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Abstract

With the rise of digitalization, the requirements for identity management on the Inter-
net grow. Especially with a rising number of sensitive services, the need for access to
flexible and trustworthy electronic identities (eID) increases. However, in traditional
identity management systems, Identity Providers (IdP) orchestrate identities. They often
control identity data, restrict identity domains and monitor the services a user accesses.
The Self-Sovereign-Identity (SSI) concept tackles these problems by empowering users
to store personal information locally and to authenticate to services without the use
of a trusted third party. A network of nodes operating a distributed ledger system
guarantees the trust within the system.
Nevertheless, the migration from existing identity management (IdM) systems to SSI
systems presents a source of errors, due to the SSI’s architecture that does not involve
an IdP. Therefore, this thesis presents a concept that follows an identity derivation
process without a trusted third party. Instead of being entirely migrated into a new
architecture, an SSI system may import qualified eIDs from a traditional IdM system
without dropping the level of assurance. The existing systems remain unaltered due
to the introduction of a broker called the identity agent. The agent coordinates the
derivation and revocation process. Since the agent does not reach the same level of as-
surance as a qualified IdP, a decentralized network of nodes in the SSI system executes
a consensus protocol to preserve the trust and ensures the eIDs authenticity.
This thesis demonstrates the concept’s feasibility with the implementation of an eID
derivation from the eIDAS network to the Sovrin SSI system. Further, a demonstra-
tor wraps the implementation into a user-friendly web application, and a security
evaluation guarantees the soundness of the proposed derivation process. These find-
ings provide a starting point for further research on the relatively new domain of SSI
systems.
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Kurzfassung

Bedingt durch die zunehmende Digitalisierung wächst auch die Bedeutung für Iden-
titätsmanagement (IdM) im Internet. Mit dem Zunehmen von elektronischen Dienst-
leistungen mit sensiblen Benutzerdaten, steigt auch die Nachfrage nach vertrau-
enswürdigen elektronischen Identifikationsinformationen. Dennoch vertrauen viele
traditionelle Identitätsmanagementbetreiber der Nutzung von Identitätsanbietern. Diese
können in den meisten Fällen auf gespeicherte Nutzerdaten zugreifen und kontrol-
lieren die Services, die der Benutzer erreichen kann. Diese Probleme werden von
selbstsouveränen Identitätssystemen (SSI) durch lokale Speicherung und Verwaltung
der persönlichen Daten gelöst. Ein Netzwerk aus Knoten bildet die Vertrauensbasis
innerhalb des Systems und speichert gemeinsam getroffene Entscheidungen auf ver-
teilten Kassenbüchern. Da SSI-Systeme keine Identitätsanbieter benötigen, kann die
Migration von einem bestehenden IdM-System zu einem SSI-System zu Komplikatio-
nen führen. Aus diesem Grund liegt der Fokus dieser Arbeit auf der Ableitung von
elektronischen Identitäten, anstelle einer Migration zu einem SSI-System werden nur
die Identitätsdaten von einem existierenden IdM-System abgeleitet. Dadurch kann ein
Benutzer von den Vorzügen einer SSI profitieren. Die bestehenden Systeme müssen
für die Ableitung nicht verändert werden, stattdessen wird in vorliegender Arbeit
ein Identitätsvermittler als Schnittstelle vorgestellt. Der Vermittler koordiniert den
Widerrufungs- sowie den Ableitungsprozess von Identitätsinformationen, der ohne
vertrauenswürdige Dritte auskommt. Stattdessen garantiert ein Konsensprotokoll die
Authentizität der abgeleiteten Daten. Die Machbarkeit des in der Arbeit präsentierten
Konzepts wird durch eine Implementierung und einen Demonstrator untermauert.
Die Implementierung leitet Daten aus dem eIDAS-Netzwerk ab und verwendet Sovrin
als SSI-System. Des Weiteren beschäftigt sich folgende Arbeit mit der Sicherheit des
beschriebenen Konzepts, die in einer eigenen Sicherheitsanalyse bestätigt wird. Die
gewonnenen Erkenntnisse sollen als Ausgangspunkt für weitere Forschung im noch
jungen Gebiet der SSI-Systeme dienen.
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1. Introduction

“Who are you?” - This regularly used phrase in the English language usually requests
for an unfolding of the identity. Familiar with the process of identification and authenti-
cation, we show passports when crossing borders, discount cards when going shopping
and membership-cards before entering a gym without overthinking. Everyday life in
modern society is full of situations where the provision of identity plays an important
role and schemes for registration and verification of identities are ubiquitous. Due to
digitalization and the shift of services from the real world to the virtual space, the need
for electronic IDs (eID) rises. According to European law [1], an eID contains identity
information that could provide authentication and identification for other services.
Banks, insurances or eGovernments can improve their services if an eID links to a
real-world identity.

Even though identification and authentication became crucial components of the web,
the fundamental structure of the Internet does not natively support these processes, or
like Kim Cameron, Chief Architect of Identity for Microsoft once said: “The Internet
was created without an identity layer.” [2]. Due to the lack of native integration, several
identity models have been developed that Bertino and Takahashi [3] describe in higher
detail. The models depict the relationship between the subject, which represents an
identity holder, the entity that controls the user’s data, called an Identity Provider (IdP)
and the Service Provider (SP), who offers a service to the subject [4]. The isolated model
represents the most basic model and describes an SP that operates an IdP. This model
challenges identity owners because they need to register a new digital identity for each
service. More convenient is the central model, where the IdP and the SP run separately
from each other. After a subject’s registration at an IdP, the same identity can be
used for authentication with several SPs. One prominent example of a central identity
model represents the single sign-on (SSO). A more advanced approach represents
the federated identity model, which connects distributed IdPs and allows a subject’s
authentication across domains. All of these models face the challenge of securing the
personal data in the IdPs but with a growing amount of information the honeypot for
attackers increases. Therefore, within the last years, attackers compromised billions of
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1. Introduction

profiles, including incidents of Equifax1, Yahoo2, and Facebook3 that reached mass-
media-attention. In contrast, the user-centric model [5] aims for higher privacy and
more control by storing personal data locally at the subject. Even though each model
focuses on different designs, all of them depend on an IdP. A curious IdP could keep
track of the services a subject connects to, which invades the individual’s privacy. An
even worse scenario poses a malicious IdP that could restrict the services a subject may
connect. The introduction of the Self-Sovereign Identity (SSI) model solves this issue
by enabling a subject to directly connect to an arbitrary service without the need for
an IdP. Even though the SSI structure aims for more privacy, without eIDs and trusted
IdPs sensitive services like banking could not be used. According to Ruff [6], the SSI
model is still in an early stage. Since SSI systems do not need IdPs, full migrations from
traditional identity management (IdM) systems where the IdPs play an essential role,
can lead to erroneous behavior.

1.1. Methodology

In this thesis, we want to empower subjects to manage their credentials independently
from an IdP and to prevent problems during the migration process from one identity
model to the other. Therefore, we propose an import process that derives qualified eIDs
from an existing trusted IdM system to an SSI system. This approach does not force the
existing system to change its identity model. Nevertheless, a user could take advantage
of the SSI properties like being entirely in charge of the identity data and using services
without an IdP overseeing the process. Since this thesis describes an import process,
the existing IdM system remains untouched and coexists with the SSI system, which
omits a potentially erroneous migration process.

During the import process the data format changes, which drops the level of assurance
of the eID. To circumvent this, we designed a process that preserves the eID’s authen-
ticity and trust. Following the motive for decentralization in SSI systems, our concept
for the transformation does not need a trusted third-party. Instead, we introduce an
approach that utilizes the distributed trust of the SSI network for accomplishing the
eID transformation in the derivation process.

1www.zdnet.com/article/hackers-stole-more-equifax-data-than-first-thought/.
2money.cnn.com/2017/10/03/technology/business/yahoo-breach-3-billion-accounts/.
3www.abc.net.au/news/2018-09-29/50-million-facebook-profiles-hacked/10319886.
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1. Introduction

1.2. Contributions

The thesis includes the following four contributions:

1. The Concept for the derivation process: In our concept, we propose a method
that derives a subject’s attributes from an existing IdM system to an SSI system
without making use of a trusted third party. We describe the architecture and
elaborate the existing components and the ones we newly introduce. The thesis
further contains a detailed insight into the data flow for identity derivation and
revocation.

2. Implementation of a Proof-of-Concept (PoC): Based on the concept we create
a PoC which imports qualified data and transforms the data format. One key
requirement demands the existing systems to remain unchanged. Therefore, we
create an interface that handles the network traffic and overcomes message format
barriers. We further implement the transformation process that guarantees the
level of assurance of the derived eID.

3. Demonstrator of PoC: We provide an easy-to-use demonstrator, which runs in a
publicly available web application. An external user can test our implementation
and get an impression of how the identity derivation process looks and works.

4. Security Evaluation: This thesis features a security evaluation based on the
Common Criteria [7] process. It introduces actors, assets, attackers and threats.
Subsequently, the analysis evaluates the mitigation mechanisms in concept and
implementation that protect the assets against attackers.

1.3. Outline

This thesis presents our findings. Chapter 2 provides information about technologies
that we apply in this project. Later, chapter 3 describes related systems, concepts, and
research. Afterward, we introduce the concept for the identity derivation in chapter 4.
Next, chapter 5 gives a detailed insight into the PoC’s implementation. After that, in
chapter 6, we describe the demonstrator from an end user’s perspective. Subsequently,
chapter 7 discusses design decisions from the concept and implementation. Chapter 8

deals with the security analysis, one of the main contributions of this thesis. Finally,
chapter 9 gives an outlook for future research and chapter 10 finishes this thesis with a
conclusion.

3



2. Preliminaries

Since we want to import data from a traditional identity management (IdM) system into
a decentralized identity system, we utilize several existing technologies. Therefore, the
following chapter gives an insight into the most relevant technologies and frameworks
that we use in this thesis. The chapter starts with an introduction to the eIDAS network
that is followed by a description of the concepts of DIDs and Verifiable Claims. In the
end, we focus on the Byzantine fault tolerance protocol and the decentralized identity
framework Hyperledger Indy.

2.1. eIDAS

The electronic identification, authentication and trust services (eIDAS) [8] regulation of
the European Union builds the legal basis for an interoperability network between the
member states. The regulation aims to connect the existing national systems to make
them interoperable by specifying the interfaces between them. The regulation offers
opportunities for member states to catalyze the digitalization of national eGovernment
strategies. It could facilitate the own citizens and businesses along with the ones from
other member states to reach these national resources.

The following section describes the architecture of the eIDAS network [9] [10] and the
concept of qualified eIDs. These parts succeed in a description of the eIDAS’s SAML
protocol and an introduction to the mobile phone signature, which represents the
Austrian eID authentication solution.

2.1.1. eIDAS Architecture

As mentioned before, eIDAS builds on the national eID solution of each member state.
Therefore a guideline [9] from the European Union specifies an architecture for adding
interoperability between different states. The guideline states that each member state
needs to implement an “eIDAS node” [10], which consists of an “eIDAS connector” and

4



2. Preliminaries

an “eIDAS services”. Those two sub-components handle the requests and responses
from and to the relying parties and the national Identity Providers (IdP). The eIDAS
nodes are connected and therefore, provide a network between the member states. Fig-
ure 2.1 depicts these connections. If a citizen of country A wants to use an application
connected to an eIDAS node of country B, the node redirects the authentication request
to the eIDAS node of country A. This node redirects the request to the national IdP,
where the citizen can use the login method of the home country for authentication.

Figure 2.1.: An overview of the eIDAS architecture

2.1.2. Qualified Electronic Identity

An eID uniquely identifies a person in a specific domain, which increases the trust
between two parties during electronic communication. Therefore, eIDs are utilized in
applications dealing with sensitive data. Furthermore, an eID must implement functions
for identification, signature creation, and authentication.

5
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Additionally to the properties stated before, a qualified eID ensures that an authority
bails for the correctness of the attributes. Therefore, an identity owner must follow
a strong authentication process to verify the identity. Due to this, qualified eIDs
are trustworthily treated and recognized by several services including eGovernment
applications.

2.1.3. Security Assertion Markup Language (SAML)

The Security Assertion Markup Language (SAML) [11] exchanges authentication and
authorization data between connected parties. The XML protocol runs across domains
and allows single-sign-on (SSO) and other capabilities of federated identity structure
(see chapter 1). The so-called SAML authorities describe domains that individually con-
sist of IdP and SP. While the IdP stores the user’s data and provides an authentication
mechanism, the SP offers a service to the user. The separation of the authentication
from the actual service advantageously allows one IdP to serve numerous SPs. Instead
of multiple implementations, only the IdP has to ensure a secure authentication method
and credential storage. In the case of the eIDAS architecture, SAML version 2.0 allows
the eIDAS nodes and the connected services to transmit personal data while maintain-
ing trust within the network [10].

Figure 2.2.: Sequence diagram of SAML assertion request/query profile

6



2. Preliminaries

Besides authentication, SAML provides so-called “SAML Assertions”. These XML
messages contain a subject’s information and a signature guaranteeing authenticity. In
this thesis, we use assertions in the context of the “SAML Assertion Query/Request
Profile” [12]. This schema defines a procedure, where an SP requests a subject’s data
from an IdP. The process depicted in Figure 2.2 starts with a user consuming an SP’s
service that requires personal information. The SP creates an assertion request, which
contains a list of attributes it wants to query from the IdP. Next, the SP redirects the
user with the request to the IdP. Once a user completes the authentication, the IdP
creates a cryptographically verifiable assertion that includes the requested attributes
of the user. The user is redirected to the SP, who decrypts the assertion, verifies the
signature and may subsequently use the trusted attributes in its service.

2.1.4. Mobile Phone Signature

The mobile phone signature [13] (in German “Handysignatur”) depicts one authentica-
tion scheme for an Austrian national IdP. The method represents the digital equivalent
of an identity card and employs signing and authentication mechanisms. Citizens may
utilize the mobile phone signature to log in to governmental services to make their
tax returns or request their criminal records. The mobile phone signature follows the
legal requirements of the eIDAS regulations for interaction with qualified eIDs. As
stated before, eIDs of this kind must have an authority, which vouchers for them. For
the Austrian mobile phone signature, the organization A-Trust provides this service.
A-Trust supplies secure hardware-modules and credential storage to Austrian citizens
in compliance with the eIDAS regulations [14]. Further, qualified eIDs require strong au-
thentication, which provides the mobile phone signature with two-factor authentication.

In Austria, several possibilities exist how a resident can proof the identity [15]. After
the verification of the real identity, the citizen specifies a password and the personal
phone number. Subsequently, a resident can start to use the mobile phone signature.
For this purpose, she visits a service which utilizes this authentication method and
enters her phone number and the password. After successful verification, the second-
factor-authentication comes into effect. If the citizen uses the mobile phone signature
app1, the browser shows a QR-code that must be scanned. Otherwise, the IdP sends
a short message with a six-digit once-only-token to the resident’s phone. The citizen
must enter the token into a text field in the browser to complete the second-factor-
authentication-step. Subsequently, the user can access personal credentials which allow
the creation of signatures or the authentication of services.

1www.handy-signatur.at/mobile/TanAppUpgrade/.
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2.2. Decentralized Identities

In current systems, identity-relevant information like identifiers, keys, and endpoints
are often stored in centralized registers. In IdM systems, for example, identity-data are
governed by IdPs and certificates are issued and revoked in Public Key Infrastructures
(PKIs) by centralized Certificate Authorities (CA). Decentralized Identities (DIDs) were
introduced to move the control over identities to the owner. The standard for DIDs
[16] is currently developed in an open process by the W3C credentials community
group2. The standard is designed for interoperability and portability to make identities
available on different systems and move them between systems. Even though [16]
defines the core functionality of DIDs each implementation is obligated to create its
own DID-Specification. The specification defines the create, read, update and delete
(CRUD) behavior of the DIDs in the network. Each DID-Entry consists of two parts: a
DID and a DID-Document. The DID is a URL pointing to the DID-Document, which
contains the relevant metadata and the cryptographic keys.

