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Zusammenfassung 

Die vorliegende Arbeit befasst sich mit der Entwicklung neuer Strategien zur 

Erhöhung der Reichweite von Elektrofahrzeugen. Es werden dabei verschie-

dene Ansätze zur Energieverbrauchsoptimierung verfolgt, welche sich über 

unterschiedliche Zeithorizonte erstrecken und einander ergänzen. Eine dy-

namische Drehmomentaufteilung zwischen zwei Synchronmaschinen opti-

miert den Gesamtwirkungsgrad des Fahrzeugs. In Kapitel 4 werden zwei 

Verfahren vorgestellt, um energieoptimale Geschwindigkeitstrajektorien zu 

berechnen, für die zahlreiche praktische Anwendungsfälle existieren. Das 

letzte Kapitel beschäftigt sich mit der Entwicklung eines Konzeptes für einen 

Routenplaner, welcher den spezifischen Energieverbrauch eines Fahrzeugs 

in die Berechnung der Route einbezieht. Die entwickelten Optimierungsme-

thoden werden anhand des Fahrzeugmodells zweier realer Prototypen de-

monstriert. Die Anfertigung dieser Masterarbeit erfolgte in enger Zusammen-

arbeit mit der AVL List GmbH und im Rahmen des europäischen For-

schungsprojektes OpEneR.  

 

Abstract 

The development of new strategies in order to increase the range of fully elec-

tric vehicles by minimizing the energy consumption using on-board and off-

board sources of information has been subject of this work. Various com-

plementary approaches that cover significantly different time horizons are 

analyzed. A method is developed to optimally distribute the drive torque be-

tween two electric machines aiming at maximizing the overall efficiency of 

the vehicle. Chapter 4 elaborates two computational procedures to determine 

energy-optimal velocity trajectories that can be applied in a broad variety of 

use cases. The last chapter illustrates a concept study for an advanced route 

planning optimization that takes into account powertrain characteristics in 

order to consider the expected energy consumption when calculating an op-

timal route. All developed optimization methods are based on parameters of 

two existing vehicle prototypes. This master’s thesis was written in close col-

laboration with AVL List GmbH and contributes to the European research 

project OpEneR.    
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1 Introduction 

Mobility plays a key role in every advanced economy and for individuals 

living in a modern society mobility has even become a basic need.1 To a 

great extent individual mobility relies on passenger cars, which con-

sume a large part of the world’s primary energy carriers2 but the immi-

nent scarcity of these resources requires a shift away from fossil fuels. 

Especially electric vehicles have a promising future in the pursuit of this 

goal. However, there are still many obstacles that hinder electric vehi-

cles to replace conventional cars or hybrids.  

A crucial factor to customer acceptance is the generally low all-electric 

range, which is defined by the distance a vehicle can travel by only con-

suming the energy that is stored in its battery. In this thesis several en-

ergy-optimum control strategies are developed in MATLAB/Simulink 

and AVL CRUISE to raise the energy efficiency – and therefore increase 

the all-electric range – of two prototypes. The prototypes are fully elec-

tric vehicles adapted from the Peugeot 3008 HYbrid4. They each have 

two electric machines (EM) – one to power each axle – that facilitate re-

generative braking. Details on specific vehicle data are elaborated in 

Appendix A. 

This thesis is written in close collaboration with AVL List in Graz, Aus-

tria in line with the OpEneR (Optimal Energy consumption and Recov-

ery based on a system network) project. OpEneR is a European research 

project launched in May 2011 and is part of the 7th Framework Pro-

gramme (grant agreement n. 285526). The project goal is to develop an 

overall energy manager for electric vehicles that will significantly in-

crease the energy efficiency and therefore the driving range as well as 

safety. OpEneR particularly emphasizes the development of energy sav-

ing strategies that combine data from car-to-car (c2c) systems, car-to-

infrastructure (c2i) systems, GPS (Global Positioning System) data, nav-

                                       

1 Cf. Back M. (2005): pp. 1. 

2 Cf. Guzzella L., Sciarretta A. (2007): pp. iii. 
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igation systems, cameras and/or radar to detect the vehicle’s surround-

ing, etc.3 The project consortium consists of the following institutions: 

• Robert Bosch GmbH (project leader), 

• Peugeot Citroën Automobiles S.A., 

• Robert Bosch Car Multimedia GmbH, 

• AVL List GmbH, 

• Centro Technológico de Automación de Galicia, 

• FZI Forschungszentrum für Informatik.4  

To explore the potential of the vast amount of data that will presumably 

be available in the near future several components are integrated to re-

ceive, combine and process data from a broad variety of sources to en-

sure a safe, highly efficient and comfortable driving experience. Those 

sources of information can be other vehicles that communicate with 

each other and share information about their current position, velocity 

etc. Real-time information can also be provided by modern road infra-

structure that broadcasts information about speed limits, traffic flow, 

traffic light status etc. If this information is available a vehicle is inte-

grated in an intelligent transport system. Furthermore vehicles are able 

to create lots of data on their own that can be utilized. For example, 

cameras and radar provide information about objects in the vehicle’s 

surrounding. This approach is well suited to make traffic flow more 

smoothly.5  

Compared to humans a major advantage of information systems is that 

they can gather and process much more data and are able to look 

ahead several kilometers along the road. This opens numerous so far 

unused possibilities to optimize driving. For this purpose an intuitive 

                                       

3 Cf. http://www.fp7-opener.eu, 4/27/2012. 

4 Cf. http://www.fp7-opener.eu/index.php/project/partners, 4/27/2012. 

5 Cf. http://www.fp7-opener.eu, 4/27/2012. 
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human-machine-interface (HMI) is installed in the vehicle to assist the 

driver.6 

In this work it is assumed that some of the above mentioned infor-

mation is available on-board and the vehicle is integrated in an intelli-

gent transport system, respectively. A key distinguishing feature of the 

implemented strategies is that they cover a very different time horizon 

in order to be applicable in a broad variety of use cases that span from 

a duration of a few seconds to hours.  

In the second chapter various components of the prototypes are ex-

plored for which all optimization strategies are designed. However, it 

should be emphasized that the developed algorithms can very easily be 

adapted to be applied on other fully electric vehicles with similar topolo-

gy. Furthermore a vehicle model including all relevant components is 

derived. 

The third chapter presents an algorithm that dynamically splits the 

torque between two electric machines depending on the driving condi-

tion. The purpose is to increase the combined efficiency of the electric 

machines.  

The fourth chapter elaborates the implementation of energy-optimal ve-

locity profiles. A velocity profile is a trajectory the vehicle speed should 

follow in a certain driving maneuver. The time horizon of such a ma-

neuver is usually between 15 and 50 seconds.  

In the last chapter a basic concept for a route planner is developed that 

– besides the distance and the journey time – takes into account the en-

ergy consumption. For this purpose 3D GPS maps, information about 

speed limits, real-time traffic conditions etc. are considered to be avail-

able on-board. The user can specify a tradeoff between energy con-

sumption, travel time and traveled distance according to personal pref-

erences. 

                                       

6 Cf. http://www.fp7-opener.eu/index.php/project/open-task-list.html, 26/9/2012. 
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2 Modeling of the vehicle 

A suitable plant model is the foundation for any design process that 

aims at computing control strategies that can be successfully applied to 

a real dynamic system. For this reason the key elements of the vehicle 

model are briefly described in this chapter. The components of the pro-

totypes that are relevant for the development of the optimization algo-

rithms elaborated in the subsequent chapters are shown in Figure 2.1. 

The design process of the Torque Split Logic is explained in detail in 

chapter 3. Figure 2.1 also shows the underlying vehicle topology. Two 

electric machines that each power one axle are installed. Details on the 

electric machines and the ESP®hev (Electronic Stability Program for hy-

brid electric vehicles) designed by Bosch will be elaborated below in the 

corresponding subchapters.  

 

Figure 2.1: Considered components in the vehicle model.  

The vehicle can – up to a certain limit specified by the ESP®hev – be 

slowed down by using the rear electric machine in generator mode to 

recuperate mechanical energy which is used to charge the on-board 

battery. Due to the fact that the energy dissipated in the mechanical 

brakes cannot be reused, the author assumes that the outcome of an 

energy-efficiency optimization will in no case result in the use of the 

mechanical brakes. Therefore, disk brakes are purposely not considered 

in the modeling process.  
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To simplify matters it is reasonable to neglect all lateral dynamics as 

well as pitch because both do not exert any significant influence to the 

energy consumption.7 To describe the vehicle’s longitudinal dynamics, 

the equations of motion with respect to specific vehicle data are derived 

below. 

 

2.1 Longitudinal dynamics 

Generally for realistic modeling of the longitudinal dynamics a single-

track model is required to represent breaking and acceleration charac-

teristics, which have a substantial influence on the stability of vehicles.8 

However, stability is not considered in this work because in any unsta-

ble driving situation the energy optimization becomes completely point-

less. Besides, the electric machine torque can be limited in every devel-

oped algorithm to support stability. It is therefore convenient to neglect 

all stability concerns in the context of energy-optimization and use a 

single-wheel model. The equation of motion can be written according to 

Newton’s second law as  

 ������ ����� = 
�� − 
���, (2.1) 

where 

���� is the total vehicle inertia, ������ is the angular velocity of the wheel, 
�� is the overall torque of the powertrain at the wheel and 
��� is the driving resistance at the wheel. 

Note that equation (2.1) does not explicitly contain a term for brake 

torque. However, brake torque can be applied through the rear electric 

machine and is therefore part of 
��. By convention propelling torques 

                                       

7 Cf. Back M. (2005): pp. 47.  

8 Cf. Grießler L. (2011): pp. 4. 
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are labeled a positive sign, whereas resistance torques have negative 

signs.9  

With respect to � = ������������ where � is the vehicle speed and ������ is 

the dynamic rolling radius (the effective tire radius if the vehicle is in 

motion10) of the wheels, equation (2.1) can be rephrased to  

 �� = ���������� �
�� − 
����. (2.2) 

The total kinetic energy of the vehicle is given by  

 12 ����������� = 12 ��� + 4 12 ������������� + 12 ���������� , (2.3) 

where ��� and ������ denote the inertia of the powertrain and the wheel 

inertia, respectively and � is the vehicle mass. Hence, with the relation � = ������������ the vehicle inertia can be stated as11 

 ���� = �������� + 4������ + ��� . (2.4) 

 

2.2 Powertrain model 

According to Figure 2.1 the powertrain model includes the electric ma-

chines, the transmissions, the dog clutches, the differentials and the 

wheels. It is asserted that the dog clutches are always closed and do not 

slip in normal driving, including pulling off from standstill. Torsion of 

the drive shaft is also neglected. Therefore, a quasi-static approach can 

be taken to model the powertrain. The transmission ratio is constant 

and defined as 

 ��� = ���������, (2.5) 

where ��� is the front and rear electric machine speed.  

                                       

9 Cf. Back M. (2005): pp. 47-48. 

10 Cf. Kiencke U., Nielsen L. (2000): pp. 249. 

11 Cf. Grießler L. (2011): pp. 3-4. 
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For simplicity the efficiencies of the transmission and the differential 

are regarded as constants and referred to as  �� and  !"##, respectively.  

Note that both the front and the rear axle are constructed identically. 

Therefore the relation between the total power provided by both electric 

machines $��� and the total driving power at the wheels is given by 

 $��� = ���
��� = 1 �� !"## ������
�� = 1 �� !"## ��� 1��� 
�� , (2.6) 

where 
��� is the torque of both electric machines. It is now evident 

that the relation between the torque provided by the electric machines 

and the torque at the wheels is  

 
��� = 1��� �� !"## 
�� . (2.7) 

Neglecting the inertia of the dog clutch the rotational energy of the 

powertrain is given by 

 12 ���������� = 12 %&2��� + ���,��'���� + &���,����� + 2�!"##'������� (, (2.8) 

where 

��� is the inertia of one electric machine, 

���,�� is the transmission inertia on the EM side, 

���,����� is the transmission inertia on the wheel side and 

�!"## is the inertia of one differential. 

By substituting ��� according to equation (2.5) the inertia of the whole 

powertrain can be determined by 

 ��� = &2��� + ���,��'���� + ���,����� + 2�!"## . (2.9) 

 

2.3 Driving resistance 

The rolling resistance, the air resistance as well as the climbing re-

sistance are represented by 
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��� = �)* + )��|�| + �, sin 0�������, (2.10) 

where , is the gravitational acceleration, 0 is the angle of inclination in 

radian and )*, )1 	 ∈ 	4 are constants whose values were provided by 

Peugeot. Both constants were determined in coast-down tests on the 

road. Note that the term �|�| will be replaced by �� in the equations be-

low because driving backwards is not considered. 

 

2.4 Electric machine efficiency model 

To compute the overall energy consumption of the vehicle in any driving 

condition the electric machine efficiency is used. The efficiency is de-

termined with the aid of a Simulink model using a C MEX-file S-

function provided by the Robert Bosch GmbH. The model only repre-

sents the steady state behavior of the efficiency of one electric machine. 

All relevant inputs and the output of the model are shown in Figure 2.2.  

 

Figure 2.2: Electric machine efficiency model.  


1�� denotes the electric machine torque (note the distinction between 
1�� and the combined torque of both EM 
���). 567 is the DC (direct 

current) voltage at the clamps of the inverter of the electric machine and 

is provided by the battery. 8�9� and 8��:� refer to the rotor and stator 

temperature.  

The electric machine efficiency is labeled  1��. Note that the efficiency 

can be considered as a function with five arguments. Hence,  1�� 	 1���
1��, �, 567 , 8�9�, 8��:��. 
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Optimizing the efficiency contributes substantially to reducing the over-

all energy consumption of the vehicle. Chapter 3 will purely focus on 

optimizing the combined efficiency of both electric machines. 

 

Figure 2.3: Efficiency of one electric machine, Trotor = Tstator = 60°C, VDC 

= 305V. 

Let $�� be the electrical power one electric machine drains from the bat-

tery and let $1�� 	 �
1�� be the mechanical power the electric machine 

provides so that the efficiency is defined as  

 

 1�� 	
;<=
<> $1��$��  … $1��,   $�� > 0  $��$1��  … $1��,   $�� < 0  C)C …  DEℎG�H�IG,        

 

(2.11) 

where NaN stands for not a number. It is useful to use this notation be-

cause in the simulation environment any numerical value for  1�� other 

than 0 ≤  1�� ≤ 1 must be avoided. For 8�9�9� = 8��:�9� = 60℃ and 567 = 3055 Figure 2.3 shows the characteristics of  1�� for both motor 

and generator mode. The white area contains any infeasible operation 

region as well as any points where according to equation (2.11) the effi-

ciency is defined as NaN. In general, the efficiency decreases at higher 
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temperatures and vice versa. Some basic investigations on this phe-

nomenon will be given in chapter 3.2.  

 

2.5 ESP®hev in the prototypes 

The ESP®hev enables regenerative breaking and has been specifically 

developed for hybrid and electric vehicles.12 At the time the simulations 

for this work were conducted it allowed the test vehicle to purely regen-

erative decelerate up to approximately 1.25 m/s² by using only the rear 

electric machine. Energy recuperation with the front EM is not possible. 

At higher deceleration values regenerative breaking is mixed with hy-

draulic brake torque so as to the recuperation ability diminishes con-

tinuously until it reaches zero at a deceleration value of -3m/s² (see 

Figure 2.4). 

