








Abstract

Robotics in general is getting increasingly important and is influencing our ev-
eryday live more and more. Autonomous mobile robots are nowadays not only
used in separated areas specially dedicated to robots, they are also used in in-
dustry and on public streets or areas. Thus, dynamic obstacles like people or
other autonomous driving vehicles are moving next to the robot.

In this master thesis, an approach to enable dynamic obstacle avoidance in
an already existing navigation stack is presented. Thus, first of all dynamic
obstacles have to be detected. This obstacle detection is based on 3D data
delivered by a stereo vision system. Later, it is shown that the proposed ap-
proach can be also used in combination with data delivered by a 3D range
scanner. After all obstacles of the environment are detected and separated from
the background, motion information according to the obstacle like position and
velocity are estimated with the help of a multi-object tracking system. This
tracking system is generally based on a Kalman Filter and a Global Nearest
Neighbour data association approach.

The avoidance maneuver itself is generated based on the data delivered by
the already existing navigation stack and the new gathered data. The main
approach for the dynamic obstacle avoidance used within this thesis is based on
the collision cone concept called Velocity Obstacles.

Finally, a detailed evaluation of the navigation system is presented, where
the new presented system is compared to the already existing system. Further, a
comparison of the navigation systems based on a survey with respect to human
factors is also done.
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Zusammenfassung

Robotik im Generellen wird heutzutage immer wichtiger und beeinflusst unser
tägliches Leben mehr und mehr. Autonome mobile Roboter werden heute nicht
nur in speziell abgetrennten Bereichen eingesetzt, sie kommen immer öfters in
der Industrie und auch an öffentlichen Bereichen zum Einsatz. Dadurch entste-
hen neue knifflige Situationen, denn in solchen Bereichen bewegen sich auch an-
dere dynamische Objekte wie zum Beispiel Menschen oder auch andere Roboter.

Im Rahmen dieser Masterarbeit wird ein Konzept präsentiert, das Kollisio-
nen mit dynamischen Objekten verhindert. Das Ziel ist es, diesen neuen Ansatz
in ein bereits existierendes Navigationssystem eines Transportroboters zu im-
plementieren.

Damit Kollisionen mit dynamischen Objekten verhindert werden können,
müssen diese zuerst erkannt werden. Diese Hinderniserkennung basiert auf
3D-Daten, die von einem Stereo-Vision-System geliefert werden. Später wird
gezeigt, dass das präsentierte Konzept auch in Kombination mit Daten, welche
von einem 3D Laserscanner geliefert werden, verwendet werden kann. Nachdem
alle Hindernisse der Umgebung erkannt und vom Hintergrund getrennt wurden,
werden Bewegungsinformationen in Bezug auf Position und Geschwindigkeit mit
Hilfe eines Multi-Objekt Tracking-Systems ermittelt. Dieses Tracking-System
basiert im Allgemeinen auf dem oft genutzten und sehr bekannten Kalman-
Filter.

Das Ausweichmanöver selbst wird durch die Kombination der Daten des
bereits existierenden Navigationssystems und den neu ermittelten Daten berech-
net. Diese Berechnungen basieren hauptsächlich auf dem Konzept von sogenan-
nten Collision-Cones oder besser bekannt als Velocity Obstacles.

Abschließend wird eine detaillierte Auswertung des Navigationssystems präsen-
tiert, wobei das neu vorgestellte System mit dem bereits bestehenden System
verglichen wird. Des Weiteren wird auch ein Vergleich der Navigationssysteme
basierend auf einer Umfrage in Bezug auf menschliche Faktoren durchgeführt.
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Chapter 1

Introduction

This master thesis focuses on autonomous navigation of a mobile robot in
crowded dynamic environments. Nowadays, this topic is of great interest and
a lot of effort is spent on its research. Autonomous navigation in crowded en-
vironments is mainly based on the three pillars obstacle detection, dynamic
obstacle tracking, and autonomous navigation considering these dynamic ob-
stacles. All these topics has their own challenges. There are existing several
different approaches, methods and sensor settings to tackle each of them.

To limit the scope of this work and to set some boundaries, there is the
constraint to fulfil the task with a stereo vision system mounted on a mobile
wheel-based platform, where the localization stack is already provided by this
platform.

In the further course of this chapter, the outline and a more detailed problem
description can be found.

1.1 Outline

In the next section of this chapter a detailed description of the initial situation
will be given followed by the presentation of the aim of this work.

The Prerequisites chapter captures all the theoretical background which is
needed to follow and understand the methods described and used later on within
this thesis.

The next chapter after Prerequisites is called Related Research and is there-
fore focusing on previous published work which is addressing either exactly the
same task, kind of related problems or only sub-problems of this thesis.

Afterwards there will be a detailed description of the overall system and its
implementation, followed by the results of the empirical evaluation and the final
conclusion and possible improvements for the future.
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1.2 Initial situation

Robotics in general is getting increasingly important and is more and more
influencing our everyday live. Autonomous mobile robots are nowadays not
only used in separated areas specially dedicated to robots, they are also used
in industry and on public streets or areas. In the industry autonomous mobile
robots are mostly used as a mean of transport, to carry goods, products or other
objects within warehouses or manufacturing facilities.

As a result, a crucial ability of today’s mobile robots is to operate au-
tonomously in complex environments [59]. In such environments persons and
other kind of dynamic obstacles, such as forklifts are moving around in close
proximity to the robot. In warehouses or production sites, like in most public
places, this scenario is often worsened by narrow corridors or areas crowded
with randomly moving people.

The primary goal of a mobile robot is to autonomously find and execute a
path to a given target without colliding with any kind of obstacles. Moreover,
the calculated path should be the shortest path possible.

The goal of this work presented in this thesis is to improve an already existing
navigation system, by using information derived from dynamic obstacles. In
the current situation all dynamic obstacles are almost handled the same way
as static obstacles. A simple approach to overcome collisions with dynamic
obstacles is to tread all dynamic obstacles as static once and to expend the
footprint of dynamic obstacles by a certain safety distance. This is exactly the
way, how the already existing system deals with dynamic obstacles.

The above described approach enables obstacle avoidance but brings up
new problems. In highly crowded environments with moving obstacles, as for
example, there can be the situation that no path to a certain target can be
found, because of the massive footprint expansion. There might occur also the
situation, that a calculated path is not going to be the real shortest path, since
the expansion is always a crude assumption.

Summarized this means, dynamic obstacles are considered statically in path
planning, but velocity and possible future positions of dynamic obstacles are
not considered.
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A further possible scenario is shown in Figure 1.1a and 1.1b.

(a) The robot is planning to pass the
dynamic obstacle on the right.

(b) The dynamic obstacle is blocking the
path of the robot.

Figure 1.1: Dynamic obstacle is considered as static during the planing phase.

In this situation, the dynamic obstacle is considered as a static once. The
robot wants to calculate and execute a shortest path from its current position
to the target, illustrated as green box and labelled with T, while a dynamic
obstacle is moving from the left side of the image, to the right side.

At time frame t1 (Figure 1.1a), the robot is planning to pass the obstacle
on the right. At time frame t2 (Figure 1.1b), the robot is going to execute the
previously calculated path, but at this point in time the dynamic obstacle was
already moving further. Now the dynamic obstacle is crossing the path of the
robot and the robot has to manage this situation.

This scenario can be easily avoided by taking into account the information
of velocities and future positions of dynamic obstacles, as shown in Figure 1.2a
and 1.2b.

(a) Dynamic path planning. (b) Robot is passing the obstacle ideally.

Figure 1.2: Future position of the dynamic obstacle is considered in the path
planing phase.
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From the example above we can conclude, that current and future move-
ments of dynamic obstacles have to be estimated and considered in the path
planning and execution to ensure efficient and safe path planning and execution.

1.3 Problem description

The movement prediction of dynamic obstacles and the subsequent planning of
the path in narrow corridors or crowded areas is a non-trivial task for mobile
robots. Thus, this particular problem should be tackled within this thesis, to
allow safe autonomous navigation in dynamic environments.

To enable autonomous navigation of mobile robots on environments as de-
scribed above reliable data from sensors is needed. Currently, very often 2D
data from laser range scanners is used, since the delivered data usually has a
very high accuracy. However, nowadays 3D data, delivered by a stereo vision
system for example, is being used more often. The advantage of such stereo
cameras lies in the fact that in addition to the accurate depth information,
these sensors also provide color information that can be used as well.

Both the depth information as well as the color information, provided by the
stereo camera, can be used to separate essential obstacles, as for example peo-
ple or other moving obstacles, from non-essential obstacles, such as the ground,
walls, shelfs or other static obstacles belonging to the environment. This is im-
portant, because we are especially interested in obstacles in the foreground and
dynamic obstacles. With the help of the provided 3D information, obstacles can
be identified and new information as for example moving direction or velocity
of the obstacle can be gathered.

For a stable navigation in narrow and crowded areas, the current motion
and the estimation of the future motion of dynamic obstacles is a key factor.
Especially the estimated future velocity and direction of dynamic obstacles needs
to be considered in the navigation.

Dynamic obstacles and all the information according to these obstacles can
be estimated, by evaluating continuous data given by the stereo vision system
over a longer period of time. The difficulty here is to filter the data properly
to reduce noise, get the right data associations, and to find a suitable motion
model to accurately predict future motion sequences. People for example can
suddenly change their direction of movement by 180 degrees, while forklifts must
drive a curve with a certain radius or initiate a breaking process before they
can change direction by 180 degrees. Thus, the motion models of people and
forklifts are different. Since the goal of this thesis is to use the information
of dynamic obstacles for the navigation in general, no object classification is
applied on the detected obstacles. Thus, a reliable generalized motion model,
which is assigning best and able to describe most of the possible motions of
various dynamic obstacles has to be chosen as foundation for the further tracking
process.

A correct data association, as mentioned above, is also a major challenge
tackled in this thesis. Data association is about all the current detections to the
previously estimated predictions to increase the accuracy of further estimations.
As a consequence of this, a wrong association of detections and estimations will
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lead to inaccurate or completely wrong motion estimation and thus also to an
unreliable navigation.

1.4 Contribution of the thesis

The overall goal of this thesis is to allow safe autonomous navigation of a mobile
robot in dynamic environments. Therefore, static as well as dynamic obstacles
in the environment have to be detected correctly. The position of the detected
obstacles is later passed to an obstacle tracking algorithm to obtain motion in-
formation. Due to the motion information, possible future positions of dynamic
obstacles can be estimated. These estimations are finally passed to the naviga-
tion unit and used to find and execute a path to a specific target which is short
and do not cause any collisions.

Beside the technical aspects there are also a number of social aspects related
to autonomous mobile robots, which are interacting with people in a close way.
Persons which are directly next to the mobile robot should not feel scared and
disturbed by the navigation behavior of the robot.

However, the feeling of individual persons cannot be determined quanti-
tatively in the first place. Nevertheless, there is the possibility to interview
people in a test scenario and perform statistic evaluations on the gathered data.
Furthermore, through these evaluations different navigation approaches can be
compared, in respect to the acceptance by people.

Additionally, the overall concept can be quantitatively evaluated in relation
to parameters such as throughput over a certain period of time or the covered
distance to reach a specific target.



Chapter 2

Prerequisites

The following sections of this chapter provide all the knowledge that is needed
to understand this thesis. Thus, this chapter includes all the technical as well
as the theoretical background to comprehend the methods which are discussed
or used later on within this work.

First of all, we will give a short description of the basic functionality of the
commonly used Robot Operating System or short ROS [58]. ROS is providing
the fundamental infrastructure for the practical realization described in this
thesis.

This description is followed by an explanation about stereo vision in general
and further vision and stereo vision related topics as for example disparity maps.

This chapter does also contain a summary and explanations of specific meth-
ods of the well known Point Cloud Library (PCL) [62]. Several methods pro-
vided by this library are later used to perform certain preprocessing tasks.

At the end of this chapter a detailed description of the Kalman Filter, fol-
lowed by an explanation of different data association approaches can be found.

2.1 Robot Operating System

The Robot Operating System was originally introduced in 2007 by the Stanford
Artificial Intelligence Laboratory [58]. In this section a general overview of the
main functionality of ROS is provided.

As mentioned in [58], the Robot Operating System is not an operating sys-
tem in the traditional sense providing for instance process management and
scheduling. It rather provides a structured communication layer above the host
operating system. Furthermore this system makes it possible to distribute the
computations of different units in a very easy way to several machines.

Nowadays, ROS is not only a communication framework anymore. It pro-
vides a lot of drivers for different sensors, various tools and many libraries. A
very big benefit of the Robot Operating System lies within the fact, that it is
multi lingual. This simple means that C++ as well as Java or Python can be
used to program robots. Furthermore, there is a big community which is using

6
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and creating open source software based on ROS which can be easily reused by
all the ROS users all over the world [48].

In the next section the general structure of the Robot Operating System will
be presented, followed by an explanation of some basic ROS tools.

2.1.1 Packages

ROS is following a really strict structure to make software easy exchangeable,
reusable, and expandable [58].

The Robot Operating system is structured in so called packages. Packages
can be added, removed, or changed independently. Such packages mostly cover
a broader range of functionalities as for example everything that is needed to
run a simple web cam-driver on the robot. It is recommended to follow a specific
package structure which is schematically shown in Figure 2.1

Figure 2.1: Standard ROS package structure.

In general, a package can contain one or more executables and libraries.

2.1.2 Nodes, Topics and Messages

An executable itself is called node, where a node is a process that performs
certain computations. A full robot control system comprises many different
nodes. For example, one node is used as a driver for a laser range finder and
another one is used to control the robot wheels. The computation unit is called
node, since the system structure and the communication between several units
can be represented as a graph.

The individual nodes can communicate with each other via so called topics.
In the perspective of a graph, such topics can be represented as edges connect-
ing different nodes. At this point there has to be mentioned, that there can be
more than one edge between two nodes. Multiple connections are unavoidable
since a single topic can only transport a specific message type. An illustration
of a small sample robot system is shown in the Figure 2.2 below.
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Figure 2.2: Simple ROS robot system.

As mentioned above, nodes can communicate with each other, by sending
messages of a certain type to a topic. This communication is asynchronous.
If a node A wants to receive a message from another node B, node A has to
subscribe to the specific topic. Therefore node A is also called subscriber.

Node B on the other hand has to publish messages to the same topic and is
therefore called publisher. The message type itself has to be defined at compile
time, where the standard message of a laser range finder provided by basic ROS
libraries is shown in Listing 2.1.

1 // sensor msgs /LaserScan .msg
2

3 Header header
4 f l o a t 3 2 angle min // s t a r t ang le o f the scan [ rad ]
5 f l o a t 3 2 angle max // end ang le o f the scan [ rad ]
6 f l o a t 3 2 ang l e inc rement // angular increment [ rad ]
7 f l o a t 3 2 t ime increment // time between measurements [ s ]
8 f l o a t 3 2 scan t ime // time between scans [ s ]
9 f l o a t 3 2 range min // min scan range [m]

10 f l o a t 3 2 range max // max scan range [m]
11 f l o a t 3 2 [ ] ranges // range data [m]
12 f l o a t 3 2 [ ] i n t e n s i t i e s // i n t e n s i t y data [ ]

Lst. 2.1: Laser scan message definition.

In respect to the message defined above, the header field itself is also a
message. The definition of the header message is shown in Listing 2.2.

1 // std msgs /Header . msg
2

3 uint32 seq // sequence number
4 time stamp // time stamp
5 s t r i n g f rame id // coord inate frame

Lst. 2.2: ROS header message definition.

Thus, messages can be capsulated, which is absolutely fitting the purpose of
software reuse.
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2.1.3 Parameters

In the field of robotics, algorithms which can be individually adapted and fine-
tuned to certain environments are frequently used to increase the overall per-
formance of the robot for certain scenarios. A simple reference algorithm is
for example a range filter for the data delivered by a laser range finder. At
environment A the maximum range of the laser scanner should be restricted to
30 meters, while at environment B or for testing reasons the maximum range
should be only 15 meters. The fundamentals of the range filter are staying the
same, but the threshold for the range is changing from 30 to 15 meters. With
the infrastructure provided by ROS, this adaption can be easily done without
recompiling the whole code. ROS is providing a parameter server where such
thresholds and many other parameters can be managed and also changed during
runtime.

The current parameter set can be retrieved with the terminal command:

1 rosparam l i s t

, where a specific parameter can be set or retrieved with the commands:

1 rosparam get <parameter name>
2 rosparam se t <parameter name> <value>

2.1.4 ROS Master

The most important component of the whole Robot Operating System is the
so called ROS Master. The ROS Master is the heart of the Robot Operating
System and is providing naming and registration services for all the nodes in
the system and enables the communication between the nodes. Without the
ROS Master the nodes cannot be started. Thus, the first thing which has to be
done to start a robot is to initialize a ROS Master. This can be simple done
with the terminal command:

1 r o s c o r e

2.1.5 Transformations

In this section of the chapter, the ROS coordinate system structure and trans-
formations of positions between the individual coordinate systems are described.

