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Abstract

Microphone arrays are a vital aspect of research into the field of audio signal processing,
which includes speech recognition, beamforming and source separation. The more channels
a microphone array provides, the more universally usable it becomes. Since there are research
projects requiring recordings with up to sixteen audio channels the need for a new sound
card arose. The subject of this thesis was the development, building and testing of such
a sound card. To keep the whole setup reasonably small Micro-Electro-Mechanic-System
(MEMS) microphones were selected. These microphones are growing in popularity as they
are very small in size and MEMS microphones with even better signal to noise ratios are
becoming increasingly available. A USB 2.0 interface was chosen as the protocol between
computer and sound card. This was done for easy usage of the sound card, as the USB 2.0
standard includes audio recording devices and provides plug and play functionality. The
new hardware and software was developed based on an evaluation board of the company
XMOS. It increases the microphone count from seven to sixteen and provides the possibility
to connect the microphones with ribbon cables to the sound card. Different spatial layouts of
the microphone array can therefore be easily achieved. In this thesis the functional principle
of MEMS microphones and the included analog-digital-converter is also displayed. The USB
2.0 protocol is studied in detail and the xCORE XUF200 processor family from XMOS is
introduced. Furthermore, the developed hardware, software and prototype is introduced
and documented along with some functional tests of the sound card and microphone array
prototype.
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1. Introduction

The idea for this thesis was born at the Institute of Signal Processing and Speech at Graz
University of Technology as a lot of their research is about different kinds of audio signals.
Some of the fields like channel separation, beamforming or speech recognition are working
with more than only one microphone as a microphone array offers the benefit of recording
audio data not only over time but also provides spatial information. This spatial information
about the recorded sound gives a completely new dimension and is therefore essential for
research. As the spatial dimension is a discrete one which increases with raising numbers
of microphones the need for a microphone array with more than 8 channels arose and the
decision was made to develop a sound card as subject of this thesis. At the core of this
sound card is a processor of the xCORE family by the company XMOS. This processor was
used based on a demo board with 7 channels. The schematic, layout and firmware of this
demo board had to be altered to support 16 microphones. A class of microphones called
MEMS was used as they are small in size and lately gained a lot of popularity. This is due
to the fact that they are used in lots of small devices and are actively developed to increase
performance. After creating a prototype, basic functional testing was done to confirm the
correct operation of the sound card.

1.1. Scope of this Thesis

The first step of this thesis is to design and build a USB sound card with 16 MEMS
microphone inputs and a headphone jack for a stereo audio output. This was done by
redesigning and extending the hardware and software of the XMOS demo kit "xCORE
Array Microphone” [1] which has 7 microphones and a stereo audio output.

Therefore the first step was to familiarize oneself with the XCORE XUF200 processor family
that has a multi-core architecture. This includes an extension to the C programming language
called XC with special keywords and operators for parallelism, inter core communication
and clocked IO.

The next step was to extend the schematics to 16 microphones and also remove unused
components. From this schematic a printed circuit board (PCB) was designed, ordered,
assembled and tested.

The last step was understanding and extending the firmware. The source code of the demo
kit and some XMOS libraries were therefore altered to work with 16 microphones.

This includes understanding the USB protocol, as explained in detail in its own chapter.
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1.2. Chapter Overview

This theses consists of three theoretical chapters (2. Audio, 3. USB and 4. Processor), two
practical chapters (5. Hardware and 6. Firmware) and a chapter compiling the results (7.2.
Functional Test).

Chapter 2 explains how the microphones and the ADC inside the microphones work. It also
explains the pulse density modulation (PDM) signal produced by the microphones.

In Chapter 3 the USB protocol is presented. It covers USB versions, protocol basics,
communication initiation, the concept of classification and describing USB devices with
descriptors, USB transfer types, packet types and basic requests. There is also a section on
USB audio which covers the basics of the USB audio device class.

Chapter 4 shows the capabilities and illustrates the architecture of the XMOS XUF200 multi
core processor series. It also explains the XC programming language which is an extension
to C tailored to the needs of the XMOS multi-core processors. Further there is a small
introduction to the integrated development environment (IDE) from XMOS called XTime
Composer and the programming process with a JTAG programmer.

Chapter 5 covers important parts of the hardware design and presents the most relevant
parts of the schematic. The full schematics can be found in Appendix B.

Chapter 6 explains the structure of the firmware, all the tasks running in parallel, the
communication between tasks and the used libraries. The use of the USB libraries is also
explained in more detail and how the interface sends and receives audio data is defined.
The signal processing chain for the audio signals from the MEMS microphones is the most
detailed part as it is the most relevant code for this thesis.









2. Audio

2.1. MEMS Microphone

Micro-Electro-Mechanical System (MEMS) are systems which are often embedded in the
waver of a microchip and their mechanical movements are restricted to the micrometer
range. MEMS microphones have a small conductive, movable membrane which is directly
connected to the waver and resides over a fixed, perforated back plate in order to allow air
to flow in and out of the chamber between membrane and back plate. This back plate is also
conductive and forms a small capacitor in conjunction with the membrane (see Figure 2.1).
When the membrane is moving the capacitance of this capacitor changes depending on the
size of the gap.

. Electrode
Acoustic Holes holed rigid and Fixed plate

(back-plate)
R aam el =

movable and conductive plate
(membrane)

pressure reference
(chamber)

Ventilation Compressed
Hole AIR

Figure 2.1.: Internal structure of the MEMS microphone membrane and the back plate on a wafer [2].

To utilize this effect a charge pump is used to create a fixed charge on the membrane. Due
to the relations

C:eo-er‘g (2.1)

Q=C-U (2.2)

a change in voltage can be measured and amplified (equations for a parallel plate
capacitor).

In analog MEMS microphones this amplified voltage is applied directly to one of the pins
of the MEMS microphone. In digital MEMS microphones this amplified voltage is then
converted into a digital Pulse Density Modulation (PDM) signal (details are in Chapter 2.3).
This is done by an ASIC inside of the MEMS microphone which contains a Sigma-Delta-
Modulator (see Chapter 2.2). The block diagram of a digital MEMS microphone is shown in
Figure 2.2;
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/ MEMS Microphone \

ASIC
- Charge-Pump
| Sound 7_'
_ - Pre-Amplifier Delta-Sigma-Modulator P>
Transducer 1 bit digital
\ output

-

Figure 2.2.: Block diagram of a digital MEMS microphone.

MEMS microphones have the advantage that they are very small in size and the analog
signal from the back plate has a very short path to the amplifying electronic. This means that
they are fairly immune to electromagnetic noise compared to other microphones. Digital
MEMS microphones in particular have the advantage that the signal path of the amplified
analog is also kept short as it only goes from the amplifier to the Delta-Sigma-Modulator.
The digital output signal is also far more insensitive to noise than analog signals. Although
digital signals are insensitive to noise up to a certain level they too can be distorted to
the point that bit errors occur. This distortions can be caused by parasitic capacitance,
inductance or resistance between the microphone and the receiver. While transmitting over
long distances impedance mismatches can also be a problem as they can distort the signals
by creating reflections which in turn lead to bit errors. These bit error then show up as noise
in the audio signal.

2.2. Delta-Sigma-Modulator

A Delta-Sigma-Modulator is a part of the Delta-Sigma Analog Digital Converter (ADC)
which takes an analog signal and converts it to a PDM bitstream (see Chapter 2.3). The
full ADC also includes a low pass filter at the end but this is not implemented in common
digital MEMS microphones. A Delta-Sigma-Modulator can be interpreted as a 1 bit ADC.
Since the modulator only has a 1 bit output it normally runs at a much higher frequency
than the desired sampling rate. This oversampling then leads to an increase in the number
of bits once it is converted to a PCM signal (see Chapter 2.3).

2.2.1. Functional Principle

The way this modulator works is that it has a comparator for the analog to digital conversion.
The comparator has a binary output of zero if its input is negative or one if it is positive.
The value of this comparator is then fed into a D-Flip-Flop which holds the value for one
clock cycle and is also the output of the modulator.

The binary output is converted back to an analog signal and can only have two possible
values - plus or minus the full scale voltage of the input signal range. This value is then
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2.2. Delta-Sigma-Modulator
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Figure 2.3.: Block diagram of a first order delta-sigma-ADC.

subtracted from the input signal which creates a difference signal. This difference represents
the error between output and input and is the Delta part of the modulator.

The error is then integrated and fed into the comparator mentioned above. The slope of the
output of the integrator is the value of the error signal. This means that if the error between
input and output is large the integrator value reaches the comparator toggling point fast
and if the error is small the toggling point of the comparator is reached slowly. This results
in short pulses of ones and long pauses of zeros if the input signal is low. If the input signal
is high then the pauses of zeros are short and the pulses of ones are long. This is illustrated

in Figure 2.4.

A Input Input A Input
1/2 12 1/2
213
0 > 0 ‘ > 0 >
‘ -1/3
-142 -1/2 -1/2
A Output Qutput Qutput
A Difference A Difference A Difference
I I
I
| 1000
> } >
J | | = =
I I
| I I
I I

Integral
I -\ N\

ey

T Integral T Integral
1 1
I I

V. V.V V.V N AVAVAVANR

Figure 2.4.: Output examples of a Delta-Sigma-Modulator with the following input values: 83.3% (left),
50% (middle) and 33.3% (right).

In the following the advantage of a Delta-Sigma-Converter, which is its noise shaping

capabilities, is discussed.
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2.2.2. Quantization Noise

Quantization of an analog signal always produces quantization noise. This noise can be
determined.

Figure 2.5.: Quantization error € and quantization step A.

An ADC has a quantization width A which is the interval between the quantization steps.
For each quantisized sample the quantization error has an equal probability anywhere
between —% and +% which means a uniform probability function over the whole range of
the quantization error. The quantization error is linear for each quantization step as shown
in Figure 2.5.

The noise power can be calculated by integrating the squared quantization error:

1 [2 A?
ezms = K/ €2 de = E (23)

-4
This can also be expressed in terms of full scale range FS and number of bits N:

), A2 N FS?
Erms = 12 © 3.22N (2.4)

This means that the Noise Power is only affected by the size of the quantization step and
not by the sampling rate.

2.2.3. Oversampling

Since it can be assumed that the noise spectrum over the frequency is flat (because the
signals measured by a microphone are analog signals and are not highly periodic during
normal operation) a relation between the noise floor PSD,,,is, and the sampling frequency
fs can be written down as:

PSD,pise = % (2.5)
noise .



2.3. Pulse Density Modulation (PDM)

This means that the noise floor can be reduced by oversampling due to the fact that the
overall noise power, represented by the area under the noise floor, needs to stay the same.
Figure 2.7 shows this effect (along with the noise shaping effect described in the next
chapter).

2.2.4. Noise Shaping

Figure 2.6 shows the model of a first order Delta-Sigma-Converter in the Laplace Space.

N(s) : quantization noise
integration
X(s) 1 +

+ / g > Y(s)

+

Figure 2.6.: Model of a Delta-Sigma-Converter [3].

The noise is added to the model where the quantization step occurs. From this model the
signal transfere function

Y(s) = [X(5) - Y ()] (26)

;8 =- i - ... low pass (27)
and the noise transfer function

Y (s) = N(s) = 1Y (5) (28)

Z{]((i)) - Sjl ... high pass (2.9)

can be derived [3].

This shows that the transfer function for the signal (Equation 2.7) has low pass behavior and
the transfer function of the noise (Equation 2.9) follows a high pass behavior. This shapes
the noise in a way that most of the noise power is above the nyquist frequency fg of the
original signal [3]. The resulting effect can be seen in Figure 2.7.

Since the signal is oversampled a low pass filter has to be applied to it, as it has the effect of
cutting away most of the high pass noise power.

2.3. Pulse Density Modulation (PDM)

Pulse Density Modulation (PDM) is a 1 bit digital data stream which in this application is the
encoded version of the analog audio signal. It is the output of the Delta-Sigma-Modulator
inside the MEMS microphones. Since a 1 bit signal is not very useful, PDM signals have to
be at a much faster sampling rate than the sampling rate of the encoded analog signal. In a
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Figure 2.7.: Spectrum of a First-Order Sigma-Delta Noise Shaper [3].

digital PDM signal the amplitude of the analog signal is encoded by the relative density
of ones (pulses) in the bit stream. Therefore taking the local mean around a sample gives
the approximate amplitude of the encoded signal. An example of an analog signal and the
corresponding PDM signal is shown in Figure 2.8

Sine input, PDM output

0 25 50 75 100 125 150 175 200
Sample Number

Figure 2.8.: PDM signal of a sine wave.

2.3.1. PDM to PCM Conversion

Pulse Coded Modulation (PCM) is the standard encoding of signals in most signal processing
applications where each sample is encoded as a digital number representing the amplitude
of the signal. To understand the conversion of the PDM signal into a pulse coded modulation
(PCM) signal the spectrum of a PDM signal is useful. Figure 2.9 shows this spectrum of an
encoded sine wave. The PDM signal is oversampled with a factor of 32. The actual sampling
rate in relation to the normalized oversampled frequency is therefore about 0.03. As seen in
Figure 2.9 the spectrum below the normalized frequency 0.03 has a very low noise floor and
includes the encoded sine wave. The spectrum above 0.03 on the other hand is very noisy.
As this part of the spectrum needs to be removed before reducing the sampling rate to the
original sampling rate in order to avoid aliasing, a low pass filter needs to be applied.

Therefore converting a PDM to a PCM signal is the combination of a low pass filter and a
sample rate reduction.

10
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Figure 2.9.: Simulated PDM spectrum of a sine wave.
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3. USB

This chapter contains information about the USB protocol as used by the sound card. Most
of this information is extracted from the Universal Serial Bus Specification Revision 2.0 [4], the
Universal Serial Bus Device Class Definition for Audio Devices Release 2.0 [5] and the Universal
Serial Bus Device Class Definition for Audio Data Formats Release 2.0 [6]. This information is
split into four parts:

1. The different USB versions and resulting speeds can be found in Chapter 3.1. USB
Versions & Speed Modes.

2. Chapter 3.2. USB Addresses & Endpoints and Chapter 3.4. USB Communication
introduces the addressing mechanisms, USB packets and USB transfers and explains
how a USB connection is established.

3. The virtual structure of a USB device is explained theoretically in Chapter 3.3. USB
Device Classes, Configurations & Interfaces. The device specific structure and its
parameters is stored in so called Descriptors inside every USB device. The different
types of Descriptors are introduced in Chapter 3.5. USB descriptors.

4. Finally Chapter 3.6. USB audio explains some non standard USB mechanisms which
are specific to the USB audio class.

3.1. USB Versions & Speed Modes

As USB is an evolving protocol that has been around for years and over time it has become
faster and feature-richer. To ensure compatibility between all available USB devices newer
versions are designed to be backwards compatible with older ones. To determine which
version to use upon connecting a device to a host USB version codes are used. Most new
versions also introduced faster transfere speeds to the USB standard.

Table 3.1 shows the relation between USB speed modes, their speeds and the corresponding
minimal USB version.

