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Abstract

Title: Model-based development of a condition monitoring system for turbomachinery
application

Author: Stefan Baueregger
1st keyword: turbomachinery
2nd keyword: clearance
3rd keyword: measurement
4th keyword: model-based

The everlasting goal to reduce fuel consumption by increasing efficiency of turbomachinery,
paired with the possibilities given by the improvements in computational power and nume-
rical methods in use, has led to the realization of compact machine designs. This progress
was accompanied by the necessity of monitoring operational machines for performance
and safety reasons. While the present thesis aims to develop said condition monitoring
system, the focus is limited to the aspect of radial rotor-casing clearance detection and
the resulting processing possibilities. Generally speaking, a monitoring system consists of
two main components: data acquisition and data processing. Due to the lack of available
hardware and unclear requirements for turbomachinery application, the former is replaced
by a model implemented in Matlab, dealing with the simulation of signals. The latter is
realized within LabView, with the goal to derive the information carried by the generated
signals.
The underlying document initially presents the results of a fundamental research regarding
the topic of clearance measurement, alongside the most important information that is neces-
sary to comprehend the design decisions made throughout the development stages. This is
followed by the introduction of the Matlab routine that uses the two-dimensional model of a
turbomachine together with the capacitive sensing principle for the generation of clearance
signals. Building up on this model, the next section shows the initially mentioned processing
unit that is designed to be applicable in real-world monitoring, by verifying it based on
simulated signals. The entire development environment is subsequently used to determine
influential parameters and system requirements for the acquisition of a measurement chain.
Apart from the sensing principle and its limitations, the necessary sensor setup, sample
rates and signal enhancement tools are evaluated and presented.
The thesis ultimately concludes with the presentation of the full range of performance of
the developed tip clearance monitoring system, which proves to be very situational due
to the model-based approach. Nevertheless, the results of processed data show promising
accuracy in determining tip clearance and approximating shaft movement, so that the
software environment is deemed ready for real-world testing.
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1 Introduction and Problem Definition

Since the beginning of modern day turbomachinery design at the end of the 19th century
with the development of the steam turbine, the coherent purpose of industrial research
has been to reduce fuel consumption as well as CO2 emission, or in other words, to
optimize stage performance. Initially, the approaches taken by various inventors were mainly
based on alternating process sequences. While Sir Charles Parson had chosen to realize
the reaction turbine, his college Karl Gustaf de Laval invented the impulse turbine. The
main difference between the two variants are that the former makes use of pressure and
kinetic energy within the rotor while the latter only converts kinetic energy in the impeller.
All of these basic principles were refined throughout the first half of the 20th century,
using better understanding of fluid mechanics and enhanced mathematical solutions of the
governing equations, which ultimately led to the successful design of turbo compressors.
What remained was the everlasting strive for optimization of fluid flow and loss reduction
of the entire turbomachinery domain. At the second half of the 20th century this trend has
been greatly accelerated by the invention of the computer that allowed for the solution
of more sophisticated mathematical models. Progressively, the development of numerical
solvers towards the end of the century has peaked in the modern day understanding of this
machine type.
In recent years, the standards in accuracy of numerical simulations have allowed for more and
more compact and three dimensional design, while still retaining the required operational
stability. It has become possible to predict undisturbed flow fairly accurate, but the need to
account for loss mechanisms has motivated extensive research being conducted in order to
refine the problem areas. One of the main contributors to the overall loss was identified
within the area of the end-wall. Due to the nature of the machine, the moving rotor contained
within the stationary casing requires for a radial clearance between the two components,
allowing for a fraction of the fluid to pass above the rotor instead of through the passage
between the blades. This so called ’tip leakage flow’ ultimately enters a mixing process with
the main flow, which is accountable for an increase in entropy, translatable to loss. Caused
by this phenomenon, manufacturers have come up with a variety of approaches to enhance
performance, but there has not yet been established a coherent ideal design. The general
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1 Introduction and Problem Definition

idea has consistently been to reduce the magnitude of the radial clearance between the
rotor and the casing, which helps to reduce the secondary flow and thereby the losses. Even
though modern day manufacturing methods provide all the necessary tools for decreasing
this gap to a fraction of a millimeter, the dynamics of the operational turbomachine are
known to be responsible for the real limits. While the clearance at the stationary state of the
machine can range to multiples of 0.1 mm that margin is reduced greatly in the operational
condition. This is mainly caused by three effects. The first challenge becomes apparent when
looking at rotordynamics. A variety of influential factors such as unbalanced masses, gravity
or other external forces cause the displacement of the spinning rotor within the bearings
and thereby change the clearance. Furthermore, the centrifugal forces cause extension of
the blades, which subtracts from the already reduced margin. Ultimately, the remaining
clearance is influenced by thermal expansion. Compared to the stationary, cold state the
dimension of every machine component that is affected by the temperature changes its
dimensions. Since rotor and casing are not always affected to the same extent, a further
reduction of the radial clearance is possible. If all of these mechanisms add up to a value
greater than the available clearance, the rotor contacts the casing, which might lead to the
malfunction of the blade or even the entire machine and therefore has to be avoided.
The just mentioned trade off between improved performance through reduction of tip leakage
flow at the risk of contact between rotor and casing has been subject to detailed research.
The introduction of many design principles to address this problem, coupled with the strive
to reduce the clearance, went alongside the necessity of constant monitoring of the actual
condition. It has become state of the art to monitor operational machines in order to ensure
early detection of failures and to improve decision making concerning safety of operation.
The advantage of constant availability of information has outweighed the considerable
costs of measurement systems, due to the fact that delaying remission in a safe manner
potentially safes tremendous amounts of resources. Nevertheless, this trend has not been
started in the industrial sector but rather in research facilities. There, the development and
testing of various different machine design features required for the validation of conducted
computational fluid dynamics simulations.
As of today, a variety of measurement systems are available for that purpose. One example
is the ’CAPACISENSE’ by Pentair that allows for the on-line measurement of a variety
of machine parameters using capacitive sensing. The functionally usually depends on the
purchased package. The options provided by Pentair within their ’5 Series’ of the system
include channels for:

• Raw Blade Passing Signal
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• Average Blade Clearance
• Blade by Blade Clearance
• Blade Tip Timing

measurement. The client has to decide which data is vital for the machine monitoring in
the individual case and which packages are purchased. While this approach might be a
viable solution for industrial use, where the system is installed on a turbomachine with a
lifespan of 20 years or more, the main problems for research purposes are the costs, the
flexibility and the accessibility. In a research facility testing cycles are usually limited to a
few months and demands for data can vary from project to project. This is why purchasing
an integrated module with specified measurement channels at a high price can be infeasible.
Furthermore, the quality of measurement is often coupled with the understanding of the
underlying mathematical models of the systems. In case of the mentioned devices, the client
is only provided with the final results of the calculations.

The disadvantages of purchasing a closed system for the usage in a research facility has led
to the underlying project. The Institute of Thermal Turbomachinery and Machine Dynamics
requires a radial rotor-casing clearance monitoring system for their test stand in order to
validate simulation results and to increase significance of conducted research. This need was
the cause for the start of a project that has been laid out consisting of the following steps:

1. Create Tip Clearance Monitoring Software
2. Design of the Measurement Hardware
3. Acquisition of the Measurement Hardware
4. Installation of the Measurement Hardware on the Machine
5. Validation of Measurement Accuracy

This thesis is part of the project, dealing with the first step of the mentioned plan. The
creation of a monitoring software leads the project in order to gather fundamental under-
standing of the domain and to derive basic hardware requirements as a result of machine
behavior. For this purpose the software package LabView shall be used due to its abilities in
data processing and availability. The resulting clearance monitoring system has to be able
to process signals originating in measurements conducted on axial thermal turbomachinery
and return information to a user. The desired measurement data is:

• Clearance between Sensor and Rotor
• Shaft Location within the Casing
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1 Introduction and Problem Definition

• Minimum Clearance between Rotor and Casing

In order to derive exact system requirements as well as influential parameters on the
monitoring software without needing to operate actual turbomachinery, the development
shall be based on a mathematical model of the measurement signal. For the creation of this
signal an additional piece of software shall be handled by Matlab and result in plausible
clearance data that can be processed by the monitoring system. Therefore, the steps within
this thesis serving the purpose of completing step one in the project are:

1. Creation of a Matlab model of the machine and necessary measurement devices with
the goal of simulating measurement data

2. Development of the monitoring routine using LabView based on the simulated data
3. Analysis of influential parameters using this development environment

In order to guarantee applicability of the LabView routines, the models are developed using
real-world measurement hardware and machine as a reference. First, a simplified, geometric
abstraction of a rotor spinning within a casing is implemented. This includes the two
dimensional positioning of the shaft and various geometries. Second, the interaction of these
geometric replications with chosen key elements of the measurement chain is computed and
the resulting data used as signal for the LabView routine. By basing all models on real-world
principles, the simulated signal shape and behavior resembles actual measurement data so
that future hardware can be implemented without major adaptation of the routines. Due
to this model-based approach, the initial project costs are kept low, testing the clearance
monitoring system is easy and gradual expansion of the LabView routines according to the
institutes needs is possible.
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2 Turbomachinery

The introduction states the intention of developing a Matlab model of machine and mea-
surement chain that simulates radial rotor-casing clearance data. This is supposed to be
followed by the creation of the clearance monitoring routine within LabView. In order
to guarantee the applicability of the monitoring unit, the signal it is based on has to be
created using comprehensive consideration of the underlying machine and the measurement
elements involved. Therefore, this chapter starts by delimiting the machine type that shall
be monitored. This is followed by the analysis of the problem area itself - the rotor-casing
clearance - and the description of mechanisms that influence this parameter.

2.1 Machine Characterization

Generally speaking, a turbomachine can be classified by the operation of a spinning rotor
within a stationary casing. Nevertheless, this statement is not conclusive for the machines
the clearance measurement shall be conducted on, which is why a variety of attributes
can be used to further categorize the target machine. First, the regime is divided into
turbomachinery that uses energy transfered by a fluid flowing through blade cascades and
turbomachinery that uses alternative means of energy conversion. For the underlying thesis,
the former shall be treated exclusively. Second, within the fluid based working principle, the
type of fluid and direction of energy transfer allows for additional distinctions. The primary
attribute is the working fluid. On one side, if the fluid can be described as compressible, the
machine classifies as a thermal turbomachine. On the other side, if the fluid can be seen
as incompressible, a hydraulic turbomachine is described. The general design of thermal
and hydraulic turbomachinery is comparable. The fluid enters either machine type on one
side, passes one or more blade/vane rows and exits on the other side. Note, that in case
of thermal turbomachinery the compressible nature of the fluid has to be respected by
accounting for thermodynamics while solving the governing fluid mechanical problem. This
step can be simplified when fluid behavior is near incompressible as is in the hydraulic case.
Dependent on the direction of energy conversion another subdivision can be made. If
the energy is delivered by the rotor and transfered to the fluid, hydraulic and thermal
turbomachine are both called turbine. When the energy is provided by the fluid and
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2 Turbomachinery

transported to the rotor, either a pump (hydraulic) or a compressor (thermal) is at work.
The classification process for enclosed machinery is displayed in figure 2.2 on the left side.
Additionally, another characteristic can be provided that is based on the direction of the
fluid flow and not on the type of fluid or the direction of energy conversion. If the fluid passes
the machine following the axis of the shaft, it is categorized as axial turbomachinery. On the
contrary, if the fluid flows into radial direction, it is categorized as a radial turbomachinery.
Since this thesis is created in cooperation with the Institute of Thermal Turbomachinery
and Machine Dynamics at the University of Technology in Graz and its results shall be
applicable on axial, thermal turbomachinery, an example of this subtype is presented in
figure 2.1. The images show the difference between radial and axial turbomachinery. Both
machines are thermal turbo-compressors. This fact can be derived by the divergent fluid
canals in flow direction that hint the compression of the working fluid.

(a) Axial compressor (b) Radial (centrifugal) compressor

Figure 2.1: Comparison of axial and radial compressors (Source: Quora Website)

Figure 2.2: Classification of turbomachinery
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2.2 Working Principle

The components of axial thermal turbomachinery are equal for both turbines and compressors.
They consist of following main parts:

• stationary casing

• rotating shaft containing the rotor blades

• stator vanes that are connected to the casing

• bearings supporting the shaft within the casing

Figure 2.3 shows the simplified model of a stage of an axial thermal turbomachine. In
case of turbines, the fluid flows from A to B and in case of compressors, the fluid flows
from B to A. Note the conical shape of the duct. This is based on the fact that the fluid
is either expanding or contracting, effectively changing the required volume. In case of
hydraulic turbomachinery this design feature is absent in most cases since the density can
be considered to be constant.

Figure 2.3: Simplified model of an axial turbomachine

Usually both rotor and stator are composed of blades. The stator’s vanes are fixed within
the casing while the rotor’s blades are rooted to the shaft. This can happen either directly
or by using a disk that is connected to the rotating shaft and thereby enabling the entire
blade row to spin. A rotor made out of a shaft, disk and corresponding blades can be seen
in figure 2.4.
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2 Turbomachinery

Figure 2.4: Model of a rotor composed of a disk and attached blades (Source: Aerossurance
Website)

The basic idea that governs the energy transport between the rotor and the fluid in a
thermal turbomachine can be derived from the lift that is present at an airfoil of infinite
span. Imagine a large control volume according to figure 2.5. The fluid enters the control
volume on the left and leaves it on the right. Within the entire control volume the net
circulation is zero. When the fluid approaches the airfoil the flow is deflected upwards
and downwards. The fluid proceeds to follow the contours which leads to it being directed
downwards towards the end of the airfoil.

Figure 2.5: Airfoil within a control volume

The sum of all upward and downward motion around the object results in a clockwise
circulation Γ, as is indicated in figure 2.6. This, in order for the net circulation within the
control volume to be zero, leads to the formation of the so called ’starting vortex’ behind
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2.2 Working Principle

the airfoil, which dissipates over time due to viscous losses. The phenomenon has been
described by Kutta and Joukowsky, who linked a force F ′ on the airfoil that is oriented
perpendicular to the flow direction to the clockwise circulation according to

∮
C
~v · d~s = Γ (2.1)

F ′ = ΓU∞ρ (2.2)

Here, F ′ represents the resulting force per unit span, U∞ the velocity of the fluid far away
from any disturbance and ρ the density of the fluid. An explanation for the resulting force
can be given using Bernoulli’s stream line theory. In the portrayed case, the circulation Γ is
oriented in the same direction as the fluid flow on the upper side of the airfoil and in the
opposite direction on the lower side. This leads to the initial fluid velocity being increased
above and decreased below the structure. When computing Bernoulli’s equation for the
streamline above and the streamline below, this leads to a higher pressure beneath and a
lower pressure above the object. The pressure differences add up, together with the effective
surface of the airfoil, to the upward force.

Figure 2.6: Circulation around an airfoil

This explanation can be adapted for describing energy transformation in turbomachinery.
In case of a turbine rotor, a large number of these airfoils are mounted on the circumference
of a shaft (compare figure 2.4). Note, that a blade is a finite variant of the just described
airfoil. Therefore the same mechanisms apply. The lift on every blade results in torque on
the shaft, which can then be transfered on to a generator for example. This is the case for
turbines, where the fluid exerts power on the blades and spins the rotor. In a compressor
the circumstances are reverted and therefore the direction of energy conversion changes.
Note as well, that the finite blade length and compact machine design causes additional
flow phenomena, especially in the area of boundaries like the tip and root of the blade.
Additional information about fluid mechanics in turbomachinery can be found in respective
literature, since this thesis will only deals with basic ideas that serve explanatory reasons.
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2 Turbomachinery

Generally speaking, the energy can only be transfered if the fluid flow behaves in the way it
has been described above. If the flow is disturbed and does not circulate around the profiles,
no lift can exist. This is the reason for careful fluid dynamic computation of the entire
machine during the design. As has been mentioned already, one of the areas where the flow
does not follow the desired principles is in the vicinity of the blade’s tip. The fluid does
not just pass the intended passage but leaks over the tip equally. On the one hand, this
leakage flow does not contribute to the creation of lift and on the other hand worsens the
flow in the following regions. Thus the discussion of loss arises. Generally speaking, loss in
thermal turbomachinery is defined by an increase in entropy due to certain fluid dynamic
effects that can not be reversed or used for the intended energy conversion. According to
Denton (1993), who has studied loss-mechanisms in this type of machine in detail, all of
these entropy increasing mechanisms can be broken down to the following categories:

• Friction due to shear layers: boundary layer, wake flow, jet flow
• Heat transfer with the surrounding
• Shock waves

Analysis has lead to the identification of end-wall losses, profile losses itself and the tip
leakage as main contributors to the overall loss. Most of the times the effects are highly
interdependent, which is why they often have to be studied as a whole. As of today, the
percentage of the energy that has actually been transfered between fluid and rotor within
the rotor’s cascade and the energy that could have been transfered ideally lies around 90%.
Since a turbomachine is usually designed to be operational for multiple decades - sometimes
even constantly - every fraction of a percent added to the energy conversion efficiencies of
the rotor’s cascade contributes to the economical and ecological win.
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2.3 Rotor Clearance Leakage

As has been highlighted at various occasions throughout the last pages, the effects linked to
leakage flow contribute considerably to the overall performance loss of the machine. Within
this section the flow in the gap region will be analyzed and the loss mechanisms explained.
This goes alongside with the introduction of various blade geometries that are a result of
researchers trying to reduce the negative effects of the secondary flow.
First, leaving aside viscid fluid behavior, it can be said that the leakage flow of an unshrouded
blade occurs from pressure side to suction side. This generally reduces the mass flow through
the blade’s passage, which leads to less fluid contributing to the intended energy transfer on
the blade and a part of the realized pressure difference between the two sides of one blade
being equalized. Additionally, the leakage flow over the blade causes a disturbance of the
flow regime in the vicinity of the tip. This leads to a reduction in created lift in the area of
the tip of the blade. Second, the modeling of viscid flow behavior leads to the detection of
an increase in entropy, what can be explained using figure 2.7.

Figure 2.7: Leakage flow over an unshrouded blade by Denton (1993)

When entering the gap between rotor and casing, the flow is contracted to a jet and a
separation bubble might form at the edge to the pressure side (figure 2.7 A). When traveling
through the gap (figure 2.7 B) the entropy increases, caused by viscous shear between the
separated flow layers of the casing and the blade. On the suction side of the blade the jet
encounters the main flow and the entropy rises further, this time due to mixing processes
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based on the jet flow theory (figure 2.7 C). Note, that up to this point, the increase in
entropy has not been seen as loss. Here, due to the insignificant mass flow through the gap
compared to the main flow, the mixing of the two flows equalizes the temperature difference
and thereby renders the process irreversible.
Due to the obvious downsides of tip leakage flow over unshrouded blades, significant effort
has been made to reduce - or rather control - the effects, resulting in different designs for
the cascade. One approach places additional tips at the top of the blades. These so called
squealer tips reduce the radial clearance, without risking full blades impacting the casing
in case of failure conditions. The additional tips are thin enough, so that contact with the
casing might not lead to critical damage on neither the casing nor the blade and yet achieve
the desired reduction of tip leakage flow by reducing the gap. The advantages of this design
feature have been studied in a wide variety by authors like Ameri et al. (1998) or Azad et al.
(2002). The ideas for location and amount of additional tips depends mainly on personal
design philosophies of the engineer, as can be taken from the three exemplary geometries in
figure 2.8, showing the work of Azad et al. (2002).

Figure 2.8: Different squealer tip geometries

Apart from a variety of different blade tip geometries being used, the presence of a tip
shroud changes the flow behavior in the radial clearance area drastically since shroud leakage
and tip leakage are fundamentally different. While the fluid passes the blade from pressure
to suction side at an unshrouded blade, the presence of a shroud blocks this path entirely.
Instead, the fluid takes another route. A separation flow forms, passing the top of the shroud
and reentering the main flow after the blade row. This means that the leakage flow passes
the entire blade row instead of one blade. Figure 2.9 displays the circumstances.
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2.3 Rotor Clearance Leakage

Figure 2.9: Leakage flow over shrouded tip geometry

Even though the location of separation and the flow path change, the previously mentioned
downsides of mixing processes and reduction of mass flow through the blade passages still
remain. Since the option is equally viable and is often realized to dampen long blades,
measures have been taken in order to reduce the shroud leakage flow in case of this geometry.
The approach is comparable to the squealer tips. The shroud’s top is not modeled as a plane,
but rather contains a random amount of additional fins, as displayed in figure 2.10. This
again improves the radial clearance locally and thereby reduces the leakage flow, without
risking large parts of the shroud impacting the casing in extreme cases.

Figure 2.10: Shrouded tip geometry (Source: Earl and Ramendra (1995))

The variety of solutions for problems caused by tip leakage flows are highly versatile and
depend on design philosophies of companies and engineers. The presented geometries can be
seen as a selection of basic principles used in the design of turbomachinery. When working
within this field, these geometries can be encountered with possible minor variations.
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2 Turbomachinery

2.4 Radial Clearance

As has been made apparent in the last section, a goal of machine design is the minimization
of the operational rotor clearance. This has to be done while accounting for various dynamic
effects that are changing according to the operational condition. At rotational speeds of
multiple 1000 Revolutions per Minute (RPM) and fluid temperatures of more than 1500 °C,
dynamic forces and temperatures lead to a change in radial clearance. The effects can be
broken down to three major contributors:

• Rotordynamics
• Centrifugal Force
• Thermal Expansion

The consideration of every aspect leads to the prediction of an operational clearance,
according to which the machine is designed. Unfortunately, this process is afflicted by
certain uncertainties (oil temperatures, stiffnesses, etc.), which is why a margin has to be
defined for operational machines, usually depending on the machine’s field of application. In
order to give a glimpse over the dynamics that are present between operational conditions,
these phenomena will be discussed within this section section. This will be concluded by a
brief outlook over the consequences of contact between rotor and casing.

2.4.1 Rotordynamics

The field of rotordynamics covers every aspect of a rotating machine, including prediction
of shaft behavior for unbalanced rotors, orthotropic stiffnesses, instabilities within the
bearings or aerodynamic forces on the blades. To mathematically model rotor behavior of
an axial turbomachine, a system in accordance with the Jeffcott rotor model (or Laval rotor)
discussed by Marn (2014, page 132) can be introduced. This model allows for basic elastic
shaft behavior to be modeled and can therefore be used as foundation for problem analysis.

The Jeffcott rotor model consists of a massless shaft with a single disk in the
middle of that shaft. The shaft is supported by rigid bearings on either side of
the disk. The mass of the disk is concentrated in its center of gravity.

In order to acquire simple statements, only the effect of an unbalanced rotor shall be
discussed. Therefore, the rotor is oriented vertically as shown in figure 2.11, so that the
influence of gravity can be neglected.
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2.4 Radial Clearance

Figure 2.11: Jeffcott rotor model (Source: Marn (2014))

The momentary horizontal displacement amplitude of the rotor’s centerline is given by the
value x. The unbalance is modeled by horizontally shifting the rotor’s center of mass M
away from the center line. The distance between the shaft’s centerline and the center of
mass M shall be the value z. The shaft is assumed to rotate with the angular velocity Ωs.
Starting with the definition of the centrifugal force FC , affecting the mass m with

FC = m(x+ z)Ω2
s (2.3)

The resulting restoring force FS, due to the spring characteristic of the shaft, can be given
by

FS = −cx (2.4)

with c being the spring’s stiffness. According to Newtons third axiom, where actio equals
reactio, the two forces have to cancel each other out, which is made apparent in figure 2.12
by reducing the entire model to the rotor.

Figure 2.12: Sum of forces on the rotor caused by an unbalanced mass
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FC = FS (2.5)
m(x+ z)Ω2

s = −cx (2.6)

After transforming this equation to explicitly display x, the expression

x = mzΩ2
s

c−mΩ2
s

(2.7)

is acquired. Introducing the natural angular frequency for a system moving in the x-plane
with ω0 =

√
c
m
, the final statement is

x = Ω2
s

ω2
0 − Ω2

s

z (2.8)

This equation describes the rotors horizontal displacement x, dependent on the angular
velocity Ωs. Starting at the stationary rotor Ωs = 0 and increasing its velocity, a few
characteristic movement states can be highlighted. Table 2.1 shows the result for this
parameter variation.

Table 2.1: Rotor angular velocity variation
Ω2
s [ rads ] x [m]

0 0
ω2

0−0z = 0

ω2
0 lim

Ω2
s→ω2

0

Ω2
s

ω2
0−Ω2

s
z = ω2

0
ω2

0−ω
2
0
z = ω2

0
0 z =∞

∞ lim
Ω2

s→∞
mzΩ2

s

c−mΩ2
s

= mz
c

Ω2
s
−m = mz

0−m = −z

The same variation can be seen in figure 2.13, where statements become more obvious. On
the left side the amplitude of the rotor for an undamped system (D = 0) and a damped
system (D > 0) at changing angular velocities is visualized. On the right side, the phase
angle between the rotors displacement direction (response) and the direction of the force
due to the unbalance (cause) is made apparent. For the stationary rotor, the horizontal
displacement x of the the shaft is zero and cause and response are aligned (0 deg). From this
point, while increasing the angular velocity Ωs, amplitude and phase start rising. As soon as
Ωs approaches the nature angular frequency ω0, the displacement amplitude rises towards
infinity at the undamped rotor (D = 0), entering the so called resonant state. Fortunately,

16



2.4 Radial Clearance

dampening in real machinery limits amplitudes to finite magnitudes (D > 0). At this
state, the phase difference equals exactly 90 deg. After exceeding this angular velocity, the
amplitude starts decreasing since the force (cause) is now counteracting the displacement
x (response) due to a phase difference of more than 90 deg. This means that increasing
the angular velocity even further after passing ω0 leads to the displacement amplitude
x approaching the value of z (180 deg). This phenomenon, where the displacement of a
rotor spinning at angular velocities above its nature angular frequency strives towards the
distance between the shaft’s centerline and the rotor’s center of mass, is called self centering
of the supercritical rotor.