A robot system with all its sensors and actors can be represented by several
coordinate systems. Usually each sensor and each actor has its own coordinate
system. Furthermore, coordinate systems can be introduced to ease calculations
or to increase understandings. Note that in ROS usually the coordinate systems
are handled as right hand coordinate systems as illustrated below in Figure 2.3.
Thus, the x-axis is pointing forward, the y-axis is pointing to the left and the
z-axis is pointing upwards.

Coordinate systems in ROS are called frames and all the frames are organized
in a tree. A sample transformation tree of a simple wheel based robot using a
laser range scanner and a camera is presented in Figure 2.4 and 2.5.
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Figure 2.3: Right handed coordinate system.

In the Figure 2.4 the physical placements of the different robot frames are
illustrated. The world frame is representing a fixed reference frame, while the
base link is representing the center of the robot. laser link and camera link
are representing the pose of the sensor centers with respect to the world frame.
In this example it is easy to see, that the camera is mounted exactly above the
laser scanner. The odom frame is representing the odometry and shows the
initial position of the robot.

Figure 2.4: tf-tree representing the positions and orientations of all frames of a
sample robot system.

Data delivered by any kind of sensor is mostly related to a specific sensor
coordinate system. In the example above, this would be the laser link frame
or the camera link frame. To use these points within other frames, as for
example within the world frame, all the data points has to be transformed to
the desired frame. Therefore, all transformations shown in the tf tree of Figure
2.5 between laser link and world has to applied to the data points.

Transforming points between coordinate systems is not a thing which is
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happening once in a while. Such transformation calculations are usually done
several times a second. Since it is pretty hard to deal with the transformations
on your own, ROS is providing a package called tf which provides coordinate
frame transformations. The tf package is simple to use and makes working with
transformations easier, understandable and safer.

Figure 2.5: tf-tree

2.2 Vision and Stereo Vision

In this section and the following subsections basic knowledge about stereo vision
and computer vision methods in general is provided. Since the topics computer
vision and stereo vision are really broad topics, the focus lies strict on provid-
ing background information for methods directly used or discussed within this
thesis.

Therefore depth reconstruction based on triangulation, disparity maps, and
Hough lines are explained in the following paragraphs.

2.2.1 Triangulation

Stereo systems and stereo vision are generally used within the field of robotics
to get 3D information of a certain scene. When using a single pinhole camera
as a sensor, useful 3D information of the scenery is getting lost, since 3D world
points are projected onto an 2D image plane. This problem can be overcome by
using multiple cameras or images and combining the information of both images
with the help of epipolar geometry and triangulation [72].

For further descriptions we set up the constraint, that the two images are
given by two pinhole cameras which are located next to each other. Thus the
data is gathered from a simple stereo vision system. The extrinsic as well as
intrinsic parameters of the camera are well known. The pinhole camera model
as well as the stereo vision system are illustrated at the Figures below.
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Figure 2.6: Simple pinhole camera model.

In Figure 2.6, a pinhole camera model is presented, where I is the image
plane and F is the focal plane. C is the center of the image plane and also
called principal point, O is the optical center and f denotes the focal length
which is exactly the distance measured between the image plane I and the focal
plane F . The focal length f is either given in millimeters or in pixels.

The main goal of the above mentioned epipolar geometry is to find corre-
sponding image points within the left and the right image plane, which are
representing the projection of a 3D point in the scenery. Some algorithms to
detect these correspondences are for example described in [74], but will be not
captured here in detail. For the triangulation and the disparity and depth cal-
culation it is assumed that these correspondences are already known.

The goal of the triangulation process is to reconstruct the 3D point P of
the scenery, given two corresponding points xL and xR on the image planes IL
and IR. For the following calculation it is assumed that the cameras are level
and the image planes are flat and co-planar as illustrated at Figure 2.7. With
respect to Figure 2.7 OL and OR are representing the optical centers, CL and
CR are the center points of the image planes, f is the focal length and Z is the
distance (depth) between the cameras and the pointP .

Following the simple mathematical rules of triangulation, the disparity d,
which is defined as the difference in image location of the same 3D point, can
be retrieved by:

d = XLCL + CRXR (2.1)

Rewritten this can be shown as:

d =

(
XLCL

OLCL

+
CRXR

OLCL

)
·OLCL (2.2)

d =

(
XLCL

OLCL

+
CRXR

ORCR

)
·OLCL (2.3)

Applying the rules of triangulation, the equation above can be changed to:

d =

(
OLC

PC
+
COR

PC

)
·OLCL (2.4)
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d =
OLOR

PC
·OLCL (2.5)

Considering the fact that PC is nothing else than the depth Z, OLOR is the
so called base line b (distance between the two camera centers) and OLCL is
the focal length f , the formula can also be written as

d =
b · f
Z

(2.6)

and the depth Z can be retrieved by:

Z =
b · f
d

(2.7)

Figure 2.7: Stereo camera triangulation.

2.2.2 Disparity Maps

In the section above the reconstruction of a single point is explained. In reality,
of course the disparity for every pixel pair is calculated to reconstruct the depth.
These results are later on stored in so called disparity maps. A disparity map
can be represented, as well as the image plane, as a matrix. If we assume that
the size of the left image plane IL and the size of the right image plane IR are
equal, also the disparity map is of the same size. Thus if IL is of size w x h,
where w is the image width and h is the image height, also the disparity map
will have the same size w x h. The value of a single cell of the disparity map is
representing the disparity calculated with the help of Equation 2.6 presented in
section 2.2.1.
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In computer vision such a disparity map is often represented as a gray scaled
image, where the disparity values are normalized to the range of 0 to 255 or 0
to 1. A sample image of such a disparity map resulting from two images given
by a stereo vision system is shown in the Figure 2.8 below.

(a) RGB reference image. (b) Gray scaled disparity image.

Figure 2.8: Disparity image of a person in a production hall.

Disparity maps in general are often used as input data for further steps as
for example object detection or ground detection based on U-V disparity [49]
or simple for depth map generation.

2.2.3 Hough Transformation

In this section, the basics of the Hough transformation, especially in relation to
line detection are described.

In the field of computer vision Hough transformations are often used to
detect simple shapes, such as straight lines or circles in images as presented in
[15]. The input image to the transformation algorithm is in general an image
pre-processed by any edge detection algorithm as for example the canny edge
detector presented in [12].

The simplest case for which Hough transformations can be used, is to detect
straight lines. A straight line in the Cartesian space can be represented by:

y = k · x+ d (2.8)

where k is the slope, d is the y-intercept and x is a variable.

Since a line, which can be also seen as a collection of points, is harder to
manage than a single point, the goal of the Hough transform is to transform
a line into a point, without loosing any information. This can be fulfilled by
mapping the line into another parameter or feature space which is here called
k-d space, but often also called Hough space. Thus the line y = kx + d in
Cartesian space can be represented as point (k, d) in the k-d parameter space
as illustrated at Figure 2.9.
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Figure 2.9: xy-kd space transformation.

Note, that based on this notation, there are occurring computational prob-
lems when vertical lines are processed. Therefore in [15] it is proposed to use
the Hesse normal form:

r = x · cosθ + y · sinθ (2.9)

, where ρ is the distance from the origin to the closest point of the line and θ is
the angle between the x-axis and ρ as shown in Figure 2.10.

Figure 2.10: Hesse normal form representation.

The line equation shown in Equation 2.8 can be also written as:

y =

(
− cosθ
sinθ

)
· x+

( r

sinθ

)
(2.10)

,where θ has to be defined to be in the range of [0, 2π[ and r > 0.
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An algorithm for Hough line detection is presented below based on the de-
scriptions in [15]:

1 f o r a l l p i x e l s p in the image :
2 i f p at (x , y ) i s an edge p i x e l :
3 f o r a l l theta in theta [ ] :
4 rho = calcRho (x , v , theta )
5 accumulator . at ( rho , theta ) . increment ( )

Lst. 2.3: Hough line detection.

Having a pixel p in an image with the position (x, y), infinity many lines can
go through the pixel p. All this lines can be transformed to the Hough space,
which will finally lead to a sinusoidal curve that is unique for pixel p. The same
procedure has to be done for all the other edge pixels of the image. The point
of intersection between two or more resulting sinusoidal curves in the Hough
space is representing a line in the image space.

The result of all this transformations is stored in a so called accumulator,
which can be simple represented as a matrix, where cells with sinusoidal curve
intersections have a higher value than others. After all points of interest are
transformed from the Cartesian space to the Hough space, local maxima in
the accumulator are searched. This is usually done with the help of simple
thresholding. Based on Equation 2.10, all found local maxima are mapped from
the Hough space to the Cartesian space as illustrated in Figure 2.11.

Figure 2.11: Hough line detection.
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2.3 Point Cloud Library

In this section of the thesis there can be found a general overview of the well
known Point Cloud Library (PCL). This overview is followed by some basic
description of algorithms, which are later used for the practical realization.

As described in [62] and at PCL 1, PCL became a first-class citizen project
in March 2011 and contains all the state-of-the-art algorithms related to 3D
perception. The main thematic areas are:

• filtering

• feature estimation

• surface reconstruction

• registration

• model fitting

• segmentation

Thus, the application area of this library is pretty large, but the following
descriptions are just touching the area of filtering, since for this thesis PCL is
only used for data preprocessing. Exactly, the basic point cloud container, voxel
grids as well as the statistical outlier removal algorithm are described below.

2.3.1 Point Cloud

A point cloud is the fundamental data container of the PCL library. Such a
point cloud consists either of 2D points or 3D points. This special data structure
makes it possible to easily access single points or even single point coordinates.
Every method and algorithm which is implemented in PCL is based on this
structure.

A short example how elements and single coordinates of a point cloud can
be accessed is shown below:

1 // c r e a t e a 3d po int c loud
2 pc l : : PointCloud<pc l : : PointXYZ> c loud ;
3

4 // c r e a t e a new 3d point
5 pc l : : PointXYZ point ;
6

7 // a s s i gn va lue s to x , y and z coo rd ina t e s o f the po int
8 point . x = 45.12
9 point . y = 2.123

10 point . z = 321.08
11

12 // add the po int to the po int c loud
13 c loud . po in t s . push back ( po int ) ;

Lst. 2.4: Point cloud container.

1http://pointclouds.org, 02.10.2018

http://pointclouds.org
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2.3.2 Voxel Grid

In this section, the functionality of voxel grids is described in a few sentences.

Voxel grids are nowadays used within many different applications as for ex-
ample for 3D map creation (OctoMaps) [26], but also as data filter for following
object detection algorithms [64].

The name voxel is a combination of the two words volume (vo) and element
(el). A single voxel can be represented by a cuboid, where this cuboid is defined
by a certain width, height and depth as illustrated below.

Figure 2.12: Single voxel.

A voxel grid is simple a inter linkage of many voxels as shown in Figure
2.13. Note, that empty voxels of the grid are colored white and are not visible
in the image below. In Figure 2.13 on the left side there can be seen a voxel
representation of a tree and on the right side there is shown a simple cube.

Figure 2.13: Objects represented as voxels.

Applying a voxel grid filter to a point cloud in the sense of PCL means, that
all points of the point cloud within a single voxel are combined. Combined in
this case means, that the center of gravity, often also called centroid, of all the
points in the voxel is calculated and added to a new cloud. Thus the number of
points of the point cloud is reduced.

Note, that the centroid c can be calculated with the following formula:

c =

∑
p∈P

p

N
(2.11)

, where c and p are points in vector form (x, y, z)T , P is the family of all points
of a point cloud and N is the number of points within P .
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Bellow there can be found a short example, which illustrates the use of a
voxel grid filter:

1 // i n i t i a l i z e input c loud
2 pc l : : PointCloud<pc l : : PointXYZ> i nput c l oud ;
3 // . . . . . . load some data
4

5 // c r e a t e conta ine r f o r output c loud
6 pc l : : PointCloud<pc l : : PointXYZ> f i l t e r e d c l o u d ;
7

8 // c r e a t e voxe l g r i d ob j e c t
9 pc l : : VoxelGrid<pc l : : PointXYZ> v o x e l g r i d f i l t e r ;

10

11 // s e t the s i z e o f a s i n g l e voxe l
12 double width = 0 . 1 ;
13 double he ight = 0 . 1 ;
14 double depth = 0 . 1 ;
15 v o x e l g r i d f i l t e r . s e tL e a f S i z e ( width , height , depth ) ;
16

17 // add i t i o n a l l y s e t the minimum number o f po in t s
18 // which have to be in a voxe l
19 i n t min points = 3 ;
20 v o x e l g r i d f i l t e r . setMinimumPointsNumberPerVoxel ( min points ) ;
21

22 // apply the f i l t e r to the input c loud
23 v o x e l g r i d f i l t e r . setInputCloud ( input c l oud ) ;
24 v o x e l g r i d f i l t e r . f i l t e r ( f i l t e r e d c l o u d ) ;

Lst. 2.5: Voxel grid filter in PCL.

Further, in the PCL implementation of the voxel grid filter there is the pos-
sibility to set the minimum number of points which has to be within a voxel to
consider the voxel as valid. This functionality can be used to reduce the noise
introduced by the sensor.

2.3.3 Statistical Outlier Removal

In this section a brief description of the statistical outlier removal algorithm
presented at the PCL tutorial 2 is given.

In general, measurement errors of sensors as for example a stereo camera or
a 3D range finder, can lead to sparse outliers. These outliers can corrupt the
later results of other algorithms applied to the data, since the local point cloud
characteristics such as surface normals or curvature changes consists of erro-
neous values. The appearance of outliers can be partly reduced by performing
a statistical analysis and remove points which do not meet a certain criterion.

The statistical outlier removal method presented at the PCL tutorial, is
based on the distribution of point to neighbors distances, where the Euclidean
distance d between two 3D points p1(x, y, z) and p2(x, y, z) can be calculated
by:

d =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (2.12)

For each point in the point cloud, the mean distance between the point and
its neighbors is calculated, where the number of neighbors considered for this

2http://pointclouds.org/documentation/tutorials/statistical outlier.php, 02.10.2018

http://pointclouds.org/documentation/tutorials/statistical_outlier.php
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process can be defined beforehand. Finally, it is assumed, that the resulted
distribution is forming a Gaussian distribution with a mean and a standard
deviation. All points whose mean distances are outside a predefined interval are
considered as outliers and removed from the dataset.

A sample code, how the statistical outlier removal method given by PCL
can be used is listed below:

1 // i n i t i a l i z e input c loud
2 pc l : : PointCloud<pc l : : PointXYZ> i nput c l oud ;
3 // .
4 // .
5 // . . . load some data to input c l oud
6

7 // c r e a t e conta ine r f o r output c loud
8 pc l : : PointCloud<pc l : : PointXYZ> f i l t e r e d c l o u d ;
9

10 // c r e a t e s t a t i s t i c a l o u t l i e r removal ob j e c t
11 pc l : : S t a t i s t i c a lOut l i e rRemova l<pc l : : PointXYZ> s t a t o u t l i e r f i l t e r ;
12

13 // s e t the number o f ne ighbors which should be inc luded in
14 // the proce s s
15 i n t number o f ne ighbors = 50 ;
16 s t a t o u t l i e r f i l t e r . setMeanK( number o f ne ighbors ) ;
17

18

19 // s e t a th r e sho ld in form o f mu l t i p l i e r /weight to
20 // except / not except po in t s
21 i n t s t d mu l t i p l i e r = 1 . 1 ;
22 s t a t o u t l i e r f i l t e r . setStddevMulThresh ( s t d mu l t i p l i e r ) ;
23

24 // apply the f i l t e r to the input c loud
25 s t a t o u t l i e r f i l t e r . setInputCloud ( input c l oud ) ;
26 s t a t o u t l i e r f i l t e r . f i l t e r ( f i l t e r e d c l o u d ) ;

Lst. 2.6: Statistical outlier removal in PCL.

The results of the statistical outlier removal method applied on a dataset
generated by a stereo vision system are illustrated at Figure 2.14. The first
picture in Figure 2.14 shows the initial situation, in the picture noisy section are
highlighted. The picture at the bottom is representing the result after applying
the PCL statistical outlier removal method.
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Figure 2.14: PCL statistical outlier removal applied on noisy data.

2.4 Kalman Filter

The Kalman Filter is the classical state estimation method for obstacle tracking
and probably one of the most used methods within this context. In the past it
was used within all kind of tracking scenarios as for example pedestrian tracking
[35], cyclist tracking [37] but also for other obstacles as shown in [8]. The wide
adaption is attributable to its simplicity and to the easy implementation.

