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Abstract

The master’s thesis deals with the regularization of the nearly singular Somigliana Displacement and
Stress Identities for the Boundary Element Method (BEM). The involved effects on interior results
obtained for points close to the boundary are discussed on the basis of four test examples. For this
purpose a BEM-application for 3-D isotropic elasticity problems was developed. It includes algorithms
for the numerical evaluation of the Displacement Boundary Integral Equation and the standard and
regularized formulations of the Somigliana Displacement and Stress Identities. The relevant integral
equations and the methods used to implement the BEM are discussed and explained in detail. Finally,
numerically computed displacements and stresses of the test examples were discussed and compared
with either an analytical or a reference solution. It was found that interior results obtained from the
regularized formulations of the Somigliana Identities are very accurate for points very close to the
boundary and they do not require special integration schemes for their numerical evaluation.

Zusammenfassung

Die vorliegende Masterarbeit behandelt die Regularisierung der quasi singulären Somigliana Integral-
gleichungen für Verformungen und Spannungen in der Randelementmethode (REM, engl. Boundary
Element Method oder kurz BEM). Die damit verbunden Auswirkungen auf im geringen Abstand vom
Rand berechnete Resultate im Inneren eines Gebietes werden anhand von vier Testbeispielen erörtert.
Dafür wurde eine REM-Anwendung für dreidimensionale, isotrope Elastizitätsprobleme entwickelt, die
Algorithmen für die Auswertung der Randintegralgleichung und der allgemeinen sowie regularisierten
Somigliana Integralgleichungen enthält. Schließlich werden die numerisch berechneten Verformungen
und Spannungen der Testbeispiele ausgewertet und mit analytischen Lösungen beziehungsweise Ref-
erenzlösungen verglichen. Dabei stellte sich heraus, dass mit den regularisierten Somigliana Integral-
gleichungen sehr genaue Resultate in der Nähe des Randes erzielt werden können und dafür keine
speziellen numerischen Integrationsmethoden notwendig sind.
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1 Preliminaries

1 Preliminaries

1.1 Introduction to the Boundary Element Method

Nowadays numerical methods such as the Boundary Element Method (BEM) have a widespread range
of applications and they are very powerful tools in engineering. BEM can be applied to many physical
problems, e.g. elastostatics, elastodynamics and potential problems just to name a few. The approach
of the BEM is that the solutions of the governing differential equations, which describe physical prob-
lems in terms of boundary values, are satisfied exactly inside a domain, whereas boundary conditions
are approximated. This approach was first proposed by Trefftz in 1926. It allows that only the bound-
ary of the domain has to be discretized for numerical evaluation and since the solutions also satisfy
conditions at infinity, infinite domains can be handled simply, too. The fundamental solutions which
satisfy the differential equations should be as simple as possible, whereby those involving concentrated
loads or sources are proven to be the most appropriate functions. These functions have singularities
and thus requiring special consideration [3]. While many mathematical approaches which are applied
in modern BEM-applications have been proposed earlier, the origin of the BEM is dating back into the
1960’s when the direct BEM was developed for potential problems and elastostatics based on Green’s
and Somigliana’s Identity, respectively. Since then many well-known researchers have been devoted
themselves to steadily improve the BEM and to extend its field of applications to many other physical
problems such as electrodynamics and fluid mechanics. Special attention was given to cope with the
singularities that appear in the integral equations [6]. Still nowadays the development of the BEM is
an ongoing process and we can expect that it will become even more efficient in future.

1.2 Introduction into this work

Singularities of the fundamental solutions may be the main difficulty the BEM has to deal with, as
they can significantly influence the accuracy of numerical results. Regularization of the governing
integral equations is one approach to mitigate these adverse impacts and to achieve accurate results.
The regularization of nearly singular integrals of the Somigliana Displacement and Stress Identities
[11] for 3-D isotropic elasticity problems is the topic of the present work. These regularizations make
use of Rigid Body Motion to regularize the nearly singular Somigliana Displacement Identity (SDI)
and assumes a low-order iso-stress state based on a linear displacement field in order to regularize the
nearly singular Somigliana Stress Identity (SSI). These approaches require a point on the boundary,
the so called regularizing point, for which displacements, strains and stresses have to be known from
the solution of the Boundary Integral Equation (BIE).

The aim of the present work was to develop a BEM-application in order to study if and how regular-
ization of the nearly singular Somigliana Displacement and Stress Identities influence the behaviour of
the corresponding results. This also implies the knowledge of boundary results. They were computed
using the direct BEM with collocation. The results are boundary displacements and tractions ob-
tained from the usual displacement form of the BIE which can be derived from the SDI by a limiting
process. Rigid Body Motion was applied to evaluate the arising strong singular integral in sense of the
Cauchy principal value. Boundary stresses were computed locally from the boundary displacements
and tractions using Hook’s law. Based on the boundary results, interior results were determined with
the regularized forms of the nearly singular SDI and SSI. Also the non-regularized (standard) forms
of the Somigliana Identities, for which the concept of element subdivision is applied to cope with

Regularization of nearly singular integrals for the Boundary Element Mehtod 1



1 Preliminaries

singularities, were used to compute results in order to compare them with the ones obtained from the
regularized formulation of the nearly singular Somigliana Identities. Finally, test examples for which
either an analytical solution or a reference solution exists were set up to verify the implemented algo-
rithms. Thus, the BEM- application not only contains codes for numerical evaluation of the different
integral equations (main processing), but also for pre-processing (input and mesh generation) and
post-processing (displaying results). The results of the test examples were then used to discuss and
explain the difference between the standard and regularized formulations of the SDI and SSI and to
show how regularization of the nearly singular integrals of the SDI and SSI influences and improves
results.

As it is essential to give a broad insight in the topic, the relevant integral equations are discussed in this
work whereas emphasis is given to the regularization of the nearly singular SDI and SSI. Furthermore,
also knowledge of the discretization of the integral equations and background informations about
the concepts used to implement the BEM-application are important and thus explained in this work
too. That should provide a fundamental understanding to follow the discussions of results in the test
examples.

1.3 Annotations

The BEM-application developed for this work is implemented as Matlab®-code [10]. It became part
of the EduBEM-application of the Institute of Structural Analysis at Graz University of Technology.
It was the basis of the development of the application as it already provided implementations for 2-D
isotropic elasticity problems. Thus, many of the developed algorithms were implemented in analogy
to the already existing codes. The BEM-application also make use of a software called GMSH [7] in
post-processing to enable scalar, vector and tensor field visualization which are displayed in this work
as well.

The equations provided in this work are written in vector-matrix notation. Therefore, bold capital
Latin letters (e.g. T) are used to denote matrices or tensors and bold lower-case Latin letters (e.g. t)
refers to vectors. Bold Greek letters (e.g. σσσ) denotes either vectors, matrices or tensors and therefore
will be described in the text whether they are vectors, matrices or tensors. Normal letters no matter if
they are Latin or Greek ones refer to scalars or variables. Exceptions from these rules will be explained
in the text.

This work was written with LATEX [9]. The sketches and drawings were prepared with the CAD-
software ALLPLAN [1].

Regularization of nearly singular integrals for the Boundary Element Mehtod 2



2 Integral equations in elasticity

2 Integral equations in elasticity

2.1 The Displacement Boundary Integral Equation in elasticity

Following equation represents the usual form of the Somigliana Displacement Identity (SDI) to evaluate
displacements u(p) at points p in the interior of a domain Ω. It can be derived by applying Betti’s
Theorem as explained in Reference [3]. A more general approach deriving the SDI is applying the
divergence theorem and Green’s symmetric identity to the differential equation for elasticity.

Γr

p

Q

Ω

Fig. 1: arbitrary domain for the BEM

u(p) =
∫

Γ
U(p,Q)t(Q)dΓ−

∫
Γ

T(p,Q)u(Q)dΓ (1)

The 2-D SDI has a weak singularity of type (ln(1
r )) in the displacement kernel U(p,Q) and a strong

singularity of type (1
r ) in the traction kernel T(p,Q). In 3-D elasticity the weak singularity is of type

(1
r ) and the strong singularity is of type ( 1

r2 ), where r denotes the distance between source point p
and field point Q as can be seen in Figure 1.

If the source point p is moved towards the boundary Γ (p→ P ) a limiting process has to be performed
as outlined in Reference [3]. Then the following Boundary Integral Equation (BIE) arises.

cIu(P ) =
∫

Γ
U(P,Q)t(Q)dΓ−

∮
Γ

T(P,Q)u(Q)dΓ (2)

where I is the identity matrix (2x2 for 2-D and 3x3 for 3-D elasticity problems) and c is the limiting
value or free term:

c = 1
2 ... if P is located on a smooth surface

c = 1− γ

2π ... in 2-D if P is located on a corner

c = 1− γ

4π ... in 3-D if P is located on a corner

(3)

where γ is the external angle of the corner.

Regularization of nearly singular integrals for the Boundary Element Mehtod 3



2 Integral equations in elasticity

Assuming c = 1 in Equation (2), Equation (1) for points p inside the domain Ω will arise and thus
Equation (2) is a general form representing the SDI. It is the usual displacement form of the BIE
using the Cauchy principal value of the strong singular integral. In order to solve Equation (2), either
boundary displacements u(Q) (Dirichlet boundary conditions) or boundary tractions t(Q) (Neumann
boundary conditions) have to be known, whereas the other boundary condition is unknown and has
to be evaluated by solving the BIE.

2.2 Somigliana Identities for interior results

Supposing that both boundary tractions t(Q) and boundary displacements u(Q) are already known
from solving the BIE, displacements u(p) at any interior point p can be evaluated using the Somigliana
Displacement Identity (SDI) from Equation (1). Recap:

u(p) =
∫

Γ
U(p,Q)t(Q)dΓ−

∫
Γ

T(p,Q)u(Q)dΓ (4)

By differentiation of Equation (4) the well known Somigliana Stress Identity (SSI) for computing
stresses σσσ(p) at interior points p arise [3].

σσσ(p) =
∫

Γ
S(p,Q)t(Q)dΓ−

∫
Γ

R(p,Q)u(Q)dΓ (5)

where σσσ(p) is a pseudo-stress vector. S(p,Q) and R(p,Q) are the derived kernels, S(p,Q) of order (1
r )

and R(p,Q) of order ( 1
r2 ) in 2-D and ( 1

r2 ) and ( 1
r3 ) in 3-D, respectively. Thus, they are indicated to

be strongly singular (S(p,Q)) and hyper singular (R(p,Q)).

The application of these formulations for numerically computing interior results has its drawbacks.
As the interior point p is moved very close towards the boundary, an element subdivision technique
has to be applied (see Sections 3.3.3 and 3.4). However, due to reasons mentioned in those sections,
results become unacceptable inaccurate when the points p are located at a certain proximity to the
boundary. A better approach to obtain accurate interior results near the boundary is regularization,
which will be discussed in Sections 2.3 and 3.5.

2.3 Regularization of the Somigliana Identities for interior results

In what follows regularization of the nearly singular Somigliana Displacement and Stress Identities
for interior results will be described. The idea is to eliminate the influence of the strong and hyper
singularities either by applying Rigid Body Motion in case of the SDI or by taking the tangential
expansions of all boundary conditions at point P for the SSI. Regularization of the nearly singular
Somigliana Identities requires a regularization point P . It is the nearest point at the boundary Γ to
the point p in the interior of the domain Ω as shown in Figure 2. At this point stresses, strains and
displacements have to be evaluated from boundary results which are obtained by solving the BIE.
Detailed explanations regarding regularization of the Somigliana Identities can be found in References
[4] and [5].
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Ω

Γ

Q

n(Q)

p

P

∆x(P,Q)

Fig. 2: arbitrary domain for regularization

2.3.1 Regularization of the Somigliana Displacement Identity for finite domains

Starting from the SDI in Equation (4) boundary conditions of a constant displacements field can be
assumed, that is, applying Rigid Body Motion. Hence, no tractions arise (t(Q) = 0) and thus the
integral with the displacement kernel U(p,Q) vanishes. Following equation will arise.

u(p) = −
∫

Γ
T(p,Q)u(Q)dΓ (6)

As all displacements are constant due to Rigid Body Motion (u(Q) = u(p) = u(P ) = const.), Equation
(6) can be rearranged which yields:

0 = u(P ) + u(P )
∫

Γ
T(p,Q)dΓ (7)

Then, adding Equation (7) to the SDI in Equation (4) and rearranging again will result in:

u(p) = u(P ) +
∫

Γ
U(p,Q)t(P )dΓ−

∫
Γ

T(p,Q)[u(Q)− u(P )]dΓ (8)

which is the regularized form of the SDI for finite domains Ω. In Equation (8) u(P ) denotes the reg-
ularizing displacement at P . Furthermore, the integral with the displacement kernel U(p,Q) remains
with a weak singularity.

2.3.2 Regularization of the Somigliana Displacement Identity for infinite domains

In case of infinite domains an additional integral over the boundary Γ∞ at infinity has to be considered
when applying Rigid Body Motion to the SDI. Thus, Equation (6) is extended by this integral which
gives:

u(p) = −
∫

Γ
T(p,Q)u(Q)dΓ−

∫
Γ∞

T(p,Q)u(Q)dΓ∞ (9)
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Again assuming constant displacements and executing the same scheme as explained above will result
in following equation.

