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Abstract

Current Earth observation missions employing spaceborne optical sensors acquire a 
vast data volume never available before. Te American Landsat and the European Sen-
tinel-2 mission are of special interest. Teir satellite design represents a good compro-
mise between relatively high geometric resolution and short time intervals between 
images of the same surface region. Trough high-quality georeferencing of the satel-
lite images it is possible to create a time series of measured gray values for a given 
spectral band at pixel-level. Tis thesis explores a novel approach to detect forest dis-
turbances based on these time series. Similar to some existing methods, the normal 
temporal signature of a given spectral band over the course of one year is captured by 
a time series model. For example, the phenological cycle typically encountered in 
forests can be approximated by a sum of trigonometric functions of diferent frequen-
cies and a trend component. Consequently, newly available observations may be com-
pared to a model-based forecast. Abrupt changes of the spectral signature, possibly 
linked to a forest disturbance, are indicated by statistically signifcant deviations be-
tween new observations and the forecast. Regression models together with robust 
least-squares techniques to estimate their parameters are widely used. In contrast, this
thesis investigates the applicability of time series models formulated in state space 
form in conjunction with the Kalman flter. Two distinct advantages of the Kalman fl-
ter approach include the fact that more recent observations have a larger weight on 
the forecast and that the time series model is dynamically updated. Aside from a few 
user-defned tuning parameters, the proposed change detection algorithm is data-
driven. A multi-temporal stack of Landsat surface refectance data is used to imple-
ment a test case regarding storm damage detection. Tree features obtained by apply-
ing the tasseled cap transformation, namely brightness, greenness, and wetness, have 
been chosen as observables. Te test site is located in Baden-Würtemberg, Germany. 
Tree diferent change maps, each based on one of the observables, have been pro-
duced. A limited quantitative evaluation of the change maps based on a ground-truth 
data set describing windthrow areas afer a storm in 2012 has been carried out. Te 
best results are yielded by the wetness change map, where changed pixels were classi-
fed with a producer accuracy of up to 80.6% and a user accuracy of up to 86.1%. 





Kurzfassung

Aktuelle Missionen zur Erdbeobachtung mitels satellitengestützter optischer Senso-
ren, insbesondere das amerikanische Landsat- und das europäische Sentinel-2-Pro-
gramm, liefern eine noch nie da gewesene Datenmenge. Hinsichtlich ihrer Auslegung 
bieten sie einen guten Kompromiss zwischen relativ hoher geometrischer Aufflösung 
und mflöglichst geringem zeitlichen Abstand zwischen aufeinanderfolgenden Aufnah-
men desselben Gebietes. Eine genaue Georeferenzierung der Satellitenbilder ermflög-
licht es, die in verschiedenen Spektralbereichen gemessenen Grauwerte auf Pixelebene
als Zeitreihen darzustellen. Die vorliegende Diplomarbeit beschäfigt sich mit der De-
tektion von Waldschäden mithilfe dieser Zeitreihen. Wie bei bereits existierenden Al-
gorithmen wird der Ansatz verfolgt, den normalen Jahresverlauf einer Spektralsigna-
tur mit einem Zeitreihenmodell zu erfassen. Die für Wald typischen Phänologiekurven
kflönnen z.B. mit einer Summe aus trigonometrischen Funktionen verschiedener Fre-
quenz sowie einer Trendkomponente approximiert werden. In weiterer Folge kflönnen 
neu verfügbare Beobachtungen mit einer Vorhersage auf Basis des Modells verglichen 
werden. Abrupte, z.B. von Sturmschäden verursachte Änderungen der Spektralsigna-
tur werden durch statistisch signifkante Abweichungen zwischen Modellvorhersage 
und Beobachtung signalisiert. Weit verbreitet ist dabei die Verwendung von Regressi-
onsmodellen, deren Parameter mithilfe von robusten Least-Squares-Verfahren ge-
schätzt werden. Im Gegensatz dazu werden in dieser Arbeit State-Space-Modelle und 
Kalman-Filterung eingesetzt. Der Kalman-Filter bietet den Vorteil, dass neuere Beob-
achtungen in der Vorhersage stärker gewichtet und das Zeitreihenmodell dynamisch 
angepasst wird. Der entwickelte Algorithmus arbeitet nach der Defnition von weni-
gen Grundparametern vollautomatisch. Er wurde auf eine historische Landsat-Zeitrei-
he für eine Sturmwurfdetektion im Schwarzwald angewendet, wobei die Komponen-
ten der Tasseled-Cap-Transformation (Brightness, Greenness, Wetness) als Beob-
achtungen dienten. Als Ergebnis wird für jedes prozessierte Band eine Karte ausgege-
ben, in der detektierte Änderungen und das Datum der Signalisierung verzeichnet 
sind. Ein Vergleich mit Referenzdaten eines Sturmwurfs im Jahr 2012 ergab die hflöchs-
te Übereinstimmung mit der Karte der Wetness-Änderungen, wobei die Sturmwurfä-
chen mit einer Produzentengenauigkeit von bis zu 80,6% sowie einer Anwendergenau-
igkeit von bis zu 86,1% erfasst wurden. 
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1 Introduction

Within the feld of remote sensing, the topic of this thesis can be categorized into the 
area of forest monitoring and change detection with the help of spaceborne optical 
sensors. Te presence of the keywords monitoring  and change detection  almost auto-
matically implies that multi-temporal data and time series analysis methods are in-
volved. Te frst of the following sections highlights how this thesis is embedded in 
the remote sensing and time series analysis context. Its objectives are outlined in the 
second section and the introduction concludes with an overview of the thesis’ struc-
ture. 

1.1 Background

High-resolution images of the Earth’s surface acquired by satellites may be considered
as a vast historical archive. Te various satellites of the Landsat program have added 
valuable data to this archive since 1972, and since 2008 all Landsat data is publicly 
available (Wulder et al., 2016). Te long history and relatively high geometric resolu-
tion of 30 meters makes Landsat images very atractive for the purpose of land-cover 
monitoring, because many man-made changes of the Earth’s surface can be captured 
with this kind of resolution, for example agricultural units like felds. With the launch 
of Landsat 8, the newest of the currently operational Landsat satellites, the rate at 
which new images of the same surface region can be acquired has also increased. Sin-
gle images can be joined to a sequence, and if this sequence is sorted by time it is 
called a time series. 

Te extraction of as many information as possible out of these time series is an active 
feld of research within the remote sensing community. Another incentive for further 
development has been ofered when Sentinel-2A was launched successfully in June 
2015. Te Sentinel-2 satellite mission provides data with a spatial resolution of either 
10, 20, or 60 meters depending on the spectral band. Once fully operational, the mis-
sion features two identical satellites which acquire images from opposite sides of the 
same orbit in order to reduce the time interval between consecutive images of the 
same surface area. Indeed Sentinel-2B was launched in March 2017 (Wikipedia, 2018).

Tere already are several operational change-detection algorithms based on time se-
ries analysis. However, the concept of Kalman fltering has been rarely applied in re-
mote sensing contexts so far, but the technique is well established in many other felds
with no apparent connection. Kalman fltering denotes a parameter estimation tech-
nique which yields optimal estimates in a statistical sense. In general the Kalman flter
approach requires the defnition of a dynamic model and an observation model. Te 
observation model on the one hand defnes the relationship of the measurements to a 
set of state variables which cannot be observed directly. For a time series, the state 
variables usually represent the series’ additive decomposition into trend, seasonal, and
long-term cyclical components. Te dynamic model on the other hand describes the 
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1. Introduction

expected temporal evolution of the state variables. Te Kalman flter framework has 
some interesting properties regarding its application to remote sensing time series:

 Te flter operates recursively in two steps:

a) In the time-update step, the states’ evolution from one point in time to the 
next is predicted  based on the dynamic model. 

b) In the measurement-update step, the predicted state estimate is enhanced 
by incorporating newly available observations.

Terefore, all the information of past observations is present in the current 
state estimate and does not have to be kept in memory. 

 Te flter can handle uneven temporal intervals between measurements if the 
dynamic model is formulated in continuous time. Tis way, the problem of 
gaps in the time series due to masked clouds and their shadows is addressed. 
For example, the seasonal phenology cycle typically encountered in forest can 
be modeled using trigonometric functions. 

 Te noise in the fltered time series is reduced. 

 Te flter predictions can be used to identify abrupt structural change in a time 
series. 

1.2 Objectives and structure of the thesis

Te frst objective is to give an account of the current state of the art approaches to 
change-detection based on time series analysis. Along with an emphasis on applica-
tions using Landsat data, methods capable of modeling normal intra-annual variations
are of special interest. Te primary objective of this thesis was to link these current 
approaches to Kalman fltering techniques commonly found in other disciplines and 
investigate their applicability for change-detection in forests. Key requirements for the
intended Kalman flter algorithm include robustness against un-masked clouds and 
shadows, sensitivity to forest damages like windthrow as well as a high level of auto-
mation. Te third and fnal objective is to test the proposed algorithm using a historic 
Landsat time series and evaluate its performance. 

Te thesis is organized in 6 Chapters. Following the introductory Chapter 1, Chapter 2
reviews some of the complexities encountered when working with remotely-sensed 
time series and summarizes the working principles of several existing and operational 
algorithms. Chapter 3 deals with the mathematical background and implementation 
details of a Kalman-flter-based change-detection algorithm. Chapter 4 describes the 
used data set and the results of the feld test are presented and discussed in Chapter 5. 
Concluding remarks and suggestions for future work are given in Chapter 6. 
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2 State of the Art

Tis chapter presents a review of change detection methods based on per-pixel time 
series analysis that have been published in the recent years. Te focus lies especially 
on algorithms capable of processing dense  time series at spatial resolutions of optical  
sensors like the Landsat family or Sentinel-2. In this context, a time series is consid-
ered dense if several valid observations are available within a specifc time period. Be-
fore discussing most common existing methods, a summary of the challenges which a 
change detection algorithm has to address is given. 

2.1 Properties of dense time series acquired with optical sen-
sors

Dense time series acquired with high-resolution optical sensors have a number of 
properties which make them challenging to work with. Additional to noise caused by 
diferent atmospheric conditions and uncertainties in the geometric registration 
process, they include: 

• Seasonality
• Unequal temporal intervals between observations
• Missing observations
• Presence of invalid observations

Each property and its source as well as how it infuences the ability to detect changes 
are discussed in the respective subsections below. Note that the distinction between ir-
regularly spaced and missing observations is important. Consider a sequence of mea-
surements sampled at a constant interval, but with occasionally missing values. Te 
time interval between consecutive observations will always be an integer multiple of 
the basic sampling interval. Tis restriction does not apply to truly irregular time se-
ries. 

2.1.1 Seasonality

Seasonal paterns in remotely sensed time series are primarily caused by the annual 
variations of temperature and rainfall that infuence plant phenology. Efects of the 
Bidirectional Refectance Distribution Function (BRDF) can also add to the seasonal-
ity (Zhu et al., 2012). An analysis of diferent seasonal paterns for a number of 
land-cover/land-use classes based on MODIS NDVI time series is given by Geerken 
(2009). Fourier analysis was applied to the data in order to fnd the dominant frequen-
cies in the annual cycle. Te results indicate that most of the seasonal variation of 
many land cover types can be modeled by using 3 harmonics corresponding to a fre-
quency of 1, 2, and 3 periods per year, without overfting the noise. Dynamic land 
cover types like cropland show larger amplitudes at the higher frequencies whereas 
forest types have the highest amplitude at a frequency of 1 period per year. Hence, 
time series with increased density and well distributed observations over all seasons 
are required to describe the spectral dynamics of diferent land cover types over time. 
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2. State of the Art

An algorithm for change detection has to be able to distinguish between normal sea-
sonal changes and abnormal behavior. 