In the following paragraphs, basic steps and equations for tracking dynamic
obstacles with a Kalman Filter are described.
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Basically, the Kalman Filter consists of two steps:

• Prediction step:

At this step a prediction of the new state of an obstacle, based on the
output of the previous update step is calculated.

• Update step:

The update step tries to take the predicted state and correct it with an
observation, to improve further predictions.

As shown in [43] a state and an observation can be noted as x and Z and
the two general equations for the state prediction and the current observation
transformation can be described as:

x̂k = A · x̂k−1 ·Buk−1 + wk (2.13)

Zk = H · x̂k + vk (2.14)

, where the matrix B is only needed to transform data given by the motion
control u to the state x and H is only needed to transform a state x to an
observation Z. For the purpose of dynamic obstacle tracking, the matrix B and
the motion control u are not needed.

wk and vk are Gaussian white noises for the process itself and for the obser-
vation and will be considered in the noise covariance matrices R and Q. This
two matrices can be calculated, as described in [8] by using the variance σ2

multiplied by the identity matrix I:

R = I · σ2
v (2.15)

Q = I · σ2
w (2.16)

The matrix A is called transition matrix and is used to relate the state
change to a certain motion model. To keep it simple, the equations described
in the following are related to a 2D position with Cartesian coordinates (x, y)
of an obstacle.

Probably the most used motion model for arbitrary obstacle tracking is the
so called constant velocity motion model described in [36] Adapted to a 2D
position, the motion model looks like Equation 2.17, where ∆t is representing
the time difference between two consecutive states.

A =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 (2.17)

The state x̂k belonging to the transition matrix A is defined in Equation
2.18.

x̂k =


x
y
vx
vy

 (2.18)
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where x and y are representing the position of an obstacle and vx respec-
tively vy are representing velocities in x and y axis.

In the following explanation the state for the prediction will be written as
x̂ and the observation will be represented as Z. All the matrices and equations
shown below are based on the description of [43].

2.4.1 Prediction

At the prediction step there have to be predicted:

• the future state x̂− by using the previous state x̂k−1 and the transition
matrix A

x̂−k = A · x̂k−1 (2.19)

• the future state covariance matrix P−k with the help of the transition
matrix A, the previous state covariance matrix Pk−1 and the observation
noise covariance matrix Q

P−k = A · Pk−1 ·AT +Q (2.20)

2.4.2 Update

After the prediction step has been done, there will be the update step, which is
in the literature often also called correction step. At this point a measurement
is taken to correct or update an associated prediction. At first there has to be
calculated the Kalman gain Kk. This matrix is used to weight the innovation
and later on it is needed for the correction of the estimated state x̂ and the
estimated state covariance matrix P−k .

Kk = P−k ·H
T (H · P−k ·HT +R)−1 (2.21)

With the help of the Kalman gain from Equation 2.21, the estimation of the
predicted state is updated by using the following Equation 2.22

x̂k = x̂−k +Kk(Zk −H · x̂−k ) (2.22)

, where (Zk− x̂−k ) or the transformed version (Zk−H · x̂−k ) is called measure-
ment innovation and simple describes the difference between the estimation and
the observation [43]. The observation vector Zk is representing the measured
position and is defined in Equation 2.23.

Zk =

(
x
y

)
(2.23)

and the transformation matrix H is defined in Equation 2.24.

H =

(
1 0 0 0
0 1 0 0

)
(2.24)
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The last step which has to be done is to update the state covariance matrix
by using the Kalman gain Kk and the identity matrix I:

Pk = (I −Kk ·H)P−k (2.25)

Figure 2.15, the Kalman Filter prediction and update cycle is illustrated.

Figure 2.15: Kalman Filter cycle

2.5 Data Association

Data association is a topic which is directly related to tracking. At each update
step, a observation has to be associated to a certain prediction. The necessity
and difficulty of data association is shown in Figure 2.16.

Figure 2.16: Simple data association problem.

In the case presented in Figure 2.16, there are two observations candidates
for the prediction update, but there is only one observation really belonging to
the prediction.

There are several methods available to solve this assignment problem. Two
of them, namely Local Nearest Neighbor Filter and Global Nearest Neighbor
Filter, are described below.
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2.5.1 Local Nearest Neighbor Filter

The local nearest neighbor filter is one of the easiest approaches which can be
used for data association within obstacle tracking.

As described in [8] the nearest neighbor filter simple calculates the distance
between all the observations and predictions. At the end of the day, the obser-
vation with the minimal distance to the prediction is finally used for the update.
Thus, the selected minimum is always a local minimum and this is probably not
the best association considering the whole system with multiple observations
and predictions.

The distance itself can be represented, as described in [8] by the Mahalanobis
distance or also called normalized innovation distance dk [47]. This distance is
calculated by Equation 2.26, using the innovation covariance matrix S−1

k and
the innovations vk given by the Kalman Filter.

d2
k = vTk · S−1

k · vk (2.26)

The innovation vk can be simple calculated by building the difference be-
tween the observation zk and the prediction state xk:

vk = zk − xk (2.27)

With respect to the descriptions in section 2.4 the innovation vk can be
calculated by Equation 2.28.

vk = zk −H · xk (2.28)

2.5.2 Global Nearest Neighbor Filter

The Global Nearest Neighbor Filter is a kind of improvement of the Local Near-
est Neighbor Filter to avoid wrong associations caused by local minima. All the
distances between the observations and the predictions are calculated and stored
in a so called cost matrix C. This matrix is of size N x M , where N is the num-
ber of predictions and M is the number of observations. This cost matrix C
can be written, as shown in [30], by:

C =


c11 c12 · · · c1M
c21 c12 · · · c2M
...

...
...

...
cN1 cN2 · · · cNM

 (2.29)

, where the cell value corresponds to the Mahalanobis distance based on
Equation 2.28. Finally, the optimal association is given by minimizing the total
sum overall distances. This can be easily done by using Munkres assignment
algorithm presented in [46].

To improve the assignment process a validation gate is introduced, where a
maximum distance between an observation and a prediction is defined by the
inverse χ2 cumulative distribution at a significance level α. Thus, if there is
only one prediction and one observation and the Mahalanobis distance between
them is bigger than the defined threshold, they are not associated.



Chapter 3

Related Research

In this chapter different approaches and methods, which have a strong relation to
the topics tackled within this work are described. All the mentioned approaches
and methods were already well researched and former published in form of
articles, reports or books. The focus in this chapter is on the main idea of
the different approaches and the known short comings. Side information and
detailed descriptions for sub methods used within the approaches can be found
at chapter Prerequisites.

In a very general way the research can be divided into the three main pillars:

• Dynamic obstacle detection

• Dynamic obstacle tracking

• Navigation in crowded dynamic environments

, where each single pillar is more or less a closed topic by itself.

However, dynamic obstacle detection and dynamic obstacle tracking are in
the literature often tackled in combination. We will present the different research
areas separately.

Since the usage of data delivered by a stereo vision sensor is a constraint
for this work, also the research, especially for the dynamic obstacle detection,
is limited to approaches and methods based on stereo vision data. Further-
more, there is the assumption, that the disparity map and a xyz-pointcloud are
directly provided by the stereo vision system. This further means that stereo
matching algorithms will not be discussed within this research.

In the following, each of the above listed pillars is divided into further sub-
areas and different approaches and methods are described.

3.1 Dynamic obstacle detection

In the following sections different approaches and methods for the topic dy-
namic obstacle detection based on data delivered by a stereo vision system are
described.

26
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In the literature dynamic obstacle detection is done by the following ap-
proaches:

• extracting obstacles from the environment by using clustering algorithms
or obstacle detection algorithms and pass them on to a kind of tracking
algorithm

• detecting dynamic pixels directly with the help of optical flow algorithms

• combination of object classification and tracking approaches

All methods have their advantages and disadvantaged; especially with re-
spect to accuracy and computational costs.

The last mentioned approach, tracking by object classification, will not be
investigated within this research, since the final results are completely depended
on the results delivered by any kind of classification algorithm. Such classifi-
cation algorithms might be as for example Neural Networks, HAAR classifiers
or Histogram oriented gradient classifiers as it is described in [17] and [16].
The problem with such classifiers is, that they have to be trained in advance
and only obstacles for which classifiers have been successfully created can be
classified and tracked. Thus, this approach is not a general approach to avoid
dynamic obstacles or use them for other navigation purposes. It is more an
approach to detect and track specific obstacles.

3.1.1 Obstacle detection

Obstacle detection in general is often mentioned in the same context as self-
driving cars, ground plane extraction or specifically road surface extraction as
described in [67], [17], [57], [49].

In the literature, two main approaches to detect obstacles can be found. The
first one is an extremely common one, especially in context with self-driving cars
and traffic scenarios. It is about the analysis of the disparity map, especially
the U disparity map and the V disparity map, given by a stereo vision system.
All the approaches described in [67], [73], [57], [49] are generally based on this
analysis and mostly just vary in pre and post filtering steps. The other ap-
proach is based on feature extraction in images and geometric approaches as for
example described in [42]. Another completely different approach, which is a
combination of ego motion subtraction and grid maps is presented in [52], [55].
All of them are described in detail below.

U-V disparity map based obstacle detection

As mentioned above a common method of extracting obstacles from the envi-
ronment or background, is to analyze U-V disparity maps.

As it is described in [73], the U disparity map ∆U as well as the V disparity
map ∆V can be calculated given a standard disparity map ∆D delivered by a
stereo vision system.

The U disparity map ∆U has the size of maxd× imagew, where maxd is the
maximum disparity value and imagew is the image width (number of columns).
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A single column of ∆U is representing the histogram calculated over the same
column in ∆D.

The V disparity map ∆V can be calculated nearly the same way as the U
disparity map. ∆V has the size of imageh ×maxd, where imageh is the image
height (number of rows). A single row of ∆V is representing the histogram
calculated over the same row in ∆D.

U and V disparity maps can be used for obstacle detection, since they have
the following characteristics, as it is described in detail in [73].

• A projection of the horizontal ground to the V disparity map is represented
by an diagonal line. Thus ground pixels belonging to a horizontal ground
can be detected through detecting the diagonal line in the V disparity
map.

• Projecting obstacles in the V disparity map will lead to a vertical line. The
height of the obstacle can be gained through the length of this vertical line
and the location of the vertical line represents the distance between the
obstacle and the camera, the more left, the nearer. A vertical line inter-
secting a diagonal line, means that the obstacle is placed on the ground.

• The projection of an obstacle in the U disparity map is represented by a
horizontal line, where the obstacle width can be calculated through the
length of this horizontal line. The distance between an obstacle and the
camera can be also calculated through the U disparity map. In this case
the obstacle is near the camera, if the horizontal line is near the bottom
of the U disparity map.

• Through the combined information of the U disparity map and the V dis-
parity map the position and also the size of the obstacle can be calculated.

The line extraction itself is done by making use of any kind of edge filter,
as for example the well known canny edge detector, and applying afterwards a
line detection algorithm, as for example Hough line extraction. An alternative
to the hough line detection is a so called region growing algorithm which is
presented and used in [67].

As it is mentioned at the beginning of this section, obstacle extraction is
mostly in the same context as self-driving cars and road surfaces extraction.
Almost all the papers [67], [57], [49], found during the research definitely have
a relation to traffic scenarios. Therefore, also the results presented within these
publications are related to such traffic scenarios. That means, obstacles are
mostly either cars or pedestrians, rarely seeded over streets or pedestrian zones.
Unfortunately, there are no results presented about how this approaches are
working in indoor scenarios or heavy crowded regions.

However, the work of [73] on the other hand is presenting an approach for
obstacle detection in indoor environments, but in the results section it can be
clearly seen, that this approach has problems with the detection of small or thin
obstacles as for example table bases.

Small obstacle detection based on U-V disparity maps is especially tackled
in [57]. But also this paper is strongly related to traffic scenarios. For testing
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the presented approach, it seems like they are mainly using perfect rectangular
shaped obstacles. This kind of obstacles do not really represent obstacles, which
can be found in a complex environment, as for example round table bases or
tubes in manufacturing buildings. Further, the general goal of [57] was to out-
perform a LIDAR obstacle detection algorithm and to detect obstacles smaller
than a size of 15 cm and not to detect dynamic obstacles.

A slightly modified approach is presented in [67]. The focus of this article
is especially on Advanced Driver Assistance Systems and on-road obstacle de-
tection. The road detection itself is done by a fast color based road detection
algorithm [68] and the obstacle detection is done with the help of U disparity
maps. Also here it is hard to estimate how well this system will work for general
ground detection and in indoor or heavy crowded environments since it was not
tested in such situations.

After obstacles have been successfully detected, reference points of these
obstacles are going to be passed to a kind of tracking algorithm or multi target
tracking system, as for example a Kalman Filter.

Feature extraction based obstacle detection

A possible approach to solve the dynamic obstacle detection task based on
feature detection, is shown in [42]. In this approach the scenery and all entire
data delivered by the stereo vision system is going to be split into the two
sections obstacles and environment. All the data in the section obstacles is
further used for obstacle tracking and the data in the section environment can
be used to make a reconstruction of the surroundings of the robot. Thus [42] is
basically trying to detect all kind of obstacles around the robot and pass them
on to a tracking algorithm.

The obstacle detection in general is based on a canny edge filter [12] followed
by a Hough line extraction [6]. Canny edge filter is simply used, to extract all
the pixels which are of interest for the following tracking process. Such pixels
are for example edges from human contours, tables, doors, and so forth.

After the canny edge filter has been used, a Hough transformation is applied
on the canny data, to search for long lines. Searching for such long lines is done,
since edges corresponding with environmental structures have the characteristic
of forming long lines. Thus, long lines are detected as environment and short
lines are detected as obstacles.

Later on, the left image as well as the right image of the stereo vision system
are used to obtain 3d data of the before extracted obstacles (3D reconstruction).
After the 3d data was extracted, all the points belonging to the section obstacles
are projected to an ground plane, also called XZ plane and passed on to the
multi-target tracker XPFCP (extended Particle Filter with Clustering Process)
presented in [42].

Finally, the information if the obstacle is dynamic or static can be figured
out with the help of the data returned by the multi target tracker.

The drawback of the approach described in [42] is, that everything is com-
pletely based on the canny edge filtering and the Hough line extraction. There
are a lot of parameters which has to be tuned quite well, to get a good perfor-
mance of the Hough line detection [42]. Even if these parameters are tuned quite
well, the whole system relies on the lines given by the Hough transformation
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and it could be quite hard to distinguish between obstacles and environment.
Obstacles which have a big rectangular shape for example, will be automatically
sorted into the section environment and are not going to be passed to the multi
target tracker, since the shape is containing long lines. On the other hand, in
the most rare events the shape of a person can be represented by long lines.
Thus, if the task is specifically about person detection and person tracking,
this approach automatically reduces the wrong data passed to the multi target
tracker. In the industry for example, a lot of trains, also called milk runs, are
driving around and therefore there might be the possibility, that those milk runs
are going to be detected as environment and not as an obstacle.

Occupancy Grid

Another completely different approach of detecting obstacles within a certain
scene in presented in [52] and [55]. In this publications polar occupancy grids
and a special grid cell merging algorithm are used to detect obstacles within the
scene.

As mentioned in [52] occupancy grids a common method to represent the
environment of the robot and where first introduced in [44]. When using occu-
pancy grids especially in combination with stereo vision data many difficulties
can occur. As described in [52], obstacles which are far away from the stereo vi-
sion sensor appear smaller and are therefore characterized by fewer points than
obstacles which are near the stereo vision sensor, even if they have the same size
in reality. To overcome this problems, in [52] a polar occupancy grid map with
variable cell size is used. This ensures, that the point density is independent of
the distance between the obstacle and the camera.

First of all, all 3D points are projected to an planar plane which is often also
called XZ plane. Later on, all the points are associated to a certain cell which
has the form of a trapezoid by the following formula:(

i
j

)
=

(
log1+kr

Z
Z0

f · X
Z·kc

)
(3.1)

where kr is the compression factor along the z-axis (depth), kc is the compres-
sion factor along the lateral x-axis, Z0 is the distance between the origin of the
sensor frame and the first row of the grid and f is representing the focal length.
Z and X are representing the depth and the lateral coordinates of the point.

After all points have been associated with a cell, cells which are belonging to
the same obstacle are merged. This merging approach is based on the distance
between the cells and also on additional information as for example speed and
direction of motion. This additional information is gathered from a simple ego
motion compensation. Thus, the difference of optical flow and visual odometry.

The advantage of this approach is, that it is able to run a rate of 25 frames
per second on a simple core 2 Duo machine and the final found obstacle can be
easily used within further methods as for example for tracking purposes [52].
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3.1.2 Dynamic pixel detection

As mentioned at the beginning of this section, dynamic pixel detection based
on optical flow algorithms is another possibility to detect dynamic obstacles. In
general, optical flow algorithms are mostly used in the same context with dy-
namic obstacle detection, but they are also used for other fields within robotics
as for example for visual odometry calculation as shown in [41].