Figure 2.13: Frequency response of the Jeffcott rotor model (Source: Marn (2014))

Since the bearings, that are holding the shaft of a turbomachine, are attached to its casing,
this displacement caused by the unbalanced rotor leads to a localized change in radial
rotor-casing clearance. Therefore, in order to create a foundation for safe machine design,
regulations concerning permitted maximum displacement amplitudes have been established
in cooperation with other design disciplines. For example, this includes instructions concer-
ning the mathematical estimation of unbalanced rotors, the balancing of the rotor masses or
the limit for remaining unbalances. Note, that even though these regulations exist, perfect
balancing of rotor masses is not realistic in practical application. This is why the effects
described throughout this chapter are constantly relevant in clearance behavior.

In order to establish a common ground for frequently used expressions and to introduce
vocabulary used throughout the rest of this thesis, the discussion of transient shaft behavior
for a shaft held in place by fluid bearings will be discussed. For that purpose the axial view
of the shaft shall be used. The plane is parallel to the radial direction and perpendicular to
the direction of the axis connecting the two bearings. The entire plane is intersecting one
of the two bearings. This idea is presented in figure 2.14 (a), where two states of a shaft
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are indicated by the the shaft’s circumference (black) and it’s center position (red). The
coordinates (x,y) serve to reference the shaft’s center position within the bearing. In dashed,
the position (xS, yS) of the mentioned shaft can be seen at a angular velocity of ΩS = 0. It
is resting at the lowest point of the fluid bearing until an increased angular velocity induces
the required hydrodynamic lift to shift the centerline to a general location (x,y).

(a) Increase in angular velocity (b) Modeling of rotordynamics

Figure 2.14: Axial view of transient shaft states

The displayed position (x,y) in figure 2.14 (a) for a shaft spinning at constant angular
velocity neglects every aspect of rotordynamics that has been mentioned above. Therefore,
the figure has to be extended. For the present argument the path of the centerline will be
shown for the previously described unbalanced rotor at constant ΩS. As has been proven,
an unbalance causes the displacement of the shaft’s centerline. The position of the shaft
in the bearing for two points in time can be seen in figure 2.14 (b). The sum of one full
revolution of the shaft describes the indicated circle in red which is commonly called ’orbit’
of the centerline. Note, that the center of this orbit (dashed red cross) is still the stationary
offset of the shaft caused by the hydrodynamic lift of the bearing (x,y).
This form of referencing a shafts location is commonly used for vibration monitoring at
turbomachinery, which is why it will be adapted by this thesis. Therefore, the plane that
has been placed parallel to the bearing - intersecting them - and perpendicular to the axis
connecting the two bearings is now moved in axial direction until it intersects the rotor.
The result can be seen in figure 2.15.
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Figure 2.15: Display of rotor position within an axial turbomachine

Note, that an unbalanced mass is only one of many reasons causing orbits. Stiffnesses of the
shaft and bearings, aerodynamic forces or other external factors can influence the path the
rotor takes. Therefore, the circular path in figure 2.14 (b) can be elliptic, contain loops or
be entirely chaotic - only dependent on the rotordynamic state of the shaft. Nevertheless,
two expression can be used to adequately describe the shaft’s centerline position within the
casing:

• Offset: The stationary component of the shaft’s centerline displacement within the
casing described by (x,y) in figure 2.14 (a).

• Eccentricity: The current distance between the stationary offset and the absolute
position. In figure 2.14 (b) the eccentricity is a constant value, describing the radius
of the red, circular orbit.

2.4.2 Centrifugal Force

While the centrifugal force has already contributed to the change in radial clearance in
combination with an unbalance in section 2.4.1, another physical process can be linked
to this dynamic force. When the shaft is spinning, the disk and the attached blades are
affected increasingly by their own weight. The force for a mass centered at a single point
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can be given using equation 2.3

FC = Ω2
Sxm

Using a differential approach, both the blade’s and disk’s strain, can be described. For the
purpose of this argument it shall suffice to prove an extension of the blade as a result of
centrifugal force. Therefore, assuming elastic deformation of the material, Hooke’s law can
be applied:

σ = Eε (2.9)

To simplify calculations, the blade will be regarded as a square beam with a length much
greater than it’s thickness. The beam displayed in figure 2.16 is observed while affected by
it’s differential mass Adxρ during stationary rotation with angular velocity ω. Note, that
the only respected force is the radial centrifugal force. Any other radial or tangential force
is neglected and neither bending nor torsion of the beam is allowed.

Figure 2.16: Model of rotating beam

Starting by using Newton’s first law due to the stationary nature of the forces, the sum of
all forces that are active on the infinitesimal mass element Adxρ in direction of x are:

∑
Fx = N(x)−N(x+ dx)− Aω2ρxdx = 0 (2.10)

Making use of the linear term of a Taylor expansion under the assumption of small
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deformations, the expression N(x+ dx) can be rewritten as

N(x+ dx) = N(x) + dN(x)
dx

dx (2.11)

This leads to

N(x)−N(x)− dN(x)
dx

dx− Aω2ρxdx =0 (2.12)

−dN(x)
dx

− Aω2ρx =0 (2.13)

dN(x)
dx

=− Aω2ρx (2.14)

dN(x) =− Aω2ρxdx (2.15)

By integrating indefinite the expression

N(x) = −Aω2ρ
x2

2 + C (2.16)

is found, where the unknown constant C can be found when observing the normal N(x)
force at the free end of the beam.

N( l2) =0 (2.17)

C =Aω2ρ
l2

8 (2.18)

N(x) =Aω2ρ( l
2

8 −
x2

2 ) (2.19)

The strain in direction of x caused by stress in the same direction can be defined as

εxx = 4L
L

= du

dx
(2.20)

and rewritten using Hooke’s law

σxx(x) = Eεxx(x) = E
du(x)
dx

= N(x)
A

(2.21)

After transforming this equation to display the infinitesimal displacement du(x)

du(x) = ω2ρ

E
( l

2

8 −
x2

2 )dx (2.22)
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and indefinitely integrating, the expression showing the deformation of the beam becomes

u(x) = ω2ρ

E
( l

2x

8 −
x3

6 ) +D (2.23)

To find the unknown constant D the displacement at the root of the blade can be used. Since
the root is the center of the rotating beam, the displacement at this position is u(0) = 0
which leads to D = 0. This results in the final deformation of the beam according to

u(x) =ω
2ρ

E
( l

2x

8 −
x3

6 ) (2.24)

u( l2) =ω
2ρ

E
( l

3

16 −
l3

48) (2.25)

4l =2u( l2) = ω2ρ

E

l3

12 (2.26)

Assuming this beam is spinning at the center of a casing, the extension of 4l leads to the
mentioned reduction of clearance. Note, that the disk can be treated equally. Nevertheless,
since the mathematical description is much more complex and the extension of the blade by
the centrifugal force has been proven, the section will not elaborate the extension of the
disk.

2.4.3 Thermal Expansion

Aside from deformations caused by dynamic loads, the effect of the temperature difference
between stationary, cold machine and operational condition has to be considered. This is
especially important for gas turbines, where the gas is initially compressed in a compressor
which is followed by additionally heating within a combustion chamber and concluded by
the expansion of the gas within a turbine. In the area of the exit plane of the combustion
chamber and the entry plane to the first stage of the turbine, gas temperatures can exceed
1500 °C. While the gas temperatures can change fast, the material takes time to heat up or
cool down. A possible stationary temperature profile of the material is displayed in figure
2.17 for an operational axial gas turbine.
During transient heating phases, a phenomenon called thermal expansion changes the
dimensions of all heated components according to the equation

εth = 4L
L

= αth4T (2.27)
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2.4 Radial Clearance

Figure 2.17: Temperature distribution of the material in a combustion turbine

Note, that this is a simplified, one-dimensional way of looking at expansion. This equation
states a strain that shows a linear correlation to the temperature change 4T . The non-linear
character of the expansion can be accounted for using the thermal expansion coefficient αth.
This parameter is dependent on the material itself and the temperature. In literature like
Böge (2013), the value for αth for chrome steel is given by 11 ·10−6K−1 within a temperature
range from 0 to 100 °C. For aluminum this value is stated to be 23.5 · 10−6K−1 within the
same temperature range. The variance of the coefficient for two different metals and the
temperature dependency give an idea about the difficulties predicting thermal expansion
within a thermal turbomachine.
Apart from final deformation states, the heating and cooling processes between machine
states pose an additional threat. Given the fact the operational conditions change, transient
and localized temperature has to be expected. When not in use, after a sufficient amount of
time, all the machine components show the same temperature as the machine’s surrounding.
As soon as the machine is started and hot working fluid passes the turbomachine, the heating
up of the different components varies in time. In order to achieve thermal equilibrium between
gas and casing, much more time has to pass, than for the blades stationary temperature to
be reached. This is caused by the usage of different materials (different thermal expansion
coefficients αth) and differences in mass.
To summarize, the thermal expansion of a component is mainly affected by following aspects:

• Material: thermal expansion coefficient αth
• Mass: time to reach an equilibrium with the gas temperature
• Gas Temperature: changing gas temperatures throughout the entire machine (compare

figure 2.17)
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2 Turbomachinery

All of these factors combined result in different deformation magnitudes for every part,
resulting in a huge challenge for engineers, especially during transient operational conditions.
The complexity of the process makes apparent that the radial clearance is affected greatly
by thermal expansion. Most importantly casing, disk and blade cause the change of radial
clearance since they are usually directly exposed to the working fluid’s temperature.

2.4.4 Contact

The three mechanisms described throughout the past pages combined make up for the
expected radial rotor-casing clearance behavior. While stationary turbomachinery shows
sufficient magnitude, operational effects alter the available margin and pose a possible threat
if the design fails to provide sufficient room for movement during transient states. The
trade-off between the benefits gained due to reduction of radial clearance and reduction in
margin movement climaxes in the threat of contact between rotating and stationary parts.
This is especially relevant for transient turbomachinery application, like for example in
airplane combustion turbines. Figure 2.18 shows a possible profile of radial rotor-casing
clearance from the start-up until in-flight equilibrium. To simplify the explanation, the
effects of rotor dynamics are neglected and only thermal expansion and centrifugal force are
accounted for.

Figure 2.18: Possible radial rotor-casing clearance over time for an airplane combustion
turbine
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2.4 Radial Clearance

• A: off - The clearance is at its maximum. → clearance stationary
• B: transition from off to idle state - An increase in angular velocity of the rotor and

increase in working fluid temperature cause centrifugal force and thermal expansion
to extend the blade. → clearance decreases

• C: idle state - Centrifugal force is not increased anymore since angular velocity is
stationary. Differences in heating up of components cause blades to extend faster than
the casing. The process is heading towards a local minimum. → clearance decreases

• D: idle state - The blades reach their final temperature and extension stops, while
casing keeps on heating up. The local clearance minimum has been passed.→ clearance
increases;

• E: idle state - The casing has reached temperature equilibrium with the working fluid
as well and stops extending. → clearance stationary

• F-H: transition from idle state to take-off: The additional increase in angular velocity
and fluid temperature due to increased load leads to further extension (the transition
is comparable to steps B to E). → clearance decreases

• I-K: transition from take-off to in-flight: The reduction of angular velocity and fluid
temperature reverses a part of the component extension → clearance increases

If at any point in time the clearance falls short of zero, the rotor collides with the casing.
Note, that this is the reason for the extended waiting period in the idle state during heat
up in the displayed case. If the turbine would have been taken into take-off mode in section
C, the differences in thermal expansion speeds of the various components might have led to
excessive clearance reduction. This can equally be caused by externally induced forces that
displace the shaft, as for example during maneuvers of the plane.
The unavoidable downside of decreasing radial clearance to increase performance is the
necessity of more and more precise rotordynamics and heat transfer analysis. Due to the
complexity of real-world machinery and limitations concerning computational power, the
precision for these calculations has an upper limit, leading to a remaining uncertainty
when predicting shaft behavior. If this uncertainty gets paired with aggressive clearance
design, the outcome can be drastic. Under certain operational conditions, like insufficient
dampening, radial displacement spikes can occur that exceed the clearance and result in
contact between rotational parts and the casing. The outcome is a loss of the blade and/or
an impulse on the entire shaft, causing a dampened natural oscillation of the machine which
can potentially cause follow up impacts. In some cases the first impact already leads to the
malfunction of the material, therefore to the destruction of the blade and in some cases
even the entire machine. In an ideal scenario, the thermal energy that is created due to
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2 Turbomachinery

friction between the relatively moving components only ends up burning parts of the blade.
In this case, even if the material does not fail initially, the loss of mass on the burnt blade
might result in an alteration of balance and therefore overall shaft dynamics. In either case
the rotor-casing contact causes degeneration of the machine to some extent, making it a
threat that has to be avoided.
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3 Measurement Chain

As has been stated throughout the problem definition, the goal of this thesis is the model
based development of a clearance monitoring software using LabView. While LabView
shall handle the signal processing, the data shall be created side-by-side using Matlab. The
proposed model shall simulate basic machine behavior that has been outlined in the previous
chapter, while being based on a real world measurement principle that can be realized later
on in the project. Since the importance of sufficient radial rotor-casing clearance margin
has been outlined and the influencing mechanisms have been discussed, this chapter aims
to provide an overview over measurement techniques used to track this parameter in on-line
axial thermal turbomachinery. The goal is to establish which elements are important for
the modeling process and how they influence the resulting signal.

Figure 3.1: Measurement chain

Starting with the bigger picture and focusing on component after component afterwards,
figure 3.1 displays the basic layout of a measurement chain. The goal of every type of
measurement is to gather information that is available in form of analog data at any time.
In order to be able to pick up a portion of this information, it is vital to realize what kind
of physical principle the desired information is tied to. Taking sound as an example, the
data is present in form of fluctuation of pressure over time. As soon as the information
carrier is identified, a device that interacts in a predictable manner with said physical value
- a so called sensor - can be used in order to extract the analog data from the entirety of
data available. This is done by placing the sensor in proximity to the area of interest and
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designing a circuit that transform the physical value into an electrical signal. In the present
example of sound, the sensor usually consists of a membrane and elements that transform
the oscillation of this membrane into either current or voltage.
The electrical signal can then be passed through a cable to an analog processing unit, where
signal enhancing can be performed. This means the desired information is amplified, while
unwanted additional components can be suppressed. After that, the signal proceeds to the
Analog-to-Digital (AD) converter, where the analog signal is digitalized and made available
for further processing and displaying on a computer. At this point, a connection between the
signal and the initial physical value has to be defined. By precisely adjusting this connection
and verifying the measurement results with known data - so called calibration - the desired
information can be output to the user.

3.1 Influential Hardware

In order to be able to simulate tip clearance measurement data the most influential decision
is connected to the sensing principle. As will become apparent within the next pages,
the sensor type and the circuit method determine the general structure of a signal. This
statement can be proven by looking at figure 3.2. On the left, actual measurement results
of a blade passing by a capacitive sensor can be seen. The authors Haase and Haase (2013)
have conducted research concerning the influence of different system bandwidths on the
signal. The results all show a single peak caused by the interaction with the blade. When
comparing this signal to the signal of multiple blades passing an eddy current sensor on the
right, the differences between the measurement methods become apparent.

(a) Capacitive Signal (b) Eddy Current Signal

Figure 3.2: Comparison of different sensor signals (Source: Flotow and Drumm)
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While the capacitive signal shows only a single peak, the eddy current signal consists of a
positive and a negative amplitude spike caused by a blade passing the sensor. This is due to
the different dependencies of the sensors. While the capacitive sensor is mainly influenced
by the target geometry, the eddy current sensor is sensitive to the passing velocity, direction
and temperature.
As will be discussed later on, the other components of the measurement chain do influence
the quality of the signal, but do not fundamentally alter the structure. Therefore, the
modeling process is limited to the sensing principle and a corresponding circuit method.
This ensures a relevant signal, while still being relatively simple to analyze due to less
influential parameters, and basing the development of the monitoring routine on realistic
signals.

3.1.1 Sensor Types

Figure 3.3: Sensor mounted on an axial turbomachine

As has been mentioned, the aspect of choosing a sensing principle determines the characte-
ristics of the signal greatly. Due to the nature of turbomachinery, only a few sensor types
have proven to be reliable in the given hostile environment. High temperature, particle
loaded flows and vibrations have the effect of not only decreasing signal quality, but as well
damaging measurement hardware, if not contained properly. One thing that all presented
sensors have in common is the placement on the machine, when trying to measure the
clearance. Figure 3.3 shows the mounted sensor, facing in radial direction.
Other than that, sensors can be divided into contact sensing and contact-free sensing. At
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contact sensing the sensor has to be in constant pairing with the components to measure, in
the present case the blades, as is with strain gauges at strain measurement for example. Since
clearance measurement is conducted between the stationary casing and the spinning rotor
where differences in velocity are considerable, contact-free sensing has proven to be more
suitable. By mounting the sensor plane with the casing the influence of the sensor on the
flow can be limited and the stress on all involved components is kept to a minimum. Many
sensor types of this type have been developed and tested in turbomachinery application,
which has lead to the identification of a few sensing principles to be suited best. A general
overview of the most commonly used sensors has been provided by authors like Sheard et al.
(1997), including:

• Capacitive Sensors
• Eddy Current Sensors
• Optical Sensors
• Microwave Sensors

Capacitive Sensor: The idea behind capacitive sensing is easily explained by looking at
a plate capacitor in general, displayed in figure 3.4. Two opposing conductor plates are
separated by a non conductive region. When applying a driving voltage, charge displacement
takes place, which correlates to the area A and the distance d of the plates.

Figure 3.4: Plate capacitor

The governing equation for this sensor type is given by

C = ε0εr
A

d
(3.1)
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3.1 Influential Hardware

where C represents the capacitance in Farad, A the plate area, d the distance between the two
plates, ε0 the permittivity of vacuum and εr the relative permittivity of the non-conductive
area (aka. dielectric). Additionally, equation

C = Q

V
(3.2)

linking capacitance C, voltage V and charge Q in Coulomb can be introduced. Assuming
to know the driving voltage V for the capacitor and given the fact that the capacitance C
changes according to the distance d of the plates, the change in charge Q can be measured
in order to obtain information about the distance. This leads to

4Q = 4CV = 1
4d

ε0εrAV (3.3)

In case of clearance measurement in turbomachinery the sensor is set up to be one of the
two capacitor plates, while the rotor component (blade or shroud) is set to be the other.
The distance between the sensor tip and the passing object corresponds to the distance d in
given equations. Note, that for relatively moving objects, such as the rotor, the plate area
A has to be modeled as a changing variable as well, leading to

4C = 4A
4d

ε0εrV (3.4)

This equation can be used to link a capacitance value to distance. Close analysis of this
sensor type in combination with advances in charge amplified clearance measurement has
been done by Haase and Haase (2013). Note, that apart from the low price, the size of this
sensor poses its main advantage. Products, like the Capacitec® HPT-75, show a maximum
in recommended sensing range that is commonly equal, or close to equal to its diameter.
Dependent on the expected clearances an adequate model can be acquired that provides
the desired resolution while still being of reasonable size.

Eddy Current Sensor: Eddy current sensors utilize the effect that eddy currents are
formed, when a moving conductive material moves through a magnetic field. This is due to
the fact that voltage is induced into said material, which can be assumed to be a part of
the rotor passing the sensor. These currents cause the creation of another magnetic field on
their own. Compared to the initial magnetic field, the newly induced field is opposing the
first one, which leads to the two fields counteracting each other.
The strength of this interaction is coupled with the distance between the fields and can be
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measured. Apart from the advantageous size of eddy current sensors, the nature of electro-
magnetic fields enables this sensor type to be operational even within particle contaminated
flows, as long as the blade is ferromagnetic. This, on the other hand, is not always given
in turbomachinery nowadays, since lightweight materials - such as titanium - are on the
rise due to their performance under high rotational velocities and temperatures. Another
disadvantage of eddy current sensors is the dependency of the signal on the blade’s passage
velocity and its temperature, which makes the extraction of the desired information difficult.
Nevertheless, the principle has been studied and applied in turbomachinery application, as
has been presented by Fabian et al. (2005).

Optical Sensor: Measurements of rotor displacement via optical methods has been dis-
cussed by many authors, like Jia and Zhang (2011). Basically, the system consists of a
light source that focuses light beams onto the surface that should be evaluated, and picks
up the reflection through a photo-detector, where the information is obtainable in terms
of distance-dependent intensity. The main advantage lies within the huge temperature
range this method can be applied in, compared to the previously mentioned sensor types.
Nevertheless, this is outweighed by the huge price and size difference between the optical
methods and the previously introduced sensors. Additionally, in order for light being properly
reflected, high standards concerning clean surfaces are needed, which can hardly be achieved
in turbomachinery.

Microwave Sensor: Comparable to optical systems in size and expensiveness, microwave
sensor application can be compared to small range radars. The complex connections between
physical value and signal and the effort to link those two precisely renders this option too
complicated to model for the underlying purposes. Nevertheless, in case of the measurement
region showing high temperatures, particle contamination and unlimited space, this method
might still be considered feasible. Even though it has been a lesser chosen alternative,
research has been conducted by authors like Szczepanik et al. (2012).

Comparison: In order to provide the arguments for choosing a sensing method, table 3.1
sums up the information that has been presented throughout the previous pages. Due to the
fact that after the creation of the clearance monitoring system corresponding hardware has
to be purchased and the sensing principle has to be committed to for the rest of the project,
this choice requires a few aspects to be considered. First, the final measurement system
will be applied in a testing facility that uses externally compressed air with relatively low
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temperature. This results in low requirements concerning temperature tolerances which
eliminates the need for complicated systems like optical or microwave sensors. This argument
can be supported even further by the absence of a combustion chamber. The low particle
load of the working fluid allows for the selection of one of the two cheaper options - capacitive
or eddy current sensors. Second, the necessity of a ferromagnetic rotor disqualifies the eddy
current system. This requirement can not always be met in the testing facilities where rotors
are often composed out of aluminum. Due to the reasons above, the author of this thesis
tends towards modeling the remaining capacitive sensing principle, which has another huge
advantage over the other systems: the simple dependency between signal and clearance.

Table 3.1: Comparison of different sensing methods by Sheard et al. (1997)
Sensor Resolution Temperature Size Cost

Capacitive 5% of Range 1100 °C Very Small Low

Eddy Current 5% of Range 650 °C Small Low

Optical 0.05 mm 1550 °C Large High

Microwave 0.10 mm 1200 °C Medium Medium

3.1.2 Circuit Methods for Capacitive Sensors

In order to further understand the domain of capacitive sensing, a distinction between
passive and active sensor behavior has to be made. Passive sensors themselves do not
produce any detectable electric signal, unlike for example active piezoelectric sensors that
make use the electrical signal originating in special crystals under applied stress. Therefore
an auxiliary power source is needed in order to be able to detect the interaction of these
passive sensor elements (membrane, etc.) with the physical value. Two methods that are
used to realize an analog waveform through passive capacitive sensors can be introduced:
carrier- or direct current-based. This section only introduces the basic idea behind these
two types, more detailed research and performance testing has been done by Haase and
Haase (2013).

Carrier Based: Carrier based methods include frequency, phase and amplitude modulation.
Generally speaking, a carrier wave is applied to the sensor, making the system reactive.
When the sensor interacts with the surrounding, the information gets embedded into the
driving wave, resulting in a shift of a certain parameter, dependent on the chosen method.
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In frequency and phase modulation, the angle of the original signal is modulated, whereas
amplitude modulation modulates - as the name suggests - the amplitude. Usually the former
methods are preferred, due to the fact that noise influences the amplitude of a signal and
thus leads problems when the amplitude is used as information carrier.

Figure 3.5: Exemplary Frequency Modulation

Frequency modulation can be explained by looking at the sine wave called ’signal’, displayed
in figure 3.5 left up that should be modulated. Additionally, another sine wave at a certain
frequency - the ’carrier frequency’ right up - is defined, which is modulated accordingly. In
the second row on the left, the carrier frequency’s response to a signal amplitude of zero (A)
can be seen. Note, that the carrier frequency has not changed. When the signal amplitude
increases towards its maximum (B), the frequency compared to the initial carrier frequency
is increased respectively, as is displayed in the second row in the middle. As soon as the
signal amplitude has passed its peak and starts decreasing, the carrier frequency reduces as
well, until a minimum is reached at the point of minimal amplitude of the signal (C). Like
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this, amplitude and frequency information of the signal can be modulated in a way, where
it can later be demodulated and read. Generally the modulation takes place continuously
and the modulated signal contains more frequency components between maximum and
minimum value than is shown in figure 3.5 at the bottom.
The biggest drawback of all of these methods is the fact that a lot of available bandwidth is
used up by the carrier wave, due to detection and filtering processes required to extract
information. This is especially bad, since the information in the present case already requires
significant frequencies to begin with. As a result, the demands for hardware can increase
drastically, as has been discussed by Haase and Haase (2013) extensively.

