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Abstract

For granular materials like sand, gravel and rockfills the incremental stiffness is not a ma-
terial constant and mainly depends on the current void ratio, stress state, friction angle,
loading history and strain rate. Under high stresses grain breakage takes place which may
also have an effect on the mechanical response. For coarse-grained and moisture sensi-
tive materials, the incremental stiffness can also be influenced by the change of moisture
content, i.e. the incremental stiffness decreases for the wet material. The degradation of
the strength of the grains is a complex phenomenon which is affected by different factors,
e.g. composition of minerals, state of weathering, and the hydro-chemical reaction of the
stressed material. The stiffness degradation of the grain skeleton is a time-dependent pro-
cess. For modelling the stiffness degradation a hypoplastic constitutive model by Bauer
is considered. In this thesis the number of the constitutive parameters required is reduced
which is convenient for practical application. This so-called simplified model has only 9
parameters to model the behaviour of a moisture sensitive material for a wide range of
pressures under both dry and wet states.

First, some well-known compression relations are analysed and compared with the com-
pression relation by Bauer. Second, the consistency condition for the implementation
of the compression relation into the proposed hypoplastic constitutive model is derived.
Third, the calibration equations of the simplified model are outlined. For highly nonlin-
ear constitutive equations, the calibration of the parameters is from mathematical point of
view an inverse problem and usually a challenging task. To demonstrate the performance
of the model a special case study of the parameter determination for a shale quartzite sand
is carried out. In particular, the experimental data by C. Ovalle are used. For applying a
direct calibration procedure, however, some essential data are missing or only available for
a rather small range of pressures. It is shown in this thesis that with a special calibration
strategy the missing parameters can be determined. The comparison of the experimen-
tal data with the numerical results indicates that the calibration procedure proposed also
permits a good estimation of the parameters from the reduced set of experimental data.
It is also demonstrated that the simplified hypoplastic model can simulate the stiffness
degradation of the material under different loading conditions.



Zusammenfassung

Bei körnigen Materialien wie Sand, Kies und Steinschüttungen ist die inkrementelle Stei-
figkeit keine Materialkonstante und hängt hauptsächlich von der aktuellen Porenzahl, dem
Spannungszustand, dem Reibungswinkel, der Belastungsgeschichte und der aktuellen De-
formationsgeschwindigkeit ab. Unter hohen Drücken kann der Bruch von Körnern die
mechanischen Eigenschaften beeinflussen. Bei grobkörnigen und feuchtigkeitsempfindli-
chen Materialien kann die inkrementelle Steifigkeit auch durch eine Änderung des Feuch-
tigkeitsgehalts beeinflusst werden. In diesem Fall ist die inkrementelle Steifigkeit für das
feuchte Material kleiner. Die Festigkeitsabnahme der Körner ist ein komplexes Phänomen,
das durch verschiedene Faktoren wie zum Beispiel der Zusammensetzung der Minerali-
en, dem Verwitterungszustand und der hydrochemische Reaktion des Materials beeinflusst
wird. Die Steifigkeitsabnahme vom Korngerüst ist ein zeitabhängiger Prozess. Zur Model-
lierung des Steifigkeitsabhahme wird ein hypoplastisches konstitutives Modell von Bauer
betrachtet. In dieser Arbeit wird die Anzahl der erforderlichen konstitutiven Parameter
reduziert, was auch einen Vorteile für die praktische Anwendung bedeutet. Dieses soge-
nannte vereinfachte Modell hat nur 9 Parameter, um das Verhalten eines feuchtigkeitsemp-
findlichen Materials für einen weiten Bereich von Drücken sowohl im trockenen als auch
im feuchten Zustand zu modellieren.

Zunächst werden einige bekannte Kompressionsgesetze analysiert und mit dem Kompres-
sionsgesetz von Bauer verglichen. Die Konsistenzbedingung für die Implementierung der
Kompressionsbeziehung in das vorgeschlagene hypoplastische konstitutive Modell wird
hergeleitet. Und die Kalibrierungsgleichungen des vereinfachten Modells formuliert. Für
ausgeprägt nichtlineare konstitutive Gleichungen ist die Kalibrierung der Parameter aus
mathematischer Sicht ein inverses Problem und häufig eine herausfordernde Aufgabe. Um
die Leistungsfähigkeit des Modells zu demonstrieren, wird eine spezielle Fallstudie der
Parameterbestimmung für einen Schiefer Quarzit Sand durchgeführt. Hierzu werden die
experimentellen Daten von C. Ovalle verwendet. Für die Anwendung einer direkten Ka-
librierung fehlen jedoch wesentliche Daten oder sind nur für einen relativ kleinen Druck-
bereich verfügbar. In dieser Arbeit wird gezeigt, dass mit einer speziellen Kalibrierungs-
strategie die fehlenden Parameter bestimmt werden können. Der Vergleich der experi-
mentellen Daten mit den numerischen Ergebnissen zeigt, dass mit dem vorgeschlagenen
Kalibrierungsverfahren die Parameter auch aus dem eingeschränkten Datensatz gut abge-
schätzt werden können. Es wird auch gezeigt, dass das vereinfachte hypoplastische Modell
die Steifigkeitsabnahme des Materials unter verschiedenen Belastungsbedingungen simu-
lieren kann.
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Notation

In this work, symbolic notations are considered for denoting tensors, with boldface letters.
In particular, bold lower-case letters are used to denote first-order tensor (vector), bold
upper-case fonts are used to represent second-order tensor. Bold calligraphy fonts are used
to denote fourth-order tensors. Only the Cartesian co-ordinate system with the base vectors
(ei, i= 1,2,3) is concerned for index notation and matrix representation. Therefore, tensors
can be represented in the following forms, e.g. Bauer [9]

a = ai ei - first-order tensor
A = Ai j ei⊗ e j - second-order tensor
A = Ai jkl ei⊗ e j⊗ ek⊗ el - fourth-order tensor
[a] - matrix representation of vector a
[A] - matrix representation of tensor A

The main operation symbols used are:

· - dot product (or scalar product or inner product)
× - cross product (or vector product)
⊗ - dyad of vectors
: - double contraction of two tensors

Then, the main operations used are:

a ·b = ai bi
a⊗b = ai bi ei⊗ e j
A ·b = Ai j b j ei
A ·B = Ai j B jl ei⊗ el
A : B = Ai j Bi j
A : B = Ai jkl Bi j ei⊗ e j

iii



List of standard notations:
δi j the Kronecker delta
I second-order unit tensor
x current configuration for a material particle, x = xi ei
X reference configuration for a material particle, X = Xi ei
u displacement of a material particle, u = x−X
u̇ velocity of a material particle, u̇ = du/dt
F deformation gradient, Fi j = ∂xi/∂X j
L velocity gradient, Li j = ∂u̇i/∂x j
D stretching tensor, D =

(
L+LT)/2

tr(·) trace of a tensor
εεε logarithmic strain tensor, compression negative
εεε engineering strain tensor, compression positive
εv logarithmic volumetric strain, compression negative
εv engineering volumetric strain, compression positive
W spin tensor, W =

(
L−LT)/2

T stress tensor.
T time derivative of stress tensor
T̊ Jaumann stress rate, T̊ =

.
T+TW−WT

T̂ normalized stress tensor, T̂ = T/ tr(T)
T∗ deviatoric stress tensor, T∗ = T− tr(T)/3
T̂∗ normalized deviatoric stress tensor, T̂∗ = T̂− I/3
hs solid hardness of the grain skeleton
ϕmob mobilized friction angle
ϕc critical friction angle
ϕp peak friction angle
p mean stress, p =− tr(T)/3
e void ratio of a grain assembly
ei pressure dependent maximum void ratio for a granular media with grain contact
eo pressure dependent void ratio for a granular under ideal oedometric condition
ec pressure dependent critical void ratio of a grain assembly
ed pressure dependent minimum void ratio of a grain assembly
ei0 maximum void ratio at stress free state, p≈ 0
ec0 critical void ratio at stress free state, p≈ 0
ed0 minimum void ratio at stress free state, p≈ 0
fs stiffness factor (Gudehus [22], Bauer [6])
fd density factor(Gudehus [22], Bauer [6])
f̌s stiffness factor of the simplified version proposed in this thesis
f̌d density factor of the simplified version proposed in this thesis
K0 earth pressure coefficient at rest

iv



1 Introduction

1.1 Motivation

Granular material is a matter in its own right. In different branches of engineering such
as agricultural, soil and material science, the size of the grains can be extremely diverse.
In soil mechanics, the granular materials are typically referred to as clay, sand, loess and
rockfill, with particle sizes vary from micrometers to meters. Generally, the mineral com-
position, shape and surface roughness of the particles differ significantly from one material
type to another. Although with different properties, these materials exhibit certain com-
mon features when it comes to their granular skeleton, i.e. a grain assembly with grain
contacts and void space. The void space can either be empty or filled with fluids and gas.
From experiments it is known that the mechanical behaviour also depends on the arrange-
ment of the grains within the grain skeleton. Moreover for partly saturated soil the range
of grain sizes may also have an influence on the amount of capillary forces. Especially
in dam engineering, coarse-grained rockfills are frequently used where the effect of capil-
lary forces can be neglected compared to the high forces at contact points. For weathered
and moisture sensitive rockfills after wetting, additional densifications were observed, e.g.
Howson [30], Sowers et al. [82], Holestöl et al. [29], Leonards and Altschaeffl [55], Kast
et al. [39], Kast [38], Oldecop and Alonso [71] and Ovalle et al. [74].

Lee et al. [54] found that Antioch sand, which consisted of weathered particles, shows a
significant susceptibility to crushing when wetted. Results of drained triaxial compression
tests indicate that the moisture content has a strong effect on the strength and the volume
change behaviour (Fig. 1.1a).

Nobari and Duncan [70] showed for a Pyramid material the influence of the moisture con-
tent on the stress-strain and volume behaviour (Fig. 1.1b). After wetting of an initially dry
specimen, the vertical stress decreased significantly and with continuing vertical compres-
sion the stress-strain and volume change curves eventually closely approached the one of
the initially wet specimen.

Jennings and Burland [35] reported about the effect of wetting of air dried silt specimen
in oedometric compression tests: when the initially dry specimen was wetted under cer-
tain boundary conditions either an additional densification or stress relaxation takes place
(Fig. 1.2).
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Figure 1.1: Influence of moisture content and wetting effect on stress-strain behaviour and
volume strain behaviour in triaxial tests

These additional densifications or settlements may have a significant importance for the
long-term behaviour of geotechnical structures, e.g. Alonso and Cardoso [2]. The numeri-
cal simulation and theoretical investigation of stiffness degradation induced by wetting is a
main aim of the present thesis. Herein the concept of the degradation of the solid hardness
introduced by Bauer [8] is the basis for the developing of a simplified model in this work.
In the course of this study, it is realized that for the case the experimental data available
do not give all information required for a direct calibration, a special strategy must be
developed to get the missing information. To this end a special calibration procedure is
proposed to determine the parameters of the constitutive model considered.

1.2 Outline of the study

In this thesis, a reference model for wetting deformation developed by Bauer [8] is sim-
plified to reduce the number of constitutive parameters. A specific calibration strategy
is proposed to determine the constitutive parameters based on the experimental data by
Ovalle [73] and Ovalle et al. [74]. The outline of this study is as follows:

In Chapter 2, the developments in hypoplasticity are briefly summarized and the reference
equations used in this work are given.
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Figure 1.2: Oedomteric compression of silt with different moisture contents: (a) influence
of vertical stress on creep deformation after wetting; (b) stress relaxation after
wetting. (Figures are slightly modified from Jennings and Burland [35].)

In Chapter 3, the properties of different compression laws are discussed in the light of
experimental data. In particular the compression laws by Janbu (1963), Pestana (1995)
and Bauer (1996) are analysed.

A simplified hypoplastic model for stiffness degradation is proposed in Chapter 4. In
particular, the consistent implementation of compression relation by Bauer into the con-
stitutive equation is given. The direct calibration procedure and constitutive equations for
element tests are outlined for the case all experimental data required for determination of
the constitutive constants are available.

For the case some essential data are not available, the direct calibration procedure cannot
be applied. In order to overcome the deficiency, so-called special calibration strategy is
proposed and applied to experimental data by Ovalle [73] and Ovalle et al. [74], which
is in Chapter 5. Finally, the numerical results of element tests are compared with the
experimental data.





2 Review of Hypoplasticity

2.1 Developments in Hypoplasticity

In soil mechanics, granular materials are often modelled using the framework of elasto-
plasticity. Terms, like elastic and plastic behaviour, plastic potential, yield function, are
used in elastic-plastic constitutive models. Another concept of constitutive modelling is
based on hypoplasticity which was introduced in the 1970s by Kolymbas [40]. In the ba-
sic concept of hypoplasticity, a distinction between purely elastic and plastic parts is not
needed, and a single incrementally nonlinear isotropic tensor function is sufficient to cap-
ture inelastic material properties. In a more enhanced model by Niemunis and Herle [69]
a so called elastic strain is introduced.

Hypoplasticity is developed within the framework of rational mechanics [87]. In particular,
in hypoplastic models, the objective stress rate T̊ is described in the simplest form by a
function of stretching tensor D and the stress tensor T. In general, hypoplastic models can
be written as the sum of a linear term L(T) : D and a nonlinear term N(T)‖D‖:

T̊ = L(T) : D+N(T)‖D‖ (2.1)

Herein, L(T) denotes a fourth-order tensor function depending on T, and N(T) stands for
a second-order tensor function. The form of L(T) and N(T) should be confined accord-
ing to the representation theorem by Wang [90] and general experimental findings. More
details can be referred to Wu [95] and Wu and Bauer [97].

Kolymbas [41] proposed a hypoplastic constitutive model with four terms:

T̊ =
c1

2
(TD+DT)+ c2 tr(TD)I+ c3T‖D‖+ c4

T2

trT
‖D‖ (2.2)

where ci (i = 1, · · · ,4) are dimensionless constants. ‖D‖ denotes the Euclidean norm of
the stretching tensor, ‖D‖=

√
trD2.

Wu [95] introduced an improved version based on the Eq. (2.2):

T̊ = c1 (trT)D+ c2
tr(TD)T

trT
+ c3

T2

trT
‖D‖+ c4

T∗2

trT
‖D‖ (2.3)

Herein, T∗ = T− tr(T)I/3 is the deviatoric stress tensor.

5



6 2 Review of Hypoplasticity

Based on the Eq. (2.3), Tejchman and Wu [84] investigated the shear band formation in
granular materials during biaxial compression tests; Wang [94] proposed an extended con-
stitutive equation and implemented it in tunnelling simulation; Lin et al. [57] extended the
model into a micropolar version for shear band simulation; Xu et al. [99] introduced an
model for frozen soil; Guo et al. [25] proposed a constitutive model for debris flow materi-
als and has been successfully implemented into the smoothed particle hydrodynamics code
by Peng et al. [75]; Wang [91] and Wang et al. [93] proposed a unified model combining
critical state hypoplastic model and a viscous model.

Wu and Bauer [96] extended Eq. (2.3) by taking into account pyknotropy which denotes
the influence of density on the mechanical response [42, 43]

T̊ = L(T) : D+N(T)‖D‖Ie (2.4)

Herein a density index Ie defined by

Ie = (1−a)
e− ed

ec− ed
+a (2.5)

In Eq. (2.5) the critical void ratio ec and the minimum void ratio ed are pressure dependent
quantities and a is a constitutive parameter.

Gudehus [22] and Bauer [6] proposed a comprehensive hypoplastic model by incorporat-
ing barotropy and pyknotropy in a consistent way. The general form of the constitutive
equation reads:

T̊ = fs
[
L
(
T̂
)

: D+ fdN
(
T̂
)
‖D‖

]
(2.6)

with the specific form

T̊ = fb fe
{[

a2
1I+

(
T̂⊗ T̂

)]
: D+ fda1

(
T̂+ T̂∗

)
‖D‖

}
(2.7)

Herein, I stands for the fourth-order unit tensor, a1 is a dimensionless scalar factor and
related to the stress limit condition. T̂ is the normalized stress tensor, T̂ = T/ trT and T̂∗
denotes the normalized deviatoric stress tensor, i.e. T̂∗ = T̂− I/3. fb stands for barotropy
factor, and fe and fd denote pyknotropy factors. The combination of fb and fe is called
stiffness factor, i.e. fs = fb fe.

The pyknotropy factor fd is a function related to the current value of the void ratio e, the
void ratios ec, ed and the material parameter α

fd =

(
e− ed

ec− ed

)α

(2.8)

Another pyknotropy factor fe reads:

fe =
(ec

e

)β

(2.9)
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with the material parameter β. The stiffness factor fb can be derived by considering the
consistency condition (Gudehus [22]).

The compression equation of maximum void ratio suggested by Bauer [6]

ei = ei0 exp
{
−
(

3p
hs

)n}
(2.10)

is included in Eq. (2.6) and Eq. (2.7) in which p = − trT/3 is the mean pressure. ei0
denotes the initial maximum void ratio at stress free state, p = 0. hs is the so-called solid
hardness and n is parameter related to the compression curve as outlined in Chapter 3.

Based on the compression equation for ei, similar relations for ec and ed were postulated
by Gudehus [22]:

ei

ei0
=

ec

ec0
=

ed

ed0
= exp

{
−
(

3p
hs

)n}
(2.11)

herein ei0, ec0 and ed0 are the initial values of the maximum void ratio, critical void ratio
and minimum void ratio at stress free state.

von Wolffersdorff [89] proposed a slightly different version which includes the stress limit
condition by Matsuoka-Nakai:

T̊ = fb fe f ∗s
{[

F2I+a2 (T̂⊗ T̂
)]

: D+ fdaF
(
T̂+ T̂∗

)
‖D‖

}
(2.12)

Compared to the model by Gudehus [22] and Bauer [6], Eq. (2.12) takes into account an
additional part f ∗s = 1/ tr

(
T̂2). Factor a is dimensionless and related to critical friction

angle. F is a function of normalized deviatoric stress T̂∗. Note that here the factor fb
is different from the one in Eq. (2.7). A more sophisticated model was developed by
Niemunis and Herle [69], using so-called inter-granular strain concept, to take into account
for instance the history of cyclic loading. Based on the work by von Wolffersdorff, Herle
and Kolymbas [28] proposed a model for soils with low friction angles. Considering the
work of Herle and Kolymbas [28], Mašín [59] proposed a model for clays.

In 2000 Bauer [7] embedded Casagrande’s critical states and factor f ∗s proposed by von
Wolffersdorff [89] into Eq. (2.6). The extended equation can be written as:

T̊ = fb fe f ∗s
{[

â2I+
(
T̂⊗ T̂

)]
: D+ fd â

(
T̂+ T̂∗

)
‖D‖

}
(2.13)

For simulation of shear bands using finite element method, Tejchman and Bauer [83] pro-
posed a micro-polar hypoplastic constitutive model. Huang [31] implemented the micro-
polar model into Finite Element code Abaqus. More enhanced versions of the micro-polar
model can be found by Huang et al. [32]. Bauer [10] extended the model to take into
account the influence of the loading path on grain crushing.
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Kolymbas [45] proposed a constitutive model called Barodesy, which can be considered as
an alternative development of hypoplasticity. The general equation of barodesy reads:

Ṫ = ‖T‖ ·
(
a1R+a2T̂

)
· ‖D‖ (2.14)

Herein, function R is derived from two rules by Goldscheider [21] which are related to the
asymptotic behaviour of proportional loading paths.

R = tr D̂I+ c1 exp
(
c2D̂
)

(2.15)

Moreover, R is the direction tensor, which has the direction of the asymptotic stress path
in the stress space associated to D̂ = D/‖D‖. c1, c2, a1 and a2 are material parameters.
Kolymbas [46] suggested a general barodetic equation by modifying Eq. (2.14) into

Ṫ = h
(

f R̂+gT̂
)
‖D‖ (2.16)

with h = c3‖T‖c4 . f and g are scalar functions which take into account critical states,
barotropy and pyknotropy. It is suggested to use different functions of f and g for different
materials such as sand and clay. Latter, a barodetic model for clay is also proposed by
Medicus et al. [62]. More details can be referred to Medicus [61].

Since the concept of hypoplastic models was introduced in 1970s, a great number of dif-
ferent versions were proposed. For more details about developments in hypoplasticity, one
can refer to Kolymbas [44], Wu and Kolymbas [98], Kolymbas [46] and Kolymbas and
Medicus [48].

2.2 Reference model for stiffness degradation

For developing the simplified model for stiffness degradation in Chapter 4 a reference
model by Bauer [8] is used, which is outlined in the following.

The stiffness degradation induced by wetting or weathering can be described as a time-
dependent process. The key parameter hs which is related to the stiffness factor fs in the
hypoplastic model proposed by Gudehus [22] and Bauer [6] was extended into a time-
dependent quantity to take into account the time dependent process of stiffness degrada-
tion.