A very straight forward and new approach to detect dynamic pixels is pre-
sented in [69] and [75]. Where the basic idea of [69] is equal to the one described
in [75] and the articles in general differ only a little bit. The main difference
will be discussed in detail in the following. But at first there will be a short
overview of the general structure of the approach.

The approaches in [69] as well as in [75] start with the computation of the
optical flow. Beside the calculated optical flow also the disparity map, the
odometry and confidence values will be further inputs to these approaches. In
this research we are mainly focusing on the basic idea and will not go into details
of visual odometry calculation or confidence value calculation, since there is the
assumption that this data is directly retrieved from the stereo vision system.
Anyways, a detailed description can be found in both articles, [69] as well as
[75].

After the optical flow calculation, a motion likelihood estimation for every
single pixel is done. At last step a min-cut max-flow segmentation algorithm to
separate foreground obstacles from background obstacles is applied.

Optical flow

In the past few years the topic optical flow is under heavy investigation and
since stereo vision systems and also mono camera systems are getting used to
be a standard sensor for robots of any kind. This topic is getting more and
more important for the entire robotics and vision community. There are even
competitions and benchmark suits, as for example the KITTY Benchmark Suit,
which are providing data sets to compare different optical flow algorithms with
each other [23]. Therefore, in the following section there will be a pretty rough
overview of different available methods.

Basically, optical flow algorithms can be divided into the two sections sparse
algorithms, as for example the well known Lucas-Kanade method [5] and dense
algorithms as presented by Horn and Schunck in [25] or the classical Farneback
algorithm presented in [19]. Dense optical flow computation means, that the
optical flow is calculated for every single pixel. Sparse on the other hand means,
that the optical flow is only calculated for specific points or regions of interest.
Thus the benefit of dense algorithms lies within the fact, that there is a maxi-
mum coverage of the scene, with the drawback, that the needed time to compute
the optical flow is higher than with sparse algorithms [13]. Criteria to compare
optical flow algorithms are besides time complexity for example average error
in pixels and density (coverage) [7].

The basic Lucas-Kanade algorithm was already introduced in 1981 as an
image registration algorithm [38] and has become one of the most widely used
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techniques in context with optical flow, tracking, layered motion, mosaic con-
struction and face coding [5]. On the other hand there is the well known method
for dense optical flow computation presented by Horn and Schunk [25].

Nowadays these classical algorithms are rarely used in its original imple-
mentation, they are more used as a foundation and almost all new methods are
based on these as for example eFOLKI presented in [54].

Since Neural Networks have a very wide range of application and are nowa-
days used for almost all applications, it is not surprising, that most new ap-
proaches handed in and tested at the KITTY Benchmark Suit are based on this
technique.

One of the most popular Neural Networks which is used for optical flow
computation at the point in time this research has been done, is the so called
FlowNet presented in [14]. This Neural Network is based on a convolutional
architecture and reached the 97 place out of 109 at the KITTY benchmark suit
based on the parameter Out-Noc, which means percentage of erroneous pixels
in non-occluded areas, which was at this point of time 37.05 percent. Other
well known approaches based on Neural Networks which can be found at the
KITTY Benchmark Suit are for example FlowFieldCNN [3] or DeepFlow [71].

At the moment, the focus of most recent works in optical flow extraction
is on accuracy and not on time complexity, but time complexity is especially
crucial for real time use [31]. Therefore, the method proposed in [31], called
Dense Inverse Search is focusing on a good trade off between time complexity
and accuracy for a dense optical flow calculation.

The presented method is mainly based on the efficient search of correspon-
dences described in [5] and the inverse compositional image alignment proposed
in [4]. As it was shown in [31], based on the average end point error per pixel,
the Dense Inverse Search method is in any case outperforming the Farneback
method. At a runtime of 10 Hz this approach has an error of about 6 pixels,
which is nearly the same error as for SparseFlow and DeepFlow, where these
networks are clearly slower then the Dense Inverse Search approach. On the
other hand, by increasing the time horizon, the smallest error Dense Inverse
Search can reach, is about 5.5 pixels, where FlowNet and SparseFlow are able
to compute the optical flow with an error clearly lower than 5 pixels.

Pixel motion likelihood

According to the pipeline presented in [75], the next step after the optical flow
calculation which has to be done is to compute the pixel motion likelihood. At
this point, there has to be mentioned that the pixel motion likelihood calcula-
tion presented in [69] and [75] depends on dense optical flow data as input, since
the goal is to calculate the motion likelihood for every single pixel.

As it is described in [75], to get the motion likelihood for all pixels, besides
the optical flow, the global image motion flow and following from this the
residual image motion flow has to be calculated as well.

The global image motion flow is in principle based on the prediction of future
pixel positions and is needed to get the motion flow which is only caused by the
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camera motion. Thus, motion which is produced by moving the robot in any
arbitrary direction.

The new position pt = (u, v, 1)T of a pixel at the image plane can be pre-
dicted based on the position pt−1 = (u, v, 1)T of the previous image frame and
the following Equation 3.2:

pt = K ·R ·K−1 · pt−1 +
K · tr
Zt−1

(3.2)

, where the camera intrinsic parameter matrix K is shown in Equation 3.3:

K =

fx s x0

0 fy y0

0 0 1

 (3.3)

and K−1 is the inverse of K. fx and fy are representing the focal length in
pixels, s is the skew and x0 respectively y0 is the position of the principle point
[56].

The overall relative camera rotation is represented by R and tr is represent-
ing the relative camera translation between two consecutive time stamps and
Zt−1 represents the depth of a 3D point at time stamp t− 1.

This prediction is only valid for 3D points which are coming from static ob-
stacles, and it does not hold for dynamic obstacles.

The global image motion flow g for the whole image can be calculated by
3.4:

g =

(
ut − ut−1

vt − vt−1

)
(3.4)

, where g is:

g =

(
gu
gv

)
(3.5)

Finally, the residual image motion flow q can be calculated by using
Equation 3.6, which is combining the values returned by the global image
motion flow and the measured optical flow:

q = g −m =

(
gu −mu

gv −mv

)
(3.6)

The optical flow, delivered by any dense optical flow algorithm mentioned
above, for a certain point with position (u,v) in the image plane is represented
by:

m =

(
mu

mv

)
(3.7)

In an ideal world the residual image motion flow should be zero for static
points and bigger than zero for dynamic points. However, as it is mentioned in
[75] this is not true, because of existing uncertainties. In [75] there are listed
four possible types of uncertainties:
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1. error in camera motion estimation

2. error in depth estimation

3. error in optical flow estimation

4. image noise (image rectification, camera intrinsic parameters, digital
image quantization)

, where the uncertainty of the measured optical flow is not considered, since it
only affects the detection results locally. As it is mentioned in [75], all uncer-
tainties except the resulting from the optical flow, should not be ignored, since
this could lead to a large number of false positive detections.

Finally, after the residual image motion flow has been computed, the motion
likelihood for every single pixel, considering the above listed uncertainties, can
be calculated.

As it is described in [75], to handle the problem with the uncertainties, the
errors are propagated from the sensor to the final estimation using a first order
Gaussian approximation. The residual image motion flow covariance matrix can
be calculated by using the following Equation 3.8.

ΣRIMF = J · Σ · JT (3.8)

In Equation 3.8 J is representing the Jacobian matrix of Equation 3.6 with
respect to the input variables (camera motion Θ, pixel position (u,v) and the
disparity value d). Note, that as mentioned above the uncertainty of the optical
flow is not considered here. Σ = diag(ΣΘ,Σ0) is the covariance matrix of all
input variables, where ΣΘ is the covariance matrix of the camera motion and
Σ0 is the covariance matrix of the disparity estimation process. Σ0 is based on
the variances of the pixel quantization errors Σu, Σv and Σd. As mentioned in
[75], the uncertainty of the disparity value Σd can be linearly approximated by:

σd(u, v) = σ0 + γ · Ud(u, v) (3.9)

, where σ0 and γ are two constant parameters and Ud(u, v) is the uncertainty
of the disparity value at position (u,v).

Finally, the motion likelihood for a single pixel can be retrieved by making
use of the residual image motion flow q and ΣRIMF :

µq =
√
qT · Σ−1

RIMF · q (3.10)

Note, that 3.10 is representing the Mahalanobis distance [40].

Min-cut max-flow segmentation

After the motion likelihood for each single pixel has been calculated, all pixels
can be categorized either into to the category static or dynamic. This can be
represented by the following binary labelling [69]:

L(x) =

{
1 if the pixel x is part of a dynamic obstacle

0 if the pixel x is part of a static obstacle
(3.11)
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A first attempt would be to apply a predefined threshold on the motion
likelihoods. As it is shown in [75], the results after applying a fixed static
threshold are not satisfying, since an optimal threshold cannot be found. This
is due to the imperfect measured optical flow.

To get an optimal assignment of pixel to categories, Equation 3.11, a seg-
mentation algorithm has to be applied, where the following constraints have to
be considered [75]:

1. pixels with high motion likelihood should be detected as moving

2. adjacent pixels with similar appearance should share the same label

3. adjacent pixels with similar distance should share the same label

All the above listed constraints are combined in the following energy function
[75]:

E(L) = Er(L) + λEb(L) (3.12)

, where Er is the so called region term and Eb is the so called boundary
term. λ in this case is used to balance the influence of the boundary term Eb.

The motion likelihood of each single pixel is considered in the region term
Er by Equation 3.13:

Er = −
∑
x∈Ω

L(x) · ξm(x) + (1− L(x)) · ξs(x) (3.13)

, where Ω represent the image domain, ξm(x) is the motion likelihood of a
single pixel given by Equation 3.10 and ξs(x) is the belief that the pixel is static.
ξs(x) is selected in advance as a static value.

The appearance and distance constraint listed as second and third constraint
in 3.1.2 are both considered within Equation 3.14:

Eb =
∑
x∈Ω

∑
x̂∈N4(x)

(Bd(x̂, x) +Bc(x̂, x)) · |L(x̂)− Lx| (3.14)

Thus the boundary term Eb is used to favour labellings of neighboring pixels
to be identical [69]. Bd(·) and Bc(·) can be calculated by Equation 3.15 and N4

is capturing the 4 neighborhood pixels (upper, lower, left, right).
At this point of the research, there has to be mentioned, that there is a

difference between [75] and [69]. While [69] only considers the appearance in-
formation, in [75] both, appearance as well as depth information are considered
in the boundary term Eb. In [75] the depth constraint is included, since the
depth of moving obstacles usually has a big difference with the lateral back-
ground [11], [61].

As described in [75], Bd and Bc can by calculated by the equations 3.15:

Bd(xi, xj) = exp(−σ · (|Z(xi)− Z(xj)|) + α)

Bc(xi, xj) = exp(−σ · (|I(xi)− I(xj)|) + α)
(3.15)
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, where Z(x) is the disparity value for pixel x and I(x) is the appearance/gray
scale of the pixel x. σ and α are constants to control the descent speed and
peak value of the positive, monotonically decreasing function B(·). In [75] σ
and α where set to σ =

√
2, respectively α = 0

Finally, the resulting energy function can be written as:

E =
∑
x∈Ω

{−L(x) · ξm(x)− (1− L(x)) · ξs(x)

+
∑

x̂∈N4(x)

(Bd(x̂, x) +Bc(x̂, x)) · |L(x̂)− Lx|}
(3.16)

As described in [69], finding the minimum of the energy function shown in
Equation 3.16 is the same as finding the s-t-separating cut with minimum costs
of a particular graph G(v; s; t; e). The graph G consist of node v(x) for every
single pixel, as well as a source node labelled as s and a target node labelled
t. Edges are added by connecting each node n with the source node s and the
target node t as well by connecting each node n with its four neighboring nodes.
The costs for individual edges can be taken from Table 3.1 shown below.

edge edge costs

source link: s → v(x) −ξm(x)

target link: v(x)→ t −ξs(x)

N4 neighborhood: v(x̂)↔ v(x) Bd(x̂, x) +Bc(x̂, x)

Table 3.1: Min-cut max-flow edge costs

The s-t cut with minimum costs can be finally computed by using min-
cut/max-flow algorithm as presented in [11] and [61]. After the algorithm has
been applied, all nodes which are connected to the source node, can be labelled
as static pixels and on the other hand, all nodes which are connected to the
target node can be labelled as dynamic.

In [75], it is further stated, that λ, which is used to balance the influence
between the region term Er and the boundary term Eb has an essential influence
to the final segmentation results. If a low value for λ is chosen, the segmentation
is mainly based on the motion likelihood of a single pixel, where a high value of
λ results in only small or no segments at all [75].

If computational time should be reduced, a down sampling method for the
image can be used as also mentioned in [75].

As it is stated in [75], the computational time for a single image is about
165 seconds based on a Matlab implementation. Thus even if this new approach
is creating really good and accurate results it can not be used for real time
applications.
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3.2 Dynamic obstacle tracking

In this section we are focusing on dynamic obstacle tracking. Below, classical
approaches as for example the Kalman Filter, as well as new approaches like
tracking with Neural Networks are mentioned. Obstacle tracking and especially
the related topic data association is again a pretty large sector. Thus also in
this section of the research we try to focus on the basic principles and the main
ideas of the different methods.

The purpose of dynamic obstacle tracking for this thesis is to get motion
information from different moving obstacles. Motion information captures for
example velocity, acceleration, as well as velocity of direction change and the
direction of motion itself. The input for the different tracking algorithms can be
for example the current position of an obstacle, but also a bounding box in an
image containing the obstacle. The position or the bounding box of an obstacles
can be gathered by a sensor or by any other system, where often the output
of the obstacle detection algorithm is directly used as input for the tracking
algorithm. In the literature the input for tracking algorithms is mostly called
observation.

All the different tracking algorithms are based on two steps, which are pre-
diction and update, or prediction and correction. Therefore, at each time stamp
t, it is tried to predict the future position for time stamp t + 1 of an obstacle.
After the prediction has been done, it is tried to reduce the uncertainty for fu-
ture predictions, by correcting the current prediction with a related observation.
Exactly at this point a further difficulty is coming up. Associating predictions
with observations is not an easy task and there can easily occur miss associations
which lead to bad tracking behavior and thus to wrong motion information.

As it is reported in [34], till the year 2015 preferable strong global optimum
methods were used to solve the association problem. Linking the observations
with already existing tracks was often cast with a graphical model and solved
as for example with k-shortest paths or simplex algorithm [34].

Nowadays, the top performing methods for obstacle tracking applied on im-
ages, are taking into account also the appearance of an obstacle. Such top
performing methods are using for example sparse appearance models [18], on-
line appearance update [29] or integral channel feature appearance models [28].

As well as for optical flow algorithm comparison, also for tracking algo-
rithm comparison there is a benchmark available which is called Multiple Ob-
ject Tracking benchmark, or short MOT. Within MOT, there are two different
challenges MOT15 as well as MOT16 available, where the later one is presented
in detail in [34]. According to [34], nowadays a huge problem with the different
published tracking methods is, that a lot of these methods are fine tuned to in-
dividual sequences. This means, that these tracking algorithms are performing
pretty well on selected individual scenes, but do not perform well on sequences
with a high variety. To overcome this problem, in [34] a new benchmark is intro-
duced which is exactly dealing with this difficulty and enables the comparison
of tracking algorithms based on real life scenarios.

Since only real time tracking algorithms are of interest for this thesis, the
remaining discussion is only focusing on real time tracking algorithms. Based
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on the ranking presented in [34], the top three of the best real time tracking
algorithms are LP2D [33], DP NMS [53] and JPDA m [60]. These three methods
are compared in Table 3.2, based on the criteria multi object tracking accuracy
(MOTA) and multi object tracking precision (MOTP) of the challenge MOT16.

Rank Name MOTA [%] MOTP[%] Association Method
1 LP2D [33] 35.7 75.8 simplex algorithm
2 DP NMS [53] 32.2 76.4 k-shortest paths
3 JPDA m [60] 26.2 76.3 joint probabilistic DA

Table 3.2: Comparison of top 3 real time trackers listed in [34] based on MOT16

As described in [34], accuracy is capturing missed targets, ghost tracks and
identity switches, while precision is measuring how well the objects are localized.

In [33], the tracking problem and the data association problem is converted
to a minimum-cost network flow problem, and finally solved by using Linear
Programming (Simplex Algorithm). Besides the independent motion of indi-
vidual obstacles, also the complex interaction between moving obstacles, as for
example pedestrians, is considered [33].

In [53], in general a greedy algorithm that sequentially instantiates tracks,
by using shortest path computations on a flow network is presented. The benefit
of such a greedy approach lies in the fact, that it is easy, simple, scalable and
allow it to make use of pre processing steps within the tracking algorithm [53].
The shortest paths itself is calculated by the dynamic programming algorithm
presented in [53].