Mode Abbr. Speed Version
Low Speed LS 1.5 Mbit/s 187.5 KB/s USB 1.0
Full Speed FS 12 Mbit/s 1.5 MB/s USB 1.0
High Speed  HS 480 Mbit/s 60 MB/s USB 2.0
SuperSpeed  SS 5 Gbit/s 625 MB/s USB 3.0

SuperSpeed+ S5+ 10 Gbit/s  1.25 GB/s USB 3.1
SuperSpeed+ SS+ 20 Gbit/s 2.5 GB/s USB 3.2

Table 3.1.: USB speed modes.

13



3. USB

Considerations for this Thesis

In order to calculate the minimum speed mode for the Sound Card design, the following
aspects need to be considered.

The audio input consists of 16 microphones / audio channels at 48kHz with 24 bits per
sample. The input bit rate R;, is calculated as

Ri, =16 -48kHz - 24 = 18,432Mbit/s. (3.1)

The audio output is stereo with 48kHz and 24 bits per sample as well. The output bitrate
Rout is calculated the same way as the input bit range, i.e.,

Rout = 2 - 48kHz - 24 = 2,304Mbit /s (3.2)

The overall audio bit range R4, is the sum of input and output bit range, i.e.,

Ruugio = speedi, + speedyys = 20,736 Mbit/s = 2,592Mbyte/s (3-3)

With the result of Equation 3.2 and referencing Table 3.1 the minimum speed mode for the
Sound Card has to be USB High Speed (HS) with a maximum of 480 Mbit/s. Therefore USB
version 2.0 has to be used.

Since the maximum speed of USB High Speed is more than 10 times faster than required by
the raw audio data it is not necessary to take USB data overhead into account.

3.2. USB Addresses & Endpoints

The USB protocol is comparable to the IP protocol in networks. All devices have an address
so the host can direct data to the right device. They also have different endpoints which
are comparable to ports of the IP protocol. The difference to the IP protocol is that clients
can only talk to the host and therefore the host has no address and no endpoints. All
communication is initiated by the host. Each endpoint has its own buffers (in soft- or
hardware) on the device and on the host side which means that the data streams for each
endpoint are independent from each other. Figure 3.1 shows the use of addresses and

endpoints.
Host (USB Device EPOIN & )
Addr. 2 E:z 2 EUI < > Firmware
EP 1 Out >
A /
KUSB Device EPOIn | )
Addr. 3 EE ?‘OUI < > Firmware
. EP.. >
. /

Figure 3.1.: USB data flow control through address and endpoints.
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3.3. USB Device Classes, Configurations & Interfaces

There is one special endpoint each device has to have which is endpoint zero. This is used
for Control Transfers (see Chapter 3.4.2) and is also the first endpoint used for initiating the
comunication with the device (see Chapter 3.4.4).

3.3. USB Device Classes, Configurations & Interfaces

There are many different USB devices on the market and most of them can be used the
Plug’'n’Play way. For that to work the USB host device needs to know which endpoints are
used, how to configure the device and how to communicate through the used endpoints. To
structure all that information the USB standard uses a system of device classes,
configurations, and interfaces. This system is defined by USB descriptors (see Chapter 3.5)
in the device which the host uses to identify all functions and all configuration options for a
USB device. Figure 3.2 shows the virtual structure of a USB device in form of a tree. Details
are presented in the following subchapters

Device

Configuration

Configuration

Interface Interface Interface Interface

Endpoint ‘ ’ Endpoint ‘ ’ Endpoint ‘ ’ Endpoint ‘ ’ Endpoint ‘ ’ Endpoint ‘ ’ Endpoint ‘ ’ Endpoint

Figure 3.2.: USB device tree.

3.3.1. Device Classes

USB devices are grouped into classes which define the overall purpose of the device and
characterize its capabilities.

Some classes are:

e Human Interface Device (HID)
Everything a human can interact with related to a computer (keyboard, mouse,
drawing tablet, touchscreen, display, joystick, ...).

e Audio Class
This class is specifically for audio input and output. Also for all devices that control
audio directly or indirectly (eg. mixers, volume control, ...).

e Mass Storage
All devices where the host can directly read /written to the storage.

e Printer Class

e Video Class

Each physical device can have one or more device classes. Therefore a sound card could
be an audio device and a human interface device at once if there are buttons on the sound
card. If a device has only one class the class is defined for the whole device in the Device

15



3. USB

Descriptor (see chapter Chapter 3.5). But if a device has multiple classes then each interface
(see Chapter 3.5.4) can have its own class.

3.3.2. Interfaces

Each interface represents one ‘function” a USB device can have. For an audio device this
could be 3 functions for example: an audio input stream interface, an audio output stream
interface and an audio control interface. The first two are the actual audio data and the last
one would be used to control volume or mute the audio input or output. Each interface can
contain an endpoint that is used to communicate with this interface (in this case an audio
stream). If an interface needs bidirectional communication it will need two endpoints.

Alternate Settings

Sometimes interfaces can have different modes of operation. For example: a sound card
could have a stereo and a Dolby Surround mode. In this case the interface is defined twice
with the same interface ID but a different alternate settings ID (see Chapter 3.5.4). Then the
USB host knows that it can switch the interface between these two interface definitions.

3.3.3. Configurations

If the alternate settings of interfaces are not flexible enough for some applications there
are also configurations. A configuration is a collection of interfaces. Each configuration can
define its own interfaces but they can also have interfaces in common (which have to be
defined in each configuration separately). Each configuration defines one mode of operation
for the whole device and there can only be one active configuration at a time. The USB host
can decide which configuration to use but will normally choose the default configuration.
The decision is in most cases based on the power consumption, speed or bandwidth needs
of the device.

3.4. USB Communication

The USB communication is performed by sending packets. Since USB is bidirectional with
only one physical differential data pair, every communication is always initiated by the host.
Therefore there are some packets which only the host is allowed to send. Clients are only
allowed to answer the host to avoid collisions on the bus. The start and end of every packet
is signaled by two unique events on the differential pair of wires which cannot be mistaken
for normal data. These are called start and end of packet events. Therefore the packet length
can be variable and does not need to be known by the receiving party.

3.4.1. Packet Types

USB has 4 different packet types. Each of these packet types have sub-types which are listed
in Table 3.2. These are identified by the packet identifier byte (PID) which is the first byte of
every packet.

16



3.4. USB Communication

Type Name PID Type Name PID
SOF  0xA5 ACK  0xD2

SETUP  0x2D NAK  0x5A

Token  “ir oxE1 Handshake o017 01
IN 0x69 NYET  0x96

DATAO  0xC3 PRE  0x3C

Data  DATAL  0x4B Soecia] | SPLIT  0x78
A DATA2  0x87 pecia ERR  0x3C
MDATA  0xOF PING 0xB4

Table 3.2.: Packet types and their PID used by USB.

The Token SOF (Start Of Frame) packet is sent at the beginning of each frame. A new
frame starts every 1ms for USB full speed and lower and every 125us for USB high speed
and above. These are used for scheduling of time slots of all USB devices. The frame number
is counted up every millisecond and loops around to zero when it overflows. Since USB
high speed was introduced there are 8 SOF tokens sent with the same frame number (as
there are 8 frames of 125us in one millisecond). These frames are important for various
transfer types (see Chapter 3.4.2).

8 bits 11 bits 5 bits
’ PID ‘ frame number \ CRC5 ‘

Figure 3.3.: Structure of a Token Start Of Frame packet.

The Token SETUP packet is used to initiate a Control Transfer (see Chapter 3.4.2). It is
normally followed by a Data packet containing a request (see 3.4.3). The structure of this
packet can be seen in Figure 3.4.

8 bits 7 bits 4 bits 5 bits
] PID \ address \ endpoint number (containing IN/OUT bit) \ CRCs5 ‘

Figure 3.4.: Structure of a Token IN, OUT or SETUP packet.

The Token IN/OUT packet initiates a data transfer either from or to the device. Normally,
after the Token IN packet follows a Data packet from the device to the host and after the
Token OUT packet a Data packet from the host to the device. The structore is the same as for
the SETUP packet seen in Figure 3.4.
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The Data packet only contains data and has to always be preceded by a Token SETUP,
Token IN or Token OUT packet for address and endpoint information. The data it contains
depends on the transfer type and the application. The structure of the Data packet is shown
in Figure 3.5.

The DATAOQ and DATA1 packets are used for error detection and are alternately sent. This is
needed because the host sends the same packet again if it does not get a Handshake ACK
packet to acknowledge the previous Data packet.
In order to ilustrate this, an example is provided:
Suppose the host sends a DATAO packet which the device receives and then sends a
ACK packet back. The device now expects the next Data packet. But if the ACK packet
was lost and the host does not get this ACK it assumes there was an error receiving
the previous packet and sends the same packet again. Without the alternating DATAQ
and DATAT1 packets the device would now assume that this packet is the new packet
- which is wrong and would result in a catastrophic error.
But due to the alternating packets the device now expects a DATA1 packet. The host
on the other side sends the same packet again which was a DATAO packet. Upon
receiving the DATAO packet the device knows that this packet is not the next packet
but the same packet again and can send an ACK to the host again. This continues
until the host receives the ACK correctly and then sends the next packet which is the
DATAT1 packet the device expects.

There are 2 other types of Data packets: DATA2 and MDATA. These have been necessary
since the release of USB version 2.0 allows for Isochronous Transfers (see Chapter 3.4.2). Before
USB version 2.0 there were only up to 2 packets per frame allowed but this has changed to
up to 3 packets per (micro) frame.

Since Isochronous Transfers don’t use Handshake packets each packet needs to be identifiable.
Therefore these new Data packet types were added. The packet sequencing for IN and OUT
Isochronous Transfers for 1 to 3 packets per (micro) frame is shown in Table 3.3.

8 bits 0 - 1023 bits 16 bits
| PID | data | CRC16 |

Figure 3.5.: Structure of a Data packet.

Direction # of packets Pkt 1 PID SPelgcuzence Pkt 3
1 DATAOQ
IN 2 DATA1 DATAO
3 DATA2 DATA1 DATAO
1 DATAOQ
ouT 2 MDATA DATA1
3 MDATA MDATA DATA2

Table 3.3.: Data packet sequencing for Isochronous Transfers.
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The Handshake packet is used for feedback on preceding packets. The structure of the
Handshake packet is shown in Figure 3.6.

A Handshake ACK (acknowledge) indicates that the previous packet was received correctly.

A Handshake NAK (not acknowledge) indicates a communication error on the previously
sent packet.

A Handshake STALL packet reports that the device is currently not able to send or receive
anything. After a setup packet it has a special meaning: it indicates that the device does not
support the hosts request.

The Handshake NYET (not yet) is a special packet that is used for Bulk OUT Transfers. It
indicates that the buffer of the device is full and cannot receive any more data. The host
then has to poll the device with PING packets to determine if the buffer has enough space
to receive data again (see Bulk Transfere in Chapter 3.4.2).

8 bits
PID

Figure 3.6.: Structure of a Handshake packet.

The PING packet is used for Bulk Transfers and is sent from the host to the device after
the host has received a Handshake NYET packet from the device. This packet is used to
determine if the device is able to receive Bulk Data or if its internal buffer is full. The device
answers with a Handshake ACK if it can receive more data now or with a Handshake NAK
if not (see Bulk Transfere in Chapter 3.4.2). The structure of the PING packet is shown in
Figure 3.7.

8 bits 7 bits 4 bits 5 bits
] PID \ address \ endpoint number \ CRCs ‘

Figure 3.7.: Structure of a PING packet.

The PRE, SPLIT and ERR packets are used to enable lower speed communication on a
higher speed bus. These packets are only used between USB hosts and USB hubs and are
therefore not relevant for USB devices. This means that they are also not relevant for this
thesis and therefore won’t be explained in further detail here.

3.4.2. Transfer types

There are 4 data transfer types between host and client which are intended for different
types of applications.
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Control Transfer

This type of transfer is mostly used for requesting USB descriptors (see Chapter 3.5),
configuring the device and for status operations. It is the first transfer mode used when a
new device is added to the bus. Each Control Transfer usually contains a request which are
explained in Chapter 3.4.3.

The Control Transfer can have up to three stages:

The Setup Stage (Figure 3.8) is where the host initiates the Control Transfer with a
Token SETUP packet (see Chapter 3.4.1) followed by a DATAO packet. The content of
the DATAO packet is a Setup Packet (see Chapter 3.4.3) containing the request. This is
then acknowledged by the device.

Token Packet Data Packet Handshake Packet
(host) (host) (device)

[ sewe }—{ om0} aec |

Figure 3.8.: Setup Stage of a USB Control Transfer.

The Data Stage (Figure 3.9) which is used for Control Transfers / Requests that need
data to be transfered to or from the device. The amount of data transfered is defined
in the previous stage. This stage consists of one or more Data IN or Data OUT transfers
depending on the amount of data and the maximum packet size of the device.

Token Packet Data Packet Handshake Packet Token Packet Data Packet Handshake Packet
(host) (device) (host) (host) (host) (device)

[ IN DATAx ]—-[ ACK ] [ ouT ]—-[ DATAx ACK ]
(o

Figure 3.9.: Data Stage of a USB Control Transfer (left: dev-to-host, right: host-to-dev).

The Status Stage (Figure 3.10) is used to report the status (success or failure) of
the whole Control Transfer. This stage starts with a Token IN/OUT packet in opposite
direction of the Data Stage. A DATAQ packet with zero length acknowledges the
successful reception of the data during the Data Stage.

Token Packet Data Packet Handshake Packet Token Packet Data Packet Handshake Packet
(host) (host) (device) (host) (device) (host)

DATAD
[ (el I I (zero length)

Error:

DATA

(zero length) UK ]

Error:

still processing: still processing:

Figure 3.10.: Status Stage of a USB Control Transfer (left: dev-to-host, right: host-to-dev).
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Isochronous Transfer

Isochronous Transfers are used for data that is constantly streaming. For this transfer type a
time slot is reserved in every frame and therefore has guaranteed bandwidth.

The requested bandwidth is set in the Endpoint Descriptor (see Chapter 3.5.5). If there is not
enough bandwidth left on the bus then the USB device is rejected upon starting (plugging
in) or if there is an alternate setting in the interfaces with lower bandwidth the host uses
that one. This can for example also be used as a fallback mode with lower quality audio.

In this transfer mode the host initiates a data transfer every frame. These data transfers have
a checksum (as all Data packets have) but they are not acknowledged by the receiver. This
means that a packet will not be resent if an error occurs. Therefore this transfer type should
only be used if data loss can be tolerated such as in audio or video applications.

For real-time applications it is important to synchronize the data rate between host and
device. This is necessary because no two clocks are at the same speed and the host has
therefore a different length of a second than the device. To control the time basis of the data
stream there are four possibilities:

No synchronization - this means that the data is not used for real time applications
and so the data rate is not important.

Synchronous - in this case the host dictates the time. The device has to adjust its
clock speed to the Start Of Frame packets (see Chapter 3.4.1) it receives from the host.
Asynchronous - this means that there is feedback on how full the receiver buffer is.
The sender then automatically adjust its speed to keep the buffer from under- or
overflowing. To send the feedback an additional endpoint with the opposite direction
has to be defined as an isochronous feedback endpoint (see Chapter 3.5.5) and has to
be linked to the original endpoint.

