
Aid Ahmetovic

Deep Learning in Spiking Neural

Networks with Memristive

Synapses

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Supervisor:
Assoc.Prof. Dipl.-Ing. Dr.techn. Robert Legenstein

Institute of Theoretical Computer Science

Graz, December 2018



Affidavit
I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master’s thesis.

Date Signature

ii



Abstract
Recent advances in the field of nanotechnology led to the physical realiza-
tion of memristors, whose dynamics is suitable for implementing the synap-
tic weights in both spiking and artificial neural network structures. In this
thesis, we define a novel concept for deep spiking neural networks contain-
ing custom neuron models with memristive synapses. Spiking neural net-
works (SNNs) have become increasingly popular since achieving the same or
even better results compared to the artificial neural networks (ANNs). We
demonstrate that the output spike times of our neuron model are differen-
tiable, thus standard supervised learning algorithms can be applied directly
to networks of such neurons. We validate that small networks with standard
non-memristive synapses can be trained to solve simple logical functions. In
a deeper SNN setup, our model obtains a performance similar to ANN when
solving more complex classification tasks, such as Iris and MNIST. Similar
results are obtained when these SNN are trained on logical functions with
modeled memristive synapses. Finally, we demonstrate the learning capa-
bilities of single neuron with real hardware memristive synapses. In such a
framework, the logical NAND function was learned by a single neuron. In
general, we get slightly degraded results with real memristive synapses as
compared to simualated synapses.

iii



Zusammenfassung
Forschung im Bereich der Nanotechnologie führte zur physikalischen Rea-
lisierung von Memristoren, deren Dynamik geeignet ist, die synaptischen
Gewichte sowohl in spikenden als auch künstlichen neuronalen Netzwerk-
strukturen zu implementieren. In dieser Arbeit definieren wir ein neuarti-
ges spikendes neuronales Netzwerk, welches spezielle Neuronenmodelle mit
memristiven Synapsen enthält. Spikende neuronale Netzwerke (SNNs) sind
zunehmend populär geworden, da dies ähnlich gute oder sogar bessere Er-
gebnisse im Vergleich zu künstlichen neuronalen Netzwerken (KNNs) er-
zielen. Wir zeigen, dass die Spikezeiten unseres neuronalen Modells diffe-
renzierbar sind, sodass die standardisierten überwachten Lernalgorithmen
in den Netzwerken unserer neuronalen Modelle direkt angewendet werden
können. Wir validieren, dass ein Neuron mit standarden nicht-memristiven
Synapsen trainiert werden kann, um einfache logische Funktionen zu lösen.
In einer tieferen SNN-Konfiguration hat unser Modell eine ähnliche Perfor-
manz wie KNNs, wenn komplexere Klassifizierungsaufgaben gelöst werden,
wie Iris und MNIST. Ähnliche Ergebnisse werden erhalten, wenn diese SNN
auf logischen Funktionen mit modellierten memristiven Synapsen trainiert
werden. Schließlich demonstrieren wir die Lernenfähigkeiten eines Neurons
mit echten memristiven Synapsen. In einem solchen Rahmen war die logische
NAND-Funktion von einem einzelnen Neuron gelernt. Im Allgemeinen erhal-
ten wir etwas verschlechterte Ergebnisse mit echten memristiven Synapsen
im Vergleich zu simulierten Synapsen.

iv



Acknowledgment
I would like to express my sincerest gratitude to:

My supervisor, Professor Robert Legenstein, who provided me support
and valuable feedbacks in every stage of my thesis. This motivated me to
pursue research in this interesting research area.

My wife Emina, for providing me the most substantial support and en-
couragement,

My family, especially my parents, sister, grandmother and grandfather,
for supporting me not only in academic, but also in every aspect of my life,

Professor Themis Prodomakis, Alexandru Serb and Spyros Stathopou-
los for generosity, help and assistance during my visit at the University of
Southampton.

Michael Müller for providing me this great template.

v



Contents
1 Introduction 1

2 Neuron models and spiking neural networks 3
2.1 Spiking neural networks (SNNs) . . . . . . . . . . . . . . . . . 3
2.2 Spiking neuron models . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Integrate-and-fire (I&F) neuron models . . . . . . . . 4
2.3 Synaptic plasticity and spike-timing-dependent-plasticity (STDP) 6

3 Supervised learning in spiking neural networks 9
3.1 SpikeProp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 ReSuMe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Gradient descent in spiking neural networks . . . . . . . . . . 12
3.4 Supervised learning in long-short-term memory networks (LSNNs) 14
3.5 Supervised learning in spiking neural networks using temporal

coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Memristors 16
4.1 General introduction . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Memristor modeling . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1 HP memristor . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2 Biolek model . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.3 A data driven verilog-A ReRAM model . . . . . . . . 20
4.2.4 A compact verilog-A ReRAM model . . . . . . . . . . 23

5 ANNs/SNNs with memristors 25
5.1 Supervised learning with hardware memristive synapses . . . 25
5.2 Unsupervised learning with STDP . . . . . . . . . . . . . . . 26

6 Experimental results 28
6.1 New neuron model . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 Learning logical functions with non-memristive and modeled

memristive synapses . . . . . . . . . . . . . . . . . . . . . . . 34
6.2.1 Learning logical functions with non-memristive synapses 37
6.2.2 Learning logical functions with modeled memristive

synapses . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3 Learning logical functions with real memristive synapses . . . 46

6.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.4 Learning logical functions with modeled noisy memristive synapses 62
6.5 Learning the Iris task using SNN with non-memristive synapses 68

6.5.1 Artificial neural network setup . . . . . . . . . . . . . 68
6.5.2 Spiking neural network setup . . . . . . . . . . . . . . 68

vi



CONTENTS

6.6 Learning the MNIST task using SNNs with non-memristive
synapses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.6.1 Artificial neural network setup . . . . . . . . . . . . . 71
6.6.2 Spiking neural network setup . . . . . . . . . . . . . . 71

7 Conclusion 75

Appendices 76
A Gradients of different loss functions . . . . . . . . . . . . . . . 76
B Experimental memristor mathematical models . . . . . . . . 76
C References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

vii



Introduction

1 Introduction
Deep learning with traditional artificial neural networks (ANNs) has been
proven a great tool that achieves above human level performances in many
application areas [1]. In deep neural network structures, time-consuming
training is imperative to obtain state of the art results. In the case of su-
pervised learning tasks, where for each input we have a corresponding true
label value, ANNs are trained using stochastic optimization algorithms (in
the form of the gradient descent) in combination with the backpropagation
algorithm [2]. The main idea behind the backpropagation algorithm is that
the gradients are calculated through backpropagating errors from the final
layer to the first layer. However, brain-inspired processing is not captured
with ANNs. One can argue that ANNs, due to their static model, cannot
capture processes present in the brain. For this reason, another form of
the neural networks, called spiking neural networks (SNNs), was invented
and proven to be more suitable for modeling brain-like computations [3].
Briefly, spiking neural networks contain neuron models interconnected with
synapses (with changeable weights). The presence and timing of individual
spikes are essential for that type of networks. Neuron models in SNNs are
based on real neurons in the brain, where the presynaptic action potentials
(spikes) change the membrane potential of the postsynaptic neuron, until
the voltage reaches the threshold, after which the postsynaptic neuron fires.
This means that spiking neurons communicate via discrete events, called
spikes, while artificial neurons communicate via analog values. It was also
proven that the computational capabilities of SNNs are larger than those
of ANNs [3] and compared to ANNs, learning in SNNs takes an entirely
different form. Unsupervised learning is suitable in SNNs in the form of
spike-timing-dependent plasticity rules (STDP), where the time difference
between the presynaptic and postsynaptic spikes plays a crucial role. The
original idea behind supervised learning cannot be applied to SNNs because
of the non-differentiability of spikes, which are discrete events and therefore
the original form of the backpropagation algorithm cannot be used. With
several simplifications of SNN models it is possible to compute gradients,
and we summarize those approaches in Section 3. We define a new neuron
model in Section 6.1, in which the membrane potential is a superposition of
linear functions in time. Our spiking neuron also enables an exact gradient
computation, thus, supervised learning in its original form can be applied.
In Section 6.2, we demonstrate the learning capabilities of single neuron as
well as of a network of neurons, by training them on the AND, OR, XOR
and NAND logical functions.

In this thesis, not only a new neuronal model is defined, but we also
include the concept of the memristive synapses, where our synaptic weights
between neurons are modeled with memristive devices. The general intro-

1



Introduction

duction to memristive devices and modeling of such devices is summarized
in Section 4. Memristors are non-volatile memory devices that have low
power consumption and dynamics suitable for non-Von Neumman architec-
tures. We include supervised learning results of the AND, OR, XOR and
NAND logical functions in the SNN setup containing real memristive hard-
ware devices. This is similar to the prior work described in Section 5 , where
the real memristive hardware devices have been used in an ANN supervised
learning setup, and in a SNN unsupervised learning setup.

Results on the Iris and MNIST classification tasks are presented in Sec-
tions 6.5 and 6.6, respectively, where we used deeper SNNs to solve the
tasks. We conclude that results of networks containing our custom spiking
neuron models are close to results of ANNs when both network types have
the same number of learnable parameters.

2



Neuron models and spiking neural networks

2 Neuron models and spiking neu-
ral networks

In this chapter, spiking neural networks (SNNs) are introduced in Section
2.1. The Leaky-Integrate and Fire (LIF) neuron model is summarized in
Section 2.2.1, while synaptic plasticity is addressed in Section 2.3.

2.1 Spiking neural networks (SNNs)

Traditional artificial neural networks (ANNs) are a fully-connected feed-
forward or recurrent structures of units called artificial neurons. Connec-
tions between artificial neurons typically have a weight that is adjusted
during the learning process. Fully-connected feed-forward ANNs consist of
multiple layers: an input layer, several hidden layers, and an output layer.

The first and the simplest artificial neuron model was the McCulloch-
Pitts model [4]. The concept behind the McCulloch-Pitts model is straight-
forward: if a weighted sum of incoming signals is larger than the threshold
value, the output of the neuron model is 1, otherwise, the output is 0. The
second generation of the artificial neuron models does not use the threshold
function to compute the output, but a continuous activation function such
as sigmoid or hyperbolic tangent. ANNs, with one hidden layer and the con-
tinuous activation function, can approximate any continuous function on a
bounded interval (universal approximation theorem) [5].

Spiking neural networks (SNNs) as a new generation of neural networks
are highly inspired by the architecture of the brain. SNNs consist of the
biologically inspired mathematical models of neurons which communicate
in continuous time with discrete events - action potentials or spikes. In-
coming action potentials change the membrane potential of the neuron until
it reaches the threshold value and produces a spike itself. Neurons com-
municate to other neurons through synapses. SNNs can be perceived as a
fully-connected feed-forward or recurrent structures of spiking neuron mod-
els. Synaptic connections between those neuron models have changeable
synaptic weights associated to them. Synaptic weights in SNNs are updated
during the learning process.

In traditional artificial neural networks (ANNs) analog values form the
input and output of the single neuron, and those values can be understood
as the frequency of the neuron spike firing. In SNNs, the primary mean of
communication and computation is the presence and timing of individual
spikes.

Because of that, in SNNs we need new notations to define a meaning
of the presence and timing of individual spikes. Those notations are called
coding schemes. One example of such a coding scheme is temporal coding.
The main idea behind the temporal coding scheme is that the input vector

3



Neuron models and spiking neural networks

of real numbers is converted into a spike train based on the biological idea:
the more intensive the input, the earlier the spike transmits. This biological
inspiration can be found in our visual system [6].

To encode n analog numbers as spike times relative to Tin we need to
consider a SNN structure with n input neurons Ni. The input is fed by n-
dimensional analog values x = (x1, ..., xn) with all xi values inside a bounded
interval [a, b] of IR. Those values are converted into spike trains relative to
the timing of an external stimulus: if an external stimulus comes at time
Tin, spike emission of neuron Ni is coded at time ti = Tin + (b − xi) [7].
In temporal coding, time of the first spike for each neuron contains all the
information about the new stimulus: a neuron which fires shortly before
the external stimulus indicates a strong stimulation, while earlier firing en-
codes a weaker stimulation. An illustration of the temporal coding scheme
is presented in Figure 1.

Figure 1: Temporal coding where the spike train of three neurons is shown. The
second neuron is the one that fires first after the stimulus onset (arrow).

In this coding principle, we face the restriction that one neuron can fire
only once. That means that temporal coding cannot be applied to more
continues computing where we can observe spike trains: neurons can fire
multiple spikes.

2.2 Spiking neuron models

The general idea of a neuron model in SNNs is to handle the incoming action
potentials (spikes) by modifying its membrane potential. When the neuron’s
membrane potential reaches the predefined threshold value the neuron pro-
duces an action potential itself.

2.2.1 Integrate-and-fire (I&F) neuron models

In integrate-and-fire (I&F) neuron models, every spike is a discrete event
defined only by the precise timing. Hence, an action potential in integrate-
and-fire models is described by the Dirac-delta function.

4



Neuron models and spiking neural networks

One important neuron model that we will examine is a leaky-integrate-
and-fire (LIF) model [8]. The electrical circuit of the LIF neuron model
contains capacitor C in parallel to the resistance R, driven by the external
current I(t) (shown in Figure 2). The mathematical model of the LIF neuron
is defined with the first order linear differential equation:

τm
du(t)

dt
= urest − u(t) +RI(t) (1)

The neuron spikes when:

u(tf ) = ϑ with u
′
(tf ) > 0 : u(tf )← ureset (2)

where:

• τm = RC is the time constant of the neuron membrane that models
the leakage of the voltage,

• tf is the threshold crossing time,

• urest is the resting potential, and,

• ureset is the reset potential to which the membrane potential is set
immediately at time tf .