The DID’s structure is conformal to the RFC3986 [17] and consists of three parts sep-
arated by “:”. First, “did”, second, the “did-method” and third, an “idstring”. The
DID-method is specified in the DID-specification, therefore unique and should not be
longer than five characters. It is called DID-Reference, if the symbols “/” or “#” are
following a DID because they are indicating a “path” or “fragment”. A DID-Reference
is pointing to further resources like publicKeys. The listing 2.1 shows the structure and
an example DID-URL.

DID Structure and Example:

did = "did:" method ":" specific -idstring

did:example :123456789 abcdefghi

DID -Reference Structure and Example:

did -reference = did ["/" did -path] ["#" did -fragment]

did:example :123456789 abcdefghi#keys -1

Listing 2.1: Structure and example of a DID from [16]

A DID points to a DID-Document that stores the metadata, which has to be available
to verify an identity. The DID-Document has the JSON-LD format and must contain
a “@context” field which points to the version of DID specification used and an id
field that shows the connected DID. DID-Documents might also include the fields
“publicKey”, “authentication”, and “service”. The “publicKey” section contains among
others a DID-Reference, a type, and the actual public keys. This key might be used
for cryptographic operations like verification of digital signatures and proofs or the

2w3c-ccg.github.io/.
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creation of secure channels. An authentication field specifies which public key can be
used to prove that a DID is associated with a DID-Document. The service field might
reference a service endpoint in a DID.

{

"@context ": "https :// w3id.org/did/v1",

"id": "did:example :123456789 abcdefghi",

"publicKey ": [{

"id": "did:example :123456789 abcdefghi#keys -1",

"type": "RsaVerificationKey2018",

"owner": "did:example :123456789 abcdefghi",

"publicKeyPem ": "-----BEGIN PUBLIC KEY ...END PUBLIC KEY -----\r\n"

}],

"authentication ": [{

// this key can be used to authenticate as DID ...9938

"type": "RsaSignatureAuthentication2018",

"publicKey ": "did:example :123456789 abcdefghi#keys -1"

}],

"service ": [{

"type": "ExampleService",

"serviceEndpoint ": "https :// example.com/endpoint /8377464"

}]

}

Listing 2.2: Example of a DID-Document from [16]

In contrast to centralized identity creation, DIDs are in general created locally by
the owner in accordance with a DID-Specification using a DID-Method. The DID-
Documents are self-signed. To prove the ownership to a third party, it is not sufficient to
only check the DID-Document’s signature, but also to guarantee that the DID-Document
can be retrieved by the associated DID.

DIDs are designed to hide its owner’s real world identity. Nevertheless, a person has to
be cautious to preserve privacy. For example, if a person is sharing information with
other parties, it is possible to be tracked. Therefore, different identities can be created for
different purposes to improve privacy and to prevent correlating information. Another
way to find correlations is to crawl DID-Documents since they are publicly available
on the distributed ledger (DL). To mitigate this type of privacy invasion, public keys
and service endpoints should be changed in different DID-Documents and under no
circumstances should confidential information be stored in DID-Documents. On the
other hand, there are many use-cases where it is desired to connect one’s real-world
identity with a virtual one. DIDs do not support this, but they can be used along with
verifiable claims described in section 2.3 to establish a connection between a virtual and
a real-world identity.

9
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2.3. Verifiable Claims

As discussed above in section 2.2, DIDs do not provide a native way to store real world
identity information. Nevertheless, there are several use cases where it is essential to
prove the real name, age or address with a digital identity. Verifiable claims are one
solution. The idea is to have an authority issuing a claim equal to the process of signing
an official document like a degree, contract or passport in the real wold. Identically to
the real world the signed document can be used to proof the correctness of the data.
The concept of verifiable claims has been published by W3C verifiable claim working
group3 in a draft [18] that is still “Work-In-Progress”.

Figure 2.3.: Set of verifiable claims from [18]

2.3.1. Structure of Verifiable Claims

A subject is an entity like a person or organization about which a claim is made. A
claim is a statement made by another entity that should be cryptographically verifiable.
If an entity wants to make more statements about a subject, it would create several
claims and combine them into a claim set. Figure 2.3 shows that a set of verifiable claims
consists of a subject’s identifier, the claims, the claims’ metadata like the expiration date
and a digital signature.

3www.w3.org/2017/vc/WG/.
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2.3.2. Verifiable-Claim-Ecosystem

The W3C verifiable claim working group describes the four roles issuer, holder,
inspector-verifier and identifier registry [18] and their relationship [19] in the so called
“Verifiable-Claim-Ecosystem” shown in figure 2.4. The issuer is an entity that is re-
sponsible for issuing and revoking claims. This could be governments, corporations
or universities in a real-world scenario. An issuer is communicating with a holder. An
entity with this role could be a citizen, employee or student in a real world application,
is controlled by a subject and it is acquiring and storing claims from the issuer. Fur-
thermore, the holder might present a claim to an inspector-verifier. Examples for this
role are security personal, insurances or websites that need verified information about
a holder’s identity. The last role is called identifier registry and it is responsible for
creating an identity on a holder’s behalf, or verifying identity information for an issuer
or inspector-verifier. Examples for identity registries are corporate or government eID
databases.

Figure 2.4.: Relationship between roles in Verifiable-Claim-Ecosystem from [18]

The workflow and the usage of verifiable claims are described in [19]. In the beginning, a
holder must register itself to the identity-registry. Then the holder requests a claim from
an issuer which verifies the subject’s identity information using the identity-registry
and creates a claim. The holder receives and stores the verifiable claim. Next, the holder
can use this claim to assert the identity information to some inspector-verifier. The
inspector-verifier verifies the information and may use it for a corresponding applica-
tion. In case of an error the issuer must be able to revoke the claim. The verification of
a revoked claim would fail and therefore, a inspector-verifier would not accept it.
Issuers, holders and inspector-verifiers can communicate using arbitrary channels or
agents. As long as holders and inspector-verifiers trust the issuers, they can trust the
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verifiable claims as well. Due to, the architecture of the Verifiable-Claim-Ecosystem
and the fact that holders are in control over their verifiable claims, there is no direct
interaction between issuer and inspector-verifier which strengthens privacy, because an
issuer does not know where the claim is used.

2.3.3. Data Model

Verifiable claims are based on the so-called entity credential model. This model consists
of several properties in the form of name-value pairs. Mandatory properties are the id,
an URI that represents the entity credential, a type, another URI that represents the
class of the data set, and a claim that consists of an id referring the subject of the claim
and at least one property. Optional parameters are the issuer’s URI and the issuing
date. If the claim should be verifiable, a signature property is needed. The same holds
for revocation, if a revocation should be supported a revocation property is needed as
well. An example of a verifiable claim can be found in the Appendix in Listing A.1.
To enable a smooth interaction between all parties the W3C verifiable claim working
group requires the verifiable claims to be machine readable, but does not enforce a
specific format.

2.4. Consensus Protocol

Many systems have to deal with decision finding processes. Traditionally, a central
authority is responsible for making decisions. With the rise of distributed and decentral-
ized systems, the different parties need to agree on common consent. For this purpose,
a consensus protocol can be used. It allows the involved parties to vote for a decision.
Nevertheless, with systems getting more complex, the chance of system failures due to
incorrect processing, bad transmission, intruders, or computers crashes, is increasing.
These failures can result in a wrong decision. Therefore, many consensus protocols
have a fault tolerance, which means that up to a certain threshold faulty votes can be
submitted, but the correct decision is still made.

12
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Figure 2.5.: Generals’ Problem with three loyal nodes
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Figure 2.6.: Generals’ Problem with two loyal
lieutenants and a traitorous general

Figure 2.7.: Generals’ Problem with one
traitorous lieutenant

2.4.1. Byzantine Fault Tolerance

Already in the early 80s Lamport, Shostak, and Pease [20] investigated the fault toler-
ance and came up with the fictional Byzantine Generals’ Problem: The generals are
laying siege to a town. Their divisions are split up, and they are communicating using
transmitters. They have to decide if they should attack or retreat. An attack can only be
successful if it is coordinated, but some of the generals are traitors. The goal is that the
loyal generals can launch a successful attack no matter if the traitors manipulate the
decision finding process. Therefore, an algorithm is considered Byzantine Fault tolerant
if it can produce correct results even though some parties are producing erroneous or
malicious results.
The Oral Message (OM) algorithm [20] describes a solution for the Byzantine Generals’
Problem. It looks at one General g which sends either an “attack” or “retreat” message
to n − 1 lieutenants l where n = g + l. Each loyal lieutenant sends the received message
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Figure 2.8.: Generals’ Problem with four loyal nodes

to all other lieutenants. Traitorous lieutenants can have an arbitrary behavior and send
any message. After receiving the messages from the other lieutenants, each loyal one
creates a majority voting based on the messages it received.

For the OM algorithm, Lamport, Shostak, and Pease [20] assume that a recipient knows
who the sender was and all messages are transmitted correctly. They give an upper
boundary 3m + 1 ≤ n for the algorithm, which states that more than two-thirds of the
n nodes have to be loyal, where m is the number of traitors. This statement can be
proofed by induction. If the number of traitors is lower than this boundary, all loyal
lieutenants will obey the same order, and if a commander is loyal too, they will also
obey the commander’s order. Figure 2.5 shows a general with two lieutenants, all of
them being loyal. Figure 2.6 and 2.7 show the scenario of one traitorous general and
one traitorous lieutenant. In this cases, we have 3 + 1 ≤ 3, and we can see that the loyal
lieutenants are unable to conclude.

Next, one node is added. The case of all parties being loyal shown in Figure 2.8 is still
correct. The examples from Figure 2.9 and 2.10 show that 3 + 1 ≤ 4 is satisfied and the
loyal lieutenants are coming to a conclusion.

2.4.2. Practical Byzantine Fault Tolerance Protocol

Castro and Liskov [21] introduced the Practical Byzantine Fault Tolerance Protocol
(PBFT) which executes an operation on state-machine replications and tolerates Byzan-
tine Faults. The number of acceptable faulty nodes f still has to be smaller than
3 f + 1 ≤ n, where n is the total number of nodes. PBFT works in asynchronous envi-
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Figure 2.9.: Generals’ Problem with four nodes and one traitorous general
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Figure 2.10.: Generals’ Problem with four nodes and one traitorous lieutenant

ronments like the Internet and is designed for practical usage and real-world scenarios.
The protocol starts with a signed request including a time stamp from the client that is

sent to a node which owns the role of a primary. The primary creates a unique sequence
number for the request and repackages it in the so-called pre-prepare message. Then
the primary forwards the message to the backup nodes. Those nodes store the pre-
prepare messages in their local log. Then the backups add their identifier to the content
of the pre-prepare message to create prepare messages. Subsequently the backups
multicast the prepare message to the replicas. If a replica receives a prepare message, it
is saved and afterward compared with the content of the pre-prepare message. After
2 f received prepare messages the replica changes its state to prepared and multicasts
commit messages to the other replicas. If a node is prepared and has got 2 f + 1 commit
messages, it alters the state to committed. Then it locally executes the operation and
sends the result to the client. The protocol ends after the client received f + 1 responses.
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request pre − prepare prepare commit reply

C request pre − prepare prepare commit reply

P request pre − prepare prepare commit reply

1 request pre − prepare prepare commit reply

2 request pre − prepare prepare commit reply

3 request pre − prepare prepare commit reply

Figure 2.11.: PBFT execution with one faulty backup from [21]

The control flow of a PBFT process with a client, a primary, two working and one faulty
backup is visualized in Figure 2.11. Due to PBFT’s state machine replication technique,
the protocol requires the client’s operation to be deterministic and to have the same
initial state for all replicas.

2.4.3. Redundant Byzantine Fault Tolerance Protocol

PBTF does not take a malicious primary into account, which holds back the message
from the client for other nodes. To prevent a slowdown of the system or requests not be-
ing processed due to a malicious primary, Aublin, Mokhtar, and Quema [22] introduced
the Redundant Byzantine Fault Tolerance Protocol (RBFT). RBFT runs f + 1 instances
of PBTF on different machines with different primaries. One of them is the master
instance, and the others are called backups. The backups monitor the throughput of
the master while running in parallel. If the performance drops under a threshold, the
master instance is assumed to be malicious, and a backup becomes the new master
instance. RBTF implements an asynchronous open loop architecture which states that
all requests are processed fairly and that clients are allowed to send multiple requests
without waiting for the results.
The message flow is shown in Figure 2.12. In comparison to PBTF, the client sends the

request to all nodes. They check the MAC and the client’s signature and then propagate
the message to all the other nodes. After receiving f + 1 messages the nodes start the
PBTF processes with the same pre-prepare, prepare and commit steps. After a replica
gets sufficient commit messages, the state is changed to ordered, and the node executes
the operation and sends the result to the client. The client waits for f + 1 results.
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request propagate pre-prepare prepare commit reply

C request propagate pre-prepare prepare commit reply

N0 request propagate pre-prepare prepare commit reply

N1 request propagate pre-prepare prepare commit reply

N2 request propagate pre-prepare prepare commit reply

N3 request propagate pre-prepare prepare commit reply

Figure 2.12.: RBFT execution with parallel instances shown in gray from [22]

2.4.4. Indy Plenum

Indy Plenum is an implemantation of a Byzantine Fault Tolerance protocol. The code
is open source and can be found on Github4. Indy-Plenum has been proposed by
Law and Harchadani [23] and is based on RBTF. The two protocols differ in the
cryptographic algorithms they use for inter-node communication: Plenum implements
elliptic curve signatures instead of MAC-Authentication to supply non-reputation.
Furthermore, RBTF does not specify any primary election process and any blacklisting
algorithm. Plenum on the other hand has a deterministic and a non-deterministic voting
mechanism and several blacklisting strategies that takes the severity of the fault into
account. Finally, Plenum only requires the client to send the request to f + 1 nodes
instead of a multicast to all nodes.

2.5. Self Sovereign Identities

The model of Self-Sovereign Identities (SSI) is the next step in the evolution of identity
management systems [2]. The goal is to put the user in control of the identity data.
The identity owner is responsible for deciding where the information is stored and
with whom the data are shared. This approach contrasts the general practice of storing
user-data in centralized registers. According to the Sovrin Foundation [24] the key

4github.com/hyperledger/indy-plenum/.
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requirements of SSI systems are besides privacy also performance, accessibility, and
governance. The user has to trust the identity system. In contrary to centralized
systems, the trust in SSI systems is decentralized across the network. Different parties
are involved in the process of issuing and managing identities. On the one hand, there
are endpoints for users that store their claims and keys locally in wallets and on the
other hand, there are endpoints that are connected to the distributed ledgers (DL).
A consensus protocol guides the decision finding process. There are two approaches
for DL designs: either permissioned or permissionless. Permissionless states that
everybody taking part in the DL environment can read and write on the ledger. Usually,
a computational power intensive algorithm known as Proof-of-Work (PoW) ensures
that a malicious party cannot change the ledger on its own. Permissioned means that
only selected entities can read and write on the ledger, which needs less computational
power. No matter which approach is implemented, the end-user either has to trust the
PoW algorithm or the honesty of the nodes allowed to write on the ledger. Beside the
communication between user and DL, users must be able to exchange messages with
each other without a central entity. No matter which parties are communicating, the
SSI system has to ensure secure message transmission and ways to verify the identity
of the counterparty. Such identities must be unique across the system, but they must
be created and stored without a central authority to prevent tracking. DIDs, described
in section 2.2 can be used for this purpose. Furthermore, an SSI system needs a data
format that holds statements about an identity. They have to be transferable across
the network, and their authenticity must be trustworthy. Verifiable claims described in
section 2.3 are intended for this goal.
An example of an SSI system is Sovrin [2] [24] [25]. It is under the umbrella of the
Sovrin Foundation5, a non-profit organization that governs the network and the code
development.