 

Figure 2.4: ESP®hev regenerative braking characteristics. 

                                       

12 Cf. Robert Bosch GmbH: http://www.bosch-
presse.de/presseforum/details.htm?txtID= 5291, 7/18/2012. 
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2.6 State space representation 

A state space model of the prototypes is given by 

 O� 	 P�O, Q�,     O�0� = O*, (2.12) 

where O = � is the only state variable, Q = 
��� is the control input and O* is the initial condition. The vehicle speed � is easily measurable and 

represents the system output R. The state space model can therefore be 

stated as 

 �� = ���������� &��� �� !"##
��� − �)* + )��� + �, sin0�������', 
R = �,       ��0� = �*. 

 

(2.13) 

 

2.7 Flatness 

The solving method to the optimization problem in chapter 4.2 relies on 

a system property called flatness. This section gives a brief overview of 

flat systems and it is shown that the state space model of the prototypes 

features this property. For details the reader is referred to technical lit-

erature (e.g. Zeitz M. (2010), Gausch F. (2010), Grießler L. (2011)). 

In general, flatness is a system property of dynamic systems. For linear 

systems flatness and controllability are interchangeable and therefore 

equivalent. For nonlinear systems flatness generalizes the property of 

controllability. For S���T� = S���U� the system   

 V� = W�V, U�,     V�0� = V* (2.14) 

is flat if it has at least one (possibly fictitious) flat output T. The state 

vector V as well as all control inputs (U) can be expressed explicitly by 

the flat output and a finite number of its derivatives:  

 V = XY&T, T� , … , T�Z[1�',  
U = X\&T, T� , … , T�Z�'. 

 

(2.15) 

Even if these conditions are just locally fulfilled the system is called flat. 
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Flatness is a very useful system property if trajectory planning is de-

sired. To illustrate this, consider a Single-Input Single-Output (SISO) 

system where the system output must follow a specific trajectory ��], E� 
where ]� = ^_1 _� _`a is a parameter vector. Due to R =! ��], E� the sys-

tem output can be parameterized as R = R�], E�. In this case flatness im-

plies that not just the system output but the state vector as well as the 

control input depend on only ] and E. In chapter 4.2 this property will 

be utilized to compute control inputs based on a set of parameters that 

specify a velocity trajectory.13 At this point it is left to show that the ve-

hicle model is indeed flat. 

With R = � equation (2.13) can be rearranged to    

 
����R, R� � = 1��� �� !"## cR� ���������� + �)* + )�R� + �, sin0�������d. (2.16) 

It is now evident that both � and 
��� depend only on the system out-

put and its first derivative. Therefore, the system is flat.  

                                       

13 Cf. Zeitz M. (2010): pp. 1, 3. 

Cf. Gausch F. (2010): lecture notes. 

Cf. Grießler L. (2011): pp. 40-41.  
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3 Torque split 

Up to half load a vehicle that has two identical electric machines can 

drive by using either just one EM or the torque can be allocated arbi-

trarily between both EM. If a higher drive torque is required, both elec-

tric motors have to be used but as long as the demand torque is lower 

than the maximum torque of both electric machines there is still an in-

finite number of possibilities to unequally distribute the torque. Howev-

er, without consideration of the electric machine efficiency characteris-

tics no reasonable predication can be made about the optimal torque 

split. A strategy without any computational or implementation effort is 

to just even distribute the torque between both EM. This method also 

covers full load operation. It will serve as a benchmark for the optimiza-

tion algorithm below.  

The idea that is followed in this chapter is to reduce the power con-

sumption by applying a dynamic distribution of the drive torque be-

tween both electric machines. The goal is therefore to always operate 

the electric machines at their combined maximum efficiency at any giv-

en torque demand by the driver in any driving condition. The combined 

maximum efficiency also depends on the temperature of the electric 

machines as well as the battery voltage. A detailed description will be 

given in the subchapters below. All algorithms are developed in 

MATLAB/Simulink using the vehicle model elaborated above. The effect 

on the overall energy consumption is then investigated by evaluating 

the torque split strategy in various driving cycles and driving maneuvers 

using a detailed model of the prototypes in AVL CRUISE.  

 

3.1 Electric drive efficiency 

Similar to equation (2.11) the combined efficiency of both EM is general-

ly defined by 
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 ��� 	
;<=
<> $1��,# + $1��,�$��,# + $��,�  … $1��,# + $1��,� , $��,# + $��,� > 0  

$��,# + $��,�$1��,# + $1��,�  … $1��,# + $1��,� , $��,# + $��,� < 0  
C)C  …  oEℎG�H�IG,                                                             

 

(3.1) 

where  $1��,# and $1��,� denote the mechanical power of the front and the 

rear electric machine and  $��,# and $��,� is the electric power consumed or regenerated by the 

front and the rear electric machine, respectively.  

However, due to the ESP®hev the front EM may not be used to recuper-

ate energy. Therefore, equation (3.1) is simplified to   

 

 ��� =
;<=
<> $1��,# + $1��,�$��,# + $��,�  … $1��,# + $1��,� , $��,# + $��,� > 0  

$��,�$1��,�  … $1��,� , $��,� < 0                                                   
C)C  …  oEℎG�H�IG,                                                             

 

 

 

(3.2) 

The torque split factor states what percentage of the total EM drive 

torque is provided by the front electric machine:  

 u# = 
1��,#
1��,# + 
1��,� ,  

(3.3) 

 where  


1��,# = �ghi,jkhi  is the torque provided by the front EM and  


1��,� = �ghi,lkhi  is the rear torque.  

Note that 0 ≤ u# ≤ 1. The total electrical power is given by $��,�9� = $��,# +$��,� and the total mechanical power is given by 
��� = 
1��,# + 
1��,�. 
Figure 3.1 illustrates the connection between the overall mechanical 

and electric power of both electric machines for $��� , $��,�9� > 0 with re-

gard to the torque split factor.  
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Figure 3.1: Torque split between front and rear EM. 

It is now apparent that for $��� , $��,�9� @ 0 the total electrical power can 

be calculated with  

 $��,�9� 	 Q#$��� # � &1  Q#'$��� � , 		$��� , $��,�9� @ 0. (3.4) 

Rearranging this equation gives 

 $���
$��,�9�

	  ��� 	 1
Q#
 # �

&1  Q#'
 �

	
 # �

Q# � � &1  Q#' #
, 		$���, $��,�9� @ 0. (3.5) 

It is important to note that equation (3.5) shows that  ��� 	 ,�Q#�, 
where , is a nonlinear function of the torque split factor Q#. Therefore, 

an optimization of Q# results in the maximization of ,. This is equivalent 

to reducing the energy consumption in any given driving condition 

where $��� , $��,�9� @ 0. 

Remark: If it was possible to use the front electric machine for recuper-

ation as well, another version of equation (3.5) could be derived similar-

ly for 		$��� , $��,�9� B 0 based again on Figure 3.1 but by substituting 1  #⁄  

and 1  �⁄  for their reciprocal values. A new function ,n�Q#� could be de-

termined for recuperation mode.  

Various optimization methods could be applied to find the maximum of 

,. The fact that u# lies between zero and one simplifies matters consid-

erably. In a special case where the supply voltage as well as the rotor 

and stator temperatures are equal for both EM this interval can be nar-

rowed even further. Consider for example two identical EM under equal 

conditions: a torque split factor of Q# 	 o will give the exact same results 

as Q# 	 1  o (0 J o J 1). It is therefore evident that – with respect to the 
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conditions mentioned above – it is sufficient to consider only values of Q# in the interval ^0, 0.5a. 
An optimization of the torque split factor can therefore be carried out as 

follows. First of all p ∈ ℤr different values for Q# are chosen: Q# =sQ#,1, Q#,�, … , Q#,Zt. Then simulations with all Q#," (� = 1 … p� are run and the 

efficiency values are stored in the vector u� = ^v1, … , vZa. If p is chosen 

adequately a sufficiently accurate approximation of the optimal torque 

split factor can be obtained with: 

 w = miny�: v" 	 ‖u‖|}. Q#,9~� = Q#,�. 
 

(3.6) 

This procedure is systematically repeated for all feasible combinations 

of torque and speed and the optimal torque split values are stored in a 

lookup table. Temperature differences between the electric machines 

can be considered as well. Figure 3.2 shows Q#,9~���, M���� for 567 =3055, 8�9� = 8��:� = 60℃ (for both electric machines) and p = 11. The cor-

responding values for Q#," are y0, 0.05, 0.1, … ,0.5}.  

 

Figure 3.2: Lookup table for uf,opt: VDC = 305V, Trot = Tstat = 60°C, n = 11. 

Note that Q#,9~� is zero if the torque demand is low. This means that only 

one electric machine should be used. In higher load conditions the 

torque is mostly to be distributed equally between both electric ma-
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chines. It is evident that only two modes are sufficient to optimally op-

erate the vehicle in almost all operating points. Considering that the de-

scribed torque split may be implemented in one of the prototypes it is 

desired to keep the implementation effort as low as possible as long as 

the tradeoff between improving the energy-efficiency and reducing com-

plexity is reasonable. Thus, the question arises whether the lookup ta-

ble for Q#,9~� could be simplified, i.e. reduced to fewer values. A first step 

is to investigate the impact of the simplification of Q#,9~� to just two val-

ues.  

Based on Figure 3.2 a new variable 
������9�! is defined which shall rep-

resent a torque threshold. For any speed the threshold equates to the 

minimum torque value where Q#,9~� is not zero. Expressed mathemati-

cally the threshold is defined by 

 
������9�! = minsM���: Q#,9~���, M���� > 0t. (3.7) 

Now a simplified torque split lookup table can be defined as 

 Q#,���9~� = �0 …    
��� < 
������9�! 0.5 … 
��� ≥ 
������9�!.  (3.8) 

Figure 3.3 shows 
������9�! for various supply voltage levels. Once more 

it is assumed that the supply voltages as well as the rotor and stator 

temperatures of the front and rear electric machine are equal.  

Apparently, the threshold levels differ at higher speeds. Up to approxi-

mately one third of the maximum speed there is no significant voltage-

dependency (for relevant values of the supply voltage). If implemented in 

the prototype, Q#,���9~� would not only require less implementation effort 

but also significantly less memory than Q#,9~�. Whether the loss of ener-

gy-efficiency is worth it will be investigated in the next subchapter.  
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Figure 3.3: Mthreshold at different supply voltage levels. 

 

3.2 Implementation and results 

So far it has been shown that two different approximations to an opti-

mal torque distribution can be determined. However, no investigation 

has yet been made whether the potential of reducing the energy con-

sumption justifies the implementation effort. Thus, the impact of apply-

ing Q#,9~� and Q#,���9~� on the energy consumption is evaluated under 

various driving conditions. For this purpose a detailed model of the pro-

totype in AVL CRUISE is used. Note that neither the optimal nor the 

suboptimal torque split are calculated in AVL CRUISE but implemented 

in the model after being determined in MATLAB as described in chapter 

3.1. Note also that the AVL CRUISE model considerably differs from the 

one that is described in the second chapter because in contrast to the 

one-wheel model, all four wheels are considered. Also, the mechanical 

brakes can be used if pure regenerative breaking cannot provide enough 

break torque to carry out a specified driving maneuver. In addition a 

human driver model is included. Hence, it is assumed that the effect of 

the torque splitting can be realistically analyzed and that based on the 
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results a substantiated decision can be made whether it is worth to 

pursue this approach.  

To evaluate the benefit of a torque distribution a suitable and precise 

criterion and an evaluation method, respectively are indispensable. For 

this purpose the application of both Q#,9~� and Q#,���9~� is compared to a 

static torque distribution which – under all driving conditions – splits 

the torque equally between both EM (Q# = 0.5). New variables �9~� and ����9~� are defined which represent the amount of energy saving in % 

compared to a static equably distribution of the torque:  

 �9~� = ��j�*.� − ��j,�����j�*.� ∗ 100%, 
����9~� = ��j�*.� − ��j,��������j�*.� ∗ 100%. 

 

 

(3.9) 

��j�*.� denotes the total amount of the prototype’s consumed energy in a 

specific driving maneuver or a driving cycle if a static and even torque 

distribution is applied. Accordingly ��j,��� and ��j,������ denote the ener-

gy consumption if Q#,9~� or Q#,���9~� is applied.  

At the juncture this thesis is written the author has no access to any re-

liable data concerning the thermal behavior of the electric machines 

(e.g. the thermal capacity or the specification of the on-board cooling 

system). Therefore a constant electric machine temperature is assumed 

during the following driving maneuvers.  

Table 3.1 illustrates the results for the New European Driving Cycle 

(NEDC) as well as the EPA Federal Test Procedure (FTP-75). In addition 

the energy saving while driving at various constant velocities is shown. 

In all simulations the initial state of charge (SOC) of the battery is 88% 

and 8��:�9� = 8�9�9� = 60℃ for both electric machines.  
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Energy consumption improvement due to torque splitting 

- NEDC FTP-75 30 km/h 50 km/h 90 km/h 120 km/h 

δopt 5.423% 3.626% 23.691% 17,559% 7,422% 5,504% 

δsubopt 5.418% 3.624% 23.691% 17,559% 7,422% 5,504% 

Table 3.1: Reduction of the consumed energy by dynamically distrib-

uting the torque between the electric machines. 

The results show that the performance of Q#,���9~� is nearly as good as 

the one of Q#,9~�. Thus, answering the question from the previous section 

whether it is useful to simplify Q#,9~� to reduce the implementation effort 

can clearly be answered indisputably. Especially at low load conditions 

the improvement is significant. The reason why the improvement values 

are equal at the constant velocities shown in Table 3.1 is that under 

those conditions both Q#,9~� and Q#,���9~� are 0. In comparison the rela-

tive energy saving is rather low in the examined driving cycles because 

they include lots of acceleration phases with relatively high torque de-

mands compared to driving at constant speed. In those operating re-

gions the optimal torque split is – according to Figure 3.1 – 0.5 which 

obviously achieves no advantage compared to a static and even torque 

splitting. 

As shown above the improvement for the NEDC is about 5.4%. The pur-

pose of Figure 3.4 is to better explain the NEDC and to show in which 

operating regions one or both electric machines are used. The figure 

shows both the vehicle speed during the NEDC (blue curve) and the cor-

responding suboptimal torque split factor Q#,���9~� (green curve). Both 

electric machines are used for accelerating at low speeds. At higher 

speeds only one machine is in use. Note the connection to Figure 3.3 

where (for low velocities) the torque threshold rises as the speed in-

creases. Also, as stated above ����9~� = 0 if the vehicle travels at a con-

stant velocity of 120km/h or less. 
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Figure 3.4: Suboptimal torque split during the NEDC.  

 

A remark to the torque split simulations:  

Although optimal torque split values can be determined for any temper-

ature differences between the electric machines, so far the EM tempera-

ture has always been considered equal in the simulations conducted in 

AVL CRUISE. This simplification is indeed very useful because it allows 

obtaining simulation results for various driving scenarios without any 

knowledge of the thermal behavior of the electric machine and the cool-

ing system. However, the question arises, whether this simplification 

renders the obtained results meaningless. 

It can be shown in simulations that in general the efficiency of the elec-

tric machine decreases as the temperature increases. This is exempli-

fied in Figure 3.5 for 567 	 3055. The temperature refers to both 8�9� and 8��:�. For better comparability the torque is normalized to a percentage 

value of the maximum available torque at the correspondent tempera-

ture and driving speed.   