Figure 2: Electrical circuit of the Leaky-Integrate-and-Fire neuron model.

The LIF model is used often in spiking neural network structures because of
its simplicity and possibility to find the analytical solution of equation (1).

5



Neuron models and spiking neural networks

However, the external reset mechanism is needed for the threshold crossing
condition, and is defined in equation (2).

In the LIF neuron with current based synapses, I(t) is defined as a
weighted sum of incoming action potentials:

I(t) =
∑
i

wi
∑
f

ε(t− t(f)
i ) with ε(s) = exp

(
− s

τfall

)
Θ(s) (3)

where t
(f)
i represents the time of the f−th spike of i−th presynaptic neuron,

wi is the i− th synaptic weight, τfall is a decaying time constant, and Θ(x)
represents the Heaviside function.

In the LIF neuron with conductance based synapses, I(t) is defined as:

I(t) = −(u(t)−Esyn)
∑
i

gi(t)
∑
f

ε(t−t(f)
i ) with ε(s) = exp

(
− s

τfall

)
Θ(s)

(4)

where t
(f)
i represents the time of the f − th spike of i− th presynaptic neu-

ron, u(t) is the current membrane potential, Esyn is the reversal potential,
gi(t) is the i − th synaptic weight, τfall is a decaying time constant, and
Θ(x) represents the Heaviside function. Reversal synaptic potential Esyn
determines the type of a synapse, thus the synapse is excitatory if Esyn > ϑ,
or inhibitory if Esyn < ϑ.

2.3 Synaptic plasticity and spike-timing-dependent-
plasticity (STDP)

Opposed to the constant parameters in neuron models, connections between
neurons are dynamic which forms the basis for learning and adaptation.
Synaptic plasticity is a term referring to the modification, creation, and re-
moval of the synaptic connections between neurons in the brain. From the
current biological knowledge of the brain, several processes take place: long-
term potentiation (LTP) related to increasing changes of synaptic weights
that last several hours to days, and long-term depression (LTD) describ-
ing the decrease of weights over a long time interval. On the other hand,
processes that change the synaptic weights on the time scale of seconds to
minutes are called: short-term potentiation (STP) if weights are increased,
or short-term depression (STD) if weights are decreased.

Spike-timing-dependent plasticity (STDP) is a form of synaptic plastic-
ity which is highly sensitive to the precise spike timing of the presynaptic
and postsynaptic neurons [9]. The main idea is the following: the maximal
increase of the synaptic weight occurs on a connection where the presynap-
tic neuron fires shortly before the postsynaptic neuron, while the decrease

6



Neuron models and spiking neural networks

of synaptic weights happen if the presynaptic neuron fires shortly after the
postsynaptic neuron. If the time difference between the presynaptic and
postsynaptic neurons is large, there is no change in the synaptic weights.

To use STDP in SNNs, learning windows for LTP and LTD are creat-
ed/derived from the neurobiological experiments [10]. It is assumed that
the weight changes ∆w are proportional to:

∆w =

 A+e

(
−∆t
τ+

)
, if ∆t > 0

−A−e
(
−∆t
τ−

)
, if ∆t ≤ 0

(5)

where A+, A−, τ+, τ− are constants and ∆t = tpost - tpre. The plot of equa-
tion (5) is called a learning window. The x-axis of the learning window
corresponds to the time difference ∆t = tpost - tpre of the postsynaptic and
presynaptic spike times, while the y-axis corresponds to the weight change
that is positive if ∆t > 0 and close to zero, otherwise the weight change
is negative. One example of the learning window function is presented in
Figure 3.

Figure 3: One example of a STDP learning window function.

General changes in the synaptic weights are done based on the following
equation:

w ← w + ∆w (6)

Even though STDP opens many exciting ideas regarding learning in SNNs,
there are also several drawbacks and problems that might occur. For in-
stance, with STDP, one cannot apply constant potentiation or depression
without fixing bounds for the values of weights (etc. in the range [0, wmax]).
Even with bounded weights, it is possible to have a restrained network when
all weights are small or to have an unstable network when all weights are

7



Neuron models and spiking neural networks

large. Those cases directly limit the network ability for further adaptation.

8



Supervised learning in spiking neural networks

3 Supervised learning in spiking neu-
ral networks

In this section, several supervised learning approaches for SNNs are pre-
sented. The general idea for all those methods is to find the optimal synap-
tic weights wij , given the input vector of spike times T in(t) and a vector
of target spike times T target(t), such that the spike times of neurons in the
output layer T out(t) are equal to the wanted spike times T target(t).

This section consists of four subsections, where in the first subsection
3.1 the SpikeProp method is explained. The introduction of the ReSuMe
method is explained in the subsection 3.2. The novel approach of Gradient
Descent in SNNs will be presented in subsection 3.3. Supervised learning
ideas in the recurrent neural networks (LSNNs) are discussed in subsection
3.4 and a supervised learning method for SNNs with temporal coding is
discussed in subsection 3.5.

3.1 SpikeProp

SpikeProp [11] is a gradient-based method for supervised learning in SNNs.
The main idea behind SpikeProp originates from the computation in tra-
ditional ANNs where the backpropagation algorithm [2] is used. Gradient
computation in SNNs is infeasible due to the discrete output spikes of spiking
neurons. To tackle this problem, several simplifications should be defined
such as the one used in the SpikeProp method where one neuron can fire
only once during the time-course of the simulation. That means that the
neuron’s membrane potential must reach the threshold value exactly once
to be sure that the gradients can be evaluated. Otherwise, gradients are
not defined. Another assumption that solves the discontinuity problem is
that the membrane voltage is linearly approximated in the region around
the spike time so that gradients can be evaluated.

In the SpikeProp method, it is assumed that several weight connections
wkij containing different delay dkij are present between the presynaptic neu-
ron i and postsynaptic neuron j. Initially, the SpikeProp method has been
defined using the Spike Response Model (SRM) [12], where the membrane
potential of the neuron j is defined as:

Vj(t) =
∑
i∈Γj

∑
k

wkijε(t− touti − dkij) (7)

where:

• Γj is a set representing the presynaptic neurons connecting to neuron
j,

9



Supervised learning in spiking neural networks

• wkij is the weight of the synaptic terminal k between neurons i and j,

• ε(t) = t
τ exp(1− t

τ ) with some time constant τ ,

• touti is the firing time of the neuron i, and,

• dkij is the synaptic terminal delay.

The objective function that is minimized is the mean-squared error between
the actual and wanted output spike times:

E =
1

2

∑
j

(toutj − t
target
j )2 (8)

With the previously noted objective function it is straightforward to com-
pute the gradients of the loss function E concerning weights wkij :

∂E

∂wkij
=
∂E

∂tj
(tjout)

tj

wkij
(tjout) =

∂E

∂tj
(tjout)

∂tj
∂Vj

(tjout)
∂Vj

∂wkij
(tjout). (9)

To compute the gradients from (9), it is assumed that we have linear ap-
proximated function V m

j in the small region around t = toutj . This is directly
connected with having the constant partial derivative. Linear approxima-
tion of the membrane voltage in the SpikeProp method is necessary due to
the Spike Response Model that is used. That is one of the disadvantages
of the SpikeProp method compared to our method described in Section 6.1,
because in our model the membrane voltage is differentiable and no linear
approximation is needed.

Results of a SNN optimized with the SpikeProp method were presented
on the non-linear logical XOR task and several classification tasks (Iris, Wis-
consin breast cancer, and the Statlog Landsat), where supervised learning
in SNNs obtains comparable performance to the traditional ANNs in [11] .
In the original SpikeProp definition, authors argued that all weights must
be positive and only in that case the algorithm guarantees successful con-
vergence. Later, the convergence of the SpikeProp algorithm with negative
weights was also proved, and the algorithm was thoroughly investigated and
improved over the time [13].

10



Supervised learning in spiking neural networks

3.2 ReSuMe

The ReSuMe method [14] was initially motivated by the examination of
real-time movement control techniques for disabled persons. It is a method
that is substantially different to other supervised learning methods such as
SpikeProp presented in the previous section. While most of the supervised
learning methods in SNNs include some simplifications for computing gra-
dients, ReSuMe method is a combination of the learning windows (such as
ones included in the spike-timing dependent plasticity) and a novel concept
called remote supervision.

In [14], the authors defined the ReSuMe learning procedure as following:
each neuron that updates its synaptic connections based on the ReSuMe
method in the SNN, has an additional reference (teacher) signal that repre-
sents the desired output time of that neuron. However, those teacher signals
are not directly connected to the learning neurons, but they rather super-
vise the synaptic weights that connect to the learning neuron itself. That is
schematically illustrated in Figure 4.

Figure 4: Input nink , learning nll and teacher ndj neurons in ReSuMe method.

Synaptic weights are updated according to two learning rules. The first
rule W d(sd) is taking into account the difference between presynaptic and
reference spike times (sd = td,(f)−tin,(f)), whereas for the second rule W l(sl)
the timing difference between the presynaptic and postsynaptic connections
(sl = tl,(f) − tin,(f)) is important. From the first rule we have that the exci-
tatory/inhibitory synapse is facilitated/depressed if the presynaptic neuron
fires shortly before the reference spike time, while in the second rule is de-
fined in a way that synapses are depressed/facilitated when the presynaptic
neuron fires directly before the postsynaptic neuron. The second rule is
sometimes referred to as an anti-STDP rule.

11



Supervised learning in spiking neural networks

If the time tfm defines the f − th spike of neuron m, the spike train of
the m− th neuron is:

Sm(t) =
∑
f

δ(t− tfm) (10)

where δ(x) denotes the Dirac-delta function.
Synaptic weights wki are updated based on the following equation:

d

dt
wki(t) = [Sd(t)− Sl(t)]

[
a+

∫ ∞
0

W (s)Sin(t− s)ds
]

(11)

where the Sd(t), Sin(t) and Sl(t) are spike trains of target, input and learning
neurons respectively. The integral part of the previous equation defines the
correlation change of the weights that is dependent on the window function
W (s) and input spike train Sin(t). The constant a defines a non-correlation
weight change contribution. If the synapses are excitatory, a constant is
positive and W (s) is similar to the STDP learning curve. For inhibitory
synapses, a is negative, and the shape of the W (s) looks like learning win-
dows in anti-STDP rules.

We can conclude that the difference [Sd(t) − Sl(t)] plays the main role
regarding the weight change modifications and that the weight change is
zero if and only if Sd(t) = Sl(t).

One of the advantages of the ReSuMe method compared to our method
described in Section 6.1 is neuron’s ability to spike multiple times which
makes it more convenient for modeling spike trains. The disadvantage is
that each neuron is individually supervised using teacher signals and we do
not have a global supervision as in our method.

In [14] it has been shown that ReSuMe method converged fast when
learning desired output spike trains, given the input spike trains.

3.3 Gradient descent in spiking neural networks

The authors of [15] introduced a novel idea for supervised learning in SNNs,
by defining the differential network model with differential current-based
synapses. They modified the standard current based synaptic current dy-
namics that is usually modeled as a linear filter:

τ ṡ = −s+
∑
i

δ(t− ti) (12)

where s is the state variable and models the current, ti is the time of the
voltage threshold crossing and δ(t) is the Dirac-delta function. From the
previous equation, the current is activated when the membrane voltage of
the presynaptic neuron v reaches the voltage threshold value. With equation

12



Supervised learning in spiking neural networks

(12) two types of synaptic currents are possible: zero current if the mem-
brane voltage does not reach the threshold, or discrete current if it does. In
both cases the current is non-differentiable.

Modified synaptic current dynamics includes the change of the spike
train part (modeled with the Dirac-delta sum in equation (12)), with the
non-negative function g(v) ≥ 0 with the unit integral (

∫
g(v)dv = 1):

τ ṡ = −s+ g(v)v̇ (13)

with v̇ being the time derivative of the presynaptic voltage.
With the modified equation, threshold crossing responses are differen-

tiable and in all cases we have a constant charge
∫
sdt = 1, while we have

differentiable graded responses and smaller amount of charge 0 ≤
∫
sdt < 1

if the voltage is in the active region. Neural dynamics should be also differ-
entiable and is defined as:

v̇ = f(v, I) (14)

Then the dynamics of the fully-connected network can be defined as:

~I = W~s+ U~i+ ~Io

~o = O~s
(15)

where W is the recurrent connectivity matrix, U is the input weight matrix,
i is the input signal of the network, Io models ionic current, o is network
output, and O is the readout matrix.

The cost function that is minimized is based on the penalization of the
readout error and the synaptic activity:

l =
||o− od||2 + λ||s||2

2
(16)

where od is the desired output and λ is the regularization parameter. SNNs
defined in this way can be optimized via gradient descent, where the gradi-
ents are calculated through backpropagation-through time (BPTT) [16].

This method is using a differentiable neuron model which can spike mul-
tiple times. That is the advantage compared to our model, where the neuron
has a limitation of spiking only once.

Authors in [15] state that the previously defined method is the first
method that can capture millisecond time-scale interaction, as well as sec-
ond time-scale interaction between neurons. Those time-scales are usually
carried out in the brain. That is demonstrated by two tasks: predictive

13



Supervised learning in spiking neural networks

coding task where the information processing is in the milliseconds-scale,
and delayed XOR task, where the time scale is in seconds.

