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am also grateful to Professor Vaclav Hlaváč for acting as my second supervisor on my

thesis committee.

I would like to express my appreciation to my colleagues in the High Performance

Imaging group at the Austrian Institute of Technology (AIT). I was lucky to work in a

very friendly, inspirational and supportive environment. Especially I want to thank

the Inline Computational Imaging team including Bernhard Blaschitz, Nicole Brosch,

Dorothea Heiss, Petra Thanner and Lukas Traxler.

I also want to thank the Computer Graphics and Vision group at the Technical Univer-

sity of Graz for many fruitful cooperations and interesting discussions. I especially

want to express my gratitude to Stefan Heber for the discussions in the early phase of

my research, as well as to Patrick Knöbelreiter for his cooperation.
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Abstract

The acquisition of superior shape and reflectance properties of a scene is a current

dilemma of computer vision long beset by a myriad of complications. In this thesis

we overcome these obstacles by combining light field depth with photometric stereo

normals in order to reach a refined depth reconstruction and material analysis. To

realize this, we analyze light rays passing through the camera lens capturing a scene

illuminated from a defined direction. Conventional imaging systems only provide

limited information, since they can’t capture directional radiance information and only

provide the sum of light at each image position. Hence, they capture two-dimensional

pictures of this world. We aim to achieve a more complete description by using both

light field cameras and photometric stereo techniques.

Light field imaging offers powerful capabilities in the field of computer vision. Rays of

light traveling through space are defined by a plenoptic function, which we utilize in a

5D form containing three spatial and two directional dimensions for each ray. Currently,

a number of light field cameras are available including area scan devices such as

plenoptic or matrix cameras and multi-line scan cameras for industrial applications.

We process the provided information to obtain a 3D reconstruction of the scene and to

capture the reflectance and material description of the objects.

Photometric stereo uses several images taken from a constant viewing angle and

multiple illumination directions. Changes in the radiance of an object point depend

on the surface orientation and reflectance properties of the material. To achieve a

full description of a scene we use photometric stereo techniques to obtain results of

improved quality. The fusion of light fields and photometric stereo gives improved

depth reconstruction results and allows a more detailed analysis of the reflectance

distribution function of the surface.
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In this thesis we provide a thorough analysis and classification of methods combining

surface depth and surface normal data. Based on our findings we introduce a novel

generalized combinatorial formulation as well as a gradient-based method using

Total Generalized Variation (TGV). The analysis is carried out for standard area-scan

imaging as well as for multi-line scan data. The latter is most commonly applied by

in-line industrial environments were objects are moving w.r.t. the acquisition device.

We present approaches for a combined reconstruction of depth and surface orientation

with missing photometric stereo evidence orthogonally to the transport direction.

Another contribution deals with feature construction for multi-line scan data. We

present novel features which ensure stable results with respect to noise regardless

of the regions reflective properties. We compare these features with commonly used

Census Transform (CT) features.

The appearance of surfaces can be described by reflectance function. These functions

depend on properties such as the position of the object, the wavelength of the illumina-

tion, the viewing angle and the illumination direction. A special case is the bidirectional

reflectance distribution function (BRDF), which is described by four variables defining

the viewing and illumination direction. Capturing full BRDFs is highly time consuming

and not feasible. We present a machine learning approach to reconstruct full BRDFs

from partial data using convolutional neural networks (CNNs).

Applications of our results lie in the field of industrial inspection tasks such as defect

detection, brand protection, product security and optical inspection of materials. A

highly precise 3D reconstruction allows a detailed error detection in production lines.

Methods of anti-counterfeiting can be improved by a better description and analysis

of the material structure.

Keywords. Light Field, Photometric Stereo, Computer Vision, Variational Methods,

Reflectance Functions, Multi-Line Scanning, 3D Reconstruction
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Kurzfassung

In dieser Arbeit betrachten wir die problematische Natur der hochpräzisen 3D Rekon-

struktion von Objekten mittels einer Kombination von Tiefendaten von Lichtfeld mit

Oberflächennormalen von photometrischem Stereo. Wir analysieren Lichtstrahlen die

von Objekten reflektiert werden unter definierten Beleuchtungsbedingungen. Konven-

tionelle bildgebende Methoden ermöglichen die Aufzeichnung von Richtungsinfor-

mation des Lichteinfalls nicht und halten die Summe des einfallenden Lichtes fest.

Daher wird lediglich eine 2D Repräsentation der Szene erstellt. Wir forcieren eine

umfangreichere Szenenbeschreibung mittels Lichtfeld und photometrischem Stereo.

Die Verbreitung von Lichtstrahlen im Raum wird über eine plenoptische Funktion

definiert, wir nutzen diese in einer 5D Formulierung welche aus drei räumlichen

und zwei richtungsgebenden Dimensionen besteht. Zum heutigen Zeitpunkt sind

mehrere Lichtfeldkameras verschiedener Typen auf dem Markt erhältlich. Diese um-

fassen plenoptische Kameras, Matrixkameras sowie industrielle Multi-Zeilenkameras.

Wir verwenden Lichtfeldinformation um eine 3D Oberflächenrekonstruktion zu er-

stellen sowie für die Aufzeichnung von Reflektanz- und Materialeigenschaften von

Objekten.

Bei photometrischem Stereo werden mehrere Bilder unter einer konstanten Kamer-

aansicht und variierenden Beleuchtungswinkeln aufgezeichnet. Diese Information

erlaubt eine vollständigere Szenenbeschreibung von hoher Qualität. Wir berechnen

hochpräzise 3D Rekonstruktionen durch die Kombination von Lichtfeld mit pho-

tometrischem Stereo. Zusätzlich erlaubt uns diese Fusion eine detailiertere Analyse

der Reflektanzverteilungsfunktionen von Objekten.
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In dieser Arbeit zeigen wir eine gründliche Analyse und Kategorisierung von Metho-

den welche die Tiefe von Objekten mit Oberflächennormalen kombinieren und führen

basierend auf unserer Analyse präzisere Methoden ein. Resultierend aus unserer Anal-

yse führen wir sowohl eine verbesserte Formulierung zur Kombination ein als auch

eine Regularisierung mittels einer Variationsmethode (Total Generalized Variation).

Wir analysieren diese Methoden sowohl für Flächen- als auch Multizeilenkameras. Let-

ztere werden zumeist in industriellen in-line Umgebungen verwendet, in welchen sich

Objekte auf Förderbändern mit konstanter Geschwindigkeit bewegen. Wir präsentieren

Lösungen für die kombinierte 3D Oberflächenrekonstruktion von Tiefendaten mit

Oberflächennormalen in industriellen in-line Umgebungen. Wir zeigen den Umgang

mit fehlender photometrischer Information orthogonal zur Transportrichtung.

Ein weiterer Beitrag dieser Arbeit zeigt die Erstellung von Features für Daten von

Multi-Zeilenkameras. Wir präsentieren neuartige Features, welche stabile Resultate

in schwierigen Regionen die rauschen oder stark reflexive Eigenschaften aufweisen.

Diese werden mit den häufig verwendeten Features der Census Transformation (CT)

verglichen.

Das Erscheinungsbild von Oberflächen kann mittels Reflektanzverteilungsfunktionen

beschrieben werden. Diese sind abhängig von Objekteigenschaften wie der Position auf

der Objektoberfläche, der Wellenlänge der Beleuchtung und dem Betrachtungs- sowie

Beleuchtungswinkel. Ein spezieller Fall ist die Bidirektionale Reflektanzverteilungs-

funktion (BRDF), welche mittels vier Variablen abhängig von Lichteinfall und Sensor-

position definiert wird. Vollständige BRDFs für ein bestimmtes Material aufzuzeichnen

würde mehrere Jahre in Anspruch nehmen und ist daher nicht durchführbar. Wir

präsentieren eine Methode zur Rekonstruktion von vollständigeren BRDFs von par-

tiellen Daten mittels eines faltenden neuronalen Netzwerkes (CNN).

Anwendungsgebiete unserer Methoden umfassen Aufgaben in der industriellen In-

spektion wie zum Beispiel in der Defekterkennung, im Markenschutz, in der Pro-

duktsicherheit und in der optischen Inspektion von Materialien. Hochpräzise 3D

Rekonstruktionen erlauben eine detaillierte Fehlererkennung in der industriellen In-

spektion. Weiters können Methoden zur Gewährleistung der Fälschungssicherheit

xii



durch eine verbesserte Beschreibung und Analyse von Materialeigenschaften verbessert

werden.

Schlagwörter. Lichtfeld, Photometrisches stereo, Bildverarbeitung, Variationsmetho-

den, Reflektanzverteilungsfunktionen, Multi-Zeilenkamera, 3D Rekonstruktion
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1.1 Motivation

In this thesis we endeavor to resolve the problematic nature of acquiring a highly

precise 3D surface reconstruction of objects with a focus on industrial applications.

To facilitate this end we conceived, designed and implemented highly precise optical

depth measurement systems. Depth acquisition systems can be classified in active

and passive approaches. While active methods interfere with the objects, e.g. by the

projection of structured light, passive methods use imaging sensors to capture the

radiance of a scene illuminated by light sources. We focus on passive systems, which

allow the capture of 3D and texture maps simultaneously, enabling an easy setup

procedure as well as high quality depth reconstruction. We present solutions for several

types of light field cameras, such as in-line multi-line scan systems and area-scan

devices.

Conventional stereo cameras are impaired by reconstruction errors in dark, textureless

and highly reflective regions in conjunction with insufficient fine surface details. We

transcend these limitations by fusing the complementary properties of light field and

1
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Light field Fusion of light field with photometric stereo

Figure 1.1: Fusion of light field and photometric stereo compared to the 3D reconstruc-

tion with light field.

photometric stereo systems. Light field cameras capture light from multiple viewing

angles, allowing a more robust depth estimation of objects. This utility occurs regard-

less of a high variety of surface reflectance properties including partial occlusions.

While this method increases global accuracy, it suffers from local imprecision e.g. in

textureless regions. Photometric stereo allows the estimation of surface normals by

illuminating the object from several directions. The resulting reflections depend on

the orientation of the surface in respect to the light sources and on the position of

the acquisition device. Hence the surface orientation can be recovered by analyzing

the irradiance values captured by the sensor, independent of the surface texture. The

recovered orientation values enable a locally precise depth reconstruction with a weak-

ness in the global accuracy. The fusion of light field and photometric stereo methods

is demonstrated in Fig. 1.1.

Depth reconstruction tasks can be approached with tools such as stereo, multi-view

matrix or plenoptic cameras. Stereo cameras are restricted in reconstruction quality

due to limited information in highly reflective regions or matching ambiguities regions

2



1.2 Scientific Contribution

with little or no texture. Multi-view array cameras, which have a higher redundancy of

information, are nevertheless burdened by the high complexity of harmonizing several

sensor sensitivities, lenses and focal lengths. Plenoptic cameras reduce complexity,

boasting a single sensor, one set of main lenses, and a microlens array allowing the

capture of directional information. Their disadvantages lie in the limited baseline given

by the physical sensor size and in a reduced spatial optical resolution. In plenoptic

systems the spatial resolution is traded for angular resolution. Placing these cameras

under a light dome or adjusting a ring light gives additional photometric stereo data.

This combination allows a highly precise surface reconstruction for area-scan setups.

In industrial in-line systems an object is scanned while it moves w.r.t. the camera, e.g.

on a conveyor belt. Such in-line computational imaging tasks work at high speeds

and are computationally expensive. Increasing computational power and memory

paired with better and more effective algorithms is sought after. Multi-line scanners

sample a chosen number of lines from the imaging sensors (e.g. 11), each with a

different viewing angle on the scene. This gives highly redundant information which

is beneficial in highly reflective, dark or low texture regions. While the object moves,

each sensor line reconstructs a full image, generating 3D information simultaneously

with texture data. Placing a line-light source next to the camera provides a different

illumination direction for each sensor line and hence gives additional photometric

stereo information.

Additionally to the high precision reconstruction results of such fusion methods,

multi-line scan systems are robust, convenient to install and calibrate for industrial

setups. Applications cover the reduction of shadows, detection of cracks in materials,

computation of all-in-focus images, inspection of soldering points as well as segmenta-

tion and forgery detection of holograms (diffractive optically variable image devices -

DOVIDs) on banknotes or documents.

1.2 Scientific Contribution

The attempt to combine light field with photometric stereo yielded various obstacles.

These included the calibration of the system, the combination and weighting of

3
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the terms, and the analysis of reflectance distributions from the given data. All

such variables were solved throughout our sustained enterprise. We focused on data

acquired by area-scan and multi-line scan cameras. The latter allows our algorithms to

be apt for a wide range of industrial applications.

Camera calibration is essential in order to achieve highly precise depth reconstruction

results from light field images. We show the calibration of multi-view matrix cameras

which requires a global optimization procedure to meet the epipolar constraints in

all views. Multi-line scan cameras capture an object which is moving in a defined

direction on a conveyor belt under the sensor. Hence calibration of such cameras

has to take the movement of the object into account. We describe the line-based

calibration and how to computationally deal with transport jitter in such systems. The

calibration of photometric stereo setups covers the identification of the position of the

light sources. This is often achieved by placing highly reflective spheres under the

acquisition device.

To analyze depth from light field data, we solve a correspondence analysis problem.

This can be done directly on the light field data, where a consistent match for all

observation angles is found. A more robust alternative is feature based matching,

where irradiance values are first processed in order to extract feature maps for each

view. We introduce robust features which can handle even highly reflective materials.

We provide an in-depth comparison of several variational methods using depth and

surface orientation data. We classify and evaluate weighting terms of common methods

and explain their differences. Based on our findings, we introduce a novel generalized

orientation weighting term which gives an improved performance. Additionally we

introduce a gradient-based method which is using a Total Generalized Variation (TGV)

regularization.

Objects can show a wide range of materials and surface structures. For the detection

and classification of properties or defects on these objects it is essential to understand

their reflectance distribution functions. Since capturing the dense functions is highly

time consuming (several years) and hence is infeasible, acquisition devices only capture

a small portion of them. We introduce a method to reconstruct more dense functions

from partial data using machine learning methods.
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1.3 Thesis Overview

1.3 Thesis Overview

Chapter 2 introduces the notation used in the thesis and gives an overview over convex

optimization problems and neural networks.

Chapter 3 introduces several aspects of light field imaging, including the 3D recon-

struction from light field data and the calibration of light field capturing devices.

We build on the calibration of matrix cameras which we presented in [18] and the

calibration of multi-line scan devices which we published in [19, 27].

Chapter 4 presents the acquisition, calibration and processing of photometric stereo

data. Furthermore we address the extraction of photometric stereo data from multi-line

scan acquisitions which we first presented in [9], with a refined formulation in [8].

Chapter 5 presents a highly precise depth reconstruction method using depth (e.g. from

light field) and surface normal (e.g. from photometric stereo) information based on

our work published in [7]. Earlier we introduced a basic frequency based combination

in [5].

Chapter 6 is based on our publication in [8]. We refine our previous ideas and adapt

them specifically for multi-line scanning data. Hence we introduce optimization

procedures to deal with missing photometric stereo evidence orthogonally to the

transport direction. Additionally we present new features which are tailored to the

reflectance and noise properties of multi-line scan acquisitions.

Chapter 7 shows the measurement and representation of reflectance distribution func-

tions and introduces the calculation of full bidirectional distribution functions (BRDFs)

from partial data using CNNs, based on our work published in [4].

Chapter 8 concludes the thesis and gives an outlook to future work.

1.4 Resulting Publications

The work presented in this thesis resulted in the following publications:
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• D. Antensteiner, S. Štolc, and T. Pock. “Multi-line Scan 3D Sensing With A Hybrid

Light-field And Photometric Stereo Approach.” In: International Conference on
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• B. Blaschitz, D. Antensteiner, and S. Štolc. “Multi-camera Array Calibration

For Light Field Depth Estimation.” In: Proceedings of Austrian Association for

Pattern Recognition Workshop (OAGM). (2018).

• D. Antensteiner, S. Štolc, and T. Pock. “A Review Of Depth And Normal Fusion

Algorithms.” In: Journal Sensors 18.2. (2018).
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pensation For Multi-line Scan Light Field Imaging.” In: IS&T International Sym-
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using Computer Vision, CA, USA. (2018).
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In this chapter we introduce the notation and methodological foundation used in

this work. We start with presenting the essential notations in Sec. 2.1, which are used

in the following chapters. An overview of convex optimization is given in Sec. 2.2,

where convex analysis and algorithms are described. An outline of the theory on

neural networks is given in Sec. 2.3. Here we present approaches to machine learning,

describe basic concepts with feed-forward networks and, finally, convolutional neural

networks (CNNs).

2.1 Notation

In this section we introduce the essential notations which are used in the following

chapters of this thesis. By default we assume discretized images of the size of M× N

pixels. In order to access the image location, we define the index set I = {i = (i, j) :

1 ≤ i ≤ M, 1 ≤ j ≤ N}. Consider a two-dimensional image P ∈ RM×N , discrete values

in each pixel are defined as follows:

P = (Pi,j)i,j∈I ∈ RM×N . (2.1)
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A p-norm on the scalar valued image P ∈ RM×N is defined as follows:

||P||p =

(
M

∑
i=1

N

∑
j=1
|Pi,j|p

)1/p

, (2.2)

which we interpret as a vector. Variables with a bold font refer to vector valued images.

Hence, the tensor P is defined as:

P =
(
Pi,j
)

i,j∈I ∈ (RK)M×N = RM×N×K, where Pi,j = (Pi,j,1, ..., Pi,j,K). (2.3)

For vector valued images P ∈ RM×N×K we consider the p,q-norm which is given as:

||P||p,q =

(
M

∑
i=1

N

∑
j=1
|Pi,j|

q
p

)1/q

, (2.4)

where the pointwise p-vector norm |Pi,j|p is defined as:

|Pi,j|p =
( K

∑
k=1
|Pi,j,k|p

)1/p. (2.5)

Hence the commonly used L2,1-norm is given by

||P||2,1 =
M

∑
i=1

N

∑
j=1

√
|Pi,j,1|2 + |Pi,j,2|2 + ... + |Pi,j,K|2. (2.6)

The discrete depth map of a scene is scalar valued in each pixel and defined as follows:

Z = (Zi,j)i,j∈I ∈ RM×N . (2.7)

The gradient of a depth map Z can be computed using standard finite differences:

∇Z = ((∇Z)i,j)i,j∈I , where (∇Z)i,j = ((∇xZ)i,j, (∇yZ)i,j), (2.8)

where the gradient operator in x- and y-direction ∇ : RM×N → RM×N×2 is given by:

(∇xZ)i,j =

Zi+1,j − Zi,j if 1 ≤ i < M,

0, otherwise,

(∇yZ)i,j =

Zi,j+1 − Zi,j if 1 ≤ j < N,

0, otherwise.

(2.9)
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2.2 Convex Optimization

Figure 2.1: Illustration of a line through two points. The line through x1 and x2 is

parameterized by y = θx1 + (1− θ)x2 with θ ∈ R.

2.2 Convex Optimization

In this section we present a rough overview about essential aspects of convex opti-

mization. The material is based on literature. For deeper insights into the matter we

refer to [24, 30, 150, 168].

Convex optimization is a well developed field since convex functions and sets have

convenient properties. Strictly convex functions have a unique minimum. Since any

local minimum has to be a global minimum, first-order conditionals are sufficient

optimality conditions. Convex functions are continuous, discontinuities can only occur

at the boundary of the domain of the function.

2.2.1 Convex Analysis

Convex Sets

The set C ⊆ RN is affine if a line between any two points x1, x2 ∈ RN with x1 6= x2 in

C lies in C:

y = θx1 + (1− θ)x2, where θ ∈ R. (2.10)

An affine combination defines the line through two points x1 and x2, which is illus-

trated in Fig. 2.1.
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(a) Convex set (b) Non-convex set

Figure 2.2: Illustration of convex and non-convex sets. In the convex set in a) the line

between any two points is contained in the set. The kidney shape in b) is

non-convex.

A set C is convex if a straight line between any pairs of points x1, x2 ∈ C lies also

in C:

y = θx1 + (1− θ)x2 ∈ C, where θ ∈ [0, 1] (2.11)

and θ forms the line between the point pairs with y = x1 for θ = 0 and y = x2 for

θ = 1.

If all points in a set can be connected by a straight line which lies in the set, the

set is convex. A convex and non-convex set are illustrated in Fig. 2.2. The convex

combination of two points x1 and x2 defines the line segment between the points.

Convex Functions

A convex optimization problem minimizes a convex function F over a convex set C

and has the form

min
x∈C

F(x). (2.12)
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2.2 Convex Optimization

Figure 2.3: Illustration of the epigraph of a function. The epigraph (red) of a function

F (blue) is a set of points lying on or above its graph.

A function is convex if and only if its epigraph is a convex set [55]. The epigraph of a

function F : RN → R is defined as the set of points lying above the graph as illustrated

in Fig. 2.3.

epi F = {(x, µ) : x ∈ RN , µ ∈ R, µ ≥ F(x)} ⊆ RN+1 (2.13)

A function F : RN → R is proper, if F(x) < +∞ for at least one x (its effective domain

is nonempty) and F(x) > −∞ for every x. In this case it is convex, if the domain of

the function is a convex set and if all line segments (x, F(x)) and (y, F(y)) lie above

the graph of F for θ ∈ [0, 1] and x, y ∈ dom F:

F(θx + (1− θ)y) ≤ θF(x) + (1− θ)F(y). (2.14)

This is a specific form of the Jensen’s inequality which follows:

F(∑
i

θixi) ≤ ∑
i

θiF(xi), with (2.15)

θi ≥ 0, and ∑
i

θi = 1.

A convex function is illustrated in Fig. 2.4, where the line segment between any two

points of the function lies above the graph. For convex functions Eq. 2.14 holds when

x 6= y and θ ∈ (0, 1). A function F is concave if −F is convex.
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Figure 2.4: Illustration of a convex function. Any line segment between two points lies

above the graph of the function.

Figure 2.5: Illustration of the first order convexity condition. If the function F is convex

and differentiable Eq. 2.16 holds for all x, y ∈ dom F.

First Order Condition

A function F is differentiable, if the gradient ∇F exists at each point in its domain. The

graph of a differentiable convex function F is always above the linear approximation

at a point x, hence the function is characterized by:

F(y) ≥ F(x) +∇F(x)T(y− x). (2.16)

This describes that a function is convex, if the first order Taylor approximation of F

near x is always a global underestimator of the function. Hence, convex functions allow

the derivation of global information (global understimator) from local information

14
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Figure 2.6: Illustration of the convex conjugate for one point. The function F∗(y) can

be represented as the maximum gap between a linear function xy and F(x).

(first-order Taylor approximation at a point). If ∇F(x) = 0, then x is a global minimizer

of the function F, since F(y) ≥ F(x) for all y ∈ dom F.

Second Order Condition

A function F is twice differentiable, if the second derivative (or Hessian) ∇2F exists

at each point in its domain. Such a function is convex, if and only if the domain of

the function is convex and its Hessian is positive semidefinite (i.e. all eigenvalues are

nonnegative) for all x ∈ dom F:

∇2F(x) � 0. (2.17)

This means that the graph has a non-negative curvature at the point x. If F : R→ R

this means that the 2
nd derivative is nonnegative, i.e.:

F′′(x) ≥ 0. (2.18)
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Figure 2.7: Illustration of the convex conjugate of a convex function. This shows the

geometric interpretation of the convex conjugate F∗ of the convex function

F. The intersection of the tangent line intersects with the y axis defines the

negative of the dual value at the value of the slope.

Convex Conjugate

The convex conjugate is used to form an optimization problem into its corresponding

dual problem. If the function F is differentiable, the convex conjugate is also called

Legendre transform of F. For a function F : RN → R the convex conjugate is defined

as:

F∗(y) = sup
x∈dom F

{〈x, y〉 − F(x)}. (2.19)

Independent of the convexity of F, the convex conjugate is always a convex function.

Applying the convex conjugate twice leads to the convex bi-conjugate which satisfies

the inequality F(x) ≥ F∗∗(x):

F∗∗(x) = sup
y∈dom F∗

{〈y, x〉 − F∗(y)}. (2.20)

Convex functions F are equal to their convex bi-conjugate F = F∗∗. For a specific point

y, the convex conjugate can geometrically be represented as the largest gap between
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Figure 2.8: Illustration of a function with a Lipschitz continous gradient. A quadratic

majorizer of the function F is shown in red.

a linear function xy and F(x) (Fig. 2.6). The geometric construction of the convex

conjugate of a convex function is shown in Fig. 2.7. It can also be seen that the convex

bi-conjugate F∗∗ and the original convex function F are equivalent.