Direct Current Based: An alternative method to supply passive capacitive sensors tends
towards usage of constant voltage to drive the sensor (dc-based). This method can be
explained by looking at equation 3.2, mentioned above for capacitive sensors:

C = Q

V

When applying a constant voltage V to this equation and having passing rotor components
change the capacitance C, the information is delivered through a change in charge Q.
Therefore circuits containing charge amplifiers have been developed to make the changes in
charge detectable. Due to the nature of capacitors in this setup, only a change of capacitance
can be detected, which means it is not able to pick up on an absolute value of capacitance
and, consequently, absolute clearance information. Yet, the detection of bypassing blades is
possible since there are times without a blade being present in sensor range, which means
this value of capacitance corresponds to ∞ distance. Knowing this, the difference between
the signal at no blade being present and the peaks can be measured and is representative of
the clearance. The advantage of this method is that the problem of bandwidth reduction,
as mentioned above at the carrier based methods, does not occur and less complex signal
processing is required. This method, in combination with particularly developed analog
processing units, has been refined by Haase and Haase (2013) in recent years.

Comparison: The obvious simplicity of the direct current based method makes it an
apparent choice for the modeling process. This is only enhanced by the fact that deriving the
signal from a frequency modulation can be handled separately and is even recommended to
happen in the analog state (bandwidth requirements). Therefore, the signal that is simulated
using the capacitive sensing principle is chosen not to be modulated.
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3.2 Additional Hardware

As has been stated before, the modeling of the interaction between the sensor and the
rotor in combination with a circuit method already provides reasonable accuracy for the
development of the clearance monitoring system. Nevertheless, in order to comprehend
many processing steps and in order to be conclusive while describing the measurement
chain, the remaining components are outlined briefly.

3.2.1 Cable Types

After the signal has been picked up by the sensing device, the analog signal has to be
transported to the next instance via a cable. The goal here is to preserve as much of the
initial information as possible, which can be challenging due to the fact that the amplitude
of the electrical signal can be diminishing. Especially when working with components like
capacitors, where charge is stored until the governing parameters change, an effect called
leakage current - the current originating in a discharging capacitor - can occur that is
picked up and distorts the information. Therefore studies have been conducted on the effects
of different cable-sensor-combinations, again by Haase and Haase (2013), regarding the
maximization of the linear sensor range.
Generally speaking, two cable configurations are available that can be paired with the
respective sensor. Both, cables and sensors, are available in guarded and unguarded versions
and can be combined as desired, resulting in different performances.

(a) Coaxial Cable (b) Triaxial Cable

Figure 3.6: Coaxial and triaxial cable design

Coaxial: Coaxial, or unguarded cables can be found in combination with unguarded
sensors. The probe usually consist of the sensing tip and a casing, which is grounded. The
cable, displayed in figure 3.6 (a), is made out of a central conductor and a surrounding
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insulation, followed by a copper shield and a plastic outer layer. As already mentioned, the
occurrence of unwanted additional electrical signal components has to be avoided in order
to preserve information quality. Unfortunately, the difference in capacitance of the inner
conductor and the insulation can cause signal components in the same amplitude range as
the desired signal. This effect is dependent on the length of the cable, which is why compact
measurement system setups are always recommended. Another downside to this cable type
is the sensor’s suffering from considerable fringing of the electric fields, again resulting in a
reduction of the signal quality.

Triaxial: To counteract the effects of coaxial setups just mentioned, triaxial, or guarded
cables are available. In combination with guarded sensors, they can supply an additional
layer embedded into the insulation that is usually driven at the same voltage as the tip, to
ensure a reduction in capacitance difference and reduce fringing of the field lines at the tip.
To see the differences in design compare figure for coaxial cables 3.6 (a) to figure 3.6 (b).

3.2.2 Analog to Digital Converters

As has been the case with the presentation of the cables types, this section does not introduce
aspects of the measurement chain that are being modeled. The presentation of this hardware
element rather serves the purpose of providing a fundamental understanding of signal flow
and introducing necessary vocabulary that will be used throughout the thesis.
Theoretically, the information can be digitalized and handed to a computer for further
processing after it has been transfered using cables. Nevertheless, depending on the sensor
type and circuit, some analog preprocessing can be required or useful. Taking for example a
frequency modulated signal, it can be a significant difference in hardware requirement, if
the signal is demodulated at an analog state and therefor possibly reduced in frequency,
instead of passing the high frequency signal through a converter. The possibilities at this
stage of the measurement chain are endless and highly dependent on the composition of
the system, which is why a generalized explanation is avoided in this thesis. Therefore the
focus shall be the discussion of so called Data-Aquisition (DAQ) devices - or AD converters
- concerning effects on the analog signal while being digitalized.

Characterization: Currently the signal is still analog, meaning there is theoretically infinite
information between two discrete points in time and the resolution of the amplitude is
infinitely precise. From here on, after passing the data through an AD converter, the data
is quantified. This is due to the nature of the digital domain, where values can only be
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comprehended in a quantified manner. Taking for example the integer data type, where the
resolution is limited to natural numbers, a problem called quantization error arises. This
problem is visualized in figure 3.7, where the transformation of an analog signal (up) to the
integer domain (down) is visualized. Note the difference between input and output signal.
Even thought there are different data types that have a more suitable stepping size, they
all are finite when it comes to resolution nonetheless.

Figure 3.7: Signal discretization

Leaving aside requirements on the digital data type for accurate measurement, the analog
signal is always reduced to a finite number of data points. This discretization of a signal
poses the biggest difference between analog and digital signals and is described in connection
with ’sample rate’.

Sample Rate: An AD converter takes samples of the analog signal every 1
sample rate

seconds.
The information between these two discrete points in time is not picked up and delivered
to the processing unit, which can lead to problems when having low rates available and
trying to detect high frequency data. A mathematical analysis of this problem leads to the
so called Nyquist theorem, which states the importance of a sample rate that is higher than
twice the expected signal frequency. The theorem is written as

fsample > 2 · fsignal (3.5)

By committing to this expression, an effect called aliasing can be avoided. This means
that the set of sampled data points is unambiguously able to represent the sampled signal
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frequency. If this criteria is not met and aliasing occurs, measurement results as shown
in figure 3.8 are possible. Here, the high analog signal frequency is misinterpreted by the
sampled data, leading to a completely different output signal frequency.

Figure 3.8: Aliasing effect

In order to ensure that this criteria is met, the signal is low-pass filtered before being passed
into the AD converter, leading to the removal of frequencies that are higher than half the
sample frequency. This process can be found in respective literature under the expression of
anti-alias-filtering.

3.2.3 Noise

Until now effects decreasing the quality of the signal, for example due to leakage current, have
been called secondary signal components. The technical expression for these disturbances is
generalized as noise. This includes every aspect of a signal that has not been purposefully
recorded and, dependent on the amplitude of these components, can be the reason for
corrupted results. Since only the sensor and the chosen circuit method are modeled for the
signal generation the expression noise is treated generalized. The model does not differentiate
between sources and does not base noise on any physical phenomenon. It is seen as sufficient
to account for its presence. Therefore, the introduction of the Signal-to-Noise-Ratio (SNR),
which in this thesis is defined by

SNR = max(Signal)
Noise

(3.6)

helps in describing the quality of signals. High SNR means little noise being present, while
low SNR indicates high levels of noise overlaying the signal. The differences can be seen in
figure 3.9, where the same signal with two different amount of noise is portrayed.
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(a) SNR = 10 (b) SNR = 2.5

Figure 3.9: Same signal affected by different signal-to-noise ratios

In order to improve signal quality and amplify desired information while suppressing noise,
different filtering techniques are available. The choice has to be made according to where
the information is embedded. If the information is located in lower frequency regions than
the noise, low-pass filtering the signal can suppress unwanted components, while leaving
the information untouched. If the contrary is the case, high-pass filtering can lead to the
desired effect. Additionally, for more complex processing, windowed filters can be chosen.
In either case, the choice is dependent on the underlying signal components and has to be
made individually.
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The following chapter introduces the mathematical principles used for the development of
the software environment. The focus lies on providing the basic equations and connections in
order to comprehend the statements made throughout the rest of the thesis, not elaborating
complicated examples. The methods shown here are sorted in the order of their application
within the signal generation and clearance monitoring routines. Starting at the signal
generation in Matlab, the capacitive sensing principle that is modeled requires for the
computation of the area stated in equation 3.4. Since the contours surrounding this area
are available, Green’s theorem can be applied, which requires for a brief explanation. Next,
after the signal is successfully simulated and transmitted to LabView to be processed, the
first step is filtering the signal to improve the quality. Therefore, this chapter evaluates
the principle of low-pass filters and shows important effects on the signal. The filtered
signal is subsequently passed through a peak detection routine within LabView in order to
reduce the complex signals to the essential information. The idea behind this step requires
evaluation since, similar to low-pass filtering, the quality of the processing depends on
the understanding of the domain. Ultimately, the underlying mathematical principle of a
processing step realized within LabView is introduced that allows for information about the
rotor’s position to be computed using three arbitrary clearance signals.

4.1 Green’s Theorem

Since the chosen sensor type uses an area to link a distance to a signal, the modeling process
for the Matlab routine has to deal with the mathematical description of that surface. As has
been stated, the model relies on areas enclosed by polygons, which is why Green’s theorem
can be used for determining the value of the area A using the contour C of the surrounding
curve. The theorem, explained by Khan Academy, originates from two-dimensional calculus
where it is used to link the line integral over a curve C to a double integral over the area
A that is enclosed by C. This section introduces the basic ideas behind the theorem and
proceeds with explaining how the area A can be computed directly.
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Curl: As will be seen later on, the mathematical definition of curl is needed for the
definition of the theorem. The curl of a two-dimensional vector field ~F in terms of a line
integral

∮
can be written as follows:

rot ~F2D = lim
|Ax,y |→0

(
1
|Ax,y|

∮
C

~F · ~dr
)

(4.1)

Here, ~F stands for a two-dimensional vector field, Ax,y represents an enclosed area centered
at (x, y) and C is a counterclockwise oriented closed curve that encloses Ax,y. The equation
can be understood as (

∮
C F ·dr) representing fluid rotation along the boundaries of the given

closed line C. It can be shown that the rotation following the contours of Ax,y corresponds
to the area (without proof), which is why it makes sense to divide this expression by the
area to gain information about average rotation per unit. The result is information about
the curl in an entire region, centered at the point (x, y) (compare figure 4.1). Apart from
the integral representation of the curl, it can be written in vectorial form as

rot ~F2D = ∇× ~F =


∂
∂x

∂
∂y

×
 Fx

Fy

 = ∂Fy
∂x
− ∂Fx

∂y
(4.2)

Figure 4.1: Curl

Theorem: The idea behind Green’s theorem is to look at a predefined region A, enclosed
by the curve C, that lies within a vector field ~F , as is shown in figure 4.2 (a). The goal is to
describe the rotation given by

∮
C
~F · ~dr by alternative means, replacing the line integral. Note,

that this expression equals the previously mentioned curl, without the division by the area A.
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4.1 Green’s Theorem

(a) Initial Configuration (b) Division

Figure 4.2: Green’s Theorem

The idea is to divide the area A. Starting with one division, the curl for each separate area
can now be obtained by

∮
C1
~F · ~dr and

∮
C2
~F · ~dr respectively. Graphically, this step can be

seen in figure 4.2 (b). When defining counterclockwise orientation for both line integrals, the
results of the line integrals along the cut have equal magnitude, but are oriented opposing
and thereby canceling each other out. This leads back to the initial curve C

∮
C

~F · ~dr =
∮
C1

~F · ~dr +
∮
C2

~F · ~dr (4.3)

Proceeding to add more cuts to the area does not change the correctness of this statement,
as long as the positive orientation of the line integrals is defined equally. The equation for
an increasing number of cuts N can therefore be written as

∮
C

~F · ~dr =
N∑
i=1

∮
Ci

~F · ~dr (4.4)

As it is usual in infinitesimal calculus, the amount of cuts is increased, so that the area
enclosed by the line integrals

∮
Ci

strives towards zero ( lim
|Ax,y |→0

). In this case, the expression∮
Ci
~F · ~dr, describing the rotation along the contours of the now infinitesimally small area

|Ax,y|, is equal to equation 4.1 for the two-dimensional curl that has been multiplied by the
area itself

∮
Ci

~F · ~dr =
[

lim
|Ax,y |i→0

(
1

|Ax,y|i

∮
Ci

~F · ~dr
)]
· |Ax,y|i (4.5)

= rot ~F2D,i · |Ax,y|i
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For the curl along the entire contour C this leads to

∮
C

~F · ~dr =
N∑
i=1

[
lim

|Ax,y |i→0

(
1

|Ax,y|i

∮
Ci

~F · ~dr
)]
· |Ax,y|i (4.6)

=
N∑
i=1

rot ~F2D,i · |Ax,y|i

what can be written in infinitesimal form as
∮
C

~F · ~dr =
∫ ∫

A
rot ~F2DdA (4.7)

Spelling out the vector product on the left side

~F · ~dr =

 Fx

Fy

 ·
 dx

dy

 = Fxdx+ Fydy (4.8)

and using the vectorial definition of the curl from equation 4.2 to replace the right side of
the expression, the resulting equation

∮
C

(Fxdx+ Fydy) =
∫ ∫

A

(
∂Fy
∂x
− ∂Fx

∂y

)
dA (4.9)

is known as Green’s Theorem.

Area: This theorem is a mathematical tool to replace a double integral with a line integral,
which can be used to simplify certain expressions. Other than that, a simple expression to
determine the area A within an region enclosed by C can be derived. This is done by simply
demanding that the solution of the theorem is equal to A and writing

∮
C

(Fxdx+ Fydy) = A (4.10)

Focusing now on finding a way to fulfill this equation requires to look at Green’s theorem
in its entirety

∮
C

(Fxdx+ Fydy) =
∫ ∫

A

(
∂Fy
∂x
− ∂Fx

∂y

)
dA (4.11)

44



4.1 Green’s Theorem

Apparently the goal is determining values for Fx and Fy that results in
(
∂Fy
∂x
− ∂Fx

∂y

)
= 1 (4.12)

so that
∮
C

(Fxdx+ Fydy) =
∫ ∫

A
(1)dA = A (4.13)

with dA = dxdy. There are multiple sets of variables for Fx and Fy that satisfy this condition,
nevertheless the values

Fx(x, y) = −y2 (4.14)

Fy(x, y) = x

2 (4.15)

have proven to be easy to compute, while meeting the requirements stated above.

∫ ∫
A

(
∂Fy
∂x
− ∂Fx

∂y

)
dA =

∫ ∫
A

(
∂x

∂x2 + ∂y

∂y2

)
dA (4.16)

=
∫ ∫

A

(1
2 + 1

2

)
dA (4.17)

=
∫ ∫

A
(1)dA = A (4.18)

Having found values for Fx and Fy, the left side of the theorem can be transformed
accordingly by inserting Fx and Fy.∮

C
(Fxdx+ Fydy) =

∮
C

(
x

2dy −
y

2dx
)

(4.19)∮
C

1
2(xdy − ydx) = A (4.20)

This final equation can be used to determine the area within the boundary curve C.
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4.2 Low-pass Filter

Since the presence of noise on signals has to be expected on every signal, the implementation
of a noise reducing filter is at hand. The low-pass filter has already been mentioned within
the introduction in section 3.2.3 defining noise. In signal processing, low-pass filters are
used to remove signal components with frequencies above a predefined cutoff frequency
fc, or rather dampen them, while leaving signal components with frequencies beneath fc
unaffected. Within the signal processing unit LabView this type of filter is used in order to
enhance signal quality and amplify the desired information.
By looking at the Bode-plot of a low-pass filter, displayed in figure 4.3, the general behavior
of this signal processing step can be explained. Note, that instead of displaying in terms of
the frequency f the angular frequency ω = 2πf is used. The frequency is plotted logarithmic
on the horizontal axis, where it is common to reference characteristics using the cutoff
frequency ωc. This is the frequency where the real filter’s amplitude response has a drop in
magnitude of about 3 dB. The filter’s influence changes within one decade above and one
decade below this frequency.

Figure 4.3: Bode plot of a single-pole low-pass filter
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4.2 Low-pass Filter

While frequencies below the frequency ωc · 10−1 show the unity gain (0 dB), every frequency
above it has a negative gain. At frequencies above ωc · 101 the gain decreases steadily with
20 dB
decade

. To understand the effect of negative gain on a signal it can be thought of as reduction
of signal amplitude. For example, a signal with the frequency ωc is affected by the 3 dB
negative gain that has been mentioned. As will be shown in the following analysis of the
filter, this translates to a loss of signal amplitude of around 30%. All changes in magnitude
come alongside with a change in phase. The shift in phase at the cutoff frequency is exactly
-45 deg. Furthermore, note the different ways of portraying this filter: asymptotic and real.
The description of the realistic filter behavior has just been given. The asymptotic form of
displaying simplifies the behavior, but approximates the same fundamental ideas concerning
cutoff frequency and shift in phase.
Mathematically this type of filter can be described using its transfer function that shows the
frequency dependent change of amplitude and phase. This function is obtained by looking
at a RC-circuit, displayed in figure 4.4. This circuit is the simplest form of a low-pass filter,
often referred to as first-order Butterworth filter in respective literature. It consists of a
resistor R and a capacitor C that are driven by the voltage Uin. When the amplitude of this
driving voltage changes over time with a certain frequency, the effects described previously
using the Bode-plot can be seen at the output voltage Uout.

Figure 4.4: RC-low-pass circuit

Starting by applying Kirchhoff’s second law to the apparent circuit, the equations

Uin = IR + IXC (4.21)
Uout = IXC (4.22)
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4 Mathematical Background

are found. The transfer function G(s) is defined as

G(s) = Uout(s)
Uin(s) (4.23)

and can therefore be written as

G(s) = IXC(s)
IR + IXC(s) (4.24)

with XC being the frequency dependent resistance of the capacitor, according to

XC(s) = 1
sC

(4.25)

Reducing equation 4.24 for I results in

G(s) =
1
sC

R + 1
sC

(4.26)

= 1
1 + sRC

(4.27)

or written in the frequency domain (s = fω)

G(jω) = 1
1 + jωRC

(4.28)

Before phase and magnitude are calculated, the equation can be expanded by multiplying
dividend and divisor with the complex conjugate of the divisor, which leads to the final
equation for the frequency dependent transfer function

G(jω) = 1
1 + jωRC

· 1− jωRC
1− jωRC (4.29)

= 1− jωRC
1 + (ωRC)2 (4.30)

For further calculation, the definition of the cutoff frequency fc in electronic circuits can be
given as

fc = 1
2πRC (4.31)
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4.2 Low-pass Filter

or written in terms of the angular frequency ω

ωc = 2πfc = 1
RC

(4.32)

As has been mentioned before, signal components with that exact frequency show a loss in
amplitude of 3 dB and a shift in phase of -45 deg.

Phase: In complex numbers the phase is defined as

tanϕ = Im

Re
(4.33)

where the fraction in case of the provided transfer function in equation 4.30 is

Im

Re
=

−ωRC
1+(ωRC)2

1
1+(ωRC)2

= −ωRC (4.34)

leading to a phase at ωc of

arg(G(jωc)) = arctan(−ωcRC) = arctan(−RC
RC

) = arctan(−1) = −45◦ (4.35)

Magnitude: The magnitude of a complex number is defined by

|G(jω)| =
√
Re2 + Im2 (4.36)

Applying this equation to the complex form of the transfer function 4.30, the result is

|G(jω)| =

√√√√( 1
1 + (ωRC)2

)2

+
(
−ωRC

1 + (ωRC)2

)2

(4.37)

=

√√√√ 1 + (ωRC)2

(1 + (ωRC)2)2 (4.38)

= 1√
1 + (ωRC)2

(4.39)
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Substituting the general ω with the cutoff value ωc, the absolute value for the transfer
function 4.30 at the cutoff frequency is

|G(jωc)| =
1√

1 + (ωcRC)2
= 1√

1 + (RC
RC

)2
= 1√

2
(4.40)

which, in order to be displayed in the Bode-plot, equals

|G(jωc)|dB = 20log(|G(jωc)|) ≈ −3[dB] (4.41)
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4.3 Peak Detection

After reducing noise using the just described low-pass filters, the measurement data still
provides more than the required information. In the present case of radial rotor-casing
clearance measurement using capacitive sensors, the signal contains additional information
about the time of arrival of a certain component or the components shape. Since those
details are not required for the underlying purpose, they can be discarded and the signal
can be reduced to the essential components. The methods applied for that purpose within
LabView is peak detection, which manages to find the location and amplitude of localized
maxima and minima within data sets. Note, that there does not exist a standardized, or
superior method for that purpose. The performance of an algorithm always depends on
the provided inputs and usually has advantages and disadvantages. For given purpose,
finding methods for the detection of local maxima within data stored in one-dimensional
arrays is the matter at hand. In case of an array containing only one maximum, the most
straight forward solution appears to be to apply a sorting algorithm that sorts the data from
biggest to smallest value and returns the first value in the array. For this simple case this
might actually be the fastest solution, but apart from not retrieving the index of this peak,
the result is already corrupted if multiple local maxima are present within the data. This
thought experiment can be seen in figure 4.5. In order to make peak detection independent
from the data input, another approach has to be chosen.

Figure 4.5: Sorting algorithm

The solution presented here takes into account the specific nature of data that can be
expected in clearance measurement. Usually, measurement data is affected by noise, which
leads to a significant amount of local peaks and valleys. Therefore some kind of data
smoothing possibilities have to be included into the detection algorithm. A common approach
for problems with present specifications is to fit curves into the data, differentiating the
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resulting equation and checking for extrema. The processing software LabView contains
predefined routines performing these calculations. Nevertheless, the fundamental principle
is outlined here. Note, that only curve fitting is described at this point, since checking the
resulting equations for extrema by differentiating does not require further explanation. The
explanation is based on work done by Miller (1992).

Linear Fit using Least Squares: The method of ’least squares’ is an approach used for
finding functions, describing a given set of data points. In short, it strives to find the
coefficients of a function with predefined order that fits the provided set of data points in
terms of minimizing the squared, resulting difference between the actual value and the fitted
value. This can easier be understood by looking at figure 4.6, where the data is described
by the means of a linear function f(x).

Figure 4.6: Linear function f(x) fit into a set of data (xi,yi) using ’Least Squares’

Let the goal be to fit a linear function f(x) : y = a1x+ a0 into a set of data. The resulting
error between the actual value yi and the function y can be written as

4yi = yi − f(x) = yi − (a1xi + a0) (4.42)

This expression can be squared and renamed to ei, representing the remaining error as

ei = [yi − (a1xi + a0)]2 (4.43)

Adding up the errors for all N values in the present data set gives

E =
N∑
i=1

[yi − (a1xi + a0)]2 (4.44)
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This equation is representative of the overall error that is made when fitting the curve
dependent on the parameters a1 and a0. To find values for these parameters that minimize
E the statements

∂E

∂a1
= 0 (4.45)

∂E

∂a0
= 0 (4.46)

have to be fulfilled. Written in full, the equations are

∂E

∂a1
=

N∑
i=1

2[yi − (a1xi + a0)] · (−xi) = 0 (4.47)

∂E

∂a0
=

N∑
i=1

2[yi − (a1xi + a0)] · (1) = 0 (4.48)

Dividing both equations by 2, they can be rewritten as

N∑
i=1

(
N∑
i=1

x2
i

)
a1 +

(
N∑
i=1

xi

)
a0 =

N∑
i=1

xiyi (4.49)

N∑
i=1

(
N∑
i=1

xi

)
a1 +

(
N∑
i=1

1
)
a0 =

N∑
i=1

yi (4.50)

Displaying these statements as a system of equations that is transformed to solve for a1

and a0 explicitly gives
 a1

a0

 =


∑N
i=1 x

2
i

∑N
i=1 xi∑N

i=1 xi
∑N
i=1 1


−1

∑N
i=1 xiyi∑N
i=1 yi

 (4.51)

By solving this set of equations, the values of a1 and a0 fulfill the desired criteria of
minimizing the sum of combined areas of the squares shown in figure 4.6. Note, that in
order to be mathematically accurate, the direction of the extremum has to be proven. The
criteria for the found extremum to be in fact a minimum is

∂2E

∂a2
1
> 0 (4.52)

∂2E

∂a2
0
> 0 (4.53)
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Only when both equations apply, the calculation can be considered conclusive.

