

Optimum Energy Management Strategies for an

Electric Vehicle Integrated in an Intelligent

Transport System

Master’s thesis

Alexander Massoner, BSc.

Institute of Automation and Control

Graz University of Technology

In cooperation with

AVL List GmbH

Supervisors:

Ao. Univ.-Prof. Dipl.-Ing. Dr.techn. Anton Hofer

Emre Kural, MSc.

Stephen Jones, Ph.D.

Graz, December 2012

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used

other than the declared sources / resources and that I have explicitly

marked all material which has been quoted either literally or by content from

the used sources.

……………………. ……….…………………………………

 date signature

Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Entwicklung neuer Strategien zur

Erhöhung der Reichweite von Elektrofahrzeugen. Es werden dabei verschie-

dene Ansätze zur Energieverbrauchsoptimierung verfolgt, welche sich über

unterschiedliche Zeithorizonte erstrecken und einander ergänzen. Eine dy-

namische Drehmomentaufteilung zwischen zwei Synchronmaschinen opti-

miert den Gesamtwirkungsgrad des Fahrzeugs. In Kapitel 4 werden zwei

Verfahren vorgestellt, um energieoptimale Geschwindigkeitstrajektorien zu

berechnen, für die zahlreiche praktische Anwendungsfälle existieren. Das

letzte Kapitel beschäftigt sich mit der Entwicklung eines Konzeptes für einen

Routenplaner, welcher den spezifischen Energieverbrauch eines Fahrzeugs

in die Berechnung der Route einbezieht. Die entwickelten Optimierungsme-

thoden werden anhand des Fahrzeugmodells zweier realer Prototypen de-

monstriert. Die Anfertigung dieser Masterarbeit erfolgte in enger Zusammen-

arbeit mit der AVL List GmbH und im Rahmen des europäischen For-

schungsprojektes OpEneR.

Abstract

The development of new strategies in order to increase the range of fully elec-

tric vehicles by minimizing the energy consumption using on-board and off-

board sources of information has been subject of this work. Various com-

plementary approaches that cover significantly different time horizons are

analyzed. A method is developed to optimally distribute the drive torque be-

tween two electric machines aiming at maximizing the overall efficiency of

the vehicle. Chapter 4 elaborates two computational procedures to determine

energy-optimal velocity trajectories that can be applied in a broad variety of

use cases. The last chapter illustrates a concept study for an advanced route

planning optimization that takes into account powertrain characteristics in

order to consider the expected energy consumption when calculating an op-

timal route. All developed optimization methods are based on parameters of

two existing vehicle prototypes. This master’s thesis was written in close col-

laboration with AVL List GmbH and contributes to the European research

project OpEneR.

Schlüsselwörter

Bellman-Ford Algorithmus, B-splines, Elektrofahrzeug, OpEneR, dynami-

sche Drehmomentverteilung, dynamische Programmierung, Parameteropti-

mierung, Routenplaner, Fahrroutenoptimierung, energieoptimale Geschwin-

digkeitstrajektorien, Energieoptimierung.

Keywords

Bellman-Ford algorithm, B-splines, Electric vehicle, OpEneR, dynamic

torque distribution, torque split, dynamic programming, parameter optimiza-

tion, route planner, route planning optimization, energy-optimal velocity tra-

jectories, speed profile optimization, energy optimization.

Acknowledgment

This work has been supported by the OpEneR project,

grant agreement number 285526, funded by the European Commission Sev-

enth Framework Programme theme FP7-2011-ICT-GC.

Preface

An dieser Stelle möchte ich mich sehr herzlich bei allen Personen bedanken,

die mich während meiner Arbeit unterstützt haben, im Besonderen bei

Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. tit.Univ.-Prof. Anton Hofer seitens des In-

stituts für Regelungs- und Automatisierungstechnik an der Technischen

Universität Graz, sowie bei meinen Betreuern bei AVL, Emre Kural, MSc.

und Dr. Stephen Jones.

Ein ganz besonderer Dank gilt meinen Eltern, die mir stets mit Liebe zur Sei-

te stehen.

 vi

Contents

Contents ... vi

List of Figures ... viii

List of Tables ... x

List of Abbreviations ... xi

1 Introduction ... 1

2 Modeling of the vehicle ... 4

2.1 Longitudinal dynamics ... 5

2.2 Powertrain model ... 6

2.3 Driving resistance .. 7

2.4 Electric machine efficiency model ... 8

2.5 ESP®hev in the prototypes .. 10

2.6 State space representation ... 11

2.7 Flatness ... 11

3 Torque split .. 13

3.1 Electric drive efficiency .. 13

3.2 Implementation and results ... 18

4 Velocity Trajectory Optimization ... 24

4.1 Velocity trajectory optimization with dynamic programming 27

4.1.1 Implementation .. 34

4.1.2 Results and discussion .. 45

4.2 Velocity trajectory optimization using B-splines 53

4.2.1 Introduction to B-splines .. 55

4.2.2 Electric machine efficiency map fitting 56

4.2.3 Implementation .. 63

4.2.4 Results and discussion .. 69

5 A concept study for an advanced route planner 73

Contents vii

5.1 The Bellman-Ford algorithm .. 74

5.2 Implementation and discussion ... 77

6 Conclusion ... 82

A Appendix – Vehicle data ... 84

Bibliography .. 85

 viii

List of Figures

Figure 2.1: Considered components in the vehicle model. 4

Figure 2.2: Electric machine efficiency model. ... 8

Figure 2.3: Efficiency of one electric machine, Trotor = Tstator = 60°C, VDC =

305V. .. 9

Figure 2.4: ESP®hev regenerative braking characteristics. 10

Figure 3.1: Torque split between front and rear EM. 15

Figure 3.2: Lookup table for uf,opt: VDC = 305V, Trot = Tstat = 60°C, n = 11. 16

Figure 3.3: Mthreshold at different supply voltage levels. 18

Figure 3.4: Suboptimal torque split during the NEDC. 21

Figure 3.5: Electric machine efficiency depending on temperature. 22

Figure 4.1: Vehicle velocity. ... 26

Figure 4.2: A multistage decision process. ... 28

Figure 4.3: Another multistage decision problem. 29

Figure 4.4: Issues arising due to discrete state space. 33

Figure 4.5: Flow chart to compute velocity profiles 35

Figure 4.6: Forward simulation Simulink model (simplified, for velocity

trajectories that are functions of the traveled distance). 44

Figure 4.7: Energy-optimal velocity trajectory. ... 46

Figure 4.8: A cost-to-go matrix where v(ξN)=50 km/h. 47

Figure 4.9: An optimal control input matrix where v(ξN)=50 km/h. 48

Figure 4.10: Relation between the optimal control input matrix and optimal

trajectories. ... 49

Figure 4.11: Energy-optimal velocity trajectories with and without

constraints. ... 51

Figure 4.12: Examples of 3rd order B-splines depending on d. 56

Figure 4.13: Efficiency of both electric machines at 2500 rpm. 58

Figure 4.14: Ansatz functions used to approximate the electric machine

efficiency. .. 59

Figure 4.15: Fitted electric machine efficiency at 5000 rpm. 62

Figure 4.16: Absolute value of the error of the fitted efficiency map 63

Figure 4.17: B-splines Bj,3(ξ) and speed profile v(ξ) if all pj are one. 64

Figure 4.18: Comparison of velocity profiles computed by using B-splines

and dynamic programming. ... 71

List of Figures ix

Figure 4.19: Energy-optimal velocity trajectory for approaching a traffic light.

 ... 72

Figure 5.1: Example of a simple road network (1). 75

Figure 5.2: Example of a simple road network (2). 77

Figure 5.3: Road network in CarMaker. ... 79

Figure 5.4: Velocity along the shortest route and the optimal route. 80

 x

List of Tables

Table 3.1: Reduction of the consumed energy by dynamically distributing the

torque between the electric machines. ... 20

Table 4.1: Comparison of energy-optimal velocity trajectories. 52

 xi

List of Abbreviations

ACC: Adaptive Cruise Control

AVL: Anstalt für Verbrennungskraftmaschinen List

c2c: Car to car

c2i: Car to infrastructure

DC: Direct current

EC: European Commission

EM: Electric machine

ESP®hev: Electronic Stability Program for hybrid electric vehicles

FTP: EPA Federal Test Procedure

GPS: Global Positioning System

HMI: Human-machine interface

NEDC: New European Driving Cycle

OpEneR: Optimal Energy Consumption and Recovery based on a system

network

rpm: Revolutions per minute

SISO: Single-Input Single-Output

SOC: State of charge

 1

1 Introduction

Mobility plays a key role in every advanced economy and for individuals

living in a modern society mobility has even become a basic need.1 To a

great extent individual mobility relies on passenger cars, which con-

sume a large part of the world’s primary energy carriers2 but the immi-

nent scarcity of these resources requires a shift away from fossil fuels.

Especially electric vehicles have a promising future in the pursuit of this

goal. However, there are still many obstacles that hinder electric vehi-

cles to replace conventional cars or hybrids.

A crucial factor to customer acceptance is the generally low all-electric

range, which is defined by the distance a vehicle can travel by only con-

suming the energy that is stored in its battery. In this thesis several en-

ergy-optimum control strategies are developed in MATLAB/Simulink

and AVL CRUISE to raise the energy efficiency – and therefore increase

the all-electric range – of two prototypes. The prototypes are fully elec-

tric vehicles adapted from the Peugeot 3008 HYbrid4. They each have

two electric machines (EM) – one to power each axle – that facilitate re-

generative braking. Details on specific vehicle data are elaborated in

Appendix A.

This thesis is written in close collaboration with AVL List in Graz, Aus-

tria in line with the OpEneR (Optimal Energy consumption and Recov-

ery based on a system network) project. OpEneR is a European research

project launched in May 2011 and is part of the 7th Framework Pro-

gramme (grant agreement n. 285526). The project goal is to develop an

overall energy manager for electric vehicles that will significantly in-

crease the energy efficiency and therefore the driving range as well as

safety. OpEneR particularly emphasizes the development of energy sav-

ing strategies that combine data from car-to-car (c2c) systems, car-to-

infrastructure (c2i) systems, GPS (Global Positioning System) data, nav-

1 Cf. Back M. (2005): pp. 1.

2 Cf. Guzzella L., Sciarretta A. (2007): pp. iii.

Introduction 2

igation systems, cameras and/or radar to detect the vehicle’s surround-

ing, etc.3 The project consortium consists of the following institutions:

• Robert Bosch GmbH (project leader),

• Peugeot Citroën Automobiles S.A.,

• Robert Bosch Car Multimedia GmbH,

• AVL List GmbH,

• Centro Technológico de Automación de Galicia,

• FZI Forschungszentrum für Informatik.4

To explore the potential of the vast amount of data that will presumably

be available in the near future several components are integrated to re-

ceive, combine and process data from a broad variety of sources to en-

sure a safe, highly efficient and comfortable driving experience. Those

sources of information can be other vehicles that communicate with

each other and share information about their current position, velocity

etc. Real-time information can also be provided by modern road infra-

structure that broadcasts information about speed limits, traffic flow,

traffic light status etc. If this information is available a vehicle is inte-

grated in an intelligent transport system. Furthermore vehicles are able

to create lots of data on their own that can be utilized. For example,

cameras and radar provide information about objects in the vehicle’s

surrounding. This approach is well suited to make traffic flow more

smoothly.5

Compared to humans a major advantage of information systems is that

they can gather and process much more data and are able to look

ahead several kilometers along the road. This opens numerous so far

unused possibilities to optimize driving. For this purpose an intuitive

3 Cf. http://www.fp7-opener.eu, 4/27/2012.

4 Cf. http://www.fp7-opener.eu/index.php/project/partners, 4/27/2012.

5 Cf. http://www.fp7-opener.eu, 4/27/2012.

Introduction 3

human-machine-interface (HMI) is installed in the vehicle to assist the

driver.6

In this work it is assumed that some of the above mentioned infor-

mation is available on-board and the vehicle is integrated in an intelli-

gent transport system, respectively. A key distinguishing feature of the

implemented strategies is that they cover a very different time horizon

in order to be applicable in a broad variety of use cases that span from

a duration of a few seconds to hours.

In the second chapter various components of the prototypes are ex-

plored for which all optimization strategies are designed. However, it

should be emphasized that the developed algorithms can very easily be

adapted to be applied on other fully electric vehicles with similar topolo-

gy. Furthermore a vehicle model including all relevant components is

derived.

The third chapter presents an algorithm that dynamically splits the

torque between two electric machines depending on the driving condi-

tion. The purpose is to increase the combined efficiency of the electric

machines.

The fourth chapter elaborates the implementation of energy-optimal ve-

locity profiles. A velocity profile is a trajectory the vehicle speed should

follow in a certain driving maneuver. The time horizon of such a ma-

neuver is usually between 15 and 50 seconds.

In the last chapter a basic concept for a route planner is developed that

– besides the distance and the journey time – takes into account the en-

ergy consumption. For this purpose 3D GPS maps, information about

speed limits, real-time traffic conditions etc. are considered to be avail-

able on-board. The user can specify a tradeoff between energy con-

sumption, travel time and traveled distance according to personal pref-

erences.

6 Cf. http://www.fp7-opener.eu/index.php/project/open-task-list.html, 26/9/2012.

 4

2 Modeling of the vehicle

A suitable plant model is the foundation for any design process that

aims at computing control strategies that can be successfully applied to

a real dynamic system. For this reason the key elements of the vehicle

model are briefly described in this chapter. The components of the pro-

totypes that are relevant for the development of the optimization algo-

rithms elaborated in the subsequent chapters are shown in Figure 2.1.

The design process of the Torque Split Logic is explained in detail in

chapter 3. Figure 2.1 also shows the underlying vehicle topology. Two

electric machines that each power one axle are installed. Details on the

electric machines and the ESP®hev (Electronic Stability Program for hy-

brid electric vehicles) designed by Bosch will be elaborated below in the

corresponding subchapters.

Figure 2.1: Considered components in the vehicle model.

The vehicle can – up to a certain limit specified by the ESP®hev – be

slowed down by using the rear electric machine in generator mode to

recuperate mechanical energy which is used to charge the on-board

battery. Due to the fact that the energy dissipated in the mechanical

brakes cannot be reused, the author assumes that the outcome of an

energy-efficiency optimization will in no case result in the use of the

mechanical brakes. Therefore, disk brakes are purposely not considered

in the modeling process.

Modeling of the vehicle 5

To simplify matters it is reasonable to neglect all lateral dynamics as

well as pitch because both do not exert any significant influence to the

energy consumption.7 To describe the vehicle’s longitudinal dynamics,

the equations of motion with respect to specific vehicle data are derived

below.

2.1 Longitudinal dynamics

Generally for realistic modeling of the longitudinal dynamics a single-

track model is required to represent breaking and acceleration charac-

teristics, which have a substantial influence on the stability of vehicles.8

However, stability is not considered in this work because in any unsta-

ble driving situation the energy optimization becomes completely point-

less. Besides, the electric machine torque can be limited in every devel-

oped algorithm to support stability. It is therefore convenient to neglect

all stability concerns in the context of energy-optimization and use a

single-wheel model. The equation of motion can be written according to

Newton’s second law as

 ������ ����� =
�� −
���, (2.1)

where

���� is the total vehicle inertia, ������ is the angular velocity of the wheel,
�� is the overall torque of the powertrain at the wheel and
��� is the driving resistance at the wheel.

Note that equation (2.1) does not explicitly contain a term for brake

torque. However, brake torque can be applied through the rear electric

machine and is therefore part of
��. By convention propelling torques

7 Cf. Back M. (2005): pp. 47.

8 Cf. Grießler L. (2011): pp. 4.

Modeling of the vehicle 6

are labeled a positive sign, whereas resistance torques have negative

signs.9

With respect to � = ������������ where � is the vehicle speed and ������ is

the dynamic rolling radius (the effective tire radius if the vehicle is in

motion10) of the wheels, equation (2.1) can be rephrased to

 �� = ���������� �
�� −
����. (2.2)

The total kinetic energy of the vehicle is given by

 12 ����������� = 12 ��� + 4 12 ������������� + 12 ���������� , (2.3)

where ��� and ������ denote the inertia of the powertrain and the wheel

inertia, respectively and � is the vehicle mass. Hence, with the relation � = ������������ the vehicle inertia can be stated as11

 ���� = �������� + 4������ + ��� . (2.4)

2.2 Powertrain model

According to Figure 2.1 the powertrain model includes the electric ma-

chines, the transmissions, the dog clutches, the differentials and the

wheels. It is asserted that the dog clutches are always closed and do not

slip in normal driving, including pulling off from standstill. Torsion of

the drive shaft is also neglected. Therefore, a quasi-static approach can

be taken to model the powertrain. The transmission ratio is constant

and defined as

 ��� = ���������, (2.5)

where ��� is the front and rear electric machine speed.