Adaptive - this mode means that the device is able to synchronize itself to the rate
the data is send by the host.

Figure 3.11 shows the Isochronous Transfer which is not acknowledged by the receiving

party.

Token Packet Data Packet Token Packet Data Packet
(host) (device) (host) (host)

[ w | owmx | [ o o oamx |

Figure 3.11.: USB Isochronous Transfer (left: dev-to-host, right: host-to-dev).

Interrupt Transfer

Interrupt Transfers are not interrupts in the original meaning of the word since all USB
communication has to be initiated by the host and only host-to-device transfers are truly
interrupts. To receive interrupts from the device the host has to poll the device periodically.
The advantage of interrupt transfers is that there is a guaranteed latency. If a checksum
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error occurs the transfer will be reattempted in the next period. The polling period can be
defined in USB frames.

Interrupt Transfers are usually used for data that is not periodic, small in size and needs a
low latency.

Figure 3.12 shows the structure of an Interrupt Transfer. It starts with a Token IN or OUT
packet followed by a Data packet and a Handshake packet. If there is no data to transmit
when the host polls the device with the Token IN packet then the device simply responds
with a Handshake NAK packet.

Token Packet Data Packet Handshake Packet Token Packet Data Packet Handshake Packet
(host) (device) (host) (host) (host) (device)

DATAx ]—.[ ACK ] [ ouT ]—.[ DATAX

ACK ]

Halt: Halt:

No interrupt

pending: Error:

Figure 3.12.: USB Interrupt Transfer (left: dev-to-host, right: host-to-dev).

Bulk Transfer

Bulk Transfers are used for large data transfers which are not time critical but often come
in bursts. Data is only transfered over the bus if there is spare time after Isochronous and
Interrupt Transfers. Therefore there is neither a guarantee for latency nor for bandwidth.

This transfer type provides error detection and retransmission mechanisms to ensure that
the data is received without errors and without any loss of data.

Due to the large amount of data that can be sent there is the possibility that an endpoint
buffer of a device can run out of space. For this case there are special Handshake packets (see
3.4.1) used in bulk transfer:

When the device buffer runs out of space in USB 1.x the device answers with a NAK
and the host sends the data again. But if the device still has no space in the buffer
this can go on and on for a long time thus blocking the bus. Since USB 2.0 the device
now sends a NYET packet instead of the NAK. This tells the host that there is no
more space in the devices buffer and the host does not try to send the next Bulk
OUT Transfer. Instead the host sends a PING packet. If the device still has no space it
responds with a NAK. This means that the host does not send the next Data packet
until the device responds to the next PING with an ACK indicating that the buffer
has enough space again. Therefore the bus is not blocked by the attempts of sending
data. This is illustrated in a state diagram in Figure 3.14.

The structure of a Bulk Transfer is shown in Figure 3.13. First the host sends a Token IN/OUT
packet followed by one or more Data packets from or to the device. The detection of the last
packet is either done by sending a Data packet shorter than the maximum endpoint buffer
size, by sending a zero length packet or by sending the maximum allowed data for this bulk
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endpoint. Afterwards the receiving party has to acknowledge the transfer with a Handshake
packet. As described above this can also be a Handshake NYET packet.

Token Packet Data Packet Handshake Packet Token Packet Data Packet Handshake Packet
(host) (device) (host) (host) (host) (device)

[ IN DATAx ]—-[ ACK ] [ ouT ]—-[ DATAx ACK ]
(o

Figure 3.13.: USB Bulk Transfer (left: dev-to-host, right: host-to-dev).

Figure 3.14.: USB PING and NYET packets.

3.4.3. Requests

USB Requests are always sent over the default endpoint zero and are Control Transfers. They
are used to get information about the device (e.g. requesting USB descriptors), configuring
the device or checking the status of the device. There are standard requests that every device
has to implement and there are class specific requests which are implemented by different
device classes. For example: An audio class request could be changing the sample rate of
the audio input stream. There are also vendor specific requests which are not specified
anywhere and can be used for custom purposes.

A request starts like all Control Transfers with the Setup Stage. The DATAOQ packet of this
stage contains a Setup Packet containing the request information. If the request needs data
to be transfered then there follows a Data Stage. For details on the Control Transfer see
Chapter 3.4.2.

Setup Packet

Table 3.4 shows the structure of a Setup Packet holding all information about the request.

Offset Field name Bytes Description

0 bmRequestType 1 Direction, Type and Recipient.

1 bRequest 1 ID of the request.

2 wValue 2 A value (request dependent).

4 windex 2 A index (request dependent).

6 wLength 2 Length of the data in the data stage (if any).

Table 3.4.: The format of the Setup Packet for USB Requests.
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The field bmRequestType is bit coded in the following way:

e Bit 7: Transfer direction of the data phase (OUT: o, IN: 1)
e Bit 6 to 5: Type (Standard: o, Class: 1, Vendor: 2)
e Bit 4 to o: Recipient (Device: o, Interface: 1, Endpoint: 2, Other:3)

The other fields are request dependent and illustrated in Table 3.5.

Standard Requests

Table 3.5 shows all standard requests of the USB 2.0 protocol. Some requests have two
variants: a get and a set request. These requests have two different request identifiers and
also need to have the direction bit in the field bmRequestType set appropriately. The recipient
bit has to be set according to Table 3.5. For all standard requests the type bit is set to zero.

bRequest Recipient wValue wlndex Data
Device -

0: Get Status Interface - Interface Status
Endpoint Endpoint
Device -

1/3: Clear/Set Feature Interface Feature Interface -
Endpoint Endpoint

5: Set Address Device Address - -

6/7:  Get/Set Descriptor Device Type & Index - / Language Descriptor

8/9:  Get/Set Configuration Device - - Config. Value

10/11: Get/Set Interface Interface  Alternate Setting Interface -

12: SYNCH_FRAME Endpoint - Endpoint Frame Nr.

Table 3.5.: USB Standard Requests with their recipients, parameters and data.

The Get Status request is used to retrieve a status of the device, interface or endpoint. It
always returns two bytes where each bit represents a boolean status. For the device, bit o is
Self Powered and bit 1 is Remote Wakeup. For an endpoint bit o is Halted and bit 1 is Stalled.
An interface does not return any status at this point and its return value is reserved for
future use.

The Clear/Set Feature request is used to set or clear boolean features. Directed to the device
it can set the Remote Wakeup feature or put the device into a test mode. The only endpoint
feature is to halt an endpoint. The interface does not implement any features.

The Set Address request sets the address of a USB device and is used while initiating
communication after plugging in a new device (see Chapter 3.4.4).

The Get/Set Descriptor request is also used in the initiation phase to request descriptors.
The Set Descriptor request is usually not used during normal operation.

The Get/Set Configuration request is used for setting a Configuration Descriptor as the
current configuration. The get request returns the number of the currently active
Configuration Descriptor.
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3.5. USB descriptors

The Get/Set Interface request switches between different alternate settings of a specific
interface.

The SYNCH_FRAME request is for isochronous endpoints where the size of frames vary.
Varying the size of frames is done in patterns (e.g. 2,2,3) where the frame number of the
start of this pattern is returned by this request.

3.4.4. Initiating the communication

The communication starts when the host (or USB hub) detects the connection of a device by
measuring the change in voltage caused by the USB devices pull-up resistors on the data
lines. The USB host then sends a reset command to the physical port from where it detected
the connection which sets the device address temporarily to zero. Therefore the host can
only reset one device at a time to ensure that there is never more than one device with the
address zero.

Now that the device is addressable communication with the device can start. At this point
the device acts as a basic USB device with no specific function. This means that it is only
allowed to answer to basic USB control requests on endpoint 0 since this is the reserved
endpoint for USB control requests.

The host then requests the Device Descriptor (see Chapter 3.5.1) of the USB device in order to
find out the maximum packet length (receive buffer length of the device). The host is not
allowed to send packets longer than this number since the device cannot handle it. After
this the device is reset again and the host sends a set address request which assigns an
unused address to the USB device.

At this point the device has a unique address and the host is free to start the same
procedure for other newly attached devices.

Now the actual initialization and configuration of the device starts. The host now requests
all the USB descriptors (the Device Descriptor, all Configuration Descriptors and all String
Descriptors). Then the host chooses a configuration (see Chapter 3.3) and sends a
configuration request to the device which in turn activates the selected configuration.

3.5. USB descriptors

When a USB device starts to communicate with the USB host the USB descriptors are
requested by the host (see Chapter 3.4). These descriptors consist of a hierarchical system of
sub-descriptors and also a list of strings which can be referenced in other descriptors by
their index inside. The general format of a USB descriptor is depicted in Table 3.6. Each
descriptor has the same two fields at the beginning: the bLength field, which is the length
in bytes of the whole descriptor (starting at and including the bLength field) and the field
bDescriptorType which defines the type of the descriptor. After the first two bytes starts the
descriptor specific part which is different for each type of descriptor.
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Offset Field name

Bytes

Description

0 bLength
1 bDescriptorType

Size of the descriptor in Bytes
Descriptor type

Descriptor specific

Table 3.6.: The common format of all USB descriptors.

The root element of the USB descriptor hierarchy is the Device Descriptor.

3.5.1. Device Descriptor

The Device Descriptor contains information about the whole device like USB version,
manufacturer, serial number, ... . Table 3.7 shows the structure of the Device Descriptor.

Offset Field name

Bytes Description

0 bLength 1 Device Desc. is 18 bytes long.
1 bDescriptionType 1 1 (Device Descriptor 1ID)

2 bcdUSB 2 USB version

4 bDeviceClass 1 Device Class Code

5 bDeviceSubClass 1 Subclass Code

6 bDeviceProtocol 1 Protocol Code

7 bMaxPacketSize 1 Max. Packet Size (Endpoint 0)
8 idVendor 2 Vendor ID (USB Org)

10  idProduct 2 Product ID

12 bcdDevice 2 Device Release Number

14  iManufacturer 1 Index of String Descriptor

15 iProduct 1 Index of String Descriptor

16  iSerialNumber 1 Index of String Descriptor

17 bNumConfigurations 1 Num. of configurations

Table 3.7.: The format of the Device Descriptor.

and N the sub minor version.

bLength is the descriptor length and is always 18 bytes long.
bDescriptionType is set to 1. It identifies the descriptor as Device Descriptor.
bcdUSB is the USB version in the format OxJJMN where ] is the major, M the minor

bDeviceClass specifies the class for the whole device.

If equal to 0x00, each interface specifies its own class code.
If equal to OxFF, the class code is vendor specified.
If equal to OxFE the interface defines the class and there is an Interface Association

Descriptor present (see Chapter 3.7).

Otherwise the value is a valid class code.

e bDeviceSubClass & bDeviceProtocol

are used to select the correct driver for the

device. Normally they are only defined at interface level.
e bMaxPacketSize is the maximum packet size the endpoint zero buffer in the device

can hold.
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e idVendor & iProduct uniquely identify the product. Vendor IDs are assigned by the
USB Implementers Forum.

e bedDevice is the device version number and has the same format as bcdUSB.

e iManufacturer, iProduct & iSerialNumber are human readable strings to describe
the device.

¢ bNumConfigurations is the number of configurations this device has. This is then
used to request all Configuration Descriptors.

3.5.2. String Descriptor

Each string used in any other descriptor is referenced by an ID and stored in a String
Descriptor. Each String Descriptor can be requested by the host with a String Descriptor Request
along with the ID of the requested String Descriptor and a language ID (see Chapter 3.4.3).The
device then returns a String Descriptor as shown in Table 3.8.

The available language IDs can be found in the special String Descriptor with ID 0. This
String Descriptor has a different layout to the others which is shown in Table 3.9. The first
language with index 1 is advised to be English as there might be problems with some
operating systems otherwise.

All strings used in any descriptor are not mandatory for USB to function as their purpose is
to provide a human readable string.

Offset Field name Bytes Description
0 bLength 1 String Desc. length.
1 bDescriptionType 1 3 (String Descriptor 1D)
2 bString 2 string encoded in unicode

Table 3.8.: The format of the String Descriptors (id starting with 1).

Offset Field name Bytes Description
0 bLength 1 String Desc. length.
1 bDescriptionType 1 3 (String Descriptor 1D)
2 wLANGIDJ[o] 2 LANGID Code o

2 +2:x wWLANGID[x] 2 LANGID Code x

Table 3.9.: The format of the language String Descriptor (with id 0).

e bLength is the length of the String Descriptor. It varies depending on the string length
or in case of the String Descriptor with ID 0 depending on how many languages are
defined.

e bDescriptionType is set to 3. It identifies this descriptor as a String Descriptor.

e bString are the actual bytes of the string encoded in unicode. The size may vary from
string to string.

e WLANGIDI[x] contains a language id code in 2 bytes. For example English (United
States) has the id 0x0409 in little endian representation.
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3.5.3. Configuration Descriptor

The Configuration Descriptor represents one possible configuration of the device (see
Chapter 3.3). How many possible configurations there are is defined in the field
bNumConfigurations in the Device Descriptor. For the host to request a Configuration Descriptor
an index lower than bNumConfigurations needs to be sent with the request.

This descriptor contains also all child descriptors in the descriptor tree (see Figure 3.15).
That means by requesting the Configuration Descriptor with length wTotalLength (see below)
the host gets the whole tree of descriptors except Device Descriptor and String Descriptors.
Figure 3.15 shows the descriptor hierarchy - everything returned by a Configuration Descriptor
request with given index length is shown on the right.

| Device Descriptor |

—' Configuration Descriptor |

—' Interface Descriptor

Endpoint Descriptor |

wTotalLength

Endpoint Descriptor |

—' Interface Descriptor |

Endpoint Descriptor |

—' Configuration Descriptor |

Interface Descriptor |

wTotalLength

Endpoint Descriptor |

Endpoint Descriptor |

Figure 3.15.: Total length of a Configuration Descriptors defined in the field wTotalLength.

Offset Field name Bytes Description
0 bLength 1 Length of Conf. Desc.
1 bDescriptionType 1 2 (Config. Descriptor 1ID)
2 wTotalLength 2 Length including subsecriptors
4 bNumlInterfaces 1 Number of Interfaces
5 bConfigurationValue 1 Index of this configuration
6 iConfiguration 1 Index of String Descriptor
7 bmAttributes 1 Power settings.
8 bMaxPower 1 Max. power used (x2mA)

Table 3.10.: The format of the Configuration Descriptors.

e bLength is the length of the Configuration Descriptor only and is set to 8 bytes in newer
version of USB. By requesting this amount of data neither Interface Descriptors nor
other descriptors in the hierarchy will be returned. To request all descriptors (direct
and indirect children) the number of bytes in wTotalLength needs to be requested.
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e bDescriptionType is set to 2. It identifies this descriptor as a Configuration Descriptor.

o wTotalLength is the total length of all data including this Configuration Descriptor
and all appended descriptors (Interface Descriptors, endpoint descriptors, class specific
descriptors, ...) which are direct children of this descriptor or further down the
descriptor hierarchy.

e bNumlinterfaces is the number of interfaces defined in this configuration.

e bConfigurationValue is the index used to retrieve this Configuration Descriptor and to
pass along with the set configuration command to select this configuration.

e iConfiguration provides a human readable string describing this configuration.

e bmAttributes is one byte long where each bit represents a boolean flag.