3.4 Supervised learning in long-short-term mem-
ory networks (LSNNs)

In this chapter, supervised learning in long short-term memory networks of
spiking neurons (LSNNs) will be discussed. The authors in [17] defined the
ĹSNN structure and showed that is has similar learning capabilities as stan-
dard artificial LSTM networks. More importantly, LSNNs can be trained
with the backpropagation-through time algorithm [16] for supervised learn-
ing tasks. The LSNN structure consists of a population of leaky integrate
and fire (LIF) neurons that can be excitatory and inhibitory (population
R), and an excitatory population of LIF neurons that are adapting (popu-
lation A). Input population X of neurons provides input to the R and A
populations. The network output is provided by linear readout neurons Y .

Since output spikes of LIF neurons in the LSNN structure are non-
differentiable, the estimated (pseudo) gradient is used for optimization.
Even with the approximation of gradients, good results have been achieved
with this method. However, approximation of the gradient is the disadvan-
tage compared to our neuron model since output spike times of our neuron
model are differentiable. On the other hand, LIF and adaptive LIF neu-
rons can spike multiple times during a simulation, and this is clearly the
advantage compared to our model.

It has been demonstrated that the previous setup obtained the final test
accuracy of 96% in the sequential MNIST task and this accuracy is the same
as the one of artificial LSTM networks. Furthermore, the LSNN network
achieved comparable performance to standard LSTM networks, in the case
of the TIMIT speech recognition task.

3.5 Supervised learning in spiking neural networks
using temporal coding

A new supervised learning approach in spiking neural networks using tem-
poral coding has been presented very recently [18]. The supervised learning
method in [18] has strong similarities to SpikeProp and our method described
in Section 6.1: input is a temporally coded stimulus, neurons are allowed
to fire only once and output spike times of neurons are differentiable. A
non-leaky integrate-and-fire neuron model is used in the background:

duj(t)

dt
=
∑
i

wji
∑
r

exp

(
− t− t

r
i

τ

)
Θ(t− tri ) (17)

14



Supervised learning in spiking neural networks

where uj(t) is the membrane potential of the j−th neuron, wji is the synap-
tic weight from neuron i to neuron j, tri represents the r − th spike from
neuron i and Θ(x) is the Heaviside step function.

It is interesting to observe that a membrane potential shape in this model
is similar to the one described in our neuron model. One of the differences
is the linear increase of voltage in our model compared to this model, where
the voltage increases exponentially. Moreover, in our model weights are al-
ways positive, while here input weights can be positive and negative, and
with negative weights, an inhibition is modeled.

A fully-connected feed-forward network of spiking neurons has been
trained using the standard version of the gradient descent method in com-
bination with the backpropagation algorithm. In this paper a cost function
is defined as:

Cost = − ln
exp(−tg)∑
i exp(−ti)

(18)

where tg is the target output spike time of the neuron that should spike
first, while ti are output spike times of all output neurons. Minimizing the
cost defined in the previous equation will encourage the correct neuron in
the output layer to spike first.

Since weights in this model can be both positive and negative, a weight
cost term has been added to the cost function, that will highly penalize
negative weights of the neuron. The neuron will spike if the sum of weights
is larger than 1, thus weight sum cost is crucial for successful learning. They
defined the weight sum cost in the following way:

WeightSumCost = K
∑
j

max(0, 1−
∑
i

wji) (19)

where index j goes over the all neurons, and index i represents the neurons
that form input to neuron j. Weight penalization constant is K.

With this model, promising results are obtained on the nonlinear XOR
task and the MNIST image classification task. Nonlinear XOR task has
been completely solvable using a SNN with one hidden layer containing 4
neurons. That is a similar setup to ours presented in Section 6.2.1. On the
other hand, a high test classification accuracy of 97.2 % has been obtained
using the network structure containing 800 neurons in the first hidden layer
(784-800-10). A more important conclusion is that using the previously
described SNN structure and learning procedure, output spike times of a
trained model are sparse. For instance, on the MNIST classification task,
only 3 % of hidden neurons have spiked on average before the first output
neuron, whose time is used for the correct classification on the test set.

15



Memristors

4 Memristors

4.1 General introduction

Chua et al. [19] defined the memristor (or memory resistor) as the fourth
fundamental circuit element. From the mathematical point of view, in cir-
cuit systems there are four fundamental circuit variables: current i, voltage
v, charge q and magnetic flux φ. In the Faraday’s law of induction, we have
the relation that induced voltage is equal to the time derivative of the mag-
netic flux dφ = vdt. The current i and charge q are related by dq = idt. By
looking more closely, Chua included new mathematical relations between
the remaining variables to define a memristor: dφ = Mdq, with M denoting
the memristance.

The mathematical formulation of the memristor has interesting proper-
ties when the memristance M is not a constant value, but a function of q. In
that case, the memristor is the non-linear element. The i− v characteristics
of such a memristive device should look like a hysteresis where one would
have possibilities to reach different resistance values based on the different
values of current or voltage, depending on the memristor type. Two mem-
ristor types are introduced, current controlled memristor (20) and voltage
controlled memristor (21):

v(t) = R(w)i(t)

dw

dt
= i(t)

(20)

i(t) = G(w)v(t)

dw

dt
= v(t)

(21)

where w is a state variable, R(w) and G(w) are resistance and conductance
values that depend on that state variable.

Later on a more generic version of the memristive systems has been in-
troduced [20]. Mathematical definition of the current controlled memristive
system is:

v(t) = R(w, i)i(t)

dw

dt
= f(w, i)

(22)

while for the voltage controlled memristive system we have:

16



Memristors

i(t) = G(w, v)v(t)

dw

dt
= f(v, w)

(23)

where w can be set of the state variables, and functions f , R and G are
general functions that depend not only on the set of state variables w, but
also on the current i or voltage v.

To conclude, memristors are non-volatile memory devices. The term
non-volatile means that the memristor remembers its last resistive state.

4.2 Memristor modeling

Mathematical modeling of memristors is important for simulations of exper-
iments in both hardware and software. The formulation of the memristor
was only a theoretical idea until 2008, when researchers in HP lab made
a breakthrough and developed the first practical device [21]. The mathe-
matical model of the HP memristor will be described in the Section 4.2.1.
An improved HP mathematical model of the memristor is defined by Biolek
[22]. Finally, the two mathematical models that are used throughout this
thesis as background models for the memristive synapses will be discussed
in Sections 4.2.3 and 4.2.4.

All novel mathematical models of memristors include a concept of the
window function that should relate to the non-linear dopant drift effect in
the physical devices. More detailed explanation of this effect will be pre-
sented in the following sections.

4.2.1 HP memristor

The first practical memristor [21] had the top and bottom electrode made
of Platina Pt, while the middle area consisted of different Titanium Dioxide
layers: TiO2−x with smaller amount of the oxygen and pure TiO2. In a
TiO2−x layer, oxygen vacancies are donors to electrons and they are posi-
tively charged. Applying a positive voltage on the top electrode will move
the oxygen vacancies to the pure TiO2 layer and that will increase the width
of the TiO2−x and decrease the width of the TiO2 layer. On the other
hand, applying a negative voltage has the opposite effect. Different widths
of TiO2−x and TiO2 layers will lead to different resistive states of the device.
HP memristor is schematically illustrated in Figure 5. From the previous
definition, researches from HP created the following mathematical model,
with w(t) being the state variable:

17



Memristors

M(t) = Ron
w(t)

D
+Roff

(
1− w(t)

D

)
dw

dt
=
µvRon
D

i(t)

(24)

where Ron is the resistance of the TiO2−x region, while Roff is the resistance
of the TiO2 region. D is the width of the device, w(t) is the width of the
TiO2−x layer and the µw is the average mobility of ions.

The non-linear dopant drift effect causes the ionic speed of the boundary
between the TiO2 and TiO2−x to decrease to zero [22]. To model nonlinear
dopant drift behavior the appropriate window function should be included.
For the HP memristor model, zero ionic transport should take place when
the w(t) = 0 or w(t) = D. Zero ionic transport is equal to the transport that
causes no change in the resistance. First window function that is proposed
for the HP memristor [23] is following:

f(x) = 1− (2x− 1)2p (25)

where x = w(t)
D and p is a positive integer. The shape of the function is

shown in Figure 6.

The window function (25) guarantees zero speed when approaching both
boundaries, but once the boundary is reached, no external voltage can
change its state again. In other words, the model remembers the state
infinitely long.

Figure 5: HP memristor structure, where w is the width of TiO2−x layer and D is
the width of the device.

18



Memristors

Figure 6: Window function for different values of integer p, introduced in [23].

4.2.2 Biolek model

Biolek et al. [22] proposed a new window function that correctly models
the nonlinear dopant drift for the HP memristor. The main idea is that the
window function should not only depend on the state variable x, but also on
the current i. The sign of a current plays an essential role when going back
from the boundary condition to the working range again. The new window
function defined by Biolek is:

f(x, i) = 1− (x− stp(−i))2p (26)

where the x = w(t)
D , and stp(i) is the Heaviside step function defined as

stp(i) = 1 if i > 0, otherwise stp(i) = 0.

Biolek’s window function is shown in the following figure:

Figure 7: Biolek’s window function for positive and negative current and p = 2.

19



Memristors

4.2.3 A data driven verilog-A ReRAM model

The memristor model defined in this section [24] corresponds to the voltage-
controlled model that exhibits bipolar switching, that is, positive and neg-
ative resistive changes. The state variable in this model is the resistance R.
Authors define the model by using the sensitivity s(v) and window f(R, v)
functions, that both have terms that depend exponentially on the voltage.
The window function f(R, v) bounds the state variable of the memristor
to the working range [Rmin, Rmax] based on the applied voltage v and also
models the nonlinear dopant drift effect. Usually, two voltage levels make
sense in memristors of a similar type. A readout voltage that is used for
reading the current resistance value and is typically small, etc. Vreadout = 0.2
V, and a threshold voltage that is applied to change the current resistance to
smaller or larger value. In this model, all those voltage levels are captured.
One of the advantages of this model is that we do not need the time deriva-
tive of the resistance to be calculated dR

dt , because it is possible to find the
analytical solution of the differential equation for a constant voltage. The
I − V characteristics of the voltage-driven memristor model is represented
with the following set of equations:

i(R, v) =

{
ap

1
R sinh(bpv), for v > 0

an
1
R sinh(bnv), for v < 0

(27)

A sample switching rate surface which represents the time derivative of the
state variable R is:

dR

dt
= g(R, v) = s(v)f(R, v) (28)

with, s(v) describing the sensitivity function:

s(v) =


Ap(−1 + etp|v|), v > 0

An(−1 + etn|v|), v < 0
else 0

(29)

and f(R, v) is the window function:

f(R, v) =


−1 + eηkp(rp(v)−R), R < ηrp(v), v > 0

−1 + eηkn(R−rn(v)), R > ηrn(v), v < 0
else 0

(30)

where ap,n, bp,n, Ap,n, tp,n and kp,n are parameters that can be fit. Resistance
values depend on the voltage polarity:

rp(v) = rp0 + rp1v if v > 0

rn(v) = rn0 + rn1v if v ≤ 0
(31)

20



Memristors

with rp0, rp1, rn0, rn1 being additional fitting parameters. The above equa-
tions bound the resistance change of the memristor to [Rmin, Rmax]. The
parameter η is equal to 1, if the positive voltage Vb > 0 induces a positive
resistance change ∆R(Vb) > 0, while the η is −1, if the positive voltage
Vb > 0 induces the negative resistance change ∆R(Vb) < 0. The analytical
solution of the equation (28) is:

R(t)|Vb =
ln(eηkprp(Vb) + e−ηkpsp(eηkpR0 − eηkprp(Vb)t))

kp
,

for Vb > 0, R < ηrp(Vb)

(32)

R(t)|Vb =
ln(−eηknR0+ηknsn(Vb)t − e−ηknrn(Vb)(−1 + eηknsn(Vb)t)

kn
,

for Vb < 0, R > ηrn(Vb)

(33)

Parameters of one memristor model [24] fitted to real measurement data are
shown in Table 1.

Parameter Value
Ap 0.12
An -79.03
tp 0.59
tn 1.12
kp 8.10 · 10−3

kn 9.43 · 10−3

rp0 3085
rp1 1862
rp2 0
rn0 5193
rn1 378
rn2 0
ap 0.24
bp 2.81

Table 1: Memristor model parameters taken from [24].

From parameters in the previous table we can plot resistance changes and
IV characteristics of the memristor model for different voltage values:

21



Memristors

Figure 8: Changes in a resistance value for the memristor model given in Table 1.
The initial resistance value was set to R0 = 4.9kΩ. We applied 500 pulses of

positive and negative voltages to the memristor. The amplitude of voltage pulses
was increased/decreased every 500 pulses, causing the resistance to further

increase or decrease. Starting values of positive and negative voltage levels were
Vstartp=1.7V and Vstartn = -1.2V, while the increase/decrease step was

Vstep =0.1V.

Figure 9: IV characteristics for the memristor model given in Table 1 for different
resistance values.

22



Memristors

4.2.4 A compact verilog-A ReRAM model

The model presented in this paragraph is similar to the one described in the
section above. Authors in [25] modeled the voltage controlled memristor and
defined the experimental procedures of fitting the data from a real memristor
to a modeled one. However, it differs in the formulation of the mathematical
model. The switching rate function is defined as following:

dR

dt
= g(R, v) = s(v)f(R, r(v)) =

Ap(−1 + e
|v|
tp )(rp(v)−R)2stp(rp(v)−R)stp(v)+

An(−1 + e
|v|
tn )(R− rn(v))2stp(R− rn(v))stp(−v)

(34)

with tp, tn being the fitting parameters, and stp(v) being the Heaviside step
function.