For modelling wetting induced degradation of the incremental stiffness, a time dependent
reduction of the solid hardness was proposed by Bauer [8]

hst = hsw +(hsd−hsw)exp
{
− t

c

}
(2.17)

Herein, the hsd and hsw are the solid hardness for the dry and wet grain skeleton, respec-
tively. Parameter c is a constant with the dimension of time. The parameter hs in Eq. (2.10)
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is replaced by the time dependent quantity hst in Eq. (2.17). Thus the enhanced compres-
sion law reads:

ei = ei0 exp
{
−
(

3p
hst

)n}
(2.18)

Bauer [8] extended Eq. (2.13) with an additional term depending on mean pressure and
deviatoric stress

T̊ = fs
{

â2D+ tr
(
T̂D
)
T̂+ fd â

(
T̂+ T̂∗

)
‖D‖

}
+

ḣst

hst

{
1
3

tr(T)I+κT∗
}

(2.19)

In the additional term in Eq. (2.19), the scalar κ controls the effects of deviatoric stress on
the volume strain behaviour as also discussed in Bauer et al. [11]. Function â is related to
the stress limitation condition with respect to the critical friction angle ϕc, the Lode angle
θ and the components of normalized stress deviator T̂∗, the form discussed by Bauer [7]
reads:

â =
sinϕc

3− sinϕc

{√
8/3−3‖T̂∗‖2 +

√
3/2‖T̂∗‖3 cos3θ

1+
√

3/2‖T̂∗‖cos3θ
−‖T̂∗‖

}
(2.20)

with
‖T̂∗‖=

√
tr(T̂∗2) (2.21)

and

cos3θ =−
√

6tr(T̂∗3)

tr3 (T̂∗2)3/2 (2.22)

For isotropic states, Eq. (2.20) for â reduces to âi:

âi =

√
8
3

sinϕc

3− sinϕc
. (2.23)

According to the postulation by Gudehus [22], the minimum limit void ratio ed and the
critical void ratio have the same pressure dependency as the maximum limit void ratio
ei

ei

ei0
=

ec

ec0
=

ed

ed0
= exp

{
−
(

3p
hst

)n}
(2.24)

In contrast to the constitutive model by Gudehus [22] and Bauer [6], the stiffness factor in
Eq. (2.19) also includes the term f ∗s proposed by von Wolffersdorff [89]. Factor fs reads

fs = fe fb f ∗s (2.25)

A brief summary of some samples of parameter set related to the reference equations is
tabulated in Table 2.1.
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Table 2.1: Parameter sets of reference equations

Material
ϕc hsd hsw n ei0 ec0 ed0 α β c κ

[◦] [MPa] [MPa] [-] [-] [-] [-] [-] [-] [d] [-]
Granite [8] 42 75 25.5 0.6 0.85 0.39 0.2 0.125 1.05 12 0

Gravel sand [20] 35.5 95 30 0.45 0.81 0.62 0.37 0.2 1.05 3 /
Sandstone [11] 40 47 11.5 0.3 0.59 0.48 0.2 0.18 2.5 3 0.7



3 Compression behaviour, limit void ratios and critical void ratio

In this chapter the modelling of the compression behaviour of granular materials is inves-
tigated for different compression laws frequently used in soil mechanics.

3.1 Behaviour of unweathered materials

In soil mechanics, granular materials are often represented as continuous media. This
continuous description includes solid particles and the voids, which can be filled with
fluids and gases (Fig. 3.1).

(a)

Solids

Gas

Vs

Vv

1

e

(b)

Solids

Gas

Fluid

(c)

Solids

Fluid

Figure 3.1: Discrete structure of granular materials and corresponding continuum descrip-
tion

A granular body with a total volume, V , consists of the volume of solids, Vs, and the
volume of voids, Vv. The ratio of the volume of voids to the volume of solids is called
void ratio, e =Vv/Vs. For the unit volume of solids, the volume of the granular body is the
so-called specific volume, 1+ e. Two assumptions in conventional soil mechanics are still
taken into account:

• Solids1 is incompressible

1In soil mechanics, the solids are referred to soil particles.

11
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• Granular body can be considered as a continuum2

Therefore, the change of total volume of the granular body is only related to the change of
the void ratio. In continuum mechanics, the relation between void ratio and volume strain,
εv, can be derived from, e.g., Gudehus [22]

ė = (1+ e) trD (3.1)

with the stretching rate D =
(
L+LT)/2. L stands for the velocity gradient. Eq. (3.1)

yields:
1+ e = (1+ e0)exp(εv) (3.2)

herein e0 represents the initial void ratio at reference configuration where the volume strain
equals to zero. Eq. (3.2) shows that void ratio is a quantity which takes into account the
influence of the initial void ratio, e0, on the volume change. This is the reason that void
ratio is preferred to describe the volume change in this study. More specific, most volume
strain–stress relations are presented in the void ratio–stress space, i.e. e-p diagram.

3.1.1 Experimental results obtained under isotropic compression

Under isotropic compression the volume of the grain skeleton reduces with increase in
mean pressure (Fig. 3.2). The main factors affecting the compressibility of granular bod-
ies are determined by two aspects, namely the grain size distribution of material and the
structure of the grain skeleton. Under certain pressure level grain crushing takes place
which is strongly related to the strength of particles and grain size distribution. Differ-
ent materials exhibit different compressibilities. Normally consolidated peat (Fig. 3.2b) is
softer than consolidated clay (Fig. 3.2a), and consolidated clay is softer than sand. Even
for the samples with same material, the compressibilities can be different because of the
different initial void ratios.

3.1.2 Experimental results obtained under oedometric compression

Similar compression behaviour of granular material can be observed from oedometric
compression experiments. As shown in Fig. 3.4 the oedometric compression curves of
different sands have similar shape as the isotropic compression curves showed in Fig. 3.3a.
Under monotonic loading condition, the void ratio decreases as the vertical stress increas-
ing. With the developing of vertical stress, the influence of initial density on the compres-
sion curve becomes less and the compression curves starting from different initial densities
approach to a unique one. After reached a certain stress level, the effect of initial density
almost vanishes.

2Note that the continuum here refers to the simple grain skeleton.
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Figure 3.2: Compressibility of various soils in semi-logarithmic diagram (after Butterfield
[15])

10−3 10−2 10−1 100 101 102
0

0.2

0.4

0.6

0.8

p [MPa]

e Cambria sand [50]
Mason sand [67]
Osorio sand [17]

Ham River sand [58]

(a)

10−3 10−2 10−1 100 101 102
0

0.4

0.8

1.2

1.6

p [MPa]

e

Newfoundland silt[15]
Cambria sand [50]

(b)

Figure 3.3: Compressibility of sands and silt under isotropic compression tests

3.1.3 Limit void ratios

Due to different particle size distribution, different possible void ratio ranges are possible.
An example of granular assemblies of 2-D idealized particles is illustrated in Fig. 3.5.

In particular Fig. 3.5a shows the loosest state of the idealized 2-D particles, Fig. 3.5b for
the densest state. The Fig. 3.5c illustrate a packing of honeycomb state and the granulate
flow state is illustrated in Fig. 3.5d. Moreover, the honeycomb state with large macro voids
is rather unstable and also granular flow state are not within the scope of this study.



14 3 Compression behaviour, limit void ratios and critical void ratio

10−2 10−1 100 101 102 103
0

0.25

0.5

0.75

1
Feldspar sand[76]

−T11 [MPa]

e

Loose
Medium
Dense

(a)

10−2 10−1 100 101 102 103
0

0.25

0.5

0.75

1
Quiou sand[76]

−T11 [MPa]

e

Loose
Medium
Dense

(b)

10−2 10−1 100 101 102 103
0

0.25

0.5

0.75

1
Ottawa sand[76]

−T11 [MPa]

e

Loose
Medium
Dense

(c)

10−2 10−1 100 101 102 103
0

0.25

0.5

0.75

1
Quartz sand[100]

−T11 [MPa]

e

Loose
Medium
Dense

(d)

10−2 10−1 100 101 102 103
0

0.25

0.5

0.75

1
Cambria sand[100]

−T11 [MPa]

e

Loose
Medium
Dense

(e)

10−2 10−1 100 101 102 103
0

0.25

0.5

0.75

1
Gypsum sand[100]

−T11 [MPa]

e

Loose
Medium
Dense

(f)

Figure 3.4: Compressibility of sands from high pressure oedometric compression tests
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(a) (b) (c) (d)

Figure 3.5: Idealized 2-D particles under different states: (a) loosest state; (b) densest state;
(c) honeycomb state; (d) granulate flow state.

Considering the possible range of pressure dependent void ratios, Gudehus [22] suggested
that the possible rang should be bounded by the limit void ratios, ei and ed (Fig. 3.6):

A

B
loosest state

densest state

e

ei

ed

ln pln p1

Inadmissible states: A and B

Figure 3.6: Limit void ratios: ei maximum void ratio, ed minimum void ratio

The maximum void ratio, ei, can only be reached in so-called ideal isotropic compression.
In particular, the ideal isotropic compression starts with the loosest grain skeleton, e = ei0,
at stress free state, p0 = 0. The loosest state of a dry material can not be reached in
conventional laboratory because of the gravity. Therefore the void ratio at stress free state,
ei0, cannot be determined experimentally. However, the concept of maximum limit void
ratio indeed has physical meaning and provides a reference for relative density. In order to
ensure the specimen as loose as possible, Ishihara [33] suggested adding a small amount
of humidity into specimen. Note that this is only appropriate for relative coarse material,
like sand and rockfills. For the relative fine material, i.e. peat, silt and clay, the moist
appearance will induce suction which cannot lead to the loosest grain skeleton.
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3.1.4 Compression laws of unweathered materials

Terzaghi [85] fitted the primary compression data of clay by a line of equation:

e = e0−Cc log10

(
σ′

σ′0

)
(3.3)

in which e0 denotes the reference void ratio at the reference stress σ′0 state. Cc is the so-
called compression index. Eq. (3.3) can also be represented as a function of the mean
pressure p =− trT/3

ei− eir =−λ ln
(

p
pr

)
(3.4)

Herein, ei denotes the pressure dependent maximum void ratio and eir is the reference
void ratio related to pr. For clay ei (p) is the so-called normal consolidation line in a semi-
logarithmic representation in Fig. 3.7 (Terzaghi [85], Roscoe et al. [78] and Schofield and
Wroth [81]). In the Cam clay model the pressure dependent critical void ratio ec is assumed
to be parallel to ei in e- ln(p) space as illustrated in Fig. 3.7b.

ei− eir = ec− ecr =−λ ln(p/pr) (3.5)

This concept is widely used in many models, i.e., Muir Wood [65], Fig. 3.7.

e

p

CSL

NCL

e

eir

ecr

ln pr ln p(a) (b)

Figure 3.7: Limit state lines: (a) e-p representation, slightly modified from Muir Wood
[65]; (b) e- ln p representation.

Been et al. [14] assumed a bilinear relation for the critical state line of Erksak sand and
Leighton Buzzard sand (Fig. 3.8a).



3.1 Behaviour of unweathered materials 17

Based on the results of compression experiments with Karlsruhe sand, Bauer [6] proposed
a compression equation for the maximum void ratio ei

ei = ei0 exp
[
−
(

3p
hs

)n]
(3.6)

here ei denotes the maximum void ratio of a grain skeleton at a mean stress p. In other
words, ei denotes the pressure dependent void ratio starting from the loosest state of the
grain skeleton.

Gudehus [22] postulate that the limit void ratios ei and ed as well as the critical void ratio
ec follow the equation proposed by Bauer [6]:

ei

ei0
=

ec

ec0
=

ed

ed0
= exp

[
−
(

3p
hs

)n]
(3.7)

With the postulation by Gudehus [22], the limit void ratio curves are consistent within the
whole pressure range as illustrated in Fig. 3.8b.
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e

101 102 103 104
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0.7
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CSL by Been et al. [14]

Nonlinear shape

ln p

e

ei

ec

ed

(a) (b)

Figure 3.8: Nonlinear limit state lines: (a) bilinear e- ln p for sand assumed by Been et al.
[14]; (b) limit state lines postulated by Gudehus [22] according to the compres-
sion law Bauer [6].

Compression law by Janbu, 1963

The incremental stiffness in oedometric compression is defined by the following relation
between the stress rate, Ṫ11, and the strain rate, D11:

Es =
Ṫ11

D11
(3.8)
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Janbu (1963) suggested a power law to describe the relation between incremental stiffness
and vertical stress in oedometric compression:

Es

−Tre f
= χ

(
T11

Tre f

)α

(3.9)

herein Tre f denotes a reference stress, χ the modulus factor and α the stiffness exponent are
material parameters depend on material types. By substitute Es = Ṫ11/D11 into Eq. (3.9)
one obtains the following rate form equation:

Ṫ11 =−χTre f

(
T11

Tre f

)α

D11 (3.10)

For a value of α = 1, Eq. (3.10) reduces to

Ṫ11 =−χT11D11 (3.11)

Considering Eq. (3.1) for oedometric compression, i.e. trD = D11, Eq. (3.11) can be rep-
resented as

Ṫ11

T11
=−χ

ė
1+ e

(3.12)

With the initial condition that T11 = T11,0 < 0 and e = e0, the integration of Eq. (3.12)
yields:

ln
(

1+ e
1+ e0

)
=−1

χ
ln
(

T11

T11,0

)
(3.13)

or

ln(1+ e) =− ln(−T11)

χ
+

ln(−T11,0)

χ
+ ln(1+ e0) (3.14)

This represents a linear relation between ln(−T11) and ln(1+ e). Taking into account the
lateral stress coefficient, K0 = T22/T11, Eq. (3.14) can be written as:

ln(1+ e) =− ln(3p)
χ

+
ln(1+2K0)

χ
+

ln(−T11,0)

χ
+ ln(1+ e0) (3.15)

As mentioned in Muir Wood [66] (according to Janbu, 1963), α = 1 is an appropriate value
which provides rather realistic results for different clays, e.g. Butterfield [15], Mašín [59]
and Medicus et al. [62].

However, the power law suggested by Janbu (1963) for clay has some limitations: the
vertical stress cannot start from stress free state. Furthermore, the vertical stress should be
T11 ≥ T11,0 (1+ e0)

χ, otherwise the void rate will be less than zero (see Fig. 3.9). These
shortages also applies to other compression laws, which consider a linear relationship in
the ln(1+ e)- ln(3p) space.
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Figure 3.9: The power law by Janbu(1963) for compression behaviour of clay

For a value of α = 0, which is suggested for rock by Janbu in 1963, Eq. (3.10) leads to

ln(1+ e) =− T11

χTre f
+

T11,0

χTre f
+ ln(1+ e0) (3.16)

with an initial state of: T11 = T11,0 and e = e0. If the initial stress is set equal to the
reference stress, T11,0 = Tre f , Eq. (3.16) yields

ln(1+ e) =− T11

χTre f
+

1
χ
+ ln(1+ e0) (3.17)

For 0 < α < 1, Eq. (3.10) leads a equation for compression law of materials like sand,
i.e.

ln(1+ e) =− 1
(1−α)χT 1−α

re f

(
T 1−α

11 −T 1−α

11,0

)
+ ln(1+ e0) (3.18)

herein T11,0 and e0 stand for the initial vertical stress and corresponding initial void ratio. If
the initial vertical stress is equal to the reference stress Tre f , the Eq. (3.18) can be simplified
as

ln(1+ e) =−
T 1−α

11

(1−α)χT 1−α

re f

+
1

(1−α)χ
+ ln(1+ e0) (3.19)

The Eq. (3.19) can be represented in the e-T11 form as:

e = (1+ e0)exp
[

1
(1−α)χ

]
exp
[
− 1
(1−α)χ

T 1−α

11

]
−1 (3.20)

Note that the compression law for sand by Janbu (1963) should be limited to the stress
range T11 ∈

[
{(1−α)χ ln(1+ e0)+1}1/(1−α)Tre f , 0

)
. If the vertical stress is less than
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Figure 3.10: Different representations of the compression law of Eq. 3.19 with α= 0.5 and
χ = 100

the lower bound value, negative void ratio can be archived according to the Eq. (3.19)
(Fig. 3.10).

According to Muir Wood [66], the suggested range of α and χ for sands are α ∈ [0.2,0.8]
and χ ∈ [100,1000]. It is suggested that α and χ are parameters depending on the value of
void ratio (see Fig. 4.11 of Muir Wood [66]).

Compression law by Pestana, 1995

Pestana and Whittle [76] proposed a compression equation defined in a linear ln(e)- ln(p)
space

ln(e) =−ρc ln
(

p
pre f

)
(3.21)

with a slope −ρc in the ln(e)- ln(p) space. pre f is the reference pressure for the void ra-
tio e = 1. The equation is actually proposed for the hydrostatic limit compression curve
(HLCC in Fig. 3.11a) of high stress level range. This HLCC is the upper limit of the
ln(e)- ln(p) space, of which all possible void ratios should lie beneath. Hydrostatic com-
pressions with different initial void ratios (HCC1 and HCC2 as shown in Fig. 3.11a) should
approach the HLCC asymptotically. The compression curve with greater initial void ratio
as illustrated by the red dashed curve in Fig. 3.11a should not cross the one with smaller
initial void ratio (HCC2 in Fig. 3.11a).

For the lower-stress range, Pestana and Whittle [76] suggested to simulate the compression
curve by a relation between e and p

ln
(

e
e0

)
=−e1/ρc

0 β

(
p

pat

)
− 3

2Cb

(
p

pat

)2/3

(3.22)
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Figure 3.11: Performance of compression equation by Pestana and Whittle (1995):
(a)conceptual interpretation of hydrostatic limit compression curve (HLCC);
(b)compression of experimental data by Lee and Seed [53] and compression
equation (Eq. (3.22)) by Pestana and Whittle [76].

with the constants ρc, β and Cb. Here pat denotes the atmospheric pressure. As shown in
Fig. 3.11b, the numerical results obtained with Eq. (3.22) using the single set of parameters
are in good agreement with the four experiments starting from different initial void ratios.
However, the predictions are clearly inadequate for higher stress levels, i.e. compression
curve for the initially dense specimen crosses the curve predicted for the initially loose
specimen.

Compression law by Bauer, 1996

In general, the compression behaviour of granular material, especially of the crushable
material, is strongly nonlinear over the entire possible stress range. The compression law
introduced by Bauer [6] is characterized by mathematical simplicity, and only the three
parameters ei0, hs and n are required:

ei = ei0 exp
[
−
(

3p
hs

)n]
(3.23)

With the initial limit void ratio, ei0, the so-called solid hardness, hs, and the exponent n.
The latter is related to the slope of the compression curve, Eq. (3.23) describes a compres-
sion relation between maximum void ratio ei and mean pressure p, within a stress range of
p ∈ [0,+∞]. Moreover, this curve forms an upper bound of the possible void ratio in the
e-p space. This upper limit can be reached under an ideal isotropic compression. In the
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laboratory test, this ideal isotropic compression condition cannot archived due to the effect
of the gravity.

The shapes of the compression curve described by the Eq. (3.23) in linear and semi-
logarithmic representations are shown in the Fig. 3.12.

3p

ei

(a)

ln(3p)

ei

(b)

Figure 3.12: Compression curve: (a)linear representation; (b)semi-logarithmic representa-
tion.

The main properties of the compression equation can be better demonstrated by consider-
ing the following form:

f (x) = f (x0)exp
{
−
[

exp(x)
hs

]n}
(3.24)

with x = ln(3p) and f (x) = ei. The ei0 is represented by f (x0) with x0 = −∞ or with
p = 0. Therefore, the slope of the compression curve (the derivative of the function f (x)
in Eq. (3.24)) can be explicitly expressed as

f ′ (x) =− f (x)n
[

exp(x)
hs

]n

(3.25)

The derivation of the Eq. (3.25) is detailed in Appendix A.1. As shown in Fig. 3.13, the
slope of the curve decreases from 0 to the minimum value − f (x0)exp(−1)n. After the
minimum value is reached, the slope approaches to 0 with x→+∞.

When the point of inflection of the compression curve is reached x = ln(hs), the corre-
sponding value of the function is f (x) = f (x0)exp(−1). Another representation of this
relation is f (x0) = f (x)exp(1). Therefore, the value of f (x) at the point of inflection can
be used to calculate the initial value of the function f (x0).
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f (x) = f (x0)exp(−1)

x = ln(hs)

x = ln(3p)

f (x) f (x) = ei

f ′ (x) =− f (x)n [exp(x)/hs]
n

Figure 3.13: Characteristics of the compression law by Bauer [6].

Furthermore, according to the Eq. (3.24), the curvature κ(x) of the compression curve can
be derived analytically (Appendix A.1)

κ =

f (x)n2

[
exp(x)

hs

]n{[
exp(x)

hs

]n

−1

}
1+[ f (x)]2 n2

[
exp(x)

hs

]2n


3/2 (3.26)

For x = ln(hs), the curvature becomes κ = 0.