— Bit 7 was used to indicate a bus powered device in USB 1.0. For higher USB
versions this should be set to 1.

Bit 6 indicates a self powered device.

Bit 5 is enabled if the device can wake the host from a sleep state.

Bits 4 to o are reserved and should be o.

e bMaxPower is the maximum power consumption of the device in this configuration.
This is one criterion for the host to choose a configuration. Since the USB specification
only allows a maximum of 500mA one byte with 2mA per unit (250=500mA) is
sufficient.

3.5.4. Interface Descriptor

This descriptor is part of the Configuration Descriptor hierarchy. It is returned along with
the Configuration Descriptor after the host has issued a Configuration Descriptor Request with
sufficient length (see wTotalLength in Configuration Descriptor). An Interface Descriptor defines
one of the interfaces in a configuration. If this interface has alternate settings there needs to
be an Interface Descriptor for each alternate setting with the same interface number.

Offset Field name Bytes Description
0 bLength 1 The Interface Desc. is 9 bytes long.
1 bDescriptorType 1 4 (Interface Descriptor 1D)
2 bInterfaceNumber 1 Number of described Interface
3 bAlternateSetting 1 Number of this alternative setting.
4 bNumEndpoints 1 Number of contained Endpoints
5 bInterfaceClass 1 Class Code
6 bInterfaceSubClass 1 Subclass Code
7 bInterfaceProtocol 1 Protocol Code
8 iInterface 1 Index of String Descriptor

Table 3.11.: The format of the Interface Descriptors.

e bLength is the length of the Interface Descriptor which should be g bytes long.

e bDescriptionType is set to 4. It identifies this descriptor as an Interface Descriptor.

e bInterfaceNumber is the number of the interface this Interface Descriptor describes. As
interfaces can have multiple alternate settings (see Chapter 3.3.2) there can be multiple
Interface Descriptors that describe the same interface (with the same number) but they
have to differ in bAlternateSetting.
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bAlternateSetting is the number of the alternate setting which this Interface Descriptor
describes for the interface with number binterfaceNumber (see blnterfaceNumber).
bNumEndpoints is the number of endpoints this alternate setting for the interface
with number bInterfaceNumber uses. It is therefore the number of endpoint descriptors
this descriptor will be followed by.

bInterfaceClass is the class code for this interface (see Chapter 3.3). As mentioned
before each interface can have its own class (e.g. one interface with audio class and one
with human interface device class). If the property iDeviceClass in the Device Descriptor
is a valid class code than this should be the same.

bInterfaceSubClass is the subclass of the selected interface class (see Chapter 3.3).
This should match iDeviceSubClass in the Device Descriptor if the Device Descriptor
defines the class.

bInterfaceProtocol is a code for the protocol used. It depends on the selected class
and is specified in the USB standard for each of the valid classes (see Chapter 3.3).

3.5.5. Endpoint Descriptor

Endpoint descriptors are also part of the configuration hierarchy. Same as the Interface
Descriptor they are returned with the Configuration Descriptor. In the hierarchy they are
children of the Interface Descriptor which can have any number of endpoints. Audio class
specific descriptors which will be introduced in Chapter 3.6 can be siblings of this descriptor
and can also be its children.
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Offset Field name Bytes Description
0 bLength 1 The Endpoint Desc. is 7 bytes long.
1 bDescriptorType 1 5 (Endpoint Descriptor ID)
2 bEndpointAddress 1 Address and data direction.
3 bmAttributes 1 Transfer type (and Iso types)
4 wMaxPacketSize 1 Maximum packet size
5 bInterval 1 Polling interval

Table 3.12.: The format of the Interface Descriptors.

bLength is the length of the endpoint descriptor which should be 7 bytes long.
bDescriptionType is set to 4. It identifies this descriptor as an endpoint descriptor.
bEndpointAddress contains the number and the data direction of the endpoint.

— Bit 7 is the direction o = Out, 1 = In
— Bits 6 to 4 are reserved, set to o.
- Bits 3 to o are the endpoint number.

bmAttributes contains the transfer type of the endpoint. For isochronous endpoints
it also includes the synchronisation and usage types (see 3.4.2). If the transfer mode is
not isochronous usage type and synchronisation type bit should be set to o.

— Bits 7 to 6 are reserved, set to o.
— Bits 5 to 4 are the Usage Type (in isochronous Mode)

0 = Data Endp., 1 = Feedback Endp., 2 = Explicit Feedback Data Endp.
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— Bits 3 to 2 are the Synchronisation Type (in isochronous Mode)

0 = No Synchonisation, 1 = Asynchronous, 2 = Adaptive, 3 = Synchronous.
- Bits 1 to o are the Transfer Type

0 = Control, 1 = Isochronous, 2 = Bulk, 3 = Interrupt.

e wMaxPacketSize defines the maximum size of a packet that can be sent to or from
this endpoint. This has to do with the internal buffer size of the USB device.

e bInterval is the polling interval expressed in frames which means that every blnterval
frames the USB host will ask the USB client if there is an interrupt pending on this
endpoint.

For control and bulk endpoints this has to be 0 since they are not polled periodically.
For Isochronous endpoints this has to be 1 since they are streaming and can adjust the
amount of data for each frame to match their desired data rate.

For Interrupt endpoints this can be any value between 1 and 255. Interrupts then can
only occur every blnterval frames.

3.6. USB audio

This chapter is going to introduce audio class specific requests and interfaces that are used
by the sound card. It will also briefly explain the audio streaming and control mechanisms.

For this project the audio part of the USB protocol consists of two main features.

1. The Audio Streaming Interface responsible for sending and receiving of PCM audio
streams via asynchronous Isochronous Transfers (see Chapter 3.4.2). This is fairly simple
as it sends or receives the raw PCM samples over an endpoint defined in an Interface
Descriptor of class Audio Streaming. As this is an asynchronous endpoint there is also a
second feedback endpoint over which it sends the desired data rate changes to match
the sampling rate of the device.

2. The Audio Control Device Interface contains a number of values (referred to as control
values) which control the behavior of the sound card. These can be for example a value
for the sample rate or a value for the volume. These values are defined in AudioControl
Descriptors that are grouped into different types which represent functional parts of
the device. AudioControl Requests are used to read or write these values.

Figure 3.16 shows the structure of a USB Audio device.
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Device

Configuration
(=}

—' Interface (class: Audio / Control Device) |

—' AudioControl Interface (type: Header) |

—' AudioControl Interface (type: Clock Source) |

—' AudioControl Interface (type: Output Terminal) |

(
(
—' AudioControl Interface (type: Input Terminal) |
(
(

—' AudioControl Interface (type: ...) |

—' interface (class: Audio / Strcaming)|

AudioStreaming Interface (type: General) |

AudioStreaming Interface (type: Format Type) |

Endpoint

AudioControl Endpoint (type: Format Type) |

Figure 3.16.: Structure of a USB Audio device.

3.6.1. AudioControl Request

The AudioControl Request is a class specific request and follows the same rules as default
requests introduced in Chapter 3.4.3. The purpose of AudioControl Requests is to control the
audio device by changing certain control values of the device. Each used AudioControl
descriptor in a device is assigned a unique ID to address requests to. Each control value
inside a descriptor also has a defined number to be identifiable by a request. There are two
request types: Get/Set Current Value and Get Range. Get/Set Current Value returns or sets the
actual control value. Get Range returns a valid range of values allowed for setting a value.
All AudioControl Requests are sent over endpoint zero as a normal Control Transfer.

The values in the fields of the requests Setup Packet (see Chapter 3.4.3) are set as follows:

e bmRequestType: Direction is set to IN/OUT according to get/set. Type is set to Class.
Recipient is set to Interface.

e bRequest is 1 for a Get/Set Current Value request and 2 for a Get Range request.

e windex is split into a high and low byte. The high byte is the ID of the AudioControl
descriptor to send the request to (see Chapter 3.6.2). The low byte is the interface
number containing the AudioControl Interface Descriptor.

e wValue is also split into a high and low byte. The high byte is the control selector
(CS) which is the number of the control value and the low byte is the audio channel
number (to set or get control values for individual channels).

The data sent in the data stage of the control request is structured as follows: For a Get/Set
Current Value request it is 1, 2 or 4 bytes containing only the value as a 8, 16, or 32 bit value.
The number of bytes for each value can be found in Chapter 3.6.2 AudioControl Interface
Descriptors. A Get Range request consists of a series of subranges and the first two bytes of
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data are the number of subranges. Each subrange consists of three values: dMIN, dMAX
and dRES where the number of bytes of each value is the same number of bytes as for the
Get/Set Current Value request. Therefore the total number of bytes for each subrange is 3, 6
or 12. dMIN is the lowest value alowed, dMAX the highest and dRES the step size between
dMIN and dMAX. For example: if the data stage contains the values [2, 5, 11, 2, 20, 26, 3]
then the valid values of this range are [5,7,9,11,20,23,26] (2 means two subranges, 5,11,2
means from 5 to 11 in steps of 2 and 20,26,3 means from 20 to 26 in steps of 3).

3.6.2. AudioControl Interface Descriptors

There are several AudioControl Interface Descriptors (see Figure 3.16) in the USB specification
which define how to control different functions in an audio device. They are all grouped
together in an Interface descriptor of class Audio and subclass Control Device. This Interface
Descriptor and all AudioControl Interface Descriptors do not have any endpoints and only
define which audio class specific requests the device listens to. All AudioControl Interface
Descriptors have some fields in common and have mostly the same structure with different
meaning of certain fields. Table 3.13 shows the general structure of all AudioControl Interface
Descriptors except the Header.

Field name Bytes Description

bLength 1 Length of this descriptor.

bDescriptorType 1 36 (AudioControl Interface Descriptor 1D)
bDescriptorSubtype 1 Subtype ID (Header, Clock Source, Feature Unit, ...)
bXxxID 1 Unique ID for this unit.

Subclass specific fields.

bmControls 2 Bitmap with control value definition.

iXxx 1 Index of string descriptor with the name of this unit.

Table 3.13.: The format of the AudioControl Interface Descriptors.

The field bXxxID represents a unique ID for every AudioControl Interface Descriptor and
needs to be specified in a request in the high byte of the request field windex. Even though
the name of this ID field is different in every AudioControl Interface Descriptor (illustrated
by the ”Xxx”) its purpose is always the same. Each AudioControl Interface Descriptor also
implements the field bmControls which is a bitmap where every pair of two bits represent
one control value (e.g. volume, clock speed, ...). These values can either be not present in
the device (0000 in the bitmap), be read-only (0b01) or read and writable (0b11). The control
selector (CS) which is the number of each control value has to be specified in the high byte
of the request field wValue in order to read or write this specific control value. The different
control values implemented by this sound card, their place in the bitmap bmControls and
their control selectors are listed for each AudioControl Interface Descriptor sub type in the
following sections.

Header

The Header is the first child of the Interface Descriptor of class Audio subclass Control Device
and has the subtype ID 1. It contains the version of the Audio Device Class in field bcd ADC
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encoded in the same way as the USB version in the Device Descriptor (see Chapter 3.5.1).
There is also a field named bCategory containing a constant representing the primary
use of this interface. The field wTotalLength is the total length of this and all following
AudioControl Interface Descriptors which follows the same principle as field wTotalLength in
the Configuration Descriptor. The sound card does not implement any control values of this
descriptor.

Clock Source

This descriptor is used to control the audio clock and has subtype ID 10. The frequency
control value sets the audio sample rate. The clock validity control is normally read-only and
returns a boolean status. The sound card implements the control values listed in Table 3.14.

Bits CS Nr. of bytes Control value name

1.0 1 4 Clock Frequency Control
3.2 2 1 Clock Validity Control

Table 3.14.: AudioControl Clock Source: control values, bits in bitmap, control selector (CS) and number of
bytes.

Input Terminal & Output Terminal

The AudioControl Interface Descriptor of type Input / Output Terminal controls an audio
input or an audio output signal. An input signal can be the signal from the USB host to the
device or the signals from the microphones. Output signals are for example the signal from
the device to the USB host or the signal to the headphone output. The sound card does not
implement any control values of this descriptor.

The input and output descriptor contains the following subclass specific field:

e bSourcelD is the ID of the AudioControl Interface Descriptor of type Clock Source
which provides the sampling rate for this input or output terminal.

Additionally only the input terminal descriptor contains the following fields:

e bNrChannels is the number of input channels.

e bmChannelConfig specifies the spatial location of each channel. Each bit corresponds
to a specific location and the order of the channels must correspond to the order of
the bits in this bitmap. If there are more channels than bits set to 1 in this bitmap then
the names of those channels are defined by the field iChannelNames. For this sound
card there are no bits set in this bitmap as there use is not predefined.

e iChannelNames is the index of the first String Descriptor holding the name for the
first channel whose location is not specified in bmChannelConfig. All further channels
correspond to the String Descriptor indices following the index iChannelNames.
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Feature Unit

The AudioControl Interface Descriptor of type Feature Unit controls mostly audio properties
and has the subtype ID 6. The sound card implements the control values listed in Table 3.15.
This descriptor contains the subclass specific field bSourceID which is the ID of the Input
or Output Terminal to which the features in this descriptor apply.

Bits CS Nr. of bytes Control value name

1.0 1 1 Mute Control
3.2 2 2 Volume Control

Table 3.15.: AudioControl Clock Source: control values, bits in bitmap, control selector (CS) and number of
bytes.

3.6.3. AudioStreaming Descriptors

These descriptors are mainly for defining the audio format sent or received. They are
children of the Interface Descriptor of class Audio subclass Streaming and split into subtypes.
There are two subtypes used in this sound card, general and format type. The general descriptor
defines the audio encoding used which in this case is PCM and also defines the number
of audio channels for this interface. It also has an index of a String Descriptor which holds
the first channel name. All subsequent String Descriptors hold the names for the rest of the
channels. The format type defines the resolution of the samples in bits per sample (in this
project normally 24) and how many bytes per sample are transferred (even though there are
only 24 bits per sample there are 4 bytes transferred with the highest byte being 0).

3.7. Interface Association Descriptor

The Interface Association Descriptor (IAD) was later added to the USB 2.0 standard in the
form of an Engineering Change Notice [7] along with a usage model document [8]. The
purpose of this descriptor is to group Interface Descriptors together that logically belong to
one function of the USB device. This also means that there only needs to be one device
driver for each association of interfaces instead of one driver for each interface. Figure 3.17
illustrates this new behavior on the right side.