Polynomial Fit using Least Squares: Apart from a linear function, also known as a
first-order polynomial y = a1x+ a0, many other useful functions can be fit to approximate
the data. The same process can be repeated for a k-dimensional polynomial y = akx

k +
ak−1x

k−1 + ...+ a1x+ a0 in order to fit a set of data with k+ 1 values. This relation is easily
derivable from the fact that a k-dimensional function leads to k + 1 unknown parameters ai
and thus to a system of k + 1 equations, such as shown previously for a linear function:



ak

...

a1

a0


=



∑N
i=1 x

2k
i · · · ∑N

i=1 x
k+1
i

∑N
i=1 x

k
i

... ... ... ...
∑N
i=1 x

k+1
i · · · ∑N

i=1 x
2
i

∑N
i=1 xi∑N

i=1 x
k
i · · · ∑N

i=1 xi
∑N
i=1 1



−1

∑N
i=1 x

k
i yi

...
∑N
i=1 xiyi∑N
i=1 yi


(4.54)

Solving this generalized equation allows for fitting a polynomial of any desired order into
the data.
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4.4 Unambiguous Definition of a Circle

As has been mentioned before, after simulating the signal in Matlab and processing it using
the monitoring routine in LabView the combined clearance information of multiple sensors
can be used to approximate the rotors absolute position within the casing. In order to
limit the required sensors this thesis assumes the shape connecting the rotor’s tip to be a
perfectly circle. This means that for shrouded and bladed rotor configurations three sensors
are sufficient to inscribe that circle into the tips. Figure 4.7 shows the proposed idea.

Figure 4.7: Circle inscribed into the tips of a bladed rotor using three sensors

The following pages provide a fast and effective solution for the definition of a circle
using three arbitrary points on its circumference, derived from an idea presented at the
AmBrSoft Website. In two-dimensional space, the radius of a circle centered at (xC , yC) can
be calculated by

r =
√

(x− xC)2 + (y − yC)2 (4.55)

By squaring the equation, simplifying the expression and introducing a functional parameter
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A

A · r2 = A · (x2 − 2xxC + x2
C + y2 − 2yyC + y2

C) (4.56)

can be written and transformed to

Ax2 + Ay2 +Bx+ Cy +D = 0 (4.57)

where A = const., B = −2AxC , C = −2AyC and D = A(x2
C + y2

C − r2). To solve this
problem unambiguously, three arbitrary points on the circle are necessary. Inserting these
into the equation above results in a system of four equations



x2 + y2 x y 1

x2
1 + y2

1 x1 y1 1

x2
2 + y2

2 x2 y2 1

x2
3 + y2

3 x3 y3 1





A

B

C

D


=



0

0

0

0


(4.58)

Note, that the first row of this system represents the general equation Ax2 + Ay2 +Bx+
Cy +D = 0. This is done in order to acquire a 4× 4 matrix that can be solved in terms of
a determinant

det(M) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 + y2 x y 1

x2
1 + y2

1 x1 y1 1

x2
2 + y2

2 x2 y2 1

x2
3 + y2

3 x3 y3 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (4.59)

by making use of the Laplace expansion, which is given for the expansion for a row by

det(M) =
n∑
i=1

(−1)i+j · aij · det(Mij) (4.60)

Here, i stands for the row to expand from, j for the column and Mij for the (n− 1)× (n− 1)
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sub-matrix of M. Applying this operation the result for i = 1 is

(x2 + y2)

∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 y1 1

x2 y2 1

x3 y3 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
− (x)

∣∣∣∣∣∣∣∣∣∣∣∣∣

x2
1 + y2

1 y1 1

x2
2 + y2

2 y2 1

x2
3 + y2

3 y3 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

+(y)

∣∣∣∣∣∣∣∣∣∣∣∣∣

x2
1 + y2

1 x1 1

x2
2 + y2

2 x2 1

x2
3 + y2

3 x3 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
− (1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

x2
1 + y2

1 x1 y1

x2
2 + y2

2 x2 y2

x2
3 + y2

3 x3 y3

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (4.61)

The sub-determinants now represent the coefficients A, B, C and D from equation 4.57.

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 y1 1

x2 y2 1

x3 y3 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
, B = −

∣∣∣∣∣∣∣∣∣∣∣∣∣

x2
1 + y2

1 y1 1

x2
2 + y2

2 y2 1

x2
3 + y2

3 y3 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

C =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x2
1 + y2

1 x1 1

x2
2 + y2

2 x2 1

x2
3 + y2

3 x3 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
, D = −

∣∣∣∣∣∣∣∣∣∣∣∣∣

x2
1 + y2

1 x1 y1

x2
2 + y2

2 x2 y2

x2
3 + y2

3 x3 y3

∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.62)

After obtaining the values for the functional parameters, equation 4.57 can be transformed
and used to solve

xC = − B

2A (4.63)

yC = − C

2A (4.64)

r =
√
B2 + C2 − 4AD

4A2 (4.65)

This is the center position in two-dimensional space and the radius of the circle that has
been fit into the three points on its circumference.
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5 Matlab Signal Generation

In order to be able to develop a monitoring unit, the signal containing the clearance
information has to be simulated. As has been discussed in the previous chapters, the signal
used in this thesis is based on a mathematical model. This approach allows for cheaper
development and more flexible testing, while permanently being able to verify the processing.
This chapter starts with introducing the basic idea behind the independent machine and
measurement system model that are implemented using Matlab. Due to the anticipation of
variations in blade geometry, three different machine models are created:

1. rotor with shrouded blades
2. rotor with simple blade tips
3. rotor with blades that have squealer tips

This is followed by the description of the measurement system model. The measurement
chain is reduced to the modeling of a capacitor sensor powered by a direct current circuit, as
has been described in chapter 3. Note, that for each of the three mentioned rotor geometries
slight variations in the approach for the signal generation are taken, which is the reason for
dealing with every geometry in a separate routine. The description of the calculation steps
for each of the signal generation routines takes place after the introduction of the models.
This is followed by the conclusion of this chapter with the validation of the generated signals
using real world measurement signals and a study of important parameters.

5.1 Modeling Process

By introducing independent machine and sensing models the resemblance to actual measu-
rement can be contained, while being able to individually optimize system parameters on
machine and measurement side. The goal is to create models that allow to nullify certain
influences, in order to be able to detect signal-changing aspects. While the previous chapters
have given a glimpse on the range of all influential parameters, this section narrows down
the domains more detailed and specifies the available settings.
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5.1.1 Turbomachine Model

The machine model is created in accordance with section 2.4.1. There, a plane intersecting
the rotor perpendicular to the axis connecting the bearings has been introduced. This plane
is displayed in figure 5.1 on the left side. The derived model is a geometric replication of
a rotor moving within the casing and can be seen in figure 5.1 on the right. The center
of the casing is seen as center of a coordinate system (0,0). The two essential referencing
parameters for the shaft’s location within this two-dimensional plane are:

• Offset: The stationary component of the shaft’s centerline displacement within the
casing.

• Eccentricity: The current distance between the stationary offset and the absolute
position.

Figure 5.1: Machine model creation

After defining the center of the casing to be the center of a coordinate system, the first
modeling step is is to describe the location of the shaft. In accordance with section 2.4.1,
where the dynamic movement due to rotational velocity has been highlighted, a variable
called eccentricity is introduced. It represents the current value of displacement amplitude
of the shaft’s center line from a stationary offset within the casing. Apart from the dynamic
displacement, this centerline can be diverting from the center of the casing due to stationary
misalignment of the shaft within the casing, which is respected with the introduction of
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the variable offset. The detailed portray of the model and all its parameters can be seen in
figure 5.2. The combination of those two parameters is used to track the center position of
the shaft at any moment according to equation

Shaft Center =

 Offsetx

Offsety

+ Eccentricity

 cos(θ)

sin(θ)

 (5.1)

Note the presence of the angle θ. The model computes the rotor’s rotation using an
incremental step 4θ, allowing it to be used as degree of freedom.

Figure 5.2: Two-dimensional machine model

At this point, differences in cascade design have to be respected. Shrouded blade rows require
the definition of a parameter describing the radius of the outer point of the shroud, while
bladed configurations introduce blade lengths and - in case of squealer tips - parameters
defining the additional tips. In any case, the blade row is defined as rigid in any direction.
This allows for directly connecting the individual blade geometries to the shaft and thereby
coupling the blade’s movement directly to equation 5.1 shown above. The individual modeling
steps for each of the introduced geometries is presented more detailed later on. Note, that
in order to refine the model to simulate machine behavior more precisely, following steps
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can be taken:

• Imperfections concerning circularity of casing, shaft or shroud are implemented by
simply defining a dependency on θ for each parameter. A function can be defined
instead of the constant value shown above. This allows for the modeling of any
deformation without having to alter the fundamental equation 5.1.

• Deviations of blade length due to manufacturing tolerances can be modeled by
specifying individual lengths for each blade that is attached to the shaft. In the same
way, time dependent functions can be used to model the heat deformation due to
changing operational temperatures of the turbomachine.

• Dynamic shaft behavior, as discussed in section 2.4.1, results in varying eccentricity.
Due to the incremental nature of the calculations, this parameters can be defined
as functions of θ instead. This allows for complex behavior, like the dependency on
angular velocity, to be portrayed, while still being able to use equation 5.1.

The nature of the simulation with separated models for sensing and machine allows for the
implementation of successive details, like the examples shown above, including oscillation
and three dimensional rotor movement. However, the goal of this thesis is not to model
turbomachine behavior, which is why the accuracy provided by equation 5.1 suffices. Any
additional details do not improve the development of the signal processing unit, since
dependencies would increase and isolated parameter studies could be compromised.

5.1.2 Measurement System Model

After providing a machine model, the second aspect of signal generation has to be addressed
in this section. For the measurement system model, the main requirement shall be the
independence of the machine model, in order to make both expandable without interfering
with the performance of the entire simulation.

System Selection: In chapter 3 the selection of capacitive sensing in combination with
a direct current circuit for the underlying thesis has been mentioned. The reasons for
this choice are the simplicity of the sensing principle and the availability of hardware for
further development steps. The model does not strive to accurately represent the entire
measurement chain, nor to model all influential parameters that have been discussed prior.
The goal is much more, to provide a system that reacts to the machine model in a way that
is comparable to the real-world equivalent of the mentioned principle. Generally speaking,
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the output shall be a signal that contains the informations inserted into the simulation via
machine parameters and replicate real world signals originating from that sensor type.

Model: Looking back to chapter 3, the concept of capacitive sensing was presented as
the pairing of two plates, separated by a non-conductive layer. In clearance measurement
processes one capacitor plate is the sensor, which is supplied through any of the mentioned
circuit methods, whilst the other plate is the blade. Equation 3.4 provides the governing
equation for capacitive sensing:

4C = 4A
4d

ε0εrV

In accordance with the dc-based circuit method, the driving voltage V is assumed to be
constant. Additionally, the same assumption is made for the dielectric constants ε0 and εr.
This leads to a simplified equation, since the constants V , ε0 and εr can be defined to be 1,
leading to the expression

C ≈ A

d
(5.2)

The assumption of V = ε0 = εr = 1 can be justified, by interpreting them as scaling factors.
When it comes to deriving the information from the signal, these factors only shift the
entire dependency signal-to-distance and thus can be neglected. A and d on the other hand
are a result of the interaction of the rotor with the sensing area, which is therefore modeled
in reference to the real world sensor. The applied concept can be seen in a two-dimensional
plane in figure 5.3. The displayed electrical field has a strong non-linear character outside of
its so called linear sensing range, which in case of capacitive sensors lies usually within the
range of the sensors diameter (stated in chapter 3). Therefore, the complicated structure
is broken down to modeling the linear sensing range, approximated by the red rectangle
shown in the figure. The entire sensing principle - the interaction between sensing area
and rotor - is reduced from a volumetric problem in three-dimensional space to a problem
in two dimensional space, where the overlapping area of blade and sensor are chosen to
represents the area A of the plate capacitor. The distance between the plates d is assumed
to be the distance between sensor tip and geometric center of the overlapping polygon A.
For every angular computational step 4θ, the overlapping rotor-sensor area is determined
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and a resulting signal is computed, according to

Q

V
= C = Signal ≈ A

d
(5.3)

Figure 5.3: Capacitive sensing model

This resembles the changing capacitance caused by a passing blade in real world measurement.
While the direct current circuit supplies the sensor with constant voltage V , the passing blade
causes the movement of charge Q. This is amplified by a charge amplifier and translated
by the electronics to a signal that depends on the changing area A and distance d of the
capacitor pairing. The question about accuracy might arise when neglecting the non-linear
area and assuming a square sensor field. Fortunately, most accuracy is needed when the
rotor and the sensor are interacting the strongest, resulting in a peak capacitance. This is
the case when the rotor component and the sensor are the closest and thereby the clearance
is the smallest. For that reason sensors are bought according to the expected clearance in
real-world measurement, leading to the peak being located within their linear range. This
model is not an accurate representation of capacitive sensing, just like the machine model
does not claim to display real-world behavior in every aspect. Nevertheless, it fulfills the
requirements of encoding clearance information into a signal, in a way that resembles real-
world capacitive sensor signals. Due to that the modeling of interaction between capacitor
plates is not refined any further.
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5.2 Matlab Routines

As has been stated at the beginning of this chapter, the availability of different rotor
geometries has to be anticipated. This results in three different signal generation routines,
all alternating in certain details. While the machine models only differ in portrayed geometry
for shrouded, simple bladed and squealer bladed rotors, the true differences are caused by
the difficulties in determining the radial clearance between sensor tip and rotor. The most
straight forward method of calculating the radial rotor-casing clearance is to establish a
model of the rotor geometry as well as its position within the casing and then compute the
geometric distance between the closest rotor element to the sensor tip. The problem with
this method is the detection of this element. From the point of view of an inwards facing
sensor, mounted on the casing, with limited detection range, detected components can vary.

First, taking a rotor with a shroud. The shroud is constantly within vicinity of the sensor and
is therefore picked up on by the sensor, resulting in a continuous change of signal amplitude.
This signal always relates to the distance between sensor tip and shroud underneath the
sensor. That is why the calculation based on geometric connections is possible. Generally,
this means that the routine for this rotor geometry uses the machine model but not the
measurement model. The clearance is calculated using the geometric dependencies as will
be shown in the dedicated section for the shroud signal generation routine.

On the other side, bladed rotor configurations are available. In this case, where there
are times where blades are interacting with the sensor and times where no coupling between
the capacitor plates exists, the resulting change in capacitance caused by a passing blade is
a peak. The problem with calculating clearance based on geometry lies within determining
which rotor element is relevant, which is why it has proven to be inconvenient to try to
describe a geometric distance for bladed rotors. Therefore, the established model for the
measurement system is applied. The resulting interaction between machine and measurement
model is treated as output signal. This leads to the encryption of the desired clearance
information according to equation 5.3

Q

V
= C = Signal ≈ A

d

The output signal of the three routines are subsequently passed to LabView, where the
signal processing takes place. In case of the shroud signal, the clearance data is already
directly available in the signal, since it is in fact the geometric distance between sensor tip
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and the shroud underneath the sensor. The bladed signals show the change in capacitance
caused by the blade-sensor interaction, which leads to the need of deriving the clearance
from the signal using linear interpolation within LabView.

5.2.1 Shrouded Blades

As has been stated, the Matlab signal generation routine for shrouded rotors does not require
using the measurement system model introduced in section 5.1.2. The simplified approach
is due to the comfortable calculation of the true clearance between a sensor, mounted plane
with the casings inner wall and the shroud. Figure 5.4 shows the sensor mounted on the
casing, interacting with the shroud that shall be simulated. The sensor is assumed to be
unable to detect the blades underneath the shroud so that the output signal is continuous,
comparable to measuring a shaft. This assumption is made due to the fact that, if blades
would be detected, there would be no structural difference in output signals between this
routine and the one dealing with unshrouded blade geometry. Therefore, the routine uses
the machine model’s geometry dependencies to determine the clearance. This true value
of the radial shroud-casing clearance is treated as output and is subsequently passed to
LabView for processing.

Figure 5.4: Shrouded routine clearance signal

5.2.1.1 Initialization

The first step is the setup of the geometric parameters within Matlab for the machine model
that is displayed in figure 5.5. The defined parameters are:
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• Radius casing RCasing

• Radius Shaft RShaft

• Radius Shroud RShroud

• Offsetx,Offsety
• Eccentricity
• Sensor Count
• Sensor Position δ

Figure 5.5: Model of shrouded blade configuration

Additionally, the spatial stepping size 4θ in form of steps in angular direction is defined.
Note, that the entire routine assumes the stationary casing center to be at [0,0] within a two-
dimensional plane. Every deviation of the shaft results in a displacement in two coordinates
[x,y]. After the definition of the underlying geometry parameters, the initialization of the
computational domain is performed, starting with preparing the user interface by setting
up plotting areas within a figure and data matrices that are predefined in order to save
computational power that would otherwise be needed for resizing said matrices. Subsequently,
the connection to a Transmission Control Protocol (TCP) server is established in order to
broadcast the signal. Finally, the setup is concluded by the creation of an iterative instance
that loops for a predefined amount of times and every time increases the stepping parameter
by 4θ: the main loop.
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5.2.1.2 Main Loop

The first step within each main loop iteration is to establish the location of the shaft’s
center within the casing’s coordinate system. For that purpose the equation 5.1 (introduced
within the machine model) is used:

Shaft Center =

 Offsetx

Offsety

+ Eccentricity

 cos(θ)

sin(θ)


In accordance with the model presented (rigid rotor), this is the center point of the rotor.
In the present case of a shroud and based on the assumption that no blades can be detected
by the sensor, the modeling of the blades can be spared and instead only the shroud
can be placed. This is done in two steps: first a shaft circle is placed. Subsequently, the
shroud circle is placed concentrically with the shaft. The results are plotted into the user
interface at this point, allowing the user to track the rotor’s location and verify output signals.

In the other routines, this is the place where the machine’s interaction with the sen-
sing area would be computed. Here, due to the simplistic model, a shortcut is used. Instead
of setting up a sensor field and checking for interaction, a geometric distance is calculated
and used as output signal. Once per iteration, the signal is evaluated, based on the geometry
shown in figure 5.6. In terms of trigonometry, the clearance at the position of sensor 1 can
be calculated by

Signal = Clearance = Radius Casing − Shaft Centerx − L (5.4)

The location of the shaft’s centerline has already been computed, resulting in the coordinates
of the center (Shaft Centerx,Shaft Centery)T . The length L is found by

L = Radius Shroud · sin(γ) (5.5)

where the angle γ is

cos(γ) = Shaft Centery
Radius Shroud

(5.6)

After determining the clearance, it is broadcasted via TCP in order to be picked up by the
processing unit and the main loop re-iterates.
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Figure 5.6: Geometry for determining signal at shrouded configuration with δ = 0°

5.2.1.3 Output Signal

The main loop iterates until a final value for the angle θ is reached while incrementing it
each step for 4θ. This results in the shaft orbiting its stationary ’offset’ with the specified
value of ’eccentricity’. Within every iteration the clearance underneath each defined sensor
is determined using the described geometric dependencies and sent to LabView via TCP.
For that purpose all clearances are attached to a string and broadcasted to the TCP server
that is hosted by LabView. The other routines build upon the just discussed calculation
sequence by modeling alternative machine geometry and simply refining the details for
signal generation in the main loop.
In case of simulating the displayed setup in figure 5.5 with an offset of [1,1] mm and a
constant eccentricity of 1.5 mm, the output signal for an entire revolution from θ = 0 to
θ = 2π for sensors placed at 0, 90 and 180 deg can be seen in figure 5.7. The figure shows
the change in radial shroud-casing clearance amplitude in mm underneath the three sensors.
Note, that only the output signal of the shroud routine directly displays clearance amplitude
in mm, due to the fact that only here a geometric distance was computed. As is apparent,
the circular orbit (eccentricity = const.) of the shaft causes a sine wave in output signal. The
clearances at θ = 0 to θ = 2π are equal since the shaft is back in its initial position after a
full revolution. Furthermore, the clearance underneath sensor 3 appears to always be bigger
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than underneath the other sensors. This is caused by the stationary offset of the rotor to
[1,1] within the casings referencing system. The orbit with the radius 1.5 mm (eccentricity)
is centered at [1,1], which means that the rotor is constantly closer to sensor 1 and 2.

Figure 5.7: Clearance signals of a shrouded machine of three sensors (offset = [1,1] mm &
eccentricity = 1.5 mm)

5.2.2 Simple Blades

The direct calculation of the clearance done within the shroud signal routine was only
possible due to clear geometric dependencies for the clearance. As soon as the blades are
not covered by a shroud, the connection between clearance and signal are not as apparent
anymore, which is why the measurement system model has to be used in order to ensure
realistic signal behavior. The simple blade signal routine starts by setting up the geometry,
interface, data matrices and TCP server connection and subsequently enters a main loop.
This loop is iterated while incrementing θ and for every iteration a output signal is created.

5.2.2.1 Initialization

The initialization of the routine starts by defining the underlying geometry parameters.
Note, that the only difference between the shrouded and bladed design is the absence of the
shroud. This circumstance is visualized in figure 5.8. The derivable geometry parameters are

• Radius Casing RCasing

• Radius Shaft RShaft

• Offsetx,Offsety
• Eccentricity
• Blade Count
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• Sensor Count

• Sensor Position δ

• Blade Length LB
• Blade Width WB

• Sensor Width WS

Figure 5.8: Geometry for simple blade configuration

Since this routine relies on the interaction between blades and a sensing area, the first step
is to place the square sensing areas within the coordinate system. The location depends
on the specified amount of sensors and their angular location δ. Additionally, the angular
distribution of the blades is calculated by equally spacing them over the range of 360 deg
using the expression:

α = 360
Blade Count

(5.7)

This concludes the setup of the geometry parameters. Subsequently the same initialization
steps introduced in the previous routine (interface, data matrices, etc.) are conducted and
the main loop is created.
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5.2.2.2 Main Loop

The first steps within each main loop iteration are similar to the one’s taken for shrouded
rotors. The only difference is a result of the necessity to model the blades in the present
case.

Shaft Center: Initially the shaft’s center position within the two-dimensional plane is
evaluated by equation 5.1:

Shaft Center =

 Offsetx

Offsety

+ Eccentricity

 cos(θ)

sin(θ)


As has been done at the shrouded rotor, this point is used to place a circle with RShaft

within the user interface. Every subsequent machine modeling step requires this center
position since the entire rotor is shaped around it’s center location. The state of the model
can be seen in figure 5.9.

Figure 5.9: Model after shaft is localized

Blade Roots: Since the simple blade signal generation requires the interaction of individual
blades with the sensing area, this part of the routine makes use of the shaft’s center location
and the geometry parameters for the purpose of finding the locations of the roots of the
blades. Within a loop, the location of each blade root is determined and the blade number
of the blade closest to a sensor - the active blades number - is evaluated. This serves the
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purpose of only having to compute the interaction of relevant blades with the sensors and
thereby reducing computational load in the upcoming steps. The mentioned loop iterates
for amount-of-blades i times, iterating the steps shown in figure 5.10.

Figure 5.10: Executed steps within the blade loop

According to the geometry shown in figure 5.11, a root point is determined by solving:

Root Pointi =

 Offsetx

Offsety

+ Eccentricity

 cos(θ)

sin(θ)



+RShaft

 cos(θ + α · i)

sin(θ + α · i)

 (5.8)

Subsequently, the distance from this root point [xi, yi] to each sensor’s tip is determined
and compared to the distances already calculated. If the distance is smaller than any stored
minimum value, it is stored as the new value together with the corresponding blade number
i for the sensor. Like this, the ’active’ blades that are the closest to each sensor are returned
at the end of the iteration over all blade angles αi. The model state after this step can be
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taken from figure 5.11.

Figure 5.11: Model after blade roots are found

Blade Shaping: Now the position of the shaft has been defined and all blade root points
have been computed. The next step is to attach blades to the shaft. In case of the simple
geometry, the blades are modeled as rectangle with certain width WB and length LB. The
routine calculates the four corner points of every blade dependent on the incremental
parameter θ and the individual blade angles αi, routing them to the root points and
ultimately storing the data. The result is visible in figure 5.12.

Figure 5.12: Model after blades are attached to the roots
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Plotting: Ultimately, the final state of the machine model is displayed in Matlab’s user
interface since the machine model is evaluated. There, basic information is provided for the
user as can be seen in figure 5.13. At the left, the entire rig is displayed two-dimensionally
and at the right, a zoom on the sensor area is visible.

Figure 5.13: Matlab interface for a simple blades

Signal Loop: Here the true difference in simulating the signal starts. Instead of directly
calculating the distance between the sensor tip and the rotor like at the shroud routine, a
sensing area is defined and intersections with the active blades are detected. This is done
within the signal loop that iterates over the amount of sensors, evaluating the signal for
each one of them through the steps shown in figure 5.14.

Figure 5.14: Executed steps for each sensor to determine signal
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First, the active blade and sensor area are checked for intersections using an algorithm by
Schwarz. The entire function that has been implemented within Matlab can be found in
the appendix of this thesis. In case of the blade and sensing area overlapping, this function
returns a set of intersection points, that is subsequently passed to another function sorting
the intersection location to be form a counterclockwise closed curve. This polygon is then
passed back in form of an array, containing all vertices. The idea is made apparent in figure
5.15.