In Fig. 3.14, f (x) and the corresponding curvature κ(x) are plotted. First the compression
curve decreases to a minimum value and then it increases to a maximum value which is
greater than zero. After the peak the curvature decreases again to tend asymptotically to
zero. Thus, the compression curve defined by the Eq. (3.23) describes three phases, which
can be interpreted according to Fig. 3.15:

At low stress levels (Phase I), the deformation of grain assembly is mainly due to particle
rearrangement, achieved by overcoming interparticle friction through sliding and rotation.
This particle rearrangement may be accompanied by abrasion of surface asperities. When
the compression increases grain crushing occurs. With increasing pressure the amount of
fracturing increases (Phase II). At very high stresses the void ratio tends to zero and a
phase transition (diagenesis) takes place (Phase III) (Vesić and Clough [88]; Pestana and
Whittle [76]; Mesri and Vardhanabhuti [63]).

The compression law (Eq. (3.23)) reflects these three phases. It is interesting to compare
the transition states of these three phases with the extreme values of the curvature curve
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Figure 3.14: Compression curve f (x) and curvature curve κ(x) for hs = 100 MPa, n = 0.4
and e0 = 1.2.

κ(x). In particular the two extreme values of κ(x) separate the compression curve into
three parts. The minimum value of curvature is frequently related to the yield stress con-
cept for granular materials (e.g. Carter et al. [16]; Coop and Atkinson [19]; McDowell
et al. [60]; Nakata et al. [68]; Mesri and Vardhanabhuti [63]). The range between the mini-
mum and maximum value of curvature can be related to phase II of the compression curve
where grain crushing becomes dominant (Bauer et al. [12] and Laufer [52]). After phase
II the additional reduction of the void ratio for the same stress increment becomes smaller
and smaller.

The mathematical analysis of the Eq. (3.23) can be summarized as follow:

• The slope of the compression curve can be expressed by −ein(3p/hs)
n.

• The point of inflection of the curve is defined for 3p = hs and e∗i = ei0 exp{−1}. For
the case e∗i is known the initial maximum void ratio can be calculated from

ei0 = e∗i exp{1} (3.27)

• The extreme values of the curvature curve allow the distinction of three different
phases of the compression curve.



3.1 Behaviour of unweathered materials 25

I

II

III

x = ln(3p)

e i

ei (x)
κ(x)

Figure 3.15: Phases of the compression law by Bauer(1996)

Ideal oedometric compression based on Bauer’s law

The compression law by Bauer [6] is originally defined for ideal isotropic compression
curve, i.e. an isotropic compression starting from the maximum void ratio ei0 (p = 0). The
same function can also be used to approximate the behaviour under oedometric condition.
Recalling the proportional strain paths theory by Goldscheider [21], the proportional path
and asymptotic behaviour under isotropic compression is illustrated in Fig. A.2a. Consid-
ering an oedometric compression test starting from the initial stress free state and e = eo0,
the corresponding stress paths will be proportionally as well and T22 = T33 = K0T11. The
compression curve of the ideal oedometric compression will act as an attractor for cases
oedometric compression starts from another initial state. This explains why with differ-
ent initial densities, the oedometric compression curves converge into a unique curve after
reaching a certain stress level (see Fig. 3.4). Based on the proportional strain and stress
paths theory, the limit void ratio curve and normal compression curve in e- ln(p) space can
be illustrated as in Fig. 3.16. Here the K0 is considered as constant, some soft grains show
increasing values of K0 with vertical stress increased (i.e. after Yamamuro et al. [100]).

For the given ideal oedometric compression condition, the mean pressure can be repre-
sented as p = T11 (1+2K0)/3. Therefore, the compression equation by Bauer [6] can be
represented as:

eo = eo0 exp
{
−
[

T11 (1+2K0)

hs

]n}
(3.28)

Herein eo denotes the void ratio of ideal oedometric compression at a stress state with
p = T11 (1+2K0)/3. Alternatively, the Eq. (3.28) can be expressed as

eo = eo0 exp
[
−
(

T11

h∗s

)n]
(3.29)
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(a) isotropic compression (b) oedometric compression
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Figure 3.16: Proportional paths under axisymmetric condition and asymptotic behaviour:
(a) isotropic compression; (b) oedometric compression.
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with h∗s = hs/(1+ 2K0). Similar to the feature of Eq. (3.27), the ei0 can be calculated
according to the point of inflection the ideal oedometric compression curve defined by
Eq. (3.29)

eo0 = e∗o exp{1} (3.30)

where e∗o is the void ratio at the inflection point. The quantity eo0 is smaller than ei0. Ac-
cording to the ideal oedometric compression concept, the oedometric experimental results
also can be used to calculate the eo0. Then the calculated eo0 can be used to estimate ei0
according to the concept ei0 > eo0. For instance, if the point of inflection is known, eo0
can be estimated from Eq. (3.30). As shown in Table 3.1, the values of eo0 for the sands in
Fig. 3.4 can be calibrated according to the point of inflection.

Table 3.1: Prediction of initial value of maximum limit void ratio of sands (from Fig. 3.4)
Sand Feldspar Quiou Ottawa Quartz Cambria Gypsum

−T11 [MPa] 18 15.2 144 46.2 47.8 11.7
e∗o 0.57 0.512 0.372 0.478 0.334 0.409
eo0 1.55 1.39 1.01 1.30 0.91 1.11

If K0 is not known, h∗s or hs cannot be determined from data of oedometric compression
test, i.e. from T11-ε11 data.

Provided K0 is known either from special oedometric device (Kolymbas and Bauer [47]
and Yamamuro et al. [100]) or K0 is estimated, the ideal compression curve can be approx-
imated according to Eq. (3.23). For Dog’s Bay sand which is a highly crushable biogenic
carbonate sand with fragile particles mainly composed of broken shell fragments (Altuhafi
and Coop [4]), the calibration results obtained for isotropic and oedometric compression
are shown in Fig. 3.17.

Application scope

As summarized by Pestana and Whittle [76], the compression behaviour is mainly affected
by: initial density, mineralogy and structure of particles, granulometric properties (particle
size, shape, angularity, and grain size distribution). Therefore a statistical evaluation to
deal with such complex is inevitable. The compression law proposed by Bauer [6] is de-
veloped based on the Karlsruhe sand in a statistical manner. The compression equation has
three parameters, ei0, hs and n. The equation takes into account the stiffness and strength
properties of the grain assembly by hs with exponent n, describes the whole compression
history from the stress free state to the infinity stress level.

Broad agreement can be find in literature that the fine grains are less likely to be crushed
than the coarse ones. Therefore, for those fine materials, i.e. clay and silt, the phase I
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Figure 3.17: Prediction of compression curves of Dog’s Bay sand using experimental data
from Coop [18] for the prediction of hs, n, ei0 and eo0.

(illustrated in Fig. 3.15) is sufficient to describe the compression behaviour of the materials
(another manner is to consider linear relation in e- ln(p) or in lne- ln(p)). As the discrete
element modeling (DEM) simulation shown by Laufer [52] (in Fig. 3.18) that the grains
without grain crushing under oedometric compression condition has similar shape as the
phase I of compression curve by Bauer [6], and the compression curve with considering
grain crushing has similar shape as the one according to Eq. (3.29).

The compression equation by Bauer [6] is developed based on the analysis of experimental
investigation of Karlsruhe sand and can also be used to simulate the compression behaviour
of other sands, e.g. Herle and Gudehus [27]; Anaraki [5] and Phuong et al. [77]. The cali-
bration and numerical simulation of sandstone by Li et al. [56] shows that the compression
equation can be used for coarse granular material as well. By calibrating the parameters
based on the experimental data of metal powders by Heckel (1961) from [76], it shows that
the compression equation is appropriate for metal powders as well.

Some aspects about the application of the compression law by Bauer [6] should be empha-
sized:

(a) remoduling; The remoduling should be treated differently from the unloading. Re-
moduling normally will change the grain skeleton significantly, and the smaller initial
maximum limit void ratios should be taken into account since the during the loading
before remoduling grain crushing changes the GSD. Thus the original grain skeleton
cannot be reached any more. Of course for those condition with insignificant grain
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compression equation (Eq. (3.29))

without grain crushing

with grain crushing
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Figure 3.18: Comparison of compression curves under oedometric compression with grain
crushing and without grain crushing from DEM simulation by Laufer [52].
The figure is replotted and compared with the compression curve proposed
by Bauer [6] with ei0 = 1.5, h∗s = 104 MPa and n = 0.8.

crushing occurred, the remoduling will not have strong influence on the hs and n, and
on this giving condition, considering the same hs and n is acceptable.

(b) fluids; Pore fluid, fluid saturation can affect the compressibility of cohesionless ma-
terials (e.g. Nobari and Duncan [70]; Miura and Yamanouchi [64]; Kast et al. [39];
Oldecop and Alonso [71]; Ovalle et al. [74]). The different compressibilities imply the
stiffness (related to crushing resistance) changed during the process of adding fluids.
Therefore, the changing of solid hardness should be taken into account as well. Details
are outlined in Section 3.2.

(c) time-dependent behaviour; Time dependent phenomena (e.g. Schmertmann [80]; Old-
ecop and Alonso [72]; Ovalle et al. [74]), i.e. creep and stress relaxation (e.g. Karim-
pour and Lade [36]; Karimpour and Lade [37]), which lead volume change, cannot be
described with a constant solid hardness.

Bauer [8] extended the Eq. (3.6) by considering the solid hardness is a time-dependent
quantity during the process of adding fluid and it will degrade into a value related to the
fully saturation state of the material

ei = ei0 exp
[
−
(

3p
hst

)n]
(3.31)
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Figure 3.19: Prediction of metal powders at high stress levels using Bauer’s equation:
(a)parameter sets of compression equation (Eq. (3.29)) for metal powders
[76]; (b)prediction with large stress range.

with
hst = hsw +(hsd−hsw)exp

(
− t

c

)
(3.32)

Note that it takes time to reach a stable state after fully saturation, therefore the degra-
dation of solid hardness should last longer than saturation. Details of the time-dependent
compression relation are outlined in Chapter 4.

3.2 Behaviour of moisture sensitive materials

As mentioned in Chapter 1, a change of the moisture content can lead to an increase of
the compressibility of coarse-grained and weathered rockfills. This phenomenon can be
explained as the degradation of the strength of the solid grains caused by hydrochemical
process inside of the micro cracks. The additional deformation after wetting of the material
is usually called wetting deformation.

From the experimental observations, main conclusions can be summarized as: (a) under
one-dimensional compression condition, after wetting the compression curve of initially
dry specimen approaches to the initially wet compression curve, with continue loading,
the dry-wet compression curve follows the initially wet one; (b) for the specimen under
triaxial compression condition, the stress- and volumetric strain-axial strain curves shift
from the initially dry ones and approached to the initially wet ones asymptotically; (c)
for the relative coarse material (i.e. sand and rockfill), the wetting deformation is mainly
caused by the additional grain crushing.



3.2 Behaviour of moisture sensitive materials 31

3.2.1 Experimental observations

Howson [30] reported a sudden increase in settlement after a flood during the construction
of Dix River Dam, due to saturation of the partially completed embankment (Fig. 3.20a).
This field observation starts the hypothesis about crushing-upon-wetting.

Sowers et al. [82] tested the jetting effects on settlement of rock and observed that the
initial wetting causes additional settlement of rock comparing with the initial dry rock,
and jetting dry rock will cause additional settlement of rock as well (Fig. 3.20b). Due
to the fact that the impervious graywacke and the more pervious sandstone had similar
wetting deformation, the authors concluded that the mineral bond softening by wetting is
not appropriate explanation for the wetting deformation of rocks. Wedge-shaped intact
rocks were tested for investigating the effect of wetting on contact points (local) crushing.
Splitting was observed immediately after the contact points were wetted, consequently
induced the sudden compression of the specimens. The authors concluded that the crushing
of contact points is caused by a locally increased stress and additional cracks propagation
which induced by the entering of water in the microcracks of the highly stressed contact
points.
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Figure 3.20: Field and experimental observation of wetting effect on settlement of rock

Holestöl et al. [29] investigated the effect of wetting on the settlement of Venemo Dam in
Norway, which was constructed of granitic gneiss and amphibolite rockfill, and discovered
similar relation of the vertical stress and settlement (Fig. 3.21a).

Leonards and Altschaeffl [55] found that a significant wetting deformation occurred when
water was added to compacted specimens of limestone residual clay (with initial water
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content ω= 14.9%) during one-dimensional compression (Fig. 3.21b). This discovery also
proved that the wetting deformation can occur in different particle size granular materials
in partial saturation state (stated by Jennings [34]).
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Figure 3.21: Wetting deformation under oedometric compression

Nobari and Duncan [70] tested the Pyramid material under one-dimensional condition, and
found similar tendency of compression curves as the material showed in triaxial compres-
sion tests (see Fig. 3.22a).

Kast et al. [39] referred to a set of one-dimensional compression tests performed on weath-
ered broken granite with different dynamic compaction energy (λp in Fig. 3.22b) that
showed the granite exhibited the same compression behaviour as the one of Pyramid ma-
terial.

Oldecop and Alonso [71] conducted laboratory tests with specimen flooding and relative
humidity control on Pancrudo slate. Ovalle et al. [74] investigated an angular sand, ob-
tained from a quartzite shale rock by grinding, in oedometric and triaxial compression
tests with different wetting stress levels and different stress paths (creep, stress relaxation).
All these oedometric compression test results show the same phenomenon: when the spec-
imen is wetted, the compression curve transform from the initially dry compression curve
to the initially wet compression curve and follow the wet compression curve with contin-
uing loading.

Vesić and Clough [88] conducted a set of triaxial compression tests up to high stress
level (pmax = 118.83 MPa) with sand samples and found that the wetting leads additional
crushing of sand when comparing to the dry specimen, and the particle crushing is more
pronounced in the specimen with triaxial compression path than in the specimen under
isotropic compression condition.
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Figure 3.22: Oedometric compression behaviour of materials under dry and wet condition
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Figure 3.23: Effects of wetting and stress path on GSD

3.2.2 Constitutive modelling of wetting deformations

Alonso et al. [3] proposed a constitutive model (Barcelona basic model) for unsaturated
soils to simulate the phenomenon of wetting deformation. Based on the unsaturated soil
mechanics, the concept of crack propagation velocity (by Laidler [51]) and previous works
referred to Barcelona basic model, Oldecop and Alonso [71] introduced a model for rock-
fill compressibility.

Recalling the fact that after wetting the compression curves approach to the initially wet
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curve independent of the stress or strain paths, i.e. creep (A-C path) as shown in Fig. 3.24b
or stress relaxation (A-B path), as mentioned in Section 3.2.1), and considering the process
of shifting from dry curve to wet curve takes time. Based on the stiffness degradation
concept Bauer [8] proposed the compression curve shifting process by introducing the
time dependent solid hardness hst and replaced the term hs in Eq. (3.6). Therefore, the
compression curves for dry, wet and the transition from dry to wet can be described by
substituting the hs in Eq. (3.6) with hsd , hsw and hst , respectively.

With respect to that the hst is considered as a time-dependent quantity, hst , the derivative
of Eq. (2.17) yields (Bauer [8]):

ėi =−ein
(

3p
hst

)n( ṗ
p
− ḣst

hst

)
(3.33)

Based on the Eq. (3.33), the creep deformation (or wetting deformation, collapse, A-C
path in Fig. 3.24) can be described by setting the ṗ = 0, and the stress relaxation (A-B path
in Fig. 3.24) can be archived with considering ṗ/p = ḣst/hst . Although, the stress-strain
path between the creep and stress relaxation paths, illustrated as A-D in Fig. 3.24, can be
described using Eq. (2.17) and Eq. (2.17). Note that the partly saturated state (illustrated
as the red dashed line Fig. 3.24) can be described using the Eq. (2.17) as well, however it
is not covered in this work.
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Figure 3.24: Conceptual model for wetting deformation: (a) subcritical crack growth
curves after Oldecop and Alonso [71], slightly modified; (b) stiffness degra-
dation after Bauer [8].



4 A simplified hypoplastic model for stiffness degradation

In this chapter, a simplified hypoplastic constitutive model for stiffness degradation is out-
lined as follows: the general equation of the simplified constitutive model is given in Sec-
tion 4.1; in Section 4.2 the consistency condition proposed by Gudehus [22] is addressed
to illustrate how the compression law can be taken account into the constitutive equation;
the standard calibration procedure of the model is detailed in Section 4.3; the hypoplastic
element test program (HET) is introduced in Section 4.4.

4.1 General equation of the simplified hypoplastic model

In this work the general equation of the simplified model is proposed as follows:

T̊ = f̌s
{

â2D+ tr
(
T̂D
)
T̂+ f̌d â

(
T̂+ T̂∗

)
‖D‖

}
+

ḣst

hst

{
1
3

tr(T)I+κT∗
}

(4.1)

and

ei = ei0 exp
{
−
(

3p
hst

)n}
(4.2)

with:

• ḣst = 0 for constant solid hardness, like dry or wet condition1

• ḣst 6= 0 for stiffness degradation.

In particular, the constant solid hardness for the dry condition differs from the one of wet
condition. Therefore, additional subscripts d and w are used in the terms, hsd and hsw, to
denote the solid hardness of the material under the dry and wet conditions, respectively.
And the stiffness degradation is described based on the Eq. (3.32) which is proposed by
Bauer [8]:

hst = hsw +(hsd−hsw)exp
{
− t

c

}
(4.3)

herein, c is a constant with dimension of time. The time derivative of the Eq. (4.3) reads:

ḣst =−
1
c
(hst−hsw) (4.4)

1Here the wet condition refers to the stable state after fully saturation. Before the stable state reached, the
stiffness degradation should be taken into account.

35
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In this simplified model, the density factor in Eq. (2.8) is replaced by the following expres-
sion:

f̌d =

(
e
ec

)α̌

(4.5)

It is obvious that the minimum void ratio ed is not included in Eq. (4.5). The reason is
twofold: for monotonic loading, the minimum void ratio ed defines the lower bounds of
the possible void ratios. However, for unloading, the lower bound defined by ed might be
crossed over, as illustrated in Fig. 4.1a. In addition, the calibration of ed is rather difficult
as mentioned in Herle and Gudehus [27]. Another argument to choose Eq. (4.5) is the fact
that the number of constitutive parameters can be reduced.
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Figure 4.1: Reason for new density factor: (a) limit void ratios and unloading/reloading;
(b) relation between density factor and void ratio.

The same function for the density factor is also suggested by Li et al. [56], Wang [91],
Wang et al. [93] and Wang et al. [92].

Note that for e = ec, the value of the density factor fd = 1.

With the simplified density factor, the stiffness factor f̌s differs from the stiffness factor fs
mentioned in Eq. (2.8). The derivation of the stiffness factor f̌s is outlined in Section 4.2

The total number of parameters of the simplified model is compared with the reference
model in Table 4.1. In the simplified model, hs stands for hsd for dry material; hs represents
hsw for the wet material.
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Table 4.1: Parameters of reference model and simplified model
Models Parameter set Total num.

Ref. Model
Eq. (4.19) ϕc hs0 / n ei0 ec0 ed0 α β / / 8
Eq. (4.20) ϕc hs0 hsw n ei0 ec0 ed0 α β c κ 11

Simp. Model
Eq. (4.1) ϕc hs / n ei0 ec0 / α̌ / / / 6
Eq. (4.1) ϕc hsd hsw n ei0 ec0 / α̌ / c κ 9

4.2 Derivation of the required consistency condition

Recalling that the compression equation (Eq. (3.23)) proposed by Bauer [6] describes the
ideal isotropic compression curve, the constitutive equation which takes into account the
compression equation should be consistent with the compression equation by fulfill the
requirements of ideal isotropic compression condition. This consistency concept is intro-
duced by Gudehus [22]. Take the Eq. (4.1) as an example, if considering constant hs, the
consistency can be fulfilled as illustrated by following steps.