0 = u(P ) + u(P )
∫

Γ
T(p,Q)dΓ + u(P )

∫
Γ∞

T(p,Q)dΓ∞ (10)

Then the regularized SDI for infinite domains will be found by adding the SDI in Equation (4) to
Equation (10):

u(p) = u(P ) +
∫

Γ
U(p,Q)t(P )dΓ−

∫
Γ

T(p,Q)[u(Q)− u(P )]dΓ + u(P )
∫

Γ∞
T(p,Q)dΓ∞ (11)

The additional integral over the boundary Γ∞ at infinity can be solved analytically by assuming an
infinite extended auxiliary boundary surface Γ∞ to which Rigid Body Motion may be applied. For
example Γ∞ could be a circle in 2-D or a sphere in 3-D both of radius R which approaches infinity as
outlined in Reference [3]. The analytical solution of that integral is:∫

Γ∞
T(p,Q)dΓ∞ = −I (12)

where I is the identity matrix (2x2 in 2-D and 3x3 in 3-D elasticity).

2.3.3 Regularization of the Somigliana Stress Identity for finite domains

In order to regularize the SSI a low-order iso-stress state is assumed [5]. It is a constant stress field
σσσ∗ with corresponding boundary traction t∗ based on a linear displacement field u∗. Applying this to
the SSI in Equation (5) yields:

σσσ(p) =
∫

Γ
S(p,Q)t∗(Q)dΓ−

∫
Γ

R(p,Q)u∗(Q)dΓ (13)

Due to the assumption of constant stresses (σσσ∗ = σσσ(p) = σσσ(P ) = σσσ(Q)), Equation (13) can be
rewritten which yields:

0 = σσσ(P )−
∫

Γ
S(p,Q)t∗(Q)dΓ +

∫
Γ

R(p,Q)u∗(Q)dΓ (14)

Now, the regularized SSI will arise by adding Equation (14) to the SSI in Equation (5):

σσσ(p) = σσσ(P ) +
∫

Γ
S(p,Q)[t(Q)− t∗(P )]dΓ−

∫
Γ

R(p,Q)[u(Q)− u∗(P )]dΓ (15)

where σσσ(p) and the so called regularizing stress σσσ(P ) are pseudo-stress vectors. σσσ(P ) may be evaluated
from the boundary tractions and displacements at P .
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2 Integral equations in elasticity

As constant stresses with a corresponding linear displacement field were assumed, the linearised terms
t∗(Q) and u∗(Q) may be evaluated as following:

t∗(Q) = σσσ∗c(P )n(Q)

u∗(Q) = u(P ) + ∂u(P )
∂x ∆x(P,Q)

(16)

where σσσ∗c(P ) is the corresponding Cauchy-stress tensor of the pseudo-stress vector σσσ(P ) and ∂u(P )
∂x is

the displacement gradient at the regularization point P (see also Section 2.3.5). Furthermore, n(Q)
denotes the outward normal at field point Q and ∆x(P,Q) refers to the distance between point P and
Q (see Figure 2).

2.3.4 Regularization of the Somigliana Stress Identity for infinite domains

Two supplementary integrals which extend over the boundary Γ∞ at infinity arise when regularizing
the SSI for infinite domains. Considering these integrals in Equation (13) yields to:

σσσ(p) =
∫

Γ
S(p,Q)t∗(Q)dΓ +

∫
Γ∞

S(p,Q)t∗(Q)dΓ∞−∫
Γ

R(p,Q)u∗(Q)dΓ−
∫

Γ∞
R(p,Q)u∗(Q)dΓ∞

(17)

Assuming constant stresses σσσ∗ = σσσ(p) = σσσ(P ) = σσσ(Q) and revising Equation (17) in the same manner
as introduced above yields to:

0 = σσσ(P )−
∫

Γ
S(p,Q)t∗(Q)dΓ−

∫
Γ∞

S(p,Q)t∗(Q)dΓ∞+∫
Γ

R(p,Q)u∗(Q)dΓ +
∫

Γ∞
R(p,Q)u∗(Q)dΓ∞

(18)

Finally, the regularized form of the SSI for infinite domains can be obtained by adding Equation (18)
to the SSI in Equation (5) which is:

σσσ(p) = σσσ(P ) +
∫

Γ
S(p,Q)[t(Q)− t∗(Q)]dΓ−

∫
Γ∞

S(p,Q)t∗(Q)dΓ∞−∫
Γ

R(p,Q)[u(Q)− u∗(Q)]dΓ +
∫

Γ∞
R(p,Q)u∗(Q)dΓ∞

(19)

whereby the integrals over the infinite extended boundary Γ∞ can be solved analytically in the same
manner as the integral over Γ∞, which arise when regularizing the SDI for infinite domains.

The integrals over Γ∞ and its analytical solutions for 2-D elasticity problems are:

∫
Γ∞

S(p,Q)t∗(Q)dΓ∞ = 1
8(ν − 1)

4ν − 5 1− 4ν 0
1− 4ν 4ν − 5 0

0 0 8ν − 6

σσσ(P ) (20)
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∫
Γ∞

R(p,Q)u∗(Q)dΓ∞ = E

8(ν2 − 1)

3 1 0
1 3 0
0 0 1

 εεε(P ) (21)

The analytical solutions of the integrals over Γ∞ for 3-D infinite domains in elasticity are:

∫
Γ∞

S(p,Q)t∗(Q)dΓ∞ = 1
15(ν − 1)



5ν − 7 1− 5ν 1− 5ν 0 0 0
1− 5ν 5ν − 7 1− 5ν 0 0 0
1− 5ν 1− 5ν 5ν − 7 0 0 0

0 0 0 10ν − 8 0 0
0 0 0 0 10ν − 8 0
0 0 0 0 0 10ν − 8


σσσ(P )

(22)

∫
Γ∞

R(p,Q)u∗(Q)dΓ∞ = E

30(ν2 − 1)



16 2 + 10ν 2 + 10ν 0 0 0
2 + 10ν 16 2 + 10ν 0 0 0
2 + 10ν 2 + 10ν 16 0 0 0

0 0 0 7− 5ν 0 0
0 0 0 0 7− 5ν 0
0 0 0 0 0 7− 5ν


εεε(P )

(23)

In Equations (20) to (23) E and ν are material constants. They are the Young’s Modulus E and the
Poisson’s ratio ν of an isotropic material. εεε(P ) in Equations (21) and (23) indicates the pseudo-strain
vector at the regularizing point P .

2.3.5 Relationship between Cauchy-stress tensor and pseudo-stress vector and between
displacement gradient and pseudo-strain vector

The object of this section is to clarify the relation between the Cauchy-stress tensor and the pseudo-
stress vector. Moreover, the correlation between the displacement gradient and the pseudo-strain
vector will be presented.

The pseudo-stress vector σσσ(p) can be written as follows. It is a vector containing the normal and shear
stresses at any point p no matter whether p is on the boundary or not.

σσσ(p) =


σxx(p)
σyy(p)

σxy(p) = τxy(p)

 ... in 2-D

σσσ(p) =



σxx(p)
σyy(p)
σzz(p)

σxy(p) = τxy(p)
σyz(p) = τyz(p)
σxz(p) = τxz(p)


... in 3-D

(24)

Regularization of nearly singular integrals for the Boundary Element Mehtod 8
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The Cauchy-stress tensor σσσ∗c(p) gathers the values of the pseudo-stress vector σσσ(p) in a symmetric
matrix:

σσσ∗c(p) =
[
σxx(p) τxy(p)
sym. σyy(p)

]
... in 2-D

σσσ∗c(p) =

σxx(p) τxy(p) τxz(p)
σyy(p) τyz(p)

sym. σzz(p)

 ... in 3-D
(25)

Pseudo-strain vectors εεε(p) contain the normal and shear strains which can be evaluated by using the
displacement derivatives at point p. The pseudo-strain vector εεε(p) can be written as:

εεε(p) =


εxx(p) = ∂ux(p)

∂x

εyy(p) = ∂uy(p)
∂y

γxy(p) = ∂ux(p)
∂y + ∂uy(p)

∂x

 ... in 2-D

εεε(p) =



εxx(p) = ∂ux(p)
∂x

εyy(p) = ∂uy(p)
∂y

εzz(p) = ∂uz(p)
∂z

γxy(p) = ∂ux(p)
∂y + ∂uy(p)

∂x

γyz(p) = ∂uy(p)
∂z + ∂uz(p)

∂y

γxz(p) = ∂ux(p)
∂z + ∂uz(p)

∂x


... in 3-D

(26)

Finally, the displacement gradient ∂u(P )
∂x gathers the derivatives of the pseudo-strain vector εεε(p) in a

matrix. To paraphrase that, the displacement gradient contains the derivatives of each component
of the displacement vector u(p) with respect to each coordinate (x, y in 2-D and x, y, z in 3-D, also
denoted as x).

∂u(p)
∂x =

∂ux(p)
∂x

∂ux(p)
∂y

∂uy(p)
∂x

∂uy(p)
∂y

 ... in 2-D

∂u(p)
∂x =


∂ux(p)
∂x

∂ux(p)
∂y

∂ux(p)
∂z

∂uy(p)
∂x

∂uy(p)
∂y

∂uy(p)
∂z

∂uz(p)
∂x

∂uz(p)
∂y

∂uz(p)
∂z

 ... in 3-D

(27)
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3 Discretization in 3-D

3.1 Discretization of the Boundary Integral Equation

For practical problems the BIE (Equation (2)) has to be solved numerically as analytical solutions
are available only for simple problems. Therefore, the boundary is decomposed using isoparametric
elements and the BIE is determined for a limited set of discrete points (nodes) on the boundary then.
For this purpose the unit source of the fundamental solution is applied on each node (source point
Pi) and its response is evaluated for each element. This method is called the collocation method.
Therefore, it is necessary to rewrite Equation (2) as follows. The arising equation is the discretized
form of the BIE.

cu(Pi) =
E∑
e=1

N∑
n=1

∆Ue
niten −

E∑
e=1

N∑
n=1

∆Te
niuen (28)

where E and N denotes the total number of elements and the number of nodes of an element e,
respectively. i = 1...I whereas I denotes the total number of source points Pi.

The displacement kernel ∆Ue
ni and the traction kernel ∆Te

ni can be evaluated as follows:

∆Ue
ni =

∫
Γe
Nn(ξ, η)U(Pi, Q(ξ, η))dΓ(ξ, η)

∆Te
ni =

∫
Γe
Nn(ξ, η)T(Pi, Q(ξ, η))dΓ(ξ, η)

(29)

where Γe is the element area, ξ and η are the intrinsic coordinates of the reference element and Nn

denotes the shape function value n.

In this work quadrilateral elements with linear ansatz order (four local nodes n) and quadrilateral
serendipity elements with quadratic ansatz order (eight local nodes n) are used to discretize the
boundary Γ of the domain Ω. The relevant reference elements in the ξ, η-coordinate system (intrinsic
coordinate system) with corresponding local node ordering are depicted in Figure 3.

η η

ξ
ξ

4(−1, 1) 3(1, 1)

2(1,−1)1(−1,−1)

4(−1, 1) 3(1, 1)

2(1,−1)1(−1,−1) 5(0,−1)

6(1, 0)

7(0, 1)

8(−1, 0)

Fig. 3: quadrilateral element with linear ansatz order (left) and quadrilateral serendipity element
with quadratic ansatz order (right)
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Now, values yP at any point P inside the element such as coordinates, displacements and tractions
can be approximated using polynomial shape function values Nn(ξP , ηP ) where ξP and ηP are the
intrinsic coordinates of point P .

yP =
N∑
n=1

Nn(ξP , ηP )yen (30)

In Equation 30 yen represents a vector containing nodal values at node n of element e.

3.2 Solving the system of equations

As all kernels are calculated, which will be explained in Section 3.3, the system of equations can be
solved. Using the global coefficient matrices [∆U] and [∆T], which gather element contributions, the
system of equations can be written as.

[∆T]{u} = [∆U]{t} (31)

where [∆T] includes the free term and the vectors {u} and {t} contain displacements and tractions,
respectively. Considering predefined boundary conditions of a mixed boundary value problem where
displacements and tractions are prescribed on different portions of the boundary, the known values
can be shifted to the right and all unknowns to the left of the equation system leading to following
form:

[B]{x} = {b} (32)

The matrix [B] contains the coefficients of the unknowns, the vector {x} refers to the unknowns itself
and vector {b} contains the known values. The system of equation can be solved now, e.g. using
Gauss elimination. Now the tractions and displacements at each node of the boundary are known.
Detailed explanations and some small examples according the assembly process and solving the system
of equations can be found in Reference [3].

Note, boundary stresses may be evaluated from the boundary displacements and tractions using Hook’s
law as outlined in Section 3.6.

3.3 Numerical Integration of the kernels ∆Ue
ni and ∆Te

ni

In what follows the numerical integration of the kernels ∆Ue
ni and ∆Te

ni in Equation (29) will be
explained. Recap, the 3-D BIE has a weak singularity of type (1

r ) in the displacement kernel ∆Ue
ni

and a strong singularity of type ( 1
r2 ) in traction kernel ∆Te

ni. Thus, the different types of singularities
have to be treated individually by applying proper numerical integration schemes as introduced in
this section.
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3.3.1 Evaluation of the free term and the strongly singular integral

Strongly singular integrals arise for the traction kernel ∆Te
ni if the source point Pi coincides with one

of the element nodes. They simply can be evaluated by applying the concept of Rigid Body Motion
to Equation (28). Following equation arises then:

cu(Pi) +
E∑
e=1

N∑
n=1
g(n)=i

∆Te
niuen = −

E∑
e=1

N∑
n=1
g(n)6=i

∆Te
niuen (33)

Since no tractions arises when applying Rigid Body Motion only the sum containing the traction kernel
∆Te

ni and the term including the free term remain. The sum of the traction kernels is separated into
the sum involving strongly singular integration (g(n) = i) and the sum excluding strongly singular
integration (g(n) 6= i). g(n) stands for nodes with global node number g and local node number n.

