberto
Sillitti. Vol. 234. IFIP. Springer, pp. 133–146. isbn: 978-0-387-72485-0.
doi: 10.1007/978-0-387-72486-7_11. url: https://doi.org/10.
1007/978-0-387-72486-7_11 (cit. on pp. 80, 81).

Slany (2012). “A mobile visual programming system for Android smart-
phones and tablets.” In: 2012 IEEE Symposium on Visual Languages and
Human-Centric Computing, VL/HCC 2012, Innsbruck, Austria, September
30 - October 4, 2012. Ed. by Martin Erwig, Gem Stapleton, and Gennaro
Costagliola. IEEE, pp. 265–266. isbn: 978-1-4673-0852-6. doi: 10.1109/
VLHCC.2012.6344546. url: https://doi.org/10.1109/VLHCC.2012.
6344546 (cit. on p. 47).

Slany (2014). “Tinkering with Pocket Code, a Scratch-like programming
app for your smartphone.” In: Proc. of Constructionism (cit. on p. 47).

Sommer (2016). “Motivation in an Agile, Educational, Free and Open Source
Software Project.” MA thesis. Graz University of Technology (cit. on
pp. 42, 52, 54–56, 58–61, 63, 64, 67–70).

Stallman (Feb. 1986). The Free Software Definition. url: https://web.archive.
org/web/20070428013835/https://www.gnu.org/bulletins/bull1.

txt (cit. on p. 31).
Stallman (2010). Software, Free Society: Selected Essays of Richard M. Stallman.

Second Edition. Free Software Foundation (cit. on p. 31).

239

https://doi.org/10.1145/2372251.2372305
http://doi.acm.org/10.1145/2372251.2372305
https://doi.org/10.1007/978-0-387-72486-7_11
https://doi.org/10.1007/978-0-387-72486-7_11
https://doi.org/10.1007/978-0-387-72486-7_11
https://doi.org/10.1109/VLHCC.2012.6344546
https://doi.org/10.1109/VLHCC.2012.6344546
https://doi.org/10.1109/VLHCC.2012.6344546
https://doi.org/10.1109/VLHCC.2012.6344546
https://web.archive.org/web/20070428013835/https://www.gnu.org/bulletins/bull1.txt
https://web.archive.org/web/20070428013835/https://www.gnu.org/bulletins/bull1.txt
https://web.archive.org/web/20070428013835/https://www.gnu.org/bulletins/bull1.txt

Bibliography

Stallman and Gay (2009). Free Software, Free Society: Selected Essays of Richard
M. Stallman. Paramount, CA: CreateSpace (cit. on p. 32).

Stamelos, Angelis, Oikonomou, and Bleris (2002). “Code quality analysis
in open source software development.” In: Inf. Syst. J. 12.1, pp. 43–60.
doi: 10.1046/j.1365-2575.2002.00117.x. url: https://doi.org/10.
1046/j.1365-2575.2002.00117.x (cit. on pp. 29, 44).

Stewart and Gosain (2001). “An Exploratory Study of Ideology and Trust in
Open Source Development Groups.” In: Proceedings of the International
Conference on Information Systems, ICIS 2001, December 16-19, 2001, New
Orleans, Louisiana, USA. Ed. by Veda C. Storey, Sumit Sarkar, and Jan-
ice I. DeGross. Association for Information Systems, pp. 507–512. url:
http://aisel.aisnet.org/icis2001/63 (cit. on p. 39).

Susman and Evered (Dec. 1978). “An Assessment of the Scientific Merits of
Action Research.” In: Administrative Science Quarterly 23.4, pp. 582–603.
issn: 00018392. doi: 10.2307/2392581. url: http://dx.doi.org/10.
2307/2392581 (cit. on pp. 85–88, 108).

Tatham (2010). Roles In Open Source Projects. url: http://oss-watch.ac.
uk/resources/rolesinopensource (cit. on p. 154).

Teixeira, Robles, and González-Barahona (2015). “Lessons learned from
applying social network analysis on an industrial Free/Libre/Open
Source Software ecosystem.” In: J. Internet Services and Applications 6.1,
14:1–14:27. doi: 10.1186/s13174-015-0028-2. url: http://dx.doi.
org/10.1186/s13174-015-0028-2 (cit. on pp. 41, 54, 156).

Theunissen, Boake, and Kourie (2005). “In Search of the Sweet Spot: Agile
Open Collaborative Corporate Software Development.” In: Proceedings
of the 2005 Annual Research Conference of the South African Institute of Com-
puter Scientists and Information Technologists on IT Research in Developing
Countries. SAICSIT ’05. White River, South Africa: South African Insti-
tute for Computer Scientists and Information Technologists, pp. 268–
277. isbn: 1-59593-258-5. url: http://dl.acm.org/citation.cfm?id=
1145675.1145705 (cit. on p. 79).

Theunissen, Kourie, and Boake (2005). “Open Source and Agile Software
Development in Corporates: A Contradiction or An Opportunity?” In:
Zeist, Holland: Jacquard Conference. url: http://espresso.cs.up.
ac.za/publications/mtheunissen_etal_jacquard2005_paper.pdf

(cit. on p. 79).