Lipschitz Continuous Gradient

A continuously differential function F : RN → R has a Lipschitz continuous gradient

if there exists a constant L > 0 such that:

||∇F(x)−∇F(y)|| ≤ L||x− y||, ∀x, y ∈ domF. (2.21)

A function F with a Lipschitz continuous gradient with the parameter L has a conju-

gate F∗ which is strongly convex with a parameter 1/L. Functions with a Lipschitz

continuous gradient provide a quadratic majorizer (see Fig. 2.8), which is presented at

the right hand side:

F(y) ≤ F(x) +∇F(x)T(y− x) +
L
2
||y− x||2. (2.22)

This majorizer touches the function F in one point, where both have the same slope.
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(a) Orthogonal projection (b) Proximal operator

Figure 2.9: Orthogonal projection and proximal operator. a) Orthogonal projection of

a point x̃ onto a convex set C. b) Evaluation of the proximal operator at a

point x̃ as formulated in Eq. 2.28 is shown by the minimum position of the

the combined (orange) function, the quadratic distance to the point x̃ is

denoted as G(x, x̃).

Proximal Operator

Many practical optimization problems are making use of the proximal operator which

was introduced in [144]. The projection of a point x̃ onto a convex set C is described

by:

proj
C

(x̃) = arg min
x∈C

1
2
||x− x̃||2. (2.23)

This projection is illustrated in Fig. 2.9. It is an orthogonal projection, since it relies

on finding the shortest distance under the Euclidean norm between the point x̃ to the

convex set C. We can define the projection as an unconstrained optimization problem

by utilizing the indicator function:
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proj
C

(x̃) = arg min
x
{||x− x̃||+ IC(x)} (2.24)

= arg min
x
{1

2
||x− x̃||2 + IC(x)}, where (2.25)

IC(x) =

0, if x ∈ C

∞, otherwise.
(2.26)

Given a convex function F the proximal operator prox
F

: RN → RN is given by:

prox
F

(x̃) = arg min
x

{
F(x) +

1
2
||x− x̃||2

}
. (2.27)

The function on the right hand side is strongly convex and has a unique minimizer for

every x̃ ∈ RN . The proximal operator of the scaled function τF is given by:

prox
τF

(x̃) = arg min
x

{
τF(x) +

1
2
||x− x̃||2

}
, (2.28)

where τ > 0 controls the movement which the proximal operator gives towards the

minimum of the function F.

An interpretation of the proximal operator is shown in Fig. 2.9b. The proxτF is evalu-

ated a specific point x̃, as described by Eq. 2.28. The quadratic distance to the point x̃ is

denoted as G(x, x̃). The evaluation of the proximal operator is shown by the position

of the minimum of the sum of both terms. The extend of the movement depends on

the parameter τ.

Proximal algorithms are using proximal operators to solve a convex optimization

problem. This is useful in cases where the proximal operator can be evaluated quickly.

A simple example is iteratively applying proxF to the convex function F to an initial

point x0.

2.2.2 Algorithms

In this section we discuss different optimization approaches which we use to fuse

depth and surface orientation as well as the type of functions they can optimize. This
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section is an adapted version of the algorithm summary we previously published

in [7].

Least Squares

Least squares methods can be used to solve optimization problems which are described

as a system of linear equations:

min
x∈RN

1
2
||Ax− b||22, (2.29)

where x ∈ RN is an unknown vector, which is estimated from the known matrix

A ∈ RM×N and the vector b ∈ RM. A unique solution x is given, when the matrix A

has N linearly independent columns, hence (AT A) is invertible with N ≤ M:

x = (AT A)−1ATb (2.30)

Otherwise, iterative methods such as the conjugate gradient method can be imple-

mented to minimize Eq. 2.29.

Gradient Descent

Gradient descent is a first order iterative optimization method to minimize an objective

function F : RN → R which is convex and differentiable:

min
x∈RN

F(x) (2.31)

An x∗ so that F(x∗) = minx F(x) can be found for a convex function F(x) with a plain

gradient descent method with iterative updates as follows

xk+1 ← xk − αk∇F(xk), (2.32)

where the size of the steps in the descent direction −∇F(xk), for a Lipschitz continuous

gradient, is controlled by αk > 0. This update step is repeated until an accuracy of

ε is reached. If the function F does not fulfill the convexity condition, the algorithm

can get stuck in non-optimal stationary points (local minima, local maxima, saddle

points).
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Accelerated Proximal Gradient Method

Proximal algorithms minimize an objective function by using proximal operators,

as described in [158]. These algorithms work on general conditions as non-smooth

convex functions and they can be very fast, as there exist simple proximal operators

for various energy functions. Additionally they can be used in a distributed way for

large-scale problems. Proximal gradient methods consider optimization problems with

the objective split into two components:

min
x

F(x) + H(x), (2.33)

where F : RN → R and H : RN → R∪ {+∞} are closed proper convex functions and

where one of the functions (F) is additionally differentiable.The proximal gradient

problem uses a step size τk > 0 and is denoted as follows:

xk+1 ← prox
τk H

(xk − τk∇F(xk)). (2.34)

If ∇F is Lipschitz continuous with a constant L and a fixed step size τk = τ ∈ (0, 2/L)

is used, the method converges in O(1/k). When the constant L is not known, step

sizes can be found with a line search algorithm (e.g. [14]), where the values are chosen

in each step. Accelerated proximal gradient methods have an additional extrapolation

step in the algorithm and are denoted as follows:

yk+1 ← xk + wk(xk − xk−1), (2.35)

xk+1 ← prox
τk H

(yk+1 − λk∇F(yk+1)), (2.36)

where λk denotes the step size and wk an extrapolation parameter which is described

given by:

wk =
k− 1
k + 2

. (2.37)

If ∇F is Lipschitz continuous with a constant L and a fixed step size τk = τ ∈ (0, 1/L],

the method shows convergence with a rate O(1/k2). The fast iterative shrinkage

thresholding algorithm (FISTA) is one of the most popular accelerated proximal

gradient methods it is described in detail in [13].
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Primal-Dual

Primal-dual methods can be used to solve a large number of optimization problems of

the form:

min
x∈X

F(Kx) + H(x), (2.38)

where K ∈ RM×N is a continuous linear operator and F : RM → R ∪ {+∞}, H :

RN → R ∪ {+∞} are convex functions with inexpensive proximal operators. The

corresponding saddle point problem is described as:

min
x∈X

max
y∈Y
〈Kx, y〉+ H(x)− F∗(y), (2.39)

where F∗ denotes the convex conjugate of the convex function F. We are using the

Chambolle-Pock [29] primal-dual method and compute the proximal maps for H and

F∗. A proximal descent is computed in the primal variable x and, in an alternating

manner, a proximal ascent in the dual variable y:xk+1 ← proxτH(xk − τKTyk)

yk+1 ← proxσF∗(y
k + σK(2xk+1 − xk))

(2.40)

The convergence rate is O(1/k), and can be improved if H or F∗ are uniformly convex

to O(1/k2). Both, primal and the dual being uniformly convex the algorithm shows a

linear convergence O(wk), with w > 0 [14, 29, 149].

2.3 Neural Networks

In this section we give a basic overview over the field of machine learning (ML). The

material is based on the textbooks [16, 73, 175].

Most modern machine learning approaches focus on supervised learning with deep

convolutional neural networks. In associated tasks an input vector is mapped to an

output vector. First we present basic concepts and fundamental goals of machine

learning. Then we describe a simple feed forward network. Finally we proceed to

present more advanced techniques of convolutional neural networks.
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2.3 Neural Networks

Figure 2.10: Illustration of a perceptron. The binary inputs x = {x1, ..., xK} are mapped

to a binary output y (see Eq. 2.41).

2.3.1 Machine Learning

In general, machine learning algorithms can be divided into supervised and unsuper-

vised learning algorithms.

Unsupervised learning tasks learn data distributions in a set of features without prior

category labels. Having several examples of an input set X the probability distribution

or output set Y is learned. Hence, we learn to predict Y from X. The goal is to either

cluster groups of data or to determine the data distribution in the input space, also

called density estimation. Another application is the mapping of higher dimensional

data to a lower dimensional space for visualization. In unsupervised learning no

labeled input data is required.

Supervised learning has labels Y associated with all input vectors X which are repre-

sented in the dataset. We learn a mapping F : X → Y with a set of K training samples

{(xi, yi)|i = 1, ..., K} ⊆ X×Y. Applications are divided in classification and regression

problems. A classification example is the categorization of images, where the images

are labeled with a finite number of categories Y = {0, ..., n} (e.g. car, apple, ...) and the

network learns the representation of that category. In the field or regression we have a

continuous classification (e.g. depth estimation with Y ⊆ R). The goal of supervised

learning tasks is to infer the output for elements X which were not represented in the

learned labeled dataset.
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Figure 2.11: Illustration of a multilayer perceptron. The example inputs x0 =

{x0,1, x0,2, x0,3, x0,4, x0,5} ∈ X are mapped to an output y ∈ Y using three

layers l.

2.3.2 Feed-Forward Neural Network

Feed-forward networks emerged from the machine learning concept called perceptron,

which was developed by Frank Rosenblatt [169], inspired by [142]. The perceptron

estimates an output Y = {0, 1} from a linear combination of binary inputs X =

{x1, ..., xn} followed by a nonlinear function h:

y = h
(

∑
j

wjxj

)
. (2.41)

Weights w = {w1, ..., wn} determine the importance of an input to the output to the

final output value y ∈ Y. An illustration is shown in Fig. 2.10.

Multilayer perceptrons (MLPs) combine several layers l of perceptrons to approximate

a function to map a sample from X to an output from Y. A fully connected network is
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shown in Fig. 2.11, where each neuron (perceptron) is connected to every neuron from

the previous layer. The output of a single layer l is represented as:

Fl(xl−1) = h ◦ al(xl−1), with (2.42)

al(x) = wlx + bl and (2.43)

hl(x) = (hl,1(x1), ..., hl,K(xk)), (2.44)

where al(x) : Rk
l−1 → Rk

l represents an affine function, hl(x) : Rk
l → Rk

l a non-linear

function and ◦ denotes the composition of functions. The output of multiple layers is

defined as:

F(x0) = (hL ◦ aL ◦ ... ◦ h1 ◦ a1)(x0), (2.45)

where x0 denotes the input samples. A large value of L describes a deep network.

MLPs are a specific class in the group of feed-forward networks. Where networks

of this group, contrary to the more specific MLPs, usually use nonlinear activation

functions. Using perceptrons, a small change in the weights or the bias of the network

can result in a drastic change in the output from 0 to 1. For learning tasks we want a

small change in the weights w to result in a small change in the output y. This allows

the network to learn by iteratively updating the weights so that in each step the output

moves closer to the correct result. To achieve this, usually neurons with a nonlinear

activation function h for each neuron zi are utilized (e.g. sigmoid function shown in

Fig. 2.12a, hyperbolic tangent function shown in Fig. 2.12b). We compute the activation

value for each neuron as follows:

zi = h

(
K

∑
j=1

wijxj + bi

)
, (2.46)

with a bias equal to the negative threshold bi = −t for each neuron. In case of using a

sigmoid hσ or tanh ht activation functions (see Fig. 2.12a), the output of a neuron is

given by:

hσ(zi) =
1

1 + exp(−zi)
or (2.47)

ht(zi) = tanh(zi). (2.48)

For multi-class problems usually the softmax activation function hs is used, which
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(a) Sigmoid function (b) Tanh function (c) ReLU

(d) Leaky ReLU (e) ELU

Figure 2.12: Illustration of activation functions. a) Sigmoid function maps real numbers

to a range of [0, 1]. b) Hyperbolic tangent function maps real numbers to

a range of [−1, 1]. c) Rectified linear units have slope of 1 for x > 0 and 0

otherwise. d) Leaky ReLUs have a range of [−∞, ∞]. e) Exponential linear

unit.

normalizes an output vector Z ∈ RN to the range (0, 1), with all K values adding up

to 1.

hs(zi) =
exp(zi)

∑K
j=1 exp(zj)

. (2.49)

Softmax activation functions give probability distribution in categories with a proba-

bility for each class.

Rectified linear units (ReLUs) are defined as hReLU(x) = max(0, x), as shown in

Fig. 2.12c. They are the most frequently used activation functions in neural networks.

In [114] it was shown that ReLUs allow a faster convergence of the network compared

to using sigmoid or tanh functions, as any negative input is mapped to zero. ReLUs

have the drawback that neurons can deactivate when the learning rate was too high,

which would cause them to continuously output the same value regardless of the input.

A later activation during the learning phase is unlikely, since the gradient remains 0

and the weights won’t be changed. This problem was addressed by introducing the

variations such as leaky ReLUs with hLReLU(x) = max(x, ax) for a < 1 or exponential
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linear units (ELUs), which are shown in Fig. 2.12d and Fig. 2.12e respectively. Leaky Re-

LUs have a linear negative function and are superior to ReLUs [136]. Other approaches

proposed the learning of the slope in the negative part (parametric ReLUs) or randomly

sampling the slope (randomized leaky ReLUs). It was shown in [39] that ELUs can

lead to faster learning and to a significantly better generalization performance than

ReLUs or leaky ReLUs.

The result of the activation in each layer depends on the previous layers, but not on

the following ones. In a forward-propagation step we start evaluating the activations

of the first hidden layer and continue until the output layer is reached.

In order to train a neural network a loss function is defined, e.g.:

E(w, b) =
1
2

K

∑
j=1
|| f (xj, wj, b)− yj||2, (2.50)

where xn denotes the input vectors and yk denotes the corresponding output vectors

from the network. The weights of the network are denoted with w and the biases

with b. These weights are first initialized randomly and then updated based on the

learning rate and gradient in each iteration during the training process in order to

minimize the loss function. This is usually done with an iterative gradient descent

method (see Sec. 2.2.2). The gradients are usually estimated with the backpropagation

method.

2.3.3 Convolutional Neural Network

For image processing tasks adjacent pixels are usually correlated with each other.

This can be exploited using convolutional neural networks (CNNs) [118]. They are

widely used for computer vision applications such as character recognition, object

detection and recognition, analysis of medical images (e.g. tumor detection) or depth

reconstruction. The difference to feed forward networks is the use of local receptive

fields, weight sharing, subsampling and pooling layers in earlier networks. CNNs are

arranging the neurons in 3 dimensions (width, height, depth), these layers are also

called feature maps. The first layers of CNNs are usually convolutional layers. These
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(a) Receptive field (b) Pooling

Figure 2.13: Illustration of CNN feature maps. a) The convolution kernel has a size

k = 3× 3. Applying the convolution in a 5× 5 input map produces a 3× 3

feature map and in the next step a single feature. One feature is therefor

related to a defined region in the input map, which is called receptive

field. b) Pooling creates a more condensed feature map. Max-pooling takes

feature maps from a defined region (e.g. 2× 2) and output the maximum

activation in the region.

perform convolutions on the image with a filter kernel of a defined size (e.g. the input

image has a size of 256× 256 and the filter kernel 5× 5), where the depth of the filter is

equal to the depth of the input. The receptive field of a specific feature is illustrated in

Fig. 2.13a. It is defined by the center location and the size of the field. Sharing weights

reduces the amount of parameters in the network. The assumption is that if a feature

is useful in a specific location, it should also generalize to other locations. Pooling is

used to determine if a specific feature is found in the image. It increases the robustness

against minor object transformations. It describes the grouping of local features from

adjacent pixels, as illustrated in Fig. 2.13b. A common method is max-pooling which

takes the maximum response from the chosen feature region. L2-pooling takes the

square root of the sum of the squares of the activations in the feature region. Fully

connected layers are usually used for the last layers. In the case of a classification

problem, they form the output of the previous layer to a probability for each output

class. For example, a network which predicts an image to be a car has high values for

the activation maps which represent high level features such as wheels or doors. The

fully connected layers take the high level features which strongly represent a specific
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Figure 2.14: Illustration of a convolutional neural network.

object class. The weights are set in a way that the product between the weights and

the features in the preceding layer gives the probabilities for each object class.

A CNN can be trained by backpropagation which is also used for feed-forward

networks. An example of such a network is shown in Fig. 2.14, comprising two

convolutional layers followed by pooling layers. The last layer is fully connected,

where all neurons between two consecutive layers are connected to each other.

CNNs exploit the 2D structure of input images. They are often organized in multiple

layers which are alternating between convolutional- and pooling layers, which leads

to a deep convolutional architecture. Convolutional filters in the first layer represent

low-level features and represent e.g. edge filters. In higher layers more complicated

structures can be learned by the network. Examples of features learned in 3 different

layers (low-level, mid-level, high-level) are represented in Fig. 2.15.
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(a) Low-level (b) Mid-level (c) High-level

Figure 2.15: Illustration of features learned by a CNN [124]. The features are extracted

from three different layers on the network. Low-level features are formed

in the first layer and high-level features in the last layer of the CNN.
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In this chapter we will introduce several aspects of light field imaging. First we present

the current state-of-the-art in Sec. 3.1, then we discuss the acquisition of light field data

in Sec. 3.2. We describe the calibration of capturing devices with a focus on industrial

applications in Sec. 3.3. Here we build on our calibration of matrix cameras presented

in [18] as well as on our calibration of multi-line scan systems presented in [19, 27].

Finally, we discuss the depth reconstruction from light field in Sec. 3.4. This is related

to our work based on the 3D reconstruction in multi-line scan systems presented in [5,

6].

3.1 State-of-the-art

The modern interpretation of the flow of light through space as fields, similar to

magnetic fields, traces back to Micheal Faraday’s lecture to the Royal Society in

1847 [53]. This idea was not further formalized by him. The concept of light fields was

first defined by Arun Gershun in his well known paper in 1936 [70], where he defined

the flow of light through each point in space. He identified that light shows a smooth
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Figure 3.1: Light field parametrization example. Light rays are defined by their inter-

section of two regions, where (u,v) represents the first plane and (s,t) the

second plane.

variation in spacial distances, which was characterized using calculus and analytic

geometry before the time of digital processing and hence without the possibility to

measure light fields.

Today we have the technology to capture and analyze light fields. They are used for

computational imaging tasks as refocusing images after the acquisition, reconstructing

the 3D shape of a scene out of a single camera shot, analyzing the surface material

structure from a photograph or changing the viewpoint after an image was acquired.

Light fields can be parameterized by a 5D plenoptic function L(x, y, z, φ, θ), which

defines the position (x, y, z) and orientation angles (φ, θ) of the radiance along all rays

in space with a fixed arrangement of lights [121]. Since the radiance along each ray

remains constant, the function contains one redundant dimension. This results in a

4D light field function which can be denoted by L(u, v, s, t), where the light rays are

parameterized by their intersection of two planes as illustrated in Fig. 3.1.

Light field cameras capture a scene from different viewpoints. This can be achieved

by camera arrays, where several cameras are placed next to each other and each

camera has a different viewing perspective on the scene. An example of a light

field camera is the acclaimed Stanford camera array introduced in [219]. Plenoptic

cameras consist of a single camera sensor and usually have a microlens array placed
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in front of the sensor to acquire angular dependent reflectance information. This

system was proposed by Adelson [1] and implemented by Ng [151]. Another way

to acquire light fields is moving a single camera in order to acquire several images,

while observing a static scene [122] [74]. Four single cameras were used to capture

a scene in [140] while the processing tasks were distributed over five computers. A

dome of cameras was introduced in [107], where each camera is fixed on a dome

structure and captures the scene from a different viewpoint. Coded aperture cameras

use a patterned occluder within the aperture of the camera lens [120]. The radiation is

blocked in a specific pattern and casts a shadow on the camera sensor. The original

image can be reconstructed computationally in addition to the depth of a scene.

Multi-line scan cameras, as described in [189], allow high speed and highly accurate

light field acquisitions for in-line applications. From a camera sensor several lines are

acquired while an object is moving below the camera on a conveyor belt. Each sensor

line gives a different viewing angle on the acquired scene.

Applications for light field cameras include the depth reconstruction of scenes, com-

putational refocusing and the dynamic depth of field rendering.

In this chapter we discuss light field acquisition devices and their calibration, as well

as applications and the computational 3D reconstruction.

3.2 Acquisition Devices

Light fields can be acquired in several ways, each of which show different properties

in precision, baseline, speed and calibration. In this section we present various camera

types and setups.

3.2.1 Matrix Cameras

Light fields can be captured by a matrix of conventional cameras, as illustrated in

Fig. 3.2a. Each camera captures a slice of the 4D light field function with a specific

position and orientation. An early linear array of cameras was used in [201], which
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(a) Matrix camera (b) Plenoptic camera

(c) Ring camera (d) Coded aperture

Figure 3.2: Illustration of light field camera concepts. a) 4x4 matrix camera. b) Plenoptic

camera, where a microlens array in front of the sensor splits light rays to

provide directional information. c) 360 degree ring camera. d) Patterened

occluder as used for a coded aperture.

had the aim to create the illusion of a linear camera movement by iterating through the

views of a static setup. A camera array holding 64 cameras was introduced in [230], the

work focused on creating a scalable light field system designed to use a minimum data

bandwidth. A self configurable array with 48 cameras as introduced in [237]. Using a

color consistency score allowed a real time calibration of the cameras during motion.

The prominent Stanford camera array was then introduced in [219] for computational

imaging tasks such as increased resolution, dynamic range or simulating a larger

aperture. The setup consists of 100 cameras and allows the capture images or video

data.

A compact matrix camera for consumer devices was presented in [208]. This passive

camera improves previous approaches such as [196, 197] in image quality. It supports
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(a) (b)

Figure 3.3: Examples of plenoptic cameras. a) Plenoptic 1.0 camera. The main lens is

focused on the microlens array and the microlens array is focused at optical

infinity. b) Plenoptic 2.0 camera. The microlenses are focused at the image

plane of the main lens.

still images and video and low light acquisitions, due to its thin and portable structure

it is well suited for use in mobile phones.

Xapt introduced a 4x4 matrix camera [227]. The camera showed to be apt for industrial

inspection tasks [19]. We will discuss the calibration of matrix devices using the

example of the XApt camera with a focus on industrial acquisitions in Sec. 3.3.2.

3.2.2 Plenoptic Cameras

Standard 2D cameras capture irradiance from different directions at a defined view-

point. Plenoptic cameras have a microlens array placed in front of the camera sensor,

with which they capture 4D light field data. This is illustrated in Fig. 3.2b. In 1908 the

concept of microlens arrays was introduced by Lippmann [130] and later refined by
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Ives [99]. Adelson [1] introduced a camera in 1992, where the main lens was focused

on the microlenses, which is now known as plenoptic 1.0. The concept is illustrated

in Fig. 3.3a. This idea had been considered and improved by [57, 133, 152], which

resulted in plenoptic 2.0 cameras. The concept is illustrated in Fig. 3.3b, where the

microlenses are placed in a distance b from the sensor and the microlenses are focused

on an image plane in distance a. This approach allows the increase of spatial resolu-

tion, which is given as b
a of the sensor resolution. Further increasing the resolution

computationally and inferring super-resolution images from plenoptic 2.0 cameras

was introduced in [67]. The Lytro plenoptic camera was commercially available in

2011 followed by a second generation in 2014. Raytrix produces light field cameras for

industrial applications, with a focus on the production of plenoptic 2.0 cameras.

3.2.3 Coded Aperture Cameras

Another method to acquire light field data with a conventional camera and a single

sensor is using coded apertures. A patterned occluder (see Fig. 3.2d) should reside in

the aperture of a standard camera. The known obstruction pattern lets less light to the

sensor and creates a different point spread function. The closer the object moves to

the focal plane, the smaller the pattern projected on the sensor becomes. The resulting

image on the sensor has to be decoded to produce a final image.

A coded aperture with a Fresnel zone plate was introduced in 1961 by [143]. In

1978 the idea was extended to using uniformly redundant arrays by Fanimore and

Cannon [56]. These arrays are nonrandom patterns of openings with specific features.

Striving for the reduction of noise in the image. Wavefront coding was used in [28,

46] in order to get an increased depth of focus and increase the depth of field. These

early coded aperture approaches recover either the depth or the standard image. The

depth reconstruction combined with the retrieval of the standard image using a coded

aperture camera was shown in [120].
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3.2.4 360 Degree Cameras

Recently the growing interest in virtual reality (VR) applications led to an increasing

development of 360 degree light field cameras. These setups should allow rendering

stereo views and depth cues over a 360 degree capture of a scene. To acquire a full

circular viewing range, cameras are usually placed on ring structures as illustrated

in Fig. 3.2c. Such models have been introduced by e.g. Google [3] and Facebook [54],

which also allows rendering scenes from a single vantage point. Algorithms were

extended to facilitate a limited head-motion range in [129], which is an important

factor in VR applications. A second generation camera was recently introduced, where

the cameras are placed on a sphere for an extended viewing range. Other 360 degree

camera setups were introduced which are using a mirror rig to capture panoramic

videos for immersive applications [71, 195, 217].

Since we focus on light field cameras which can be applied in industrial inspection

tasks, acquisition devices used for gaming or immersive applications will not be

further considered.

3.2.5 Multi-Line Scan Cameras

Single line camera sensors have already been used commercially since the introduction

of fax machines on the market. Today, line scan cameras are frequently applied in

industrial inspection tasks and embedded in commercial camera bodies. Contrary to

standard line scan cameras, multi-line scan devices can capture light field data and

consequently allow computational imaging applications. This is equivalent to using

multiple line scan cameras observing a scene from a different position, which was

previously shown in [190].