The sensitivity function s(v) for the positive and negative voltages v is
defined as:

s(v) = Ap(−1 + e
|v|
tp )stp(v) +An(−1 + e

|v|
tn )stp(−v) (35)

Subsequently, the expression that limits the working range of the memristor
to [Rmin, Rmax] is modeled as:

r(v) =

{
rp(v) = a0 + a1v, v > 0
rn(v) = b0 + b1v, v ≤ 0

(36)

with a0, a1, b0, b1 being fitting parameters.
The voltage threshold values which are used to change the current resis-

tive state are also taken into account in this model and amount to:

Vt(R) =

{
Vtp(R) = (R− a0)/a1, v > 0
Vtn(R) = (R− b0)/b1, v < 0

(37)

The model described in this section is used for the experiments with real
memristive synaptic weights as explained in Section 6.3. Parameters of one
memristor model fitted to real measurement data during the preparation of
experiments with real memristive synaptic weights are shown in Table 2.

23



Memristors

Parameter Value
Ap 0.197
An -0.126
tp 1.731
tn 1.731
a0p 2731.854
a0n 6568.330
a1p 3393.513
a1n 636.491

Table 2: Memristor model parameters which were extracted in the preparation
phase of experiments with real memristive synaptic weights (summarized in

Section 6.3).

From parameters in the previous table we can plot resistance changes of the
memristor model for different voltage values:

Figure 10: Changes in a resistance value for the memristor model given in Table 2.
The initial resistance value was set to R0 = 6kΩ. We applied 500 pulses of positive

and negative voltages to the memristor. The amplitude of voltage pulses was
increased/decreased every 500 pulses, causing the resistance to further increase or
decrease. Starting values of positive and negative voltage levels were Vstartp=1.2V

and Vstartn = -1.2V, while the increase/decrease step was Vstep =0.1V.

24



ANNs/SNNs with memristors

5 ANNs/SNNs with memristors
After the memristor was developed in 2008, researchers from many appli-
cation areas have discussed and proven its potential in several fields. The
memristor is an analog nano-device that has non-volatile memory. Also, it is
a device with low power consumption, which makes it suitable for neuromor-
phic hardware applications. In neuromorphic applications, SNNs containing
a vast amount of neurons and synaptic connections are implemented directly
on hardware with power consumption as low as possible. Even though the
memristor concept has a lot of advantages, there are also several disad-
vantages and complications. For example, a physical process behind the
memristive devices is not yet completely understood, leading to fabricated
devices that have entirely different characteristics and short life. Currently,
using ANNs/SNNs with memristive weights is usually done by mapping the
real weight value to conductance/resistance of the memristor. That concept,
although straightforward, is limited because conductance/resistance values
can saturate and lead to no changes in weights afterward. Another prob-
lem is that each memristive device must be controlled individually because
of the variability of voltage threshold levels and resistance levels. Further
discussion of problems in the ANNs with memristive synapses are discussed
in Section 5.1. Unsupervised learning in SNN with STDP and memristive
synapses is depicted in Section 5.2.

5.1 Supervised learning with hardware memris-
tive synapses

Researchers from IBM analyzed in [26] the training of a deep ANN with
165.000 hardware memristive synapses on the MNIST classification task. In
their setup, a 3-layer ANN was used, and each synaptic weight was modeled
with two hardware memristive devices (wij = G+ − G−). They considered
ANNs as a non-Von Neumann architecture where data and processing are
not separated, thus, an ANN is created as the crossbar array of memristive
devices each containing one selector device, through which neurons can com-
municate. The network is trained using a modified and hardware friendly
backpropagation algorithm. In crossbar architectures like this, the current
I is proportional to the input signal xi (voltage in our case) and conduc-
tance value G. Because of that the forward pass is parallel and requires the
comparison of the positive and negative currents.

The main problems that cause the degraded performance of such a net-
work are following: non-linearity of the conductance change, varying working
range of conductance values, the asymmetry between the increase/decrease
of weights and low or high conductance values that result in non-responsive
devices [26]. It is also noted that bounding conductance values in some

25



ANNs/SNNs with memristors

range degrades the performance slightly. In the previous setup, individual
memristors are controlled by software. To correctly derive the backpropaga-
tion algorithm in the software, mathematical models of memristors are used
in the background and gradients are mapped to the respective conductance
changes. Therefore, learning is performed by applying the parallel pulse
trains to reach the new conductance values suggested by the optimization
algorithm.

In our learning setup with real memristive synapses, discussed in Section
6.3, we are not using a crossbar array structure, but the learning process is
structured similarly like in this work.

Final test accuracy obtained for such a network on the MNIST task was
82.9%. Results derived in the IBM lab are promising, since they not only
tackle a lot of problems related to memristive synapses, but also because
results of the more extensive and scalable memristive architecture are pre-
sented. All results published before the IBM work contained less than 100
hardware memristive synapses.

5.2 Unsupervised learning with STDP

Significant results have been also achieved in unsupervised learning exper-
iments with hardware memristive synapses [27]. The memristive devices
are suitable for the spike-timing-dependent plasticity (STDP) learning since
their dynamic takes similar form. If the synaptic weight is encoded as the
memristive conductance, long-term potentiation (LTP) and long-term de-
pression (LTD) can be obtained easily using the superposition of the differ-
ent voltage shapes [28].

The memristive dynamics is suitable for the unsupervised learning tasks
since a change in conductance for both LTD and LTP events converge to the
unique equilibrium points: large conductance and small conductance values
for LTP and LTD respectively. Those values represent the upper boundary
conductance and the lower boundary conductance of the memristor’s oper-
ating range. If LTP and LTD events are modeled with probabilities p and
1−p respectively and represent a input to one memristive device, a conduc-
tance will converge to the unique equilibrium point. For example, if we have
95% of LTP events and only 5% of the LTD events, the conductance would
converge close to the upper conductance boundary. These ideas are experi-
mentally demonstrated in [27], where it has been shown that the memristive
device as the dynamical system can encode the conditional probabilities
p(PRE|POST = 1). Conditional probability p(PRE|POST = 1) represent
a probability that the presynaptic neuron fires given that the postsynaptic
neuron has fired.

It was also demonstrated that a binary clustering task could be solved
with a probabilistic neural network in the form of a winner-take-all (WTA)
network [8]. The WTA network structure consisted of two spiking neurons

26



ANNs/SNNs with memristors

that both had four inputs. Inputs of the one neuron were fully given by four
hardware memristive synapses, while for the other neuron, four software
based memristive synapses were used. Software based memristive synapses
had similar properties as hardware ones. Hardware and software synaptic
weights were mapped to the conductance values of the memristive devices
using the equation wij = α(Gij −Gc) where α is the scaling term, Gij is the
current conductance value of a device and Gc is a bias term. That is exactly
the same principle as used in our SNN with hardware memristive synapses
in 6.3.

As an input, 1200 four-bit patterns y = (y0, y1, y2, y3) were presented.
Base parts of input patterns were 1001 and 0110, and with a probability of
10% one bit in the input is switched. In the WTA networks, the probability
pi(y, t) that the neuron i wins the competition and spikes at event t is:

pi(y, t) =
eUi(y,t)∑
j e

Uj(y,t)
(38)

The neuron’s membrane potential values were updated using:

Ui(y, t) = θi(t) + wi(t) · y(t) (39)

where Ui(y, t) is the membrane potential of neuron i, θi(t) is a homeostatic
constant (bias term) that regulates the firing activity of the neuron and wi is
a weight vector from inputs y to neuron i. The dot indicates the dot prod-
uct. The homeostatic plasticity term θi(t) makes sure that both neurons
compete equally in the WTA network and fire similarly often on average.
That is highly important for robust learning.

It was shown that the WTA network completely solved the binary clus-
tering task, with one neuron specializing to one pattern (for instance 1001),
whereas the other neuron concentrated on the opposite one (for example
0110). Also, the network robustly handled the noise that was included in
the input data. A forgetting and re-learning possibility was also demon-
strated with such a WTA network, where weights of one neuron have been
intentionally changed so that neuron must re-learn the specific pattern.

27



Experimental results

6 Experimental results
This chapter describes a new neuron model that enables exact gradient
computation. Our neuron model and algorithm have similarities with the
SpikeProp method [11] and one very recent method for supervised learning
in SNNs which uses temporal coding [18]: input to our neuron is a tempo-
rally coded stimulus and one neuron can fire exactly once during the time
course of the SNN simulation.

We will show that our spiking neuron model can be trained to solve logi-
cal functions such as AND, OR and NAND. With a network of such spiking
neurons, the non-linear XOR function can be learned. Similar results are
also obtained for spiking neuron models and memristive synapses in simula-
tion and those results can be found in Section 6.2. The learning capabilities
of our spiking neuron with real memristive synapses is discussed in Section
6.3. In that setup, a degraded performance is observed due to the variability
and noise in memristive devices. In Sections 6.5 and 6.6 it is shown that a
deep network of our spiking neurons achieved comparable performance to
artificial neural networks of the similar structure, when solving the Iris and
MNIST classification tasks.

6.1 New neuron model

Our neuron model exploits spike timing for the computation. Temporally
coded excitatory and inhibitory spike times are forming an input to our
neuron. Each excitatory input has a corresponding excitatory weight, and
the same applies to the inhibitory input. The combination of input spiking
times and weights will give us a membrane ”voltage” value V (t) of the
neuron. As each neuron spikes only once, we define the output spike time
tsp of the neuron as time when V (t) reaches some predefined threshold value
ϑ. We define our neuron model with the following equations:

E(t) =
∑
i:tEi <t

wEi (40)

I(t) =
∑
j:tIj<t

wIj (41)

V̇ (t) =
E(t)

I(t) + 1
+ b (42)

where:

• tEi - represents the input spike time of an excitatory neuron i,

• tIj - represents the input spike time of an inhibitory neuron j,

28



Experimental results

• wEi - represents the weight from an excitatory neuron i,

• wIj - represents the weight from an inhibitory neuron j, and

• b - represents the bias.

Graphical representation of our neuron model together with changes of E(t),
I(t) and V (t) values is shown in Figure 11.

All weights in our neuron model are always positive, and they cannot
change the timing of an input spike. From equations (40), (41) and (42)
it is clear that V value increases linearly between two input spikes. That
can also be observed in Figure 12, where we can see different changes in
membrane voltage for different excitatory and inhibitory weights and input
spike times.

We can compute a voltage value V (tj) at spike time tj from the following
equation:

V (tj) =

j∑
i=1

(ti − ti−1)V̇ (t−i ) (43)

where:

• V̇ (t−i ) - represents the V̇ value just before the i− th input spike.

Then, the V value in the ε surrounding of tj (for small ε) is:

V (tj + ε) = V (tj) + V̇ (t+j )ε (44)

Using the previous equation we can investigate the threshold condition and
compute a time of crossing the threshold tsp:

V (t̂+ ∆t) = V (t̂) + V̇ (t̂+)∆t⇒

V (t̂) + V̇ (t̂+)(tsp − t̂)
!

= ϑ
(45)

tsp = t̂+
ϑ− V (t̂)

V̇ (t̂+)
(46)

where:

• t̂ - represents the last input spike time before the threshold is crossed,
and

• tsp - represents the output spiking time of the neuron (time of threshold
crossing).

29



Experimental results

(a) Graphical representation of the neuron model. The neuron
receives excitatory (tE1 , tE2 , ...) and inhibitory (tI1, tI2, ...) spike
times from input neurons. Additionally, every excitatory input

has an excitatory (wE1 , wE2 , ...) weight and every inhibitory
input has an inhibitory (wI1 , wI2 , ...) weight. Each neuron

spikes only once and this time represents the output spike time
of the neuron tsp.

(b) One possible example of E(t), I(t) and
V (t) changes over time given input excitatory

spike times tE1 , tE2 , input inhibitory spike
times tI1, tI2 and threshold value ϑ. As it can
be seen from the figure, spiking time of the

neuron tsp is defined as the time when
voltage V(t) crosses the threshold ϑ.

Figure 11: Graphical representation of the neuron model and one example of
evolution of E(t), I(t) and V (t) values over time.

30



Experimental results

(a) Change in membrane voltage V (t) over time for one neuron with
two excitatory inputs (tE ∈ {0.5, 3}) with wE ∈ {0.2, 0.5}) and two

inhibitory inputs (tE ∈ {1, 10}) with wI ∈ {5, 0.5}). Neuron threshold is
set to ϑ = 1. Neuron spikes at tsp = 5.5. The last inhibitory spike tI2
comes much later, and does not have any contribution to the spike

condition.

(b) Change in membrane voltage V (t) over time for one neuron with
two excitatory (tE ∈ {3, 7} with wE ∈ {0.2, 0.2}) and two inhibitory
(tI ∈ {5, 10} with wI ∈ {5, 1.5}) inputs. Neuron threshold is set to
ϑ = 3. The neuron spikes at tsp = 18.2 and all input spike times

contribute to the spike generation.

Figure 12: Changes in membrane voltage V (t) over time.