240

https://doi.org/10.1046/j.1365-2575.2002.00117.x
https://doi.org/10.1046/j.1365-2575.2002.00117.x
https://doi.org/10.1046/j.1365-2575.2002.00117.x
http://aisel.aisnet.org/icis2001/63
https://doi.org/10.2307/2392581
http://dx.doi.org/10.2307/2392581
http://dx.doi.org/10.2307/2392581
http://oss-watch.ac.uk/resources/rolesinopensource
http://oss-watch.ac.uk/resources/rolesinopensource
https://doi.org/10.1186/s13174-015-0028-2
http://dx.doi.org/10.1186/s13174-015-0028-2
http://dx.doi.org/10.1186/s13174-015-0028-2
http://dl.acm.org/citation.cfm?id=1145675.1145705
http://dl.acm.org/citation.cfm?id=1145675.1145705
http://espresso.cs.up.ac.za/publications/mtheunissen_etal_jacquard2005_paper.pdf
http://espresso.cs.up.ac.za/publications/mtheunissen_etal_jacquard2005_paper.pdf

Bibliography

Theunissen, Kourie, and Boake (2007). “Corporate-, Agile- and Open Source
Software Development: A Witch’s Brew or An Elixir of Life?” In: Bal-
ancing Agility and Formalism in Software Engineering, Second IFIP TC 2
Central and East European Conference on Software Engineering Techniques,
CEE-SET 2007, Poznan, Poland, October 10-12, 2007, Revised Selected Pa-
pers. Ed. by Bertrand Meyer, Jerzy R. Nawrocki, and Bartosz Walter.
Vol. 5082. Lecture Notes in Computer Science. Springer, pp. 84–95.
isbn: 978-3-540-85278-0. doi: 10.1007/978-3- 540- 85279-7_7. url:
http://dx.doi.org/10.1007/978-3-540-85279-7_7 (cit. on pp. 41,
79).

Torres, Toral, Perales, and Barrero (2011). “Analysis of the Core Team Role
in Open Source Communities.” In: International Conference on Complex,
Intelligent and Software Intensive Systems, CISIS 2011, June 30 - July 2,
2011, Korean Bible University, Seoul, Korea. IEEE Computer Society, pp. 109–
114. isbn: 978-0-7695-4373-4. doi: 10.1109/CISIS.2011.25. url: https:
//doi.org/10.1109/CISIS.2011.25 (cit. on p. 56).

Truex, Baskerville, and Travis (2000). “Amethodical systems development:
the deferred meaning of systems development methods.” In: Account-
ing, management and information technologies 10.1, pp. 53–79 (cit. on p. 6).

Tsirakidis, Koebler, and Krcmar (July 2009). “Identification of Success and
Failure Factors of Two Agile Software Development Teams in an Open
Source Organization.” In: ICGSE 2009. Fourth IEEE International Confer-
ence on Global Software Engineering, pp. 295–296. doi: 10.1109/ICGSE.
2009.42 (cit. on p. 82).

Turnu, Melis, Cau, Marchesi, and Setzu (2004). “Introducing TDD on a Free
Libre Open Source Software Project: A Simulation Experiment.” In: Pro-
ceedings of the 2004 Workshop on Quantitative Techniques for Software Agile
Process. QUTE-SWAP ’04. Newport Beach, California: ACM, pp. 59–65.
doi: 10.1145/1151433.1151442. url: http://doi.acm.org/10.1145/
1151433.1151442 (cit. on p. 79).

Turnu, Melis, Cau, Setzu, Concas, and Mannaro (2006). “Modeling and
simulation of open source development using an agile practice.” In:
Journal of Systems Architecture 52.11. Agile Methodologies for Software
Production, pp. 610–618. issn: 1383-7621. doi: http://dx.doi.org/10.
1016/j.sysarc.2006.06.005. url: http://www.sciencedirect.com/
science/article/pii/S1383762106000634 (cit. on p. 79).

241

https://doi.org/10.1007/978-3-540-85279-7_7
http://dx.doi.org/10.1007/978-3-540-85279-7_7
https://doi.org/10.1109/CISIS.2011.25
https://doi.org/10.1109/CISIS.2011.25
https://doi.org/10.1109/CISIS.2011.25
https://doi.org/10.1109/ICGSE.2009.42
https://doi.org/10.1109/ICGSE.2009.42
https://doi.org/10.1145/1151433.1151442
http://doi.acm.org/10.1145/1151433.1151442
http://doi.acm.org/10.1145/1151433.1151442
https://doi.org/http://dx.doi.org/10.1016/j.sysarc.2006.06.005
https://doi.org/http://dx.doi.org/10.1016/j.sysarc.2006.06.005
http://www.sciencedirect.com/science/article/pii/S1383762106000634
http://www.sciencedirect.com/science/article/pii/S1383762106000634

Bibliography

VersionOne (2011). 6th Annual State of Agile Survey. url: http : / / www .

versionone.com/pdf/2011%5C_State%5C_of%5C_Agile%5C_Development%

5C_Survey%5C_Results.pdf (cit. on p. 10).
VersionOne (2012). 7th Annual State of Agile Survey. url: http : / / www .

versionone.com/pdf/7th- Annual- State- of- Agile- Development-

Survey.pdf (cit. on p. 10).
VersionOne (2013). 8th Annual State of Agile Survey. url: http : / / www .

versionone.com /pdf/2013 - state- of- agile- survey. pdf (cit. on
p. 10).