As a consequence of applying Rigid Body Motion strongly singular integration is avoided, since it
simply can be computed by taking the negative sum of all off-coefficients. Furthermore, the free term
is also calculated at no additional expense.

For infinite domains an additional integral over an infinite extended boundary surface Γ∞ has to be
considered on the right hand side of Equation (33). It can be evaluated analytically in the same
manner as introduced in Section 2.3.2. The integral and its analytical solution is:∫

Γ∞
T(P,Q)dS = −I (34)

where I is a 3x3 identity matrix in 3-D elasticity.

A detailed explanation about Rigid Body Motion can be found in Reference [3].

3.3.2 Weakly singular integration

Weakly singular integrals arise for the displacement kernel ∆Ue
ni if the source point Pi coincides with

one of the element nodes. In this case the element is split into triangular subelements. The individual
local coordinate systems for each subelement is chosen in a way that the Jacobian of the transformation
tends to zero at the singular point Pi. This transformation is called Lachat-Watson-transformation
[8]. Numerical integration over the triangular subelements using Gauss Quadrature as introduced in
Section 3.3.3 can be used to determine the displacement kernel ∆Ue

ni in Equation (29) if g(n) = Pi
(see References [3, 6, 8]).

∆Ue
ni ≈

Ns∑
s=1

M∑
m=1

K∑
k=1

Nn(ξ̄m, η̄k)U(Pi, Q(ξ̄m, η̄k))J(ξ̄m, η̄k)J̄(ξ̄m, η̄k)WmWk (35)

The maximal number of triangular subelements Ns depends on the type of the element (two for
linear elements and three for quadratic elements). For quadratic elements the number of triangular
subelements can either be two or three depending at which node n the source point Pi is situated on.
If Pi is one of the corner nodes two subelements are required, if it is one of the mid-side-nodes three
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subelements are necessary. J̄(ξ̄, η̄) is the Jacobian of the transformation from the local ξ̄, η̄ coordinates
of the triangular subregion to the intrinsic ξ, η coordinates of the element [3].

Lachat-Watson-Transformation may also be applied to the traction kernel ∆Te
ni if the source point

Pi is one of the elements nodes but not node n. Similar to the equation above following equation will
arise.

∆Te
ni ≈

Ns∑
s=1

M∑
m=1

K∑
k=1

Nn(ξ̄m, η̄k)T(Pi, Q(ξ̄m, η̄k))J(ξ̄m, η̄k)J̄(ξ̄m, η̄k)WmWk (36)

More detailed informations about applying Lachat-Watson-Transformation can be found in Reference
[3].

3.3.3 Regular integration

The regular integration scheme is applied if the source point Pi is not one of the element nodes of the
element. The kernels for the regular case can be approximated by using Gauss Quadrature in ξ and
η direction of the element.

∆Ue
ni ≈

M∑
m=1

K∑
k=1

Nn(ξm, ηk)U(Pi, Q(ξm, ηk))J(ξm, ηk)WmWk

∆Te
ni ≈

M∑
m=1

K∑
k=1

Nn(ξm, ηk)T(Pi, Q(ξm, ηk))J(ξm, ηk)WmWk

(37)

where M and K are the number of Gauss points in ξ and η direction, respectively. Wm and Wk are
the corresponding weights. The number of Gauss points depends on the actual element dimensions in
ξ and η direction (Lξ, Lη), the minimal distance R between the collocation point Pi and the present
element, the order of the kernel’s singularities and the required accuracy for numerical integration.
To keep it simple, the smaller the distance R and the greater either Lξ or Lη the more Gauss points
will be needed in both ξ and η direction. Detailed explanations about evaluating the number of Gauss
points can be found in Reference [3].

In some cases the ratios R/Lξ or R/Lη can be very inappropriate, resulting in an increasing number
of Gauss points. It occurs for meshes consisting of elements with extremely varying dimensions or
if boundary surfaces are located quite close to each other. In order to get along with a reduced set
of Gauss points, the element is subdivided into subelements (subregions) and Gauss Quadrature is
applied to each subelement [3]. Therefore, the equations in (37) are rewritten as follows:

∆Ue
ni ≈

Nξ∑
l=1

Nη∑
j=1

M(l)∑
m=1

K(j)∑
k=1

Nn(ξ̄m, η̄k)U(Pi, Q(ξ̄m, η̄k))J(ξm, ηk)J̄(Nξ, Nη)WmWk

∆Te
ni ≈

Nξ∑
l=1

Nη∑
j=1

M(l)∑
m=1

K(j)∑
k=1

Nn(ξ̄m, η̄k)T(Pi, Q(ξ̄m, η̄k))J(ξm, ηk)J̄(Nξ, Nη)WmWk

(38)

where Nξ and Nη are the number of subelements in ξ and η direction which depends on the facts
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stated above for the number of Gauss points. M(l) and K(j) are the number of Gauss points of the
subregion defined by l and j. ξ̄, η̄ are the transformed local coordinates of each subregion and

J̄ = 1
NξNη

(39)

Regular integration may also be applied to the remaining integration cases of the kernel ∆Ue
ni which

have not been discussed yet. It occurs if the source point Pi is one of the element nodes but not node
n. In this case the shape function at Pi is zero and thus it eliminates the weak singularity of the
kernel. As a consequence these integrals can be evaluated using the integration scheme introduced
above as well.
For additional informations about the subdivision technique please refer to Reference [3].

In the following a small example will be shown which indicates different influences on the number of
subelements. Therefore a flat three-dimensional rectangular element which is twice as long as heigh
is defined as shown in Figure 4. It is located in the y,z-plane, thus the ξ,η-axes coincide with the
y,z-axes. To compute the number of subelements the same parameters as in Reference [3] were used,
meaning the number of Gauss points (M(l), K(j)) were chosen to be four resulting in a total number
of Gauss points of 16 for each subregion. Also the limiting values for the distance R were chosen to be
the same as in Reference [3], that is, a maximal integration error of 10−3 occurs. Results for a point
p approaching the element along the x-axis are depicted in Figures 5 and 6 which include the number
of subdivisions for hyper singularities too as they arise in the SSI.

111(0/1/− 0.5)

222(0/− 1/− 0.5)

333(0/− 1/0.5)

444(0/1/0.5)

x

y, ξ

z, η

p
Lη

L ξ

Fig. 4: sketch of rectangular element in y, z-plane
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Fig. 6: number of subdivisions in η-direction

As can be seen in Figures 5 and 6 the number of subregions generally depends on the proximity of p
to the element. This means the closer p the more subregions will be necessary to obtain results with
same accuracy. The figures also show the influence of the singularity orders as for higher orders more
subregions are required to achieve the same accuracy as for lower orders when keeping the distance R
constant. Furthermore, the dimensions of the element influence the number of subelements too as can
be recognized by comparing the results in Figure 5 with those in Figure 6. For identical distances R
more subregions are required on the long side (Lξ in this case) than on the other side which is shorter
(Lη in this case). Finally, it is to say that the number of subelements tends to very large numbers
beyond a certain proximity of point p resulting in an increasing computation time. Especially for
computing interior results using the non-regularized forms of the Somigliana Identities this may be
an issue as interior points sometimes are located very close to the boundary. Thus, the number of
subelements may be limited for saving in computation time. This leads to inaccurate results for points
p approaching the element beyond a corresponding distance R which depends on the chosen limiting
number of subregions.

3.4 Discretization and numerical integration of the Somigliana Identities for interior
results

In what follows the discretization and numerical evaluation of the Somigliana Identities for interior
results at points p in a 3-D domain will be discussed. The boundary displacements uen and boundary
tractions ten are assumed to be known from evaluating the BIE and from solving the system of equations
(See Sections 3.1 and 3.2).
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3 Discretization in 3-D

3.4.1 Discretized forms of the Somigliana Identities for interior results

The discretized form of the SDI in Equation (4), which is needed for the numerical evaluation of
displacements u(p) at interior points p, can be written as:

u(p) =
E∑
e=1

N∑
n=1

∆Ue
nten −

E∑
e=1

N∑
n=1

∆Te
nuen (40)

where

∆Ue
n =

∫
Γe
Nn(ξ, η)U(p,Q(ξ, η))dΓ(ξ, η)

∆Te
n =

∫
Γe
Nn(ξ, η)T(p,Q(ξ, η))dΓ(ξ, η)

(41)

The discretized form of the SSI in Equation (5) allows the numerical stress evaluation at interior points
p:

σσσ(p) =
E∑
e=1

N∑
n=1

∆Senten −
E∑
e=1

N∑
n=1

∆Re
nuen (42)

where

∆Sen =
∫

Γe
Nn(ξ, η)S(p,Q(ξ, η))dΓ(ξ, η)

∆Re
n =

∫
Γe
Nn(ξ, η)R(p,Q(ξ, η))dΓ(ξ, η)

(43)

σσσ(p) in Equation 42 is a pseudo-stress vector.

3.4.2 Numerical integration of the Somigliana Identities

The integrals ∆Ue
n, ∆Te

n (Equation (41)) and ∆Sen, ∆Re
n (Equation (43)) can be computed numeri-

cally using Gauss Quadrature.

∆Ue
n ≈

M∑
m=1

K∑
k=1

Nn(ξm, ηk)U(p,Q(ξm, ηk))J(ξm, ηk)WmWk

∆Te
n ≈

M∑
m=1

K∑
k=1

Nn(ξm, ηk)T(p,Q(ξm, ηk))J(ξm, ηk)WmWk

(44)

and

∆Sen ≈
M∑
m=1

K∑
k=1

Nn(ξm, ηk)S(p,Q(ξm, ηk))J(ξm, ηk)WmWk

∆Re
n ≈

M∑
m=1

K∑
k=1

Nn(ξm, ηk)R(p,Q(ξm, ηk))J(ξm, ηk)WmWk

(45)
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3 Discretization in 3-D

Furthermore, as the interior point p approaches the boundary Γ, subdivision will be necessary at a
certain proximity and thus:

∆Ue
n ≈

Nξ∑
l=1

Nη∑
j=1

M(l)∑
m=1

K(j)∑
k=1

Nn(ξ̄m, η̄k)U(p,Q(ξ̄m, η̄k))J(ξm, ηk)J̄(Nξ, Nη)WmWk

∆Te
n ≈

Nξ∑
l=1

Nη∑
j=1

M(l)∑
m=1

K(j)∑
k=1

Nn(ξ̄m, η̄k)T(p,Q(ξ̄m, η̄k))J(ξm, ηk)J̄(Nξ, Nη)WmWk

(46)

and

∆Sen ≈
Nξ∑
l=1

Nη∑
j=1

M(l)∑
m=1

K(j)∑
k=1

Nn(ξ̄m, η̄k)S(p,Q(ξ̄m, η̄k))J(ξm, ηk)J̄(Nξ, Nη)WmWk

∆Re
n ≈

Nξ∑
l=1

Nη∑
j=1

M(l)∑
m=1

K(j)∑
k=1

Nn(ξ̄m, η̄k)R(p,Q(ξ̄m, η̄k))J(ξm, ηk)J̄(Nξ, Nη)WmWk

(47)

Both Gauss Quadrature and the subdivision scheme are applied in the same manner as outlined in
Section 3.3.3.

3.5 Discretization and numerical integration of the regularized Somigliana Identities

The aim of this section is to describe the discretized forms as well as the numerical evaluation of the
regularized Somigliana Identities for interior results. Since most of it is already explained, this section
will concentrate on what is new in discretizing and numerically integrating the regularized forms of
the SDI and SSI. Again the boundary displacements and tractions are considered to be already known
from solving the BIE.

3.5.1 Discretized forms of the regularized Somigliana Identities for interior results

The discretized form of the regularized SDI from Equation (11) may be written as.

u(p) = u(P ) +
E∑
e=1

N∑
n=1

∆Ue
nten −

E∑
e=1

N∑
n=1

∆Te
nuen + u(P )

E∑
e=1

∆Te + u(P )
∫

Γ∞
T(p,Q)dΓ∞ (48)

where ∆Ue
n and ∆Te

n are the same integrals as in Equation (44) and the integral over boundary Γ∞
at infinity does not occur for finite domains. Thus, it has to be evaluated for infinite domains only
and its solution is shown in Equation (12). Finally, the regularized integral term ∆Te can be written
as follows.

∆Te =
∫

Γ
T(p,Q(ξ, η))dΓ(ξ, η) (49)

Discretizing the regular form of the SSI (Equation (19)) yields:

σσσ(p) = σσσ(P ) +
E∑
e=1

N∑
n=1

∆Senten −
E∑
e=1

∆Se −
E∑
e=1

N∑
n=1

∆Re
nuen +

E∑
e=1

∆Re−∫
Γ∞

S(p,Q)t∗(Q)dΓ∞ +
∫

Γ∞
R(p,Q)u∗(Q)dΓ∞

(50)
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3 Discretization in 3-D

∆Sen and ∆Re
n can be evaluated as shown in Equation (43). Again the integrals over the boundary Γ∞

at infinity have to be evaluated for infinite domains only by using the analytical solutions of Equations
(22) and (23). The regularized integral terms ∆Se and ∆Re can be evaluated as follows:

∆Se =
∫

Γ
S(p,Q(ξ, η))t∗(Q(ξ, η))dΓ

∆Re =
∫

Γ
R(p,Q(ξ, η))u∗(Q(ξ, η))dΓ

(51)

where t∗(Q(ξ, η)) and u∗(Q(ξ, η)) additionally are rewritten:

t∗(Q(ξ, η)) = σσσ∗c(P )n(Q(ξ, η))

u∗(Q(ξ, η)) = u(P ) + ∂u(P )
∂x ∆x(P,Q(ξ, η))

(52)

3.5.2 Numerical Integration of the regularized Somigliana Identities

This section is about the numerical evaluation of the integrals ∆Ue
n, ∆Te

n and ∆Te for the regularized
SDI and ∆Sen, ∆Se, ∆Re

n and ∆Re for the regularized SSI. These integrals again can be computed
using Gauss Quadrature as already introduced in Section 3.3.3.

