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Abstract

In the past few decades, quantum computers have become a reality and threaten to break
currently used asymmetrical cryptographic schemes. In the same timeframe, research in
quantum-secure cryptograpy has seen a rise in popularity. Today many different proposals
exist, and some schemes have already seen real-world evaluations. There also already exist
many efficient implementations for software and Field Programmable Gate Arrays (FPGAs).
However, these implementations are not suitable for constrained devices like Near-field
communication (NFC) tags, and are often geared towards one out of the many proposed
parameter sets.

This thesis aims at improving the situation by presenting the first Application-Specific
Integrated Circuit (ASIC) implementation of lattice-based encryption. The implementation
supports many different parameter sets for two different schemes: a Chosen-Plaintext Attack
(CPA)-secure encryption scheme and an Adaptive Chosen-Ciphertext Attack (CCA2)-secure
encryption scheme.

Designing an ASIC implementation for constrained devices presents unique challenges,
as the area and power requirements have to be kept at a minimum. On top of that, many
design choices used for the FPGA implementations are not suitable for a low-resource
ASIC implementation. To still achieve good performance, this implementation uses several
state-of-the-art optimizations, like integrating the scaling within the Number Theoretic
Transform (NTT) operation and precomputing the so-called twiddle factors. For hashing,
an existing implementation of the Keccak (SHA-3) algorithm was integrated. For the
generation of error polynomials, a binomial sampler was implemented instead of using a
Gaussian sampler. This significantly reduces the complexity and area requirements. Trivium
was integrated to act as a Pseudorandom Number Generator (PRNG) for the sampler. For
the main memory, a single-port static RAM (SRAM) macro is used. To counter side-channel
attacks, the entire implementation runs in constant and data-independent time.

The implementation was synthesized using a UMC 65nm manufacturing process.
The area requirements are 27.4kGE (39 558µm2), from which the RAM uses 14.7kGE
(21 242µm2). When instantiating without support for CCA2 security, the area requirements
are as low as 19.5kGE (28 100µm2). Depending on the used parameter set, a CPA-secure
encryption takes between 32 908 and 143 335 cycles, a decryption, between 12 168 and
55 842 cycles. For the CCA2-secure scheme, especially decryptions take longer, with up
to 251 063 cycles. At the maximum operating frequency of 70MHz encryptions take as
little as as 470µs. The power consumption is less than 47µW/MHz, which is suitable for
passively-powered devices like NFC tags.

Keywords: Lattice-based Cryptography, Number Theoretic Transform, Post-Quantum
Cryptography Application-Specific Integrated Circuit, Ring-Learning With Errors
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Kurzfassung

In den letzten Jahrzehnten wurden Quantencomputer zur Realität und drohen weit ver-
breitete asymmetrische Verschlüsselungsverfahren zu brechen. Gleichzeitig erfreute sich
die Forschung an Post-Quanten Verschlüsselungsverfahren immer größerer Beliebtheit. Es
existieren heute schon viele verschiedene solcher Verfahren, wovon manche auch schon in
der Praxis getestet wurden. Weiters gibt es bereits viele effiziente Implementierungen für
Software und Field Programmable Gate Arrays (FPGAs), jedoch sind diese für sehr resour-
cenlimitierte Geräte wie Near-field communication (NFC)-Tags nicht geeignet. Außerdem
sind diese Implementierungen meistens nur für ein bestimmtes Parameter-Set optimiert.

Diese Arbeit präsentiert die erste Application-Specific Integrated Circuit (ASIC) Imple-
mentierung eines gitterbasierten, quantencomputerresistenten, asymmetrischen kryptogra-
phischen Verfahrens und schließt damit diese Lücke. Die Implementierung unterstützt viele
verschiedene Parameterisierungen für zwei verschiedene Verschlüsselungsferfahren: das erste
bietet Sicherheit gegen Chosen-Plaintext-Angriffen (CPA), das zweite auch gegen Adaptive-
Chosen-Ciphertext-Angriffen (CCA2). Das Entwerfen einer ASIC-Implementierung für
limitierte Geräte stellt eine besondere Herausforderung dar, beispielsweise müssen die
Fläche sowie der Stromverbrauch minimal gehalten werden. Außerdem können viele Desi-
gnentscheidungen vorhandener FPGA-Implementierungen für eine ressourcenschonende
ASIC-Implementierung nicht übernommen werden. Um trotzdem eine gute Performance zu
erzielen, werden viele Optimierungen verwendet. Als Hashfunktion wurde eine existierende
Implementierung des Keccak (SHA-3) Algorithmus integriert. Für die Generierung von
Fehlerpolynomen wird eine Binomialverteilung verwendet. Der dafür benötigte Zufallszah-
lengenerator wurde mit Trivium realisiert. Für den Hauptspeicher wird ein Statischer RAM
(SRAM) mit einem Port verwendet. Um Seitenkanalattacken entgegenzuwirken, läuft die
gesamte Implementierung in datenunabhängiger und konstanter Zeit.

Das Design wurde für einen 65nm Herstellungsprozess von UMC synthetisiert. Die
resultierenden Flächenanforderungen betragen 27.4kGE (39 558µm2), wovon 14.7kGE
(21 242µm2) für den RAM benutzt werden. Ohne Unterstützung für das CCA2-sichere
Verfahren werden nur 19.5kGE (28 100µm2) benötigt. Eine CPA-sichere Verschlüsselung
beansprucht zwischen 32 908 und 143 335 Zyklen und eine Entschlüsselung 12 168 bis 55 842
Zyklen. Für das CCA2-sichere Verfahren werden bis zu 251 063 Zyklen benötigt. Mit der
maximalen Taktfrequenz von 70MHz brauchen Verschlüsselungen nur 470µs. Der Strom-
verbrauch ist dabei unter 47µW/MHz. Somit eignet sich diese Implementierung auch für
passiv betriebene Geräte wie NFC Tags.

Stichwörter: Gitterbasierte Kryptographie, Number Theoretic Transform, Post-Quanten-
Kryptographie, Anwendungsspezifische integrierte Schaltung, Ring-Learning With Errors
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Chapter 1

Introduction

Currently used asymmetric encryption schemes are based on hard mathematical problems.
The ideas on which they are built upon date back several decades. The RSA encryption
algorithm was published in 1977, Elliptic Curve Cryptography (ECC) was proposed in
1985 but has not entered widespread use until 2004.

In 1994, Peter Shor proposed an algorithm that can break these popular cryptographic
systems in polynomial time [74]. However, it requires the use of a large quantum computer,
which was not available at that time. Since then, quantum computers have improved
steadily. Currently available quantum computers are still very limited in performance and
functionality, but they show great potential [55, 28]. It is not clear if or when quantum
computers will be capable of performing Shor’s algorithm efficiently. Their possible advent,
however, led to question the security of currently used encryption schemes. For instance,
in 2016 the National Security Agency (NSA) advised transitioning away from traditional
asymmetric schemes like RSA and ECC [49].

In recent years, quantum-resistant cryptography has become a very popular research
topic. Today there already exist many different proposals for quantum-resistant schemes
for signatures [31, 23, 50], public-key encryption [46, 14] and many more applications [75,
12, 10, 4, 25].

While no official standard exists yet, many of these proposals have been tested, and some
are used in practice. For instance, Google has previously been testing quantum-secure key-
exchange schemes in their Web-Browser Chrome in 2016 [13]. The most promising candidates
for quantum-secure schemes are lattice-based cryptography, code-based cryptography,
supersingular elliptic curve cryptography, or hash-based cryptography.

Out of these, especially lattices have proven to be highly practical. Many modern lattice-
based schemes rely on the Ring-LWE problem, which is a hard mathematical problem that
cannot be broken using Shor’s algorithm. It allows the construction of very efficient schemes.
While there already exist several efficient implementations of Ring-LWE-based schemes for
software [31, 20, 44] and Field Programmable Gate Arrays (FPGAs) [71, 66, 64, 69, 16],
they are not suitable for use in constrained devices, and they typically do not feature
any resistance to side-channel attacks. Additionally, many implementations are optimized
towards a specific parameter set, which is not future-proof since there exists no standard
yet.
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CHAPTER 1. INTRODUCTION 2

This thesis aims at improving the situation by presenting the first Application-Specific
Integrated Circuit (ASIC) implementation of a lattice-based encryption scheme. This
implementation focuses on low-resource use, will support many different parameter sets,
and feature some resistance to side-channel attacks. This allows for a fair evaluation and
comparison with state of the art hardware implementations of other asymmetric encryption
schemes, like RSA and ECC.

Organization of this Thesis

This thesis is organized as follows. In Chapter 2, the mathematical background for lattices
is given and lattice problems, which form the basis of lattice-based cryptography, are
introduced. Then, a definition of an efficient Ring-Learning-with-Errors-based encryption
scheme is given. Afterwards, different algorithms for sampling from Gaussian distribu-
tions are explored, which are used in state of the art implementations of lattice-based
cryptography. Then, an improved scheme is presented, which is secure against adaptive-
chosen-ciphertext attacks. Finally, an overview of current hardware implementations of
lattice-based cryptography is given.

In Chapter 3, the goals and requirements of the implementation are defined, and basic
design choices are discussed. Finally, an overview of the design is given. Following that,
Chapter 4 will give detailed descriptions of the design and algorithms used.

In Chapter 5, the circuit size, runtime, and power consumption of the implementation are
analyzed and compared with efficient hardware implementations of traditional public-key
encryption schemes.

Finally, Chapter 6 summarizes and discusses the results of this thesis and provides an
outlook for future work.



Chapter 2

Lattice-Based Cryptography

This chapter gives an overview of the most important aspects of lattice-based cryptography
and describes an efficient lattice-based encryption scheme. The presented scheme is a
candidate for future post-quantum-secure asymmetric encryption schemes and is based on
a mathematical structure called lattice. Lattices are used to build a variety of cryptographic
schemes because they provide useful properties that current cryptographic schemes do not
provide.

Section 2.1 introduces the concept of lattices. Section 2.2 gives an overview of the
current state-of-the-art in the field of lattice-based cryptography. The security of lattice-
based cryptographic schemes relies on the hardness of certain problems that are defined on
lattices. However, while these lattice problems are not directly used to build cryptographic
schemes, there exist related problems that can be used for building cryptographic schemes.
Section 2.3 presents both kinds of these problems. Cryptographic schemes that are based
on regular lattices require large keys and have a high runtime. So-called ideal lattices have
been proposed to avoid these problems. Ideal lattices feature some additional structure
which can be used to build more efficient cryptographic schemes. Section 2.4 introduces
the concept of ideal lattices and show how using a problem defined on ideal lattices can
help building a more efficient encryption scheme. Section 2.5 first presents the Number
Theoretic Transform (NTT), which is similar to a Fast Fourier Transform (FFT) and
can be used for efficient polynomial multiplications. Then, based on the NTT, a more
efficient encryption scheme is presented. Many lattice-based cryptographic schemes require
random samples which are sourced from a discrete Gaussian distribution. In Section 2.6,
an overview of the state-of-the-art in the design of discrete Gaussian samplers is given,
and binomial distributions as an approximation to discrete Gaussian distributions are
introduced. Section 2.7 introduces a CCA2-conversion of the previously defined efficient
encryption scheme to make it secure against chosen-ciphertext attacks. Both of the presented
encryption schemes are implemented in the practical part of this thesis. Finally, Section 2.8
discusses existing hardware implementations related to lattice-based cryptography.

3



CHAPTER 2. LATTICE-BASED CRYPTOGRAPHY 4

2.1 Lattices

Definition 2.1.1. A lattice L ∈ Rn is a set of points in n-dimensional space with a periodic
structure. Each point in the lattice can be described by an integer combination of the n
linearly independent basis vectors a1, . . . ,an ∈ Rn that fully determine the lattice:

L
(
a1, ...,an

)
=

{ n∑

i=1

xiai : xi ∈ Z
}

Figure 2.1 shows an example of a two-dimensional lattice. Any point in the lattice can
be reached by an integer combination of either black or red vector bases. There exists an
infinite number of possible vector bases for any lattice. For cryptographic applications,
q-ary lattices are of particular interest. Such q-ary lattices are lattices that contain a vector
x if and only if x mod q is also in the lattice. Unless stated otherwise all lattices in this
thesis are assumed to be q-ary.

x

y

Figure 2.1: A two-dimensional lattice with two possible vector bases (red and black).

2.2 Lattice-Based Cryptography

The term lattice-based cryptography is used for cryptographic constructions that are
based on lattice problems. Lattices have been studied for a long time, in the late 18th
century Lagrange [38] and Gauss [34] have already discovered the hardness of certain
lattice problems. The first significant breakthrough in lattice-based cryptography however
happened in 1996, when Ajtai proposed a public-key scheme based on lattices [2].

Lattice-based cryptography promises provable security, resistance against quantum
computers, as well as worst-case hardness. Currently, there exists no widely used quantum
computer resistant asymmetric encryption scheme, so the quantum computer resistance is
a very beneficial property.
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Quantum computing was shown to break RSA or ECC-based schemes in polynomial
time [74]. It is unknown if and when quantum computers become powerful enough to
be a considerable threat to asymmetric cryptographic schemes which are currently in
use. However, there is a continuous effort and progress in construction of better quantum
computers [19, 54, 62]. The quantum-resistance property of lattice-based cryptographic
schemes, as well as increased practicality of quantum computers have led to an increase of
activity in this field of research in the past decade.

Thanks to this research, there have been numerous proposals of lattice-based schemes
for many different applications like hash functions [45], signatures [31], and public-key
encryption [46]. All lattice-based schemes are built on top of the several lattice-related
problems which are assumed to be hard to solve even for quantum computers. In other
words, there is no quantum or classical algorithm known for solving these problems effi-
ciently. These lattice-related problems are not always directly defined on lattices but can
be reduced to real lattice problems. In the next section, these lattice problems as well as
lattice-related problems, are presented.

2.3 Lattice Problems

This section presents the two most important lattice problems (Shortest Vector Problem
and Closest Vector Problem), which play a significant role in the provable security of
lattice-based cryptography. This security is based on the presumption that these problems
are hard to solve. Additionally, the Learning With Errors Problem (LWE) is presented. It
is not directly defined on a lattice, but it can be reduced to a lattice problem.

Notation. In this work, lower-case bold symbols are used to indicate that a variable v is
a vector or polynomial. Upper-case bold symbols indicate that a variable A is a matrix.
〈v,w〉 denotes a dot product (scalar product) of the two vectors v and w.

2.3.1 Shortest Vector Problem

Definition 2.3.1. Given a lattice L which is defined by n linearly independent and
uniformly random basis vectors, the Shortest Vector Problem (SVP) is defined as finding a
vector x ∈ L with a length equal to the shortest vector in L. In other words, the goal is to
find the shortest non-zero vector in L.

Usually, the SVP does not require the solver to find exactly the shortest vector, but
only a short vector which is smaller than the length of the true shortest vector multiplied
with an approximation factor γ. This γ-approximation to the SVP is often denoted as
SVPγ . Figure 2.2 gives a visual representation of the SVP using a two-dimensional lattice.

The SVP is easy to solve if the basis vectors are already close to the shortest vector.
However, if the basis vectors are chosen randomly, the probability for an easy problem is
negligible for lattices with a high dimension. SVP was shown to be NP-hard, there exist
algorithms to solve the SVP, but they require exponential time [72].
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x

y

γ

Figure 2.2: Shortest Vectors Problem: Given a Lattice L with a vector base (black), find
the shortest vector (red) or a γ-approximation (SVPγ).

2.3.2 Closest Vector Problem

Definition 2.3.2. Given a lattice L and a target vector t (which is not on the lattice),
the Closest Vector Problem (CVP) is defined as finding a vector x ∈ L which is closest to
the target vector t.

For this problem, there also exists a γ-approximation where it is not required to find
the exact solution, but only a vector, such that the distance to the target vector is at most
a polynomial factor γ longer than the true distance. This γ-approximation to the CVP is
often denoted as CVPγ . Both problems, both SVPγ and CVPγ , correspond strongly with
each other, as there exist reductions in both directions [47].

A visualization of the CVP problem for a two-dimensional lattice is given in Figure 2.3.