31



Experimental results

Derivatives of the output spike time tsp of the i− th neuron w.r.t excitato-
ry/inhibitory weights wEi /w

I
i are:

∂tsp
∂w∗i

=
−∂V (t̂)

∂w∗i
V̇ (t̂+)− ∂V̇ (t̂+)

∂w∗i
(ϑ− V (t̂))

V̇ (t̂+)2
(47)

where ∗ describes excitatory E or inhibitory I weights and:

∂V̇ (t̂+)

∂wEi
=

1

I(t̂+) + 1
tEi ≤ t̂ (48)

∂V̇ (t̂+)

∂wIi
= − E(t̂+)

(I(t̂+) + 1)2
tIi ≤ t̂ (49)

and:

V (t̂) =

idxt̂∑
i=1

(ti − ti−1)V̇ (t−i ) (50)

∂V (t̂)

∂w∗i
=

idxt̂∑
j=1

(tj − tj−1)
∂V̇ (t−j )

∂w∗i
(51)

where idxt̂ represents the index of last input spike time before the threshold
is crossed. By inserting equations (48) and (49) into equation (51), we get:

∂V (t̂)

∂wEi
=

idxt̂∑
j=idx

tE
i

(tj − tj−1)
1

I(t̂j
−

) + 1
(52)

∂V (t̂)

∂wIi
= −

idxt̂∑
j=idx

tI
i

(tj − tj−1)
E(t̂j

−
)

(I(t̂j
−

) + 1)2
(53)

Derivatives of the output spike time tsp of i − th neuron w.r.t the neuron
bias bi are:

∂tout
∂bi

=
−∂V (t̂)

∂bi
V̇ (t̂+)− ∂V̇ (t̂+)

∂bi
(ϑ− V (t̂))

V̇ (t̂+)2
(54)

where from equation (42) we have:

∂V̇ (t̂+)

∂bi
= 1 (55)

and:

32



Experimental results

V (t̂) =

idxt̂∑
i=1

(ti − ti−1)V̇ (t−i ) (56)

∂V (t̂)

∂bi
=

idxt̂∑
j=1

(tj − tj−1)
∂V̇ (t−j )

∂bi
(57)

By inserting equation (55) into equation (57) we get:

∂V (t̂)

∂bi
=

idxt̂∑
j=idxti

(tj − tj−1) (58)

Finally, derivatives of the output spike time tsp of the i − th neuron w.r.t
input spike times of the same neuron tk are:

∂tsp
∂tk

=
∂tsp

∂V (t̂)

∂V (t̂)

∂tk
(59)

with:

∂tsp

∂V (t̂)
= − 1

V̇ (tsp)
(60)

and using equation (56) we have that:

∂V (t̂)

∂tk
= V̇ (t−k )− V̇ (t−k+1) = V̇ (t−k )− V̇ (t+k ) (61)

which means that:

∂tsp
∂tk

=
V̇ (t+k )− V̇ (t−k )

V̇ (tsp)
(62)

Notations used for the backpropagation algorithm in a fully-connected spik-
ing neural network with one hidden layer are shown in the Figure 13.

Derivatives of the chosen loss function w.r.t weights and bias values in
hidden and output layers are computed using chain rules:

∂Loss

∂wo∗jk
=
∂Loss

∂tk

∂tk
∂wo∗jk

(63)

∂Loss

∂bo∗jk
=
∂Loss

∂tk

∂tk
∂bo∗jk

(64)

∂Loss

∂w1∗
ij

=
∂Loss

∂tk

∂tk
∂tj

∂tj
∂w1∗

ij

(65)

33



Experimental results

Figure 13: Part of the spiking neural network setup with one hidden layer (i -
neuron in the input layer, j - neuron in the hidden layer and k - neuron in the

output layer).

∂Loss

∂b1∗ij
=
∂Loss

∂tk

∂tk
∂tj

∂tj
∂b1∗ij

(66)

6.2 Learning logical functions with non-memristive
and modeled memristive synapses

Learning logical functions (AND, OR, XOR and NAND) with our neuron
model required encoding binary inputs and outputs into input and output
spike times. We used a temporal coding principle: the more intensive an
input is, the earlier spike transmission happens. Hence, input binary values
are encoded with early and late input spike times, where the 0 input binary
value is defined as the late input spike time (tlate), and the 1 input binary
value is defined as the early input spike time (tearly). Output binary values
are encoded based on the same principle, but different values are chosen for
early and late output spike times. Late output spike time (tsplate) corre-
sponds again to the output binary value of 0, and the early output spike
time (tspearly) corresponds to the output binary value of 1.

Chosen early and late input spike times (tearly and tlate), early and late
output spike times (tspearly and tsplate) and threshold value (ϑ) for each neu-
ron are presented in the following table:

tearly [s] tlate [s] tspearly [s] tsplate [s] ϑ

1.5 3 4 5 1

Table 3: Chosen initial input and output spike time values.

34



Experimental results

One of the challenges was the presentation of input spike times to the
neuron. The initial idea was to present input spike times simply as excita-
tory inputs (as depicted in Figure 14). However, this cannot handle more
complex logical mappings (for instance in the XOR and NAND functions).
In case of NAND and its logical table, a late spike in both inputs should give
the result of an early output spike time (tspearly). On the other hand, early
input spike times should give the result of a late output spike time (tsplate). If
we consider only excitatory inputs and the mathematical model of the neu-
ron, we can conclude that it is not possible to obtain those two conditions
defined by the NAND logical function. For this reason, more complex input
representations are defined in Figure 15. That improved the final result by
including both excitatory, inhibitory, inverted excitatory (invxEi which is
defined as a time-inverted version of the xEi ) and inverted inhibitory inputs
(invxIi which is defined as a time-inverted version of the xIi ).

Figure 14: Input representation containing two excitatory values (in further text -
simple).

We created regression tasks to obtain exact early and late output spike
times based on input spike times with a certain precision, for each logical
function. As objective function, we introduced the modified mean-squared
error (MMSE) loss function as a slight modification of the mean-squared
error (MSE) loss. The main difference between the MSE and MMSE is that
in the MMSE loss function we include regions that will have zero loss and
gradients to improve our final result further. Those regions are based on
desired output spike times (ti) and actual output spike times (tspi):

MMSE =


0 if ti = tsplate and tspi ≥ ti
0 if ti = tspearly and tspi ≤ ti
1
n(ti − tspi)2 otherwise

(67)

35



Experimental results

(a) Input representation containing two
excitatory and two inhibitory values

(in further text - basic).

(b) Input representation containing two
excitatory and two inverted excitatory values

(in further text - time-inverted).

(c) Input representation containing two
excitatory, two inhibitory and two inverted

excitatory values
(in further text - excitatory - inhibitory).

(d) Most complex input representation,
containing two excitatory, two inhibitory, two

inverted excitatory and two inverted inhibitory
inputs

(in further text - full expansion).

Figure 15: More complex input representations.

36



Experimental results

6.2.1 Learning logical functions with non-memristive synapses

Single neuron learning. The modified-mean-squared error [MMSE] loss
function was minimized for learning simple logical functions with single neu-
ron. All results were obtained with the Gradient Descent Optimizer and
learning rate α = 0.001. Batch learning was applied with a batch size of
four. Input dimensionality varied from only two inputs (basic setup) to
twelve inputs (full expansion setup). The number of epochs was set to 5000,
and weight clipping to positive weights was also applied.

Final results of the single neuron learning are depicted in the following
table:

Task Input encoding Loss Misclassification

AND
simple 0.0217 0
basic 0.0362 0

time-inverted 0.0217 0
excitatory-inhibitory 0.0495 0

full expansion 8.86 · 10−7 0

OR
simple 0.0338 0
basic 0.0075 0

time-inverted 0.0179 0
excitatory-inhibitory 0.0014 0

full expansion 0.0083 0

XOR
simple 0.2554 2
basic 0.2371 1

time-inverted 0.2500 2
excitatory-inhibitory 0.2220 2

full expansion 0.2267 1

NAND
simple 0.1890 1
basic 0.1890 1

time-inverted 0.0179 0
excitatory-inhibitory 0.0024 0

full expansion 5.02 · 10−5 0

Table 4: Results of the single neuron learning.

In the previous table, final loss and misclassification results are shown for
each logical task (AND, OR, XOR and NAND) and for each input encoding

37



Experimental results

that is defined (simple, basic, time-inverted, excitatory-inhibitory and full
expansion). Final loss values represent final modified-mean squared error
values for all tasks. To count the number of misclassified examples, we in-
cluded a threshold value of Θ = 4.5s and based on that value we classified
results into binary values (0’s and 1’s). In one simulation run, actual output
spike times for the AND logical function were [5.023, 4.751, 4.751, 3.861]s.
With the consideration of the previously defined threshold value Θ = 4.5s,
we will map each value from the final result to 0 if that value is larger than
Θ. Otherwise, the value will be mapped to 1. In this example, the final
mapped result will be [0, 0, 0, 1]. The number of misclassified examples from
the mapped result are counted, and that result is depicted in the last col-
umn. The previous result is the same one we would get for the AND logical
function, so the number of misclassified examples is 0.

From results shown in Table 4, we can conclude that simple logical func-
tions such as AND and OR were solvable for every input encoding. That was
not the case for more complex logical functions such as XOR and NAND.
XOR logical function was not solvable in any case, while the NAND logical
function was solvable for time-inverted, excitatory-inhibitory and full
expansion encodings.

Spiking neural network learning. A spiking neural network was cre-
ated with the following structure:

• number of input neurons: varied based on a setup

• number of hidden neurons: 4

• number of output neurons: 1

The SNN was implemented as a feed-forward fully-connected network, using
the PyTorch [29] library. The forward pass through the network was done,
where all output spiking times in all layers were computed. In this step,
all the dynamic computational graphs needed for the gradient computation
were constructed. Gradients of the MMSE loss w.r.t weights were computed
in the subsequent step. In the end, we updated weights using the Gradient
Descent Algorithm and learning rate α = 0.001. In this setup, batch learning
with a batch size of four was performed.

The SNN was trained for 15000 epochs, and weight clipping to allow
only positive weights was applied. The same number of excitatory (two in
our case) and inhibitory (two in our case) output spike times of the hidden
layer formed the input to neurons in the output layer.

Final results of the SNN applied to the logical functions are presented
in the following table:

38



Experimental results

Task Input encoding Loss Misclassification

AND
simple 0.0217 0
basic 0.0131 0

time-inverted 0.0049 0
excitatory-inhibitory 2.57 · 10−5 0

full expansion 2.37 · 10−23 0

OR
simple 0.0033 0
basic 0.0005 0

time-inverted 0.00164 0
excitatory-inhibitory 0.00445 0

full expansion 5.41 · 10−15 0

XOR
simple 0.0478 0
basic 7.72 · 10−5 0

time-inverted 0.0794 0
excitatory-inhibitory 0.0120 0

full expansion 4.08 · 10−10 0

NAND
simple 5.66 · 10−5 0
basic 0.0009 0

time-inverted 0.00015 0
excitatory-inhibitory 4.9 · 10−11 0

full expansion 1.57 · 10−29 0

Table 5: Results of the spiking neural network.

If we look into the results obtained from the spiking neural network, we
can conclude that all logical functions were solvable for every input encoding.
As expected, results of the SNN are in general better compared to the results
obtained with single neuron and yield to smaller final loss values. The lowest
loss value is obtained for all logical functions with the full expansion input
representation.

39



Experimental results

6.2.2 Learning logical functions with modeled memristive
synapses

We have also defined a neuron model with modeled memristive synapses. In
that case, we defined excitatory and inhibitory weights as:

wex,inh = αaap(Gex,inh −Gc) (68)

where:

• αa - represents the scaling parameter of memristive weights,

• ap - represents the parameter defined in the mathematical model of
the memristor (given in Table 6),

• Gex,inh - represents the conductance of the memristor, and,

• Gc - represents the bias conductance value. We chose Gc such that
our memristive weights were positive and in reasonable range.

Parameter Value
Ap 0.12
An -79.03
tp 0.59
tn 1.12
kp 8.10 · 10−3

kn 9.43 · 10−3

rp0 3085
rp1 1862
rp2 0
rn0 5193
rn1 378
rn2 0
ap 0.24
bp 2.81

Table 6: Memristor model parameters taken from [24].

Initial memristive setup. Parameters defined in Table 6 were used for
all our memristive weights in different setups outlined below. Those param-
eters are defined in [24] and represent the experimental fit of the memristor
model defined in Section 4.2.3. The resistance of each memristive weight was
defined randomly, and the Gc was always defined such that initial weights
are positive. For the objective function, MMSE was chosen.

40



Experimental results

Single neuron learning. In single neuron learning with memristive synapses,
batch learning with a batch size of four and weight clipping to positive
weights were applied. Chosen hyperparameters for learning simple logical
functions with such a setup are shown in Table 7.

αa Ginit (ex. or inh.) Gc Optimizer Learning rate Epochs

80000 1
rand(4800,5000)

1
5500 Gradient Descent 500 10000

Table 7: Hyperparameters of the single neuron learning with modeled memristive
synapses.

Final results of the single neuron learning with modeled memristive synapses
can be found in Table 8.

41



Experimental results

Task Input encoding Loss Misclassification

AND
simple 0.0217 0
basic 0.0312 0

time-inverted 0.0217 0
excitatory-inhibitory 0.0689 0

full expansion 2.99 · 10−12 0

OR
simple 0.0286 0
basic 0.0044 0

time-inverted 0.0179 0
excitatory-inhibitory 0.00011 0

full expansion 0.0005 0

XOR
simple 0.2554 2
basic 0.207 1

time-inverted 0.2500 2
excitatory-inhibitory 0.210 2

full expansion 0.246 2

NAND
simple 0.1889 1
basic 0.357 2

time-inverted 0.0179 0
excitatory-inhibitory 0.00019 0

full expansion 0.00124 0

Table 8: Results of the single neuron learning with memristive synapses.