2.6. Hyperledger Indy

Hyperledger [26] is an open-source organization under the control of the Linux Foun-
dation6. Its purpose is to be an umbrella organization for business-blockchain-projects.
One of their projects is Hyperledger Indy, an implementation of an SSI system. In 2017

the codebase from Sovrin has been handed over to the Hyperledger Foundation [26].
The current approach is that the codebase is collaboratively extended under the control
of the Hyperledger Indy project, whereas the Sovrin Foundation is governing the de-
ployed network. Nevertheless, it is possible for private use, research and development
to run Hyperledger Indy locally without access to the Sovrin network.

5sovrin.org/.
6www.linuxfoundation.org/.
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The implementation of the Hyperledger Indy project is abbreviated to Indy in this
thesis. Indy contains code for client and server software. It defines how different parties
are communicating and where the software is deployed and executed. The code further
includes an implementation of DL technology, a consensus protocol, DIDs and verifiable
claims.

2.6.1. Layers of Indy

An identity network is a complex structure with several abstraction layers. The concepts
considered in Indy range from mathematical proofs in cryptography to the discussion
of the defuse concept of trust. Therefore, the borders between abstraction layers are
varying. Based on the explanation of the Sovrin trust network [25] [27] we explain the
functionality of the framework and the components we are referring to in this work. A
visualization of the interaction between different parties is shown in Figure 2.13.

Trust Layer

The Sovrin’s trust layer is marked in blue in Figure 2.13 and specifies three different
roles: trustee, steward and trust anchor. Since Sovrin is based on a permissioned ledger,
meaning that only a selected number of nodes is allowed to operate on the ledger,
guidelines and regulations that ensure trust have to be in place.
The trustee is the most highly privileged role in Sovrin, since identity owners assigned
with this role make the decisions about the future of the Sovrin network. They are
governing the ledgers and are the only ones allowed to post pool upgrade transactions.
Trustees must be members of the board of trustees in the real world. The members
of this board have to follow a specific selection process. Trustees are assigning new
trustees, stewards and trust anchors.
Stewards are supposed to operate one or more Indy nodes. They have to fulfill legal
requirements and must sign a legally binding agreement before being able to request a
steward status. Stewards are supposed to be companies, universities, governments or
other organizations that enjoy public confidence. Finally, stewards are involved in the
voting process for adding new trust anchors to the system.
Trust anchors are entities for which trust is assumed. This includes stewards and
trustees, but also identity owners who earned trust in the Sovrin network through the
“Respect-Trust-Framework” [25]. Trust anchors are often organizations in the real world.
They have two purposes: First, they are responsible for adding new Sovrin identities to
the system and second, they are able to make a trust anchor recommendation where
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Figure 2.13.: Visualization of the most relevant parties in Indy
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they propose a Sovrin identity to the stewards for becoming a new trust anchor.
Last but not least, the majority of Sovrin users are identity owners without a role, which
represents an end-user who governs its credentials and Sovrin identities.

Server Layer

Sovrin is a decentralized identity network. Private data are stored locally, whereas pub-
lic information is stored on multiple nodes across the system on DLs. The components
related to the distributed ledger layer are kept in green in Figure 2.13. Only a selected
number of nodes are permitted to make read or write transactions on the permissioned
ledgers. Even though, only stewards are allowed to operate nodes, end-users may send
requests to the nodes who query the ledgers for them. For this purpose, there are two
types of nodes on the Sovrin network: validator and observer. Validators can handle
read and write requests for the ledger. Further, validators have to ensure that they
choose the correct ledger to write on and keep the ledgers up to date. Observers only
process the users’ read requests. Since those make up the majority of requests in the
system, they can offload the validators and increase the overall performance of the
system. Further, observers act as hot standbys in case of failing validator nodes, because
they can easily be swapped into service instead of them.
Currently, the Sovrin identity network consists of four types of ledgers: the identity
ledger, the pool ledger, the voting ledger and the config ledger. The identity ledger is
the primary ledger, the location where the identity records of the Sovrin identity owners
are stored. On the config ledger, the configuration data of the Sovrin network is stored.
Data are set by the Sovrin Foundation technical governance board and approved by the
board of trustees [25]. The voting ledger contains the votes of stewards and trustees.
Based on these votes the pool ledger maintains a record of the voting outcomes and
the resulting permissions for all nodes in the network. Sovrin clients can use the pool
ledger to learn which nodes are observers and which are validators. Like in Etherium7,
the DLs in Sovrin are using states, which are stored in Merkle Trees [28]. The state-tree
has to be the same across all nodes.

7www.ethereum.org/.
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Client Layer

The client layer is red marked in Figure 2.13 and shows the local setup for an end-user.
An identity owner uses a sovrin client to organize its Sovrin identities which utilize
DIDs and verifiable claims (see section 2.2 and 2.3). Usually, the software is running
on a private device, which ensures that confidential data are stored locally and that
empowers the identity owner to stay in control of the personal credentials. A Sovrin
identity has to be verified by a trust anchor before being able to use it on the Sovrin
network. There is always a Sovrin identity underlying to a trust anchor, but not vice
versa.

External Layer

The external layer is neither operated by a client nor by Sovrin, and it is kept in yellow
in Figure 2.13. Sovrin identities can be backed up to a Sovrin agent. Agents provide
an addressable endpoint for persistent Peer-to-Peer messaging and can be used for
sharing identity data across devices like laptops and smartphones. Agencies create
and maintain agents like web hosts provide email addresses or web spaces. Similar
to web hosts, users can host agencies themselves, or use one from an already existing
service provider. Even though agents provide additional functionality, it is possible
to access the Sovrin network only using the Sovrin client. It is expected that there
will be agencies in the future which already have a trust anchor status and which can
automatically verify new Sovrin identities. The Sovrin foundation leaves the operation
of agencies and further development of external services to the open market.

2.6.2. Technical Functionality

The Hyperledger Indy framework provides several functionalities on the client-side
as well as on the node-side. The following section describes the most important use
cases that the framework provides for our work. It is based on the Hyperledger Indy
documentation [29] [30] [31].
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Client

Users run client software that is compatible with Sovrin. The software provides the
possibility to store sensitive information like keys, DIDs, and claims in a SQLite8 wallet.
The client can be used to connect the identity owner to other clients and the nodes.
New DIDs can be created locally and published by sending a request to the nodes.
Furthermore, clients can be used to create schema and claim definitions and to handle
revocation and key recovery.

Nodes

The entries of DLs are called transactions. The nodes are responsible for writing and
reading transactions to and from the ledgers. Usually, these processes are triggered
by clients’ requests, which are transmitted over the ZeroMQ9 transport protocol to
arbitrary nodes. These endpoints check the transaction type in the request, to see, if it is
a read or write request and choose an appropriate request handler. The request handler
is implemented in all nodes and specifies how a request should be treated. These checks
are semantical and syntactical. In case of a read request, the node queries its ledger and
returns the result. For a write request, Plenum (see Section 2.4.4) is triggered. During
the execution of the BFT Protocol, the request is multicasted over ZeroMQ to other
nodes, and then the authenticity of the sender and the message are checked. If the
protocol finishes successfully, the transaction is written to the ledgers and the states
are updated. Otherwise, the request is rejected, and the ledgers remain untouched. In
both cases the client receives a reply, indicating that the request succeeded or failed.
The reply is only an acknowledgment. Therefore, a read request has to be sent after a
successful write. It contains a verifiable state-proof, which ensures that the data has
been written to the ledger.
A new transaction is stored in a log, and its hash is added to a Merkle Tree, which
produces an inclusion proof for each new leaf. With every new transaction, the root
hash changes as well. Alongside the ledger, the state must be updated as well. A state
consists of a key-value pair and is stored in a Merkle Patricia Trie [32] [33]. This data
structure can be used to prove that a key corresponds to a specific value when the root
is known.

8www.sqlite.org/index.html.
9zeromq.org/.
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Ledger

The ledger is responsible for saving information that has to be publicly available.
This includes DIDs, schemas, claim definitions and other public claims. Sovrin uses
its own DID method which is called “sov” and results in identifiers like did:sov:
21tDAKCERh95uGgKbJNHYp. The corresponding DID-Document is stored on the
ledger and contains among others the Sovrin identity’s public keys and the agent’s
endpoint for establishing a connection. Claims are based on a schema that describes the
syntax and the attributes. A concrete implementation of a schema by an issuer is called
credential definition. Schema and credential definition along with public claims are
stored on the ledger. Public claims are essential for organizations which want to provide
publicly available and verifiable information like business addresses or certifications.
Personal claims and intelligence of individuals should never reach the ledger and
remain locally.

2.6.3. Indy Workflow

The following section describes the most critical use cases that the framework provides
for our work. This includes the process of adding a new identity, starting a communica-
tion channel with another user, creating a new credential definition and requesting a
verifiable claim.

Figure 2.14.: A new identity is added to Indy
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Add new Identity

The process shown in Figure 2.14 is executed, to add a new identity in the form of a
DID. An identity owner, in our case Alice, uses her agent to create a DID and store the
confidential identity information in her wallet. She sends a request to a trust anchor,
who validates Alice’s identity and generates a “NYM” request that is sent to validators.
These requests include the DID and a public key of Alice’s newly created identity. The
nodes run the Plenum BTF protocol and store the new identity on the ledger.

Figure 2.15.: Bob establishes a communication channel with Alice

Communicate with other Client

Figure 2.15 shows a scenario where two agents Alice and Bob try to establish a
connection using the publicly available DID-Documents of each other. First, Bob receives
a DID over an arbitrary channel. This can be a Link or QR-code in an email or
on a website. Next, Bob sends a “GET NYM” request including Alice’s DID to an
observer. The node queries the ledger and returns the corresponding DID-Document.
Subsequently, Bob starts a connection with Alice’s agent. Before communicating with
Bob, Alice requests Bob’s DID-Document from an observer using a GET NYM request.
Based on the received data, Alice verifies Bob’s identity and use his public key for
establishing a secure connection with him.
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Figure 2.16.: An issuer creates a schema and a credential definitions based on [34]

Create Schema and Credential Definition

Figure 2.16 visualizes the process of creating a schema and a credential definition. First,
an issuer uses the agent-software to create the schema. The schema is stored locally
in the issuer’s wallet. Furthermore, the issuer sends a “SCHEMA” transaction to the
validators, who preserve the schema on their ledgers.
A credential definition is based on a schema and is essential if an agent wants to issue
claims. If the issuer does not already have the corresponding schema in the wallet,
a “GET SCHEMA” request has to be sent to an observer. Once in possession of the
schema, an issuer can create a credential definition, store the keys and correctness proof
in the wallet and send a “CRED DEF” transaction to the validators. These nodes keep a
record of the definition in their ledgers after executing the BFT protocol.
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Figure 2.17.: A Proofer requests a claim from an issuer based on [34]

Request a Claim

Figure 2.17 shows the process of a proofer receiving a claim. First, a master secret is
generated and stored in the proofer’s wallet. We assume that the proofer and issuer
have already exchanged their identity data and can communicate with each other.
Next, the issuer creates a credential offer based on the credential definition stored in
the wallet and sends the offer to the proofer’s agent. Meanwhile, the proofer sends a
“GET CRED DEF” request to an observer who returns the credential definition. The
combination of definition and master secret allows the proofer to create a claim request,
which is sent to the issuer, who uses the private key to generate a verifiable claim.
Finally, the claim is returned to the proofer, who stores it in the wallet
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2.6.4. Codebase

The code of Indy is distributed under the open-source Apache license version 2.010 on
Github. The majority of code is written in Rust11 and Python12. The main repository is
indy-node13, which contains the software for nodes and scripts to set up an identity
network. Further, a lot of documentation is provided in this repository. Indy-node is de-
pendent on indy-plenum14, indy-sdk15 and indy-crypto16. These projects are developed
in separate Github repositories. Indy-plenum implements the Plenum BFT protocol and
the DL. Indy-sdk contains an implementation of the anonymous credentials and verifi-
able claims, as well as software for the client. The SDK should help developers to build
apps that use Indy. To support a wide variety of development environments, wrappers
for .Net, iOS, Java and Python are provided. Indy-crypto is a shared cryptographic
library that is based on the Apache Milagro cryptographic library17.

2.6.5. Multi-signatures

Indy supports the Boneh-Lynn-Shacham (BLS) [35] signatures-scheme. Due to the use
of elliptic curves, the signatures are shorter than the one created with Digital Signature
Algorithm (DSA) [36]. Therefore BLS is often regarded as “short signatures”. BLS
signatures allow signature aggregations to multi-signatures [37]. Signing entities create
signatures with distinct private keys and combine them into one signature. Multi-
signatures demand all public keys of the signing entities for a verification. Therefore, a
verifying party knows each entity who signed a message. In comparison to appending
several individual signatures to a message, multi-signatures need less storage and
guarantee that a message was signed as a group.

10raw.githubusercontent.com/hyperledger/indy-node/master/LICENSE.
11www.rust-lang.org/.
12www.python.org.
13github.com/hyperledger/indy-node.
14github.com/hyperledger/indy-plenum.
15github.com/hyperledger/indy-sdk.
16github.com/hyperledger/indy-crypto.
17github.com/milagro-crypto/amcl.
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The following chapter describes technologies and implementations that are related
to the ones we use. First, we show the current landscape of IdM systems that use
blockchains and work out their similarities and differences. Next, we investigate related
work that concentrates on Sovrin. Finally, we evaluate other projects that focus on
identity derivation.

3.1. Identity Systems

Dunphy and Petitcolas [38] evaluated different identity systems with respect to the
“Laws of Identity” [39]. Partially based on their findings, we investigate different
identity systems that use blockchain technologies.
In this section, we evaluate ShoCard [40] [41] and uPort [42], two systems that utilize
decentralized identity technology. A comparison of them with the Sovrin framework
(see section 2.6) shows why we assume Sovrin to be the best fit for our requirements
and why we decided to use it for our implementation (see chapter 5).

3.1.1. ShoCard

ShoCard [40] [41] is a closed-code identity solution that allows authentication to web-
services with real-world-identities. Therefore, ShoCard imports an identity card via
a mobile application into the user’s phone. The identity is verified, and the data’s
hash is stored on the Bitcoin [43] blockchain. The mobile application can be used as a
second-factor authentication or to reveal the real identity of a user to a web-service.
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The concept of Sovrin and ShoCard vary widely. Among others, the most notable
differences are:

• Sovrin operates its own blockchain with the sole purpose of identity management,
while ShoCard uses the Bitcoin ledger.

• In comparison to ShoCard, which is closed source and developed by the company
ShoCard Inc., Sovrin is developed in the open-source project Hyperleger-Indy.

• ShoCard stores user information and uses its servers to connect users with
services. They could collect knowledge about a user and analyze with whom a
user communicates [38]. Sovrin, in contrast, relies on an architecture where a
user is in control of the personal data and can communicate with other users and
services in a decentralized fashion.

Due to the reasons mentioned above, ShoCard was not a suitable IdM system candidate
for this thesis.

3.1.2. uPort

uPort [42] is an open-source project that is based on the Etherium [44] blockchain and
focuses on authentication. To start using uPort, a user creates a so-called uPortId using
a mobile phone application. The id consists of a key-pair, where a user’s phone stores
the private key, while the Etherium ledger preserves the public key. Besides the keys,
a user can store identity data in a registry off-ledger, while the application links the
data’s hash to the uPortID on the ledger.