The ideal isotropic compression condition has the following characteristics: e = ei, T =−pI,
T̂ = I/3, T̂∗ = 0 and D = tr(D)/3I, provided with p > 0 and tr(D)< 0. Therefore, the
mean pressure rate can be described as ṗ =− tr

(
Ṫ
)
/3, the Euclidean norm of stretching

tensor is ‖D‖=−
√

3/3tr(D), and the stiffness factor for ideal isotropic compression con-
dition can be represented as f̌di = (ei0/ec0)

α̌. Thus, the rate of mean pressure can read
as

ṗ =−1
3

f̌s

{
â2

i +
1
3
−
√

3
3

f̌diâi

}
tr(D) (4.6)

Recalling the Eq. (3.1), the relation between void ratio and stretching tensor of ideal
isotropic compression can be described as ėi = (1+ ei) tr(D), then the Eq. (4.6) can be
written as

ṗ =−1
3

f̌s

{
â2

i +
1
3
−
√

3
3

f̌diâi

}
ėi

1+ ei
(4.7)

From the compression equation Eq. (3.23), the rate of void ratio can be derived as

ėi =−ein
(

3p
hs

)n( ṗ
p

)
(4.8)

Therefore, the rate of mean pressure derives from Eq. (3.23) can be expressed as

ṗ =− p
n

(
3p
hs

)−n ėi

ei
(4.9)
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Then, according to Eq. (4.7) and Eq. (4.9), the stiffness factor for ideal isotropic compres-
sion can read as

f̌si = 3
p(1+ ei)

ein

(
3p
hs

)−n
{

â2
i +

1
3
−
√

3
3

f̌diâi

}−1

(4.10)

Set ȟi = â2
i +1/3−

√
3/3 f̌diâi, and considering for isotropic compression the factor f ∗s is

equal to 3, the pressure dependent factor fb reads

fb =
p(1+ ei)

neiȟi

(
3p
hs

)−n( ei

ec

)β

(4.11)

Substitute Eq. (4.11) into Eq. (2.25), the general form of stiffness factor reads

f̌s =
(ei

e

)β 1+ ei

neiȟi

(
3p
hs

)−n p
T̂ : T̂

(4.12)

Therefore, with considering Eq. (4.12), the consistency condition of Eq. (3.23) and Eq. (4.1)
without stiffness degradation is fulfilled.

For constitutive equation with considering stiffness degradation (Eq. (4.20)), the rate of
mean pressure for ideal isotropic can be derived with the same procedure as illustrated
before:

ṗ =−1
3

f̌s

{
â2

i +
1
3
−
√

3
3

f̌diâi

}
ėi

1+ ei
− ḣst

hst
p (4.13)

and the rate of mean pressure derived from Eq. (3.31) can be written as

ṗ =− p
n

(
3p
hs

)−n ėi

ei
− ḣst

hst
p (4.14)

Therefore, the consistency condition can be fulfilled by considering Eq. (4.13) and Eq. (4.14).
Obviously, the Eq. (4.12) is valid for the compression equation described by Eq. (3.31) as
well.

Note that any modification or extension of either the constitutive equation or the compres-
sion relation, consistency condition should be considered as well. In another word, if any
modification of the constitutive equation or the compression relation is made, the updating
of stiffness factor need to be taken into account as well.

4.3 Direct calibration procedure

Referring to Table 4.1, the simplified model has nine parameters in total. In particular,
seven parameters for classic constitutive equation, which is proposed for time-independent
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material behaviour; nine parameters for the constitutive equation takes into account time-
dependence, like creep and stress relaxation which shows stiffness degradation during a
certain period of time. All these nine parameters can be calibrated based on the conven-
tional laboratory tests as summarized in Table 4.2. And the calibration procedure for each
parameter is discussed separately in following sections (except that the determination of
parameter c and κ is illustrated in Chapter 5).

Table 4.2: Tests for parameter determination
Test hsd hsw n ei0 ϕc ec0 α̌ β c κ

Isotropic compression X X X X X
Oedometer compression X X X X

Triaxial compression X X X X X

4.3.1 Material parameters of the compression law by Bauer

In this work the hs stands for hsd or hsw which distinguish the constant solid hardness from
the solid hardness (hst) degrades with time. Recalling that mentioned in Chapter 3, the hs
and n can be determined based on the experimental data from ideal isotropic compression
or ideal oedometric compression tests, dry for hsd and wet for hsw. For the sake of simplic-
ity, the n for the dry material is considered the same as the one determined from the wet
tests. Based on the calibration will be mentioned in the next chapter, the difference of n
calibrated from dry and wet tests is indeed can be ignore.

According to the discussion about asymptotic state of isotropic and oedometric compres-
sion test, the data from ideal isotropic compression and ideal oedometric compression test
should be considered to determine the hs and n.

In particular for ideal isotropic compression, the loosest specimen at the stress free state
cannot be prepared in the conventional laboratory because of the gravity field. In another
word, it is difficult to determine the ei0 according to the conventional laboratory tests.
While it is possible to prepare the specimen as loose as it can be by adding a slight amount
of moist into the specimen (Ishihara [33], Bauer [6]). The looser specimen is prepared, the
earlier asymptotic state of isotropic compression will be approached (in the e-lnp space,
see Fig. 4.2a). From the application point of view, out of the available experimental data,
the isotropic compression curve which lies above the other curves in the e-p space can be
considered as the ideal isotropic compression curve, at least the best approximation which
is available. The larger stress range the compression test covers, the better approximation
can be archived. With the determined value of hs and n, the ei0 can be easily calibrated
based on the compression relation of Bauer, by curve fitting of the isotropic compression
data or by back calculating according to Eq. (3.27).
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However, note that for oedometric compression condition, the ideal oedometric compres-
sion is not the one starts from the loosest state according to the concept of proportional
paths and asymptotic state of granular material by Goldscheider [21] and Gudehus et al.
[24], as illustrated in Fig. 2.19 and Fig. 4.2b.

ln(3p)ln(hs)

e
ei0

ei0
exp{1}

ln(3p)ln(hs)

e
ei0

eo0

eo0
exp{1}

ln(3p)ln(hs)

e
ei0

eo0

ei0/exp{1}

eo0/exp{1}

(a) (b) (c)

Figure 4.2: Ideal isotropic compression and ideal oedometric compression: (a) ideal
isotropic compression and the asymptotic state; (b) ideal oedometric compres-
sion and the asymptotic state; (c) characteristics of ideal compression curves.

If the isotropic and oedometric compression tests are loaded up to stress levels which
over the solid hardness, the inflection points as mentioned in Chapter 3 can be detected.
Therefore the inflection point can be used to determine the value of solid hardness and the
initial void ratio of ideal isotropic compression and ideal oedometric compression can be
back calculated from the Eq. (3.27) and Eq. (3.28) directly.

From the Fig. 3.17, it can be seen that the value of initial void ratio of ideal isotropic
compression has no strong difference from the one of the ideal oedometric compression.
Considering the Dog’s Bay sand has extremely great initial void ratio compares to the
commonly sands, it can conclude that for common sand, the difference between the two
initial void ratios should be relatively small.

A really good example of calibration is the determination of hs and n for Karlsruhe sand.
As it is shown in Fig. 4.3, three set of data from oedometric compression tests with different
initial densities show similarity: the compression curves are similar in shape, and all three
curves approach to a unique curve, the ideal oedometric compression curve as mentioned
in Chapter 3. If the experimental data with e0 = 1.07 is used for calibration of hs and n, the
best fit for the experimental data leads to a set of hs = 190 MPa, n = 0.4 and eo0 = 1.08.
While if considering the last five points of the experimental data with the e0 reached the
asymptotic oedometric state–the ideal oedometric compression line, then the best fit for
these five points lead a combination of parameters as hs = 250 MPa, n= 0.7 and eo0 = 0.82.
Of course, it is uncertain whether the last five points chosen for calibration really reached
the asymptotic state (the ideal oedometric compression line) or not, a further investigation
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considering loading the Karlsruhe sand sample up to relative high stress level, high enough
to reach the point of inflection, might be an appropriate solution for this question.
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Figure 4.3: Determination of hs and n for Karlsruhe sand (oedometric experimental results
from Bauer [6]): hs = 190 MPa and n = 0.4 by assuming the moist curve is
the ideal oedometric curve; hs = 250 MPa and n = 0.7 by assuming the last
five points of e0 = 0.77 curve reached the asymptotic state (ideal oedometric
curve).

The reason to emphasize the difference between using ideal isotropic compression data
and ideal oedometric compression data to determine the hs, n and ei0 is that one should be
familiar with the definitions of the parameters and the physical meaning of them as well.

Herle and Gudehus [27] proposed another method to determine the solid hardness hs and
n, note that as the authors mentioned this method is only valid for a certain stress range,
normally only the stress range used for calibration. The calibrate results show that the
determined values of hs of different materials are extremely greater than the ones calibrated
according to the method mentioned above in this subsection (see Fig. 4.3). Bauer et al.
[13] proposed an extended compression relation with considering the solid hardness as a
pressure dependent quantity, which can be used to explain the reason why the calibrated
value of hs with the method suggested by Herle and Gudehus [27] is greater than the one
by Bauer [6]. Note that the definition of hs (as a crushability resistance of the whole grain
skeleton) mentioned in Chapter 3 is not valid for the equation proposed by Bauer et al.
[13].

Another method of determination of hs and n is proposed by Herle and Gudehus [27], and
the comparison with experiments shows the determination method
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Figure 4.4: Comparison between the calibrated hs from Herle and Gudehus [27] and Bauer
[6]. The markers are oedometric compression test results, and the dashed and
solid lines are the compression curves according to the calibration results by
Comparison between the calibrated hs from Herle and Gudehus [27] and Bauer
[6], respectively.

The experimental investigation has a certain orientation that cannot guarantee the outcome
of the investigation fits all the requirements which are need for calibration of the model.
That is the main reason the simple constitutive model with simple calibration requirements
is always we pursuing for. While, the simple does not mean it is only for the sake of
simplicity. Comprehensive concept with clear definition can be interpreted to simple as
well. Therefore, for the application point of view, it is better to insist to consider the
compression relation which works well for general cases of granular materials, instead of
choosing a (simplified) version which only for a special case or a specific pressure range.

4.3.2 Critical friction angle ϕc

According to the definition of critical state described by Schofield and Wroth [81], when
the granular body reaches a critical state, the stress rate vanishes while the volumetric strain
keeps constant. The mathematical description of critical state can be written as Ṫ = 0 and
tr(D) = 0. For axisymmetric compression condition (axial stress is T11), the mobilized
friction angle ϕmob can be represented as:

ϕmob = arcsin
(

T11−T22

T11 +T22

)
(4.15)
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When the critical state is reached, the asymptotic value of mobilized friction angle should
be approached as well. Therefore, for the critical state, the ϕmob = ϕc should be fulfilled.
Thus, the critical friction angle can be determined from the data of conventional laboratory
shear tests (i.e. drained/undrained triaxial compression test, direct shear test).

Herle [26] and Herle and Gudehus [27] discussed a method 2 that using the angle of repose
to determine the critical friction angle of a dry granular material, as shown in Fig. 4.5.

ϕc

Figure 4.5: Determination of critical friction angle from the angle of repose, redrawn after
Herle and Gudehus [27].

In this study, it is suggested to calibrate the friction angle according to the experimental
data of shear tests. As it was compared by Herle and Gudehus [27], the prediction of
critical friction angle of sands according to the angle of repose might have a deviation
around one degree, and it is acceptable for the first estimation of material like sand. While
for coarse material it is difficult to determine the angle of repose.

4.3.3 Critical void ratio ec

Like it is discussed in the subsection above, when the material reaches the critical state, the
volumetric strain rate vanishes simultaneously with the vanishing of stress rate. In the shear
test, the specimens with different initial densities (initially loose and initial dense) from
the same pressure level (p0) approach to the same critical state (ec and pc) asymptotically.
And the slopes of the shear compression curves are perpendicular to horizontal axis in the
e- ln(p) space, as illustrated in Fig. 4.6.

Therefore, if hs and n were given, with single shear test which reached the critical state the
initial value of critical void ratio can be calculated according to the Eq. (2.24) directly. If
the values of hs and n were not given, then a set of shear tests which start from different
stress level is required to calibrate the hs, n and ec0.

2It is mentioned in the study that the method is proposed by Cornforth in 1973.
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Figure 4.6: Determination of the initial value of critical void ratio

4.3.4 Parameter α̌

Parameter α in this model is a factor related to relative density. For relative dense material,
the value of α affects the location of peak state of the material in stress-strain space, i.e.
ϕc-ε11. Take the one of the conventional triaxial compression test in Soil Mechanics as
an example, Ṫ22 = Ṫ33 = 0, the corresponding value of void ratio at the peak state, ep, is
illustrated in Fig. 4.7.

ε11

ϕmob

e

ε11

ep

Figure 4.7: Determination of the parameter α according to the peak state
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Thus, the parameter α can be derived as

α̌ =

ln

 − â2 (D11 +2D22)−
(
T̂11D11 +2T̂22D22

)
â
√

D2
11 +2D2

22


ln

(
ep

ec

) (4.16)

4.3.5 Parameter β

The increase in the incremental stiffness with a decrease in the void ratio is taken account
into the model by the stiffness factor f̌s (Bauer [6]). For isotropic compression starts from
isotropic state, the following relation can be derived from the Eq. (4.1) without considering
degradation of hs

3ṗ =−
(ei

e

)β 1+ ei

neiȟi

(
3p
hs

)−n

p

{
3â2 +1−

√
3
(

e
ec

)α̌

â

}
ė

1+ e
(4.17)

In order to estimate the constant parameter β in Eq. (4.12), an isotropic compression with
an initial void ratio e0 is considered here (as shown in Fig. 4.8, e0 < ei). The angle φ can
be represented as d (3p)/de = tanφ, therefore, the relation for β can be derived explicitly
as

β =

ln

 −neiȟi (1+ e0) tanφ

(1+ ei) p0

[
3â2 +1−

√
3â(e0/ec)

α̌
](3p0

hs

)n


ln

(
ei

e0

) (4.18)

It is found by numerical simulation that with β = 1 sufficient accurate can be archived.
Therefore, β = 1 is considered in this thesis. Thus, only nine parameters are required for
the simplified constitutive model.

4.4 Constitutive equations for element tests

For validation of a constitutive model proposed (or newly developed, simplified, extended),
element test is one of the best solutions3. The element tests according to the simplified

3Another useful tool is the so-called response envelope. For details about response envelope, one can refer
to Wu and Kolymbas [98] and Gudehus and Mašín [23].
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Figure 4.8: Determination of parameter β from isotropic compression test

model mentioned in Section 4.1 are simulated using a hypoplastic element test (HET4)
program (see Appendix A.3).

In the current version of HET, the element test library includes the following tests:

• Compression tests:

– Isotropic compression test

– Oedometric compression test

– Triaxial compression test

– Biaxial compression test

• Creep tests:

– True-triaxial-creep test5

– Oedometric-creep test

– Biaxial-creep test

4Actually, it is my supervisor Prof. E. Bauer’s idea to develop this private program. In the course of
calibration of different materials based on the available experimental data, the benefits of the program
become more and more apparent. Another recommended automation method is the batch processing and
automated processing of data based on Abaqus using Python scripts.

5This test actually includes the isotropic compression test under creep deformation condition as well. In
fact that the isotropic compression test is one special true triaxial compression test.
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As in this study only rectilinear stretching is covered, the objective stress rate tensor T̊ can
be replaced with Ṫ. Therefore the constitutive equation considered later in this work is
described in the Ṫ form and the reference equations can be written as:

Ṫ = fs
{

â2D+ tr
(
T̂D
)
T̂+ fd â

(
T̂+ T̂∗

)
‖D‖

}
(4.19)

and

Ṫ = fs
{

â2D+ tr
(
T̂D
)
T̂+ fd â

(
T̂+ T̂∗

)
‖D‖

}
+

ḣst

hst

{
1
3

tr(T)I+κT∗
}

(4.20)

for dry/wet and stiffness degradation conditions, respectively.

Isotropic compression

The boundary condition of the isotropic compression test can be described as D11 = D22 =
D33. Therefore, the stretching tensor can be represented as

D =
1
3

tr(D)I (4.21)

For compression condition, D11 < 0 leads tr(D) < 0. Thus the constitutive equation can
be written as

Ṫ = f̌s

{
â2I+ tr

(
T̂
)
T̂−
√

3 f̌d â
(
T̂+ T̂∗

)} 1
3

tr(D) (4.22)

As it is described in Eq. (4.22), with a given initial stress tensor T, the stress rate tensor Ṫ
can be derived directly according to Eq. (4.22) with a specified stretching tensor D. With
a specified time step ∆t and total time step n, the strain increment6 can be described as
∆εi j = Di j∆t and the total strain (maximum strain) reads εi j = Di jn∆t.

6The main reason we consider the simple strain increment method is we insist to keep the element test
program as simple as it is, that for readers who have no numerical simulation background can handle the
element test as well. And the simpler numerical simulation method used, the less computer capacity is
required.
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Figure 4.9: Ideal isotropic compression result from HET

Oedometric compression

The boundary condition of the oedometric compression test can be described as D11 < 0
and D22 = D33 = 0. Therefore, the trace of stretching tensor is tr(D) = D11 < 0 and
‖D‖=−D11. Thus, the stress rates can be represented as follows:

Ṫ11 = f̌s
{

â2 + T̂ 2
11− f̌d â

(
T̂11 + T̂ ∗11

)}
tr(D) (4.23)

Ṫ22 = f̌s
{

T̂11T̂22− f̌d â
(
T̂22 + T̂ ∗22

)}
tr(D) (4.24)

Ṫ33 = f̌s
{

T̂11T̂33− f̌d â
(
T̂33 + T̂ ∗33

)}
tr(D) (4.25)

Then the rate of mean pressure can be derived according to ṗ=− tr
(
Ṫ
)
/3. Therefore, con-

sidering Eq. (4.23), Eq. (4.24) and Eq. (4.25), the rate of mean pressure can be represented
as

ṗ =−1
3

f̌s
{

â2 + T̂11− f̌d â
}

tr(D) (4.26)

here, the f̌s is a quantity with a positive value, tr(D) is negative. Thus, the sign of the
component â2 + T̂11− f̌d â determines whether the mean pressure rate is positive or not.

Paths from ideal isotropic compression to ideal oedometric compression.

Recalling that in Chapter 3, a special case of oedometric compression which states from
an ideal isotropic initial condition is mentioned. More specific, considering a granular
assembly has an initial stress state that T11 = T22 = T33 and with the initial void ratio equals
to the maximum limit void ratio at this stress level, e0 = ei, with applying the oedometric
compression condition the void ratio will approach to the ideal oedometric compression
curve of the granular body. And in Fig. 3.16b, a possible compression curve is illustrated
that during compression the reduction of mean pressure might occur.
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Back to the Eq. (4.26), for this special case mentioned above, T̂11 = 1/3, f̌d = (ei0/ec0)
α̌

and as it is mentioned in Eq. (2.23) that âi =
√

8/3sinϕc/(3− sinϕc), the Eq. (4.26) can
be written as

ṗ =−1
9

f̌s

{
8
(

sinϕc

3− sinϕc

)2

+1−2
√

6
(

ei0

ec0

)α̌( sinϕc

3− sinϕc

)}
tr(D) (4.27)

Set x = sinϕc/(3− sinϕc), f̌di = (ei0/ec0)
α̌ and y = 8x2−2

√
6 f̌dix+1, Eq. (4.27) can be

represented as:

ṗ =−1
9

f̌sy trD (4.28)

Thus when y < 0, the condition of ṗ < 0 might exist, which can be proved with following
steps:

At first, according to the definition of x, it can conclude that x ∈ [0, 0.5]. In particular,
when sinϕc = 0, x reaches the minimum value, xmin = 0; and for sinϕc = 1, x reaches the
maximum value, xmax = 0.5.

The quadratic equation y = y(x) can only have one solution for the case y = 0 with pro-
viding f̌di = 2

√
3/3, and the single solution of the quadratic equation y = 0 is x =

√
2/4.

That means when ϕc = 51.62◦ and f̌di = (ei0/ec0)
α̌ = 2

√
3/3, the ṗ = 0 and the initial

direction of the oedometric compression curve, which starts from the ideal isotropic state,
is perpendicular to the horizontal axis of the e- ln(3p) space, as shown in Fig. 4.10b.

For the case that f̌di < 2
√

3/3, one solution of y = 0 exists and y > 0. Therefore, the start
point of the aforementioned compression curve will have a direction which has ṗ > 0 in
the e- ln(3p) space (see Fig. 4.10a).

Considering the f̌di < 2
√

3/3, two solutions of y = 0 might exist in the range x ∈ [0, 0.5].
And if the following condition

2
√

6 f̌di−
√

24 f̌ 2
di−32

16
< x <

2
√

6 f̌di +
√

24 f̌ 2
di−32

16
(4.29)

exists, the rate of mean pressure of the initial point can be negative, as illustrated in
Fig. 4.10c. Thus, the compression curve will first toward to left-hand-side. Consider-
ing the asymptotic state concept, with this condition, the mean pressure will first reduce
and then increase with the compression deformation increases. For example, considering
a specimen with f̌di = 1.3536 and a critical friction angle ϕc = 30◦, the situation of ṗ < 0
will happen.

Note here the discussion is based on the strain controlled loading condition. The stress-
controlled loading condition is not covered in this work. Therefore, it can be concluded
that using the simplified constitutive model, it is possible to simulate compression curve
as illustrated in Fig. 3.16b.
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Figure 4.10: Different paths from initially ideal isotropic state to asymptotic state of oedo-
metric compression curve: (a) with f̌di < 2

√
3/3; (b) with f̌di = 2
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3/3 and

ϕc = 51.62◦; (c) with f̌di > 2
√

3/3.