The numerical integration of ∆Ue
n, ∆Te

n, ∆Sen and ∆Re
n is analogous to Equations (44) and (45).

Applying Gauss Quadrature to the regularizing integral term ∆Te in the discretized regular formula-
tion of the SDI results in:

∆Te =
M∑
m=1

K∑
k=1

T(p,Q(ξm, ηk))J(ξm, ηk)WmWk (53)

The regularizing integral terms ∆Se and ∆Re of the discretized regular formulation of the SSI can be
integrated numerically as shown below.

∆Se =
M∑
m=1

K∑
k=1

S(p,Q(ξm, ηk))t∗(Q(ξm, ηk))J(ξm, ηk)WmWk

∆Re =
M∑
m=1

K∑
k=1

R(p,Q(ξm, ηk))u∗(Q(ξm, ηk))J(ξm, ηk)WmWk

(54)

where

t∗(Q(ξm, ηk)) = σσσ∗c(P )n(Q(ξm, ηk))

u∗(Q(ξm, ηk)) = u(P ) + ∂u(P )
∂x ∆x(P,Q(ξm, ηk)) = u(P ) + ∂u(P )

∂x [x(Q(ξm, ηk))− x(P )]
(55)

Note, ∆x(P,Q(ξm, ηk)) is replaced by [x(Q(ξm, ηk))−x(P )], where x(Q(ξm, ηk)) and x(P ) denote the
coordinates of the present Gauss point (field point Q) and the coordinates of the regularizing point
P , respectively. Thus, it can be interpreted as the distance vector between the Gauss point and the
regularization point P .
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3 Discretization in 3-D

3.6 Displacements, stresses and displacement gradient at a point inside an element

This section will explain how to compute the displacement u(P ), the stresses σσσ(P ) and σσσ∗c(P ), the
pseudo-strain vector εεε(P ) and the displacement gradient ∂u(P )

∂x at any point P on the discretized
boundary. The evaluation of u(P ) is simple and it is essential to put more effort in computing stresses
and displacement derivatives. For this purpose a local coordinate system (x̄, ȳ, z̄) at point P inside the
element e will be introduced. Then, local stress values and displacement derivatives will be evaluated
and gathered in a local pseudo-stress vector σ̄σσ(P ) and a local displacement gradient ∂u(P )

∂x̄ . Finally
local stresses and displacement derivatives will be transformed into global stresses and displacement
derivatives by applying proper transformation schemes. The method of evaluating global stresses may
also be applied to compute the remaining nodal stress values element-wise after solving the system
of equations as part of post-processing. Moreover, it is assumed that the boundary displacements uen
and boundary tractions ten at each node n of the elements e, where the point P is located on, are
already known. Another prerequisite is the information of the intrinsic coordinates ξP , ηP of point
P . For a regularizing point they may be evaluated using Newton iteration and for evaluating nodal
boundary stresses the intrinsic coordinates ξP , ηP are simply taken to be those of the corresponding
element node as can be found in Figure 3.

For stresses and displacement derivatives the just outlined method can also be found in Reference [2]
which uses index notation and the evaluation of nodal global stresses is also explained in Reference
[3].

3.6.1 Evaluation of displacements inside an element

At no additional expense the displacement u(P ) at a point P inside an element can be evaluated using
the interpolation formula of Equation (30).

u(P ) =
N∑
n=1

Nn(ξP , ηP )uen (56)

3.6.2 Local orthogonal coordinate system

In order to compute the stress values gathered in σσσ(P ) and σσσ∗c(P ) and the displacement derivatives
gathered in εεε(P ) and ∂u(P )

∂x at a point P inside an element a local orthogonal coordinate system (x̄, ȳ, z̄)
has to be introduced as can be seen in Figure 7 for an arbitrary quadrilateral serendipity element with
quadratic ansatz order.
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3 Discretization in 3-D

P

x

y

z
ξ

η

vη̄
vȳ
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Fig. 7: local coordinate system x̄, ȳ, z̄ for a quadrilateral serendipity element with quadratic ansatz
order

For defining the local orthogonal coordinate system (x̄, ȳ, z̄) the tangent plane in point P has to be
determined. It is described by the tangent vectors Vξ̄ and Vη̄ which can be evaluated by applying the
interpolation formula from Equation (30) and replacing the shape functions by its derivatives with
respect to either ξ or η.

Vξ̄ =
N∑
n=1

∂Nn

∂ξ
(ξP , ηP )xen

Vη̄ =
N∑
n=1

∂Nn

∂η
(ξP , ηP )xen

(57)

where xen denotes a vector containing the global coordinates (x, y, z) of local node n.

The unit vectors vξ̄ and vη̄ of the tangent plane are calculated using vector normalization. These
vectors specify the direction of the local intrinsic coordinate system (ξ̄, η̄) and may not be orthogonal
to each other (angle Θ) as shown in Figure 7,

vξ̄ =
Vξ̄

|Vξ̄|
≡

Vξ̄

Jξ̄

vη̄ = Vη̄

|Vη̄|
≡ Vη̄

Jη̄

(58)

Regularization of nearly singular integrals for the Boundary Element Mehtod 20



3 Discretization in 3-D

where

Jξ̄ ≡ |Vξ̄| =
√
V 2
ξ̄,1 + V 2

ξ̄,2 + V 2
ξ̄,3

Jη̄ ≡ |Vη̄| =
√
V 2
η̄,1 + V 2

η̄,2 + V 2
η̄,3

(59)

Jξ̄ and Jη̄ can be interpreted as scaling factors.

Now, the unit vector vz̄ can be evaluated. It defines the direction of the local z̄-axis and is also called
the outward normal at point P (n(P )).

vz̄ ≡ n(P ) =
vξ̄ × vη̄
|vξ̄ × vη̄|

(60)

Next, the unit vectors vx̄ and vȳ which specify the directions of the x̄-ȳ plane of the orthogonal local
coordinate system (x̄, ȳ, z̄) may be determined as follows.

vx̄ ≡ vξ̄

vȳ = vz̄ × vx̄
|vz̄ × vx̄|

(61)

Additionally cos(Θ) and sin(Θ) can be evaluated.

cos(Θ) = vξ̄ • vη̄
sin(Θ) = |vξ̄ × vη̄|

(62)

Now, the relationships between the local coordinates x̄, ȳ and the local intrinsic coordinates ξ̄, η̄ can
be derived.

x̄ = Jξ̄ · ξ̄ + Jη̄ · η̄ · cos(Θ)
ȳ = Jη̄ · η̄ · sin(Θ)

(63)

Solving these equations for ξ̄ and η̄ yields:

ξ̄ = 1
Jξ̄

(x̄− cos(Θ)
sin(Θ) ȳ)

η̄ = ȳ

Jη̄ · sin(Θ)

(64)

Finally taking the derivatives with respect to x̄ and ȳ will result in:

∂ξ̄

∂x̄
= 1
Jξ̄

,
∂ξ̄

∂ȳ
= − cos(Θ)

Jξ̄ · sin(Θ)
∂η̄

∂x̄
= 0 ,

∂η̄

∂ȳ
= 1
Jη̄ · sin(Θ)

(65)
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3 Discretization in 3-D

3.6.3 Computing local stresses and local displacement derivatives

For determining the local stress values the traction t(P ) at point P has to be computed using the
interpolation formula from Equation (30).

t(P ) =
N∑
n=1

Nn(ξP , ηP )ten (66)

Furthermore, the displacement derivatives with respect to ξ̄ and η̄ have to be computed by applying
the interpolation formula and replacing the shape functions by its derivatives with respect to either ξ
or η.

∂u(P )
∂ξ̄

=
N∑
n=1

∂Nn

∂ξ
(ξP , ηP )uen

∂u(P )
∂η̄

=
N∑
n=1

∂Nn

∂η
(ξP , ηP )uen

(67)

Figure 8 shows the stress components in the local orthogonal coordinate system (x̄, ȳ, z̄). These
components have to be determined now.

x̄
ȳ

z̄

P

σz̄z̄ = t3(P )

σȳȳ

σx̄x̄

τx̄ȳ
τȳx̄

τȳz̄

τz̄ȳ = t2(P )

τx̄z̄

τz̄x̄ = t1(P )

t(P )

dΓ

Fig. 8: Stress components at point P in the local orthogonal coordinate system (x̄, ȳ, z̄)

As can be seen from Figure 8 some local stress components are already calculated as they are com-
ponents of the traction vector t(P ). The remaining local stress values can be obtained by applying
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3 Discretization in 3-D

Hook’s law for isotropic materials in 3-D and equilibrium conditions.

σx̄x̄ = E

1− ν2 (εx̄x̄ + ν · εȳȳ) + ν

ν − 1 · tz̄

σȳȳ = E

1− ν2 (εȳȳ + ν · εx̄x̄) + ν

ν − 1 · tz̄

σz̄z̄ = t3(P )
τx̄ȳ ≡ τȳx̄ = G · γx̄ȳ
τȳz̄ ≡ τz̄ȳ = t2(P )
τx̄z̄ ≡ τz̄x̄ = t1(P )

(68)

From Equation 68 it can be seen that the stress components which still have to be calculated (σx̄x̄,
σȳȳ and τx̄ȳ) are related to strains. These strains are composed of some local displacement derivatives
in ∂u(P )

∂x̄ . The local displacement derivatives can be interpreted as the projection of the derivatives of
the displacement vector u(P ) onto the unit vectors vx̄, vȳ and vz̄ and then taking the derivatives with
respect to x̄, ȳ or z̄. By using the results of Equations (60), (61), (65) and (67) they can be evaluated
as follows. Note, not all of them are necessary to compute the remaining stress values. With regard to
the local displacement gradient ∂u(P )

∂x̄ all required local displacement derivatives for both computing
the remaining local stress values and the local displacement derivatives are listed below.

∂ux̄
∂x̄

=
(
∂u(P )
∂ξ̄

• vx̄
)
∂ξ̄

∂x̄
+
(
∂u(P )
∂η̄

• vx̄
)
∂η̄

∂x̄

∂uȳ
∂ȳ

=
(
∂u(P )
∂ξ̄

• vȳ
)
∂ξ̄

∂ȳ
+
(
∂u(P )
∂η̄

• vȳ
)
∂η̄

∂ȳ

∂ux̄
∂ȳ

=
(
∂u(P )
∂ξ̄

• vx̄
)
∂ξ̄

∂ȳ
+
(
∂u(P )
∂η̄

• vx̄
)
∂η̄

∂ȳ

∂uȳ
∂x̄

=
(
∂u(P )
∂ξ̄

• vȳ
)
∂ξ̄

∂x̄
+
(
∂u(P )
∂η̄

• vȳ
)
∂η̄

∂x̄

∂uz̄
∂x̄

=
(
∂u(P )
∂ξ̄

• vz̄
)
∂ξ̄

∂x̄
+
(
∂u(P )
∂η̄

• vz̄
)
∂η̄

∂x̄

∂uz̄
∂ȳ

=
(
∂u(P )
∂ξ̄

• vz̄
)
∂ξ̄

∂ȳ
+
(
∂u(P )
∂η̄

• vz̄
)
∂η̄

∂ȳ

(69)

For computing the remaining stress components the following relations between strains and local
displacement derivatives are required. These relations are known from continuum mechanics.

εx̄x̄ = ∂ux̄
∂x̄

εȳȳ = ∂uȳ
∂ȳ

γx̄ȳ ≡ γȳx̄ = ∂ux̄
∂ȳ

+ ∂uȳ
∂x̄

(70)

The remaining stress values σx̄x̄, σȳȳ and τx̄ȳ can be evaluated by inserting the relations from Equation
(70) in the corresponding formulas of Equation (68).

For the local displacement gradient ∂u(P )
∂x̄ it is required to compute three additional local displacement

derivatives. Therefore following relations between strains and local displacement derivatives will be
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3 Discretization in 3-D

necessary.

εz̄z̄ = ∂uz̄
∂z̄

γx̄z̄ = ∂ux̄
∂z̄

+ ∂uz̄
∂x̄

γȳz̄ = ∂uȳ
∂z̄

+ ∂uz̄
∂ȳ

(71)

Furthermore, applying Hook’s law yields:

εz̄z̄ = 1
E

[σz̄z̄ − ν(σx̄x̄ + σȳȳ)]

τx̄z̄ = G · γx̄z̄
τȳz̄ = G · γȳz̄

(72)

Then, inserting the formulas of Equation (71) into the corresponding ones of Equation (72), rearranging
and using the stress values, which have already been computed, results in:

∂uz̄
∂z̄

= 1
E

[σz̄z̄ − ν(σx̄x̄ + σȳȳ)]
∂ux̄
∂z̄

= τx̄z̄
G
− ∂uz̄

∂x̄
∂uȳ
∂z̄

= τȳz̄
G
− ∂uz̄

∂ȳ

(73)

Now, all local stress values and displacement derivatives have been evaluated and analogous to Sec-
tion 2.3.5 they can be gathered in the corresponding local pseudo-stress vector σ̄̄σ̄σ(P ) and the local
displacement gradient ∂u(P )

∂x̄ for transformation into the global system which will be introduced next.