9 Cf. Back M. (2005): pp. 47-48.

10 Cf. Kiencke U., Nielsen L. (2000): pp. 249.

11 Cf. Grießler L. (2011): pp. 3-4.

Modeling of the vehicle 7

For simplicity the efficiencies of the transmission and the differential

are regarded as constants and referred to as �� and !"##, respectively.

Note that both the front and the rear axle are constructed identically.

Therefore the relation between the total power provided by both electric

machines $��� and the total driving power at the wheels is given by

 $��� = ���
��� = 1 �� !"## ������
�� = 1 �� !"## ��� 1���
�� , (2.6)

where
��� is the torque of both electric machines. It is now evident

that the relation between the torque provided by the electric machines

and the torque at the wheels is

��� = 1��� �� !"##
�� . (2.7)

Neglecting the inertia of the dog clutch the rotational energy of the

powertrain is given by

 12 ���������� = 12 %&2��� + ���,��'���� + &���,����� + 2�!"##'������� (, (2.8)

where

��� is the inertia of one electric machine,

���,�� is the transmission inertia on the EM side,

���,����� is the transmission inertia on the wheel side and

�!"## is the inertia of one differential.

By substituting ��� according to equation (2.5) the inertia of the whole

powertrain can be determined by

 ��� = &2��� + ���,��'���� + ���,����� + 2�!"## . (2.9)

2.3 Driving resistance

The rolling resistance, the air resistance as well as the climbing re-

sistance are represented by

Modeling of the vehicle 8

��� = �)* +)��|�| + �, sin 0�������, (2.10)

where , is the gravitational acceleration, 0 is the angle of inclination in

radian and)*,)1 	 ∈ 	4 are constants whose values were provided by

Peugeot. Both constants were determined in coast-down tests on the

road. Note that the term �|�| will be replaced by �� in the equations be-

low because driving backwards is not considered.

2.4 Electric machine efficiency model

To compute the overall energy consumption of the vehicle in any driving

condition the electric machine efficiency is used. The efficiency is de-

termined with the aid of a Simulink model using a C MEX-file S-

function provided by the Robert Bosch GmbH. The model only repre-

sents the steady state behavior of the efficiency of one electric machine.

All relevant inputs and the output of the model are shown in Figure 2.2.

Figure 2.2: Electric machine efficiency model.

1�� denotes the electric machine torque (note the distinction between
1�� and the combined torque of both EM
���). 567 is the DC (direct

current) voltage at the clamps of the inverter of the electric machine and

is provided by the battery. 8�9� and 8��:� refer to the rotor and stator

temperature.

The electric machine efficiency is labeled 1��. Note that the efficiency

can be considered as a function with five arguments. Hence, 1�� 	 1���
1��, �, 567 , 8�9�, 8��:��.

Modeling of the vehicle 9

Optimizing the efficiency contributes substantially to reducing the over-

all energy consumption of the vehicle. Chapter 3 will purely focus on

optimizing the combined efficiency of both electric machines.

Figure 2.3: Efficiency of one electric machine, Trotor = Tstator = 60°C, VDC

= 305V.

Let $�� be the electrical power one electric machine drains from the bat-

tery and let $1�� 	 �
1�� be the mechanical power the electric machine

provides so that the efficiency is defined as

 1�� 	
;<=
<> $1��$�� … $1��, $�� > 0 $��$1�� … $1��, $�� < 0 C)C … DEℎG�H�IG,

(2.11)

where NaN stands for not a number. It is useful to use this notation be-

cause in the simulation environment any numerical value for 1�� other

than 0 ≤ 1�� ≤ 1 must be avoided. For 8�9�9� = 8��:�9� = 60℃ and 567 = 3055 Figure 2.3 shows the characteristics of 1�� for both motor

and generator mode. The white area contains any infeasible operation

region as well as any points where according to equation (2.11) the effi-

ciency is defined as NaN. In general, the efficiency decreases at higher

Modeling of the vehicle 10

temperatures and vice versa. Some basic investigations on this phe-

nomenon will be given in chapter 3.2.

2.5 ESP®hev in the prototypes

The ESP®hev enables regenerative breaking and has been specifically

developed for hybrid and electric vehicles.12 At the time the simulations

for this work were conducted it allowed the test vehicle to purely regen-

erative decelerate up to approximately 1.25 m/s² by using only the rear

electric machine. Energy recuperation with the front EM is not possible.

At higher deceleration values regenerative breaking is mixed with hy-

draulic brake torque so as to the recuperation ability diminishes con-

tinuously until it reaches zero at a deceleration value of -3m/s² (see

Figure 2.4).

Figure 2.4: ESP®hev regenerative braking characteristics.

12 Cf. Robert Bosch GmbH: http://www.bosch-
presse.de/presseforum/details.htm?txtID= 5291, 7/18/2012.

Modeling of the vehicle 11

2.6 State space representation

A state space model of the prototypes is given by

 O� 	 P�O, Q�, O�0� = O*, (2.12)

where O = � is the only state variable, Q =
��� is the control input and O* is the initial condition. The vehicle speed � is easily measurable and

represents the system output R. The state space model can therefore be

stated as

 �� = ���������� &��� �� !"##
��� − �)* +)��� + �, sin0�������',
R = �, ��0� = �*.

(2.13)

2.7 Flatness

The solving method to the optimization problem in chapter 4.2 relies on

a system property called flatness. This section gives a brief overview of

flat systems and it is shown that the state space model of the prototypes

features this property. For details the reader is referred to technical lit-

erature (e.g. Zeitz M. (2010), Gausch F. (2010), Grießler L. (2011)).

In general, flatness is a system property of dynamic systems. For linear

systems flatness and controllability are interchangeable and therefore

equivalent. For nonlinear systems flatness generalizes the property of

controllability. For S���T� = S���U� the system

 V� = W�V, U�, V�0� = V* (2.14)

is flat if it has at least one (possibly fictitious) flat output T. The state

vector V as well as all control inputs (U) can be expressed explicitly by

the flat output and a finite number of its derivatives:

 V = XY&T, T� , … , T�Z[1�',
U = X\&T, T� , … , T�Z�'.

(2.15)

Even if these conditions are just locally fulfilled the system is called flat.

Modeling of the vehicle 12

Flatness is a very useful system property if trajectory planning is de-

sired. To illustrate this, consider a Single-Input Single-Output (SISO)

system where the system output must follow a specific trajectory ��], E�
where]� = ^_1 _� _`a is a parameter vector. Due to R =! ��], E� the sys-

tem output can be parameterized as R = R�], E�. In this case flatness im-

plies that not just the system output but the state vector as well as the

control input depend on only] and E. In chapter 4.2 this property will

be utilized to compute control inputs based on a set of parameters that

specify a velocity trajectory.13 At this point it is left to show that the ve-

hicle model is indeed flat.

With R = � equation (2.13) can be rearranged to

����R, R� � = 1��� �� !"## cR� ���������� + �)* +)�R� + �, sin0�������d. (2.16)

It is now evident that both � and
��� depend only on the system out-

put and its first derivative. Therefore, the system is flat.

13 Cf. Zeitz M. (2010): pp. 1, 3.

Cf. Gausch F. (2010): lecture notes.

Cf. Grießler L. (2011): pp. 40-41.

 13

3 Torque split

Up to half load a vehicle that has two identical electric machines can

drive by using either just one EM or the torque can be allocated arbi-

trarily between both EM. If a higher drive torque is required, both elec-

tric motors have to be used but as long as the demand torque is lower

than the maximum torque of both electric machines there is still an in-

finite number of possibilities to unequally distribute the torque. Howev-

er, without consideration of the electric machine efficiency characteris-

tics no reasonable predication can be made about the optimal torque

split. A strategy without any computational or implementation effort is

to just even distribute the torque between both EM. This method also

covers full load operation. It will serve as a benchmark for the optimiza-

tion algorithm below.

The idea that is followed in this chapter is to reduce the power con-

sumption by applying a dynamic distribution of the drive torque be-

tween both electric machines. The goal is therefore to always operate

the electric machines at their combined maximum efficiency at any giv-

en torque demand by the driver in any driving condition. The combined

maximum efficiency also depends on the temperature of the electric

machines as well as the battery voltage. A detailed description will be

given in the subchapters below. All algorithms are developed in

MATLAB/Simulink using the vehicle model elaborated above. The effect

on the overall energy consumption is then investigated by evaluating

the torque split strategy in various driving cycles and driving maneuvers

using a detailed model of the prototypes in AVL CRUISE.

3.1 Electric drive efficiency

Similar to equation (2.11) the combined efficiency of both EM is general-

ly defined by

Torque split 14

 ��� 	
;<=
<> $1��,# + $1��,�$��,# + $��,� … $1��,# + $1��,� , $��,# + $��,� > 0

$��,# + $��,�$1��,# + $1��,� … $1��,# + $1��,� , $��,# + $��,� < 0
C)C … oEℎG�H�IG,

(3.1)

where $1��,# and $1��,� denote the mechanical power of the front and the

rear electric machine and $��,# and $��,� is the electric power consumed or regenerated by the

front and the rear electric machine, respectively.

However, due to the ESP®hev the front EM may not be used to recuper-

ate energy. Therefore, equation (3.1) is simplified to

 ��� =
;<=
<> $1��,# + $1��,�$��,# + $��,� … $1��,# + $1��,� , $��,# + $��,� > 0

$��,�$1��,� … $1��,� , $��,� < 0
C)C … oEℎG�H�IG,

(3.2)

The torque split factor states what percentage of the total EM drive

torque is provided by the front electric machine:

 u# =
1��,#
1��,# +
1��,� ,

(3.3)

 where

1��,# = �ghi,jkhi is the torque provided by the front EM and

1��,� = �ghi,lkhi is the rear torque.

Note that 0 ≤ u# ≤ 1. The total electrical power is given by $��,�9� = $��,# +$��,� and the total mechanical power is given by
��� =
1��,# +
1��,�.
Figure 3.1 illustrates the connection between the overall mechanical

and electric power of both electric machines for $��� , $��,�9� > 0 with re-

gard to the torque split factor.

Torque split 15

Figure 3.1: Torque split between front and rear EM.

It is now apparent that for $��� , $��,�9� @ 0 the total electrical power can

be calculated with

 $��,�9� 	 Q#$��� # � &1 Q#'$��� � , 		$��� , $��,�9� @ 0. (3.4)

Rearranging this equation gives

 $���
$��,�9�

	 ��� 	 1
Q#
 # �

&1 Q#'
 �

	
 # �

Q# � � &1 Q#' #
, 		$���, $��,�9� @ 0. (3.5)

It is important to note that equation (3.5) shows that ��� 	 ,�Q#�,
where , is a nonlinear function of the torque split factor Q#. Therefore,

an optimization of Q# results in the maximization of ,. This is equivalent

to reducing the energy consumption in any given driving condition

where $��� , $��,�9� @ 0.

Remark: If it was possible to use the front electric machine for recuper-

ation as well, another version of equation (3.5) could be derived similar-

ly for 		$��� , $��,�9� B 0 based again on Figure 3.1 but by substituting 1 #⁄

and 1 �⁄ for their reciprocal values. A new function ,n�Q#� could be de-

termined for recuperation mode.

Various optimization methods could be applied to find the maximum of

,. The fact that u# lies between zero and one simplifies matters consid-

erably. In a special case where the supply voltage as well as the rotor

and stator temperatures are equal for both EM this interval can be nar-

rowed even further. Consider for example two identical EM under equal

conditions: a torque split factor of Q# 	 o will give the exact same results

as Q# 	 1 o (0 J o J 1). It is therefore evident that – with respect to the

Torque split 16

conditions mentioned above – it is sufficient to consider only values of Q# in the interval ^0, 0.5a.
An optimization of the torque split factor can therefore be carried out as

follows. First of all p ∈ ℤr different values for Q# are chosen: Q# =sQ#,1, Q#,�, … , Q#,Zt. Then simulations with all Q#," (� = 1 … p� are run and the

efficiency values are stored in the vector u� = ^v1, … , vZa. If p is chosen

adequately a sufficiently accurate approximation of the optimal torque

split factor can be obtained with:

 w = miny�: v" 	 ‖u‖|}. Q#,9~� = Q#,�.

(3.6)

This procedure is systematically repeated for all feasible combinations

of torque and speed and the optimal torque split values are stored in a

lookup table. Temperature differences between the electric machines

can be considered as well. Figure 3.2 shows Q#,9~���, M���� for 567 =3055, 8�9� = 8��:� = 60℃ (for both electric machines) and p = 11. The cor-

responding values for Q#," are y0, 0.05, 0.1, … ,0.5}.

Figure 3.2: Lookup table for uf,opt: VDC = 305V, Trot = Tstat = 60°C, n = 11.

Note that Q#,9~� is zero if the torque demand is low. This means that only

one electric machine should be used. In higher load conditions the

torque is mostly to be distributed equally between both electric ma-

Torque split 17

chines. It is evident that only two modes are sufficient to optimally op-

erate the vehicle in almost all operating points. Considering that the de-

scribed torque split may be implemented in one of the prototypes it is

desired to keep the implementation effort as low as possible as long as

the tradeoff between improving the energy-efficiency and reducing com-

plexity is reasonable. Thus, the question arises whether the lookup ta-

ble for Q#,9~� could be simplified, i.e. reduced to fewer values. A first step

is to investigate the impact of the simplification of Q#,9~� to just two val-

ues.

Based on Figure 3.2 a new variable
������9�! is defined which shall rep-

resent a torque threshold. For any speed the threshold equates to the

minimum torque value where Q#,9~� is not zero. Expressed mathemati-

cally the threshold is defined by

������9�! = minsM���: Q#,9~���, M���� > 0t. (3.7)

Now a simplified torque split lookup table can be defined as

 Q#,���9~� = �0 …
��� <
������9�! 0.5 …
��� ≥
������9�!. (3.8)

Figure 3.3 shows
������9�! for various supply voltage levels. Once more

it is assumed that the supply voltages as well as the rotor and stator

temperatures of the front and rear electric machine are equal.

Apparently, the threshold levels differ at higher speeds. Up to approxi-

mately one third of the maximum speed there is no significant voltage-

dependency (for relevant values of the supply voltage). If implemented in

the prototype, Q#,���9~� would not only require less implementation effort

but also significantly less memory than Q#,9~�. Whether the loss of ener-

gy-efficiency is worth it will be investigated in the next subchapter.

Torque split 18

Figure 3.3: Mthreshold at different supply voltage levels.

3.2 Implementation and results

So far it has been shown that two different approximations to an opti-

mal torque distribution can be determined. However, no investigation

has yet been made whether the potential of reducing the energy con-

sumption justifies the implementation effort. Thus, the impact of apply-

ing Q#,9~� and Q#,���9~� on the energy consumption is evaluated under

various driving conditions. For this purpose a detailed model of the pro-

totype in AVL CRUISE is used. Note that neither the optimal nor the

suboptimal torque split are calculated in AVL CRUISE but implemented

in the model after being determined in MATLAB as described in chapter

3.1. Note also that the AVL CRUISE model considerably differs from the

one that is described in the second chapter because in contrast to the

one-wheel model, all four wheels are considered. Also, the mechanical

brakes can be used if pure regenerative breaking cannot provide enough

break torque to carry out a specified driving maneuver. In addition a

human driver model is included. Hence, it is assumed that the effect of

the torque splitting can be realistically analyzed and that based on the

Torque split 19

results a substantiated decision can be made whether it is worth to

pursue this approach.