Figure 5.15: Interaction of sensing area and simple blade

The benefit of having a curve that is oriented counterclockwise has been mentioned in
section 4.1 in connection with Green’s theorem. The derived equation 4.20 for calculating
the area in terms of a line integral

∮
C

1
2(xdy − ydx) = A

can be applied. Instead of a continuous curve, a polygon poses an even simpler form to
compute this equation, since there is no need to solve the line integral. In this special case
for discrete points connected by straight lines, the line integral can be substituted by a sum
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and the expression simplifies to

2A =
N∑
i=1

(x4y − y4x) (5.9)

For a finite set of counterclockwise oriented points, the result is a positive value for the
area A. In case of clockwise orientation, the result would be the negative value of A. The
computation is performed by implementing the following Matlab function:

func t i on [ area ] = area_algorithm (x , y )
%% (x , y ) are a r rays conta in ing the v e r t i c e s
%% area i s a s c a l a r conta in ing the value o f
%% the enc lo s ed area o f the polygon given by
%% (x , y )

% amount o f v e r t i c e s
N = length (x ) ;
% move the polygon to x > 0
x = x + abs (min (x ) ) + 1 ;
% i n i t i a l i z e area parameter
double_area = 0 ;
% main loop
f o r i =1:N

j = i + 1 ;
i f ( j > N)

j = 1 ;
end
double_area = double_area + x( i ) ∗ y ( j ) ;
double_area = double_area − y ( i ) ∗ x ( j ) ;

end
% return the area
area = abs ( double_area ) / 2 ;

end

Furthermore, the vertices are used to compute the center of the enclosed area by making
use of the geometrical center of said polygon with N vertices according to
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 xC

yC

 =


1

6A
∑N
i=1(xi + xi+1)(xiyi+1 − xi+1yi)

1
6A
∑N
i=1(yi + yi+1)(xiyi+1 − xi+1yi)

 (5.10)

The distance between [xC , yC ] and the sensor tip equals d, which concludes all the necessary
information to calculate a resulting signal according to equation 5.3

C = Signal = A

d

The combined signals of all sensors are transformed into a string and sent to LabView for
processing and the main loop restarts.

5.2.2.3 Output Signal

As has been the case at the shrouded rotor signal generation routine, the main loop iterates
until a final angle θ is reached. The sum of the individual signals for every incremental step
4θ can be seen in figure 5.16. The signal has been created simulating a rotor with 17 blades
at an offset of [1,1] mm and a constant orbit eccentricity of 1.5 mm. The three sensors were
placed as figure 5.8 suggested: at 0, 135 and 270 deg. Note, that the main differences to the
constant shroud clearance signal are the amplitude that is now a capacitance value in mF
and the pulsing character of the signals. The peak amplitudes translate to the maximum
capacitance that is caused by the blade being the closest to the sensor. At moments of rising
and falling capacitance the blades are either entering or leaving the sensing area. As will be
proven later, only the peak amplitude can be translated to a true clearance between sensor
and blade.

Figure 5.16: Simulation results of the simple blade routine (offset = [1,1] mm & eccentricity
1.5 mm)
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5.2.3 Squealer Blades

The last step in complexity added is the simulation of blades that divert from the just
discussed rectangular shape. As portrayed in 2.3, blades with squealer tips are used to limit
tip leakage flow. In this thesis a squealer blade is modeled by attaching two additional tips
to the tip of the simple blades from before. The location and amount of these additional
tips can vary in reality, therefore the procedure for two tips can be seen as general approach
that can be extended. The result is visible in the output, by having an extra, local peak on
top of the original blade peak for each additional tip.
The initialization steps are exactly the same as for the simple blade routine, with the only
difference being the addition of geometric parameters describing the squealer tips. These
parameters are:

• Squealer Width
• Squealer Height

5.2.3.1 Main Loop

Blade Shaping: After determining the shaft’s position, finding the blade’s roots and
modeling the basic blade rectangle like before, this routine is expanded to add the additional
tips. This is done by attaching two rectangles to the existing main blade. The result can be
seen in figure 5.17, where the user interface is presented.

Figure 5.17: Matlab interface at the squealer blade routine
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Signal Loop: The next alteration of the simple blade routine is the way the signal
is computed. The three separate surfaces - blade, right and left squealer - are treated
independently. For each surface the intersection with the sensing area, the resulting polygon,
the area Ai and the distance from the geometric center to the sensor tip di is calculated,
using the steps introduced at the simple blade routine. Subsequently, the three values Ai
are added up to Atotal and the center of this area is estimated by performing a weighted
addition of di according to

dweighted =
∑3
i=1 diAi
Atotal

(5.11)

The polygon describing the entire surface is presented for an exemplary setup in figure 5.18.

Figure 5.18: Interaction of sensing area and squealer blade (left) and resulting polygon
(right)

The final output signal for this iterative step is obtained according to expression 5.3

C = Signal = Atotal
dweighted

and sent to the TCP server hosted by LabView.
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5.2.3.2 Output Signal

Comparable to the simple blades, the distinguishing differences between the continuous
shrouded rotor clearance signal are the amplitude in terms of capacitance and the pulsing
structure. In addition to that, the two squealer tips cause two individual local maxima on
each of the blade passing peaks. The signal for the simulation of half a revolution of a rotor
with 17 blades with an offset of [0.5,0.5] mm and an eccentricity of 0.5 mm can be seen in
figure 5.19. The sensors were positioned at 0, 135 and 270 deg. Equal to the simple blade
signal, the clearance is not directly visible and has to be derived within LabView.

Figure 5.19: Simulation result for squealer blades (offset = [0.5,0.5] mm & eccentricity 0.5
mm)
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5.3 Signal Verification

Before starting to apply the radial rotor-casing clearance signals for the development of
the LabView routines, the resemblance of real world measurement data has to be proven.
The goal is not to achieve a perfect replication of actual signals but rather to ensure that
the clearance information is encoded within the signal in the same way. If this applies, the
derived clearance monitoring system is guaranteed to be applicable to simulated and real
world signals equally. Generally, three separate routines have been created using different
machine model geometries and alternating approaches in creation of a output signal. Since
the availability of real world measurement data is limited, the verification of the signal for
shrouded blades is done by proving accuracy for simple and squealer blades.
In figure 5.20 the comparison of clearance data for a simple blade passing by a capacitive
sensor is displayed. The left image (a) shows results of real-world measurement conducted
by Haase and Haase (2013). The authors highlight the effect of limited bandwidth on
capacitance peaks by low-pass filtering the ideal result shown in black. Since this effect is
not modeled in the present thesis, only the mentioned black peak is used as a reference.
Image (b) on the right displays a signal that has been simulated with the presented routine
for simple blades. It is apparent that the main difference lies within the less progressive and
more angular shape of the simulated signal at moments when the blade enters or leaves the
sensing area (A).

(a) Real signal by Haase and Haase (2013) (b) Simulated signal

Figure 5.20: Validation of signals created by the simple blade routine

The reason for that lies within neglecting the non-linear range of the sensor by modeling its
sensing area as a square, as has been presented in section 5.1.2. In real-world application
the sensor detects the arriving blade earlier and more progressive while it is moving through
the outer layers of the electrical field. Additionally, in accordance with section 5.1.1, the
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blades are modeled with perfect 90 deg corners. While this amplifies the angular character
of the signal even more, the integrity of the information carried by the signal is not affected
in both cases. This is due to the fact that the entire clearance information is contained in
the peak’s amplitude and not in its shape.
Similar to the simple blade geometry, the comparison of squealer blade routine results to
real-world measurement can be seen in figure 5.21. On the left (a) Haase and Haase (2013)
have analyzed the effect of limited bandwidth on measurement results for squealer blades
by low-pass filtering them. Again, the only important signal for the underlying statement is
shown in black for idealized system bandwidths. Note, that the author has used squealer
blades with three tips on top of the original blade instead of two, as has been the case
throughout this thesis. The comparison is still viable since the goal is to clarify if the
simulated signals are containing the desired information. Image (b) shows the result of the
simulation of a squealer blade. Equal to the simple blade results, the simulation proves to
create more angular results. This time the effect is not limited to the base of the peak (A)
like before, but reoccurs in times when a squealer passes the center of the sensor (C) and
when it leaves the sensing area (B). Nevertheless, the explanation remains the same. The
angularity is a result of neglecting the non-linear range of the sensor and the rectangular
shape of the blades, leading to the displayed abrupt changes in capacitance. Apart from
the differences in signal shape, the presence of two separate peaks suffices for the presented
processing routines to be functional.

(a) Real signal by Haase and Haase (2013) (b) Simulated signal with two tips

Figure 5.21: Validation of signals created by the squealer blade routine

Overall, the deflections of simulated signals from real data are deemed acceptable to justify
the design of a processing routine based on them. In combination with individual calibration
for every type of simulation, the signal can be expected to contain the clearance information
desired.
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5.4 Parameter Limits

Throughout the development process the combination of two parameters has proven to
be able to cause problems, due to the impact of altering signal structure in a way that
the peaks do not resemble their real-world equivalent. Therefore, a dedicated discussion
of the interaction between ’Sensor Width’, describing the square representing the sensing
area, and ’Blade Width’ is at hand. In the beginning of a simulation process a certain
Sensor-to-Blade-Width-Ratio (SBR) is specified by the user:

SBR = Sensor Width

Blade Width
(5.12)

If certain limitations of SBR are exceeded, the resulting signal shape might lead to peak
detection problems.

Simple Blade: Demanding the capacitance peaks to look like shown in section 5.3, the
shape can be rather different for certain SBR compositions. Figure 5.22 shows the results for
the variation from narrow blade widths (a) to wider blade widths (c) - always at constant
sensor width. While high SBRs (a) yield signal forms diverting from the ideal clearance
peaks, the information is still contained. Whereas at low SBRs (c), the danger of having a
constant amplitude or two detectable peaks might compromise the signal processing results.
At a SBR of two, shown in image (b), the best results are obtained. Generally, the lower
limit of SBR = 1 for successful signal simulation can be stated. Starting at this ratio, where
the blade and the sensing area are of equal width, the resulting peaks show periods of near
constant amplitude. Note the differences in maximum amplitude in all three cases, leading
to the necessity of calibration for every different SBR simulated.

(a) SBR = 10
1 = 10 (b) SBR = 10

5 = 2 (c) SBR = 10
15 = 2

3

Figure 5.22: SBR variation at simple blade geometry with constant 2 mm clearance
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Squealer Blade: While analyzing simple blade geometry, only two parameters were deemed
important for the simulation of correct signals. Now, at blades with additional detectable tips
on top of the actual blade, two more factors describing the geometry have to be accounted
for: the width and height of the additional edges. In figure 5.23 results for the parameter
variation of

• Sensor Width
• Blade Width
• Tip Width
• Tip Height

is presented. The parameters were always set in order for the main body of the blade and
the two tips to interact with the sensing area at some point. First, in figure 5.23 (a), a
high SBR with a tip width of 1 mm and a tip height of 2 mm is visible. The underlying
method does not manage to pick up on the two additional tips, since at the point of maximal
amplitude, the sensing area covers the blade and the tips, resulting in a single capacitance
peak being visible.
Lowering the SBR and increasing tip width to 3 mm and tip height to 4 mm, to fit the
increased blade width, results in the peak shown in figure 5.23 (b). As soon as the sensing
area square is too small to pick up on both tips entirely, two separate peaks become visible.
Alternating the parameters further to an even lower SBR and a tip height of 5 mm at
unchanged tip width in figure 5.23 (c), the separate peaks in amplitude become more
distinguishable. This behavior leads to the conclusion that the sensing area has to be small
enough, so that the two tips are never fully covered at the same time by the area, or only
one peak is detected. As mentioned at the simple blade before, the difference in maximum
amplitude for the three presented parameter variations requires for calibration for every
parameter setup.

(a) SBR = 10
7 (b) SBR = 10

15 (c) SBR = 10
20

Figure 5.23: SBR variation at squealer blade geometry with constant 1 mm clearance
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Chapter 5 concluded with the introduction of three different routines that simulate different
machine and measurement system models. The output signal of each routine is continuously
sent to a TCP Server, hosted by the monitoring routine, where they are processed and vital
information is derived. Due to its strengths in signal based computing and wide spread usage
in technical applications the software package LabView is used for that purpose. Caused
by the fundamental difference in signal structure as a result of different rotor geometries -
continuous or pulsing with possible variations - the development of three individual routines
is conducted:

• Shrouded rotor signal processing unit
• Simple blade signal processing unit
• Squealer blade signal processing unit

The most apparent information contained in each of the provided signals is the radial
rotor-casing clearance underneath a sensor. This data shall be derived from the signal and
subsequently be processed to gain additional information about the machine. Apart from the
reconstruction of the orbit and stationary offset that were specified, the goal is to determine
the smallest existing rotor-casing clearance at any time. To comprehend the functionality
and dependencies this chapter starts with outlining the most important processing tools
used within the individual routines. They are treated in order of appearance and shall
prepare the reader for the step by step discussion of the individual routine steps afterwards.

6.1 Processing Tools

The purpose of this section serves the introduction and explanation of key processing steps
used within all routines. Starting at the freshly simulated signal, the first step in any routine
can be the filtering of the signal to enhance its quality. This is followed by reducing the
signal to the key information, the clearance underneath the sensor. In case of the simulation
of the shrouded rotor the signal already directly correlates to the distance between sensor
tip and shroud. This statement does not apply to the signals of the bladed configurations.
The only part of the signal that correlates to a clearance minimum between sensor and
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blade are the peaks. Therefore, the applied peak detection algorithms are showcased in
combination with a verification method involving a so called ’key phasor’. After obtaining
the desired data from the signals, the following steps include the approximation of the
shaft’s location and extrapolating this data to gain an idea about the smallest available
radial rotor-casing clearance margin.

• Low Pass Filtering
• Peak Detection
• Usage of a Key Phasor
• Translating Signal to Distance
• Calculation of the Shaft’s Location
• Detection of the smallest Rotor Clearance

6.1.1 Low Pass Filtering

While discussing the entirety of the measurement chain in chapter 3, many secondary signal
components have been mentioned and even specifically treated in section 3.2.3, defining
the expressions noise and Signal-to-Noise-Ratio (SNR). Together with the introduction
of low-pass filtering in section 4.2, this leads up to the usage of said filter type for signal
enhancement by using the filter’s most important attribute - the dampening effect it has on
selective frequency components. It has been shown that at the cut-off frequency fc the loss
in magnitude of ≈ 3 dB comes along with a phase shift of -45 deg. Frequency components
higher than fc are affected more than those lower than fc. This can be used to effectively
reduce noise, since in the present case the blade peaks occur with a significantly lower
frequency than some noise components. Note, that not every secondary component in a
signal can be removed with this process.
Unfortunately, the application of a low-pass filter to increase signal quality comes at a
price. If the cut-off frequency of the filter is set to the blade-passing frequency, the loss in
magnitude of 3 dB occurs. Translating this value from the frequency domain with

−3[dB] = |G(jωc)|dB = 20log(|G(jωc)|) (6.1)

the resulting gain of

|G(jωc)| = 10(− 3
20 ) = 0.7071 (6.2)

causes a reduction in amplitude of around 30% on the signal components with that exact
frequency. Since the amplitude of the signal refers directly to the clearance, an error of this

88



6.1 Processing Tools

size renders the data useless. The resulting strategy leads to increasing the cut-off frequency,
so that mainly noise is affected by the filter. Due to the fact that the desired blade-passing
signal itself is composed out of multiple frequency components - some being much higher
than the blade-passing frequency itself - a loss in magnitude has to be expected even then.
The implemented filtering sub-routine that is used throughout the processing is displayed
in figure 6.1. After inputting a data array, the first step is to address filtering artifacts.
These are errors occurring at digital filters in the beginning and the end of the data set.
They can be removed by taking the first and the last value of the input array, creating
two new arrays containing one time only first array elements and one time only last array
elements. The length of these new arrays is set to be the same length as the input array,
which usually suffices, unless the input array contains very few elements. Now, the array
containing first elements is attached to the beginning, and the other one to the end of the
input array. This leads to the suppression of said unwanted artifacts. After that, a process
called forward-backward filtering is applied. The transformed array is inverted, filtered and
then inverted and filtered again. This leads to one time shifting the phase in one direction
and directly afterwards shifting it back the same amount, while the amplitude is affected
only in the first filtering step. The resulting array is clipped to contain only the central part
with the initial length and handed to the output.

Figure 6.1: Forward-Backward low-pass filtering routine in LabView

6.1.2 Peak Detection

As a result of the measurement system model simulated in Matlab, the blade’s interaction
with the sensing area that has been computed using equation 5.3

C = Signal = A

d
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show following tendencies:

• As soon as the blade enters the sensing area, the result for the overlapping area A
increases until it reaches a maximum, when the blade is directly in front of the sensor.
Subsequently, the value for A falls back to zero when the blade moves away from the
senors tip and leaves the sensing area.

• The distance d behaves in the exact opposite way. Initially, when the blade enters the
sensing area, the value for d is a maximum and falls off towards the sensor tip. After
reaching a minimum when the blade is right underneath the sensor tip, the value
increases again until no interaction between blade and sensing area is recorded.

These tendencies allow for the statement that the resulting signal reaches the maximum,
when the blade is the closest. This peak in the signal amplitude is therefore representative
of the clearance between the blade and the sensor’s tip. Note, that only the peak links to a
clearance, since A and d increase and decrease due to the blades lateral movement and not
just based on radial displacement.
In section 4.3 a method for detecting these peaks has been introduced. After fitting a curve
into the available data and differentiating the resulting function, information about peaks
and valleys can be obtained. Something that has not been specifically mentioned though,
was the smoothing effect of curve fitting. Dependent on the amount of data points N that
have been set to be used for the calculation of the curve, and the order of the polynomial, a
significant amount of noise is evened out, as is displayed in figure 6.2 (a). The problem is a
loss of accuracy. If the amount of data for a curve fit is set too high and the order of the
polynomial is set too low, peaks might be underestimated and valleys overestimated. This
means the resulting polynomial predicts the peaks less and less accurate, the higher N is.
The software package LabView provides a sub-routine dealing with peak detection. The sour-
ce code for this routine is encrypted and can therefore not be analyzed directly. Nevertheless,
LabView’s documentation at the National Instruments Website states the usage of second
order polynomial curve fitting using the ’least squares’ method that has been presented in
the mathematical background in section 4. The routine provides an input called ’width’,
resembling the amount of data points N the routine uses at once. The lower limit to be able
to fit a second order polynomial y = a2x

2 +a1x+a0 is three. When setting up this value, the
resulting polynomial contains all of the provided data points, achieving the highest accuracy.
By successively fitting second order polynomials into sets of ’width’ amount of points and
then continuing to the next set, the entire data is reduced to Amount of Samples

width
individual

polynomials that can be checked for peaks and valleys by differentiation. Figure 6.2 (b)
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shows the improvement in resemblance with the actual data of stepwise approximating the
curve, compared to using a single fitting step, as has been the case in figure 6.2 (a).

(a) Curve fitting using a single fitting step (b) Curve fitting using sets of three points

Figure 6.2: Differences in accuracy for fitting second order polynomials

When thinking about the data from figure 6.2 as a peak in capacitance due to a blade
passing by and the local fluctuations as noise affecting the clean signal, the difference
in detected peak amplitude ypeak between (a) and (b) becomes apparent. Note, that in
noise-heavy signals, low ’width’ can lead to detection of local amplitude spikes caused by
the noise itself, what poses a threat to the integrity of the routine. At a high ’width’ on the
other hand, the maximum peak value might be underestimated. The answer to the question
of which one is more accurate is very situational and shall not be evaluated for the given
example, since only the effect of smoothing should be pointed out at this moment.

Problem: While the peak detection algorithm integrated into LabView performs well at
detecting peaks inside the array, the underlying mathematical models fail at the edges
of the array. To explain the arising problems a thought experiment can be conducted:
Imagine having two consecutive clearance data arrays. The first one shows rising capaci-
tance due to an approaching blade and the second one contains decreasing capacitance
values as a result of the same blade moving away from the sensing area. The idea is made
apparent in figure 6.3. The maximum value lies either at the right end of the first array,
or at the left end of the second array - the statements made apply in either case. Note,
that left indicates a lower index within an array and thus an earlier time of sample recording.
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Figure 6.3: Two consecutive signal data arrays with a peak at the cut

Handing those two arrays to the peak detection sub-routine yields no peak information.
This is due to the fact that the sub-routine starts at the left side of the first array taking
’width’ amount of samples, fitting the polynomial, differentiating the resulting equation and
proceeding to the next ’width’ amount of samples until it reaches the right end. Since the
amplitude A was said to be rising steadily with increasing index i, the statement Ai < Ai+1

can be made. This leads to the fact that the last fitted polynomial p(x) is steadily rising
and thus does not have a maximum according to dp(x)

dx
= 0. As soon as the next sample set -

the second array mentioned previously - is buffered and sent to the processing unit, the
peak detection sub-routine starts at the left and finds amplitudes according to Ai > Ai+1,
resulting in an polynomial that steadily decreases and neither yields any extremum.
The problem just described concerning peaks at the edges of arrays only gets worse when
increasing the ’width’ setting of the detection sub-routine. For a peak with linear slops, the
’width’ setting, for which a peak could not be detected in relation to the offset of the edge
of the array with N elements, is shown in table 6.1

Table 6.1: Detection limits regarding the ’width’ setting
’width’ index of the peak, so that no peak was detected

5 N-1

6 N-2

8 N-3

10 N-4

12 N-5
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Generally the statement

A peak at index N-i of an array with N elements can only be detected, if
width

2 ≤ i.

describes the boundaries for the functionality of the sub-routine for a signal with linear
slops at a gradient of ±1. Note, that this statement is based on empirical data, since the
source code for the implemented routines could not be accessed. Changing the slops leads
to different results, since the fitted second-order polynomial might be shaped differently.
The tendency of missing peaks at the cut remains nonetheless.

Solution: The problems arising are rather rooted in array-based data processing than
in the detection routine. Nevertheless, since the integrity of the data is based on stable
detection of every blade, this problem has to be addressed. To avoid referencing mistakes
by missing peaks, the routine is expanded to repeat the following steps within the data
processing loop (B) (compare figure 6.4):

1. Receive sensor signal in form of an array.

2. Label this array ’Array 1’.

3. Run the peak detection routine with ’Array 1’ as input.

4. Pass peak information on to referencing.

5. Store ’Array 1’ for next loop iteration.

6. Receive sensor signal in form of an array.

7. Label this array ’Array 2’.

8. Take X amount of samples from the end of ’Array 1’ and from the beginning of ’Array
2’ respectively.

9. Merge the samples together, forming a new array.

10. Label this array ’2nd instance’.

11. Run the peak detection routine with ’2nd instance’ as input.

12. Pass peak information on to referencing.

13. Run the peak detection routine with ’Array 2’ as input.

14. Pass peak information on to referencing.

93



6 LabView Signal Processing

Figure 6.4: Solution for problem at array-based peak detection

This procedure allows for the detection of peaks that were initially at the edge of an array,
by moving them to the middle of a new array. This second instance is accompanied by
intermediate steps that serve the avoidance of double detection of peaks by cross-referencing
indices of the peaks found throughout the entire process. The method ensures loss free peak
detection with LabView’s integrated peak detection sub-routine, which has already been
mentioned to be vital for the integrity of the entire processing routine.

6.1.3 Key Phasor

A problem that arises during measurement conducted at rotors with either none (shroud)
or many (bladed) distinctly shaped rotor components is that referencing can be difficult.
Since the measurement system samples data only at discrete points in time and angular
velocities of the machine are usually transient to some extent, an external signal has to
be used for tracking the angular position of the rotor - a ’key phasor’. This sensor’s sole
purpose is creating a pulse once per full revolution of the rotor.
In combination with predefined ’First Blade after the Sensor’ information, the signal of the
phasor can be used to confirm that each clearance signal is assigned to the corresponding
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blade. This is done by comparing the time stamp of the last peak before the key phasor
signal (peak 1) and the peak after the key phasor signal (peak 2) to the key phasor signal
itself. The key phasor signal has to arrive between the two consecutive peaks and the blade
number of peak 2 has to be equal to the ’First Blade Number for Sensor i’. Note, that
instead of using a time stamp a global x-scale like in figure 6.5 can be established, fulfilling
the same purpose.

Figure 6.5: Concept of data validation using a phasor signal

6.1.4 Signal to Clearance

In case of the bladed rotor signals, the information is provided in terms of capacitance over
time. The simple and squealer blade routines calculate the signal according to equation 5.3:

C = Signal = A

d

At this point it has to be emphasized that the radial rotor-casing clearance is not equal
to the value d. This distance was a byproduct of the capacitive sensing model. Figure 6.6
shows the circumstance.
Therefore, the signal is translated to the clearance using a calibration curve. The data for
this curve is recorded by setting up a centered shaft (no eccentricity nor offset) with constant
blade length. Due to the centering, the clearance is equal at the entire circumference. This
setup is simulated and the maximum signal amplitude is obtained with LabView.
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Figure 6.6: Distinction between clearance and distance d

Since the machine geometry is known, this amplitude refers to the clearance obtained by:

Clearance = Radius Casing − (Radius Shaft+Blade Length) (6.3)

By repeating this process for clearances ranging from zero to five millimeters in smalls steps, a
curve connecting signal and clearance is acquired. In figure 6.7 the discrete (signal,clearance)
inputs can be seen in terms of a cross. Through linear interpolation every signal can thereby
be linked to a clearance.