System Software ~ USB Device System Software = USB Device

Configuration Configuration
Function 1 < » Device
Device Driver [P Interface 0 [ Function 0 | w| Interface 0 |W_|
A Function (& \A Device
DeviceA Driver [W~ N /v Function 0
Al Interface 1 g
Function 1 < g Device
DeviceBDriver [ —»| Interface 1 Function 1

Figure 3.17.: Impact of the Interface Association Descriptor (left: without IAD, right: with IAD). [7]
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The group is defined by the index of the first interface in the group along with the number
of following interfaces (with sequential indices) also belonging to the same group. The class,
subclass and protocol which for simple USB devices are defined in the Device Descriptor is
now defined separately for each interface association. When using an Interface Association
Descriptor the following fields in the Device Descriptor (see Chapter 3.5.1) have to be set to

specific values: bDeviceClass: 0xEF, bDeviceSubClass: 0x02, bDeviceProtocol: 0x01.

Field name Bytes Description

bLength 1 Length of this descriptor.

bDescriptorType 1 11 (Interface Association Descriptor ID)
bFirstInterface 1 The index of the first interface in this group.
bInterfaceCount 1 The total number interfaces in this group.
bFunctionClass 1 The class of this group.

bFunctionSubClass 1 The sub class of this group.

bFunctionProtocol 1 The protocol of this group.

iFunction 1 Index of string desc. with the name of this function.

Table 3.16.: The format of the Interface Association Descriptor.
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The processor used for this thesis is a XUF216-512-TQ128 [9] of the xCORE-200 series from

XMOS Litd.

In this chapter the architecture of the processor is outlined and the programming language
XC, used to program the xCORE processor family is explained. Finally two development
tools, the xTime Composer which is an Integrated Development Environment(IDE) and the

xTAG 3 programmer are introduced.

4.1. Architecture

xCORE processors are multi-core processors that consists of multiple logical cores grouped

into one or more physical tiles.

The block diagram of the XUF216 processor is illustrated in Figure 4.1.
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xCORE logical core

xCORE logical core

xCORE logical core
xCORE logical core

xCORE logical core

xCORE logical core
xCORE logical core

xCORE logical core

xCORE logical core
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XCORE logical core

xCORE logical core

XCORE logical core
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xTIME: schedulers
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xCONNECT
channels, links

xCONNECT
channels, links

Figure 4.1.: Block diagram of the XUF216 processor. [10]

The processor consists of two tiles each containing 8 logical cores, integrated I/O and
on-chip memory. There is also an XTIME scheduler on each tile which handles scheduling
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and synchronizes events to remove the need of interrupt routines. The scheduler notifies
threads on events triggered by timers, hardware I/O, channel communications and the
like.

4.2. XC-Language

For easy and comfortable usage of the processors features, XMOS developed an extension
to the C programming language called XC [11]. It introduces new keywords, operators and
types and also includes a library with defines and functions to configure the processor. The
most important features needed to understand the source code of this project are explained
in this chapter. For more features of the XC language and the xCORE processors consult the
XMOS Programming Guide [12].

4.2.1. Paralellism

Since the processor has multiple cores on two tiles there needs to be a way to run code
in parallel and to assign code to a certain core / tile. Therefore the par keyword was
introduced. This statement is followed by a block of functions where each function is run as
a separate task on a separate core.

par {
taskl ();
task2();
}

The assignment to specific cores / tiles is done with the on keyword.

on tile[0]: taskl ();
on tile[l].core[0]: task2();
4.2.2. Events

The XC language introduces event based programming to C. There are some functions or
operators that are blocking and wait for an event to occur. Since it would normally not be
possible to wait on two blocking functions at once the select keyword was introduced. It waits
on multiple blocking events and when any of the specified events occur the corresponding
code is executed. If a select is put inside an endless loop then the task only responds to
events.

select {
case eventA:

// //
break;
case eventB:
// //
break;
}
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4.2.3. Channels

Channels are a way of communication between tasks on different cores of the processor.
For communication between tiles it is essential to use channels since each tile has its own
memory which is not shared with other tiles. There are two types of channels: normal
channels which are synchronous and streaming channels which are asynchronous. The
difference is that synchronous channels are blocking and wait until the value is received
whereas asynchronous channels are non blocking and have a First-In-First-Out (FIFO) buffer
to temporarily store values.

Channels and streaming channels are defined by special keywords in the XC-language:

chan cl;
streaming chan c2;

In order to connect two tasks with a channel the channel has to be created first and then
passed as a function argument to the two tasks which are started inside a par statement.
To pass channels (normal and streaming) as function arguments the keyword chanend is
used.

void taskl (chanend c);
void task2 (chanend c);
chan c;

par {
taskl (c);
task2 (c);
}

To send and receive with channels there are two new operators: : > and <:. The following
code snippet demonstrates their use.

void taskl (chanend c) {

c <: 4; // sending the integer 4
}
void task2 (chanend c) {

int value;

c :> value; // receiving a value

}

Channels can also work in a select where they trigger an event once data is ready to be
received.

select {
case c :> int x:
// x now holds the received data
break;

}

4.2.4. Clock Blocks

Clock blocks are hardware programmable clocks that are used for the hardware ports (see
next Chapter). There are 6 clock blocks per tile. The first one runs at a fixed rate of 100MHz
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and can not be programmed. All ports are initially connected to that clock block. For the
rest there are two options: externally driven (clock input pin) or an integer divider of the
system clock. A clock can also drive an output pin directly. Non externally driven clocks
also need to be started before they can be used. The following code snippet illustrates the
use of clocks.

#include <xsl.h>

clock clkl = XS1_CLKBLK_1; // clock block 1

clock clk2 = XS1_CLKBLK_2; // clock block 2

in port p_clk_in = XS1_PORT_1A4; // clock input pin

out port p_clk_out = XS1_PORT_1B; // clock output pin
configure_clock_rate(clkl, 100, 8); // sets clkl to 100/8MHz = 12.5MHz
configure_port_clock_output (p_clk_out, clkl); // outputs clock clkl on a pin
start_clock (clkl); // starts the clock
configure_clock_src(clk2, p_clk_in); // sets clk2 to input from a pin

4.2.5. Ports

The processor has multiple physical IO-pins which are connected to either tile 0 or tile 1 and
are named X0D00 where the first number stands for the tile number and the second one for
the pin number. Each tile has 44 IO-pins named X0D00 to X0D43 for tile 0 and X1D00 to
X1D43 for tile 1.

The I0-pins are grouped into ports with different width which can consist of 1, 4, 8 or 16
pins (see Table 4.1). The name of each port starts with a number representing the number of
pins in the port and a letter which distinguishes different ports of same width from each
other. To represent an individual pin of a port a subscript to the port name is used with the
number of the pin inside the port (eg. 8B’ - 8B”). Table 4.1 shows the beginning of the pins
and ports table. Not all of these ports can be used simultaneously as parts of ports with
different width overlap each other rendering all but one port for each pin unusable. Each of
the ports can be selected to be an input or output port. Mixing input and output pins inside
one port is not supported.

To create a port variable in the code the keyword port is used and in the file xs1.h the port
names are defined.

#include <xsl.h>

in port p = XS1_PORT_4A; // port 4A
out port p = XS1_PORT_4B; // port 8B

All ports are clocked which means a shift register is in front of each port and the port is
only sampled or written on each clock tick. To connect a clock block to a port the functions
void configure_out_port (port p, clock clk, int initial value)
and
void configure_in_port (port p, clock clk)
are used.
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Ports are read and written just like streams with the operators : > and <:. All pins are read
or set as one number where each bit of the number in binary form represents one of the
pins. Ports can also be sampled inside a select. The select is continuously triggered when
the specified condition applies. To trigger an event only when the port changes its value the
following code snippet can be used which changes the event condition based on the last
port value.

in port p = ...;
unsigned i = 0;
p :> x; // initialize x with the value of the port - prevents initial trigger
while (1) {
select {
case p when pinsneq(x) :> x : // event when pins not equal x

// x now contains the new port value

////

break ;

Signal Port

X0D00 | 1A°

X0DO01 | 1B°

X0D02 4A0 8AY  16A°
X0DO03 4A1 8Al  16A!
X0D04 4B0 8A2 16A2
X0D05 4Bl 8A3 16A3
X0D06 4B? 8A* 16A*
X0D07 4B3 8A5 16A°
X0DO08 4A%7 8A® 16A°
X0D09 4A% 8A7 16A7
X0D10 | 1C°

X0D11 | 1DY

X0D12 | 1E°

X0D13 | 1FY

X0D14 4C% 8B 16A8
X0D15 4Ct  8B!  16A°
X0D16 4DY 8B?2 16AM0

Table 4.1.: Beginning of the ports definition table of the processor. [9]

4.3. XTime Composer - Integrated Development Environment

To develop firmware for the xCORE processors XMOS provides their own customized
Integrated Development Environment (IDE) build upon the open source IDE Eclipse [13].
The main benefit of this IDE is that it seamlessly works with the xXTAG programmers and
the xCore processors. But it also has some very useful features for developing firmware.
One feature is a timing analyzer which analyzes the compiled binary and shows best and
worst case signal runtimes. Another feature is the trace view which lets you inspect xSCOPE
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traces. The xSCOPE is used to read signal values via the programmer in real time and plot
them over time. The xSIM simulator is also a useful feature that can be used to simulate the
processor. The simulator can also create value change dumps (VCD) that contain data about
the state of variables or ports and can be viewed with the trace feature as a plot. For a full
list of features and information on how to use the IDE there is the "xTIMEcomposer User
Guide” [14].

4.4. xTAG 3 - Programmer

XMOS developed their own programmer called xXTAG of which version 3 was used during
development of this project. The xTAG programmer is an extended Joint Test Action Group
(JTAG) programmer. In addition to the standard JTAG signals it has additional custom
signals which replace some ground (GND) pins on the standard 10 pin JTAG connector and
therefore ensures compatibility. These pins are used for the XMOS xSCOPE in the xTime
Composer to visualize variables and signals of the processor in realtime. Figure 4.2 shows
the pinout of the connector on the sound card with the default JTAG pins and the extra
xSCOPE pins labeled XL1-UP0, XL1-UP1, XL1-DNO and XL1-DNT1. It also shows the XTAG 3
programmer which can be directly plugged into the connector on the sound card without
the need of any wires.

T 2
sv[O0|Ne 3 14[JO00000]
MSEL |O O|GND
TDSCR |O O|XL1_UP1
TS |O OJGND 20-way Standard
TCK |0 O|XL1-_UPO IDC XSYS ] USBB
DEBUG |O O|GND I
TDSNK |0 OfXL1-DNO connector XMOS = I;‘ connector
RST_N [0 O|GND =
UART_RX |0 O[XL1-DN1 = =
UART_TX |O O[GND q! l_—l_l
19 20 L— |EDs —

Figure 4.2.: Programmer XTAG 3 and pinout of the connector on the board [15].
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5. Hardware

The hardware of this project was based on the xXCORE Array Microphone Board [1]. It was
adopted to the needs for this project. Figure 5.1 shows the block diagram of the hardware.
The full schematic can be found in Appendix B.

The processor is the center part oft the hardware design. Its capabilities and function is
explained in chapters 4. Processor and 6. Firmware.
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XTAG MIC-DATA[15.0]
MIC 1
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Reset AC-MCLI
Power-OnReset | - - = = = 1 PLL CLK A
MCLK Euﬁer(— Delvice
R > <€ C52100
ILE CLK

Figure 5.1.: Hardware block diagram.

W

In the following the different building blocks are introduced in more detail.

5.1. Voltage Regulation

The circuit requires 3 different voltages to operate: 3.3V, 1V and 2.5V. The 3.3V are used by
most of the ICs as the primary power source. The processor uses the 1V as its primary power
supply and the 3.3V are only used for the IO-peripheral to communicate with other ICs that
also use 3.3V [g]. The DAC is the only IC which uses the 2.5V which is used for both analog
and digital supply. Like the processor the DAC uses the 3.3V only for interfacing with other
ICs [16].
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5.1.1. 3.3V & 1V

For the 3.3V and 1V two ST1S06 [17] adjustable, step-down switching regulators are used.
Since this IC uses a 1.5 MHz pulse with modulated signal (PWM) to generate the desired
voltage an output low-pass filter is needed. This filter is implemented as a first order LC-
Filter with an inductivity of 2.2uH and a capacity of 2.2uF. The cutoff frequency is 72kHz
which is low enough to filter the faster PWM signal. A schematic is shown in Figure 5.2.

5V

{ 1c1 3v3
STIS06PUR

Vin_SW SW

|

Vin_A
2

475 w —— = INHA

(=}

GND EP FB
GND (] !

5-kaND GND

GND
GND

Figure 5.2.: 3.3V voltage regulation schematic.

5.1.2. 2.5V

The 2.5V is needed by the DAC CS43L21 [16]. Therefore a low-dropout regulator (LDO)
TLV70025 [18] which is a fixed-voltage regulator is used. This means that apart from two
capacitors for voltage stabilization there are no other components needed by this IC (see
Figure 5.3). As input voltage for this LDO the 3.3V are used. Since the dropout voltage
is rated at a maximum of 250mV the difference of 800mV is more than sufficient for this
voltage regulator to operate correctly. The TLV70025 also has a very high power-supply
rejection ratio (PSRR) of 68 dB at 1 kHz which makes it perfect for audio applications where
noise is not desirable.

3V3 2V5

1Co
é Vin Vout 3
EN C36
C37 4 2.2u

290 GND NC —<
TLV70025DDCR
GND GND GND

Figure 5.3.: 2.5V voltage regulation schematic.

5.2. Power Supply Sequencing & Power-On Reset

The term Power Supply Sequencing refers to the process of starting all the power supply
ICs in a predefined sequence. This is important because some ICs or some parts of a circuit
need other ICs to be fully operational before they are powered in order for the circuit to

work correctly.

Power-On Reset (POR) is a concept for reseting circuits or ICs during the power-on phase
- when the power supply is turning on and the voltage is rising from zero to the desired
supply voltage. Due to the fact that this transition cannot be done instantly there is a short
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time when the voltage is high enough for some ICs to start operating but lower than the
minimum operating voltage where proper operation is ensured. In this time the IC that is
powered on is not guaranteed to work correctly and could therefore enter an undefined
or undesired state. In case of the microprocessor this means that the program could start
running but other internal circuits are not yet working correctly.

The communication with other peripherals that are also not yet powered up correctly is also
not guaranteed to work in the desired manner. For all ICs to start operating at a point in
time where the input voltage is stable a POR circuit is needed. It will keep the reset input of
the processor low which will keep the processor in reset mode where all execution is halted
until the reset input is switched to high again and the execution of the firmware starts.

The first component in the power sequencing chain is a STM1061N28WX (see Figure 5.4)
Low Power Voltage Detector[19] which monitors the output of the 3.3V voltage regulator
which is the first one to power up. The voltage detector is a fairly simple component that
has only two input pins for the power and 0V line and one output that is pulled low until
the input voltage reaches a certain level and is then pulled high (to the current input voltage
level). The output of this voltage detector is called Power Good 3.3V .

The second voltage regulator with an output voltage of 1V is being enabled by the Power
Good 3.3V signal and only starts when the 3.3V are stable.