Sovrin and uPort follow similar concepts. DIDs and uPortIDs use asymmetric cryptog-
raphy, sensitive data are stored locally off-ledger, and both support the use of claims.
Nevertheless, their architectures differ in one aspect: the ledgers. Etherium’s distributed
ledger is permissionless, while Sovrin’s one is permissioned (see subsection 2.6.1). Due
to selected nodes operating the ledger in Sovrin, the system has better scalability and
higher throughput of transactions at no additional cost [38]. uPort, with the permission-
less Etherium blockchain, needs its own Gas crypto-tokens to run transactions, which
means that all transactions come at an individual cost. Because of the advantages of
the permissioned ledger and the trust network [27] that is built around it, we decided
to use Sovrin instead of uPort for this thesis.
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3.2. Sovrin Integration

Sovrin’s source code is distributed under the open-source Hyperledger Indy project.
IBM and others [45] used indy’s code and created the Verifiable Organizations Network1

(VON), a digitalization approach of organizations from the Canadian Government in
British Columbia. VON’s goal is to issue and verify credentials for organizations and
citizens, with the benefits of self-sovereign identities (see section 2.5). Even though the
idea of deriving identity information from an official repository has similarities to the
approaches presented in the concept of this thesis (see chapter 4), the initial situation is
different and therefore, the VON network cannot be used for this thesis.
Sovrin is part of the Decentralized Identity Foundation (DIF)2 along with other promi-
nent members like Mircosoft and IBM. The DIF tries to create industry standards for
decentralized identity networks, by defining specifications and providing reference
implementations. The DIF features many of the principles like DIDs and verifiable
claims that Sovrin implements in its specifications. We conclude, that if we base our
work on Sovrin, we implement state-of-the-art SSI approaches, which are becoming
industry standards.

3.3. Identity Derivation

Identity derivation is a process that got more attention from governmental entities
over the last years, especially with the rise of digitalization. The National Institute of
Standards and Technology (NIST) in the United States presents a guideline for the
derivation of personal identity verification credentials [46], which we cannot apply in
this thesis, because of its strong focus on existing smart cards and our IdM architecture.
In Europe two EU funded projects deal with deriving identities. The first one is the
LIGHTest project3, which aims to build a global trust infrastructure across industries.
They even specify their derivation scheme for mobile identities in [47], but the scheme
cannot be applied for our derivation approach. The second European project is called
ARIES project4. Its primary purpose is the creation of an ecosystem that derives
identities to a secure wallet5. Even though this idea slightly correlates with the idea of

1vonx.io/.
2identity.foundation/.
3www.lightest-community.org.
4www.aries-project.eu.
5www.aries-project.eu/content/aries-ecosystem.
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this thesis, ARIES does not use self-sovereign identities, and therefore, their schema
cannot be adapted.
Due to, the lack of an existing approach for deriving identities from a system without a
trusted third party, we came up with a new concept that we describe in chapter 4.

32



4. Concept

Our goal is to provide identity owners with qualified eIDs that they can use indepen-
dently with all the advantages of an SSI system. Therefore, our concept provides an
approach to import personal data from central authorities to local wallets of citizens,
without losing the data’s level of assurance. We aim to derive identities from trusted
parties to an SSI network, where a user controls the identity data. In a decentralized
environment, a place where everybody can claim to be anybody, we consider it as
useful to have information that can be trusted and which can be used to ensure the
relationship to a real-world identity. Our concept focuses on four steps. First, eIDs are
retrieved from an IdP providing qualified data (see section 2.1). Second, trusted nodes
run a consensus protocol to transforms the data format. The process is decentralized,
and the protocol ensures that malicious nodes up to a certain threshold cannot manipu-
late the data. Third, a user receives a signed claim (see section 2.3), which the recipient
stores locally and can utilize for identity verification across the SSI system. Fourth, a
revocation mechanism ensures that a claim is valid in the decentralized network as
long as the original data from the IdP does not change.

We expect the traditional IdM to be able to issue qualified identity assertions and to
provide a strong authentication mechanism to guarantee a high level of assurance. For
the SSI system, we require support for verifiable claims. However, we do not assume
that the data format of the two systems is the same. Therefore, this concept includes
a transformation step, which converts the personal data into the new format without
losing the level of assurance. In the following chapter, we describe in a step-by-step
fashion our concept for the identity derivation and our approach to maintain trust by
using the decentralized capabilities of an SSI as well as a revocation scheme.

4.1. Concept Architecture

For the derivation, we propose an architecture as shown in Figure 4.1. The existing
system consists of an IdP that stores the user’s eID and an identity interface which acts
as a gateway for accurately transmitting personal data. The SSI system needs nodes
that have the rights to write on the ledger. Further, we introduce a so-called identity
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IdPIdentity Interface

Identity AgentUser Client

SSI NodesSSI NodesSSI Nodes Ledger

External Identity Environment

SSI Environment

Figure 4.1.: Proposed architecture

agent, which implements an interface for both networks. Beside ensuring adequate
message delivery between the traditional and the SSI system, the agent also acts as a
gateway to the user.

4.2. Derivation

This section describes the identity derivation process that includes the data-format
transformation. Initially, the user sends a request to the identity agent and is redirected
from the identity interface to the IdP, which requires a login with strong authentication.
After a successful login, the IdP sends the qualified identity assertion to the identity
agent. This assertion includes several attributes describing the user’s identity and a
signature. Due to the usage of verifiable claims in JSON format in the SSI system, the
data have to be transformed with high probability. The identity agent could perform
the manual transformation, but the alteration is inevitable harming the integrity of the
original signature. Without the signature, a verifier cannot trust the data anymore. Since
the identity agent does not fulfill the same requirements as the original IdM system,
the level of assurance decreases. Our concept provides a solution for this problem,
shown in Figure 4.2. We take advantage of the SSI’s decentralized trust network and
the cryptographic properties of the BFT protocol (see section 2.4). We integrated the
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Figure 4.2.: Sequence diagram showing the identity transformation process

transformation process into the consensus protocol without changing the integrity
preserving mechanisms of the algorithm. If a user trusts the SSI system, she shall
equally trust the transformed data.

1. The identity agent checks the signature of the assertion. It extracts the personal
information and creates a hash. Consequently, it generates a transformation
request including the assertion, the personal attributes and the hash, which is
subsequently sent to the SSI nodes who trigger the consensus protocol.

2. The request is further distributed across the primaries and replicas without
checking the assertion or other content within the message.

35



4. Concept

3. Once the nodes received enough acknowledgments from each other, they enter
the commit phase where the transformation is executed locally in each node.

(A) The node verifies the assertion’s signature to ensure integrity and authentic-
ity.

(B) Next, the node extracts and hashes the attributes from the assertion and
checks if the generated hash matches the one in the request.

(C) In this case, the node creates a signature using the private key and subse-
quently sends a commit-acknowledge including the signature to the replicas
and the primary.

4. The node waits for a more commit-acknowledges than the threshold of the con-
sensus protocol demands (see section 2.4). If this is the case, the node aggregates
the signatures to a multi-signature (see subsection 2.6.5) and stores the hash and
the signature on the ledger.

5. To conclude the protocol, the identity agent receives a final acknowledge that
indicates if the execution was successful or not.

6. Next, the identity agent sends a request containing the hash to an arbitrary node
in the SSI network. The node queries the ledger and responds the multi-signature
and the proof of a successful derivation.

7. Finally, the identity agent creates a verifiable claim (see section 2.6.3) including
the personal attributes, the hash, and the multi-signature. The claim is transmitted
to the user and stored locally in a secure wallet.

A user with a claim can share the verified personal information using the distributed
architecture of the SSI system. Additionally to the normal process of verifying claims, a
recipient must also check the multi-signature to ensure the eID’s origin.

4.3. Revocation

In case the identity information of a claim has expired, a revocation mechanism is
needed. Usually, identity assertions are short-lived and expire after a few minutes.
Therefore, IdMs do not provide revocation mechanisms for them. Since the transfor-
mation and claim creation process creates a new signature that does not automatically
expire, we need to find a method that checks if the data from the IdP have changed
and then revoke the claim in the SSI system.
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Figure 4.3.: Sequence diagram showing the concept for revocation

In our concept, the identity agent is responsible for managing the revocation list and to
keep it up-to-date. Therefore, the agent has to frequently check if the data retrieved
from the IdP are still valid. Therefore, we propose the method shown in Figure 4.3 to
check the validity. First, the identity agent has to store the identity assertion. Second,
the agent sends the assertion along with an attribute query over an identity interface
to the IdP. Since no further data are requested, no privacy problem occurs. Third, the
identity interface is informed by the IdP if the data are still valid, which it forwards
to the identity agent. Forth, if the data are expired the identity agent changes the
revocation list.
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The following chapter describes how we implemented our concept, explained in chap-
ter 4, in an executable PoC. We explain the implemented interfaces and our setup. Our
solution uses the eIDAS network as a source for qualified eIDs and Hyperledger Indy
as an SSI system where we import the identity. Since we deal with existing systems,
we take advantage of specific functionalities of these systems. Therefore, we give the
components in the implementation the names they have in the original systems to
prevent confusions with our generic concept. The relationship of the components in this
implementation with the ones proposed in our concept is visualized in Figure 5.1. We
focused on components connecting the two systems. Namely, the client agent, eIDAS
agent and the extended fault tolerance protocol implemented in the validator nodes.
The other components remain untouched in our implementation and, therefore, are not
further explained in this chapter.

SSI Nodes

SSI Nodes

SSI Nodes

SSI Nodes

IdPIdentity Interface

Identity AgentUser Client

SSI Nodes Ledger

eIDAS IdPeIDAS Node

eIDAS AgentClient Agent

Validator Nodes Indy Ledger

SSI environment
Indy Network

external identity environment
eIDAS Network

Figure 5.1.: Relationship of components in concept (see chapter 4) and PoC
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5.1. Client Agent

The client agent forms the entry point for a user to the Hyperledger Indy SSI and offers
functionality for sending and receiving data [48]. Since the system is per definition
decentralized, a user must have an addressable endpoint to be reachable for other
parties. Our client agent uses DIDs (see Section 2.2) that specify an address and a public
key for secure communication. Further, the agent must be able to handle verifiable
claims (see Section 2.3), because the derived eID is stored as a claim. More specifically
the client agent implements the following functionality:

1. Request DIDs from other parties to establish a communication channel (see
section 2.6.3): A DID consists of an identifier, a public, and a private key. Usually,
the identifier starts with an identifier idstring, which is per-default “did:plenum”
in Indy. This string is crucial if different SSI platforms share DIDs. We do not
use an identifier idstring in our implementation since our PoC works in a closed
environment and we do not intend to distribute claims issued from our proto-
type. Listing 5.1 shows the current DIDs and the public key contained in the
DID-Document of a trust anchor and a steward (see section 2.6.1). To retrieve
these DID-Documents, a user must send a so-called “read NYM” request to an
arbitrary node, a function the Java wrapper of indy-sdk provides.

Issuer (Trustanchor)

DID: AgQbxDbdWX9KFRscaYrT4C

Verkey: 6GzBT81CdQ88DJEjt4VKxBCrvR13XVPDDLKSVR3Nzt5b

Steward

DID: Th7MpTaRZVRYnPiabds81Y

Verkey: FYmoFw55GeQH7SRFa37dkx1d2dZ3zUF8ckg7wmL7ofN4

Listing 5.1: DIDs and public keys of an issuer and a steward.

User (runs client agent)

DID: AtgRBBjATvuSV1U7p4iyeb

Verkey: 6Pg9JRnUou6iGv8QaNWNj4RJUCsYZqiDpP6UkeUEtT4Z

Signingkey: 27 XD5Qg4ed4tb5kwqeZLd4FrN1rK1EX ... N3HeCX9dh1X

Listing 5.2: DID and keys of a user

2. Create and register a DID (see section 2.6.3): The client agent locally creates the
user’s DIDs. Listing 5.2 shows the identifier, the public key called “verkey” and
the private key called “signingkey” of a user. Once created, the nodes should add
the DID-Document to the ledger to make it publicly available. Listing 5.3 shows
Indy’s standard write NYM request and response [48]. The messages contain
the user’s DID in the “dest” field and the public key in the “verkey” field. The
identifier field corresponds to the steward’s DID, who holds the privilege of

39



5. Implementation

operating nodes and writing new DIDs to the ledger. The response contains the
same attributes, in addition to fields proofing that the DID has been written to
the ledger. The “auditPath” characterizes a cryptographic proof that the identifier
has been appended to the ledger. The “rootHash” relates to the ledger’s Merkle
tree and the “txntime” represents the timestamp when this action took place.

NYM Request

{ "reqId ": 1541684803116063042 ,

"identifier ": "Th7MpTaRZVRYnPiabds81Y",

"operation ": {

"dest": "AtgRBBjATvuSV1U7p4iyeb",

"type": "1",

"verkey ": "6 Pg9JRnUou6iGv8QaNWNj4RJUCsYZqiDpP6UkeUEtT4Z"

},

"protocolVersion ": 1

}

NYM Response

{ "seqNo": 30,

"signature ": "2 F95RJMGED1HTK6m2LmTWJjCYx8LPRkW ... HBuX3EZ",

"dest": "AtgRBBjATvuSV1U7p4iyeb",

"verkey ": "6 Pg9JRnUou6iGv8QaNWNj4RJUCsYZqiDpP6UkeUEtT4Z",

"reqId": 1541684803116063042 ,

"auditPath ": [

"7847 ThYvEyMk2wSVzTgTXBj1fvyeZqBzukpQEargrcGz",

"AJmbFzQQGD8QdkAGDragFqvkL6QEbsdtiJYakjusGpES",

"8 CaZQ1S7NMHQsWyZkp1v2T74JuvwvXEx857YJ382wkJ2",

"CRfxF2NNP7FqJGFJ1rj39RqoY4cckgYd6VjN1AHE6M4Q"

],

"type": "1",

"rootHash ": "Tn63XLzqTbw7Xsg9syPmBs6waWupordpUZvuMhz8rfr",

"txnTime ": 1541684803 ,

"identifier ": "Th7MpTaRZVRYnPiabds81Y",

"signatures ": null

}

Listing 5.3: NYM request and response

3. Request a claim from a trusted party (see section 2.6.3): Indy does not specify
how the claim creation is triggered. We decided to inform the eIDAS agent after a
successful authentication. The eIDAS agent operates a trust anchor and sends a
claim invitation to the client. A handshake between the two agents follows where
they verify their identities and exchange information. Finally, the trust anchor
sends the claim to the client agent.

4. Store the private keys and claims that relate the user’s DID: Our agent creates a
new DID for each execution of the demonstrator. It further stores the correspond-
ing private keys and the user’s claims in an SQLite database, which we delete
immediately after showing them to the user. Since we deployed the agent for pub-
lic use on a server, the database is located on the server. Even though we would
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not advise storing confidential data on the server-side in a non-conceptional im-
plementation, we decided to use this approach for more simplicity and usability
in the PoC.

5. Trigger an identity derivation process: A user triggers the derivation process
with the click of a button in the Java web application on a JSP-page.

Functionalities 1 to 3 are part of the capabilities of Hyperledger Indy. We used the
indy-sdk to compile a shared library called libindy. The framework written in Rust
further provides APIs and wrapper functions for various programming languages to
access the libindy conveniently. A user must operate a client software to access the Indy
network. At the time of writing this thesis, the community is developing an application
that a user executes locally and which provides all the functionality needed for long
time use. For our PoC, we aimed for an easy to use demonstrator. Forcing a user to
install and setup software locally before being able to use the demonstrator was not
a convenient solution for us. Therefore, we decided to use the Java wrapper from the
indy-sdk to build our client agent into a Java web application.

5.2. eIDAS Agent

The eIDAS agent forms the center of this PoC by connecting the eIDAS environment
with the SSI-network and ensuring the transmission of data between the two systems.
Besides this duties, the eIDAS agent is responsible for providing the user with an
interface for triggering an import and issuing new claims. For connecting the eIDAS
agent with the eIDAS network, we modified an eIDAS Service Provider (SP) stub from
the eIDAS-Node bundle version 1.41 and connected our modified SP with a demo
eIDAS node. The eIDAS SP stub is a web application written in Java. Therefore, we
used the Java wrapper of the indy-sdk and deployed our final web application on a
Tomcat 8. The indy-sdk provided us with tools to set up a basic indy-network inside of
docker, as well as other functionalities to manage DIDs and claims.