In reality, whenever the torque is not distributed equally between the 

electric machines, they heat differently. The optimal torque distribution 
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changes accordingly. The effect on the overall energy-efficiency im-

provement is yet to be determined in further simulations or through 

measurements in the prototypes.  

 

Figure 3.5: Electric machine efficiency depending on temperature.  

Nevertheless, in the opinion of the author the results above are indeed 

meaningful and justify the implementation effort of adding a dynamic 

torque distribution in the algorithms presented in chapters 4 and 5. The 

reasons for this conclusion are: 

1. The high relative energy saving values in Table 3.1 for constant 

velocities (or low load conditions) where only one EM operates can 

be approximated by alternately switching the torque between the 

front and rear EM. Thereby the EM temperatures are roughly 

constant as it was assumed in the conducted simulations.  

2. At least after a sufficiently long standstill the EM temperatures 

are temporarily roughly equal and in this lapse of time the results 

shown in Table 3.1 are significant.  

3. Preliminary and basic considerations give no serious indications 

that if the thermal characteristics were added the energy savings 

would be significantly worse than stated in Table 3.1.  

4. Regenerative breaking is limited to the use of the rear electric ma-

chine. Therefore, even with static and even torque splitting the 
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rear electric machine eventually becomes hotter than the front 

EM. In this case a dynamic torque distribution is able to react to 

the subsequent decline of the efficiency at the rear electric ma-

chine. 

5. The idea of a dynamic torque distribution might be extended to 

including estimations of future load conditions. These estimations 

can be based on 3D GPS data and real-time traffic conditions re-

ceived through c2c and c2i communication. Instead of optimizing 

the instantaneous efficiency, a tradeoff between current energy-

saving and future efficiency gain is possible. This would lead to 

sophisticated thermal management strategies and significantly 

contribute to the development of an advanced energy manger as it 

is requested in the OpEneR project.  
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4 Velocity Trajectory Optimization 

In everyday traffic situations a driver has to adapt the traveling speed in 

order to meet a speed limit, stop at a traffic light or simply maintain a 

safe distance to other vehicles. Up to a certain degree it is up to the 

driver whether his or her driving is rather aggressive or energy efficient 

and foresightful. Particularly regenerative breaking enables motorists to 

combine anticipatory driving with low energy consumption. However, 

when it comes down to considering the overall powertrain efficiency, re-

coverable breaking energy, road inclination, traffic signs as well as pre-

dicting other road users behavior all at once while trying to safely and 

energy-efficiently steer a vehicle, even a skilled driver might feel a little 

overburdened.  

The aim of this chapter is to develop and apply algorithms that can cal-

culate optimum control inputs for fully electric vehicles to adapt the ve-

hicle speed in various traffic situations. Given a particular traffic situa-

tion, these optimum control inputs are equivalent to optimal velocity 

trajectories the vehicle must follow within a predefined period of time or 

over a certain distance. In any case safe and comfortable driving must 

be ensured by simultaneously maximizing energy efficiency.  

An important aspect is that for certain driving maneuvers it is possible 

to compute optimal control inputs a priori. This is interesting because it 

is state of the art that (with some limitations) longitudinal control of the 

vehicle can be taken over completely by adaptive cruise control (ACC). 

Therefore, in case a vehicle is equipped with ACC, energy-optimal driv-

ing can be combined with the safety and comfort autonomous driving 

provides. In this case the optimized actuating variable can be directly 

applied as a specific torque set point at the electric machines. Other-

wise, recommendations can be shown to the driver through a human-

machine interface (HMI). Consequently, the motivation behind the ap-

plication of optimum speed profiles is to provide improved energy-

efficiency while considering both safety and driving comfort. 
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The first part of this chapter deals with an optimization method called 

dynamic programming (DP). Foremost, the basic theoretical concept will 

be explained. Subsequently, the implementation of a DP algorithm in 

MATLAB is described. Results of energy-optimum velocity profiles that 

also take into account some basic considerations about driving comfort 

are shown. Being able to compute globally optimal solutions, DP is well-

suited for benchmarking with other optimization tools. In the second 

part of this chapter another algorithm is developed, applying a parame-

ter optimization method, which utilizes the fact that the controlled sys-

tem (vehicle) features a flat output as described in chapter 2.7. As al-

most everywhere, different methods provide diverse upsides and down-

sides. Although the second procedure does not ensure the solution to be 

the globally optimal one, additional boundary conditions can be consid-

ered. Furthermore, it creates innately smoother velocity profiles and 

therefore increased driving comfort.  

Both algorithms explained in this chapter are designed for relatively 

short maneuvers that take up to one minute and 1000m, respectively 

(although, it is possible to extend these methods to compute significant-

ly longer velocity profiles). Thus, for simplicity it is assumed that both 

the electric machine temperatures and the battery voltage do not signif-

icantly change during such a short period of time. For this reason, 567, 8��:�9� and 8��:�9� are set as constant and will be omitted (e.g. the electric 

machine efficiency  ����
, �� has just two arguments). Furthermore, 

suboptimal torque splitting as described in chapter 3.1 is included to 

both algorithms.    

Still missing in the introductory part of this chapter is a rather precise 

mathematical formulation of the optimization process and a strict defi-

nition of velocity profiles. It is desired to change the vehicle velocity � 

from any initial speed 0 ≤ �* ≤ ��:� to another speed 0 ≤ �� ≤ ��:�. In 

some cases it is useful to specify a period of time 8 = E� − E* in which 

the transition from �* to �� is to be carried out. For instance, if a motor-

ist who uses ACC sets a desired velocity �� it must be assured that after 

a finite period of time 8 the vehicle will travel at that speed.  
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However, in many cases it is impossible to exactly determine an instant 

in time at which the vehicle will reach a speed limit, an object on the 

road, a curve etc. These events are usually specified by distance values. 

Therefore, lots of use cases exist where it is rather useful to ensure that 

the vehicle reaches �� within a certain covered distance � 	 S�  S* in-

stead of a specific period of time 8. For example, at an upcoming low-

ered speed limit the motorist must of course adapt the traveling speed 

to satisfy the condition ��S�� J ��.  

In order to cover the mentioned use cases, two different sorts of bound-

ary conditions are considered: 

i) �* 	 ��E 	 E*�, �� 	 ��E 	 E�� and 

ii) �* 	 ��S 	 S*�, �� 	 ��S 	 S��. 

It is therefore useful to specify the velocity as a function of time � 	 ��E� 
in case i and as a function of the traveled distance � 	 ��S� in case ii 

(see Figure 4.1). 

 

 

 

Figure 4.1: Vehicle velocity. 

As it is quite impractical to always distinguish between ��E� and ��S� a 

new variable � is introduced to cover both cases (i and ii) by the nota-

tion � 	 ����, �* 	 ���*� and �# 	 �����. Now, the basic idea of energy-

optimal speed profiles is to minimize the overall energy consumption � 
within the interval ^�*, ��a, respecting the boundary conditions men-

tioned above as well as velocity-dependent acceleration limits and an 

upper and lower bound for ����. Therefore the optimization problem can 

be formulated as  
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 min���� y�} 	min���� �� $ �����, d����d� � d���

��
  

                      subject to:                                                           ��"Z ≤ ���� ≤ ��:� 

                                                  )�"Z&����' ≤ !����!� ≤ )�:�&����', 

 

 

 

(4.1) 

where $ is the power consumption and )�"Z and )�:� are limits for the 

vehicle acceleration due to limited electric machine power, safety or 

comfort reasons.  

 

4.1 Velocity trajectory optimization with dynamic program-

ming 

In this thesis dynamic programming is used to compute optimized con-

trol inputs for a nonlinear dynamic system. However, in addition to op-

timal control theory, there is a broad variety of problems dynamic pro-

gramming algorithms can be applied on. To explain the basic idea of 

DP, a situation is considered, where decisions are made in several stag-

es. The objective is to particularly make those decisions that result in a 

desired outcome. In other (mathematical) words, it is desired to always 

make decisions that minimize a certain cost. A crucial factor in such 

situations is that even optimal choices in every isolated decision are un-

likely to result in a satisfying final outcome. That is, because one must 

always consider future decisions as well in order to balance reducing 

current costs with receiving the chance to lower future costs. And this, 

fortunately, is a task DP can accomplish. At each stage, a decision is 

evaluated by the sum of the present cost and the overall future cost.14  

 

                                       

14 Cf. Bertsekas D., (2005): pp. 2. 
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Introductory example: a staged decision problem: 

To illustrate the basic concept of dynamic programming, consider a 

multistage decision process as depicted in Figure 4.2. The first decision 

made at A results in the cost �¡¢. The next decision can either lead to C, 

D or E incurring a cost of �¢7, �¢6 or �¢�. From an isolated point of view 

in B it makes sense to proceed to C or D because �¢7 B �¢� and �¢6 B �¢�, 

respectively. However, since neither C nor D lie on the optimal path (A-

B-E) due to �¢7 � �7� @ �¢� and �¢6 � �6� @ �¢�, proceeding to C or D is def-

initely not an optimal choice, considering the bigger picture.15 After 

these preliminary considerations, it is now shown how this problem can 

be solved by means of dynamic programming. 

 

Figure 4.2: A multistage decision process.  

Adapted from Kirk D. (2004): pp. 54. 

A characteristic of DP algorithms is that they solve problems back-

wards. Therefore, the destination E is considered first, which can be ac-

cessed via B, C and D. The (optimal) cost to reach E from C can be writ-

ten as �7∗ 	 �7� and is stored. Accordingly, the cost from D is �6∗ 	 �6�, 

which is again stored. The optimal cost from B is now given by  �¢∗ 	 ��py�¢� , ��¢7 � �7∗�, ��¢6 � �6∗ �} 	 �¢�. It is important to note, that for B 

two pieces of information must be stored: 

i) The minimum cost to reach E is �¢∗ 	 �¢�. 

ii) The optimal decision at B is to proceed directly to E. 

                                       

15 Cf. Kirk D. (2004): pp. 54. 
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Lastly, B can be accessed via A. The optimal cost from A to the destina-

tion E is �¡∗ 	 �¡¢ � �¢∗ , which is the overall cost, assuming optimal deci-

sion making. Thus, an optimal policy has been found which corre-

sponds to the sequence of optimal decisions that has been determined. 

Of course, one can wonder why in this case DP is a useful method. After 

all, the optimal solution to the problem shown in Figure 4.2 can be de-

termined by simply comparing the paths A-B-C-E, A-B-D-E and A-B-E. 

However, in larger problems such an exhaustive search (trying all al-

lowable paths) may be extremely computation-intensive. This becomes 

evident with regard to Figure 4.3, which shows the exact same staged 

decision process but doubled and put in series. The computational load 

using DP would simply double, compared to the example above. Howev-

er, the number of paths to consider, which is now 9 instead of 3, would 

triple.16 

 

Figure 4.3: Another multistage decision problem. 

Adapted from Kirk D. (2004): pp. 54. 

Another important aspect is the so called Principle of Optimality. In 

1954 Richard Bellman wrote: “An optimal policy has the property that 

whatever the initial state and initial decisions are, the remaining deci-

sions must constitute an optimal policy with regard to the state resulting 

from the first decision.”17 Once an optimal policy for the problem in Fig-

ure 4.3 has been computed, choosing another starting point than A will 

                                       

16 Cf. Kirk D. (2004): pp. 56 - 58. 

17 Bellman R. (1954): pp. 4. 
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not result in any change of optimal decision making. And neither does 

violating the optimal policy because henceforth, previously computed 

optimal choices are still valid.18  

 

General problem formulation: 

Now that the fundamental idea of DP has been explained a basic model 

that has two key features is considered: (1) a discrete time dynamic sys-

tem and (2) an additive cost function. The system is given by 

 O£r1 	 P£�O£, Q£, H£�,      ¤ = 0,1, … , C − 1, (4.2) 

where  ¤ is the discrete time index,  O£ is the state of the system at the k-th time step. Note that O£ ∈ ¥£ is discrete both in time and value.  Q£ indicates the (constrained) discrete-value control input or deci-

sion made at time k. The set of all feasible values can depend on 

the system state such that Q£ ∈ ¦£�O£�. H£ is a (random) parameter that represents a disturbance or 

noise, C is the number of times the control input is applied and a deci-

sion is made, respectively and P£ is a function that describes the system. 

It is important to note that for the application of DP at least the proba-

bility distribution of the disturbance must be known a priori (stochastic 

dynamic programming). Furthermore, H£ may explicitly depend on both O£ and Q£ but must be independent of prior values H£[1, … , H* (Markov 

process). In the next chapters (which deal with the implementation of 

velocity profiles), it will be assumed that every value of H£ is exactly 

known in advance (deterministic dynamic programming). However, for 

                                       

18 Cf. Kirk D. (2004): pp. 54. 
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the sake of generality H£ will be considered as a random variable in the 

following general problem formulation. 

If ,��O�� is some terminal cost incurring at the end of the process, the 

cost is 

 ,��O�� � § ,£�O£, Q£, H£��[1
£�* . 

(4.3) 

Since the disturbance may be a random parameter, the cost is generally 

a random variable and can therefore not be meaningfully optimized. 

Thus, the problem can be formulated as an optimization of the expected 

cost19   

 � ¨,��O�� + § ,£�O£, Q£ , H£��[1
£�* ©.  

(4.4) 

Let ª = �μ*, … , μ�[1� be any admissible policy (control sequence) such 

that μ£ maps every state O£ into a control input Q£ = μ£�O£�. With ª ∈ ¬, ¬ denotes the set of all admissible policies. The cost of using ª on prob-

lem (4.2) with the initial condition O* is defined by  

 ��O*� = � ¨,��O�� + § ,£�O£, μ£�O£�, H£��[1
£�* ©.  

(4.5) 

The optimal policy ª9~� then minimizes � 

 �9~��O*� = min∈® ��O*�. (4.6) 

Now the following algorithm (which proceeds backwards from C − 1 to 0) 

can be executed to determine the optimal cost at every time k and the 

optimal policy ª9~�:  
 �£�O£� = min�¯∈°¯��¯� �y,£�O£, Q£ , H£� + �£r1�O£r1�}, (4.7) 

                                       

19 Cf. Bertsekas D. (2005): pp. 3-4.  
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where ���O�� 	 ,��O��.20 

Note that the terminal cost ,��O�� can be used to compute ª9~� in a way 

such that a desired final state is O�,!��"��! is approached. Let O�9� > 0 

specify a tolerance range for the final state O� around O�,!��"��!. By 

choosing 

 ,��O�� = ±0        PD� ²O� − O�,!��"��!² < O�9�  o        PD� ²O� − O�,!��"��!² ≥ O�9�,  

(4.8) 

where o ∈ ℝ must be a sufficiently high number, the final state O� will 

be close to O�,!��"��!. 

The formulation of the basic problem and the DP algorithm is hereby 

concluded. This chapter will therefore proceed with some implementa-

tion issues, which will be useful for the computation of energy-optimal 

velocity profiles in the next subchapter.  

 

Grid selection: 

Dynamic programming can only be applied on systems with limited dis-

crete control inputs (a limited number of possible decisions) and limited 

discrete system states. In the introductory example (Figure 4.2) this re-

quirement was fulfilled automatically. However, in many dynamic sys-

tems both the number of feasible control inputs, and the number of 

states is infinite. This requires a discretization as a first step. The num-

ber of grid elements represents a tradeoff between high-accuracy and 

computing time.21  

 

 

                                       

20 Cf. Guzzella L., Sciarretta A. (2007): pp. 313-315.  

Cf. Bertsekas D. (2005): pp. 12-13. 