2.1.2 Unequal temporal interval between observations

Satellites with a regular nadir acquisition scheme usually have a constant revisit cycle,
for example 16 days for Landsat 8, 10 days for Sentinel-2A or 5 days if data from Sen-
tinel-2A and ‐2B are combined. However, with increasing latitude adjacent paths over-
lap and this can be used to increase the density of the time series in certain areas at 
the cost of irregularly spaced observations. Te revisit time could also be increased by 
integrating data from Landsat and Sentinel-2, which is deemed possible by Wulder et 
al. (2016). Because the Sentinel-2 satellites have a diferent repeat cycle, this would 
also lead to irregularly spaced observations. However, many methods used in time se-
ries analysis require a constant sampling interval. In order to use these methods, an 
additional pre-processing step like fltering or interpolation becomes necessary in or-
der to create a regularly-spaced time series. A review and comparison of some existing
interpolation methods is given by Kandasamy et al. (2013). However, this pre-process-
ing may introduce other undesired efects like  smoothing abrupt signal jumps possi-
bly corresponding to a change event.  At spatial resolutions of Landsat or higher, the 
additional computational efort might also be signifcant. Depending on the applica-
tion, the use of more sophisticated time series analysis methods which can handle ir-
regularly spaced observations would be preferable. 

2.1.3 Missing observations

Clouds and cloud shadows as well as snow greatly infuence the refectance of difer-
ent spectral bands (Dozier, 1989; Irish et al., 2006). Terefore they have to be consid-
ered as noise in the data and must be masked, resulting in missing observations in the 
time series. Not all methods used in time series analysis are designed to account for 
missing values. Analogous to the reasons pointed out in Section 2.1.2, a decision be-
tween additional pre-processing to fll the gaps or more powerful time series analysis 
methods capable of handling missing observations must be made. Another aspect of 
the problem regards the amount of cloud and snow cover that has to be expected for 
certain areas on Earth. In the tropical climate zone or northern parts of Europe for ex-
ample, the cloud cover probability is very high (Wylie and Menzel, 1999) and it is 
therefore difcult to obtain dense time series in the frst place. 

2.1.4 Presence of invalid observations

Although there are some powerful algorithms for cloud, cloud shadow and snow 
screening, none of them is absolutely accurate. As a consequence, the presence of out-
liers in the time series must be considered. A reliable change detection method has to 
incorporate a mechanism to avoid confusion between outliers and real changes. 
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2.2 Existing methods and algorithms

A number of studies published recently aimed at assessing the current state of change 
detection methods based on high resolution optical earth observation data. A review 
by Hirschmugl et al. (2017) focused on the mapping of forest disturbances and degra-
dation. Tey concluded “that there are already many methods available for bi-temporal  
change detection from high-resolution data on the one hand and for time series analysis  
from coarse resolution data on the other. Te current main challenge and research devel - 
opment focus is transferring these approaches to high resolution time series. ” 

Without a limitation to forest applications, Zhu (2017) reviewed change detection 
studies based on Landsat time series. Although the number of studies is quite high, the
author observed that “most of the time series studies were only interested in producing  
annual or biannual change maps ” and therefore “tended to select multiple images  
(partly cloudy images) acquired in the same season and the same year to produce cloud- 
free composite images as their inputs. In this way, seasonal diferences caused by solar  
angle diferences and vegetation phenological changes were minimized, and the data vol - 
ume was reduced substantially ”. Te author also noted that newer studies are more 
likely to use a higher amount of images per year acquired in diferent seasons. 

Te conclusions from both reviews as well as an independently conducted literature 
search show that there are few algorithms for change detection which have been ap-
plied to Landsat time series with a high temporal resolution. Many older, established 
methods like the vegetation change tracker (VCT) proposed by Huang et al. (2010) or 
LandTrendr (Kennedy et al., 2010) circumvent the problems outlined in Section 2.1 by 
using annual time series of cloud-free composites. Algorithms capable of modeling the
intra-annual seasonal changes as well as commonly applied pre-processing steps for 
Landsat data are presented in the following sub-sections. 

2.2.1 Pre-processing

Te literature search revealed that there are many pre-processing steps commonly ap-
plied to Landsat data in order to use them as input to time series analysis methods. 
Only images conforming to high-level requirements with respect to radiometric and 
atmospheric calibration as well as geometric registration are suitable for applications 
on a pixel-level. Tese requirements are met by Landsat Surface Refectance (SR) prod-
ucts with processing level L1T. In case of Landsat 4-7 data, the conversion to SR is 
based on the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) 
(Masek et al., 2006). Landsat 8 data is processed to SR using the Provisional Landsat 8 
Surface Refectance Code (LaSRC) (Vermote et al., 2016). To mask clouds, cloud shad-
ows or snow, the Fmask algorithm (Zhu and Woodcock, 2012) is commonly used. 
High-quality geometric registration is achieved by using ground control points and a 
digital elevation model (USGS, 2018). Te temporal consistency of the geometric regis-
tration can be increased even further by employing matching algorithms to a stack of 
images. 
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2.2.2 BFAST

Te Breaks for Additive Season and Trend (BFAST) algorithm was originally designed 
to detect trend and seasonal changes in MODIS 16-day NDVI composites (Verbesselt 
et al., 2010a). It is based on the decomposition of a time series into a trend, seasonal, 
and remainder component. Change detection is performed by fnding breakpoints in 
either of the estimated components. Trough this approach the number, timing, and 
type of changes in historic time series can be determined. A second version employed 
a diferent seasonal model based on harmonic functions which the authors deemed to 
be “more suitable and robust for phenological change detection with satellite image time  
series ” (Verbesselt et al., 2010b). Te next stage in development was BFAST Monitor, “a 
multi-purpose time-series-based disturbance detection approach that identifes and mod - 
els stable historical variation to enable change detection within newly acquired data ” 
(Verbesselt et al., 2012). Initially it was also used with MODIS data, but a variety of 
more recent studies listed in Table 1 demonstrate that BFAST and BFAST Monitor can 
also be applied to Landsat time series to detect both abrupt and gradual change.

Depending on the individual application and test site, the authors adapted the algo-
rithm to their needs. In conclusion, the BFAST algorithms present rather a framework 
than an “out-of-the-box” solution, but the components are fexible and can be adjusted
to diferent requirements. It can handle irregularly spaced and missing observations. 
According to DeVries et al. (2015b), it is also robust to occasional outliers, but tempo-
rally aggregated occurrences such as several consecutively un-masked clouds can be a 
source of error. Additional pre-processing to eliminate the efects of un-masked clouds
or cloud shadows was applied by DeVries et al. (2016, 2015a) and Hamunyela et al. 
(2016). 
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Table  1 : Studies using BFAST or BFAST Monitor with Landsat time series 

Goal and observables Test sites Reference

Monitoring of forest cover loss, NDVI, 
combination with MODIS or rainfall data

Bolivia, tropical 
forest

(Dutrieux et al., 
2015)

Forest monitoring in regions with persistent 
cloud cover, fusion of Landsat NDVI and SAR

Fiji, tropical 
forest

(Reiche et al., 
2015)

Tracking of disturbance-regrowth dynamics 
using all available Landsat data, NDMI

Southern Peru,
tropical forest

(DeVries et al., 
2015a)

Monitoring of small-scale forest disturbances, 
NDVI

Southern 
Ethiopia

(DeVries et al., 
2015b)

Deforestation mapping, sNDVI (spatially 
normalized NDVI, reduced seasonality by 
using spatial context)

Humid/dry 
forest, 
Brazil/Bolivia 

(Hamunyela et al.,
2016)

Mapping of deforestation and degradation, 
various spectral bands and indices, focus on 
correct change classifcation

Southern 
Ethiopia

(DeVries et al., 
2016)

Evaluation of how specifc efects of site and 
radiometric correction afect the accuracy of 
deforestation monitoring when using BFAST 
Monitor

Brazil, Ethiopia, 
Vietnam

(Schultz et al., 
2016)

Forest disturbance detection and change agent 
atribution (windthrow, cleared windthrow, 
bark beetles, and other harvest), tasseled cap 
wetness

Bohemian forest,
Kalkalpen, Tatra

(Oeser et al., 2017)

2.2.3 CCDC

Originally, Zhu et al. (2012) developed an algorithm called Continuous Monitoring of 
Forest Disturbance Algorithm (CMFDA). “Using all the available Landsat ETM+ images 
in two years, models using sines and cosines are ft for each pixel and each spectral band.  
Tese models can predict Landsat images at any date assuming there is not any land  
cover change. ” Change detection is performed by diferencing the predicted and a 
newly acquired image on pixel-level. If the calculated diference of a change index sen-
sitive to forest disturbance crosses a certain threshold for 3 consecutive times, a pixel 
is fagged as changed. Te CMFDA algorithm also incorporates two-stage cloud 
screening where previously un-masked clouds, shadows, and snow can be detected by 
using multi-temporal data. Tis approach was later refned and published separately as
“a new algorithm … for automated masking of cloud, cloud shadow, and snow for multi - 
temporal Landsat images ” (Zhu and Woodcock, 2014a). 

Te change detection part of CMFDA has been further developed to the Continuous 
Change Detection and Classifcation (CCDC) algorithm where the concept is extended
to include more types of land cover beside forest as well as a classifcation frame-
work (Zhu and Woodcock, 2014b). From the beginning, CCDC was designed to work 
with dense Landsat time series and can therefore handle seasonality, missing or irreg-
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ularly spaced observations, and outliers to some extent. Both abrupt and gradual 
changes can be detected. Some further updates to the algorithm are described by Zhu 
et al. (2015). Tey include a mechanism to automatically adjust the complexity of the 
time series model based on the number of available clear observations as well as a 
diferent method to estimate the model parameters that reduces overfting. Some re-
cently published studies employing the CCDC algorithm are listed in Table 2. 

Table  2 : Studies using CCDC with Landsat time series 

Topic Test sites Reference

Investigation of the possibilities for 
monitoring gradual changes using dense 
Landsat time series

Several locations, 
USA

(Vogelmann et al., 
2016)

Analysis of vegetation greenness trends 
considering efects due to land cover change

Guangzhou, 
China

(Zhu et al., 2016)

Analysis of urbanization induced land use 
and land cover change

Atlanta metropo-
litan area, USA

(Fu and Weng, 
2016)

Evaluation of CCDC for use within the 
USGS Land Change Monitoring, Assessment,
and Projection program (LCMAP)

Several locations, 
USA

(Pengra et al., 2016)

Mapping of forest degradation Lam Dong 
Province, Vietnam

(Vogelmann et al., 
2017)

Near-real-time monitoring of insect 
defoliation

Southern New 
England, USA

(Pasquarella et al., 
2017)

2.2.4 Other algorithms

Beside the more widely used algorithms discussed so far, there are also others which 
have been designed for analyses of dense Landsat data. To monitor and map forest dis-
turbances, Brooks et al. (2014) presented “a method that utilizes residuals from har - 
monic regression over years of Landsat data, in conjunction with statistical quality con - 
trol charts, to signal subtle disturbances in vegetative cover. Tese charts are able to detect 
changes from both deforestation and subtler forest degradation and thinning. First, har - 
monic regression residuals are computed afer fting models to interannual training data. 
Tese residual time series are then subjected to Shewhart X-bar control charts and expo - 
nentially weighted moving average charts. Te Shewhart X-bar charts are also utilized in  
the algorithm to generate a data-driven cloud flter, efectively removing clouds and cloud 
shadows on a location-specifc basis. Disturbed pixels are indicated when the charts sig - 
nal a deviation from data-driven control limits. ” Test sites were located in Alabama and 
Mississippi, USA, and the used change index was tasseled cap angle. Tis study devi-
ates from others with respect to the pre-processing. Additional to the conversion to 
surface refectance, a dark object subtraction using band minima was applied. “Te  
dark object subtraction had a signifcant efect in reducing time series noise, since post- 
LEDAPS evaluation of the refectance data revealed that some scenes were uniformly  
brighter or darker than the remainder of the time series. “ Te authors also did not use a 
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cloud mask but fltered out images with a nominal cloud cover higher than 10%. Te 
remaining clouds and shadows were eliminated using the built-in data-driven cloud 
flter. 