To evaluate the benefit of a torque distribution a suitable and precise

criterion and an evaluation method, respectively are indispensable. For

this purpose the application of both Q#,9~� and Q#,���9~� is compared to a

static torque distribution which – under all driving conditions – splits

the torque equally between both EM (Q# = 0.5). New variables �9~� and ����9~� are defined which represent the amount of energy saving in %

compared to a static equably distribution of the torque:

 �9~� = ��j�*.� − ��j,�����j�*.� ∗ 100%,
����9~� = ��j�*.� − ��j,��������j�*.� ∗ 100%.

(3.9)

��j�*.� denotes the total amount of the prototype’s consumed energy in a

specific driving maneuver or a driving cycle if a static and even torque

distribution is applied. Accordingly ��j,��� and ��j,������ denote the ener-

gy consumption if Q#,9~� or Q#,���9~� is applied.

At the juncture this thesis is written the author has no access to any re-

liable data concerning the thermal behavior of the electric machines

(e.g. the thermal capacity or the specification of the on-board cooling

system). Therefore a constant electric machine temperature is assumed

during the following driving maneuvers.

Table 3.1 illustrates the results for the New European Driving Cycle

(NEDC) as well as the EPA Federal Test Procedure (FTP-75). In addition

the energy saving while driving at various constant velocities is shown.

In all simulations the initial state of charge (SOC) of the battery is 88%

and 8��:�9� = 8�9�9� = 60℃ for both electric machines.

Torque split 20

Energy consumption improvement due to torque splitting

- NEDC FTP-75 30 km/h 50 km/h 90 km/h 120 km/h

δopt 5.423% 3.626% 23.691% 17,559% 7,422% 5,504%

δsubopt 5.418% 3.624% 23.691% 17,559% 7,422% 5,504%

Table 3.1: Reduction of the consumed energy by dynamically distrib-

uting the torque between the electric machines.

The results show that the performance of Q#,���9~� is nearly as good as

the one of Q#,9~�. Thus, answering the question from the previous section

whether it is useful to simplify Q#,9~� to reduce the implementation effort

can clearly be answered indisputably. Especially at low load conditions

the improvement is significant. The reason why the improvement values

are equal at the constant velocities shown in Table 3.1 is that under

those conditions both Q#,9~� and Q#,���9~� are 0. In comparison the rela-

tive energy saving is rather low in the examined driving cycles because

they include lots of acceleration phases with relatively high torque de-

mands compared to driving at constant speed. In those operating re-

gions the optimal torque split is – according to Figure 3.1 – 0.5 which

obviously achieves no advantage compared to a static and even torque

splitting.

As shown above the improvement for the NEDC is about 5.4%. The pur-

pose of Figure 3.4 is to better explain the NEDC and to show in which

operating regions one or both electric machines are used. The figure

shows both the vehicle speed during the NEDC (blue curve) and the cor-

responding suboptimal torque split factor Q#,���9~� (green curve). Both

electric machines are used for accelerating at low speeds. At higher

speeds only one machine is in use. Note the connection to Figure 3.3

where (for low velocities) the torque threshold rises as the speed in-

creases. Also, as stated above ����9~� = 0 if the vehicle travels at a con-

stant velocity of 120km/h or less.

Torque split 21

Figure 3.4: Suboptimal torque split during the NEDC.

A remark to the torque split simulations:

Although optimal torque split values can be determined for any temper-

ature differences between the electric machines, so far the EM tempera-

ture has always been considered equal in the simulations conducted in

AVL CRUISE. This simplification is indeed very useful because it allows

obtaining simulation results for various driving scenarios without any

knowledge of the thermal behavior of the electric machine and the cool-

ing system. However, the question arises, whether this simplification

renders the obtained results meaningless.

It can be shown in simulations that in general the efficiency of the elec-

tric machine decreases as the temperature increases. This is exempli-

fied in Figure 3.5 for 567 	 3055. The temperature refers to both 8�9� and 8��:�. For better comparability the torque is normalized to a percentage

value of the maximum available torque at the correspondent tempera-

ture and driving speed.

In reality, whenever the torque is not distributed equally between the

electric machines, they heat differently. The optimal torque distribution

Torque split 22

changes accordingly. The effect on the overall energy-efficiency im-

provement is yet to be determined in further simulations or through

measurements in the prototypes.

Figure 3.5: Electric machine efficiency depending on temperature.

Nevertheless, in the opinion of the author the results above are indeed

meaningful and justify the implementation effort of adding a dynamic

torque distribution in the algorithms presented in chapters 4 and 5. The

reasons for this conclusion are:

1. The high relative energy saving values in Table 3.1 for constant

velocities (or low load conditions) where only one EM operates can

be approximated by alternately switching the torque between the

front and rear EM. Thereby the EM temperatures are roughly

constant as it was assumed in the conducted simulations.

2. At least after a sufficiently long standstill the EM temperatures

are temporarily roughly equal and in this lapse of time the results

shown in Table 3.1 are significant.

3. Preliminary and basic considerations give no serious indications

that if the thermal characteristics were added the energy savings

would be significantly worse than stated in Table 3.1.

4. Regenerative breaking is limited to the use of the rear electric ma-

chine. Therefore, even with static and even torque splitting the

Torque split 23

rear electric machine eventually becomes hotter than the front

EM. In this case a dynamic torque distribution is able to react to

the subsequent decline of the efficiency at the rear electric ma-

chine.

5. The idea of a dynamic torque distribution might be extended to

including estimations of future load conditions. These estimations

can be based on 3D GPS data and real-time traffic conditions re-

ceived through c2c and c2i communication. Instead of optimizing

the instantaneous efficiency, a tradeoff between current energy-

saving and future efficiency gain is possible. This would lead to

sophisticated thermal management strategies and significantly

contribute to the development of an advanced energy manger as it

is requested in the OpEneR project.

 24

4 Velocity Trajectory Optimization

In everyday traffic situations a driver has to adapt the traveling speed in

order to meet a speed limit, stop at a traffic light or simply maintain a

safe distance to other vehicles. Up to a certain degree it is up to the

driver whether his or her driving is rather aggressive or energy efficient

and foresightful. Particularly regenerative breaking enables motorists to

combine anticipatory driving with low energy consumption. However,

when it comes down to considering the overall powertrain efficiency, re-

coverable breaking energy, road inclination, traffic signs as well as pre-

dicting other road users behavior all at once while trying to safely and

energy-efficiently steer a vehicle, even a skilled driver might feel a little

overburdened.

The aim of this chapter is to develop and apply algorithms that can cal-

culate optimum control inputs for fully electric vehicles to adapt the ve-

hicle speed in various traffic situations. Given a particular traffic situa-

tion, these optimum control inputs are equivalent to optimal velocity

trajectories the vehicle must follow within a predefined period of time or

over a certain distance. In any case safe and comfortable driving must

be ensured by simultaneously maximizing energy efficiency.

An important aspect is that for certain driving maneuvers it is possible

to compute optimal control inputs a priori. This is interesting because it

is state of the art that (with some limitations) longitudinal control of the

vehicle can be taken over completely by adaptive cruise control (ACC).

Therefore, in case a vehicle is equipped with ACC, energy-optimal driv-

ing can be combined with the safety and comfort autonomous driving

provides. In this case the optimized actuating variable can be directly

applied as a specific torque set point at the electric machines. Other-

wise, recommendations can be shown to the driver through a human-

machine interface (HMI). Consequently, the motivation behind the ap-

plication of optimum speed profiles is to provide improved energy-

efficiency while considering both safety and driving comfort.

Velocity Trajectory Optimization 25

The first part of this chapter deals with an optimization method called

dynamic programming (DP). Foremost, the basic theoretical concept will

be explained. Subsequently, the implementation of a DP algorithm in

MATLAB is described. Results of energy-optimum velocity profiles that

also take into account some basic considerations about driving comfort

are shown. Being able to compute globally optimal solutions, DP is well-

suited for benchmarking with other optimization tools. In the second

part of this chapter another algorithm is developed, applying a parame-

ter optimization method, which utilizes the fact that the controlled sys-

tem (vehicle) features a flat output as described in chapter 2.7. As al-

most everywhere, different methods provide diverse upsides and down-

sides. Although the second procedure does not ensure the solution to be

the globally optimal one, additional boundary conditions can be consid-

ered. Furthermore, it creates innately smoother velocity profiles and

therefore increased driving comfort.

Both algorithms explained in this chapter are designed for relatively

short maneuvers that take up to one minute and 1000m, respectively

(although, it is possible to extend these methods to compute significant-

ly longer velocity profiles). Thus, for simplicity it is assumed that both

the electric machine temperatures and the battery voltage do not signif-

icantly change during such a short period of time. For this reason, 567, 8��:�9� and 8��:�9� are set as constant and will be omitted (e.g. the electric

machine efficiency ����
, �� has just two arguments). Furthermore,

suboptimal torque splitting as described in chapter 3.1 is included to

both algorithms.

Still missing in the introductory part of this chapter is a rather precise

mathematical formulation of the optimization process and a strict defi-

nition of velocity profiles. It is desired to change the vehicle velocity �

from any initial speed 0 ≤ �* ≤ ��:� to another speed 0 ≤ �� ≤ ��:�. In

some cases it is useful to specify a period of time 8 = E� − E* in which

the transition from �* to �� is to be carried out. For instance, if a motor-

ist who uses ACC sets a desired velocity �� it must be assured that after

a finite period of time 8 the vehicle will travel at that speed.

Velocity Trajectory Optimization 26

However, in many cases it is impossible to exactly determine an instant

in time at which the vehicle will reach a speed limit, an object on the

road, a curve etc. These events are usually specified by distance values.

Therefore, lots of use cases exist where it is rather useful to ensure that

the vehicle reaches �� within a certain covered distance � 	 S� S* in-

stead of a specific period of time 8. For example, at an upcoming low-

ered speed limit the motorist must of course adapt the traveling speed

to satisfy the condition ��S�� J ��.

In order to cover the mentioned use cases, two different sorts of bound-

ary conditions are considered:

i) �* 	 ��E 	 E*�, �� 	 ��E 	 E�� and

ii) �* 	 ��S 	 S*�, �� 	 ��S 	 S��.

It is therefore useful to specify the velocity as a function of time � 	 ��E�
in case i and as a function of the traveled distance � 	 ��S� in case ii

(see Figure 4.1).

Figure 4.1: Vehicle velocity.

As it is quite impractical to always distinguish between ��E� and ��S� a

new variable � is introduced to cover both cases (i and ii) by the nota-

tion � 	 ����, �* 	 ���*� and �# 	 �����. Now, the basic idea of energy-

optimal speed profiles is to minimize the overall energy consumption �
within the interval ^�*, ��a, respecting the boundary conditions men-

tioned above as well as velocity-dependent acceleration limits and an

upper and lower bound for ����. Therefore the optimization problem can

be formulated as

Velocity Trajectory Optimization 27

 min���� y�} 	min���� �� $ �����, d����d� � d���

��

 subject to: ��"Z ≤ ���� ≤ ��:�

)�"Z&����' ≤ !����!� ≤)�:�&����',

(4.1)

where $ is the power consumption and)�"Z and)�:� are limits for the

vehicle acceleration due to limited electric machine power, safety or

comfort reasons.

4.1 Velocity trajectory optimization with dynamic program-

ming

In this thesis dynamic programming is used to compute optimized con-

trol inputs for a nonlinear dynamic system. However, in addition to op-

timal control theory, there is a broad variety of problems dynamic pro-

gramming algorithms can be applied on. To explain the basic idea of

DP, a situation is considered, where decisions are made in several stag-

es. The objective is to particularly make those decisions that result in a

desired outcome. In other (mathematical) words, it is desired to always

make decisions that minimize a certain cost. A crucial factor in such

situations is that even optimal choices in every isolated decision are un-

likely to result in a satisfying final outcome. That is, because one must

always consider future decisions as well in order to balance reducing

current costs with receiving the chance to lower future costs. And this,

fortunately, is a task DP can accomplish. At each stage, a decision is

evaluated by the sum of the present cost and the overall future cost.14

14 Cf. Bertsekas D., (2005): pp. 2.

Velocity Trajectory Optimization 28

Introductory example: a staged decision problem:

To illustrate the basic concept of dynamic programming, consider a

multistage decision process as depicted in Figure 4.2. The first decision

made at A results in the cost �¡¢. The next decision can either lead to C,

D or E incurring a cost of �¢7, �¢6 or �¢�. From an isolated point of view

in B it makes sense to proceed to C or D because �¢7 B �¢� and �¢6 B �¢�,

respectively. However, since neither C nor D lie on the optimal path (A-

B-E) due to �¢7 � �7� @ �¢� and �¢6 � �6� @ �¢�, proceeding to C or D is def-

initely not an optimal choice, considering the bigger picture.15 After

these preliminary considerations, it is now shown how this problem can

be solved by means of dynamic programming.

Figure 4.2: A multistage decision process.

Adapted from Kirk D. (2004): pp. 54.

A characteristic of DP algorithms is that they solve problems back-

wards. Therefore, the destination E is considered first, which can be ac-

cessed via B, C and D. The (optimal) cost to reach E from C can be writ-

ten as �7∗ 	 �7� and is stored. Accordingly, the cost from D is �6∗ 	 �6�,

which is again stored. The optimal cost from B is now given by �¢∗ 	 ��py�¢� , ��¢7 � �7∗�, ��¢6 � �6∗ �} 	 �¢�. It is important to note, that for B

two pieces of information must be stored:

i) The minimum cost to reach E is �¢∗ 	 �¢�.

ii) The optimal decision at B is to proceed directly to E.

15 Cf. Kirk D. (2004): pp. 54.

Velocity Trajectory Optimization 29

Lastly, B can be accessed via A. The optimal cost from A to the destina-

tion E is �¡∗ 	 �¡¢ � �¢∗ , which is the overall cost, assuming optimal deci-

sion making. Thus, an optimal policy has been found which corre-

sponds to the sequence of optimal decisions that has been determined.

Of course, one can wonder why in this case DP is a useful method. After

all, the optimal solution to the problem shown in Figure 4.2 can be de-

termined by simply comparing the paths A-B-C-E, A-B-D-E and A-B-E.

However, in larger problems such an exhaustive search (trying all al-

lowable paths) may be extremely computation-intensive. This becomes

evident with regard to Figure 4.3, which shows the exact same staged

decision process but doubled and put in series. The computational load

using DP would simply double, compared to the example above. Howev-

er, the number of paths to consider, which is now 9 instead of 3, would

triple.16

Figure 4.3: Another multistage decision problem.

Adapted from Kirk D. (2004): pp. 54.

Another important aspect is the so called Principle of Optimality. In

1954 Richard Bellman wrote: “An optimal policy has the property that

whatever the initial state and initial decisions are, the remaining deci-

sions must constitute an optimal policy with regard to the state resulting

from the first decision.”17 Once an optimal policy for the problem in Fig-

ure 4.3 has been computed, choosing another starting point than A will

16 Cf. Kirk D. (2004): pp. 56 - 58.

17 Bellman R. (1954): pp. 4.

Velocity Trajectory Optimization 30

not result in any change of optimal decision making. And neither does

violating the optimal policy because henceforth, previously computed

optimal choices are still valid.18

General problem formulation:

Now that the fundamental idea of DP has been explained a basic model

that has two key features is considered: (1) a discrete time dynamic sys-

tem and (2) an additive cost function. The system is given by

 O£r1 	 P£�O£, Q£, H£�, ¤ = 0,1, … , C − 1, (4.2)

where ¤ is the discrete time index, O£ is the state of the system at the k-th time step. Note that O£ ∈ ¥£ is discrete both in time and value. Q£ indicates the (constrained) discrete-value control input or deci-

sion made at time k. The set of all feasible values can depend on

the system state such that Q£ ∈ ¦£�O£�. H£ is a (random) parameter that represents a disturbance or

noise, C is the number of times the control input is applied and a deci-

sion is made, respectively and P£ is a function that describes the system.

It is important to note that for the application of DP at least the proba-

bility distribution of the disturbance must be known a priori (stochastic

dynamic programming). Furthermore, H£ may explicitly depend on both O£ and Q£ but must be independent of prior values H£[1, … , H* (Markov

process). In the next chapters (which deal with the implementation of

velocity profiles), it will be assumed that every value of H£ is exactly

known in advance (deterministic dynamic programming). However, for

18 Cf. Kirk D. (2004): pp. 54.

Velocity Trajectory Optimization 31

the sake of generality H£ will be considered as a random variable in the

following general problem formulation.