We use multi-line scan light field for 3D inspection of fine surface structures. The setup

was previously described in [5, 190], and an illustration is shown in Fig. 3.4. From

an area-scan camera a chosen number of sensor lines is extracted. Each sensor line

allows a different viewing angle on the scene, where an object is moving in a defined

transport direction with a constant speed on a conveyor belt. Each sensor line observes
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Figure 3.4: Illustration of a multi-line scan camera. The object is moving on a conveyor

belt in the transport direction under the camera sensor, illuminated by two

linear light sources. Each sensor line acquires an image from a different

viewing angle over time.

the conveyor belt in a different viewing angle and captures the object at a certain

position. For each viewing angle, by sampling single lines over time, a full image will

be generated from the object. This allows acquiring light field data in real-time and

in-line, which is crucial for industrial inspections.

We introduced calibration approaches for multi-line scan cameras in [19, 27], which

we describe in more detail in Sec. 3.3.4.

3.3 Calibration

3.3.1 Concept

The calibration of light field systems is important for applications such as precise depth

estimation, 3D reconstruction, digital refocusing or reflectance analysis. Calibrating the
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combination of a camera with a lens starts with the acquisition of a calibration target,

such as a checkerboard pattern or a grid of dots with known dimensions. This allows

the calculation of the extrinsic and intrinsic camera parameters and consecutively the

rectification of the image. Extrinsic camera parameters describe the camera position

and rotation, while intrinsic camera parameters describe the geometric property of the

camera, defined by the focal length, the principal point offset and the axis skew.

Multi-view camera systems additionally require a global optimization procedure, such

as a bundle adjustment step, in order to bring all cameras in the array in one common

coordinate system.

Plenoptic cameras have an additional parameter, which is the distance of the lenslet

array and the camera sensor. These cameras also require a decoding step prior to the

calibration. The precise placement of the lenslet array is unknown and the position of

the center of all lenslets has the be determined before each view can be separated. In

the rectification process for plenoptic cameras, it has to be considered that all views

are captured on the same sensor and with the same main lens.

Multi-line scan cameras capture objects which are moving under the camera sensor. In

industrial applications, these objects move on conveyor belts in a defined direction.

The calibration of such systems has to take the transport jitter into account, as well as

the unique structure of an image, which is formed from a specific view and thereby

from a specific sensor line. This means, that each sensor line has the same distortion

from the main lens along the transport direction.

In the following section we will discuss the calibration of those methods which are

relevant for industrial applications.

3.3.2 Matrix Cameras

Multiple views of a scene can be captured by matrix camera systems, where all cameras

are fixed on a plane in a defined distance from each other. Concepts of multi-camera

calibration systems have previously been presented in [156, 192, 205]. An efficient

space-sweep approach has been proposed in [41], which showed a linear algorithmic
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Figure 3.5: Illustration of our experimental setup with a 4x4 matrix camera. The

calibration pattern with a three dot central pattern is described in Sec. 3.3.4.

complexity with the number of taken images. In [75] Graber et al. proposed a system

for the interactive reconstruction of a scene from monocular video making use of

convex optimization.

In this section discuss a multi-camera array calibration approach which we introduced

in [18]. This calibration is targeted for the use of matrix cameras in industrial appli-

cations with an arbitrary multi-camera geometry. An example of our experimental

calibration setup with a 4x4 matrix camera (such as the Xapt Eye-sect XA) is shown in

Fig. 3.5.

First, each camera is calibrated with a calibration target to identify the intrinsic

and extrinsic camera parameters [38, 240]. Intrinsic camera parameters include the

focal length, principal point, camera skew, radial distortion and tangential distortion

coefficients. Extrinsic camera parameters comprise the position and the rotation of the

camera in a global coordinate system.
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camera 1

reprojected

detected

camera 2
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camera 3

reprojected
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Figure 3.6: Illustration of the reprojection error of the matrix camera calibration. The

sum of the difference of the error between the detected points and the

reprojected points for all cameras is called bundle adjustment.

Second, the reprojection error is minimized by an optimization procedure as illustrated

in Fig. 3.6. An initial pairwise multi-view correspondence analysis is followed by a

bundle adjustment routine, where the reprojection error is optimized over all cameras

and image points [63].

Third, the images are rectified making use of the obtained calibration model in order

to allow further computational imaging applications. Usually all cameras point to

different directions and their locations are seldom coplanar, hence we cannot use

standard stereo image rectification procedures as described in [64, 111]. The camera

views have to be reprojected to one common regression plane, as discussed in [41].

This allows simple translation and scaling operations instead of otherwise costly

warping procedures for the cross-comparison between multiple images. The image

manipulation procudure is reduced to a simple translation between multiple cameras

in case all camera centers are coplanar and the chosen regression plane is parallel to

the camera plane. This gives a significant computational and algorithmic advantage

compared to the standard stereo vision approach.

The rectification of a matrix camera through calibration is shown with an example
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3 Light Field Imaging

(a) (b)

Figure 3.7: Matrix camera calibration example [18]. a) Input image acquired with the

Xapt Eye-sect XA camera. b) Undistorted rectified image.

from the Xapt Eye-sect XA camera in Fig. 3.7.

3.3.3 Plenoptic Cameras

Plenoptic cameras have a microlens array in front of the camera sensor, which allows

encoding the direction of incoming light rays and thereby multiple views on a scene,

which we described in Sec. 3.2.2. A plenoptic camera model has been derived with ray

transfer matrix analysis in [68] to describe the light path through the system. The work

of [45] refined the model, including the effects of lens distortion and the projection

through the microlens array.

The rectification process for light field can be implemented by sampling the light field

data on the sensor in such a way, that the lens distortion is reversed. The calibration of

plenoptic 2.0 cameras was described in [102]. Here the intrinsic and extrinsic camera

parameters were estimated by optimizing an energy formulation, which is based on

a thin lens equation. The approach allows the correction of radial lateral and radial

depth distortions.
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3.3 Calibration

(a) (b)

Figure 3.8: Plenoptic camera example images. a) Image acquisition with a plenoptic

2.0 camera [102]. b) White image acquisition with microlens centers [45].

The input for each calibration for plenoptic cameras is the raw 2D microlens image

from the sensor (see Fig. 3.8a), which is decoded into a 4D light field image. Therefor

the precise position of each microlens is determined by analyzing a white image

acquisition and optimizing the position of the center of each microlens (see Fig 3.8b).

Converting the hexagonal grid to a regular image grid was explained in [42]. Each pixel

position in a microlens corresponds to a spatial ray. For all well-visible pixel points in

the microlens regions an image with a defined view on the scene can be sampled. Initial

intrinsic and extrinsic parameters are estimated with a standard camera calibration

process for each sampled image. The lens distortion model is computed including

decentering, radial distortion and the undistortion of the ray directions.

3.3.4 Multi-Line Scan Cameras

Multi-line scan cameras are very well suited for high speed industrial inline inspection

applications. These cameras capture multiple views on one sensor by acquiring images

from several sensor lines over time, as described in Sec. 3.2.5.

A calibration for multi-line scan cameras was introduced by [19]. Since a highly

accurate camera calibration is especially important for high magnification acquisitions,

additionally a high precision calibration target was introduced. Before, these cameras
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Figure 3.9: Multi-line scan camera calibration [19]. The setup (left) shows a camera

sensor rotated w.r.t. the transport direction of the transport stage. The views

which are captured in that setup are saved in an image stack (right). As

depicted, in an uncalibrated system object points can travel along curves in

the image stack.

were usually equipped with high quality industrial lenses, without a calibration

tailored to the multi-line camera properties. In a standard multi-line scan setup,

an object is moving on a conveyor belt below the camera. The synchronization of

this transport stage and the camera is crucial for highly precise measurements. A

computational correction of transport jitters was introduced in [27].

Camera Calibration

The multi-line scan camera calibration, as introduced in [19], determines the intrinsic

and extrinsic parameters of the camera for image rectification in an industrial setup.

Previously several approaches were introduced for the calibration of single-line scan

cameras, using structured light [126, 134], an additional laser finder [239], or the

assumption that the transport is orthogonal to the camera [35, 77, 96].

Internally the multi-line scan camera is using a fast area sensor. Hence it can be

configured to read out all sensor lines, which allows using standard calibration

approaches [23, 25] to calculate the intrinsic camera parameters.
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3.3 Calibration

Figure 3.10: AIT calibration target [19]. To recognize the pattern, only the central three

dots need to be visible.

For the remaining calibration n sensor lines (l1, · · · , ln) are sampled, while an object is

moving below the camera in a defined transport direction t (see Fig. 3.9). Each sensor

line corresponds to a specific viewing angle on the scene. Note that the sensor distortion

is constant in z-direction, since the lens distortion is constant over time for the same

scan line. The camera cannot be assumed to be perfectly aligned with the direction of

the transport stage, which leads to a perspective warping between arbitrary lines lv

and lv+1. After determining the intrinsic and extrinsic camera parameters, including

the focal length, the principal point and the distortion vector - the original image is

warped to a virtual camera plane, undistorted, resampled w.r.t. the u-coordinate and

rectified.

Since there is no guarentee that the whole caibration pattern will be visible, especially

at high magnifications, a new high precision grid distortion target was introduced

in [19] (see Fig. 3.10). This marker is robust and easy to detect, while providing

information about the orientation of the pattern and image mirroring. For further

details about the specific multi-line calibration approach consider [19].

Transport Jitter

Transport jitter occurs for moving objects when the transport stage is not triggering

the camera perfectly, which leads to uneven distances between the scene samples.
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3 Light Field Imaging

Figure 3.11: Transport jitter artifacts effects in 3D reconstruction [27]. The depth map

resulting from the uncorrected input is shown left and the depth map

after a jitter correction on the right.

Especially for high precision measurements at high magnifications this has a serious

impact. When using the data for 3D reconstruction the transport jitter causes ripple

artifacts in the depth map, as shown in in Fig. 3.11. There are several approaches

to reduce transport jitter, such as letting the transport stage trigger the camera or

capturing an optical measurement marker additionally to the transported objects.

In [216] the motion error was compensated with a closed-form expression on a pixel

level in the 3D reconstruction. A smartphone based approach was introduced in [115],

where the front camera captures a control pattern while the back camera acquires

images from the scene. Internal reflections were used in [131].

An optimization approach with a pixel warping function was introduced in [27], which

corrects the jitter using light field data of the scene and is tailored to multi-line scan

data correction. It works under the assumption, that the backwards and forwards

disparity should be equal between different views. Additionally the result is penalized

for deviations from the original solution and smoothness is enforced. These terms

are formulated in an energy function and optimized with a standard least squares

approach.

The transport jitter correction part in the calibration of multi-line scan systems is

especially important when the transport stage cannot be perfectly synchronized

with the camera, high magnifications are used or there is a need for highly precise

measurements.
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3.4 3D Reconstruction

3.4 3D Reconstruction

3D reconstructing methods using light fields have been around for decades. It became

popular due to the works of Bolles et al. [21, 22], which also introduced the analysis of

light fields using epipolar image plane (EPI) structures. They use line fitting approaches

to find linear structures in these EPI stacks, which was frequently adopted. The analysis

of EPI stacks was used for densly sampled, high resolution light field data in [109,

110], where smooth regions are handeled in a hierarchical approach.

Techniques from classical stereo matching were regularly used for the analysis of

light field data. Robust patch-based methods were developed in [17, 65, 206, 237].

Clustering approaches were used in [12, 61], where points with a matching depth

range are clustered together. Venkataraman et al. [208] used pattern matching between

different views, i.e. for a discrete number of hypothesized depths the sum of absolute

differences (SAD) of radiances between different views is calculated.

Depth from focus techniques were presented in [76, 162], which were customized for

light field data in [128, 199, 200]. Those techniques show inaccuracies at boundary

regions and the precision is limited by the size of the aperture.

Shearing approaches describe finding the correct lines by shifting the EPI stack (see

Fig. 3.12) for all possible depth hypothesis. The correct depth is found, where in

a vertical line (over all views) the image values correspond best to each other. The

shearing can cause depth estimation errors for objects which are in a far distance from

the focus plane [198], where large shifts are necessary.

Optimization approaches to calculate depth from light field data were presented in [87,

125, 188]. A variational approach to estimate the depth in linear EPI structures via

analysis of dominant local orientations through structure tensors was introduced

in [213].

In this section we describe the structure of the EPI representation of light field stacks

as well as a light field depth reconstruction approach.
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3 Light Field Imaging

Figure 3.12: EPI stack illustration [6]. (a) A Stanford dragon object [186] scanned with

a simulated light field camera. (b) Zoom of the red marked region. (c) EPI

stack along the red dotted line.

3.4.1 EPI Representation

Consider the 4D light field representation as described in Sec. 3.1, which consists

of two directional and two spatial dimensions describing the propagation of light

through space. These light fields can be analyzed in the EPI domain. All light field

images which are usually acquired with a specific illumination direction form a light

field stack. A cut through this stack shows linear structures, where the slope angles

correspond to a defined distance to the camera of the corresponding object point in

the scene. Fig 3.12 shows an EPI structure from one image line, constructed using 9

camera viewpoints.

The depth of each point in the scene can be found by solving a correspondence

problem between all views to find the correct disparities (slope angles), and thereby

depth values.

3.4.2 Slope Analysis

The calibration of light field cameras was described in Sec. 3.3. Analyzing the slopes

in EPI stacks (see Fig 3.12), allows for a well calibrated camera a pixel-wise depth

reconstruction. This is contrary to standard stereo methods, which need to analyze

neighboring regions to reach a reasonable matching confidence. A refined result can
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(a) No occlusion (b) Occlusion

Figure 3.13: EPI correspondence with occluded objects.

u
k

Figure 3.14: EPI stack with uniform color. Uniform color (as in the red marked region)

leads to an ambiguous slope analysis result. The red lines mark the central

view and the center of the image position.

be achieved by pyramid analysis methods as shown in [109], as well as by tensor or

variational approaches [213].

The 4D light field representation L(u, v, s, t), as described in Sec. 3.1, holds the intensity

of a light ray parameterized by two planes. This can be analyzed in the EPI domain

(shown in Sec. 3.4.1) by fixing two coordinates, namely either (v, t) or (u, s) which

results in a horizontal or vertical EPI stack respectively.

Occlusions effect the matching result, which has been previously discussed [34, 141,

200, 210]. An example is shown in Fig. 3.13. When no occlusion is present, the

assumption that depth values of the slopes can be analyzed over all k ∈ n views does

not hold anymore. This influences the reliability of the matching result.

When objects have little or no surface texture (as shown in Fig. 3.14), depth from

light field additionally leads to ambiguous results. Using additional measurements

such as photometric stereo (which we describe in Sec. 4) can give highly confident

results in those regions to compensate the restrictions of multi view imaging. A

confidence measure can be used to determine if a calculated depth value is reliable.
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Blur estimation was used with a tensor approach in [229] to estimate the confidence of

a light field measurement. Local and global confidence metrics were introduced in [34].

Where the local confidence gives more confidence to the depth values estimated in

textured regions and the global confidence was computed by the gap between the

global depth estimation and the second best local solution, the smaller the gap the

lower is the confidence. The depth for all pixels with a low confidence was marked

as unknown. A peak ratio measure was introduced by [94], here the best and second

best correlation values are compared, where a low distance between the two points

indicates a lower confidence.

A correspondence measure, as shown in [199], can be applied in the EPI stack by

shearing the stack L(u, v, k) in an angle α and computing the variance for a given pixel

position (u, v).

Lα(u, v, k) = L(u + k(1− 1
α
), v, k) (3.1)

σα(u, v)2 =
1
n

n

∑
k=1

(Lα(u, v, k)− Lα(u, v))2 (3.2)

Where k denotes the index of an image from a defined viewing position in a light field

stack. L is the refocused images for a sheared stack over the angle α and therefor the

average over all views in each pixel location (u, v). For robustness the correspondence

analysis result can be averaged over a region with a window size w.

Cα(u, v) =
1
|w| ∑

u,v∈w
σα(u, v) (3.3)

We need to find a shear angle α which minimized the correspondence measure, which

is given by:

αC(u, v) = arg min
α

Cα(u, v). (3.4)
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3.4 3D Reconstruction

Figure 3.15: Light field depth estimation example [198].

This angle is in linear relation to the depth Z. The confidence for the best result is

given by:

C1(u, v) = min
α

Cα(u, v). (3.5)

A simple peak ratio measurement can be implemented by comparing the first and the

second best matching result.

Ccon f =
C2(u, v)− C1(u, v)

C1(u, v)
(3.6)

Where C2(u, v) denotes the second best correlation value.

An example of a depth result is shown in Fig. 3.15, where several occlusions occur.

Depth estimation with light field data has limitations, lying in the baseline of the

capturing system, the angular resolution, and the fact that homogeneous regions cannot

be reliably estimated. Especially in scenes with fine details or for surfaces with little or

no pattern, the construction result can be greatly improved by combining light field

methods with photometric stereo. In the next Chapter we describe photometric stereo

acquisition frameworks, calibration approaches and depth reconstruction methods in

more detail.
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3.5 Conclusion

In this chapter we introduced light field methods with a focus on the application in

industrial 3D reconstruction. In Sec. 3.2 we showed light field acquisition devices for

area scan applications (matrix/array cameras, plenoptic cameras, 360 degree cameras,

coded aperture cameras) as well as for in-line applications (multi-line scan camera).

In Sec. 3.3 we discussed in detail the calibration of camera types relevant for industrial

applications, namely matrix/array cameras, plenoptic cameras and the multi-line

scan camera. The presented calibration of matrix cameras [18] and multi-line scan

systems [19, 27] is based on our previous publications.

We showed the analysis and depth reconstruction of light field data in Sec. 3.4. We

presented the 3D reconstruction from light field data for multi-line scan systems

previously in [5, 6]. In the next Chapter we will discuss photometric stereo methods

and their application in 3D reconstruction.
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In this chapter we present the acquisition, calibration and processing of photometric

stereo data. First we describe the current state-of-the-art techniques in Sec. 4.1. Then

methods to acquire photometric stereo data are discussed in Sec. 4.2, including our

method to extract photometric stereo data from light field stacks which we first

presented in [9] with a refined formulation in [8]. The calibration of photometric

stereo data is explained in Sec. 4.3. Finally, we describe the reconstruction of depth

information from photometric stereo data in Sec. 4.4.

The combination of surface normals with depth from light field will be discussed in

Chapter 5 in general and specifically for multi-line scan data in Chapter 6.

4.1 State-of-the-art

The term photometric stereo was introduced by Woodham [222] to describe the

surface orientations in a scene (see Fig. 4.1). While the viewing direction remains

constant, the incident illumination is varied between image acquisitions. This allows

one to determine the surface orientations in a scene through the radiance values in
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(a) Texture (b) Normal map (c) Normal vectors (d) Reference Sphere

Figure 4.1: Illustration of surface normals [180].

each location of the images. Due to the constant viewing angle over all acquisitions

the correspondence between the images is straight forward. In Woodhams original

manuscript it was suggested that the surface orientation could be recovered from

Lambertian surfaces, when at least three independent illumination directions are

used.

The limitation to Lambertian surface reflection was addressed by later methods which

introduced methods to handle specular reflections or shadows [11, 40, 182]. For these

advanced reconstructions four images were used to search for outliers or determine

the roughness of the surface structure. Other approaches modeled the reflection lobes

by a linear combination of Lambertian and specular reflections [66, 146, 194].

The acquisition of partial bidirectional reflectance distribution functions (BRDFs) was

approached with photometric stereo methods in [31, 72, 90]. We describe BRDFs in

more detail in Chapter 7.

Other methods are handling different reflection functions without defining a reflectance

model. In [91] the number of possible surface normals is reduced by weak constraints

assuming monotonicity, visibility (valid for all normals in a half-space) and isotropy.
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4.2 Acquisition

The approach presented in [36] uses only dense specularities, contrary to most methods

which treat them as outliers.

The methods have in common, that they allow the estimation of surface normal vectors.

By integrating the surface normals a depth map can be reconstructed. The resulting

depth map is locally sensitive, but globally inaccurate if no further constraints are

considered.

Globally accurate methods were previously combined with approaches that show

a high local accuracy, e.g. by combining depth maps with surface normals taking

into account the frequency domain [5, 148], polarization normals were combined to

enhance depth maps in [106], or by combining the depth from RGB-D cameras with

shape-from-shading techniques [235].

4.2 Acquisition

Photometric stereo setups allow one to illuminate a scene from different incident

illumination directions. This can be achieved by moving the illumination source or by

fixed light sources, which are turned on either separately or with light configuration

patterns. Additionally, polarization filters have frequently been used in photometric

stereo to identify diffuse and specular reflectance structures [106, 135, 145, 221, 233].

Mobile photometric stereo devices were previously frequently discussed [89, 92, 184,

233]. A popular application of portable devices is the field of cultural heritage or

the mobile inspection of security structures on documents or banknotes. Ring lights

were used in [241] with 20 light sources evenly placed in a circle. An auto calibration

method for ring lights was introduced in [178] to recover the positions of the light

sources.

Light dome setups have light sources (LEDs) placed in a dome structure, while usually

a fixed camera is observing the scene from the top center position. Since the light

sources are fixed, the acquisition can be fast and controlled which is necessary in

industrial applications. This rigid structure also simplifies the calibration. A portable

dome was used in [164, 215, 220], where for each acquisition one out of 256 light
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Figure 4.2: Illustration of a ring light photometric stereo setup. The light sources are

placed on a ring. In the illustration the light sources are oriented to the

center of a cone.

sources was illuminated separately. A light dome setup with 32 illumination sources

was used in [6, 185] for industrial applications in depth reconstruction and analyzing

diffractive optically variable image devices (DOVIDs).

The analysis of photometric stereo data from a multi-line setup was introduced in [9].

4.2.1 Ring Light

When a bulky photometric stereo setup cannot be used, a mobile ring light can be

suitable for taking acquisitions.

For ring lights the position of the light sources is partially known [241], since the

light sources are placed on defined positions on a ring. A mobile ring light was

shown in [184] for the application of hologram verification. The setup comprises 24

individually operable LEDs and is mounted on a mobile phone with a 12.3 mega pixel

camera. During the acquisition the ring module is placed on the object, the small range
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(a) Setup (b) Ring light (c) Cross-section

Figure 4.3: Mobile photometric stereo acquisition setup [184]. a) Setup mounted on a

mobile phone. b) LED ring light module. c) Cross-section of the device.

(distance to the object) allows large illumination angles. Due to the small range, a

macro and wide-angle lens is mounted on the phone. The setup was used to detect

face holograms on banknotes by training a convolutional neural network (CNN) to

learn relevant feature descriptors.

For non mobile but nonetheless portable applications, a light dome is well suited for

photometric stereo applications.

4.2.2 Light Dome

Light domes with a high precision and a portable structure are well suited for industrial

environments, where the object can be placed for a certain time at the same position,

contrary to an object transported with a constant speed on a conveyor belt. In this

section we introduce a specific setup which we used for industrial experiments.

The high performance light dome setting NUSTEP LightDome32D by NUSTEP Ltd.

was paired with a light field camera in [6, 185]. The setup is shown in Fig. 4.4 and

consists of two components. Namely a light dome which is a half-sphere with 32 LED

light sources (approximately 10 W, 1000 lm) and centered camera. The half sphere has

an inner diameter of approximately 30 cm with a minimum working distance of 5 cm.

The lights are arranged in circular patterns at three height levels around the object,
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(a) Light dome (b) Light placement

ω
x

ω
y

(c) Top view

Figure 4.4: Photometric light field acquisition setup [6].

with 8, 12 and 12 LEDs at each height and an angular distance of 25◦, 43◦ and 61◦. A

light field camera is placed in the domes’ top center. Thereby the scene is captured

from slightly different viewpoints for each illumination direction. Fig. 4.4c shows

the top view of the dome in respect to the domes’ directions ωx and ωy, red dots

indicate the viewing directions from the light field camera. Note that the light field

camera can be replaced by a single-view or any other multi-view camera. An internal

diffuser allows a diffuse directional illumination from the light dome. In Chapter 7 we

describe the measurement of (bidirectional) reflectance distribution functions, where

Fig. 7.10 illustrates the portion of the reflectance which can be measured with the light

dome coupled with a light field camera, which corresponds to the setup illustrated in

Fig. 4.4.

For applications in which the object is moving with a constant speed on a conveyor

belt the multi-line scan setup works as a measurement device, the setup was described

in Sec. 3.2.5. In the following section we describe how such equipment can be used to

measure photometric stereo data.

4.2.3 Multi-Line Scan Setup

We introduced the analysis of photometric stereo data from a multi-line-scan setup

in [9]. In a traditional photometric stereo setup the still object is observed multiple

times from one viewing perspective under different illumination conditions. This
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(a) Multi-Line Scan Setup (b) EPI Image Stack

Figure 4.5: Multi-line scan setup for photometric stereo analysis. (a) Schematic de-

piction of the multi-line scan setup with a top-view camera and two il-

lumination sources. (b) The resulting EPI stack which is acquired with

constant light field illumination. The intensity values along the EPI line

yield information about the surface orientation.

allows one to derive local surface orientations (i.e. surface normals) from observed

intensities making use of known illumination angles [223]. Often this is done under the

Lambertian reflectance assumption, resulting in a simple cosine law for determination

of surface normals. Assuming Lambertian reflectance is entirely valid only for matte

materials. It can be used to derive a simple cosine law for the determination of surface

normals. Because the cosine law works quite well even for materials that slightly

violate this assumption, we employ this model for surface normal estimates for data

from our multi-line scan setup.