Another approach was proposed by Tonfeld et al. (2015) in a study dedicated to com-
pare bi-temporal-, change-trajectory- and time-series-analysis-based methods for 
change detection. Te test site was located in southern Vancouver Island, Canada. All 
available Landsat images with a nominal cloud-cover below 80% were used to create  
time series of the Normalized Diference Moisture Index (NDMI) with a temporal cov-
erage of multiple years. Linear interpolation was performed to create regularly-spaced
observations. To reduce the infuence of un-masked clouds and cloud shadows, Sav-
itzky-Golay fltering was applied. Change detection is based on the computation of a 
statistical measure for a moving window of 365 days. Te authors hypothesize that 
any seasonal efects are leveled out by seting the window size to a full year. Te sta-
tistical measure is used to fnd the most signifcant breakpoint in the time series, thus 
multiple abrupt or gradual changes are not considered in this study. 

2.2.5 Limitations

All algorithms share certain basic concepts, but the individual implementations vary. 
Tey are designed to process large amounts of data in a highly automated way and 
therefore rely on data-driven statistical boundaries for detecting change, although the 
distinct nature and computation of these boundaries is quite diferent. Most of the al-
gorithms handle seasonality through harmonic models based on sines and cosines, but
the methods used to ft them to the data difer. Regarding the limitations of time-se-
ries-analysis-based change detection algorithms, the infuence of the following inter-
dependent parameters has to be considered:

(1) Properties of the input data.  In order to detect a certain type of change, it has to be 
refected by the input data and spectral bands or indices have to be chosen accord-
ingly. Recently, Cohen et al. (2017) have compared forest disturbance maps produced 
from the output of seven diferent change detection algorithms. Among them were 
CCDC and the method proposed by Brooks et al. (2014) the remaining fve only con-
sidered annual time series. One of the conclusions by Cohen et al. (2017) was that 
“Spectral change magnitudes associated with forest disturbance are highly variable, with  
a population likely to be skewed towards lower-magnitude occurrences. Such disturbances 
are challenging to map because they are ofen difcult to distinguish from spectral noise  
common in temporal trajectories of spectral signals. ” 

(2) Te number of frequencies used in the harmonic model.  Te complexity of the sea-
sonal patern is dependent on the climate zone, the land cover class and the spectral 
band or index. To include higher frequencies, a higher number of clear observations 
distributed over all seasons is required. Tis may be a major limitation for areas with 
persistent cloud or snow cover. More complex models are also more sensitive to noise 
and outliers, hence the risk of overfting may increase in spite of using robust estima-
tion methods. 
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(3) Setings regarding the computation of statistical boundaries.  Te discussed algo-
rithms have certain tuning parameters which control the thresholds for detecting 
change. To make the algorithm more robust to noise and outliers, these thresholds 
have to be increased. As a consequence, changes with a low magnitude cannot be de-
tected.
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3 Methods

Tis chapter covers the mathematical basics of the time series analysis method which 
has been applied in this thesis. Te frst section contains remarks on the nature of the 
underlying data and introduces some basic terms and notation. Te idea of decompos-
ing a time series into several components is discussed in the second section, followed 
by an introduction to stochastic processes. Based on these concepts, the structural 
time series models outlined in Section 3.4 present the core of this chapter. Te penulti-
mate section deals with regression models and a technique for robust parameter esti-
mation with respect to the presence of outliers in the data. Te chapter concludes with
a description of the implemented change detection algorithm. 

3.1 Preliminary remarks

All time series investigated within this thesis are generated by using multi-temporal 
stacks of Landsat images as data source. Every image of the stack is geometrically reg-
istered to a common spatial grid and provides a set of observations including multiple 
spectral bands as well as any indices derived from them. Terefore, the available ob-
servation data can be organized in a four-dimensional array defned according to Ta-
ble 3.

Table  3 : Array representation of observations 

Dimension Interpretation Length

1 Time m 

2 Spectral bands and indices n 

3 Spatial grid rows, extent north to south n rows 

4 Spatial grid columns, extent east to west n cols 

For every combination of band, row and column, a sequence of m  observations can be 
extracted, meaning that the observation array represents a total of n ·n rows ·n cols  time se-
ries. Every one of these sequences could be treated separately as univariate  time se-
ries. However, the nature of the data also suggests a multivariate  approach where sev-
eral series, for example all bands for a given row and column, are modeled jointly in 
order to take correlations between them into account. With the acquisition date of an 
image referred to as epoch , the notation used throughout the following sections is as 
follows: 

k … epoch index, k =1,2 ,…m
z k … scalar observation made in epoch k (univariate case)
zk … vector of observations made in epoch k (multivariate case)
t k … epoch time
Δt … time interval between consecutive epochs, Δt =t k −t k − 1
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Te sofware modules implemented in this thesis are limited to univariate time series 
models, but several bands or indices may be processed in parallel to make use of the 
diferent information content. Terefore most of the content in this chapter is centered
on univariate time series. In theory though, the presented methods are also capable of 
supporting true multivariate models, but the complexity of the implementation would 
have been beyond the scope of this thesis. 

3.2 Additive decomposition of a time series

A widely used starting point for the development of time series models is to consider 
each observation zz  as the realization of a random variable Zz , which is itself a sum of 
four components: 

Z k =T k + C k + S k + R k , k =1,2 ,…m (3.1)

Te frst two terms on the right hand side of equation (3.1) are called trend  and cycle  
respectively. Both refect non-random long term movements in the series and while 
the trend may take a variety of shapes, the cycle component is explicitly defned as a 
recurring patern of growth and decline. Furthermore, Sz  is called the seasonal  compo-
nent and refects non-random short term cyclical paterns which repeat themselves 
more or less every year. Te remaining non-systematic deviations lef in the series are 
captured by the irregular  component Rz , which is a random variable used to model all 
kinds of random infuences (Falk et al., 2012, sec. 1.1).

Additive decomposition models like (3.1) describe  the series in terms of components 
which cannot be observed directly. One of the advantages of this strategy is that each 
component of interest can be analyzed and interpreted separately. Additionally, the 
complexity of the model can be scaled simply by adding or removing components in 
order to fnd a model which is consistent with the data, without being unnecessarily 
over-specifed. Once an appropriate model for a given time series has been found, it 
can be used to predict  future observations (Harvey, 1989, chap. 1). 

3.3 Stochastic processes

Stochastic processes are a basic element of time series analysis. Tis section is based 
on Gibbs (2011, sec. B.3) and Harvey (1989, sec. 2.3.1, 2.4.1, 9.1.1) and discusses the 
fundamentals needed to later defne the properties of structural time series models in 
Section 3.4. 

Let the sequence of values y _1, y _2, … yy  be a sample of the output of a univariate sto-
chastic process. Using the expectation operator E(‧), some well-known statistical quan-
tities describing the sequence include the mean 

E (y k)= μ k , (3.2)

as well as the autocovariances

E [(y k − μ k)(y k − ℓ − μ k)] =γ k(ℓ ) , ℓ =0,1,… (3.3)
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where γz(0) equals the variance

E [(y k − μ k)
2 ] =γ k(0)= Var (y k ). (3.4)

Te subscript k  indicates that a variable may vary with time. When the current value 
yz  only depends on the previous value yz __1 and a disturbance term qz,  it is an autore-
gressive process characterized by the equation 

y k = φ y k − 1+q k , k = 1,2 ,…m , (3.5)

where φ is a parameter. Te statistical properties of the process are determined by the 
defnition of the disturbance term and the value of φ. Here it is assumed that the dis-
turbances are white noise, which is a sequence of serially uncorrelated random vari-
ables with a constant mean of zero and constant variance. Te value of the parameter
φ determines whether the process is stationary or not. If |φ| < 1, it is said to be wide- 
sense stationary  and its mean and autocovariances are independent of time. Conse-
quently, the said quantities can be estimated from a single sample (or realization) of 
the process. Te estimators are given by the sample mean

μ̂ =ȳ = 1
m ∑

i =k

m

y k , (3.6)

and the sample autocovariances

γ̂ ( ℓ )=c (ℓ )= 1
m ∑

k =ℓ + 1

m

(y k − ȳ )(y k −ℓ − ȳ ) , ℓ = 0,1,… (3.7)

where c (0) is the sample variance 

γ̂ (0)= c (0)= 1
m ∑

k =1

m

(y k − ȳ )
2 . (3.8)

Te defnition of strict stationarity  requires additionally that the joint probability dis-
tribution of two samples taken at diferent time periods remains identical. 

Te only non-stationary stochastic process with practical importance for the time se-
ries models discussed in this thesis is the random walk,  designated by φ  = 1. Assuming
that the random walk has started somewhere in the past, its current value may also be 
writen as 

y k =∑
j =0

∞

q k − j , (3.9)

thus it can be interpreted as the cumulative sum of white noise. Figure 3.1 shows three
realizations of autoregressive processes with varying values of φ,  including a random 
walk. In all cases the value at k  = 0 is set to zero and the same realization of normally 
distributed white noise with mean zero and unit variance is used as disturbance. Te 
diferent evolutions of the processes are therefore only caused by the value of φ.  
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Figure  3.1 : Tree realizations of autoregressive stochastic processes. If  |φ| > 1, the process  
is stationary. Te non-stationary process designated by φ  = 1 is called random walk. 

Te drawback of (3.5) and (3.9) is that they are only valid if the sampling interval
Δt   = tz  – tz __1 is constant. In order to handle unequal temporal intervals between ob-
servations, the process can also be modeled in continuous time. In case of the random 
walk, the corresponding continuous-time equivalent is known as Wiener  or Brownian  
motion  process characterized by the diferential equation 

d
dt

y (t )=q c(t ) , (3.10)

where qq_c(t ) is continuous-time white noise with mean zero and variance Qq_c.  White 
noise inputs in diferential equations have to be treated specially because the defni-
tion of the integral or derivative of a function f [qq_c(t ), t ] is not unique. Both Harvey 
(1989) and Gibbs (2011) point to Jazwinski (1970) for further information. Te conse-
quence is that Equation (3.10) is not valid in a strict sense, but it is still used because of
its demonstrative form, which indicates that the output of a Wiener process W (t ) is in-
tegrated white noise. Te increment W (t _2) – W (t _1) has the properties

E [∫t 1

t 2

q c (τ )d τ ]= 0, (3.11)

Var[∫t 1

t 2

q c(τ )d τ ]= Q c( t 2 − t 1) and (3.12)
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E [∫t 1

t 2

q c (τ )d τ∫
t 3

t 4

q c(τ )d τ ]= 0, t 1<t 2< t 3< t 4 . (3.13)

While (3.12) says that the variance of the continuous random walk grows linear with 
time, (3.13) expresses that the increments of diferent time periods are uncorrelated. 