Like the client agent, the eIDAS agent forms an addressed endpoint in the indy-network.
Due to this, we used the indy-sdk to create a DID. In comparison to an agent operated
by a private user, the eIDAS agent is part of a type of agents whose addresses and
identities are publicly available. They are generally operated by public organizations

1ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eIDAS+Node+version+1.4.
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like universities, state departments or companies. In our PoC the eIDAS agent repre-
sents the entry point for the import from the eIDAS network. Therefore, its address
is publicly known and the agent is available for everybody in the network. Since we
created our own indy-network for this PoC, entities from other SSI networks cannot
reach the eIDAS agent.

{

"ver": "1.0",

"id": "Th7MpTaRZVRYnPiabds81Y :2: eidasimport :1.0",

"name": "eidasimport",

"version ": "1.0",

"attrNames ": [

"familyName",

"proof",

"personIdentifiertype",

"dataOfBirth",

"givenName",

"eidasloa",

"hash"

],

"seqNo": null

}

Listing 5.4: A schema created by a steward

A schema and a credential definition must be stored on the ledger before the eIDAS
agent can issue claims. These JSON constructs refer to the issuing entity and speci-
fies among others the attributes included in future claims. We created a schema that
consists of the hash and a proof besides personal fields, like the name and the date
of birth. To store schema and credential definition on the ledger, they are previously
sent to indy-nodes using Indy’s “SCHEMA” and “CLAIM DEF” requests from the
indy-sdk. Listing 5.4 shows an Indy “SCHEMA” request. Besides the personal attributes
in “attrName”, the “id” tag “Th7MpTaRZVRYnPiabds81Y:2: eidasimport:1.0” includes
information about the schema’s name “eidasimport”, the version number “1.0” and
the issuer’s DID “Th7MpTaRZVRYnPiabds81Y”, which relates to the steward. Since
credential definitions are implementations of a given schema, there must be a reference.
Therefore, the credential definition’s “id” tag “AgQbxDbdWX9K FRscaYrT4C:3:CL:
Th7MpTaRZVR YnPiabds81Y:2: eidasimport:1.0” in Listing 5.5 contains the schema’s id
as a subset. The other part contains the DID of the entity which is responsible for the
credential definition. In our case, the trust anchor issued it. The definition further states
“CL” as a “type”, which specifies the Camenisch and Lysyanskaya signature scheme
[49] for the claim creation process. The scheme uses the numbers in the “primary” for
the encryption.
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{

"ver": "1.0",

"id": "AgQbxDbdWX9KFRscaYrT4C :3:CL:Th7MpTaRZVRYnPiabds81Y :2: eidasimport :1.0",

"schemaId ": "Th7MpTaRZVRYnPiabds81Y :2: eidasimport :1.0",

"type": "CL",

"tag": "tag1",

"value": {

"primary ": {

"n": "11950222728048176487899999417300410284360103281...3442642546549" ,

"s": "27836975285873105452939568128446675516587331159...1441629756178" ,

"rms": "333185308451795223834910739726375650060250010...0118262489522" ,

"r": {

"familyname ": "160110742647689620584489969607881400...0665142352504" ,

"givenname ": "4720946505133189971230246420069883624...3464227659042" ,

"proof": "11030982820946311923413789091588006783545...3874496544494" ,

"hash": "331831109619902809583611304043511214544138...2271254377164" ,

"dataofbirth ": "19653671989362264456966326639902362...0885058066848" ,

"personidentifiertype ": "45898686385124485781949742...5995388914290" ,

"eidasloa ": "36214432088611070540344343039944099817...0202473665801"

},

"rctxt": "6124582150853602924026242362878310529211585...3173201252207" ,

"z": "93318415286280718552370015642301205966218646035...8970208250366"

}

}

}

Listing 5.5: Credential definition created by an issuer

Since the eIDAS agent orchestrates the import process, the following enumeration will
describe this process from the view of an eIDAS agent.

1. We created a JSP-page with a button to start the process.
2. Once a user clicks on this button, the agent creates a SAML-request that looks

like Listing 5.6. We defined the return-URL and the SAML-Metadata of the eIDAS
agent to ensure that the response is returned to our SP. The request further
features a list of attributes we want to retrieve from the eIDAS system. Finally,
the XML structure contains information about the encryption like the signature
methods supported and the certificate used.

3. Following a successful creation, the eIDAS agent redirects the request and the user
to the demo eIDAS node. There the user can choose between using an Austrian
mobile phone signature or the credentials for a test-user for authentication.

4. Once the authentication is complete, the eIDAS node forwards the user accom-
panied by a SAML-assertion in Listing 5.7 back to the eIDAS agent. Like the
request, the assertion contains information about the signature scheme and cryp-
tographic parameters used, along with the user’s personal information inside the
“saml:AttributeStatement” tag. Our agent validates the request’s signature and
then starts the transformation process.
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<saml2p:AuthnRequest Destination ="https :// vidp.gv.at/eIDAS_node/eidas/

ColleagueRequest" >

<saml2:Issuer >http :// importdemo.iaik.tugraz.at/SP/metadata </ saml2:Issuer >

<ds:Signature xmlns:ds="http :// www.w3.org /2000/09/ xmldsig#">

<ds:CanonicalizationMethod "http :// www.w3.org /2001/10/ xml -exc -c14n#"/>

<ds:SignatureMethod "http ://www.w3.org /2001/04/ xmldsig -more#rsa -sha512"/>

<ds:SignatureValue >dofi1LbSlc7mT2y ... SbHFqEzqSgE =</ds:SignatureValue >

...

<ds:X509Certificate >MIIFQTCCAy ... LVlUFuCcE=</ds:X509Certificate >

</ds:Signature >

...

<eidas:RequestedAttributes > ...

<eidas:RequestedAttribute Name="http :// eidas.europa.eu/attributes/

naturalperson/CurrentFamilyName" ... isRequired ="true"/>

<eidas:RequestedAttribute Name =".../ CurrentGivenName" isRequired ="true"/>

<eidas:RequestedAttribute Name =".../ DateOfBirth" isRequired ="true"/>

<eidas:RequestedAttribute Name =".../ PersonIdentifier" isRequired ="true"/>

</eidas:RequestedAttributes >

...

<saml2:AuthnContextClassRef >http :// eidas.europa.eu/LoA/high </ saml2 :...>

...

</saml2p:AuthnRequest >

Listing 5.6: Shortend SAML-request of Listing A.3 in the Appendix

5. The eIDAS agent extracts the personal information from the SAML-assertion and
puts it in a predefined order in a JSON document and subsequently calculates a
hash using SHA256 [50].

6. We create a custom Indy request, which we call “samltransformer-request” (see
Listing 5.8). This request in JSON format contains the hash and the original
SAML-assertion in the payload.

7. Since our multi-signature creation is running in a python environment, we use
shell scripting and python to start the validator nodes.

8. Once the nodes have created the multi-signature, they send an response to the
eIDAS agent. If the message reports a successful transformation, the agent sends a
“get-saml-transformer-request” (see Listing 5.9) including the hash to an arbitrary
Indy node.

9. After the node crawled the ledger and returned a state proof including a multi-
signature, the agent exits the python environment and continues in Java.
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<saml2:Assertion ... >

<saml2:Issuer >https :// vidp.gv.at/eIDAS_node/eidas/metadata </ saml2:Issuer >

<ds:Signature xmlns:ds="http :// www.w3.org /2000/09/ xmldsig#">

<ds:SignedInfo >

<ds:CanonicalizationMethod "http :// www.w3.org /2001/10/ xml -exc -c14n#"/>

<ds:SignatureMethod "http ://www.w3.org /2007/05/ xmldsig -more#sha256 -rsa -

MGF1"/>

<saml2:SubjectConfirmationData Address ="129.27.142.188"

Recipient ="http :// importdemo.iaik.tugraz.at/SP/ReturnPage "/>

...

<saml2:Conditions NotBefore ="2018 -11 -08 T09 :25:06.654Z"

NotOnOrAfter ="2018 -11 -08 T09 :30:06.654Z">

<saml2:Audience >http :// importdemo.iaik.tugraz.at/SP/metadata

</saml2:Audience >

...

</saml2:Conditions > ...

<saml2:AuthnContextClassRef >http :// eidas.europa.eu/LoA/high </ saml2 :...>

...

<saml2:AttributeStatement >

<saml2:Attribute Name="http :// eidas.europa.eu/attributes/naturalperson/

CurrentFamilyName" > ... Mustermann ... </saml2:Attribute >

<saml2:Attribute Name =".../ CurrentGivenName ">...Max...</ saml2:Attribute >

<saml2:Attribute Name =".../ DateOfBirth " >...1940 -01 -01... </ saml2:Attribute >

<saml2:Attribute Name =".../ PersonIdentifier ">...AT/SO/MiACFWU9 ...

CXDb1Wlgv4 =...

</saml2:Attribute >

</saml2:AttributeStatement >

</saml2:Assertion >

Listing 5.7: Shortened version of the SAML-assertion in Listing A.4 of the Appendix

10. We subsequently use the Java-wrapper of indy-sdk and our formerly created
schema to create a claim shown in Listing A.2 of the Appendix.

11. The eIDAS agent finally hands the claim over to the client agent and redirects the
user to a webpage where the claim is displayed along with attributes from the
assertion.

5.3. Validator Nodes

Validator nodes store copies of the ledgers and may write on them. Due to this privi-
leges, the Sovrin Foundation has a strict nomination process for allowing the creation
of new validator nodes, which should guarantee a maximum of trust (see section 2.6.1).
The Indy SSI does not work without trusting these nodes. Therefore, we decided that
the validator nodes should determine if the transformation from the XML structure of
the SAML-assertion to the JSON format of the verifiable claims worked as intended,
and the personal information was not altered. We use the consensus protocol plenum
to neglect small numbers of malicious or faulty nodes. We based the validator nodes
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of our PoC on the code from the Github repository indy-node and our customized
BFT protocol on indy-plenum. We wrote this part of the PoC in Python 3.6 because
indy-node and indy-plenum use this language.

We used a plugin structure of indy-plenum to extend the protocol with the functionality
to accept our custom requests and to validate the input accordingly. This so-called
requesthandler defines the format of read and write requests and allows checks in each
phase of the BFT protocol. Besides the request handler, we created a new ledger with
the id “42”. The ledger only serves the purpose to record successful transformations
and to store multi-signatures. To maintain the ledger’s state, we had to customize
Indy’s state creation function and to create an encoding and decoding function, which
is further used for the transmission of messages across nodes.
{

TXN_TYPE :42420 ,

DATA:{

’hash ’:’ eed456f7a10fd942c256644330c590e88d82ae87ff2b76b75afdb392d4bcaa8f ’,

’saml ’:’ eed456f7a10fd942c256644330c590e88d82ae87ff2b76b75afdb392d4bcaa8f.xml ’

}

}

Listing 5.8: Write saml-transformation-request

The multi-signature creation starts with a write “saml-transformation-request” shown in
Listing 5.8 that the eIDAS agent sends to an arbitrary validator node. The node evaluates
the message’s identifier to find the corresponding requesthandler. If the write request
has the identifier “42420”, the node selects our custom “saml-requesthandler”. Once
the node selects this requesthandler, it subsequently checks if the message contains a
SAML-assertion and a hash and starts, in this case, the BFT protocol. Our version of the
protocol keeps the original phases of plenum, and therefore messages are distributed as
usual using ZeroMQ to backups, primaries and replicas in the propagate, pre-prepare
and prepare phase without our interfering. Once the commit phase is reached, each
primary and each replica executes our code to check the integrity of the received data
and performs the transformation on its own. The following checks are performed
locally:

1. Every node utilizes certificate storages containing certificates of the eIDAS nodes.
They use those certificates to verify the signature of the eIDAS SAML-assertion
contained in the request to ensure that the message originated from eIDAS and
had not been altered.

2. Next, every primary or replica extracts the personal information from the asser-
tion.

3. They create a JSON and put the attributes in the same order as the eIDAS agents.
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4. Finally, each node hashes the personal information and checks if it is the same as
the hash contained in the request. In this case, the node signs the JSON document
using the Boneh-Lynn-Shacham (BLS) (see 2.6.5) scheme and sends a commit
message including the signature to the other replicas.

{

TXN_TYPE :42421 ,

DATA:{

’hash ’: ’eed456f7a10fd942c256644330c590e88d82ae87ff2b76b75afdb392d4bcaa8f ’

}

}

Listing 5.9: Read get-saml-transformation-request

Once more than two-thirds of the nodes have come to the same result and have received
other commit messages, they enter the reply phase. There, we create a multi-signature
from the combination of single BLS signatures and store them on the ledger. Since the
data on the ledger is publicly available, we only preserve the hash and no other data
related to the personal information from the SAML-assertion. Finally, the nodes update
their states, create a state-proof and return an acknowledge to the sender, which is the
eIDAS agent in our case.
After the eIDAS agent has received an acknowledge, it sends a read “get-saml-request”
as shown in Listing 5.9. The receiving node knows due to the message’s transaction-
type-number that it should use our “saml-requesthandler”. There, we specified that
in the contrary to a write request the BFT protocol should not be started. Instead,
recognizing the identifier “42421” as read request, the node will extract the hash from
the request and query its ledger to find the associated multi-signature. Once found,
the node returns the multi-signature and a state-proof that guarantees that the hashed
data was part of the ledger. The eIDAS agent will use this data to create a verifiable
claim, but the same procedure can be used by anybody in the network to ensure that
the trusted validator nodes have processed the personal data and can, therefore, ensure
the trustworthiness of the information.
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The following chapter shows the implementation from a user’s perspective. The demon-
strator provides a web application with an easy-to-use interface, which we present in
this chapter with a step-by-step walk-through. The minimal prerequisites for a user
solely include a browser and an account for the Austrian mobile phone signature (see
subsection 2.1.4). Even though the application should be working in every state-of-
the-art browser, we used Mozilla’s Firefox1 during development and can, therefore,
recommend it.

1. If a user accesses the application at “importdemo.iaik.tugraz.at/SP/”, the browser
presents the eIDAS agent’s initial page similar to Figure B.1. To start the derivation
process, the user must simply click on the “NEXT” button.

2. The demonstrator creates a SAML request and displays it to the user in an en-
coded and decoded format as shown in Figure B.2. The request features a list of
attributes that should be retrieved from the IdP. The user should continue with
the default settings and click on the “SUBMIT” button to send the request from
the eIDAS agent to the eIDAS node.

Figure 6.1.: Select authentication method

1www.mozilla.org/en-US/firefox/.
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3. Subsequently, the application redirects the user to the eIDAS node. There the user
must select an authentication method as depicted in Figure 6.1. In case the user
has an Austrian mobile phone signature, the “HANDY” button below the red
logo should be selected. The green “Karte” button serves testing purposes with a
test-user.

Figure 6.2.: Authentication field

4. Next, the user is redirected to the IdP. There, an input mask requests the phone
number and the password for the mobile phone signature as shown in Figure 6.2.
After entering the correct credentials and clicking on “Identify”, the user must
complete the second-factor authentication.

Figure 6.3.: Field to insert TAN from a short message
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5. Depending on the second-factor authentication method that a user has chosen
for the mobile phone signature, he either receives a six-digit TAN short message
or must verify the fingerprint with an app on the phone. In both cases, the mo-
bile phone is used for the second-factor authentication to increase the security.
Figure 6.3 shows the input mask where the user should enter the TAN. After
clicking on “Sign”, the TANs correctness is verified. Following this, the IdP issues
the personal user information and transmits it via the eIDAS Node, and wrapped
into a SAML assertion, back to the eIDAS agent.