Figure 6.7: Calibration curve within LabView
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6.1.5 Shaft Location

Note, that up to this point no specifications concerning the amount of sensors used for
measurement have been made. Generally, a single sensor is sufficient to acquire clearance
data between the sensors tip and the rotor component. If two additional sensors are
mounted on the casing - making a total of three - the mathematical principle concerning
the unambiguous definition of a circle by the means of three points on its circumference
that has been presented in section 4.4, can be applied. In order to do so, the definition of
the position of each of the sensors on the casing’s circumference has to be specified:

• Sensor 1 Position δ1

• Sensor 2 Position δ2

• Sensor 3 Position δ3

By knowing the sensor positions and the radius of the casing, the detected clearances can
be assumed to be points of a circle that is inscribed into the shroud or tips of the blades
respectively. A sub-routine allows for the computation of the center of said circle and its
radius according to equations 4.63 to 4.65

xC = − B

2A ; yC = − C

2A ; r =
√
B2 + C2 − 4AD

4A2

The three points in two-dimensional space are acquired by solving the expression xi

yi

 = (Radius Casing − Clearancei)

 cos(δi)

sin(δi)

 (6.4)

for each individual sensor. The idea is made apparent in figure figure 6.8. Assuming that
the three clearances used to define the circle are all recorded at the same time and that the
machine components all are perfectly circular, the resulting center of the circle (xC ,yC) is
the momentary position of the shaft. The shaft’s movement can be tracked by computing
this position repeatedly and using the resulting path to assess the machine’s operational
condition. Note, that this procedure implies that a perfect circle can be inscribed into the
shroud tip or the blade tips respectively. The error this leads to in case of length variations
of the blades or imperfect shroud circularity will be analyzed later on.
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Figure 6.8: Circle inscribed into the blade tips/shroud

6.1.6 Rotor Clearance

As a result of the successful determination of the shaft’s position using the clearance data
underneath the sensors, the smallest clearance between the rotor and the casing can be
approximated. Note, that in figure 6.8 this value coincidently equaled the clearance signal of
the sensor at position δ1. In a more general location, the clearances between sensor tip and
rotor might not show this minimum. This case is displayed in figure 6.9. The location of
the smallest clearance is found by drawing a line from the center of the casing (0,0) to the
casing, while passing the center of the shaft (xC ,yC). Therefore, this value can be calculated
using

Min. Clearance = RCasing − (
√
x2
C + y2

C + r) (6.5)

Both shaft center (xC ,yC) and the radius of the circle inscribed into the tip r are a result of
the unambiguous definition of circle using the three sensors.

98



6.1 Processing Tools

Figure 6.9: Smallest radial rotor-casing clearance
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6.2 Routines

After explaining the essential tools used for data processing, the structures implemented
into LabView are now introduced. First, the routine for shrouded blades shall be discussed,
focusing mainly on the framework since the continuous nature of the signal does not require
peak detection. Second, the additional complexity of detecting peaks and storing the clea-
rances accordingly in the case of simple blade geometry is outlined and the implementation
discussed. Ultimately, the solution for the challenge provided by the detection of additional
peaks of squealer blades is presented.
The development of the individual signal processing routines shall rely on as little geometry
input from the user as possible. This is due to the fact that every input error affects the
overall quality. Therefore, the amount of input is limited to the most essential parameters.
To be more specific, only the following machine details are requested by the processing units
in order to be functional:

• Radius of the Casing

• Amount of Blades

• Angular Sensor Positions

Additionally only parameters concerning routine functionality are set. They include infor-
mation about the first blade passing each sensor after a key phasor signal, selection of the
incremental or decremental referencing system, number of rotations to use for averaging
data and number of squealer tips. After the setup, a similar routine flow is processed for
every geometry. The basic layout is visualized in figure 6.10.

Figure 6.10: Basic LabView routine layout
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6.2.1 Shrouded Blades

Settings: The first step is to demand the parameter values. In figure 6.10 the outermost
frame resembles a sequence. The routine waits at ’Settings’, until the user has specified the
necessary input parameters like the radius of the casing or amount of blades in the cascade.
As soon as the setup is done, the routine proceeds to spawn three parallel loops. (A) the
’Data Acquisition Loop’, (B) the ’Data Processing Loop’ and (C) the ’Postprocessing Loop’.
All these loops are infinite while-loops, being iterated as often as needed until the entire
routine execution is stopped.

Data Acquisition: LabView’s convention concerning shifting data from one loop to another
requires for the displayed ’queue’, a data package designed to transport data within LabView.
In the present case, a TCP server is initialized within loop (A), in order to acquire Matlab’s
simulated signal. In real-world measurement, this step can be replaced by DAQ routines
that read measurement data from according devices. In either case the data gets picked up
and is attached to the end of the queue.

Data Processing: As soon as this has happened, the queue is updated and therefore data
available within loop (B) that is responsible for the data processing. This entity waits until
the queue is not empty, then takes the data from the beginning of the queue, optionally
filters the data and runs various processing steps. In the case of shroud signals the data
does not have to be processed, since every sample within the array relates to a clearance
value over time. Therefore the data is directly stored and made available for the loop (C),
where the clearance can be postprocessed and additional information acquired.

Data Post-Processing: Since the clearance between the sensor and the shroud is already
available, the shaft’s location can be approximated with the method mentioned in section 6.1
in the next step. At a certain angular position of the rotor θ0, three sensors record arbitrary
values that are used to solve the circle’s equation and thereby obtain the momentary shaft
location for θ0. Doing this for multiple values of θi within the course of one revolution of
the rotor shows the shaft’s orbit.
Apart from immediately calculating the shaft center for every set of sensor clearance values
available, the data can instead be buffered over the course of multiple revolutions. By
subsequently averaging the clearance values for each sensor corresponding to each θi of the
rotor, an average clearance is obtained. The result of approximating the shaft’s location
using these values is a more stationary picture of the orbit. Note, that at an excessive
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amount of revolutions used for averaging, the resulting orbit does not show short-lasting
effects.
Additionally, another option for orbit prediction can be introduced. Instead of using clearance
information at each spatial step θi to estimate the orbit, all clearances for one sensor over
the course of one revolution can be averaged, resulting in a mean clearance per revolution.
If this average value of each sensor is used to inscribe the circle, the resulting point is the
centroid of the shaft’s orbit line, equal to the stationary offset defined in the machine model.
These combined data processing steps lead back to the information specified within the
creation of the machine model 5.1.1:

• Offset: The stationary component of the shaft’s centerline displacement within the
casing.

• Eccentricity: The current distance between the stationary offset and the absolute
position.

Figure 6.11 shows LabView’s output of a shaft simulated at an offset of [1,1] mm and an
eccentricity of 0.5 mm. The red crosses indicate shaft center locations at discrete points.
The black cross at the center of the red orbit is the processing result of the shaft’s stationary
offset. The entire visible graph shows one full revolution of the rotor.

Figure 6.11: Orbit information displayed in LabView
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Additionally, since the shaft’s orbit was obtained, the minimum clearance between the rotor
and the casing can be approximated. In accordance with the procedure introduced in section
6.1.6, the LabView routine calculates the minimum clearance for every position of the shaft
(red crosses in figure 6.11) and returns the smallest radial rotor-casing clearance found
in combination with the angular position. The result is plotted in a graph in LabView,
displayed in figure 6.12. The dashed black line shows the position of the centered rotor, the
red cross the rotor’s center and the thin black line the casing. The rotor in it’s closest state
is represented by the thick black line. The red circle indicates a clearance limit that the
rotor should never exceed. Note, that this plot does not display true distances since the
machine dimensions exceed clearance variation by far and the information would not be
conclusive otherwise. Given the fact that the figure has been created using an offset of [1,1]
mm and an eccentricity of 0.5 mm this is the resulting minimum rotor-casing clearance
for the orbiting shaft shown in figure 6.11 before. Note the angle of minimum clearance of
45 deg that is caused by the definition of a stationary offset in the same direction and a
circular orbit.

Figure 6.12: Minimum rotor clearance location displayed in LabView
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6.2.2 Simple Blades

As soon as the signal shows pulsing instead of continuous character, the fundamental routine
from the previous section has to be extended. The main difference is within the data
processing loop (B), where the acquired signal has to be processed unlike before.

Data Processing: Instead of having an entire array full of clearance values, the bladed
signal consists of peaks that occur at the blade-passing frequency. As has been proven
in section 6.1.2, only the peak amplitude of each signal spike contains information of the
clearance between the sensor and the blade. In conclusion to that, after extracting the
data array from the queue’s end, the data is optionally filtered and then handed on to
LabView’s peak detection sub-routine. The second order polynomials are fit into successive
packs of ’width’ data points using the least squares method and the maxima are determined.
The resulting array containing peak amplitudes is passed on to an entity handling the
storage of the peak values, where the individual capacitance values can be referenced with
the according blade. The signal of the simple blade Matlab routine displayed within the
LabView processing interface can be seen in figure 6.13 in white. The result of the peak
detection is indicated using green crosses.

Figure 6.13: Peak detection: signal and peak information of simple blades

In order for the referencing to be functional, four additional settings are introduced:

• First Blade Number for Sensor 1
• First Blade Number for Sensor 2
• First Blade Number for Sensor 3
• Incremental or Decremental Numbering System

The upper three ensure that the first clearance value detected is referenced with the right
blade. After that, every successively detected peak value is either stored an index above
(incremental) or an index below (decremental) the one before. As soon as amount-of-blades
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amplitudes are detected and stored, the entire storing process restarts at the initial blade and
the next dimension. This allows for the user to define a numbering system on the machine
and have the routine use the same system. The result of this process is the multidimensional
array containing blade-by-blade clearance information in form of capacitance, displayed in
figure 6.14.

Figure 6.14: Clearance data in terms of capacitance for multiple rotations

Data Post-Processing: First, since the clearance data does not correspond to actual
distance yet, the data has to be transformed. Note, that this was not necessary at the
shrouded routine, because there the simulated signal has always been a geometric distance. In
order to obtain the distance between the sensor and a blade tip, a calibration curve according
to section 6.1.4, containing the information of known distance-capacitance combinations, is
used. By using linear interpolation, every value for capacitance is linked with a corresponding
distance and stored as clearance data in terms of distance. The resulting array for the
simulation of 10 revolutions can be seen in figure 6.15, displaying the resulting blade-by-blade
clearance underneath one sensor in LabView. The red indicators are the maximum values
detected, the green ones indicate the minimum and the white line represents the average
clearance.

Figure 6.15: Clearance data between blade and sensor of a rotor with 17 blades

Second, the same possibility of computing the shaft’s location by the means of data of three
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arbitrary sensors is available. In the prior case of shrouded blade configuration, the data
was assumed to be continuous, meaning that the three sensors were detecting clearance data
at all times. Since the sampling frequencies of the sensors were assumed to be synchronized,
the three clearance values were captured simultaneously and thereby always corresponded.
At the present case of pulsing signals the circumstances change. Even though the sensors
sample rates are again synchronized, the blades passing underneath them are not. Figure
6.16 highlights the problem at hand. If the sensors are not adjusted to the blades (a), the
sensors pick up on a blade passing by one after another, leading to a time difference in
between referencing data. This means that the three required points located at the circle’s
circumference are not captured at the same time. As a result of the shaft being at a different
position for each of the three recorded clearances, the results for equations 4.63 to 4.65

xC = − B

2A ; yC = − C

2A ; r =
√
B2 + C2 − 4AD

4A2

are corrupted. In order to maintain the possibility of extrapolating the shaft’s exact location
from clearance data, the sensors have to be adjusted to the angle distributing the blades α
like in figure 6.16 (b).

(a) Unadjusted Setup (b) Adjusted Setup

Figure 6.16: Problem of sensor placement at a finite number of blades

Note, that the problem caused by sensor misalignment equally affects orbit prediction using
clearance data that has been averaged over multiple revolutions. The shaft’s movement
in times between clearance data being available can not be tracked and therefore still
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leads to the false approximation of the orbit. Consequently the prediction of the minimum
rotor-casing clearance loses accuracy since it is based on the correct approximation of the
shaft’s location and it’s radius. The effect the sensor adjustment has on accuracy while
calculating orbit, stationary offset and therefore on minimum clearance prediction shall be
discussed and analyzed with more details later on in this thesis.

6.2.3 Squealer Blades

The differences between the routines for simple blade geometry and squealer configuration
are limited to the processing of number-of-squealer-tips-detected times as many peaks as
before. This routine offers the potential to deal with signals that have more than one peak
per blade, which leads to the introduction of another input parameter:

• Number of Tips

According to this setting, the routine reacts with appropriate measures.

Data Processing: In order to be able to successfully deal with a wide range of signals, a
convention is established:

In this thesis, the first detectable peak of the blade is treated as information
carrier.

This is in accordance with tip timing application that usually detects the time of blade
arrival based on the first time a predefined threshold is exceeded. Furthermore, the first
peaks seems the obvious choice due to the fact that contact calibration might be difficult,
when having to reference a part of the blade that is hard to access. Note, that it might be
required to use the highest, local peak since only there a minimum clearance for the blade
is encoded. This thesis neglects this fact by assuming the individual squealer tips to be of
equal height. If this assumption proves to be flawed in real world application, the routine
has to be altered and the highest peak has to be processed.
Following the stated convention, the incoming data array - after being optionally filtered
- is handed to the same peak detection sub-routine as before. Then, in case of two peaks
per blade being detected, the peaks are passed on to a new sub-routine that effectively
eliminates every second peak of the blade, leaving behind only clearance information that
is encoded into the first tip. The result of this process is made apparent in figure 6.17.
It displays the capacitance signal of the squealer blade Matlab routine within LabView’s
interface in white and the found peak using the green cross. Note, that the second peak
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caused by the right squealer blade (between samples 280 and 320) has been found, but has
already been sorted out. Furthermore, the figure displays a red cross at sample 0. This
is a result of the solution implemented to avoid detection problems at the edge of arrays
introduced in section 6.1.2. The cross indicates the amplitude of a peak found at the right
side of the last data set, which is why it is placed at sample 0. Without the additional
measures taken to detect peaks at the edge of arrays this clearance information would
have been lost and the referencing of the data to corresponding blades would have been
corrupted.

Figure 6.17: Peak detection: signal and peak information of squealer blades

Subsequently, the resulting blade-by-blade array is made available for the post-processing
loop (C), where the same steps can be taken as before. There is no difference in processing
compared to simple blades, as soon as the signal has been reduced to clearance values. This
statement includes the limitations of orbit prediction available for unadjusted sensor setups.
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After showing the range of possibilities that the presented LabView routines give the user
to process various radial rotor-casing clearance data of an axial thermal turbomachine, this
chapter deals with the stability and accuracy of the results. The individual tests are all
conducted with selected parameters set to be constant:

• Radius Casing: 250 mm
• Radius Shaft: 50 mm
• Sensor Count: 3
• Peak Detection ’Width’: 3 Elements

For the tests, the already discussed machine model, once more displayed in figure 7.1, is
simulated with various input parameters. The produced signals shall first elaborate the
LabView routines concerning requirements for the measurement system and the influence of
the sensor setup. Subsequently, the processing routine is given signals containing geometric
and measurement system imperfections. The results are representative of a worst case
scenario. This will be followed by conducting a parameter variation within LabView in order
to improve the results that have been returned with imperfect input signals.

Figure 7.1: Machine Model
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For the performance tests a general work flow is introduced. First, the machine model (figure
7.1) is simulated. After every incremental calculation step, the resulting signal (figure 7.2
(a)) is transfered via TCP to LabView. The continuous stream of clearance data in terms of
capacitance is buffered by LabView and the array based peak-detection is applied to each
data set (figure 7.2 (b)).

(a) Matlab Signal

(b) LabView Signal

Figure 7.2: Transfer of the simulated signal to LabView

The results of the peak-detection are referenced with the according blades and stored for
further processing. Before the next steps lead to the output of the desired information, the
capacitance values are transformed into a distance using linear interpolation on a calibration
curve. Note, that this is done using the same calibration data throughout the entire chapter
in order to acquire comparable results. The resulting clearances between the blades and the
individual sensors are then returned to the user (figure 7.3 (a)). After that, the gathered
clearance data is used to approximate the shaft’s location. The results for the processing of
an entire revolution of the shaft is it’s orbit and an estimated stationary offset (figure 7.3
(b) - LabView results exported to Excel). The final processing step calculates the magnitude
and angular position of the rotor’s minimum clearance within the casing (figure 7.3 (c))
using the most recent orbit data.
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(a) Clearance Result

(b) Orbit and Offset Result (c) Min. Clearance Result

Figure 7.3: LabView Information Output
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7.1 Sample Rate Requirements

The first essential information that can be obtained with the introduced systems is the
required sample rate of the measurement system. For that purpose, the clearance signals
are simulated using various different spatial resolution rates and the effect on the processing
results will be shown.
Before that, the frequency of the signal that should be measured has to be defined closer.
When looking at a turbomachine, seeing less than 3000 RPM is a rare case since high
rotational speed is essential for the realized work. When assuming 6000 RPM as operational
parameter for an axial turbine with 71 blades, the Blade-Passing-Frequency (BPF) is
calculated according to

BPF = 6000
60 · 71 = 71001

s
= 7100 Hz (7.1)

While introducing AD conversion in section 3.2.2, the expression ’sample rate’ was used
and the Nyquist theorem as a boundary for successful signal detection without aliasing was
introduced with equation 3.5. When applying the Nyquist theorem to the blade-passing
frequency, the need for a sample frequency of 14200 Hz becomes apparent. Unfortunately,
this frequency is not even close to the sample rate actually needed for measurements with
acceptable accuracy. The ideal case at this setup would be to sample the signal at points of
a blade being the closest to the sensor (maximum amplitudes). In this case the clearance
results are accurate. On the other side, if the sensor only samples an arriving or leaving
blade, the peak amplitude would be reduced and false information obtained. Recall, that
the peak amplitude is directly linked to the clearance magnitude between sensor and rotor
and therefore the detection of the maximum amplitude is indispensable. In order to prove
these statements and show their impact, the Matlab routines are used and the results are
presented in the following pages.

Over- and Undersampling: In the present simulation the effect of undersampling by
limited sample rates can be shown by increasing the spatial stepping width 4θ. This leads
to the calculation of less points for a full revolution of the rotor and thus less information
being sent to the processing unit. Figure 7.4 shows the results of three different stepping
widths. In black an oversampled peak with 4θ = 1500 is displayed. The resolution by
data points is high enough to pick up on the blade’s movement while passing the sensing
area. The results in green for 4θ = 200 and 4θ = 175 are both undersampled. Note, that
the deviation of the green peak from the correct amplitude in black might be considered

112



7.1 Sample Rate Requirements

acceptable, while at almost the same stepping rate the result might be a peak with half of the
true maximum value, shown in red. This uncertainty leads to the necessity of oversampling.

Figure 7.4: Clearance signals for different spatial stepping rates4θ at simple blade geometry

Generally speaking, higher sample rates allow for resolving more details than lower rates.
This statement becomes even more important for difficult geometries, like the squealer
blades in figure 7.5. The loss of critical information compared to the oversampled peak in
black starts at higher values for 4θ. Already at 4θ = 750 the blue sensor response data
shows a reduced peak amplitude for the second tip. Decreasing the steps per revolution
further to 4θ = 200 the geometric features of the squealer blade are not resolved anymore
and the drop in amplitude renders the data useless.

Figure 7.5: Clearance signals for different spatial stepping rates 4θ at squealer blade
geometry
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Effect on Processing: The problem from a loss in signal amplitude is linked the correlation
the peak has with the clearance between blade and sensor tip. Since a high signal amplitude
is equal to a small clearance, the effects of undersampling lead to false information being
processed in the monitoring routine. The reduced peak amplitude is detected, the value
translated into a distance and a false clearance margin is displayed. The effect can be shown
using the established systems by processing an oversampled and undersampled signal. The
simulations are conducted on a machine with a rotor with 17 blades, a stationary offset of
[0.25 0] mm, an eccentricity of 1 mm and following geometry:

• Radius Casing: 250 mm
• Radius Shaft: 50 mm
• Blade Length: 197 mm

The LabView results for the processed shaft locations can be seen in figure 7.6. The stepping
rates are 4θ = 3400 for the oversampled results (a) and 4θ = 500 for the undersampled
results (b). The orbit in (a) gives a good representation of the set up machine parameters,
while the undersampled signal (b) has led to the rather chaotic orbit on the right.

(a) Oversampled Signal (b) Undersampled Signal

Figure 7.6: LabView orbit results of over- and undersampled signals

As a result of the approximation of the shaft’s path LabView estimated the smallest available
clearance between rotor and casing. Note, that the expected direction of the minimum
clearance should be at exactly 0 deg and show a magnitude of 1.75 mm due to the setup
that has been made. The resulting predictions created by LabView can be seen in figure
7.7. While the location at the oversampled signal has been estimated with 359.9 deg and
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1.74942 mm (a), the processing of the undersampled signal returned 342.7 deg and 2.2041
mm (b). Note, that this is only one of the possible outputs for the undersampled data. The
blades were detected with alternating precision every subsequent revolution. This led to a
variance in accuracy of the predicted orbit and thereby to the angular position and margin
of the smallest clearance to be estimated differently for every revolution.

(a) Oversampled Signal (b) Undersampled Signal

Figure 7.7: LabView min. rotor clearance results of over- and undersampled signals

Requirement: Since the effect of undersampling has been shown, a limit for accurate
results has to be derived. In table 7.1 rotor-sensor clearance results of simple blades for
different 4θ steps are displayed for one sensor. The signal was simulated using a centered
rotor setup with a known, constant clearance between the rotor and the casing at the
entire circumference of 1 mm. The blade row contained 17 blades, leading to the same
amount of peaks displayed for one full rotation. Furthermore, assuming an angular velocity
of one revolution per second leads to a BPF of 1

17 Hz. Starting at a sample rate of about
50 times the blade-passing frequency ( 1

17 · 50 = 1
850), which correlates to a stepping rate of

4θ = 850, the peaks are resolved accurate enough for stationary results. After that, some
peaks are cut short while others are sampled correctly, making a calibration impossible.
The necessary bandwidth for accurate signals lines up with the results of Haase and Haase
(2013). The authors state the necessity of sample frequencies that are about 30-times the
signal frequency for accurate measurement.
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Table 7.1: Clearance results for a variation of 4θ for simple blades at a 1 mm gap
4θ Min. Clearance [mm] Avg. Clearance [mm] Max. Clearance [mm]

3400 0.999809 0.999809 0.999809

1700 1.00056 1.00056 1.00056

850 1.00318 1.00318 1.00318

500 0.89178 0.94511 0.99845

200 1.00090 1.47334 2.59625

Table 7.2 shows the clearance results for squealer blades at various sample rates for the same
setup as before (1 mm constant clearance between rotor and casing). The same pattern
as has been witnessed with simple blade geometry can be observed, even though the loss
of amplitude starts at higher values of 4θ. This can be seen in the increase of clearance
starting at 4θ = 3400, which correlates to a smaller capacitance peak being detected.
(Clearance ≈ 1

Signal
) While the resulting values still appear to be stationary down to 4θ <

1000, the increase in clearance shows that the tips of the two peaks have been cut (compare
blue peak in figure 7.5). The uncertainty this implies has to be avoided.

Table 7.2: Clearance results for a variation of 4θ for squealer blades at a 1 mm gap
4θ Min. Clearance [mm] Avg. Clearance [mm] Max. Clearance [mm]

5000 0.99924 1.00019 1.00373

3400 1.05375 1.05375 1.05375

1700 1.07669 1.07669 1.07669

850 1.28545 1.28545 1.28545

500 1.15024 1.21845 1.29791

Even though this thesis talks about sample rate in sense of4θ, both of these values represent
spatial resolution. Due to this fact, the requirements for accurate measurement conducted
on turbomachinery apply to the simulation domain as well as to real-world measurement.
To sum up the statements made throughout this section: The necessary sample rate has
been proven to be dependent on geometry, the angular velocity and the blade count and
lies at around 30 to 50 times higher than the blade-passing frequency.

116



7.2 Error Propagation

7.2 Error Propagation

It can be stated that the prediction of the smallest clearance between rotor and casing
is directly linked to the accuracy of the approximation of the shaft’s orbit according to
equation 6.5:

Min. Clearance = RCasing − (
√
x2
C + y2

C + r)

The values xC , yC and r are the solution of the system of equations inscribing the circle
into the rotor’s blade tips/shroud. Every error that has been introduced while localizing the
shaft affects the computation of the min. rotor-casing clearance equally. This has become
apparent in the previous section, where undersampled data was processed. The result was a
transient approximation of angle and magnitude at the simulation of stationary machine
parameters. Instead of repeating the same statements for the rest of the performance study,
the accuracies shall be linked within this section. By doing that, every improvement of
the shaft’s localization accuracy can be transfered to the estimation of the smallest radial
clearance between rotor and casing.
In order to show the impact the precision of shaft localization has on the equation above,
the Gaussian error propagation can be applied:

uf =

√√√√ N∑
i=1

( ∂f
∂xi

u(xi))2 (7.2)

In this equation, uf represents the deviation of function f caused by all parameters i of this
function. The idea behind this equation is to show the impact every independent parameter
has on the output of the function itself. In the present case, f is equal to equation 6.5:

f = RCasing − (
√
x2
C + y2

C + r)

and the parameters are the radius of the casing, the shaft’s center position and the radius
of the inscribed circle. The partial derivations of f in any parameter i are

∂f

RCasing

= 1 (7.3)

∂f

r
= −1 (7.4)
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∂f

xC
= − xC√

x2
C + y2

C

(7.5)

∂f

xC
= − yC√

x2
C + y2

C

(7.6)

Summing up the expressions, the final equation for the deviation of the calculation of the
smallest clearance can be written as

uf =
√√√√( ∂f

RCasing

· 0)2 + (∂f
r
ur)2 + (∂f

xC
ux)2 + (∂f

yC
uy)2 (7.7)

uf =

√√√√x2
Cu

2
x + y2

Cu
2
y

x2
C + y2

C

+ u2
r (7.8)

Note, that the deviation of the casings radius has been set to zero since the value is a
constant that is entered by the user. The other values and their deviations all influence the
accuracy of the final result.