21 Cf. Guzzella L., Sciarretta A. (2007): pp. 316. 
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Interpolation between two grid points: 

The discretization of the state space causes the following issue: if at O£ ∈ ¥£ the next state is calculated using O£r1 	 P£�O£, Q£, H£� that state 

might not exactly match one of the possible states in ¥£r1. This causes a 

problem, because the so called cost-to-go �£r1�O£r1� in equation (4.7) is 

only defined for any O£r1 ∈ ¥£r1. Figure 4.4 shows this problem, where 

for simplicity ¥£ 	 ¥£r1	∀¤ and H£ 	 0	∀¤.  

 

Figure 4.4: Issues arising due to discrete state space. 

Adapted from: Guzzella L., Sciarretta A. (2007): pp. 317. 

The number of valid control inputs is limited to three (Q1, Q�, Q`). At time 

k, the state O" is considered. All inputs have to be considered to calcu-

late �£�O£�, which is according to equations (4.2) and (4.7) determined by 

 

�£�O£� 	 min
;<=
<>,£&O" , Q1' � �£r1 ´P£&O" , Q1'µ,£&O", Q�' � �£r1 ´P£&O" , Q�'µ,£&O", Q`' � �£r1 ´P£&O" , Q`'µ¶<·

<̧
. 

 

 

(4.9) 

However, as mentioned above, �£r1 is not defined for those values be-

cause they do not match with ¥£. For this reason some approximation 

must be found. An easy solution is to simply set �£r1 to the closest de-

fined value. This is called the nearest neighbor method and its ad-

vantage is a low computational load.  
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A second approach (which is also used in this thesis for the computa-

tion of optimal velocity profiles) is to use a linearly interpolated value of 

the cost-to-go �£r1. Other interpolation methods can be used as well, 

but linear interpolation usually results in a reasonable tradeoff between 

high accuracy and the extra computational load. In this case the ap-

proximation of equation (4.9) is22 

 �£�O£� 	
	 min

;<<
=
<<>,£&O" , Q1' + �£r1&O"r1' + &P£&O" , Q1' − O"r1' �£r1&O"r�' − �£r1&O"r1'O"r� − O"r1

,£&O" , Q�' + �£r1&O"[1' + &P£&O" , Q�' − O"[1' �£r1&O"' − �£r1&O"[1'O" − O"[1
,£&O" , Q`' + �£r1&O"[�' + &P£&O" , Q`' − O"[�' �£r1&O"[1' − �£r1&O"[�'O"[1 − O"[� ¶<<

·
<<̧. 

(4.10);   

 

 

 

  

 

Infeasible states or inputs: 

Infeasible states or inputs can be handled by assigning an infinite cost. 

A disadvantage of this method is that if interpolation is used, the inter-

polated value is infinity as well. If not treated correctly, this can cause 

additional cost-to-go values to become infinity. In this way infinite val-

ues can spread far into feasible state space. To avoid this, a very large 

real constant can be used, which has to be greater than any cost-to-

go.23   

 

4.1.1 Implementation 

This section shows the implementation of a dynamic programming algo-

rithm in MATLAB/Simulink to compute energy-optimal velocity profiles. 

                                       

22 Cf. Guzzella L., Sciarretta A. (2007): pp. 316 - 317. 

23 Cf. Guzzella L., Sciarretta A. (2007): pp. 318. 
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All simulations use only parameters taken from the prototypes that are 

described in chapter 2.  

The way a dynamic programming algorithm is implemented has a huge 

impact on the computational load. An easy option to implement DP 

would be to use three for loops: one for every time step, one for every 

grid point and one for every admissible control input. However, using a 

triple-for loop in MATLAB is quite inefficient in terms of computing time. 

For this reason a vector-based approach is taken, which reduces the 

number of for loops to just one. This requires some extra implementa-

tion effort but the speedup factor is so significant that it will pay off.24  

An interesting aspect is that those vectors never change during the exe-

cution of the dynamic programming algorithm. Thus, they can be calcu-

lated a-priori (details on this will be given below). Figure 4.5 shows the 

flow chart to create optimal velocity profiles. Note that the blocks on the 

left serve only the purpose to preprocess data and to put them in vec-

tors to efficiently execute the dynamic programming algorithm. The last 

step is the forward simulation to create velocity profiles according to the 

optimal policy DP computes. All these steps in Figure 4.5 will now be 

explained below. 

 

Figure 4.5: Flow chart to compute velocity profiles  

                                       

24 Cf. Guzzella L., Sciarretta A. (2007): pp. 318 - 319. 
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Select velocity profile characteristics (problem description): 

As mentioned in chapter 4, velocity profiles must respect boundary 

conditions that can either be given at an instance in time (�* 	 ��E 	 E*�,�� = ��E = E��) or at a certain distance (�* = ��S = S*�, �� = ��S = S��). 
Accordingly, it is useful to view the vehicle velocity as a function of time 

or the traveled distance. However, in the introductory chapter of dy-

namic programming the index ¤ only indicated discrete time steps. 

Therefore, the first step is to extend this notation. From now on it will 

be evident from the context, whether ¤ indicates discrete time or dis-

crete distance. The algorithm automatically generates either a distance 

or time grid, depending on the boundary conditions.  

The discrete-time dynamic system is given by �£r1 = P��£, 
£�. Let ∆E£ be 

the time between the steps ¤ and +1 . Then the system equation is de-

fined as  

 �£r1 = �£ + )£∆E£, (4.11) 

where )£ is the vehicle acceleration, which according to equations (2.2) 

and (2.7) is given by  

 )£ = ���������� &
£��� �� !"## − 
���,£'. (4.12) 

However, ∆E£ depends on whether (i) a time grid or (ii) a distance grid is 

used. 

i) In case a time grid is used ∆E£ is explicitly specified as the step 

time of the DP algorithm, which is the same for all ¤. Hence, ∆E£ = ∆E£r1 

ii) If a distance grid is used a fixed distance step ∆S is defined 

within the DP algorithm. Therefore the time to travel from one 

point of the distance grid to the next has to be determined. If 

constant acceleration is asserted, the distance that an object 

moves within the time ∆E£ is given by 

 ∆S = �£∆E + 12 )£∆t£� . (4.13) 
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i) Solving this equation for ∆E gives  

 

∆E£ 	
;<<
<=
<<<
>�£)£ »�£�)£� � 2∆S)£     PD� )£ < 0

− �£)£ + »�£�)£� + 2 ∆S)£     PD� )£ > 0
∆S�£                                    PD� )£ = 0.

 

 

 

 

(4.14) 

i) It is possible that at low velocities and low torques the discri-

minant becomes negative. This case is handled by setting ∆E£ 

to some arbitrary real value. This is a valid method because 

the control input that causes �£r1 to be negative will have a 

high cost function and therefore not be selected as an optimal 

control input (details will follow below). Also, infinite numbers 

for ∆E£ result in high cost functions because 0 ∉ 5£. 
ii)  

Compute state space and feasible control inputs: 

The vehicle velocity �£ is a continuous state variable (it is only discrete 

in time). Therefore it is necessary to discretize �£ ∈ 5£ in value. An equi-

distant discretization is chosen, where the gap between two grid points 

is ∆� ≈ 0.3 ¤�/ℎ. Furthermore, the velocity grid does not change over ¤. 

Hence, 5£ = 5£r1 ∀¤. 

The constraint for the vehicle speed in equation (4.1) ��"Z ≤ ���� ≤ ��:� 

can easily be implemented by limiting 5£. Assuming that ��"Z + p∆� =��:�, where p ∈ ℤr, the state space 5£ can be represented in MATLAB by 

a vector ¿À: 

 ¿À� = ^��"Z ��"Z + ∆� ��"Z + 2∆� … ��"Z + �p − 1�∆� ��:�a. (4.15) 

The next step is to define feasible values for the control input which is 

the torque of both electric machines. On the one hand these values are 

constrained by the minimum and maximum available torque depending 

on the speed (
�"Z,�����,  
�:�,�����). On the other hand the torque may 

be limited due to comfort reasons ( 
�:�,Á9�#) or by the ESPhev charac-
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teristics. The latter is not yet expressed as a torque constraint. Fortu-

nately equations (2.2) and (2.7) state a clear relation between the vehicle 

acceleration and the overall torque. Thus, the ESPhev limit for pure re-

generative breaking ���"Z,��� = −1.25 �/I� can also be expressed by a ve-

locity-dependent torque constraint:  

 
�"Z,������ = Â���"Z,��� ���������� + 
������Ã 1��� �� !"## . (4.16) 

Equation (4.16) must be evaluated for every element in ¿À.  

The range of feasible control inputs for the i-th velocity in ¿À is therefore 

defined by the bounds  

 
�"Z" = maxs
�"Z,��" , 
�"Z,���" t, 

�:�" = mins
�:�,��" , 
�:�,Á9�#" t, 

 

(4.17) 

where � = 1, … , p + 1. 

Now, a set of vectors is defined by 

 ÆÇ"[È = É
�"Z" 
�"Z" o1 − 1o1 
�"Z" o1 − 2o1 ⋯ 
�"Z" 1o1Ë, 
ÆÇ"rÈ = É
�:�" 1o� … 
�:�" o� − 1o� 
�:�" Ë, 

ÆÇ"È = ^ÆÇ"[È 0 ÆÇ"rÈa, 

 

 

 

(4.18) 

where o1, o� ∈ ℤr are parameters to define the number of feasible control 

inputs at each discrete velocity. Herby o1 defines the number of discre-

tized negative torque values and the positive torque values are defined 

by o� (see equation (4.18)). The total length of ÆÇ" is given by o1 + o� + 1. 

Of course, only one parameter would be sufficient to compute ÆÇ" but 

usually ²
�"Z" ² ≪ 
�:�" . Therefore, by using o1 and o� it is possible to 

achieve similar grid accuracy in positive and negative torque regions.  

Finally, all feasible control inputs are summarized in the vector Æ:  

 Æ� = ^ÆÇ1È ÆÇ�È … ÆÇ�Zr1�Èa. (4.19) 
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Note that the length and therefore the total number of control inputs in 

every step ¤ is �p � 1��o1+o� + 1�.  
 

Calculate movements inside the grid: 

Due to the fact that all feasible values for the velocity as well as all fea-

sible control values are known a priori, all possible changes of the veloc-

ity between ¤ and ¤ + 1 for every ¤ can be computed in advance. Let ¿ be 

a vector in which all elements of ¿À are repeated o1+o� + 1 times.  

 

¿ =

ÍÎ
ÎÎ
ÎÎ
ÎÎ
ÎÏ

��"Z⋮��"Z��"Z + ∆�⋮��"Z + ∆�⋮��:�⋮��:� ÑÒ
ÒÒ
ÒÒ
ÒÒ
ÒÓ ;;;Õ:..Õ. };;;Õ

......�o1+o� + 1�........ :::È::::�o1+o� + 1�.�p − 2��o1+o� + 1�.�o1+o� + 1�.

 

 

 

 

 

 

(4.20) 

Now both ¿ and Æ have the exact same number of elements.  

Furthermore let ∆Ö be a vector whose j-th element corresponds to the 

time it takes to move from one grid point if the vehicle speed is the j-th 

element of ¿ and the applied torque is the j-th element of Æ (if the dy-

namic programming algorithm uses a time grid, all elements of ∆Ö are 

simply the sampling time and if a distance grid is used, ∆Ö can be com-

puted according to equation (4.14)). 

If the control inputs specified in Æ are applied to the system with the 

states specified in ¿, the states change according to equation (4.11). All 

changed states can now be computed in only one step:  

 ¿Z��� = ¿ + ���������� ´��� �� !"##Æ − 
����¿�µ ∘ ∆Ö, (4.21) 

where ∘ denotes an element-wise vector multiplication. 

Keep in mind that the velocity has been discretized and that therefore – 

as explained in chapter 4.1 – the elements in ¿Z��� might not exactly 
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match one of the predetermined values in ¿À. That is the reason why in-

terpolation (or at least a nearest neighbor approximation) of the cost-to-

go functions is mandatory. In order to expedite the interpolation it is 

useful to precalculate ¿Z���[  and ¿Z���r . In ¿Z���[  each element of ¿Z��� is 

decreased to the nearest possible state in ¿À. In case this is not possible 

because no lower feasible state exists, the nearest (upper) value is cho-

sen. Accordingly, ¿Z���r  contains rounded up elements of ¿Z���.  
Finally, two auxiliary vectors are introduced – again to speed up the in-

terpolation below. Let the elements of Ø[ and Ør represent the number 

of grid points ∆� between ¿ and ¿Z���[  and ¿Z���r , respectively:  

 Ø± 	 1∆� &¿Z���± − ¿'. (4.22) 

Note that as a result of the definitions of the variables above the ele-

ments of Ø± are guaranteed to be integers and that (again by definition) 

the elements of �Ør − Ø[� are either 0 or 1.  

What is still missing is some kind of dealing with infeasible states. As a 

reminder, infeasible states are states that are above ��:� or below ��"Z. 

As mentioned in chapter 4.1 a viable solution is to assign a sufficiently 

high cost to those states. For this purpose a vector Ú"Z# is created, 

whose j-th element is defined by  

 �"Z#� = ±o"Z#   PD� ÛZ���� < ��"Z D� ÛZ���� > ��:�0        GÜIG,                                                        (4.23) 

where o"Z# is a sufficiently high real number, which by default is arbi-

trarily set to 106. 

 

Compute vectors for the efficiency and power: 

The supply voltage as well as the rotor and stator temperatures are con-

sidered constant and equal for both electric machines. Hence, the effi-

ciency only depends on the velocity and torque. Let  n���,���9~���, 
� be 

the combined electric machine efficiency according to the torque split 

factor Q#,���9~�. To obtain the electrical power, the mechanical power 
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must be multiplied by  n���,���9~� for 
 < 0 and divided by  n���,���9~� for 
 ≥ 0, respectively. However, this case distinction would lengthen the 

notation below. Therefore, it is useful to define  ���,���9~� as  

  ���,���9~���, 
� = �  n���,���9~���, 
�   PD� 
 < 01 n���,���9~���, 
�    PD� 
 ≥ 0. 
(4.24) 

Since ¿ and Æ hold all valid velocity-torque combinations in a specified 

order, again, a new vector Ý can be defined whose j-th element corre-

sponds to  ���,���9~� at the velocity value in the j-th element of ¿ and the 

torque value in the j-th element of Æ. Hence, 

 Ý =  ���,���9~��¿, Æ�. (4.25) 

The electrical power of both EM is  

 Þ��� = 1������ ¿ ∘ Æ ∘  ���,���9~��¿, Æ�. (4.26) 

With the electric current of both EM being 

 ß = Þ��� 1567 , (4.27) 

the power loss in the battery can be calculated by  

 Þ¢:�� = ß ∘ ßà, (4.28) 

where R is the battery resistance. Finally, the total energy consumption 

is given by 

 á = �Þ��� + Þ¢:��� ∘ ∆Ö. (4.29) 

Note that so far the dynamic programming algorithm has not yet started 

but all a-priori calculations have now been concluded. A short summary 

of the essential variables is given: 

- ¿ contains the velocity values of the speed grid whereat every el-

ement is repeated p + 1 times.  