K0 state Another interesting topic related to the concept of K0 state and the concept of
critical state will be discussed in this part. Before starting the discussion related to the
critical state, the analytic solution of â of the oedometric compression condition is given
by following steps:

The constitutive equation for oedometric condition describe in Eq. (4.23) - Eq. (4.25) can
be represented as follows

Ṫ11 = f̌s

{
â2

o +
1

(1+2K)2 − f̌d âo
5−2K

3(1+2K)

}
tr(D) (4.30)

Ṫ22 = Ṫ33 = f̌s

{
K

(1+2K)2 − f̌d âo
4K−1

3(1+2K)

}
tr(D) (4.31)

here âo =
√

8/3sinϕc/(3− sinϕc), details can be referred to Appendix A.4. The K0 state
can be described as the ratio of horizontal stress to vertical stress is constant, which is
conventionally denoted as K0. Therefore, consider the stress ratio is constant, K = K0, the
stress ratio can be represented as

Ṫ22

Ṫ11
=

3K0− fdoâo (4K0−1)(1+2K0)

3â2
o (1+2K0)

2 +3− fdoâo (5−2K0)(1+2K0)
(4.32)
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here the additional subscript “o” is used to emphasize the stiffness factor for oedometric
condition.

In order to fulfill the requirement of K0 state, the stress rate ratio should equal to K0 as
well. Thus, the Eq. (4.32) can be written as

K0 =
3K0− fdoâo (4K0−1)(1+2K0)

3â2
o (1+2K0)

2 +3− fdoâo (5−2K0)(1+2K0)
(4.33)

which requires the following relation of K0 and fdo

K0 =
fdo

3âo + fdo
(4.34)

or in another representation

fdo =
3âoK0

1−K0
(4.35)

As fdo = (eo/ec)
α, and with regards to the fact that the oedometric compression reaches

the ideal odeometric compression state when the requirement of K0 state is fulfilled, the eo
can be calculated according to Eq. (3.29). Considering the well-accepted Jáky’s function

K0J = 1− sinϕc (4.36)

Substitution of the Eq. (4.36) into the Eq. (4.35) leads to

fdo = 2
√

6
(

1− sinϕc

3− sinϕc

)
(4.37)

However, in this constitutive model K0 state cannot be fulfilled. Set of numerical simula-
tion results indicate that the oedometric compression approach to asymptotic state while
during the compression Ko does not keep constant (see Fig. 4.11).

As it is shown in Fig. 4.11, the effect of initial stress ratio vanishes after reaching a stress
level around T11 = −0.2 MPa. After reached the asymptotic state, the Kh stays close
to a value 0.53 approximately. From these two simulation, it can be seen that for first
approximation, it is acceptable to consider K0J = 1− sinϕc for prescribing the oedometric
stress state. Note that in this model, the stress ratio of T22 and T11 of oedometric test (Kh)
is not predefined and it derives automatically according to the constitutive equation. In
addition, in the stress space like T11-T22 (illustrated in Fig. A.2) or Rendulic plane (as in
Gudehus and Mašín [23]), the oedometric path described by the constitutive equation is
not a straight line.
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Figure 4.11: Numerical simulation of oedometric compression starting from isotropic state
and KoJ state with p0 = 0.02 MPa and constitutive parameter from Table ??.

Triaxial compression

In the current version of HET, a conventional triaxial compression test with constant lateral
stresses condition is considered. In addition, different from the conventional soil mechanic
triaxial laboratory test, the triaxial compression element test in HET is not restrict to the
axisymmetric stress condition. In another word, different initial lateral stresses is taken
into account to the element test as well. Therefore, the triaxial compression element test in
HET is designed for the true triaxial compression test with constant lateral stresses. Then
the boundary condition of the triaxial compression element test in HET is

Ṫ22 = Ṫ33 = 0 (4.38)

For this element test, the explicit representation of stress components are given as fol-
lows:

Ṫ11 = f̌s

{
â2D11 +

(
T̂11D11 + T̂22D22 + T̂33D33

)
T̂11 + f̌d â

(
T̂11 + T̂ ∗11

)√
D2

11 +D2
22 +D2

33

}
(4.39)

Ṫ22 = f̌s

{
â2D22 +

(
T̂11D11 + T̂22D22 + T̂33D33

)
T̂22 + f̌d â

(
T̂22 + T̂ ∗22

)√
D2

11 +D2
22 +D2

33

}
(4.40)

Ṫ33 = f̌s

{
â2D33 +

(
T̂11D11 + T̂22D22 + T̂33D33

)
T̂33 + f̌d â

(
T̂33 + T̂ ∗33

)√
D2

11 +D2
22 +D2

33

}
(4.41)

Strain-controlled loading procedure is considered for the triaxial element test as well.
Then, with given axial stretching, D11, and an appropriate iteration method, the stretch-
ing components D22 and D33 can be predicted based on the Eq. (4.39)-Eq. (4.41).
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In this element test, the numerical simulation ends up with solving a 2-dimensional equa-
tion system:

f(x) = 0 (4.42)

here x =
[
D22 D33

]T and f =
[
Ṫ22 Ṫ33

]T . Then the Jacobian matrix of f, Jf (x), is a 2×2
matrix

Jf (x) =


∂Ṫ22

∂D22

∂Ṫ22

∂D33

∂Ṫ33

∂D22

∂Ṫ33

∂D33

 (4.43)

and the matrix representation of f with respect to Jacobian matrix reads
∂Ṫ22

∂D22

∂Ṫ22

∂D33

∂Ṫ33

∂D22

∂Ṫ33

∂D33




∆D22

∆D33

=


∆Ṫ22

∆Ṫ33

 (4.44)

Therefore a simple iteration method can be considered for finding the root of the Eq. 4.42.
In order to keep the program as simple as it can be, the well-known Newton-Raphson
iteration method is adopted. Note the iteration speed or results are highly depending on
the quality of prediction of unknowns for the first iteration. For this triaxial element test,
it is suggested to choose a set of values close to zeros.
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Figure 4.12: Triaxial compression test with different initial void ratios
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A set of element tests, with same initial stresses, T11 = T22 = T33 =−0.1 MPa and different
initial void ratios, are loaded up to critical state and the results are summarized in Fig. 4.12.
The results indicate tests with different initial void ratio but same initial stresses reach the
same void ratio at the critical state (Fig. 4.12b).

Biaxial compression

The boundary conditions of biaxial compression are

T22 = const.
(
or Ṫ22 = 0

)
(4.45)

and
D33 = 0 (4.46)

Therefore, the explicit equations of biaxial compression element test read

Ṫ11 = f̌s

{
â2D11 +

(
T̂11D11 + T̂22D22

)
T̂11 + f̌d â

(
T̂11 + T̂ ∗11

)√
D2

11 +D2
22

}
(4.47)

Ṫ22 = f̌s

{
â2D22 +

(
T̂11D11 + T̂22D22

)
T̂22 + f̌d â

(
T̂22 + T̂ ∗22

)√
D2

11 +D2
22

}
= 0 (4.48)

Ṫ33 = f̌s

{(
T̂11D11 + T̂22D22

)
T̂33 + f̌d â

(
T̂33 + T̂ ∗33

)√
D2

11 +D2
22

}
(4.49)

From the Eq. (4.47)-Eq. (4.49), only unknown D22 need to calculate according to the
requirement of boundary condition Ṫ22 = 0. Let x = D22 be the unknown and f (x) = Ṫ22
be the function. In the current version of HET, Newton-Raphson iteration method is used
for solving this one-dimensional equation f (x), with an initial estimation of x (D22) set to
a number close to zero. Numerical simulation of biaxial compression test shows similar
results as the ones from triaxial compression test.

Creep tests

Creep test for triaxial condition For triaxial compression test with creep deformation,
the boundary condition can be described as

Ṫ = 0 (4.50)

and the explicit constitutive equations read

Ṫ11 = f̌s

{
â2D11 +

(
T̂11D11 + T̂22D22 + T̂33D33

)
T̂11 + f̌d â

(
T̂11 + T̂ ∗11

)√
D2

11 +D2
22 +D2

33

}
+

ḣst (T11 +T22 +T33)

3hst
= 0 (4.51)
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Ṫ22 = f̌s

{
â2D22 +

(
T̂11D11 + T̂22D22 + T̂33D33

)
T̂22 + f̌d â

(
T̂22 + T̂ ∗22

)√
D2

11 +D2
22 +D2

33

}
+

ḣst (T11 +T22 +T33)

3hst
= 0 (4.52)

Ṫ33 = f̌s

{
â2D33 +

(
T̂11D11 + T̂22D22 + T̂33D33

)
T̂33 + f̌d â

(
T̂33 + T̂ ∗33

)√
D2

11 +D2
22 +D2

33

}
+

ḣst (T11 +T22 +T33)

3hst
= 0 (4.53)

The numerical simulation is related to solve a 3-dimensional equation system:

f(x) = 0 (4.54)

with x =
[
D11 D22 D33

]T and f =
[
Ṫ11 Ṫ22 Ṫ33

]T and a 3× 3 Jacobian matrix of f,
Jf (x):

Jf (x) =



∂Ṫ11

∂D11

∂Ṫ11

∂D22

∂Ṫ11
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∂Ṫ22

∂D11

∂Ṫ22
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∂Ṫ33

∂D11

∂Ṫ33

∂D22

∂Ṫ33

∂D33


(4.55)

and the matrix representation of f with respect to Jacobian matrix reads

∂Ṫ11
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∂Ṫ11

∂D22
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∂Ṫ33
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∂Ṫ33

∂D33





∆D11

∆D22

∆D33


=



∆Ṫ11

∆Ṫ22

∆Ṫ33


(4.56)

Note that the Eq. (4.51)-Eq. (4.53) are rate-dependent. Similar iteration procedure can
be used but the time step ∆t should be considered as the real time. For the creep test
under biaxial or oedometric condition, the boundary conditions are different, while it is
worth noting that the conventional biaxial-creep or oedometric-creep test is not a real creep
test.

Creep test for biaxial condition The boundary condition for biaxial-creep can be de-
scribed as

Ṫ11 = Ṫ22 = 0 (4.57)

and
D33 = 0 (4.58)

Thus, two unknowns, D11 and D22 need to be calculated. Considering the similarity in
mathematical description and iteration procedure for other element tests mentioned above,
the details of this element test and the oedometric-creep test are not given here.
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Creep test for oedometric condition The mathematical expression for the boundary
conditions of oedometric-creep are

Ṫ11 = 0 (4.59)

D22 = D33 = 0 (4.60)

Only one equation Ṫ11 = 0 with one unknown, D11, is required to solve for this condition.



5 Calibration of the constitutive parameters for a shale quartzite sand

For numerical simulation of geotechnical structures, first the calibration of the constitutive
model used has to be carried out. To this end experimental data from laboratory element
tests (isotropic, oedometric and triaxial compression tests) are used. Note the element
tests are homogeneous element deformation test, which can be used for calibration and
the validation of calibration as well. In this chapter, the application of the constitutive
model aforementioned (in Chapter 4) based on the experimental data by Ovalle et al. [74]
is outlined using the hypoplastic element test program (HET).

The outline of this chapter is as follow: the experimental study by Ovalle et al. [74] is
summarized in Section 5.1; the calibration based on the study of Ovalle is detailed in
Section 5.2.

5.1 Experiments by Ovalle et al. (2015)

Constitutive models are developed based on the results from experimental investigations
and basics of continuum mechanics. Calibration of the material parameters involved in
the constitutive model can be a challenging task in particular for weathered and moisture
sensitive materials.

Ovalle et al. [74] investigated an angular sand under different conditions: dry, wet and
wetting at a certain stress level of the initial dry specimen. In particular, the tested sand
is obtained by grinding a quartzite shale rock from Trois Vallées quarry located in Orne,
a department in the northwest of France. One of the main purposes of the study by the
authors is evaluating the mechanical behaviour of the material with respect to the stiffness
degradation induced by wetting. This study offers a valuable original source, which is used
as an example for calibration in Section 5.2.

5.1.1 Characterization of the tested material and preparation of specimens

The tested material and the quartzite shale rock are shown in Fig. 5.1. After grinding,
the solid grains are sieved and selected to prepare samples with a uniform initial grain
size distribution (GSD) with the size range between 2 and 2.5 mm. The dry density of
solid grains obtained from the shale rock is ρd = 2.75e3kg/m3. As it is shown in the
Fig. 5.1b, the material before the test is angular and flat, which is vulnerable to crushing.

57
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Electron microscope scans shows the original material, the shale rock is composed of
thin sheets (see Fig. 5.2a right, and Fig. 5.2b left), which can be easily detached during
the compression and essentially become the source of significant amount of fine grains
produced during the test.

The grain size distribution analysis after tests shows that finer grains were produced by
grain crushing. In addition, the grains finer than 0.08 mm were analyzed using X-ray
diffraction (XRD), and the composition of the fine grains are tabulated in Table A.1 and
Table A.2.

(a) Riprap of shale from Trois Vallées quarry (b) Grains of shale quartzite sand from the shale

Figure 5.1: The quartzite shale rock from Trois Vallées quarry and the angular sand from
the grinding of the shale rock from Ovalle [73].

After grinding, the material was first air dried and then pluviated at low height into cylin-
drical moulds. Therefore, it can be concluded that the prepared specimens were relative
loose and no grain crushing occurred during the preparation. One set of specimens were
loaded continuously under dry condition, another set of specimens were saturated before
compression or after a phase of compression. In this chapter, capital letter “D” and with
a number is used for denoting the dry test, “S” for initially saturated test and “W” for the
test was wetted during the compression.

Results of laboratory tests

Isotropic, oedometric and triaxial compression tests were conducted under different con-
ditions: dry, saturated or initial dry and then saturated. A general overview of the test
types are summarized in the Table 5.1. The test numbers introduced in the following are
different from the ones in Ovalle et al. [74].
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(a) Fine grains between 0.08 and 0.1 mm

(b) Fine grains between 0.315 and 0.4 mm (left) and between 0.5 and 0.6 mm (right)

Figure 5.2: Electron microscope scans of fine fractions after oedometric compression test
from Ovalle et al. [74].

Isotropic compression tests Two specimens, D1 and W2, were loaded up to 0.8 MPa.
After reached the designed stress level, specimen of W2 was saturated. Summary of
isotropic compression tests are tabulated in Table A.3.

The experimental results of isotropic compression tests, D1 and W2, and the isotropic
compression phases before triaxial compression tests (D15, W16∼W20, D21 and W22)
before wetting are plotted in Fig. 5.3.

It is shown in Fig. 5.3, each compression shows similar trend of compression curve. In
addition, tests results of D1 and W2 lie above the other curves, which means the specimens
of D1 and W2 have relative looser state comparing the other specimens. The grain size
distribution (GSD) analysis of D1 and the one of W2 after wetting (see Fig. 5.4) shows that
finer particles were detected in both tests, which indicates that even in relative low stress
level the shale quartzite sand can be easily crushed. In addition, more fine particle can be
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Table 5.1: General information of experimental investigation by Ovalle et al. [74]

Test type
Specimen size [mm]

Loading type T11,max [MPa] T22 [MPa]
Height Diameter

Isotropic 110 70 Stress-controlled −0.4,−0.8 /
Oedometric 19 70 Stress-controlled −0.4∼−2.1 /

Triaxial 110 70 Strain-controlled / −0.4,−0.8
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Figure 5.3: Isotropic compression tests results from Ovalle [73] and Ovalle et al. [74]

created after wetting (test W2). In the isotropic compression tests the maximum pressure
applied is not sufficient for calibration of hs.

Oedometric compression tests Specimens with different conditions, dry (D3∼D7), ini-
tial saturated (S8∼S10) and initially dry and wetted after a certain compression phase
(W11∼W14), were tested in oedoemtric devices and compression results are summarized
in Table A.4 and in Fig. 5.5. After wetting the compression curve transferred from the
dry curve to and followed the initially saturated curve when the specimen was continuous
loaded. This experimental results confirm the wetting effects mentioned in Section 3.2.

Triaxial compression tests Triaxial tests were conducted using loose specimens, which
were loaded with constant lateral stress (T22) after isotropic consolidation. Some speci-
mens (W16, W17) were wetted after isotropic consolidation and other specimens (W18,
W19, W20 and W22) were wetted after reaching a certain axial strain (see Table A.5).
Results of the stress-strain and compression curves of triaxial compression are shown in
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Figure 5.4: GSD results of isotropic compression tests from Ovalle [73]
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Figure 5.5: Results of oedometric compression tests from Ovalle [73] and Ovalle et al. [74]

Fig. 5.6. After wetting, stress relaxation and reloading, the stress-strain curves are ap-
proaching to the compression curves of the initially saturated tests (W16 and W17). The
compression curves (W18∼W20) transfer from the dry curve (similar to the one of D15)
to the wet curve (like W16 in Fig. 5.6).
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Figure 5.6: Results of triaxial compression tests from Ovalle [73] and Ovalle et al. [74]

5.2 First estimation of the material parameters

The stiffness degradation under creep and stress relaxation of shale quartzite sand were
investigated by Ovalle [73] and Ovalle et al. [74]. These investigations provide details
which can be used for the calibration of the parameters for the simplified constitutive model
introduced in Chapter 4. However, the experimental concept by Ovalle was not designed
for the simplified hypoplastic model in this work. As no experimental investigation related
to initially dense material, the parameter α̌, which related to the peak state of the stress-
strain behaviour, is difficult to be determined. Therefore, a specific calibration strategy
should be considered to overcome the problems of insufficient experimental data for the
simplified hypoplastic model.

As outlined in Chapter 4, nine parameters in total are need for the general equation which
covered the classic constitutive equation for dry or saturated case and stiffness degrada-
tion cases like creep or stress relaxation. hs (hsd and hsw) and n can be considered as a
parameter set which can be determined together according to the isotropic compression or
the oedometric compression test results. Other parameters have the own physical mean-
ings and can be considered independent from each other parameters. If all the necessary
experimental data is available, except hs and n, the other parameters can be determined
independently and the calibration orders are not important. However, without some impor-
tant data, the calibration orders are important, and some parameters cannot be determined
independently.
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5.2.1 Calibration of hs and n

For the initially loose specimen, the experimental data can be used for the first approxima-
tion of the hs and n, with an easy manner like curve fitting. Therefore, the experimental
data of D1 and W21 are used for calibrating hs and n as an illustration (see Fig. 5.7).
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Figure 5.7: Calibration of hsd and n using data of isotropic compression tests D1 and W2

As it is shown in Fig. 5.7, the calibration results of hsd and n using experimental data from
D1 are hsd = 157 MPa and n = 0.4, while using data from W2, the calibration results are
hsd = 21.9 MPa and n = 1.04. This huge difference is mainly related to the small stress
range. For the small stress range, the trend of the compression curve is not clear, that will
easily cause different calibration results, as illustrated in Fig. 5.8.

In contrast to the stress range of isotropic compression tests, the stress range of oedometric
compression tests is wider and allows a more precise calibration. However, the lateral
stresses in the oedometric tests were not measured. In the conventional soil mechanic
oedometric test, the lateral stress is not measured. In order to estimate the lateral stress,
the formula by Jáky can be used, i.e.

T22 = T11 (1− sinϕc) (5.1)

Therefore, before we calibrate hs and n, the critical friction angle of the shale quartzite
sand should be determined first.

1Only the experimental data of dry state is considered here.
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Figure 5.8: Illustration of calibration problem using small stress range

5.2.2 Calibration of ϕc

As it is shown in Fig. 5.6a, the results of triaxial compression tests indicate that the critical
state was not approached during the test. In order to calibrate the critical friction angle,
assumption of the value of critical friction angle should be made, according to the available
experimental data.

ϕmob,max = 36.22◦

0 5 10 15 20 25
0

10

20

30

40

ϕ
m

ob
[◦

]

D15 W16 W17 W18
W19 W20 D21 W22

Figure 5.9: Prediction of critical friction angle

From the available triaxial experimental data, as in Fig. 5.9, it can be seen that the max-
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imum mobilized friction angle is from the D21 test, ϕmob,max = 36.22◦. Considering all
these specimens are loose specimens, the ϕmob will increase with the developing of axial
strain and reach the asymptotic state (critical state) without any peak value. Therefore,
we can conclude that ϕc should greater than 36.22◦ and for the first approximation let us
consider the ϕc = 37◦. Because this is only an assumption, element test calculation should
be done and compared with relative experimental data to verify whether the assumed value
is appropriate or not.

With considering the first assumed value of critical friction angle, ϕ = 37◦, the oedometric
experimental data can be used for calibrating hs and n. Take D7 as an example, with
considering the ϕc = 37◦, the best fit of experimental data leads hs = 22.1 MPa and n =
0.664 (see Fig. 5.10).
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Figure 5.10: Calibration of hsd and n with considering ϕc = 37◦

Before starting to calibrate hsw and n, the effect of uncertainty of the critical friction angle
on the calibration results should be clarified. Considering a set of critical friction angle:
ϕc = 37◦, 38◦, 40◦, 42◦, the calibration results of hsd and n are presented in Fig. 5.11.