Min. Clearancereal = Min. Clearanceideal ± uf (7.9)

Due to this connection, the main objective for the rest of this thesis is to determine influential
factors on the orbit and offset prediction and to derive ideal settings to optimize the accuracy
of the approximation. Consequently, the results of the estimation of the smallest clearance
will improve in precision.
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7.3 Sensor Setup

The measurement systems sample rates are only one of the factors that can influence
the processing results. As has been mentioned in section 6.2.2, the lack of corresponding
positioning data in terms of rotor-sensor clearance data can cause problems when using the
unambiguous definition of the circle to locate the shaft’s center position. This phenomenon
can occur when angular blade and sensor distribution are not adjusted to each other. At
unadjusted setup, the rotor blades are passing the sensor successively, in the worst case all
three at a different time. This leads to the rotor moving to a different location in between
clearance data being recorded and therefore the reconstruction of the shaft’s center being
corrupted. This section will analyze this circumstance and additionally present informations
about the impact of different angular sensor positions - aligned with the blades or not.
Since both, the simple blade and the squealer blade routine, break down to clearance values
after peak detection and can be assumed to be equally precise in case of correct calibration
and setup, the simple blade routine is used for signal generation from this point on, due to
less computational power being needed for the simulation with high sample rates.

7.3.1 Sensor Alignment

Eccentricity: The distance from the stationary offset to the current position of the shaft
has been treated as a constant up to this point. In reality, the value might even change
within one revolution of the rotor. This fact has to be anticipated when processing clearance
data gathered using three arbitrary sensor. As has become apparent already, the quality
of the information for the user greatly depends on the accuracy of the calculation of the
shaft’s center position within the casing. Therefore the first step is to show the influence
of adjusted and unadjusted sensor setup on the reconstruction of a variety of different
eccentricity values. Following parameters are set up to be constant:

• Blade Count: 17
• Offset: [0 0] mm
• Radius Casing: 250 mm
• Radius Shaft: 50 mm
• Blade Length: 198 mm
• 4θ: 5000

Figure 7.8 (a) shows the results for various settings for eccentricity at adjusted sensors. Two
different absolute values have been set - 0.5 mm (black) and 1.5 mm (red) - resulting in
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circular shaft center paths. Alternatively a variable eccentricity, following the equation

Eccentricity = 0.5 + sin(θ) (7.10)

has been computed (green). Even though the path might seem physically irrelevant, this
is done to demonstrate the modeling and detection possibilities with only 17 blades at
adjusted sensors. Overall, the circular paths are conserved for the absolute values and the
45 deg tilted sine equation fits the expected behavior. Note, that the function has been
tilted intentionally by adding π

4 to θ.
When looking at the unadjusted sensor results, displayed in figure 7.8 (b), the calculation
of the orbit seems to suffer a lack of corresponding points to solve the equation system
of the circle, as has been predicted. The main difference compared to the adjusted sensor
results are the misshaped orbits. This poses the danger of false assessment of the shaft’s
movement state and subsequently effects the accuracy of magnitude and angular position of
the smallest clearance between rotor and casing.
Even thought all of the displayed results show a deflection of their ideal paths, in case of the
adjusted sensors the shape of the orbit is contained more accurately than at the unadjusted
sensor setup. Since the error of about 0.2 mm in the adjusted case is almost constant for
the entire circumference, it can be countered by adjusting the calibration curve, which will
be shown later on. This would not improve the shape of the orbits for unadjusted sensors.

(a) Adjusted setup (b) Unadjusted setup

Figure 7.8: LabView results for a variation of eccentricity
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Offset: In the previous paragraph the shaft was orbiting the center of the casing [0 0]
mm. Now, the effect of sensor alignment on the approximation of the shaft’s path with
eccentricity and stationary offset can be shown. As well as before, this is done for adjusted
and unadjusted sensor setup in order to evaluate the importance of alignment. For this
purpose the following parameters have been set to be constant within the simple blade
routine:

• Blade Count: 17
• Radius Casing: 250 mm
• Radius Shaft: 50 mm
• Blade Length: 198 mm
• 4θ: 5000

Figure 7.9 (a) displays the processing results for the adjusted sensor mounting. As has been
the case at the variation of eccentricity, the results represent the circular orbits of the shaft
much closer than the orbits displayed in figure 7.9 (b) for unadjusted sensors. The quality
is greatly increased by adjusting the sensors at a cascade simulated with 17 blades. Note,
that the radius of the orbits in both cases exceed the setup magnitude by around 0.2 mm.
In case of the adjusted sensors this can be corrected by more precise calibration unlike with
the unadjusted setup, where the elliptical shape of the orbits would remain nonetheless.

(a) Adjusted setup (b) Unadjusted setup

Figure 7.9: LabView results for a variation of offset and eccentricity
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Blade Count: Since a blade count of 17 blades does not resemble reality in most cases, the
effect of increasing the number of blades shall now be shown. This will answer the question
of whether adjusting the sensors still influences accuracy by the same amount as with less
blades. For this purpose the simulation for an eccentricity of 1.5 mm is repeated with 79
blades and then compared to the results from before. The simulation of the signal is done
with:

• Blade Count: 79
• Offset: [0 0] mm
• Radius Casing: 250 mm
• Radius Shaft: 50 mm
• Blade Length: 198 mm
• 4θ: 5000

When looking at figure 7.10 for the adjusted setup the difference between 17 blades (red)
and 79 blades (blue) appears to be neglectable. The true orbit (black) has been inserted into
the plot in order to give a reference for the ideal result. Note, that the shape of the orbit is
not significantly improved, nor is the accuracy in terms of average radius. There seems to
still be a slight overestimation of the eccentricity, what could be corrected by adjusting the
calibration curve.

Figure 7.10: LabView results for a varying amount of blades at adjusted sensors

When it comes to unadjusted sensors, the blade count seems to matter significantly. The
new shaft orbit for 79 blades (blue), compared to the result for fewer blades (red) from
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before, shows increased conservation of shape, as is visible in figure 7.11 (a). Figure 7.11 (b)
compares the results for adjusted and unadjusted setup with 79 blades directly. The quality
of the result for unadjusted setup has improved to the quality of the adjusted setup, which
leads to the conclusion that adjusting the sensors to the blades is irrelevant, when measuring
at cascades containing enough blades. The explanation for this result is obvious, since with
increased amount of blades, the amount of reference points for the solution of the circle’s
system of equations increases equally. It can be stated that the effects are diminishing for
high blade counts. The differentiation between adjusted and unadjusted sensor setups is
neglected henceforward and only the adjusted result is computed.

(a) Unadjusted sensor setup (b) Comparison of adjusted and unadjusted setup

Figure 7.11: Comparison of improvements for unadjusted sensor setup with increased blade
count

7.3.2 Angular Sensor Positioning

The deformation of the orbit shape as a result of unadjusted sensor setup and low blade
numbers, as has been apparent in the previous sections, can be seen as an extreme scenario. It
has been shown that increasing the blade count leads to improvement in shape containment.
Nevertheless, since even adjusted setup orbits show deflection from the ideal path to a
certain degree, the question whether a certain sensor distribution influences the deformation
process remains. By simulating only 17 blades with varying sensor placement, the effect of
this placement is amplified. Therefore following settings are made:
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• Blade Count: 17
• Offset: [0 0] mm
• Eccentricity: 1.5 mm
• Radius Casing: 250 mm
• Radius Shaft: 50 mm
• Blade Length: 198 mm
• 4θ: 5000

The results for the variation of the sensor angles can be seen in figure 7.12. Four different
setups are simulated and compared to the true orbit (black):

1. 0° - 22.5° - 45° (green)
2. 0° - 45° - 90° (red)
3. 0° - 90° - 180° (dark blue)
4. 0° - 120° - 240° (yellow)
5. 0° - 42° - 212° (light blue)

Figure 7.12: LabView results for a variation of sensor distribution
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Setup (1) proves to acquire the worst resemblance with the true orbit, with various portions of
the orbit showing chaotic behavior, leading to possible misjudgment of the shaft’s movement
state. Orbit (2), with sensors spaced out over the first 90 deg, shows most deflection in
the area of the sensors being present. This is unlike setup (3), where deviation from the
true orbit mainly occurs around the second sensor. One of the worst replications of the
target orbit was achieved when using unequally spaced out sensors (5). Overall, sensor setup
(4) shows the most average under- and over-approximation of the true path of the shaft.
In general spacing out the sensors over the entire 360 deg range of the casing seems to
improve the accuracy, with the highest angular distances between the sensors being the
most effective in conserving average precision throughout one revolution of the shaft.
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7.4 Imperfections

Until now the signal has been idealized, which does not represent real-world conditions. In
order to show the impact geometric and measurement imperfections have on the approxi-
mation of the shaft’s location, this section shows the processing of signals from rotors with
variable blade length and signals containing noise. As a first step, the signal quality will not
be enhanced. Therefore, the results presented in the following pages give an idea about the
true impact of these imperfections and serve as negative examples that have to be improved.
This will be done in the next step, presented in the following section.

7.4.1 Blade Length

To simulate the condition of variations in blade length a random length deviation has been
specified for each blade individually within Matlab. The problem that arises is based on the
fact that the calculation of the shaft’s location does assume perfect circularity of the circle
that is inscribed into the blade tips. In case of variable length this is not accurate anymore.
The goal is to highlight the effect various blade length imperfections have on the accuracy
of the predicted orbit and therefore on any derived information.
Before that, the matter of blade-sensor clearance measurement accuracy has to be discussed.
In table 7.3 the processing results for a rotor with a blade length of 198 ± 0.25 mm is
showcased. At a shaft radius of 50 mm and a casing radius of 250 mm, the resulting clearance
varies around the mean value σ = 2.02017 mm. As can be seen in column three and four,
the true and the measured clearance show differences in magnitudes of less than 0.01 mm.

Table 7.3: Clearance results at a blade length variation of ± 0.25 mm (centered shaft)
Blade Length [mm] True Clearance [mm] Measured Clearance [mm] Error [%]

1 197.90546 2.09454 2.09531 0.03691

2 197.92886 2.07114 2.07183 0.03343

3 197.92706 2.07294 2.07364 0.03379

4 197.77144 2.22856 2.22806 0.02234

5 197.91430 2.08570 2.08645 0.03580

6 198.09055 1.90945 1.91019 0.03863

7 197.92092 2.07908 2.07980 0.03483

8 198.01141 1.98859 1.98866 0.00343
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Blade Length [mm] True Clearance [mm] Measured Clearance [mm] Error [%]

9 198.04434 1.95566 1.95613 0.02418

10 198.11302 1.88698 1.88773 0.03955

11 197.95646 2.04354 2.04402 0.02345

12 198.02587 1.97413 1.97440 0.01372

13 198.04779 1.95221 1.95272 0.02588

14 197.94991 2.05009 2.05063 0.02639

15 197.92996 2.07004 2.07072 0.03290

16 198.05483 1.94517 1.94573 0.02890

17 198.06490 1.93510 1.93574 0.03299

σ 197.97983 2.02017 2.02069 0.02865

The results presented in table 7.3 only verify the precision of the clearance measurement as
a result of peak detection. Even though the accuracy is high, the results for orbit detection
can shift towards misleading paths, as is displayed in figure 7.13. The signal is simulated
with the following setup and with various settings for blade length:

• Blade Count: 17
• Offset: [0 0] mm
• Eccentricity: 1.5 mm
• Radius Casing: 250 mm
• Radius Shaft: 50 mm
• Blade Base Length: 198 mm
• 4θ: 5000

While the orbit at a blade length variation of ± 0.1 mm (red) is still representable of the
orbit with constant blade lengths (blue), the path of the shaft for a variation of ± 0.5
mm already yields deformed results (yellow). As mentioned above, this is not due to poor
accuracy on the side of peak detection but rather explained by the fact that clearance
information alone is used to detect the shaft center location. Since the clearance is no
longer only a function of the shaft’s dynamics, but is as well influenced by the magnitude
of individual blade length variation, the effects on accuracy are apparent. This systematic
error could be addressed by implementing a sub-routine within LabView that corrects the
clearance data by the length offset from the mean blade length for each blade.
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Figure 7.13: LabView results for different blade length imperfections (eccentricity = 1.5
mm)

Note, that even though the present orbit for blade length ± 0.5 mm (yellow) resembles the
chaotic orbit shown in section 7.1 in figure 7.6 (b) for undersampled signals, the results are
stationary in the present case. This is due to the fact that the blade length variation is
constant throughout the simulation process and so is the resulting signal. This means, that
the approximated min. rotor-casing clearance is equally steady. Unfortunately, this does not
make the location and magnitude correct. The problem remains that the circle inscribed
into the rotor’s circumference by the means of three arbitrary clearance signals assumes
perfect circularity, which is not given due to the variation in blade length and unpredictable
error’s are to be expected.

7.4.2 Noise

Up to this point the signal only consisted of clean information of the simulated machine
provided by the signal generation unit. In reality, unwanted signal components like deflections
caused by fringing of field lines or noise are present and have to be removed. For now, only
the effect of untreated noise shall be displayed. For this purpose, the Matlab routines are
altered in a way that, after the blade signal calculation, a random value within the range of
± noise is added. The function ’rand()’ is used to compute the altered signal according to

Signaloutput = Signalblade + rand(noise)− rand(noise) (7.11)
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This leads to the desired effect of accumulating different signal components on top of the
initial signal. The amplitude of noise and the amplitude of the maximum initial signal
results in the indicator SNR, defined by equation 3.6

SNR = max(Signal)
Noise

The goal of this section is to show the effects of different SNRs on the signal processing
quality. For peak detection, the results are comparable to the blade length variation. The
noise increases or decreases the peaks of the signal and therefor affects clearance results.
Unfortunately, this time the effect is not systematic and can therefore not be accounted
for by calibration. Note, that in order to be able to detect the peaks the ’width’ setting of
the peak detection routine has to be increased. This is done in order not to detect random
noise spikes in amplitude as individual peaks and thereby interfering with the referencing of
the blades.

Figure 7.14: Clearance signal at a SNR of 10

The processing results for various simulated SNRs at a centered shaft with a constant
clearance of 2 mm can be seen in table 7.4. The clearance for noise-free signals is represented
by a SNR of ∞. Already at a rather high SNR of 10, as is displayed in figure 7.14, the
clearance results are rendered useless due to the lack of remaining information about the
true clearance. The average clearance information might be considered to be contained,
but not much information can be drawn from this value, apart from approximating the
stationary offset.
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Table 7.4: Clearance results for various SNRs at a centered shaft with ’width’ = 30
SNR Min. Clearance [mm] Avg. Clearance [mm] Max. Clearance [mm]

∞ 1.99981 1.99981 1.99981

10 1.75294 1.91148 2.43119

7.5 1.70402 1.92770 2.50224

5 1.58508 1.93731 2.54716

Using the results from noise-heavy signals to calculate the shaft orbit leads to similar results
as the blade length variation study showed. Again, the problem being that in the current
case of random signal variation, no systematic corrections can be made to correct the
offset and therefore unfiltered signals prove to be impossible to use accurately for direct
calculation of the orbit, as can be taken from figure 7.15. Consequently, this uncertainty in
orbit prediction leads to alternating and inaccurate information concerning the location of
the smallest available clearance margin.

Figure 7.15: LabView results for different SNRs (eccentricity = 1.5 mm)
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7.5 LabView Settings

Since the last section dealt with decreasing signal quality, this chapter focuses on the possible
improvements based on settings available within the processing routines in LabView. Until
now only the parameter ’width’ has been changed for the peak detection sub-routine, in order
to be able to detect blade peaks in noise-heavy signals. The possible signal improvements
based on the curve-fitting-induced smoothing, mentioned previously in section 6.1, shall be
analyzed. Apart from that, the already mentioned low-pass filter is available for the user to
improve the results. When processing signals with high noise levels, the options range from
setting a low cut-off frequency at the low-pass filter, effectively smoothing the curve so that
peak detection can be performed very accurately even at low ’width’, or initializing a high
cut-off frequency, that leads to noise being left over but requires a higher ’width’ setting.
This tweaking process is highly situational and the effects on performance are outlined in
the following pages.

7.5.1 Peak Detection

As has been stated before, LabView offers a built in sub-routine to handle peak detection
that follows the described curve fitting methods in order to obtain peak amplitude and
location. The algorithm fits second order polynomials into groups of ’width’ data points
and checks for maxima and minima by differentiating twice. If a found maximum exceeds
a predefined threshold value, it is returned as peak, together with the index within the
array. To obtain the most accurate result, ’width’ has to be set to the lowest possible value,
but as high as necessary. The lower limit is related to the amount of noise. ’Width’ has to
exceed the value, for which the detection algorithm reacts to local amplitude spikes caused
by noise. On the other side, increasing ’width’ too far leads to underestimating peaks or
even missing them. Therefore, as a rule of thumb, ’width’ should not be greater than half
the width of a blade peak.
In order to showcase the effects this isolated setting has on the quality of the result, table
7.5 shows results of a ’width’ variation at a centered shaft with a simulated clearance of 2
mm. A SNR of ten is compared to a noise-free signal. The minimum value for ’width’ of
25 is due to additional peaks being detected when decreasing the value any further. By
increasing ’width’ step by step, no real tendency can be observed apart from the constant
loss of accuracy.
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Table 7.5: Clearance results at altering ’width’ settings at a centered shaft
SNR Width Min. Clearance

[mm]
Avg. Clearance
[mm]

Max. Clearance
[mm]

∞ 3 1.99981 1.99981 1.99981

10 25 (min) 1.74792 1.89707 2.06307

10 26 1.73574 1.87988 2.07977

10 27 1.71306 1.88662 2.08541

10 28 1.75609 1.89804 1.98934

10 29 1.79387 1.88216 2.03467

10 30 1.67532 1.86640 1.98421

10 32 1.68985 1.85316 2.00770

10 35 1.76318 1.89642 2.04893

10 37 1.83046 1.89987 2.00306

10 40 1.8339 1.93639 2.09143

Figure 7.16: Minimum, average and maximum clearance detected at a SNR of 10 with
various ’width’ settings (centered shaft)
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Figure 7.16 shows the same data as table 7.5 did. The increase and decrease in detected
clearance with differences of around 0.1 mm between two consecutive ’width’-steps leads to
the conclusion that smoothing noise with the curve fitting method proves to be inaccurate
and can not be considered a valuable method to process noise-heavy data. As a result of
these alternating clearance results, the resulting orbits resemble the orbits shown in section
7.4.2 dealing with untreated noise.

7.5.2 Lowpass Filtering

Due to the fact that ’width’ has to be increased drastically to values of 25 and greater -
even at moderate noise - in order to prevent additional peaks being detected, the necessity
of preprocessing the data arises. An effective method to achieve this is forward-backwards
low-pass filtering the data, as has been introduced in section 6.1. At cut-off frequencies fc
much higher than the blade-passing frequency, only the high frequency components are
suppressed, while the blade peak amplitude does not suffer excessive reduction in amplitude.
After that the peak detection sub-routine can be applied with a low ’width’ setting, leading
to more stationary results.
The effect of filtering on the detected clearance at a centered shaft with a constant clearance
of 2 mm is an increase in measured clearance. The values range from a minimum of 2.20677
mm to a maximum of 2.31332 mm (average 2.23660 mm), which can be explained by the
loss of magnitude of the capacitance peak due to the low-pass effect described in section 4.
This reduction of amplitude leads to an increase in distance according to equation 5.3

Clearance ≈ 1
Signal

As can be seen in figure 7.17 (a), filtering does not greatly improve the accuracy of the
approximated shaft orbit. The influence of the noise on the peak amplitude still leads
to fluctuating results. Only when comparing the filtered result with a ’width’ of 3 (red)
directly to the unfiltered result with a ’width’ of 25 (blue) in figure 7.17 (b)(SNR=5), the
improvements become apparent.
Generally speaking, low pass filtering seems to behave more stable than curve fitting.
Especially when recalling the effects shown previously concerning the variance in results
for clearance due to an incremental change of ’width’ (compare figure 7.16), filtering as
a primary measure proves to achieves better results. Note, that since the damping of the
signal due to low-pass filtering is systematic, calibration can achieve an increase in accuracy.
This means that for decreasing SNRs the overall accuracy improves.
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(a) Filtered signals (eccentricity = 1.5 mm &
’width’ = 3)

(b) Comparison of filtered (’width’ = 3) and
unfiltered (’width’ = 25) signal (SNR = 5)

Figure 7.17: Improvements in orbit results due to filtering at different SNR

7.5.3 Averaging

The reason for the remaining misshaped orbit is the fact that, even when filtering the signal
components of the noise, some change in blade peak amplitude remains. Hence, the accuracy
of clearance measurement suffers a great deal as soon as SNR reaches significant values, as
has been discussed above. The nature of the noise applied to the signal in this theses is
based on equation 7.11 from before:

Signaloutput = Signalblade + rand(noise)− rand(noise)

Note, that the mean value of ± noise for a high enough amount of sample strives towards
zero. This fact can be used to improve the results.

The method implemented to make use of this statement has been mentioned before, while
describing the post-processing loops in section 6.2. Instead of directly computing the or-
bit, a multidimensional blade-by-blade array is set up and data is recorded for multiple
revolutions of the rotor. The underlying algorithm then takes each row, containing various
clearance amplitudes for one individual blade and averages the clearances. This is done for
all ’amount-of-blade’ rows of the blade-by-blade array, after which the circle is inscribed
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into the corresponding sensor data sets. The result is a smoothed orbit that fluctuates less
due to random noise. Two important things have to be respected:

1. If the noise is not distributed according to the pattern described before, the method
loses accuracy. Fortunately, in case of noise being systematically induced, it becomes
an error that can be addressed by averaging.

2. Due to reducing a set of data to a mean value, the shaft’s orbit has to be as stationary as
possible. Otherwise changing states of operation can be blurred and critical information
might be missed.

As for the performance of the averaging method, figure 7.18 shows the effects on clearance
results for the centered shaft with a predefined clearance of 2 mm.

Figure 7.18: Effects of averaging on clearance results of two different SNR compared to a
noise-free signal (always filtered)

The upper half of the figure shows the convergence of the maximum peak values detected
towards the ideal, noise-free signal and the lower half shows the convergence towards the
ideal minimum result. The ideal results with a SNR of ∞ are displayed as dashed lines. As
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is apparent, the lower the SNR gets, the more rotations have to be used until the desired
precision is achieved with averaging. For a SNR of 5 no real change in accuracy is achieved by
increasing the revolutions to average above 10, while choosing a value below 30 revolutions
at a SNR of 2.5 does not lead to improved results. Note the offset of both ideal results from
a clearance of 2 mm upwards. This effect has been explained in section 7.5.2, where the loss
of capacitance amplitude and resulting positive shift of distance for low-pass filtered signals
has been mentioned. This offset can be addressed by calibration.
The same tendencies can be seen in figure 7.19 at the approximation of the shafts orbit.
While a SNR of 10 (a) does not require averaging of more than three revolutions for better
accuracy, at a SNR of 5 (b) the improvements for increased revolutions of up to 10 are
apparent.

(a) SNR = 10 (b) SNR = 5

Figure 7.19: LabView results for two different SNRs with variable amounts of revolutions
used for averaging (eccentricity = 1.5 mm & always low-pass filtered)
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Finally, the aftermath of the statements made in chapter 7 can be summed up and the thesis
can be concluded with an outlook over the range of possibilities given by the presented
methods and routines.

8.1 Best Performance

Initially, the connections found in the previous chapter are highlighted once more before
proceeding to apply all of them in one generalized test:

1. Calibration is a very situational operation that requires the entire system to be set up
before being able to successfully link signal to physical value.

2. Spatial resolution influences the accuracy drastically and randomly. That is why
oversampling in the domain of clearance measurement is a necessity and leads to an
excessive setting for sample rate. As a rule of thumb, sampling frequencies of 30 or
more times the blade-passing frequency are recommended.

3. The prediction of the smallest clearance between rotor and casing using approximated
orbit information relies greatly on the accuracy of the latter. The magnitude of this
error has been linked to the precision of the shaft’s center position and the radius
of the circle inscribed into the rotor’s circumference. In certain cases the induced
signal imperfections even lead to chaotic orbits and as a result of that to random
location and magnitude of the minimal clearance. Therefore it can be stated, that
every improvement made calculating the shaft’s center directly applies to the accuracy
of this information.