- The elements of Æ correspond to (piecewise) linearly distributed 

torque values between the minimum and maximum torque at any 

speed in ¿. 
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- At the k-th time or distance step, let a constant torque value ac-

cording to the j-th element of Æ be applied at a velocity that corre-

sponds to j-th element in ¿. In this case the j-th element in ¿Z��� 
corresponds to the velocity at the subsequent (k+1)-th step. 

- Due to the fact that in general the elements of ¿Z��� do not match 

the velocity grid, ¿Z���[  and ¿Z���r  are introduced and will be used 

in the cost-to-go interpolation below. Furthermore Ø± represent 

the number of grid points ∆� between ¿ and ¿Z���± . In addition, a 

sufficiently large cost is assigned to infeasible states through Ú"Z#. 
- The elements of á contain the total electrical energy that is con-

sumed between two steps k and k+1.   

 

Interpolate cost-to-go and compute total cost: 

Dynamic programming algorithms proceed backwards from ¤ 	 C to ¤ 	 0. First, at the N-th step the boundary condition for the final vehicle 

speed �� must be taken into account. Let ÛZ���,� be the j-th element of ¿Z��� and ,�,� be the j-th element of the terminal cost X� = ,��¿Z����. 
Based on equation (4.8) the terminal cost can be specified by 

 ,�,�&ÛZ���,�' = ±0        PD� ²ÛZ���,� − ��² < ��9�  o        PD� ²ÛZ���,� − ��² ≥ ��9� , 
 

(4.30) 

where the default setting for the tolerance speed is ��9� = 0.1�/I and o is 

arbitrarily set to 5*105. Note that in the first step the cost-to-go function 

is equal to the terminal cost function and that X� is again a column vec-

tor with �p + 1��o1+o� + 1� elements. 

For any other step k (0 ≤ ¤ ≤ C − 1) the cost-to-go function is deter-

mined by interpolation. When implementing a dynamic programming 

algorithm, one should keep in mind that MATLAB contains several 
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built-in interpolation functions. However, their calculating time is quite 

high compared to a properly made custom interpolation.25  

As a starting point, imagine the vehicle is moving at step k at a velocity �£� (j indicates any index in the extended velocity grid ¿). Due to the def-

inition of Ø±, the velocity at k+1 will be within the interval �£� ��r,�∆� ≤ �£r1� ≤ �£�+�[,�∆�. Thus, it is evident that in order to calculate �£� an interpolation between �£r1�r�â,ã
 and �£r1�r�ä,ã

 is necessary. The latter 

two are merged in vectors and represent the j-th elements in Ú£r1r  and Ú£r1[ , respectively. Both simply represent rearranged versions of Ú£r1. 

Since Ø± has already been calculated in advance, this rearrangement 

can be computed very efficiently in MATLAB.  

The computation of the total cost can now be implemented with just one 

final equation: 

 Ú£ = á + Ú"Z# + Ú£r1[ + �¿Z��� − ¿Z���[ � ∘ �Ú£r1r − Ú£r1[ � ⊘ �¿Z���r − ¿Z���[ �. (4.31) 

Note that ⊘ indicates a Hadamard (element wise) vector division.  

 

Determine optimal control inputs and costs and store the results: 

The total costs for every velocity-torque combination are now stored in Ú£ and somehow the optimal control input for every velocity must be de-

termined. In MATLAB this can be done quite simply. By using the com-

mand reshape Ú£ is converted to a �o1+o� + 1� × �p + 1� matrix. The col-

umns represent the costs for the control inputs and the rows represent 

the velocity grid. The command min then returns the indices of every 

optimal control input as well as the corresponding optimal cost-to-go. 

The results are the vectors Ú9~�,£ and ç9~�,£. They represent the columns 

of the matrices Ú9~� and ç9~�, respectively.  

 

                                       

25 Cf. Guzzella L., Sciarretta A. (2007): pp. 318. 
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Determine velocity profile (forward simulation):  

The optimal velocity profiles are computed in Simulink. For clarity, a 

simplified version of the Simulink model is explained that only com-

putes velocity profiles for distance grids (see Figure 4.6). There are two 

integrators whose outputs are the velocity and the traveled distance. 

The driving torque and the resistance forces are converted to accelera-

tion and form the input of the first integrator.  

The optimal control inputs are stored in the look-up table. Its inputs are 

the current position and velocity. In this block, the setting Interpolation 

– Use End Values is enabled to improve the simulation accuracy. In re-

ality the interpolated optimal control input will only be computed with a 

specific sample time. To emphasize this sampling, a Zero-Order-Hold 

block has been included to the model.  

The low-pass filter fulfills two purposes: 

i) The low-pass filter limits the rise time because the optimal 

control input cannot be applied arbitrarily fast.  

ii) The amplitude of an energy-optimal control input can change 

very abruptly which might feel unpleasant to the driver. There-

fore, the low-pass is also important to increase the traveling 

comfort.  

 

Figure 4.6: Forward simulation Simulink model (simplified, for velocity 

trajectories that are functions of the traveled distance).  

Note that in case the dynamic programming algorithm uses a time grid, 

the second input of the look-up table must be the simulation time in-

stead of the position. 
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4.1.2 Results and discussion 

In this section two particular use cases for energy-optimum velocity 

profiles are considered. Example 1 demonstrates a deceleration maneu-

ver that is computed by the DP algorithm using a distance grid. In ex-

ample 2 an acceleration maneuver is performed that takes a specific pe-

riod of time. 

 

Example 1: 

Consider a scenario in which a vehicle is traveling on a rural road at 

100 km/h and is approaching a village where a speed limit of 50 km/h 

must be adhered. The vehicle speed is not to be reduced until 500m in 

front of the village. The boundary conditions are given by ���*� 	100 ¤�/ℎ and ���� = 500�� = 50 ¤�/ℎ. The velocity grid is (arbitrarily) 

generated between ��"Z = 16 ¤�/ℎ and ��:� = 103 ¤�/ℎ.  

Figure 4.7 shows the resulting velocity profile. Even though it is com-

puted using a distance grid it is chosen – for better visibility – to show 

the velocity as a function of the time. The resulting maneuver time is 

about 28 seconds and cannot directly be influenced by constraints. The 

velocity trajectory can roughly be divided into several phases. These 

phases were empirically discovered by evaluating several velocity pro-

files where ���*� ≥ �����. Note however, that the algorithm can also 

compute optimal velocity profiles for ���*� < �����. 
i) Regenerative breaking: preferably energy is recuperated at 

high velocities because of the greater driving resistance.  

ii) Freewheeling: the driving torque is exactly zero for a significant 

period of time.  

iii) Acceleration: due to lower driving resistance, traveling at low 

speed is more energy efficient than traveling at high velocity. If 

the maneuver time or distance is sufficiently large, the target 

velocity will be undercut and shortly before the end of the ma-

neuver a relatively high torque is applied to meet the boundary 

condition �����. However, this behavior might be unwanted in 
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many cases. It can easily be prevented by choosing ��"Z ac-

cordingly. 

The third phase is barely visible in this example, but another use case 

will be explained below where this phenomenon can be observed more 

clearly.  

 

Figure 4.7: Energy-optimal velocity trajectory. 

Based on this result lots of interesting theoretical aspects about dynam-

ic programming that were discussed in chapter 4.1 can now be visual-

ized. Consider Figure 4.8 where the optimal cost-to-go for every point 

inside the grid up to 499m is shown.  

Apparently, the higher the initial velocity, the lower is the cost-to-go. At 

an initial speed of about 66km/h the SOC will not noticeably change. 

The cost-to-go is negative for any high initial velocity which means that 

the battery’s state of charge will increase. At 100km/h the cost-to-go is 

about -4.05*105Ws. This value can be validated by exporting the veloci-

ty trajectory of Figure 4.7 to AVL CRUISE. The maneuver is carried out 

using a standard driver model to follow that trajectory. The resulting 

overall energy consumption is -3.76*105Ws. The difference can be ex-

plained by the level of detail of the vehicle model in AVL CRUISE, where 

some simplifications made in the DP algorithm are modeled more pre-
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cisely (e.g. fluctuations of the battery voltage due to changing load con-

ditions etc.).  

 

Figure 4.8: A cost-to-go matrix where v(ξN)=50 km/h. 

Furthermore, the effect of the terminal cost stated in equation (4.30) 

can be observed. At the end of the maneuver there is a huge increase in 

the cost for any states that are not close to the boundary condition �����.  
Figure 4.9 shows the optimum control inputs for any grid point and 

again the optimum velocity trajectory from Figure 4.7 but as a function 

of the traveled distance. The three phases mentioned above are distin-

guishable even though in this specific trajectory only the first two occur: 

i) At higher velocities the optimum torque is clearly always nega-

tive because regenerative breaking optimal at high speed. 

ii) At lower velocities the optimum torque is exactly zero in a large 

area of the grid.  

iii) Due to freewheeling the vehicle might significantly undercut 

the target velocity �����. Therefore approaching �� at low speed 

the optimum torque increases. 

Note that in case the vehicle travels at a low velocity near the end of the 

maneuver it might not be possible to reach ����� because the vehicle 
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cannot accelerate arbitrarily fast. Nevertheless, in such a case the opti-

mal control input is negative, which further increases the discrepancy 

to the boundary condition. But due to the definition of the terminal cost 

in equation (4.30) and the fact that regenerative breaking is applied the 

total cost is still minimized.  

 

Figure 4.9: An optimal control input matrix where v(ξN)=50 km/h. 

Since the cost to go matrix is invariant with regard to the initial point, 

an infinite number of energy-optimum trajectories can be computed 

that have the same boundary condition �� 	 �����. This is shown in 

Figure 4.10 for a new cost-to-go matrix where �* 	 0� and �� = 750�. 

As in the example above, the desired final velocity is 50km/h. However, 

the optimum control input matrix is computed for a 750m horizon. Tra-

jectory 1 shows the maneuver being carried out in 750m. Now the pre-

viously mentioned third phase can be observed where the vehicle accel-

erates after undercutting the target velocity while freewheeling.  

This new optimum control input matrix can also be used to reproduce 

the exact same result that was obtained above using the matrix that 

was computed for a 500m driving maneuver. Trajectory 2 represents 

copied data from Figure 4.9 whereas Trajectory 3 is created by using the 

new optimal control input matrix. It is obvious that the results are iden-

tical.   
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A fourth trajectory is shown where the initial speed is 30km/h. Even 

though this is already below the desired final velocity, according to the 

optimal policy the vehicle must freewheel at first but cannot undercut  ��"Z 	 16 ¤�/ℎ. 

 

Figure 4.10: Relation between the optimal control input matrix and op-

timal trajectories. 

From Figure 4.10 is evident that: 

i) Any globally optimal trajectory is predetermined by the optimal 

control input matrix. 

ii) For any valid starting point within the grid a globally optimum 

trajectory can be determined. Disturbances will be compen-

sated automatically. 

iii) According to Bellman’s principle of optimality the optimal con-

trol input matrix for � ≥ 250 in Figure 4.10 is identical to the 

one of Figure 4.9. Hence, Trajectory 2 and Trajectory 3 are 

identical.  

Furthermore this method provides the opportunity to implement opti-

mal velocity profiles with very little on-board computational effort. Sev-

eral optimal control matrices for various final velocities can be comput-

ed in advance and stored in the vehicle. If �� − �* is sufficiently high, 

any driving maneuver can be carried out where it is desired to reach a 
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specific velocity within a specified time or distance. Disturbances as for 

example bumpy roads or wind are compensated automatically. These 

properties make this approach quite robust.  

 

Example 2: 

In the following use case an energy-optimal acceleration maneuver is 

shown. Consider a motorist on a highway who drives through a con-

struction site where the speed limit is 80km/h. As soon as the speed 

limit is lifted the motorist wants to accelerate to 120km/h. The acceler-

ation maneuver shall take exactly 25 seconds. Thus, the boundary con-

ditions are given by ���* 	 0I� = 80¤�/ℎ, ���� = 25I� = 120¤�/ℎ and the 

velocity grid is generated between ��"Z = 16¤�/ℎ and ��:� = 130¤�/ℎ.  

In Figure 4.11 the energy-optimum velocity trajectory is shown (blue 

curve, no constraints). Clearly, the vehicle is decelerating (freewheeling) 

for about 10 seconds down to 73.2km/h, before accelerating again up to 

120km/h. Needless to say, decelerating at an increase of the speed limit 

might seem quite inconvenient to most drivers. It is therefore essential 

to impose a velocity constraint that prevents the vehicle speed from un-

dercutting the initial speed.  

An easy solution is to set ��"Z = 80¤�/ℎ. Note that in this case the DP 

algorithm creates a velocity grid between 80km/h and 130km/h to 

compute an additional velocity trajectory that is also shown in Figure 

4.11 (magenta curve, velocity constraint). It is energy-optimal to contin-

ue driving at 80km/h for about 11.2 seconds before accelerating. For � > 11.2I the velocity trajectory then continuously approaches the one 

without the velocity constraint (blue curve). The torque peaks at about 

120Nm.  

Some drivers who highly appreciate driving comfort might still not be 

satisfied with the result. For this reason, in addition to the velocity con-

straint, the maximum torque is set to 
�:�,Á9�# = 90C�. Again, the re-

sult is shown in Figure 4.11 (red curve, velocity and torque constraint). 

The vehicle continues to drive at 80km/h for five seconds and then ac-
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celerates smoothly to the desired velocity. In doing so, the overall elec-

tric machine torque never exceeds 90Nm.  

 

Figure 4.11: Energy-optimal velocity trajectories with and without con-

straints. 

It is evident that by adding constraints to any minimization problem the 

optimum value of the cost function can only increase or remain un-

changed. Thus, by limiting the minimum speed and the maximum 

torque, the energy consumption cannot decrease. On the other hand, 

the average velocity during the maneuver and therefore also the traveled 

distance rise as well. Table 4.1 shows the absolute and relative values of 

both the energy consumption and the traveled distance for all three en-

ergy-optimal velocity trajectories discussed above. All relative values re-

fer to the unconstrained trajectory. It is interesting to point out that in 

both constrained cases the relative distance gain is higher than the rel-

ative increase of the energy consumption.  
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Energy consumption and traveled distance 

- 
Absolute 
energy  

Relative  
energy 

Absolute 
distance 

Relative       
distance 

No constraints 1.15*106Ws 100.0% 605.6m 100.0% 

Velocity constraint 1.17*106Ws 101.7% 622.7m 102.8% 

Velocity & torque constraints 1.22*106Ws 106.1% 668.5m 110.4% 

Table 4.1: Comparison of energy-optimal velocity trajectories. 