3.4 State space models and the Kalman filter

Structural time series models are formulated using the discrete-time state space repre-
sentation (Harvey, 1989, chap. 3). Tis concept assumes that a linear, time-variant sys-
tem can be described by a set of state variables. Due to the fact that these variables can
usually not be observed directly, a measurement model linking the system state to a 
set of observables is required. Te measurement equation is 

zk = Hk xk +rk , (3.14)

where zz  is an nz -element vector of observations, xz  is the p -element state vector, Hz  
is an nz \p  matrix, and rz  is an nz -element vector of serially uncorrelated observation 
noise with mean zero and nz \nz  covariance matrix Rz :

E (rk)= 0 and Var (rk)=Rk . (3.15)

Te temporal evolution of the state vector is described by a dynamic model using the 
transition equation 

xk = Φk xk − 1 +qk , (3.16)

where Φz  denotes the p \p  transition matrix and qz  is a p -element vector of serially 
uncorrelated process noise with mean zero and p \p  covariance matrix Qz :

E (qk)= 0 and Var (qk)=Qk . (3.17)

Te subscript k  indicates that a variable may vary with time. Note that no assump-
tions regarding the distributions of the observation and process noises are made at 
this point, but they are supposed to be uncorrelated with each other in all epochs. It is 
further assumed that the initial state x_0 is known with a level of uncertainty character-
ized by the state error covariance matrix P_0. Te variables Hz , Rz , Φz , and Qz  are 
known as system matrices. To clarify the notation it should be mentioned that an in-
dex k  on Φ always means that the respective transition matrix describes the temporal 
change of the state vector with respect to the previous epoch, that is 

Φk = Φ(t k , t k −1). (3.18)

Te process noise vector qz  in Equation (3.16) is a key element of the dynamic model. 
While the matrix Φz  represents a purely deterministic transition of the state, the 
added process noise allows a stochastic evolution. Te technical term is that the 
process noise drives  the state variables. When the time interval between consecutive 
epochs is not constant, structural time series models are built on the assumption that 
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the noise in the dynamic model is generated by continuous-time white noise pro-
cesses. Each state variable may be driven by a separate noise process. Since E(qz) = 0, 
the noise vector is not directly modeled, but its associated covariance matrix is given 
by the integral 

Qk =∫
t k − 1

t k

Φ(t k , τ )Qc ΦT
(t k , τ )d τ , (3.19)

where Qq_c  denotes the covariance matrix of multivariate continuous-time white noise. 
Hence Qz  represents the variance build-up from one epoch to the next. Te process 
noise driving one state variable may also infuence others, including Φz  in (3.19) ac-
counts for these efects (Gibbs, 2011, chap. 2; Harvey, 1989, chap. 9). 

When the state space concept is applied to a time series model, the system state repre-
sents the various components like trend and seasonality. Note that the measurement 
equation given in (3.14) applies to a multivariate time series. However, Section 3.1 in-
dicated that the mathematical and computational complexity of multivariate time se-
ries analysis quickly grows beyond the scope of this thesis. In the univariate case, nz  is
equal to unity in all epochs and the dimensions of the involved variables are reduced 
accordingly. Using the p -element row  vector hz,  the measurement model can be sim-
plifed to

z k = hk xk +r k , where E(r k)=0 and Var(r k)=R k . (3.20)

Te following sub-sections frst discuss the derivation of the system matrices needed 
to implement univariate structural time series models. Secondly, the Kalman flter al-
gorithm and its application are described. 

3.4.1 Trend

In structural models, the formulation of the trend component is based on the current 
level μz  of the trend at time tz , that is 

T (t = t k)= μ k . (3.21)

Te level is directly introduced as a state variable. In order to model a linear trend, the 
level’s rate of change μ̇̇z  is added to the state vector. Te dot notation represents the 
derivatives of a variable with respect to time. Trends of a higher order may be imple-
mented by including derivatives up to the corresponding order, like μ̈z  for a quadratic 
trend. However, this section focuses on the linear case. With the time interval between
consecutive epochs denoted as Δt , the transition equation according to (3.16) is

(
μ k

μ̇ k
)=(1 Δt

0 1 )(
μ k −1

μ̇ k −1
)+ qk . (3.22)

Te state space representation refects the idea of a local  linear trend, where the slope 
adapts gradually as new measurements are coming in. Hence the dynamic model is 
made stochastic based on the assumption that μ̇̇z  follows a random walk. Considering 

16



3.4. State space models and the Kalman flter

that the value of Δt  may not be constant, the process noise is modeled in continuous 
time. With known transition matrix of the system, the discrete-time covariance matrix
corresponding to a given (positive) time interval can be computed by evaluating the 
integral 

Qk =∫
τ =0

Δt

(1 τ
0 1)(

0 0
0 Q c)(

1 0
τ 1)d τ , (3.23)

where Qq_c  is the variance of continuous-time white noise. Te local linear trend com-
ponent for a univariate time series is completely specifed by the state vector and sys-
tem matrices summarized in (3.24). Assuming a constant measurement variance \\ ^ 
the measurement model following (3.20) is time-invariant. 

xk =(
μ k

μ̇ k
) , h =(1 0) , R =\ z

2 , Φk =(1 Δt
0 1 ) , Qk =Q c (Δt 3

/3 Δt 2
/2

Δt 2
/2 Δ t ) (3.24)

3.4.2 Seasonality

Te dynamic model of the seasonal component follows the assumption that the sea-
sonal variations in the spectral signatures because of plant phenology efects can be 
approximated by a sum of trigonometric functions of diferent frequencies, similar to 
the principle of Fourier synthesis. Tis section outlines the state space representation 
of a single trigonometric function, while the next sub-section discusses how to com-
bine several functions of diferent frequencies. Te underlying modeling assumption is
appropriate especially for forest, where seasonal change events like the green-up in 
spring occur gradually and thus have a continuous characteristic. Other land cover 
types like grassland and agriculture exhibit discontinuities due to mowing and har-
vesting events. Larger model errors have to be expected for these land cover types, be-
cause the maximum number of frequencies to be included in the model is limited by 
the observation density. 

Consider a cosine wave γ of frequency \ modulated by the parameters amplitude and 
phase, denoted by A  and \ respectively: 

γ ( t )= A cos(\ t − \) . (3.25)

In this form, the phase parameter is an argument to the cosine function. A trigonomet-
ric identity can be exploited to obtain the alternative form 

γ ( t )= α cos(\ t )+ β sin (\ t ) , (3.26)

where the original amplitude and phase parameters are replaced by α and β. Te rela-
tionships of the new parameters to A  and \ are given in (3.27). 

A = √α 2+ β 2

\ = arccos(α /A) = arcsin(β /A)
(3.27)

Similar to the formulation of the trend, the current level γz  of the wave at time tz  is in-
troduced as a state variable. Furthermore, the variable γz*,  whose interpretation will be 
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clarifed later, is added to the state vector. At time t  = 0, the state variables correspond 
to the parameters α and β of Equation (3.26), hence the initial state vector is given by

x0=(
γ 0

γ 0
✱)=(α

β ). (3.28)

Tis relationship is further illustrated in Figure 3.2, where γz  and γz*  are variables on 
the x _1- and x _2-axis of a Cartesian coordinate system representing the state space. Te 
drawing shows that the transition matrix of the state space model is a rotation matrix 
of the form

Ȓ(θ )=( cos θ sin θ
−sin θ cos θ ) , (3.29)

which rotates the state vector in the x _1x _2-plane clockwise through an angle θ about 
the origin of the coordinate system. Te rotation angle corresponding to a certain time
interval Δt  between consecutive epochs is given by the product \∙Δt , thus 

Φk = Ȓ(\ Δt ) . (3.30)

Figure  3.2 : Initial state vector representing a cosine wave of frequency   \, modulated by  
amplitude A and phase \. Te transition matrix of the model rotates the state vector  
clockwise.  

Te beneft of the state-space approach is that the seasonal component may evolve 
over time as new measurements are obtained. Hence the dynamic model is made sto-
chastic based on the assumption that both amplitude and phase of the cosine wave fol-
low a random walk. Tis is implemented by including white process noise on both 
state variables. Taking into account that the value of Δt  may not be constant, the in-
fuence of the process noise is modeled in continuous time. With known transition 
matrix of the system, the discrete-time covariance matrix corresponding to a given 
(positive) time interval can be computed by evaluating the integral 
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Qk = ∫
τ =0

Δt

( cos(\ τ ) sin (\ τ )

− sin(\ τ ) cos (\ τ ))(
Q c 0
0 Q c)(

cos (\ τ ) −sin (\ τ )

sin (\ τ ) cos(\ τ ) )d τ , (3.31)

where Qq_c  is the variance of continuous-time white noise. Te state vector and system 
matrices required to model a cosine wave are summarized in (3.32), where I represents
a 2\2 identity matrix. Assuming a constant measurement variance \\ ^, the measure-
ment model following (3.20) is time-invariant. 

xk =(
γ k

γ k
✱) , h =(1 0) , R = \ z

2 , Φk =(
cos (\ Δt ) sin (\ Δt )

−sin (\ Δt ) cos (\ Δt )) , Qk =Q c Δt I (3.32)

3.4.3 Combination of model components

Te seasonal component is constructed by a sum of P -periodic cosine waves, with P  
denoting the fundamental duration of the seasonal cycle. Terefore, the set  \Omega contain-
ing the seasonal (angular) frequencies is 

 \Omega={\1 , \ 2,…}= {2π j
P

∣ j = 1,2 ,…, ∞}, (3.33)

with j  as the corresponding number of periods per cycle. Considering the nature of 
the time series investigated in this thesis, it is appropriate to measure time between 
epochs in days and thus set P  to 365.25. 

Te system matrices of a univariate structural time series model incorporating a trend 
and a seasonal component consisting of several frequencies are obtained by combining
the elements specifed in (3.24) and (3.32). Concerning the vectors x and h, this is done
by concatenating the individual trend and seasonal elements in the manner of (3.34). 
An additional numerical subscript indicates the seasonal frequency associated with 
the respective element. 

xk =(
xk

trend

x1 , k
seas

x2 , k
seas

⋮
) , h = (h trend , h1

seas , h2
seas ,…) (3.34)

Te individual transition matrices are combined to a single matrix with block-diagonal
structure illustrated in (3.35). Te same holds true for the process noise covariance ma-
trices. 

Φk =(
Φk

trend 0 0

0 Φ1, k
seas 0 ⋯

0 0 Φ2, k
seas

⋮ ⋱
) , Qk =(

Qk
trend 0 0

0 Q1 , k
seas 0 ⋯

0 0 Q2 , k
seas

⋮ ⋱
) (3.35)
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3.4.4 Kalman filter

Once the system matrices and the initial values x_0 and P_0 are defned, the discrete-time
Kalman flter algorithm can be used to obtain estimates for the state and its error co-
variance matrix in subsequent epochs k  = 1, 2, … m . Te Kalman flter processes ob-
servations recursively, one epoch at a time, and each recursion may be divided into 
several steps. Te frst one is known as time update step and yields the predicted (a- 
priori) estimates ~xk and ~P k based on the dynamic model and the previous estimates at 

time tz __1:

~xk = Φk x̂k − 1
~P k = Φk P̂k −1Φk

T +Qk
(3.36)

Step two is to compute the a-priori  measurement residual yz  and its associated covari-
ance matrix Cz  using (3.37). Te residual represents the diference of the prediction to 
the actual measurements and is referred to as innovation,  since it contains new infor-
mation currently not present in the predicted state. 

yk = zk −Hk
~xk

Ck = Hk
~Pk Hk

T+ Rk
(3.37)

In the fnal step of each recursion, the new information is merged with the predictions
to obtain improved (a-posteriori) estimates x̂k and P̂k . Terefore it is known as mea-

surement update step. Te Kalman gain matrix Kz  given in (3.38) determines how 
much the newly acquired measurements will infuence the a-posteriori  estimates of the
state and its error covariance. 

K k =~Pk Hk
T Ck

− 1 (3.38)

Te elements of Kz  are ranging from 0 to 1, thus it can be interpreted as a weighting 
matrix. With the update equations stated in (3.39), the basic Kalman flter recursion is 
complete. 

x̂k = ~xk + Kk yk

P̂k = (I − K k Hk)
~Pk

(3.39)

When the sequence of measurements processed by the flter contains outliers, an addi-
tional outlier detection step should be included before  the measurement update step. 
Te properties of the innovations can be exploited to detect anomalous measurements 
by means of a statistical test. Provided that the underlying model assumptions are cor-
rect and the observation noise is Gaussian, the innovations will be normally distrib-
uted with mean zero and covariance matrix Cz,  that is

yk ∼ N (0 , Ck).  (3.40)

Te test statistic T̂ k given in (3.41) follows the  \chi^-distribution with nz  degrees of free-

dom, where nz  is the number of observations in epoch k . Te hypotheses to be tested 
on a signifcance level α are stated in (3.42).
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T̂ k = yk
T Ck

− 1yk , T̂ k ∼  \chi2
(n k) . (3.41)

H 0 : y k = 0 if T̂ ≤  \chink , 1− α
2

H 1 : y k ≠ 0 otherwise
(3.42)

Considering that anomalous observations will cause large innovations, the null hy-
pothesis will be rejected if outliers are present in the current epoch. In order to avoid a
negative infuence on the state estimate, the measurement update step should not be 
carried out (Gibbs, 2011, chap. 8). 