If we look into the results obtained with single neuron containing mod-
eled memristive synapses, we get the same conclusion as in the case with
single neuron with non-memristive synapses. Results of the single neuron
with memristive and with non-memristive synapses converge in most cases
to the similar optimal solution.

42



Experimental results

Memristive spiking neural network learning. In this section, a mem-
ristive spiking neural network, consisting of neurons with memristive synapses
was created in a feed-forward fully-connected manner. The simple memris-
tive SNN structure used for solving logical functions was:

• number of input neurons: varied based on a setup

• number of hidden neurons: 4

• number of output neurons: 1

The same number of excitatory (two in our case) and inhibitory (two in
our case) output spike times of the hidden layer formed the input to neurons
in the output layer.

Algorithm. To train the SNN with memristive synapses on logical func-
tions, the algorithm was altered compared to the standard backpropagation
where gradients of the loss function are always evaluated with respect to
weights:

1. A spiking neural network structure with the combination of neurons
described above was created.

2. a. Excitatory and inhibitory weights were created using the formula
depicted in equation (68).

b. The feed-forward pass of the network was done, where spike times
of neurons in all layers were computed, including spike times of
the output layer. For this step, the PyTorch library [29] was used,
and dynamic computational graphs were constructed.

c. The PyTorch built-in autograd functionality was used to calcu-
late the gradients and minimize the MMSE loss function. Gra-
dients of the MMSE loss function w.r.t to the resistance were
computed to obtain the resistance change. From gradients, we
update the resistance:

Rnew = Rold − η
∂MMSE

∂R
(69)

where η is a learning rate.

3. From the mathematical models, the pulse train length needed to reach
the new resistance value (Rnew) based on the old resistance value (Rold)
was calculated. That pulse train was applied to the memristor and
after that step, it was possible to calculate new conductance Gnew and
weight wnew from the new resistance Rnew:

43



Experimental results

Gnew =
1

Rnew
wnew = apαa(Gnew −Gc)

(70)

4. Steps 2 and 3 were repeated for the predefined number of epochs.

Again we applied batch learning with a batch size of four and weight
clipping to positive weights. Chosen hyper-parameters for learning simple
logical functions with memristive SNN are shown in the following table:

αa Ginit (ex. or inh.) Gc Optimizer Learning rate Epochs

320000 1
rand(4800,5000)

1
5100 Gradient Descent 1000 15000

Table 9: Memristive spiking neural network hyperparameters.

Final results of the memristive SNN can be found in Table 10.

44



Experimental results

Task Input encoding Loss Misclassification

AND
simple 0.0217 0
basic 2.91 · 10−21 0

time-inverted 1.77 · 10−28 0
excitatory-inhibitory 1.23 · 10−28 0

full expansion 1.65 · 10−28 0

OR
simple 0.0049 0
basic 0.0025 0

time-inverted 2.52 · 10−29 0
excitatory-inhibitory 4.90 · 10−26 0

full expansion 1.85 · 10−29 0

XOR
simple 0.0119 0
basic 2.29 · 10−28 0

time-inverted 0.0433 0
excitatory-inhibitory 1.81 · 10−9 0

full expansion 8.58 · 10−19 0

NAND
simple 5.68 · 10−26 0
basic 6.38 · 10−14 0

time-inverted 4.48 · 10−06 0
excitatory-inhibitory 1.71 · 10−25 0

full expansion 3.48 · 10−12 0

Table 10: Results of the spiking neural network with memristive synapses.

From results in Table 10, we can see that all logical functions were solv-
able for every input encoding. Results of the memristive spiking neural
network are in general better compared to the results obtained with single
neuron with memristive synapses. Also, the final results of spiking neural
network and memristive spiking neural network are comparable.

45



Experimental results

6.3 Learning logical functions with real memris-
tive synapses

We tried our memristive spiking neuron model using real memristive nano-
devices as synaptic weights throughout our cooperation with the Electronics
and Computer Science Institute, Electronic Materials and Devices Research
group of the University of Southampton. For that purpose, our code was
ported to the framework called ArcOne NeuroPack that enables commu-
nication and control of real hardware devices. Before applying the actual
learning on real memristive devices, parameters from devices were extracted,
and mathematical models were created. The mathematical model described
in the paper [25] was used in the background for the calculation of a pulse
length for resistance change.

Since memristors are devices with a lot of variability and noise, the dou-
ble learning idea was tested to minimize the noise effect on the final result:

Double learning. All computations (time changes, resistance changes)
were done on mathematical models of memristors that are kept in a memory,
while actual updates were done on real devices. When applying this idea to
real devices, we anticipatedly observed a degraded performance because of:

• readout noise while reading the current resistance value.

• noise that is present in the resistance change of the real devices,

• limitation of voltage pulse train length based on the time step dt.
With positive and negative voltage pulse trains we obtain resistance/-
conductance changes in real memristive devices.

6.3.1 Setup

Single neuron learning with the time-inverted input encoding was tested
in a simulation setup and with real hardware devices. Working ranges for
defined voltage levels of memristors were extracted before each experiment
with the real memristive devices. Afterwards, model fitting parameters and
initial resistance values were collected. That allowed us to have full mathe-
matical models of memristors in the background, with similar initial values
as the real ones. Synaptic weights were mapped to conductance values of
the memristive devices. This is similar to the setup described in Section
6.2.2. Before applying each pulse train on real devices, a voltage pulse time
needed to reach the new resistive state was calculated from the mathemat-
ical model. After that, the time was converted to a pulse train with the
constant time step dt = 10−6 s. It is worth noting that at each learning step
the length of a pulse train was limited to 1000 pulses. The single neuron

46



Experimental results

learning setup with time-inverted input encoding is presented in Figure 15.

Hyperparameters and mathematical models (given in Tables 21-22) used
for different logical learning tasks are shown in the following tables:

Weight Model Rinit [Ω] Rmin [Ω] Rmax [Ω] Rc [Ω] αa

w1,5 Model 3 15246 14500 16500 16500 119625
w2,5 Model 4 53879 52000 56000 56000 728000
w3,5 Model 5 5859 5700 7000 7000 37546
w4,5 Model 6 10764 10000 11500 11500 76666

Table 11: Hyperparameters and mathematical models used in the AND task.

Weight Model Rinit [Ω] Rmin [Ω] Rmax [Ω] Rc [Ω] αa

w1,5 Model 3 15845 14500 16500 16500 119625
w2,5 Model 4 53634 52000 56000 56000 728000
w3,5 Model 5 5763 5700 7000 7000 37546
w4,5 Model 6 11059 10000 11500 11500 76666

Table 12: Hyperparameters and mathematical models used in the OR task.

Weight Model Rinit [Ω] Rmin [Ω] Rmax [Ω] Rc [Ω] αa

w1,5 Model 3 15434 14500 16500 16500 119625
w2,5 Model 4 53298 52000 56000 56000 728000
w3,5 Model 5 6069 5700 7000 7000 37546
w4,5 Model 7 9143 9000 11000 11500 49500

Table 13: Hyperparameters and mathematical models used in the XOR task.

47



Experimental results

Weight Model Rinit [Ω] Rmin [Ω] Rmax [Ω] Rc [Ω] αa

w1,5 Model 3 15790 14500 16500 16500 119625
w2,5 Model 4 53822 52000 56000 56000 728000
w3,5 Model 5 5754 5700 7000 7000 37546
w4,5 Model 6 10877 10000 11500 11500 76666

Table 14: Hyperparameters and mathematical models used in the NAND task.

We defined memristive weights as:

wi,j = αa(Gi,j −Gc) (71)

where:

• αa - represents the scaling parameter defined for each memristive
synapse,

• Gi,j - represents the current conductance (Gi,j = 1
Ri,j

) of the memris-

tor, and,

• Gc - represents the baseline parameter (Gc = 1
Rc

) defined differently
for each memristive synapse.

Hyperparameters from previous tables are chosen such that all weights are
scaled using the equation (71), to the range wi,j ∈ [0, 1].

48



Experimental results

Algorithm. The algorithm used for training real memristive devices is
slightly different than the one explained with modeled memristive synapses:

1. Using initial resistance values from real memristive devices, weights
were created using the formula depicted in equation (71). Also, back-
ground mathematical models of memristors were created with similar
initial values as real ones,

2. In the feed-forward pass, we computed the spikes of output neurons.
For that step, the PyTorch library [29] was used, and dynamic com-
putational graphs were constructed. The feed-forward pass was done
using weights created from real memristive devices.

3. Using the PyTorch built-in autograd functionality gradients were au-
tomatically collected for the minimization of the MMSE loss function.
Gradients of the MMSE loss function w.r.t to the resistance are com-
puted to obtain the resistance change. From gradients, the updated
resistance is:

Rnewsim = Roldsim − η
∂MMSE

∂R
(72)

where:

• η is the learning rate,

• Roldsim is the old/previous resistance of the simulated model, and,

• Rnewsim is the new resistance that we would obtain with the sim-
ulated model.

4. From the mathematical models, the pulse train length needed to reach
the new resistance value (Rnewsim) based on the old resistance value
(Roldsim) was calculated. That pulse train was applied on both sim-
ulated and real memristive devices. After that, we read out the
new resistance value from the real memristive devices to calculate
Gnewreal = 1

Rnewreal
. Finally, new weights were calculated based on

the conductance of real memristive devices:

wnewreal = αa(Gnewreal −Gc) (73)

5. Steps 2, 3 and 4 were repeated for the predefined number of epochs.

6.3.2 Results

In this section, simulation results of single neuron learning with modeled
and real memristive synapses are presented. All results were obtained with
the Gradient Descent Optimizer with a learning rate of α = 10000, which
was used for the minimization of the MMSE function. Batch learning was

49



Experimental results

performed with a batch size of four, the number of epochs was set to 1500,
and weight clipping was used to limit our weights to only positive values.
To define initial weights of our simulated model, the same mathematical
models and initial resistance values from Tables 11-14 were used.

Task Input encoding Loss Misclassification

AND time-inverted 0.0233 0

OR time-inverted 0.0374 0

XOR time-inverted 0.2500 2

NAND time-inverted 0.0181 0

Table 15: Results of single neuron learning with modeled memristive synapses.

Simulation with modeled memristive synapses. We can conclude
that AND, OR and NAND functions were solvable in the simulation setup
when modeled memristive synapses were used in our neuron model. On the
other hand, the XOR function was not solvable, and for this logical function,
two output bits were not correctly classified.

Task Input encoding Loss Misclassification

AND time-inverted 0.1400 1

OR time-inverted 0.1274 1

XOR time-inverted 0.7641 2

NAND time-inverted 0.0475 0

Table 16: Results of single neuron learning with real memristive synapses.

Real memristive synapses. It is interesting to see that the NAND func-
tion was utterly solvable in the setup with real memristive synapses. We
can state that this result is comparable to results obtained with the modeled
memristive synapses. AND and OR functions were not completely solvable,
and for them, the final misclassification rate was one. We get the misclassi-
fication rate of two (that is the same result as in the simulation setup) for
the XOR function.

In the following part, we will compare ”optimal” simulation results and
results obtained from real devices for all weights, resistances, and loss func-
tion values.

50



Experimental results

AND. From Figure 16, we can see that all real weight values are noisy,
but the most significant noise is observable in weights w1,5 and w3,5 approx-
imately after the iteration number 600. Weights w1,5 and w4,5 follow the
”optimal” simulated value to some extent, but w2,5 deviates from the sim-
ulated value very quickly and reaches 0, while the optimal value amounts
to roughly 0.2. The reason behind the steep decrease concerning the weight
w2,5 to the value of 0 is because the real resistance quickly reaches the max-
imum resistance bound of Rc = 56kΩ. That means that the memristive
device changed its working range compared to what it was initially mea-
sured. The w3,5 value nicely follows the simulated value up to epoch 100
when we can see the divergence from the optimal value followed by the large
noise until the end of the learning process. Simulated and real loss values
are similar in the first 100 epochs where we can see the nice minimization
progress. The final loss value in this setup is 0.140, and that is larger than
the optimal one of 0.0233.

The plot of applied pulse trains and actual resistance values of all weights
is displayed in Figure 17. This plot is used to investigate the noise in weights
w1,5 and w3,5, which is significant after the iteration number 600. From re-
sistance changes of R1,5 and R3,5 values, we can see that roughly after the
pulse number 1200, our algorithm applied the positive and negative mix of
pulse trains because of the positive and negative gradients in our stimuli.
Then, the noise in resistance changes takes the bigger part in the case of
resistance R1,5. Noise in resistance R3,5 is even more significant, and we can
argue that the memristor started working in the switching mode making big
changes with the small number of pulses.

OR. From Figure 18, the significant noise in weights w1,5 and w3,5 roughly
after the iteration number 200 can be seen. Weights w3,5 and w4,5 follow the
”optimal” simulated value, while w2,5 deviates from the simulated value very
quickly and reaches 0 even though the optimal value amounts to roughly 0.4.
The reason behind the deviation of the real weight to 0 value w2,5 is the same
as in the AND experiment. We can also see that weight w1,5 starts initially
at a quite different value from the estimated one. Approximately at itera-
tion 200, we can observe that the weight w1,5 goes into another direction
compared to the simulated value. That happened because the weight w1,5

compensates changes introduced by the weight clipping of value w2,5. The
real loss value follows the simulated one, but the noise in loss value increases
between the iteration number 170 and 600. That is due to the noise that
is present in other weights as well. The real loss reaches the value of 0.127
that is larger than the optimal one of 0.0374.