In [60] an algorithm based on joint probabilistic data association is proposed,
which tries to find m-best solutions to an integer linear program.

All the three methods shortly described above are used for pedestrian track-
ing. Pedestrian tracking in general is not an easy task and there are a number
of difficulties which has to be considered. Such difficulties are for example group
motions, occlusion of pedestrians by other pedestrians or fast change of direc-
tion and speed.

Not only for optical flow computation but also for tracking, Neural Networks
especially Recurrent Neural Networks are becoming more and more popular.
Until the year 2017 only little work related to deep learning and multi-target
tracking has been done [45]. The reason for this is, that deep models require
a huge amount of training data which is not available yet and further a large
number of parameters have to be tuned [45]. In [45] an end to end Recurrent
Neural Network which can handle all relevant multi target tasks as for example
prediction, data association, track initiation and termination is presented. The
final method was tested on the MOT15 challenge and reached a MOTA of 19
percent and MOTP of 71 percent. To make this method comparable to the oth-
ers mentioned above, the results of all algorithms based on MOT15 are listed
in Table 3.3, where the metric is the same as above.

A pretty simple and lean approach, which is definitely also bringing state of
the art results is called Simple Online And Realtime Tracking, or short SORT
presented in [9]. This approach reaches based on MOT15 an average MOTA of
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Rank Name MOTA [%] MOTP [%]
1 SORT [9] 33.4 72.1
2 JPDA m [60] 23.8 68.2
3 LP2D [33] 19.8 71.2
4 RNN LSTM [45] 19 71
5 DP NMS [53] 14.5 70.8

Table 3.3: Ranking of mentioned tracking algorithms based on MOT15.

33.4 and an average MOTP of 72.1, which means that the approach presented
in [9] is absolutely competitive to all approaches listed in Table 3.3. The benefit
of the approach shown in [9], lies in its simplicity. For the tracking/optimization
a standard Kalman Filter based on a constant velocity model is used. The data
association problem is solved by the well known hungarian algorithm originally
introduced in [32] based on the statistical distance given by the Mahalanobis
equation [40].

3.3 Navigation in Crowded Dynamic Environ-
ments

In the following section, methods used for enabling navigation in crowded dy-
namic environments and especially dynamic obstacle avoidance are described.
Note that only approaches which are related to wheel based or car like robots
are captured within this section. Path planning itself is not only used within
mobile robots, its also used for applications like circuit board designs, network
routings, computer animations, pharmaceutical drug design and so on [59].

As mentioned in [51] navigation in dynamic environments and obstacle avoid-
ance, especially dynamic obstacle avoidance, are one of the fundamental prob-
lems of mobile robots. The goal of robot navigation is to find and execute a
collision free path from the current position of the robot to a given goal, while
optimizing a performance criterion such as distance, time, or energy. Mostly
distance is the criteria which should be optimized [59].

To tackle this, two navigation categories are available: global navigation
and local navigation, in the literature also mentioned as off-line navigation and
on-line navigation.

For the global navigation, prior knowledge of the environment is used for the
path planning [51]. Thus, stationary points of static obstacles are considered
within this phase of the path planning. As described in [51], for the global
path planning grid [70] or graph representations are commonly used, where the
global path itself can be calculated as for example with the help of the Dijkstra
algorithm [63] or the well known A* Algorithm originally presented in [24].

As mentioned in [59], local path planning begins its initial path with the path
given by the global planner, but switches to the local mode when it discovers
changes in the environment as e.g. dynamic obstacles.

Thus, roughly summarized global path planning is dealing with finding an
optimal path to a certain goal while local path planning is dealing with avoiding
dynamic obstacles which are not considered by the global planner.
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In the following sections only local path planning algorithms are described,
since the goal of the presented work is to avoid dynamic obstacles.

All the algorithms which can be used for local path planing can be catego-
rized into the sections classical or evolutionary approaches [59].

3.3.1 Classical Approaches

In [59] are described different classical approaches such as for example vector
field histograms [10], dynamic window approach [21], but also potential fields
[27] and collision cones (velocity obstacles) [20] are described.

As described in [59] for the vector field histograms [10] approach, at every
instant a polar histogram is generated to represent the density of all the obsta-
cles around the robot. After this polar histogram has been created, the robot
steering direction is chosen according to the polar histogram section with the
least density. As explicitly mentioned in [59], this method is more suited for
environments with sparse moving obstacles.

The dynamic window approach [21] on the other hand considers all feasible
linear and angular velocities. Based on the acceleration capabilities of the robot,
a optimized velocity and direction for the next instant is calculated [59].

Potential Fields Approach

The potential fields approach which was originally introduced in 1986 by Khatib
[27], as it is written in [59], is a very popular and nowadays a pretty common
approach to do local navigation. By this approach, a robot is treated as point
robot moving under the influence of an Artificial Potential Field. Such a field can
be represented by an array or field of vectors, where each vector v = (m, d)T

represents a force and consists of a magnitude m and a direction component
d. An Artificial Potential Field is basically a combination of attractive forces
generated by goals and repulsive forces generated by obstacles, as shown in
Figure 3.1.

(a) Attractive forces. (b) Repulsive forces.

Figure 3.1: Potential field forces.

As presented in [27], an Artificial Potential Field can be generated with
the help of the so called potential field function U(q) presented in Equation
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3.17, where q is the xy point position of the robot, Uatt(q) is representing the
attractive field and Urep(q) the repulsing field.

U(q) = Uatt(q) + Urep(q) (3.17)

The function U(q) must be differentiable, since the final robot velocity can
be set proportional to the force F (q) = −5U(q) generated by a potential field.

Thus, the Artificial Force Field can be retrieved by:

F (q) = −5 U(q) (3.18)

F (q) = Fatt(q) + Frep(q) (3.19)

F (q) = −5 Fatt(q)−5Frep(q) (3.20)

The Attractive Potential Field Uatt(q) is often written as the parabolic func-
tion or a linear function representing the Euclidean distance to the goal:

Uatt(q) =
1

2
· katt · p2

goal(q) (3.21)

, where katt is a positive scaling factor, and pgoal(q) is the Euclidean distance
between the robot position q and the goal position qgoal.

The attractive force Fatt(q) can be retrieved by:

Fatt(q) = −5 Uatt(q) (3.22)

Fatt(q) = −katt · (q − qgoal) (3.23)

The Repulsive Potential Field Urep(q) is used to create a kind of barrier
around all the obstacles. This field should be strong close to the obstacle and
have no influence far from the obstacle. Therefore, Repulsive Potential Field
Urep(q) can be represented by:

Urep(q) =

 1
2 · krep

(
1

p(q) −
1
p0

)2

, if p(q) ≤ p0

0 , otherwise
(3.24)

, where p0 is the distance of influence and pq is the minimal distance to the
obstacle.

Again, the derivative of the repulsive potential field Urep(q) can be calculated
to obtain the resulting force Frep(q):

Frep(q) = −5 Urep(q) (3.25)

Frep(q) = krep ·
(

1

p(q)
− 1

p0

)
· 1

p2(q)
· q − qobstacle

pq
(3.26)

The finally generated robot movement is similar to a ball rolling down a hill.
As described in [59], this algorithm is very popular and known because of its
simplicity and mathematical elegance. Nevertheless, there is also a big draw-
back. There might be the possibility, that the robot become stuck if there are
equal magnitudes of attractive and repulsive forces. Thus, the robot is trapped
in a local minimum and cannot move anymore. This scenario can be overcome
with an extension to this algorithm which is called escape-force algorithm.

A special approach including dynamic obstacles in potential fields is pre-
sented in [22], where a new potential field function and further virtual forces
are introduced.
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Velocity Obstacles

Velocity Obstacles where introduced originally in 1998 [20] and are a commonly
used concept to avoid static as well as dynamic obstacles in the velocity space.
The avoidance itself, is only based on the current position and velocity of the
robot and the obstacles [20].

As it is assumed in [20], also for the further descriptions in this section
the following explanations and formulas are restricted to circular, non rotating
robots and obstacles for simplicity reasons. In general, this is not a limitation,
since polygons can be represented by a number of circles [50].

As described above, a robot and an obstacle can be represented by two circles
labelled A and B, where at time t0 both are moving with linear velocities vA
and vB . To compute a velocity obstacle, first B has to be mapped into the
configuration space of A. This is done by reducing circle A to point Â and
enlarging circle B by the radius of A to B̂ [20]. Further, a potential collision
cone of a velocity obstacle can be define as:

CCA,B = {vA,B |λA,B ∩ B̂ 6= 0} (3.27)

, where vA,B is defined as:

vA,B = vA − vB (3.28)

and λA,B is the line of vA,B [20].
Based on the descriptions in [20], the above defined collision cone CCA,B

can be represented by a planar sector with its origin in Â, bounded by the two
tangent λf and λr. All the velocities between the two tangents λf and λr will
cause by definition a collision between the robot and the obstacle, if both of
them keep their current velocity, direction and shape. Such a collision scenario
is illustrated at the Figure 3.3 below.

If multiple obstacles should be considered there is commonly used an abso-
lute velocity representation to simplify calculations. This can be done by adding
the velocity vB to each velocity within the cone CCA,B , or by just translating
CCA,B by vB [20] as it is illustrated at the Figure 3.2 below.

Finally the Velocity Obstacle can be define as:

V O = CCA,B ⊕ vB (3.29)

, where ⊕ is representing the Minkowsky vector sum operator.
As it is described in [20], multiple obstacles can be considered by using the

union of the individual velocity obstacles:

V O =

m⋃
i=1

V OBi (3.30)

, where m is representing the number of obstacles. In general, if there are
multiple obstacles, they will get prioritized based on some criteria as for example
remaining time till collision.
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Figure 3.2: Velocity obstacle based on absolute velocities.

Figure 3.3: Collision cone based on relative velocities.
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3.3.2 Evolutionary Approaches

Evolutionary approaches in general are nowadays often used, to overcome prob-
lems arising in the classical approaches as described above. Further, due to
NP-hard complexity of path planning problems, classical approaches are also
often combined with evolutionary approaches to save computational time and
keep the update rate high [59].

As described in [59], to overcome the drawback of getting stuck in a local
minimum as described in the section Potential Fields above, the described pro-
cedure can be combined with a genetic algorithm [1]. In [66], as for example, an
algorithm called escape-force algorithm is introduced. It can be used to retrieve
an optimal potential field function based on genetic algorithms to recover the
robot from the trap.

In [39], a reactive immune network, to overcome the local minima problem
is introduced. The potential field approach is coupled with biologically inspired
immune network and the overall response of the immune network is calculated
using genetic algorithms [59]. A general drawback of genetic algorithm is, that
these algorithms are non-deterministic. This simply means that results can vary
even if exactly the same input is given [51].

At this point there has to be mentioned, that evolutionary approaches are
only described within this research for completeness. Since the goal of this
work is to include dynamic obstacle avoidance in the local planner of an already
existing navigation stack integrated in already operating robots, implementing
a completely new local planner based on evolutionary approaches was not an
option.



Chapter 4

Concept

In this chapter of the thesis the concept for solving the given problem is pre-
sented. Thus, all steps, algorithms and methods which are needed to tackle the
goal of this thesis are explained. As a recap, the goal of the thesis is to enable
dynamic navigation in crowded environments.

First of all, a general concept overview is presented. This overview is followed
by detailed descriptions focusing data preprocessing, obstacle detection, obstacle
tracking, and navigation.

4.1 Concept Overview

This section of the chapter is used to provide a general overview of the concept.
As input data a 3D point cloud delivered by a stereo vision system or a

3D laser range scanner is assumed. As mentioned in the chapters 5 and 6, the
resolution of the camera, has a direct influence to the overall outcome, since
the maximum depth is directly related to the resolution. At first this data has
to be preprocessed, since the delivered data is raw data. Thus, data which
includes noise and also wrong measurements. Preprocessing in this context
simply means, to apply filters which can reduce this noise and get rid of not
needed or unnecessary points. At next the preprocessed data is passed to an
obstacle detection module, followed by a tracking module. Finally, the results
of the tracker are given to the navigation stack, where the best trajectory is
selected as the new local path and is further executed.

The concept overview is illustrated at Figure 4.1. All the modules and used
algorithms are described in detail in the following few sections.

4.2 Dynamic Obstacle Detection

In this section, all methods and algorithms needed to extract dynamic obstacles
from 3D data are described.

First of all, a preprocessing step has to be done. This step is followed by an
obstacle detection and obstacle tracking step. In general, a new iteration of the
entire process is triggered by new data delivered by the sensor. The final output
of this module is a set of detected dynamic obstacles and the information about
position, speed and direction of the individual obstacles.

45
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Figure 4.1: Concept overview.

4.2.1 Preprocessing

As mentioned above, the data delivered by the sensor has the form of a 3D
point cloud. In general, this data contains noise. This means, that not all
coordinates of the points are correct and correspond exactly to points in the
real environment. Based on the sensor type this noise can be higher or lower.
In our case, two main noise sources have to be distinguished. Measurement
errors, caused by sensor uncertainty and for stereo vision systems especially,
reconstruction errors. Reconstruction errors can occur, due to missing texture
or overexposure and it follows that is not always possible to find the correct
related pixels for the triangulation described in Section 2.2.1. To reduce the
noise in the data, the statistical outlier removal algorithm, detailed explained in
Section 2.3.3, is applied to the point cloud. Since the runtime of this algorithm
is proportional to the number of points, it is tried to minimize the number of
points in the point cloud before applying the algorithm.

To minimize the number of points, a area of interest is defined and all points
which are not within this area, are removed from the point cloud. Since points
which are belonging to the ground are not representing an obstacle, all points
which are lower than a certain height above the ground are also removed, where
the ground is assumed to be a flat surface. The algorithm which is used to
extract these points of interest is shown in Algorithm 1 , where min x, min y,
min z as well as max x, max y, max z are predefined minimum and maximum
thresholds for all axes of the coordinate system.

After all points of interest haven been extracted, the density of the point
cloud is reduced by applying a voxel grid, as described in detail in Section 2.3.2.
Finally, the filtered point cloud is given to the detection module.

The overall preprocessing pipeline is shown in Figure 4.2.
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Algorithm 1 POI extraction

Input: raw sensor point cloud P

Output: new point cloud Q containing all points of interest
for point p in P do

if min x ≤ p.x ≤ max x and

min y ≤ p.y ≤ max y and

min z ≤ p.z ≤ max z then

Q.add(p)

end if

end for

Figure 4.2: Preprocessing pipeline.

4.2.2 Detection

Obstacle detection is mainly based on two steps. First of all, a polar grid has
to be created and all cells of this grid, which are belonging to the same obstacle
are merged.

The polar grid creation is based on the method presented in [52]. We use
Equation 4.1: (

i
j

)
=

(
log1+kr

( Z
Z0

)

f · X
Z·kc

)
(4.1)

, detailed explained in Section 3.1.1 For each point in the filtered point cloud
given by the preprocessing pipeline, a corresponding cell is determined. Such a
cell can be seen as a container storing all the points which are belonging to it.

A polar grid is used instead of a normal grid, to overcome the problem of
point density and obstacle appearance mentioned in Section 3.1.1. Each cell of
this polar grid can be represented as a trapezoidal and due to Equation 4.1, the
size of a single trapezoidal is based on the distance to the camera.

To reduce noise and wrong detections, all cells which are containing less
points than a certain predefine threshold are emptied and not considered in the
later merging process. The polar grid creation procedure is presented below in
Algorithm 2 , where the function calculateKey(·) calculates the values i and j
of Equation 4.1.
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Algorithm 2 Polar grid creation

Input: preprocessed point cloud P

Output: polar grid G
G ← new PolarGrid()

for point p in P do

key ← calculateKey(p)

cell ← G.getCell(key)

cell.addPoint(p)

end for

After all points have been assigned to their corresponding cells, a cell merging
algorithm is applied to the polar grid. The goal of this merging algorithm is
to find cells which are belonging to each other and finally to separate different
obstacles. A pseudo code and the description of the cell merging algorithm is
presented in Algorithm 3.

Algorithm 3 Cell Merging

Input: polar gird G

Output: obstacles containing cells O
O ← []

for cell c in G do

if c.getNumPoints() ≤ min number points then

continue

end if

candidates ← 0

candidate ← G.getLeftNeighbor(c)

if candidate 6= empty then

candidates++

end if

candidate ← G.getUpNeighbor(c)

if candidate 6= empty then

candidates++

end if

candidate ← G.getUpLeftNeighbor(c)

if candidate 6= empty then

candidates++

end if

if candidates != 0 then

addCellToObstacle(c, O)

else

addNewObstacle(c, O)

end if

end for

As described in Algorithm 3 and graphically illustrated in Figure 4.3a, all
cells of the grid are traversed line by line from the top-left corner to the bottom-
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right corner of the grid. For each cell of the polar grid it is checked whether
there is a left, up or up-left cell neighbor containing points. If there is a valid
neighbor, the cell is added to the obstacle it belongs to, otherwise a new obstacle
is created and added to the list. The result of the merging algorithm can be
seen at figure 4.3b, where finally two obstacles were separated (green and blue).