It is clear to see that in Fig. 5.11, the calibrated hsd decreases with the increasing of the
value of ϕc. While the calibrated eo and n are kept constant for this case. It is uncertain
that whether the ϕc has no effects on the value of calibrated eo and n, but it is apparently
that using experimental data of D7 with considering different value of ϕc, which ranges
from 37◦ to 42◦, no significant difference in the result of calibrated hsd .

Considering the ϕc = 37◦, the results of calibration using a set of selected experimental
data are summarized in Table 5.2. The average value of calibration results is considered,
hsd = 22.4 MPa and n = 0.64.
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Figure 5.11: The effects of ϕc on calibration results of hsd and n using experimental data
from D7

Table 5.2: Summary of calibration results for dry material with considering ϕc = 37◦

Test no.
eo0 hsd n
[-] [MPa] [-]

D4 1.02 15.7 0.683
D5 1.00 23.9 0.629
D6 1.02 29.7 0.554
D7 0.993 22.1 0.664

W13 (dry)2 1.00 17.4 0.713
W14 (dry)2 1.01 25.7 0.607

Average value 1.00 22.4 0.64
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Now let ϕc = 37◦ and continue to do the calibration of hsw and n. Take the data from S10
as an example, the calibration results are hsw = 11.5 MPa and n = 0.622 (see Fig. 5.12).
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Figure 5.12: Calibration of hsw and n using data from S10 and considering ϕc = 37◦

After analysis the experimental data, experimental data from S8, S9, S10 and W113 is
selected for calibration and the results are summarized in Table 5.3 In order to simplify

Table 5.3: Summary of calibration results for saturated material with considering ϕc = 37◦

Test no.
eo0 hsw n
[-] [MPa] [-]

S8 1.02 15.7 0.641
S9 1.04 15.4 0.565

S10 1.05 11.5 0.622
W11 0.983 11 0.761

Average value 1.02 13.4 0.647

the model and the calibration procedure, the same value of parameter n is considered for
dry and saturated materials. Therefore, for the first approximation, parameters ϕc = 37◦,
hsd = 22.4 MPa, hsw = 13.4 MPa and n = 0.64 are considered. Note the calibration result
of eo0 is not important for the current model.

2Before wetting, the specimen is air dried. Therefore, it is appropriate to use the experimental data before
wetting for calibration.

3Only the data after saturation is considered.
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5.2.3 Calibration of ei0 and ec0

With the given values of hs and n, the initial value of maximum void ratio ei0 and the crit-
ical void ratio ec0 can be determined based on the experimental data from loose isotropic
compression tests and from the triaxial compression tests, respectively. It should be noted
that saturation will have no effects on the initial value of maximum void ratio and the initial
value of critical void ratio. This assumption is also confirmed by experiments by Alonso
and Cardoso [1]. However, from the experiments it cannot be concluded with certainty that
test D1 is in the loosest state or not. It is also apparently that the triaxial compression tests
available did not reach the critical state. Therefore no data for ec are available as well.

Possible value of ei0

Recalling that the ei curve is the upper bound of the possible void ratio range at a given
stress level, which means all the available experimental data should not cross the com-
pression curve of ei. Thus, the minimum possible value of ei0 can be estimated, provided
that the hs and n are given. Therefore, considering the hsd = 22.4 MPa and n = 0.64, the
minimum possible value of ei0 is ei0,min = 1.13, which fulfill the requirement that no void
ratio of available experimental data can cross the compression curve. Then ei0 ≥ 1.13.

10−1 100 101 102
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0.5

1

ei0 = 1.13

3p [MPa]

e

D1
W2
D15
W16
W17
W18
W19
W20
D21
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Figure 5.13: Possible initial value of maximum limit void ratio with providing hsd = 22.4
MPa and n = 0.64
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Figure 5.14: Estimation of asymptotic state: solid curves denote experiments of D21;
dashed curves denote estimated extrapolation.

Possible value of ec0

According to the estimated value of volume strain at the asymptotic state, the correspond-
ing critical void ratio can be calculated using the following steps:

With respect to the relationship

εv = ln(1− εv) = ln
(

1+ e
1+ e0

)
(5.2)

and for e = ec one obtains
ec = e0− εv (1+ e0) (5.3)

Here the εv = 12.35%, then the corresponding critical void ratio is ec = 0.7914. While,
this extrapolation method might not precisely enough, a better way is to find the maximum
possible value of critical void ratio. It is obvious that the final value of void ratio from W16
is smaller than the other saturated condition, then assuming this void ratio is the critical
void ratio for W16 (in reality it is not the critical void ratio), an initial value of critical void
ratio can be back calculated according to the Eq. (5.4):

ec0 = ec exp
{(

3p
hs

)n}
(5.4)

Here, for W16, 3p = 4.284 MPa and e = 0.578, providing the hsw = 13.4 MPa and n =
0.64, the assumed ec0 = 0.936. With respect that the e > ec, therefore the assumed initial
value of critical void ratio is over predicted, and ec0 < 0.936.
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Thus, in this section, it can be concluded that ei0 ≥ 1.13 and ec0 < 0.936, provided the
hsd = 22.4 MPa, hsw = 13.4 MPa and n = 0.64.

5.2.4 Calibration of α̌ and β

As experimental investigations of the initial dense material are not carried out by Ovalle
[73] and Ovalle et al. [74], no data about pressure dependent peak friction angle is avail-
able. Here, the parameter α̌ can only be calibrated by iteration procedure. For the density
factor used in this model, a first approximation of parameter α̌ is made as α̌ = 0.5.

Numerical investigations show that the looser material is, the less effects of β on the pre-
diction of stress-strain behaviour will be. In this case, β = 1 was found to be sufficient
accurate.

Parameter study

Based on the analysis in the previous section, the parameter set for the first approxima-
tion is: ϕc = 37◦, hsd = 22.4 MPa, hsw = 13.4 MPa, n = 0.64, ei0 = 1.2, ec0 = 0.9 and
α̌ = 0.5.

According to the proposed parameter set, the effect of each parameter on the model perfor-
mance is studied by varying the values of the parameters for dry material while keeping the
other parameters the same as proposed. Parameter set for each test and initial conditions
are summarized in Table A.6. It can be noted that the effects of parameters on wet material
are similar to the one on dry material.

Effects of ϕc on the performance of the model

Triaxial element tests with same initial stresses, T11 = T22 = T33 = −0.1 MPa, different
initial density, e0 = 0.6 for dense material and e0 = 1.0 for loose material, are simulated
with different critical friction angles. As it is shown in Fig. 5.15, for dense material the
critical friction angle has apparently effect on mobilized friction angle, especially after
the stress-strain curve reached the peak state. With increasing critical friction angle, the
mobilized friction angle increases. Not significant difference caused by critical friction
angle on volumetric strain behaviour occurs for dense material. While for loose material,
the volumetric strain increases with the critical friction angle increasing. For both dense
and loose material, the critical friction angle affects the value of critical void ratio for a
given initial stress level. Moreover, the greater the critical friction angle is, the smaller the
critical void ratio will be.

Effects of hs on the performance of the model
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Different values of solid hardnesses are considered to analyse the effects of hs on the model
performance. The results of element tests are summarized in Fig. 5.16. It can be seen that
the greater the value of hs is, the stiffer the material behaves. In addition, the effect of hs is
more pronounced in the volumetric strain behaviour. It is obvious that with increasing of
hs, the volumetric strain decreases.

Effects of n on the performance of the model

The results of numerical simulations are summarized in Fig. 5.17. The effect of n on the
stress-strain behaviour is similar to the one of hs. The range of n are relative small, at
least n ∈ (0, 1.0), the different between the values of n considered here are relative huge.
Since the n and hs are parameters of the compression equation, it is strongly suggested
to determining the hs and n together. Any changes of hs or n will affect the compression
curve, and the upper limit bound of void ratios should not be violated.

Effects of ei0 on the performance of the model

Considering the same initial conditions and the set of initial values of maximum void
ratio, ei0 = 1.1, 1.2, 1.3, and 1.4, with the other parameters as proposed in Table A.6, no
distinguishing difference is observed from the numerical simulation.

Effects of ec0 on the performance of the model

With respect to the same initial conditions and the parameter of Table A.6, the simulation
are carried out with ec0 = 0.7, 0.8, 0.9, and 1.0. Fig. 5.18 shows that ec0 has strong effect
on the stress-strain behaviour of the material. The value of the initial critical void ratio
affects the value of density factor which is taken account into the constitutive model. For
initially dense material, the greater the initial critical void ratio is, the more significant
dilatancy of the material is; for initially loose material, the greater initial critical void ratio
leads less compaction.

Effects of α̌ on the performance of the model

As shown in Fig. 5.19, α̌ has strong influence on the shape of volumetric strain curve for
both loose and dense material. The greater value of α̌ is, the higher peak friction angle is.
The peak state occurs earlier in the stress-strain curve. In addition, α̌ affects the dilatancy
behaviour of the material, for a greater value of α̌ the asymptotic state will be reached
earlier. However, for the loose material, the effect of α̌ on the stress-strain behaviour is not
observed apparently.

5.3 Specific calibration procedure

For the case that certain experimental data are missing or the available data are within a
small stress range, the direct calibration usually will fail. A specific calibration procedure
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Figure 5.15: Triaxial element tests: influence of critical friction angle ϕc
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Figure 5.16: Triaxial element tests: influence of critical friction angle hs
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Figure 5.17: Triaxial element tests: influence of critical friction angle n
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Figure 5.18: Triaxial element tests: influence of critical friction angle ec0
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Figure 5.19: Triaxial element tests: influence of critical friction angle α̌
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should be proposed based on the available experimental data. In this case the order of
assumptions made for the first estimation plays an important rule. The set of parameters
assumed must be validated by comparing the results of numerical simulations with experi-
mental data. To this end a numerical simulation program for investigation of the behaviour
of material element is required (see the program HET in Appendix A.3). For improving
the set of parameters assumed, an iterative procedure can be used.

Iteration procedure

Using the proposed parameter set (as tabulated in Table 5.4), element tests are carried out
for the material under dry and saturated conditions, respectively. In particular, isotropic,
oedometric and triaxial compression element tests are conducted for both dry and saturated
materials. Since the isotropic compression data is within a relative small stress range,
comparison between experimental and numerical results of isotropic compression is not
presented here. In general, based on the assumption of ϕc and the calibrated hs and n, the
numerical simulation of oedometric compression tests normally shows good agreement
with the corresponding experimental data (see Fig. 5.20).

Table 5.4: Parameter set for the first simulation
ϕc hsd hsw n ei0 ec0 α̌

[◦] [MPa] [MPa] [-] [-] [-] [-]
Dry 37 22.4 / 0.64 1.2 0.9 0.5

Saturated 37 / 13.4 0.64 1.2 0.9 0.5

However, the numerical simulation of triaxial compression test shows deviation from the
experimental data for most of the tests (see Fig. 5.21, 5.22 and 5.23). This is mainly be-
cause of the oedometric compression, which starts from a relative loose state, approaches
to the asymptotic state approximate proportionally. While the triaxial compression test
results of the numerical simulation are highly dependent on these parameters related to the
critical state, i.e. ϕc, ei0, ec0 and α̌.

In particular, for those tests with lateral stress T22 =−0.8 MPa, the volumetric strain results
of the numerical simulation are smaller than the volumetric strain from experimental data.
The reasons of under-prediction of volumetric strain could be one of the followings:

• the hsd and hsw are over-predicted, which leads a stiffer volumetric strain behaviour.

• the relative density of the material is not well-predicted, which means either one of
the parameter ei0, ec0 and α̌ is not well-predicted, or two or even all of these three
parameters are not appropriate.
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Figure 5.20: Oedometric compression tests using the parameter set from Table 5.4 (mark-
ers are experimental results and solid curves are numerical simulation results).
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Figure 5.21: Comparison of numerical simulation with experimental data of D15∼W17
using parameters from Table 5.4
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Figure 5.22: Comparison of numerical simulation with experimental data of W18∼W20
using parameters from Table 5.4
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Figure 5.23: Comparison of numerical simulation with experimental data of D21∼W22
using parameters from Table 5.4
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• the mobilized friction angle used in this simulation is smaller than the one it should
be.

Moreover, numerical simulation of W16 and W17 shows that the mobilized friction angle
is under-predicted (comparing the experimental data), which means the stiffness of the
saturated material should be higher than the one predicted by the numerical simulation.
This indicates an appropriate value of hsw should be greater than the one used in this
simulation, hsw > 13.4 MPa.

From the Fig. 5.23, it can be seen that the critical friction angle (the asymptotic value of the
mobilized friction angle) should be greater than the value which used in this simulation.
In another word, it can be concluded that ϕc > 37◦.

Based on the analysis of the first numerical simulation results, the iteration procedure is
considered for the calibration:

• increase the value of ϕc

• calibrate the hsd , hsw and n, using the same procedure as suggested in Section 5.2.1
and Section 5.2.2

• test different parameter combinations

• analysis the numerical simulation and suggest the parameter set for the next iteration

Numerical simulations with different combination of possible parameters are conducted
and the results are compared with the corresponding experimental data. Based on the
iteration procedure, the suggested parameters of the classic model for the shale quartzite
sand are summarized in Table 5.5 and the numerical simulation results are presented in
Fig. 5.24, 5.25, 5.26 and 5.27.

Table 5.5: The proposed parameter set for dry or saturated shale quartzite sand
ϕc hsd hsw n ei0 ec0 α̌

[◦] [MPa] [MPa] [-] [-] [-] [-]
Dry 40 23.6 / 0.6 1.3 0.8 0.5

Saturated 40 / 15 0.6 1.3 0.8 0.5

Therefore, only the parameter c is not calibrated. The parameter c, as presented in Eq. (4.3),
has the same dimension as the time and is a factor that relates to the degradation velocity.
As result, the parameter c normally has significant influence on the slope of the εv-t curve,
as illustrated in Fig. 5.28. As it is illustrated in Fig. 5.28, the value of c has no effect on
the final volumetric strain. Which means for the case that the hsd and hsw are given, an ap-
propriate value of c should exist and can be easily calibrated according to the information
of the εv-t. Unfortunately, due to lack of the experimental data, the parameter c cannot be
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Figure 5.24: Oedometric compression tests using the parameter set from Table 5.5 (mark-
ers are experimental results and solid curves are numerical simulation results).
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Figure 5.25: Comparison of numerical simulation with experimental data of D15∼W17
using parameters from Table 5.5
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Figure 5.26: Comparison of numerical simulation with experimental data of W18∼W20
using parameters from Table 5.5
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Figure 5.27: Comparison of numerical simulation with experimental data of D21∼W22
using parameters from Table 5.5
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determined in a qualitative manner. From the results shown in Fig. 5.29, with the param-
eter set from Table 5.5, the stress-strain and the compression behaviours are will captured
by the numerical simulation. In another word, the predicted hsd and hsw are appropriate for
this test, and if the information of compression with time is available, the parameter c can
be calibrated.
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Figure 5.29: Numerical simulation results of W11 and comparison with experimental re-
sults
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5.4 Calibration of parameter c and κ

With providing a value of c, the stiffness degradation can be described using the Eq. (4.1)
comprehensively4. Note the stiffness degradation described by Eq. (3.32) will finish only
when t→+∞. This can be easily seen from the follow expression

ḣst =−
1
c
(hsd−hsw)exp

{
c
t

}
(5.5)

as the ḣst reaches to zero only when t→+∞. While this fact does not affect the Eq. (4.1)
to describe the stiffness degradation in a qualitative way. With an appropriate value of c,
the stiffness degradation can be well captured by Eq. (4.1). In addition, the parameter c
triggers the creep velocity, but it has no influence on the final amount of creep deformation
for t→ ∞.

Now let us try another way to calibrate parameter c. Concerning the stress relaxation
test conducted by Ovalle [73] and Ovalle et al. [74], the mathematical description of the
boundary conditions of the experimental tests() is D11 = 0 and Ṫ22 = Ṫ33 = 0. Then the
constitutive equations can be written as follows:

Ṫ11 = fs

{
2T̂22D22T̂11 +

√
2 fd â

(
T̂11 + T̂ ∗11

)
| D22 |

}
+

ḣst

3hst
(T11 +2T22) (5.6)

Ṫ22 = fs

{
â2D22 +2T̂22D22T̂22 +

√
2 fd â

(
T̂22 + T̂ ∗22

)
| D22 |

}
+

ḣst

3hst
(T11 +2T22) (5.7)

With considering the D22 < 0 for the experimental observation by Ovalle et al. [74], the
Eq.(5.6) and Eq.(5.7) can be presented as

Ṫ11 = fs

{
T̂22T̂11−

√
2

2
fd â
(
T̂11 + T̂ ∗11

)}
2D22 +

ḣst

3hst
(T11 +2T22) (5.8)

Ṫ22 = fs

{
â2

2
+ T̂ 2

22−
√

2
2

fd â
(
T̂22 + T̂ ∗22

)}
2D22 +

ḣst

3hst
(T11 +2T22) (5.9)

According to Eq. (5.8), Eq. (5.9) and the relation ė = (1+ e) trD, the e-p relation can be
described as

ṗ =−1
3

fs

{
â2 + T̂22−

√
2

2
fd â

}
ė

1+ e
− p

hst
ḣst (5.10)

With a given initial condition of the stress relaxation and the first loading step, the param-
eter c can be calculated according to Eq. (5.9) or Eq. (5.10).

4Not only the creep path, but also the stress relaxation path.
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However, the calibration of c according to the method mentioned above failed for all tests
(W18, W19, W20 and W22). The main reason is the stress relaxation test conducted by
Ovalle [73] and Ovalle et al. [74] are significantly sensitive to the loading speed, stress
level and some other facts as well, as discussed by Lade [49].

In this work, the stiffness degradation is simulated with considering the degradation of the
solid hardness, which is considered as a key parameter for the stiffness degradation simu-
lation. In particular, the degradation of solid hardness is described by the Eq. (3.32). The
graphic representation of the solid hardness degradation can be illustrated as Fig. 5.30a.
Due to stiffness degradation, the stress relaxation path of q-t (or ε-t) shows similar trend as
the one of solid hardness degradation curve (see Fig. 5.30). Without considering the effects
of deviatoric stress5 on the results of q-t and ε-t, the parameter c can be calibrated based
on the characterization of the solid hardness degradation using the q-t or ε-t experimental
results.

t
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hsd

h∗st

0 t

hsw

q
qmax

qmin

q∗

h∗st =
1
2 (hsd +hsw)

t∗ =−c ln(1/2)

q∗ = 1
2 (qmax +qmin)

t∗ =−c ln(1/2)

t∗ t∗0
(a) (b)

Figure 5.30: Solid hardness degradation and stress relaxation curves: (a) solid hardness
degradation with time; (b) stress relaxation with time.

The parameter c can be calculated according to the equation (as mentioned in Fig. 5.30)

c =− t∗

ln(1/2)
(5.11)

In the following the calibration process of c with respecting to the q-t experimental data is
addressed.

5If experimental data is sufficient to study the effects of deviatoric stress on the final results of creep
volumetric strain and the final results of stress relaxation, it is suggested to consider the constitutive
equation proposed by Bauer [8] with the factor κ for taking into account the effects of deviatoric stress.
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The experimental results of q-t from W18, W20 and W22 are summarized in Fig. 5.31.
The characteristic time t∗ of the tests are tabulated as well. The average value of the t∗

from these three tests is t∗ = 2.1. According to the Eq. (5.11), the parameter c can be
calculated and the calibrated result of c = 3.
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W18 1.58 0.62 2.2
W20 1.12 0.66 2.3
W22 0.75 0.30 1.9

Aver. 2.1

Figure 5.31: Experimental results of q-t from stress relaxation tests by Ovalle et al. [74]
and the characteristic time

Therefore, considering the calibration result, c = 3, the numerical simulation results of q-t
and e-3p from W18, W20 and W22 are presented in Fig. 5.32, respectively.

It is clear to see that with the suggested parameter set from Table 5.5 and c= 3, the model is
capable to capture the stress relaxation phenomenon qualitatively. Comparing the numer-
ical simulation with the experimental data, the material stiffness is under-predicted by the
numerical simulation. In another word, the stiffness degradation might be over-predicted,
with a greater hsw the numerical simulation will lead better results.

While for the quantitatively prediction of the stress relaxation phase a more sophisticated
constitutive equation should be considered

Ṫ = fs
{

â2D+ tr
(
T̂D
)
T̂+ fd â

(
T̂+ T̂∗

)
‖D‖

}
+

ḣst

hst

{
1
3

tr(T)I+κT∗
}

(5.12)

which is similar to the constitutive equation proposed by Bauer [8]. Moreover, the κ is
a parameter related to the effects of deviatoric stress on the stress-strain behaviour. Take
W18 as an example, using the same parameter set from Table 5.5 and considering c = 3,
numerical simulation results of different κ are summarized in Fig. 5.33a and Fig. 5.33b.