If ,��O�� is some terminal cost incurring at the end of the process, the

cost is

 ,��O�� � § ,£�O£, Q£, H£��[1
£�* .

(4.3)

Since the disturbance may be a random parameter, the cost is generally

a random variable and can therefore not be meaningfully optimized.

Thus, the problem can be formulated as an optimization of the expected

cost19

 � ¨,��O�� + § ,£�O£, Q£ , H£��[1
£�* ©.

(4.4)

Let ª = �μ*, … , μ�[1� be any admissible policy (control sequence) such

that μ£ maps every state O£ into a control input Q£ = μ£�O£�. With ª ∈ ¬, ¬ denotes the set of all admissible policies. The cost of using ª on prob-

lem (4.2) with the initial condition O* is defined by

 ��O*� = � ¨,��O�� + § ,£�O£, μ£�O£�, H£��[1
£�* ©.

(4.5)

The optimal policy ª9~� then minimizes �

 �9~��O*� = min∈® ��O*�. (4.6)

Now the following algorithm (which proceeds backwards from C − 1 to 0)

can be executed to determine the optimal cost at every time k and the

optimal policy ª9~�:
 �£�O£� = min�¯∈°¯��¯� �y,£�O£, Q£ , H£� + �£r1�O£r1�}, (4.7)

19 Cf. Bertsekas D. (2005): pp. 3-4.

Velocity Trajectory Optimization 32

where ���O�� 	 ,��O��.20

Note that the terminal cost ,��O�� can be used to compute ª9~� in a way

such that a desired final state is O�,!��"��! is approached. Let O�9� > 0

specify a tolerance range for the final state O� around O�,!��"��!. By

choosing

 ,��O�� = ±0 PD� ²O� − O�,!��"��!² < O�9� o PD� ²O� − O�,!��"��!² ≥ O�9�,

(4.8)

where o ∈ ℝ must be a sufficiently high number, the final state O� will

be close to O�,!��"��!.

The formulation of the basic problem and the DP algorithm is hereby

concluded. This chapter will therefore proceed with some implementa-

tion issues, which will be useful for the computation of energy-optimal

velocity profiles in the next subchapter.

Grid selection:

Dynamic programming can only be applied on systems with limited dis-

crete control inputs (a limited number of possible decisions) and limited

discrete system states. In the introductory example (Figure 4.2) this re-

quirement was fulfilled automatically. However, in many dynamic sys-

tems both the number of feasible control inputs, and the number of

states is infinite. This requires a discretization as a first step. The num-

ber of grid elements represents a tradeoff between high-accuracy and

computing time.21

20 Cf. Guzzella L., Sciarretta A. (2007): pp. 313-315.

Cf. Bertsekas D. (2005): pp. 12-13.

21 Cf. Guzzella L., Sciarretta A. (2007): pp. 316.

Velocity Trajectory Optimization 33

Interpolation between two grid points:

The discretization of the state space causes the following issue: if at O£ ∈ ¥£ the next state is calculated using O£r1 	 P£�O£, Q£, H£� that state

might not exactly match one of the possible states in ¥£r1. This causes a

problem, because the so called cost-to-go �£r1�O£r1� in equation (4.7) is

only defined for any O£r1 ∈ ¥£r1. Figure 4.4 shows this problem, where

for simplicity ¥£ 	 ¥£r1	∀¤ and H£ 	 0	∀¤.

Figure 4.4: Issues arising due to discrete state space.

Adapted from: Guzzella L., Sciarretta A. (2007): pp. 317.

The number of valid control inputs is limited to three (Q1, Q�, Q`). At time

k, the state O" is considered. All inputs have to be considered to calcu-

late �£�O£�, which is according to equations (4.2) and (4.7) determined by

�£�O£� 	 min
;<=
<>,£&O" , Q1' � �£r1 ´P£&O" , Q1'µ,£&O", Q�' � �£r1 ´P£&O" , Q�'µ,£&O", Q`' � �£r1 ´P£&O" , Q`'µ¶<·

<̧
.

(4.9)

However, as mentioned above, �£r1 is not defined for those values be-

cause they do not match with ¥£. For this reason some approximation

must be found. An easy solution is to simply set �£r1 to the closest de-

fined value. This is called the nearest neighbor method and its ad-

vantage is a low computational load.

Velocity Trajectory Optimization 34

A second approach (which is also used in this thesis for the computa-

tion of optimal velocity profiles) is to use a linearly interpolated value of

the cost-to-go �£r1. Other interpolation methods can be used as well,

but linear interpolation usually results in a reasonable tradeoff between

high accuracy and the extra computational load. In this case the ap-

proximation of equation (4.9) is22

 �£�O£� 	
	 min

;<<
=
<<>,£&O" , Q1' + �£r1&O"r1' + &P£&O" , Q1' − O"r1' �£r1&O"r�' − �£r1&O"r1'O"r� − O"r1

,£&O" , Q�' + �£r1&O"[1' + &P£&O" , Q�' − O"[1' �£r1&O"' − �£r1&O"[1'O" − O"[1
,£&O" , Q`' + �£r1&O"[�' + &P£&O" , Q`' − O"[�' �£r1&O"[1' − �£r1&O"[�'O"[1 − O"[� ¶<<

·
<<̧.

(4.10);

Infeasible states or inputs:

Infeasible states or inputs can be handled by assigning an infinite cost.

A disadvantage of this method is that if interpolation is used, the inter-

polated value is infinity as well. If not treated correctly, this can cause

additional cost-to-go values to become infinity. In this way infinite val-

ues can spread far into feasible state space. To avoid this, a very large

real constant can be used, which has to be greater than any cost-to-

go.23

4.1.1 Implementation

This section shows the implementation of a dynamic programming algo-

rithm in MATLAB/Simulink to compute energy-optimal velocity profiles.

22 Cf. Guzzella L., Sciarretta A. (2007): pp. 316 - 317.

23 Cf. Guzzella L., Sciarretta A. (2007): pp. 318.

Velocity Trajectory Optimization 35

All simulations use only parameters taken from the prototypes that are

described in chapter 2.

The way a dynamic programming algorithm is implemented has a huge

impact on the computational load. An easy option to implement DP

would be to use three for loops: one for every time step, one for every

grid point and one for every admissible control input. However, using a

triple-for loop in MATLAB is quite inefficient in terms of computing time.

For this reason a vector-based approach is taken, which reduces the

number of for loops to just one. This requires some extra implementa-

tion effort but the speedup factor is so significant that it will pay off.24

An interesting aspect is that those vectors never change during the exe-

cution of the dynamic programming algorithm. Thus, they can be calcu-

lated a-priori (details on this will be given below). Figure 4.5 shows the

flow chart to create optimal velocity profiles. Note that the blocks on the

left serve only the purpose to preprocess data and to put them in vec-

tors to efficiently execute the dynamic programming algorithm. The last

step is the forward simulation to create velocity profiles according to the

optimal policy DP computes. All these steps in Figure 4.5 will now be

explained below.

Figure 4.5: Flow chart to compute velocity profiles

24 Cf. Guzzella L., Sciarretta A. (2007): pp. 318 - 319.

Velocity Trajectory Optimization 36

Select velocity profile characteristics (problem description):

As mentioned in chapter 4, velocity profiles must respect boundary

conditions that can either be given at an instance in time (�* 	 ��E 	 E*�,�� = ��E = E��) or at a certain distance (�* = ��S = S*�, �� = ��S = S��).
Accordingly, it is useful to view the vehicle velocity as a function of time

or the traveled distance. However, in the introductory chapter of dy-

namic programming the index ¤ only indicated discrete time steps.

Therefore, the first step is to extend this notation. From now on it will

be evident from the context, whether ¤ indicates discrete time or dis-

crete distance. The algorithm automatically generates either a distance

or time grid, depending on the boundary conditions.

The discrete-time dynamic system is given by �£r1 = P��£,
£�. Let ∆E£ be

the time between the steps ¤ and +1 . Then the system equation is de-

fined as

 �£r1 = �£ +)£∆E£, (4.11)

where)£ is the vehicle acceleration, which according to equations (2.2)

and (2.7) is given by

)£ = ���������� &
£��� �� !"## −
���,£'. (4.12)

However, ∆E£ depends on whether (i) a time grid or (ii) a distance grid is

used.

i) In case a time grid is used ∆E£ is explicitly specified as the step

time of the DP algorithm, which is the same for all ¤. Hence, ∆E£ = ∆E£r1

ii) If a distance grid is used a fixed distance step ∆S is defined

within the DP algorithm. Therefore the time to travel from one

point of the distance grid to the next has to be determined. If

constant acceleration is asserted, the distance that an object

moves within the time ∆E£ is given by

 ∆S = �£∆E + 12)£∆t£� . (4.13)

Velocity Trajectory Optimization 37

i) Solving this equation for ∆E gives

∆E£ 	
;<<
<=
<<<
>�£)£ »�£�)£� � 2∆S)£ PD�)£ < 0

− �£)£ + »�£�)£� + 2 ∆S)£ PD�)£ > 0
∆S�£ PD�)£ = 0.

(4.14)

i) It is possible that at low velocities and low torques the discri-

minant becomes negative. This case is handled by setting ∆E£

to some arbitrary real value. This is a valid method because

the control input that causes �£r1 to be negative will have a

high cost function and therefore not be selected as an optimal

control input (details will follow below). Also, infinite numbers

for ∆E£ result in high cost functions because 0 ∉ 5£.
ii)

Compute state space and feasible control inputs:

The vehicle velocity �£ is a continuous state variable (it is only discrete

in time). Therefore it is necessary to discretize �£ ∈ 5£ in value. An equi-

distant discretization is chosen, where the gap between two grid points

is ∆� ≈ 0.3 ¤�/ℎ. Furthermore, the velocity grid does not change over ¤.

Hence, 5£ = 5£r1 ∀¤.

The constraint for the vehicle speed in equation (4.1) ��"Z ≤ ���� ≤ ��:�

can easily be implemented by limiting 5£. Assuming that ��"Z + p∆� =��:�, where p ∈ ℤr, the state space 5£ can be represented in MATLAB by

a vector ¿À:

 ¿À� = ^��"Z ��"Z + ∆� ��"Z + 2∆� … ��"Z + �p − 1�∆� ��:�a. (4.15)

The next step is to define feasible values for the control input which is

the torque of both electric machines. On the one hand these values are

constrained by the minimum and maximum available torque depending

on the speed (
�"Z,�����,
�:�,�����). On the other hand the torque may

be limited due to comfort reasons (
�:�,Á9�#) or by the ESPhev charac-

Velocity Trajectory Optimization 38

teristics. The latter is not yet expressed as a torque constraint. Fortu-

nately equations (2.2) and (2.7) state a clear relation between the vehicle

acceleration and the overall torque. Thus, the ESPhev limit for pure re-

generative breaking ���"Z,��� = −1.25 �/I� can also be expressed by a ve-

locity-dependent torque constraint:

�"Z,������ = Â���"Z,��� ���������� +
������Ã 1��� �� !"## . (4.16)

Equation (4.16) must be evaluated for every element in ¿À.

The range of feasible control inputs for the i-th velocity in ¿À is therefore

defined by the bounds

�"Z" = maxs
�"Z,��" ,
�"Z,���" t,

�:�" = mins
�:�,��" ,
�:�,Á9�#" t,

(4.17)

where � = 1, … , p + 1.

Now, a set of vectors is defined by

 ÆÇ"[È = É
�"Z"
�"Z" o1 − 1o1
�"Z" o1 − 2o1 ⋯
�"Z" 1o1Ë,
ÆÇ"rÈ = É
�:�" 1o� …
�:�" o� − 1o�
�:�" Ë,

ÆÇ"È = ^ÆÇ"[È 0 ÆÇ"rÈa,

(4.18)

where o1, o� ∈ ℤr are parameters to define the number of feasible control

inputs at each discrete velocity. Herby o1 defines the number of discre-

tized negative torque values and the positive torque values are defined

by o� (see equation (4.18)). The total length of ÆÇ" is given by o1 + o� + 1.

Of course, only one parameter would be sufficient to compute ÆÇ" but

usually ²
�"Z" ² ≪
�:�" . Therefore, by using o1 and o� it is possible to

achieve similar grid accuracy in positive and negative torque regions.

Finally, all feasible control inputs are summarized in the vector Æ:

 Æ� = ^ÆÇ1È ÆÇ�È … ÆÇ�Zr1�Èa. (4.19)

Velocity Trajectory Optimization 39

Note that the length and therefore the total number of control inputs in

every step ¤ is �p � 1��o1+o� + 1�.

Calculate movements inside the grid:

Due to the fact that all feasible values for the velocity as well as all fea-

sible control values are known a priori, all possible changes of the veloc-

ity between ¤ and ¤ + 1 for every ¤ can be computed in advance. Let ¿ be

a vector in which all elements of ¿À are repeated o1+o� + 1 times.

¿ =

ÍÎ
ÎÎ
ÎÎ
ÎÎ
ÎÏ

��"Z⋮��"Z��"Z + ∆�⋮��"Z + ∆�⋮��:�⋮��:� ÑÒ
ÒÒ
ÒÒ
ÒÒ
ÒÓ ;;;Õ:..Õ. };;;Õ

......�o1+o� + 1�........ :::È::::�o1+o� + 1�.�p − 2��o1+o� + 1�.�o1+o� + 1�.

(4.20)

Now both ¿ and Æ have the exact same number of elements.

Furthermore let ∆Ö be a vector whose j-th element corresponds to the

time it takes to move from one grid point if the vehicle speed is the j-th

element of ¿ and the applied torque is the j-th element of Æ (if the dy-

namic programming algorithm uses a time grid, all elements of ∆Ö are

simply the sampling time and if a distance grid is used, ∆Ö can be com-

puted according to equation (4.14)).

If the control inputs specified in Æ are applied to the system with the

states specified in ¿, the states change according to equation (4.11). All

changed states can now be computed in only one step:

 ¿Z��� = ¿ + ���������� ´��� �� !"##Æ −
����¿�µ ∘ ∆Ö, (4.21)

where ∘ denotes an element-wise vector multiplication.

Keep in mind that the velocity has been discretized and that therefore –

as explained in chapter 4.1 – the elements in ¿Z��� might not exactly

Velocity Trajectory Optimization 40

match one of the predetermined values in ¿À. That is the reason why in-

terpolation (or at least a nearest neighbor approximation) of the cost-to-

go functions is mandatory. In order to expedite the interpolation it is

useful to precalculate ¿Z���[and ¿Z���r . In ¿Z���[each element of ¿Z��� is

decreased to the nearest possible state in ¿À. In case this is not possible

because no lower feasible state exists, the nearest (upper) value is cho-

sen. Accordingly, ¿Z���r contains rounded up elements of ¿Z���.
Finally, two auxiliary vectors are introduced – again to speed up the in-

terpolation below. Let the elements of Ø[and Ør represent the number

of grid points ∆� between ¿ and ¿Z���[and ¿Z���r , respectively:

 Ø± 	 1∆� &¿Z���± − ¿'. (4.22)

Note that as a result of the definitions of the variables above the ele-

ments of Ø± are guaranteed to be integers and that (again by definition)

the elements of �Ør − Ø[� are either 0 or 1.

What is still missing is some kind of dealing with infeasible states. As a

reminder, infeasible states are states that are above ��:� or below ��"Z.

As mentioned in chapter 4.1 a viable solution is to assign a sufficiently

high cost to those states. For this purpose a vector Ú"Z# is created,

whose j-th element is defined by

 �"Z#� = ±o"Z# PD� ÛZ���� < ��"Z D� ÛZ���� > ��:�0 GÜIG, (4.23)

where o"Z# is a sufficiently high real number, which by default is arbi-

trarily set to 106.