3.6.4 Transformation from local to global stress vectors and displacement gradients

The transformation from local stresses σ̄̄σ̄σ(P ) to global stresses σσσ(P ) can be written as follows.

σσσ(P ) = Tσσ̄̄σ̄σ(P ) (74)

where Tσ denotes the transformation matrix. Its entries are composed of the vector entries of vx̄, vȳ
and vz̄ which describe the direction of the local orthogonal coordinate system (x̄, ȳ, z̄).

Tσ =



v2
x̄,1 v2

x̄,2 v2
x̄,3 2vx̄,1vx̄,2 2vx̄,2vx̄,3 2vx̄,1vx̄,3

v2
ȳ,1 v2

ȳ,2 v2
ȳ,3 2vȳ,1vȳ,2 2vȳ,2vȳ,3 2vȳ,1vȳ,3

v2
z̄,1 v2

z̄,2 v2
z̄,3 2vz̄,1vz̄,2 2vz̄,2vz̄,3 2vz̄,1vz̄,3

vx̄,1vȳ,1 vx̄,2vȳ,2 vx̄,3vȳ,3 vx̄,1vȳ,2 + vx̄,2vȳ,1 vx̄,2vȳ,3 + vx̄,3vȳ,2 vx̄,1vȳ,3 + vx̄,3vȳ,1
vȳ,1vz̄,1 vȳ,2vz̄,2 vȳ,3vz̄,3 vȳ,1vz̄,2 + vȳ,2vz̄,1 vȳ,2vz̄,3 + vȳ,3vz̄,2 vȳ,1vz̄,3 + vȳ,3vz̄,1
vx̄,1vz̄,1 vx̄,2vz̄,2 vx̄,3vz̄,3 vx̄,1vz̄,2 + vx̄,2vz̄,1 vx̄,2vz̄,3 + vx̄,3vz̄,2 vx̄,1vz̄,3 + vx̄,3vz̄,1


(75)

Global pseudo-stress vectors σσσ(P ) may be rearranged into global Cauchy-stress tensors σσσ∗c(P ) in the
same manner as explained in Section 2.3.5. A detailed explanation of stress transformation can be
found in Reference [3].
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Finally, the transformation from local displacement gradients ∂u(P )
∂x̄ into global displacement gradients

∂u(P )
∂x can be written as:

∂u(P )
∂x = LT ∂u(P )

∂x̄ L (76)

where L refers to a rotational matrix comprised of the unit vectors vx̄, vȳ and vz̄ and LT is the
transposed matrix of L. The rotational matrix L is:

L =

vx̄,1 vx̄,2 vx̄,3
vȳ,1 vȳ,2 vȳ,3
vz̄,1 vz̄,2 vz̄,3

 (77)

Also global displacement gradients may be rearranged into global pseudo-strain vectors εεε(P ) analogous
as explained in Section 2.3.5. The transformation from local into global displacement gradients is also
outlined in Reference [2].
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4 Test examples

In order to test the implemented BEM-application four test examples were created to compare the
numerical results (BEM-results) with either a reference solution or an analytical solution. By choosing
the test examples attention was paid to use both quadrilateral elements with linear ansatz order and
quadrilateral serendipity elements with quadratic ansatz order, flat and curved elements and finite and
infinite domains to cover all possible error sources and to guarantee that the application is running
smoothly. Thus, the following four test examples were chosen to be investigated closer:

• Compression test in 3D

• Cantiliver beam in 3D

• Thick walled pressurized cylinder in 3D

• Tunnel in 3D

In what follows the results of these test examples will be analysed and discussed.

4.1 Compression test in 3D

4.1.1 Introduction

The simplest test which can be carried
out in 3D is a compression test. Figure
9 shows the cuboid which is used in this
example. It is 0.5m in length (Lx), 0.8m
in width (Ly) and 1.5m in height (Lz) and
it is subjected to a pressure pz = 1kPa.
The cuboid’s base is restraint in such a
way that the cuboid can expand or con-
tract freely due to a load applied on the
top. The Young’s modulus E is 5[kPa]
and the Poisson’s ratio ν is 0.25. For ob-
taining numerical BEM-results the surface
is decomposed into quadrilateral elements
with linear ansatz order. The initial mesh
consists of one element per face. Then,
mesh refinements are done by halving each
element side of the previous mesh result-
ing in four times more elements per refine-
ment. In this example three meshes are
used: "mesh 1", "mesh 2" and "mesh 3"
which consist of six, 24 and 96 elements,
respectively. Finally, the orange dashed
line m in Figure 9 which runs from the
centre of left face to the centre of the right
face is the line along which interior results
are calculated.

x

y

z

m

pz = 1[kPa]

p

xp
yp

zp

Lx = 0.5

L
z

=
1.

5

Ly
= 0.8

Fig. 9: Compression test in 3D
(dimensions in [m])
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4.1.2 Analytical Solution

In this example the analytical solution is known. It can be obtained from Hook’s law. Since no shear
stresses are acting on the cuboid only normal stresses have to be considered. The normal strains εxx, εyy
and εzz for any point p of the cuboid can be calculated as follows (shear strains γxy = γxz = γyz = 0).

εxx = 1
E

[σxx − ν(σyy + σzz)]

εyy = 1
E

[σyy − ν(σxx + σzz)]

εzz = 1
E

[σzz − ν(σxx + σyy)]

(78)

As there are no normal loads acting in x and y direction the corresponding normal stresses are zero
(px = σxx = 0 and py = σyy = 0). Thus, Hook’s law can be simplified and the deformations uxp , uyp
and uzp in each direction for a point p within the cuboid can be calculated as follows:

εxx = − ν
E
σzz , uxp = εxx · xp

εyy = − ν
E
σzz , uyp = εyy · yp

εzz = 1
E
σzz , uzp = εzz · zp

(79)

where xp, yp and zp are the cartesian coordinates of a point p as shown in green in Figure 9 for an
arbitrary point.

The stresses at every point in the cuboid are constant. Only compressive stresses σzz = pz = 1kPa
arise.

The maximal displacements ux,max, uy,max and uz,max in each direction of the cuboid can be obtained
by inserting the corresponding dimensions Lx, Ly and Lz for xp, yp and zp in the formulas of Equation
(79). From that the total lengths Lx,tot, Ly,tot and Lz,tot can be derived. Moreover, considering that
the load pz acting against the positive z-direction (pressure load), which means that the stress σzz = pz
has a negative algebraic sign, yields:

Direction Original length Li Strain εii deformation ui,max Total length Li,tot
i [m] [%] [m] = Li + ui,max [m]
x 0.5 5 0.025 0.525
y 0.8 5 0.040 0.840
z 1.5 -20 -0.300 1.200

Tab. 1: analytical solution for strains and displacements of the compression test

Figure 10 shows the original shape of the cuboid and the deformed shape after the load pz is applied
on the cuboid’s top face. The original shape is coloured grey and the deformed shape is coloured
black.
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Fig. 10: original shape (grey) and deformed shape (black) of the cuboid

4.1.3 Boundary results

Figures 11 to 14 display boundary results obtained with the BEM-application using the coarsest mesh
("mesh 1"). The figures show deformations in each direction (ux, uy, uz) and the normal stress in
z-direction σzz.

As can be seen from the figures the deformations increasing or decreasing linearly as expected from
the analytical solution in Equation (79). Also the maximal and minimal values coincide with those of
the analytical solution in Table 1. Moreover the stress σzz is constant throughout the boundary and
the value again coincides with that of the analytical solution. Thus, in this example the exact solution
at the boundary can already be obtained with the BEM by using the coarsest mesh. This is because
it is a linear problem.

Regularization of nearly singular integrals for the Boundary Element Mehtod 28



4 Test examples

Fig. 11: deformation ux [m] Fig. 12: deformation uy [m]

Fig. 13: deformation uz [m] Fig. 14: normal stress σzz [kPa]
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4.1.4 Influence of limited subregions on non-regularized interior results

The accuracy of non-regularized interior results near the boundary is highly dependent on the number
of subregions in ξ- and η- direction. On the basis of what is discussed in Sections 3.3.3 and 3.4 this
now is applied to a concrete example and discussed in what follows. Therefore, displacements uz and
stresses σzz along line m (orange dashed line in Figure 9) were numerically computed for all meshes
and with certain limiting numbers of subelements. The results are depicted in Figures 15 to 17 which
also include the analytical solutions for comparison. Since the effect is prominent near the boundary,
only results of the first 0.05m of line m starting from the left boundary are shown in the figures.

Approaching the boundary and comparing the numerical results with the analytical solution, it can
be figured out from the graphs that at a certain proximity to the boundary inaccuracies of numerical
results become unacceptable. The distance between the point where inaccuracies of numerical results
become unacceptable and the boundary is decreasing the higher the limiting numbers of subregions
in ξ and η direction are. This is because of the reduction of the integration error due to a denser
distribution of Gauss points which can capture the influence of the singularities of the fundamental
solutions better. The accuracy of interior results is not only dependent on the number of subregions
but also on the order of the singularities of the fundamental solutions. In contrary to stress results a
point p can be brought closer towards the boundary without displacement results becoming inaccurate
since the singularity order of the fundamental solutions in the SDI (U(p,Q), T(p,Q)) is one degree
lower as the singularity order of their counterparts in the SSI (S(p,Q), R(p,Q)). This, for example,
can be seen in Figure 16 when comparing the distributions of uz and σzz obtained with ten subregions
in maximum (red lines in the graphs). Displacements uz already coincides with the analytical solution
from a distance of about 0.02m from the boundary whereas stresses σzz only coincides with the
analytical solution from a distance of about 0.03m from the boundary. Thus, more subelements would
be required to obtain the same accuracy for stresses. Furthermore, assuming the same limiting number
of subelements and results are accepted for the same error margin, the finer a mesh the closer a point
p can be moved towards the boundary. This can be explained by the fact that the maximal number
of subelements is valid for each element which generally results in more subregions available the more
elements are used for the discretization of domains. Additionally, boundary results would become more
accurate when taking finer meshes which consequently leads to better interior results too. Moreover,
discretization errors would be minimized. However, these facts are obsolete in this example as already
numerical results obtained with the coarsest mesh ("mesh 1") agree with the analytical solution and
no discretization errors arise for the cuboid.

Summing up it can be said that interior results near the boundary obtained from the standard,
non-regularized Somigliana Identities hardly will become accurate within a certain proximity to the
boundary whether by increasing the number of subelements nor by taking finer meshes or applying
both. Additionally, such measures would lead to vast increases in computation times. Thus, regular-
ization of the Somigliana Displacement and Stress Identities is inevitable to achieve accurate interior
results near boundary within an tolerable computation time.
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Fig. 15: mesh 1 (six elements): deformation uz and stress σzz
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Fig. 16: mesh 2 (24 elements): deformation uz and stress σzz
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Fig. 17: mesh 3 (96 elements): deformation uz and stress σzz
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4.1.5 Regularized interior results

Now the regularized interior results will be discussed briefly. The following figure (Figure 18) sketches
two graphs showing numerical results for the displacement uz and the stress σzz again along the line
m, which connects the centres of the left and right face of the cuboid as highlighted in orange in
Figure 9. Both the non-regularized (standard) and the regularized formulations of the Somigliana
Displacement and Stress Identities were used to compute numerical results. To see in detail what
happen to numerically determined displacements uz and stresses σzz only results for the first 0.02m
of line m starting from the left face of the cuboid are depicted. For comparison, the graphs also
include the analytical solutions. Numerical results were obtained for the coarsest mesh which consists
of six elements ("mesh 1"). Moreover, the limit of subelements in both ξ- and η- direction for the
non-regularized BEM-results was set to 50.