VersionOne (2014). 9th Annual State of Agile Survey (cit. on p. 10).
VersionOne (2015). 10th Annual State of Agile Survey. url: https://versionone.

com/pdf/VersionOne-10th-Annual-State-of-Agile-Report.pdf (cit.
on pp. 2, 10).

Warsta and Abrahamsson (2003). “Is Open Source Software Development
Essentially an Agile Method?” In: Proceedings of the 3rd Workshop on
Open Source Software Engineering, 25th International Conference on Soft-
ware Engineering. Portland, Oregon: IEEE Computer Society, pp. 143–
147 (cit. on pp. 1, 43, 79).

Wayner (2000). Free for all: How Linux and the free software movement undercut
the high-tech titans. Harper Business New York (cit. on p. 44).

Weber (2004). The success of open source. Harvard University Press (cit. on
p. 30).

West and O’Mahony (Jan. 2005). “Contrasting Community Building in Spon-
sored and Community Founded Open Source Projects.” In: Proceed-
ings of the 38th Annual Hawaii International Conference on System Sciences,
pp. 196c–196c. doi: 10.1109/HICSS.2005.166 (cit. on p. 37).

Williams (2000). “The Collaborative Software Process.” PhD thesis. Univer-
sity of Utah, Department of Computer Science (cit. on p. 16).

Williams, Krebs, and Layman (June 2004). Extreme Programming Evaluation
Framework for Object-Oriented Languages – Version 1.4 (cit. on pp. 10, 14–
18, 52, 62, 67, 122, 144–146).

Wusteman (2009). “OJAX: a case study in agile Web 2.0 open source devel-
opment.” In: Aslib Proceedings 61.3, pp. 212–231. doi: 10.1108/00012530910959781.
eprint: http://dx.doi.org/10.1108/00012530910959781. url: http:
//dx.doi.org/10.1108/00012530910959781 (cit. on p. 82).

Yamauchi, Yokozawa, Shinohara, and Ishida (2000). “Collaboration with
Lean Media: how open-source software succeeds.” In: CSCW 2000, Pro-

242

http://www.versionone.com/pdf/2011%5C_State%5C_of%5C_Agile%5C_Development%5C_Survey%5C_Results.pdf
http://www.versionone.com/pdf/2011%5C_State%5C_of%5C_Agile%5C_Development%5C_Survey%5C_Results.pdf
http://www.versionone.com/pdf/2011%5C_State%5C_of%5C_Agile%5C_Development%5C_Survey%5C_Results.pdf
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf
http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf
https://versionone.com/pdf/VersionOne-10th-Annual-State-of-Agile-Report.pdf
https://versionone.com/pdf/VersionOne-10th-Annual-State-of-Agile-Report.pdf
https://doi.org/10.1109/HICSS.2005.166
https://doi.org/10.1108/00012530910959781
http://dx.doi.org/10.1108/00012530910959781
http://dx.doi.org/10.1108/00012530910959781
http://dx.doi.org/10.1108/00012530910959781

Bibliography

ceeding on the ACM 2000 Conference on Computer Supported Cooperative
Work, Philadelphia, PA, USA, December 2-6, 2000. Ed. by Wendy A. Kel-
logg and Steve Whittaker. ACM, pp. 329–338. isbn: 1-58113-222-0. doi:
10.1145/358916.359004. url: http://doi.acm.org/10.1145/358916.
359004 (cit. on pp. 44, 94).

Ye and Kishida (2003). “Toward an Understanding of the Motivation of
Open Source Software Developers.” In: Proceedings of the 25th Interna-
tional Conference on Software Engineering, May 3-10, 2003, Portland, Ore-
gon, USA. Ed. by Lori A. Clarke, Laurie Dillon, and Walter F. Tichy.
IEEE Computer Society, pp. 419–429. isbn: 0-7695-1877-X. doi: 10.1109/
ICSE.2003.1201220. url: http://dx.doi.org/10.1109/ICSE.2003.
1201220 (cit. on pp. 39, 42, 43, 55).

243

https://doi.org/10.1145/358916.359004
http://doi.acm.org/10.1145/358916.359004
http://doi.acm.org/10.1145/358916.359004
https://doi.org/10.1109/ICSE.2003.1201220
https://doi.org/10.1109/ICSE.2003.1201220
http://dx.doi.org/10.1109/ICSE.2003.1201220
http://dx.doi.org/10.1109/ICSE.2003.1201220