Next in line is the ADM1085 sequencing circuit [20] (see Figure 5.4) which is supplied with
3.3V and therefore also enabled with the power good 3.3V signal. After being powered
on the ADM1085 measures the 1V supply voltage and waits for it to rise above a fixed
threshold. Since this threshold is specified at a minimum of 0.56V to a maximum of 0.64V
(due to tolerances) a voltage divider is used that reduces the input voltage by a factor of
about 0.72. Including a 5% tolerance for the resistors the factor is at a minimum of 0.65
which is still above the specified maximum threshold of the ADM1085. Once the threshold
is reached a time delay is triggered which has a minimum delay of 35us realized by an
internal capacitor. This time delay can be extended by adding an external capacitor. In this
case a 2.2nF capacitor is used. The resulting time delay can be calculated with Equation 5.1
resulting in approximately 11ms. After this time delay the enable output which is used as
the POR signal in this circuit is switched from low to high.

teny = (C-4.8-10°%) 4 35us = (2.2-1077 - 4.8 - 10°) + 35us ~ 11ms (5.1)

The POR signal from the ADM1085 is then used to keep the processor in the reset state until
the power-on delay is over. Due to the fact that the JTAG interface used for programming
also needs to control the reset state of the processor both the POR and the reset signal of
the JTAG interface need to be connected to the reset pin of the processor. Therefore an
NC7WZ07P6X Dual Buffer [21] (see Figure 5.4) with an open-drain output is used to act as
an AND-gate by connecting both outputs of the buffer.

The POR signal is also connected to an LED near the USB connector to indicate that the
device is powered.
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Figure 5.4.: Power good and power-on reset schematic.

5.3. System Clock

The main clock source for the processor is an ASFL1 [22] crystal clock oscillator with 24 M Hz.
This clock is connected to the processor’s clock input pin which is in turn connected to the
processor’s internal PLL that creates the higher clock speed at which the processor runs.
The value of 24MHz is one of two possible values if the use of USB is desired (the other one
being 12MHz).

5.4. Audio Clock

To provide a low jitter clock for the microphones and the DAC the low jitter fractional-N
phase locked loop (PLL) CS2100-CP [23] (see Figure 5.5) was added. This PLL is freely
configurable via an I>C interface where the output frequency can be set. To generate the
output clock a synchronization clock is needed which is generated by the processor and runs
at IMHz. A secondary input clock is needed by the PLL as a low jitter reference clock which
is provided by another ASFL1 [22] crystal clock oscillator with 24.576 MHz. The output of
the PLL is buffered with a NC7NZ34K8X TinyLogic UHS Triple Buffer [24].
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Figure 5.5.: Schematic: PLL with Buffer.

The generated clock signal is configured based on the audio sampling frequency and is
either 48kHz or 44.1kHz. This signal is then fed into the processor and into the audio DAC. It
is also used for jitter reduction of the microphone clock which is generated by the processor.
This is done with a D-Flip-Flop as shown in Figure 5.6. The clock signal generated by the
processor is routed to the D-input of the Flip-Flop and the faster clock of the PLL serves as
the clock-input signal for the Flip-Flop. This ensures that the output only changes with the
PLL clock which leads to a jitter reduction.

After the Flip-Flop the microphone clock is fed into two SN74LVC125ARGYR [25] buffer
ICs (see Appendix B). Since there is a total of eight individual buffers each buffer drives two
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Figure 5.6.: Microphone clock jitter reduction block diagram.
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5.5. USB

The USB part of the schematic is fairly simple as it only consists of the USB connector and a
diode array for protection of the processor. There is also one resistor with 43.2() pulling one
pin of the processor to ground as the datasheet indicates this requirement.

5.6. Audio output DAC

For the stereo audio output a CS43L.21 Low-Power, Stereo Digital-to-Analog Converter [16]
is used (see Figure 5.7). There are two interfaces used. The first is an I?C interface for
configuration which has a shared bus with the audio clock PLL. The second is the serial
audio input which is connected to the I°S interface of the processor.

There is a charge pump included in the DAC which provides a negative voltage to make
ground the center voltage of the output. This removes the need for DC blocking capacitors
in series to the audio output signals.

Since the DAC needs to be configured in under 10ms after reset to avoid entering a
standalone mode the reset pin of the DAC is connected to an output pin of the processor to
ensure the correct timing via the firmware.
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Figure 5.7.: Schematic: DAC.
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6. Firmware

The firmware is based on the application app_usb_aud_mic_array inside the XMOS USB Audio
2.0 Software package [26] which was designed for the xCORE Array Microphone Board [1]
with 7 microphones. To support 16 microphones the base application as well as the library
lib_mic_array [27] had to be modified. Figure 6.1 illustrates the general structure of the

firmware and the communication with the peripherals.

Processor

. Tile 1 Tile 2 \
Microphones II /;
| -L Audio In USBE Base USB }D

; ’
' Mic Clic M 7 cores 4 cores
' (-
reduction \ | I
R
Clock Generator L USE Audio -
: 1 core 1 core » DAC
Audio  "=5--
Base Clock : t A y Analog
; Audio Out

____________________________________________________________________________________

Figure 6.1.: Block diagram of the firmware.

In the following the individual blocks are discussed in more detail.

6.1. Audio In (Microphones)

Due to the computational power needed for the audio input processing chain, it was split into
several tasks running on multiple cores of the processor. There are three distinct tasks. The
first one (pdm_rx) can handle 8 audio signals per core, the second one (decimate_to_pcm_4ch)
can handle 4 audio signals per core and the third one (pdm_process) needs only one core
for all 16 audio signals. This totals to 7 used cores. Figure 6.2 shows the audio in processing
chain with the tasks in three columns and each task instance (each core) as a dark grey

rectangle.
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Figure 6.2.: General structure of the PDM interface.

6.1.1. Task: pdm_rx

void mic_array_pdm_rx (in buffered port, streaming chanend, streaming chanend)

The task pdm_rx is the first step of the audio processing chain. The first argument is a
physical input port (see Chapter 4.2.5) where the data pins of 8 MEMS microphones are
connected. The second and third arguments are two streaming channels (see Chapter 4.2.3)
where the processed data is split into two parts with 4 audio signals each and sent to the
next tasks of the processing chain. In order to process 16 audio signals two instances of this
task need to be running.

The pdm _rx task consists of two parts. The first one is reading the 8 bits of the input port. The
second part is the first stage of the decimation process: an optimized high speed FIR filter
with 48 tabs which reduces the input sample rate by a factor of 8. Since this filter operates at
a high data rate (with a maximum input sample rate of 3.072MHz and output sample rate
of 384kHz) a generic FIR filter implementation would require too many cores to process
the 600MIPS or more (16 - 48 - 384kHz = 294.912.000 multiply-accumulate-operations plus
overhead for accessing data and coefficients).

First Stage Decimation Filter

Since the input PDM signal from the microphones is binary, the first factor of each
multiplication can only asume the values one or zero. To exploit this fact the first step is
splitting up the 48 coefficient filter into 6 groups of 8 sample values, i.e.,

48—1 6-1 [/8-1
y[n] = Z(:J x[n—il b= X(:) <Z(:)x[n— (8i +7)] -b8i+]~> ) (6.1)
1= 1= =

The result is a sum of six terms with 8 multiplications. Every multiplication has one binary
input sample x as the first factor and a constant filter coefficient bg; ; as the second factor.
This means that every multiplication has only two possible results and each sum of 8
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6.1. Audio In (Microphones)

multiplications has only 256 possible outcomes. Therefore each sum of 8 multiplications
can be converted into a table lookup. For the whole filter this results in the sum of 6 table
lookups in 6 different lookup tables. This saves 8 multiply-accumulate-operations along
with loading 8 coefficients into registers.

The index of the lookup tables is one byte wide as there are 256 different values. The bits of
this byte are the 8 binary input samples in one of the 6 groups. This is determined as

indexy,; (n,i) = 8i:12j ~x[n—(8i+))]. (6.2)
j=0

The result of the FIR filter can now be reduced to the sum of 6 values from 6 lookup tables
(lut;) as

6-1
y[n] = Z lut; [indexy,; (n,1)] (6.3)

i=0
The drawback of this method is that it consumes more memory for the precalculated

coefficient lookup table. Since it needs 256 values per block of 8 samples it needs 32 times
the memory of a normal FIR filter.

As this is a linear phase filter the coefficients must be symmetric. Three of the six lookup
tables are, therefore, mirrored versions of the first three. A lookup with index i in lookup
table 6 yields the same result as a lookup with the bit reversed index bitrev (i) in lookup
table 1. Since bitreversing is an efficient instruction on the used processor architecture
lookup table 3-6 can be omitted, saving 3072 bytes of memory. The result can be determined

as
2 5

y[n] =Y lut; [index;,; (n,1)] + Y luts_; [bitrev (indexy, (n,1))], (6.4)
i=0 i=3

and this computation is visualized in Figure 6.3.

PDM
1bit

3.072MHz 8 bits 8 bits 8 bits .
Bit
delay delay »| delay 4
bin bin bin reversal
8 bits 8 bits 8 bits
delay delay delay
bin bin bin
LUTO T1 LUT 2
256 ent. 256 ent. 256 ent.
PCM
32bits
384kHz
<
M ACC

Figure 6.3.: Strtucture of the first decimation filter [28].
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6.1.2. Task: decimate_to_pcm _4ch
void mic_array_decimate_to_pcm_4ch (streaming chanend, streaming chanend)

As arguments this task receives one streaming channel connected to one of the previous
task instances (pdm_rx) from which it receives samples from 4 audio channels. The second
argument is also a streaming channel connected to the last task of the signal processing
chain, i.e., pdm_process. On that channel this task sends the processed samples to the last
task and receives the filter configuration for the third stage FIR filter. Four instances of this
task are needed to process 16 audio signals.

There are four stages as seen in Figure 6.2. First is an optimized linear phase FIR filter and
decimator which decimates the input by a fixed factor of 4, reducing the sample rate to 96
kHz (assuming a PDM clock of 3.072MHz) or 88.2 kHz (for a pdm clock of 2.8224MHz).
Next there is a DC offset removal followed by a FIR gain compensation.

Second Stage Decimation Filter

This FIR filter decimates by a fixed factor of 4 and has 16 coefficients. Since this filter also
runs fairly fast it is implemented in assembler and is optimized to reduce processing time.

The first optimization is theoretical as, the filter is linear phase and all linear phase filters have
symmetric coefficients. So for each coefficient loaded from memory, two multiply accumulate
actions can be done on two different (symmetric) samples. Therefore a new coefficient is
only loaded every second data sample. This halves loading time of coefficients.

The second optimization is architecture specific. It uses the load double assembler command
which can load two data samples or two coefficients in one command. This results in the
following linear phase FIR implementation block that handles 4 data samples and repeats 4
times where n is the number of the repetition and N the total number of data samples.

Load 2 coefficients (2n, 2n + 1)

Load 2 data samples (2n, 2n + 1)

MAC coefficient 1 & data sample 1

MAC coefficient 2 & data sample 2

Load 2 symmetric data samples (N — (2n + 1), N — 2n)
MAC coefficient 1 & data sample 3

MAC coefficient 2 & data sample 4

This results in 7 operations for 4 coefficients which results in an overall 1.75 operations
per coefficients. Also, there is no stall in the execution pipeline since loading and multiply-
accumulate operations are interleaved.

Circular Buffer Simulation

Most FIR implementations rely on circular buffers for the data samples but since the
processor architecture does not have a circular buffer in hardware the circular buffer
management needs to be implemented in software.
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One way to implement a circular buffer is to have an array of the length of the circular
buffer and when writing or reading from it the index used is incremented in conjunction
with the modulo of the length of the circular buffer. To avoid any extra calculations while
reading each sample from the buffer the used circular buffer is implemented in a way that
all the buffer management is done while writing to the buffer. To achieve this the buffer is
made twice the size needed to hold all samples and each sample is written twice - once at its
current position and again one buffer-length away. This can be seen in Figure 6.4. With this
trick a convolution of the samples can always be performed as a whole operation without
having to check the buffer boundaries for every sample thus saving on instructions per tap
for the price of only double the memory for the circular buffer.

Convolution
(no circular buffer management required)

Virtual circular buffer

F N
h 4

Del[0] Dell1] |---—-———- Del[N-2] Del[N-1] Del[N] Del[N+1] | -——-—----—— Del[2N-2] | Del[2N-1]

Input sample
(double write, with circular buffer management)

Figure 6.4.: Implementation of the circular buffer [28].

Third Stage Decimation Filter

The third and final FIR decimation filter is configurable during runtime and decimates the
sample rate of the previous decimation filter by another factor 2, 4, 6, 8 or 12 according to
the selected output sample rate of 48kHz, 24kHz, 16kHz, 12kHz or 8kHz for a PDM clock
of 3.072MHz or a sample rate of 44.1kHz, 22.05kHz, 14.7kHz, 11.025kHz or 7.35kHz for a
PDM clock of 2.8224MHz. The configuration is done by receiving the decimation factor and
the filter coefficients over the channel connected to the next task (pdm_process).

DC Offset Removal

The DC offset removal is done by an IIR filter with a single pole as

Yn=Yn-1-a+xn—xn—-1]. (6.5)

The coefficient « adjusts the stability and the settling time of the filter in opposite
directions.
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FIR Gain Compensation

The FIR gain compensation is a simple multiplication with a fixed point number. This factor
is calculated for all three decimation filters and changes with the different decimation values
of the third decimation filter as the filter changes its characteristics for different sampling
frequencies.

6.1.3. Task: pdm_process
void pdm_process (streaming chanend [4], chanend)

This task is connected to the USB Audio task via a bidirectional channel which is the
second argument. It receives the sample rate when the USB port is connected to a host and
continuously checks for sample rate changes. Upon receiving such a sample rate change
event over the channel it reconfigures the FIR decimation filter to the desired decimation
factor. If switching between sample rates with different base frequencies (48kHz or 44.1kHz)
the PLL is also reconfigured via IC. This task is also connected via 4 unidirectional channels
(first argument) to the 4 previous tasks receiving a continuous stream of audio samples
which are then sent to the USB task after being routed through a user-defined function. This
function is designed to contain user-defined signal processing and can be used to extend the
functionality of this Sound Card (see Chapter 6.3.2). At the current state it only reorders the
channels to match the order of the connectors on the PCB. Figure 6.5 shows a flow graph of
this task’s functionality.

Receive Configure "
sample rate decimation factor

Collect FOM User
16 samples _" Function }—,

t

Figure 6.5.: Flow graph of the task pdm_process.

Send samples
to LUSE tasks

6.2. USB & Audio 10

This chapter contains a brief description of the XMOS USB library including the USB to IS
bridge used for the DAC.