Compute vectors for the efficiency and power:

The supply voltage as well as the rotor and stator temperatures are con-

sidered constant and equal for both electric machines. Hence, the effi-

ciency only depends on the velocity and torque. Let n���,���9~���,
� be

the combined electric machine efficiency according to the torque split

factor Q#,���9~�. To obtain the electrical power, the mechanical power

Velocity Trajectory Optimization 41

must be multiplied by n���,���9~� for
 < 0 and divided by n���,���9~� for
 ≥ 0, respectively. However, this case distinction would lengthen the

notation below. Therefore, it is useful to define ���,���9~� as

 ���,���9~���,
� = � n���,���9~���,
� PD�
 < 01 n���,���9~���,
� PD�
 ≥ 0.
(4.24)

Since ¿ and Æ hold all valid velocity-torque combinations in a specified

order, again, a new vector Ý can be defined whose j-th element corre-

sponds to ���,���9~� at the velocity value in the j-th element of ¿ and the

torque value in the j-th element of Æ. Hence,

 Ý = ���,���9~��¿, Æ�. (4.25)

The electrical power of both EM is

 Þ��� = 1������ ¿ ∘ Æ ∘ ���,���9~��¿, Æ�. (4.26)

With the electric current of both EM being

 ß = Þ��� 1567 , (4.27)

the power loss in the battery can be calculated by

 Þ¢:�� = ß ∘ ßà, (4.28)

where R is the battery resistance. Finally, the total energy consumption

is given by

 á = �Þ��� + Þ¢:��� ∘ ∆Ö. (4.29)

Note that so far the dynamic programming algorithm has not yet started

but all a-priori calculations have now been concluded. A short summary

of the essential variables is given:

- ¿ contains the velocity values of the speed grid whereat every el-

ement is repeated p + 1 times.

- The elements of Æ correspond to (piecewise) linearly distributed

torque values between the minimum and maximum torque at any

speed in ¿.

Velocity Trajectory Optimization 42

- At the k-th time or distance step, let a constant torque value ac-

cording to the j-th element of Æ be applied at a velocity that corre-

sponds to j-th element in ¿. In this case the j-th element in ¿Z���
corresponds to the velocity at the subsequent (k+1)-th step.

- Due to the fact that in general the elements of ¿Z��� do not match

the velocity grid, ¿Z���[and ¿Z���r are introduced and will be used

in the cost-to-go interpolation below. Furthermore Ø± represent

the number of grid points ∆� between ¿ and ¿Z���± . In addition, a

sufficiently large cost is assigned to infeasible states through Ú"Z#.
- The elements of á contain the total electrical energy that is con-

sumed between two steps k and k+1.

Interpolate cost-to-go and compute total cost:

Dynamic programming algorithms proceed backwards from ¤ 	 C to ¤ 	 0. First, at the N-th step the boundary condition for the final vehicle

speed �� must be taken into account. Let ÛZ���,� be the j-th element of ¿Z��� and ,�,� be the j-th element of the terminal cost X� = ,��¿Z����.
Based on equation (4.8) the terminal cost can be specified by

 ,�,�&ÛZ���,�' = ±0 PD� ²ÛZ���,� − ��² < ��9� o PD� ²ÛZ���,� − ��² ≥ ��9� ,

(4.30)

where the default setting for the tolerance speed is ��9� = 0.1�/I and o is

arbitrarily set to 5*105. Note that in the first step the cost-to-go function

is equal to the terminal cost function and that X� is again a column vec-

tor with �p + 1��o1+o� + 1� elements.

For any other step k (0 ≤ ¤ ≤ C − 1) the cost-to-go function is deter-

mined by interpolation. When implementing a dynamic programming

algorithm, one should keep in mind that MATLAB contains several

Velocity Trajectory Optimization 43

built-in interpolation functions. However, their calculating time is quite

high compared to a properly made custom interpolation.25

As a starting point, imagine the vehicle is moving at step k at a velocity �£� (j indicates any index in the extended velocity grid ¿). Due to the def-

inition of Ø±, the velocity at k+1 will be within the interval �£� ��r,�∆� ≤ �£r1� ≤ �£�+�[,�∆�. Thus, it is evident that in order to calculate �£� an interpolation between �£r1�r�â,ã
 and �£r1�r�ä,ã

 is necessary. The latter

two are merged in vectors and represent the j-th elements in Ú£r1r and Ú£r1[, respectively. Both simply represent rearranged versions of Ú£r1.

Since Ø± has already been calculated in advance, this rearrangement

can be computed very efficiently in MATLAB.

The computation of the total cost can now be implemented with just one

final equation:

 Ú£ = á + Ú"Z# + Ú£r1[+ �¿Z��� − ¿Z���[� ∘ �Ú£r1r − Ú£r1[� ⊘ �¿Z���r − ¿Z���[�. (4.31)

Note that ⊘ indicates a Hadamard (element wise) vector division.

Determine optimal control inputs and costs and store the results:

The total costs for every velocity-torque combination are now stored in Ú£ and somehow the optimal control input for every velocity must be de-

termined. In MATLAB this can be done quite simply. By using the com-

mand reshape Ú£ is converted to a �o1+o� + 1� × �p + 1� matrix. The col-

umns represent the costs for the control inputs and the rows represent

the velocity grid. The command min then returns the indices of every

optimal control input as well as the corresponding optimal cost-to-go.

The results are the vectors Ú9~�,£ and ç9~�,£. They represent the columns

of the matrices Ú9~� and ç9~�, respectively.

25 Cf. Guzzella L., Sciarretta A. (2007): pp. 318.

Velocity Trajectory Optimization 44

Determine velocity profile (forward simulation):

The optimal velocity profiles are computed in Simulink. For clarity, a

simplified version of the Simulink model is explained that only com-

putes velocity profiles for distance grids (see Figure 4.6). There are two

integrators whose outputs are the velocity and the traveled distance.

The driving torque and the resistance forces are converted to accelera-

tion and form the input of the first integrator.

The optimal control inputs are stored in the look-up table. Its inputs are

the current position and velocity. In this block, the setting Interpolation

– Use End Values is enabled to improve the simulation accuracy. In re-

ality the interpolated optimal control input will only be computed with a

specific sample time. To emphasize this sampling, a Zero-Order-Hold

block has been included to the model.

The low-pass filter fulfills two purposes:

i) The low-pass filter limits the rise time because the optimal

control input cannot be applied arbitrarily fast.

ii) The amplitude of an energy-optimal control input can change

very abruptly which might feel unpleasant to the driver. There-

fore, the low-pass is also important to increase the traveling

comfort.

Figure 4.6: Forward simulation Simulink model (simplified, for velocity

trajectories that are functions of the traveled distance).

Note that in case the dynamic programming algorithm uses a time grid,

the second input of the look-up table must be the simulation time in-

stead of the position.

Velocity Trajectory Optimization 45

4.1.2 Results and discussion

In this section two particular use cases for energy-optimum velocity

profiles are considered. Example 1 demonstrates a deceleration maneu-

ver that is computed by the DP algorithm using a distance grid. In ex-

ample 2 an acceleration maneuver is performed that takes a specific pe-

riod of time.

Example 1:

Consider a scenario in which a vehicle is traveling on a rural road at

100 km/h and is approaching a village where a speed limit of 50 km/h

must be adhered. The vehicle speed is not to be reduced until 500m in

front of the village. The boundary conditions are given by ���*� 	100 ¤�/ℎ and ���� = 500�� = 50 ¤�/ℎ. The velocity grid is (arbitrarily)

generated between ��"Z = 16 ¤�/ℎ and ��:� = 103 ¤�/ℎ.

Figure 4.7 shows the resulting velocity profile. Even though it is com-

puted using a distance grid it is chosen – for better visibility – to show

the velocity as a function of the time. The resulting maneuver time is

about 28 seconds and cannot directly be influenced by constraints. The

velocity trajectory can roughly be divided into several phases. These

phases were empirically discovered by evaluating several velocity pro-

files where ���*� ≥ �����. Note however, that the algorithm can also

compute optimal velocity profiles for ���*� < �����.
i) Regenerative breaking: preferably energy is recuperated at

high velocities because of the greater driving resistance.

ii) Freewheeling: the driving torque is exactly zero for a significant

period of time.

iii) Acceleration: due to lower driving resistance, traveling at low

speed is more energy efficient than traveling at high velocity. If

the maneuver time or distance is sufficiently large, the target

velocity will be undercut and shortly before the end of the ma-

neuver a relatively high torque is applied to meet the boundary

condition �����. However, this behavior might be unwanted in

Velocity Trajectory Optimization 46

many cases. It can easily be prevented by choosing ��"Z ac-

cordingly.

The third phase is barely visible in this example, but another use case

will be explained below where this phenomenon can be observed more

clearly.

Figure 4.7: Energy-optimal velocity trajectory.

Based on this result lots of interesting theoretical aspects about dynam-

ic programming that were discussed in chapter 4.1 can now be visual-

ized. Consider Figure 4.8 where the optimal cost-to-go for every point

inside the grid up to 499m is shown.

Apparently, the higher the initial velocity, the lower is the cost-to-go. At

an initial speed of about 66km/h the SOC will not noticeably change.

The cost-to-go is negative for any high initial velocity which means that

the battery’s state of charge will increase. At 100km/h the cost-to-go is

about -4.05*105Ws. This value can be validated by exporting the veloci-

ty trajectory of Figure 4.7 to AVL CRUISE. The maneuver is carried out

using a standard driver model to follow that trajectory. The resulting

overall energy consumption is -3.76*105Ws. The difference can be ex-

plained by the level of detail of the vehicle model in AVL CRUISE, where

some simplifications made in the DP algorithm are modeled more pre-

Velocity Trajectory Optimization 47

cisely (e.g. fluctuations of the battery voltage due to changing load con-

ditions etc.).

Figure 4.8: A cost-to-go matrix where v(ξN)=50 km/h.

Furthermore, the effect of the terminal cost stated in equation (4.30)

can be observed. At the end of the maneuver there is a huge increase in

the cost for any states that are not close to the boundary condition �����.
Figure 4.9 shows the optimum control inputs for any grid point and

again the optimum velocity trajectory from Figure 4.7 but as a function

of the traveled distance. The three phases mentioned above are distin-

guishable even though in this specific trajectory only the first two occur:

i) At higher velocities the optimum torque is clearly always nega-

tive because regenerative breaking optimal at high speed.

ii) At lower velocities the optimum torque is exactly zero in a large

area of the grid.

iii) Due to freewheeling the vehicle might significantly undercut

the target velocity �����. Therefore approaching �� at low speed

the optimum torque increases.

Note that in case the vehicle travels at a low velocity near the end of the

maneuver it might not be possible to reach ����� because the vehicle

Velocity Trajectory Optimization 48

cannot accelerate arbitrarily fast. Nevertheless, in such a case the opti-

mal control input is negative, which further increases the discrepancy

to the boundary condition. But due to the definition of the terminal cost

in equation (4.30) and the fact that regenerative breaking is applied the

total cost is still minimized.

Figure 4.9: An optimal control input matrix where v(ξN)=50 km/h.

Since the cost to go matrix is invariant with regard to the initial point,

an infinite number of energy-optimum trajectories can be computed

that have the same boundary condition �� 	 �����. This is shown in

Figure 4.10 for a new cost-to-go matrix where �* 	 0� and �� = 750�.

As in the example above, the desired final velocity is 50km/h. However,

the optimum control input matrix is computed for a 750m horizon. Tra-

jectory 1 shows the maneuver being carried out in 750m. Now the pre-

viously mentioned third phase can be observed where the vehicle accel-

erates after undercutting the target velocity while freewheeling.

This new optimum control input matrix can also be used to reproduce

the exact same result that was obtained above using the matrix that

was computed for a 500m driving maneuver. Trajectory 2 represents

copied data from Figure 4.9 whereas Trajectory 3 is created by using the

new optimal control input matrix. It is obvious that the results are iden-

tical.

Velocity Trajectory Optimization 49

A fourth trajectory is shown where the initial speed is 30km/h. Even

though this is already below the desired final velocity, according to the

optimal policy the vehicle must freewheel at first but cannot undercut ��"Z 	 16 ¤�/ℎ.

Figure 4.10: Relation between the optimal control input matrix and op-

timal trajectories.

From Figure 4.10 is evident that:

i) Any globally optimal trajectory is predetermined by the optimal

control input matrix.

ii) For any valid starting point within the grid a globally optimum

trajectory can be determined. Disturbances will be compen-

sated automatically.

iii) According to Bellman’s principle of optimality the optimal con-

trol input matrix for � ≥ 250 in Figure 4.10 is identical to the

one of Figure 4.9. Hence, Trajectory 2 and Trajectory 3 are

identical.

Furthermore this method provides the opportunity to implement opti-

mal velocity profiles with very little on-board computational effort. Sev-

eral optimal control matrices for various final velocities can be comput-

ed in advance and stored in the vehicle. If �� − �* is sufficiently high,

any driving maneuver can be carried out where it is desired to reach a

Velocity Trajectory Optimization 50

specific velocity within a specified time or distance. Disturbances as for

example bumpy roads or wind are compensated automatically. These

properties make this approach quite robust.

Example 2:

In the following use case an energy-optimal acceleration maneuver is

shown. Consider a motorist on a highway who drives through a con-

struction site where the speed limit is 80km/h. As soon as the speed

limit is lifted the motorist wants to accelerate to 120km/h. The acceler-

ation maneuver shall take exactly 25 seconds. Thus, the boundary con-

ditions are given by ���* 	 0I� = 80¤�/ℎ, ���� = 25I� = 120¤�/ℎ and the

velocity grid is generated between ��"Z = 16¤�/ℎ and ��:� = 130¤�/ℎ.

In Figure 4.11 the energy-optimum velocity trajectory is shown (blue

curve, no constraints). Clearly, the vehicle is decelerating (freewheeling)

for about 10 seconds down to 73.2km/h, before accelerating again up to

120km/h. Needless to say, decelerating at an increase of the speed limit

might seem quite inconvenient to most drivers. It is therefore essential

to impose a velocity constraint that prevents the vehicle speed from un-

dercutting the initial speed.

An easy solution is to set ��"Z = 80¤�/ℎ. Note that in this case the DP

algorithm creates a velocity grid between 80km/h and 130km/h to

compute an additional velocity trajectory that is also shown in Figure

4.11 (magenta curve, velocity constraint). It is energy-optimal to contin-

ue driving at 80km/h for about 11.2 seconds before accelerating. For � > 11.2I the velocity trajectory then continuously approaches the one

without the velocity constraint (blue curve). The torque peaks at about

120Nm.

Some drivers who highly appreciate driving comfort might still not be

satisfied with the result. For this reason, in addition to the velocity con-

straint, the maximum torque is set to
�:�,Á9�# = 90C�. Again, the re-

sult is shown in Figure 4.11 (red curve, velocity and torque constraint).

The vehicle continues to drive at 80km/h for five seconds and then ac-

Velocity Trajectory Optimization 51

celerates smoothly to the desired velocity. In doing so, the overall elec-

tric machine torque never exceeds 90Nm.

Figure 4.11: Energy-optimal velocity trajectories with and without con-

straints.

It is evident that by adding constraints to any minimization problem the

optimum value of the cost function can only increase or remain un-

changed. Thus, by limiting the minimum speed and the maximum

torque, the energy consumption cannot decrease. On the other hand,

the average velocity during the maneuver and therefore also the traveled

distance rise as well. Table 4.1 shows the absolute and relative values of

both the energy consumption and the traveled distance for all three en-

ergy-optimal velocity trajectories discussed above. All relative values re-

fer to the unconstrained trajectory. It is interesting to point out that in

both constrained cases the relative distance gain is higher than the rel-

ative increase of the energy consumption.

Velocity Trajectory Optimization 52

Energy consumption and traveled distance

-
Absolute
energy

Relative
energy

Absolute
distance

Relative
distance

No constraints 1.15*106Ws 100.0% 605.6m 100.0%

Velocity constraint 1.17*106Ws 101.7% 622.7m 102.8%

Velocity & torque constraints 1.22*106Ws 106.1% 668.5m 110.4%

Table 4.1: Comparison of energy-optimal velocity trajectories.