Figure 6.4.: Summary after claim creation is complete
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6. The eIDAS node redirects the user back to the eIDAS agent where a screen like
Figure B.3 is depicted. There, the browser displays the assertion in an encoded, an
encrypted and a plain text version. With a click on “SUBMIT”, the Sovrin part of
the eIDAS agent starts the derivation. During this process, the agent creates and
registers a DID, triggers the consensus protocol and creates a schema, a credential
definition, and a claim.

7. After the process finished, the user is redirected to the last page that looks like
Figure 6.4. There a table shows the name, date of birth and identifier of the SAML
assertion along with the did, verification key, claim, credential definition and
schema generated in the derivation process. The displayed claim and DID are
for privacy reasons ephemeral. The server deletes all personal data, including
private keys and wallets, from the SSI system immediately after the claim creation
finished.
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In the following chapter, we discuss our concept (see chapter 4) and the PoC (see
chapter 5). The first section presents properties that define our solution and a discussion
on why they hold. In the subsequent section, other derivation approach candidates are
discussed and compared to our concept.

7.1. Properties

The section below shows a list of properties that our PoC implements and which make
our solution unique. Each property features a description of why it is essential and
how we achieved it.

Trustworthiness: In the concept (see chapter 4) the nodes “substitute” the signature of
the IdP, because of a non-compliant format.To keep the information trustworthy, each
derived identity has a corresponding proof and multi-signature. The concept ensures
that not a single agent or node can manipulate their creation.
The identity agent is not directly taking part in the proof creation process, it only
forwards the assertion to the nodes and creates a claim including the multi-signature.
The agent has only two options to interfere in the derivation process: Either by changing
the assertion or by creating a claim with invalid data. In the first case, the nodes would
identify the assertion as a fake, because the signature cannot be validated anymore,
and subsequently abort the process. In the second case, the prover would uncover the
claim as forged, because there does not exist a proof on the ledger that correlates with
the attributes inside the claim.
The nodes create proofs and multi-signatures as a collective and by using the BFT
protocol. This protocol ensures that a minority of malicious nodes cannot manipulate
the proof creation process. We consider the process trustworthy because no single entity
or minority can manipulate the derivation process.
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Performance and scalability: The PoC uses in comparison to Bitcoin1 or Etherium2 a
permissioned ledger, which means that only selected parties can host nodes and operate
the ledger. Instead of a “proof-of-work-algorithm”, the concept takes advantage of the
BFT protocol. The permissioned ledger reduces the need for “mining” and therefore,
decreases the network’s computing power while increasing the system’s scalability.
[2]

Decentralized verification: In our concept a local wallet stores the claims. Therefore, the
verification can be handled locally without the need for a centralized third party. After
receiving a claim, a verifying user can check that the identity agent issued the claim
and that it has not been manipulated. Next, the user verifies the multi-signature and the
proof, to ensure that the data originated from the given IdP. Due to the decentralized
architecture of our PoC, these checks can happen locally, which reduces the workload
for the IdM system. Further, the local checks increase the privacy because an IdP cannot
correlate which parties exchanging identity information with each other.

7.2. Design Decisions

During the design of our concept, other solutions were under discussion. We shortly
describe each approach and elaborate on why our final concept appears to be the most
suitable approach for our research goal.

7.2.1. Assertion Inside the Claim

One approach takes the SAML assertion from the identity interface and stores it without
conversion inside the newly created claim. A verifying user would check the claim first
and subsequently extract the assertion from the attributes. The assertion would have
been in XML in comparison to the JSON format of the claim. Therefore, each user client
must implement a function that can verify a SAML assertion.

1bitcoin.org/.
2www.ethereum.org.
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The following list describes the flaws in this concept:

• Our SAML assertions expire after a few minutes. With the assertion, the claim’s
authenticity expires as well. Therefore, a prover would need to go through the
derivation process every time a claim is needed. Besides being highly impractical,
this procedure would counter the idea of a decentralized identity management
system.

• Every time the certificate of the original IdM system changes, all existing claims
are instantly invalidated. Further, each user has to update the certificates in the
local agent implementation.

• The identity agent is not only in charge of issuing claims, but also to ensure the
authenticity of the assertion. This responsibility makes it to a single-point-of-
failure and an attractive target for attackers.

In our concept, issues described above do not occur, because we do not store the SAML
assertion inside the claim. Instead, the SSI nodes generate collectively a multi-signature
that they store on the ledger. Instead of accumulating the trust in a single identity agent,
the trust is distributed across the nodes.

7.2.2. Identity Interface issues Claims

Another approach followed the idea of making the claim creation as responsibility
of the identity interface, which would be an eIDAS node (see section 2.1) in the PoC.
The advantage of this option is the identity interface’s capability of having access
to the user’s data and being able of creating trustworthy claims. Nevertheless, there
is one major disadvantage regarding the implementation of this concept option: A
running system designed for another purpose must be adapted. If we take the eIDAS
network as an reference IdM system, then this concept would mean that an eIDAS node
must implement the functionality of an Sovrin agent (see section 2.6). As a result, two
non-related projects develop one system component, which could result in functions
blocking each other and a high amount of maintenance effort every time one of the
projects releases an update. In the eIDAS network, changes on the nodes would have to
be implemented in several countries, which would cause a lot of implementation and
maintenance overhead.
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Since our goal was to derive identity data from an existing IdM system, we considered
subsequent changes on a system component in such an extent as noncompliant with
our requirements. Our concept leaves the IdM untouched and creates a new component
called the identity agent which we easily integrate into the modular structure of the SSI
network.

7.2.3. Individual Revocation

In our concept, we propose a revocation mechanism, where the identity agent maintains
a revocation registry, which the agent is updating regularly by sending attribute queries
to the IdP. Another approach would instruct the user, who is verifying the claim, to
check the claim’s validity. This process would require the user to communicate directly
with the IdP, which has the following disadvantages:

• It contrasts the idea of a decentralized SSI system if the revocation process in-
cludes a centralized solution.

• A curious IdP could analyze the revocation requests. Who tries to look up which
identity entry? Which entries are the most requested ones? This behavior could
harm the identity holder’s privacy.

• The client software of indy (see section 2.6) would have to be adapted to enable a
connection with the IdP because it is not designed to work with custom revocation
solutions.

Our concept uses a revocation storage that preserves the user’s privacy in a decentral-
ized context. We introduced the identity agent as a broker, which links the SSI system
with a traditional IdM system and therefore, ensures that both systems can be used
without significant adoptions.
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In this chapter, we will analyze the security of the proposed concept and our imple-
mentation roughly based on the Common Criteria process, which follows the ISO
15408-1:2009 [7] standard. The analysis will specify a Target of Evaluation (TOE) along
with the actors involved in the evaluation as well as assumptions we made. The fol-
lowing sections will focus on threats and threat agents that could potentially harm our
systems. Finally, we will specify security objectives and describe how the countermea-
sures integrated into the system will ensure that the system is protected against the
threats.

8.1. Target of Evaluation and Actors

The Target of Evaluation (TOE) specifies the scope for the security analysis. Since the
concept aims to connect existing systems that can be exchangeable, the TOE focuses on
the connecting components developed during this thesis. Therefore, the TOE includes
the identity agent and the part of the SSI nodes and ledger used in the derivation
process. The identity interface, the IdP and other parts of the SSI system are not in the
focus of the TOE. Figure 8.1 depicts the TOE. The following list of actors specifies the
components included in the evaluation:

User Client: The user starts the derivation process and has to authenticate herself
against the IdP. The identity agent issues the claim for the user, who can subsequently
utilize the user client to store the credentials and share it with other users. Especially
the interaction with the identity agent will be essential for this evaluation. The user
client is part of the TOE.

Identity Agent: The identity agent forms the central part of the concept. It coordinates
the data flow between the identity interface and the SSI nodes and creates the claim
for the user. These actions make the identity agent to a lucrative target for attackers.
Therefore it is included in the TOE.
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IdPIdentity Interface

Identity AgentUser Client

SSI NodesSSI NodesSSI Nodes Ledger

Target of Evaluation

Figure 8.1.: Identity agent, SSI nodes and the ledger are part of the TOE

Identity Interface: The identity interface offers an interface for communication between
the identity agent and the IdP. It must provide signed identity data to verify the origin
of the message. Since we do not define which identity system should be used, we do
not include the identity interface into our TOE.

IdP: The IdP stores and maintains the user’s eID, from which the claim derives. The
IdP should implement strong authentication and must be connected with the identity
interface that could communicate with the identity agent. Since our concept does not
focus on a specific identity system, we exclude the IdP from the TOE.

SSI Node: The SSI nodes are responsible for request handling. Since they decide what
to write on the ledger, they have to check every request carefully. Nodes are the entities
with the highest trust in the SSI system. Therefore, they oversee the derivation process,
which makes them tempting targets for attackers. Since different SSI systems are built
on different architectures with distinct features, only the derivation process is part of
the TOE.

Ledger: The SSI nodes operate the ledger, which stores among others DIDs, schemas
and the proof for derivations. Even though an attacker would need to take over the
nodes to control the ledger, the ledger plays an essential role in this evaluation, because
it forms the backbone of trust in the system. Without the ledger, everybody could claim
to be anybody, which would destroy the purpose of a decentralized identity system.
Due to this, the ledger is part of the TOE.
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8.2. Assumptions

The following section describes assumptions we use in our security evaluation. Based
on them, we created attack-scenarios and threats. On the one hand, we define trust
assumptions for the server-side actors from section 8.1. On the other hand, we specify
general assumptions about the setup of the system.

The following enumeration shows the actor specific assumptions.

AS.1 User client is malicious: The user client triggers an identity derivation, stores
user credentials and uses claims to proof the identity. An attacker could try to
impersonate as another user by using forged or stolen claims. We assume the user
client to be malicious.

AS.2 Identity agent is honest but curious: The identity agent offers due to the high
amount of processed sensitive data a lucrative target for an attacker. A careful
attacker gains the most if it stays disguised after taking over the identity agent
and continuing the protocols while making little changes to satisfy its curiosity.
Therefore, the identity agent is considered, to be honest, but curious.

AS.3 SSI nodes are possibly malicious: The nodes are the most trusted entities in the
SSI system and operate the ledger. It is highly likely that attackers could exten-
sively try to take over one or more nodes, but it is improbable that all nodes are
concurrently in control of an attacker. Due to this, the security analysis assumes
that a small number of nodes could be malicious.

AS.4 Identity interface is trustworthy: An external system provides the interface. We
assume that the user only stores personal data in trustworthy systems.

AS.5 IdP is trustworthy: The IdP stores the user’s original identity data. Like the
identity interface, our PoC uses the IdP from an external party, which we consider
in this security analysis as trustworthy.

The following list describes general assumptions.

AS.6 Correct implementation: We assume a bug-free implementation of the concept
without security flaws.
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AS.7 Correct setup: The analysis assumes that all components are set up correctly. This
setup includes the key generation and the initial exchanges of certificates and
public keys.

AS.8 Secure environment: We assume that the program execution happens in a safe
environment. This environment includes restricted access, machines without ma-
licious software on it, a secure physical location and a secure network connection.

AS.9 Availability: The analysis assumes all components and resources to be available
during the derivation process.

AS.10 Enough resources: We assume that the machines used, have enough processing
power and enough storage to deal with the identity derivation.

8.3. Assets

The security analysis defines assets, which hold valuable information for actors. Due to
their value, assets are targets of attackers, and therefore, they are included in the TOE.
The following enumeration shows a list of assets in the identity derivation system.

A.1 Personal data: Personal data are retrieved from the IdP, validated by the nodes
and packed into a claim by the identity agent. The data include sensitive informa-
tion about the user like name and date of birth.

A.2 Private keys: The identity interface, identity agent, the SSI nodes and the user
utilize private keys to create signatures because asymmetric cryptography pro-
tects the integrity and authenticity of messages. The cryptographic material is
highly sensitive and therefore, must be protected.

A.3 Claims: Claims are personalized and individually issued data structures that
resemble identification documents. Like someone would try to stay in control
over personal documents in real life to prevent identity theft and fraud it is crucial
to protect their virtual equivalent as well.
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A.4 Ledger: The ledger keeps a history of the submitted transactions. It registers every
successful derivation and therefore, serves as a counterpart for authenticity checks
of issued claims with derived data. The ledger further holds information about
DID documents and their public keys, which play an essential role in establishing
decentralized communication channels and verifying claims. Due to this, it is
crucial to protect the ledger.

8.4. Threat Agents

The following section describes the threat agents in this security analysis. They act
against the assets described above. We introduce agents that threat actors and their
assets, as well as agents potentially harming the communication between the actors.

TA.1 Identity Agent Attacker: In the security assumptions we consider the identity
agent honest but curious. It retrieves and forwards identity assertions and creates
claims. We expect the agent to generally follow the protocol and therefore, to
ensure a correct data flow between the environments due to its honesty. Since the
identity agent is also curious, it may alter messages to its benefit. If these changes
remain undetected, they could lead to identity documents with faked personal
data.

TA.2 Client Attacker: Even though, the user is considered to be trustworthy, attacks
on her client software pose a serious threat. A decentralized environment profits
from distributed storage, but could also bring the local software into the focus of
attackers. A threat agent could be tempted to use stolen data for impersonation
or other privacy harming activities.

TA.3 Node Attacker: The nodes operate the ledger, process all requests and replace
the identity assertion’s signature with their multi-signature. All of these tasks
require a significant amount of responsibility and trust. In our assumption we
considered the nodes to be possibly malicious. A malicious node could actively
try to change the ledger, hold back messages, manipulate the electoral outcome
and spread misinformation.

TA.4 Network Attacker: A network attacker would abuse the necessity to communicate
over a network in a decentralized environment extensively. Messages include
among others sensitive topics like DID discovery, DID creation, claim creation
and claim proofing. A network attacker would very likely seize the role of a
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Man-In-The-Middle. This attack means that this threat agent would sniff in the
traffic and try to read and alter messages, which entities in the network exchange
with each other.

8.5. Threats

This section describes the threats in this security analysis. A threat describes an action
executed by a threat agent, who aims to harm an asset. Therefore, the following list
describes each threat and its relation to agents and assets. We further visualized the
relationship in Table 8.1.