2.3.3 Learning with Errors Problem

The Learning With Errors Problem (LWE) was introduced by Regev in 2005 together with
an efficient cryptosystem based on the hardness of this problem [68].

Definition 2.3.3. Given a lattice L defined by n linearly independent basis vectors ai that
are uniformly random, an error distribution X (typically a discrete Gaussian), a modulus
q, and an arbitrary number j of tuples with the following structure:

( ai1 , b1 ) = ( ai1 , 〈ai1 , s〉+ e1 ) mod q

...

( aij , bj ) = ( aij , 〈aij , s〉+ ej ) mod q,

where the error term ex ∈ Zq is sampled from X , and a secret s ∈ Znq is chosen uniformly
at random, the search variant of the LWE problem requires one to find the secret s. The
coefficient-wise vector multiplication bi = 〈ai, s〉+ei can also be rewritten as a matrix-vector
multiplication b = As + e, where A = [a, . . . ,an].
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x

y

γ

Figure 2.3: Closest Vector Problem: Given a vector base (black) and a target vector (blue),
find the vector closest to the target vector (red) or a γ-approximation (CVPγ).

There also exists a decision variant of the LWE problem which asks the solver to
distinguish between an arbitrary number of LWE-tuples from the lattice L and tuples
( ai , b

′ ) where b′ is chosen uniformly at random. The underlying assumption is that
even though b1, . . . , bj are not distributed uniformly random, the attacker is unable to
distinguish between them and truly uniformly random values b′.

By reducing the LWE problem to a variant of the SVPγ problem, which is proven to
be a hard problem, Regev [68] has shown that both the decision variant and the search
variant are equivalent and at least as hard as worst-case lattice problems. This proof has
been confirmed and improved upon by Peikert [56]. Even though both LWE problems
are equally hard, only the decision variant is currently used for proving the security of
cryptographic schemes.

The LWE problem turned out to be very versatile and useful for cryptographic appli-
cations. It has been proposed to be used for public-key encryption schemes [68], oblivi-
ous transfer protocols [59], leakage-resilient encryption [3, 5, 21], identity-based encryp-
tion [27, 81, 15, 1], as well as for fully homomorphic encryption [26].

Currently proposed public-key encryption schemes based on the standard LWE prob-
lem [68] have significant drawbacks compared to traditional schemes like ECC and RSA.
The lattice basis has to be stored in the key, so the key sizes are much bigger and too
impractical for use in typical web connection handshakes. The runtime cost is also much
larger due to the vector operations, that are needed for every bit of the ciphertext. Thank-
fully there exists a more efficient variant called Ring-LWE, which will be introduced in the
next section.
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2.4 Ideal Lattices and Ring-Learning with Errors

This section presents ideal lattices, which can be used to improve the practicality of
lattice-based cryptographic schemes. Compared to regular lattices, ideal lattices have the
advantage that vector operations can be replaced with efficient polynomial multiplications.

Initial LWE encryption schemes used matrix-vector operations. However, these are very
slow and have large key sizes. Lyubashevsky et al. [46] proposed a more efficient variant
called Ring-LWE, which uses structured ideal lattices. These ideal lattices allow replacing
all vector operations with polynomial multiplications. Thus, schemes based on Ring-LWE
are typically much more efficient and have smaller key sizes.

Notation. In this thesis, x∗y is used denote point-wise multiplications and x ·y to denote
polynomial multiplications.

2.4.1 Ideal Lattices

Ideal lattices are lattices that provide additional structure. Basis vectors, i.e., the columns
of A, are chosen uniformly at random in a regular lattice. In ideal lattices, at least in the
ones which are used in this thesis, the vectors are nega-cyclic shifts of one another, which
means that each vector is an element-wise rotation of the previous vector with the negation
of the first element.

Compared to regular lattices, the space requirements for ideal lattices are reduced
from O(n2) to just O(n). Ideal lattices can be interpreted as ideals in a specific finite ring
Rq = Zq

[
x
]
/(f), where f is an irreducible polynomial of degree n and required to be monic.

For efficiency reasons, f is usually chosen to be xn + 1, where n is a power of two and q is
chosen as a prime satisfying q ≡ 1 mod 2n.

An example of such a basis vector of an ideal lattice is shown in Figure 2.4.

1 2 3 -4

4 1 2 3

-3 4 1 2

-2 -3 4 1

Figure 2.4: Illustration of the basis of an an ideal lattice with f = xn+ 1 and its nega-cyclic
shift property. Each row is the result of the previous row shifted to the right with the first
element negated.

Using ideal lattices reduces memory requirements significantly because they can be
defined using a single vector. They also offer significant time savings, because all matrix
multiplications can be replaced with polynomial multiplications which are much more
efficient. Multiplications still happen in Rq, which means that they are still time-consuming
due to the reduction steps. However, the multiplication can be optimized by using the
NTT algorithm, which will be described in Section 2.5.
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2.4.2 Ring-Learning with Errors Problem

Definition 2.4.1. Given an ideal lattice, an error distribution (typically a Gaussian),
the ring Rq = Zq[x]/(f), a modulus q and samples (a1, t1), . . . , (am, tm) ∈ Rq × Rq, an
attacker has to distinguish randomly chosen samples from samples ti = ais + ei where s is
a uniformly sampled secret value and e1, . . . , em drawn from the error distribution.

The Ring-LWE is the ring variant of the LWE problem. It was first introduced by
Lyubashevsky et al. in 2010 [46]. Like the LWE problem, the Ring-LWE problem has two
variants.The search variant of the Ring-LWE problem requires an attacker to output s. For
the decision variant, the attacker has to decide if samples are chosen uniformly at random
or if they are valid Ring-LWE-tuples in the form ti = ais + ei.

In standard LWE schemes, each sample is defined as b′x = 〈ax, s〉 + ex, but this is
inefficient because it requires the computation of a dot product for each sample. In Ring-
LWE, dot multiplications can be replaced by polynomial multiplications in a finite ring.
Thus n samples can be generated at once by calculating b = a · s + e ∈ Rq.

The Ring-LWE problem has had a significant impact on the construction of practical
lattice-based encryption schemes. LWE-based encryption schemes usually come with a
security proof that ensures NP-hardness, however, for Ring-LWE no such classical reduction
to an NP-hard problem exists. The only known reduction to an NP-hard problem is
quantum [46]. Thus, it requires a quantum computer in order to be efficient.

2.4.3 Ring-LWE Encryption Scheme

Initial LWE encryption systems were based on matrix-vector operations. They were ineffi-
cient and used large key sizes. This section describes a more efficient encryption scheme
based on ideal lattices and the Ring-LWE problem. It was first proposed in 2010 by
Lyubashevsky et al. [46, 41].

The scheme is defined in Zq[x]/(xn + 1) and parameterized by the probability distribu-
tions U and Xσ, a prime q, as well as an encoder- and decoder-function. U is a uniform
distribution, and Xσ is a discrete Gaussian distribution with a zero mean and a standard
deviation of σ. Additionally, an n-dimensional ideal lattice, which is defined by the poly-
nomial a ∈ Rq is required. This variable a is sampled from U and is a part of the public
key.

The encoder function maps an n-bit input vector m to m̄ ∈ Rq by multiplying each bit
with q

2 . The decoder function maps a vector m̄ ∈ Rq to a binary vector by mapping values
in the interval (− q

4 ,
q
4 ] to ‘0’ and others to ‘1’. A visual representation of the encoder- and

decoder functions is given in Figure 2.5.
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0

- q4

q
2

q
4

‘0’

‘1’

Figure 2.5: The decoder function maps coefficients from a polynomial ∈ Rq to binary values:
Values in the interval (− q

4 ,
q
4 ] (the shaded area) get mapped to ‘0’ and all other values to

‘1’. In other words, values that are near 0 get mapped to ‘0’, and values near q
2 get mapped

to ‘1’. The encoder function maps binary values ‘0’ to 0 ∈ Zq and ‘1’ to q
2 ∈ Zq.

Key generation, encryption, and decryption are defined as follows:

• KeyGen(a): Sample two polynomials r1, r2 ∈ Rq from X and then calculate
p = r1 − a · r2. The polynomial r1 is no longer required after key generation. The
output of this function is the secret key r2 and public key (a,p).

• Encrypt(a,p,m): Encode the message m to m̄ ∈ Rq using the encoder function.
Sample three error polynomials e1, e2, e3 ∈ Rq from X . Then compute the ciphertext
(c1, c2 ∈ Rq) as:

c1 ← a · e1 + e2

c2 ← p · e1 + e3 + m̄

• Decrypt(c1, c2, r2): Compute m′ = c1 · r2 + c2 ∈ Rq and recover original message
m from m′ by using the decoder function.

2.5 Efficient Implementations

This section describes how the above scheme can be efficiently implemented.

2.5.1 Efficient Polynomial Multiplication

The Number Theoretic Transform (NTT) is the core of many efficient lattice-based con-
structions. It allows for efficient polynomial multiplication with a quasi-linear runtime
complexity of O(n log n) (compared to O(n2) using the traditional schoolbook method).
The NTT is essentially an FFT with the difference that it operates only in a specific finite
ring to avoid complex arithmetic or inaccurate floating-points.

Notation. A superscript tilde symbol indicates that a variable x̃ is the NTT transformation
of x. Furthermore, INTT and IFFT are used to indicate the inverse operation for NTT
and FFT, respectively.
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An n-point FFT can be used to evaluate an n-degree polynomial in the n-th root of
unity and perform a polynomial multiplication c = a · b by calculating
c = IFFTωn( FFTωn( a ) ∗ FFTωn(b) ). Similarly, with an NTT, the roots of unity from
a finite ring Sq = Zq[x]/[·] are used. This means that the polynomial multiplication is also
performed in this ring. The complex roots ωn in an FFT are replaced with primitive n-th
roots of unity in Zq. The values for ω are primitive n-th roots of unity if q is a prime and ωn ≡
1 mod q where ωm 6≡ 1 mod q for all m < n. These primitive n-th roots of unity enable
an efficient polynomial multiplication in the ring Sq = Zq[x]/(xn − 1). The multiplication
c = a · b in Sq can now be calculated with c = INTTωn( NTTωn( a ) ∗ NTTωn(b) ).

Using the NTT, which operates in the ring Sq, for lattice schemes still needs some
adaption. Almost all lattice schemes use the ring Rq = Zq[x]/(xn + 1) instead of Sq =
Zq[x]/(xn − 1). The relation between their primitive roots can be exploited to accomplish
polynomial multiplication in Rq. This works by scaling the input by the 2n-th primitive
roots of unity and the output by the inverse exponents. To calculate c = a · b in Rq using
the NTT, it can be rewritten as follows:

a′i of a′ = ai · ωi2n
b′i of b′ = bi · ωi2n

c′ = INTTω2n( NTTω2n( a′ ) ∗ NTTω2n( b′ ) )

ci of c = c′i · n−1ω−i2n

The INTT works the same way, but the inverse roots of unity are used instead. An
iterative description of the NTT algorithm is given in Algorithm 1. It describes the common
Colley and Tukey radix-2 decimation in time approach. The BitReverse operation in line 1
is used to reorder the input. This operation determines the new position of an element in
x by reversing the binary representation of its previous position. The factors ω are also
called twiddle factors. At the core of the algorithm (lines 7–10) lies the butterfly operation,
which is the multiplication of the factor ω with one element and subtracting or adding the
result (t) with another element (u).

As shown in Figure 2.6, an NTT operation, like the FFT, can be implemented using a
butterfly. When using more coefficients, a butterfly network with a recursive structure can
be built. Such a butterfly network with four coefficients is illustrated in Figure 2.7. The
left-hand side of this figure shows the input, which has already been reordered using the
BitReverse operation, while the right-hand side shows the output of the butterfly network.
By using this representation, the butterfly-operation becomes apparent as the core of the
NTT algorithm.
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Algorithm 1 Iterative n−coefficient NTT

Input:
x Polynomial ∈ Znq
ωn n−th primitive root of unity ∈ Zq

Output:
x̃ Polynomial ∈ Znq = NTT(x)

1: x̃ ← BitReverse(x)
2: for m = 2 to n by m = 2m do

3: ωm ← ω
n/m
n

4: ω ← 1
5: for j = 0 to m

2 − 1 do
6: for k = 0 to n− 1 by m do
7: t← ω · x̃[k + j + m

2 ]
8: u← x̃[k + j]
9: x̃[k + j]← u+ t

10: x̃[k + j + m
2 ]← u− t

11: end for
12: ω ← ω · ωm
13: end for
14: end for

x0 x2

x1
ω

x3−

+

Figure 2.6: A single NTT butterfly
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Figure 2.7: A 4-coefficient NTT butterfly network
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2.5.2 Efficient Ring-LWE Encryption Scheme

The encryption scheme presented in Section 2.4.3 can be made much more efficient by
utilizing the NTT operation and other optimizations. This section presents a more efficient
Ring-LWE encryption scheme as implemented in the practical part of this thesis. It is much
more efficient than its LWE counterpart and compared to ECC, the operations are much
faster [71].

Using the NTT operation, polynomial multiplications can be computed very efficiently
with a runtime of O(n log n): b = a · s + e ∈ Rq can be rewritten as b = INTT( NTT(a) ∗
NTT(s) + NTT(e) ).

Pöppelmann and Güneysu have proposed to keep fixed polynomials, the private and
public keys, in the NTT domain [64]. This reduces the number of NTT operations in Encrypt
and Decrypt. Furthermore, the ciphertexts can also be stored as the NTT-transformed
version as proposed by Roy et al. [71]. This allows for more efficient decryption, where only
one NTT invocation is required.

Using these optimizations, the improved Ring-LWE encryption scheme is defined as follows:

• KeyGen(a): Sample the polynomial r1 ∈ Rq from X , choose a different polynomial
r2 ∈ Rq from binary coefficients and then calculate p = r1 − a · r2. The polynomial
r1 is no longer required after key generation. Perform an NTT transformation for
the three polynomials a,p and r2 to get ã, p̃ and r̃2. The output of this function is
the secret key r̃2 and public-key (ã, p̃).

• Encrypt(ã, p̃,m): Encode the message m to m̄ ∈ Rq using the encoder function.
Sample three error polynomials e1, e2, e3 ∈ Rq from X . Then compute the ciphertext
(c̃1, c̃2) as:

ẽ1 ← NTT(e1)

ẽ2 ← NTT(e2)

c̃1 ← ã ∗ ẽ1 + ẽ2

c̃2 ← p̃ ∗ ẽ1 + NTT(e3 + m̄)

• Decrypt(c̃1, c̃2, r̃2): Compute m′ = INTT(c̃1 ∗ r̃2+ c̃2) and recover original message
m from m′ by using the decoder function.

While the polynomial r2 is usually sampled from X , in this work binary coefficients are
used instead. This way, the above scheme is identical to the scheme presented in [71].

The presented encryption scheme is parameterized by the three variables σ, n, and q.
These parameters define the security level of the scheme. Currently, there is no standardized
parameter set, but many different sets have been proposed [41, 29, 48, 52, 4]. Most of the
proposed parameter sets aim for a 128-bit security level. The exact parameter sets that are
used in the practical part of this thesis will be discussed in Section 3.3.
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2.6 Discrete Gaussian Samplers

Lattice-based constructions often require samples from a Gaussian distribution (for ex-
ample [8, 23, 41, 57, 59]). In the case of Ring-LWE, error polynomials that are sampled
from a discrete Gaussian distribution are required for key generation and encryption. This
section will first define a Gaussian distribution. Then it will give an overview of the current
state of design of discrete Gaussian samplers, which are used in lattice-based cryptographic
schemes. Binomial distributions as an alternative in Ring-LWE schemes are introduced
and discussed as well.

Definition 2.6.1. The probability density function of a continuous Gaussian distribution
with a standard deviation of σ ∈ R≥0, with the center at µ ∈ R is evaluated at x ∈ R is
defined by

pµ,σ(x) =
1

σ
√

2π
e−(x−µ)

2/(2σ2)

Definition 2.6.2. The discrete Gaussian distribution over Z with the center µ at 0 is
defined by

pσ(x) =
1

S
e−x

2/(2σ2),

where S is a normalization factor and is approximately σ
√

2π.