(a) Traversing the grid and check
for valid neighbors.

(b) Final result of merging algorithm.

Figure 4.3: Cell merging algorithm.

After all obstacles are successfully extracted, they have to be filtered. There-
fore, if the number of cells of an obstacle is not within a certain range, the ob-
stacle is removed from the list, since we want to get rid of very small obstacles,
but also of big obstacles as for example walls to ease the future tracking process.
Furthermore, if the obstacle height is lower than a certain value or the distance
between the ground and the lowest point of the obstacle is higher than a certain
value, they are also removed and not considered in the future process. For this
thesis it is assumed that dynamic obstacles are always moving on the ground
e.g. people or forklifts.

The overall result of the detection process are obstacles. Each individual
obstacle contains a list of all cells which are belonging to the obstacle, where
each cell consists of points, associated by the merging Algorithm 2.

The final obstacles detection pipeline is shown in Figure 4.4.

Figure 4.4: Detection pipeline.
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4.2.3 Tracking

Directly after the obstacle detection, the obstacle tracking is done, to estimate
information about position, speed and direction of the individual obstacles.

The obstacle tracking procedure described in the following can be rawly
separated into the parts Hungarian algorithm (data association), Kalman Filter,
track management, and dynamic obstacle filter.

The interconnection and the interaction of the above mentioned components
is illustrated in Figure 4.5.

Figure 4.5: Overall tracking process.

In the following descriptions, a track is a container including all the data
belonging to the Kalman Filter and further also some additional information as
for example the track status.

Kalman Filter

The Kalman Filter is used exactly the way as it is described in 2.4 and all
predictions are based on a constant velocity model presented at Equation 2.17.

The state vector of an observation Z is defined as:

Z =

(
x
y

)
(4.2)

, where x and y are the coordinates of the center of gravity calculated from all
points of an obstacle. The z coordinate of the points is ignored for the tracking,
since there is the assumption, that all dynamic obstacles are moving on the
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ground.

At this point there has to be mentioned that the tracking is done in the
world frame to deal with the ego motion of the robot. Thus, after the center of
gravity is calculated, the 2D point is transformed from the sensor frame to the
world frame, based on the descriptions given in Section 2.1.5.

The estimation state X and therefore the state of interest which is retrieved
from the Kalman Filter can be written as following:

X =


x
y
vx
vy

 (4.3)

,where x and y are the estimated position coordinates and vx and vy are the as-
sociated velocities, based on the constant velocity model presented at Equation
2.17.

Hungarian Algorithm

Directly after the prediction step and before the update/correction step of the
Kalman Filter, data association has to be done. Additionally to the predic-
tions of the Kalman Filter, also the before calculated center of gravities of all
obstacles (observations) are used as input for the association process. For this
thesis a Global Nearest Neighbor approach in combination with the Hungarian
algorithm, as already described in Section 2.5.2, is used to solve the association
problem.

After the right associations have been found, the update step of the Kalman
Filter is triggered for all tracks.

Track Management

Track management is beside the actual tracking and data association algorithm
directly influencing the output of the overall tracking system. Track manage-
ment includes the topics creation of new tracks, track maintenance, and track
deletion.

In our system, a track can have one of the following three states:

• UNDER INVESTIGATION

• OK

• OCCLUDED

and is updated and handled by a state machine.
At each iteration, when an observation cannot be associated to a track, if

there is a new untracked obstacle in the environment, a new track is created. A
new track is always initialized with the status UNDER INVESTIGATION. Only
if the track is predicted and updated over a certain period of time, the status will
be switched to OK. Otherwise if the track status is UNDER INVESTIGATION
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and no observation can be associated to the prediction, the track will be deleted
immediately.

This technique is used to overcome wrong detections of the obstacle detection
module and moreover to make the tracking more robust and stable. The data
about position, velocity and direction are not that accurate at the first few
iterations, since the Kalman Filter needs a few iterations to converge.

The investigation time has a direct influence on the overall result of the
tracking system. If the time is set to a high value, the system is not very
reactive to changes in the environment, since it takes a long time till the state
of the track is changing to OK. On the other hand, if this time is too low,
wrong detections might be tracked and handled as valid track, which can cause
problems at the navigation module.

When a track is already in the state OK and no observation can be associ-
ated to update/correct the prediction, the status of this track will be switched
to OCCLUDED. If the status of the track is OCCLUDED for a longer period of
time, the track will be deleted. Occlusions might be the reason why an obstacle
is moving out of the sensor range, or it is occluded by another obstacle. Oth-
erwise, if an observation can be associated to a track with status OCCLUDED,
it is switched back to OK.

For better understanding this procedure is illustrated as a decision tree at
Figure 4.6.

Figure 4.6: Visualization of the track management.

Dynamic Obstacle Filter

In the last step a dynamic obstacle filtering has to be done to decide whether
an obstacle is dynamic or static. This step is actually not directly related to the
tracking procedure, but will anyway explained here, since we are only interested
in dynamic obstacles and not in static ones.

Thus, after the tracking the decision has to be made if an obstacle is dynamic
and should be passed on to the navigation stack or if the obstacle is static and
should be ignored for further computations. This is done using the method
presented in Algorithm 4.
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Algorithm 4 Dynamic Obstacle Filter

Input: tracks of the current iteration, dynamic obstacles of the previous

iteration, time difference between the iterations

Output: updated dynamic obstacles
for track t in tracks do

dynamic obstacle←findObstacleAccordingToTrack(prev dynamic obstacles)

if dynamic obstacle == NULL then

dynamic obstacle ← createNewDynamicObstacle(t)

end if

if t.velocity ≥ min dynamic velcoity then

if dynamic obstacle.status == STATIC then

dynamic obstacle.decay -= time difference

end if

if dynamic obstacle.decay ≤ 0 then

dynamic obstacle.status ← DYNAMIC

end if

else if dynamic obstacle.status == DYNAMIC then

dynamic obstacle.status ← STATIC

dynamic obstacle.resetDecay()

end if

end for

As input to Algorithm 4, all tracks of the current iteration, dynamic obstacles
of the last iteration and the time difference between the current and the previous
iteration are given. The output is about a list containing all dynamic obstacles
of the current iteration.

Since the tracking approach is based on the center of gravity, shape changes
of obstacles will also change the position of the center of gravity. Especially for
rotation this can cause short movements or leaps of the center of gravity. Thus,
to the tracker it looks like the obstacle is moving and the calculated velocity
is not zero. This behaviour is shown at Figure 4.7a and 4.7b, where the cone
is representing the robots field of view, the green dot is representing the center
of gravity, the blue line is the part of the obstacle which is inside the field of
view and the gray line is the part of the obstacle outside the field of view. In
Figure 4.7a the obstacle is only partly in the field of view of the robot, but as
illustrated in Figure 4.7b, if the robot is turning, also the center of gravity is
moving.

To reduce false positive labelling of dynamic obstacles because of short fake
movements, a decay is introduced. This means, the obstacle has to move for a
certain period of time with a velocity bigger than a predefined threshold until
it is labelled as dynamic. The function findObstacleAccordingToTrack() can
be resolved, by using the concept of unique id’s for both tracks and obstacles.
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(a) The obstacle is only partly in the
field of view of the robot.

(b) The entire obstacle is inside the field
of view of the robot.

Figure 4.7: Center of gravity movement of an obstacle due to robot turning.

4.3 Dynamic Navigation

This section of the chapter introduces the already existing navigation stack and
the concept which is used to include dynamic obstacles into this stack. Since
the above mentioned navigation stack is actually provided by a company, it is
only briefly described for reasons of protection of intellectual property.

The current navigation is based on a local planner combined with a global
planner. The global planner is used to calculate a global path from the current
position of the robot to a certain goal, based on previously recorded maps and
a deterministic search approach. This global path is the foundation of the local
path. Additionally to the global path, also other sources, as for example sensor
readings are influencing the final local path.

Basically, possible trajectories, the robot is able to drive within a given time
horizon, are investigated at each iteration. These trajectories are ranked based
on costs, which are the result of a modular cost system. Modular means, that
different cost sources are influencing the overall costs and trajectory selection.
Such a cost source can be for example the global path. If it is preferred to drive
as near as possible to the global path, based on a cost function trajectories near
the global path are associated with low costs and otherwise with high costs. On
the other hand, costs can be also retrieved from other sources, as for example a
cost map containing sensor readings. Finally, these costs are added up for each
trajectory.

As a practical example, trajectories near the global path do have low costs
and trajectories which are overlapping with sensor readings (any kind of obsta-
cle) do have high costs. Further, every single module (global path, sensor cost
map, etc.) can be weighted and is influencing the trajectories in a different way.
Finally, the best ranked trajectory, based on the combination of the costs of all
cost modules is giving the local path.
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Thus, the dynamic obstacle avoidance can be added to the already existing
navigation stack, by adding another cost source to all trajectories.

4.3.1 Velocity Obstacles

To avoid dynamic obstacles, the velocity obstacles approach already described
in Section 3.3.1 is used. The input to this algorithm is the set of all dynamic
obstacles, given by the dynamic obstacle filter, where the position, the current
velocity, and the direction are directly used to create or maintain new velocity
obstacles.

Thus, at every iteration, already created velocity obstacles are going to be
update according to the newly delivered data. The association between already
created velocity obstacles and dynamic obstacles is done with the help of unique
id’s. If there is a new dynamic obstacle which cannot be associated with a
velocity obstacle, simply a new velocity obstacle with a new unique id is create.

Due to the noise in the data of the stereo vision system, the size of an obstacle
cannot be determined very accurately. Since the size of the dynamic obstacle
represents the diameter of the velocity obstacle and is therefore needed for the
calculations, the size of all velocity obstacles is set to a reasonable general static
value.

4.3.2 Cost Calculation

As mentioned above, the cost calculation for each individual trajectory is a
combination of all costs given by the different cost modules.

The costs for the global path as well as for different costmaps are already
calculated by the provided navigation stack. The velocity obstacle approach is
not generating costs directly as a result. Thus, a new approach to calculate
costs for trajectories in relation to velocity obstacles is described below.

Since a trajectory is the path of a moving object through space as a function
of time, in theory a trajectory is continuous. In the provided navigation stack
on the other hand, a trajectory is described as a set of discrete points (positions)
and velocities for different time stamps within a defined planning horizon. The
entire calculation of kinematically possible trajectories is already done by the
provided system and trajectories are just a further input to the cost calculation
module.

Based on the descriptions in Section 3.3.1, collisions can be determined, by
checking whether the robot velocity is inside the collision cone or not, a very
basic and hard cost calculation can be retrieved by the following equation:

costs =

{
max costs if in collision cone

0 otherwise
(4.4)

, where maximal costs are often called also lethal costs and trajectories with
lethal costs are in general not considered in the later on trajectory selection
step. Note, that for simplicity reasons velocities are often represented by their
end points of the velocity vectors.
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Figure 4.8: Linear cost function.

As illustrated in Figure 4.8, to smooth the driving behavior and to rate
the different velocity vector end points outside the collision cone, a linear cost
function based on the distance between the end point and the collision cone is
defined. The costs are based on a simple linear interpolation, where the max-
imum distance between a velocity end point and the collision cone is equate
with minimal costs and the minimum distance is equate with maximum costs.
The cost calculation is illustrated in Figure 4.9 , where the blue curves are rep-
resenting the available trajectories, v is the velocity, pv is the velocity vector
end point, vobstacle is the velocity of the obstacle and therefore the cone dis-
placement as described in Section 3.3.1. The sounding line distance d is the
distance between the collision cone and the velocity vector end point pv. To
further restrict the costs for velocity obstacles, a maximum allowed distance
between the collision cone and the velocity vector end points can be defined. If
the distance between the cone and the end point exceeds this defined maximum
distance, the trajectory is associated with zero costs. Due to this restriction,
more ideal avoidance maneuver can be achieved. Thus, with respect to Figure
4.9, the maximum distance is defined manually.

A special case occurs, if velocity vector end points are before the cone. The
costs are than calculated with the help of the Euclidean distance between the
point and the origin of the collision cone as presented in figure 4.10.

Finally, for safety reasons, the size of the dynamic velocity obstacle can be
increased by a certain safety distance, which leads to a bigger collision cone and
therefore to a further trajectory exclusion.
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Figure 4.9: Velocity Obstacle cost calculation.

4.3.3 Trajectory Selection

As mentioned above, the costs of the different cost modules are weighted and
summed up for each trajectory. Finally, the trajectory with the lowest costs is
selected and executed. Note that all trajectories with lethal costs will lead to a
collision anyway and are therefore not considered in the selection process.
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Figure 4.10: Collision cone before robot.



Chapter 5

Implementation

This chapter is used to present all hardware components which where used
for the practical realization of the thesis. Such hardware components are for
example computational units, sensors, etc. Further, all software packages and
libraries which are needed to implement the concept described in the chapter 4
before and to do the alter on presented evaluation are stated.

5.1 Hardware

In the following sections, hardware components used for the practical realization
of the concept such as the robot platform, the stereo vision system and a 3D
range sensor are going to be described.

5.1.1 Robot Platform

The fundamental navigation system and the mobile robot platform is provided
by the company incubedIT 1. incubedIT is a company located in Hart bei Graz
and known for developing software for autonomous navigation of mobile robots.
This software is used for different platforms, manufactured by different compa-
nies.

The platform used for this thesis is called Agumos Q40 and is produced by
the company Melkus. 2. An image of the work underlying vehicle can be seen
in Figure 5.1. Such vehicles are mainly used in industry within warehouses and
shop floors.

The above mentioned platform provides all the functions which are needed
for autonomous navigation. Thus, sensors, wheels, motors, as well as a compu-
tational unit and many more components are mounted on the platform. The
computational unit, the heart of the system, is a simple industrial computer of
the type Tank-700, on which are running the Robot Operating System and all
nodes which are needed for the calculations.

1http://www.incubedit.com , 02.10.2018
2https://melkus-mechatronic.stadtausstellung.at/, 02.10.2018
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Figure 5.1: Melkus Agumos Q40

Hardware characteristics of the Tank-700 are listed in Table5.1.

CPU Intel Core i5 2,5 GHz
Cores 4
RAM 4 GB DDR3
Storage SSD 80 GB
Graphics None

Table 5.1: Characteristics of the computational unit.

Further the libraries mentioned in Table 5.2 were installed and used on the
industrial computer.

Operating system Ubuntu 14.04.5 LTS
Robot Operating System indigo
Point Cloud Library 1.7.1
Eigen 3.2.0-8
OpenCV 3.1.0 (ros-indigo-opencv3)

Table 5.2: Libraries and versions.
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5.1.2 Sensors

In this section, sensors which are explicitly used for the realization of this thesis
are presented and described. Beside the stereo vision system also a 3D range
sensor is described, since it is used for additional evaluations. All sensors which
are by default installed on the platform are not explicitly mentioned here, since
they are not directly used by the presented concept. These sensor, as for example
a 2d range scanner, are used by default for the main navigation, but not for
detecting dynamic obstacles.

Stereo Vision System

The stereo vision system is a combination of the Nvidia Jetson TX23 and the
stereo vision camera ZED produced by the company StereoLabs4.

An image of the camera can be found in Figure 5.2 and the characteristics
of the camera are presented in the Table 5.3:

Video modes 2.2K, 1080p, 720p, WVGA
FPS 15 (2.2K), 100 (WVGA)
Output resolution 4416x1242 (2.2K), 3840x1080 (1080p),

2560x720 (720p), 1344x376 (WVGA)
Depth resolution same as output resolution
Depth range 0.5 - 20 m (based on resolution)
FOV 90◦(H) x 60◦ (V)
Size 175 x 30 x 33 mm

Table 5.3: StereoLabs ZED characteristics4.

Figure 5.2: StereoLabs ZED stereo vision camera4.

The Nvidia Jetson TX2 is a artificial intelligence supercomputer computer
which is especially designed for computer vision and machine learning related
tasks. The characteristics of this device are listed in Table 5.4.