T.1 Identity agent changes assertion: The identity agent receives an identity asser-
tion from the identity interface containing personal user attributes. An identity
agent attacker could try to change the assertion in his favor by changing, for
example, the date of birth or the user’s name. If the nodes accept this assertion, a
claim with faulty data is created that is nevertheless verifiable. An honest proofing
entity would unknowingly accept the faked claim. These would be the real-life
equivalent of a passport issued by the authorities with an incorrect name or date
of birth. A police officer would consider the passport to be legit and trust the
information written there.
Harmed asset: A.1 personal data
Executing threat agent: TA.1 identity agent attacker, TA.3 node attacker

T.2 Expired assertion: An identity agent attacker could try a replay attack with an
old assertion. In this attack, the agent would store a previously received assertion
and try to resend it to the nodes at a later point in time to create an identity,
which could feature expired or revoked attributes.
Harmed asset: A.1 personal data
Executing threat agent: TA.1 identity agent attacker

T.3 Self signed claim: An client attacker could create its unique credential definition
and issue non-legit claims. These claims are cryptographically verifiable and
could be mistaken for official claims issued by the identity agent.
Harmed asset: A.3 claim
Executing threat agent: TA.2 client attacker
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T.4 Steal DID: A client attacker could try to get the hands on the user’s private
keys. In this case, the threat agent could impersonate as the user using the DID
structure.
Harmed asset: A.2 private keys
Executing threat agent: TA.2 client attacker

T.5 Steal claim: A claim stores personal attributes and provides a cryptographic
structure for third-party verification. If a client attacker steals a user’s claim, the
threat agent could take advantage of this information to impersonate as the user.
Harmed asset: A.3 claim
Executing threat agent: TA.2 client attacker

T.6 Delete ledger: The assumptions consider the nodes to be possibly malicious. If
this is the case, a node attacker could try to delete the ledger partly or as a whole
to get rid of individual entries. These actions could range from deleting specific
DIDs or credentials to making the whole identity system unusable by deleting
the entire ledger.
Harmed asset: A.4 ledger
Executing threat agent: TA.3 node attacker

T.7 Add a malicious entry to ledger: A node attacker could use its capabilities to
append new transactions to the ledger. These entries could include fake DIDs,
claims and derivation proofs. An unaware user could eventually trust the forged
transactions.
Harmed asset: A.4 ledger
Executing threat agent: TA.3 node attacker

T.8 Manipulate derivation proof: The nodes jointly create proofs for derivation based
on the request and identity assertion from the identity agent. A node attacker
could try to manipulate the proof creation process. This action includes changing
the request’s properties or dropping or postponing a package. These actions could
lead to legit requests being rejected or faulty transactions being written to the
ledger.
Harmed asset: A.1 personal data
Executing threat agent: TA.3 node attacker
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T.9 Attack network traffic: In a decentralized system user clients communicate with
agents like the identity agent; agents communicate with nodes and external com-
ponents like the identity interface and nodes communicate with each other. An
network attacker could interfere in the network traffic and try to extract or alter
user information.
Harmed asset: A.1 personal data, A.3 claim
Executing threat agent: TA.4 network attacker
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T.1 Identity agent changes assertion X X
T.2 Expired assertion X X X
T.3 Self signed claim X X

T.4 Steal DID X X
T.5 Steal caim X X

T.6 Delete ledger X X
T.7 Add a malicious entry to ledger X X

T.8 Manipulate derivation proof X X
T.9 Attack network traffic X X X

Table 8.1.: Shows the relation between threats, assets and threat agents

8.6. Security Objectives

The security objectives describe strategies to mitigate the threats listed in the section
before. They should define a general mitigation mechanism instead of a concrete imple-
mentation. Each security objective states, which threat it counters. This relationship is
visualized in Table 8.2.

63
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O.1 Ensure assertions are signed: Messages containing personal data must be signed.
Signatures ensure authenticity and allow an honest proofer to ensure the correct
origin of the data. All components dealing with sensitive data should verify the
signatures appended to assertions.
Covered Threats: T.1 identity agent changes assertion

O.2 Ensure expiration checks: The TOE ensures that assertions feature an expiration
date. This mechanism protects against replay attacks if all honest parties reliably
execute checks.

Covered Threats: T.2 expired assertion

O.3 Known origin: Parties involved in the credential checking like verifiers must
be able to determine and verify the correct origin of a credential. A real-world
analogy for this problem would include the issuing of a degree. A future employer
would not trust the degree of a fictional university of an applicant. Therefore, the
TOE must ensure that a verifier can know which issuers are allowed to issue a
particular type of credentials and how to verify the authenticity.
Covered Threats: T.3 self signed threat

O.4 Protect DIDs: Sensitive data must be stored securely to prevent attackers from
stealing private keys. Besides the storage, the key material should be created in a
safe environment with well-established algorithms.
Covered Threats: T.4 steal DID

O.5 Protect claims: The TOE protects the claims from theft. It further ensures that
only the rightful owner can use the credential information to confirm the identity.
Covered Threats: T.5 steal claim

O.6 Indelible ledger: The TOE ensures that the ledger can neither be deleted as a
whole nor can single entries be removed or changed. It implements a write-only
data structure, where only new entries can be appended.
Covered Threats: T.6 delete ledger

O.7 Distributed consensus strategy: The TOE guarantees that no single entity may
write new data on the ledger. Only nodes can write data on the ledger if a majority
of them votes for it. The voting process should be transparent and comprehensi-
ble.
Covered Threats: T.7 add a malicious entry to ledger
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T.1 Identity agent
changes assertion X

T.2 Expired assertion X
T.3 Self signed claim X

T.4 Steal DID X
T.5 Steal caim X

T.6 Delete ledger X
T.7 Add a malicious

entry to ledger X
T.8 Manipulate

derivation proof X
T.9 Attack

network traffic X

Table 8.2.: Shows the relation between threats and security objectives.

O.8 Trustworthy derivation proof: The TOE protects the proof creation process. Reli-
able nodes should identify malicious requests and omit them, to ensure that only
unaltered data ends up on the ledger.
Covered Threats: T.8 manipulate derivation proof

O.9 Protect network traffic: The TOE ensures encrypted traffic between the compo-
nents. State-of-the-art transport protocols should be in place while agents, nodes
and external entities communicate with each other.
Covered Threats: T.9 attack network traffic
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8.7. Countermeasures

The countermeasures are concrete implementations of the security objectives in our PoC.
They show what we have done to mitigate the threats given in this security analysis.
The following list describes the countermeasures in detail. Due to the relation with the
objective, the same name and enumeration of the list items are in place.

O.1 Ensure assertions are signed: In our PoC the identity interface signs SAML as-
sertions using XMLDSIG. All components dealing with the assertions, namely
the identity agent and the SSI nodes are obligated to verify the signature and
the origin once they receive an assertion. If the signature is not verifiable, or the
message does not include a signature, an honest component aborts the operation
to ensure that only unaltered information finds its way into the verifiable claim.

O.2 Ensure expiration checks: Like the signature, the SAML assertion from the iden-
tity agent must feature an attribute with an expiration date. The identity agent
and the SSI nodes check the expiration date every time they receive an assertion.
If a message with an expired assertion arrives, the components assume a replay
attack and abort the operation.

O.3 Known origin: Since the identity agent is not a private person, it does not pose a
privacy problem to make the agent’s DID publicly available. A potential verifier
could look up the DID beforehand and request the verification key and credential
definition from the nodes. Claims are based on a specific credential definition and
always signed using the issuer’s DID. Due to this, a verifier knows a claim’s origin.

O.4 Protect DIDs: We used the indy-crypto library and elliptic curves to generate a
private key. Since our PoC generates DIDs for demonstration purposes, which are
not linked to real-world user wallets, we delete the keys after the claim creation.
Therefore, no persistent secure storage is needed. Due to the current development
of the Indy project, we assume that in the future a connection to secure storage
for persistent claims will be available.

O.5 Protect claims: Claims are tied to a specific DID. Even if an attacker steals a claim
from another client, she would not be able to impersonate as this user due to the
missing private keys. The architecture of DIDs and verifiable claims implemented
in indy, avert this threat.
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O.6 Indelible ledger: Ledgers are per definition write-only. Indy implements a Merkle
Tree using SHA-1 hashes to ensure that existing information cannot be deleted or
changed. Since different nodes store a copy of the ledger, the deletion of one copy
from one node would not “delete” the collective knowledge.

O.7 Distributed consensus strategy: The PoC uses an extended version of the plenum
protocol. Indy takes advantage of this consensus protocol every time a transaction
should be written to the ledger and therefore, conceptually ensures that there
is not any other way to extend the ledger. Further, plenum guarantees that new
transactions are only appended if more than two-third of the nodes approve with
the correctness of the request.

O.8 Trustworthy derivation proof: For the derivation process our extended version
of plenum is used. We take advantage of the protocol’s capabilities including the
different phases and the validity checks. The derivation proof is as safe as the
remaining SSI system, under the following assumption: More than two-thirds of
the nodes act trustworthy. If this is the case, the consensus protocol guards the
proof creation process, the distributed ledger architecture protects the storage
and the indy-crypto library secures the verification.

O.9 Protect network traffic: The network uses the ZeroMQ framework for exchanging
messages between agents and nodes. The framework aims at distributed systems
and supports elliptic curve encryption for network traffic to prevent curious
middleman from listening.

8.8. Conclusion

In this security analysis, we took a look at the valuable assets in our system and how
threat agents could harm them. We showed how to avert these threats theoretically in
the security objectives. Finally, the countermeasures describe how the PoC fulfills every
security objectives. Therefore, given that our assumptions hold, we conclude that the
PoC can be considered secure.
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9. Future work

The concept of this thesis opened a new approach in the field of identity derivation,
and we are looking for further development in this field as SSI systems seem to be
a new and promising research field for IdMs [2]. Potential lies on the one hand in
the innovative power of further privacy protecting developments in connection with
new platforms and cryptographic methods. On the other hand, we see possibilities
for future work on the adaption of our proposed concept for fields outside of iden-
tity management. The following list presents a selection possibilities for further research.

Privacy preserving mechanisms: For the derivation proof creation, the nodes currently
receive the identitiy assertion and have to read the attributes to verify the signature’s
correctness. Though we basically expect the nodes to be trustworthy, in a worst-case
scenario, an intruded node could potentially get access to sensitive data. The introduc-
tion of blind signatures[51] could help to improve the privacy further.

Anonymous revocation: We implemented a revocation mechanism that regularly
checks if the original identity data from the IdP have changed. Currently, the identity
agent is responsible for maintaining the revocation storage and therefore, must store
sensitive information about the claims (see section 4.1). For this thesis, it was a crucial
requirement that the existing identity system remains unaltered. If future work would
omit this requirement, an interface could be created that allows the identity agent
to retrieve blinded updates for the revocation list. This approach would remove the
burden of storing user data at the identity agent.

Secure storage and key recovery: With the growing interest in decentralized systems,
users’ wallets store more sensitive data. Accordingly, the need for better protection rises.
Even though a controlled environment can guarantee high security, history has shown
that once the masses reach out for new technologies, developers should reconsider
usability and security features. These aspects include the question for a secure storage:
When is a device secure enough to store sensitive information? Should key material be
stored on a portable device? What happens if a key is lost? How can the owner recover
a key, but not an attacker? Questions like these show that there is still much potential
research for securing the users’ data.
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9. Future work

Network analysis: In decentralized systems, users are communicating with agents, who
communicate with nodes, which further exchange messages with each other. Especially
during the execution of the consensus protocol several messages and acknowledgments
are transported between the nodes. A scientific analysis of the network traffic could
potentially help to increase as well efficiency as security of the network and the
protocol.

Distributed trust: Our identity derivation features the extended RBFT protocol that
substitutes the signature from the original message with a new multi-signature created
by distributed nodes (see section 5.3). This solution is not limited for the use in IdMs
and could be adapted for other areas where the authenticity of data are the primary
concern like in insurance and finance businesses.
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10. Conclusion

In the course of this thesis, we created a concept for an identity derivation process. An
identity owner may import personal attributes from an IdM to an SSI system. A user of
the proposed system can derive an existing eID and utilize it for direct communication
with third-party-services in a privacy-preserving manner. Since the full migration of an
IdM system in operation to a new identity model provides a source of errors, a primary
requirement for the concept demanded to keep the existing IdM system unaltered.
Therefore, we introduced an identity agent, which provides an interface between the
traditional and the SSI system. The identity agent further issues verifiable claims that
include eID attributes and maintains a revocation list that ensures an up-to-date status
of the personal information. The concept further described trusted nodes that utilize
an extended Byzantine fault tolerance protocol to create a derivation proof, without a
trusted third-party.

We further proofed the feasibility of our concept with the implementation of a PoC.
It utilized the eIDAS network with access to the Austrian mobile phone signature
as a source for qualified eIDs. The eID has the form of a SAML assertion that the
validator nodes and the identity agent transform into a verifiable claim in JSON format.
The nodes further create a multi-signature and a proof that guarantees the origin of
the information from the eIDAS IdP. A distributed ledger stores the proof to make it
available for the public. Therefore, a verifying user could trace the data’s authenticity.

Moreover, this thesis includes a demonstrator that allows a user with an Austrian
mobile phone signature to explore the identity derivation. A web application guides
the user with a few clicks through the process. The demonstrator showed the feasibility
in a real-world scenario and did not require a prior setup.
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10. Conclusion

Furthermore, this thesis concluded with a security analysis, which was roughly based
on the Common Criteria process. It described the actors and assets, as well as the
attackers and threats they constitute. The analysis resulted in the conclusion that the
proposed countermeasures in concept and implementation prevent attackers from
influencing the derivation process and faking identities.

In summary, we showed with a concept, an implementation, and a security analysis a
feasible way to derive eIDs from an existing IdM system into an SSI system, without
a central trusted third-party. This approach improves state-of-the-art IdM systems by
giving identity owners more privacy while ensuring easy integration without changing
existing systems.
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Appendix A.

Listings

This section contains listings from the chapter 5.
{

"@context ": [

"https :// w3id.org/identity/v1",

"https :// w3id.org/security/v1"],

"id": "http :// example.gov/credentials /3732" ,

"type": [" Credential", "PassportCredential "],

"name": "Passport",

"issuer ": "https :// example.gov",

"issued ": "2010 -01 -01" ,

"claim": {

"id": "did:example:ebfeb1f712ebc6f1c276e12ec21",

"name": "Alice Bobman",

"birthDate ": "1985 -12 -14" ,

"gender ": "female",

"nationality ": {

"name": "United States"},

"address ": {

"type": "PostalAddress",

"addressStreet ": "372 Sumter Lane",

"addressLocality ": "Blackrock",

"addressRegion ": "Nevada",

"postalCode ": "23784" ,

"addressCountry ": "US"},

"passport ": {

"type": "Passport",

"name": "United States Passport",

"documentId ": "123 -45 -6789" ,

"issuer ": "https :// example.gov",

"issued ": "2010 -01 -07 T01 :02:03Z",

"expires ": "2020 -01 -07 T01 :02:03Z"} },

"signature ": {

"type": "LinkedDataSignature2015",

"created ": "2016 -06 -21 T03 :40:19Z",

"creator ": "https :// example.com/jdoe/keys/1",

"domain ": "json -ld.org",

"nonce": "783 b4dfa",

"signatureValue ": "Rxj7Kb/tDbGHFAs6dd ... ibsNk ="}

}

Listing A.1: Example of a verifiable claim and its properties from [18] in JSON-LD format.
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{

"schema_id ": "Th7MpTaRZVRYnPiabds81Y :2: eidasimport :1.0" ,

"cred_def_id ": "AgQbxDbdWX9KFRscaYrT4C :3:CL:Th7MpTaRZVRYnPiabds81Y :2: eidasimport

:1.0",

"rev_reg_id ": null ,

"values ": {

"familyName ": {

"raw": "Mustermann",

"encoded ": "7711711511610111410997110110"

},

"proof": {

"raw": "{

’state_proof ’: {

’root_hash ’: ’Ar88f15dWUkchsrXkYXQKJbYF6hvCttAKgVgjYRSVRgj ’,

’proof_nodes ’: ’+Lf4tbhBIGVlZDQ1NmY3YTEwZ ...