As it shown in Fig. 5.33a and Fig. 5.33b, the asymptotic value of deviatoric stress q from
numerical simulation decreases with the increasing of κ. While the greater κ is, the less
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Figure 5.32: Numerical simulation results using the parameter set from Table 5.5 and com-
parison with experimental results
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Figure 5.33: Parametric study of κ and hsw, and the comparison with experimental results
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volumetric strain will be predicted by the model. The deviatoric stress has effects on the
stress strain behaviour of the material in the stress relaxation (or stiffness degradation)
phase. However, good agreement with experimental data cannot be achieved by adjusting
the parameter κ only. This support the idea mentioned before that the stiffness degradation
is over-predicted. Parametric study of hsw is summarized in Fig. 5.33c and Fig. 5.33d.

Therefore, it is possible to approach a good agreement with the experimental results using
a parameter set of hsw and κ. The results of numerical simulation with hsw = 18.5 MPa
and κ = 2.4 are presented in Fig. 5.34.
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Figure 5.34: Stress relaxation simulation results of W18 and W20 with hsw = 18.5 MPa,
κ = 2.4

Based on the testing of different combination of hsw and κ, the suggested parameter set is
hsw = 20 MPa and κ = 2. And the q-t and ε-t results of numerical simulation are summa-
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rized in Fig. 5.35. As it can be seen in Fig. 5.35, it is difficult to find a unique parameter
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Figure 5.35: Stress relaxation simulation results of with hsw = 20 MPa, κ = 2

set of hsw and κ which is appropriate for all these three tests, W18, W20 and W22. Ac-
cording to the available experimental data, the parameter set for the extended version of
constitutive model is tabulated as follow

Table 5.6: The proposed parameter set for shale quartzite sand with stiffness degradation
ϕc hsd hsw n ei0 ec0 α̌ c κ

[◦] [MPa] [MPa] [-] [-] [-] [-] [min] [-]
Dry 40 23.6 / 0.6 1.3 0.8 0.5 3 2

Saturated 40 / 20 0.6 1.3 0.8 0.5 3 2

The numerical simulation results have a good agreement with the experimental data, es-
pecially the numerical simulation of test W20 and W22. This means the hsw = 20 MPa is
more appropriate than the previous calibrated hsw = 15 MPa. The main reason might be
the oedometric compression data used for calibration leads a lower hsw. In particular, as
mentioned by Ovalle et al. [74], the settlement (or strain) from the oedometric compression
test was measured after 1 hour strain stabilization, it is uncertain that whether an additional
creep deformation is taken into account or not (see Fig. 5.37)

As illustrated in Fig. 5.37, the strain stabilization phase might lead additional settlement
(vertical red line in the figure). The additional settlement could affect the calibration re-
sult of hs, if the additional settlement is not small enough and cannot be neglected. The
additional settlement of saturated material can be greater than the one of dry material, be-
cause of the appearance of water particle can move or rearrange more easily. This could be
an explanation why the previous predicted hsw = 15 MPa is not appropriate for the stress
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Figure 5.36: Numerical simulation results using the parameter set from Table 5.6
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Figure 5.37: The effect of additional settlements on calibration of hs

relaxation simulation. If possible, further experimental investigation using the same ma-
terial to study the effects of additional settlement of strain stabilization phase is of great
interest.

From the numerical simulation results shown in Fig. 5.24-Fig. 5.27, the parameter set
suggested in Table 5.5 is appropriate for the dry and saturated material. While for the stiff-
ness degradation simulation, numerical results using parameter set from Table 5.6 have
better agreement with experimental investigation results. Note all these parameter sets
in Table 5.5 and Table 5.6 are suggested based on the comprehensive study and analysis
of the available experimental data. It is suggested to consider simple constitutive equa-
tion (Eq. (4.1) with considering constant hs) and fewer parameters (6 parameters in total,
see Table 5.5) for simulation of dry or saturated material, while for the complex stiffness
degradation it is better to consider the comprehensive constitutive model (Eq. (5.12)) and
9 parameters (Table 5.6) to approach better agreements with experimental results during
the transition from the dry to saturation.

In addition, the critical friction angle of the shale quartzite sand is ϕc = 40◦, which is out
of the range (22-35◦) for Quartz (suggested by Terzaghi et al. [86]), and greater than the
value of most of the sands summarized in Sadrekarimi and Olson [79]. The main reason
is the shale quartzite sand is not a natural sand which was rounded by natural factors. This
sand is obtained from grinding of the quartzite shale rock as mentioned before. Therefore,
the suggestion of ϕc = 40◦ for this angular and flat material is reasonable.



6 Summary and concluding remarks

In this thesis a hypoplastic constitutive model by Bauer is considered which takes into
account the mechanical behaviour of weathered and moisture sensitive, coarse-grained
granular materials under both dry and wet conditions with a single set of material param-
eters. The model describes a degradation of the incremental stiffness when the moisture
content of the solid material increases. The degradation of the incremental stiffness is a
time dependent process and influenced by the current pressure dependent relative density
and the stress state. In this thesis the two density factors in the original version by Bauer
are simplified, which results in a reduction of the number of material parameters required.
For the so-called simplified constitutive model the relevant stiffness factor is derived from
a consistency condition. Based on a parameter study the properties of the simplified model
proposed is investigated. To investigate the performance of the model, the experimental
data obtained with shale quartzite sand by Ovalle [73] and Ovalle et al. [74] are used in this
study. For determining the constitutive parameters it turns out that the data available are
not sufficient to use a direct calibration procedure. Thus, a specific calibration procedure
is developed to estimate the missing data.

The following conclusions can be drawn: It is recommended to plane the experimental
investigations with respect to the data required for a direct calibration procedure of the
constitutive parameters required for the model used for prediction. If the direct calibra-
tions of all parameters cannot be carried out due to the lack of experimental data, a specific
calibration procedure is needed. In this context it can also be noted that for highly non-
linear equations the calibration of the parameters using back analysis or an optimization
procedure can fail. A careful evaluation of the experimental data used for the calibration
is also important in particular when shear banding takes place in the laboratory test. Thus,
the calibration procedure cannot be automated for general cases. An individual adaptation
is need which can be a challenging task.
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A Appendix

A.1 Characteristics of compression law by Bauer (1996)

According to the compression equation by Bauer(1996), see Eq. (3.23), the derivation of
void ratio can be derived as follows1:
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The compression equation can be rewritten as:
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1Considering x is the variable.
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Therefore, the derivative of void ratio can be represented as:
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(A.2)

With respect different representation, i.e. e ∼ p, e ∼ 3p, e ∼ ln(3p), the slope of the
graphical representation can be derived explicitly according to Eq. (A.2).
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Figure A.1: Compression curve: (a)in normal representation as e∼ p; (b)in normal repre-
sentation as e∼ 3p; (c)in semi-logarithmic representation as e∼ ln(3p).

Considering the maximum void ratio ei is a function represented as y = ei, with respect
the x = ln(3p), the compression equation by Bauer (1996) can be expressed as y = f (x)
explicitly as:

f (x) = f (x0)exp
{
−
(

expx
hs

)n}
(A.3)

Now using primes for derivatives d
dx with respect to x, the first derivative is:
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the second derivative is:
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and then the curvature is:
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A.2 Asymptotic behaviour of proportional loading paths

Based on the experimental investigation of sand using true triaxial apparatus, Goldscheider
[21] discovered that proportional stretching starting from the stress free state, reached
in a proportional stress path. For an arbitrary initial stress state different from zero, the
same proportional stretching leads to a stress path which asymptotically approaches the
same stress path starting from the stress free state. This finding is of great importance
for developing and validation of constitutive models. The proportional paths under an
axisymmetric condition (D22 = D33 and T22 = T33) is illustrated as in Fig. A.2.

As shown in Fig. A.2c, for undrained compression, D22 = −D11/2, the corresponding
stress path trends towards the critical stress surface. The proportional strain paths with
tr(D) = 0 form the boundary of strain paths under loading conditions. It can be considered
that the proportional stress paths function as attractors (Medicus [61]). Details of graphical
representation of proportional paths can be referred to Gudehus and Mašín [23].

Considering the Goldscheider’s findings as fundamental rules, Kolymbas [46] and Medicus
et al. [62] proposed the concept of Barodesy, which allows a rather simple mathematical
description. The asymptotic behaviour is also a property of hypoplastic models.
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⇒
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(a) iso-comp.

(b) oed-comp.

(c) undrain-comp.

−D22
(D22 = D33)
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(D22 = D33)
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Figure A.2: Illustration of proportional paths and asymptotic behaviour under axisymmet-
ric condition: (a) isotropic compression; (b) oedometric compression; (c)
undrained compression.
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A.3 Computer program HET for element tests

For the numerical simulation of element tests of the simplified hypoplastic model discussed
in Chapter 4 a computer program was developed. The program HET (Hypoplastic Element
Tests) is written in Python, MATLAB and LATEX language. The codes for element tests
are written in MATLAB. Moreover, the pre- and post-processing are designed by Python
scripts. The report of the each simulation is generated by LATEX.

For the HET program, the flowchart, the user interface and the input interface are presented
in Fig. A.3, Fig. A.4 and Fig. A.5, respectively. The library of element tests is outlined in
Section A.3.1. For a triaxial compression test and a specific set of parameters the report
obtained from HET program is shown in Section A.3.2. The source code of HET program
for triaxial element test is presented in Section A.3.3.

Figure A.3: Flowchart of HET

A.3.1 Library of element tests

The element test library of HET includes the following tests:

• Compression tests:

– Isotropic compression test
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Figure A.4: Login interface of HET

– Oedometric compression test

– Triaxial compression test

– Biaxial compression test

• Creep tests:

– True-triaxial-creep test (including isotropic-creep test)

– Oedometric-creep test

– Biaxial-creep test

According to the general equation (Eq. (4.1)), the constitutive equation considered in HET
is as follow:

Ṫ = fs
{

c1â2D+ c2 tr(D)I+ c3 tr
(
T̂D
)
T̂+ c4 fd â

(
T̂+ c5T̂∗

)
‖D‖

}
+ c6

ḣst
hst

{1
3 tr(T)I+κT∗

}
(A.7)

with c1 ∼ c6 are factors for switching on/off of individual terms. Considering the possi-
bility of modification, the component tr(D)I is added into the constitutive equation and
the aforementioned component κT∗ is still kept in the general equation. For the simplified
constitutive model used in this work, the factors and κ are set as: c1 = 1, c2 = 0, c3 = 1,
c4 = 1, c5 = 1 and κ = 0. c6 = 0 for time-independent case (hsd or hsw is constant) and
c6 = 1 for time-dependent condition (hst 6= const.). Note that the strain controlled loading
process is considered for ensuring the strain softening condition is included.

The MATLAB source code of each element tests is packaged into a standalone executable
file using the following command. This is only an illustration how to package standalone
executable file without MS-DOS Command Window under Windows Operation System.
For other operation system like Linux is not covered here.

1 % Matlab c o m p i l e r f o r s t a n d a l o n e e x e c u t a b l e f i l e w i t h o u t
2 % Command Window
3 % I n p u t : f i l e n a m e , h e r e i s < h e t _ v 0 0 5 _ t r i r e l >
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4 % Outpu t : h e t _ v 0 0 5 _ t r i r e l . exe
5 mcc −e h e t _ v 0 0 5 _ t r i r e l
6 % mcc : i n v o k e s t h e MATLAB Compi le r .
7 % −e : S u p p r e s s e s a p p e a r a n c e o f t h e MS−DOS Command Window
8 % when g e n e r a t i n g a s t a n d a l o n e a p p l i c a t i o n .
9 % h e t _ v 0 0 5 _ t r i r e l : f i l e n a m e w i t h o u t e x t e n s i o n .

After finishing the packaging, an executable file with the same name as specified in the
command line will be crated (here is het_v005_trirel.exe). With the corresponding version
of the MCRInstaller.exe installed on the computer, the standalone executable file can be
executed without running MATLAB or evening without installing MATLAB. Therefore,
the HET program only requires Python language, MCRInstaller file, LATEX installed on the
computer.

designing user interface (see Fig. A.4), calling MATLAB standalone executable file for
calculation, preparing simulation results and latex files, and finally generate calculation re-
port (see the flowchart of HET in Fig. A.3). This basic programming work has significant
importance for validation of constitutive model and for calibration of parameters, espe-
cially for the case that some necessary parameters are missing and iteration process should
be considered.

In order to prevent to reach infinite stress for the case which the maximum strain is spec-
ified over the limit strain of the material, specify a maximum stress range (σ11,max in
Fig. A.5) is helpful.

Figure A.5: Parameter input interface of HET

After parameter inputting process, the HET program calls the corresponding element test
calculation file (here is the isotropic compression element test, het_iso.exe.). When the
calculation has been done, HET program generate the data files according to a predefined
file set for each element test, and generate the corresponding LATEX files for the calculation
report. In the report of HET, the results of stress and strain is represented with the sign
convention of Soil Mechanics, in order to keep it simple for comparison with the experi-
mental results, which in many literature the sign convention is considered the same as the
one in Soil Mechanics.
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A.3.2 Representation of the results
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A.3.3 Source code of HET for triaxial compression test

1 %********************************************************%
2 %−−S u b r o u t i n e name : h e t _ v 0 0 5 _ t r i a x i _ s u b −−−−−−−−−−−−−−***%
3 %−−Programer : Linke Li −−−−−−−−−−−−−−−−−−−−−−−−−−−−***%
4 %−−V e r s i o n : 16/01/2018−−−−−−−−−−−−−−−−−−−−−−−−−−−***%
5 %********************************************************%
6 %−−D e s c r i p t i o n : Th i s s u b r o u t i n e i s d e s g i n e d f o r ***%
7 % s i m u l a t i n g t r i a x i a l c o m p r e s s i o n wi th boundary ***%
8 % c o n d i t i o n s : ***%
9 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ***%

10 % dot_s igma ( 2 , 2 ) = do t_s igma ( 3 , 3 ) =0 ***%
11 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ***%
12 % The known i n i t i a l v a l u e s a r e as f o l l o w : ***%
13 % sigma ( 1 , 1 ) , s igma ( 2 , 2 ) , s igma ( 3 , 3 ) , d o t _ e p s ( 1 , 1 ) ***%
14 % i n t h e m a t r i x form i s : ***%
15 % −−−−−−−−−−−−−−−−−−−−−−−−−−− ***%
16 % T ( 1 , 1 ) ,T ( 2 , 2 ) ,T ( 3 , 3 ) ,D( 1 , 1 ) i s known . ***%
17 % −−−−−−−−−−−−−−−−−−−−−−−−−−− ***%
18 % True t r i a x i a l c o m p r e s s i o n i s t a k e n i n t o a c c o u n t . ***%
19 % The d e g r a d a t i o n o f hs i s c o n s i d e r e d as two p a r t s , ***%
20 % i n p a r t i c u l a r , t h e mean p r e s s u r e and t h e d e v i a t o r i c ***%
21 % s t r e s s wi th t h e e q u a t i o n as f o l l o w i n g : ***%
22 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ***%
23 % h s d o t = −c6 *( t r T d o t / t r T ) *(− t r T / bp ) ^ ( np ) * hs . . . ***%
24 % −c7 * bsd * ( | Tdev_dot | * | Tdev | / t r T ^2 ) * hs ; ***%
25 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ***%
26 % P l e a s e n o t e t h e c6 and c7 a r e s w i t h on / o f f f a c t o r , ***%
27 % which i s on ly s e t a s 1 . 0 o r 0 . 0 f o r p a r a m e t e r s t u d y .**%
28 %********************************************************%
29 %−−D e s c r i p t i o n : ***%
30 %( 1 ) Newton i t e r a t i o n method i s used f o r c a l c u l a t i n g ***%
31 % d22 , d33 . ***%
32 %( 2 ) The a n a l y t i c a l s o l u t i o n o f s t r e s s r a t e i s w r i t t e n ***%
33 % e x p l i c i t l y . The a n a l y t i c a l s o l u t i o n s h o u l d be ***%
34 % u p d a t e d i f any m o d i f i c a t i o n o f t h e c o n s t i t u t i v e ***%
35 % e q u a t i o n s was made . ***%
36 %********************************************************%
37 %−−Updates : ***%
38 % −−by L . Li , 2 7 . 0 4 . 2 0 1 8 ***%
39 % 1) Develop f u c t i o n s <DevMat_3 (M) > , <EuNoMat_3 (M) > ***%
40 % f o r c a l c u l a t e d e v i a t o r i c p a r t and t h e E u c l i d e a n ***%
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41 % norm of a g i v e n m a t r i x M. ***%
42 %********************************************************%
43 f u n c t i o n [ Tdot , Dt , de , hsdo t , a_ha t , f_d , f _ s ] =

h e t _ v 0 0 5 _ t r i a x i _ s u b ( T , Dt , . . .
44 hs , cn , phi_c , e t , e_ i0 , e_c0 , a lpha , be t a , c1 , c2 , c3 , c4 , c5 , c6 ,

c7 , bp , np , bsd )
45 p h i c _ r a d = deg2rad ( p h i _ c ) ;
46 s i n _ p h i c = s i n ( p h i c _ r a d ) ;
47 t r T = TracMat r ( T ) ;
48 p = −1/3* t r T ;
49 T n _ s t a r = DeviNormMatr_3 ( T ) ;
50 Tn = NormMatr_3 ( T ) ;
51 %t r D t = TracMat r ( Dt ) ;
52 e _ i = e _ i 0 * exp(−(− t r T / hs ) ^ cn ) ;
53 e_c = e_c0 * exp(−(− t r T / hs ) ^ cn ) ;
54 %c a l c u l a t e T n _ s t a r ( k l ) * T n _ s t a r ( k l ) :
55 s _ i j _ 2 = m_i j_2 ( T n _ s t a r ) ;
56 %c a l c u l a t e T n _ s t a r ( k l ) * T n _ s t a r ( lm ) * T n _ s t a r (mk) :
57 s _ i j _ 3 = m_i j_3 ( T n _ s t a r ) ;
58 %C a l c u l a t e a _ h a t :
59 % For t h e c a s e o f i s o t r o p i c s t r e s s s t a t e , t h e g _ h a t %
60 % ( or cos (3* t h e t a ) ) w i l l become zero , t h e n i t s h o u l d %
61 % be manua l ly s e t t o e q u a l one . %
62 i f s _ i j _ 2 ==0
63 g _ a h a t = 1 ;
64 e l s e
65 g _ a h a t = − s q r t ( 6 ) * s _ i j _ 3 / ( s _ i j _ 2 ) ^ ( 3 / 2 ) ;
66 end
67 a _ h a t = s i n _ p h i c /(3− s i n _ p h i c ) * ( s q r t ( (8 /3−3* s _ i j _ 2 + g _ a h a t *

s q r t ( 3 / 2 ) * . . .
68 s _ i j _ 2 ^ ( 3 / 2 ) ) / ( 1 + g _ a h a t * s q r t ( 3 / 2 ) * s q r t ( s _ i j _ 2 ) ) )− s q r t (

s _ i j _ 2 ) ) ;
69 %c a l c u l a t e f _ e :
70 f _ e = ( e_c / e t ) ^ b e t a ;
71 %c a l c u l a t e f_b :
72 a _ h a t _ i = s q r t ( 8 / 3 ) * ( s i n _ p h i c /(3− s i n _ p h i c ) ) ;
73 %c a l c u l a t e h _ i :
74 h _ i = 3* c1 * a _ h a t _ i ^2 + 9* c2 + c3 − c4 * a _ h a t _ i * s q r t ( 3 ) * ( e _ i /

e_c ) ^ a l p h a ;
75 %c a l c u l a t e f_b :
76 f_b = (1 + e _ i ) / ( e _ i ) * ( hs ^ ( cn ) ) / ( cn * h _ i ) *(3* p ) ^(1− cn ) / ( 1 + c6

*(3* p / bp ) ^ np ) . . .
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77 *( e _ i / e_c ) ^ ( b e t a ) ;
78 %c a l c u l a t e f _ s :
79 s _ h a t _ i j _ 2 = m_i j_2 ( Tn ) ;
80 f _ s _ s t a r = 1 / ( s _ h a t _ i j _ 2 ) ;
81 f _ s = f _ e * f _ s _ s t a r * f_b ;
82 %c a l c u l a t e f_d :
83 f_d = ( e t / e_c ) ^ a l p h a ;
84 %S t a r t t h e Newton− I t e r a t i o n method f o r s o l v i n g
85 % d o t _ s i g ( 2 , 2 ) = d o t _ s i g ( 3 , 3 ) =0%
86 x = [ Dt ( 2 , 2 ) ; Dt ( 3 , 3 ) ] ;
87 y = z e r o s ( 2 , 1 ) ;
88 dy = z e r o s ( 2 , 2 ) ;
89 %s p e c i f y t h e d o t _ s i g ( 2 , 2 ) a s y ( 1 ) :
90 y ( 1 ) = f _ s * ( c1 * a _ h a t ^2* x ( 1 ) +c2 *( Dt ( 1 , 1 ) +x ( 1 ) +x ( 2 ) ) + . . .
91 c3 *( Tn ( 1 , 1 ) *Dt ( 1 , 1 ) +Tn ( 2 , 2 ) *x ( 1 ) +Tn ( 3 , 3 ) *x ( 2 ) ) *Tn ( 2 , 2 )