For a direct comparison of the energy consumption in relation to a spe-

cific traveled distance some additional information is needed. For this 

purpose, assume that after the driving maneuvers depicted in Figure 

4.11 are completed the vehicle continues to travel at exactly 120km/h 

(33.3
.
m/s). In this state the power that is drained from the battery is 

approximately 2.94*104W. Thus, the energy consumption per traveled 

meter is given by  

 $1� 	 2.94 ∗ 10ëì33. 3� � I⁄ = 8.82 ∗ 10�ì I �⁄ . (4.32) 

Remember the highest traveled distance (668.5m) is achieved if both the 

velocity and the torque constraint are imposed and that in this case the 

energy consumption is 1.22*106Ws. If no constraints apply, the vehicle 

travels S:!!,1 = 668.5� − 605.6� = 62.9� less far. The energy that is nec-

essary to travel the remaining 62.9m at 120km/h is 

 �:!!,1 = $1�S:!!,1 = 8.82 ∗ 10�ì I �⁄ ∗ 62.9� ≈ 5.55 ∗ 10ëìI. (4.33) 

If only the constraint for the minimum velocity applies, the vehicle must 

travel S:!!,� = 668.5� − 622.7� = 45.8� at 120km/h. The consumed en-

ergy is  

 �:!!,� = $1�S:!!,� = 8.82 ∗ 10�ì I �⁄ ∗ 45.8� ≈ 4.04 ∗ 10ëìI. (4.34) 

It is evident that  

 1.22 ∗ 10íìI > 1.17 ∗ 10íìI + �:!!,� > 1.15 ∗ 10íìI + �:!!,1. (4.35) 

The result shows that even in relation to a specific traveled distance the 

first (unconstrained) velocity trajectory still yields the lowest energy 

consumption. However, the relative energy saving for equal traveled dis-
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tances is far less than the one in Table 4.1 where the relative energy 

consumption is compared at a specific maneuver time ��  �* 	 25I and 

different distances. Also, keep in mind that in this example energy-

optimal velocity profiles are compared among one another. The energy 

gain compared to a human driver must be investigated separately. 

Note also that example 2 clearly demonstrates that there is a distinct 

tendency to travel at low speed as long as possible due to the lower driv-

ing resistance. This generally is true for not just this particular example 

but for all energy-optimal velocity profiles. Therefore, in any case where 

the initial velocity is lower than the desired velocity (���*� B �����) it 

might be energy-optimal to first reduce the speed before accelerating to �����.  
 

4.2 Velocity trajectory optimization using B-splines 

The aim of this section is again to develop energy-optimum speed pro-

files but by applying a parameter optimization method. Any speed pro-

file in this chapter is represented by a number of weighted base func-

tions called B-Splines (see chapter 4.2.1 for details). The weighting fac-

tors of these B-splines represent the optimization parameters. Several 

constraints and boundary conditions apply which are similar to the 

ones mentioned in dynamic programming in chapter 4.1. Also, an exact 

length of the maneuver must be specified. This can again be either a 

fixed time E� or a fixed distance S�. In contrast to dynamic program-

ming though, it is now possible to set a lower and upper limit for either 

• the covered distance during the maneuver (��"Z, ��:�) if E� is giv-

en, or 

• the duration of the driving maneuver (8�"Z, 8�:�) if S� is given. 

Since a major disadvantage of dynamic programming is the lack of a di-

rect influence on both the maneuver time and the covered distance at 

the same time. Therefore, this type of constraint provides the opportuni-

ty to further extend the applicability of optimum speed profiles. 
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The optimization problem is 

 min] � 
                          subject to:                                                                   î] ≤ 0                                                                   ï�]� ≤ 0 

 

 

 

(4.36) 

where the objective function � is the total energy that is drained from 

the battery during the maneuver, ] contains the optimization parame-

ters, î is a constant matrix and ï is a vector-valued nonlinear function.  

To solve this problem, a gradient-based optimization algorithm is used 

which is designed to be applied on problems whose objective functions 

and constraints are both continuous and have continuous first deriva-

tives.26 However, the efficiency of the electric machine – and therefore 

the objective function – does not meet this requirement because its first 

derivative is discontinuous. The optimization method might compute 

only locally optimal results depending on the initialization of the optimi-

zation parameters (see chapter 4.2.1 and 4.2.3 for details). To reduce 

the dependency on the starting point two different methods were inves-

tigated to compute an approximation of original efficiency data. Both 

methods were compared and it turned out that an approximation using 

weighted constrained linear least squares is the most efficient method 

(see chapter 4.2.1). Despite this procedure still does not guarantee 

globally optimal solutions it is assumed that a starting point O* can be 

found that is close enough to the globally optimal solution. Further-

more, it will be shown in chapter 4.2.3 that the obtained solution is 

quite similar to the one of dynamic programming, which is globally op-

timal. The basic idea of this chapter was inspired by Grießler (2011).27 

 

                                       

26 Cf. The MathWorks Inc.: MATLAB 2007a documentation, fmincon. 

27 Cf. Grießler L. (2011): pp. 42 
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4.2.1 Introduction to B-splines 

This subchapter shows some basics about B-splines. In many applica-

tions B-splines are a reasonable mathematical method to fit and inter-

polate large data sets. In this work they are used to parameterize the 

flat system output specified in chapter 2.7.  

Let S 	 &S�', S1 ≤ S� ≤  … ≤ SZ be any sequence of nodes. B-splines ð�,£��� of the order ¤ �1 ≤ ¤ < p� are then recursively defined by28   
 ð�,1��� ≔ ±1   PD� � ∈ %S� , S�r1' )pS S� ≠ S�r1                                          0   GÜIG,                                                          PD� w = 1, … , p − 1,  

ð�,£��� = � − S�E�r£[1 − E� ð�,£[1��� − � − S�r£E�r£ − E�r1 ð�r1,£[1��� 
                          PD� ¤ = 2, … , p − 1 w = 1 … , p − ¤. 

 

 

 

 

(4.37) 

Note that B-splines are both defined by their order ¤ as well as their 

knot sequence &S�'. In MATLAB, B-splines can be created using the 

built-in function bspline. However, for the purpose of this work, bspline 

has been modified. Figure 4.12 shows the influence of the knot se-

quence S on the shape of 3rd order B-splines ð1,`���.  
Note that the B-splines ð1,`��� with the knot sequences S = �0, 0, 0, 1� and ð1,`��� with S = �0, 0, 1, 1�, respectively could also be represented by ð1,`��� and ð�,`��� with  S = �0, 0, 0, 1, 1�.  
Furthermore, it must be emphasized that is possible to meet certain 

boundary conditions by choosing a suitable corresponding knot se-

quence. For example, selecting S = �0, 0, 0, 1� in Figure 4.12 results in ð1,`�� = 0� = 1, while all other B-splines are exactly zero at � = 0. It will 

be shown below that exactly this kind of choice of the knot sequence 

can be utilized to easily create speed profiles with a specific initial and 

final speed. 

                                       

28 Cf. Dahmen, W., Reusken A. (2006): pp. 322. 



Velocity Trajectory Optimization 56 

 

 

Figure 4.12: Examples of 3rd order B-splines depending on d.  

Additional characteristics of B-splines that are important for the imple-

mentation below are: 

(i) B-splines of the order p are p  1 times differentiable,29 

(ii) Any ð�,£��� vanishes outside of the interval %S� , S�r£' and is 

positive inside that interval.30 

Any linear combination of B-splines is called a spline, which is defined 

by 

 ���� = § _�ð�,£���,Z[£
��1  

(4.38) 

where _� ∈ ℝ are the weighting factors for the B-splines.  

 

4.2.2 Electric machine efficiency map fitting 

As in any parameter optimization method the optimization parameters 

have to be somehow initialized. Using a gradient based solver the initial-

                                       

29 Cf. Grießler L. (2011): pp. 42. 

30 Cf. Boor de C. (2001): pp. 91. 
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ization process becomes critical. It was discovered that by including 

suboptimal torque splitting to the computation of the combined efficien-

cy data of both electric machines  ���,���9~�, in many cases the obtained 

solution is only locally optimal. The reason for this is explained below.  

For the sake of a brief notation from now the torque of both electric ma-

chines is denoted by 
 = 
��� and the efficiency is  =  ��, 
� = ���,���9~�. In Figure 4.13  ��, 
� is exemplary shown for � = 2500 �_�. 

It is both evident that  ��, 
� is not continuously differentiable with re-

spect to M and that the absolute value of the slope reaches high values 

near the origin: 

 ó ��, 
�ó
  … discontinuous function,   

 öó ��, 
�ó
 ö|�|≪1 ≫ 1.  

For this reason two different methods were investigated to resolve the 

situation by smoothening  ��, 
� for |
| ≪ 1.  

1. A weighted least squares fit of the electric machine efficiency  ��, 
� with the ansatz function  n = o* + o*,1� + o1,*
 + o1,1
� +o1,�
�� + o�,1
�� + o�,�
��� +  … + oZ,Z
Z�Z, where p ∈ ℤr. Differ-

ent results for a range of p between 6 and 12 were investigated.  

2. Weighted constrained linear least squares fits at several discrete 

speeds �" using Gaussian ansatz functions with an offset. As a 

result, several approximated functions for the efficiency at dis-

crete speeds  "��"� are obtained. The efficiency values for any 

electric machine speed �" < � < �"r1 are determined by linear in-

terpolation between  " and  "r1. 

Despite both methods reduce the dependency on the starting point, it 

turned out that the second one is far more effective. Therefore, in this 

work, method one will not be further considered. Below a brief deriva-

tion of weighted least squares fitting is given and the obtained approxi-

mation of  ��, 
�  will be compared to the original data.  

 



Velocity Trajectory Optimization 58 

 

 

Figure 4.13: Efficiency of both electric machines at 2500 rpm.  

As stated above, for an approximation of the efficiency a continuously 

differentiable and smooth function for values where |
| ≪ 1 is preferred 

in order to reduce the dependency of the resulting speed profile on the 

initial values of the optimization parameters. A function that fits these 

requirements very well is the Gaussian function.  

The first step of the fitting process is to create two sets of functions:  

  "r�
� = ø �� = �", 
� PD� 
 ≥ 00                               GÜIG       
 "[�
� = ø �� = �", 
� PD� 
 ≤ 00                               GÜIG.      

 

 

(4.39) 

To scale these functions onto a uniform interval, new arguments are de-

fined as 

 
Çr = 

�:��� = �"�,     
Ç[ = 

�"Z�� = �"�. (4.40) 

Thus,  "±&
Ç±' only need to be fitted inside the interval ^0,1a. For simplic-

ity reasons all considerations below refer to only  "r&
Çr', whereat the + 

sign will be dropped for better readability. The ansatz functions used for 

fitting consist of several displaced Gaussian functions (see Figure 4.14) 

combined with an offset as stated in equation (4.41). 
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  n" 	 o* �§o£,"G*.�c�Ç[ù¯ú dûü
£�1  

 

(4.41) 

The corresponding expectation values are given by μ£ = yμ1, μ�, … , μü} =y0.24,0.355, … ,1.045}, the variance is ý = 0.07 and the scaling factors o£," ∈ ℝ are optimization parameters. Figure 4.14 shows the Gaussian 

functions as well as their sum (green line), which can be shaped by var-

ying o£.  

 

Figure 4.14: Ansatz functions used to approximate the electric machine 

efficiency. 

The fundamental idea now is to determine all o",£ �¤ = 1,2, … , þ�, þ = 8 in 

a way such that  

 &H1��,1'� + &H���,�'�+. . . +&HZ[1�",Z[1'� + &HZ�",Z'� → ��p, (4.42) 

where H��",� is the weighted approximation error occurring due to the fit-

ting process at  &� = �", 
 = 
�'.  
 �",� =  &� = �", 
 = 
�' − �o* + § o",£G[*.���Çã[ù¯ú �û�

£�1 � 

  

 �� =  &�", 
�' −  n"&
Ç = 
Ç�' =  ",� −  n",�. (4.43) 
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The distance between the nodes 
� can be specified by the user in a 

MATLAB m-file and is by default 2 Nm for 
 B 0 and 4 Nm for 
 ≥ 0, re-

spectively. For better readability the index � will be omitted from now 

on. With  

 � = ���,1⋮�",Z	 ,   Ý = � ",1⋮ ",Z	 ,     
À = �o*
 � ,     
 = �o�,1⋮o",	, 
�Ç = ^� �a,    � =

ÍÎÎ
ÎÏG*.�c�Çg[ùgú dû ⋯ G*.�c�Çg[ù¯ú dû

⋮ ⋱ ⋮
G*.�c�Ç�[ùgú dû ⋯ G*.�c�Ç�[ù¯ú dûÑÒÒ

ÒÓ ,     � = �1⋮1	 

 

equations (4.43) can be written in vector form as 

 � = Ý − �Ç
À. (4.44) 

Note that the partitioning of �Ç  into � and � as well as 
À into 
 and o1 

will come in handy further below. With � = S�),�H£�� also equation 

(4.42) can be stated in a more concise form:  

 ���� → ��p. (4.45) 

The sum of the weighted least squares errors ���� can be rewritten as 

 ���� = &Ý − �Ç
À'��&Ý − �Ç
À' 
                  = &Ý� − 
À��Ç �'�&Ý − �Ç
À' 

                                   = Ý��Ý − 2Ý���Ç
À + 
À��Ç ���Ç
À. 

 

 

(4.46) 

Note that o* is not an optimization parameter. Thus, only 
 instead of 
À 

is to be optimized. The optimization problem is 

 min
 y����} 	 min
 sÝ��Ý  2Ý���Ç
À � 
À��Ç���Ç
Àt. (4.47) 

Rearranging ���� gives  

 ���� 	 Ý��Ý  2Ý��^� �a �o*
 �� ^o* 
�a �������^� �a �o*
 � 	 Ý��Ý  2Ý����o* ��
� � �o*�� � 
�������o* ��
� 	 Ý��Ý  2Ý����o* ��
� � o*����� � 2o*����
 �  
�����
, 

 

 

 

(4.48) 
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where o*����
 	 
�����o* and ���� is a symmetric matrix, hence ���� 	 �������. A necessary condition for the minimization is 

 ó����ó
 	 0 = −2�Ý����� + 2�o*������ + 2����
 (4.49) 

Since the columns of � are linearly independent, ���� is both an in-

vertible and positive definite matrix. Thus the solution fulfills the suffi-

cient condition  

 ó�����ó
\ > 0 (4.50) 

in order for ���� to be a minimum. Equation (4.49) can be written in 

terms of 
:31  

 
 = ������[1����Ý − o*��. (4.51) 

Figure 4.15 shows the approximation of the electric machine efficiency 

at � = 5000 �_�. Note that the fitting is deliberately bad for ²
Ç² < 0.24 

because all corresponding weighting factors H� in equation (4.42) are set 

to zero. This seems like a huge inaccuracy, but if the dynamic pro-

gramming algorithm is seen as a benchmark, it is well-known that the 

nature of optimum speed profiles tends to either prefer a rather high 

absolute value of 
 (these operating points are well approximated by 

the fitted function) or freewheeling.  

According to Figure 4.14 it is reasonable to consider only the leftmost 

base function when analyzing the properties of  n" at 
Ç close to zero. 

Thus, the first derivative of the fitted function can be approximated by 

the first derivative of the leftmost base function, which can be calculat-

ed in MATLAB using DIFF. It has the following desired properties:  

                                       

31 Cf. Hofer A. (2004): lecture notes. 

Cf. Bauer R. (2007): pp. 7 - 9. 
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 ó n"&
Ç'ó
Ç ≈ o1 μ1 
Çý� G[*.�c�Ç[ùgú dû B o1 3ý G[��    
PD� 
Ç < μ1 − 3ý. (4.52) 

Equation (4.52) shows that the value of the first derivative of  n" for 
Ç ≈ 0 is sufficiently close to zero. This (empirically) reduces the depend-

ency on the initial values of the optimization parameters. 

 

Figure 4.15: Fitted electric machine efficiency at 5000 rpm. 