JiNzZiNzVhZmRiMzkyZDRiY2FhOGYifX0=’,

’multi_signature ’: {

’signature ’: ’RXRfTLzkiJBDBaPbtB63KkK9D ...

rkDLYc9gvffGGLdRKMQgZWBjeuavKg7R6X ’,

’value ’: {

’pool_state_root_hash ’: ’fz9sZMnQhr3A78Q2vWP3hD2PfC8RFmyQu8u3hoXSF2M

’,

’ledger_id ’: 42,

’timestamp ’: 1541670621 ,

’txn_root_hash ’: ’ETVf3GUfkD8CY7BNu8iELpCaJ742HmSZkjABWGusa9p6 ’,

’state_root_hash ’: ’Ar88f15dWUkchsrXkYXQKJbYF6hvCttAKgVgjYRSVRgj ’

},

’participants ’: [’Gamma ’, ’Delta ’, ’Alpha ’]

}

},

’seqNo ’: 1,

’txnTime ’: 1541670621 ,

’reqId ’: 49550,

’data ’: {’hash ’: ’eed456f7a10fd942c256 ... ae87ff2b76b75afdb392d4bcaa8f ’},

’identifier ’: ’MSjKTWkPLtYoPEaTF1TUDb ’,

’type ’: ’42421’

}",

"encoded ": "1233911511697116101951121...1210139583239525052504939125"

},

"dataOfBirth ": {

"raw": "1940 -01 -01" ,

"encoded ": "49575248454849454849"

},

"eidasloa ": {

"raw": "http :// eidas.europa.eu/LoA/high",

"encoded ": "10411611611258474710110510...0111747761116547104105103104"

}, "hash": {

"raw": "eed456f7a10fd942c256644330 ...87 ff2b76b75afdb392d4bcaa8f",

"encoded ": "10110110052535410255974948...0098515750100529899979756102"

},

"personIdentifiertype ": {

"raw": "AT/SO/MiACFWU9RnPcnoTZzCXDb1Wlgv4 =",

"encoded ": "65844783794777105656770878...1226788689849871081031185261"

},

"givenName ": {

"raw": "Max",

"encoded ": "7797120"

}
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},

"signature ": {

"p_credential ": {

"m_2": "7898269061972268921912382042...6215171490096041510257954674" ,

"a": "8090797822958942791386...5709882669446437190683" ,

"e": "25934472305506205990702549148...388009376199277" ,

"v": "69889728276297184069396985649...895104834406337"

},

"r_credential ": null

},

"signature_correctness_proof ": {

"se": "782290705311898700449117571...08723924946726183" ,

"c": "3306722718986732828804721883...19129208579242323"

},

"rev_reg ": null ,

"witness ": null

}

Listing A.2: Claim from eIDAS agent for a user

<?xml version ="1.0" encoding ="UTF -8"?>

<saml2p:AuthnRequest xmlns:saml2p ="urn:oasis:names:tc:SAML :2.0: protocol" xmlns:ds

="http :// www.w3.org /2000/09/ xmldsig #" xmlns:eidas="http :// eidas.europa.eu/saml

-extensions" xmlns:saml2="urn:oasis:names:tc:SAML :2.0: assertion" Consent ="urn:

oasis:names:tc:SAML :2.0: consent:unspecified" Destination =" https :// vidp.gv.at/

eIDAS_node/eidas/ColleagueRequest" ForceAuthn ="true" ID="

_X_3DNfpZUwOpCRy_wA0Yf17e.lDf6pnBEpcvnzl3w1mOcHB2lkSHHbL.YbdMoVS" IsPassive ="

false" IssueInstant ="2018 -11 -09 T08 :40:23.546Z" ProviderName ="DEMO -SP -CA"

Version ="2.0" >

<saml2:Issuer Format ="urn:oasis:names:tc:SAML :2.0: nameid -format:entity">http ://

importdemo.iaik.tugraz.at/SP/metadata </saml2:Issuer >

<ds:Signature xmlns:ds="http :// www.w3.org /2000/09/ xmldsig#">

<ds:SignedInfo >

<ds:CanonicalizationMethod Algorithm ="http :// www.w3.org /2001/10/xml -exc -c14n

#"/>

<ds:SignatureMethod Algorithm ="http ://www.w3.org /2001/04/ xmldsig -more#rsa -

sha512"/>

<ds:Reference URI ="# _X_3DNfpZUwOpCRy_wA0Yf17e.lDf6pnBEpcvnzl3w1mOcHB2lkSHHbL

.YbdMoVS">

<ds:Transforms >

<ds:Transform Algorithm ="http ://www.w3.org /2000/09/ xmldsig#enveloped -

signature"/>

<ds:Transform Algorithm ="http ://www.w3.org /2001/10/xml -exc -c14n#"/>

</ds:Transforms >

<ds:DigestMethod Algorithm ="http :// www.w3.org /2001/04/ xmlenc#sha512"/>

<ds:DigestValue >oZUEqWI ... pu1Aw5CMX32YnEQ ==</ds:DigestValue >

</ds:Reference >

</ds:SignedInfo >

<ds:SignatureValue >dofi1LbSlc7mT2yTE9I ... SbHF7iqEzqSgE =</ds:SignatureValue >

<ds:KeyInfo >

<ds:X509Data >

<ds:X509Certificate >MIIFQTCCAykCBFTI ... gcYvyW8HOvSLVlAzUFuCcE =</ds:

X509Certificate >

</ds:X509Data >

</ds:KeyInfo >

</ds:Signature >

<saml2p:Extensions >

<eidas:SPType >public </eidas:SPType >
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<eidas:RequestedAttributes >

<eidas:RequestedAttribute FriendlyName ="D-2012-17 - EUIdentifier" Name="http

:// eidas.europa.eu/attributes/legalperson/D-2012-17 - EUIdentifier"

NameFormat ="urn:oasis:names:tc:SAML :2.0: attrname -format:uri" isRequired

="false"/>

<eidas:RequestedAttribute FriendlyName ="EORI" Name="http :// eidas.europa.eu/

attributes/legalperson/EORI" NameFormat ="urn:oasis:names:tc:SAML :2.0:

attrname -format:uri" isRequired ="false"/>

<eidas:RequestedAttribute FriendlyName ="LEI" Name="http :// eidas.europa.eu/

attributes/legalperson/LEI" NameFormat ="urn:oasis:names:tc:SAML :2.0:

attrname -format:uri" isRequired ="false"/>

<eidas:RequestedAttribute FriendlyName =" LegalAdditionalAttribute" Name="http

:// eidas.europa.eu/attributes/legalperson/LegalAdditionalAttribute"

NameFormat ="urn:oasis:names:tc:SAML :2.0: attrname -format:uri" isRequired

="false"/>

<eidas:RequestedAttribute FriendlyName ="SEED" Name="http :// eidas.europa.eu/

attributes/legalperson/SEED" NameFormat ="urn:oasis:names:tc:SAML :2.0:

attrname -format:uri" isRequired ="false"/>

<eidas:RequestedAttribute FriendlyName ="SIC" Name="http :// eidas.europa.eu/

attributes/legalperson/SIC" NameFormat ="urn:oasis:names:tc:SAML :2.0:

attrname -format:uri" isRequired ="false"/>

<eidas:RequestedAttribute FriendlyName =" TaxReference" Name="http :// eidas.

europa.eu/attributes/legalperson/TaxReference" NameFormat ="urn:oasis:

names:tc:SAML :2.0: attrname -format:uri" isRequired ="false"/>

<eidas:RequestedAttribute FriendlyName =" VATRegistration" Name="http :// eidas.

europa.eu/attributes/legalperson/VATRegistrationNumber" NameFormat ="urn:

oasis:names:tc:SAML :2.0: attrname -format:uri" isRequired =" false"/>

<eidas:RequestedAttribute FriendlyName =" AdditionalAttribute" Name="http ://

eidas.europa.eu/attributes/naturalperson/AdditionalAttribute" NameFormat

="urn:oasis:names:tc:SAML :2.0: attrname -format:uri" isRequired ="false"/>

<eidas:RequestedAttribute FriendlyName =" BirthName" Name="http :// eidas.europa

.eu/attributes/naturalperson/BirthName" NameFormat ="urn:oasis:names:tc:

SAML :2.0: attrname -format:uri" isRequired ="false"/>

<eidas:RequestedAttribute FriendlyName =" CurrentAddress" Name="http :// eidas.

europa.eu/attributes/naturalperson/CurrentAddress" NameFormat ="urn:oasis

:names:tc:SAML :2.0: attrname -format:uri" isRequired ="false"/>

<eidas:RequestedAttribute FriendlyName =" FamilyName" Name="http :// eidas.

europa.eu/attributes/naturalperson/CurrentFamilyName" NameFormat ="urn:

oasis:names:tc:SAML :2.0: attrname -format:uri" isRequired ="true"/>

<eidas:RequestedAttribute FriendlyName =" FirstName" Name="http :// eidas.europa

.eu/attributes/naturalperson/CurrentGivenName" NameFormat ="urn:oasis:

names:tc:SAML :2.0: attrname -format:uri" isRequired ="true"/>

<eidas:RequestedAttribute FriendlyName =" DateOfBirth" Name="http :// eidas.

europa.eu/attributes/naturalperson/DateOfBirth" NameFormat ="urn:oasis:

names:tc:SAML :2.0: attrname -format:uri" isRequired ="true"/>

<eidas:RequestedAttribute FriendlyName =" Gender" Name="http :// eidas.europa.eu

/attributes/naturalperson/Gender" NameFormat ="urn:oasis:names:tc:SAML

:2.0: attrname -format:uri" isRequired ="false"/>

<eidas:RequestedAttribute FriendlyName =" PersonIdentifier" Name="http :// eidas

.europa.eu/attributes/naturalperson/PersonIdentifier" NameFormat ="urn:

oasis:names:tc:SAML :2.0: attrname -format:uri" isRequired ="true"/>

<eidas:RequestedAttribute FriendlyName =" PlaceOfBirth" Name="http :// eidas.

europa.eu/attributes/naturalperson/PlaceOfBirth" NameFormat ="urn:oasis:

names:tc:SAML :2.0: attrname -format:uri" isRequired ="false"/>

</eidas:RequestedAttributes >

</saml2p:Extensions >

<saml2p:NameIDPolicy AllowCreate ="true" Format ="urn:oasis:names:tc:SAML :1.1:

nameid -format:unspecified "/>
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<saml2p:RequestedAuthnContext Comparison =" minimum">

<saml2:AuthnContextClassRef >http :// eidas.europa.eu/LoA/high </ saml2:

AuthnContextClassRef >

</saml2p:RequestedAuthnContext >

</saml2p:AuthnRequest >

Listing A.3: An eIDAS SAML request from eIDAS agent

<?xml version ="1.0" encoding ="UTF -8"?>

<saml2:Assertion xmlns:saml2="urn:oasis:names:tc:SAML :2.0: assertion" xmlns:eidas -

natural ="http :// eidas.europa.eu/attributes/naturalperson" ID=" _D_iDmIDFN.

mWzUNBZ5TjR525UE0xF9RNblxQ_n2TDMY -OmgfxoRfYzQK7X5hjcR" IssueInstant

="2018 -11 -08 T09 :25:06.654Z" Version ="2.0" >

<saml2:Issuer Format ="urn:oasis:names:tc:SAML :2.0: nameid -format:entity">https ://

vidp.gv.at/eIDAS_node/eidas/metadata </ saml2:Issuer >

<ds:Signature xmlns:ds="http :// www.w3.org /2000/09/ xmldsig#">

<ds:SignedInfo >

<ds:CanonicalizationMethod Algorithm ="http :// www.w3.org /2001/10/xml -exc -c14n

#"/>

<ds:SignatureMethod Algorithm ="http ://www.w3.org /2007/05/ xmldsig -more#sha256

-rsa -MGF1"/>

<ds:Reference URI ="# _D_iDmIDFN.mWzUNBZ5TjR525UE0xF9RNblxQ_n2TDMY -

OmgfxoRfYzQK7X5hjcR">

<ds:Transforms >

<ds:Transform Algorithm ="http ://www.w3.org /2000/09/ xmldsig#enveloped -

signature"/>

<ds:Transform Algorithm ="http ://www.w3.org /2001/10/xml -exc -c14n#">

<ec:InclusiveNamespaces xmlns:ec="http ://www.w3.org /2001/10/xml -exc -

c14n#" PrefixList ="eidas -natural"/>

</ds:Transform >

</ds:Transforms >

<ds:DigestMethod Algorithm ="http :// www.w3.org /2001/04/ xmlenc#sha256"/>

<ds:DigestValue >snKbhSDVEZV0Y1eMIV9rYsddrKMddRMeVv0hq2GP6QY =</ds:

DigestValue >

</ds:Reference >

</ds:SignedInfo >

<ds:SignatureValue >KbGU+kYFOIozf2rkq0VBrEU73I/J2... iRpPQAqmGlsHe5awBXLW4zeX7

+9</ds:SignatureValue >

<ds:KeyInfo >

<ds:X509Data >

<ds:X509Certificate >MIIEBzCCAm8CBFmjz7AwD ... lr8l9mUro </ds:X509Certificate >

</ds:X509Data >

</ds:KeyInfo >

</ds:Signature >

<saml2:Subject >

<saml2:NameID Format ="urn:oasis:names:tc:SAML :1.1: nameid -format:unspecified"

NameQualifier ="http ://C-PEPS.gov.xx">AT/SO/MiACFWU9RnPcnoTZzCXDb1Wlgv4 =</

saml2:NameID >

<saml2:SubjectConfirmation Method ="urn:oasis:names:tc:SAML :2.0: cm:bearer">

<saml2:SubjectConfirmationData Address ="129.27.142.188" InResponseTo ="

_5p6Z1kGp -9 o0ZFNzBQGmFx_ASsnF -TKil -RuQFN5dAFd7HxBN6QFbr8HYHU.Nwi"

NotOnOrAfter ="2018 -11 -08 T09 :30:06.654Z" Recipient ="http :// importdemo.

iaik.tugraz.at/SP/ReturnPage "/>

</saml2:SubjectConfirmation >

</saml2:Subject >

<saml2:Conditions NotBefore ="2018 -11 -08 T09 :25:06.654Z" NotOnOrAfter ="2018 -11 -08

T09 :30:06.654Z">

<saml2:AudienceRestriction >
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<saml2:Audience >http :// importdemo.iaik.tugraz.at/SP/metadata </saml2:Audience

>

</saml2:AudienceRestriction >

<saml2:OneTimeUse/>

</saml2:Conditions >

<saml2:AuthnStatement AuthnInstant ="2018 -11 -08 T09 :25:06.654Z">

<saml2:AuthnContext >

<saml2:AuthnContextClassRef >http :// eidas.europa.eu/LoA/high </ saml2:

AuthnContextClassRef >

<saml2:AuthnContextDecl/>

</saml2:AuthnContext >

</saml2:AuthnStatement >

<saml2:AttributeStatement >

<saml2:Attribute FriendlyName =" FamilyName" Name="http :// eidas.europa.eu/

attributes/naturalperson/CurrentFamilyName" NameFormat ="urn:oasis:names:tc

:SAML :2.0: attrname -format:uri">

<saml2:AttributeValue xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance"

xsi:type="eidas -natural:CurrentFamilyNameType">Mustermann </ saml2:

AttributeValue >

</saml2:Attribute >

<saml2:Attribute FriendlyName =" FirstName" Name="http :// eidas.europa.eu/

attributes/naturalperson/CurrentGivenName" NameFormat ="urn:oasis:names:tc:

SAML :2.0: attrname -format:uri">

<saml2:AttributeValue xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance"

xsi:type="eidas -natural:CurrentGivenNameType">Max </ saml2:AttributeValue >

</saml2:Attribute >

<saml2:Attribute FriendlyName =" DateOfBirth" Name="http :// eidas.europa.eu/

attributes/naturalperson/DateOfBirth" NameFormat ="urn:oasis:names:tc:SAML

:2.0: attrname -format:uri">

<saml2:AttributeValue xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance"

xsi:type="eidas -natural:DateOfBirthType ">1940-01-01</ saml2:

AttributeValue >

</saml2:Attribute >

<saml2:Attribute FriendlyName =" PersonIdentifier" Name="http :// eidas.europa.eu/

attributes/naturalperson/PersonIdentifier" NameFormat ="urn:oasis:names:tc:

SAML :2.0: attrname -format:uri">

<saml2:AttributeValue xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance"

xsi:type="eidas -natural:PersonIdentifierType">AT/SO/

MiACFWU9RnPcnoTZzCXDb1Wlgv4 =</saml2:AttributeValue >

</saml2:Attribute >

</saml2:AttributeStatement >

</saml2:Assertion >

Listing A.4: SAML-assertion from an eIDAS node
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Screenshots

This section contains screenshots of the demonstrator from chapter 6.

Figure B.1.: The demonstrator’s starting page
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Figure B.2.: SAML request creation
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Figure B.3.: The response from the eIDAS node
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