What stands out immediately in the graphs is that both displacements uz and stresses σzz which were
obtained from the regularized formulations of the Somigliana Identities coincide with the analytical
solutions although the coarsest mesh ("mesh 1") was used to compute those results. This confirms
the general character of the regularized Somigliana Identities as they mitigate the adverse effects of
the singularities on results close to the boundary. Another reason for the excellent coincidence of
regularized results with the analytical solutions is also the accuracy of the boundary results which
agree exactly with the analytical solutions. Thus, the regularizing displacement u(P ) and stress σσσ(P ),
which significantly can influence accuracy of regularized results very close to the boundary, can be
evaluated exactly too in this example. Furthermore, these graphs again emphasize the problem of the
non-regularized results near the boundary as the deviation from the analytical solution is unacceptable
within a certain distance from the boundary.
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Fig. 18: interior results of mesh 1 (6 elements): deformation uz and stress σzz
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4.2 Cantilever beam in 3D

4.2.1 Introduction

The second example deals with a cantilever beam in 3D as depicted in Figure 19. It has a fully
restraint support and it is subjected to a constantly distributed traction load tz = 10kPa acting in
z-direction at the free end. The beam is 5m in length and 1m in height and width. The material
properties are chosen to be E = 100000kPa as the Young’s modulus, ν = 0.0 as the Poisson’s ratio
and G = 50000kPa as the shear modulus, which can be derived by using the relationship between
E, ν and G for homogeneous isotropic materials. In order to compute numerical BEM-results the
geometry is decomposed into equally sized quadrilateral serendipity elements with quadratic ansatz
order. Starting with an element side length of 0.5m the cantilever beam is decomposed into ten
elements on the length and two elements on the width and height resulting in a mesh with 88 elements
("mesh 1"). Then two mesh refinements were carried out by gradually halving each element side as
also applied in the compression test example. This causes the number of elements on the length, width
and height to double for each refinement, and thus, "mesh 2" consists of 352 elements and "mesh 3" of
1408. The Euler-Bernoulli beam theory is considered to be the reference solution in this example. It
is founded on two basic assumptions, namely plane cross-sections remain plane and perpendicular to
the neutral axis after bending. Since this may be best satisfied in the middle of the cantilever beam
the line along which interior stress results are computed is defined at x = xm = 2.5m (orange dashed
line in Figure 19). Moreover, interior displacement results were computed along the neutral axis of
the cantilever beam which coincides with the x-axis.

x

y

z
τz

end load : tz = 10kPa

xm = 2.5m

m

H
=

1m

B = 1m

L = 5m

Fig. 19: Cantilever beam in 3D
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4.2.2 Reference solution

In this example it is obvious to compare numerical results with the solutions of the Euler-Bernoulli
beam theory. Due to simplifications of solid mechanics, such as the assumptions mentioned previously,
it only can be considered as reference solution. Figure 20 shows the model of the cantilever beam used
for the reference solution. Note, the traction load tz = 10kPa is transformed into an equivalent force
Fz = 10kN .

x

z

y

Fz = 10kN

m

cross-section

L = 5m

B = 1mxm = 2.5m

H
=

1m

Fig. 20: model of the cantilever beam

The deflection curve w(x) of a cantilever beam with constant cross-sections which is subjected to a
force Fz at the free end may be computed as follows. Note, the shear deflection (second term in the
equation) is considered as well.

w(x) = Fzx
2

6EIy
(3L− x) + Fzx

κGA
= (80)

where Iy denotes the area moment of inertia about the y-axis, A the area of the cross-section and κ is
the shear deflection constant also known as Timoshenko shear coefficient, which is dependent on the
cross-section’s geometry. κ = 5/6 for rectangular and κ = 10/11 for circular cross-sections.

Assuming a rectangular cross-section in Equation (80) yields:

w(x) = 2Fzx2

EBH3 (3L− x) + 6Fzx
5GBH (81)

In order to compute normal stresses σxx(z) and shear stresses τxz(z) at any cross-section, the distri-
bution of the bending moment My(x) and the shear force Qz(x) has to be evaluated first. For the
given cantilever beam they may written as follows.

My(x) = Fz(x− L)
Qz(x) = Fz = const.

(82)

Now the normal stress σxx(z) and shear stresses τxz(z) can be calculated.

σxx(z) = My(x)
Iy

z

τxz(z) = −Qz(x)Sy(z)
IyB

(83)

Regularization of nearly singular integrals for the Boundary Element Mehtod 34



4 Test examples

where Sy(z) denotes the statical moment of area about the y-axis.

Equation (83) can be evaluated for a rectangular cross-section. This yields:

σxx(z) = 12My(x)
BH3 z

τxz(z) = −3Qz(x)
2BH

(
1− 4 z

2

H2

) (84)

w(x)w(x)w(x)
[m]

My(x)My(x)My(x)
[kNm]

Qz(x)Qz(x)Qz(x)
[kN ]

σxx(z)σxx(z)σxx(z) [kPa] τxz(z)τxz(z)τxz(z) [kPa]

My(x)

Qz(x)

values for x = xm = 2.5m
z

y

0.0162

0.0512-50

-25

+10

+150

-150

-15

L = 5m

xm = 2.5m

B = 1m

H
=

1m

Fig. 21: reference solution of the cantilever beam
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Figure 21 depicts the deflection curve w(x) and the distribution of the bending moment My(x) and
shear force Qz(x) for the given cantilever beam. Moreover, the distribution of normal stresses σxx(z)
and shear stresses τxz(z) over a cross-section are shown where the values are evaluated for the cross-
section at x = xm = 2.5m.

4.2.3 Boundary results

Boundary results for the finest mesh ("mesh 3") are depicted in following figures. Figure 22 shows
the total displacement utot and the corresponding deformed shape and Figure 23 the deformation w
in z-direction. Figures 24 and 25 depict normal stresses σxx and shear stresses τxz, respectively. The
total displacement up,tot at any point p is defined as follows.

up,tot =
√
u2
p + v2

p + w2
p (85)

where up, vp and wp are deformations of point p in x-, y- and z- direction, respectively. Moreover,
vp = 0 throughout the domain and the deformed shape in Figure 22 is depicted with an enlargement
factor of 10.

By comparing the total displacement utot and the deformation w in z-direction it can be seen that the
maximal total deformation utot at the free end is slightly higher than the maximal deformation w in
z-direction at the same location. That is, the total deformation also considers the deformation u in
x-direction due to the curvature of the cross-section (see Equation (85)). Thus, the total deformation
utot would be slightly higher than the corresponding deformation w in z-direction not only at the
free end but also at each cross-section. Furthermore, there is hardly any difference between the
maximal deformation w obtained with the BEM and that of the reference solution which is 0.0513m
and 0.0512m, respectively. In contrary to that, the difference between minimal and maximal normal
stresses σxx computed with the BEM and that of the reference solution is quite big. The minimal
and maximal normal stress σxx according to the reference solution, which can be obtained for the
cross-section at x = 0m (fixed end), is ±300kPa. The minimal and maximal normal stress σxx
computed numerically at the same location is ±323kPa as can be seen from Figure 24. Reasons for
this differences may be that the Euler-Bernoulli beam theory is not valid at the fixed and free ends
and the singular stress behaviour at fixed ends in general. Differences can also be detected for shear
stresses τxz. According to the reference solution shear stresses should not exceed 0kPa at the top and
the bottom of any cross-section and they should be quadratic distributed over the cross-sections with
a minimum of −15kPa in the middle (z = 0m; compare Figure 21). Without showing in detail, the
minimal and maximal shear stresses τxz obtained with the BEM (−16.3kPa and 2.61kPa) only arise
near the loaded free end and may be a result of the discontinuous load transmission in this example.
The differences might be minimized if the traction load tz is applied according to the expected shear
stress distribution τxz(z) of the reference solution. Moreover, numerically computed shear stresses
near the fixed end are not distributed according to the reference solution too as can be seen from
Figure 25. Thus, numerically computed shear stresses vary widely from the reference solution in the
affected regions (fixed and free ends) of the cantilever.

As a resume it can be said that the above described differences in normal and shear stresses near the
fixed and free ends underpin that the line along which interior stress results are obtained is chosen to
be in the middle of the cantilever to achieve results which are comparable with the reference solution.
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This is roughly outlined in the introduction of this example too (see Section 4.2.1).

Fig. 22: deformed shape & tot. displ. utot [m] Fig. 23: deformation w [m]

Fig. 24: normal stress σxx [kPa] Fig. 25: shear stress τxz [kPa]

4.2.4 Interior results

Figure 26 shows the deflection curve w(x) along the neutral axis (x- axis) obtained from the regularized
and standard (non-regularized) formulation of the SDI for the coarsest mesh ("mesh 1"). It also
includes the deflection curve w(x) of the reference solution. By comparing numerical results with the
reference solution it can be seen from the figure that the numerical results already are accurate using
the coarsest mesh. Obviously, there is no difference between the deflection computed numerically and
the reference solution. Only numerical results obtained from the standard formulation of the SDI
become inaccurate near the loaded free end due to reasons discussed in Sections 4.1.4 and 3.3.3. On
the other hand numerical results obtained from the regularized formulation of the SDI are accurate
along the whole neutral axis due to elimination of the adverse influences of the singularities of the
fundamental solutions near the boundary. Unlike expected non-regularized numerical results are not
inaccurate near the fixed end. This is due to the prescribed displacement values (Dirichlet boundary
conditions) to generate the fully restraint face for solving the BIE. Very tiny differences between
numerical results and the reference solution can be obtained by having a closer look on the values. For
example the deflection at x = xm = 2.5m obtained from the BEM-application for the coarsest mesh
is w(xm)BEM = 0.016227m for both the non-regularized and the regularized method whereas the
evaluation of the reference solution at the same point yields w(xm)ref = 0.016225m. By comparing
these values a difference only arise at the fifth significant digit, which may be interpreted as negligibly
small.
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Fig. 26: deflection curve w(x) along the neutral axis for "mesh 1"

Following two figures (Figure 27 and 28) show the distribution of the normal stress σxx and the shear
stress τxz along the z-axis at x = xm = 2.5m (orange dashed line in Figure 19). The numerical results
depicted in these figures are computed using the coarsest mesh ("mesh 1", 88 elements). Obviously,
no difference can be recognized between the numerical results and the reference solution for normal
stresses σxx and hardly any for shear stresses τxz. As expected, the results near the boundary obtained
from the standard formulation of the SSI (non-regularized SSI) are unreliable.
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Fig. 27: normal stress σxx at x = xm = 2.5m
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Fig. 28: shear stress τxz at x = xm = 2.5m
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Differences may be detected by taking a closer look at the interior results as provided in Figures 29
to 31. These figures show the distribution of normal stresses σxx and shear stresses τxz along the first
0.1m of the cross-sectional z-axis starting from the top (z = −0.4 to −0.5m) for "mesh 1", "mesh 2"
and "mesh 3", respectively.

It can be detected from these figures that the deviation between normal stresses σxx obtained from
the regularized formulation of the SSI and those obtained from the reference solution is already very
small for the coarsest mesh ("mesh 1"). However, differences between the shear stresses τxz of the
reference solution and those computed from the regularized SSI are larger for the same mesh as can
be seen in Figure 29. This differences gradually decreasing the finer the mesh will be until hardly
any or no differences arise for the finest mesh which results are displayed in Figure 31. Note also,
the anomaly of regularized shear stresses τxz close to the boundary for "mesh 1" and "mesh 2", which
may result due to inappropriate boundary results for shear stresses. Analogous to the improvement
of normal stresses also this anomaly gradually disappears the finer the mesh will be, and thus, it do
not occur for the finest mesh as can be seen in Figure 31. Moreover, the results of the non-regularized
method are quite unreliable, above all very near the boundary. Note, the jagged curves of this results,
which do not become quite better for finer meshes and the big inaccuracies of the results very near
the boundary which are stronger than that obtained in the previous example (compression test). The
higher complexity of this example may be the reason for that. Another reason may be that more
subelements would be necessary to smooth the curve in the moderate jagged sections and to mitigate
the adverse impacts of the singularities of the fundamental solutions. Such behaviours do not occur
for regularized results which curves are smooth, also near the boundary. Note, non-regularized results
were obtained with a limit of 50 subelements per element in this example.

In the end it can be said that for coarse meshes normal stresses obtained from the regularized formu-
lations of the SSI tend to agree better with the reference than shear stresses, but if the discretization
of the cantilever is sufficiently fine also shear stresses agree very well with the reference solution. Fur-
thermore, hardly any or no differences between numerical results of both methods, regularization and
standard formulation of the SSI, can be detected in an adequate distance from the boundary which
considers sections of unreliable non-regularized results (jagged sections and sections very close to the
boundary); e.g. no or hardly any differences between regularized and non-regularized normal stress
results σxx can be detected for z ≥ −0.44 in Figure 31.

An example of a cantilever beam in 3D and similar investigations of interior stresses computed from
the regularized SSI also can be found in Reference [2]. However, regularized stress result obtained in
this work are slightly better than in the reference. This may have different reasons whereas the main
reason may be that in the reference quadrilateral elements with linear ansatz order were used for mesh
generation. Another reason may be the different interpretation of the regularizing point P since in
the reference it was assumed to be the closest node of the boundary element in contrary to the closest
point of the element as defined in the present work.
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Fig. 29: "mesh 1": normal stress σxx and shear stress τxz at x = xm = 2.5m
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Fig. 30: "mesh 2": normal stress σxx and shear stress τxz at x = xm = 2.5m
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Fig. 31: "mesh 3": normal stress σxx and shear stress τxz at x = xm = 2.5m
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4.3 Thick walled pressurized cylinder in 3D

4.3.1 Introduction

The third example is a thick walled pressurized cylinder as shown in Figure 32. It is subjected to
an uniform internal pressure pi = 1MPa and no external pressure (pe = 0). The inner radius of the
cylinder is taken to be ri = 1m and the outer (external) radius re = 2m. This yields a cylinder wall
thickness t = re − ri = 1m. The cylinder is made of steel with E = 200000MPa as the Young’s
modulus and ν = 0.3 as the Poisson’s ratio. Due to double symmetry a quarter cylinder of length
L = 1m was cut out to compute numerical results. This can be seen in the right sketch of Figure 32.
Plane strain conditions are assumed. As a consequence, Dirichlet boundary conditions as highlighted
in blue in Figure 32 were chosen in such a way that the quarter cylinder can deform freely in radial
direction while the deformations in y-direction are restraint. Quadrilateral serendipity elements with
quadratic ansatz order were used to discretize the boundary of the domain, since the discretization
error for this curved boundary is far smaller when using these elements rather than quadrilateral
elements with linear ansatz order. Based on the mesh with ten elements as indicated in the right
sketch of Figure 32, mesh refinements were carried out by dividing each element of the previous mesh
into four elements whereby each previous element side is halved. This causes the number of elements
to quadruple for each refinement. Thus, the meshes created in this example are consisting of 40 ("mesh
1"), 160 ("mesh 2") and 640 ("mesh 3") elements. The bold orange dashed line m in the right sketch
of Figure 32, which is located at y = ym = 0.5m at an angle θ = 22.5◦, indicates the line along which
interior results are calculated.