3.5 Linear regression models and robust parameter estimation

A general linear regression model links an m -element observation vector z to a p -ele-
ment parameter vector x through the measurement equation 

z = A x +r , (3.43)

where A is the m \p  design matrix of the model and r is an m -element vector of nor-
mally distributed observation noise with mean zero and covariance matrix R. Te ob-
servation noise represents the diferences between the data and the model and there-
fore r is also known as vector of residuals. 

Regarding a univariate time series, there is a clear relationship between the structural 
models outlined in the previous section and linear regression models. Te same mod-
eling principles can be applied to obtain the design matrix and consequently (3.43) 
may be writen as

(
z 1

z 2

⋮

z m
)=(

h Φ(t 1 , t 0)

h Φ(t 2 , t 0)

⋮

h Φ(t m , t 0)
)x0+(

r 1

r 2

⋮

r m
) . (3.44)

Equation (3.44) illustrates the key diference between a structural model and a regres-
sion model: Te later does not include the concept of process noise and thus the pa-
rameter vector is time-invariant and referenced to a fxed epoch (Gibbs, 2011, sec. 4.1). 

Still, (3.44) can be used to model a time series within a certain training period in order 
to obtain an estimate for the initial state of a structural model. Assuming m  > p  and 
normally distributed and uncorrelated observation noise with mean zero and constant 
variance \^, the parameter vector can be estimated using the method of ordinary least 
squares (OLS). Considering the presence of outliers in the data, this assumption is vio-
lated and a robust parameter estimation approach following the implementation of 
Heiberger and Becker (1992) is employed. Te technique is known as iteratively 
reweighted least squares (IRLS) and belongs to the class of M -estimators (Huber, 
1964). Te parameter estimate x̂ is computed based on the cost function 

F =(z− A x̂)
T W (z− A x̂) → min. (3.45)
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where W is an m \m  diagonal matrix of observation weights ranging from 0 to 1. Con-
sequently, W can also be expressed in terms of an m -element vector w, that is

W = diag(w) . (3.46)

Te parameter estimate minimizing F  is given by

x̂ =(AT W A)
−1 AT W z . (3.47)

Te initial solution of the IRLS procedure is obtained by seting W equal to an identity
matrix, thus it is equal to the OLS solution. In subsequent iterations, the weights are 
recalculated based on the residuals r _1, r _2, … ry . Observations with large residual values
are down-weighted. Each residual is divided by the scale s  to obtain the normalized 
residual uu :

u i =r i /s using s = median (|r 1|,|r 2|,…)/0.67455 (3.48)

Te normalized residuals are then used as input to a cost function which determines 
the weight of the corresponding observation. Heiberger and Becker (1992) suggest a 
two-stage procedure employing the Huber cost function (Huber, 1964) until conver-
gence followed by (up to) two additional iterations applying the Bisquare cost function
(Beaton and Tukey, 1974). Convergence is achieved when the diference of the Eu-
clidean norms of x̂ between consecutive iterations is below a given threshold. Te re-
spective elements of w are determined by using (3.49) or Error: Reference source not 
found, where c  is a tuning parameter. An illustration of the cost functions is given in
Figure 3.3. Te Huber cost function is more conservative regarding the down-weight-
ing of suspicious observations. 

w i , Huber ={
1 |u i|≤ c
c

|u i|
|u i|> c

default c = 1.345 (3.49)

w i , Bisquare ={(
1−( u i

c )
2

)
2

0<|u i

c |≤ 1

0 |u i

c |>1

default c = 4.685 (3.50)

Additional to the parameter estimate x̂ , several other interesting quantities can be de-
rived within the weighted least squares framework. An unbiased estimator for the ob-
servation noise variance \^ is given by 

\̂ 2= rT W r
m − p

where r = z− A x̂ . (3.51)

Tis quantity is also known as the mean squared error  (MSE) of the ft. Te uncertainty
of the parameter estimate is refected by the covariance matrix 

P̂ = \̂ 2
(AT W A)

−1 . (3.52)
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3.5. Linear regression models and robust parameter estimation

Figure  3.3 : Huber and Bisquare weighting functions with default tuning parameters. Te  
curves depict the assigned observation weight  w dependent on the absolute value of the  
normalized residual  u. 

Another simple measure used to assess how well a regression model fts the underly-
ing data is given by the coefcient of determination R ^. A robust version of R ^ which 
takes any previously computed weights into account can be writen as 

R 2= 1−
∑i =1

m w i (z i − ẑ )
2

∑i =1
m w i(z i − z̄ w)

2
where z̄ w =(1/∑ w i)∑ w i z i . (3.53)

Te denominator in the ratio above represents the total variation of the data about its 
weighted mean. Te numerator on the other hand is equal to the weighted residual 
sum of squares rT W r. As a result, the coefcient of determination will be close to 
unity if most of the total variation is captured by the fted model (Renaud and Victo-
ria-Feser, 2010). 

3.6 Change detection algorithm

Te fowchart depicted in Figure 3.4 illustrates how the methods discussed in the pre-
ceding sections are joined together in order to create a data-driven algorithm capable 
of detecting abrupt changes on pixel-level. Some further explanatory comments are 
given below. 

(1) Te tuning parameters and the time series model components specifed by the user 
are applied globally, hence they are the same for all pixels.

(2) Te initial state as well as the observation noise are estimated on pixel-level using 
the IRLS method. Terefore the user has to supply a stack of historic images as train-
ing dataset. 

(3) New images covering the monitoring period are processed one at a time in a 
Kalman flter loop. A hypothesis test is used to identify anomalous observations show-
ing signifcant deviations to the prediction.
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3. Methods

(4) Each pixel features an “anomaly counter”. Each time an observation is marked as 
anomalous, the counter is incremented  by 1. In contrast, the counter is also decre - 
mented  by 1 if the current observation is not statistically conspicuous, although it can 
never become lower than zero. Tis principle ensures that a certain user-defned 
“change threshold” of the counter can only be reached when outliers occur temporally
aggregated.

(5) Whenever an observation is marked as anomalous, the measurement update step is
bypassed. 
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3.6. Change detection algorithm

Figure  3.4 : Change detection algorithm fowchart 
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4 Data Pre-Processing and Test Site

Tis chapter is divided into two parts. Te frst section describes the properties of the 
used Landsat satellite imagery and discusses the applied pre-processing. Section 4.2 
presents specifc information about the selected test site located in the federal state of 
Baden-Würtemberg, Germany. 

4.1 Data and pre-processing

In order to carry out experimental testing of the methods outlined in the preceding 
chapter, Landsat Surface Refectance (SR) products provided by the U.S. Geological 
Survey Earth Resources Observation and Science Center (USGS EROS) are used. Since 
Landsat 4, all Landsat data are organized using the Worldwide Reference System 2 
(WRS-2) path and row notation (Wulder et al., 2016). All Landsat 5, 7, and 8 images of 
path 195 and row 96 available in the time period from 2009-01-01 to 2016-12-31 have 
been downloaded using the USGS EarthExplorer service (earthexplorer.usgs.gov). Te 
various Landsat satellites carry diferent instruments to acquire data, see Table 4. Each
instrument measures diferent ranges of frequencies along the electromagnetic spec-
trum. Tese spectral ranges are illustrated in Figure 4.1, along with the associated 
band number of the corresponding satellite. 

Table  4 : Instruments carried by Landsat satellites 

Satellite Instruments

Landsat 1-5 Multispectral Scanner System (MSS)

Landsat 4-5 Tematic Mapper (TM)

Landsat 7 Enhanced Tematic Mapper (ETM+)

Landsat 8 Operational Land Imager (OLI), Termal Infrared Sensor (TIRS)

Landsat 9* Operational Land Imager 2 (OLI-2), Termal Infrared Sensor 2 (TIRS-2)

*not yet operational

Figure  4.1 : Spectral bands of various Landsat instruments (Source: NASA/USGS Landsat )
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4. Data Pre-Processing and Test Site

Landsat SR products are considered as a high-level data set (USGS, 2016a, 2016b). 
Tere are three processing levels with respect to the quality of radiometric calibration 
and geometric registration. Te processing level of an image can be retrieved from the 
supplied metadata. Only the highest-level products, designated as L1T, are suitable for 
time series analysis applications on a pixel-level (USGS, 2018). In case of Landsat 5 or 7
data, the conversion to SR is based on the Landsat Ecosystem Disturbance Adaptive 
Processing System (LEDAPS, Masek et al., 2006). Landsat 8 data is processed to SR us-
ing the Provisional Landsat 8 Surface Refectance Code (LaSRC, Vermote et al., 2016). 
A cloud, cloud shadow, snow, and water identifcation is provided based on the results 
of the Fmask algorithm (Zhu and Woodcock, 2012). Te product specifcations of spec-
tral and mask bands which have been used in this thesis are listed in Table 5. 

Table  5 : Landsat Surface Refectance product band specifcations  (USGS, 2016a, 2016b)

Band
name

 Band number Data
type

Units Valid
Range

Fill
Value

Scale
FactorTM, ETM+ OLI

Blue 1 2 INT16 Refectance 0 – 104000 −9999 0.00051

Green 2 3 INT16 Refectance 0 – 104000 −9999 0.00051

Red 3 4 INT16 Refectance 0 – 104000 −9999 0.00051

NIR 4 5 INT16 Refectance 0 – 104000 −9999 0.00051

SWIR1 5 6 INT16 Refectance 0 – 104000 −9999 0.00051

SWIR2 7 7 INT16 Refectance 0 – 104000 −9999 0.00051

Fmask NA NA UINT8 Flag

0 Clear
1 Water
2 Cld. Shadow
3 Snow
4 Cloud

255 NA

Abbreviations: NIR near infrared, SWIR short wave infrared, INT16 16-bit signed integer, 
UINT8 8-bit unsigned integer, NA not applicable

Te frst pre-processing step was to select the highest-quality images from all 241 
downloaded products based on metadata such as the processing level, acquisition date,
and cloud-cover properties. A detailed account of the selection criteria is given in Ta-
ble 6. In order to reduce the data volume further, the 6 SR bands have been trans-
formed to the tasseled cap (TC) features brightness, greenness, and wetness. Te 
transformation coefcients given in Table 7 were published by Crist (1985). Additional 
to the reduced data volume, several existing studies reported that TC components also
have desirable properties for change or disturbance detection in forested areas, see 
Oeser et al. (2017), Pasquarella et al. (2017) or Brooks (2014). 
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4.1. Data and pre-processing

Table  6 : Image selection steps 

Step Description Remaining images

0 All available Landsat 5, 7, and 8 images, WRS-2 Path 
195 / Row 26, date range from 2009-01-01 to 2016-12-31

241

1 Exclude images which are not designated to have L1T 
processing level 

180

2 Exclude images taken in winter months (Dec, Jan, Feb) 150

3 Exclude images where more than 90% of the pixels in the 
test site are fagged as “cloud”, “cloud shadow” or “snow” 
according to the Fmask layer

111

Table  7 : Tasseled cap transformation coefcients  (Crist, 1985)

Feature Blue Green Red NIR SWIR1 SWIR2

Brightness 0.20453 0.41558 0.55254 0.57451 0.31254 0.23053

Greenness −0.16053 −0.28159 −0.49354 0.79450 −0.00052 −0.14456

Wetness 0.03155 0.20251 0.31052 0.15954 −0.68056 −0.61059

Using data from multiple satellites and therefore diferent measurement instruments 
raises questions concerning the spectral consistency between them. Figure 4.1 shows 
that the spectral bands of both TM and ETM+ are defned almost identically, but there 
are larger diferences to the OLI bands. Furthermore, the conversion of OLI data to SR 
is based on a diferent algorithm. In the time series analysis context, the problem was 
discussed by Zhu et al. (2016). Te authors concluded that data from Landsat 5 and 7 
are fairly consistent, but there is a bias with respect to Landsat 8. Tey observed that 
the refectance values of all 6 bands listed in Table 5 are lower when measured with 
the OLI instrument, with the largest diferences occurring in the visible bands. Te au-
thors also noted that the bias is magnifed in normalized-diference vegetation indices. 