Notation. In the literature, the definition of a discrete Gaussian distribution often uses
the parameter σ = s/2π. This parameter defines the standard deviation of the distribution.
Throughout this thesis, this notation will be used for defining a discrete Gaussian distribu-
tion.

Lattice-based cryptographic schemes rely on hard problems and security proofs. Their
definitions often use discrete Gaussian distributions. However, a finite machine cannot
sample from a real discrete Gaussian distribution, as it would require infinite arithmetic
precision. Hence, one has to sample from a distribution which is close to a real discrete
Gaussian distribution. Some previous work [40, 41, 42] argues that the statistical distance
between the sampled distribution and the desired discrete Gaussian distribution needs to
be less than 2−90 in order to still provide a large enough security margin. If the accuracy
of the distribution is not good enough, then the entire cryptographic-system might become
insecure because the security proofs are invalidated.

To achieve the necessary precision, storing big precomputed tables or using high-precision
floating-point arithmetic is usually required. Both approaches have a huge impact on the
efficiency or the area requirements, which is especially important for constrained devices.

The Gaussian sampler is usually one of the biggest components in a lattice-based
scheme [77], so it is important to design and implement an algorithm which is very efficient.
The parameters of the Gaussian distribution, as well as the accuracy needed, are governed
by the definition of the schemes and their security proofs.
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Another key aspect of Gaussian samplers is implementation security. Being a part of
a cryptographic scheme, it is important that the sampler itself is secure as well. Many
currently-used algorithms are susceptible to timing attacks because of their non-constant
time design. This side channel information can compromise the entire scheme, as shown
in [30].

In the next section, different algorithms are presented and their drawbacks regarding
efficiency and security are discussed. Alternatives to Gaussian distributions in Ring-LWE
schemes are introduced and discussed as well.

2.6.1 Comparison of State-Of-the-Art Implementations

Several different algorithms exist to generate samples from a discrete Gaussian distribution.
This section will briefly introduce several algorithms and alternative distributions which
are currently being used in lattice-based schemes and implementations. Only the binomial
distribution will be explained in greater detail because of its relevance to the practical part
of this thesis. Other algorithms and distributions are only briefly mentioned for the sake of
completeness.

Rejection Sampling.
Rejection sampling was the first method proposed to be applied in lattice-based cryptogra-
phy [27], and several optimized versions exist [22]. This algorithm does not need to store
any precomputed tables. However, it can be very slow and typically requires expensive
high-precision floating point arithmetic.

Inverse Transform Method.
Peikert proposed to use this method to sample discrete Gaussians. This method can be
implemented either by using floating point arithmetic or using big precomputed tables
for each different parameter combination. These tables are also called Cumulative Dis-
tribution Table (CDT). This method can be implemented in a very fast and efficient
manner [23, 66, 39, 17] and is used in practical hardware implementations [64].

Knuth-Yao.
The Knuth-Yao algorithm [35] is a commonly used method for sampling values from a
discrete Gaussian distribution. It does require a precomputed table. However, recent work
has achieved much higher efficiency by using smaller tables [71, 20, 77]. The algorithm
itself features data-dependent branches and thus leaks timing information. At the cost of
significantly higher area requirements, Roy et al. have added random shuffling to their
implementation to resist side-channel attacks [70].

Earlier work, related to Ring-LWE encryption and key-exchange schemes, typically use
one of these algorithms for sampling values from a high-precision discrete Gaussian distribu-
tion. However, despite recent efficiency optimizations [71, 20, 77] and implementations that
feature side-channel resistance [70], they are not optimal for hardware implementations
due to their inherent side-channel leakages and efficiency issues.
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The required security levels for Ring-LWE schemes can also be achieved with other
distributions that are close to a discrete Gaussian distribution. Ring-LWE signature
schemes usually require more accurate samplers than encryption schemes. However, even
for signature schemes, efficiency can be gained by using different distributions without
sacrificing security.

Alkim et al. argue that a high precision sampler, which is quite resource-intensive, is
often not required and proposed using a centered binomial ψk as error distribution [4].
Using that error distribution results in a slight reduction in security. However, they also
presented a security proof and claimed that it is good enough for most applications. They
further explain that, for distributions that are close to Gaussian distributions, what matters
most are entropy and the standard deviation. In practice, there exists no known attack
that exploits the structure or differences in errors distributions. Replacing the Gaussian
distribution with a centered binomial distribution ψk became common practice in more
recent works [4, 52, 11].

Binomial distributions.
Binomial distributions are much more efficient to sample from because no high precision
floating point arithmetic or large precomputed tables are necessary and no data-dependent
branches are required. Therefore, it is easy to implement sampling in constant time, which
makes it secure against timing attacks. This makes binomial distributions an ideal candidate
for low-resource hardware implementations.

Samples from a binomial distribution ψk can be calculated by computing
∑k−1

i=0 bi − b′i
where bi, b

′
i ∈ {0, 1} are 2k uniform independent bits. This distribution is centered, its mean

is 0, and has a variance of k/2 (a standard deviation of ς =
√
k/2). Using a different repre-

sentation of the same formula, using the hamming weight function, is HW (b)−HW (b′),
where b, b′ ∈ 0, 1k. This shows, that sampling from a binomial distribution is essentially
the same as counting bits.

Notation. To differentiate between different distributions, σ indicates the standard devia-
tion of a Gaussian distribution X and ς is used for centered binomial distributions ψk.

Oder et al. argued that distributions that roughly follow a discrete Gaussian, the stan-
dard deviation can be considered the most important factor when describing and comparing
security levels for Ring-LWE [52]. Some other distributions that are less commonly-used
in lattice-based schemes include fixed distributions [10] and non-centered binary distribu-
tions [14]. For signature schemes, uniform distributions are sometimes used [9, 31].

For this work, a binomial distribution is chosen, as it can be implemented in constant
time and offer, a much-improved efficiency, which is ideal for hardware implementations.
Additionally, they have already been used and tested with Ring-LWE encryption schemes
in practice [4, 11, 52].
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2.7 CCA2 Conversion of the Ring-LWE Encryption Scheme

Before Ring-LWE-based encryption can be seriously considered as a replacement for
current encryption schemes like RSA and ECC, it has to be made secure against Adaptive
Chosen-Ciphertext Attack (CCA2). Furthermore, CCA2-security is a prerequisite before
any side-channel resistance can be considered because an attacker with physical access to a
decryption oracle could simply use malformed ciphertexts to reveal the secret key without
using a side-channel attack at all.

This section introduces an improvement to the Ring-LWE encryption scheme presented
in Section 2.5.2 with added security to make it resilient against adaptive chosen-ciphertext
attacks. This conversion was previously presented by Oder et al. [52]. To enable a semanti-
cally secured encryption with respect to adaptive chosen-ciphertext attacks, they use a
post-quantum variant of the Fujisaki-Okamoto transformation [24] proposed by Targhi and
Unruh [78]. Peikert concluded that for this transformation, a passively secured encryption
scheme should be converted to an actively secured one [58]. This conclusion is based on
the random oracle model, assuming adaptive attacks for CCA2.

For this transformation, the two hash functions G : {0, 1}L → {0, 1}l and H :
{0, 1}L+l → {0, 1}λ are needed. Here, L is the size of the message, l the length of the input
for the encryption, and λ the length of the seed for the Pseudorandom Number Generator
(PRNG). For this work, L and l are set to be equal to the parameter n from the previous
scheme. λ is set to 160 bits, as this is the largest seed that the used PRNG supports. Details
about the PRNG will be presented in Chapter 3.

It should be noted that a third hash function is actually required for the intended
quantum security. Oder et al. revised their scheme in a later version of their work [52].
However this was published after this implementation was complete, so in this work, their
previous scheme is used and presented below.

Notation. To differentiate between the plain Ring-LWE encryption scheme (see Sec-
tion 2.5.2), which is only secure against CPAs, and the CCA2-secure scheme, CPAenc and
CPAdec are used to indicate a plain Ring-LWE encryption/decryption and CCAenc and
CCAdec for the CCA2-secured variant.

The definition of the CCA2-secure encryption algorithm CCAenc is given in Algorithm 2.
The decryption algorithm CCAdec is defined in Algorithm 3. To visualize the data-flow of
the algorithms, Figure 2.8 and Figure 2.9 show a graphical representation of this CCA2-
converted Ring-LWE encryption scheme.
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Algorithm 2 CCAenc

Input:
(ã, p̃) Public Key
v ∈ {0, 1}L Nonce
M ∈ {0, 1}L Message to be encrypted

Output:
(c1, c2, c3) Ciphertext

1: seed← H(v || M)
2: PRNG-init(seed)
3: (c1, c2)← CPAenc(ã, p̃, v)
4: c3 ← G(v)⊕mcca

5: return (c1, c2, c3)

Algorithm 3 CCAdec

Input:
r̃2 Private Key
(ã, p̃) Public Key
(c1, c2, c3) Ciphertext

Output:
M ∈ {0, 1}L Decrypted message

1: v′ ← CPAdec(r̃2, c1, c2)
2: M ← G(v′)⊕ c3
3: seed← H(v′ || M)
4: PRNG-init(seed)
5: (c1

′, c2′)← CPAenc(ã, p̃, v
′)

6: if (c1
′, c2′) is equal to (c1, c2) then

7: return M
8: else
9: return fail

10: end if
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Figure 2.8: CCA2-secure encryption
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Figure 2.9: CCA2-secure decryption

2.8 Existing Hardware Implementations

This section provides an overview of existing hardware (FPGA) implementations of lattice-
based encryption and signature schemes as well as hash functions.

In 2012, Györfi et al. presented a high-throughput hardware architecture for the SWIFFT
/ SWIFFTX ([45]) hash functions [32]. The presented a fully parallelized hardware im-
plementation of an NTT focusing on high-throughput. However, this meant that the
implementation was very large and required expensive FPGAs.
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In 2012, Göttert et al. have presented the first complete hardware implementation of
an LWE-based cryptosystem [29]. This work was a big step in assessing the practicality
of lattice-based encryption. Their hardware implementation included multiplication in
polynomial rings using a parallel implementation of the NTT. Using the NTT means a
reduction of the runtime from O(n2) to O(n log n). Their parallel implementation further
reduced this to O(log n). However, this meant that the implementation was very large
and required expensive FPGAs. Furthermore, they explored different variants for sampling
Gaussian distributed values (rejection sampling, a rounding-based approach, and a lookup
table approach) in hardware and compared them to each other.

In the same year, Pöppelmann and Güneysu presented their work on an adaptable,
extensible, and efficient NTT-based arithmetic for lattice-based cryptography [63]. Their
design is much smaller and scalable. This served as a building block for their later work, in
which they presented a fully functional efficient hardware implementation of Ring-LWE-
based encryption [64]. Here, they showed that Ring-LWE encryption could be both cheap
and fast in hardware. The design was based on a micro-code processor capable of the
NTT-operation, addition, and subtraction of polynomials, as well as Gaussian sampling. It
was designed as a versatile building block for future ideal lattice-based schemes. All parts
of their implementation had a constant runtime, which protects against timing attacks.
This was possible by implementing a constant-time Gaussian sampler using the inverse
transform method. The same authors improved on this design further, by presenting a
lightweight implementation, which was about ten times smaller [65].

In 2013, Aysu et al. presented area optimizations for the polynomial multiplication
with the NTT [7]. Compared to previous work, they reduced the slice usage, the number
of utilized memory blocks, and the number of memory accesses, by an improved memory
organization and on-the-fly generation of operands.

Roy et al., in 2014, presented a compact coprocessor for a Ring-LWE-based encryption
scheme [71]. They presented three optimizations to the NTT: avoiding preprocessing the
input by merging the initial scaling operation with the main algorithm, reducing the fixed
computation cost of the twiddle factors, and using an advanced memory access scheme
using parallel FPGA-RAM slices to achieve maximum utilization of computational blocks.
Additionally, they proposed optimizations to the Ring-LWE encryption scheme to reduce
the number of NTT operations. Furthermore, they implemented a more efficient sampler
using fast lookup tables, which is more compact and faster compared to previous work ([65]).
Finally, targeting high-speed applications, they use pipelining to achieve a fast computation
time.

In 2014, Pöppelmann et al. presented an FPGA implementation of Bimodal Lattice
Signature Scheme (BLISS), a lattice-based signature scheme [66]. The authors presented
techniques for efficient sampling of high-precision Gaussian noise. They integrated fast
NTT-based polynomial multiplication, parallel sparse multiplication, and Huffman com-
pression of signatures. As PRNG for their sampler, they chose Trivium. Keccak was used
as a random oracle instantiation, due to its security and speed in hardware.
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Lattice-based cryptography is one of the most promising quantum-secure candidates
considered to be used as a replacement for currently used encryption schemes. Many different
algorithms have been evaluated both in software and in hardware. However, ASIC designs
were left unexplored. In 2016, Oder et al. discussed the many opportunities and challenges
in implementing lattice-based cryptography on ASICs [51]. However, they did not present
an implementation and many questions were left unanswered. For example, performance
and area estimations were not given and it was unclear if such an implementation could
achieve decent performance.

To answer these questions, this thesis presents a low-resource ASIC implementation of
a lattice-based encryption scheme. The following chapter discussed the the requirements
and basic design considerations for this implementation. Afterwards, the implementation
details are presented, and the results are discussed. Concrete performance numbers are
given both for the area and the timing.



Chapter 3

Requirements and Design Space
Exploration

Compared to software and FPGA implementations, ASIC implementations have unique
requirements that have to be met. These requirements, as well as fundamental design
choices, are discussed in this chapter. First, in Section 3.1, the basic requirements an ASIC
implementation has to fulfill are described, and the goals of this work are defined. Then,
Section 3.2 will discuss some fundamental design choices. Afterwards, Section 3.3 will
discuss different parameter sets for the instantiation of the encryption scheme and reason
about the design choices made. Finally, in Section 3.4, an overview of the building blocks
of the implementation is given.

3.1 Requirements and Goals

The goal of this thesis is to explore the practicality of Ring-LWE encryption schemes for
constrained ASICs. For this purpose, the encryption algorithms presented in Section 2.5.2
and Section 2.7 are implemented as a coprocessor.

Possible real-world target applications of the coprocessor include Radio-frequency
identification (RFID) chips and System on Chips (SoCs) for mobile devices. These target
applications require both a small design and low power operation. ASICs are usually mass-
produced, so it is critical to minimize circuit size to reduce manufacturing costs. Currently,
there already exist some FPGA implementations of Ring-LWE encryption and signature
schemes [7, 64, 65, 66, 71], however to our knowledge there exist no ASIC implementations of
a Ring-LWE encryption scheme. A primary goal of this thesis is to enable a fair comparison
with (highly optimized) ASIC implementations of other encryption schemes such as RSA
and ECC.

The main focus of this thesis lies in minimizing the area while still providing acceptable
performance for practical applications. To achieve these goals, it is important to choose
efficient and small algorithms, and re-use modules for different tasks if possible. Additionally,
as a secondary focus, the power consumption has to be kept as low as possible. For this
purpose, clock-gating will be implemented. This reduces switching activity, which is the
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main contributor to power consumption in Complementary Metal-Oxide-Semiconductor
(CMOS) technology. To increase performance without increasing the complexity of the
implementation significantly, some trade-offs in regards to the area requirements have to
be made.

When implementing a cryptographic scheme, it is also necessary to provide security
against side-channel attacks. This will be achieved by having all operations run in constant
(data independent) time. However, other side-channel countermeasures, like masking [69, 52],
were not considered to be within the scope of this thesis to reduce the complexity of this
first ASIC implementation.

To summarize, the primary goals of this work is to have a fully-fledged Ring-LWE
encryption coprocessor that is capable of encryption and decryption using two different
Ring-LWE encryption algorithms. One of them is secure against adaptive chosen-ciphertext
attacks, while the other only protects against chosen-plaintext attacks. Both encryption
schemes will run in constant time. Algorithms will be chosen based on this constant-time
requirement. The coprocessor will use the Advanced Microcontroller Bus Architecture
(AMBA) [6] interface to communicate. Key-generation will not be a part of the design, as
keys are often generated elsewhere.

3.2 Basic Design Considerations

This section will enumerate the required building blocks and algorithms, as well as describe
basic design considerations for implementing them and explain why specific algorithms
were chosen. Implementation details will follow in the next chapter.