The same example in 2D also can be found in Reference [2].
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Fig. 32: Thick walled pressurized cylinder in 3D
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4.3.2 Analytical solution

For thick walled cylinders such as long high pressure hydraulic pipes an analytical solution known as
Lame’s equations can be derived by assuming plane strain conditions. Moreover, an axis-symmetry
about the y-axis is considered and the differential equations of stress equilibrium may be solved in
polar coordinates. Hence, the radial deformation ur(r) for thick walled cylinders (inner radius ri and
outer radius re) subjected to an uniform internal and external pressure (pi and pe) may be written as
a function of the variable radius r (ri ≤ r ≤ re):

ur(r) = 1 + ν

E

(
(1− 2ν)r

2
i pi − r2

epe
r2
e − r2

i

r + r2
er

2
i (pi − pe)
r2
e − r2

i

1
r

)
(86)

where the pressures pi and pe have to be considered with positive sign. A negative sign for loadings
would mean that the thick walled cylinder is subjected to tensile loadings as would arise at the inside
when putting a cylindrical thick walled pipe under vacuum. Because of symmetry, no tangential
deformations uθ arise and the axial deformation ua ≡ uy = 0 due to the assumption of plane strain
conditions. The principal radial stress σrr(r) and the principal tangential stress σθθ(r), also known
as circumferential or hoop stress, are also found to be functions of the variable radius r, whereas the
axial stress σaa ≡ σyy is constant:
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i

= const.

(87)

Note, radial stresses σrr(r) always are compressive for pressurized thick walled cylinders while tan-
gential stresses σθθ(r) may be tensile or compressive dependent on the load situation of the internal
and external pressures pi and pe.

Instead of plane strain conditions plane stress conditions may be assumed as it would be the case
for thick walled cylindrical pressure vessels. This does not change anything for radial and tangential
stresses σrr and σθθ. That is, the corresponding formulas in Equation (87) are valid for plane stress
conditions, too. But, the radial deformation ur(r) is different from that based on plane strain condi-
tions and an axial deformation ua(y) as a function of the y-coordinate arises instead of the axial stress
σaa (σaa = 0):

ur(r) = 1− ν
E
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(88)

In this example plane strain conditions are assumed as can be seen from the choice of the Dirichlet
boundary conditions in Figure 32 which do not allow the cylinder to deform in axial direction (y-
direction). Thus, Equations (86) and (87) are chosen to be the appropriate analytical solution for
this problem. These equations further can be simplified for thick walled cylinders which are subjected
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to internal pressure pi only (pe = 0). Simplification of the radial deformation ur(r) (Equation (86))
yields:

ur(r) = 1 + ν

E
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(1− 2ν) r2

i pi
r2
e − r2

i

r + r2
er

2
i pi

r2
e − r2

i

1
r

)
(89)

The radial, tangential and axial stresses, σrr(r), σθθ(r) and σaa, in Equation (87) can be simplified as
follows:

σrr(r) = pir
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(90)

where the tangential stress σθθ always is tensile in case thick walled cylinders subjected to internal
pressure pi only.

Figure 33 provides the distribution of radial, tangential and axial stresses, σrr(r), σθθ(r) and σaa, and
the distribution of radial deformations ur(r) within the wall of a thick walled cylinder subjected to
internal pressure pi only. For the given cylinder problem, values were computed at the inner and outer
radius ri and re as well as at the mean radius rm = (re + ri)/2 = ri + t/2 = 1.5m.

z

x
ri

re

rm

pi

pe = 0

σθθ(r)

σrr(r)

ur(r)

σaa

6.06̇ · 10−6

7.07̇ · 10−6

9.53̇ · 10−6

0.20

−
1 −
0.

2̇5̇
9̇

1.
6̇

0.
9̇2̇

5̇

0.
6̇

Fig. 33: distribution of σrr(r), σθθ(r) and σaa (values in [MPa]) and ur(r) (values in [m])
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4.3.3 Boundary results

Following figures provide numerical boundary results of the given thick walled cylinder. They are
computed with the finest mesh ("mesh 3"). Figure 34 depicts the radial stress field σrr, Figure 35 the
tangential stress field σθθ, Figure 36 the axial stress field σaa and Figure 37 the radial deformation
field ur.

Fig. 34: radial stress σrr in [MPa] Fig. 35: tangential stress σθθ in [MPa]

Fig. 36: axial stress σaa in [MPa] Fig. 37: radial deformation ur in [m]
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As can be seen from these figures, numerical results agree very well with the analytical solution.
Only numerically computed axial stresses σaa in Figure 36 do not seem to agree quite well with the
analytical solution at the first sight. But, the values of the colour scale indicate that the numerical
results just slightly vary around the expected constant axial stress of the analytical solution which
is σaa = 0.2MPa. By comparing the values of numerically computed radial stresses σrr, tangential
stresses σθθ and radial deformations ur at the inside and outside of the quarter cylinder with the
corresponding ones in Figure 33 hardly any or no differences between numerical and analytical results
may be detected. In general, also their distribution corresponds to those of the analytical solution
since it is recognisable by the colour gradients that the results, as they do in the analytical solution
too, increasing or decreasing faster near the inside than near the outside of the cylinder. (Compare
Figure 33 with Figures 34, 35 and 37).

Boundary results for the same example calculated in 2D can be found in Reference [2] as well.

4.3.4 Interior results

The next figures provide an overview of interior results evaluated with the finest mesh ("mesh 3")
along line m which is indicated by the bold orange dashed line in Figure 32. Figure 38 shows radial
stresses σrr, Figure 39 tangential stresses σθθ and Figure 40 radial deformations ur. Additionally, the
corresponding distribution of the analytical solution is displayed in each graph for comparison.

As is evident from these figures, both numerical computed displacements and stresses agree very well
with the equivalent analytical solution. Nevertheless, some small deviations may be detected by having
a closer look at the results as outlined in the next section and, as usual, non-regularized results become
inaccurate close to the boundary due to the singular behaviour of the fundamental solutions.
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Fig. 38: radial stress σrr along line m
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Fig. 39: tangential stress σθθ along line m
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Fig. 40: radial deformation ur along line m

4.3.5 Convergence study

In this section a convergence study will be shown and discussed. Therefore, numerical results in terms
of absolute differences ε are displayed in following figures. Each figure contains graphs which illustrate
the absolute difference in radial stresses σrr, tangential stresses σθθ and radial displacements ur of one
mesh. Thus, Figures 41, 42 and 43 show results computed using the coarsest mesh ("mesh 1"), "mesh
2" and the finest mesh ("mesh 3), respectively. Moreover, only results near the inside of the cylinder
are plotted in these figures (ri ≤ r ≤ (ri + 0.1m) : 1m ≤ r ≤ 1.1m). The absolute difference εp at any
point p is defined as follows.

εp =
∣∣∣∣∣fp,BEM − fp,analyticalfp,analytical

∣∣∣∣∣ · 100 ... in [%] (91)

were fp,BEM represents the value, which is a stress or displacement value, at any point p evaluated
numerically using the regularized or standard formulations of the Somigliana Identities and fp,analytical
is the corresponding value of the analytical solution.

Generally it can be seen from the figures that the absolute differences ε approaching zero at a certain
distance away from the boundary dependent on the mesh refinement. Furthermore, as already figured
out in the previous example, displacements converging better towards the analytical solution than
stresses. For numerically computed stresses finer meshes are required to achieve the same quality as
for numerical displacement results; e.g. applying the regularized Somigliana Identities for numerical
computation, "mesh 2" is required to obtain a quite equivalent error margin for radial stresses σrr as
for displacements ur computed with "mesh 1" (Compare the corresponding results in Figures 41 and
42). The reason may be that the order of singularities of the fundamental solutions in the SSI is one
degree higher than the order of singularities of their counterparts in the SDI. For regularized stress
results especially the determination of the regularizing stress σσσ(P ) play a role, too. It is recovered
from boundary tractions and displacements which are obtained from the displacement form of the
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BIE as outlined in Section 3.6. This is accompanied by an increasing inaccuracy in the regularizing
stress. A direct evaluation of boundary stresses based on the stress form of the BIE which can be
derived from the SSI might mitigate that problem. Nevertheless, results obtained with the regularized
formulations of the Somigliana Identities near the boundary are very accurate, though some very small
differences above all in tangential stresses σθθ still arise for the finest mesh in Figure 43. In addition
to what is already mentioned above such differences might arise due to the discretization error done
for such a curved domain and even though the regularization mitigates the singular behaviour of
the Somigliana Identities near the boundary very well, small influences of the singularities might not
be excluded. However, these differences would decrease until they are extremely small when using
finer meshes than those used in this convergence study. Moreover, also integration errors may impact
the accuracy of numerical results. They may be reduced by increasing the number of Gauss points.
But, in the end it can be said that with the regularized formulations of the Somigliana Identities
very accurate results can be achieved with the finest mesh since the maximum absolute difference
which is obtained for tangential stresses σθθ very near the boundary is lower than 0.2% and therefore
very small. Differences in radial stresses σrr only may be detected when looking very carefully and
no differences may be recognisable in radial deformations ur computed with the finest mesh. The
graphs also emphasize the inaccuracy of the standard, non-regularized Somigliana Identities near the
boundary as the absolute differences are out of range within a certain distance from the boundary.
Note, the maximal number of subelements in each intrinsic direction was set to 50 as usual.

Error graphs of interior results, similar as depicted in the figures below, can be found in Reference
[2] for the same thick walled cylinder calculated in 2D. The results in the reference show the same
behaviour as in the corresponding figures of this work.
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Fig. 41: "mesh 1" (coarsest mesh, 40 elements): absolute difference in σrr, σθθ and ur
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Fig. 42: "mesh 2" (160 elements): absolute difference in σrr, σθθ and ur
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Fig. 43: "mesh 3" (finest mesh, 640 elements): absolute difference in σrr, σθθ and ur
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4.4 Tunnel in 3D

4.4.1 Introduction

As a last example a circular tunnel (Figure 44) with radius R = 1m which will be driven at a depthH =
1000m measured from the ground surface to the tunnel axis is analysed using the implemented BEM-
application. Excavation induced displacements and stresses around the tunnel will be investigated.
The tunnel will be driven in granite rock having a Young’s modulus E = 80000MPa, a Poisson’s ratio
ν = 0.25 and a specific weight γ = 30kN/m3. The shear modulus G = 32000MPa can be derived from
E and ν. A constant virgin stress state as can be seen in Figure 44 is assumed. The major principal
stress σy is taken to be the vertical compressive in situ stress σv = γ ·H = 30MPa which is the weight
of the overburden. Assuming a lateral earth pressure coefficient at rest k = 0.5 will give the horizontal
compressive in situ stress σh = k · σv = 15MPa which is considered to be the minor principal stress
σx = σz. For numerical calculation the tunnel surface is decomposed into quadrilateral serendipity
elements with quadratic ansatz order. Since no infinite elements are used in the code the tunnel has
closed ends and the length is taken to be L = 20m. Moreover, the boundary of the ground surface will
not have any influence on the results, since the tunnel will be driven at great depth, and therefore,
an infinite extended domain is assumed. Due to this assumption this example verifies the analytical
solutions of the integrals over a boundary at infinity which arise in the regularized formulation of the
Somigliana Identity for infinite domains. The meshes which are used in this example consists of 416
("mesh 1"), 736 ("mesh 2") and 1472 ("mesh 3") elements and are shown in Figures 45, 46 and 47,
respectively. Additionally, interior results are computed along a circlem∗ with radius r∗ = 1.005m and
along a line l∗ as indicated by orange dashed lines in Figure 44. Both are located at z = z∗ = 10m.
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Fig. 44: Tunnel in 3D
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Fig. 45: "mesh 1" - 416 elements

Fig. 46: "mesh 2" - 736 elements
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Fig. 47: "mesh 3" - 1472 elements

4.4.2 Reference solution

Excavation induced stresses and displacements around a circular tunnel may be analysed assuming
plane strain conditions (infinite long tunnel) and using Kirsch’s equations. These equations originally
provide an analytical solution for the elastic stress and displacement distributions around a circular
hole of radius R in a biaxial stressed infinite plate. The equations may be expressed in terms of polar
coordinates (r, θ). The point of interest p is described by the radius r ≥ R and the angle θ as defined
in Figure 48. Thus, the radial displacement ur(r, θ) and the circumferential displacement uθ(r, θ) can
be written as follows:

ur(r, θ) = σvR
2

4rG

[
(1 + k)− (1− k)

(
4(1− ν)− R2

r2

)
cos(2θ)

]

uθ(r, θ) = σvR
2

4rG

[
(1− k)

(
2(1− 2ν) + R2

r2

)
sin(2θ)

] (92)

And the set of equations for stresses is:

σrr(r, θ) = σv
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] (93)
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where σrr(r, θ) refers to radial stresses, σθθ(r, θ) to circumferential stresses (also known as tangential
or hoop stresses) and τrθ(r, θ) to shear stresses. Furthermore, k in Equations (92) and (93) is defined
as the ratio between horizontal and vertical stress, σh and σv. It is the assumed lateral earth pressure
coefficient at rest k = 0.5.

k = σh
σv

(94)
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Fig. 48: biaxial stressed infinite plate or tunnel in 2D

The displacements and stresses in Equations (92) and (93) may be transformed into a cartesian
system (x, y) by applying displacement and stress transformation which use a rotation matrix Q. The
transformation for displacements may be written as follows:

u′ = Q · u →
{
ux
uy

}
=
[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
·
{
ur
uθ

}
(95)

and the stress transformation from the polar system into the cartesian one is:

σσσ′ = Q · σσσ ·QT →
[
σxx τxy
τxy σyy

]
=
[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
·
[
σrr τrθ
τrθ σθθ

]
·
[
cos(θ) sin(θ)
−sin(θ) cos(θ)

]
(96)

Now, by evaluating Equation 95 the displacements ux and uy in x- and y- direction are:

ux = ur · cos(θ)− uθ · sin(θ)
uy = ur · sin(θ) + uθ · cos(θ)

(97)
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The normal stresses σxx and σyy and the shear stress τxy can be obtained by applying the stress
transformation of Equation (96) and appropriate trigonometric identities. Consequently, they may be
written as follows:

σxx = σrr + σθθ
2 + σrr − σθθ

2 cos(2θ)− τrθ · sin(2θ)

σyy = σrr + σθθ
2 − σrr − σθθ

2 cos(2θ) + τrθ · sin(2θ)

τxy = σrr − σθθ
2 sin(2θ) + τrθ · cos(2θ)

(98)

In this example the closed ends of the tunnel might slightly influence the region in the middle of the
tunnel (z = L/2) where numerical interior results will be computed. Thus, plane strain conditions
might not be completely satisfied in that region and therefore, Kirsch’s equations are considered to be
the reference solution for this example (and not the analytical one!).