For this thesis, the Nvidia Jetson TX2 is needed to run the ZED camera,
because the indispensable SDK provided by StereoLabs is based on CUDA and
therefore a GPU is needed which is not installed in the transport robot. To re-
trieve the camera data in form of a message over a ROS topic within a node, the
zed ros wrapper package is used 5. Following versions of the above mentioned
libraries and packages where installed on the Nvidia Jetson TX2:

3https://www.nvidia.com/de-de/autonomous-machines/embedded-systems-dev-kits-
modules/, 02.10.2018

4https://www.stereolabs.com/zed/, 02.10.2018
5http://wiki.ros.org/zed-ros-wrapper, 02.10.2018

https://www.nvidia.com/de-de/autonomous-machines/embedded-systems-dev-kits-modules/
https://www.nvidia.com/de-de/autonomous-machines/embedded-systems-dev-kits-modules/
https://www.stereolabs.com/zed/
http://wiki.ros.org/zed-ros-wrapper
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GPU NVIDIA Pascal, 256 CUDA-Cores
CPU HMP Dual Denver + Quad ARM A57
RAM 8 GB, 128 Bit-LPDDR4
Storage 32 GB eMMC
Used connections USB 3.0, Gigabit Ethernet

Table 5.4: Characteristics of the Nvidia Jetson TX23.

Operating System ubuntu 16.04.4 LTS
JetPack 3.2
Robot Operating System kinetic
ZED SDK 2.3.3
CUDA 9.0
zed-ros-wrapper5 2.3

Table 5.5: Libraries needed to run the ZED stereo vision camera.

Finally the Nvidia Jetson TX2 was mounted inside the robot corpus and the
mounting of the StereoLabs ZED camera can be seen at Figure 5.1.

Velodyne VLP-16 Puck

In this section the result of this work is a little bit anticipated. Based on the low
range and low rate data is delivered by the stereo vision system in combination
with ROS, additionally a 3D range sensor is used to evaluate the work done
for this thesis. As described in detail at Section 6.2.1, the low data rate is due
to the high resolution which is needed to increase the depth range, where the
camera depth range is directly related to the camera resolution. The higher the
resolution the higher the depth range. The mentioned sensor is the well known
Velodyne VLP-16 Puck presented in Figure 5.3 with following characteristics: 6

Horizontal FOV 360◦

Vertical FOV ±15◦

Range 100m
Channels 16
Accuracy ± 3 cm
Rotation rate 5 - 20 Hz
Angular resolution vertical: 360◦ horizontal 0.1◦ - 0.4◦

Table 5.6: Characteristics of the Velodyne VLP-16 Puck6.

To run this sensor, the driver package presented at https://github.com/ros-
drivers/velodyne is used.

6https://velodynelidar.com/vlp-16.html, 02.10.2018

https://github.com/ros-drivers/velodyne
https://github.com/ros-drivers/velodyne
https://velodynelidar.com/vlp-16.html
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Figure 5.3: Velodyne VLP-16 Puck 3d laser range finder6.

5.2 Infrastructure

This section is used to illustrate the connections and the collaboration between
the different hardware devices as well as the communication between the
individual nodes.

5.2.1 Hardware Infrastructure

In Figure 5.4 the connections of the hardware devices mentioned above are
illustrated.

Figure 5.4: Hardware structure.

In Figure 5.4 it can be easily seen, that the ZED stereo camera is directly
connected to the Nvidia Jetson TX2 over an USB 3.0 interface. This device is
further connected to a gigabit ethernet switch. Further, also the Velodyne VLP-
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16 Puck and the Tank-700 are connected to this switch. The default sensors as
for example a 2D range scanner, an IMU and the motors of the platform are
also connected over different interfaces to the Tank-700.

5.2.2 Node Infrastructure

To implement the concept described in Section 4 several nodes are needed.
These nodes and the message types of their communication channels (topics)
are illustrated at figure 5.5.

Figure 5.5: Node structure.

The Nvidia Jetson TX2 is only used to run the node zed ros wrapper5. This
node is nothing else then the zed camera driver, which is providing the 3D point
cloud in form of the standard ROS message sensor msgs::PointCloud2 to the
rest of the system.

The ROS MASTER and all other nodes needed to run the navigation stack
and the detection system are executed on the Tank-700. Thus the Tank-700 is
the main computational unit of the system and the Nvidia Jetson TX2 can be
seen as a support unit.

The node obstacle tracker 3d is responsible for all the calculation belonging
to dynamic obstacles, as described in Section 4.2. The node local planner is
responsible for all the navigation calculations, described in Section 4.3.

To enable the communication between the obstacle tracker 3d node and the
local planner node, a specific message type called dynamic obstacles is intro-
duced. This message contains a list of all dynamic obstacles and is defined in
Listing 5.1, where dynamic obstacle is again a specific message type defined in
Listing 5.2.

1 // dynamic obstac l e s . msg
2

3 Header header // standard ros header
4 dynamic obstac le [ ] o b s t a c l e s // l i s t o f a l l dynamic ob s t a c l e s

Lst. 5.1: Specific dynamic obstacles message.
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1 // dynamic obstac le . msg
2

3 f l o a t x // x po s i t i o n in g l oba l frame
4 f l o a t y // y po s i t i o n in g l oba l frame
5 f l o a t theta // o r i e n t a t i o n in g l oba l frame
6 f l o a t vx // v e l o c i t y in x d i r e c t i o n in g l oba l frame
7 f l o a t vy // v e l o c i t y in y d i r e c t i o n in g l oba l frame

Lst. 5.2: Specific dynamic obstacle message.

The position (x,y) as well as the orientation and the velocity components
are given in the global frame, since the tracking is done in the global frame and
the data is directly coming from the tracking system.

In short, one can say that each sensor msgs::PointCloud2 message delivered
by the StereoLabs ZED camera or by the Velodyne VLP-16 Puck laser scanner is
processed in the node obstacle tracker 3d and dynamic obstacles are published
if form of dynamic obstacles message.



Chapter 6

Evaluation

In this section we present the results of an experimental evaluation of the system
developed.

First, the dynamic obstacle detection, especially the tracker is evaluated.
Therefore, quantitative results like accuracy and also qualitative results (dis-
cussion of special cases) are presented. After the evaluation of the tracker, an
evaluation of the influence of using dynamic obstacles on the performance of the
navigation system based on simulation data is presented. At the end an evalua-
tion considering human factors can be found. For this evaluation human factors
are about feelings and subjective opinions of probands according to the naviga-
tion systems. Therefore, the original navigation system and the new navigation
system are operated in a real world scenario and the opinion and feelings of a
group of people are collected to rate the different approaches. For simplicity, in
the sections below the navigation system provided by the company incubedIT
is always mentioned as reference navigation system.

6.1 Environment

This section describes the physical environment, which is an indoor robot test
area, and the tools, which were used to do the evaluation. As described above,
a simulation as well as real world scenarios are used to perform a quantitative
and a qualitative evaluation of the work done for this thesis.

6.1.1 Simulation

The simulation used for the evaluation is a further resource provided by the
company incubedIT. Since the reference navigation system is only based on a
simple 2D range scanner, also the simulation is only providing 2D data and not
3D data. But anyways this 2D data is enough to evaluate the new concept of
dynamic navigation presented in Section 4.3, since this data has ground truth.
To enable dynamic obstacles in the simulation, two simulated robots are used,
were one robot is running the navigation algorithms and the other one is simu-
lating the dynamic obstacle. The dynamic obstacle is simple following a strict
path between two predefined goals and is not avoiding obstacles in any sense. A
sample setup can be seen at Figure 6.1 , where the blue polygon with the label

66
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sim126 is representing the robot and the polygon with the label sim128 is rep-
resenting the obstacle. The white triangle within the blue polygons is showing
the orientation of the robot, the purple line represents the path given by the
global planner and the orange boxes represents goals, the robot can drive to.

Figure 6.1: incubedIT simulation.

6.1.2 Motion Capture - Optitrack

To evaluate the tracking system and therefore the dynamic object detection
procedure, a ground truth is needed. Thus, for this evaluation the data given
by the tracking system is compared to the data given by a motion capture
system called OptiTrack 1.

A big benefit of OptiTrack lies within the fact that it is ROS compatible
and the data can be simply used within a ROS system using the package mo-
cap optitrack 2.

1https://optitrack.com/, 02.10.2018
2http://wiki.ros.org/mocap optitrack , 02.10.2018

https://optitrack.com/
http://wiki.ros.org/mocap_optitrack
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To track a specific object with the Optitrack system, at least three so called
tracking markers has to be place on the object. This tracking markers are
tracked by cameras mounted at the ceiling and finally the Optitrack node is
publishing the 2d pose and the velocity of the tracked object.

6.2 Tracking Evaluation

This section of the chapter presents the evaluation results of the tracking system
which is in detail described in Section 4.2.3.

The evaluation of this module is split up into the two sections quantitative
evaluation and qualitative evaluation. Both are described in detail below.

6.2.1 Quantitative Evaluation

To evaluate the accuracy of the tracker, the position as well as the velocity
estimated by the tracking system are compared to the ground truth data given
by the OptiTrack system.

As a recap, the position of a dynamic obstacle is represented by the x and
y coordinates of the center of gravity in the global frame. Thus position p and
velocity v can be represented by p = (x, y) respectively v = (vx, vy).

As metric for the comparison itself, the Gaussian Normal Distribution of the
Euclidean distance between the position p, the components x and y, as well as
v, vx and vy of the tracker and the OptiTrack system is chosen. In the follow-
ing sections the Gaussian Normal Distribution for all individual components is
investigated and illustrated.

At this point of the evaluation there has to be mentioned, that the entire
system is not only evaluate on 3D data delivered by the stereo vision system,
but also on data delivered by a 3D laser range scanner. The additional sensor
is needed, since the stereo vision system can be only used in the video mode
WVGA to ensure real time computations. Running the camera on such a low
resolution mode causes a drastic reduction of the detection range. Based on the
methods used within the described concept and running the camera in WVGA
mode, the overall system is able to detect obstacles which are up to 4 meters
away from the sensor. This range is too short to do robust dynamic obstacle
avoidance, since the data contains always noise and the methods used within
this concept do not guarantee to detect dynamic obstacles at the first instance.
If the dynamic obstacle is detected too late, the robot is not able to execute a
proper avoidance maneuver.

Higher resolution of the camera on the other hand means higher range,
but also longer duration for the computation. Therefore, real time usage is
not guaranteed anymore. To run the reference navigation system, data which is
necessary for the navigation stack must be provided with at least 8 Hz. Since our
proposed navigation system is an extension of the reference navigation system,
also the new used sensors and especially the whole detection process should
provide data with a rate of at least 8 Hz to the navigation stack.

As it is presented in the following sections, the results based on the ZED
camera in mode WVGA are not satisfying. Therefore, we searched for another
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sensor which meets our requirements and came up with the Velodyne VLP-16
Puck.

In the following Table 6.1 the average frequencies for the two different cam-
era resolutions WVGA and 720p as well as for the Velodyne laser scanner are
presented.

Sensor/Resolution Frequency
ZED WVGA 13.8 Hz
ZED 720p 3.9 Hz
Velodyne 9.9 Hz

Table 6.1: Data frequencies for different sensors.

To obtain the positional deviation as well as the velocity deviation between
the data given by the tracking system and the OptiTrack, two specific scenarios
are created.

The first scenario is about a static evaluation of the tracker. Therefore an
observer is placed on a fixed position and the dynamic obstacle is driving exactly
four times between two goals with a maximum speed of one meter per second.
This scenario is illustrated in Figure 6.2 below, where it clear to see that the
robot is not only doing linear movements but also slightly curves.

Figure 6.2: Static evaluation of the tracker.

Further, there is also a dynamic evaluation of the system performed. Dy-
namic means, that not only the obstacle is moving, but also the observer is
moving.

Note, that the tracking results are directly depended on the localization
of the robot, since the tracking itself is done on the global frame. Thus, all
transformations, which has to be done to transform the points from the sensor
frame to the global frame are depended on the accuracy of the localization.
Since the goal is to evaluate the tracking system in combination with the already
existing system, the error propagation of the localization to the tracking system
is not explicitly investigated at this point. It is absolutely true, that the error
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of the localization is influencing the overall error of the tracking system. The
scenario used for the dynamic evaluation is illustrated in Figure 6.3.

Figure 6.3: Dynamic evaluation of the tracker.

The positional standard deviation for the static scenario as well as for the
dynamic scenario are listed in the Table 6.2. As it can be seen in Table 6.2 and
6.3, there is no data collected for the dynamic case based on the ZED camera.
This is due to the limited detection range of the camera. Since the obstacle as
well as the observer are moving towards each other, there is not enough time
for the tracking system to start tracking the obstacle.

ZED [m] Velodyne [m]
mean std mean std

Static
x 0.182 0.074 0.138 0.091
y 0.086 0.085 0.281 0.086
position 0.213 0.087 0.325 0.091

Dynamic
x - - 0.202 0.100
y - - 0.165 0.142
position - - 0.306 0.064

Table 6.2: Positional deviation of the tracking system compared to the motion
capture system OptiTrack.
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As it can be easily seen in Table 6.2, the difference of the standard deviation
for both cases are in the range of centimeters.

Interesting is the difference of the position value between the static and
dynamic situation according to the Velodyne sensor. In the static case, the
standard deviation for the overall position is 0.091 meters, while the dynamic is
even lower with 0.064 meters. On closer inspection, however, there can be seen
that the deviation for the x value as well as for the y value of the dynamic case
are higher than for the static once.

While the results for the static situation for both sensors are almost the
same, evaluating the dynamic situation (robot and obstacle are moving) with
the camera is not even possible due to the descriptions about the resolution
problem mentioned above.

The velocity deviation is presented in Table 6.3, where v is the resulting
combination of the velocity components vx and vy. Again, the standard devia-
tions for the dynamic evaluation are a little bit higher than for the static once.
This is due to the localization error occurring while the robot is driving.

ZED [m] Velodyne [m]
mean std mean std

Static
vx 0.842 0.173 0.808 0.203
vy 0.265 0.151 0.264 0.147
v 0.098 0.109 0.073 0.069

Dynamic
vx - - 0.512 0.253
vy - - 0.057 0.060
v - - 0.112 0.078

Table 6.3: Deviation of the velocity of the tracking system compared to the
motion capture system OptiTrack.

As it is mentioned above, it is assumed, that the error between the motion
capture system and the tracking system can be modeled with a Gaussian dis-
tribution. Therefore, in Figure 6.4 the Gaussian distribution according to the
position data delivered by the ZED camera is shown and it can be seen, that the
assumed model fits to the data. In the case of the overall position distribution,
the standard deviation from the mean (0.213 meter) is 0.087 meter. Thus, the
error model can be described as a mean shifted Gaussian distribution.
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Figure 6.4: Mean shifted Gaussian distribution of the positional error.

6.2.2 Quantitative Evaluation

Beside the above described quantitative evaluation of the tracker, there was
done a qualitative evaluation to get some information about the performance
of the tracker according to performed special cases. Therefore, the number of
new track creations and wrong data association is investigated. Such special
cases are for example crossings of two tracked dynamic obstacles and occlusions
of the tracked dynamic obstacles. For the following evaluation, the observer is
placed at a fixed position and not moving, since this evaluation is focusing on
the data association and track management while performing the special cases.
For a static observer, the localization is not changing, which means that the
localization error is not given.

Occlusion

Occlusion in the sense of tracking simple means, that an obstacle is completely
or partly occluded by any other obstacle. The difficulty lies here in the correct
prediction of the occluded track. If the tracker is not able to associate an
observation to the predicted track, a new track is created and the old one is
deleted. Thus, tracking the occluded obstacle was not successful.

Based on the illustrations shown in Figure 6.5a and 6.5b, the presented
tracking system is able to track obstacles which are occluded up to 75 percent.
If obstacles are completely occluded, the tracker is failing. This test is done with
a person which is 1.75 meter tall and according to the 75 percent occlusion, the
occlusion height is 1.3 meter and the obstacle width is 0.9 meters.

In Figure 6.5a the orange line is representing the path of the dynamic obsta-
cle given by the tracking system and the blue line is representing the obstacle
which is partly occluding the dynamic obstacles.
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In Figure 6.5b it can be seen, that two tracks are needed to track the dynamic
obstacles, where the orange line and the blue line are the paths of the dynamic
obstacle and the small gray line is the obstacle occluding the dynamic obstacle.
Thus, the obstacle which is occluding the dynamic obstacle forces the tracking
system to delete track 1 and to create a new track for the same obstacle if it
visible again.

(a) The obstacle is 75 percent occluded by an object. The object has a height of 1.3
meters.

(b) The obstacle is 100 percent occluded by an object.

Figure 6.5: Track occlusion.

Crossings

To manage the tracking process while two objects are crossing is not a trivial task
for a tracking system. Within such a scenario, the data association algorithm
is most challenged. The situation and the performance of the tracking system
is illustrated in Figure 6.6

As it can be seen at Figure 6.6, the tracker is only able to track one dynamic
obstacle for the full duration of the scenario. For the other obstacle, a new
track is created after the crossing. This is due to the configuration of the track
manager described in 4.2.3. Since the goal for this thesis is to minimize wrong
tracks and pass only data to the navigation stack which is as accurate as possible,
the occlusion time of a track is set to 0.2 seconds. In other words this means,
if the obstacle is occluded for more than two time intervals, the track is going
to be removed. Thus, within the scenario presented in 6.6, finally 3 tracks are
needed to track two dynamic obstacles.