6.2.1. Tasks: XUD Manager & Endpoint 0

The XMOS USB Device (XUD) Manager task takes care of all the low level USB
communication. It is the base for writing USB device firmware for XMOS processors. The
Endpoint 0 task is also a basic building block for USB firmware as it handles all control
transfers over the special USB Endpoint 0 including initialization of the USB transfer and
configuration. It handles all requests including audio requests and informing the necessary
task (e.g. sending a new sample rate to the audio task).
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6.2.2. Tasks: Endpoint Buffer & Decoupling

These two tasks are responsible for buffering data between the Audio IO task and the XUD
Manager task. The Endpoint Buffer task is connected via a channel to the XUD Manager task
and the Decoupling task is connected to the Audio IO task via another channel. Since the
tasks Audio IO and XUD Manager of this firmware run on different time basis a way to
synchronize them is needed. Therefore the Endpoint Buffer task and the Decoupling task
communicate via a shared part of memory where a bidirectional first-in-first-out (FIFO)
buffer is implemented. The sample rate of the USB connection is then controlled so the
buffer never runs out of audio samples nor becomes full.

6.2.3. Task: Audio 10

The Audio IO task sends and receives audio streams to and from the Decoupling task. The
stream it receives is then sent over the IS interface to the audio DAC (see Chapter 5.6). The
stream it sends comes from the pdm_process task containing the 16 audio signals from the
microphones. It is also responsible for taking actions when a sample rate change occurs. The
first action taken is informing the pdm_process task via the shared channel. Then it determines
if the change in sample rate changes the base audio clock of the PLL (see Chapter 5.4). If
so it then reconfigures the PLL over the I?C interface. The same interface is also used to
reconfigure the audio DAC for the new clock rate.

6.3. Extending the Firmware
6.3.1. Changing The Existing Filters

As explained in Chapter 6, Chapter 6.1.1 and Chapter 6.1.2 there are three filters responsible
for low pass filtering the microphone signals before each of the three decimation steps.
The chosen filters are suited to normal audio recording but can be changed to any kind
of filter (that includes a low pass to prevent aliasing) if the application requires it. This
chapter explains where to edit the coefficients and introduces the Python tool fir_design.py
to calculate these coefficients for each of the three filters. The characteristics of the default
filters can be found in Appendix A.

The script fir_design.py can be found in /lib_mic_array/src/fir/. The coefficients of all of the
filters are stored in the files fir_coefs.xc and fir_coefs.h in the same directory. This file is
created automatically by the python script. This means that any manual changes to the filter
coefficients are lost when running the python script.

The python script takes different arguments to adjust the filters. The visualization of these
arguments can be seen in Figure 6.6, 6.7 and 6.8.

e ——pdm-sample-rate this is the sample rate all other frequencies are normed to. The
tilter will have a slightly different behaviour in 3.072MHz mode than in 2.8224MHz
mode. This value defaults to 3.072MHz.

e ——stopband-attenuation this is set for all of the filters (1-3). Defaults to 8odB.

e ——first-stage-pass-bw, --second-stage-pass-bw are the pass band
bandwidth in kHz for the first two filters. Both default to 16kHz.
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e ——first-stage-stop-bw, -—second-stage-stop-bw this is the stop bandwidth
in kHz for the two filters. Both default to 100kHz.

The third stage filter is best changed by editing the python script as one can only add new
decimation filters as opposed to changing existing filters. The filters are defined in a variable
named third_stage_configs at the end of the script. The variable holds an array with an
entry for each decimation factor. Each entry is also an array containing the following values:
decimation factor (do not change!), normalized passband cutoff frequency, normalized stopband
cutoff frequency, filter name (do not change!), number of tabs (do not change!).

If a different type of filter is desired which is not a low pass with the constraints described
above then there are two possibilities. The first is to edit the coefficients directly. To do this
it is advised to modify the python script to export the coefficients to the files fir_coefs.xc and
fir_coefs.h. In the script the functions generate_first_stage, generate_second_stage
and generate_third_stage all contain a variable coefs which can be assigned the
desired coefficients instead of them being calculated by the script. For the third stage there
need to be different coefficients for each decimation factor.
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Figure 6.6.: First stage decimation filter design parameters [27].
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Figure 6.8.: Third stage decimation filter design parameters [27].

6.3.2. Adding Custom Signal Processing

To introduce custom signal processing after the third decimation filter into the processing
chain the function user_pdm_process which is called from the function pdm_process
(Chapter 6.1.3) and found in the file /app_usb_aud_mic_array/src/extensions/pdm_user.xc can be
be modified. At the moment this function only reorders the audio channels to match the
numbers of the connectors.

This function is called after the third FIR decimation filter is applied and before the samples
are sent over USB. It is called with the following parameters:

void user_pdm_process (mic_array_frame_time_domain* unsafe audio, int output|[])

The function is called once per sampling time point. The samples for the 16 microphones
which are 32 bit integer values can be accessed in the following way:

audio—->data[micNr] [0]
The samples which are sent back over USB are also 32 bit integers and are set like this:
output [micNr] = ...

Only the upper 24 bit of these 32 bits are sent over USB.
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7. Prototype

This Chapter shows the finished sound card and contains some basic functional tests.

7.1. Developed Sound Card

From the schematics found in Appendix B a PCB layout was created. Two PCBs were
ordered along with all electronic parts needed. The two PCBs were then soldered by hand.
Microphones were then needed to test the sound card. Therefore a second PCB layout
containing a MEMS microphone and a connector was created which is not part of this thesis.
Thirty-two of these PCBs were ordered and soldered by hand. For the connection between
the MEMS microphones and the sound card thirty-two ribbon cables were also assembled.
To hold the sixteen individual MEMS microphones of one sound card physically together a
plate was 3D-printed. This plate contains holes for the sound ports of the microphones as
well as holes for screws. The finished prototype can be seen in Figures 7.1, 7.2 and 7.3.

Figure 7.1.: Prototype of the sound card.
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Figure 7.2.: Assembled sound card prototype with microphones.

Figure 7.3.: Assembled sound card prototype with microphones.
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7.2. Functional Test

The sound card and the microphone PCBs were soldered by hand. For the test setup a
plastic plate was 3D-printed to hold the 16 microphone PCBs together. The sound card was
then connected via sixteen ribbon cables with a length of 20cm. For the individual channel
test an in-ear headphone was playing a 2kHz tone and was held separately near each of
the 16 microphones. All of the tested microphones worked as expected and the results can
be seen in Figure 7.4. Since the microphones were not physically separated the tone can
be seen in the other channels too with a very low amplitude. The variation in amplitude
displays the constraints of working by hand which resulted in the distance and angle of the
speakers and microphones varying.

-

Figure 7.4.: Individual microphone test with a 2kHz tone.

For the next test one microphone was connected to the sound card with a 75cm ribbon cable
and soundproofed with several blankets. It then recorded the noise of the system which can
be seen in Figure 7.5.
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Figure 7.5.: Spectrum of the system’s noise.
To verify that the blankets were soundproof enough a second recording was done without

the blanket which can be seen in Figure 7.6. This showed that all the noise seen in Figure 7.5
is only system noise and not coming from any other source.
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Figure 7.6.: Spectrum of the noise in the room without soundproofing.

The noise of the system above 3kHz shows the effect of the noise shaping Delta-Sigma-
Converter inside the MEMS microphone. It also shows the cutoff frequency of the third
decimation filter stage which is at about 18kHz.

The last test was to evaluate the effect of different ribbon cable length. This test was done at
a sample rate of 44.1kHz. Starting with a 2 meter long ribbon cable the cable was cut shorter
for each individual measurement. A measurement consists of one microphone wrapped in
a blanket for soundproofing connected to the sound card with the ribbon cable of various
lengths. With this setup the noise spectrum was measured. Figure 7.7 shows these spectra
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with different lengths. As there is no way to identify the different length in this figure (as
there are not enough colors), a second figure, Figure 7.8, is provided showing the mean
noise amplitude on the y-Axis and the ribbon cable length on the x-Axis.
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Figure 7.7.: Noise spectra with different ribbon cable lengths.
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Figure 7.8.: Mean of the noise spectrum for different ribbon cable lengths.

Figure 7.8 shows that there are certain cable lengths with normal noise levels below -100dB
and some with high noise levels. This can be caused by clock and data signal reflections at
the ends of the transmission line. The result is a superposition of the original signal and the
reflected one. If the ribbon cable has an unfavorable length the signals overlap destructively
causing bit errors in the bit stream which results in noise.

Reflections can be minimized by adding source termination resistors. The value of the
resistor depends on the transmission line and therefore on the cable length. As an exact
length of the cable was not specified, this is not part of this thesis and as such it is just
briefly mentioned here. Source termination resistors for the clock signals are present on the
PCB but not used. Instead 0Q) jumpers were used. These can be replaced by any desired
termination resistor. The numbers of these resistors are R19 to R26 and R30 to R37.
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8. Summary

For this theses a sound card was developed. Firstly, a microphone type was selected, namely
MEMS microphones. Research on these microphones was done and the functional principle
of digital MEMS microphones was presented. The pulse density modulation (PDM) was also
included in this research as it is the output signal of the microphones. As the second part of
research the USB 2.0 protocol was closely examined along with the protocol extensions for
the USB audio class. The gained knowledge was structured and presented in a chapter of
this thesis. The next step was to select a processor which had enough calculation power to
handle sixteen audio channels and includes a hardware USB 2.0 interface. A processor from
the company XMOS was found along with a demo board containing the basic hardware
and firmware building blocks needed for this thesis. The schematics of this demo board was
then redesigned to meet the thesis’ specifications. The resulting circuit was explained in its
own chapter. From the schematics a PCB layout was designed and the firmware of the demo
board was then examined and researched. Following this the firmware was modified and
extended to fulfill the requirements of the changed hardware. The structure of the resulting
firmware and the most important algorithms were then presented. Finally the PCB was
ordered and once received it was assembled and soldered by hand. As a last step the proper
operation of the sound card was ensured through some basic functional tests.
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Appendix A.

Filter Characteristics

First & Second Decimator
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Figure A.1.: Magnitude response of the first decimator. Figure A.2.: Magnitude response of the second
decimator.
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Appendix A. Filter Characteristics

Third Decimator

0 0
—204 —201
—40
s 3
c c
2 2 _60-
¢ —60 - 2
o o
(] L)
£ -804 =
o o
© ©
2 = -100
~100 1
—120 A
—1201
—140 -
0.0 01 02 0.3 0.4 0.5 0.0 01 0.2 03 0.4 0.5
Normalised Input Freq Normalised Input Freq
Figure A.3.: Magnitude response of the third Figure A.4: Magnitude response of the third
decimator with a decimation factor of 2. decimator with a decimation factor of 4.
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Figure A.5.: Magnitude response of the third Figure A.6.: Magnitude response of the third
decimator with a decimation factor of 6. decimator with a decimation factor of 8.
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Figure A.7.: Overall magnitude response of the output
with a decimation factor of 12.
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Overall Magnitude Response
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output with a decimation factor of 12.
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Appendix B.

Schematics
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Appendix B. Schematics
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Appendix C.

PCBs

Layer Stack

Board Stack Report
Layer Stack

Stack Up
1 Top Paste
2 Top Overlay
3 EEEEEEER Top Solder . Solder Resist
4 Component Side Copper
5 1080 FR-4
6 1080 FR-4
7 _Ground Plane (GND)  Copper
g TR Dieclectric 3 FR-4
9 B B ENNEBNN NinnerlLayer1 Copper
10 1080 FR-4
11 [N 1080 FR-4
12 e PoVVer Plane (VCC) Copper
13 e s onssnes s s Dielectric 5 FR-4
14 _Ground Plane (GND)  Copper
15 1080 FR-4
16 1080 FR-4
17 —_— Solder Side Copper
18 HEEEBEBEHE Epottom solder Solder Resist
19 Bottom Overlay
20 Bottom Paste

Height : 1,597mm

0,010mm 3,5
0,035mm
0,078mm 4,2
0,078mm 4,2
0,035mm
0,400mm 4,2
0,035mm
0,127mm 4,2
0,127mm 4,2
0,036mm
0,400mm 4,2
0,035mm
0,078mm 4,2
0,078mm 4,2
0,035mm
0,010mm 3,5
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Appendix C. PCBs

Layout

Layer 2: Top overlay
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Appendix C. PCBs
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Appendix C. PCBs
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Appendix D.

USB Descriptors

The following is the output of the linux program lsusb:

Device Descriptor:

bLength 18
bDescriptorType 1
bcdUSB 2.00
bDeviceClass 239
bDeviceSubClass 2
bDeviceProtocol 1
bMaxPacketSize0 64
idvendor 0x20bl
idProduct 0x0008
bcdDevice 6.f2
iManufacturer 1
iProduct 3
iSerial 0
bNumConfigurations 2

Configuration Descriptor:
bLength
bDescriptorType

Miscellaneous Device
?
Interface Association

XMOS Ltd

XMOS

XMOS Microphone Array UAC2.0

wTotalLength 375

bNumInterfaces
bConfigurationvValue
iConfiguration

0

bmAttributes 0x80

(Bus Powered)

MaxPower

Interface Association:
bLength
bDescriptorType
bFirstInterface
bInterfaceCount
bFunctionClass
bFunctionSubClass
bFunctionProtocol
iFunction

Interface Descriptor:
bLength
bDescriptorType
bInterfaceNumber
bAlternateSetting
bNumEndpoints
bInterfaceClass
bInterfaceSubClass
bInterfaceProtocol
iInterface

UAC2.0
AudioControl Interface Descriptor:
bLength 9
bDescriptorType 36
bDescriptorSubtype 1 (HEADER)
bcdADC 2.00
bCategory 8
wTotalLength 175
bmControl 0x00
AudioControl Interface Descriptor:
bLength 8
bDescriptorType 36
bDescriptorSubtype 10 (CLOCK_SOURCE)
bClockID 41
bmAttributes 0x03 Internal programmable
Clock
bmControls 0x07

500mA

-

Audio

w
ONOKFR WO R ®

Audio
Control Device

w
WN P OO OBV

XMOS Microphone Array

Clock Frequency Control (read/write)
Clock Validity Control (read-only)

bAssocTerminal

0

iClockSource 9 XMOS Internal Clock
AudioControl Interface Descriptor:

bLength 8

bDescriptorType 36

bDescriptorSubtype 11 (CLOCK_SELECTOR)

bUnitID 40

bNrInPins 1

baCSourceID( 0) 41

bmControls 0x03

Clock Selector Control (read/write)

iClockSelector 8 XMOS Clock Selector
AudioControl Interface Descriptor:

bLength 17

bDescriptorType 36

bDescriptorSubtype 2 (INPUT_TERMINAL)

bTerminalID 2

wTerminalType 0x0101 USB Streaming

bAssocTerminal 0

bCSourceID 40

bNrChannels 2

bmChannelConfig 0x00000000

bmControls 0x0000

iChannelNames 11 Analogue 1

iTerminal 6 XMOS Microphone Array
UAC2.0
AudioControl Interface Descriptor:

bLength 18

bDescriptorType 36

bDescriptorSubtype 6 (FEATURE_UNIT)

bUnitID 10

bSourceID 2

bmaControls( 0) 0x0000000f

Mute Control (read/write)

Volume Contr
bmaControls( 1
Mute Control
Volume Contr
bmaControls( 2
Mute Control
Volume Contr

ol (read/write)

)

0x0000000£

(read/write)
ol (read/write)

)