In contrast to traditional photometric stereo with multiple switched or strobed light

sources, our approach uses two constant line light sources. In our setup, the light

sources are located symmetrically next to the optical axis in the transport direction

in order to illuminate the observed area from two usually flat angles. As illustrated

in Fig. 4.6, such an arrangement gives rise to different illumination configurations in

every observed line (P1, ..., P3). Since the employed line lights have very homogeneous

emissions along the sensor lines, all pixels in the same sensor line are illuminated

almost equally and therefore we assume they share the same illumination parameters
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Figure 4.6: Reflectance behaviour for multi-line scan setup. Assumed illumination

model comprised of two constant line light sources at the positions Sp2 and

Sp2 , with the scalar intensities Se1 and Se2 , respectively. Due to the inverse-

square law, the integral of the two illuminations at the point Pi results in

an effective illumination vector Li, that is different in each observed point

(i.e. sensor line).

(i.e. the light direction and intensity). The downside of this illumination geometry is

the lack of illuminations spanning orthogonally to the transport direction, resulting

in a collinear set of illumination vectors. Consequently, the surface normals can be

inferred only in the transport direction (i.e. x-dimension).

We assume a discretized surface with the size of M×N pixels. As previously de-

scribed in [9], under the assumption of Lambertian reflectance, the surface normals

Ni,j ∈ R3, for all pixel locations (i, j) ∈ I (as defined in Sec. 2.1), and the albedo

ρi,j ∈ R can be retrieved from multi-line scan data with a constant illumination (with-

out using strobe or switched light sources). For this, the matrix of illumination vectors

L ∈ Rn×3 and the observed intensities Ei,j ∈ Rn with a number of n intensities ∀i, j ∈ I
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are utilized. The following tensors hold vectors in each pixel location and are denoted

with bold characters:

Mi,j = ρi,jNi,j, (4.1)

Mi,j = (Mi,j,x, Mi,j,y, Mi,j,z), (4.2)

Ni,j = (Ni,j,x, Ni,j,y, Ni,j,z), (4.3)

Ei,j = (Ei,j,1, ..., Ei,j,n), ∀i, j ∈ I . (4.4)

The reconstructed values are denoted as Mi,j ∈ R3. Under the assumption of a constant

light matrix the illumination vectors are defined as follows:

L = (Lk,x, Lk,y, Lk,z)
n
k=1, (4.5)

(Lk)
n
k=1 =

q

∑
l=1

Spl − Pk∣∣Spl − Pk
∣∣ · Sel∣∣Spl − Pk

∣∣2 = (4.6)

=
q

∑
l=1

Sel (Spl − Pk)∣∣Spl − Pk
∣∣3 .

This was previously shown in [9]. Considering our illustrative example in Fig. 4.6 we

get the following for the effective illumination vector L1 at the position P1 with two

light sources q = 2:

L1 =
Se1(Sp1 − P1)∣∣Sp1 − P1

∣∣3 +
Se1(Sp1 − P2)∣∣Sp1 − P2

∣∣3 . (4.7)

The q ∈ N light sources are placed at the positions Sp ∈ Rq×3 with scalar light

intensities Se ∈ Rq at observed sensor line points (corresponds to viewing angles)

Pk ∈ R3. We assume a simple illumination model based on the Lambertian assumption.

Under this constraint, the effective illumination vector Lk in an observed sensor line

Pk is given as the sum of all elementary illumination vectors that contribute to that

point (shown as thin red and blue arrows in Fig. 4.6). Due to the inverse-square

law, the elementary light vectors are different in each observed line, which results in

different effective illumination vectors as well. Due to the object’s movement during

the capture, each object point is eventually observed under every available illumination

condition.

In order to recover normals from observed intensities, the least squares problem
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follows:

min
Mi,j

1
2
||L ·Mi,j − Ei,j||2, therefore (4.8)

Mi,j = ρi,j · Ni,j = (L)+ · Ei,j, ∀i, j ∈ I (4.9)

Mi,j = [(L)T L]−1(L)T · Ei,j, (4.10)

where (·)T denotes the transpose and (·)+ denotes the pseudo-inverse. Since per

definition normals are unit vectors:√
N2

i,j,x + N2
i,j,y + N2

i,j,z = 1, ∀i, j ∈ I , (4.11)

the length of the vector Mi,j is defined by the albedo ρi,j. Therefore, we have the

following correspondence:

ρi,j =
√

M2
i,j,x + M2

i,j,y + M2
i,j,z, ∀i, j ∈ I . (4.12)

It can be shown that in the multi-line scan framework, only a lower bound of the

albedo can be estimated due to the missing photometric component that is orthogonal

to the transport direction Ny. This can be shown as follows:

ρi,j =
√
(ρi,j · Ni,j,x)2 + (ρi,j · Ni,j,y)2 + (ρi,j · Ni,j,z)2, (4.13)

ρ2
i,j =

M2
i,j,x + M2

i,j,z

1− N2
i,j,y

, (4.14)

ρi,j =

√√√√M2
i,j,x + M2

i,j,z

1− N2
i,j,y

, ∀i, j ∈ I , (4.15)

where Mi,j,x = ρi,jNi,j,x and Mi,j,z = ρi,jNi,j,z are given through our measurements

(Eq. 4.9). Then the lower bound of ρ results when Ni,j,y = 0, ∀i, j ∈ I :

ρi,j ≥
√

M2
i,j,x + M2

i,j,z. (4.16)

We can perform photometric stereo within the multi-line scan framework without the

necessity of switching or strobing the illumination during the acquisition process.
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4.3 Calibration

Figure 4.7: Light direction calibration for photometric stereo [180].

As a result of parallax comprised in the light field, intensities associated with the same

object location occur along an EPI-line, the slope of which depends on the absolute

distance of that location from the camera (see Fig. 4.5b). Therefore, with our approach

the surface normal estimates are inherently linked with respective depth estimates.

Hence, it is necessary to utilize a preliminary depth model to calculate surface normals,

which can afterwards be used to improve the depth model, etc.

4.3 Calibration

Before calculating the normal map and further using it for 3D reconstruction, the

direction of the light sources has to be estimated. Highly reflective spheres are usually

utilized to identify the illumination positions [47, 165, 166, 180, 226]. A rendered

example of a sphere, illuminated from four different directions, is shown in Fig. 4.7.

Under the assumption that the edge of the sphere will be presented as an ellipse in

the captured image, the coordinates for any point on the surface as well as the surface

normal on that specific position can be identified [166]. By detecting the light reflection

on the sphere, the illumination direction can therefore be determined.

Placing a second sphere allows the reconstruction of the position of the light source

through triangulation, as described in [165].
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(a) Normal Map (b) Reconstructed Depth (c) Textured Depth

Figure 4.8: 3D reconstruction from normal map [180]. a) Normal map with normal

vectors of an object. b) Reconstructed depth map. c) Rendered depth map

with texture.

4.4 3D reconstruction

Through the shading variation on objects, illuminated from different positions with a

static camera viewpoint, the surface normal map and the resulting scene depth can be

estimated. Usually a uniform albedo and reflectance of the scene are assumed [193]

when calculating the depth map from surface reflectance. The positions of the light

sources are either known or estimated by utilizing a highly reflective sphere object as

discussed in Sec. 4.3. The light sources are placed in a structured (on a sphere, on a

ring, in a line) or in an unstructured (freely movable) way around the object. Changes

in the illumination direction are leading to pixel intensity changes, depending on the

orientation and reflectance characteristics of the object. The captured irradiance values

E(i,j) ∈ R are usually described using a reflectance map R(i,j) ∈ R as introduced

in [222] for all i, j ∈ I :
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4.4 3D reconstruction

Figure 4.9: Illustration of reflectance maps from two illumination directions [69]. The

shaded reflectance is shown left and the resulting reflectance map on

the right for a region in a scene. Using two point source illuminations

the intersection of both resulting level lines gives at most two surface

orientations which would produce that pair of brightness values. A third

light source gives a unique result.

E(i,j) = R(G)(i,j), where (4.17)

G(i,j) = (Gi,j,x, Gi,j,y), (4.18)

G(i,j,x) = ∇xZ(i,j), and (4.19)

G(i,j,y) = ∇yZ(i,j) (4.20)

are the depth map derivates and represent two points in the gradient space of the

depth map Z(i,j) ∈ R. The gradient operator ∇ was previously defined in Eq. 2.9. An

example of a reflectance map is shown in Fig. 4.9. Since we assume a Lambertian

reflectance model and a constant albedo, the irradiance results from a dot product

between the surface normal unit vector N(i,j) ∈ R3 and the direction of the light source
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L(i,j) ∈ R3, scaled by the albedo ρ(i,j) ∈ R:

E(i,j) = ρ · L(i,j) · N(i,j), where (4.21)

N(i,j) =
(Gi,j,x, Gi,j,y, 1)√
1 + G2

i,j,x + G2
i,j,y

, and (4.22)

L(i,j) = (Li,j,x, Li,j,y, Li,j,z). (4.23)

The reflectance map is therefore calculated as follows:

R(Gx, Gy)=max

(
0, ρ

GxLx + GyLy + Lz√
1 + G2

x + G2
y

)
(4.24)

In photometric stereo we have n light sources, which results in the reflectance maps

(R1, ..., Rn), and the intensity vectors (L1, ..., Ln). This allows one to get a set of linear

equations Ek = ρLk · N for all k ∈ n which can be solved for ρ · N. When at least three

vectors Ek are linearly independent the equations are well conditioned.

The recovered surface normal vectors can be integrated into a depth map, with e.g.

the algorithm of Frankot and Chelappa [62], recent work has been presented in [86,

148]. For specular surfaces or the occurrence of inter-reflections, more than three light

sources are necessary to reliably estimate the surface orientation and depth, as shown

in [147].

It is well known [5, 48] that the resulting depth values show a reliable relative depth

accuracy, but have an absolute depth offset, as shown in Fig. 4.10. The surface normal

vectors in our energy term are used to refine the surface structure of our depth result.

4.5 Conclusion

In Chapter 3 we introduced light field methods and their application in depth recon-

struction tasks. Now, in this chapter we described photometric stereo methods with
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(a) Image (b) Depth Map

Figure 4.10: Depth reconstruction from surface normals. a) One sample acquisition

out of n photometric stereo images. The model from the Stanford object

database [186] rendered with our virtual photometric stereo setup (de-

scribed in [6]) using POVRay [163]. ase b) Depth reconstruction shows

global offset (without additional restrictions).

a focus on the industrial applicability. In Sec. 4.2 we showed devices and setups to

capture photometric stereo data, from the mobile ring light to the industrial inline

method using a multi-line scan camera. Here we presented our previous work on the

retrieval of photometric stereo data from an EPI stack constructed from a multi-line

scan system [9] with a refined formulation from [8]. In Sec. 4.3 we described the cali-

bration of the illumination direction using highly reflective sphere objects. In Sec. 4.4

we discussed recovering surface normals from photometric stereo data and integrating

them to achieve a 3D reconstruction.

Light field methods achieve a stable absolute depth measurement, while photometric

stereo data allows the reconstruction of fine surface details but fails in global absolute

depth accuracy. Combining depth (e.g. from light field data) with surface normals

(e.g. from photometric stereo) allows a locally and globally accurate 3D reconstruction

result. In the next chapter we take a look on the details of the combination of depth

and surface normal data in order to reach a refined depth reconstruction.
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Refining 3D data by combining depth maps with surface normals allows a globally and

locally accurate surface reconstruction. In this chapter we present our work published

in [7]. We motivate the research in Sec. 5.1. Sec. 5.2 addresses the retrieval of depth

and surfaces normal cues. The notation is defined in Sec. 5.3. A survey and evaluation

of optimization based depth and surface normal fusion algorithms for area scan data

is shown in Sec. 5.4. Here we also present two novel methods, namely a generalized

method of Nehab in Sec. 5.4.6 and a Total Generalized Variation (TGV) based method

in Sec. 5.4.7.

5.1 Motivation

Measuring the depth of a scene accurately is essential for many tasks including appli-

cations in industrial environments, object recognition and security assurance. Usually

the depth is measured by stereo cameras, structure from motion (SfM), time of flight
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(ToF) sensors, or light field cameras. These methods show accurate absolute depth

maps but lack detail in high frequency depth structures. The reason for this lies in

the dependency on the presence of structural information in the image as well as

in the analysis routine, which is usually done by hypothesis testing and therefore

limited in range and step sizes. Stereo matching methods include correlation based

techniques [94], semi global matching [81, 93], block based matching [100, 231] and

stereo matching for micro array cameras [37]. Several methods were introduced to re-

trieve depth information from light field data using epipolar image slope analysis [22],

structure tensors [214], fine-to-coarse approaches [110, 204] and by line consistency

metrics [198]. Structure from motion and time of flight techniques were presented

in [132, 159, 181], respectively. In contrast to depth based approaches, methods that

recover surface normals, such as photometric stereo [223], show high frequency details

but lack an absolute depth reference. Shape from shading was used to retrieve surface

normals by [62]. A robust normal reconstruction using photometric stereo information

with a Markov Random Field (MRF) was introduced in [226]. Previous methods have

been presented, which retrieve surface normals from a calibrated stereo setup. This can

be achieved e.g., by estimating the homography between two matched patches [113,

137] or by using the affine transform data between two projections [10] additionally

to the reconstruction of a sparse depth map retrieved from a stereo correspondence

analysis. A learning-based method using a tandem of convolutional neural networks to

estimate depth and surface normals from image data simultaneously was introduced

in [51]. Combining depth and surface normal data allows precise depth reconstructions

for low- as well as high-frequency components in the depth map.

Depth maps and surface normals were previously combined in various ways. Shape

from shading was used under general illumination in [224], photometric stereo normals

were incorporated in [52, 105, 238]. Another approach was presented in [148], where

the tangent plane of the given normals was projected into the measured normal field.

This normal constraint was previously used in several algorithms (e.g., [33, 84, 85,

160]). The method described in [177] uses a standard depth constraint and forces the

Laplacian of the optimal solution to be in the proximity of the derivative of the given

normals. In [234] a depth and photometric stereo fusion algorithm was introduced,

which uses additional Laplacian smoothing term and adaptive pixel-wise weighting
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parameters to preserve surface discontinuities. The Laplacian smoothing term was also

added in [202]. A extended penalty is chosen in [235], where the normal is enforced to

be close to the normal from the initial depth map, while 2nd-order spherical harmonics

are used to constrain the normals according to the observed shading in the input

image, a smoothness function enforces the similarity of 1st-order neighbors and an

additional term constrains the normals to unit length. A method to refine depth by

photometric stereo information using RGB-D cameras was introduced in [225], where

an energy function is optimizing for the depth, smoothness, shading and temporal

aliasing of a scene. Surface normals from polarization cues were used to enhance

the depth map in [106], in an iterative process the depth is refined with corrected

surface normal information and a depth fidelity constraint, which enforces consistency

between the surface from normals and accurate regions in the depth map. An original

approach for inferring about the surface normals from light field data as well as a

hybrid setup combining depth maps with surface normals using a block coordinate

descent algorithm was demonstrated in [9].

Even though several methods to combine surface depth with surface orientation data

previously emerged, a thorough analysis and classification of the properties of those

approaches was missing. In this section, our first main contribution comprises an

in-depth comparison of several variational methods using depth maps and surface

orientation data, as well as a classification and evaluation of weighting terms for surface

orientations using gradients or surface normals. We analyze orientation weighting

terms of common methods and explain their differences in respect to the geodesic

distance weighting. We show that methods which behave closer to this natural surface

normal weighting term show a better performance, especially in regions with steep

depth edges. Based on the findings we introduce our second main contribution, a new

generalized formulation of a previously introduced method [148], which outperforms

other methods regarding the error in the depth domain. Our third main contribution is

a novel gradient-based approach, which is using TGV and outperforms other methods

in the domain of the geodesic error of the resulting normals.
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5.2 Depth and Surface Normal Cues

At present, 3D models are used for a wide range of analysis tasks. Depth models are

being constructed by acquisition devices using stereo systems, light field cameras,

time of flight (ToF), or other range scanning techniques. Common methods show a

high precision in the absolute depth measurement, but a low quality in fine relative

details. These errors are major obstructions for tasks such as finding defects in ob-

jects. Measuring the normal fields of objects by using methods such as photometric

stereo [223] or shape from shading [97] will allow the reconstruction of surfaces with

highly precise local details. On the downside, those methods show errors in the low

frequency domain and therefore result in a low absolute depth accuracy.

Combining depth maps with surface normal information allows an exact 3D recon-

struction both in absolute depth and fine surface details. This can be achieved by

optimizing energy functions by variational methods, where the solution is penalized

for deviating from the depth model and from the surface normals. In state-of-the-art

techniques, the surface normal component is either used directly or by converting

it to gradient information, where the x- and y-component can be treated indepen-

dently. Such an independent treatment can be beneficial for applications where data

components are missing, as for example line-scanners [190].

5.3 Notations and Preliminaries

In this section, we introduce the essential notations used across this Chapter, based on

the notation introduced in Sec. 2.1. By default we assume discretized surface structures

of the size of M× N pixels. The index set I was defined in Sec. 2.1.

The discrete depth map of our scene is scalar valued in each pixel and defined as

follows:

Z = (Zi,j)i,j∈I ∈ RM×N . (5.1)
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Variables with a bold font refer to surface structures where each pixel is vector valued.

Hence, the surface gradient field G in x- and y-direction is defined as:

G =
(
Gi,j
)

i,j∈I ∈ RM×N×2, where Gi,j = (Gi,j,x, Gi,j,y). (5.2)

The gradient of the depth map Z as well as the gradient operator ∇ were previously

defined in Eq. 2.9.

The surface normal field is defined as follows:

N =
(

Ni,j
)

i,j∈I ∈ RM×N×3, where (5.3)

Ni,j = (Ni,j,x, Ni,j,x, Ni,j,z) ∈ R3.

By definition, we have |Ni,j|2 = 1. The relation between the surface gradient estimation

and the surface normals is defined for all i, j ∈ I as follows:

Ni,j,x =
−(∇xZ)i,j

|(−(∇Z)i,j, 1)|2
,

Ni,j,y =
−(∇yZ)i,j

|(−(∇Z)i,j, 1)|2
, and (5.4)

Ni,j,z =
1

|(−(∇Z)i,j, 1)|2
.

Furthermore, we are using two specific surface tangent vectors, which are aligned

with the x- and y-vector respectively and defined as follows:

T = (Ti,j)i,j∈I ∈ RM×N×2×3, where (5.5)

Ti,j = (Ti,j,x, Ti,j,y) and (5.6)

Ti,j,x = (1, 0, (∇xZ)i,j) and Ti,j,y = (0, 1, (∇yZ)i,j). (5.7)

Hereinafter, the surface normals estimated by the described method will be referred

to as measured surface normals, since they are assessed directly from the recorded

data. On the other hand, normals derived from the reconstructed depth models will

be denoted as model surface normals.
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5.4 Area Scan Depth and Surface Fusion Algorithms

In this section, we analyze state-of-the-art methods in a systematic way and introduce

two novel approaches. The described hybrid depth and surface normal methods

are categorized in terms of their penalty functions. State-of-the-art approaches used

similar depth penalty terms and differed in the surface orientation weighting and

regularization. We organize the described methods in two categories: (i) gradient-based

and (ii) normal-based approaches as well as with respect to their treatment of flat and

steep surface regions. While the presented methods show similar behaviors in flat

areas, they differ in the penalization of steep regions. We show the quadratic penalty

functions of the methods presented in Figs. 5.1 and 5.2 for lateral and polar deviations,

which are illustrated in Fig. 5.3. We will show that the behavior of the energy function

for different inclination angles correlates with the quantitative and qualitative depth

reconstruction performance of each individual method. We argue that the geodesic

distance function shows the most natural behavior with the favorable property of

penalizing the distance of the normal orientation independent of the steepness of

the edges. Due to this ideal behavior, we use the function to evaluate other distance

measures in Section 5.4.8. Without loss of generality, we assume a dense depth and

normal map for the algorithms described in this paper. In case of sparse input data,

we suggest an extension based on Poisson surface reconstruction [108] to deal with

sparse data.

An overview of the presented methods is given in Tab. 5.1. The first method we present

in Section 5.4.2 is the construction of depth from only the gradient surface orientation

information (i.e., no prior information about the absolute depth is being used). Using

only the surface orientation for the depth reconstruction results in large-scale low-

frequency errors (and therefore depth offsets). Later we overcome this problem by

introducing an additional depth constraint in all following methods.

Second, we introduce the gradient-based approach with a depth constraint formulated

as a least squares problem in Section 5.4.3. The respective contour plot of the orientation

distance measure shows a strong penalization of steep edges in contrast to flat surface

regions. It is easy to see (Fig. 5.1), that the error from the same angular deviation due
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to noisy normals may generate from small up to infinity error in the gradient domain,

depending on the inclination angle. For demonstrative purposes, we additionally

show two extensions of the gradient-based method with regularization terms. One

forces gradient-based smoothing. The other one enforces smoothness with a Laplacian

term and can be used for the reconstruction with sparse depth and surface normal

data.

Third, the method of Heber [87] for combining depth with surface orientations is

shown in Section 5.4.4, which scales the given normal by the length of the optimized

gradient.

Forth, a review of the method of Nehab [148] is given in Section 5.4.5, which reprojects

the tangents of the optimized surface onto the given normal.

Fifth, as one of our main contributions in this paper, we introduce a new penalty

function in form of a generalized method of Nehab in Section 5.4.6. Using a novel

parametrization moves the penalty function closer to the geodesic normal energy and

hence penalizes deviations in steep edges and flat regions more equally.

Last, we introduce our second main contribution, a novel Total Generalized Variation

(TGV) model in Section 5.4.7, which penalizes the distance of the gradients of the

surface orientation and gives significantly improved reconstruction results. The reason

for this lies in the decoupling of the gradient through the TGV term.

5.4.1 Geodesic Distance

In the 3D space, the geodesic distance is the most natural surface normal penalty as

distances between surface normals are weighted equally, independent of the surface

slope angle with respect to the observer. Therefore it is used in this paper as a

comparison measure for the evaluation in Section 5.4.8.

The geodesic distance di,j is defined as the inverse cosine of the point-wise dot

product between the given normal N̂ ∈ RM×N×3 and the estimated solution normal
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Method Depth

Penalty
Orientation Penalty Balance at

Flat Regions

Balance at

Steep Regions

Surface orientation only 7 Gradient-based 3 7

Gradient-based 3 Gradient-based 3 7

Gradient-based 3

Gradient-based +

regularization with zero Laplace

(Eq. (5.21))

3 7

Gradient-based 3

Gradient-based +

regularization with derivative of the gradient

(Eq. (5.19))

3 7

Method of Heber 3 Scaled normal 3 7

Method of Nehab 3
Projection of surface tangents

to the given normal field
3 vvv

Generalized Nehab (ours) 3

Projection of surface tangents

to the given normal field

with additional Nz weighting

3 3

TGV (ours) 3 Gradient-based + TGV 3 3

Table 5.1: Overview of the presented methods. The behavior of the surface orientation

constraint in regions with different orientations is visualized for each method

in Figs. 5.1 and 5.2.

field N ∈ RM×N×3 as follows:

di,j = acos(
〈

N̂i,j, Ni,j
〉
), ∀i, j ∈ I , (5.8)

where
〈
·, ·
〉

denotes the standard dot product, which is defined as
〈

a, b
〉
= ∑n

i=1 ai bi =

||a|| ||b|| cos(φ) and φ describes the angle between a and b. We can formulate the

distance in Eq. (5.8) by utilizing the surface gradient estimation ∇Z ∈ RM×N×2 for the

surface normal N with the relations shown in Eq. (5.4) as follows:

di,j = acos

(〈
N̂i,j, (−(∇Z)i,j, 1)

〉
|(−(∇Z)i,j, 1)|2

)
. (5.9)

The surface orientation weighting of the geodesic distance is illustrated in the contour

plot in the first row of Fig. 5.1. The first column shows the polar deviation of the

coordinates and the second column shows the lateral deviation, parameterized by the

inclination angle α and the deviation angle β, as illustrated in Fig. 5.3. Colors of the
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Figure 5.1: Quadratic penalty functions of the surface orientation constraint. Visual-

ized for deviations in polar and lateral directions for the geodesic energy,

the gradient-based method and the method of Heber. Colors of the con-

tours indicate the respective penalty values. Note that the range is clipped

between 0 (blue) and 1 (yellow). See Fig. 5.3 for the explanation of the

parametrization used.
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Figure 5.2: Quadratic penalty functions of the surface orientation constraint. Visualized

for deviations in polar and lateral directions. Shown are the method of

Nehab, the generalized method of Nehab with r = 0.5 as well as r = 1.6.