Regarding the OR task and weight changes over time, we can observe

51



Experimental results

(a) Simulated and real weight w1,5 value (b) Simulated and real weight w2,5 value

(c) Simulated and real weight w3,5 value (d) Simulated and real weight w4,5 value

(e) Simulated and real loss values

Figure 16: Comparison of simulation results and results obtained for real
memristive devices for the AND task.

52



Experimental results

(a) R1,5 change and applied pulse trains

(b) R2,5 change and applied pulse trains

(c) R3,5 change and applied pulse trains

(d) R4,5 change and applied pulse trains

Figure 17: Actual resistance values and applied pulse trains for the AND task.

53



Experimental results

that noise takes a larger effect in weights w1,5 and w3,5 after the iteration
number 200. From Figure 19 it can be seen that our algorithm applied
positive and negative pulse trains roughly after iteration 200.

XOR. From Figure 20, we can see that only the weight value w4,5 follows
the simulated one. Weights w1,5 and w3,5 nicely follow the optimal value up
to iteration number 400. After that, they diverge because of the significant
noise that is present later. The w2,5 weight value does not capture needed
resistance changes and quickly goes to the value of 0, while the optimal
value is around 0.2. The reason behind the deviation of real weight value
w2,5 is the same as in the previous experiments. Regarding the loss value,
we can see that real values follow optimal ones up to the iteration number
400. After that period, the noise has a tremendous effect on the final loss
value until the end of the learning process. The final loss value obtained in
the setup with real memristors was 0.74, while in the simulation setup we
obtained 0.25.

54



Experimental results

(a) Simulated and real weight w1,5 value (b) Simulated and real weight w2,5 value

(c) Simulated and real weight w3,5 value (d) Simulated and real weight w4,5 value

(e) Simulated and real loss comparison

Figure 18: Comparison of simulation results and results obtained for real
memristive devices for the OR task.

55



Experimental results

(a) R1,5 change and applied pulse trains

(b) R2,5 change and applied pulse trains

(c) R3,5 change and applied pulse trains

(d) R4,5 change and applied pulse trains

Figure 19: Actual resistance values and applied pulse trains for the OR task.

56



Experimental results

(a) Simulated and real weight w1,5 value (b) Simulated and real weight w2,5 value

(c) Simulated and real weight w3,5 value (d) Simulated and real weight w4,5 value

(e) Simulated and real loss comparison

Figure 20: Comparison of simulation results and results obtained for real
memristive devices for the XOR task.

57



Experimental results

The plot of applied pulse trains and actual resistance values of all weights
for the XOR task is displayed in Figure 21. From Figure 21, we can see that
the switching behavior of memristors causes large resistance changes after
the pulse number 900. This can be observable mainly in resistance values
R1,5 and R3,5.

NAND. If we look at weight changes shown in Figure 22, we can see
that real weights and simulated weights are similar at the end of the learn-
ing process. Real weights w1,5 and w2,5 reach 0 much faster than optimal
ones. The most significant deviation between real and optimal weight value
can be observed in the weight change w4,5. The loss value obtained with
actual devices is like a delayed version of the simulated loss value. Neverthe-
less, real and simulated loss values are similar, and they converge to values
of 0.0475 and 0.0264 respectively. With this final results, we can say that
the NAND logical task was completely solvable with the configuration con-
taining real memristive devices. We can also see that the effect of noise on
all weights and loss value was insignificant compared to the previous tests.

From Figure 23, we can see nice positive resistance changes on all mem-
ristive weights. If we look at applied pulse trains, we can argue that our
algorithm applied mostly positive pulse trains in all cases. Compared to the
previous examples, we can see that we do not experience enormous resistive
jumps in weights and this led to a smaller noise and a possibility to solve
the NAND logical function.

In the above applied algorithm, resistance values from real devices are
not copied back to our simulated model. That implies that we are always
calculating a pulse train length based on our simulated model and if there
is a significant difference between simulated and real weights the time step
computation is not entirely correct.

To solve this problem, copying real/noisy resistance values from real
memristive devices to the simulated ones each n iterations is needed. This
approach was only tried in simulation, where respective noise levels were
modeled. More detailed discussion of the noisy memristive setup can be
found in the next chapter.

58



Experimental results

(a) R1,5 change and applied pulse trains

(b) R2,5 change and applied pulse trains

(c) R3,5 change and applied pulse trains

(d) R4,5 change and applied pulse trains

Figure 21: Actual resistance values and applied pulse trains for the XOR task.

59



Experimental results

(a) Simulated and real weight w1,5 value (b) Simulated and real weight w2,5 value

(c) Simulated and real weight w3,5 value (d) Simulated and real weight w4,5 value

(e) Simulated and real loss comparison

Figure 22: Comparison of simulation results and results obtained for real
memristive devices for the NAND task.

60



Experimental results

(a) R1,5 change and applied pulse trains

(b) R2,5 change and applied pulse trains

(c) R3,5 change and applied pulse trains

(d) R4,5 change and applied pulse trains

Figure 23: Actual resistance values and applied pulse trains for the NAND task.

61



Experimental results

6.4 Learning logical functions with modeled noisy
memristive synapses

In this subsection, we discuss results on AND, OR, XOR and NAND func-
tions of the single neuron learning with time-inverted input encoding, but
with modeled noisy memristive synapses. Readout noise was modeled with
the uniform distribution using γ · R · (2 · uniform(0, 1) − 1) where γ =
0.004 and R was the current resistance value. The noise in the resis-
tance change for all memristors was drawn from the uniform distribution
δ ·R · (2 · uniform(0, 1)− 1) where δ = 0.001. Noise models are taken from
our partners at the University of Southampton and parameters γ and δ were
chosen to match noise level observed in experiments with real memristive
synapses. In simulations with noise, we had two networks: one contain-
ing mathematical models without noise (modeling the simulated memris-
tors) and one containing mathematical models with noise (modeling the
real memristors). We calculated a pulse width needed to reach the new re-
sistance value from the model without noise, and then we applied this pulse
train on both models. The noisy model diverged from the model without
noise, and therefore, we copied weights and resistance values from the noisy
model back to the model without noise every 300 iterations. Memristive
weights have been created based on the mathematical models and initial
values defined in the previous chapter, as depicted in Tables 11 - 14. Also
in this setup, memristive weights were bounded to range wi,j ∈ [0, 1] and
batch learning was applied with a batch size of four. The MMSE loss was
minimized using the standard Gradient Descent optimizer with a learning
rate of 10000, and the number of training epochs was set to 2100. Final
results are shown in the following table:

Task Input encoding Loss Misclassification

AND time-inverted 0.0559 0

OR time-inverted 0.0863 0

XOR time-inverted 0.2713 2

NAND time-inverted 0.0254 0

Table 17: Results of the single neuron learning with noisy memristive synapses.

From the results above, we can see that it was possible to solve AND,
OR and NAND logical functions with noisy memristive synapses, while the
XOR task was not solvable. Final results are similar to simulation results
obtained with memristive synapses without noise (shown in Table 15).

In the following figures, the evolution of high precision (noiseless) and
noisy memristive weights can be seen for AND, OR, XOR and NAND tasks.

62



Experimental results

From all figures presented below, it can be seen that every 300 iterations
weight values of our high precision model are set to the noisy weight values.
Deviations between the noisy model and high precision model can also be
observed. Since we copy weights and resistance values from the noisy model
back to the high precision model every 300 iterations, our noisy model tends
to go towards the ”optimal” result.

63



Experimental results

(a) High precision and noisy weight w1,5 value (b) High precision and noisy weight w2,5 value

(c) High precision and noisy weight w3,5 value (d) High precision and noisy weight w4,5 value

(e) Loss comparison of high precision and
noisy single neuron learning

Figure 24: Comparison of noisy weights and high precision weights (without
noise) for the AND task in the single neuron learning setup with time-inverted

input encoding.

64



Experimental results

(a) High precision and noisy weight w1,5 value (b) High precision and noisy weight w2,5 value

(c) High precision and noisy weight w3,5 value (d) High precision and noisy weight w4,5 value

(e) Loss comparison of high precision and
noisy single neuron learning

Figure 25: Comparison of noisy weights and high precision weights (without
noise) for the OR task in the single neuron learning setup with time-inverted

input encoding.

65



Experimental results

(a) High precision and noisy weight w1,5 value (b) High precision and noisy weight w2,5 value

(c) High precision and noisy weight w3,5 value (d) High precision and noisy weight w4,5 value

(e) Loss comparison of the high precision and
noisy single neuron learning

Figure 26: Comparison of noisy weights and high precision weights (without
noise) for the XOR task in the single neuron learning setup with time-inverted

input encoding.

66



Experimental results

(a) High precision and noisy weight w1,5 value (b) High precision and noisy weight w2,5 value

(c) High precision and noisy weight w3,5 value (d) High precision and noisy weight w4,5 value

(e) Loss comparison of the high precision and
noisy single neuron learning

Figure 27: Comparison of noisy weights and high precision weights (without
noise) for the NAND task in the single neuron learning setup with time-inverted

input encoding.

67



Experimental results

6.5 Learning the Iris task using SNN with non-
memristive synapses

We compared results achieved by ANNs and SNNs on the Iris task to check
the generalization capabilities of our SNN model, i.e., to investigate how the
network performs on unseen data. The Iris dataset [30] consists of 150 sam-
ples from three different species of Iris flower (Iris setosa, Iris virginica, and
Iris versicolor). The original dataset was split into a training set (containing
120 samples) and test set (containing 30 samples).

6.5.1 Artificial neural network setup

Regarding the artificial neural network hyperparameters for the Iris task,
we used one hidden layer containing 30 neurons and the Adam optimization
algorithm [31] with a learning rate of 0.005. The number of training iter-
ations was set to 500 and training was performed on a full dataset of 120
examples. Furthermore, the cross-entropy cost function was optimized.

6.5.2 Spiking neural network setup

Regarding the spiking neural network hyper-parameters for the Iris task, we
used one hidden layer containing 30 neurons and Adam optimization algo-
rithm [31] with a learning rate of 0.005. The number of training iterations
was set to 500, and the learning rate was decayed with a factor of 0.5 ev-
ery 150 iterations. Like in the previous setup, training was performed on
a full dataset of 120 examples. Each training example in the Iris dataset
contains four unique features, and original features (without any transfor-
mation) were presented as excitatory inputs to the spiking neural network.
Each neuron in the hidden layer was created with the threshold of ϑ = 1.5,
while neurons in the output layer had the threshold of ϑ = 3. All spikes of
the hidden layer were split into half excitatory and half inhibitory inputs to
neurons in the output layer.

We optimized the cost function that will encourage the i − th output
neuron to spike first if the input image should be classified to i− th class:

Loss =
∑
i
i 6=c

σ (tc − ti) (74)

where:

• σ(x) - is the sigmoid function,

• tc - represents the output spike time of the neuron that spikes first,
and,

• ti - represent output spike times of all other neurons.

68



Experimental results

Final results are shown in the following table:

Setup Test set accuracy [%] Mean firing rate [%]

ANN 100 -
SNN 100 71

Table 18: Final Iris results.

From Table 18, we can see that both networks obtained 100% accuracy
on the test set with almost the same hyperparameters and number of train-
ing epochs. Train and test accuracy and loss function trends during learning
for both ANN and SNN are shown in Figures 28 and 29. From these fig-
ures, we can conclude that the ANN generalized faster and obtained the test
accuracy of 100% roughly at epoch 100, compared to the SNN, where the
test accuracy of 100% was reached after approximately 250 epochs. In both
cases, a smooth and decreasing trend of the loss function was observed, ex-
plaining the stable learning process. In test accuracy plots at the beginning
of learning one can see slight jumps in the SNN training, but the learning
process stabilizes once the task is mastered. The third column in the previ-
ous table depicts a final mean rate of all neurons on the test set. The mean
rate is calculated by looking at the first spike time in the output layer and
calculating the percentage of all neurons that spiked before that time. From
mean rate results it is clear that only a subset of our spiking neurons (on
average) is needed to solve the Iris task, thus the sparse output spike times
in SNN are the one advantage compared to ANN.

(a) Train and test accuracy comparison (b) Train and test loss comparison

Figure 28: Train and test accuracy and loss trend of the ANN on the Iris task.

69



Experimental results

(a) Train and test accuracy comparison (b) Train and test loss comparison

Figure 29: Train and test accuracy and loss trend of the SNN on the Iris task.

70



Experimental results

6.6 Learning the MNIST task using SNNs with
non-memristive synapses

In this section, a comparison of results achieved by ANNs and SNNs on the
MNIST handwritten digits classification task are presented. The MNIST
dataset [32] consists of 55000 training and 10000 testing images (each with
a dimension of 28x28 pixels) of 10 handwritten digits.

6.6.1 Artificial neural network setup

Regarding the artificial neural network hyper-parameters for the MNIST
task, we used one hidden layer containing 100 and 200 neurons. Both Adam
[31] and RMSProp [33] optimization algorithms are tested with a learning
rate of 0.005, and batch learning is performed with a batch size of 100.
The number of training iterations was set to 2750. The cross-entropy cost
function was optimized.