For the NTT and the point-wise multiplication, as well as the addition of polynomials,
a multiplier that can multiply numbers up to the selected prime q, as well as adder and
subtraction units are required. Because all operations happen in a prime field, the modulo
operation is also needed.

Beside the central arithmetic unit, several other modules are required: For generating
error polynomials, a noise sampler is necessary. The entropy source for the noise sampler
will be a PRNG. The PRNG will be integrated into the coprocessor because it needs to be
constant time and secure against side-channel attacks as well. The CCA2-secure encryption
scheme additionally requires a hash function. Lastly, memory and a control unit will also
be part of the coprocessor.

The remainder of this section discusses the design choices and chosen algorithms for
these modules.

Memory.
Memory in the form of RAM is required for the hashing algorithm, as well as for the Ring-
LWE operations to store the keys and other polynomials. Compared to other encryption
schemes, memory requirements for Ring-LWE-based encryption schemes are very high.

Current FPGA implementations typically use one or more instances of an on-chip
dual-port block RAM. These implementations [63, 64, 65] are heavily optimized and rely
on this dual-port block RAM. Since FPGAs already provide such blocks, this is a sensible
option. However, for ASICs, many more options exist which allow tradeoffs regarding the
area and performance.
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For this work, due to the big memory requirements and the focus on a low area, a
single instance of a single-port static random access memory (SRAM) macro was chosen
for the main storage. SRAM macros typically use fewer resources than standard-cell based
memories, so choosing a macro additionally reduces the area requirements. Dual-port SRAM
macros exist and would allow for huge speed-ups and optimizations. However, they are
about twice the size. This choice has a significant impact on the design of this coprocessor.
A single-port RAM is limited to reading or writing a single word in each cycle, concurrent
reads and writes are not possible. To avoid bottlenecks, it will be important to utilize the
given RAM bandwidth as much as possible and minimize memory wait cycles. To reduce
memory requirements, memory locations will be chosen carefully, and the Arithmetic logic
unit (ALU) will share the memory with the hashing algorithm.

The exact size of the memory will be discussed later in this chapter, as it differs de-
pending on the used parameter set.

Datapath and memory width.
For practical reasons, only memory widths of 8, 16, and 32 bits were considered for the
memory width. This makes it easier to integrate the coprocessor into other blocks. For
this work, 16-bit was chosen for the width of the RAM and the datapath because it is a
very common width for microprocessors. Additionally, most proposed parameter sets for
Ring-LWE encryption algorithms use primes that fit into 16 bits. This implementation
will typically store one polynomial coefficient in a single RAM-word. While this limits the
implementation to use primes no larger than 16 bits, it also significantly reduces complexity.

Multiplier.
The encryption scheme requires frequent multiplication of two log2(q)-bit words, where q
is the chosen prime. This multiplier is the core of the ALU.

The hardware requirements of a simple n × n bit multiplier are roughly n2 AND
gates and adders. Despite the large area requirements, this work will use such a log2(q)×
log2(q) bit integer multiplier. Using a half-width multiplier and using multiple half-width
multiplications can also be a valid option for constrained devices. This would reduce the
area requirements significantly. Furthermore, the single-port RAM is not fast enough to
provide two log2(q)-bit operands in a single cycle regardless. However, using a full-sized
multiplier reduces the complexity of the design. The multiplier is also heavily used for
the chosen reduction algorithm. In the NTT operation, the multiplier will be used to
calculate the so-called twiddle-factors. These can be calculated without fetching operands
from the RAM. The reduction algorithm requires a double-width multiplication, which
will be split up into multiple smaller ones, while all other multiplications are single-width.
For this module, area was traded in for a speed-up in multiplications. Because not every
multiplication requires fetching operands from RAM and modulo reductions are needed
after every multiplication, the big multiplier can be justified easily.

It is important to make sure the multiplier gets used in as many cycles as possible
to avoid any bottlenecks. For this purpose, the required operands will be preloaded into
dedicated registers whenever possible. The multiplier is expected to be utilized for over
60% of the cycles during decryption.
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Reduction algorithm.
For the modulo reduction, the Barrett reduction method was chosen for this design because
it can re-use the multiplier in the ALU. Any other reduction algorithm, for example the
Montgomery reduction, would have added more gates. Additionally, the Barrett reduction
can be easily implemented in constant time, which helps strengthen the implementation
against side-channel attacks. When designing for a single parameter set, an algorithm
specifically tailored to one prime could be used. However, due to the lack of a standardized
parameter set, it is currently advantageous to use a generic algorithm that supports many
different parameter sets. The specific Barrett reduction algorithm used in this work is
shown in Algorithm 4.

Algorithm 4 Barrett Reduction

Input:
a Integer to be reduced. a ≤ q2

Output:
r a mod q

1: x← (a · µ)� k
2: r ← a− (x · q)
3: if q ≤ a then
4: r ← r − q
5: end if
6: return r

Here, µ is a precomputed constant which is defined as µ = b2k/qc, where q is the
modulus. The Barrett reduction uses the constant µ to approximate a division of a/q. Due
to this approximate nature, the algorithm can only guarantee a correct result for a specific
range of inputs. The error of the Barrett reduction can be calculated by 1/q − µ/2k. The
maximum value for a valid input a is thus given by b1/errorc. The value k has to be
chosen, such that b1/errorc ≥ q2.

In this work, k is chosen to be 2 log2(q). By using this value for k, µ will be exactly
1 + log2(q)-bit wide. Line 2 in this algorithm is a double-word multiplication. Splitting
up a · µ into two smaller single-word multiplications results in multiplications of up to
log2(q)× (log2(q) + 1)-bit. This results in a 1-bit increase of the width for one operand of
the multiplier to accommodate the reduction algorithm. Therefore, in terms of area, this
reduction algorithm comes at a very low cost.

Noise sampler.
The sampler is required for generating error polynomials, which are used during encryption.
For this purpose, a binomial sampler is used. Binomial samplers are very simple and
efficient, have no data-dependent branches and run in constant time. Due to these benefits
binomial samplers are used in many efficient lattice-based designs [4, 52]. Samples from a
binomial distribution ψk are calculated by computing

∑k−1
i=0 bi − b′i where bi, b

′
i ∈ {0, 1} are

2k uniform independent bits provided by a PRNG. For a standard deviation of ς =
√
k/2,

where k ∈ Z, this algorithm requires 2k bits from an entropy source.
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Hash function.
A hash function is required by the CCA2-secure encryption algorithm described in Sec-
tion 2.7. For this work, Keccak was chosen in the SHAKE128 instantiation. Keccak is the
winner of the SHA-3 competition by the National Institute of Standards and Technology
(NIST). Many lattice-based encryption and signature implementations [11, 52, 4] use Keccak
as a hash function due to its excellent performance, security properties, and flexibility.

The specific implementation [60] used in this work was authored by Peßl and Hutter and
was adapted for use as an extendable output function (SHAKE). It was chosen because it is
a very small and efficient hardware implementation of the Keccak algorithm, which supports
the chosen memory bus width of 16-bit. This implementation of SHAKE128 requires 1600
bits (200 Bytes) of memory, which means it requires 100 words of the RAM. Due to the
extensive memory requirements, it was decided to share the RAM between the ALU and
the hash function. The memory layout and order of operations are designed in such a way
to make sure there is always free memory for the hash function, while still minimizing the
memory requirements for the coprocessor as a whole. During hashing operations, the hash
function will have exclusive access to the RAM.

PRNG.
A PRNG is required as an entropy source for the noise sampler. PRNGs can be based on
block and stream ciphers, hash functions, or dedicated algorithms.

Reusing Keccak as a PRNG is not an option due to performance reasons. Using Keccak
would result in roughly 95% of the runtime of the encryption to be spent on generating
pseudo-random values for the sampler. Instead, this work uses Trivium as a PRNG. Trivium
is a very lightweight stream cipher with a flexible trade-off between area and speed. It is
was already used as a PRNG in other Ring-LWE implementations (e.g. [65, 66]).

The chosen Trivium implementation can generate between 20 and 26 bits per cycle
while having a size of just 3–5kGE. While this work allows Trivium to be instantiated with
any bits per cycle within that range, for the purpose of performance and area evaluations,
16 bits per cycle were chosen for this work. This offers excellent performance, and the
additionally required area is insignificant compared to other modules of the coprocessor.
Compared to this choice, instantiating it with 1 bit per cycle would save an area of up to
1kGE. In practice, it has to be carefully evaluated if the trade-off is worthwhile, based on
the design goal and the application.

In this work, the implementation was taken from [80] and adapted to allow for re-seeding
to be split up into multiple cycles. This change was made to avoid having to store the
entire 160 bits that are needed for seeding the PRNG in registers.

3.3 Parameter Selection

Ring-LWE encryption is still relatively new, and to this date, no standardized algorithm
and parameter set exist. However, many different parameter sets have been proposed [48,
41, 29, 75, 76, 4, 52]. This section will briefly explain what a parameter set is, which sets
have been previously proposed, and which parameter sets will be used in this work.
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The Ring-LWE encryption schemes presented in Section 2.5.2 and Section 2.7 are
parameterized by the three variables σ, n, and q. These three parameters together represent
the so-called parameter set and define the security level of many Ring-LWE encryption
schemes. To be exact, the security level (hardness of the Ring-LWE problem) depends on
the dimension n, as well as the ratio of q/σ, where a bigger n or a smaller ratio means an
increase in security.

In literature, the parameter s is often given instead of σ. It is calculated by s = σ ·
√

2π.
Conversely, σ is calculated by s/

√
2π.

We recall from Section 2.6 that the standard deviation of binomial distributions are
denoted as ς, whereas Gaussian distributions use σ. For Ring-LWE, when comparing secu-
rity levels of different distributions that roughly follow a discrete Gaussian, the standard
deviation (as denoted by σ and ς) is the most important factor [52]. While they are not
exactly equivalent, in this work σ values from proposed parameter sets that use a Gaussian
distribution are approximated to the closest ς that the sampler used in this work allows.
This allows for a comparison of many more different parameter sets.

Authors n q σ ς k
Public Security

Set
Key Size Level

Lindner and Peikert[41]

128 2 053 2.70 1 536 bits � 128 bit

192 4 093 3.53 2 304 bits < 128 bit

256 4 093 3.33 3 072 bits ≈ 128 bit

320 4 093 3.19 3 840 bits > 128 bit

Göttert et al.[29]
256 7 681 4.51 (4.52) 41 3 328 bits ≈ 128 bit P1

512 12 289 4.85 (4.85) 47 7 168 bits ≈ 256 bit P2

Micciancio and Regev[48]
136 2 003 5.19 1 496 bits ≥ 128 bit

214 16 381 2.94 2 996 bits ≥ 128 bit

Singh [75, 76]
512 25 601 3.19 (3.24) 21 7 680 bits ≈ 128 bit P3

1 024 40 961 3.19 (3.24) 21 16 384 bits ≈ 256 bit P4

Oder et al.[52] 1 024 12 289 2 8 28 672 bits ≈ 256 bit P5

Alkim et al.[4]
512 12 289 3.46 24 7 168 bits ≥ 128 bit P6

1 024 12 289 2.82 16 14 336 bits ≥ 256 bit P7

Table 3.1: Various parameterization proposals for Ring-LWE-based encryption schemes.
The parenthesized values in the ς column are calculated by ς =

√
k/2, where k ∈ Z is the

value used for the binomial sampler.

Table 3.1 lists many previously proposed parameter sets offering varying security levels.
The estimated security levels of these parameter sets are taken from the security analysis
from [41, 79] or directly from the authors of the proposed sets themselves.

Since there exists no standardized parameter set yet, this work aims to support as
many different parameter sets as possible, to allow for a fair comparison. The sets that
are compatible and can be used with this implementation are named P1 through P7 in the
rightmost column of Table 3.1.

The parenthesized values in the ς column are calculated as ς =
√
k/2, where k ∈ Z is

the value used for the binomial sampler. It is chosen such that the difference between a
binomial distribution with a standard deviation of ς and a Gaussian distribution with a
standard deviation of a given σ is minimal.
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Some parameter sets cannot be tested due to having a dimension n that is not a power
of two, or because q ≡ 1 mod 2n does not hold. In that case, no n-th root of unity exists,
and the NTT cannot be used. Additionally, the chosen bus width excludes schemes that use
primes with more than 16 bits. Using fixed primes would allow for optimized arithmetic and
specialized algorithms, however, to allow for many different parameter sets to be compared,
generic algorithms were chosen wherever required. Supporting many different parameter
sets at varying security levels allows for comparison with state of the art implementations
and different encryption schemes like RSA and ECC. The results of this comparison will
be presented in Chapter 5.

3.4 Implementation Overview

To conclude this chapter, this section will summarize the most important facts about the
implementation and give a high-level overview of its structure.

ROM

Datapath

RAM Shake PRNGSampler

Control Unit

AMBA I/O

Figure 3.1: A high-level overview of the implementation.

Figure 3.1 shows the overall structure of the implementation. It is split into the following
major modules: Datapath, Read-only Memory (ROM), RAM, the hashing function, sampler,
PRNG, control unit and the AMBA Advanced Peripheral Bus (APB) interface.

The datapath houses a few small registers and the ALU, which contains logic required
for multiplication, addition, subtraction and modulo reduction. The previously unmentioned
ROM contains a small log2(q) · log2(n)-bit sized lookup table, which stores precomputed
values to speed up the NTT operation. Beside a few registers within the datapath itself,
the RAM is used as the main memory and has a size of 130 · n-bit. It is shared between
the hashing function and the ALU. Only one of these two modules has exclusive access to
the RAM at any given time.

For the hashing function, Keccak is chosen in the SHAKE128 variant. The specific
implementation by Peßl and Hutter [60] is taken and integrated into the coprocessor. For
the sampler, which is used to generate error polynomials, a binomial distribution is used
as an approximation to a Gaussian distribution. The PRNG function is provided by the
Trivium stream-cipher. Its sole purpose is to provide random numbers for the sampler. The
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Trivium implementation from van Rantwijk [80] is adapted and integrated. The AMBA bus
is a simple, standardized interface implemented according to its specification [6]. The bus
has an interface width of 16-bit, which is the same width as the RAM and the datapath. The
bus is used for controlling the coprocessor, querying the status, as well as for writing and
receiving messages. The control logic is implemented as a number of finite-state machines
handling individual sub-tasks. It also controlls access to the RAM to switch between the
hashing module and the ALU.

The coprocessor implements the Ring-LWE encryption scheme defined in Section 2.5.2.
It can be instantiated with various parameter sets, and with as well as without support for
the CCA2-secure scheme described in Section 2.7. In the second case, the hashing module
will be removed, and the RAM will be sized differently.

Given this overview, the next chapter will describe the implementation details for each
of the presented modules and explain the sub-tasks required to enable encryption and
decryption.



Chapter 4

Implementation Details

After introducing the basics of lattice-based cryptography in Chapter 2, and defining the
basic requirements of the implementation as well as explaining fundamental design choices
in Chapter 3, this chapter will dive into the implementation details.

First, details about the datapath and the ALU are given in Section 4.1. Section 4.2
explains the implementation details about the reduction algorithm and how the ALU is
used. Then, in Section 4.3, the implemented NTT algorithm, including all its optimizations,
is presented. Section 4.4 describes the memory layout and how elements are stored in
the RAM. Afterwards, Section 4.5 explains in detail how the two pre-existing modules
Keccak and Trivium were integrated and how they are used. Section 4.6 shows how the
noise sampler generates its values using the PRNG. Finally, the control unit is presented
in Section 4.7. Here, the Finite-state Machines (FSMs) that are used for encryption and
decryption are explained in detail. Additionally, the exact memory layout during each
operation is presented.

4.1 The Datapath and the Arithmetic Logic Unit

This section will explain the details of the datapath. It will explain the connections to
other modules and which functionalities it provides for the coprocessor.

The datapath is the core of the coprocessor and consists of some registers and the ALU.
As already shown in Figure 3.1, the datapath is connected to the control unit, sampler,
hashing-function, RAM, ROM, and the AMBA-interface. The remainder of this section
will go into details about the contents of the datapath, as well as explain the functionality
it provides, and which mathematical operations are supported.