Another investigation of the spectral consistency problem was carried out by Oeser et 
al. (2017). Since the study employed TC wetness as primary observable, the authors 
analyzed the diferences in wetness calculated from ETM+ and OLI data and found 
that values derived from the later tended to be lower. Tey concluded “As the observed 
diferences generally were small (average diference in TC wetness <0.01 for forested ar - 
eas) compared to changes associated with forest disturbance and OLI data made up only  
a small part of our analyzed time series, we did not apply any normalization to the OLI  
imagery.”  Following this conclusion, no additional pre-processing has been applied to 
the Landsat 8 data used in this thesis. 

4.2 Test site

Te test site is located in the federal state of Baden-Würtemberg, Germany. Figure 4.2 
shows its location relative to the state borders and the footprint of WRS-2 path 195, 
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row 26. Te square-shaped test site covers an area of 900 km^, which corresponds to 
1000\1000 Landsat pixels. A cloud-free Landsat 8 image acquired on June 8 2014 is 
contrasted with a forest type classifcation based on the Copernicus High Resolution 
Layer (HRL) 2015 in Figure 4.3, showing that a large part of the test site is forested and
both broadleaved and coniferous types occur. Figure 4.4 depicts a digital elevation 
model (DEM) of the test site, showing that the terrain elevation is ranging from about 
130 to 1260 meters. Possible systematic infuences of the relief on the results will be 
addressed in Chapter 5. 

Figure  4.2 : Location of the test site (WRS-2 data courtesy of the U.S. Geological Survey.  
Baden-Würtemberg federal state border available as open data,  www.lgl-bw.de )

Landsat 8 false color, 2014-06-08 High Resolution Layer 2015, forest type (20 m)

Figure  4.3 : Distribution of forested areas within the test site (Copernicus HRL 2015 acces - 
sible open and free at  land.copernicus.eu )

Te number of available valid observations per year has been analyzed for each pixel 
of the test site. Te results are summarized in Figure 4.5. Note that the last Landsat 5 
imagery covering the test site was acquired at the end of 2011, resulting in a reduced 
observation count until the frst Landsat 8 data became available in April 2013. Low 
minimum values correspond to very bright objects which frequently trigger false posi-
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4.2. Test site

tives in the cloud masking process. Unfortunately not all of these bright objects are 
masked out if a forest mask derived from the HRL 2015 is applied, hence the minimum
values reported in Figure 4.5 do not correspond to forest pixels. Te median numbers 
of observations per year can be considered as a good estimate of the true observation 
count for a given forest pixel. Te numbers indicate that the phenological cycle associ-
ated with forest is captured by the available data. An exemplary time series plot of the 
TC components for a coniferous forest pixel is given in Figure 4.6. Recurring seasonal 
paterns are clearly visible in the signals. 

Figure  4.4 : Digital elevation model (DEM ) of the test site (Coordinate reference frame  
EPSG 326632. Data source: Advanced Land Observing Satellite (ALOS ) Global Digital Sur - 
face Model “ALOS World 3D – 30 m”,  © Japan Aerospace Exploration Agency )
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Figure  4.5 : Analysis of the time series density per-pixel 

Figure  4.6 : Typical time series of TC components for a coniferous forest pixel 
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5 Results and Discussion

Te frst part of this chapter presents and discusses the results obtained by applying 
the regression model approach outlined in Section 3.5. Tese results are required to 
initialize the Kalman flter, whose application and output are covered in the second 
section. Te temporal domain of the results is illustrated in detail by time series plots 
of single, representatively selected sample pixels within the test site. Each of the pixels
listed in Table 8 has been selected to show and discuss the algorithms behavior regard-
ing diferent properties like the presence of un-masked clouds and cloud shadows, 
abrupt change events as well as the underlying forest type and terrain-dependent ef-
fects. In the spatio-temporal domain, the results are discussed using maps and se-
quences of images. 

Table  8 : Sample pixels 

ID xx [m] yx [m] Forest type Property

1 4414060 543624320 coniferous Un-masked cloud and cloud shadows occur

2 4444000 543634220 broadleaved None

3 4414030 543664670 coniferous Southward hillside

4 4404910 543664760 coniferous Northward hillside

5 4524970 543784460 coniferous Storm damage 2012

6 4514980 543764360 coniferous Storm damage 2012, omission error

Coordinate reference frame: EPSG 324632 (European Petroleum Survey Group Geodesy)

5.1 Initialization of the state space model

Initial values for the Kalman flter state are obtained by fting a regression model to a 
given training period using the robust IRLS method. Te time series model used here 
features a constant trend as well as a seasonal component using the frequencies \_1 
and \_2 as defned in Equation (3.33). Tus, there are 5 model parameters (μ, α_1, β_1, α_2,
β_2) to estimate. Te appropriate length of the training period is mostly governed by the
number of parameters, p , and the desired minimum number of available observations 
n  to estimate them from. Tests showed that the IRLS procedure yields good and stable 
results when the degree of over-determination is set to about 3, this means that n ≈ 
3p . Another requirement concerning the length of the training period is that all sea-
sons (except winter) should be represented equally, which is accomplished easily by 
allowing only an integer number of complete years. Following the considerations 
above and taking into account the median time series density reported in Figure 4.5, a 
3-year training period is deemed appropriate when using a 5-parameter model. For a 
3-parameter model featuring only the fundamental seasonal frequency \_1, the length 
may be reduced to 2 years. 
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5.1.1 Down-weighting of anomalous observations

Exemplary results illustrating the methods capability to separate outliers are discussed
using sample pixel 1, where three diferent types of anomalous observations (un-
masked cloud, fog, and cloud shadow) as shown in Figure 5.1 occur within the training
period. Figure 5.2 below shows time series of the tasseled cap components brightness, 
greenness and wetness in a 3-year training period ranging from the beginning of 2009 
to the end of 2011. Additional to the discrete observations, diferent stages of the IRLS 
curve ft are ploted. 

Cloud shadow (2010-07-07) Fog (2010-11-20) Cloud border (2011-04-05)

Figure  5.1 : True-color images showing diferent kinds of outliers occurring in the time se - 
ries of sample pixel 1, marked with a red circle. 

Te obtained curve fts show that the model captures the seasonal dynamics quite 
well, especially the greenness cycle. Te anomalous observations corresponding to the
images of Figure 5.1 are annotated accordingly. All 3 of them are clearly identifable as
outliers in the brightness signal. Te cloud shadow is also visible in the greenness time
series and the un-masked cloud border also presents itself in the wetness signal. Figure
5.3 depicts the fnal weights assigned to each observation by the Huber and Bisquare 
weighting functions. It can be verifed that the outliers are efectively down-weighted. 
Te results indicate that the infuence of occasionally un-masked clouds and cloud 
shadows on the parameter estimate can be efectively reduced by employing the IRLS 
procedure, given that the available number of observations is large enough to allow a 
fair degree of over-determination. However, high-quality cloud masks are still re-
quired to reduce the overall number of outliers in the frst place. 
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Figure  5.2 : Diferent stages of the IRLS procedure, sample pixel 1. 
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5. Results and Discussion

Figure  5.3 : Resulting IRLS observation weights, sample pixel 1. 

5.1.2 Spectral signatures of different forest types

Te following Figures 5.4, 5.5, and 5.6 show comparisons of the spectral signatures of 
coniferous (sample pixel 1) and broadleaved (sample pixel 2) forest for each tasseled 
cap component. Additional to the discrete observations, the regression model fts in-
cluding 99% confdence intervals are ploted. Te coefcient of determination R ^ com-
puted using (3.53) as well as the estimated observation standard deviation \ according 
to Equation (3.51) are given in the top lef corner of each sub-plot. All three tasseled 
cap component time series behave quite diferently depending on the forest type. Te 
diferences can be observed in several qualities including the overall level, the seasonal
amplitude, and the “temporal smoothness” of the signal. Te later quality is most 
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Figure  5.4 : Brightness signatures of coniferous (Pixel 1) and broadleaved forest (Pixel 2)

Figure  5.5 : Greenness signatures of coniferous (Pixel 1) and broadleaved forest (Pixel 2)
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5. Results and Discussion

Figure  5.6 : Wetness signatures of coniferous (Pixel 1) and broadleaved forest (Pixel 2)

distinct in the greenness time series of sample pixel 1, leading to a high coefcient of 
determination and a low estimated observation variance. Te seasonal variations of 
the greenness and wetness signatures are more pronounced in deciduous forest 
(pixel 2). Foliation in spring is accompanied by steep increases of both signals, 
whereas leaf senescence and fnally defoliation lead to larger decreases in comparison 
to evergreen pixels. 

5.1.3 Comparison of models by means of a deciduous pixel

So far, the shown results were based on a 5-parameter regression model featuring a 
constant trend and two seasonal frequencies. In the next Figures 5.7, 5.8, and 5.9, the 
5-parameter model is contrasted with a 3-parameter model featuring only a constant 
trend and the fundamental frequency. Considering that the seasonal variation is more 
pronounced in broadleaved forest (see previous section), sample pixel 2 is used. Te 
results show that the 5-parameter model produces higher values of R ^ and lower esti-
mations of \. Due to the fact that there are additional degrees of freedom compared to 
the 3-parameter model, this is not surprising and cannot be used as sole evidence to 
claim that it is beter. However, it can be seen that the steep increase of all TC compo-
nents in spring can be modeled more accurately by including the frequency \_2 into the
model. For this example, the largest diference in the coefcient of determination can 
be observed in the wetness signal. Based on a qualitative assessment, the seasonal 
wetness variation is indeed captured more closely by the 5-parameter model, espe-
cially for the year 2010 where many observations are available in summer. 
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Figure  5.7 : Brightness time series of sample pixel 2 (broadleaved forest ) and fted regres - 
sion models. Model 1: 3 parameters, Model 2: 5 parameters. 

Figure  5.8 : Greenness time series of sample pixel 2 (broadleaved forest ) and fted regres - 
sion models. Model 1: 3 parameters, Model 2: 5 parameters. 
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5. Results and Discussion

Figure  5.9 : Wetness time series of sample pixel 2 (broadleaved forest ) and fted regression 
models. Model 1: 3 parameters, Model 2: 5 parameters. 

5.1.4 Terrain influence

It was mentioned in Section 4.2 that the terrain of the test site is not fat and therefore 
systematic efects caused by the local topography may occur. Figure 5.10 shows a relief
map of the test site on the lef and a map of the R ^-values computed for the greenness 

Terrain relief R2 Greenness

Figure  5.10 : Terrain dependency of the coefcient of determination 
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signal on the right side. Again a 5-parameter model and 3-year training period were 
used. Te illustration shows that the coefcient of determination is systematically 
lower in areas on southward-facing hillsides compared to northward-facing hillsides. 
A comparison on pixel-level is carried out using sample pixels 3 and 4, which are lo-
cated 150 m apart on southward- and northward-facing hillsides respectively. Te 
brightness and greenness time series depicted in the Figures 5.11 and 5.12 show that 
the investigated pixels have diferent seasonal paterns. Looking at pixel 4, both 
brightness and greenness are close to zero from late autumn to early spring because 
the northward-facing hillside lies in the shadow. Te efect of the strong intra-annual 
illumination variance is superimposed on the phenology, resulting in a higher overall 
amplitude of the seasonal patern compared to pixel 3. Tis efect is captured by the 
model, hence it is unlikely that shadows caused by the local topography will be a 
source of error in the change detection process. However, at this point an assessment 
whether this behavior is desired or not cannot be made. Further investigations includ-
ing comparisons to topographically normalized data are necessary. Finally, Figure 5.13 
shows that the dynamic range of the wetness signals is low regardless of the hillside, 
which is also in agreement with plots of coniferous pixels shown in previous sections. 