For a direct comparison of the energy consumption in relation to a spe-

cific traveled distance some additional information is needed. For this

purpose, assume that after the driving maneuvers depicted in Figure

4.11 are completed the vehicle continues to travel at exactly 120km/h

(33.3
.
m/s). In this state the power that is drained from the battery is

approximately 2.94*104W. Thus, the energy consumption per traveled

meter is given by

 $1� 	 2.94 ∗ 10ëì33. 3� � I⁄ = 8.82 ∗ 10�ì I �⁄ . (4.32)

Remember the highest traveled distance (668.5m) is achieved if both the

velocity and the torque constraint are imposed and that in this case the

energy consumption is 1.22*106Ws. If no constraints apply, the vehicle

travels S:!!,1 = 668.5� − 605.6� = 62.9� less far. The energy that is nec-

essary to travel the remaining 62.9m at 120km/h is

 �:!!,1 = $1�S:!!,1 = 8.82 ∗ 10�ì I �⁄ ∗ 62.9� ≈ 5.55 ∗ 10ëìI. (4.33)

If only the constraint for the minimum velocity applies, the vehicle must

travel S:!!,� = 668.5� − 622.7� = 45.8� at 120km/h. The consumed en-

ergy is

 �:!!,� = $1�S:!!,� = 8.82 ∗ 10�ì I �⁄ ∗ 45.8� ≈ 4.04 ∗ 10ëìI. (4.34)

It is evident that

 1.22 ∗ 10íìI > 1.17 ∗ 10íìI + �:!!,� > 1.15 ∗ 10íìI + �:!!,1. (4.35)

The result shows that even in relation to a specific traveled distance the

first (unconstrained) velocity trajectory still yields the lowest energy

consumption. However, the relative energy saving for equal traveled dis-

Velocity Trajectory Optimization 53

tances is far less than the one in Table 4.1 where the relative energy

consumption is compared at a specific maneuver time �� �* 	 25I and

different distances. Also, keep in mind that in this example energy-

optimal velocity profiles are compared among one another. The energy

gain compared to a human driver must be investigated separately.

Note also that example 2 clearly demonstrates that there is a distinct

tendency to travel at low speed as long as possible due to the lower driv-

ing resistance. This generally is true for not just this particular example

but for all energy-optimal velocity profiles. Therefore, in any case where

the initial velocity is lower than the desired velocity (���*� B �����) it

might be energy-optimal to first reduce the speed before accelerating to �����.

4.2 Velocity trajectory optimization using B-splines

The aim of this section is again to develop energy-optimum speed pro-

files but by applying a parameter optimization method. Any speed pro-

file in this chapter is represented by a number of weighted base func-

tions called B-Splines (see chapter 4.2.1 for details). The weighting fac-

tors of these B-splines represent the optimization parameters. Several

constraints and boundary conditions apply which are similar to the

ones mentioned in dynamic programming in chapter 4.1. Also, an exact

length of the maneuver must be specified. This can again be either a

fixed time E� or a fixed distance S�. In contrast to dynamic program-

ming though, it is now possible to set a lower and upper limit for either

• the covered distance during the maneuver (��"Z, ��:�) if E� is giv-

en, or

• the duration of the driving maneuver (8�"Z, 8�:�) if S� is given.

Since a major disadvantage of dynamic programming is the lack of a di-

rect influence on both the maneuver time and the covered distance at

the same time. Therefore, this type of constraint provides the opportuni-

ty to further extend the applicability of optimum speed profiles.

Velocity Trajectory Optimization 54

The optimization problem is

 min] �
 subject to: î] ≤ 0 ï�]� ≤ 0

(4.36)

where the objective function � is the total energy that is drained from

the battery during the maneuver,] contains the optimization parame-

ters, î is a constant matrix and ï is a vector-valued nonlinear function.

To solve this problem, a gradient-based optimization algorithm is used

which is designed to be applied on problems whose objective functions

and constraints are both continuous and have continuous first deriva-

tives.26 However, the efficiency of the electric machine – and therefore

the objective function – does not meet this requirement because its first

derivative is discontinuous. The optimization method might compute

only locally optimal results depending on the initialization of the optimi-

zation parameters (see chapter 4.2.1 and 4.2.3 for details). To reduce

the dependency on the starting point two different methods were inves-

tigated to compute an approximation of original efficiency data. Both

methods were compared and it turned out that an approximation using

weighted constrained linear least squares is the most efficient method

(see chapter 4.2.1). Despite this procedure still does not guarantee

globally optimal solutions it is assumed that a starting point O* can be

found that is close enough to the globally optimal solution. Further-

more, it will be shown in chapter 4.2.3 that the obtained solution is

quite similar to the one of dynamic programming, which is globally op-

timal. The basic idea of this chapter was inspired by Grießler (2011).27

26 Cf. The MathWorks Inc.: MATLAB 2007a documentation, fmincon.

27 Cf. Grießler L. (2011): pp. 42

Velocity Trajectory Optimization 55

4.2.1 Introduction to B-splines

This subchapter shows some basics about B-splines. In many applica-

tions B-splines are a reasonable mathematical method to fit and inter-

polate large data sets. In this work they are used to parameterize the

flat system output specified in chapter 2.7.

Let S 	 &S�', S1 ≤ S� ≤ … ≤ SZ be any sequence of nodes. B-splines ð�,£��� of the order ¤ �1 ≤ ¤ < p� are then recursively defined by28
 ð�,1��� ≔ ±1 PD� � ∈ %S� , S�r1')pS S� ≠ S�r1 0 GÜIG, PD� w = 1, … , p − 1,

ð�,£��� = � − S�E�r£[1 − E� ð�,£[1��� − � − S�r£E�r£ − E�r1 ð�r1,£[1���
 PD� ¤ = 2, … , p − 1 w = 1 … , p − ¤.

(4.37)

Note that B-splines are both defined by their order ¤ as well as their

knot sequence &S�'. In MATLAB, B-splines can be created using the

built-in function bspline. However, for the purpose of this work, bspline

has been modified. Figure 4.12 shows the influence of the knot se-

quence S on the shape of 3rd order B-splines ð1,`���.
Note that the B-splines ð1,`��� with the knot sequences S = �0, 0, 0, 1� and ð1,`��� with S = �0, 0, 1, 1�, respectively could also be represented by ð1,`��� and ð�,`��� with S = �0, 0, 0, 1, 1�.
Furthermore, it must be emphasized that is possible to meet certain

boundary conditions by choosing a suitable corresponding knot se-

quence. For example, selecting S = �0, 0, 0, 1� in Figure 4.12 results in ð1,`�� = 0� = 1, while all other B-splines are exactly zero at � = 0. It will

be shown below that exactly this kind of choice of the knot sequence

can be utilized to easily create speed profiles with a specific initial and

final speed.

28 Cf. Dahmen, W., Reusken A. (2006): pp. 322.

Velocity Trajectory Optimization 56

Figure 4.12: Examples of 3rd order B-splines depending on d.

Additional characteristics of B-splines that are important for the imple-

mentation below are:

(i) B-splines of the order p are p 1 times differentiable,29

(ii) Any ð�,£��� vanishes outside of the interval %S� , S�r£' and is

positive inside that interval.30

Any linear combination of B-splines is called a spline, which is defined

by

 ���� = § _�ð�,£���,Z[£
��1

(4.38)

where _� ∈ ℝ are the weighting factors for the B-splines.

4.2.2 Electric machine efficiency map fitting

As in any parameter optimization method the optimization parameters

have to be somehow initialized. Using a gradient based solver the initial-

29 Cf. Grießler L. (2011): pp. 42.

30 Cf. Boor de C. (2001): pp. 91.

Velocity Trajectory Optimization 57

ization process becomes critical. It was discovered that by including

suboptimal torque splitting to the computation of the combined efficien-

cy data of both electric machines ���,���9~�, in many cases the obtained

solution is only locally optimal. The reason for this is explained below.

For the sake of a brief notation from now the torque of both electric ma-

chines is denoted by
 =
��� and the efficiency is = ��,
� = ���,���9~�. In Figure 4.13 ��,
� is exemplary shown for � = 2500 �_�.

It is both evident that ��,
� is not continuously differentiable with re-

spect to M and that the absolute value of the slope reaches high values

near the origin:

 ó ��,
�ó
 … discontinuous function,

 öó ��,
�ó
 ö|�|≪1 ≫ 1.

For this reason two different methods were investigated to resolve the

situation by smoothening ��,
� for |
| ≪ 1.

1. A weighted least squares fit of the electric machine efficiency ��,
� with the ansatz function n = o* + o*,1� + o1,*
 + o1,1
� +o1,�
�� + o�,1
�� + o�,�
��� + … + oZ,Z
Z�Z, where p ∈ ℤr. Differ-

ent results for a range of p between 6 and 12 were investigated.

2. Weighted constrained linear least squares fits at several discrete

speeds �" using Gaussian ansatz functions with an offset. As a

result, several approximated functions for the efficiency at dis-

crete speeds "��"� are obtained. The efficiency values for any

electric machine speed �" < � < �"r1 are determined by linear in-

terpolation between " and "r1.

Despite both methods reduce the dependency on the starting point, it

turned out that the second one is far more effective. Therefore, in this

work, method one will not be further considered. Below a brief deriva-

tion of weighted least squares fitting is given and the obtained approxi-

mation of ��,
� will be compared to the original data.

Velocity Trajectory Optimization 58

Figure 4.13: Efficiency of both electric machines at 2500 rpm.

As stated above, for an approximation of the efficiency a continuously

differentiable and smooth function for values where |
| ≪ 1 is preferred

in order to reduce the dependency of the resulting speed profile on the

initial values of the optimization parameters. A function that fits these

requirements very well is the Gaussian function.

The first step of the fitting process is to create two sets of functions:

 "r�
� = ø �� = �",
� PD�
 ≥ 00 GÜIG
 "[�
� = ø �� = �",
� PD�
 ≤ 00 GÜIG.

(4.39)

To scale these functions onto a uniform interval, new arguments are de-

fined as

Çr =

�:��� = �"�,
Ç[=

�"Z�� = �"�. (4.40)

Thus, "±&
Ç±' only need to be fitted inside the interval ^0,1a. For simplic-

ity reasons all considerations below refer to only "r&
Çr', whereat the +

sign will be dropped for better readability. The ansatz functions used for

fitting consist of several displaced Gaussian functions (see Figure 4.14)

combined with an offset as stated in equation (4.41).

Velocity Trajectory Optimization 59

 n" 	 o* �§o£,"G*.�c�Ç[ù¯ú dûü
£�1

(4.41)

The corresponding expectation values are given by μ£ = yμ1, μ�, … , μü} =y0.24,0.355, … ,1.045}, the variance is ý = 0.07 and the scaling factors o£," ∈ ℝ are optimization parameters. Figure 4.14 shows the Gaussian

functions as well as their sum (green line), which can be shaped by var-

ying o£.

Figure 4.14: Ansatz functions used to approximate the electric machine

efficiency.

The fundamental idea now is to determine all o",£ �¤ = 1,2, … , þ�, þ = 8 in

a way such that

 &H1��,1'� + &H���,�'�+. . . +&HZ[1�",Z[1'� + &HZ�",Z'� → ��p, (4.42)

where H��",� is the weighted approximation error occurring due to the fit-

ting process at &� = �",
 =
�'.
 �",� = &� = �",
 =
�' − �o* + § o",£G[*.���Çã[ù¯ú �û�

£�1 �

 �� = &�",
�' − n"&
Ç =
Ç�' = ",� − n",�. (4.43)

Velocity Trajectory Optimization 60

The distance between the nodes
� can be specified by the user in a

MATLAB m-file and is by default 2 Nm for
 B 0 and 4 Nm for
 ≥ 0, re-

spectively. For better readability the index � will be omitted from now

on. With

 � = ���,1⋮�",Z	 , Ý = � ",1⋮ ",Z	 ,
À = �o*
 � ,
 = �o�,1⋮o",	,
�Ç = ^� �a, � =

ÍÎÎ
ÎÏG*.�c�Çg[ùgú dû ⋯ G*.�c�Çg[ù¯ú dû

⋮ ⋱ ⋮
G*.�c�Ç�[ùgú dû ⋯ G*.�c�Ç�[ù¯ú dûÑÒÒ

ÒÓ , � = �1⋮1	

equations (4.43) can be written in vector form as

 � = Ý − �Ç
À. (4.44)

Note that the partitioning of �Ç into � and � as well as
À into
 and o1

will come in handy further below. With � = S�),�H£�� also equation

(4.42) can be stated in a more concise form:

 ���� → ��p. (4.45)

The sum of the weighted least squares errors ���� can be rewritten as

 ���� = &Ý − �Ç
À'��&Ý − �Ç
À'
 = &Ý� −
À��Ç �'�&Ý − �Ç
À'

 = Ý��Ý − 2Ý���Ç
À +
À��Ç ���Ç
À.

(4.46)

Note that o* is not an optimization parameter. Thus, only
 instead of
À

is to be optimized. The optimization problem is

 min
 y����} 	 min
 sÝ��Ý 2Ý���Ç
À �
À��Ç���Ç
Àt. (4.47)

Rearranging ���� gives

 ���� 	 Ý��Ý 2Ý��^� �a �o*
 �� ^o*
�a �������^� �a �o*
 � 	 Ý��Ý 2Ý����o* ��
� � �o*�� �
�������o* ��
� 	 Ý��Ý 2Ý����o* ��
� � o*����� � 2o*����
 �
�����
,

(4.48)

Velocity Trajectory Optimization 61

where o*����
 	
�����o* and ���� is a symmetric matrix, hence ���� 	 �������. A necessary condition for the minimization is

 ó����ó
 	 0 = −2�Ý����� + 2�o*������ + 2����
 (4.49)

Since the columns of � are linearly independent, ���� is both an in-

vertible and positive definite matrix. Thus the solution fulfills the suffi-

cient condition

 ó�����ó
\ > 0 (4.50)

in order for ���� to be a minimum. Equation (4.49) can be written in

terms of
:31

 = ������[1����Ý − o*��. (4.51)

Figure 4.15 shows the approximation of the electric machine efficiency

at � = 5000 �_�. Note that the fitting is deliberately bad for ²
Ç² < 0.24

because all corresponding weighting factors H� in equation (4.42) are set

to zero. This seems like a huge inaccuracy, but if the dynamic pro-

gramming algorithm is seen as a benchmark, it is well-known that the

nature of optimum speed profiles tends to either prefer a rather high

absolute value of
 (these operating points are well approximated by

the fitted function) or freewheeling.

According to Figure 4.14 it is reasonable to consider only the leftmost

base function when analyzing the properties of n" at
Ç close to zero.

Thus, the first derivative of the fitted function can be approximated by

the first derivative of the leftmost base function, which can be calculat-

ed in MATLAB using DIFF. It has the following desired properties:

31 Cf. Hofer A. (2004): lecture notes.

Cf. Bauer R. (2007): pp. 7 - 9.

Velocity Trajectory Optimization 62

 ó n"&
Ç'ó
Ç ≈ o1 μ1
Çý� G[*.�c�Ç[ùgú dû B o1 3ý G[��
PD�
Ç < μ1 − 3ý. (4.52)

Equation (4.52) shows that the value of the first derivative of n" for
Ç ≈ 0 is sufficiently close to zero. This (empirically) reduces the depend-

ency on the initial values of the optimization parameters.

Figure 4.15: Fitted electric machine efficiency at 5000 rpm.

In order to obtain the approximated efficiency for any speed between

two nodes ��" < � < �"r1� linear interpolation is applied. Note that due

to the electric machine characteristics
�:���"� ≥
�:���"r1�. If
�:���"� =
�:���"r1� it is straightforward that linear interpolation can

always be computed by

 n��,
� = n��",
� + n&�"r1,
���' − n��",
�����"r1 − �" �� − �"�. (4.53)

However, in case
�:���"� >
��� ≥
�:���"r1� or
�:���"� ≥
��� >
�:���"r1� no exact values for n exist. This problem could be solved by

extrapolation but in this case the nearest value is used. Thus, equation

(4.53) is also valid for
�:���"� ≥
�:���"r1�.

Velocity Trajectory Optimization 63

Figure 4.16 shows the absolute value of the error G 	 | ��,
� − n��,
�|
due to the fitting.