Arithmetic Logic Unit.
The ALU provides basic operations like multiplication, addition, subtraction, XOR, as well
as RLWE-encoding and decoding. It is controlled by instructions sent from the control
unit. Based on the instruction, inputs for all arithmetic operations, as well as the inputs
for the registers and the RAM, are selected. The instructions are designed, such that the
number of possible inputs for each operation, and thus the size of the multiplexers, is at a
minimum.
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Figure 4.1: A graphical representation of the ALU

The ALU was designed to be optimized for the NTT butterfly operation and the
reduction algorithm. Both require multiplications followed by a subtraction or addition.
For this reason, the ALU was constructed in a way, such that a multiplication, followed by
an addition or subtraction, is possible within a single cycle.

A graphical representation of the ALU is shown in Figure 4.1. For simplicity, the
registers are not shown. In this figure, Const Barrett represents the constant µ from the
Barrett reduction algorithm described in Section 3.2. Further constants are the prime
q, the 2n-th root of unity Const PR2n inv, and the modular multiplicative inverse of n
Const N inv. Registers are denoted as RA, RB, and RC .

Registers.
The datapath uses three registers (RA, RB, RC) for storing results and operands. RA has
a size of 16 or log2(q) + 1 bits, depending on which is bigger. RB is log2(q) bits wide, and
RC is 2 log2(q) bits wide. The registers were sized as small as possible, and each register
serves a specific purpose, which changes depending on the instruction. For instance, RC is
is much bigger than the other two because it is used to store multiplication results. The
registers can store values from the RAM, AMBA-interface, hash function, or results from
the ALU.

Addition and Subtraction.
Inputs for the first operand for the addition and subtraction are RC , RA, or the current
RAM output. The second operand takes its input from RC , the result of the multiplication
or encoder function. Both results are optionally modulo reduced by 1 bit. This happens by
a multiplexer that chooses the reduced result (result−q) if the sum is greater than q. In



CHAPTER 4. IMPLEMENTATION DETAILS 32

software, this would not be ideal because it could leak timing information, but in hardware,
it can be done in constant time. Having parallel addition and subtraction and the duplicate
reduction logic greatly improves performance for the NTT operation and simplifies the
instruction set of the ALU. In order to decrease the size of the ALU, both the subtraction
and addition use the same inputs. This reduces the total number of multiplexers significantly.

Encode and Decode.
The Ring-LWE-encode and decode functions, as described in Section 2.4.3, are implemented
as part of the ALU. Messages to be encoded are stored in RA. Depending on the current
bit position, the bit-value is mapped to q/2 if it was 1, or 0 otherwise. The result is then
used as an input for the addition/subtraction. For decoding, a value from the RAM is
decoded into a single bit, which is appended to the right of the value from RA. Results are
written back to RA or the RAM.

Multiplication.
The multiplication functionality is provided by a log2(q)× (log2(q) + 1)-bit multiplier. Its
inputs are taken from the registers, the RAM, or constants. In the case of RC , either the
lowest or highest log2(q) bits are taken. The result of the multiplication is either stored
in RC or directly used as an input for the addition/subtraction. Addition/Subtraction
after multiplication is a very common instruction in the NTT operation and the chosen
reduction algorithm, which is why they are computed in the same cycle.

Placing a register between these steps could reduce the critical path and thus increase
the maximum clock speed. However, this would also mean adding an additional 2 log2(q)-bit
register which would increase the total number of register bits by 50%. Additionally, due
to the chosen reduction algorithm, this would also have a negative impact on the total
runtime despite the increase in the clock speed, as the NTT operation would run about
30% slower. For these reasons, it was not implemented.

4.2 Modular Reduction

As described in Section 3.2, the Barrett reduction algorithm is used for the reduction
after multiplication. The multiplication RC · µ in Algorithm 4 is split up into two smaller
multiplications to fit the multiplier of the ALU. Values to be reduced are always stored in
the register RC , and the result is placed in RA. The Barrett reduction algorithm uses three
ALU instructions and completes in three cycles, without needing any additional logic. The
three instructions are shown in Algorithm 5.

For a better understanding of how the multiplication is split up, Figure 4.2 gives a
detailed visualization of the procedure. We recall that RC is 2 log2(q) bits wide, which
is equal to the constant k and the width of the multiplier output. In this figure, RChigh

represent the upper k bits of RC and RClow
the lower k bits of RC . Both of these halves

are multiplied with µ separately, to fit the width of the multiplier, and then added together.
The upper k bits of the result of the addition are then equal to (RC · µ)� k. This result is
stored in the register RA and then used for line 3 in Algorithm 5. Note, that the original
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algorithm (Algorithm 4) requires an additional modular reduction after the last subtraction.
However, for this implementation, all subtraction results are automatically reduced as
already shown in Figure 4.1.

A modular reduction is required after almost all multiplications, so it needs to be fast,
and it is important to utilize as many resources as possible during its runtime and use
pipelining where possible. This implementation utilizes the multiplier of the ALU in 100%
of the cycles and uses two out of the three registers. During this operation, the third register
(RB) is usually also utilized by filling it with a value from the RAM, which is needed in
subsequent instructions.

Algorithm 5 Barrett reduction algorithm in detail

Input:
RC Register that contains the integer to be reduced.
q Modulus
k Constant 2 log2(q)
µ Constant b2k/qc

Output:
RA RC mod q

1: RA ← (RClow
· µ)� k/2

2: RA ← ((RChigh
· µ) +RA)� k/2

3: RA ← RC − (RA · q)

RChigh( RClow ∗ µ ) � k

RChigh ∗ µ RClow
∗ µ

(RClow
∗ µ) � k/2+

=

RC

RChigh ∗ µ RClow ∗ µ

(RC ∗ µ) � k

Figure 4.2: A visual representation of the split-up multiplication (RC ∗ µ) � k in the
reduction algorithm



CHAPTER 4. IMPLEMENTATION DETAILS 34

4.3 NTT

Compared to the NTT algorithm presented in Section 2.5.1, three optimizations have been
applied to the algorithm in this work. First, the initial scaling step for the forward-NTT
has been eliminated by integrating it with the NTT. Second, ωm values from line 3 in
Algorithm 1 have been precomputed to reduce the number of multiplications. Also, the
BitReverse step is only applied when necessary. When the input to the NTT is an error
polynomial, then the BitReverse step can be omitted because changing the order of the
polynomial coefficients makes no practical difference.

Precomputing ωm.
In Algorithm 1, ωm has to be computed in every layer of the butterfly network, this happens
a total of n− 1 times per NTT operation and equates to roughly 15% of the multiplications
within the NTT.

By precomputing these values and storing them in a lookup table, these multiplications
can be eliminated by trading it with a 2 · log2(q) · log2(n) bit sized lookup table. When
increasing the lattice dimension n, this will only grow at a rate of O(log n). Similar to the
approaches in [44, 63], in this work, these precomputed values are stored in a ROM.

While the ω = ω · ωm calculation could also be removed by precomputing all possible
twiddle factors, this would take up a much larger area for the ROM. When also considering
the constants required for scaling (see below), then a 2n · log2(q)-bit sized ROM is needed
to store all these values. Compared to the previous optimization, for a lattice dimension n
of 256, the ROM would be 31 times bigger, and for dimension n of 1024, the ROM would
grow by a factor of 102.

In this work, due to the increased area, this option was not pursued, even though this
calculation equates to 16–19% of the total multiplications of the NTT. However, for a
performance-oriented implementation, precomputing all values for ω makes sense, as it
would significantly cut down on the total runtime for encryption and decryption.

Scaling.
Instead of first computing the scaled polynomial and then performing a standard NTT,
Roy et al. proposed to integrate this step directly into the NTT operation [71]. This can be
done by simply initializing ω in line 4 of Algorithm 1 with ω2m, the 2n-th primitive root of
unity, instead of the value 1. It must be noted that this only works for the forward-NTT.
The INTT still requires an additional scaling step.

Final Algorithm.
The final NTT algorithm, which includes all these optimizations, is shown in Algorithm 6.
In line 17, ROM(mode, log2(m)) represents a table-lookup from the ROM. Line 20 to 26
show the additional scaling step needed for the inverse-NTT.

In this work, the NTT operation is implemented as an FSM within the control unit.
The BitReverse operation, as well as the Scaling for the inverse NTT, are implemented as
sub-FSMs which get invoked by the main NTT-FSM.

Using the reduction algorithm presented in Section 4.2 and the NTT algorithm given in
Algorithm 6, a single butterfly operation takes 6 cycles. This includes reading coefficients
from the RAM, multiplying one coefficient with ω and reducing the result modulo q, adding
and subtracting the previous result to the other coefficient, and writing the two resulting
coefficients back to the RAM.
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Algorithm 6 Optimized version of an iterative n−coefficient NTT

Input:
x Polynomial ∈ Znq
ωn n-th primitive root of unity ∈ Zq
ω−12n 2n-th inverse primitive root of unity ∈ Zq
n−1 Modular multiplicative inverse of n
isErrorPolynomial Boolean value stating if the input x is an error polynomial
mode Mode of operation (forward or inverse)

Output:
x̃ Polynomial ∈ Znq = NTT(x)

1: if not isErrorPolynomial then
2: x̃ ← BitReverse(x)
3: end if

4: for m = 2 to n by m = 2m do
5: if mode = forward then
6: ω ← 2n-th primitive root of unity
7: else
8: ω ← 1
9: end if

10: for j = 0 to m
2 − 1 do

11: for k = 0 to n− 1 by m do
12: t← ω · x̃[k + j + m

2 ]
13: u← x̃[k + j]
14: x̃[k + j]← u+ t
15: x̃[k + j + m

2 ]← u− t
16: end for
17: ω ← ω ·ROM(mode, log2(m))
18: end for
19: end for

20: if mode = inverse then
21: s← n−1

22: for i = 0 to n do
23: x̃[i]← x̃[i] · s
24: s← s · ω−12n

25: end for
26: end if
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4.4 Memory Organization

This section describes the memory layout of the RAM.
The implemented encryption schemes have a message size of n bits, equal to the lattice

dimension n. The RAM is used to store these messages, as well as all polynomials. These
elements either have a size of n words, in the case of polynomials, or n bits for messages.
Polynomials with n coefficients are stored in n words of the RAM, where each coefficient has
the same size as the word size of the RAM, i.e., 16 bits. This limits the possible parameter
sets to be used with this implementation to primes of up to 16 bits. However, most practical
parameter sets fit into this category.

For the CPA-secure encryption scheme, a total memory of 97n bits, or 6n+ n
16 16-bit

words, is required. This consists of three polynomials for the public and private keys,
another three polynomials for storing c1, c2, and e1, as well as a n

16 word-sized portion to
store the n-bit message.

When instantiating the implementation with support for the CCA2-secure encryption
scheme, an additional two polynomials with n words each and an area of n

16 words is
required. The additional memory is used for storing the inputs c1 and c2, as well as the
additional arguments c3 and v. In total, 130n bits, or 8n+ 2 n

16 16-bit words, are required.
The public key (KEYP, KEYA) and the private key (KEYPr) are stored in the RAM

instead of the ROM because keys are typically generated elsewhere. This also offers greater
flexibility, as the keys can be changed very quickly.

Memory layout.
The RAM is organized in different regions of n or n/16 words. Polynomials, which have
a size of n words each, are stored beginning at adress 0. The message, and in the case
of enabled CCA2-security also the nonce, have a size of n-bit each. These are stored the
the upper adresses directly after the polynomials. The exact memory layout is depicted in
Figure 4.3. For intantiations without CCA2-security, this means that the lowest 6n words
are used to store polynomials, while the message is stored beginning at adress 6n. In the
case of added CCA2-security, the lowest 8n words are used to store polynomials. Beginning
at address 8n, two n-bit sized regions are reserved for the message and the nonce v. Each
of the regions is named to clearly differentiate between the different memory areas, the
chosen names represent which data is typically stored at their locations, but the actually
stored data depends on the respective operation. Because exact addresses depend on the
lattice dimension n of the chosen parameter set, the rest of this thesis will refer to these
region names rather than exact addresses.

Because the lattice dimension n is always a power of two, all polynomials are aligned
in memory and accesses to coefficients require no addition. The address of the polynomial
can simply be concatenated with the index of the coefficient.

For the CCA2 encryption/decryption, memory locations are chosen in a way, such that
the hashing function, Keccak, can always use the lowest 1600 bits of the RAM. This way,
no additional memory-address adder is required. As Figure 4.3 shows, Keccak uses the
same memory area as the first three polynomials. This works for parameter sets where the
lattice dimension n is at least 64. When using smaller dimensions, an additional buffer is
introduced between the 3rd and 4th polynomial, such that the 1600-bit that Keccak needs,
do not overlap with the 4th polynomial. This buffer is sized such that the 4th polynomial
is located at a memory address aligned to n words. While dimensions of less than 256 are
not practical, this allows smaller dimensions to be evaluated as well.
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MSGCCAn/16 + 8n

MSGCPA8n

KEYP7n

KEYA6n

KEYPr5n

C2CCA4n

C1CCA3n

E1CPA / Keccak2n

C2CPA / Keccakn

C1CPA / Keccak0

(a) Memory layout with CCA2

MSGCPA6n

KEYP5n

KEYA4n

KEYPr3n

E1CPA2n

C2CPAn

C1CPA0

(b) Memory layout without CCA2

Figure 4.3: Memory layout of the RAM. The numbers on the left are the addresses, n
is the lattice dimension from the chosen parameter set. The total memory size is either
8n+ 2n/16, or 6n+ n/16 words.

4.5 Integration of Keccak and Trivium

This section explains in detail how the pre-existing modules Keccak and Trivium were
integrated into this implementation.

As discussed in Chapter 3, Keccak is used as the hashing algorithm. Trivium is a stream
cipher used as the PRNG, which is then used to generate binomially distributed samples
with the sampler. Integrating external blocks is not always trivial, because many blocks do
not use any standardized interfaces. These two blocks have to interact with other modules
such as the ALU, RAM, and the sampler. The control unit is responsible for managing the
control signals for these two modules, as well as for switching the RAM access between
Keccak and the ALU.

4.5.1 Keccak

The chosen Keccak implementation, authored by Peßl and Hutter [60], was integrated into
this work for use as a hashing function used by the CCA2-secure encryption algorithm.
Keccak is connected to the control unit, the datapath, and the RAM. The control unit is
responsible for driving the control signals of the Keccak module, as well as for switching
the RAM-access between the ALU and the Keccak module.

The memory layout (Figure 4.3) shows that Keccak uses the lowest 3n words of the
RAM. However, this area is not exclusive to the Keccak module. During encryption and
decryption operations, this memory area is used to store other values before and after the
hashing operation. To keep the RAM size at a minimum, memory addresses had to be
chosen carefully, and operations had to be ordered in a way, such that during a hashing
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operation, Keccak would not overwrite any used memory areas. Because the Keccak memory
area begins at address 0, no additional memory address adder was required. The exact
contents for each memory areas during encryption and decryption will be shown later in
this chapter.

Keccak is used for hashing values from the RAM, for re-seeding the PRNG, and for
using the hash output for other computations. The register RA of the datapath is used for
storing the output, as well as for providing the input of the hashing function.

The specific implementation used in this work has an 8-bit wide interface for the input
and output, which means that reading or writing a single RAM-word requires multiple
cycles. To hash values from the RAM, they are first loaded into the register RA. The
content of RA is then used as the input for the hashing module. Because the input of the
hashing module is only 8 bits wide, whereas the register can fit entire words of 16 bits, a
different half of the register is taken for each byte. For the hashing output, the reverse
happens. Each byte is appended to the value of RA shifted by 8 bits. After reading or
writing a complete word from the hashing module, the RAM access is switched back to the
ALU, such that the result can be used for other operations.

For the CCA2-secure encryption scheme, the computation of G(v) and H(v||M) is
required, where v and M are n bits each. The scheme further requires G and H to be
different oracles. For this purpose, the first word that is sent to the hashing function is
different for these different invocations. The output for G(v) is the same size as the message
M , which is n bit. The result from the H(v||M) operation is used to re-seed the PRNG.
For this purpose, 160 bits are taken from the hashing module.