Colors of the contours indicate the respective penalty values. Note that

the range is clipped between 0 (blue) and 1 (yellow). See Fig. 5.3 for the

explanation of the parametrization used.
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Figure 5.3: Horizontal polar coordinate system. Expressing the distance between a two

surface normals N̂ and N. The distances in Figs. 5.1 and 5.2 are measured

in lateral and polar directions using angles α and β. The former describes

the angle between the given normal N̂ and the the upright vector O, the

latter defines the angular deviation between the normals N̂ and N.

contours indicate the respective penalty values obtained for different combinations of

the inclination and deviation angles. Note that the range is clipped between 0 (blue)

and 1 (yellow).

For the following methods a balanced weighting over all inclination angles both for

the polar and lateral deviation is favored, as provided by the geodesic distance.

5.4.2 Gradient-Based Method with Surface Orientation Constraint Only

As typical for photometric stereo methods, depth can be partly recovered from surface

orientations only. In order to provide a complete context for the method considered in

this paper, we show here a method that is using solely gradient-based data. Gradient-

based methods have previously been frequently utilized for depth reconstruction

(e.g., [2, 49, 62, 86, 98, 170, 172]). Given a gradient field Ĝ ∈ RM×N×2, we calculate the

surface gradients for the estimated depth map Z in x- (∇xZ) and y-direction (∇yZ)

respectively. Combining relations from Eq. (5.4), the relations of surface normals and

gradients are as follows:

|(−(∇Z)i,j, 1)|2 = −
(∇xZ)i,j

Ni,j,x
= −

(∇yZ)i,j

Ni,j,y
=

1
Ni,j,z

, ∀i, j ∈ I , (5.10)

79



5 Hybrid Depth and Surface Normal Approaches

hence the surface gradients are given as:

(∇xZ)i,j = −
Ni,j,x

Ni,j,z
and (∇yZ)i,j = −

Ni,j,y

Ni,j,z
, ∀i, j ∈ I , (5.11)

and the given gradient fields correspond to the surface normals by:

Ĝi,j,x = −
N̂i,j,x

N̂i,j,z
and Ĝi,j,y = −

N̂i,j,y

N̂i,j,z
, ∀i, j ∈ I , (5.12)

in x- and y- direction respectively. Our goal is to compute a depth map Z such that

(∇Z)i,j ≈ Ĝi,j, ∀i, j ∈ I . (5.13)

The comparison of the resulting penalty between the measured and the given gradients

is illustrated in Fig. 5.4a. Since Eq. (5.13) is an overdetermined system of linear

equations, it can be solved as the following least squares problem:

min
Z

1
2
||∇Z− Ĝ||2, (5.14)

whose global minimizer Zmin satisfies the first order sufficient optimality condition:

∇∗(∇Zmin − Ĝ) = 0, (5.15)

where ∇∗ : RM×N×2 → RM×N denotes the adjoint of the ∇ operator, with ∇∗ =

(∇∗x,∇∗y). We compute the minimizer using a standard conjugate gradient method.

It is well known that reconstructing the depth using only surface normal data usually

results in errors in the low frequency domain. In the past, this has been improved by

different approaches, such as introducing additional boundary conditions [86]. We

resolve this problem by hybrid depth and surface normal formulations which proved

very efficient in finding an accurate surface reconstruction.
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Ty = (0, 1,   y Z)

(c) Method of Nehab

Figure 5.4: Comparison of the penalty. (a) the gradient-based method; (b) the method

of Heber and (c) the method of Nehab. Gradient-based method: compari-

son of the measured gradient field components (−∇xZ,−∇yZ) with the

given gradient field (−Ĝx,−Ĝy). Method of Heber: scaling of the normal

vector N̂ by the length of (−∇xZ,−∇yZ, 1). Method of Nehab: distance

by projection of the tangents Tx and Ty of the optimized surface onto the

given normal field N̂.
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5.4.3 Gradient-Based Method

In this section, we discuss a hybrid gradient-based method which reconstructs depth

using a gradient-based algorithm (similar to the one from Section 5.4.2) extended by

the use of the given initial depth Ẑ. Also here the gradient of the estimated depth map

∇Z is forced to be in the proximity of a measured gradient Ĝ in x- and in y-direction.

Therefore, we formulate an overdetermined system of equations as follows:

Z ≈ Ẑ and (∇Z)i,j ≈ Ĝi,j, ∀i, j ∈ I . (5.16)

The corresponding least squares problem is given as:

min
Z

1
2
||Z− Ẑ||2 + λ

2
||∇Z− Ĝ||2, (5.17)

where λ > 0 is used to balance between the depth and the orientation constraints. The

global optimizer Zmin is found by a standard conjugate gradient method, with the

optimality condition given as follows:

Zmin − Ẑ + λ∇∗(∇Zmin − Ĝ) = 0. (5.18)

The contour plots of the surface orientation penalty function corresponding to the

gradient-based method are shown in Fig. 5.1. Note that with this method, the penalty

is notably stronger for deviations in steep regions than in flat regions.

For demonstrative purposes, we introduce the extension of the gradient-based method

in Eq. (5.17) with a regularization term. We use a Laplace 2nd-order method which is

driven by the derivative of the given gradient field. We formulate the following least

squares problem:

min
Z

1
2
||Z− Ẑ||2 + λ

2
||∇Z− Ĝ||2 + λR

2
||∆Z− (−∇∗Ĝ)||2, (5.19)

where λR > 0 balances the regularization, ∇∗Ĝ can be decomposed into

(∇∗xĜx,∇∗yĜy) and ∆ denotes the Laplace operator which is defined as follows:

∆x = −∇∗x∇x and ∆y = −∇∗y∇y. (5.20)
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Such a gradient-based regularization can be applied to all presented methods.

The presented gradient-based approaches require dense depth and surface orientation

data. A possibility to cope with sparse data is an additional smoothness assump-

tion coupled with pixel-wise weighting parameters. Hence, we add another term to

Eq. (5.17) with a Laplacian smoothness assumption as follows:

min
Z

1
2
||λ1 � (Z− Ẑ)||2 + 1

2
||λ2 � (∇Z− Ĝ)||2 + 1

2
||λ3 � (∆Z)||2. (5.21)

The weighting parameters λ1 and λ2 can be given a priori by the confidence of a data

point and λ3 by the inverse confidence and are defined as follows:

λ1 =
(
λ1,i,j

)
i,j∈I ∈ RM×N , (5.22)

λ2 =
(
λ2,i,j

)
i,j∈I ∈ RM×N×2, where λ2,i,j = (λ2,i,j,x, λ2,i,j,y), (5.23)

and

λ3 =
(
λ3,i,j

)
i,j∈I ∈ RM×N×2, where λ3,i,j = (λ3,i,j,x, λ3,i,j,y). (5.24)

In case of stereo or light-field methods for depth reconstruction the parameters can be

assessed base on the matching confidence. Unknown points would have a confidence

of zero. The same extension for sparse data is applicable for all following methods.

Therefore, without loss of generality we discuss the weighting of the surface orientation

term with a focus on dense depth and surface orientation data without an additional

smoothness assumption.

5.4.4 The Method of Heber

A hybrid variational refinement model was described by Heber [87], where an initial

rough depth Ẑ is given and refined with surface normal information:

min
Z

1
2
||Z− Ẑ||2 + λ

2

∣∣∣∣∣∣(−∇Z, 1)− N̂ � |(−∇Z, 1)|2
∣∣∣∣∣∣2

2
, where (5.25)

|(−∇Z, 1)|2 =
(
|(−(∇Z)1,1, 1)|2, |(−(∇Z)1,2, 1)|2, ..., |(−(∇Z)M,N , 1)|2

)
(5.26)
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defines the vector of pointwise 2-norms and the symbol � denotes the operator for the

point-wise product, also known as Hadamard product. This method is conceptually

similar to the gradient-based method described in Section 5.4.3, also here the same

depth constraint ensures a result in the proximity of an initial depth solution Ẑ.

However, the surface orientation constraint used in Heber’s method exploits the given

normal field N̂ directly instead of the gradient field Ĝ. Here the normalization of ∇Z

by division by the length of the vector is overcome by multiplying the term on one

side by |(−∇Z, 1)|2, which leads to a convex problem [87].

An illustration of the comparison of the measured ∇Z and the given normal N̂ is

shown in Fig. 5.4b. The given normal is scaled to the length of the measured gradients

∇Z. The contour map in Fig. 5.1 demonstrates the normal weighting of the Heber’s

energy term. Here, similar to the gradient-based method, a deviation in steep edges is

penalized more than a deviation in flat regions. Also, a different weighting applies

whether the estimated gradients are steeper or flatter than the given values.

As the energy function from Eq. (5.25) is convex and differentiable, this algorithm can

be solved by an (accelerated) gradient descent method or a (fast) proximal gradient ap-

proach. For our evaluation, we used a plain gradient descent approach.Nesterov [150]

proposed an accelerated gradient descent method with a simple weighted gradient

step, followed by additional sliding, based on the last estimation. A fast proximal gra-

dient method has an additional extrapolation step compared to the proximal gradient

method. An example is the Fast Iterative Shrinkage Thresholding Algorithm (FISTA

) [13] (see Appendix 2.2.2).

5.4.5 The Method of Nehab

The method of Nehab [148] combines depth and surface normals by solving a system of

linear equations, consisting of depth and surface orientation constraints. This method

is similar to the gradient-based method described in Section 5.4.3, only the surface

normal information is leveraged in a different way, making different trade-offs between

flat and steep gradients.
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In this method, the surface normal constraint optimizes the sum of squared projections

of a set of surface tangent vectors T, as defined in Eq. (5.5) through Eq. (5.7), of the

reconstructed surface Z onto the given normal field N̂. This surface normal penalty

has been adopted previously in several approaches (e.g., [33, 51, 84, 85, 160]). The

projection is illustrated in Fig. 5.4c. Note that the lowest penalty 0 is reached when the

tangent vector is precisely orthogonal to the given normal vector N̂. We first consider

the formulation as described by Nehab [148] by formulating an overdetermined linear

system of sparse equations:

Z ≈ Ẑ,〈
N̂i,j, Ti,j,x

〉
= N̂i,j,x + N̂i,j,z(∇xZ)i,j ≈ 0, and (5.27)〈

N̂i,j, Ti,j,y
〉
= N̂i,j,y + N̂i,j,z(∇yZ)i,j ≈ 0, ∀i, j ∈ I ,

which leads to the following least squares problem:

min
Z

1
2
||Z− Ẑ||2 + λ

2

∣∣∣∣∣
∣∣∣∣∣N̂z �∇xZ + N̂x

∣∣∣∣∣
∣∣∣∣∣
2

+
λ

2

∣∣∣∣∣
∣∣∣∣∣N̂z �∇yZ + N̂y

∣∣∣∣∣
∣∣∣∣∣
2

, (5.28)

where the parameter λ ∈ [0, 1] weights the influence of the initial depth and the given

normals. The global optimizer Zmin is calculated with a standard conjugate gradient

method, with the optimality condition given as follows:

Zmin − Ẑ + λ
(
∇∗x(N̂z � (N̂z �∇xZmin + (5.29)

N̂x)) +∇∗y(N̂z � (N̂z �∇yZmin + N̂y))
)
= 0.

The weighting of the surface normal information is explained in more detail in Fig. 5.4c

and further illustrated in a contour plot in Fig. 5.2. The polar deviation to the given

surface orientation in steep and flat regions is penalized similarly to the method of

Heber (see Fig. 5.1, bottom row, left). However, the lateral deviations are weighted

equally which is the same behavior as the ideal geodesic distance function (see Fig. 5.1,

top row, right).

Note that the approach of Nehab, as described in Eq. (5.27), corresponds to the

gradient-based method with an additional local Nz-weighting applied to both sides
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of the surface normal constraint of Eq. (5.16). This can be shown by utilizing the

equivalences defined in Eqs. (5.11) and (5.12) as follows:

N̂i,j,x = N̂i,j,z (∇xZ)i,j and N̂i,j,y = N̂i,j,z (∇yZ)i,j, ∀i, j ∈ I , (5.30)

and formulating a corresponding overdetermined linear system of equations:

Z ≈ Ẑ,

N̂i,j,z (∇xZ)i,j ≈ N̂i,j,z Ĝi,j,x, and (5.31)

N̂i,j,z (∇yZ)i,j ≈ N̂i,j,z Ĝi,j,y, ∀i, j ∈ I .

Compared with the gradient-based method, the Nz-weighting inherent to Nehab’s

method improves the behavior of the penalty function by weakening the influence of

regions with steep edges. Rationale behind the Nz-weighting follows from the fact that

flat regions exhibit a higher value of Nz (close to 1) while steep regions receive low Nz

values (close to 0). Such a local weighting helps preventing the over-penalization in

steep regions as observed in the gradient-based method.

5.4.6 Generalized Nehab

In order to allow the normal weighting to reach a closer proximity to the geodesic

distance, we propose a generalization of the method of Nehab. We extend on the

concept of the gradient Nz-weighting as explained in Eq. (5.31) by introducing an

additional exponent r that controls influence of the Nz-weighting such that:

Z ≈ Ẑ,

(N̂i,j,z)
r (∇xZ)i,j ≈ (N̂i,j,z)

r Ĝi,j,x, and (5.32)

(N̂i,j,z)
r (∇yZ)i,j ≈ (N̂i,j,z)

r Ĝi,j,y, ∀i, j ∈ I .

We optimize the corresponding least squares problem with a standard conjugate
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gradient method:

min
Z

1
2 ||Z− Ẑ||2 + λ

2

∣∣∣∣∣
∣∣∣∣∣(N̂z)

r �∇xZ− (N̂z)
r � Ĝx

∣∣∣∣∣
∣∣∣∣∣
2

+ (5.33)

λ
2

∣∣∣∣∣
∣∣∣∣∣(N̂z)

r �∇yZ− (N̂z)
r � Ĝy

∣∣∣∣∣
∣∣∣∣∣
2

,

where we find a global optimizer Zmin that satisfies the following optimality condi-

tion:

Zmin − Ẑ + λ

∇∗x
(
(N̂z)

r �
(
(N̂z)

r �∇xZmin − (N̂z)
r � Ĝx

))
(5.34)

+ ∇∗y

(
(N̂z)

r �
(
(N̂z)

r �∇yZmin − (N̂z)
r � Ĝy

)) = 0.

The influence of varying r on the behavior of the surface orientation normal penalty

function is shown in Fig. 5.2. It can be seen that with r = 0.5 the generalized method of

Nehab penalizes steeper slopes stronger than the original method of Nehab (equivalent

to r = 1) and weaker than the gradient-based method (equivalent to r = 0). On the

other hand, with r = 1.6 the proposed method exhibits a more tolerant behavior

towards steeper inclination angles than the original method of Nehab, resulting in a

global behavior that is reasonably close to the geodesic penalty in both the polar and

lateral deviation directions. A more natural weighting, which is in the proximity of the

geodesic distance, can be achieved by the adaption of the parameter r. A well balanced

distance measure such as with r = 1.6 has the potential of performing better in steep

regions (high inclination angle) while preserving performance in the flat regions. The

parameter might still be further optimized.

Regarding the optimal choice of r, we have recognized that r = 1.6 behaves in the

vicinity to the geodesic distance. If the structure of the data shows strong noise on

edges steeper than approximately 50 degrees, a lower choice of r can be considered.
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5.4.7 Total Generalized Variation

In this section, we introduce another novel method to reconstruct a refined surface

with a hybrid depth and surface normal approach that is based on a Total Generalized

Variation (TGV) approach as introduced in [26]. The TGV is an extension of the Total

Variation (TV), which is a very popular and efficient regularization technique used

currently in many image processing applications, however, it is known for producing

staircasing artifacts in slope regions of the solution. In contrast, the TGV overcomes

the staircasing problem by allowing solutions of higher order. Our formulation is

a gradient-based approach, which restricts the surface to be close with a quadratic

penalty to an initial depth solution Ẑ, while enforcing the auxiliary gradient field G to

be in the proximity of the given gradient field Ĝ, propagated through the TGV penalty.

Thereby, we simultaneously reconstruct the surface Z and the auxiliary gradient

field G, such that our discrete model is given as follows:

min
Z,G

α1||∇Z−G||2,1 + α0||∇G||2,1 +
α

2
||Z− Ẑ||2 + β

2
||G− Ĝ||2, (5.35)

where the gradient operator ∇ : RM×N×2 → RM×N×4 computes finite differences and

∇G can be decomposed into (∇Gx,∇Gy), where ∇ was defined in Eq. (2.9). Therefore,

the first and second order components of our TGV regularization have the following

form:

||∇Z−G||2,1 = ∑
i,j

√
(∇xZ)2

i,j + (Gi,j,x)2 + (∇yZ)2
i,j + (Gi,j,y)2, and (5.36)

||∇G||2,1 = ∑
i,j

√
(∇xGx)2

i,j + (∇yGx)2
i,j + (∇xGy)2

i,j + (∇yGy)2
i,j. (5.37)

The function in Eq. (5.35) consists of a depth and an orientation constraint as well as

the TGV regularization terms. The depth constraint (i.e., the third term of Eq. (5.35))

enforces the depth solution Z to stay in the vicinity of our noisy initial depth map Ẑ.

The orientation constraint (i.e., the fourth term of Eq. (5.35)) enforces G to stay in

the proximity of the given surface gradient estimation Ĝ. The TGV regularization

part comprises a first and a second order term (first two terms of Eq. (5.35)). The

latter represents the TV component and penalizes the l1-norm of the second order
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gradient field, which forces the gradient field G to be piecewise constant. The former

enforces the approximated gradient of the depth map ∇Z to stay in the proximity of

the auxiliary gradient field G also through an l1 penalty.

Given our primal problem in Eq. (5.35) we formulate a primal-dual (PD) problem,

which belongs to the class of saddle-point problems, as follows:

min
x

max
y

(Kx)Ty− F∗(y) + H(x), (5.38)

where H describes the depth and orientation constraints, F defines the TGV component,

with its convex conjugate F∗ and the linear operator K is defined as:

K =

(
∇ −I

0 ∇

)
. (5.39)

Our primal variable is denoted as x ∈ RM×N×3 and y ∈ RM×N×6 represents the dual

variable:

x =


Z

Gx

Gy

 , y =

[
y1

y2

]
, y1 =

[
y1,1

y1,2

]
, y2 =


y2,1

y2,2

y2,3

y2,4

 . (5.40)

where y1 and y2 hold the dual variables of the first and the second term in Eq. (5.35)

respectively, with y1 holding two terms for each ∇x and ∇y, while y2 holds four terms,

each for ∇x and ∇y in Gx and Gy. For F(x) = α||x||p, where || · ||p is an lp-norm, we

calculate the convex conjugate as follows:

F∗(y) = δ||·||2,∞≤α(y) =

0, if |yi,j|2 ≤ α, ∀i, j

∞, otherwise,
(5.41)

which is the indicator function of the polar ball. Therefore, F∗ and H are defined as

follows:

F∗(y) = δ||·||2,∞≤α1
(y1) + δ||·||2,∞≤α0

(y2), and (5.42)

H(x) =
α

2
||Z− Ẑ||2 + β

2
||G− Ĝ||2. (5.43)
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(a) (b) (c)

Figure 5.5: Example evaluation data. Consisting of a noisy quantized depth Ẑ and

noisy surface normals N̂. The ground truth depth ẐGT is shown with a

horizontal and vertical cross-section line, which indicates the positions of

evaluations in the following Fig. 5.6. (a) Initial depth Ẑ; (b) Given surface

normals N̂; (c) Ground truth depth ẐGT.

An optimal solution to our hybrid formulation is found with the PD algorithm, as

described in Appendix 2.2.2. For a more detailed description of the PD algorithm,

see [30].

5.4.8 Evaluation

To evaluate all considered algorithms we need two data structures, namely an initial

depth map Ẑ and surface orientation information such as surface normals N̂ or

gradients Ĝ. Initial depth maps can be provided by stereo or light field correspondence

analysis or other depth scanning methods. An estimate of the surface orientation is

calculated using e.g., photometric stereo or polarization imaging. Our discussed

hybrid algorithms differ mainly in how the surface orientation information is taken

into account. In particular, the penalty functions associated with the surface orientation

constraints vary significantly for different methods, as illustrated in Fig. 5.1 through

Fig. 5.4c. We proposed two novel methods in Sections 5.4.6 and 5.4.7, namely the

generalized method of Nehab and the TGV approach. The former balances the surface

orientation information with an improved weighting function withing the least squares
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Figure 5.6: Qualitative evaluation of our novel approaches. Previously introduced in

Sections 5.4.6 and 5.4.7. The following methods are demonstrated: (1st

row) the generalized method of Nehab with r = 1.6, (2nd row) the TGV

approach. The left column shows the color coded depth reconstructions as

delivered by different methods. The middle two columns show the vertical

and horizontal depth profiles as marked in Fig. 5.5c. In each of these plots,

the red, gray and black lines indicate the reconstructed depth Z, the initial

depth Ẑ and the ground truth depth ẐGT, respectively. The error maps

showing signed distances to the ground truth depth are provided in the

right column.
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Figure 5.7: Qualitative evaluation of the state-of-the-art methods. Demonstrated meth-

ods: (1st row) the gradient-based method using surface orientations only,

(2nd row) the combined gradient-based method, (3rd row) the method of

Nehab, and (4th row) the method of Heber. The illustration is organized as

Fig. 5.6.
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framework. The latter uses a TGV regularization term combined with a gradient-based

approach.

Qualitative and Quantitative Evaluation

In order to perform a comprehensive quantitative evaluation of the above mentioned

methods, we considered using synthetic evaluation data that comprises full ground

truth (GT) information. The initial depth Ẑ for the synthetic evaluation data is given

by a ground truth depth map ẐGT, which is thresholded after adding noise:

Ẑ =
1
k

[
k · (ẐGT + noise)

]
. (5.44)

In this study, we considered a normally distributed additive noise as this type of

noise well simulates the behavior of matching errors of stereo or light field methods

combined with image sensor noise. The noise used in our evaluations has a maximum

amplitude of 7% of the depth range. The constant k defines the number of discretization

steps and [·] rounds to the nearest integer number n ∈ Z. These discretization artifacts

attempt to simulate the output of the discrete regularized correspondence analysis,

which is often applied in real-world scenarios (e.g., as described in [9]).

For the orientation constraints, we assume surface normals N̂ derived from the ground

truth depth model N̂GT by adding a normally distributed noise with a maximum

amplitude of 23% of the normal range in the spherical coordinate system:

N̂ =
N̂GT + noise
||N̂GT + noise||

(5.45)

In Fig. 5.5, examples of the evaluation data Ẑ and N̂ as well as the corresponding

ground truth depth ẐGT are shown. All 3D datasets used for evaluations were taken

from the Stanford 3D scanning repository [186] and rendered with POV-Ray [163].

Qualitative comparisons of the methods described in Section 5.4 are presented in

Fig.s 5.6 and 5.7. The left column shows the color coded depth reconstructions as

delivered by different methods. The middle two columns show the vertical and
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horizontal depth profiles as marked in Fig. 5.5c. In each of these plots, the red,

gray and black lines indicate the reconstructed depth Z, the initial depth Ẑ and the

ground truth depth ẐGT, respectively. The error maps showing signed distances to the

ground truth depth are provided in the right column. The corresponding geodesic

distances from the ground truth surface normals N̂GT for each method are displayed in

Fig. 5.8. Results of the quantitative evaluations are shown in Tab. 5.2 for gradient-based

methods and in Tab. 5.3 for normal based methods. For the evaluation we used three

datasets from [186]: Buddha (shown in qualitative analysis), Dragon, and Armadillo.

The tables hold fractional precisions of two digits in the depth evaluation and a higher

fractional precision of four digits in the normal evaluation due to different ranges.

The average is calculated using 4 digits after the comma, rounding errors can cause

differences in the last digit. The MSE distance in the depth domain is calculated by

the quadratic distance between the ground truth depth and the depth result:

MSEZ = dZ =
1

MN
||ẐGT − Z||2 (5.46)

The geodesic distance is calculated as described in Section 5.4.1 by using the following

equation:

GEON = dN =
1

MN

MN

∑
i,j

acos

(〈
N̂i,j, (−(∇xZGT)i,j,−(∇yZGT)i,j, 1)

〉
|(−(∇xZGT)i,j,−(∇yZGT)i,j, 1)|2

)
(5.47)

As can be seen in Figs. 5.7 (1st row) and 5.8b, using surface orientation information

alone in the gradient-based formulation provides visually pleasing detail reconstruc-

tions (dN = 0.2365), though it is performing worst in terms of the absolute distance

to the ground truth depth with an average MSE of dZ = 66.68. In Figs. 5.7 (2nd

row) and 5.8c, one can see that adding a depth constraint to the same gradient-based

formulation improves the result drastically (dZ = 2.04 and dN = 0.2951). Nevertheless,

this method still shows somewhat low performance around steep edges. Note that

each of the demonstrated methods could be used to reconstruct surfaces from surface

normals only solely by dropping the depth term. The method of Nehab shown in

Figs. 5.7 (3rd row) and 5.8d exhibits the capability to improve the result over the

previous methods exploiting a better surface orientation weighting strategy (dZ = 0.14,

dN = 0.2532). These methods are optimized using a least squares solver. The evaluation
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(a) (b) (c) (d)

(e) (f) (g)
Figure 5.8: Geodesic distances of the ground truth normals. Compared to the normals

from the initial depth map Ẑ as well as the distances to the normal results of

the presented methods (in the same order as displayed in Figs. 5.6 and 5.7).