 

Figure  5.11 : Terrain dependency of the brightness signal. Pixel 3: southward slope. Pixel 4: 
northward slope. 
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5. Results and Discussion

Figure  5.12 : Terrain dependency of the greenness signal. Pixel 3: southward slope. Pixel 4:  
northward slope. 

Figure  5.13 : Terrain dependency of the wetness signal. Pixel 3: southward slope. Pixel 4:  
northward slope. 
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5.1. Initialization of the state space model

5.1.5 Conclusions concerning the Kalman filter setup

Even though Section 5.1 mostly revolves around the analysis of a few pixels, the re-
sults indicate that the proposed approach for estimating the initial flter state can han-
dle various circumstances. A proper initialization is of high importance, because the 
ability to predict future observations based on a statistical model is an integral part of 
the Kalman flter change-detection algorithm (see Section 5.2) outlined in Figure 3.4. 
Te reader may recall from Section 3.4.4 that the diferences between predicted and 
actually observed measurements are called innovations. Large absolute innovation val-
ues mean that measurements strongly deviate from the prediction. Te change detec-
tion algorithm uses a \^ hypothesis test on the flter innovations to identify statisti-
cally “suspicious” observations and thus accomplish two things:

1. Te update of the flter state with information from invalid observations due to
cloud cover etc. is avoided.

2. Te temporally aggregated occurrence of large innovation values indicates an 
abrupt structural change in the time series.

Te variables which tune the hypothesis test are reviewed here. According to Equation
(3.41), the outcome of the statistical test is determined by the value yz  of the innova-
tion itself, but also by its associated variance Cz.  Te innovation variance depends on 
the uncertainty of the predicted state, refected by ~P k , as well as the observation vari-

ance R, s ee (3.39).  Since the state prediction needs to be known with low levels of un-
certainty in order to be able to identify anomalous observations in the frst place, the 
value of Cz,  and therefore the sensitivity of the statistical test, is indeed to a large part 
governed by R  alone. 

Te proposed change-detection algorithm assumes that R  is set independently for each

time series based on the observation variance \̂ 2 estimated from the training period. 
Note that the computation follows Equation (3.51), hence any calculated observation 

weights also infuence the value of \̂ 2 . By looking at the Bisquare weighting function 
illustrated in Figure 3.3 it can be seen that even observations with low residuals re-
ceive weights lower than 1, thus the resulting estimate of the observation variance is 
more optimistic compared to an OLS equivalent. Some of the plots presented in the 
preceding sub-sections, namely the Figures 5.5, 5.12, and 5.13, suggest that the result-
ing values of R  can be too low. Low values of R  lead to a high sensitivity of the statis-
tical test. In order to reduce the false alarm rate, it is proposed to limit the lower 
boundary of R  to 1, that is 

R ={\̂ 2 if \̂ 2 >1
1 otherwise.

(5.1)

Note that (5.1) is only valid if the time series observations are scaled to a range be-
tween −100 and 100 to be interpreted as percent. 

Another implementation detail which needs to be addressed is given by the fact that 
the regression models used throughout Section 5.1 defned a constant deterministic  
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trend component, whereas the state-space defnition of sub-section 3.4.1 mentioned a 
local linear  trend. Te explanation of this inconsistency lies in the length of the train-
ing period. For a stable, slowly evolving land cover type like forest, the inclusion of a 
linear trend component in a regression model which is fted to only 3 years of data 
does not make sense and could even lead to distortions. On the other hand a linear 
trend may emerge over a longer time scale, thus it is advantageous to include an addi-
tional slope parameter in the Kalman flter model. In the initial state, the value of the 
slope is zero. Te corresponding main-diagonal element in P_0 can be set to a low 
value, but always >0 to allow a stochastic evolution of the slope parameter. A value of 
0.005^ proved to be applicable. 

5.2 Kalman filter application for change detection

Before the Kalman flter results are discussed, a summary of all the tasks preceding the
change detection is given:

1. Defnition of the time series model components
2. Defnition of the training period
3. Computation of x_0, P_0 and R,  for each time series independently
4. Defnition of the global change-detection tuning parameters 

Te frst three tasks have been discussed in the previous section. Regarding task 4, Ta-
ble 9 below lists the set of tuning parameters used to produce the results presented in 
this section. Note that the given values are not optimized by a benchmarking process 
due to a lack of appropriate ground truth data. However, the set of reasonable values 
for each tuning parameter is limited and the given values were derived from empirical 
tests. 

Table  9 : Change-detection tuning parameter setings 

Parameter Description Value

α Signifcance level of the outlier hypothesis test 0.01

Change threshold Treshold value of the anomaly counter for a 
change to be signaled

3

Qq_c  trend Process noise, trend component (2.5\10−4)2

Qq_c  seasonal Process noise, seasonal component(s) (2.5\10−2)2

While the interpretation of α and the change threshold is quite obvious, the values for 
the process noise parameters are more abstract. In order to fnd reasonable values, 
Gibbs (2011, chap. 2) suggests to apply the equations for the computation of Qz  given 
in (3.24) and (3.32) in an inverse fashion, thus set the desired level of process noise re-
lated to a certain time interval Δt  and solve for Qq_c . For example, the equation to com-
pute the process noise of the trend level is 

q k = Δt 3

3
Q c . (5.2)
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5.2. Kalman flter application for change detection

Note that both qz  and Qq_c  are variances. If the model error of the trend level is expected
to be 1% per year, rearranging (5.2) and substituting yields 

Q c = 3\12

365.253 ≈0.0005252 . (5.3)

Te process noise level of the seasonal components given in Table 9 corresponds to 
about 3% model error per year, for each frequency. 

5.2.1 Undisturbed pixel

At frst, an exemplary result of the Kalman flter application to an undisturbed conifer-
ous forest pixel (sample pixel 1) will be discussed. Te Figures 5.14, 5.15, and 5.16 de-
pict all available un-masked observations as well as the fltered time series for a given 
tasseled cap component in the upper subplot, while the lower subplot illustrates the 
result of the outlier test for each observation. Te same pixel has been discussed in 
Section 5.1.1, therefore the three anomalous observations shown in Figure 5.1 also ap-
pear here and can be seen in the brightness signal ploted in Figure 5.14. Tey are cor-
rectly identifed by the outlier test integrated in the Kalman flter. 

Figure  5.14 : Filtered brightness signal of sample pixel 1 (undisturbed, coniferous)

Variations of the yearly peak level can be observed in the greenness signal ploted in
Figure 5.15, for example from 2011 to 2012. Te flter state is updated heavily in 2012 
when that year’s peak observation is processed. Because of this update, the prediction 
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5. Results and Discussion

for spring 2013 overshoots and the frst observation of 2013 is incorrectly marked as 
outlier (labeled as “False alarm” in the fgure). However, the second observation passes
the test and the state is updated accordingly. It has also to be kept in mind that the ob-
servation density is exceptionally low in the year 2012 and the frst quarter of 2013, 
because the only operational satellite at that time was Landsat 7. 

Figure  5.15 : Filtered greenness signal of sample pixel 1 (undisturbed, coniferous)
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5.2. Kalman flter application for change detection

Figure  5.16 : Filtered wetness signal of sample pixel 1 (undisturbed, coniferous)

5.2.2 Abrupt change – single pixel

Sample pixel 5 (coniferous, storm damage 2012) is used to demonstrate the Kalman fl-
ter result for time series exhibiting abrupt change. Te change event resulting from 
storm damage occurred in July 2012. Unfortunately the observation density is very 
low in 2012 up to the frst quarter of 2013 due to the failure of Landsat 5. Furthermore,
the pixel is located on a northward-facing hillside which means that the signal is al-
ready very weak in November due to the low sun elevation angle. As a result, a time 
gap of more than a year lies between the change event and the change signal date. 
Nonetheless this pixel has been selected because many aspects of the flter operation 
can be discussed using a single example. 

Figure 5.17 shows the brightness signal. Te change event is followed by an abrupt in-
crease of the brightness level in July 2012. While the frst available observation afer 
the change event is identifed as outlier, the second is too close to the prediction. Te 
last available observation of 2012 was acquired in November, where the weak signal is 
also in agreement with the prediction. What follows is an unusually large time inter-
val to the frst observation of 2013. Due to the cumulative efect of the process noise 
during this observation-free interval, the prediction error increases and the sensitivity 
of the outlier test decreases, hence the new observations of 2013 are also not identifed
as outliers. 
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Te greenness signal illustrated in Figure 5.18 shows no abrupt change afer the 
change event, thus the flter can follow the observations and no outliers are signaled. 
Figure 5.19 shows the wetness signal, where the change event is followed by an abrupt
decrease of the wetness level. Two outliers are identifed afer the change event, but 
again, due to the terrain infuence, the last observation of 2012 is not marked as out-
lier. As a result two more observations in 2013 are required for the anomaly counter to
reach a value of 3 and fag the pixel as changed. 

Figure  5.17 : Filtered brightness signal of sample pixel 5 (change 2012, coniferous)
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5.2. Kalman flter application for change detection

Figure  5.18 : Filtered greenness signal of sample pixel 5 (change 2012, coniferous)

Figure  5.19 : Filtered wetness signal of sample pixel 5 (change 2012, coniferous )
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5.2.3 Abrupt change – image sequence

Figure 5.20 depicts an image matrix which documents a clipped sub-area of the 
demonstration site where the storm damage occurred. Te frst row shows an RGB 
composite and the last row shows a false-color composite (SWIR1, NIR, red). Te time 
domain is refected in the columns of the image matrix, where the frst column repre-
sents the state before the damage. Te rows 2, 3, and 4 of the image matrix show the 
Kalman flter innovations and therefore the diference between predicted and actual 
observations for each tasseled cap component. Te same increase in brightness and 
decrease in wetness as discussed in the preceding sub-section can be observed. 

2012-06-26 2012-08-29 2012-09-14 2012-10-16 2012-11-17

Figure  5.20 : Image sequence of a storm damage occurring in 2012. 1 st  row: RGB image -  
2 nd  row: Brightness flter innovations - 3 rd  row: Greenness flter innovations - 4 th  row:  
Wetness flter innovations - 5 th  row: False-color image. Light shades of gray mean that an  
observation is signifcantly higher than the prediction, whereas dark shades of gray mean 
that it is lower. A balanced gray value designates masked values or observations close to  
the prediction. 
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5.2. Kalman flter application for change detection

Column 4 gives an example of the appearance of thin, un-masked clouds. Note that the
thin cloud causes spectral signal changes similar to those observed in areas afected by
the storm. Te infuence of shadows caused by the relief can be seen in column 5. A 
large part of the areas afected by the storm lies in the shadow during the winter 
months, which leads to a delay of the change signal date if not enough post-change 
observations are available before the winter period. A detailed discussion of this efect 
on pixel-level is given in Section 5.2.2. 