These operations are implemented as separate FSMs within the control unit. Depending
on the state of the FSM, the RAM access is also switched between the ALU and the
Hashing module, such that the hash function has access to the RAM when needed, and the
ALU has access when reading values to be hashed or writing the results back to the RAM.
The FSMs read and write to the control signals of the hashing module. These control
signals show if the input or output is valid, if the hashing module is ready to take inputs,
to acknowledge that the output has been taken, to signal the end of the input, and to reset
the hashing module.

SHAKE128 uses 24 rounds of permutations, a rate (= block size) of 1344 bits, and
a capacity of 256 bits. The used implementation requires around 15k cycles for these 24
rounds. For parameter sets up to n = 512, all hashing operations will take 15k cycles,
because all hashing inputs fit inside 1344 bits. For parameter sets where n is bigger than
512, the H(v||M) operation will take twice that time, because v and M are both at least
1024 bits, which no longer fit the block size. The exact cycle counts for each operation and
mode of operation will be presented in Chapter 5.

4.5.2 Trivium

The stream cipher Trivium is used as a PRNG, which acts as the entropy source for the
noise sampler. While the used Trivium implementation is flexible and can generate between
20 and 26 bits per cycle, for this work, the module was instantiated such that it generates 16
bits per cycle. Trivium requires to be seeded with an 80-bit key and an 80-bit initialization
vector.
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The implementation by van Rantwijk [80] was modified to be re-seedable in multiple
cycles to avoid a large 160-bit register. 160 bits are needed to re-seed Trivium. These are
taken either from the user via the AMBA bus or directly from the output of the hashing
function. To fit the bus-width of the rest of implementation, a 16-bit wide input was added
to the module, to allow partial re-seeding. This input is directly connected to the general
purpose register RA. The re-seeding process is initiated and controlled by two FSMs in the
control unit, one for each type of input (hash function or user input). After re-seeding, the
module has to run for 72 ( = 4 · size of the state / bits per cycle) cycles, before a valid
output is generated. After that, it can generate 16 pseudo-random bits per cycle.

4.6 Sampler

The noise sampler creates samples from a binomial distribution ψk. Each sample is calculated
by
∑k−1

i=0 bi− b′i where bi, b
′
i ∈ {0, 1} are 2 uniform independent bits provided by the PRNG.

For a standard deviation of ς =
√
k/2, 2k random bits are required per sample.

The sampler can take as many bits each cycle as the PRNG can provide. Remember
that the PRNG generates 16 bits per cycle. The sampler needs d2k/16e cycles to generate
one sample. In each cycle, if the PRNG output is valid, 16 bits are taken from the PRNG.
These bits are then subtracted from each other pairwise. The result is then added to an
internal register. In the last iteration, if k is not a multiple of 2, only 2k mod 16 bits are used
from the PRNG. Additionally, in the last cycle, the the prime q is added to intermediate
result if it is smaller than 0. This ensures that the result is a valid value.

The sampler is directly connected to the PRNG, takes its output when required and
when the PRNG output is valid, and then instructs the PRNG to generate the next value.
Apart from the clock and reset signals, the module has one input to instruct it to generate
a new sample, one output for the current sample, and another output signal to indicate
that the sample output is valid.

The control unit has a separate FSM to control this module to generate binomially-
distributed pseudo-random polynomials, which are stored in the RAM. When instructed,
the FSM simply takes the values from the sampler and stores them in the RAM at a given
address. After n samples, the random polynomial is complete, and the FSM returns to its
idle-state.

4.7 Controller

The control unit is responsible for controlling each of the sub-modules and for the com-
munication with the outside world through the AMBA bus. The provided functionality
is implemented through a number of FSMs. The basic operations for encryption and
decryption, both the CPA-secure and the CCA2-secure variants, have their own FSM.
Operations are split up into smaller tasks, each with their own FSM. The four main FSMs
for encryption and decryption will invoke these smaller FSMs when needed. Besides the
encryption algorithms, the main controller provides functionality for loading values from
the RAM, storing values in the RAM, as well as for re-seeding of the PRNG. The main
controller is a separate FSM, which invokes the other FSMs depending on the operation
that the user requested.
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The remainder of this section will describe the FSMs for the four main operations in
detail. The memory layout during each step of these operations will be shown as well.

4.7.1 CPA-Encryption

The CPA-secure encryption works as follows: First, the message to be encrypted is loaded
in from the AMBA bus into the MSGCPA area of the RAM. Then the FSM performs the
encryption algorithm from Section 2.5.2. While doing so, it invokes four separate sub-FSMs
for the sampling of polynomials, the NTT-operation, pointwise multiplication and addition
of polynomials, and for the addition of the message to the error-polynomial e3. The result
(c1, c2) is stored at the memory addresses C1CPA and C2CPA, which can then be read by
the user by requesting that memory area. In Figure 4.4, a visualization of the FSM is given.
The numbers along the edges in that figure represent the order of operations.

Table 4.1 shows each step of the algorithm with the memory usage after each respective
operation. The first column shows the operation, and the remaining columns show the
respective memory locations, where the results are stored after each operation, using the
notation from Section 4.4.

C1CPA C2CPA E1CPA MSGCPA
input msg — — — msg
e1 = random polynomial — — e1 msg
ẽ1 =NTT(e1) — — ẽ1 msg
e2 = random polynomial — e2 ẽ1 msg
ẽ2 = NTT(e2) — ẽ2 ẽ1 msg
c̃1 = (ã ∗ ẽ1) + ẽ2 c̃1 ẽ2 ẽ1 msg
e3 = random polynomial c̃1 e3 ẽ1 msg
e3 +msg c̃1 e3 +msg ẽ1 msg
NTT(e3 +msg) c̃1 NTT(e3 +msg) ẽ1 —
c2 = (p̃ ∗ ẽ1) + NTT(e3 +msg) c̃1 c̃2 — —
output c̃1, c̃2 c̃1 c̃2 — —

Table 4.1: RAM contents during CPAenc



CHAPTER 4. IMPLEMENTATION DETAILS 41

Init

Sample AddMsg

NTTMultAdd

Start

End

1

2,43

5,9

6

7

8

Figure 4.4: CPAenc controller FSM

4.7.2 CPA-Decryption

After loading the input (c1, c2) into the memory location C1CPA and C2CPA, the FSM
performs the decryption by invoking FSMs for three sub-tasks: First, the multiplication
and addition of polynomials (c̃1 ∗ r̃2 + c̃2), second, the INTT operation is called with the
previous result as the input, and lastly, the result is decoded to recover the original message.
These steps are also shown in the memory organization table for this operation in Table 4.2.
Figure 4.5 shows a visualization of the FSM for the CPAdec operation.

C1CPA C2CPA E1CPA MSGCPA
input c̃1, c̃2 c̃1 c̃2 — —
c̃1 ∗ r̃2 + c̃2 c̃1 ∗ r̃2 + c̃2 — — —
m′ = INTT(c̃1 ∗ r̃2 + c̃2) m′ — — —
msg = decode(m′) m′ — — msg
output msg — — — msg

Table 4.2: RAM contents during CPAdec
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Figure 4.5: CPAdec controller FSM

4.7.3 CCA-Encryption

For the CCAenc operation, first the message to be encrypted, as well as a nonce v are
loaded into the RAM locations MSGcpa and MSGCCA, respectively. Then, the nonce is
hashed and XORed with the message, the result (c3) is stored in the memory location
C1CCA. Afterwards, the PRNG is re-seeded with the hash of the nonce and the message
H(v||msg). The PRNG is re-seeded, such that the exact values for the error polynomials,
generated during CPAenc, can be reproduced later for the decryption. Once the PRNG is
re-seeded, the nonce v is encrypted. The result of CPAenc (c̃1, c̃2) together with c3 is the
result. Table 4.3 shows these steps, together with the used memory locations. Figure 4.6
gives a visualization of the FSM for this operation.

C1CPA C2CPA E1CPA C1CCA C2CCA MSGCPA MSGCCA
input v,msg — — — — — v msg
G(v) SHAKE state: G(v) — — v msg
c3 = G(v)⊕msg SHAKE state: G(v) c3 — v msg
seed = H(v||msg) SHAKE state: H(v||msg) c3 — v msg
c̃1, c̃2 = CPAenc(v) c̃1 c̃1 — c3 — — —
output c̃1, c̃2, c3 c̃1 c̃1 — c3 — — —

Table 4.3: RAM contents during CCAenc
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Figure 4.6: CCAenc controller FSM

4.7.4 CCA-Decryption

The CCAdec operation, works as follows. First the input (c̃1, c̃2, c3) is loaded into the
memory locations C1CCA, C2CCA, MSGCCA. Then, (c̃1, c̃2) is decrypted and decoded to
recover the nonce v. The nonce is then hashed and XORed with c3, the result is the
plaintext message. However, it is not immediately output. By hashing the nonce as well as
the message, the seed is recovered, and the PRNG is re-seeded. Afterwards, the nonce is
encrypted again. The result of that encryption (c̃1′, c̃2′) is then compared with the input
(c̃1, c̃2). If these are equal, the message is output. If not, then the end user receivers an
error flag, indicating that the operation could not be completed. This protects against
adaptive chosen-ciphertext attacks.

Figure 4.7 shows a visualization of the FSM for the CCAdec operation. Furthermore,
Table 4.4 shows each step of the algorithm with the memory usage after each respective
operation.

While the other operations (CPAdec, CPAdec, and CCAenc) do not fully utilize the
available RAM, during the hashing operations in the CCA2-secure decryption, all available
memory locations are being used.

C1CPA C2CPA E1CPA C1CCA C2CCA MSGCPA MSGCCA
input c̃1, c̃2, c3 — — — c̃1 c̃2 — c3
v = CPAdec(c̃1, c̃2) — — — c̃1 c̃2 v c3
G(v) SHAKE state: G(v) c̃1 c̃2 v c3
msg = G(v)⊕ c3 SHAKE state: G(v) c̃1 c̃2 v msg
seed = H(v||msg) SHAKE state: H(v||msg) c̃1 c̃2 v msg
c̃1′, c̃2′ = CPAenc(v) c̃1′ c̃2′ — c̃1 c̃2 — msg
output msg if c̃1′, c̃2′ == c̃1, c̃2 c̃1′ c̃2′ — c̃1 c̃2 — msg

Table 4.4: RAM contents during CCAdec
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Figure 4.7: CCAdec controller FSM

4.7.5 Input and Output

The coprocessor is controlled by the user via the AMBA ABP bus. Apart from the four
main operations for encryption and decryption shown above, the user can also re-seed the
PRNG, as well as read from, and write to the memory locations as shown in Section 4.4.

Additionally, to serve as an evaluation platform for future implementation attacks, any
other FSM can be invoked as well. For example, the implementation can be used to hash
arbitrary data with the Keccak module, or to NTT-transform any polynomial that has
previously been loaded into the RAM.

For practical applications, this behavior can be disabled, and strict memory checks can
be enabled, to ensure that only some memory locations can be read and written, depending
on the current operation.



Chapter 5

Results and Discussion

In this chapter, the implementation results are presented. First, the used tools and design
flow is presented in Section 5.1. Detailed results for the area, power, and time requirements
are then given in Section 5.2. Afterwards, Section 5.3 gives a comparison to related work.
The results are then discussed, and an outlook for possible future work is given in Section 5.4.
Finally, the results are summarized in Section 5.5.

5.1 Design Flow and Tools

Designing and implementing a hardware implementation is a complex process which
involves many different steps. Various tools and description languages are required for
this. After designing the ALU on paper, a high-level model was implemented using the
JAVA programming language. The high-level model was refined until it was cycle accurate,
and then used for the generation of test-vectors and configuration files. The test-vectors
were later used for testing the hardware implementation. The high-level model additionally
served as an evaluation platform for performance estimations and optimizations.

Based on the high-level model, the design was implemented using the hardware de-
scription language VHDL. For the memory, a single-port SRAM macro was provided by
Faraday. The used standard-cell library is based on the low-leakage 65nm process tech-
nology by UMC. For synthesis, the Cadence Encounter™ RTL Compiler (version 14.2)
was used. Place-and-Route, as well as the power simulation, was done by the Innovus®

Implementation System (version 16.10).

5.2 Implementation Results

This section presents the detailed implementation results for area, power and time require-
ments.

5.2.1 Area Requirements

The area numbers, given by the RTL compiler, are expressed in µm2 and gate equivalents
(GE). One GE is equivalent to the size of a single 2-input NAND gate, which has an area of
1.44µm2 in the used UMC 65nm process. So multiplying the area in GE with 1.44 results
in the area in µm2.

45
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The physical size is very dependent on the used manufacturing process and cannot
be used for a fair comparison across different technology nodes. Using the number of
GEs however, does allow for this comparison. It should be noted that GE is not an exact
measurement. Synthesizing the design using a different tool flow or even different versions
of the tools give different results.

The design was synthesized using many different parameter sets. To give a better
understanding of the results, first, only the results from instantiations with the param-
eter set P1 and support for CCA2-secure encryption will be discussed. Afterwards, the
area requirements of all parameter sets are compared to each other. Finally, results for
instantiations without support for the CCA2-secure algorithm are discussed.

Component Area
[GE] [µm2]

ALU 3 186 4 588

SHA3 3 158 4 549

Sampler 590 851

Trivium 2 968 4 275

Other 2 817 4 051

Core Total 12 719 18 314

RAM 14 752 21 244

Total 27 471 39 558

Table 5.1: Area of components for parame-
ter set P1 (with CCA2 support).
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Figure 5.1: Area distribution for parameter
set P1 (with CCA2 support).

Table 5.1 shows a detailed listing of the area requirements for each component using
the parameter set P1 with support for CCA2-secure encryption and decryption. Figure 5.1
illustrates the relative area distribution using the same results. The total area for this
instance is 27.4kGE or 39 558µm2. Due to the large memory requirements of this scheme,
over 50% of the total area is consumed by the RAM. The ALU is dominated by the big
log2(q)-bit wide multiplier and amounts to 12% of the area, which is the same size as the
hashing module. Trivium, used as PRNG, uses 11% of the area, and the sampler occupies
only 2% of the total area. Summing up these components amounts to 90%, which leaves
10% for Other. This category includes the ROM, the AMBA interface, connections and
multiplexers to all other components, the RAM-multiplexer and logic to switch the RAM
access between the ALU and the hashing module, and most importantly the control-unit
with all its FSMs, state registers, and counters. While it might be surprising that this
category is so big, it can be explained by the many more registers compared to the ALU,
and the many state machines.

Depending on the application, the RAM can be external to the core, so while it does
consume more than half of the total area, it should not be considered as part of the core.
In this work, the core is considered everything apart from the RAM.
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If the core is instantiated without support for CCA2-secure encryption and decryption,
it is much smaller as the hashing module would be gone entirely. The ALU, as well as the
control unit, would also be much smaller and the RAM requirements would shrink by 25%.
For the parameter set P1, a total of 7.9kGE would be saved when synthesizing the design
without support for CCA2-secure encryption/decryption.
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RAM

54%

SHA3

11%

Sampler
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Trivium

11%

Other

10%

Figure 5.2: Area distribution for the param-
eter set P1 (n = 256) with CCA2 support.
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Figure 5.3: Area distribution for the param-
eter set P5 (n = 1024) with CCA2 support.
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Figure 5.4: Area distribution for the param-
eter set P1 (n = 256) without CCA2 sup-
port.
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Figure 5.5: Area distribution for the param-
eter set P5 (n = 1024) without CCA2
support.
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Parameter Set P1 P6 P2 P3 P5 P7 P4

n 256 512 512 512 1 024 1 024 1 024

q 7 681 12 289 12 289 25 601 12 289 12 289 40 961

k 41 24 47 21 8 16 21

Area per component in GE

ALU 3 186 3 514 3 514 3 759 3 514 3 514 4 147

SHA3 3 158 3 158 3 158 3 159 3 158 3 158 3 158

Sampler 590 416 615 596 155 406 630

Trivium 2 968 2 968 2 968 2 968 2 968 2 968 2 968

Other 2 817 2 991 2 994 2 989 3 344 3 074 3 031

Core Total 12 719 13 047 13 249 13 471 13 139 13 120 13 934

RAM 14 752 29 505 29 505 29 505 59 010 59 010 59 010

Total 27 471 42 552 42 754 42 976 72 149 72 130 72 944

Table 5.2: Area of components for all evaluated parameter sets (with CCA2 support). The
first four rows describe the respective parameter set, while all other rows contain area
values in GE.