(a) Initial depth Ẑ; (b) Surface orientation only; (c) Gradient-based; (d)

Method of Nehab; (e) Method of Heber; (f) Generalized Nehab r = 1.6

(ours); (g) TGV (ours).

of Heber’s method is shown in Figs. 5.7(4th row) and 5.8e. The method is optimized

using gradient descent and reaches average results of dZ = 1.79 and dN = 0.3049,

which is significantly worse than the method of Nehab. The results of our generalized

method of Nehab with a parametrization r = 1.6 are shown in in Figs. 5.6(1st row)

and 5.8f. This method improves robustness over the standard method of Nehab against

noise in surface normals and outperforms all other evaluated methods in the absolute

depth error domain with dZ = 0.11. As the normal weighting here is in closer vicinity

to the geodesic penalty than the method of Nehab, this approach reaches an improved

normal error of dN = 0.2442. This method is optimized using a least squares solver.
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5 Hybrid Depth and Surface Normal Approaches

Gradient-Based Dataset Method Ẑ
Surface

Orientation

Only

Gradient

Based

Gradient

Based + Reg.

with Laplacian

Smoothness

(Eq. (5.21))

Gradient

Based + Reg.

with Gradient

(Eq. (5.19))

TGV (Ours)

Depth

[MSEZ]

Dragon 4.23 34.05 2.04 2.15 1.85 0.19

Buddha 4.85 117.29 2.12 2.25 2.01 0.22

Armadillo 4.60 48.71 1.95 2.06 1.83 0.18

Average 4.53 66.68 2.04 2.15 1.90 0.20

Normals

[GEON]

Dragon 0.8226 0.2776 0.3344 0.3200 0.3017 0.0664

Buddha 0.8767 0.1922 0.2535 0.2339 0.2125 0.0668

Armadillo 0.8611 0.2397 0.2973 0.2797 0.2599 0.0666

Average 0.8535 0.2365 0.2951 0.2779 0.2580 0.0666

Table 5.2: Gradient-based: quantitative evaluation of the distance of the optimized

depth values to the ground truth depth. The evaluations were performed

on objects from the Stanford database [186], which were rendered using

POV-Ray [163]. Evaluated are the MSE to the ground truth depth and the

geodesic distance to the ground truth normals.

Our novel TGV method, shown in Figs. 5.6(2nd row) and 5.8g, provides by far the best

normal accuracy of dN = 0.0666 and performs among the best in the depth domain

(dZ = 0.20). It is optimized with a primal-dual algorithm.

For completion, we additionally show the results of two regularized gradient methods

in Tab. 5.3. First, we regularize with smoothness as shown in Eq. (5.21), which can

be used for sparse data. In our dense case, where we used scalars for the weighting

parameters, the normal accuracy shows a minor improvement due to smoothing in

return of a weaker depth accuracy. Second, we regularize with the gradient, as shown

in Eq. (5.19). With this we can reach an improvement both in the depth and normal

accuracy. These regularization terms could be used for all presented methods, which

would exceed the scope of this paper. Note that our novel TGV method shows a

significantly better performance in both accuracy measurements.

As can be seen in Tabs. 5.2 and 5.3, the two best performing methods are our gen-

eralized method of Nehab with r = 1.6 (normal based) and our novel TGV method

(gradient-based). We show the convergence of both in Fig. 5.9 with respect to the

depth error defined in Eq. (5.46) and the normal error as defined in Eq. (5.47). While
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Normal Based Dataset Method Ẑ Method of

Heber

Method of

Nehab

Generalized

Nehab r = 1.6

(Ours)

Depth

[MSEZ]

Dragon 4.23 2.01 0.13 0.10

Buddha 4.85 1.60 0.15 0.12

Armadillo 4.60 1.75 0.13 0.10

Average 4.53 1.79 0.14 0.11

Normals

[GEON]

Dragon 0.8226 0.3474 0.2941 0.2849

Buddha 0.8767 0.2579 0.2102 0.2013

Armadillo 0.8611 0.3094 0.2553 0.2464

Average 0.8535 0.3049 0.2532 0.2442

Table 5.3: Normal based: quantitative evaluation of the distance of the optimized depth

values to the ground truth depth. The evaluations were performed on objects

from the Stanford database [186], which were rendered using POV-Ray [163].

Evaluated are the MSE to the ground truth depth and the geodesic distance

to the ground truth normals.

the generalized Nehab converges in both terms after approximately 25 iterations, the

TGV settles at around the same iteration step with a depth error which is performing

slightly worse than the other method, but continues to highly optimize the normal

error. Note that a gradient-based formulation was chosen to demonstrate graceful

properties of our novel TGV approach. It significantly improved the results compared

with the standard gradient-based method. Alternatively, for even better performance,

other penalty functions such as the generalized method of Nehab, can be chosen and

will be a matter of future research.

We demonstrated the described algorithms with different surface orientation weighting

on a real world example, as shown in Fig. 5.10. This object was acquired with a multi-

line scanner, the hybrid light field - photometric stereo acquisition framework described

in [9]. In this very specific case we only have one normal direction. An example how

to deal with this data in the gradient-based approach is weighting the gradient vector

in Eq. (5.21) in the missing direction with zero. Specifics of the multi-line-scanning

environment are out of the scope of this paper and are a matter of future research.

97



5 Hybrid Depth and Surface Normal Approaches

(a) Generalized Nehab r = 1.6 (ours) (b) TGV (ours)

Figure 5.9: Convergence analysis. Comparison of the two winning methods: the gen-

eralized Nehab with r = 1.6 (a) and the TGV (b). Distances to the ground

truth depth and surface normals are shown after each iteration, plotted

with a logarithmic y-axis for better visibility.

5.5 Conclusions

We presented a review and classification of methods combining depth and surface

orientation data (normals or gradients), in order to reach an improved surface depth

estimation. State-of-the-art methods differ mostly in the formulation of the surface

orientation constraint (see Section 5.4) and capabilities of the method-specific solvers.

We illustrated the differences between various formulations of the surface orienta-

tion constraint and explained performance discrepancies. Furthermore, we used our

findings to introduce a generalization of the method of Nehab (see Section 5.4.6)

that significantly outperforms other methods in terms of absolute depth accuracy.

Additionally, we introduced a novel method based on TGV (see Section 5.4.7), which

outperforms all other methods in the surface normal domain and shows a competitive

performance in the depth accuracy. While our generalized Nehab method converges

faster (see Fig. 5.9) and gives the most accurate result in the depth domain, our TGV

based approach refines the surface orientation further and converges at the most

accurate orientation result with a high accuracy in the depth domain.
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5.5 Conclusions

(a) (b) (c) (d) (e)
Figure 5.10: Real world evaluation of a coin object. The object was acquired by a multi-

line scanner. The acquisition setup was previously described in detail

in [9]. (a) Ẑ; (b) Gradient-based; (c) Method of Nehab; (d) Generalized

Nehab (ours); (e) TGV (ours).

Further research will include the specialization on line-scanning algorithms, TGV

weighting adaption and computational acceleration. With specialized hybrid algo-

rithms that fit data from line scanning sensors we will determine a solution with

incomplete surface orientation data. The surface orientation constraint of our TGV

formulation is currently gradient-based. Plugging in another formulation with a better

balanced normal weighting could improve the results even further and will be a matter

of future research. Furthermore we will focus on computational acceleration of the

proposed algorithms, where we will exploit their inherent structure to achieve efficient

parallelization.
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In this chapter we present depth refinement approaches for multi-line scan systems.

This is an extended version of our previously published papers. In [9] we introduced

the analysis of photometric stereo data from light field stacks and the combined depth

reconstruction. We extended the idea in [8], evaluated several state-of-the-art optimiza-

tion algorithms on the task and introduced two novel variational approaches.

Before we dive into the details of depth optimization in Sec. 6.6 (illustrated in Fig. 6.1

step 5), we describe our hybrid multi-line scan setup in Sec. 6.2, the depth analysis

(step 2) in Sec. 6.2.1 and the retrieval of photometric stereo information in Sec. 6.2.2.

We discuss the feature generation for multi-line scan data in Sec. 6.3 and introduce

our novel hand crafted features which are highly suitable to process industrial in-line
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6 Multi-Line Scan Depth and Surface Normal Fusion Algorithms

light field acquisitions. The computation of a regularized initial depth estimation is

described in Sec. 6.4 and of initial photometric stereo normals using the initial depth

map is explained in Sec. 6.5. Our novel optimization methods for depth refinement in

multi-line scan data are evaluated in comparison to the state-of-the-art in Sec.6.7 on

three synthetic datasets as well as a real world example.

6.1 Motivation

Recent work has shown the improved depth reconstruction by combining depth and

surface normal information. In this chapter, we build on the findings and introduce

novel variational methods for a refined depth reconstruction using a multi-line scanner.

In this specific setup, the object is acquired while moving on a conveyor belt in a

defined direction under the camera, which simultaneously captures light field and

photometric stereo data as the object is transported. We perform our experiments on

virtual and real-world data and achieve significantly improved results over state-of-

the-art methods both in depth and surface normal accuracy.

In this chapter, we combine the advantages of a light field depth estimation that is

accurate on large scales with strong local surface orientation estimates from photo-

metric stereo. We adapt state-of-the art algorithms to work on data comprising only

surface normal data in x-direction, as provided by multi-line scanners, for which we

furthermore introduce a novel total generalized variation (TGV) approach as well as

an improved normal weighting for our energy terms.

Analyzing light field data allows the depth reconstruction of a scene. In Sec. 3.4 we

illustrated such a correspondence analysis using irradience values captured on the

camera sensor. In feature based matching approaches, these irradiance values are first

processed in order to extract feature maps for each view. Using features allows more

robust matching, with a higher invariance to image transformations. We present new

features which are tailored to the reflectance and noise properties of multi-line scan

acquisitions.
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6.1 Motivation

An initial depth estimate is calculated by a multi-view correspondence analysis in

the light field data, the estimate is optimized by a conditional random field (CRF).

Then the normals at each position are estimated using a photometric stereo analysis.

We reformulate state-of-the art approaches to combine depth with surface normals

for multi-line-scan data and finally we refine the depth estimate by using a total

generalized variation (TGV) method. The results are compared to a combinational

approach from Nehab [148], which we adapt to the properties of our multi-line-scan

data.

Several methods for depth analysis from light field data were previously presented.

Most methods exploit the structure of Epipolar Plane Images (EPIs), which were

described by Bolles et al. [22], where depth analysis is performed by fitting straight lines

through EPIs. Wanner et al. [214] used a structure tensor to give a better local depth

estimate. Kim et al. [110] introduced a fine-to-coarse method, which first estimates

boundaries ray-wise and then propagates the information to more homogeneous

interior regions. A dense depth estimation method is described by Tosic et al. [204].

Multi-scale light field analysis is performed by exploiting light field scale and depth

(Lisad) spaces, which allows the depth reconstruction in uniform as well as textured

regions. Tao et al. [198] proposed a line consistency metric for depth estimation with

light field data to overcome Lambertian restrictions.

Photometric stereo analysis was introduced by Woodham [223]. Subsequently, several

methods were developed for dealing with non-Lambertian surface structures [123, 138,

179]. The analysis of normals from photometric stereo in a multi-line scan setup was

described in [9].

The combination of depth with surface normals is usually done by constructing

an energy term, containing depth and orientation constraints. The depth constraint

enforces the result to be close to an initial depth estimate. The weighting of the

surface orientation constraints differentiates in alternative approaches. Gradient based

techniques, as shown in [62, 87], enforce the surface gradient to be close to an estimated

gradient. Nehab et al. [148] optimized the sum of squared projections of the surface

tangents onto a given normal.
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Figure 6.1: Illustration of our multi-line scan setup with the depth refinement pipeline.

The setup consists of a top-view camera and two illumination sources. In

this chapter we focus on depth refinement techniques.

We introduce an adaption of state-of-the art hybrid methods which were formally

presented in [7] to fit the restricted structure of the multi-line scan data as well as a

tailored TGV approach, which enforces closeness of the x-gradient while simultane-

ously reconstructing a y-component. Additionally we show an improved weighting of

the surface orientation constraint.

6.2 Hybrid Setup

We acquire light field and photometric stereo data with an in-line multi-line scan

system, which was described in [190]. A schematic representation of the system is

shown in Fig. 6.1 (left). A top-center mounted multi-line scan camera (AVT BONITO

CL-400C) extracts frames with multiple scan lines with frame rates of up to 50 kHz, the

camera is equipped with a Schneider-Kreuznach APO-COMPONON 4/45 lens. During

the acquisition process an object is moving on a conveyor belt (Thorlabs LTS300/M)
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6.2 Hybrid Setup

orthogonally to the camera’s optical axis and sensor line orientation. Two static line

light sources (Chromasens CORONA II) are used to illuminate the scene.

6.2.1 Light Field Cues

Contrary to the common 4D light field description, we capture a linear light field with

our multi-line scan system, consisting of two spatial and one directional dimension.

During the image acquisition, an object is moving in a defined direction on a conveyor

belt. From the image sensor several equidistant lines are read out at each time step.

Between two acquisitions the object is moving exactly the distance equivalent to one

pixel, which ensures equivalent resolution in both the x- and y-dimension of the image.

For the light field depth analysis, these acquisitions are represented as an EPI stack

(shown in Fig. 4.5b).

The slope angles of the EPI structure correspond to defined depths for each image

position. We analyze the depth with a multi-view correspondence analysis in the

EPI domain normalized for brightness and contrast to achieve robustness against

variations due to photometric stereo effects.

Starting from the compound light field & photometric stereo data obtained using the

multi-line scan camera, we first perform a multi-view correspondence analysis in the

EPI domain using image features, which are described in detail in Sec. 6.3. This is

performed in order to reach a robustness against brightness and contrast variations in

different views, which happens quite often due to the presence of photometric effects

in our data.

During the correspondence analysis a number of Z disparity hypotheses are tested

in each pixel location from which results in a cost volume C ∈ RM×N×Z , on a

discretized surface with the size of M×N pixels. Where each value reflects the

similarity of visual structures at the corresponding locations in the light field views.

For convenience, values in the cost volume are normalized to fit in the interval [0, 1].
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6.2.2 Photometric Stereo Cues

Light field depth estimation performs well in terms of the absolute depth accuracy.

Failures occur on fine scales, textureless regions and on surfaces with specular re-

flections. Using a photometric stereo method to derive surface orientation from local

shading information was described by [223]. Surface shape can be retrieved by using

only the surface orientation (e.g. [62]), but such methods are prone to errors and result

in a low frequency offset. We combine the depth estimation with surface orientation

data to achieve an overall improved reconstruction accuracy.

In Chapter 4.2.3 we presented the photometric stereo analysis from light field data. The

calculation of the surface normals and the albedo was presented in Eqs. (4.8) to (4.11).

We also showed that in the multi-line scan framework we can estimate only a lower

bound of the albedo due to the missing photometric component which is orthogonal

to the transport direction (in our case the y-component).

The surface normals can be expressed as a disparity gradient field G ∈ RM×N×2 as

follows:

Gi,j,x = −
Ni,j,x

Ni,j,z
, Gi,j,y = −

Ni,j,y

Ni,j,z
, ∀i, j ∈ I . (6.1)

An upper bound for Nz can be estimated from Eq. (4.11) under an absence of the

y-component (i.e. Ny is unknown), for Ny = 0. Our proposed models utilize an

initial depth Ẑ ∈ RM×N and surface orientation in the form of surface normals

N̂ ∈ RM×N×3 or surface gradients Ĝ ∈ RM×N×2. To account for the missing y-

component, in some methods we assume flatness in that direction, i.e. Ny and Gy both

equal to zero.

6.3 Features for Multi-Line Scan Data

Analyzing light field cues allows the depth reconstruction of a scene. In Sec. 3.4 we

illustrated such a correspondence analysis using irradience values captured on the

camera sensor. In feature based matching approaches, these irradiance values are first
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6.3 Features for Multi-Line Scan Data

Figure 6.2: Census transform and comparison for stereo images.

processed in order to extract feature maps for each view. Using features allows more

robust matching, with a higher invariance to image transformations.

Classical features are using detectors to identify structures (e.g. lines, corners, circles,

curves) [157], combinations of structure features [127, 218] or local transformations,

such as the census transform (CT) [236], the sign bit of the image after the convolution

with the Laplacian [155] or the direction of the intensity gradient [174]. An insensitive

manual matching approach was introduced in [15].

In this section we describe two manually designed feature types, which previously

showed a superior performance regarding computational speed and matching accuracy.

First, we present the well-known CT features, which revealed a problematic structure

when processing industrial light field data. Then we introduce our novel extended

high-pass features, which are specifically adapted and hence highly suitable for data

captured by our multi-line scanner.

6.3.1 Census Transform

The census transform (CT) is a non-parametric local transform which was introduced

in [236]. It uses relative intensities of input images which makes it robust to intensity

changes. The transform maps a 8-connected pixel neighborhood to a bit string signa-

ture. Using the Hamming distance allows a fast identification of similar regions, as

illustrated in Fig. 6.2. This was frequently used for stereo [103, 112, 161] or light field
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matching applications [9, 183, 203]. The CT features Fl ∈ RM×N×T, for T feature and

l = (1, ..., L) color channels, at a pixel position p is defined as:

Fl(p) = ⊗(i,j)∈Dξ(p, p + (i, j)), ∀i, j ∈ I , (6.2)

where ⊗ denotes the concatenation, D defines the window around p and ξ is given as

the relationship between the intensities I of the pixels p and p + (i, j):

ξ(p, p + (i, j)) =

1, if I(p) ≤ I(p + (i, j))

0, otherwise.
(6.3)

The Hamming distance is used to compare the distance of the resulting feature

images. Between two images, the best correspondence is found where the distance is

minimal.

The census transform is not ideally suited for industrial light field applications, since

it cannot be interpolated in a fast and easy way. An interpolation is necessary when

testing disparity hypotheses along a slope angle, since tested values frequently lie

between pixels. An interpolation method was introduced in [207] which shows speed

detriment in the light field application as it requires four times as many comparisons.

Our extended HP features introduced in Sec. 6.3.2 show superior properties and are

therefore chosen as the state-of-the-art method for the evaluation in Sec. 6.3.3.

6.3.2 Extended High-Pass Medium-Contrast Approach

We designed features which are suitable for light field data with a low computational

complexity which favors medium contrast regions. Two specifically problematic be-

haviors can be enclosed in line-scan light field data, namely low texture- or highly

reflective surfaces. In the former matching ambiguities occur in low amplitude regions,

hence the result has a low confidence. The latter shows in high amplitude regions,

where dark and very bright areas converge. Resulting from these two observations,

we designed our features to operate in a medium contrast range with an amplitude

between chosen values rmin and rmax.
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Using a high-pass (HP) filter to generate local high frequency features was previously

done for stereo matching [83, 104, 232] as well as light field matching applications [32,

187]. Using high frequency matching focuses the matching on the edge regions of

an image. The function computing Gaussian filter coefficients for a kernel size k is

defined as:

H = α e−
(w−(k−1)/2)2

2σ2 , with w = (0, ..., k− 1), (6.4)

where α denotes the scale factor to ensure ∑w Hw = 1. The high-pass image F ∈ RM×N

is calculated as a difference of the gray valued input image I ∈ RM×N and the Gaussian

filtered result using a convolution with the filter coefficient:

Fi,j = Ii,j − (H ∗ I)i,j, ∀i, j ∈ I , (6.5)

where ∗ denotes the convolution operator:

(H ∗ I)i,j =
u=k

∑
u=−k

v=k

∑
v=−k

Hu,v Ii−u,j−v, ∀i, j ∈ I . (6.6)

To ensure a stable and image wide matching procedure we use a weighted high

frequency matching method, for which we define an amplitude matrix A ∈ RM×N :

Ai,j = (H ∗ |F|)i,j, ∀i, j ∈ I , (6.7)

and we normalize our high pass feature map:

F̄i,j =
Fi,j

Ai,j
, ∀i, j ∈ I . (6.8)

With further processing we ensure a stable result in respect to noise regardless of

the regions extensive reflective properties. We create a confidence map C ∈ RM×N ,

which analyses the local deviation in order to assign a pixel-wise confidence (Eq. 6.9).

Areas with a medium contrast between a defined range r = (rmin, rmax) are trusted

most. Applying the confidence map on our normalized high pass features results

in our high-pass medium-contrast features M ∈ RM×N , we inject independent and

identically distributed (IID) noise in low confidence regions in order to avoid wrong

matching results.

Ci,j = e
−
(

Ai,j
rmax+ε

)2

− e
−
(

Ai,j
rmin+ε

)2

(6.9)

Mi,j = Ci,j F̄i,j + (1− Ci,j)Ni,j, ∀i, j ∈ I (6.10)

109



6 Multi-Line Scan Depth and Surface Normal Fusion Algorithms
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Figure 6.3: Comparison of disparity estimation results with different features.

Where N ∈ RM×N is a noise matrix and ε denotes a small number.

We propose to compute these features at three different levels, while at each level

a larger kernel size k is applied. We specifically used k = (3, 5, 7). The redundancy

in light field data is additionally used to reduce the ambiguity between matching

features.

6.3.3 Comparison

We qualitatively compare the features on our multi-line scan light field stack. Both

methods have K = 3 features for each light field view. We analyzed the correlation
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volume V to get the best matching disparity for each pixel position p.

Xp ∈ arg min
k

Vp(k) (6.11)

The result is shown in Fig. 6.3. Note that the created features have a different precision.

While our extended HP features have 8 bit, the binary CT features are converted to a

single integer value with 32 bit (5× 5 neighborhood).

Features from the CT are not ideal for the disparity hypotheses testing in light field

image stacks. The reason for this lies in the fact that these binary features are not

well suited for interpolation. Resulting disparity estimations are noisy and enhance

transport jitter artifacts from the linear transport stage (see acquisition setup in Fig. 6.1).

The correction of transport jitters was previous discussed in [27], we showed details

in Sec. 3.3.4. Furthermore, our extended high-pass features benefit from a special

treatment for specularities, which favors medium-contrast regions.

6.4 Initial Depth Estimation Using CRF

In order to assess surface normals in the next step, an initial approximate depth

model must first be obtained. Given the pre-calculated hypothesis costs, we employ

the discrete-continuous optimization algorithm based on conditional random fields

(hereinafter referred to as the CRF algorithm, as described in [176]) to determine a

quick yet accurate approximation of the global solution (i.e. globally consistent depth

map), under the generalized first-order total variation (TV) prior.

Let V = M × N be a set of nodes, where each node i ∈ V corresponds to a pixel

location. Moreover, let E ⊂ V ×V be an edge set, where each ij ∈ E corresponds to an

edge connecting the two pixel locations i and j. For efficiency reasons, the edge set is

restricted to a 4-neighborhood, but the extension to a higher degree of connectivity is

straight forward. To each pixel i ∈ V we associate a discrete disparity label Zi ∈ Z .
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Our goal is now to find an optimal discrete labeling Ẑ ∈ ZV that minimizes the

following conditional random field (CRF) energy:

min
Ẑ

∑
i∈V

Fi(zi) + ∑
ij∈E

Fij(Zi, Zj), (6.12)

where Fi(Zi) are the unary terms that are given by the CT matching costs for each

depth hypothesis Zi and Fij are the binary terms that apply a smoothness constraint to

the optimal labeling. We use the generalized TV function from [176]. In other words,

by minimizing the CRF energy, we try to find an optimal labeling Ẑ that provides

a trade off between minimizing the matching costs and minimizing the smoothness

constraint.

The CRF minimization is a combinatorial NP-hard problem. However, as shown in

[176] we can compute very good approximate solutions by means of the dual minorize

maximize (DMM) algorithm. The idea of the DMM algorithm is to decompose the

CRF energy into distinct chain problems for which the CRF energy can be minimized

efficiently using dynamic programming. Then we consider the Lagrangian function

obtained from introducing a vector of Lagrange multipliers that force the solutions

of the distinct chain problems to agree in the optimum. The dual problem associated

with the Lagrangian function is continuous, piecewise linear and concave and provides

a lower bound to the original problem. The idea of the DMM algorithm is now

to iteratively construct a sequence of minorants to the dual problem which can be

efficiently maximized. Once the dual problem is solved, the primal solution (and hence

the depth map) is computed from the dual solution.