A drawback of having multiple tracks for the same obstacle is, that the
tracking ID of the obstacle is changing. For the tracking system it seems like
this is a completely new obstacle. Depending on the purpose of tracking, this
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Figure 6.6: Tracking performance, while the paths of two obstacles are crossing.

might lead to errors or is just simply wrong. If the goal is to track people for
surveillance, this configuration is not an option, since there should be always
exactly one track and one ID per person. For this thesis the tracking is about to
get velocity data and to estimate future positions to avoid dynamic obstacles.
Thus, having only one track per obstacle is not a constraint. On the other side,
too heavy new track creation is also bad, since the Kalman Filter needs a certain
duration to converge to provide reliable data.

6.3 Navigation Evaluation

In this section the reference navigation stack is compared to the extended nav-
igation approach described in Section 4.3.

Therefore, a quantitative evaluation based on a certain metric is presented,
followed by a qualitative evaluation based on special cases.

6.3.1 Quantitative Evaluation

As described above, a quantitative evaluation is based on a certain metric. This
metric is described in the following and based on the most interesting factors
for the company incubedIT.

• Collisions:
Sums up the number of occurred collisions during a run. The value is
only incremented if the robot is driving into the obstacle. If the obstacle
is driving into the still standing robot it is not counted as collision. This
assumption is needed, since the simulated obstacle is treaded as a stupid
agent, not avoiding any kind of collisions. Thus even if the robot stops,
the obstacle will drive into it.

• Time:
Time represents the duration of a test run in seconds.
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• Mileage:
Mileage represents the distance the robot was driving during an evaluation
run in meters.

• Goals:
Goals represents the number of goals, the robot was able to reach during
a test run.

• Velocity:
Velocity represents the avarage velociy of the robot during a test run. This
value is a combination of the parameter Time and Milage, where

V elocity =
Mileage

T ime
(6.1)

• Time per Goal:
Time per Goal is a combination of the parameter Time and Goal, where

Time/Goal =
Time

Goal
(6.2)

This value is representing the average time that is needed to reach a goal.

• Time per Collision:
Time per Collision is a combination of the parameter Time and Collision,
where

Time/Collision =
Time

Collision
(6.3)

This value is representing the average time between collision of the robot
and the dynamic obstacle.

For the quantitative evaluation a specific scenario is used. This scenario is
illustrated in Figure 6.7 and described below.

As it can be seen in Figure 6.7, the task of the robot is to drive continuously
between the goals L1 and R2, while the dynamic obstacle is driving from the
goal L2 to the goal R1. The distance between goal L1 and R2 as well as L2 and
R1 is exactly 12.497 meters. Both, the robot as well as the dynamic obstacle
are starting to drive at the same time at the goal L1 respectively L2. The robot
is limited to a maximum velocity of one meter per second, whereas the dynamic
obstacle is limited to a maximum velocity of 1.3 meter per second. The different
velocity parameterization is done to provoke different situations. Thus, crossing
situations, parallel driving situations and many others are generated and influ-
encing the quantitative evaluation.

The final results of this evaluation are presented in Table 6.4 below.
As it can easily be seen in Table 6.4, by looking at the criterion Collisions the

new proposed navigation system mainly based on velocity obstacles is avoiding
dynamic obstacles in the given scenario perfectly. The robot with the reference
navigation system, on the other hand, collided four times with the dynamic
obstacle. Thus, approximately every 10.5 minutes, the robot is crashing into
the dynamic obstacles. Based on this metric, this is the only benefit of the new
proposed system in comparison with the reference system.
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Figure 6.7: Quantitative scenario.

reference navigation extended navigation
Collision 4 0
Time 2582,57 s 3063,52 s
Mileage 1291,63 m 1373,90 m
Goals 100 100
Velocity 0,50 m/s 0,45 m/s
Time/Goal 25,8257 s 30,6352 s
Time/Collision 645,64 s -

Table 6.4: Quantitative evaluation of the navigation systems.

The average time to reach a goal for a robot running the reference navigation
system is lower than a robot running the new navigation system. This is because
the distance traveled and also the time needed to reach the 100 goals is lower.
With respect to shortest paths, on average the shortest path found by the local
planner of the reference system is better than the shortest path found by the
extended local planner. Thus, also the throughput of the reference system is
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higher.
Safety and dynamic obstacle avoidance on the other hand is only enabled by

the newly proposed navigation system.

6.3.2 Qualitative Evaluation

For the qualitative evaluation several special cases namely crossing, overtaking
and approaching each other are investigated. For all these special cases, the
evaluation is based on the comparison between the reference navigation system
and the new introduced navigation system. All above mentioned scenarios are
illustrated and described in the following sections below.

Crossings

Crossings in general are scenarios which happens a lot in reality and it is not
that easy for the navigation system to overcome this situation with an optimal
solution. Optimal in this scenario means, that the robot should drive continu-
ously and should stop before doing an avoidance maneuver.

In this scenario, the distance between the goals N and S is exactly the same
distance as for W and E, where the goals N and S are vertically aligned and
the goals W and E are horizontally aligned. Thus, a collision somewhere in the
center of the goals is forced. An illustration of this specific case is shown in
Figure 6.8.

Figure 6.8: Initial situation of the crossing scenario.

As it is illustrated in Figure 6.9, the reference navigation system is not able
to solve this situation in a smooth and ideal way. The robot is driving straight
to the goal on the opposite and just before the robot crashes into the dynamic
obstacle it stops. In order to get out of this situation the robot is turning to
the right and searching for a new path. In the meanwhile, the dynamic obstacle
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is already gone. The gray line in Figure 6.9 is representing the path, the robot
was already driving, where the purple line is representing the path the robot
has to follow to reach the goal (global plan).

Figure 6.9: Behavior of incubedIT navigation system at crossings.

The extended navigation system on the other hand is able to overcome this
situation in a smooth and elegant way, by simply reducing the speed and let
the dynamic obstacle pass. After the dynamic obstacle passed, the speed is
increased to the maximum again.
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Overtaking

Overtaking simple means, that the robot is driving faster than the obstacle and
therefore the robot has to pass the obstacle at a certain point of time. For this
scenario the maximum speed of the obstacle was limited to 0.5 m/s and the
maximum speed of the robot was limited to 1.0 m/s.

The reference navigation system is able to pass the obstacle, but the distance
between the robot and the obstacle is about one meter as shown in Figure 6.10

Figure 6.10: Distance between robot and obstacle during an overtaking maneu-
ver.

The navigation approach presented in this thesis is not able to do the over-
taking maneuver in a satisfying way. Due to the concept of cost calculation
described in Section 4.3.2, the trajectory costs near the robot are lower than
the costs near the velocity obstacle. In this scenario the costs for trajecto-
ries, which lead the robot to turn away from the dynamic obstacle are minimal
cheaper. Based on the reference navigation system trajectory selection imple-
mentation the robot starts to execute the cheapest trajectories and turns away
from the dynamic obstacles. Due to the underlying motion model, this turning



CHAPTER 6. EVALUATION 80

behavior is slow and therefore the robot needs a lot of time to finally overtake
the obstacle.

Thus, the overtaking maneuver of the extended navigation system is not
as smooth as the overtaking maneuver of the reference system. Further, the
overtaking maneuver of the extended system needs approximately 5 seconds
longer to reach the goal.

The trajectory costs for the initial situation are shown in Figure 6.11, where
red colored trajectories are associated with low costs and purple colored tra-
jectories are associated with high costs. The green triangle is representing the
collision cone of the velocity obstacle and the red arrow is showing the displace-
ment described in Section 3.3.1.

Figure 6.11: Cost representation according to the initial situation of the over-
taking scenario.

At Figure 6.12, the red lines are indicating the cheap trajectories, which
leads the robot to turn and to drive a little bit downwards.

Figure 6.12: Cost representation according to the overtaking scenario.

Approach Each Other

This scenario is used to present the main difference between the dynamic obsta-
cle avoidance maneuvers of the different navigation systems. The robot as well
as the dynamic obstacle are approaching each other and the robot tries to pass
the dynamic obstacle with a minimal distance and without colliding into it.
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The maneuver done by the reference navigation system is pretty much the
same as described in Section 6.3.2. The robot is driving directly to the goal and
just before the robot crashes into the obstacle it stops. This behavior is shown
in Figure 6.13, where the purple trace belongs to the robot and the gray trace
belongs to the obstacle.

Figure 6.13: Robot is approaching the dynamic obstacle, but not able to pass.

This situation can be absolutely satisfying solved by the approach presented
within this thesis. As it can be easily seen at Figure 6.14, the robot is avoiding
the obstacle with a minimal distance between robot and obstacle.

Figure 6.14: Robot avoiding the obstacle in an ideal way.



CHAPTER 6. EVALUATION 82

6.4 Human Factor Evaluation

As it is written in the introduction of this chapter, the overall system is ad-
ditionally evaluated on human factors. The human factor evaluation is done
not only to get objective information about the navigation systems, but also
subjective information like feelings of the people. This kind of information is as
important as objective information, since at the end of the day people have to
collaborate with the robots.

6.4.1 Questionnaire

In order to be able to perform this kind of evaluation, first some key factors
of interest which are related to robot navigation in general are defined. These
factors are about predictability of robot movements, safety, and the general
feeling of people while interacting with the robot. All the above described factors
are transformed to likert-scale questions and written down to a questionnaire
[2]. Further, an open ended question is added, to get even more information
about the probands. This questionnaire is presented in Figure 6.15. All these
questions are aimed to get information about the personals feeling and minds
of the probands accordingly to the different navigation systems. Due to data
protection, this questionnaire was done anonymous.



CHAPTER 6. EVALUATION 83

Figure 6.15: Questionnaire.
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6.4.2 Setup and Data Collection

The scenario used for the evaluation is presented in Figure 6.16.

Figure 6.16: Scenario for the human factor evaluation.

The robot has to drive from goal idle 1 to goal idle 2 while a person is walking
from goal person 1 to goal person 2 in a straight line. The distance between
the goal of the robot and the goal of the person is only about 30 centimeters,
to force the robot to react to the persons movements.

Both navigation systems were tested based on the presented questionnaire
and the scenario described above. Each proband was first tested on the reference
system followed by the extended navigation system, where the probands did not
know, which system was currently running.

The test is based on 10 probands who have general knowledge about robotics,
but are no experts in robot navigation.

6.4.3 Results

After all the data is collected, the answers to the likert-scale questions are
transformed to the following ranking shown in Table 6.5:

Title Score
strongly disagree 0
disagree 1
neither nor 2
agree 3
strongly agree 4

Table 6.5: Likert-scale question scoring.

To rank the two different navigation systems, the sum overall likert-questions
and probands is calculated and presented in Figure 6.17. The reference system
reached a score of 93 points while the score value of the new system is 150.
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Figure 6.17: Likert-scale questions overall result.

The difference of both navigation systems for the individual questions is illus-
trated in Figure 6.18. To ensure the understanding of this figure, the questions
and their labels according to the diagram are written down below:

1. The driving behavior of the robot is predictable.

2. The safety distances to obstacles are big enough.

3. The robot detects dynamic objects early enough.

4. The robot drives in my opinion the best way to get to its goal.

5. I feel safe near the robot.

According to Figure 6.18, probands agree more to the new introduced nav-
igation system than to the reference navigation system. Due to the opinion
of the probands, both systems are following the best path to reach the goal,
but according to predictability, safety distance, obstacle detection and general
safety feeling the new introduced navigation system has a higher rating than
the reference system. Based on the two Figures 6.17 and 6.18, the probands
in general do agree more to the new introduced system, than to the reference
system.

To check whether the difference between the two systems is significant or not,
a student-t test assuming different variances is applied to the data [65]. Based
on a significant level of 5 percent (0.05) and a calculated p-value of 0.015532, the
difference between the two navigation systems can be interpreted as significant.
This outcome is mainly due to the fact, that the reference system is not really
trying to avoid dynamic obstacles, its more about simply not crashing into
dynamic obstacles.
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Figure 6.18: Individual results for the likert-scale questions.

Additionally to the likert-scale questions, the probands are also interviewed
based on the open ended question �Describe your feelings and impressions re-
garding the driving behavior of the robot�. The answers of the probands can
be summarized as following:

• reference navigation system:
The system detects dynamic obstacles very late and is often not able to
avoid them.

• new navigation system:
The driving behavior of the robot is often curvy and jerky. It is not clear
whether the robot recognizes the obstacle or not. Any kind of signal would
be of benefit.

Due to the evaluation of the open ended question, the reference system is
not really able to avoid dynamic obstacles but the driving behavior seems to be
smooth. The new introduced navigation system on the other hand is definitely
able to avoid dynamic obstacles and increases the general safety feelings, but
the driving is more jerky.



Chapter 7

Conclusion

In this work we presented a concept to include dynamic obstacle avoidance in
an already existing navigation system for a mobile robot platform.
Therefore, data delivered by a 3d sensor in form of a 3d point cloud is prepro-
cessed to reduce noise and to extract points of interest. This step is followed
by an obstacle detection step. Thus, obstacles are extracted from the filtered
3d point cloud using a clustering algorithm. After this extraction step, all ob-
stacles are given to a multi-object tracking system, to estimate velocities and
future positions of the obstacles. At the end, the information about position
and velocity of dynamic obstacles is given to the navigation stack and based on
the concept of velocity obstacles a avoidance maneuver is planned and executed.

The original idea was to detect and track dynamic obstacles in the environ-
ment based on the data delivered by a stereo vision system. As it is described in
the Chapter Evaluation, the stereo vision system in combination with the pro-
vided hardware and platform cannot be used for real time applications. This
has several reasons. On one hand, the range of the camera is limited by the
resolution, while the resolution mode running the camera is limited by the com-
putational power. Thus, the camera itself is able to provide data with higher
resolution at a higher frequency, but the rest of the system is not able to process
this huge amount of data fast enough. On the other hand, the camera data con-
tains a lot of noise. This noise can be reduced by preprocessing steps, but these
steps are again computational very expensive. To evaluate the overall system
and to show that the integration of dynamic obstacle avoidance at the existing
navigation system is possible, the data delivered by 3D laser range finder is used
instead of the stereo vision camera.

Position as well as velocity information given by the tracker are quite ac-
curate and good enough to tackle the goals of this thesis. Thus, a standard
Kalman Filter based on a constant velocity model and the Hungarian algorithm
to solve the data association problem are completely sufficient. A drawback of
the tracking system is, that it is not able to track completely occluded obstacles.

The data delivered by the Kalman Filter is later on passed to an existing
navigation stack. This navigation stack is extended by the concept of velocity
obstacles. Velocity obstacles are outperforming the reference navigation sys-
tem in special cases like crossings, but also have their disadvantages. In the
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case where the robot is approaching the dynamic obstacle, the concept of ve-
locity obstacles include these dynamic obstacles into the navigation system and
avoiding it almost perfect. The reference system on the other hand can only
avoid the obstacle, by stopping the robot and do a recalculation of the path.
Using the new concept described in this thesis will cause some problems, when
using it for real world scenarios. As it is described in the Chapter 6, the new
system is not able to overtake the dynamic obstacle in a proper way, but this
maneuvers has to be done very often in reality. During the evaluation also other
problems came up as for example goal approaching. By definition, if a certain
goal lies within a collision cone of a velocity object, the robot is not able to
reach this goal, since all possible velocities the robot is able to reach within this
collision cone are lethal. This problem can be only overcome with a high level
controller or state machine and not with the basic approach of velocity obstacles.

Finally, an evaluation according to human factors is presented. This evalua-
tion points out, that based on human feelings and opinions the new navigation
system is given to the results of a student-t test significantly better than the
reference system. Thus, the overall goal of the thesis has been achieved.



Chapter 8

Future Work

The performance of the new introduced navigation system is satisfying, but
there might be several ways to possibly improve or extend this work.

First of all, the provided hardware setting is definitely not tuned for the pur-
pose of computer vision in any aspect. Thus, testing the concept in combination
with the stereo vision system in a new hardware setup may lead to improved
results.

With the assumption that the data delivered by the sensor is accurate, also
the tracking for the specific occlusion scenario can be probably improved by
testing other approaches and do a better track management as for example
multi-hypothesis tracking. Further also the motion model and the Kalman pa-
rameter can be chosen according to different types of obstacles as for example
persons or robots to get an improved accuracy. Therefore, any kind of object
detection algorithm has to be applied to the data.

In this thesis it was shown, that the concept of velocity obstacles is a pretty
good approach to include dynamic obstacle avoidance in a navigation system.
As it is already mentioned in the evaluation chapter, for the practical usage
and realization, a high level controller as for example a state machine is needed
for some special cases. This special cases have to be figured out and decisions
procedures according to these cases have to be implemented.
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