Parameter Set P1 P6 P2 P3 P5 P7 P4

n 256 512 512 512 1 024 1 024 1 024

q 7 681 12 289 12 289 25 601 12 289 12 289 40 961

k 41 24 47 21 8 16 21

Area per component in GE

ALU 3 076 3 395 3 395 3 569 3 397 3 397 3 790

Sampler 590 418 615 597 155 407 630

Trivium 2 968 2 968 2 968 2 968 2 968 2 968 2 968

Other 1 873 2 010 2 006 2 023 2 343 2 105 2 014

Core Total 8 507 8 791 8 984 9 157 8 863 8 877 9 402

RAM 11 007 22 015 22 015 22 015 44 030 44 030 44 030

Total 19 514 30 806 30 999 31 172 52 893 52 907 53 432

Table 5.3: Area of components for all evaluated parameter sets (without CCA2 support).
The first four rows describe the respective parameter set, while all other rows contain area
values in GE.
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In Table 5.2, the area requirements for all evaluated parameter sets are enumerated.
Figure 5.2 and Figure 5.3 show the relative area distributions for the two parameter sets
P1 (n = 256), and P5 (n = 1024). Because the RAM requirements linearly rise with the
parameter n, the set with n = 1024 has a RAM which is four times the size. This amounts
to 82% of the total area, dwarfing any other component in size. Figure 5.4 and Figure 5.5
show the same area distributions, but for instantiations with support for the CCA2-secure
algorithm. The relative area distributions are very similar to the previous figures. The only
difference is the missing hashing module (SHA3) for instantiations without CCA2-support.

Comparing the core components for the smallest (P1) and largest (P4) instantiations,
the core size only increases by about 9%. The size for the components Trivium and the
hashing module stay the same because they are completely independent of the parameter
set. Trivium would be bigger with more generated bits per cycle, however, in this work
this variable is fixed to 16 bits per cycle across all parameter sets. The Other category also
stays roughly the same, as it only has a few counters that are dependent on the variable n.

Compared to the other parameter sets, the size of the sampler for the set P5 is much
lower, while at the same time the value for Other increases by about the same amount
that is missing from the sampler. In this case, the synthesizer could have moved parts of
the sampler away from the component, as part of one of the optimization steps. It is also
likely that the area increase for Other is unrelated because the area of the sampler should
scale with the parameter k and the value for this parameter is the lowest across all sets.

Apart from the RAM, and the sampler for the set P5, the only component that changes
its size across the parameter sets is the ALU. This change is expected, as most parts
(multiplier, registers) within that component scale with the size of log2(q). However, this
change is only very minor compared to the RAM scaling.

Table 5.3 shows the area of components with disabled support for CCA2-secure en-
cryption. Compared to Table 5.2, the hashing module (SHA3) is completely gone, which
means a reduction of 3.1kGE. Additionally, the ALU has decreased about 0.1 – 0.4 kGE
because it no longer needs to handle the output from the hashing module or support an
XOR operation. The Other part sees a reduction of 1kGE. This reduction is due to the
missing glue logic to handle the hashing module and the FSMs, which were responsible for
handling the actual CCA2-secure encryption and decryption. The most significant change,
however, is the reduction in RAM area, which amounts to 25% (or 3.7 – 14.9kGE). In total,
removing the support for CCA2-secure encryption can save 7.9 – 19.5 kGE (or 27 – 29%).

5.2.2 Timing Results

The timing numbers are given in the number of cycles a given operation takes to complete. At
an operating frequency of 1 MHz, the cycle numbers are also equivalent to the runtime in µs.

The encryption and decryption times are constant and only depend on the chosen
parameter set. Given a parameter set (n, k, q), the parameter n is the most significant with
regards to the execution time, as it influences the time of almost all sub-operations. The
parameter k only influences the runtime for the sampling of polynomials. The prime q does
not have any timing impact at all. This is due to the reduction algorithm chosen in this
work, which has a constant runtime for any choice of q.
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Using the default parameter set P1, a CPA-secure encryption takes 32 908 cycles, while
the decryption takes only 12 168 cycles. When using the CCA2-secure variant, the numbers
are much bigger. A CCA2-secure encryption, at 77 402 cycles, takes more than twice as
long compared to the CPA-secure counterpart. The decryption also takes about twice the
time at 64 205 cycles compared to 32 908 cycles for the CPA-secure variant.

The runtime of a CPA-secure encryption is the sum of the runtime of sampling three
error polynomials (3 ·1 792 cycles), two multiplications and addition of polynomials (2 ·1 538
cycles), two forward NTT operations without bit-reversal (2 · 7 771 cycles), a single forward
NTT operation with bit-reversal (8 388 cycles), and adding the message m to the error
polynomial e3 (528 cycles). The distribution of the runtime for a single encryption is
depicted in Figure 5.6.

A CPA-secure decryption is much simpler. It only consists of one multiplication and
addition of a polynomial (1 538 cycles), one inverse NTT operation (10 353 cycles), and a
decoding operation (273 cycles). This runtime distribution is shown in Figure 5.7.

3 x sample polynomial

16%

2 x mult add

9%

3 x NTT

73% e3 +m
2%

Figure 5.6: Distribution of the runtime for a CPA-secure encryption using the parameter
set P1

mult add

13%

INTT

85%
decoding

2%

Figure 5.7: Distribution of the runtime for a CPA-secure decryption using the parameter
set P1
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The runtime of the CCA2-secure encryption can be split up into two hashing operations
(15 474+15 536 cycles), an XOR operation (145 cycles), re-seeding of the PRNG (58 cycles),
a complete CPA-secure encryption (32 908 cycles), and a small state-transitioning overhead
of 84 cycles. The runtime distribution for this operation is depicted in Figure 5.8. This
figure clearly shows that the hashing operation (at 48%) is a significant part of the total
runtime. 51% of the runtime is taken up by the actual CPA-secure encryption.

The decryption counterpart is comprised of a normal CPA-secure decryption (12 168
cycles) and encryption (32 908 cycles), two hashing operations (15 474 + 15 536 cycles), a
comparison of two polynomials (514 cycles), and some smaller operations: decoding (273
cycles), XOR (145), re-seeding of the PRNG (58 cycles), and others (326 cycles). Figure 5.9
depicts the runtime distribution for this operation.

Hashing

48%

CPAenc

51%

Other1%

Figure 5.8: Distribution of the runtime for a CCA2-secure encryption using the parameter
set P1
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Figure 5.9: Distribution of the runtime for a CCA2-secure decryption using the parameter
set P1
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For the parameter set P1, each hashing operation takes 15.5k cycles. In comparison,
the next biggest operation, the NTT operation, only takes about half the time at 8k
cycles. The hashing operation takes up 40 – 48% of the total runtime. The specific Keccak
implementation used in this work is optimized for low area. For added performance, a
different implementation can be used that is optimized for performance, however this would
significantly increase the area of this module. Another option could be to include a more
lightweight hashing algorithm. However, this might negatively impact the security of the
entire scheme and would need to be analyzed in detail.

Parameter Set P1 P6 P2 P3 P5 P7 P4

n 256 512 512 512 1 024 1 024 1 024

q 7 681 12 289 12 289 25 601 12 289 12 289 40 961

k 41 24 47 21 8 16 21

Cycles per operation

hash XOR msg 145 289 289 289 577 577 577

decoding 273 545 545 545 1 089 1 089 1 089

G(v) 15 474 15 536 15 536 15 536 15 660 15 660 15 660

H(v || m) 15 536 15 660 15 660 15 660 31 409 31 409 31 409

mult add 1 538 3 074 3 074 3 074 6 146 6 146 6 146

NTT forward 7 771 17 272 17 272 17 272 38 041 38 041 38 041

NTT forward with bit-reverse 8 388 18 505 18 505 18 505 40 554 40 554 40 554

NTT inverse with bit-reverse 10 353 22 490 22 490 22 490 48 603 48 603 48 603

bit-reverse 616 1 232 1 232 1 232 2 512 2 512 2 512

Scaling 2 049 4 097 4 097 4 097 8 193 8 193 8 193

PRNG re-seed from hash 58 58 58 58 58 58 58

PRNG re-seed external 14 14 14 14 14 14 14

comparison 514 1 026 1 026 1 026 2 050 2 050 2 050

e3 +m 528 1 056 1 056 1 056 2 112 2 112 2 112

sample polynomial 1 792 2 048 3 584 2 048 2 048 3 072 4 096

CPAdec 12 168 26 113 26 113 26 113 55 842 55 842 55 842

CPAenc 32 908 66 404 71 003 66 404 137 197 140 266 143 335

CCAdec 77 402 126 194 130 796 126 194 244 923 247 993 251 063

CCAenc 64 205 98 028 102 630 98 028 184 980 188 050 191 120

Table 5.4: Number of cycles per operation for different parameter sets

Table 5.4 gives detailed runtime numbers for different operations and all evaluated
parameter sets. The total runtime for the CPA-secure encryption and decryption almost
perfectly scales with the dimension n, while the CCA2 counterpart does not. This is because
the hashing operation stays the same for most parameter sets. Its runtime only depends
on its internal block size and the length of v and m. For parameter sets with a dimension
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of n = 512 or smaller (P1, P6, P2 and P3), the hashing operation has a much smaller
runtime relative to other operations. The internal block size of the hashing module is 1344
bits, i.e. up to 1344 bits of data can be hashed in a single permutation. For the operation
H(v||m), 2n bits of data need to be hashed. Since 2n does not fit in a single block anymore
for parameter sets with n > 512, two permutations are required instead. The sampling of
error polynomials scales with the parameter k, while most other operations scale linearly
with the dimension n. The only operation that has a constant runtime across all parameter
sets is the seeding of the PRNG.

It should be noted, that the timing numbers for the inverse NTT operation do include
the Scaling operation as well, even though it is listed separately.

Place-and-Route reported a maximum frequency of 70MHz for the instantiation of the
parameter set P1 with support for CCA2-secure encryption. However, this number heavily
depends on several factors like the used toolchain and compiler settings. Due to the high
number of possible configurations, only one parameter set with a specific configuration was
used to explore maximum frequency.

High clock speed was not the goal of this work, and embedded devices typically have
a very low clock frequency. For example, Near-field communication (NFC) tags usually
operate at a frequency of 13.56MHz or a fraction of that.

However, using a clock frequency of 70MHz would reduce the encryption time from
32 908µs to 470µs (or 64 205µs to 917µs for the CCA2-secure variant), and the decryption
time from 12 168µs to 173µs (or 77 402µs to 1 105µs for the CCA2-secure variant).

5.2.3 Power Consumption

The average power consumption was determined for typical process and usage conditions.
The power consumption values are given in µW/MHz and represent the total power
consumption. Due to the use of a low-leakage process, the static power consumption is
negligible, so the values are not split up into static and dynamic power.

With the default parameter set P1, the implementation has an average power con-
sumption during CCA2-secure encryption and decryption operations of 24.5µW at a clock
frequency of 1MHz. Using CPA-secure operations, it is at 23.2µW/MHz.

Table 5.5 and Figure 5.10 show the average power consumption for different chip
components during CCA2-secure encryption and decryption operations. Table 5.6 and
Figure 5.11 show the same data, but for CPA-secure operations. Apart from the RAM and
hashing module (SHA-3), the power consumption distribution roughly reflects the area
requirements.

Table 5.7 and Table 5.8 show the power consumption of different chip components
for the different parameter sets. The data from Table 5.8 is taken from an instantiation
without support for CCA2-secure encryption and decryption. That is why that table shows
a much lower power consumption for the RAM.

The total energy consumption can be computed by multiplying the power consumption
with the runtime. This measurement is especially important for battery powered devices.
CPA-secure encryption and decryption consume 764nJ and 282nJ of energy, whereas the
CCA2-secure scheme uses 1 571nJ and 1 894nJ of energy, respectively.
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Component Power
[µW/MHz]

ALU 6.29

SHA3 2.58

Sampler 0.44

Trivium 5.11

Other 4.63

Core Total 19.05

RAM 5.42

Total 24.48

Table 5.5: Average power consumption of
components for CCA2-secure operations
using the parameter set P1
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Figure 5.10: Power distribution for CCA2-
secure operations using the parameter set
P1

Component Power
[µW/MHz]

ALU 9.44

Sampler 0.48

Trivium 4.90

Other 4.16

Core Total 18.98

RAM 4.24

Total 23.23

Table 5.6: Average power consumption
of components for CPA-secure operations
using the parameter set P1

ALU

41%

RAM 18%

Sampler

2%

Trivium

21% Other

18%

Figure 5.11: Power distribution for CPA-
secure operations using the parameter set
P1
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Parameter Set P1 P6 P2 P3 P5 P7 P4

n 256 512 512 512 1 024 1 024 1 024

q 7 681 12 289 12 289 25 601 12 289 12 289 40 961

k 41 24 47 21 8 16 21

Power consumption per component in µW/MHz

ALU 6.3 7.6 7.2 9.7 8.2 8.2 12.0

SHA3 2.6 2.2 2.2 2.2 2.1 2.1 2.1

Sampler 0.4 0.4 0.5 0.4 0.0 0.3 0.5

Trivium 5.1 5.0 5.1 4.7 4.9 5.0 4.7

Other 4.6 5.0 4.8 5.5 5.4 5.3 5.6

Core Total 19.1 20.2 19.9 22.5 20.7 20.9 24.8

RAM 5.4 11.0 11.1 11.0 22.2 22.2 22.2

Total 24.5 31.2 31.0 33.5 42.9 43.1 47.0

Table 5.7: Average power consumption of components during CCA2-secure operations for
different parameter sets. The first four rows describe the respective parameter set, while
all other rows contain power consumption values in µW/MHz.

Parameter Set P1 P6 P2 P3 P5 P7 P4

n 256 512 512 512 1 024 1 024 1 024

q 7 681 12 289 12 289 25 601 12 289 12 289 40 961

k 41 24 47 21 8 16 21

Power consumption per component in µW/MHz

ALU 9.4 10.0 9.0 12.3 9.8 9.6 14.2

Sampler 0.5 0.4 0.5 0.5 0.1 0.3 0.5

Trivium 4.9 4.7 5.3 4.7 5.0 5.0 4.8

Other 4.2 4.3 3.8 4.3 4.6 4.3 4.7

Core Total 19.0 19.3 18.6 21.8 19.5 19.2 24.1

RAM 4.2 8.5 8.5 8.5 17.0 17.0 17.0

Total 23.2 27.8 27.1 30.3 36.5 36.2 41.1

Table 5.8: Average power consumption of components during CPA-secure operations for
different parameter sets. The first four rows describe the respective parameter set, while
all other rows contain power consumption values in µW/MHz.
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5.3 Comparison

This section compares the results of this thesis with other similar implementations. Because
currently there exist no other ASIC implementations of Ring-LWE encryption schemes, first
the results are compared to hardware implementations of other asymmetrical encryption
schemes, then it is compared against FPGA implementations of various Ring-LWE schemes.

Implementation Process Area Clock Scheme Power Time per operation
[nm] [kGE] [MHz] [µW/MHz] [cycles (ms)]

Kwon et al.[37] 500 156 50 RSA 1024 1 100 000 (22ms)

Liu et al.[43] 180 148 450 RSA 1024 2 105 352

Shieh et al.[73] 130 139 500 RSA 1024 2 105 344

Kuang et al.[36] 130 110 452 RSA 1024 89.16

da Costa et al.[18] 180 107 125 RSA 1024 1 000 000 (8.44ms)

Huang and Wang[33] 130 5 100 333 RSA 12288

Wenger and Hutter[82] 130 14.6 ECDSA Fp192 39.54 1 394 000

Peßl and Hutter[61] 130 12.4 ECDSA Fp160 42.42 139 930

This work (P1) 65 19.5 70 Ring-LWE (CPA) 23.20 12 168 – 32 908 (0.17 – 1.1ms)

This work (P1) 65 27.4 70 Ring-LWE (CCA2) 24.50 64 205 – 77 402 (0.17 – 1.1ms)

Table 5.9: Comparison of different hardware implementations of various asymmetrical
encryption schemes.