In order to obtain the approximated efficiency for any speed between 

two nodes ��" < � < �"r1� linear interpolation is applied. Note that due 

to the electric machine characteristics 
�:���"� ≥ 
�:���"r1�. If 
�:���"� = 
�:���"r1� it is straightforward that linear interpolation can 

always be computed by 

  n��, 
� =  n��", 
� +  n&�"r1, 
���' −  n��", 
�����"r1 − �" �� − �"�. (4.53) 

However, in case 
�:���"� > 
��� ≥ 
�:���"r1� or 
�:���"� ≥ 
��� >
�:���"r1� no exact values for  n exist. This problem could be solved by 

extrapolation but in this case the nearest value is used. Thus, equation 

(4.53) is also valid for 
�:���"� ≥ 
�:���"r1�. 
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Figure 4.16 shows the absolute value of the error G 	 | ��, 
� −  n��, 
�| 
due to the fitting.  

 

Figure 4.16: Absolute value of the error of the fitted efficiency map 

 

4.2.3 Implementation 

In this chapter the implementation of the algorithm will be shown by 

means of an example. According to equation (4.38) ���� (and therefore 

the speed profile and the flat system output, respectively) is fully repre-

sented by one knot sequence S and p − ¤ weighting factors _�. For the 

actual velocity profiles the knot sequences are by default constructed as 

follows (these parameters can be changed in a MATLAB .m-file): 

• S = �0, 0, 0, 50, 100, … , S# − 50, S� , S� , S�� in case the driving maneu-

ver is executed over distance (distance based version of the algo-

rithm). Hereby all values of S are stated in meters and S� is the 

traveled distance during the entire driving maneuver. ���� is in 

this case a function of distance. 

• S = �0, 0, 0, 5, 10, … , E# − 5, E# , E# , E#� if the driving maneuver is execut-

ed over a specific time (time based version of the algorithm). In 

this case, all values in S are specified in seconds and E# is the 
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time in which the driving maneuver takes place. ���� is hereby a 

function of time. 

For the computation of optimal speed profiles only B-splines of order ¤ 	 3 are generated. Figure 4.17 shows the actual B-splines ð�,` that are 

used for the computation of a 200-meter long speed profile ��� = 200��. 
For _� = 1 it is apparent from the figure that ���� is always one between 0 and S�. As stated above, choosing S in a certain way can facilitate tak-

ing into account boundary conditions. Since ��� = 0� and ��� = S�� only 

depend on ð1,`�� = 0� and ðí,`�� = S��, respectively, both can reach any 

desired value by simply setting _1 and _í to that exact number.  

 

Figure 4.17: B-splines Bj,3(ξ) and speed profile v(ξ) if all pj are one. 

Since in the optimization procedure ���� cannot be evaluated on a con-

tinuous interval, a discretization has to be carried out. In fact, ���� is 

being evaluated every S� = 2.5� and E� = 0.25I, respectively. However, for 

clarity reasons the example above with the 200-meter long velocity pro-

file will be continued with a fictitious sampling of 25m, which results in 

only 9 evaluations of ���� at every element of the vector �� = ^0 25 ⋯ 175 200a. Note that � only depends on the sampling 

and does not at all correspond to the knot sequence S. If furthermore 

the B-spline weights are merged into a vector ]� = ^_1 _� ⋯ _Z[£a, 
the discretized spline can be written in vector form:   
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 ���� 	 � ��� 	 0���� = 25�⋮��� = 200�� = �].  

 

(4.54) 

The matrix � is  

� =
ÍÎ
ÎÎ
ÎÎ
ÎÎ
Ï1.000 0 0 0 0 00.250 0.625 0.125 0 0 00 0.500 0.500 0 0 00 0.125 0.750 0.125 0 00 0 0.500 0.500 0 00 0 0.125 0.750 0.125 00 0 0 0.500 0.500 00 0 0 0.125 0.625 0.2500 0 0 0 0 1.000ÑÒ

ÒÒ
ÒÒ
ÒÒ
Ó
. 

The columns w represent the values of ð�,`��� (note that ð�,`���  is a col-

umn vector) and the lines � correspond to the sum of all B-Splines at 

the �-th element of �. It is evident that therefore the sum of every row is 

exactly one just like ���� is exactly one in Figure 4.17. Furthermore, it is 

shown that the first and last line in � each have only one element that 

is one, whereas all other elements are zero. This proofs that any bound-

ary condition for the initial and final vehicle speed can be realized by 

setting _1 = �*  and _Z[£ = �#, respectively.  

In the previous chapters the vehicle acceleration was named ��. To em-

phasize a certain connection between �� and a matrix �, which will be 

introduced below, it will from now on be called )���. The acceleration 

can of course be determined by the differentiation of the velocity )��� = d����/d�. However, a calculation method similar to equation  

 

(4.54) is preferred because in such a case the acceleration can be direct-

ly stated as a function of the optimization parameters _�. For this pur-

pose a matrix � that fulfills the following equation is desired:  

 )��� = � )�� = 0�)�� = 25�⋮)�� = 200�� = �].  

 

(4.55) 
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In this case the first p  1 = 8 rows of � can simply be generated 

through � by computing the differences of the �-th and � + 1-th line and 

dividing them by the sampling rate S�. The value for )�� = 200� cannot 

be determined because at � = 200 only the final velocity but not the final 

acceleration is considered in the optimization procedure. Therefore, any 

arbitrary value for )�� = 200� can be chosen only to assure that � and � 

both have the same dimension.  

 

A remark to the correlation between functions of time and dis-

tance: 

As mentioned above in the optimization algorithm the vehicle speed and 

the acceleration are considered as functions of � which either refers to 

the time E or the distance S. However, even if � = S, acceleration con-

straints or the driving resistance are usually given as functions of the 

time. Thus, it shall be pointed out, that there exists a clear relation be-

tween )�E� and )n�S�.  
The vehicle speed as a function of the distance is defined by �n�S� =�&E�S�'. The first derivative with respect to S is  

 d�n�S�dS = )n�S� = ó��E�óE dE�S�dS = )�E� 1�n�S�. 
(4.56) 

 

Acceleration constraint: 

Since ���� is a flat system output it is possible to compute the actuating 

variable 
��� with the knowledge of _�. Likewise, constraints for 
��� as 

they occur due to the power limitations of the electric machines, as well 

as due to comfort reasons can be transformed into constraints for ���� 
and _�, respectively. According to equations (2.2) and (2.7) the vehicle 

acceleration is a function of both the driving resistance and the torque 

of both electric machines: )�E� = ) ´
���&��E�', 
���E�µ. In this manner 

the minimum and maximum torque the electric machines can provide 

at any given velocity can be transformed in )�"Z&��E�' and )�:�&��E�'. At 

this point it is important to point out the distinction between )�E� as a 
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function of the time and )�S� as a function of the distance. All con-

straints will always be given as a function of time. In case the B-splines 

are defined as functions of time, of course )�E� 	 )���. On the other 

hand, if S denotes the traveled distance, according to equation (4.56) )n�S� 	 )�E�/�n�S�. Furthermore, let )Á9�# be a constant (positive) accelera-

tion limit that assures traveling comfort. Thus )�"Z&����' ≤ )�E� ≤mins)�:�&����',  )Á9�#t must apply. Bringing this inequality to a form 

that can be processed by the optimization algorithm gives:  

 −��]� ∘ ��]�+)�"Z&����' ≤ �, 
��]� ∘ ��]� − mins)�:�&����',  )Á9�#t ≤ �.  

(4.57) 

 

Time and distance constraints: 

If the velocity profile is defined as a function of the traveled distance, a 

lower and upper bound can be specified for the time in which the entire 

maneuver must be carried out. Let S� be the discretization of ���� and � 

be the number of evaluations of ���� (� is also the number of elements 

of �). With �" being the �-th element of  � the time E" it takes to travel the 

distance S� at the velocity ���"� can be approximated by E" ≈ S�/���"�. The 

overall time of the driving maneuver can therefore be estimated by  

 8 ≈ § S����"�
�[1
"�1  

 

(4.58) 

and must neither fall below 8�"Z nor exceed 8�:�. With 

� = ÍÎ
ÎÏ�1����⋮��� ÑÒ

ÒÓ 
a processable syntax for this constraint is:  

 ^−1 −1 ⋯ −1a ÍÎ
ÎÏ 1 ��1�]�⁄1 ����]�⁄ ⋮1 ���[1� ]�⁄ ÑÒ

ÒÓ S�+8�"Z ≤ 0 
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^1 1 ⋯ 1a ÍÎ
ÎÏ 1 ��1�]�⁄1 ����]�⁄ ⋮1 ���[1� ]�⁄ ÑÒ

ÒÓ S� − 8�:� ≤ 0.  

 

 

 

(4.59) 

In case the velocity profile is defined as a function of the time the trav-

eled distance can be approximated by  

 � ≈ § ���"�E�
�[1
"�1 .  

(4.60) 

With ��"Z and ��:� being the minimum and maximum distance that the 

vehicle may travel during the driving maneuver, the distance constraint 

can be specified by 

 ^−1 −1 ⋯ −1a�] ∗ E� ≤ −��"Z ^1 1 ⋯ 1a�] ∗ E� ≤ ��:�. 
 
 

(4.61) 

 

Velocity constraints: 

Due to legal speed limits, the driving speed must not exceed certain lim-

its. In some cases it may also be desirable to not undercut a particular 

velocity. Therefore it is reasonable to consider velocity constraints at 

every evaluation of ����. For this purpose let ��"Z and ��:� be vectors 

whose �-th elements correspond to the minimum and maximum feasible 

velocity at the �th element of � so that ��"Z ≤ �] ≤ ��:�. Bringing this to 

the notation used in the formulation of the optimization problem in 

(4.36) gives: 

 �] ≤ ��:�,   −�] ≤ −��"Z. 

 

(4.62) 

 

Objective function: 

The objective function � of the optimization problem in (4.36) is defined 

as 
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 � 	 Ö�Þ��, (4.63) 

where the vector Ö� = ^E1 − E*, E� − E1, ⋯ , E�[1 − E�[�a contains the 

time intervals between two simulation steps and the elements of Þ�� rep-

resent the electrical power at each step:  

 Þ�� = � $���E*�⋮$���E�[��	. 
 

(4.64) 

In turn, the electrical power at E = E" consists of the electric machine 

power as well as the power loss in the battery:  

 $���E"� = $���E"� + $¢:��,�9���E"�, (4.65) 

where  

 $���E"� = ���E"�
�E"� n&
�E"�, ��E"�'   PD� 
�E"� < 0 ��E"�
�E"� n&
�E"�, ��E"�'                         PD� 
�E"� ≥ 0, 
 

(4.66) 

and  

 $¢:��,�9���E"� = ���E"�à. (4.67) 

Hereby, à denotes the internal battery resistance and ��E"� is the current 

that is drained from the battery, which is given by 

 ��E"� = $���E"�5 . (4.68) 

 

4.2.4 Results and discussion 

It is an interesting aspect to compare the results obtained by using the 

dynamic programming algorithm and the approach using B-splines. For 

this purpose two use cases are explained below. In example 1 the exact 

same boundary conditions are used as in the DP example in chapter 

4.1.2 to point out some similarities and differences of the result. Exam-

ple 2 shows that – compared to DP – additional use cases can be cov-

ered by the algorithm based on the B-splines parameter optimization.  
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Example 1: 

In order to compare the results with the ones obtained with dynamic 

programming consider the same example as above where the boundary 

conditions are given by ���*� 	 100 ¤�/ℎ and ���� = 500�� = 50 ¤�/ℎ. 

The B-splines parameter vector is initialized by  

 ]� = É���*� ���*� + �����2 … ���*� + �����2 �����Ë. (4.69) 

Figure 4.18 clearly indicates that the velocity trajectory as well as the 

optimal control inputs are similar to those of DP. Note that the deriva-

tives of third-order B-splines are piecewise linear functions. Thus, sud-

den changes of the vehicle acceleration are not possible. This can be ob-

served in Figure 4.18 where at a maneuver time of about 12 seconds the 

torque becomes zero relatively slow which results in a smooth transition 

from regenerative breaking to freewheeling. An important characteristic 

of the velocity trajectories computed with B-splines is that they are 

quite smooth which greatly benefits driving comfort. Therefore – in con-

trast to trajectories computed with DP – no filtering is necessary.  

Another advantage of using a parameter optimization method is that 

additional constraints can be applied. In the example above it is possi-

ble to specify a minimum and/or maximum maneuver time. In the DP 

algorithm this is not possible.  

A major drawback is that in no case a globally optimal solution is guar-

anteed. In fact there is a number of scenarios where the solution is 

highly dependent on the initialization of the B-spline parameter vector ]. A smart choice of the initial values can only reduce the risk of obtain-

ing a locally optimal solution. Dynamic programming is therefore an es-

sential tool for benchmarking. Furthermore, dynamic programming is 

extremely robust against disturbances and simultaneously computes a 

huge set of optimal policies. Thus, in contrast to the parameter optimi-

zation method it is not necessary to recalculate the optimal trajectory if 

the vehicle unintentionally significantly differs from the optimal velocity 
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profile. Evidentially, it turns out that in some cases the computational 

effort of DP is far less. 

 

Figure 4.18: Comparison of velocity profiles computed by using B-

splines and dynamic programming. 

Nevertheless the author proposes to further investigate using B-splines 

in the optimization procedure because constraints for ��"Z,  ��:� and 8�"Z,  8�:�, respectively may prove extremely useful for a broad variety of 

use cases (one is shown below in example 2). Further studies should 

mainly focus on eliminating or at least decreasing the dependency on 

the initial values of the optimization variables.  

 

Example 2: 

Since traffic lights play an essential role in everyday traffic scenarios, it 

is now emphasized that it also makes sense to apply the algorithm pre-

sented above in use cases where traffic light signals must be consid-

ered.  

Assume that a motorist is traveling at 50km/h (13.8
.
m/s). If the velocity 

stayed unchanged within the next 40 seconds the driver would travel 

555.5
.
m. However, 450m in front of the vehicle there is a red light that 
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will turn green in exactly 40 seconds. Hence, an optimization problem 

can be formulated with ���* 	 0� = ���� = 40I� = 50¤�/ℎ and ��:� =450�. In addition the motorist wants to travel at least  ��"Z = 430�. In 

this case it is assumed that the traveled distance will then be exactly 

430m since it seems plausible that less energy is required to travel a 

shorter distance. Furthermore it is desired not to decelerate below ��"Z = 30¤�/ℎ. To ensure driving comfort the acceleration is limited to )�:� = 1.25�/I.  

 

Figure 4.19: Energy-optimal velocity trajectory for approaching a traffic 

light. 

Figure 4.19 shows the energy-optimal velocity trajectory to approach 

the traffic light. During the first five seconds energy is recuperated. 

Then the vehicle freewheels and finally accelerates up to 50km/h. Note 

that there is a strong similarity to the deceleration use cases explained 

above. As expected the covered distance is  ��"Z = 430�. Also, the con-

straints for ��"Z and )�:�, respectively are met.  

 



  73 

   

5 A concept study for an advanced route planner 

Car navigation systems detect the supposedly best route to a destina-

tion. They support the driver and some tasks as for example reading a 

map become obsolete. A typical car navigation system provides several 

different settings regarding the criteria to determine the optimal route or 

cost function. Normally the driver can choose between computing a 

fastest or shortest route and specify preferences to avoid motorways, 

toll roads and ferries. Another important aspect is that a route planner 

should take into account real-time traffic conditions such as the pres-

ence of traffic jams or road works on the current route.32  

At present, route planners are unable to take into account the estimat-

ed energy consumption on a specific route. This, however, is an im-

portant and interesting aspect for all-electric vehicles, especially if their 

range is fairly limited. A driver may want to know if the destination can 

likely be reached without the need to recharge or change the battery. In 

addition – besides fastest and shortest routes – drivers might also prefer 

energy-optimal routes.  