5.2.4 Change maps

For each processed spectral band or index, the main output of the change-detection al-
gorithm is a map containing information about which pixels were fagged as changed 
and when. Te processed time series of Landsat images covers a time span of 8 years 
from 2009 to 2016. Subtracting the initial 3 years used as training data leaves a moni-
toring period ranging from 2012 to the end of 2016. In order to perform a thorough 
statistical evaluation of the results, a ground-truth data set representative for the 
whole spatial and temporal extent of the test data would be required. Unfortunately no
such data set is available. However, there is a reference map provided by the Chair of 
Remote Sensing and Landscape Information Systems, University of Freiburg, which 
documents areas afected by the storm in the summer of 2012. Te areas were manu-
ally digitized afer a visual interpretation of Landsat 7 images. Tree diferent change 
maps have been created by applying the change-detection algorithm to the time series 
of the 3 tasseled cap components brightness, greenness, and wetness one at a time. 
Each of the derived change maps will be evaluated within the spatial and temporal 
confnes of the available reference data set. 

At frst, the result obtained by processing the brightness signal shall be discussed. Fig-
ure 5.21 shows an overlay of the result and the reference map. Each pixel designated 
to be changed is colored according to the respective date of detection. Te provided 
legend assigns unique colors for the 10 most frequently occurring detection dates. Pix-
els corresponding to any other detection date are colored in black. Afer a quick visual
assessment, the reader may note that most of the larger, connected areas are roughly 
in agreement with the reference map, but there are also many small detections scat-
tered across the map. It is unlikely that these small, isolated areas with sizes of a few 
pixels correspond to actual change events. Terefore they are considered as commis-
sion errors and will be fltered in an additional post-processing step. Prior to the dis-
cussion of any post-processed results, the confusion matrices based on the unedited 
results for each tasseled cap feature are given in Table 10, 11, and 12 respectively. Te 
total sample size of N  = 744641 corresponds to the number of forest pixels (according 
to the forest mask) within the bounding rectangle of the reference map. Both the 
brightness and wetness based map identify changed pixels with producer and user ac-
curacies over 70%, with a maximum of 80.6% reported for the producer accuracy of the
wetness map. Te fndings of the preceding sub-section already suggested that the 
greenness signal is less suitable for the detection of storm damages, which is con-
frmed by the respective confusion matrix. A further discussion of the results will be 
given afer the presentation of the post-processed versions. 
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Table  10 : Confusion matrix of the unedited brightness change map 

Reference

Change No change Total User accuracy

Classifcation
Change 4926 1794 6720 73.3%

No change 1910 664011 674921 97.2%

Total 6836 674805 744641

Producer accuracy 72.1% 97.4%

Table  11 : Confusion matrix of the unedited greenness change map 

Reference

Change No change Total User accuracy

Classifcation
Change 3350 3098 6448 52.0%

No change 3486 644707 684193 94.9%

Total 6836 674805 744641

Producer accuracy 49.0% 95.4%

Table  12 : Confusion matrix of the unedited wetness change map 

Reference

Change No change Total User accuracy

Classifcation
Change 5511 2212 7723 71.4%

No change 1325 654593 664918 98.0%

Total 6836 674805 744641

Producer accuracy 80.6% 96.7%
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Figure  5.21 :  Unfltered map of changes detected in the brightness signal compared to the  
reference map of storm damages in 2012. Te legend indicates the 10 most frequent detec - 
tion dates. 

In order to remove the scatered small-scale detections, the maps have been post-pro-
cessed by applying a modal-value-flter with a 3\3-pixel window. Tis fltering opera-
tion also closes small gaps in larger areas and smoothes their outlines. Furthermore 
the homogeneity of detection dates within connected areas is increased. For each tas-
seled cap feature, the fltered change map is given in Figure 5.22, 5.23, and 5.24 respec-
tively. Comparing Figure 5.22 to Figure 5.21 shows that the selected flter operation 
efectively removes small objects. 

Several observations can be made regarding the reported dates of detection. Although 
there is a quite large variation overall, they are distributed over many homogeneous 
patches. One explanation for this efect is given by the local variability in the set of 
available un-masked observations. As discussed in the preceding sub-sections, the ter-
rain is a second factor of infuence. Figure 5.25 shows a Landsat 7 image acquired in 
the late November of 2009, where all map regions afected by drop-shadows can be 
identifed. By using the coordinate grid, the reader can track the correlation between 
shadow-areas and delayed change detection. 
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Figure  5.22 : Filtered map of changes detected in the brightness signal compared to the  
reference map of storm damages in 2012. Te legend indicates the 10 most frequent detec - 
tion dates. 

Figure  5.23 : Filtered map of changes detected in the greenness signal compared to the ref - 
erence map of storm damages in 2012. Te legend indicates the 10 most frequent detection 
dates. 
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Figure  5.24 : Filtered map of changes detected in the wetness signal compared to the refer - 
ence map of storm damages in 2012. Te legend indicates the 10 most frequent detection  
dates. 

Figure  5.25 : False-color composite (SWIR1, NIR, red ) of a Landsat 7 image acquired on  
the November 25 th ,  2009. Te image shows which areas of the change maps are afected  
by drop-shadows caused by the terrain and low sun elevation.  

A visual assessment shows that the brightness and wetness change maps have large 
similarities. On the other hand, the result based on the greenness signal is very difer-
ent. If a change is signaled at all, the time-delay is signifcantly larger in comparison to
the other two results. A quantitative evaluation of the post-processed change maps is 
given by the corresponding confusion matrices in Table 13, 14, and 15. Te post-pro-
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cessing boosts user accuracies compared to the unfltered results, which means that 
the number of commission errors decreased. Unfortunately the fltering also has an 
adverse efect on the producer accuracies, because originally correctly fagged change-
pixels are also fltered out due to the smoothing efect. Te best results are yielded by 
the wetness change map, where changed pixels are classifed with a producer accuracy
of 74.8% and a user accuracy of 86.1%. 

Table  13 : Confusion matrix of the fltered brightness change map 

Reference

Change No change Total User accuracy

Classifcation
Change 4471 760 5231 85.5%

No change 2365 674045 694410 96.6%

Total 6836 674805 744641

Producer accuracy 65.4% 98.9%

Table  14 : Confusion matrix of the fltered greenness change map 

Reference

Change No change Total User accuracy

Classifcation
Change 2609 1029 3638 71.7%

No change 4227 664776 714003 94.0%

Total 6836 674805 744641

Producer accuracy 38.2% 98.5%

Table  15 : Confusion matrix of the fltered wetness change map 

Reference

Change No change Total User accuracy

Classifcation
Change 5115 827 5942 86.1%

No change 1721 664978 684699 97.5%

Total 6836 674805 744641

Producer accuracy 74.8% 98.8%

5.2.5 Sources of error

Te reported accuracies are infuenced by several error sources. Omission errors may 
occur if the magnitude of the abrupt spectral shif afer the change event is too low. 
An example is illustrated by Figure 5.26, where the wetness time series of sample 
pixel 6 is ploted. Te pixel in question lies at the border of a region afected by the 
storm and may in fact be a “mixed” pixel. Unusually large temporal intervals between 
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consecutive observations also increase the probability of omission errors, because the 
sensitivity of the underlying hypothesis test used for change-detection decreases lin-
ear with time, see Sections 3.3 and 3.4.4. 

Figure  5.26 : Sample pixel 6. Omission error due to an initially low magnitude of spectral  
change. Te Kalman flter updates the state gradually and matches the post-change  
patern. 

Commission errors may be triggered if a spuriously good ft has been obtained during 
the initialization process. In this case the observation variance can be underestimated 
and the hypothesis test used for change-detection becomes too sensitive for the given 
time series. Another possible commission error source is presented by the fact that the
available ground-truth data set is referenced to a single change event, but the applied 
change-detection algorithm has a continuous character. Correctly identifed changes 
may simply not be refected by the reference map if the change event occurred at a 
later time. Tis especially concerns areas which have been harvested in the course of 
the clearance of the windthrow areas. 

5.2.6 Conclusions concerning the change maps

Considering the limited overall density of the processed historical Landsat time series, 
the achieved results are promising. Te evaluation shows that systematic, large-scale 
commission errors due to un-masked clouds are avoided by the implemented algo-
rithm. No other major faws were revealed by the statistical comparison with a refer-
ence map. However, the results suggest that the local topography in the area of the 
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reference map has a major infuence on the results. At this point it is probably neces-
sary to put this particular conclusion into perspective. It is important to take into ac-
count that the extreme topographical dependency of the results presented in Sec-
tion 5.2 is to a large part caused by the extraordinary low observation density in 2012 
due to the failure of Landsat 5 at that time. If by chance more post-change observa-
tions had been available before November 2012, the resulting change maps would ap-
pear a lot more homogeneous and the average time-delay between the change event 
and its detection would also be reduced. On the one hand, an emphasis on the analysis
of topographical efects is necessary to understand the results, but on the other hand it
should not cloud the overall assessment of the practicability of the algorithm itself. 
Furthermore, a more detailed quantitative evaluation of the time-delays between the 
change event and its detection based on the available reference data would not be rep-
resentative because of the bias introduced by the special satellite constellation prevail-
ing at the time and has therefore been lef out. 
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Dense time series acquired with spaceborne high-resolution optical sensors contain a 
wealth of information. Te exploitation of this constantly growing data archive is an 
active feld of research within the remote sensing community. Tis thesis gives an ac-
count of the current state of the art. Te use of time series analysis and regression 
models based on trigonometric functions is identifed as central element of several ex-
isting and operational algorithms. Te primary objective of this thesis was to link 
these current approaches to Kalman fltering techniques commonly found in other dis-
ciplines and investigate their applicability for change-detection in forests. 

Central to the intended application of the Kalman flter are time series models formu-
lated in state-space form. Chapter 3 of this thesis reviews how these models are math-
ematically defned and how they are related to regression models. Te Iteratively 
Reweighted Least Squares (IRLS) technique for robust parameter estimation is intro-
duced to address the problem of un-masked clouds and cloud shadows lef in the time 
series. Furthermore the well-known formulas for the Kalman flter itself are given in 
conjunction with an extension which can be used to detect anomalous measurements. 
Te chapter concludes with the formulation of a data-driven algorithm capable of de-
tecting abrupt changes on pixel-level. 

A multi-temporal stack of Landsat surface refectance data is used to test the sug-
gested algorithm. Tree features obtained by applying the tasseled cap transformation,
namely brightness, greenness, and wetness, have been chosen as observables. Te test 
site is located in Baden-Würtemberg, Germany. 

Te results of the feld test revealed no major faws of the implemented algorithm and 
suggest that a fair degree of robustness against un-masked clouds and cloud shadows 
has been achieved. Tree diferent change maps, each based on one of the observables,
have been produced. A limited quantitative evaluation of the change maps based on a 
ground-truth data set describing windthrow areas afer a storm in 2012 has been car-
ried out. Te best results are yielded by the wetness change map, where changed pix-
els were classifed with a producer accuracy of up to 80.6% and a user accuracy of up 
to 86.1%. 

Several starting points for future work are suggested by the results. Tey may be di-
vided into three categories:

(1) Further evaluation.  Partly due to the fact that the available reference map only cov-
ers storm damages in coniferous forest, the analysis of results for broadleaved forest is
underrepresented. A further evaluation of the algorithms’ sensitivity to other forest 
disturbances like fre, drought, or insect atacks based on suitable ground-truth data is 
necessary. 

(2) Adaptations for other input observables and large-area application.  Landsat data 
were used to implement the test case due to the availability of long historic time se-
ries. However, the algorithm can also be applied to Sentinel-2 data or other dense time
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series, for example acquired by Sentinel-1. Another topic is to try other spectral bands 
and indices and implement a benchmarking framework. Additionally the algorithms’ 
robustness could be further investigated and improved to apply it to larger areas. 

(3) Method improvements.  In the current stage, the algorithm processes only one ob-
servable at a time. Improvements could likely be achieved by introducing an inte-
grated processing of multiple observables or the implementation of multivariate time 
series models. Another limit of the current version is that the change-detection mech-
anism relies solely on repeatedly large diferences between forecast and actual obser-
vations. Gradual changes with relatively small initial magnitudes are frequently 
omited. By also monitoring signifcant changes of the estimated time series compo-
nents, for example shifs of the trend slope, omission errors could be reduced. 
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