Figure 4.16: Absolute value of the error of the fitted efficiency map

4.2.3 Implementation

In this chapter the implementation of the algorithm will be shown by

means of an example. According to equation (4.38) ���� (and therefore

the speed profile and the flat system output, respectively) is fully repre-

sented by one knot sequence S and p − ¤ weighting factors _�. For the

actual velocity profiles the knot sequences are by default constructed as

follows (these parameters can be changed in a MATLAB .m-file):

• S = �0, 0, 0, 50, 100, … , S# − 50, S� , S� , S�� in case the driving maneu-

ver is executed over distance (distance based version of the algo-

rithm). Hereby all values of S are stated in meters and S� is the

traveled distance during the entire driving maneuver. ���� is in

this case a function of distance.

• S = �0, 0, 0, 5, 10, … , E# − 5, E# , E# , E#� if the driving maneuver is execut-

ed over a specific time (time based version of the algorithm). In

this case, all values in S are specified in seconds and E# is the

Velocity Trajectory Optimization 64

time in which the driving maneuver takes place. ���� is hereby a

function of time.

For the computation of optimal speed profiles only B-splines of order ¤ 	 3 are generated. Figure 4.17 shows the actual B-splines ð�,` that are

used for the computation of a 200-meter long speed profile ��� = 200��.
For _� = 1 it is apparent from the figure that ���� is always one between 0 and S�. As stated above, choosing S in a certain way can facilitate tak-

ing into account boundary conditions. Since ��� = 0� and ��� = S�� only

depend on ð1,`�� = 0� and ðí,`�� = S��, respectively, both can reach any

desired value by simply setting _1 and _í to that exact number.

Figure 4.17: B-splines Bj,3(ξ) and speed profile v(ξ) if all pj are one.

Since in the optimization procedure ���� cannot be evaluated on a con-

tinuous interval, a discretization has to be carried out. In fact, ���� is

being evaluated every S� = 2.5� and E� = 0.25I, respectively. However, for

clarity reasons the example above with the 200-meter long velocity pro-

file will be continued with a fictitious sampling of 25m, which results in

only 9 evaluations of ���� at every element of the vector �� = ^0 25 ⋯ 175 200a. Note that � only depends on the sampling

and does not at all correspond to the knot sequence S. If furthermore

the B-spline weights are merged into a vector]� = ^_1 _� ⋯ _Z[£a,
the discretized spline can be written in vector form:

Velocity Trajectory Optimization 65

 ���� 	 � ��� 	 0���� = 25�⋮��� = 200�� = �].

(4.54)

The matrix � is

� =
ÍÎ
ÎÎ
ÎÎ
ÎÎ
Ï1.000 0 0 0 0 00.250 0.625 0.125 0 0 00 0.500 0.500 0 0 00 0.125 0.750 0.125 0 00 0 0.500 0.500 0 00 0 0.125 0.750 0.125 00 0 0 0.500 0.500 00 0 0 0.125 0.625 0.2500 0 0 0 0 1.000ÑÒ

ÒÒ
ÒÒ
ÒÒ
Ó
.

The columns w represent the values of ð�,`��� (note that ð�,`��� is a col-

umn vector) and the lines � correspond to the sum of all B-Splines at

the �-th element of �. It is evident that therefore the sum of every row is

exactly one just like ���� is exactly one in Figure 4.17. Furthermore, it is

shown that the first and last line in � each have only one element that

is one, whereas all other elements are zero. This proofs that any bound-

ary condition for the initial and final vehicle speed can be realized by

setting _1 = �* and _Z[£ = �#, respectively.

In the previous chapters the vehicle acceleration was named ��. To em-

phasize a certain connection between �� and a matrix �, which will be

introduced below, it will from now on be called)���. The acceleration

can of course be determined by the differentiation of the velocity)��� = d����/d�. However, a calculation method similar to equation

(4.54) is preferred because in such a case the acceleration can be direct-

ly stated as a function of the optimization parameters _�. For this pur-

pose a matrix � that fulfills the following equation is desired:

)��� = �)�� = 0�)�� = 25�⋮)�� = 200�� = �].

(4.55)

Velocity Trajectory Optimization 66

In this case the first p 1 = 8 rows of � can simply be generated

through � by computing the differences of the �-th and � + 1-th line and

dividing them by the sampling rate S�. The value for)�� = 200� cannot

be determined because at � = 200 only the final velocity but not the final

acceleration is considered in the optimization procedure. Therefore, any

arbitrary value for)�� = 200� can be chosen only to assure that � and �

both have the same dimension.

A remark to the correlation between functions of time and dis-

tance:

As mentioned above in the optimization algorithm the vehicle speed and

the acceleration are considered as functions of � which either refers to

the time E or the distance S. However, even if � = S, acceleration con-

straints or the driving resistance are usually given as functions of the

time. Thus, it shall be pointed out, that there exists a clear relation be-

tween)�E� and)n�S�.
The vehicle speed as a function of the distance is defined by �n�S� =�&E�S�'. The first derivative with respect to S is

 d�n�S�dS =)n�S� = ó��E�óE dE�S�dS =)�E� 1�n�S�.
(4.56)

Acceleration constraint:

Since ���� is a flat system output it is possible to compute the actuating

variable
��� with the knowledge of _�. Likewise, constraints for
��� as

they occur due to the power limitations of the electric machines, as well

as due to comfort reasons can be transformed into constraints for ����
and _�, respectively. According to equations (2.2) and (2.7) the vehicle

acceleration is a function of both the driving resistance and the torque

of both electric machines:)�E� =) ´
���&��E�',
���E�µ. In this manner

the minimum and maximum torque the electric machines can provide

at any given velocity can be transformed in)�"Z&��E�' and)�:�&��E�'. At

this point it is important to point out the distinction between)�E� as a

Velocity Trajectory Optimization 67

function of the time and)�S� as a function of the distance. All con-

straints will always be given as a function of time. In case the B-splines

are defined as functions of time, of course)�E�)���. On the other

hand, if S denotes the traveled distance, according to equation (4.56))n�S�)�E�/�n�S�. Furthermore, let)Á9�# be a constant (positive) accelera-

tion limit that assures traveling comfort. Thus)�"Z&����' ≤)�E� ≤mins)�:�&����',)Á9�#t must apply. Bringing this inequality to a form

that can be processed by the optimization algorithm gives:

 −��]� ∘ ��]�+)�"Z&����' ≤ �,
��]� ∘ ��]� − mins)�:�&����',)Á9�#t ≤ �.

(4.57)

Time and distance constraints:

If the velocity profile is defined as a function of the traveled distance, a

lower and upper bound can be specified for the time in which the entire

maneuver must be carried out. Let S� be the discretization of ���� and �

be the number of evaluations of ���� (� is also the number of elements

of �). With �" being the �-th element of � the time E" it takes to travel the

distance S� at the velocity ���"� can be approximated by E" ≈ S�/���"�. The

overall time of the driving maneuver can therefore be estimated by

 8 ≈ § S����"�
�[1
"�1

(4.58)

and must neither fall below 8�"Z nor exceed 8�:�. With

� = ÍÎ
ÎÏ�1����⋮��� ÑÒ

ÒÓ
a processable syntax for this constraint is:

 ^−1 −1 ⋯ −1a ÍÎ
ÎÏ 1 ��1�]�⁄1 ����]�⁄ ⋮1 ���[1�]�⁄ ÑÒ

ÒÓ S�+8�"Z ≤ 0

Velocity Trajectory Optimization 68

^1 1 ⋯ 1a ÍÎ
ÎÏ 1 ��1�]�⁄1 ����]�⁄ ⋮1 ���[1�]�⁄ ÑÒ

ÒÓ S� − 8�:� ≤ 0.

(4.59)

In case the velocity profile is defined as a function of the time the trav-

eled distance can be approximated by

 � ≈ § ���"�E�
�[1
"�1 .

(4.60)

With ��"Z and ��:� being the minimum and maximum distance that the

vehicle may travel during the driving maneuver, the distance constraint

can be specified by

 ^−1 −1 ⋯ −1a�] ∗ E� ≤ −��"Z ^1 1 ⋯ 1a�] ∗ E� ≤ ��:�.

(4.61)

Velocity constraints:

Due to legal speed limits, the driving speed must not exceed certain lim-

its. In some cases it may also be desirable to not undercut a particular

velocity. Therefore it is reasonable to consider velocity constraints at

every evaluation of ����. For this purpose let ��"Z and ��:� be vectors

whose �-th elements correspond to the minimum and maximum feasible

velocity at the �th element of � so that ��"Z ≤ �] ≤ ��:�. Bringing this to

the notation used in the formulation of the optimization problem in

(4.36) gives:

 �] ≤ ��:�, −�] ≤ −��"Z.

(4.62)

Objective function:

The objective function � of the optimization problem in (4.36) is defined

as

Velocity Trajectory Optimization 69

 � 	 Ö�Þ��, (4.63)

where the vector Ö� = ^E1 − E*, E� − E1, ⋯ , E�[1 − E�[�a contains the

time intervals between two simulation steps and the elements of Þ�� rep-

resent the electrical power at each step:

 Þ�� = � $���E*�⋮$���E�[��	.

(4.64)

In turn, the electrical power at E = E" consists of the electric machine

power as well as the power loss in the battery:

 $���E"� = $���E"� + $¢:��,�9���E"�, (4.65)

where

 $���E"� = ���E"�
�E"� n&
�E"�, ��E"�' PD�
�E"� < 0 ��E"�
�E"� n&
�E"�, ��E"�' PD�
�E"� ≥ 0,

(4.66)

and

 $¢:��,�9���E"� = ���E"�à. (4.67)

Hereby, à denotes the internal battery resistance and ��E"� is the current

that is drained from the battery, which is given by

 ��E"� = $���E"�5 . (4.68)

4.2.4 Results and discussion

It is an interesting aspect to compare the results obtained by using the

dynamic programming algorithm and the approach using B-splines. For

this purpose two use cases are explained below. In example 1 the exact

same boundary conditions are used as in the DP example in chapter

4.1.2 to point out some similarities and differences of the result. Exam-

ple 2 shows that – compared to DP – additional use cases can be cov-

ered by the algorithm based on the B-splines parameter optimization.

Velocity Trajectory Optimization 70

Example 1:

In order to compare the results with the ones obtained with dynamic

programming consider the same example as above where the boundary

conditions are given by ���*� 	 100 ¤�/ℎ and ���� = 500�� = 50 ¤�/ℎ.

The B-splines parameter vector is initialized by

]� = É���*� ���*� + �����2 … ���*� + �����2 �����Ë. (4.69)

Figure 4.18 clearly indicates that the velocity trajectory as well as the

optimal control inputs are similar to those of DP. Note that the deriva-

tives of third-order B-splines are piecewise linear functions. Thus, sud-

den changes of the vehicle acceleration are not possible. This can be ob-

served in Figure 4.18 where at a maneuver time of about 12 seconds the

torque becomes zero relatively slow which results in a smooth transition

from regenerative breaking to freewheeling. An important characteristic

of the velocity trajectories computed with B-splines is that they are

quite smooth which greatly benefits driving comfort. Therefore – in con-

trast to trajectories computed with DP – no filtering is necessary.

Another advantage of using a parameter optimization method is that

additional constraints can be applied. In the example above it is possi-

ble to specify a minimum and/or maximum maneuver time. In the DP

algorithm this is not possible.

A major drawback is that in no case a globally optimal solution is guar-

anteed. In fact there is a number of scenarios where the solution is

highly dependent on the initialization of the B-spline parameter vector]. A smart choice of the initial values can only reduce the risk of obtain-

ing a locally optimal solution. Dynamic programming is therefore an es-

sential tool for benchmarking. Furthermore, dynamic programming is

extremely robust against disturbances and simultaneously computes a

huge set of optimal policies. Thus, in contrast to the parameter optimi-

zation method it is not necessary to recalculate the optimal trajectory if

the vehicle unintentionally significantly differs from the optimal velocity

Velocity Trajectory Optimization 71

profile. Evidentially, it turns out that in some cases the computational

effort of DP is far less.

Figure 4.18: Comparison of velocity profiles computed by using B-

splines and dynamic programming.

Nevertheless the author proposes to further investigate using B-splines

in the optimization procedure because constraints for ��"Z, ��:� and 8�"Z, 8�:�, respectively may prove extremely useful for a broad variety of

use cases (one is shown below in example 2). Further studies should

mainly focus on eliminating or at least decreasing the dependency on

the initial values of the optimization variables.

Example 2:

Since traffic lights play an essential role in everyday traffic scenarios, it

is now emphasized that it also makes sense to apply the algorithm pre-

sented above in use cases where traffic light signals must be consid-

ered.

Assume that a motorist is traveling at 50km/h (13.8
.
m/s). If the velocity

stayed unchanged within the next 40 seconds the driver would travel

555.5
.
m. However, 450m in front of the vehicle there is a red light that

Velocity Trajectory Optimization 72

will turn green in exactly 40 seconds. Hence, an optimization problem

can be formulated with ���* 	 0� = ���� = 40I� = 50¤�/ℎ and ��:� =450�. In addition the motorist wants to travel at least ��"Z = 430�. In

this case it is assumed that the traveled distance will then be exactly

430m since it seems plausible that less energy is required to travel a

shorter distance. Furthermore it is desired not to decelerate below ��"Z = 30¤�/ℎ. To ensure driving comfort the acceleration is limited to)�:� = 1.25�/I.

Figure 4.19: Energy-optimal velocity trajectory for approaching a traffic

light.

Figure 4.19 shows the energy-optimal velocity trajectory to approach

the traffic light. During the first five seconds energy is recuperated.

Then the vehicle freewheels and finally accelerates up to 50km/h. Note

that there is a strong similarity to the deceleration use cases explained

above. As expected the covered distance is ��"Z = 430�. Also, the con-

straints for ��"Z and)�:�, respectively are met.

 73

5 A concept study for an advanced route planner

Car navigation systems detect the supposedly best route to a destina-

tion. They support the driver and some tasks as for example reading a

map become obsolete. A typical car navigation system provides several

different settings regarding the criteria to determine the optimal route or

cost function. Normally the driver can choose between computing a

fastest or shortest route and specify preferences to avoid motorways,

toll roads and ferries. Another important aspect is that a route planner

should take into account real-time traffic conditions such as the pres-

ence of traffic jams or road works on the current route.32

At present, route planners are unable to take into account the estimat-

ed energy consumption on a specific route. This, however, is an im-

portant and interesting aspect for all-electric vehicles, especially if their

range is fairly limited. A driver may want to know if the destination can

likely be reached without the need to recharge or change the battery. In

addition – besides fastest and shortest routes – drivers might also prefer

energy-optimal routes.

This being said, the aim of this chapter is to develop a concept study for

a route planner that computes optimal routes according to individual

preferences of the driver. This includes the estimation of the energy

consumption of a fully electric vehicle by using real-time traffic infor-

mation provided by c2i communication and 3D GPS maps to consider

road elevation profiles. It is emphasized that this chapter only describes

a concept study and that some functionalities cannot yet be fully ap-

plied in realistic simulations.

Many algorithms exist that can solve routing problems. For this concept

study the Bellman-Ford algorithm was chosen. It is implemented in

both a MATLAB m-file and in Simulink using an Embedded MATLAB

32 Cf. Flinsenberg I. (2004): pp. 1, 4.

A concept study for an advanced route planner 74

Function to enable co-simulations with IPG CarMaker and AVL

CRUISE.

5.1 The Bellman-Ford algorithm

Consider a set of � cities. Some of them are linked by direct roads. If

two cities are directly linked the cost to travel from city � to city w is de-

noted by �"� which represents a weighted sum of the travel time, the dis-

tance and the expected energy consumption. The goal is to find the op-

timal path between cities that minimizes the sum of all costs. From this

general problem formulation it is evident that the solution can also be

obtained by using a dynamic programming algorithm.