+ . . .
92 c4 * f_d * a _ h a t * ( Tn ( 2 , 2 ) +c5 *( Tn ( 2 , 2 ) −1/3) ) * . . .
93 s q r t ( Dt ( 1 , 1 ) ^2+x ( 1 ) ^2+x ( 2 ) ^2 ) ) ;
94 %s p e c i f y t h e d o t _ s i g ( 3 , 3 ) a s y ( 2 ) :
95 y ( 2 ) = f _ s * ( c1 * a _ h a t ^2* x ( 2 ) +c2 *( Dt ( 1 , 1 ) +x ( 1 ) +x ( 2 ) ) + . . .
96 c3 *( Tn ( 1 , 1 ) *Dt ( 1 , 1 ) +Tn ( 2 , 2 ) *x ( 1 ) +Tn ( 3 , 3 ) *x ( 2 ) ) *Tn ( 3 , 3 )

+ . . .
97 c4 * f_d * a _ h a t * ( Tn ( 3 , 3 ) +c5 *( Tn ( 3 , 3 ) −1/3) ) * . . .
98 s q r t ( Dt ( 1 , 1 ) ^2+x ( 1 ) ^2+x ( 2 ) ^2 ) ) ;
99 %

100 dy ( 1 , 1 ) = f _ s * ( c1 * a _ h a t ^2+ c2+c3 *Tn ( 2 , 2 ) *Tn ( 2 , 2 ) + . . .
101 c4 * f_d * a _ h a t * ( Tn ( 2 , 2 ) +c5 *( Tn ( 2 , 2 ) −1/3) ) *x ( 1 ) * . . .
102 power ( ( Dt ( 1 , 1 ) ^2+x ( 1 ) ^2+x ( 2 ) ^2 ) , ( −1 /2 ) ) ) ;
103 dy ( 1 , 2 ) = f _ s * ( c2+c3 *Tn ( 3 , 3 ) *Tn ( 2 , 2 ) + . . .
104 c4 * f_d * a _ h a t * ( Tn ( 2 , 2 ) +c5 *( Tn ( 2 , 2 ) −1/3) ) *x ( 2 ) * . . .
105 power ( ( Dt ( 1 , 1 ) ^2+x ( 1 ) ^2+x ( 2 ) ^2 ) , ( −1 /2 ) ) ) ;
106 %
107 dy ( 2 , 1 ) = f _ s * ( c2+c3 *Tn ( 2 , 2 ) *Tn ( 3 , 3 ) + . . .
108 c4 * f_d * a _ h a t * ( Tn ( 3 , 3 ) +c5 *( Tn ( 3 , 3 ) −1/3) ) *x ( 1 ) * . . .
109 power ( ( Dt ( 1 , 1 ) ^2+x ( 1 ) ^2+x ( 2 ) ^2 ) , ( −1 /2 ) ) ) ;
110 dy ( 2 , 2 ) = f _ s * ( c1 * a _ h a t ^2+ c2+c3 *Tn ( 3 , 3 ) *Tn ( 3 , 3 ) + . . .
111 c4 * f_d * a _ h a t * ( Tn ( 3 , 3 ) +c5 *( Tn ( 3 , 3 ) −1/3) ) *x ( 2 ) * . . .
112 power ( ( Dt ( 1 , 1 ) ^2+x ( 1 ) ^2+x ( 2 ) ^2 ) , ( −1 /2 ) ) ) ;
113 %
114 NumIte rs = 1 ;
115 eps = 1 ;
116 w h i l e eps >1e−10 && NumIters <1000
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117 % c a l c u l a t e s t r a i n r a t e i n c r e m e n t s
118 Dd = dy \ y ;
119 % u p d a t e s t r a i n r a t e
120 x = x − Dd ;
121 % u p d a t e f u n c t i o n s
122 y ( 1 ) = f _ s * ( c1 * a _ h a t ^2* x ( 1 ) +c2 *( Dt ( 1 , 1 ) +x ( 1 ) +x ( 2 ) ) + . . .
123 c3 *( Tn ( 1 , 1 ) *Dt ( 1 , 1 ) +Tn ( 2 , 2 ) *x ( 1 ) +Tn ( 3 , 3 ) *x ( 2 ) ) *Tn

( 2 , 2 ) + . . .
124 c4 * f_d * a _ h a t * ( Tn ( 2 , 2 ) +c5 *( Tn ( 2 , 2 ) −1/3) ) * . . .
125 s q r t ( Dt ( 1 , 1 ) ^2+x ( 1 ) ^2+x ( 2 ) ^2 ) ) ;
126 y ( 2 ) = f _ s * ( c1 * a _ h a t ^2* x ( 2 ) +c2 *( Dt ( 1 , 1 ) +x ( 1 ) +x ( 2 ) ) + . . .
127 c3 *( Tn ( 1 , 1 ) *Dt ( 1 , 1 ) +Tn ( 2 , 2 ) *x ( 1 ) +Tn ( 3 , 3 ) *x ( 2 ) ) *Tn

( 3 , 3 ) + . . .
128 c4 * f_d * a _ h a t * ( Tn ( 3 , 3 ) +c5 *( Tn ( 3 , 3 ) −1/3) ) * . . .
129 s q r t ( Dt ( 1 , 1 ) ^2+x ( 1 ) ^2+x ( 2 ) ^2 ) ) ;
130 dy ( 1 , 1 ) = f _ s * ( c1 * a _ h a t ^2+ c2+c3 *Tn ( 2 , 2 ) *Tn ( 2 , 2 ) + . . .
131 c4 * f_d * a _ h a t * ( Tn ( 2 , 2 ) +c5 *( Tn ( 2 , 2 ) −1/3) ) *x ( 1 ) * . . .
132 power ( ( Dt ( 1 , 1 ) ^2+x ( 1 ) ^2+x ( 2 ) ^2 ) , ( −1 /2 ) ) ) ;
133 dy ( 1 , 2 ) = f _ s * ( c2+c3 *Tn ( 3 , 3 ) *Tn ( 2 , 2 ) + . . .
134 c4 * f_d * a _ h a t * ( Tn ( 2 , 2 ) +c5 *( Tn ( 2 , 2 ) −1/3) ) *x ( 2 ) * . . .
135 power ( ( Dt ( 1 , 1 ) ^2+x ( 1 ) ^2+x ( 2 ) ^2 ) , ( −1 /2 ) ) ) ;
136 dy ( 2 , 1 ) = f _ s * ( c2+c3 *Tn ( 2 , 2 ) *Tn ( 3 , 3 ) + . . .
137 c4 * f_d * a _ h a t * ( Tn ( 3 , 3 ) +c5 *( Tn ( 3 , 3 ) −1/3) ) *x ( 1 ) * . . .
138 power ( ( Dt ( 1 , 1 ) ^2+x ( 1 ) ^2+x ( 2 ) ^2 ) , ( −1 /2 ) ) ) ;
139 dy ( 2 , 2 ) = f _ s * ( c1 * a _ h a t ^2+ c2+c3 *Tn ( 3 , 3 ) *Tn ( 3 , 3 ) + . . .
140 c4 * f_d * a _ h a t * ( Tn ( 3 , 3 ) +c5 *( Tn ( 3 , 3 ) −1/3) ) *x ( 2 ) * . . .
141 power ( ( Dt ( 1 , 1 ) ^2+x ( 1 ) ^2+x ( 2 ) ^2 ) , ( −1 /2 ) ) ) ;
142 % u p d a t e t o t a l e r r o r
143 eps = abs ( y ( 1 ) ) + abs ( y ( 2 ) ) ; %e r r o r
144 % u p d a t e i t e r a t i o n s t e p
145 NumIte rs = NumIte rs +1 ;
146 end
147 Dt ( 2 , 2 ) = x ( 1 ) ;
148 Dt ( 3 , 3 ) = x ( 2 ) ;
149 t r D t = TracMat r ( Dt ) ;
150 %c a l c u l a t e Tdot m a t r i c :
151 Tdot = z e r o s ( 3 , 3 ) ;
152 Tdot ( 1 , 1 ) = f _ s * ( c1 * a _ h a t ^2* Dt ( 1 , 1 ) +c2 *( Dt ( 1 , 1 ) +Dt ( 2 , 2 ) +Dt

( 3 , 3 ) ) + . . .
153 c3 *( Tn ( 1 , 1 ) *Dt ( 1 , 1 ) +Tn ( 2 , 2 ) *Dt ( 2 , 2 ) +Tn ( 3 , 3 ) *Dt ( 3 , 3 ) ) *Tn

( 1 , 1 ) + . . .
154 c4 * f_d * a _ h a t * ( Tn ( 1 , 1 ) +c5 *( Tn ( 1 , 1 ) −1/3) ) * . . .
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155 s q r t ( Dt ( 1 , 1 ) ^2+ Dt ( 2 , 2 ) ^2+ Dt ( 3 , 3 ) ^2 ) ) ;
156 Tdot ( 2 , 2 ) = f _ s * ( c1 * a _ h a t ^2* Dt ( 2 , 2 ) +c2 *( Dt ( 1 , 1 ) +Dt ( 2 , 2 ) +Dt

( 3 , 3 ) ) + . . .
157 c3 *( Tn ( 1 , 1 ) *Dt ( 1 , 1 ) +Tn ( 2 , 2 ) *Dt ( 2 , 2 ) +Tn ( 3 , 3 ) *Dt ( 3 , 3 ) ) *Tn

( 2 , 2 ) + . . .
158 c4 * f_d * a _ h a t * ( Tn ( 2 , 2 ) +c5 *( Tn ( 2 , 2 ) −1/3) ) * . . .
159 s q r t ( Dt ( 1 , 1 ) ^2+ Dt ( 2 , 2 ) ^2+ Dt ( 3 , 3 ) ^2 ) ) ;
160 Tdot ( 3 , 3 ) = f _ s * ( c1 * a _ h a t ^2* Dt ( 3 , 3 ) +c2 *( Dt ( 1 , 1 ) +Dt ( 2 , 2 ) +Dt

( 3 , 3 ) ) + . . .
161 c3 *( Tn ( 1 , 1 ) *Dt ( 1 , 1 ) +Tn ( 2 , 2 ) *Dt ( 2 , 2 ) +Tn ( 3 , 3 ) *Dt ( 3 , 3 ) ) *Tn

( 3 , 3 ) + . . .
162 c4 * f_d * a _ h a t * ( Tn ( 3 , 3 ) +c5 *( Tn ( 3 , 3 ) −1/3) ) * . . .
163 s q r t ( Dt ( 1 , 1 ) ^2+ Dt ( 2 , 2 ) ^2+ Dt ( 3 , 3 ) ^2 ) ) ;
164 %c a l c u l a t e r a t e o f vo id r a t i o :
165 de = (1+ e t ) * t r D t ;
166 %c a l c u l a t e t h e r a t e o f hs :
167 t r T d o t = TracMat r ( Tdot ) ;
168 Tdev_dot = DevMat_3 ( Tdot ) ;
169 Tdev = DevMat_3 ( T ) ;
170 NormTdev_dot = EuNoMat_3 ( Tdev_dot ) ;
171 NormTdev = EuNoMat_3 ( Tdev ) ;
172 h s d o t = −c6 *( t r T d o t / t r T ) *(− t r T / bp ) ^ ( np ) * hs . . .
173 − c7 * bsd *( NormTdev_dot *NormTdev / t r T ^2 ) * hs ;
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A.4 Parameter âo for oedometric tests

As it is defined according to the Eq. (2.20), the function â which related to limitation
condition is repeated here:

â =
sinϕc

3− sinϕc

{√
8/3−3‖T̂∗‖2 +

√
3/2‖T̂∗‖3 cos3θ

1+
√

3/2‖T̂∗‖cos3θ
−‖T̂∗‖

}
(A.8)

with
‖T̂∗‖=

{
tr
(
T̂∗2
)}1/2

(A.9)

and cos3θ, a quantity related to Lode angle with the definition:

cos3θ =−
√

6tr
(
T̂∗3
){

tr
(
T̂∗2
)}3/2 (A.10)

Take a axisymmetric oedoemtric condition as an example, considering T22 = T33 = KT11,
the normalized stress tensor and the deviator can be written in the matrix representation

[
T̂
]
=

1
1+2K

1 0 0
0 K 0
0 0 K

 (A.11)

and [
T̂∗
]
=

1−K
3(1+2K)

2 0 0
0 −1 0
0 0 −1

 (A.12)

respectively.

Thus, the Euclidian norm of stress deviator tensor is:

‖T̂∗‖=
√

tr
(
T̂∗2
)
=
√

T̂i jT̂i j (A.13)

In particular, ‖T̂∗‖ is

‖T̂∗‖=

√
4(1−K)2

9(1+2K)2 +
2(1−K)2

9(1+2K)2 =

√
2
3

1−K
1+2K

(A.14)

and

‖T̂∗‖2 =
2
3

(
1−K

1+2K

)2

(A.15)

‖T̂∗‖3 =

√
8

27

(
1−K
1+2K

)3

(A.16)
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For the cos3θ:

cos3θ =−
√

6
tr
(
T̂∗3
){

tr
(
T̂∗2
)}3/2 =−

√
6

6(1−K)3

27(1+2K)3√
8

27
(1−K)3

(1+2K)3

=−1 (A.17)

Set A = 8/3−3‖T̂∗‖2+
√

3/2‖T̂∗‖3 cos3θ, then A can be derived based on the aforemen-
tioned equations:

A =
8
3
−3× 2

3

(
1−K

1+2K

)2

+

√
3
2
×

√
8

27

(
1−K

1+2K

)3

× (−1)

=
8
3
−2
(

1−K
1+2K

)2

− 2
3

(
1−K

1+2K

)3

Substitute B = (1−K)/(1+2K) into A:

A =
2
3
(
4−3B2−B3)

=
2
3
(
4−4B+4B−4B2 +B2−B3)

=
2
3
{

4(1−B)+4B(1−B)+B2 (1−B)
}

=
2
3
(1−B)

(
4+4B+B2)

=
2
3
(1−B)(2+B)2

Set C = 1+
√

3/2‖T̂∗‖cos3θ, then C can be represented as:

C = 1+

√
3
2
×
√

2
3

B× (−1)

= 1−B

Thus, the âo can be written as:

âo =
sinϕc

3− sinϕc


√

2
3
(1−B)(2+B)2

(1−B)
−
√

2
3

B


=

sinϕc

3− sinϕc

{√
2
3
(2+B)−

√
2
3

B

}

=

√
8
3

sinϕc

3− sinϕc
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For the isotropic compression, ‖T̂∗‖ = 0 and cos3θ = −1 can lead the â to end up with
the same result of â for oedometer compression: âi = âo =

√
8/3sinϕc/(3− sinϕc), with

subscript “i” represents isotropic compression and the one “o” stands for oedometer com-
pression.
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A.5 Summary of experimental tests used

Table A.1: XRD results of a sample finer than 0.08 mm (I) from Ovalle et al. [74]
Components Quartz Albite Sodium aluminium silicate

Chemical formula SiO2 NaAlSi3O8 Na6Al6Si10O32
Percentage 64 26 10

Table A.2: XRD results of a sample finer than 0.08 mm (II) from Ovalle [73]
Chemical element O Si Al Fe K Na Mg S Ti

Percentage of mass 48.6 24.6 10.9 8.4 3.8 2.0 1.2 0.4 0.2

Table A.3: Summary of isotropic compression tests

Test No.
Initial state

T22,max [MPa] Test conditions
void ratio T22,0 [MPa]

D1 0.955 -0.236 -0.8 Dry
W2 0.967 -0.224 -0.8 Dry, 1 h creep at T22,max, saturated

Table A.4: Summary of oedometric compression tests

Test No.
Initial state

Tv,max [MPa] Test conditions
void ratio Tv [kPa]

D3 1.066 -4.617 -0.4 Dry
D4 1.015 -4.606 -0.6 Dry
D5 0.995 -4.584 -0.85 Dry
D6 1.014 -4.592 -2.1 Dry
D7 0.990 -4.624 -2.1 Dry
S8 1.035 -4.628 -0.4 Saturated/Initially wetted
S9 1.029 -4.628 -0.85 Saturated

S10 1.051 -4.615 -2.1 Saturated
W11 1.008 -4.606 -2.1 Wetted at Tv = 0.4 MPa
W12 1.009 -4.618 -0.4 Wetted at Tv = 0.4 MPa
W13 1.000 -4.611 -0.85 Wetted at Tv = 0.85 MPa
W14 1.003 -4.610 -2.1 Wetted at Tv = 1.5 MPa
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Table A.5: Summary of triaxial compression tests

Test No.
Initial state

T22 [MPa] Test conditions
void ratio T22,0 [kPa]

D15 0.933 -236 -0.8 Dry
W16 0.929 -12 -0.8 Dry, wetted after isotropic consolidation
W17 0.935 -30 -0.8 Dry, wetted after isotropic consolidation
W18 0.945 -10 -0.8 Dry, wetted at ε11 = 12%
W19 0.903 -10 -0.8 Dry, wetted at ε11 = 10%
W20 0.948 -22 -0.8 Dry, wetted at ε11 = 8%
D21 0.949 -13 -0.4 Dry
W22 0.957 -9 -0.4 Dry, wetted at ε11 = 7%

A.6 Input data for parameter study
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Table A.6: Parameter set for analysis of the model performance

Variable
Constitutive parameters Initial state

ϕc hsd n ei0 ec0 α T11 T22 T33 e0
[◦] [MPa] [-] [-] [-] [-] [MPa] [MPa] [MPa] [-]

ϕc

35 22.4 0.64 1.2 0.9 0.5 -0.1 -0.1 -0.1 0.6 / 1.0
37 22.4 0.64 1.2 0.9 0.5 -0.1 -0.1 -0.1 0.6 / 1.0
40 22.4 0.64 1.2 0.9 0.5 -0.1 -0.1 -0.1 0.6 / 1.0
42 22.4 0.64 1.2 0.9 0.5 -0.1 -0.1 -0.1 0.6 / 1.0

hs

37 15 0.64 1.2 0.9 0.5 -0.1 -0.1 -0.1 0.6 / 1.0
37 18 0.64 1.2 0.9 0.5 -0.1 -0.1 -0.1 0.6 / 1.0
37 22.4 0.64 1.2 0.9 0.5 -0.1 -0.1 -0.1 0.6 / 1.0
37 25 0.64 1.2 0.9 0.5 -0.1 -0.1 -0.1 0.6 / 1.0

n

37 22.4 0.4 1.2 0.9 0.5 -0.1 -0.1 -0.1 0.6 / 1.0
37 22.4 0.5 1.2 0.9 0.5 -0.1 -0.1 -0.1 0.6 / 1.0
37 22.4 0.64 1.2 0.9 0.5 -0.1 -0.1 -0.1 0.6 / 1.0
37 22.4 0.7 1.2 0.9 0.5 -0.1 -0.1 -0.1 0.6 / 1.0

ei0

37 22.4 0.64 1.1 0.9 0.5 -0.1 -0.1 -0.1 0.6 / 1.0
37 22.4 0.64 1.2 0.9 0.5 -0.1 -0.1 -0.1 0.6 / 1.0
37 22.4 0.64 1.3 0.9 0.5 -0.1 -0.1 -0.1 0.6 / 1.0
37 22.4 0.64 1.4 0.9 0.5 -0.1 -0.1 -0.1 0.6 / 1.0

ec0

37 22.4 0.64 1.2 0.7 0.5 -0.1 -0.1 -0.1 0.6 / 1.0
37 22.4 0.64 1.2 0.8 0.5 -0.1 -0.1 -0.1 0.6 / 1.0
37 22.4 0.64 1.2 0.9 0.5 -0.1 -0.1 -0.1 0.6 / 1.0
37 22.4 0.64 1.2 1.0 0.5 -0.1 -0.1 -0.1 0.6 / 1.0

α

37 22.4 0.64 1.2 0.9 0.1 -0.1 -0.1 -0.1 0.6 / 1.0
37 22.4 0.64 1.2 0.9 0.3 -0.1 -0.1 -0.1 0.6 / 1.0
37 22.4 0.64 1.2 0.9 0.5 -0.1 -0.1 -0.1 0.6 / 1.0
37 22.4 0.64 1.2 0.9 0.7 -0.1 -0.1 -0.1 0.6 / 1.0
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