Table 5.9 lists different low-resource ASIC implementations of asymmetrical encryption
schemes. Some fields in this table were left empty because some details were not stated by
the respective authors. It should be noted that for RSA 2–4kb keys are required nowadays,
but such implementations were not available to compare with this work.

While comparing the area requirements of this work to RSA implementations shows a
drastic reduction, comparing it to state of the art Elliptic Curve Digital Signature Algorithm
(ECDSA) implementations paints a different picture. This work is about twice as big as
optimized ECDSA implementations. However, when considering the power consumption
and the runtime, it shows that this implementation is quite competitive. Both the power
consumption and the runtime in cycles are lower than any of the other implementations.

Comparing Ring-LWE against other encryption schemes is a difficult task. For a fair
comparison, the manufacturing process and security level should be the same, and complete
numbers for power consumption, area, operation time, and clock frequency should be given.
Due to the incomplete data present, it is not possible to objectively compare these different
implementations in a fair manner. However, the presented data show that Ring-LWE-based
encryption schemes can be as practical as other encryption schemes.
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Implementation Parameter Set Device LUTs/FFs/DSPs/BRAM18 Clock Cycles

(n, p, σ ·
√

2π) [MHz] (enc/dec)

Roy et al.[71] P1: (256, 7681,11.32) V6LX75T 1 349 / 860 / 1 / 2 313 6.3k / 2.8k

Roy et al.[71] P2: (512,12289,12.18) V6LX75T 1 536 / 953 / 1 / 3 278 13.3k / 5.8k

Pöppelmann et al.[64] P1: (256, 7681,11.32) V6LX75T 4 549 / 3 624 / 1 / 12 262 6.8k / 4.4k

Pöppelmann et al.[64] P2: (512,12289,12.18) V6LX75T 5 595 / 4 760 / 1 / 14 251 13.7k / 8.8k

Pöppelmann et al.[65] (256, 4096, 8.35) S6LX9 317 / 238 / 95 / 1 144 136.2k / –

Pöppelmann et al.[65] (256, 4096, 8.35) S6LX9 112 / 87 / 32 / 1 189 – / 66.3k

Göttert et al.[29] (encrypt) P1: (256, 7681,11.32) V6LX240T 298 016 / 143 396 / ? / ?

Göttert et al.[29] (decrypt) P1: (256, 7681,11.32) V6LX240T 124 158 / 65 174 / ? / ?

This work P1: (256, 7681,11.32) – – / – / – / – 70 32.9k / 12.1k

This work P2: (512,12289,12.18) – – / – / – / – 71.0k / 26.1k

Table 5.10: Comparison of different FPGA implementations of Ring-LWE-based encryption
schemes.

Table 5.10 lists different FPGA implementations of Ring-LWE-based encryption schemes.
Many FPGA implementations use either the parameter set P1 or P2, which is very convenient
for comparing them to each other. All cycle numbers in this table use CPA-secure schemes.

When comparing the number of cycles an encryption or decryption takes, it is imme-
diately noticeable that the presented implementation needs significantly longer. The use
of different RAMs can largely explain the longer runtime. Most FPGA implementations
use a high number of (dual-port) block RAM modules, whereas this implementation relies
on a single instance of a single-port SRAM. A dual-port RAM typically allows reading
or writing from/to two different addresses at the same time, while a single-port RAM
only allows one such access in each cycle. Having multiple RAM modules additionally
increase the number of simultaneous accesses. The limiting factor in most Ring-LWE
implementations is how fast memory can be read and written. Being able to write or read
multiple words simultaneously allows for much faster implementations. That being said,
this implementation is still competitive even though it is not optimized for performance.

5.4 Discussion and Future Work

In this section, several points for discussion and possible future work are presented.

Tighter integration of external blocks.
In this work, an external implementation of the Keccak (SHA-3) algorithm was integrated
for its hashing functionality. While the internals of this block were not studied in detail,
it is estimated that 100 to 500 GE could be saved with tighter integration and sharing
of resources like internal registers. However, this comes at the cost of lost flexibility. The
current design allows exploring different PRNGs and hashing algorithms due to its relatively
loose coupling. This advantage is lost by integrating these blocks more tightly.
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Area optimization.
This work aimed to provide a ‘low-resource’ implementation, which includes low area, low
power, and low runtime. However, certain trade-offs have been made in regards to the area,
to allow for a simpler implementation or a faster runtime. When aiming for a low area,
there are several places that can be optimized.

Firstly, the number of bits that the PRNG generates can be lowered. This makes the
PRNG block up to 1kGE smaller, at the cost of a higher runtime for the sampling of
polynomials. Another possibility would be to remove the PRNG block entirely and rely on
the hashing module to generate pseudo-random numbers. This was initially planned for
this work, but it turned out to be impractical due to the increased runtime requirements.
However, if the runtime does not matter and the area has to be kept at a minimum, it may
still be a viable choice to use the hashing module as a PRNG. Furthermore, trade-offs can
be explored by using different Keccak implementations. Additionally, instead of Keccak,
different hashing algorithms can be used. However using a less secure hashing algorithm
could potentially weaken the encryption scheme.

Secondly, for some applications, it could make sense to store the keys in a ROM instead
of the RAM, which would significantly cut down on the area for that RAM. Since the keys
make up 49% of the RAM words, roughly an equal relative amount of area would be saved
from the RAM.

Thirdly, the multiplier in the ALU is one of the biggest parts in this implementation
because it is a full-width multiplier which only takes a single cycle for most multiplications.
Because the area requirements of a multiplier usually increase with the square of the input
width, reducing it to half the width would save a considerable amount of area. However,
additional pipelining, as well as a different reduction algorithm are most likely needed to
keep the performance at an acceptable level.

Lastly, the Other part, discussed in Section 5.2.1, make up a substantial portion of the
total area requirements. However, the used tools do not provide insight as to the exact
reason for this. Additionally, some modules, like the ROM, were merged with other blocks
during the compilation. In any case, this needs to be investigated, as there is most likely
much potential for improvement.

Performance optimization.
High performance was not the goal of this implementation, which leaves many areas for
improvement in this regard. Additional pipelining and an optimized reduction algorithm,
could redcude the total runtime of an encryption or decryption.

During a normal CPA-secure encryption, the sampling of the error polynomial e3
could be done just-in-time and be combined with the step of adding the message m to e3.
Additionally, for the steps, where an error polynomial is directly NTT-transformed, there
is no need to store the polynomial in the RAM and then perform the NTT separately.
This could also be combined, such that the noise is sampled just in time during the NTT
operation. While this would increase the complexity of the state machines slightly, it would
also decrease the number of cycles for encryption.
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Added functionality.
During the implementation of this work, a corrected version of the CCA2-secure scheme
was presented [53], however, it has not been implemented in this work. These corrections
should be implemented as part of any future work.

Additionally, different encodings, such that the message size does not have to be equal
to the dimension n could be implemented. For example, Oder et al. use a 4:1 encoding,
where each message bit gets encoded to four bits [52]. While this decreases the number
of bits that can be encrypted in one run, it also decreases the chance of decoding errors
significantly.

Additional schemes, like the Key Encapsulation Mechanism (KEM) scheme ‘Kyber’
presented in [11] could be added with minimal effort because it shares many similarities
with the already implemented schemes.

Integration with other devices.
This implementation was designed as a coprocessor, so that it can be integrated with many
other works. When integrating this work in RFID/NFC tags, unless the target implemen-
tation already uses an AMBA bus, additional logic for the wireless communication would
be needed. For microprocessors which already have an (S)RAM, only the core would be
needed, and the RAM could be shared between the microprocessor and this implementation.
This would reduce the area requirements significantly, as the RAM is one of the largest
parts in this work.

SCA-strengthening.
As previously mentioned, this work has a constant runtime, which is one important aspect
of strengthening against side-channel attacks (SCA). However, many more aspects need to
be considered for full protection against side-channel attacks. For instance, it is likely to
be easy to attack this work using differential power analysis (DPA), because no masking or
hiding was implemented. Other works, like the scheme presented by Oder et al., already
consider such attack vectors [52]. Recent work by Primas et al. uses a power analysis attack
to recover the full secret key [67]. It is suspected that this kind of attack would also work
on this implementation, so additional countermeasures must be implemented before this
work can be used in practice.

However, properly securing an implementation is no easy task. Every part of the
implementation needs to be secured. For this implementation, this means that the the
ALU, and the sampler, as well the integrated blocks (Keccak and Trivium) need to be
analyzed and secured as well.

5.5 Summary

In this chapter, detailed implementation results have been presented. Using a manufac-
turing process with 65nm, the area requirements are between 27.4 and 72.9kGE (39 558–
105 039µm2), depending on the used parameter set. When instantiating without support
for CCA2 security, the area requirements are only 19.5– 53.4kGE (28 100– 76 942µm2).
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A CPA-secure encryption takes between 32 908 and 143 335 cycles. In comparison, a
CPA-secure decryption only takes 12 168 – 55 842 cycles. Using the CCA2-secure scheme,
encryptions take 64 205 – 191 120 cycles, and decryptions 77 402 – 251 063 cycles. At an
operating frequency of 70MHz and using the parameter set P1, encryptions can be as quick
as 470µs and decryptions only take 173µs. For the CCA2-secure variant, these numbers
increase to 917µs and 1 105µs, respectively.

The power consumption is only between 23 and 47µW/MHz, which is low enough to
be suitable for passively-powered devices like NFC tags.

The design was compared to similar implementations, and it performs very well, consid-
ering its focus on low-resource requirements. However, many areas of this work still offer
room for improvement.



Chapter 6

Conclusions

In this thesis, the design of a low-resource ASIC implementation of a lattice-based encryp-
tion scheme was presented. After defining the encryption schemes, the requirements and
basic design choices for this implementation was discussed. Then the design was presented,
and the results were discussed in detail.

The design uses several state-of-the-art optimizations, like integrating the scaling within
the NTT operation and precomputing the so-called twiddle factors. For the modular
reduction, the Barrett reduction algorithm was chosen because of its minimal impact on the
area requirements. Thanks to the ALU design, the modular reduction algorithm requires no
additional logic apart from an FSM. In addition to the CPA-secure scheme, a CCA2-secure
encryption scheme was implemented. This requires the use of a hashing function, for this
purpose an existing implementation of the Keccak (SHA-3) algorithm was integrated. For
the generation of error polynomials, a binomial sampler was implemented instead of using a
Gaussian sampler. This significantly reduces the complexity and area requirements without
impacting the security of the scheme. Trivium, a very small and configurable stream cipher,
was integrated to act as a PRNG for the sampler. For the main memory, a single-port
SRAM macro was used, which is much smaller than a dual-port macro.

To counter side-channel attacks, the entire implementation runs in constant and data-
independent time. Because there exists no standardized parameter set, the implementation
was designed to have flexible parameters.

The results were evaluated using many different parameter sets, with lattice dimensions
between 256 and 1024. These parameter sets have been previously proposed. Often claming
between 128 and 256 bits. Instantiations for both the CPA-secure as well as the CCA2-secure
variant were tested.

The implementation results show that a CCA2-secure Ring-LWE-based encryption
scheme can be implemented very efficiently. The implementation was synthesized using the
low leakage 65nm manufacturing process from UMC. After synthesis, the area requirements
are 27.4kGE (39 558µm2), from which 14.7kGE (21 242µm2) is used by the RAM. When
instantiating without support for CCA2 security, the area requirements are as low as
19.5kGE or 28 100µm2. This area reduction of the core is mainly due to the 3kGE-sized
hashing module, which only exists in the CCA2-secure variant.

Depending on the used parameter set, a CPA-secure encryption takes between 32 908
and 143 335 cycles. In comparison, a CPA-secure decryption only takes between 12 168 and
55 842 cycles.

61
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Using the CCA2-secure scheme, encryptions take between 64 205 and 191 120 cycles and
decryptions between 77 402 and 251 063. At an operating frequency of 70MHz, encryptions
can be as quick as 470µs and decryptions only take 173µs. For the CCA2-secure variant, it
is 917µs and 1 105µs respectively. Apart from the hashing in the CCA2-secure scheme, the
NTT takes up the largest portion of the total runtime.

The power consumption is only between 23 and 47µW/MHz, which is low enough to
be suitable for passively-powered devices like NFC tags.

This first ASIC implementation of a lattice-based encryption scheme was compared to
similar implementations. The comparison shows that this implementation is practical, and
competes directly with ASIC designs of other asymmetrical encryption schemes. However,
it was also shown that there still exist areas for improvement depending on the desired
target application. This implementation can serve as a base to build upon for future
implementations. Thanks to its simple design, it can be used as an evaluation platform for
lattice-based attacks and to implement future ideal lattice-based schemes.
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in lattice-based cryptography: using the rényi divergence rather than the statistical
distance. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 3–24. Springer, 2015.

65

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-13190-5_28
http://doi.acm.org/10.1145/237814.237838
http://dx.doi.org/10.1007/978-3-642-00457-5_28
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
http://dx.doi.org/10.1007/978-3-642-03356-8_35
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0024-/
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0024-/


BIBLIOGRAPHY 66

[10] J. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghunathan,
and D. Stebila. Frodo: Take off the ring! practical, quantum-secure key exchange
from lwe. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 1006–1018. ACM, 2016.

[11] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe, and
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masked ring-lwe implementation. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2018(1):142–174, 2018.

[54] P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends,
J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro,
A. Dunsworth, A. G. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley,
C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, P. V. Coveney,
P. J. Love, H. Neven, A. Aspuru-Guzik, and J. M. Martinis. Scalable quantum simula-
tion of molecular energies. Phys. Rev. X, 6:031007, Jul 2016. doi: 10.1103/PhysRevX.
6.031007. URL http://link.aps.org/doi/10.1103/PhysRevX.6.031007.

[55] E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein, E. Solomonik,
and R. Wisnieff. Breaking the 49-qubit barrier in the simulation of quantum circuits.
arXiv preprint arXiv:1710.05867, 2017.

[56] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
Extended abstract. In Proceedings of the Forty-first Annual ACM Symposium on
Theory of Computing, STOC ’09, pages 333–342, New York, NY, USA, 2009. ACM.
ISBN 978-1-60558-506-2. doi: 10.1145/1536414.1536461. URL http://doi.acm.org/

10.1145/1536414.1536461.

http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://dx.doi.org/10.1007/978-3-642-13190-5_1
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
http://eprint.iacr.org/2016/1109
http://link.aps.org/doi/10.1103/PhysRevX.6.031007
http://doi.acm.org/10.1145/1536414.1536461
http://doi.acm.org/10.1145/1536414.1536461


BIBLIOGRAPHY 70

[57] C. Peikert. An Efficient and Parallel Gaussian Sampler for Lattices, pages
80–97. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-
14623-7. doi: 10.1007/978-3-642-14623-7 5. URL http://dx.doi.org/10.1007/

978-3-642-14623-7_5.

[58] C. Peikert. Lattice cryptography for the internet. In International Workshop on
Post-Quantum Cryptography, pages 197–219. Springer, 2014.

[59] C. Peikert, V. Vaikuntanathan, and B. Waters. A Framework for Efficient and
Composable Oblivious Transfer, pages 554–571. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008. ISBN 978-3-540-85174-5. doi: 10.1007/978-3-540-85174-5 31. URL
http://dx.doi.org/10.1007/978-3-540-85174-5_31.

[60] P. Peßl and M. Hutter. Pushing the limits of sha-3 hardware implementations to fit on
rfid. In International Workshop on Cryptographic Hardware and Embedded Systems,
pages 126–141. Springer, 2013.

[61] P. Peßl and M. Hutter. Curved tags–a low-resource ecdsa implementation tailored
for rfid. In International Workshop on Radio Frequency Identification: Security and
Privacy Issues, pages 156–172. Springer, 2014.

[62] W. Pfaff, B. Hensen, H. Bernien, S. B. van Dam, M. S. Blok, T. H. Taminiau,
M. J. Tiggelman, R. N. Schouten, M. Markham, D. J. Twitchen, and R. Han-
son. Unconditional quantum teleportation between distant solid-state quantum
bits. Science, 2014. ISSN 0036-8075. doi: 10.1126/science.1253512. URL http:

//science.sciencemag.org/content/early/2014/05/28/science.1253512.
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