6.6.2 Spiking neural network setup

Regarding the spiking neural network hyper-parameters for the MNIST task,
spiking neural network setups with one hidden layer containing 100 and 200
neurons were used. Optimization with the Adam algorithm [31] and learning
rates of 0.01 and 0.02 was tested for the setup with 100 and 200 neurons
respectively. We have also tried the RMSProp optimization algorithm [33]
with the learning rate of 0.0005 on setups containing 100 and 200 neurons
in the first hidden layer. In all cases, batch learning was performed with a
batch size of 100 and the initial learning rate was decayed with the factor of
0.5 every 500 iterations. The number of training iterations was set to 2750.
Pixels in input images were normalized between values 0 and 1, and based
on that we created our input encoding (input spike times) in the range [a, b]
by using the following formula:

input encoding = a+ (1− pixel value)(b− a) (75)

In our setup, a and b values are set to 1 and 3 respectively. Equation (75)
represents another form of the temporal coding we use, where again the
stronger stimuli (larger input pixel) is encoded to the earlier spike time, and
vice versa. Basic input representation is used where input spike times are
fed to the same number excitatory and inhibitory input neurons.

Both neurons in the hidden and output layer had a firing threshold set
to ϑ = 20. All spike times obtained in the hidden layer output are split into
one half being excitatory and the other half inhibitory inputs to the neurons
in the output layer. Furthermore, we optimized the cost function defined in
equation (74).

71



Experimental results

Final results are shown in the following tables:

Network Opt. algo lr Hidden count Test acc. [%] Mean rate [%]

ANN
Adam 0.005 100 95.08 -
Adam 0.005 200 94.88 -

RMSProp 0.005 100 95.65 -
RMSProp 0.005 200 95.83 -

Table 19: Final results of different ANNs on the MNIST task.

Network Opt. algo. lr Hidden count Test acc. [%] Mean rate [%]

SNN
Adam 0.01 100 93.29 75.67
Adam 0.02 200 94.01 72.31

RMSProp 0.0005 100 93.64 82.52
RMSProp 0.0005 200 93.95 81.01

Table 20: Final results of different SNNs on the MNIST task.

From Tables 19 and 20, we can see that ANNs obtained slightly better
results compared to our SNN setup for the same number of training epochs.
From average mean firing rate values in SNNs, it is clear that only a subset
of neurons spiked before the time used to classify results on the test set.
From accuracy trends shown in 30 and 31 we can observe similar general-
ization power of both networks. However, our best SNN result of 94.01 %
is smaller than the best ANN result of 95.83 %.

72



Experimental results

(a) Train and test accuracy in the ANN setup
with 100 hidden neurons and Adam

optimization algorithm

(b) Train and test accuracy in the ANN setup
with 200 hidden neurons and Adam

optimization algorithm

(c) Train and test accuracy in the ANN setup
with 100 hidden neurons and RMSProp

optimization algorithm

(d) Train and test accuracy in the ANN setup
with 200 hidden neurons and RMSprop

optimization algorithm

Figure 30: Train and test accuracy trends of different ANN setups on the MNIST
task.

73



Experimental results

(a) Train and test accuracy in the SNN setup
with 100 hidden neurons and Adam

optimization algorithm

(b) Train and test accuracy in the SNN setup
with 200 hidden neurons and Adam

optimization algorithm

(c) Train and test accuracy in the SNN setup
with 100 hidden neurons and RMSProp

optimization algorithm

(d) Train and test accuracy in the SNN setup
with 200 hidden neurons and RMSprop

optimization algorithm

Figure 31: Train and test accuracy trends of different SNN setups on the MNIST
task.

74



Conclusion

7 Conclusion
In this thesis, we introduced a novel spiking neural network containing cus-
tom neuron models with memristive synapses. We showed that output spike
times of our neuron model are differentiable, thus the backpropagation algo-
rithm can be applied directly to networks of such neurons. We applied our
SNN with non-memristive synapses to simple and more complex tasks and
achieved results comparable with ANNs. Similar results are obtained when
SNNs with modeled memristive synapses are trained on simple tasks. On
the other hand, we experienced problems during training of SNNs with real
memristive synapses. Those problems were related to the variability and
noise of different devices, thus each device was controlled individually with
the respective threshold voltages. This is similar to the discussion addressed
in Section 5. Real memristive devices were sensitive when we applied the
mix of a small number of positive and negative pulse trains. In that case,
they started working in the switching regime making large positive and neg-
ative resistance changes for the small number of pulses. In the future work,
one possibility to solve this problem would be to include a smaller time step
dt to refine the resistance change. The time step used in all experiments
before was dt = 10−6 s. With ArcOne it will be possible to decrease this
time step to dt = 50 ·10−9 s, and this might lead to the decrease of switching
effect influence and smaller noise in our weight changes.

Using the copying of real (noisy) weights to our simulated (not-noisy)
weights every n iterations, we can use the correct gradient information which
can improve final results in the setup with real hardware devices. We demon-
strated the results of that approach only through our simulations in Section
6.4.

75



Appendices

Appendices

A Gradients of different loss functions

Gradients of the MMSE (67) loss with respect to a neuron output spike time
tspi are:

∂MMSE

∂tspi
=


0 if ti = tsplate and tspi ≥ ti
0 if ti = tspearly and tspi ≤ ti
− 2
n(ti − tspi) otherwise

(76)

Gradients of the loss function (74) used in Iris and MNIST tasks w.r.t spike
times of neurons in the output layer tk are:

∂Loss

∂tk
=


∑

i
i 6=c

σ (tc − ti) (1− σ(tc − ti)) if tk = tc

−σ (tc − tk) (1− σ(tc − tk)) if tk 6= tc
(77)

B Experimental memristor mathematical models

During multiple experiments with real memristors, several memristor model
parameters were extracted. All models are presented in the following tables:

Model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Ap 0.057 1.958 0.043 0.0116 0.197 0.0365

An -15.734 -3.038 -0.405 -0.059 -0.126 -0.648

tp 2.596 1.875 1.442 2.452 1.731 4.039

tn 2.596 1.875 1.442 2.308 1.731 4.039

a0p -54210.50 1752.045 5848.479 16367.18 2731.854 519.336

a0n 34965.853 10275.769 14903.227 72784.951 6568.330 8376.799

a1p 63549.984 10743.670 10731.767 23896.231 3393.513 4100.118

a1n -544.459 -228.823 -329.116 15913.471 636.491 -884.598

Vp 1.8 1.3 0.9 1.5 1.3 2.8

Vn -1.8 -1.3 -0.85 -1.45 -1.3 -2.8

Table 21: Various memristor model parameters.

76



Appendices

Model Model 7 Model 8 Model 9 Model 10 Model 11 Model 12

Ap 0.0713 0.299 -0.161 -7.154 1.357 1.1438

An -0.197 -0.163 0.0306 1.995 -4.681 -1.1483

tp 2.452 3.318 1.586 2.596 5.049 1.731

tn 2.164 3.173 1.586 2.452 5.049 1.731

a0p -458.574 7800.857 15872.892 8710.499 5809.417 9000

a0n 15399.756 11637.933 9876.268 7932.314 6662.820 5000

a1p 7822.382 1911.918 -5196.629 -770.313 111.667 500

a1n 4752.090 49.856 -2975.463 13.757 256.923 500

Vp 1.5 2.2 -1 1.6 3.3 1.3

Vn -1.3 -2.1 1 -1.6 -3.3 -1.3

Table 22: Various memristor model parameters.

77



Appendices

C References

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
nature, 521(7553):436, 2015.

[2] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learn-
ing representations by back-propagating errors. nature, 323(6088):533,
1986.

[3] Wolfgang Maass. Networks of spiking neurons: the third generation of
neural network models. Neural networks, 10(9):1659–1671, 1997.

[4] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics,
5(4):115–133, 1943.

[5] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer
feedforward networks are universal approximators. Neural networks,
2(5):359–366, 1989.

[6] Timothy J Gawne, TROELS W Kjaer, and BARRY J Richmond. La-
tency: another potential code for feature binding in striate cortex. Jour-
nal of neurophysiology, 76(2):1356–1360, 1996.

[7] Hélene Paugam-Moisy and Sander Bohte. Computing with spiking
neuron networks. In Handbook of natural computing, pages 335–376.
Springer, 2012.

[8] Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Panin-
ski. Neuronal dynamics: From single neurons to networks and models
of cognition. Cambridge University Press, 2014.

[9] Jesper Sjöström and Wulfram Gerstner. Spike-timing dependent plas-
ticity. Spike-timing dependent plasticity, 35(0):0–0, 2010.

[10] Larry F Abbott and Sacha B Nelson. Synaptic plasticity: taming the
beast. Nature neuroscience, 3(11s):1178, 2000.

[11] Sander M Bohte, Joost N Kok, and Han La Poutre. Error-
backpropagation in temporally encoded networks of spiking neurons.
Neurocomputing, 48(1-4):17–37, 2002.

[12] Wulfram Gerstner. Spike-response model. Scholarpedia, 3(12):1343,
2008.

[13] Andrzej Kasiński and Filip Ponulak. Comparison of supervised learning
methods for spike time coding in spiking neural networks. International
Journal of Applied Mathematics and Computer Science, 16:101–113,
2006.

78



Appendices

[14] Filip Ponulak. Resume-new supervised learning method for spiking
neural networks. Institute of Control and Information Engineering,
Poznan University of Technology, 42, 2005.

[15] Dongsung Huh and Terrence J Sejnowski. Gradient descent for spiking
neural networks. arXiv preprint arXiv:1706.04698, 2017.

[16] Paul J Werbos. Backpropagation through time: what it does and how
to do it. Proceedings of the IEEE, 78(10):1550–1560, 1990.

[17] Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legen-
stein, and Wolfgang Maass. Long short-term memory and learning-to-
learn in networks of spiking neurons. arXiv preprint arXiv:1803.09574,
2018.

[18] Hesham Mostafa. Supervised learning based on temporal coding in
spiking neural networks. IEEE transactions on neural networks and
learning systems, 29(7), 2018.

[19] Leon Chua. Memristor-the missing circuit element. IEEE Transactions
on circuit theory, 18(5):507–519, 1971.

[20] Leon O Chua and Sung Mo Kang. Memristive devices and systems.
Proceedings of the IEEE, 64(2):209–223, 1976.

[21] Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and R Stanley
Williams. The missing memristor found. nature, 453(7191):80, 2008.

[22] Zdeněk Biolek, Dalibor Biolek, and Viera Biolkova. Spice model of
memristor with nonlinear dopant drift. Radioengineering, 18(2), 2009.

[23] Yogesh N Joglekar and Stephen J Wolf. The elusive memristor: proper-
ties of basic electrical circuits. European Journal of Physics, 30(4):661,
2009.

[24] Ioannis Messaris, Alexander Serb, Spyros Stathopoulos, Ali Khiat,
Spyridon Nikolaidis, and Themistoklis Prodromakis. A data-driven
verilog-a reram model. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2018.

[25] Ioannis Messaris, Alexander Serb, Ali Khiat, Spyridon Nikolaidis, and
Themistoklis Prodromakis. A compact verilog-a reram switching model.
arXiv preprint arXiv:1703.01167, 2017.

[26] Geoffrey W Burr, Robert M Shelby, Severin Sidler, Carmelo Di Nolfo,
Junwoo Jang, Irem Boybat, Rohit S Shenoy, Pritish Narayanan, Kumar
Virwani, Emanuele U Giacometti, et al. Experimental demonstration
and tolerancing of a large-scale neural network (165 000 synapses) using

79



Appendices

phase-change memory as the synaptic weight element. IEEE Transac-
tions on Electron Devices, 62(11):3498–3507, 2015.

[27] Alexander Serb, Johannes Bill, Ali Khiat, Radu Berdan, Robert Legen-
stein, and Themis Prodromakis. Unsupervised learning in probabilistic
neural networks with multi-state metal-oxide memristive synapses. Na-
ture communications, 7:12611, 2016.

[28] Johannes Bill and Robert Legenstein. A compound memristive synapse
model for statistical learning through stdp in spiking neural networks.
Frontiers in neuroscience, 8:412, 2014.

[29] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer. Automatic differentiation in pytorch. In NIPS-W,
2017.

[30] Ronald A Fisher and Michael Marshall. Iris data set. RA Fisher, UC
Irvine Machine Learning Repository, 440, 1936.

[31] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[32] Yann LeCun, Corinna Cortes, and CJC Burges. The mnist dataset of
handwritten digits. 1998.

[33] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude. COURSERA:
Neural networks for machine learning, 4(2):26–31, 2012.

80


	Introduction
	Neuron models and spiking neural networks
	Spiking neural networks (SNNs)
	Spiking neuron models
	Synaptic plasticity and spike-timing-dependent-plasticity (STDP)

	Supervised learning in spiking neural networks
	SpikeProp
	ReSuMe
	Gradient descent in spiking neural networks
	Supervised learning in long-short-term memory networks (LSNNs)
	Supervised learning in spiking neural networks using temporal coding

	Memristors
	General introduction
	Memristor modeling

	ANNs/SNNs with memristors
	Supervised learning with hardware memristive synapses
	Unsupervised learning with STDP

	Experimental results
	New neuron model
	Learning logical functions with non-memristive and modeled memristive synapses
	Learning logical functions with real memristive synapses
	Learning logical functions with modeled noisy memristive synapses
	Learning the Iris task using SNN with non-memristive synapses
	Learning the MNIST task using SNNs with non-memristive synapses

	Conclusion
	Appendices
	Gradients of different loss functions
	Experimental memristor mathematical models
	References


		2018-11-30T10:28:30+0100
	Aid Ahmetovic
	Signature verification at http://www.signature-verification.gv.at