6.5 Initial Photometric Stereo Normals Using Previously

Assessed Depth Model

As soon as a previous discrete or continuous disparity labeling Ẑ ∈ RM×N is available

(as described in Sec. 6.4), it can be used to extract the observed intensities Ei,j in each

pixel location along the corresponding EPI-lines by the provided disparity model.

Subsequently these vectors are used to generate the surface normal field N̂i,j ∈ R3 by

applying Eq. (4.9) in all pixel locations. Details are presented in Sec. 4.2.3.
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Due to the lack of the photometric stereo evidence orthogonally to the transport

direction, values in Gy (i.e. gradients in y-dimension) are always estimated to be zero.

Hence, the first-order TV smoothness prior is implicitly applied in y-dimension.

6.6 Optimized Fusion of Light Field and Photometric Stereo

for Missing Data

In Sec. 5.2 we presented the setup and algorithmic approaches to reconstruct the

depth from light field and the surface normals from photometric stereo with a missing

y-component. Next we describe details of hybrid algorithms suitable for our multi-line

scan setup, including a gradient-based method and our generalized method of Nehab.

In these algorithms we introduce a flatness assumption in the y-direction. Additionally,

we introduce a novel TGV approach for the multi-line scan case.

6.6.1 Gradient-Based Method

Using a gradient-based method allows us to use the measured data directly without

necessity of any additional assumptions. This is an obvious benefit for processing data

from our multi-line scanner. In this method, the deviation of the depth reconstruction

Z to an initial light field depth estimation Ẑ is penalized and the gradient ∇xZ is

enforced to be close to a photometric stereo gradient Ĝx. Moreover, flatness is enforced

in y-direction (see Fig. 6.4b). We formulate the gradient-based optimization approach

as a least squares problem as follows:

min
Z

1
2
||Ẑ− Z||2 + λx

2
||Ĝx −∇xZ||2 +

λy

2
||∇yZ||2, (6.13)
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6 Multi-Line Scan Depth and Surface Normal Fusion Algorithms

(a) Gx without y-flatness prior (b) Gx with y-flatness prior

Figure 6.4: Depth reconstruction example using the gradient-based method. (a) With-

out and (b) with the y-flatness prior as described in Sec. 6.6.1

where λx and λy are weighting terms of the surface orientation in x- and y-direction

and the gradient operator ∇ : RM×N → RM×N×2 is given by:

(∇xZ)i,j =

Zi+1,j − Zi,j if 1 ≤ i <M,

0, otherwise,

(∇yZ)i,j =

Zi,j+1 − Zi,j if 1 ≤ j < N ,

0, otherwise.

(6.14)

We find the optimum of the least squares formulation by a standard conjugate gradient

approach.

6.6.2 Generalized Nehab

As an extension of the gradient-based method, here we describe a generalized version

of the method of Nehab [148], as shown in [7] for the area-scan case. Our least squares

formulation of the generalized method of Nehab adapted for multi-line scanning data

follows:

min
Z

1
2
||Ẑ− Z||2 + λx

2
||(N̂z)

r � Ĝx − (N̂z)
r �∇xZ||2 +

λy

2
||(N̂z)

r �∇yZ||2, (6.15)

where � denotes the element-wise multiplication operator. A weighting of r = 1

corresponds to the original method of Nehab with flatness enforced in the y-direction

and r = 0 corresponds to the gradient-based method (Eq. (6.13)). By weighting the
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Figure 6.5: Examples of results obtained for different synthetic

datasets.

surface orientation components by (N̂z)r, with a parameter r ∈ R+, we can reach an

improved reconstruction accuracy in the region of steep edges. The reason for this

lies in an over-penalization of steep regions in the original formulation where errors

in normals usually have more severe impact. This is reflected by the z-component

of the normal, which holds lower values in steep regions and higher values in flat

areas. As discussed in Sec. 6.2.2, we estimate an upper bound of N̂z due to the

incomplete photometric stereo information in our multi-line scanning data. Note

that the correspondence from gradients to normals was shown in Eq. (6.1). In our

experiments, we assume a weighting of r = 1.6, which proved to lead to better

reconstructions in regions with steep edges. The minimizers to the least squares
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6 Multi-Line Scan Depth and Surface Normal Fusion Algorithms

formulations in Eq. (6.15) are found with a standard conjugate gradient method.

6.6.3 Total Generalized Variation

In this section we introduce a novel method to combine light field depth with photo-

metric stereo surface orientation information for multi-line scanning data, which is an

adaptation of the method [7] originally introduced for the area-scan case. The approach

is based on the Total Generalized Variation (TGV) method [29], which is an extension

to the popular Total Variation (TV) approach and that evades unwelcome staircasing

artifacts. Our approach makes a direct use of gradients Ĝ, where the auxiliary gradient

G and the depth map Z are reconstructed simultaneously is formulated as follows:

min
Z,G

α1||∇Z−G||2,1 + α0||∇G||2,1 +
1
2
||Ẑ− Z||2 + β

2
||Ĝx − Gx||2, (6.16)

where finite differences are computed with the gradient operator ∇ : RM×N×2 →
RM×N×4 and ∇G can be decomposed into (∇Gx,∇Gy), with the∇ operator as defined

in Eq. (6.14). Our penalty function consists of a TGV term (first and second term in

Eq. (6.16)), a light field constraint (third term in Eq. (6.16)) and a gradient constraint

in x-direction (fourth term in Eq. (6.16)). The TGV regularization models a piecewise

linear depth map Z making use a 2nd-order prior while indirectly (with the auxiliary

G and parametrized by α0,1 > 0) enforcing the gradient ∇Z to be in the proximity of

the given gradients Ĝx. The light field constraint enforces the final solution to be in

the proximity of an initial noisy depth estimate Ẑ. The photometric stereo constraint

is weighted with the parameter β ≥ 0 and enforces the gradient in x-direction Gx of

the solution to be close to an initial estimate Ĝx. Additionally, we present an extension

of the TGV method using the generalized Nehab’s (GN) formulation introduced in

Sec. 6.6.2. It is described by the following penalty:

minZ,G α1||∇Z−G||2,1 + α0||∇G||2,1 + (6.17)
1
2
||Z− Ẑ||2 + β

2
||(N̂z)

r � Ĝx − (N̂z)
r � Gx||2,

where N̂z is the upper bound normal estimation in z-direction with an element-wise

exponent operator with a parametrization r = 1.6. We optimize our TGV formulations

of Eq. (6.16) and Eq. (6.18) using a primal-dual (PD) algorithm, as introduced in [29].
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(a) Depth: MSE to ẐGT (range [0, ∞])
XXXXXXXXXXXXXXX

Dataset

Method
Ẑ

N

only

Gradient-

based

Method of

Nehab

Generalized

Nehab

r=1.6 (ours)

TGV

using grad.

(ours)

TGV

using GN

r=1.6 (ours)

A
bs

ol
ut

e
D

ep
th

[M
SE

]

Dragon 4.2259 134.5353 2.4709 0.1312 0.1288 0.2443 0.2442

Buddha 4.8448 146.3337 2.2938 0.1302 0.1277 0.2603 0.2596

Armadillo 4.5959 103.2253 2.2159 0.1224 0.1208 0.2449 0.2443

Cat 2.3707 154.5484 1.8337 1.0173 0.9542 0.1916 0.1928

Hippo 3.6345 364.4030 3.8063 1.9914 1.8733 0.2134 0.2145

Pig 2.7122 238.0685 1.7046 1.1181 1.0884 0.3200 0.3201

Scholar 3.0767 469.6256 3.6177 1.7873 1.7404 0.2667 0.2673

Turtle 2.3229 251.2245 3.1177 2.0097 1.9619 0.1713 0.1714

Boxes 3.1436 166.0757 22.1343 0.7611 0.2461 1.5070 1.4355

Cotton 3.2348 474.5878 16.5724 0.1988 0.1729 0.2483 0.2472

Dino 3.0853 139.2516 4.6089 0.1023 0.0842 0.3205 0.3199

Sideboard 3.0756 174.4863 16.1101 0.4228 0.2189 0.5383 0.5613

Antinous 3.1373 530.6002 22.5113 0.2707 0.2106 0.3067 0.3057

Town 3.0952 283.2612 8.3575 0.1927 0.1482 0.3664 0.3665

Medieval 3.0803 151.8558 4.6061 0.2170 0.1896 0.2745 0.2735

Greek 3.0759 386.7557 24.8074 0.2154 0.1514 0.2805 0.2794

Average 3.2945 260.5524 8.7980 0.6680 0.5886 0.3597 0.3565

(b) Normals: geodesic distance to N̂GT (range [0, π])

Ẑ
N

only

Gradient-

based

Method of

Nehab

Generalized

Nehab

r=1.6 (ours)

TGV

using grad.

(ours)

TGV

using GN

r=1.6 (ours)

Su
rf

ac
e

no
rm

al
s

[G
eo

de
si

c
di

st
an

ce
]

Dragon 0.1873 0.1901 0.3109 0.2657 0.2632 0.0630 0.0634

Buddha 0.1260 0.1296 0.2187 0.1826 0.1807 0.0513 0.0513

Armadillo 0.1591 0.1794 0.2669 0.2270 0.2250 0.0607 0.0608

Cat 0.4495 0.1772 0.2239 0.2137 0.2109 0.0485 0.0499

Hippo 0.7112 0.2082 0.2576 0.2481 0.2459 0.0493 0.0506

Pig 0.4948 0.1822 0.2191 0.2143 0.2122 0.0394 0.0401

Scholar 0.6066 0.2090 0.2691 0.2608 0.2590 0.0621 0.0631

Turtle 0.4438 0.2068 0.2502 0.2421 0.2397 0.0451 0.0459

Boxes 0.6449 0.1685 0.2102 0.0780 0.0672 0.1056 0.1052

Cotton 0.5792 0.0831 0.1534 0.0626 0.0558 0.0457 0.0454

Dino 0.6499 0.1462 0.1336 0.0710 0.0660 0.0589 0.0590

Sideboard 0.6742 0.1992 0.2147 0.0825 0.0756 0.0850 0.0928

Antinous 0.5969 0.1482 0.1677 0.0681 0.0601 0.0420 0.0418

Town 0.5875 0.1216 0.1664 0.0708 0.0664 0.0879 0.0852

Medieval 0.5476 0.1118 0.1214 0.0656 0.0591 0.0478 0.0474

Greek 0.6061 0.1514 0.2087 0.0725 0.0639 0.0609 0.0607

Average 0.5040 0.1633 0.2120 0.1516 0.1469 0.0596 0.0602

Table 6.1: Quantitative comparison of the analyzed methods. Where our methods are

marked bold. The accuracy of the reconstructed depth is evaluated w.r.t. the

ground truth in absolute terms by means of the mean squared error (MSE)

and locally on the level of surface normals using the geodesic distance. The

evaluations were performed on objects from the Stanford database [186]

(1-3), which were rendered using POV-Ray [163] as well as on depth maps

retrieved from the photometric stereo dataset presented in [228] (4-8) and

the objects of the light field dataset presented in [95] (9-16). The exceptional

dataset Boxes (Fig. 6.6) is marked red. 117



6 Multi-Line Scan Depth and Surface Normal Fusion Algorithms

6.7 Evaluation

To evaluate the proposed algorithms, we need an initial depth map Ẑ and an estimate

of the gradient in x-direction Ĝx. Due to missing y-components in the multi-line scan

data, the flatness assumption is considered in y-direction in the gradient (Ĝy = 0) or

normal (N̂y = 0) domains in order to estimate an upper bound for N̂z. We conduct

experiments for the depth reconstruction with multi-line-scan data. The introduced

hybrid light field and photometric stereo variational methods are first evaluated on

synthetic datasets for a quantitative evaluation and later demonstrated on real world

multi-line scan data for a qualitative evaluation.

6.7.1 Synthetic Data

We compared the results of several methods which we tailored for the use of multi-line

scan data. Namely, (i) a gradient-based method, (ii) the original method of Nehab,

(iii) our generalized method of Nehab and our TGV approaches with (iv) the simple

gradient-based and (v) the generalized Nehab surface normal penalty formulation

(r=1.6). For illustrative purposes show one additional method: the gradient-based

depth reconstruction using the photometric stereo only, which gives a comparable

accuracy in the normal domain but has a weak performance in the absolute depth. The

obtained quantitative results are shown in Tab. 6.1, with examples of the corresponding

depth maps demonstrated in Fig. 6.5.

The initial depth map Ẑ is constructed by adding normally distributed noise of a

maximum strength of 7% of the depth range to the ground truth depth map and

thresholding the result. This corresponds well to results which are usually achieved

by data acquired by our multi-line scan system after a normalization with a CRF

(Conditional Random Field).

Ẑi,j =
1
k

[
k (ẐGTi,j + noisei,j)

]
, ∀i, j ∈ I (6.18)

Where [·] rounds to the nearest integer number and the constant k controls the number

of discretization steps. The initial normals N̂ are constructed by adding normally
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distributed noise of a maximum extent of 23% of the normal range to the ground truth.

N̂i,j =
N̂GTi,j + noisei,j

|N̂GTi,j + noisei,j|
, ∀i, j ∈ I . (6.19)

The gradient-based reconstruction uses the gradient data generated by the multi-line

scanner directly, but it shows a weak performance on steep edges. On flat regions,

as often observed in real-world data, this method can still yield a quite competitive

performance. The method of Nehab behaves better than the gradient-based method

especially on steep edges. This is further improved by our generalized method of

Nehab. Both our TGV approaches for multi-line scan data globally outperformed all

other methods in the geodesic normal distance domain as well as in the depth MSE

(mean squared error). Introducing the generalized Nehab penalty to TGV does not

significantly change the result, which is already well-balanced through the TGV term

even using simple gradients.

ẐGT Ẑ Result (TGV)

Figure 6.6: Reconstruction of boxes with our TGV method.

There was only one exceptional dataset, ”Boxes” from [95], in which our TGV methods

seemed to struggle (see Fig. 6.6). This scene contains locally frequent strong abrupt

depth changes combined with large flat tilted planes and a noisy and quantized depth

initialization. In this special case the best result was obtained with our generalized

method of Nehab. In future research we intend to exploit regional weighting parame-

ters including local smoothing based on color schemes in the image, similar to bilateral

filtering.
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Figure 6.7: Depth reconstruction results from real world data acquired with our multi

line scan setup. The setup was described in 3.2.5.

6.7.2 Real World Evaluation for Multi-Line Scan Data

With the multi-line scan setup, the initial depth maps can be provided by light field

correspondence analysis. Regularizing the initial depth map allows a more reliable

initial photometric stereo estimation, as described in Sec. 6.2.2. In [9] a discrete-

continuous optimization algorithm was suggested, based on conditional random

fields (CRFs) for a fast and accurate initial depth solution. Such an example is shown

in Fig. 6.7, which shows the initial depth Ẑ and results obtained by the methods

analyzed in this chapter. The data was acquired with the setup described in Sec. 6.2,

the discretization artifacts in Ẑ stem from the noisy light field depth estimation and

the CRF regularization. Normals are estimated from the light field stack as discussed

in Sec. 6.2.2. One can see that on the provided real-world example the TGV approach

outperforms the original method of Nehab as well as the generalized method of
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Nehab.

6.8 Conclusion

In this chapter we explored variational methods for the combination of light field

depth and photometric stereo surface orientation tailored for data generated by the

multi-line scanner as previously presented in [8].

We showed how to tackle the problem of missing surface normal component when

using the gradient-based approach, the original method of Nehab [148] or the general-

ized method of Nehab [7]. Both variants of the Nehab’s approach exploit an upper

bound estimation on N̂z but still show an improved reconstruction accuracy in regions

of steep edges over the gradient-based method. Furthermore, we introduced a novel

hybrid TGV method, demonstrated with two different weighting functions for the

photometric stereo constraint: (i) the gradient-based and (ii) the generalized Nehab.

The methods were evaluated on 16 synthetic examples from three datasets, which

contain a variety of different object geometries.

We showed that both TGV approaches outperform all other algorithms in the accuracy

of the reconstructed depth and surface orientation. Practical applicability of the

presented methods was illustrated on a real-world example obtained with our multi-

line scan framework.
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In this chapter we will address the issue of measuring, representing and completing

sparse reflectance distribution functions. First we will introduce several reflectance

distribution functions and motivate their use in computational imaging tasks in Sec. 7.1.

Then we introduce the visual structure we use to represent bidirectional reflectance

distribution functions (BRDFs) in Sec. 7.2. In Sec. 7.3 we show several ways to capture

these functions, where different acquisition methods differ in speed, accuracy and

the level of density (/sparsity) of the function they are able to capture. In Sec. 7.4

we present our work published in [4], where we focus on learning dense reflectance

functions from sparse data using CNNs.

7.1 Motivation

Many computer vision applications require the classification, segmentation or recon-

struction of surface materials. The appearance of materials can depend on properties

such as the position of the object, the wavelength of the illumination, the illumination

angle (irradiance incident) and the viewing angle (reflected radiance). For a dense
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7 Reflectance Distribution Capture

Figure 7.1: Illustration of the BSSRDF.

acquisition of the reflectance function, many combinations of these parameters have to

be measured over the region of the surface.

A general reflectance function has 16 variables and is currently unfeasible to mea-

sure [80], it contains information about the irradiance incident and reflected spherical

radiance angles, on time and the light spectrum. It models for each material the unique

appearance under any lighting direction, intensity and spectrum. In practical models

assumptions are used which limit the complexity.

The bidirectional scattering-surface reflectance distribution function (BSSRDF), as

illustrated in Fig. 7.1, describes the relation between the irradiance incident and

the reflected radiance between arbitrary two rays that hit a surface, including the

properties of subsurface scattering by the variables (xi, θi, φi; xr, θv, φv), which denote

the angles of the incident flux at the point xi and reflected radiant flux at the point xv.

As a specific case of the BSSRDF, restricted to opaque materials, the bidirectional

reflectance distribution function (BRDF) was formally specified by [153]. The BRDF, as

illustrated in Fig. 7.2, is described by four independent variables (θi, φi; θv, φv), where

the light is assumed to enter and leave at the same point. Therefore it cannot model

subsurface scattering as it appears in translucent materials (e.g. marble, snow, skin,

milk), as described in [101]. The BRDF maps the irradiance incident from a specific

direction to its influence towards the reflected radiance of another direction. The

BRDF shows the properties of view and illumination direction reciprocity and energy

conversation, as described in [58].
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Figure 7.2: Illustration of the BRDF.

Figure 7.3: Illustration of the BTF. The difference to the BRDF in Fig. 7.2 is the position

dependency marked in red.

The (multi-spectral) bidirectional texture distribution function (BTF), as illustrated in

Fig. 7.3, was later introduced by [44], which describes a texture image parametrized by

the viewing and illumination angle and therefore a spatially varying BRDF. The BTF is

described by the variables (p; θi, φi; θv, φv), where p = [p1, p2, p3] defines the position

on the material sample (vertical/horizontal) as well as the spectral index. BTFs are very

data/storage intensive but can model structures including self-occlusions, subsurface

scattering, rough surfaces or self-shadowing [58].

Understanding reflectance distribution functions is essential for the detection and

classification of properties or defects of objects which can have different materials and

surface structures. In this chapter, we first present the structure we use to visualize
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Figure 7.4: BRDF acquisition setup and data arrangement. This illustration is courtesy

of UTIA [80].

BRDFs. Then we show properties of measurement systems for reflectance distribution

functions. These methods can capture reflectance properties to different degrees of

details, where capturing a high degree of reflectance details is highly time consuming

and can take several years. We would like to capture a full BRDF which is not

feasible due to the time consumption. Common methods measure parts of BRDFs. We

introduce a novel method to computationally reconstruct full BRDFs from partial data

using convolutional neural networks (CNNs).

7.2 BRDF Capture

In this section the structure of the BRDF, the variables and the representation are

presented as used in the following chapter.

The data arrangement is illustrated in Fig. 7.4. The BRDF is described as a 4D function

of (θi, ϕi; θv, ϕv), where θ denotes the elevation- and ϕ the azimuth angle. These

angles are defined for both the illumination direction I and the camera direction V in

respect to the object normal N. The object normal points towards the top center of the

acquisition device.
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Figure 7.5: Illustration of a mechanical gonioreflectometer construction.

7.3 Measurement

Common methods to capture the reflection behavior of different materials differ in

the flexibility of detail they measure, in the type of reflectance distribution function

they can model, the dynamic range of the used sensors and in the time an acquisition

consumes.

7.3.1 Gonioreflectometers

Gonioreflectometers use an independently moving light source and camera (single

pixel detector). With this setup all combinations of light source and detector are

possible down to the precision of the moving arms, with a restriction of combinations

where light source and detector would occlude each other. Such a system is illustrated

in Fig. 7.5. The measurement process using a gonioreflectometer is time consuming.

Approaches to speed up the process included placing four cameras on the acquisition

arm [191] or computational optimizations, where an algorithm plans the necessary

acquisitions in order to reduce the overall uncertainty of the modeled parameters

iteratively [117].
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Figure 7.6: Illustration of the BRDF captured by a gonioreflectometer. The portion of

the BRDF which can be measured is marked in red.

Each acquisition approach allows a different level of completion of the BRDF that can

be captured. Gonioreflectometers can capture full BRDFs, as illustrated in Fig. 7.6, if

enough time is invested in the procedure.

Gonioreflectometer setups can be extended to acquire BTF data by allowing the

material sample to move. An approach where the object is moved using a robotic arm

was presented by [44]. An extension was introduced by [171], where the camera is

additionally placed on a half-circle rail.

7.3.2 Mirror-Based Setups

Mechanical parts can be reduced using mirror-based setups. Here, several views

are simultaneously acquired in a single image by using hemispherical, parabolic or

ellipsoidal mirrors [80]. An example with an ellipsoidal mirror is illustrated in Fig.7.7.

A material sample is placed in front of the mirror and the object is illuminated using a

projector emitting a multiplexed pattern. The camera captures different viewing angles

on the same optical path as the projector through a half mirror. Such a setup allows a

fast acquisition with a lower accuracy, higher noise and a lower range of light source

and detector angles. The portion of the BRDF which can potentially be captured is

equal to the Gonioreflectometer (Sec. 7.3.1) with a noise and higher errors. A BRDF

can be acquired only within minutes. Due to the fast acquisition process it is feasible to
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Figure 7.7: Ellipsoidal mirror-based BRDF acquisition setup.

acquire BTFs, additionally to BRDFs. A mirror based system using a kaleidoscope was

presented by [82], where each triangular sub-image of the kaleidoscope corresponds

to a different camera viewpoint.

7.3.3 Single Acquisition

The simplest approach is a single acquisition, where an object is placed under an

area camera with a single illumination source. Aligning the camera with the surface

normal allows homogeneity across the image. Examples for collections of single texture

acquisitions are the vistex database [116] with over 100 homogeneous textures in frontal

and oblique perspectives or the Brodatz texture library [167] with 112 acquisitions.

A single acquisition allows to capture a portion of the BRDF of one viewing angle and

one illumination angle an example is illustrated in Fig. 7.8. Using a diffuse illumination

would allow to acquire the sum of the first column in the illustration. Capturing several

points of the same material with an area scan camera where the surface shows different

and known surface normals adds several of these acquisitions together and allows a

more detailed but still sparse BRDF representation.
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Figure 7.8: Illustration of the BRDF captured by a single acquisition. An example of

a portion of the BRDF, where the reflection is measured and illuminated

orthogonally to the surface is marked in red.

Figure 7.9: Illustration of a dome to capture BRDFs. On three levels cameras and light

sources are mounted to capture a specific object point.

7.3.4 Light Dome

This setup consists of a light dome with fixed led illuminations and cameras or a single

fixed camera placed at the top of the dome structure. An illustration is shown in Fig. 7.9.

These devices are often build in portable sizes and used in industrial applications for

on-side measurements of BRDFs. The benefits are very fast acquisitions without the

problem of occlusions of the light sources and the capturing device, with the price of

sparse fixed light sources which only allow to measure a partial BRDF.
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Figure 7.10: Illustration of the BRDF captured by a light dome and light field camera.

The portion of the BRDF which can be measured is marked in red.

A light dome to capture (BRDFs) was presented in [173], where 151 compact cameras

are mounted on the dome structure. Pairing a light dome with a light field camera

(described in Chapter 3) allows to capture a wide range of illumination angles with a

limited range of viewing angles as illustrated in Fig. 7.10.

In Sec. 7.4 we introduce a novel approach to deal with the limitation of sparse data by

learning the behavior of BRDFs with a convolutional neural network ( CNN) in order

to reach a more complete description.

7.3.5 Multi-Line Scan Acquisition

The multi-line scan setup was previously described in Sec. 3.2.5. A partial BRDF is

acquired by our multi-line scan system which consists of a multi-line scan camera,

which acquires objects from different viewing angles, and two static illumination

sources (shown in Fig. 3.4). An object is moving on a linear stage below the acquisition

setup and captured after moving a pixel distance further on the sensor. At each

position, the object is illuminated from a different direction. Due to limited viewing

and illumination angles the BRDF acquisition is very spare. The benefit is that this

method is very fast, as the object’s partial BRDF can be acquired while it is moving

with a speed of > 130km/h [20].
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Figure 7.11: Illustration of the BRDF captured by a multi-line scanning system. The

portion of the BRDF which can be measured is marked with red dots.