This being said, the aim of this chapter is to develop a concept study for 

a route planner that computes optimal routes according to individual 

preferences of the driver. This includes the estimation of the energy 

consumption of a fully electric vehicle by using real-time traffic infor-

mation provided by c2i communication and 3D GPS maps to consider 

road elevation profiles. It is emphasized that this chapter only describes 

a concept study and that some functionalities cannot yet be fully ap-

plied in realistic simulations. 

Many algorithms exist that can solve routing problems. For this concept 

study the Bellman-Ford algorithm was chosen. It is implemented in 

both a MATLAB m-file and in Simulink using an Embedded MATLAB 

                                       

32 Cf. Flinsenberg I. (2004): pp. 1, 4.  
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Function to enable co-simulations with IPG CarMaker and AVL 

CRUISE.  

 

5.1 The Bellman-Ford algorithm 

Consider a set of � cities. Some of them are linked by direct roads. If 

two cities are directly linked the cost to travel from city � to city w is de-

noted by �"� which represents a weighted sum of the travel time, the dis-

tance and the expected energy consumption. The goal is to find the op-

timal path between cities that minimizes the sum of all costs. From this 

general problem formulation it is evident that the solution can also be 

obtained by using a dynamic programming algorithm.  

The Bellman-Ford algorithm is indeed quite similar to dynamic pro-

gramming and is also based on Bellman’s principle of optimality. How-

ever, a significant difference is that instead of calculating the costs-to-

go the optimal costs from one particular city to all other cities and the 

corresponding optimal decisions can be determined. Therefore, the op-

timal path to any city can be calculated. If the destination changes but 

the starting point remains the same, the optimal costs in the road net-

work do not need to be recalculated. Note that this is the exact opposite 

to dynamic programming.33  

Figure 5.1 shows an example of a road network. The letters A-G repre-

sent seven different cities. Without loss of generality assume that A is 

the starting point. The optimal cost to come to every city starting from A 

is denoted by �� , w = ð, , … ,�. Since also the amount of energy to travel 

between cities is considered it is evident that due to regenerative break-

ing the cost to travel between cities �"� could become negative. The Bell-

man-Ford algorithm can – in contrast to the faster Dijkstra algorithm – 

handle negative costs. However, a detection of negative cycles must be 

implemented. A negative cycle is a path that can be repeatedly followed 

                                       

33 Cf. Bellman R. (1957): pp. 1 - 2. 
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and whose costs sum up to an arbitrarily low negative number. Fortu-

nately it is not possible to recuperate an infinite amount of energy so 

that in this case negative cycles do not need to be considered.   

 

Figure 5.1: Example of a simple road network (1). 

Adapted from: Humboldt-Universität zu Berlin, 5/20/2012. 

The road network is fully represented by a matrix  

 

! 	
ÍÎ
ÎÎÎ
ÎÏ
∞ �¡¢ �¡7 �¡6 ∞ ∞ ∞∞ ∞ ∞ �¢6 �¢� ∞ ∞∞ ∞ ∞ �76 ∞ ∞ ∞∞ ∞ ∞ ∞ �6� �6# ∞∞ ∞ ∞ ��6 ∞ ∞ ��$∞ ∞ �#7 ∞ ∞ ∞ �#$∞ ∞ ∞ ∞ ∞ ∞ ∞ ÑÒ

ÒÒÒ
ÒÓ
. 

 

 

 

 

(5.1) 

Every row represents the cost from a particular city to all other cities. 

Accordingly the columns correspond to the cost to a specific city from 

every other city. If two cities � and w have no direct connection the cost 

�"� is set to infinity. If the optimum route is to be planned from a differ-

ent starting point than A, the elements in ! can be rearranged accord-

ingly. The cost to every city starting from A is then calculated by the it-

erative scheme: 

 F�£r1 	 minsF"£ � �"�t,			� 	 A,B, … ,�,																																			 
																																																w 	 ð, , … ,�,																																					 

																																																									F* 	 yF¡*, F¢* , … , F$*} 	 y0, �¡¢, … , �¡$},	 
												F¡£ 	 0, ∀¤.							 

 

 

(5.2) 
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In any case the inequality �� ≤ ℎ�£r1 ≤ ℎ�£ is fulfilled. The sequence will 

converge after a limited number of steps to ��. The stop criterion is ℎ�£ 	 ℎ�£r1, ∀w. In this case the index � must be stored for all w. This is es-

sential because on the optimal path any city w is reached through the 

city �. Hence, the optimal route can easily be computed.  

In a programming environment the iterative scheme of equation (5.2) 

can be executed in an inner for-loop for the index � and an outer loop 

for w. In this way the algorithm is implemented in an Embedded 

MATLAB Function. To reduce the computational effort in MATLAB .m-

files it is also possible to implement equation (5.2) in just one for loop. 

Let '£ be a matrix that is defined as  

 '£ =
ÍÎ
ÎÏℎ¡£ + �¡¢ ℎ¡£ + �¡7 … ℎ¡£ + �¡$ℎ¢£ + �¢¢ ℎ¢£ + �¢7 … ℎ¢£ + �¢$⋮ ⋮ ⋱ ⋮ℎ$£ + �$¢ ℎ$£ + �$7 … ℎ$£ + �$$ÑÒ

ÒÓ. 
 

 

(5.3) 

In MATLAB the minimum costs ℎ�£ as well as the corresponding indices � 
can be determined by   

 ^�£r1 (£r1a = ��p�'£�, (5.4) 

where �£ = ^ℎ¢£ … ℎ$£a� and (£ = ^�¢£ … �$£a�. 

The stop criterion is �£ = �£r1. Subsequently, the optimal path is com-

puted backwards from the destination to the starting point by evaluat-

ing the information stored in (£.34 

 

Example: 

Consider Figure 5.2 which depicts the road network explained above 

with exemplary values for the costs to travel between cities. The corre-

sponding matrix is  

                                       

34 Cf. Gocheva-Ilieva S.: http://evlm.stuba.sk, 5/7/2012. 
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! 	
ÍÎ
ÎÎ
ÎÎ
Ï∞ 3 1 5 ∞ ∞ ∞∞ ∞ ∞ 1 2 ∞ ∞∞ ∞ ∞ 8 ∞ ∞ ∞∞ ∞ ∞ ∞ 4 1 ∞∞ ∞ ∞ 1 ∞ ∞ 7∞ ∞ 3 ∞ ∞ ∞ 2∞ ∞ ∞ ∞ ∞ ∞ ∞Ñ

Ò
Ò
Ò
Ò
Ò
Ó

. 

 

 

 

 

(5.5) 

 

Figure 5.2: Example of a simple road network (2). 

There is convergence after a few steps. The result is �£�ë 	 �£�` 	
^3 1 2 1 3 5a� and (£�` 	 ^) ) � ð � *a�. Recall that this 

result shows how to optimally reach every city starting from A. The Ü-th 

element corresponds to the j-th city where Ü 	 1,2, … ,6 and w 	 ð, , … ,�. 

Now assume that the driver wants to travel to *. According to the fifth 

element of (£�` it is optimal to reach * via �. The stopover on the opti-

mal route before � is ð. Finally, ð is directly reached from the starting 

point. Therefore, once �£ 	 �£r1 and the corresponding (+ have been 

computed the optimal route to any destination can be determined with 

very little computational effort. In this case, the optimal route is )  ð  �  �  * and the total cost is �# 	 3. 

 

5.2 Implementation and discussion 

An essential part of the route planner is the computation of the road 

matrix !. On the one hand the costs to travel between cities can change 

due to real-time traffic conditions. On the other hand the costs must 

factor in various aspects because it depends on the driver’s preferences 
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whether an energy-optimal route, a time-optimal route or one that min-

imizes the covered distance is computed. For this purpose the following 

raw data must be supplied: 

- , contains information about the distance between cities.  

- �- is a matrix that has the same structure as ! but its elements 

contain up-to-date average velocities for every road segment. This 

information may be provided by c2i communication and is re-

quired to calculate the travel times � 	 ,⊘ �-. 

- .��# represents the current traffic conditions (e.g. light or heavy 

traffic, stop-and-go traffic etc.). 

- ."ZÁ holds detailed information about the elevation profile of the 

road map. In some cases this might have a substantial influence 

on the vehicle’s energy consumption. 

The road matrix is thereby calculated by 

 / 	 H�� � H6,� H�,&.��#,."ZÁ', (5.6) 

where 

,&.��#,."ZÁ' is a scalar function that computes the expected energy 

consumption for each road segment. The specific vehicle topology 

may also be taken into account.  

 H� is a weighting factor for the travel time between cities, 

 H6 affects the impact of the traveled distance and 

 H� weights the energy consumption. 

In case H� = 1 there is an easy interpretation of the weighting factors. 

The choice H6 = 1 061  means that every 06 meters a penalty of one se-

cond is added to the cost function whereas for H� = 1 0�1  one second is 

added every 0� joule.  

Note that of course one could argue that one of the weighting factors is 

redundant. However it is considered as being more intuitive for drivers 

to choose values for all three. 
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It is again emphasized that this work only describes a concept study. It 

is part of this thesis to develop an algorithm that factors in real-time 

traffic data as well as the driver’s preferences to compute an optimal 

route. It is, however, neither subject of this work to provide such data 

(i.e. data for .��# or ."ZÁ) nor to determine a function , as described in 

equation (5.6). These functionalities are stated for being implemented at 

a later time. Nevertheless, in a simple example below it is shown that 

real-time traffic information can already be processed and time-optimal 

routes can be computed. 

The route planner has been implemented in Simulink to enable future 

co-simulations with both IPG CarMaker and AVL CRUISE. AVL has 

demonstrated the potential of the algorithm in a concept simulation. 

Due to current CarMaker interface limitations the Bellman-Ford algo-

rithm ran isolated in Simulink and the results were exported manually 

to CarMaker. A road network containing 15 nodes was created in Car-

Maker (see Figure 5.3).  

 

Figure 5.3: Road network in CarMaker. 

Adapted from Jones S. et al. (2012): pp. 7-8. 



A concept study for an advanced route planner 80 

 

It is desired to travel from the starting point A to the destination N. 

Black lines between nodes represent small side roads that the driver 

prefers to avoid. Green lines correspond to road segments where the 

current average speed is high. On yellow segments there is heavy traffic 

and the average speed is expected to be less than 50km/h. A red seg-

ment indicates a traffic jam or stop-and-go traffic. 

Information about the road network topology as well as traffic infor-

mation is fed to Simulink to determine the fastest route. Accordingly, 

the weights in equation (5.6) which specify the tradeoff between the 

fastest route, the shortest route and the energy-optimal route are set to H� 	 1 and H6 = H� = 0, respectively.  

It is assumed that a driver who has no access to real-time traffic infor-

mation would drive along the shortest path (A-B-C-D-I-N). The Bellman-

Ford algorithm, however, computes the optimal (in terms of travel time) 

but longer path (A-B-C-D-E-J-O-N). In Figure 5.4 the vehicle velocity is 

shown for both cases. The letters indicate the nodes of the road network 

in regard to both paths shown in Figure 5.3.  

 

Figure 5.4: Velocity along the shortest route and the optimal route. 

Adapted from Jones S. et al. (2012): pp. 8. 

The energy consumption along both paths is calculated in a co-

simulation of CarMaker and a detailed AVL CRUISE model of the proto-
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types. Due to time-optimal route planning the overall energy consump-

tion is reduced by 10.3% compared to a driver that has no access to re-

al-time traffic information and always chooses the shortest route. Sim-

ultaneously, the journey time was reduced from 454 seconds to 272 se-

conds.35  

 

 

                                       

35 Cf. Jones S. et al. (2012): pp. 7 - 8. 
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6 Conclusion 

Given a specific battery capacity there is a broad variety of possibilities 

to extend the driving range of fully electric vehicles. Some of those strat-

egies are investigated in this work. It is emphasized that the optimiza-

tion methods complement each other by covering different time hori-

zons. It is demonstrated that dynamic torque splitting saves a signifi-

cant amount of energy. Therefore torque splitting is also added to the 

computation of optimal velocity trajectories and is considered in the en-

ergy estimation of the route planner.  

The most extensive chapter elaborates the determination of optimum 

velocity trajectories using two different methods. Their strengths and 

weaknesses are discussed. In addition it is shown that the dynamic 

programming algorithm is able to realistically calculate the energy con-

sumption in specific driving maneuvers. A comparison of the parameter 

optimization method with the dynamic programming algorithm showed 

close similarities in the obtained velocity profile and the optimal control 

inputs, respectively. However, the choice of the initial values of the B-

splines parameters is a crucial factor. Improving the method using B-

splines is essential to reduce the dependency on the initialization of the 

parameter vector in order to ensure applicability in a broader variety of 

problems. Finally, a concept study of a route planner is shown. Prelimi-

nary co-simulations with IGP CarMaker and AVL CRUISE successfully 

showed that the implementation in the tool chain is possible. As usual 

in concept studies, much further development is required.   

In order to get any optimization method ready to go into mass produc-

tion it is not sufficient to just cover technical issues. Besides optimizing 

the energy consumption other aspects as the travel time or driving com-

fort are extremely important to promote driver’s acceptance. Those 

points are considered in the proposed optimization strategies.  

It is envisioned in the OpEneR project that in the future various energy-

optimization algorithms will merge into a highly advanced energy man-

ager. For this purpose vehicles must be equipped with a number of 
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components as for example ACC or an HMI. Furthermore, extensions to 

the current road infrastructure are badly required to use the full poten-

tial of advanced energy management methods. 
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A Appendix – Vehicle data 

New concepts and technologies that are developed within the line of the 

OpEneR project are demonstrated in two fully electric vehicles which 

are prototypes and are based on the Peugeot 3008 HYbrid4. In this ap-

pendix a brief overview of some key components and additional infor-

mation about OpEneR is given.  

The powertrain consists of two identical synchronous machines from 

Bosch (model: PSM151-319) that each power one axle. The maximum 

power of one electric machine is about 57.6kW if the supply voltage is 

305V. Both EM can reach a maximum speed of 10,000rpm. Each EM is 

directly connected to a dog clutch which in turn is connected to the 

transmission. The transmission ratio is 7.5 and the combined average 

efficiency of both the transmission and the differential is approximately 

92%. This enables the prototypes to reach their maximum velocity of 

about 161km/h. Driving stability for regenerative breaking is ensured 

by the ESP®hev. Up to a deceleration of 1.25m/s² the prototypes can 

use 100% of the recoverable braking energy to charge their batteries.  

The lithium ion battery consists of four modules that each have 24 

cells. Its nominal idle voltage is approximately 308V depending on the 

SOC and the temperature. The usable storage capacity is 36.8kW/h, 

which enables the vehicle to travel 190-250km. The battery mass is 

about 440kg, which is the main reason why – although the combustion 

engine has been removed – the overall mass of one prototype is roughly 

180kg higher than the one of the Hybrid it is based on. The mass is 

therefore about 1950kg. Together both electric machines provide up to 

410Nm when pulling off from standstill.  

OpEneR is a three-year European research project that has launched in 

May 2011 and is part of the 7th EU Framework Programme (grant 

agreement n. 285526). It has an overall budget of 7.741.705€ and is 

funded with 4.400.000€ by the European Union.  
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