The Bellman-Ford algorithm is indeed quite similar to dynamic pro-

gramming and is also based on Bellman’s principle of optimality. How-

ever, a significant difference is that instead of calculating the costs-to-

go the optimal costs from one particular city to all other cities and the

corresponding optimal decisions can be determined. Therefore, the op-

timal path to any city can be calculated. If the destination changes but

the starting point remains the same, the optimal costs in the road net-

work do not need to be recalculated. Note that this is the exact opposite

to dynamic programming.33

Figure 5.1 shows an example of a road network. The letters A-G repre-

sent seven different cities. Without loss of generality assume that A is

the starting point. The optimal cost to come to every city starting from A

is denoted by �� , w = ð, , … ,�. Since also the amount of energy to travel

between cities is considered it is evident that due to regenerative break-

ing the cost to travel between cities �"� could become negative. The Bell-

man-Ford algorithm can – in contrast to the faster Dijkstra algorithm –

handle negative costs. However, a detection of negative cycles must be

implemented. A negative cycle is a path that can be repeatedly followed

33 Cf. Bellman R. (1957): pp. 1 - 2.

A concept study for an advanced route planner 75

and whose costs sum up to an arbitrarily low negative number. Fortu-

nately it is not possible to recuperate an infinite amount of energy so

that in this case negative cycles do not need to be considered.

Figure 5.1: Example of a simple road network (1).

Adapted from: Humboldt-Universität zu Berlin, 5/20/2012.

The road network is fully represented by a matrix

! 	
ÍÎ
ÎÎÎ
ÎÏ
∞ �¡¢ �¡7 �¡6 ∞ ∞ ∞∞ ∞ ∞ �¢6 �¢� ∞ ∞∞ ∞ ∞ �76 ∞ ∞ ∞∞ ∞ ∞ ∞ �6� �6# ∞∞ ∞ ∞ ��6 ∞ ∞ ��$∞ ∞ �#7 ∞ ∞ ∞ �#$∞ ∞ ∞ ∞ ∞ ∞ ∞ ÑÒ

ÒÒÒ
ÒÓ
.

(5.1)

Every row represents the cost from a particular city to all other cities.

Accordingly the columns correspond to the cost to a specific city from

every other city. If two cities � and w have no direct connection the cost

�"� is set to infinity. If the optimum route is to be planned from a differ-

ent starting point than A, the elements in ! can be rearranged accord-

ingly. The cost to every city starting from A is then calculated by the it-

erative scheme:

 F�£r1 	 minsF"£ � �"�t,			� 	 A,B, … ,�,																																			
																																																w 	 ð, , … ,�,																																					

																																																									F* 	 yF¡*, F¢* , … , F$*} 	 y0, �¡¢, … , �¡$},	
												F¡£ 	 0, ∀¤.							

(5.2)

A concept study for an advanced route planner 76

In any case the inequality �� ≤ ℎ�£r1 ≤ ℎ�£ is fulfilled. The sequence will

converge after a limited number of steps to ��. The stop criterion is ℎ�£ 	 ℎ�£r1, ∀w. In this case the index � must be stored for all w. This is es-

sential because on the optimal path any city w is reached through the

city �. Hence, the optimal route can easily be computed.

In a programming environment the iterative scheme of equation (5.2)

can be executed in an inner for-loop for the index � and an outer loop

for w. In this way the algorithm is implemented in an Embedded

MATLAB Function. To reduce the computational effort in MATLAB .m-

files it is also possible to implement equation (5.2) in just one for loop.

Let '£ be a matrix that is defined as

 '£ =
ÍÎ
ÎÏℎ¡£ + �¡¢ ℎ¡£ + �¡7 … ℎ¡£ + �¡$ℎ¢£ + �¢¢ ℎ¢£ + �¢7 … ℎ¢£ + �¢$⋮ ⋮ ⋱ ⋮ℎ$£ + �$¢ ℎ$£ + �$7 … ℎ$£ + �$$ÑÒ

ÒÓ.

(5.3)

In MATLAB the minimum costs ℎ�£ as well as the corresponding indices �
can be determined by

 ^�£r1 (£r1a = ��p�'£�, (5.4)

where �£ = ^ℎ¢£ … ℎ$£a� and (£ = ^�¢£ … �$£a�.

The stop criterion is �£ = �£r1. Subsequently, the optimal path is com-

puted backwards from the destination to the starting point by evaluat-

ing the information stored in (£.34

Example:

Consider Figure 5.2 which depicts the road network explained above

with exemplary values for the costs to travel between cities. The corre-

sponding matrix is

34 Cf. Gocheva-Ilieva S.: http://evlm.stuba.sk, 5/7/2012.

A concept study for an advanced route planner 77

! 	
ÍÎ
ÎÎ
ÎÎ
Ï∞ 3 1 5 ∞ ∞ ∞∞ ∞ ∞ 1 2 ∞ ∞∞ ∞ ∞ 8 ∞ ∞ ∞∞ ∞ ∞ ∞ 4 1 ∞∞ ∞ ∞ 1 ∞ ∞ 7∞ ∞ 3 ∞ ∞ ∞ 2∞ ∞ ∞ ∞ ∞ ∞ ∞Ñ

Ò
Ò
Ò
Ò
Ò
Ó

.

(5.5)

Figure 5.2: Example of a simple road network (2).

There is convergence after a few steps. The result is �£�ë 	 �£�` 	
^3 1 2 1 3 5a� and (£�` 	 ^)) � ð � *a�. Recall that this

result shows how to optimally reach every city starting from A. The Ü-th

element corresponds to the j-th city where Ü 	 1,2, … ,6 and w 	 ð, , … ,�.

Now assume that the driver wants to travel to *. According to the fifth

element of (£�` it is optimal to reach * via �. The stopover on the opti-

mal route before � is ð. Finally, ð is directly reached from the starting

point. Therefore, once �£ 	 �£r1 and the corresponding (+ have been

computed the optimal route to any destination can be determined with

very little computational effort. In this case, the optimal route is) ð � � * and the total cost is �# 	 3.

5.2 Implementation and discussion

An essential part of the route planner is the computation of the road

matrix !. On the one hand the costs to travel between cities can change

due to real-time traffic conditions. On the other hand the costs must

factor in various aspects because it depends on the driver’s preferences

A concept study for an advanced route planner 78

whether an energy-optimal route, a time-optimal route or one that min-

imizes the covered distance is computed. For this purpose the following

raw data must be supplied:

- , contains information about the distance between cities.

- �- is a matrix that has the same structure as ! but its elements

contain up-to-date average velocities for every road segment. This

information may be provided by c2i communication and is re-

quired to calculate the travel times � 	 ,⊘ �-.

- .��# represents the current traffic conditions (e.g. light or heavy

traffic, stop-and-go traffic etc.).

- ."ZÁ holds detailed information about the elevation profile of the

road map. In some cases this might have a substantial influence

on the vehicle’s energy consumption.

The road matrix is thereby calculated by

 / 	 H�� � H6,� H�,&.��#,."ZÁ', (5.6)

where

,&.��#,."ZÁ' is a scalar function that computes the expected energy

consumption for each road segment. The specific vehicle topology

may also be taken into account.

 H� is a weighting factor for the travel time between cities,

 H6 affects the impact of the traveled distance and

 H� weights the energy consumption.

In case H� = 1 there is an easy interpretation of the weighting factors.

The choice H6 = 1 061 means that every 06 meters a penalty of one se-

cond is added to the cost function whereas for H� = 1 0�1 one second is

added every 0� joule.

Note that of course one could argue that one of the weighting factors is

redundant. However it is considered as being more intuitive for drivers

to choose values for all three.

A concept study for an advanced route planner 79

It is again emphasized that this work only describes a concept study. It

is part of this thesis to develop an algorithm that factors in real-time

traffic data as well as the driver’s preferences to compute an optimal

route. It is, however, neither subject of this work to provide such data

(i.e. data for .��# or ."ZÁ) nor to determine a function , as described in

equation (5.6). These functionalities are stated for being implemented at

a later time. Nevertheless, in a simple example below it is shown that

real-time traffic information can already be processed and time-optimal

routes can be computed.

The route planner has been implemented in Simulink to enable future

co-simulations with both IPG CarMaker and AVL CRUISE. AVL has

demonstrated the potential of the algorithm in a concept simulation.

Due to current CarMaker interface limitations the Bellman-Ford algo-

rithm ran isolated in Simulink and the results were exported manually

to CarMaker. A road network containing 15 nodes was created in Car-

Maker (see Figure 5.3).

Figure 5.3: Road network in CarMaker.

Adapted from Jones S. et al. (2012): pp. 7-8.

A concept study for an advanced route planner 80

It is desired to travel from the starting point A to the destination N.

Black lines between nodes represent small side roads that the driver

prefers to avoid. Green lines correspond to road segments where the

current average speed is high. On yellow segments there is heavy traffic

and the average speed is expected to be less than 50km/h. A red seg-

ment indicates a traffic jam or stop-and-go traffic.

Information about the road network topology as well as traffic infor-

mation is fed to Simulink to determine the fastest route. Accordingly,

the weights in equation (5.6) which specify the tradeoff between the

fastest route, the shortest route and the energy-optimal route are set to H� 	 1 and H6 = H� = 0, respectively.

It is assumed that a driver who has no access to real-time traffic infor-

mation would drive along the shortest path (A-B-C-D-I-N). The Bellman-

Ford algorithm, however, computes the optimal (in terms of travel time)

but longer path (A-B-C-D-E-J-O-N). In Figure 5.4 the vehicle velocity is

shown for both cases. The letters indicate the nodes of the road network

in regard to both paths shown in Figure 5.3.

Figure 5.4: Velocity along the shortest route and the optimal route.

Adapted from Jones S. et al. (2012): pp. 8.

The energy consumption along both paths is calculated in a co-

simulation of CarMaker and a detailed AVL CRUISE model of the proto-

A concept study for an advanced route planner 81

types. Due to time-optimal route planning the overall energy consump-

tion is reduced by 10.3% compared to a driver that has no access to re-

al-time traffic information and always chooses the shortest route. Sim-

ultaneously, the journey time was reduced from 454 seconds to 272 se-

conds.35

35 Cf. Jones S. et al. (2012): pp. 7 - 8.

 82

6 Conclusion

Given a specific battery capacity there is a broad variety of possibilities

to extend the driving range of fully electric vehicles. Some of those strat-

egies are investigated in this work. It is emphasized that the optimiza-

tion methods complement each other by covering different time hori-

zons. It is demonstrated that dynamic torque splitting saves a signifi-

cant amount of energy. Therefore torque splitting is also added to the

computation of optimal velocity trajectories and is considered in the en-

ergy estimation of the route planner.

The most extensive chapter elaborates the determination of optimum

velocity trajectories using two different methods. Their strengths and

weaknesses are discussed. In addition it is shown that the dynamic

programming algorithm is able to realistically calculate the energy con-

sumption in specific driving maneuvers. A comparison of the parameter

optimization method with the dynamic programming algorithm showed

close similarities in the obtained velocity profile and the optimal control

inputs, respectively. However, the choice of the initial values of the B-

splines parameters is a crucial factor. Improving the method using B-

splines is essential to reduce the dependency on the initialization of the

parameter vector in order to ensure applicability in a broader variety of

problems. Finally, a concept study of a route planner is shown. Prelimi-

nary co-simulations with IGP CarMaker and AVL CRUISE successfully

showed that the implementation in the tool chain is possible. As usual

in concept studies, much further development is required.

In order to get any optimization method ready to go into mass produc-

tion it is not sufficient to just cover technical issues. Besides optimizing

the energy consumption other aspects as the travel time or driving com-

fort are extremely important to promote driver’s acceptance. Those

points are considered in the proposed optimization strategies.

It is envisioned in the OpEneR project that in the future various energy-

optimization algorithms will merge into a highly advanced energy man-

ager. For this purpose vehicles must be equipped with a number of

Conclusion 83

components as for example ACC or an HMI. Furthermore, extensions to

the current road infrastructure are badly required to use the full poten-

tial of advanced energy management methods.

 84

A Appendix – Vehicle data

New concepts and technologies that are developed within the line of the

OpEneR project are demonstrated in two fully electric vehicles which

are prototypes and are based on the Peugeot 3008 HYbrid4. In this ap-

pendix a brief overview of some key components and additional infor-

mation about OpEneR is given.

The powertrain consists of two identical synchronous machines from

Bosch (model: PSM151-319) that each power one axle. The maximum

power of one electric machine is about 57.6kW if the supply voltage is

305V. Both EM can reach a maximum speed of 10,000rpm. Each EM is

directly connected to a dog clutch which in turn is connected to the

transmission. The transmission ratio is 7.5 and the combined average

efficiency of both the transmission and the differential is approximately

92%. This enables the prototypes to reach their maximum velocity of

about 161km/h. Driving stability for regenerative breaking is ensured

by the ESP®hev. Up to a deceleration of 1.25m/s² the prototypes can

use 100% of the recoverable braking energy to charge their batteries.

The lithium ion battery consists of four modules that each have 24

cells. Its nominal idle voltage is approximately 308V depending on the

SOC and the temperature. The usable storage capacity is 36.8kW/h,

which enables the vehicle to travel 190-250km. The battery mass is

about 440kg, which is the main reason why – although the combustion

engine has been removed – the overall mass of one prototype is roughly

180kg higher than the one of the Hybrid it is based on. The mass is

therefore about 1950kg. Together both electric machines provide up to

410Nm when pulling off from standstill.

OpEneR is a three-year European research project that has launched in

May 2011 and is part of the 7th EU Framework Programme (grant

agreement n. 285526). It has an overall budget of 7.741.705€ and is

funded with 4.400.000€ by the European Union.

 85

Bibliography

OpEneR Project website: http://www.fp7-opener.eu, 4/27/2012.

Back M. (2005): Prädiktive Antriebsregelung zum energieoptimalen Be-

trieb von Hybridfahrzeugen, Dissertation, Universität Fridericiana

Karlsruhe, Universitätsverlag Karlsruhe.

Bellman R. (1954): The Theory of Dynamic Programming, The RAND

Corporation.

Bellman R. (1957): On a Routing Problem, The RAND Corporation.

Boor de C. (2001): A Practical Guide to Splines, revised edition, in:

Applied Mathematical Sciences, Vol. 27., Springer-Verlag, New York.

Bertsekas D., (2005): Dynamic Programming and Optimal Control, Vol.

1, 3rd Edition, Athena Scientific, Belmont.

Dahmen, W. / Reusken, A. (2006): Numerik für Ingenieure und Natur-

wissenschaftler, 1st Edition, Springer-Verlag, Berlin.

Flinsenberg I. (2004): Route Planning Algorithms for Car Navigation,

dissertation, Technische Universiteit Eindhoven.

Kiencke U., Nielsen L. (2000): Automotive Control Systems: For Engine,

Driveline, and Vehicle, 1st Edition, Springer-Verlag.

Kirk D. (2004): Optimal Control Theory, An Introduction, Dover Edition,

Mineola.

Gausch, F. (2010): Mehrgrößensysteme, lecture notes, Graz University

of Technology.

Gocheva-Illeva S.: The Bellman-Ford Algorithm, http://evlm.stuba.sk,

5/7/2012.

Guzzella L. Sciarretta A. (2007): Vehicle Propulsion Systems, Introduc-

tion to Modeling and Optimization, 2nd Edition, Springer-Verlag, Berlin.

Bibliography 86

Grießler L. (2011): Fahrstrategieoptimierung bei Nutzfahrzeugen mit

Hilfe vorausschauender Information, Master’s thesis, Johannes Kepler

University Linz.

Hofer A. (2004): Computergestützte Modellbildung und Simulation, Lec-

ture notes, Graz University of Technology.

Humboldt-Universität zu Berlin, Institut für Informatik,

http://www.informatik.hu-berlin.de, 5/20/2012.

Jones S. et al. (2012): Optimal Fully Electric Vehicle Recovery in an In-

telligent Transportation System, ITS World Congress, Vienna.

Bauer R. (2007): Zustandsschätzung Filterung, Version 1.0, lecture no-

tes, Graz University of Technology.

The MathWorks Inc.: MATLAB 2007a documentation, fmincon.

Robert Bosch GmbH: http://www.bosch-presse.de/presseforum/

details.htm?txtID=5291, 7/18/2012.

Steinmann Jochen: Chassis Systems Control (CC/ENA3), Robert Bosch

GmbH, Heilbronn: e-mail, 2/9/2012.

Zeitz M. (2010): Differentielle Flachheit: Eine nützliche Methodik auch

für lineare SISO-Systeme, at – Automatisierungstechnik: Vol. 58, No. 1,

pp. 5-13.