Table 2 provides displacement and stress values at the boundary (r = R = 1m) evaluated with
the formulas of the reference solution in Equations (97) and (98) for angles θ of 0°, 45°and 90°,
respectively.

θ ux [m] uy [m] σxx [MPa] σyy [MPa] τxy [MPa]
0° -1.17·10−4 0 0 -75.0 0
45° -0.83·10−4 -4.14·10−4 -22.5 -22.5 22.5
90° 0 -5.86·10−4 -15.0 0 0

Tab. 2: evaluated reference solution at the boundary (r = R = 1m) for different anlges θ

4.4.3 Boundary results

Figures 49 to 53 provide boundary results calculated with the finest mesh ("mesh 3"). The displacement
fields ux and uy can be found in Figures 49 and 50, respectively. Figure 51 shows the normal stress
distribution σxx over the boundary, Figure 52 that of the normal stresses σyy and Figure 53 displays
the shear stress field τxy.

These figures clearly show the influence of the closed tunnel ends as the displacements ux and uy
are tending towards zero at the ends due to supporting effects of the rock mass behind while the
compressive normal stresses σxx and σyy are increasing at the closed tunnel ends because of singular
stress behaviour at corners. On the other hand, the contour lines (isolines) of both displacements and
stresses are running quite parallel to the z-axis from a sufficient distance from the tunnel ends which
indicates that plane strain conditions are fairly well satisfied in the region where interior results are
computed. Moreover, value ranges and its location on the boundary in terms of the angle θ can be
obtained from the results depicted in Figures 49 to 53. This more or less allows to compare numerically
determined boundary results with the results of the reference solution provided in Table 2. It shows
that numerically computed boundary results agree quite well with the reference solution, that is, the
relevant value ranges include the corresponding values expected from the reference solution at the
same location; e.g. Table 2 indicates a deformation ux = −1.17 · 10−4 at an angle θ = 0° which
lies within the corresponding value range of −0.00012 to −9.7 ∗ 10 · 10−5 obtained from Figure 49
at the same location (red area); or, as a second example, the same table gives ux = 0 at the crown
(θ = 90°), and obviously there is a contour line in Figure 49 at the corresponding location indicating
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an infinitesimal small value of −1.2 · 10−13 which may be interpreted to be ux = 0 and thus agreeing
with the reference solution.

Fig. 49: displacement field ux [m]

Fig. 50: displacement field uy [m]
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Fig. 51: normal stress field σxx [MPa]

Fig. 52: normal stress field σyy [MPa]
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Fig. 53: shear stress field τxy [MPa]

4.4.4 Interior results along a horizontal line

Figures 54 to 56 provide graphs displaying the distributions of numerically determined interior results
as well as the distributions of the corresponding Kirsch’s solutions along line l∗ which is defined in
Figure 44. The normal stresses σxx and σyy are presented in Figures 54 and 55, respectively, and the
displacements ux are shown in Figure 56. Stresses along this line are principal stresses and therefore,
shear stresses τxy = 0. Furthermore, displacements uy are zero due to symmetry.

The stress distributions in Figures 54 and 55 clearly illustrates the general stress behaviour in the
material (rock) around the tunnel as the stresses σxx and σyy approaching the corresponding far-field
stresses (primary stresses) σx = −15MPa and σy = −30MPa with increasing distance from the tunnel
surface. The same behaviour can be seen for displacements ux in Figure 56 as they have to converge
towards ux = 0 at infinity. Moreover, apart from the inaccuracies of numerical results obtained from
the non-regularized standard formulations of the Somigliana Identities near the boundary, numerical
results agree quite well with the reference solution. However, significant differences between the
reference solution and numerical results arise for displacements ux from a distance of about 0.5m from
the boundary (x > 1.5m). This might be because plane strain conditions are not completely satisfied.
On the other hand, this has little or no influence on stresses since hardly any differences arise between
numerically computed stresses and stresses obtained from Kirsch’s equations in Figures 54 and 55.
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Fig. 54: normal stress σxx along line l∗
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Fig. 55: normal stress σyy along line l∗
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Fig. 56: displacement ux along line l∗

In the next figures the distributions of normal stresses σxx and σyy and displacements ux are depicted
for all meshes and for the first 0.1m along line l∗ measured from the boundary (1m ≤ x ≤ 1.1m). Figure
57 shows numerical results obtained with the coarsest mesh ("mesh 1"), Figure 58 those obtained using
"mesh 2" and Figure 59 depicts the same distributions for the finest mesh ("mesh 3"). For comparison,
graphs of Kirsch’s solutions are included as well.

Apart from the usual inaccuracies of non-regularized results, it can be seen that numerically computed
normal stresses σyy and displacements ux for each mesh slightly, but consequently, differ with the same
order of magnitude from the reference solution while for all meshes numerically computed normal
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stresses σxx agree very well with the reference solution. Nevertheless, the differences in σyy and ux
are very small and still acceptable. This also indicates that the highest level of accuracy already is
achieved for the coarsest mesh and, obviously, integration and discretization errors play a minor role
for the considered meshes since the quality of numerical results do not tend to improve for finer meshes.
Furthermore, as already mentioned previously, this may prove that conditions at the corresponding
region are not completely the ones of plain strain. This may be responsible for the small deviations
between numerical and reference results. Only a longer tunnel with closed ends or the possibility of
using infinite elements will cause that plane strain conditions are satisfied and the differences between
numerical and reference results may decrease.

In the end it can be said that the quality of numerical results is very good and that the implemented
code works for infinite domains, too. This means in particular, that the analytical solutions of the
integrals over the boundary at infinity in Equations (12), (22) and (23) (Sections 2.3.2 and 2.3.4),
which arise in the regularized SDI and SSI for infinite domains, are correct.
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Fig. 57: "mesh 1" (coarsest mesh, 416 elements): normal stresses σxx and σyy and displacement ux
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Fig. 58: "mesh 2" (736 elements): : normal stresses σxx and σyy and displacement ux
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Fig. 59: "mesh 3" (finest mesh, 1472 elements): : normal stresses σxx and σyy and displacement ux

4.4.5 Interior results along a circle very close around the tunnel

Following figures depicts numerical interior results obtained with the finest mesh ("mesh 3") and its
corresponding reference solutions along the circle m∗ with radius r = 1.005m located at z = z∗ = 10m
(orange dashed circle in Figure 44). Every interior point p on the circle m∗ has the same constant
and small distance from the tunnel surface. This thoroughly tests the implemented code whether it is
working properly for interior points p located very close to the boundary. The distributions of normal
and shear stresses σxx, σyy and τxy in terms of the angle θ are depicted in Figures 60, 61 and 62,
respectively. Figures 63 and 64 show the displacement distributions ux and uy along the circle m∗.

First of all these figures clearly illustrates the influence of the different orders of singularities of the
fundamental solutions on interior results obtained from the standard formulations of the SDI and
SSI. The corresponding numerically computed interior displacement results agree very well with the
reference solution whereas the stress results are no longer usable. This is because the singularity order
of the fundamental solutions in the SSI (S, R) is one degree higher than that of their counterparts in the
SDI (U, T). Therefore, for stresses more subelements than for displacements are required to achieve
the same accuracy (see also Section 3.3.3). Note, the number of subelements in ξ- and η- direction was
limited to 50 as for all previous examples. In this case the chosen element subdivision is still accurate
for displacement results but provides inaccurate stress results. Whether the corresponding numerical
displacement and stress results along the circle m∗ are accurate or not could already be expected
when comparing the corresponding results along the horizontal line l∗ in Figure 59. The graphs in
this figure clearly show that displacements ux obtained from the standard formulation of the SDI at
x = r = 1.005m are still accurate and so they are along the circle m∗, while the normal stresses σxx
and σyy obtained from the standard formulation of the SSI are already inaccurate at x = r = 1.005m
which also occur for those stresses along the circle m∗. On the contrary, results computed with the
regularized forms of the Somigliana Identities are accurate for stresses and displacements and they
agree very well with the reference solution. Thus, in this case it is inevitable to apply the regularized
formulation of the Somigliana Identities in order to achieve accurate numerically computed stress
results and also displacements if the radius r is chosen to be even smaller.
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Fig. 60: normal stress σxx along circle m∗
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Fig. 61: normal stress σyy along circle m∗
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Fig. 62: shear stress τxy along circle m∗
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Fig. 63: displacement ux along circle m∗
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Fig. 64: displacement uy along circle m∗

4.4.6 Complementary results

In addition to results having already discussed in this example displacement and stress fields in the
surrounding rock mass and at the boundary of the tunnel are illustrated in the next figures. They
convey a better understanding of how excavation induced displacements and stresses behave around
the tunnel. Therefore, a cross-section at z = 10m and a longitudinal section along the tunnel axis
(z-axis) for computing interior results with the regularized formulations of the Somigliana Identities
are defined. Moreover, only half the length (z ≥ 10m) and half the cross-section (90°≤ θ ≤ 270°)
of the tunnel is displayed due to symmetry. Numerical results were calculated using the finest mesh
("mesh 3"). The displacement fields ux and uy are depicted in Figures 65 and 66, respectively. Figures
67, 68 and 69 provide the normal stress fields σxx and σyy and the shear stress field τxy.

Where recognizable, at the transition from the boundary to the interior of the domain contour lines
(isolines) of the cross-section and the longitudinal section coincide with those of the boundary. This
again shows how accurate interior results near the boundary can be computed when applying the
regularized Somigliana Identities provided that already boundary results are accurate. Note, also the
singular stress behaviour of normal stresses σxx and σyy at the corners of the closed tunnel ends can
be seen clearly in Figures 67 and 68. It already occurs for boundary results and thus continuing for
interior results.
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Fig. 65: displacement field ux [m]
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Fig. 66: displacement field uy [m]
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Fig. 67: normal stress field σxx [MPa]
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Fig. 68: normal stress field σyy [MPa]
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Fig. 69: shear stress field τxy [MPa]
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5 Concluding remarks

The main aim of the present work was to study how regularization of the nearly singular Somigliana
Displacement and Stress Identities for 3-D elasticity problems improve interior results at points close
to the boundary. Therefore, numerical results obtained with the developed BEM-application were
discussed by four examples. For comparison, numerical results with the standard formulations of the
Somigliana Identities were calculated, too. The relevant integral equations including the Displacement
Boundary Integral Equation and its discretizations were described and explained.

The numerical results of the examples investigated in this work clearly illustrates the difference be-
tween the regularized and non-regularized (standard) formulations of the nearly singular Somigliana
Displacement and Stress Identities. Provided that already boundary results are sufficiently accurate,
interior results near the boundary obtained from the regularized formulations show very high accuracy
and excellent stability as expected. On the contrary, interior results obtained from the non-regularized
formulations near the boundary are very inaccurate and therefore useless. Thus, it is inevitable ap-
plying regularization to obtain accurate results close to the boundary. The reason for the excellent
accuracy and stability of interior results near the boundary obtained from the regularized Somigliana
Identities is that regularization almost eliminates the impact of the nearly singular integrals of the
standard Somigliana Identities. Moreover, numerical integration of the regularized formulations of
the Somigliana Displacement and Stress Identity requires no special integration scheme as it does for
the standard formulations. This makes the implementation much easier. The only additional expense
is the determination of the regularizing point P on the boundary and its displacements, strains and
stresses which in particular leads to increasing computation times.
The results of the examples also show no significant difference between both formulations when they
are obtained at points with a sufficient great distance away from the boundary. Thus, regularization
of the nearly singular Somigliana Identities may only be applied for results close to the boundary
when element subdivision for the standard formulations would be necessary. All other interior results
may be obtained from the standard formulations of the Somigliana Identities to make computation
more efficient. This approach would combine the advantages of both formulations of the Somigliana
Identities, namely accurate results near the boundary and decreasing computation times.
It also can be found from the examples that displacements usually converging better than stresses.
This is because boundary displacements are evaluated directly from the displacement BIE, whereas
boundary stresses are recovered by means of Hook’s law from boundary displacements and tractions
and thus becoming more inaccurate. Convergence of stresses may be improved by applying the stress
BIE (or its regularized formulation) to compute boundary stresses directly.
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