A multi-line scan system with one or two illumination sources allows to capture a part

of the BRDF, where θi and θv vary in a certain range and only an angular rotation of

180◦ is enabled, as illustrated in Fig. 7.11.

The multi-line scan setup allows the acquisition of light field data, which was described

in Chapter 3.2.5 and the acquisition of photometric stereo information, as presented in

Chapter 4.2.3.

7.4 Learning BRDFs

It was shown, that the acquisition of BRDFs is either precise, complete and highly

time consuming or a specific portion of the BRDF can be captured. Which part can be

captured and the scanning speed depends on the system which is used. In this section

we present our work published in [4] about learning dense (full) BRDFs from sparse

acquisitions.

We motivate the research in Sec. 7.4.1. Then we discuss the connection of light fields

with BRDFs in Sec. 7.4.2. The used BRDF dataset is described in Sec. 7.4.3. Our chosen

regression CNN structure is introduced and discussed in Sec. 7.4.4. What follows

clearly stated is the behaviour of the reconstruction from 1/6 to 5/6 of the dense

known BRDF using CNNs in Sec. 7.4.5. There, we show quantitative and qualitative
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evaluations of our dense BRDF reconstruction experiments. A summary of the paper

and our key results as well as an outlook to our further work is given in Sec. 7.5.

7.4.1 Motivation

The acquisition of partial BRDF measurements using light field cameras and several

illumination directions raises critical questions regarding the accuracy of inferences

based on that data. Therefore, we attempt to verify the quality of the reconstruction of

a full BRDF using partial input data. A dataset that provides a densely sampled BRDF

was used, both in viewing and illumination directions. We show the reconstruction of

dense BRDFs when the viewing angles are limited to top central regions, while the

illumination angles are not reduced and are positioned in the shape of a half sphere

around the material object, these properties are characteristic of data provided by

plenoptic cameras paired with a photometric light dome. The partial reconstruction of

the dense BRDF out of data is achieved by utilizing convolutional neural networks. We

obtain a competitive full reconstruction when up to 2/3 of the BRDF is unknown.

Material appearances of structured materials such as metal, wood, or plastic can be

uniquely characterized by the bidirectional reflectance distribution function (BRDF), as

described by Nicodemus et al. [153]. The acquisition of BRDFs can be tedious. Several

databases were constructed for research and academic use, such as the CUReT BRDF

database [43] which provides sparse samples with 200 measurements. The MERL

BRDF Database [139] was obtained with a light source moving in a circle at the same

level as the camera, in respect to the surface normal. Since both illumination and

camera position are restricted to a defined circle, it neither allows the simulation of

viewing angles similar to plenotpic cameras nor the positioning of the illuminations in

the shape of a half sphere. The BRDFs from BTFs Dataset from UTIA [78] provides

densely sampled high precision BRDF measurements with independent camera and

illumination positions, which allow both capturing anisotropic material behaviour as

well as reducing the dimensionality for both, illumination and camera separately.

Using a very sparse BRDF for the task of image classification was discussed by Wang et

al. [209], where a fixed traditional camera was placed at the top center of a light dome
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(a) GT (b) not transposed (c) transposed

Figure 7.12: BRDF input data stack. (a) Ground truth BRDF, (b) reconstruction with

input data dimensions 48× 48× u without the transposed channels with

an SSIM=0.73 of the estimation (for the shown BRDF sample), (c) recon-

struction with additional transposed input data added to the original

input channels, which leads to input data dimensions 48× 48× 2u with

an SSIM=0.88.

in order to acquire images. Each pixel observation is fit to a 2nd order hemispherical

harmonic model. By Wang et al. [211] convolutional neural networks (CNNs) [119]

were used to classify materials from plenoptic acquisitions without illumination

variations. It was shown that material recognition can be improved through light

field data, compared to single image acquisitions. A compressive sensing approach

was implemented by Zupanic and Soler [242], in order to reconstruct BRDFs from

a single image with known normals and illumination directions for isotropic and

spatially constant materials. Reconstructing the BRDF from a limited set of samples

was addressed previously by Nielsen et al. [154], where the MERL database was used.

The dimensionality was reduced based on a principal component analysis in order to

retrieve the most influential regions.

This paper demonstrates the ability to reconstruct dense BRDFs for restricted obser-

vation angles on the scene, as occurring in plenoptic cameras, while the illumination

sources can be triggered from a wide range of positions around the object. The goal

is to reconstruct dense BRDFs out of sparse data, with restricted viewing angles

concentrated around the top down view.
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(a) fabric (b) glitter (c) carpet (d) corduroy (e) stone

(f) wood (g) car paint (h) scotchlite (i) leather (j) paper

(k) plaster (l) plastic (m) plastic tape (n) wallpaper

Figure 7.13: Examples of measured BRDFsof materials. Illustrated as contained in the

UTIA dataset [80].

7.4.2 Light Field and BRDF

In order to measure BRDFs, usually gonioreflectometers are utilized. Varying viewing

and illumination angles allow the measurement of various incoming and outgoing

light rays. For the measurement of anisotropic BRDFs all four dimensions have to be

sequentially sampled [59].

Plenoptic cameras capture light fields by acquiring irradiance values from different

viewing directions on scenes, using a lenslet array in front of the image sensor, as

described in [151]. These light fields can be represented by two directional and two

spatial dimensions. Thereby they provide 4D information of the flow of light through

space in a static scene. Using multiple illumination sources allows both the estimation
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of local surface orientations (photometric stereo) as well as capturing additional

reflectance properties.

Previously, a setup combining plenoptic acquisitions with photometric stereo, where

the illumination sources were placed on a half sphere around the scene, was used

in [6] in order to achieve an improved depth reconstructions of scene. Utilizing such a

setup, comprising plenoptic cameras with several illumination sources, shows an ideal

tool for measuring sparse BRDFs. Since the viewing directions are restricted by the

cameras sensor size and position, one must address the question of the estimation of a

dense BRDF from the data acquired from light field cameras.

For evaluating our reconstruction, a dense BRDF dataset is utilized which was captured

with a gonioreflectometer. We simulate the reduction of viewing angles by reducing

the data accordingly. This dataset is described in the following section.

7.4.3 BRDF Dataset

The BRDFs from UTIA’s BTF Dataset [78] were used, which were measured with a

high precision gonioreflectometer [79], with an angular precision of 0.03 degrees and

a spatial resolution of 1000 DPI. Data is then sampled at fixed azimuth and elevation

angles for both the illumination directions and the camera position [60]. The dataset

consists of 150 samples, comprising the materials of wood, fabric, scotchlite, car paint,

carpet, corduroy, glitter, leather, paper, plaster, plastic, stone, wallpaper and plastic

tape, as demonstrated in Fig. 7.13.

The data acquisition Framework and data arrangement is shown in Fig. 7.4 and

described in Sec. 7.2. The data contained in the dataset was interpolated in order to

propagate information to missing parts of the BRDF subspace by an adapted swept

surface technique (see [60]).

Limiting the cameras elevation angles towards the top center approximates capturing

the scene with a plenoptic camera. Though it is obvious, that plenoptic cameras

provide a more dense representation in a narrow angle range, we will be able to infer

strong indications regarding the reconstruction abilities of BRDF data which is limited
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Figure 7.14: CNN network structure for BRDF reconstruction.

in its observation angles. Reducing the cameras elevation angles affect the material

representation, as certain reflectance behaviour is unknown, as well as some of the

representation of specular peaks and of anisotropic behaviour. Anisotropic patterns

and specular peaks are visible in axial and diagonal slopes respectively, in a square

θi × θv of the BRDF.

Each input feature stack for our CNN contains all azimuth variations (ϕi, ϕv), where

ϕi = (0...2π) and ϕv = (0...2π), which each cover 48 pixels at defined elevation angles

(θi, θv).

A description follows how the described dataset is used to approximate a dense BRDF

from sparse samples.

7.4.4 BRDF Estimation

This section introduces our regression neural network and discusses the depth of the

network structure. Using regression, one can estimate those parts of the BRDF which

are unknown due to a restricted elevation viewing angle on the scene.

Network Structure

We consider the problem of estimating a full BRDF consisting of all measured views

and illumination angles, which will further be referred to as a dense BRDF. This

estimation is inferred from BRDF slices that are limited in their viewing directions.
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More specifically, we reduce the dimension θv from 15◦ to 75◦, in step sizes of 15◦. In

the representation in Fig. 7.4 this is equal to removing 1 to 5 columns with each a

width of 48 pixels, starting from the right side of the image. These unknown parts are

estimated from the residual known data. For this regression problem, we make use of

a CNN. The network can be represented as a function F(x) that transforms the input

data into a stack of output feature maps:

F(x) = (hc4 ◦ ac4 ◦ ... ◦ hc1 ◦ ac1)(x), (7.1)

where h denotes the nonlinear activation function and al = wlx + bl an affine function

for a layer l with a weight w and a bias b, as described in Sec. 2.3.2 and Eq. 2.43. The

function relation follows:

F : R48×48×(2u) → R48×48×(36−u). (7.2)

The input data x of the dimension 48× 48× (2u) leads to a number of 2u input maps,

where the number of input channels 2u contains u = {6, 12, 18, 24, 30} BRDF slices of

defined elevation angles (θi, θv) as well as their transposed counterparts. The benefit

of that input data structure is depicted in Fig. 7.12, which shows an improved recon-

struction when using enriched input data. Transposing the input channels supports

the convolutional neural network to follow the Helmholtz reciprocity, which improves

the reconstruction qualitatively and quantitatively (see Fig. 7.15), especially of the top

right regions. This is described in more detail in Sec. 7.4.4

The input data is then mapped to n = 36 − u output channels, using convolu-

tional layers Fc∗, followed by rectified linear units (ReLUs) Fr∗. The convolutional

layers Fc2, Fc3 and Fc4 are 1× 1 convolutional layers. The networks weight parame-

ters w = (wc1, wc2, wc3, wc4) are initialized with normally distributed random numbers

and learned from the input data in order to solve the problem of reconstructing the

unknown BRDF regions. The 1× 1 convolutional layers followed by ReLUs benefit the

reconstruction of the BRDF. We train the model to minimize a quadratic loss function

138



7.4 Learning BRDFs

Figure 7.15: Comparison of the SSIM performance. Our proposed network, with trans-

posed input data added to the original, is compared to the original input

data (not transposed). All evaluations were performed at epoch e = 1300.

∑N
i (Li − F(xi))

2, where l is the ground truth BRDF value and F(xi) the estimation for

the input xi.

A network architecture is used as shown in Fig. 7.14, the input consists of the known

BRDF parts and their transposed versions.

Deep Neural Networks

For the regression task, we tested deeper convolutional network architectures, where

we used the structure of the first 3× 3 convolutional layer Fc1 up to a number of 5 times.

Multiple insertions of Fc1, each followed by the ReLU Fr1, are used to gain a deeper

network structure. The network is depicted in Fig. 7.14. The depicted structure contains

one 3× 3 convolutional layer Fc1, while more insertions of that layer demonstrate the

performance of deeper networks. While the first convolutional layer is sensitive to local

features as e.g. edge structures, deeper layers represent more complex combinations
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Figure 7.16: Evaluation of deep CNN structures for BRDF reconstruction. Evaluted up

to epoch 3000 on the evaluation set, with u = 30, where the structure of the

first 3× 3 convolutional layer is used up to 5 times by additional insertions.

The training set behaves in a similar way. The network was trained twice

up to e = 3000, the second result showed the same tendency. Additionally

we tested the mean absolute error (MAE) performance, which showed a

comparable behaviour. Therefore the second result and the MAE are not

displayed.

of lower level local features. For each network of increased depth, we observed the

accuracy on the evaluation set. In Fig. 7.16, the performances of the networks are

compared at several epochs e up to e = 3000. A performance drop is visible with each

additional 3× 3 convolutional layer, with a structural similarity (SSIM, described in

detail in Sec. 7.4.5). Therefore, a deeper network of that type would not support us

with our current reconstruction task. We chose a network with one 3× 3 convolutional

layer, as depicted in Fig. 7.14, as it shows superior performance compared to deeper

network structures for the used dataset and architecture type.

Other kernel sizes were tested during our experiments. Where sizes up to 7× 7 didn’t

improve the result in any significant way, a fully connected network showed to be
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infeasible due to memory limitations. The latter was addressed by enriching the input

by the transposed data.

Enriched Input Data

The input data is enriched to help the network with the reconstruction task. In order

to provide a higher variaty in the input data, each BRDF slice is transposed and

added to the original BRDF data. This is reasonable since the Helmholtz reciprocity

holds for BRDFsof most realistic materials [50]. The principle describes that the BRDF

value would be unmodified, when swapping the camera and illumination positions:

BRDF(θi, ϕi; θv, ϕv) = BRDF(θv, ϕv; θi, ϕi).

The results for both enriched and non-enriched input data are illustrated in Fig. 7.15,

with output channels n = {6, 12, 18, 24, 30}. Using a transposed input additionally

to the original input channels allows a more realistic reconstruction, especially in

regions where the camera and illumination positions are swapped and either of both

is represented in the input data stack.

Training

The CNN architecture, which we described in Sec. 7.4.4, was trained by learning

its weights using back propagation with the 150 BRDF examples from the dataset

described in Sec.7.4.3, which was randomly divided into a training and an evaluation

set. The probability of a sample to belong to the training set is 80%. The input data

was enriched as described in Sec. 7.4.4. Data augmentation, which is frequently used

in CNNs, was not implemented because of the strict reflectance behaviour of BRDFs.

7.4.5 Experimental Results

In this section the qualitative and quantitative evaluation performances of the results

of our dense BRDF reconstruction are demonstrated.
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Quantitative Evaluation

(a) SSIM evaluation set (b) SSIM training set

(c) MAE evaluation set (d) PR[%] evaluation set

Figure 7.17: BRDF learning performance evaluation. Starting from epoch e = 10 up to

2000. The SSIM rate on the evaluation set is shown in (a), (b) depicts the

SSIM training error. The MAE is shown in (c), and (d) demonstrates the

correct classification in % compared to the full range in each BRDF slice.

Performance evaluations are pursued for defined numbers of known elevation angles in

the following order of u = {30, 24, 18, 12, 6}, which corresponds to maximum viewing

elevation angles θv = {60◦, 45◦, 30◦, 15◦, 0◦}. Fig. 7.17 shows the the reconstruction

using three different evaluation methods, namely the structural similarity (SSIM), the

mean absolute error (MAE), and a percentage of correct reconstruction compared

to the total range of the ground truth square. In our evaluation representation, the

x-axis denotes the number of unknown estimated BRDF data n = 36− u and the y-axis

shows the performance measurements.
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type set n=6 n=12 n=18 n=24 n=30

SSIM eval 0.742 0.699 0.730 0.596 0.227

MAE eval 0.034 0.039 0.047 0.047 0.079

PR [%] eval 99.28 98.90 98.89 98.60 97.94

SSIM train 0.919 0.917 0.917 0.870 0.762

MAE train 0.024 0.028 0.030 0.037 0.067

PR [%] train 99.26 99.11 99.05 98.88 98.09

Table 7.1: BRDF error evaluation. Performed at epoch 2000 of the evaluation set, for

n = {6, 12, 18, 24, 30}.

The SSIM is shown in Fig. 7.17a and Fig. 7.17b for the evaluation and training set

respectively. We compute the SSIM as suggested by Wang et al. [212], while taking the

mean value over our N estimated slices for all pixel values, as follows:

SSIM =
1

N · P
P

∑
p=1

N

∑
i=1

(Ii(p))α · (ci(p))β · (si(p))γ, (7.3)

with the pixel position p := (x, y) and a maximum pixel index P. While I is denoting

the luminance, c the contrast and s a structural term, where weights α, β, γ are set to

1. The SSIM covers values from −1 to 1, while a value of 1 describes two identical

images.

The MAE is computed by the mean absolute differences between our estimation Fp

and the ground truth value L for each slice i and pixel position p:

MAE =
1

N · P
P

∑
p=1

N

∑
i=1
|Li,p − Fi,p|. (7.4)

MAE evaluation results are shown in Fig. 7.17c. Here, a higher value represents a less

accurate matching result.
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The percentage rate PR of correct classification is defined by the distance from our

estimation to the ground truth value in relation to the full value range of a specific

slice:

PR = 100 ·
(

1− 1
N · P

P

∑
p=1

N

∑
i=1

|Li,p − Fi,p|
Limax − Limin

)
, (7.5)

where the maximum value over each slice is defined by Limax = maxp∈P Li,p and the

minimum value by Limin = minp∈P Li,p for each slice i ∈ N. The PR evaluation results

are shown in Fig. 7.17d. A value of 100% corresponds to a perfect match, while a value

of 0% would mean that each pixel in our estimation is on average wrong by the full

value range of that slice.

Deep convolutional layers were evaluated, where we used the structure of the first

3× 3 convolutional layer Fc1 up to 5 times. We observed the network for each increased

depth up to epoch e = 3000 (see Fig. 7.16). Using our specific network type and input

data, deeper structures showed a drop in performance with a range from the best

result (e = 3000) of SSIM = 0.737 (one 3× 3 convolutional layer) to SSIM = 0.707

(five 3× 3 convolutional layers). The steepest drop was observed between the use of

two and three of these layers. Therefore, a deeper network of that type would not

support us with our current reconstruction task. Therefore, we chose a network with

one 3× 3 convolutional layer.

We tested the reconstruction with our trained networks for u = 6, 12, 18, 24, 30 at

several iterations, up to the epoch e = 2000. The used dataset consists of 150 samples

and was split in a training and evaluation set by random choice with a probability

of 80% for a sample to belong to the training set. We show the performance on

our evaluation set at several iterations as well as the SSIM on the training set (see

Fig. 7.17). Notably, a higher number of iterations shows better performance, which

indicates, that our network didn’t overfit on the training data. The performance at

iteration e = 2000 is numerically displayed in Tab. 7.1, using the SSIM, MAE and PR

performance measurements. Competitive reconstruction results are shown when 1/6

(n = 6) to 3/6 (n = 18) of the BRDF is estimated, with an SSIM performance on the

evaluation set of 0.742, 0.699 and 0.730 respectively. These results are represented in
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GT n=6 n=12 n=18 n=24 n=30

Figure 7.18: BRDF reconstructions where 5/6 to 1/6 of the dense BRDF are known.

Columns from left to right: ground truth, n = {6, 12, 18, 24, 30} unknown

elements. The estimated parts of the BRDF data are framed with a red

colour.
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column 2 and 3 in Fig. 7.18, where even complex structures at a high angle θi and θv,

shown at the bottom right of the BRDF structures, are well reconstructed.

Qualitative Evaluation

In order to evaluate the qualitative performance of our reconstruction, we show

results from the introduced CNN structure, trained with input channels of the size

48× 48× (2u) (see Fig. 7.18). In terms of qualitative visual similarity, the second

column (u = 30) with n = 6 unknown slices up to the the fourth column (u = 18)

with n = 18 unknown slices, are very close to the ground truth. The last column

(u = 6) with n = 30 unknown slices only a general tendency was learned with

difficulties to reconstruct detailed structures. A major improvement was achieved

by adding transposed image data to the input channels from the used dataset (see

Fig. 7.12).

7.5 Conclusion

Capturing light field and photometric stereo data allows the partial reconstruction

of reflectance functions. First, we introduced several reflectance functions and de-

scribed their differences. In Sec. 7.3 we discussed surface reflectance measurement

systems, which differ in the flexibility of detail they can capture, the reflectance distri-

butions they can model, the dynamic range of the sensors and the time an acquisition

consumes.

In Sec. 7.4 we introduced our work presented in [4]. We introduced the reconstruction

of dense BRDFs from limited observation angles, as characteristic for plenoptic image

acquisitions. Using light field cameras, the scene is captured from different viewing

angles, which are concentrated around a main viewing direction. Using a half sphere

structure, various illumination sources can be placed around the scene at several

illumination angles. The ability to infer from thereby acquired sparse BRDF data to a

more dense representation is of high interest.
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We showed the performance evaluation of several convolutional neural networks

on BRDF data as well as the reconstruction ability and limitations. We showed the

estimation of dense BRDF structures at five different sparsity levels on the UTIA

dataset, where up to 5/6 of the BRDF structure was unknown.

Most notably, we gained an improved reconstruction of dense BRDF values from

sparse BRDF data of low angles θi and high angles θv, which are represented towards

the top right edge in Fig. 7.18, by using transposed images additionally in the input

data. This means that the propagation of the Helmholtz reciprocity from the input

layers to the output was supported.

This type of CNN architecture has strong local connections and therefore cannot cap-

ture complex behaviors such as the transpose, which is used to follow the Helmholtz

reciprocity. We believe that other types of networks can improve the results in regions

where the locality relation is weakened. Additional refinements can be achieved by

further enriching the input data by useful structural information.

Future work will cover more sophisticated network structures for the reconstruction of

the dense BRDF as well as partly reusing pre-learned networks of different topologies.

U-Shaped networks were previously utilized for the depth estimation from light field

data by Heber et al. [88], we will work on an adapted version of such a network

structure with a weakened local orientation dependency. Our experiments will be

additionally extended to more real-world objects for two different setups, namely

a plenoptic camera with a light dome and an industrial acquisition setup with a

multi-line-scan camera. For ground truth evaluations we will render BRDFswitch our

camera setups and reconstruct more complete BRDF data additionally.
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8.1 Summary

In this thesis we focused on the problematic acquisition and reconstruction of highly

precise 3D surfaces. To achieve this we combined the globally accurate but locally

imprecise light field depth map with surface normal data from photometric stereo.

We provided an in-depth comparison of several variational methods combining depth

with surface orientation data. We showed that the weighting of the surface orientation

greatly influences the performance on steep edges. Based on these findings, we

introduced a more ideal weighting term and provide a gradient based combination

which is using a TGV regularization. We showed the evaluation and categorization

of these algorithms both on area-scan and multi-line scan data. The latter is applied

in in-line industrial setups, where the object is moving at a constant speed on a

conveyor belt. We proposed a method to extract photometric stereo surface normal

information from multi-line scan light field data. As lies in the nature of the setup, the

acquired photometric stereo information is reduced by one dimension. We presented

a solution to cope with missing photometric stereo evidence orthogonally to the

transport direction. Additionally we presented novel engineered features for industrial

light field imaging, which are used in order to achieve a more robust result.
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Capturing BRDFs is highly time consuming and unfeasible. We presented the recon-

struction of full BRDFs from partial data using a CNN. This approach was evaluated

on several degrees of reduction.

The calibration of light field camera systems is important for highly precise depth

estimation tasks. We showed the calibration of matrix camera systems with three

steps, namely the initial camera-wise calibration, a pairwise calibration and a bundle

adjustment step. Multi-line scan calibration has to consider distortions along the scan

lines for moving objects. We discussed the geometric calibration of such a system and

addressed the transport jitter problem.

8.2 Outlook

For the industrial implementation of our hybrid light field and photometric stereo

depth estimation solutions, a detailed evaluation of the algorithm complexity, allocated

resources and computational speed are essential. The inherent structure of the algo-

rithms should be exploited to achieve an efficient parallelization. A further assessment

of regularization terms and the implementation of machine learning approaches is of

high interest. Confidence maps combined with variational methods with regularization

terms can further improve the results, especially in regions with highly frequent jumps

in depth (e.g grid structures).

Reconstructing full BRDFs from partial data can improve material and defect analysis

of objects. BRDFs show strong connections of regions which are non-locally related in

the visual function representation. The reason for this lies in complex behaviors such

as the Helmholtz reciprocity. Constructing a network which can represent non-local

connection in an improved way represents a potential future direction of research.

The computational fast inference of high quality features for light field and specifically

multi-line scan data is an important research topic. Learning features specifically

for multi-line scanning data using highly precise data should allow the reduction of

blurring effects and show a higher robustness in glossy surface regions.
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Abbreviations

AIT Austrian Institute of Technology

BRDF Bidirectional Reflectance Distribution Function

BSSRDF Bidirectional Scattering-Surface Reflectance Distribution Function

BTF Bidirectional Texture distribution Function

CNN Convolutional Neural Network

CRF Conditional Random Field

CT Census Transform

DMM Dual Minorize Maximize

DOVID Diffractive Optically Variable Image Devices

ELU Exponential Linear Unit

EPI Epipolar Plane Image

FISTA Fast Iterative Shrinkage Thresholding Algorithm

GN Generalized Nehab

GT Ground Truth

HP High-Pass

IID Independent and Identically Distributed

MERL Mitsubishi Electric Research Laboratories

ML Machine Learning

MLP Multi Layer Perceptron

MRF Markov Random Field

MSE Mean Squared Error

PD Primal-Dual

PR Percentage Rate

ReLU Rectified Linear Unit

SfM Structure from Motion

SSIM Structural Similarity Index

TGV Total Generalized Variation

ToF Time of Flight

TV Total Variation

VR Virtual Reality
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