4. The positioning of the sensors on the circumference of the casing has to be as even as
possible. Adjusting the sensors to the blades - in accordance with statements made in
section 6.2.2 - can improve the accuracy of the outcome. The degree of the effect is
linked to the number of blades in the blade row, where a higher count leads to less
impact on accuracy, while a lower count shows deformation of the shaft’s orbit. For
common turbomachinery it can be stated, that sensor alignment is not a necessity
since there is no clear improvement of processing accuracy. Note, that using more than
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three sensors, computing the shaft’s location for various constellations and averaging
the data could potentially improve the result.

5. Variations in blade length influence the signal like noise. The positive aspect is the
systematic nature of the deviation, that allows this effect to be countered by defining
a correctional value for each individual blade. Note, that this is not a necessity for
small variations (« 0.1 mm), since the impact on accuracy is neglectable.

6. Noise has a worsening effect on accuracy without exceptions. Unlike at the systematic
blade length error, this type of error can not be addressed directly due to its random
nature.

7. The setting ’width’, that represents the amount of consecutive data points used for
curve fitting within the peak detection sub-routine, is not suited to improve results on
signals with a high Signal-to-Noise-Ratio. Its effect is rather unpredictable and very
situational, which is why this value should be as close as possible to its minimum of
three.

8. The better way to address noise-heavy signals is by low-pass filtering the data and
then running the peak detection at low ’width’ values. The dampening effect of the
low-pass filter has to be addressed by a dedicated calibration process in order to
ensure high accuracy.

9. While the filtering mainly serves the purpose of reducing the ’width’ setting and
smoothing the signal, the noise still changes the amplitudes of the peaks significantly.
The presented method for removing noise effects at stationary machine conditions is
averaging over multiple revolutions. The averaged results show great improvement in
accuracy since they manage to even out fluctuations in peak amplitudes caused by
the noise.

In accordance with these statements, the following simulation aims to display the best
performance at various SNRs. The machine model is simulated with following parameters
for simple blade configuration:

• Blade Count: 79
• Radius Casing: 250 mm
• Radius Shaft: 50 mm
• Offset = [0,0] mm
• Blade Length: 198 mm
• 4θ: 5000
• Peak Detection ’Width’: 3
• Low-pass Filtering
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In chapter 7 individual calibration has been avoided due to the desire to have uniform
testing conditions. Here, the goal is not to showcase effects of individual parameters, but
to reach the highest accuracy possible. Therefore a new calibration curve for the filtered
signals is acquired. This is done by simulating a centered shaft with known clearance within
Matlab without any noise and, instead of using a maximum signal amplitude as before,
accumulating clearance values for an entire revolution of the rotor. Since the shaft is centered
and there is no noise present, the clearances should be equal at each blade and the results
can be averaged to acquire one value within LabView. This is repeated for clearances from
zero to five millimeters, leading to the desired calibration curve. Note, that the clearance
signal at this point is highly influenced by the spatial resolution defined by 4θ. This is due
to the fact, that the composition of signal components changes, according to how much
oversampling is done, which is why the low-pass filter produces different results for every
sample rate. In case of changing circumferential velocity, for example due to the machine
spinning up, this problem has to be addressed by more elaborate and transient filter settings
to conserve the calibration.
First, the performance at clearance detection is evaluated by simulating one revolution
of a centered shaft with a clearance of 2 mm at different noise-settings. SNR = ∞ is
the case of no noise being present, a high number indicates low levels of noise and a low
number implies the contrary. The results for detected clearances after one revolution of the
rotor are displayed in table 8.1. In section 7.5.2 the result of filtering a noise free signal
without adjusted calibration has been shown to result in a minimum of 2.20677 mm and a
maximum of 2.31332 mm (average 2.23660 mm) of clearance detected. The overestimation
of the clearance has been explained by loss of the signal amplitude due to the low-pass effects.

Table 8.1: Optimized results for different SNRs with centered shaft
SNR Min Clearance [mm] Avg Clearance [mm] Max Clearance [mm]

∞ 2.00251 2.00301 2.0035

10 1.82839 1.99296 2.1494

7.5 1.80695 1.98756 2.17432

5 1.6719 2.00366 2.3064

5 (avg) 1.91382 1.99451 2.09068

In present case with adjusted calibration, the results for a noise free signal (SNR=∞)
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show increased accuracy, proving the statements made throughout the previous chapter
concerning improvements on clearance detection due to better calibration. Comparing the
results above to the ones in table 7.4 of section 7.4.2 dealing with the impact of untreated
noise, the improvements for lower SNRs become obvious. Generally speaking, the deviation
from the ideal, noise-free signal has been reduced by 0.2 mm by low-pass filtering and
calibrating accordingly. The accuracy can be further improved by the mentioned averaging
of clearance data of multiple revolutions. Accumulating data for 20 revolutions of the rotor
and computing the mean clearance for each blade results in a minimum of 1.91382 mm and
a maximum of 2.09068 mm (average 1.99451) at a SNR=5, displayed in table 8.1.
Furthermore, the impact on orbit prediction can be highlighted. In order to do so, an
eccentricity of 1.5 mm is set to be able to compare the result to results shown in chapter
7. Additionally, the processing unit is set up to average over 60 revolutions of the rotor.
When assuming a rotational speed of 6000 RPM, the simulated signal represent one second
worth of data of that machine. At a spatial stepping rate of 4θ of 5000 this leads to a
total number of 5000 · 60 = 300000 samples1 being acquired and processed. The result for
different SNRs at this setup can be seen in figure 8.1. Compared to the various results for
the same orbit prediction in chapter 7, the improvements are apparent. At a SNR of 10 the
circularity of the orbit is near perfect and the eccentricity of 1.5 mm is captured accurately.
The reduction of quality for decreasing SNR is still present, nevertheless the effect has been
reduced drastically.

Figure 8.1: LabView results for various SNRs with optimized routines (eccentricity = 1.5
mm & 79 blades & 60 averaged rotations)

1The requirement for the Data-Aquisition device would be a sampling frequency of 300000 Hz.
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8.2 Summary and Outlook

Throughout this thesis the model-based development of a radial rotor-casing clearance
monitoring software for axial, thermal turbomachinery has been thoroughly described.
Initially, the underlying fields of machinery and measurement were highlighted. This was
used as a foundation for the reader to comprehend the design choices made by the author
concerning the selected sensing principle and modeling processes. Subsequently the software
development was described in detail in order to provide information for the successor of the
project, responsible for the acquisition and the installation of the hardware. The model-based
approach allowed for precise studying of individual aspects of the regimes, leading to clear
statements concerning influential parameters.
The evaluation of these influences showed that the machine’s parameters can be derived
accurately by the developed software, as long as the stated premises are met. This was
shown by studying various shaft movements with the help of the parameters eccentricity
and offset at idealized signal quality. In any case, these values were derived from the signal
with high precision in form of clearance and orbit data. Moreover the effect of blade length
imperfections was discussed. It has been mentioned that, while influencing the orbit predic-
tion comparable to noise, easy offset corrections can be made, also rendering this geometric
factor little influential on the overall quality. Unlike the machine, all components of the mea-
surement chain that were modeled have proven to have a huge impact on the performance.
Throughout the concluding parameter variation the effects of different sensor setups and an
answer to the question whether dedicated sensor alignment improves accuracy has been
shown. Furthermore, multiple requirements for a measurement chain in turbomachinery
application were derived. Apart from the selection of a viable sensing principle, providing
an overview over possible cable types and showcasing basic circuit methods, the sample
rates needed in this specific case could be determined and proven. Additionally, by choosing
array-based data processing, the clearance monitoring system was designed to be able to
deal with the arriving data of common data-acquisition devices.
Due to focusing on a wide range of different signal types, continuous and pulsing, the
developed routines are designed to be applicable very generalized, which is enhanced even
further by their expandable nature. Within the range of tested parameters and signal types,
measurements of below 0.1 mm seem to be realistic, solely dependent on the quality of the
input signal. This dependency also proves to be the biggest problem. The pure model-based
approach lacks the testing required for anything else but the prototype stage of the created
processing routines. The performance has been discussed extensively and has been verified
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as precisely as possible, but the range of possible input signals is nearly endless and the
information contained is often influenced in unpredictable ways. Therefore the routines are
very situational, leaving a lot of signal preprocessing work to be done by the designer of the
real-world measurement chain.

Apart from the adaptation that is required to ensure the presented signal quality, further
refinements of the routines can allow for additional monitoring precision and information.
Generally speaking, two future development steps can be outlined:

1. Refining the mathematical principles and using more sensors.
2. Adapting the routines for other purposes.

The first step includes the extension of the shaft localization algorithms for shapes other
than circles with perfect circularity. In the present case, three sensors sufficed in order to
obtain the shaft’s location within the casing. Nevertheless, if the shape of the inscribed
line shall be anything other than a circle, the amount of reference points has to be altered.
In case of an ellipse being fit into the tips, five sensors are needed, which requires for
an adaptation of the underlying mathematical principle. This could potentially increase
processing accuracy in case of imperfections of blade lengths or uneven deformations of the
casing. Furthermore, additional sensors could as well be used for improving the accuracy of
the present routines. The location of the shaft could be computed for every constellation of
sensors and the results could be averaged, which could possibly lead to improvements in
accuracy, especially at low signal quality. The effect each of the proposed alterations has
on the accuracy of the measurement needs to be evaluated individually. The second step
concerns the adaptation of the routines for other purposes than clearance measurement. At
the present case, the focus was solely on clearance detection and the results that could be
derived from this information. With the help of a few additional models regarding elastic
blade behavior and processing of this information, the introduced routines can easily be
used for developing a monitoring software for tip timing purposes.
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Abbreviations

AD Analog-to-Digital

BPF Blade-Passing-Frequency

DAQ Data-Aquisition

RPM Revolutions per Minute

SBR Sensor-to-Blade-Width-Ratio

SNR Signal-to-Noise-Ratio

TCP Transmission Control Protocol

Symbols

A m2 Area

c N
m

Spring Stiffness

C F Capacitance

d m distance

e mm eccentricity

E N
m2 E-Modul

f Hz frequency

fc Hz cutoff frequency

fsample Hz sample frequency

F N Force

F’ N Force per Unit Span
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FC N Centrifugal Force

FS N Shaft’s Spring Force

G - Transfer Function

I A Current

l, L m Length

LB mm Blade Length

j - Imaginary Unit

m kg Mass

N(x) N Normal Force

o mm Stationary Offset of the Rotor from the Casing’s Center

Q C Charge

R Ω Resistance

RCasing mm Radius Casing

RShaft mm Radius Shaft

RShroud mm Radius Shroud

s m spatial Coordinate

T °K Temperature

theta rad Incremental Angle

u(x) m Displacement

Uin V Input Voltage

Uout V Output Voltage

U∞
m
s

Velocity of the Potential Fluid Flow

v m
s

Velocity

V V Voltage

WB mm Blade Width

WS mm Sensor Area Width

x m Horizontal Displacement Amplitude

XC Ω Resistance of a Capacitor

y m Vertical Displacement Amplitude

z m Distance between Shaft’s Centerline and Center of Mass
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Greek

αth deg K−1 thermal expansion coefficient

α rad Blade Distribution Angle

θ rad Incremental Angle

4θ rad Incremental Angle Step

δ deg Sensor Placement Angle

ε0
F
m

Permittivity of Vacuum ≈ 8.85 · 10−12

εr
F
m

relative Permittivity of a non-conductive Area

Γ - Circulation

ρ kg
m3 Density

σ - Mean Value

ω 1
s

Angular Velocity

ω0
1
s

Natural Angular Velocity

ωc
1
s

Angular Cutoff Frequency

Ωs
1
s

Angular Velocity of a Shaft
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Appendix

Intersections Algorithm by Schwarz

Copyright (c) 2017, Douglas M. Schwarz
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU-
TORS ’AS IS’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMA-
GES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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function [x0,y0,iout,jout] = intersections(x1,y1,x2,y2,robust)
%INTERSECTIONS Intersections of curves.
%   Computes the (x,y) locations where two curves intersect.  The curves
%   can be broken with NaNs or have vertical segments.
%
% Example:
%   [X0,Y0] = intersections(X1,Y1,X2,Y2,ROBUST);
%
% where X1 and Y1 are equal-length vectors of at least two points and
% represent curve 1.  Similarly, X2 and Y2 represent curve 2.
% X0 and Y0 are column vectors containing the points at which the two
% curves intersect.
%
% ROBUST (optional) set to 1 or true means to use a slight variation of the
% algorithm that might return duplicates of some intersection points, and
% then remove those duplicates.  The default is true, but since the
% algorithm is slightly slower you can set it to false if you know that
% your curves don't intersect at any segment boundaries.  Also, the robust
% version properly handles parallel and overlapping segments.
%
% The algorithm can return two additional vectors that indicate which
% segment pairs contain intersections and where they are:
%
%   [X0,Y0,I,J] = intersections(X1,Y1,X2,Y2,ROBUST);
%
% For each element of the vector I, I(k) = (segment number of (X1,Y1)) +
% (how far along this segment the intersection is).  For example, if I(k) =
% 45.25 then the intersection lies a quarter of the way between the line
% segment connecting (X1(45),Y1(45)) and (X1(46),Y1(46)).  Similarly for
% the vector J and the segments in (X2,Y2).
%
% You can also get intersections of a curve with itself.  Simply pass in
% only one curve, i.e.,
%
%   [X0,Y0] = intersections(X1,Y1,ROBUST);
%
% where, as before, ROBUST is optional.
 
% Version: 2.0, 25 May 2017
% Author:  Douglas M. Schwarz
% Email:   dmschwarz=ieee*org, dmschwarz=urgrad*rochester*edu
% Real_email = regexprep(Email,{'=','*'},{'@','.'})
 
 
% Theory of operation:
%
% Given two line segments, L1 and L2,
%
%   L1 endpoints:  (x1(1),y1(1)) and (x1(2),y1(2))
%   L2 endpoints:  (x2(1),y2(1)) and (x2(2),y2(2))
%
% we can write four equations with four unknowns and then solve them.  The
% four unknowns are t1, t2, x0 and y0, where (x0,y0) is the intersection of
% L1 and L2, t1 is the distance from the starting point of L1 to the
% intersection relative to the length of L1 and t2 is the distance from the
% starting point of L2 to the intersection relative to the length of L2.
%
% So, the four equations are
%
%    (x1(2) - x1(1))*t1 = x0 - x1(1)



%    (x2(2) - x2(1))*t2 = x0 - x2(1)
%    (y1(2) - y1(1))*t1 = y0 - y1(1)
%    (y2(2) - y2(1))*t2 = y0 - y2(1)
%
% Rearranging and writing in matrix form,
%
%  [x1(2)-x1(1)       0       -1   0;      [t1;      [-x1(1);
%        0       x2(2)-x2(1)  -1   0;   *   t2;   =   -x2(1);
%   y1(2)-y1(1)       0        0  -1;       x0;       -y1(1);
%        0       y2(2)-y2(1)   0  -1]       y0]       -y2(1)]
%
% Let's call that A*T = B.  We can solve for T with T = A\B.
%
% Once we have our solution we just have to look at t1 and t2 to determine
% whether L1 and L2 intersect.  If 0 <= t1 < 1 and 0 <= t2 < 1 then the two
% line segments cross and we can include (x0,y0) in the output.
%
% In principle, we have to perform this computation on every pair of line
% segments in the input data.  This can be quite a large number of pairs so
% we will reduce it by doing a simple preliminary check to eliminate line
% segment pairs that could not possibly cross.  The check is to look at the
% smallest enclosing rectangles (with sides parallel to the axes) for each
% line segment pair and see if they overlap.  If they do then we have to
% compute t1 and t2 (via the A\B computation) to see if the line segments
% cross, but if they don't then the line segments cannot cross.  In a
% typical application, this technique will eliminate most of the potential
% line segment pairs.
 
 
% Input checks.
if verLessThan('matlab','7.13')
    error(nargchk(2,5,nargin)) %#ok<NCHKN>
else
    narginchk(2,5)
end
 
% Adjustments based on number of arguments.
switch nargin
    case 2
        robust = true;
        x2 = x1;
        y2 = y1;
        self_intersect = true;
    case 3
        robust = x2;
        x2 = x1;
        y2 = y1;
        self_intersect = true;
    case 4
        robust = true;
        self_intersect = false;
    case 5
        self_intersect = false;
end
 
% x1 and y1 must be vectors with same number of points (at least 2).
if sum(size(x1) > 1) ~= 1 || sum(size(y1) > 1) ~= 1 || ...
        length(x1) ~= length(y1)
    error('X1 and Y1 must be equal-length vectors of at least 2 points.')
end



% x2 and y2 must be vectors with same number of points (at least 2).
if sum(size(x2) > 1) ~= 1 || sum(size(y2) > 1) ~= 1 || ...
        length(x2) ~= length(y2)
    error('X2 and Y2 must be equal-length vectors of at least 2 points.')
end
 
 
% Force all inputs to be column vectors.
x1 = x1(:);
y1 = y1(:);
x2 = x2(:);
y2 = y2(:);
 
% Compute number of line segments in each curve and some differences we'll
% need later.
n1 = length(x1) - 1;
n2 = length(x2) - 1;
xy1 = [x1 y1];
xy2 = [x2 y2];
dxy1 = diff(xy1);
dxy2 = diff(xy2);
 
 
% Determine the combinations of i and j where the rectangle enclosing the
% i'th line segment of curve 1 overlaps with the rectangle enclosing the
% j'th line segment of curve 2.
 
% Original method that works in old MATLAB versions, but is slower than
% using binary singleton expansion (explicit or implicit).
% [i,j] = find( ...
%   repmat(mvmin(x1),1,n2) <= repmat(mvmax(x2).',n1,1) & ...
%   repmat(mvmax(x1),1,n2) >= repmat(mvmin(x2).',n1,1) & ...
%   repmat(mvmin(y1),1,n2) <= repmat(mvmax(y2).',n1,1) & ...
%   repmat(mvmax(y1),1,n2) >= repmat(mvmin(y2).',n1,1));
 
% Select an algorithm based on MATLAB version and number of line
% segments in each curve.  We want to avoid forming large matrices for
% large numbers of line segments.  If the matrices are not too large,
% choose the best method available for the MATLAB version.
if n1 > 1000 || n2 > 1000 || verLessThan('matlab','7.4')
    % Determine which curve has the most line segments.
    if n1 >= n2
        % Curve 1 has more segments, loop over segments of curve 2.
        ijc = cell(1,n2);
        min_x1 = mvmin(x1);
        max_x1 = mvmax(x1);
        min_y1 = mvmin(y1);
        max_y1 = mvmax(y1);
        for k = 1:n2
            k1 = k + 1;
            ijc{k} = find( ...
                min_x1 <= max(x2(k),x2(k1)) & max_x1 >= min(x2(k),x2(k1)) & ...
                min_y1 <= max(y2(k),y2(k1)) & max_y1 >= min(y2(k),y2(k1)));
            ijc{k}(:,2) = k;
        end
        ij = vertcat(ijc{:});
        i = ij(:,1);
        j = ij(:,2);
    else
        % Curve 2 has more segments, loop over segments of curve 1.



        ijc = cell(1,n1);
        min_x2 = mvmin(x2);
        max_x2 = mvmax(x2);
        min_y2 = mvmin(y2);
        max_y2 = mvmax(y2);
        for k = 1:n1
            k1 = k + 1;
            ijc{k}(:,2) = find( ...
                min_x2 <= max(x1(k),x1(k1)) & max_x2 >= min(x1(k),x1(k1)) & ...
                min_y2 <= max(y1(k),y1(k1)) & max_y2 >= min(y1(k),y1(k1)));
            ijc{k}(:,1) = k;
        end
        ij = vertcat(ijc{:});
        i = ij(:,1);
        j = ij(:,2);
    end
    
elseif verLessThan('matlab','9.1')
    % Use bsxfun.
    [i,j] = find( ...
        bsxfun(@le,mvmin(x1),mvmax(x2).') & ...
        bsxfun(@ge,mvmax(x1),mvmin(x2).') & ...
        bsxfun(@le,mvmin(y1),mvmax(y2).') & ...
        bsxfun(@ge,mvmax(y1),mvmin(y2).'));
    
else
    % Use implicit expansion.
    [i,j] = find( ...
        mvmin(x1) <= mvmax(x2).' & mvmax(x1) >= mvmin(x2).' & ...
        mvmin(y1) <= mvmax(y2).' & mvmax(y1) >= mvmin(y2).');
    
end
 
 
% Find segments pairs which have at least one vertex = NaN and remove them.
% This line is a fast way of finding such segment pairs.  We take
% advantage of the fact that NaNs propagate through calculations, in
% particular subtraction (in the calculation of dxy1 and dxy2, which we
% need anyway) and addition.
% At the same time we can remove redundant combinations of i and j in the
% case of finding intersections of a line with itself.
if self_intersect
    remove = isnan(sum(dxy1(i,:) + dxy2(j,:),2)) | j <= i + 1;
else
    remove = isnan(sum(dxy1(i,:) + dxy2(j,:),2));
end
i(remove) = [];
j(remove) = [];
 
% Initialize matrices.  We'll put the T's and B's in matrices and use them
% one column at a time.  AA is a 3-D extension of A where we'll use one
% plane at a time.
n = length(i);
T = zeros(4,n);
AA = zeros(4,4,n);
AA([1 2],3,:) = -1;
AA([3 4],4,:) = -1;
AA([1 3],1,:) = dxy1(i,:).';
AA([2 4],2,:) = dxy2(j,:).';
B = -[x1(i) x2(j) y1(i) y2(j)].';



 
% Loop through possibilities.  Trap singularity warning and then use
% lastwarn to see if that plane of AA is near singular.  Process any such
% segment pairs to determine if they are colinear (overlap) or merely
% parallel.  That test consists of checking to see if one of the endpoints
% of the curve 2 segment lies on the curve 1 segment.  This is done by
% checking the cross product
%
%   (x1(2),y1(2)) - (x1(1),y1(1)) x (x2(2),y2(2)) - (x1(1),y1(1)).
%
% If this is close to zero then the segments overlap.
 
% If the robust option is false then we assume no two segment pairs are
% parallel and just go ahead and do the computation.  If A is ever singular
% a warning will appear.  This is faster and obviously you should use it
% only when you know you will never have overlapping or parallel segment
% pairs.
 
if robust
    overlap = false(n,1);
    warning_state = warning('off','MATLAB:singularMatrix');
    % Use try-catch to guarantee original warning state is restored.
    try
        lastwarn('')
        for k = 1:n
            T(:,k) = AA(:,:,k)\B(:,k);
            [unused,last_warn] = lastwarn; %#ok<ASGLU>
            lastwarn('')
            if strcmp(last_warn,'MATLAB:singularMatrix')
                % Force in_range(k) to be false.
                T(1,k) = NaN;
                % Determine if these segments overlap or are just parallel.
                overlap(k) = rcond([dxy1(i(k),:);xy2(j(k),:) - xy1(i(k),:)]) < eps;
            end
        end
        warning(warning_state)
    catch err
        warning(warning_state)
        rethrow(err)
    end
    % Find where t1 and t2 are between 0 and 1 and return the corresponding
    % x0 and y0 values.
    in_range = (T(1,:) >= 0 & T(2,:) >= 0 & T(1,:) <= 1 & T(2,:) <= 1).';
    % For overlapping segment pairs the algorithm will return an
    % intersection point that is at the center of the overlapping region.
    if any(overlap)
        ia = i(overlap);
        ja = j(overlap);
        % set x0 and y0 to middle of overlapping region.
        T(3,overlap) = (max(min(x1(ia),x1(ia+1)),min(x2(ja),x2(ja+1))) + ...
            min(max(x1(ia),x1(ia+1)),max(x2(ja),x2(ja+1)))).'/2;
        T(4,overlap) = (max(min(y1(ia),y1(ia+1)),min(y2(ja),y2(ja+1))) + ...
            min(max(y1(ia),y1(ia+1)),max(y2(ja),y2(ja+1)))).'/2;
        selected = in_range | overlap;
    else
        selected = in_range;
    end
    xy0 = T(3:4,selected).';
    
    % Remove duplicate intersection points.



    [xy0,index] = unique(xy0,'rows');
    x0 = xy0(:,1);
    y0 = xy0(:,2);
    
    % Compute how far along each line segment the intersections are.
    if nargout > 2
        sel_index = find(selected);
        sel = sel_index(index);
        iout = i(sel) + T(1,sel).';
        jout = j(sel) + T(2,sel).';
    end
else % non-robust option
    for k = 1:n
        [L,U] = lu(AA(:,:,k));
        T(:,k) = U\(L\B(:,k));
    end
    
    % Find where t1 and t2 are between 0 and 1 and return the corresponding
    % x0 and y0 values.
    in_range = (T(1,:) >= 0 & T(2,:) >= 0 & T(1,:) < 1 & T(2,:) < 1).';
    x0 = T(3,in_range).';
    y0 = T(4,in_range).';
    
    % Compute how far along each line segment the intersections are.
    if nargout > 2
        iout = i(in_range) + T(1,in_range).';
        jout = j(in_range) + T(2,in_range).';
    end
end
 
% Plot the results (useful for debugging).
% plot(x1,y1,x2,y2,x0,y0,'ok');
 
function y = mvmin(x)
% Faster implementation of movmin(x,k) when k = 1.
y = min(x(1:end-1),x(2:end));
 
function y = mvmax(x)
% Faster implementation of movmax(x,k) when k = 1.
y = max(x(1:end-1),x(2:end));
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