0x0000000f

(read/write)
ol (read/write)

iFeature 0
AudioControl Interface Descriptor:

bLength 12

bDescriptorType 36

bDescriptorSubtype 3 (OUTPUT_TERMINAL)

bTerminalID 20

wTerminalType 0x0301 Speaker

bAssocTerminal 0

bSourceID 10

bCsourcelID 40

bmControls 0x0000

iTerminal 0
AudioControl Interface Descriptor:

bLength 17

bDescriptorType 36

bDescriptorSubtype 2 (INPUT_TERMINAL)

bTerminalID 1

wTerminalType 0x0201 Microphone

bAssocTerminal 0

bCSourceID 40

bNrChannels 16

bmChannelConfig 0x00000000

bmControls 0x0000

iChannelNames 13
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iTerminal 0

AudioControl Interface Descriptor:
bLength 74
bDescriptorType 36
bDescriptorSubtype 6 (FEATURE_UNIT)
bUnitID 11
bSourcelID 1

bmaControls( 0) 0x0000000£f
Mute Control (read/write)
Volume Control (read/write)
bmaControls( 1) 0x0000000f
Mute Control (read/write)
Volume Control (read/write)
bmaControls( 2) 0x0000000f
Mute Control (read/write)
Volume Control (read/write)
bmaControls( 3) 0x0000000£
Mute Control (read/write)
Volume Control (read/write)
bmaControls ( 4) 0x0000000£
Mute Control (read/write)
Volume Control (read/write)
bmaControls ( 5) 0x0000000£
Mute Control (read/write)
Volume Control (read/write)
bmaControls ( 6) 0x0000000f
Mute Control (read/write)
Volume Control (read/write)
bmaControls ( 7) 0x0000000f
Mute Control (read/write)
Volume Control (read/write)
bmaControls( 8) 0x0000000f
Mute Control (read/write)
Volume Control (read/write)
bmaControls ( 9) 0x0000000f
Mute Control (read/write)
Volume Control (read/write)
bmaControls (10) 0x0000000£
Mute Control (read/write)
Volume Control (read/write)
bmaControls (11) 0x0000000f
Mute Control (read/write)
Volume Control (read/write)
bmaControls (12) 0x0000000f
Mute Control (read/write)
Volume Control (read/write)
bmaControls (13) 0x0000000f
Mute Control (read/write)
Volume Control (read/write)
bmaControls (14) 0x0000000f
Mute Control (read/write)
Volume Control (read/write)
bmaControls (15) 0x0000000£
Mute Control (read/write)
Volume Control (read/write)
bmaControls (16) 0x0000000£
Mute Control (read/write)
Volume Control (read/write)

iFeature 0
AudioControl Interface Descriptor:
bLength 12
bDescriptorType 36
bDescriptorSubtype 3 (OUTPUT_TERMINAL)
bTerminallID 22
wTerminalType 0x0101 USB Streaming
bAssocTerminal 0
bSourceID 11
bCsourceID 40
bmControls 0x0000
iTerminal 7 XMOS Microphone Array
UAC2.0
Interface Descriptor:
bLength 9
bDescriptorType 4
bInterfaceNumber 1
bAlternateSetting 0
bNumEndpoints 0
bInterfaceClass 1 Audio
bInterfaceSubClass 2 Streaming
bInterfaceProtocol 32
iInterface 4 XMOS Microphone Array
UAC2.0
Interface Descriptor:
bLength 9
bDescriptorType 4
bInterfaceNumber 1
bAlternateSetting 1
bNumEndpoints 1
bInterfaceClass 1 Audio

bInterfaceSubClass 2 Streaming
bInterfaceProtocol 32
iInterface 4 XMOS Microphone Array
UAC2.0
AudioStreaming Interface Descriptor:
bLength 16
bDescriptorType 36
bDescriptorSubtype 1 (AS_GENERAL)
bTerminalLink 2
bmControls 0x00
bFormatType 1
bmFormats 0x00000001
PCM
bNrChannels 2
bmChannelConfig 0x00000000
iChannelNames 11 Analogue 1
AudioStreaming Interface Descriptor:
bLength 6
bDescriptorType 36
bDescriptorSubtype 2 (FORMAT_TYPE)
bFormatType 1 (FORMAT_TYPE_TI)
bSubslotSize 4
bBitResolution 24
Endpoint Descriptor:
bLength 7
bDescriptorType 5
bEndpointAddress 0x01 EP 1 OUT
bmAttributes 5
Transfer Type Isochronous
Synch Type Asynchronous
Usage Type Data
wMaxPacketSize 0x0038 1x 56 bytes
bInterval 1
AudioControl Endpoint Descriptor:
bLength 8
bDescriptorType 37
bDescriptorSubtype 1 (EP_GENERAL)
bmAttributes 0x00
bmControls 0x00
bLockDelayUnits 2 Decoded PCM samples
wLockDelay 8
Interface Descriptor:
bLength 9
bDescriptorType 4
bInterfaceNumber 1
bAlternateSetting 2
bNumEndpoints 1
bInterfaceClass 1 Audio
bInterfaceSubClass 2 Streaming
bInterfaceProtocol 32
iInterface 4 XMOS Microphone Array
UAC2.0
AudioStreaming Interface Descriptor:
bLength 16
bDescriptorType 36
bDescriptorSubtype 1 (AS_GENERAL)
bTerminallLink 2
bmControls 0x00
bFormatType 1
bmFormats 0x00000001
PCM
bNrChannels 2
bmChannelConfig 0x00000000
iChannelNames 11 Analogue 1
AudioStreaming Interface Descriptor:
bLength 6
bDescriptorType 36
bDescriptorSubtype 2 (FORMAT_TYPE)
bFormatType 1 (FORMAT_TYPE_TI)
bSubslotSize 2
bBitResolution 16
Endpoint Descriptor:
bLength 7
bDescriptorType 5
bEndpointAddress 0x01 EP 1 OUT
bmAttributes 5
Transfer Type Isochronous
Synch Type Asynchronous
Usage Type Data
wMaxPacketSize 0x001lc 1x 28 bytes
blInterval 1
AudioControl Endpoint Descriptor:
bLength 8
bDescriptorType 37
bDescriptorSubtype 1 (EP_GENERAL)
bmAttributes 0x00
bmControls 0x00
bLockDelayUnits 2 Decoded PCM samples
wLockDelay 8



Interface Descriptor:

bLength 9
bDescriptorType 4
bInterfaceNumber 2
bAlternateSetting 0
bNumEndpoints 0
bInterfaceClass 1 Audio
bInterfaceSubClass 2 Streaming
bInterfaceProtocol 32
iInterface 5 XMOS Microphone Array
UAC2.0
Interface Descriptor:
bLength 9
bDescriptorType 4
bInterfaceNumber 2
bAlternateSetting 1
bNumEndpoints 1
bInterfaceClass 1 Audio
bInterfaceSubClass 2 Streaming
bInterfaceProtocol 32
iInterface 5 XMOS Microphone Array
UAC2.0
AudioStreaming Interface Descriptor:
bLength 16
bDescriptorType 36
bDescriptorSubtype 1 (AS_GENERAL)
bTerminalLink 22
bmControls 0x00
bFormatType 1
bmFormats 0x00000001
PCM
bNrChannels 16
bmChannelConfig 0x00000000
iChannelNames 13
AudioStreaming Interface Descriptor:
bLength 6
bDescriptorType 36
bDescriptorSubtype 2 (FORMAT_TYPE)
bFormatType 1 (FORMAT_TYPE_T)
bSubslotSize 4
bBitResolution 24
Endpoint Descriptor:
bLength 7
bDescriptorType 5
bEndpointAddress 0x81 EP 1 IN
bmAttributes 37
Transfer Type Isochronous
Synch Type Asynchronous
Usage Type Implicit feedback Data
wMaxPacketSize 0x01cO 1x 448 bytes
bInterval 1
AudioControl Endpoint Descriptor:
bLength 8
bDescriptorType 37
bDescriptorSubtype 1 (EP_GENERAL)
bmAttributes 0x00
bmControls 0x00
bLockDelayUnits 2 Decoded PCM samples
wLockDelay 8
Interface Descriptor:
bLength 9
bDescriptorType 4
bInterfaceNumber 3
bAlternateSetting 0
bNumEndpoints 0
bInterfaceClass 254 Application Specific
Interface
bInterfaceSubClass 1 Device Firmware Update
bInterfaceProtocol 1
iInterface 10 XMOS DFU
Device Firmware Upgrade Interface Descriptor:
bLength 9
bDescriptorType 33
bmAttributes 7

Will Not Detach
Manifestation Toler
Upload Supported
Download Supported

wDetachTimeout

wTransferSize

bcdDFUVersion

Configuration Descriptor:

bLength 9
bDescriptorType 2
wTotalLength 375
bNumInterfaces 4
bConfigurationvValue 1
iConfiguration 0
bmAttributes 0x80

ant

250 milliseconds

64 bytes
1.10

(Bus Powered)

MaxPower 500mA
Interface Association:
bLength 8
bDescriptorType 11
bFirstInterface 0
bInterfaceCount 3
bFunctionClass 1 Audio
bFunctionSubClass 0
bFunctionProtocol 32
iFunction 0
Interface Descriptor:
bLength 9
bDescriptorType 4
bInterfaceNumber 0
bAlternateSetting 0
bNumEndpoints 0
bInterfaceClass 1 Audio
bInterfaceSubClass 1 Control Device
bInterfaceProtocol 32
iInterface 3 XMOS Microphone Array
UAC2.0
AudioControl Interface Descriptor:
bLength 9
bDescriptorType 36
bDescriptorSubtype 1 (HEADER)
bcdADC 2.00
bCategory 8
wTotalLength 175
bmControl 0x00
AudioControl Interface Descriptor:
bLength 8
bDescriptorType 36
bDescriptorSubtype 10 (CLOCK_SOURCE)
bClockID 41
bmAttributes 0x03 Internal programmable
Clock
bmControls 0x07

Clock Frequency Control (read/write)
Clock Validity Control (read-only)

bAssocTerminal 0

iClockSource 9 XMOS Internal Clock
AudioControl Interface Descriptor:

bLength 8

bDescriptorType 36

bDescriptorSubtype 11 (CLOCK_SELECTOR)

bUnitID 40

bNrInPins 1

baCSourceID( 0) 41

bmControls 0x03

Clock Selector Control (read/write)

iClockselector 8 XMOS Clock Selector
AudioControl Interface Descriptor:

bLength 17

bDescriptorType 36

bDescriptorSubtype 2 (INPUT_TERMINAL)

bTerminalID 2

wTerminalType 0x0101 USB Streaming

bAssocTerminal 0

bCSourceID 40

bNrChannels 2

bmChannelConfig 0x00000000

bmControls 0x0000

iChannelNames 11 Analogue 1

iTerminal 6 XMOS Microphone Array
UAC2.0
AudioControl Interface Descriptor:

bLength 18

bDescriptorType 36

bDescriptorSubtype 6 (FEATURE_UNIT)

bUnitID 10

bSourceID 2

bmaControls( 0) 0x0000000£
Mute Control (read/write)
Volume Control (read/write)

bmaControls( 1) 0x0000000£f
Mute Control (read/write)
Volume Control (read/write)

bmaControls ( 2) 0x0000000f
Mute Control (read/write)
Volume Control (read/write)

iFeature 0

AudioControl Interface Descriptor:
bLength 12
bDescriptorType 36
bDescriptorSubtype 3 (OUTPUT_TERMINAL)
bTerminalID 20
wTerminalType 0x0301 speaker

bAssocTerminal 0
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bsourceID 10
bCsourceID 40
bmControls 0x0000
iTerminal 0
AudioControl Interface Descriptor:
bLength 17
bDescriptorType 36
bDescriptorSubtype 2 (INPUT_TERMINAL)
bTerminallID 1
wTerminalType 0x0201 Microphone
bAssocTerminal 0
bCSourcelD 40
bNrChannels 16
bmChannelConfig 0x00000000
bmControls 0x0000
iChannelNames 13
iTerminal 0
AudioControl Interface Descriptor:
bLength 74
bDescriptorType 36
bDescriptorSubtype 6 (FEATURE_UNIT)
bUnitID 11
bSourcelID 1
bmaControls( 0) 0x0000000£f
Mute Control (read/write)
Volume Control (read/write)
bmaControls( 1) 0x0000000f
Mute Control (read/write)
Volume Control (read/write)
bmaControls( 2) 0x0000000f
Mute Control (read/write)
Volume Control (read/write)
bmaControls( 3) 0x0000000f
Mute Control (read/write)
Volume Control (read/write)
bmaControls ( 4) 0x0000000£
Mute Control (read/write)
Volume Control (read/write)
bmaControls ( 5) 0x0000000£
Mute Control (read/write)
Volume Control (read/write)
bmaControls( 6) 0x0000000f
Mute Control (read/write)
Volume Control (read/write)
bmaControls( 7) 0x0000000f
Mute Control (read/write)
Volume Control (read/write)
bmaControls( 8) 0x0000000f
Mute Control (read/write)
Volume Control (read/write)
bmaControls( 9) 0x0000000f
Mute Control (read/write)
Volume Control (read/write)
bmaControls (10) 0x0000000£
Mute Control (read/write)
Volume Control (read/write)
bmaControls (11) 0x0000000£
Mute Control (read/write)
Volume Control (read/write)
bmaControls (12) 0x0000000£f
Mute Control (read/write)
Volume Control (read/write)
bmaControls (13) 0x0000000f
Mute Control (read/write)
Volume Control (read/write)
bmaControls (14) 0x0000000f
Mute Control (read/write)
Volume Control (read/write)
bmaControls (15) 0x0000000f
Mute Control (read/write)
Volume Control (read/write)
bmaControls (16) 0x0000000£
Mute Control (read/write)
Volume Control (read/write)
iFeature 0
AudioControl Interface Descriptor:
bLength 12
bDescriptorType 36
bDescriptorSubtype 3 (OUTPUT_TERMINAL)
bTerminallID 22
wTerminalType 0x0101 USB Streaming
bAssocTerminal 0
bSourcelID 11
bCSsourceID 40
bmControls 0x0000
iTerminal 7 XMOS Microphone Array
UAC2.0

Interface Descriptor:

bLength
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bDescriptorType 4
bInterfaceNumber 1
bAlternateSetting 0
bNumEndpoints 0
bInterfaceClass 1 Audio
bInterfaceSubClass 2 Streaming
bInterfaceProtocol 32
iInterface 4 XMOS Microphone Array
UAC2.0
Interface Descriptor:
bLength 9
bDescriptorType 4
bInterfaceNumber 1
bAlternateSetting 1
bNumEndpoints 1
bInterfaceClass 1 Audio
bInterfaceSubClass 2 Streaming
bInterfaceProtocol 32
iInterface 4 XMOS Microphone Array
UAC2.0
AudioStreaming Interface Descriptor:
bLength 16
bDescriptorType 36
bDescriptorSubtype 1 (AS_GENERAL)
bTerminalLink 2
bmControls 0x00
bFormatType 1
bmFormats 0x00000001
PCM
bNrChannels 2
bmChannelConfig 0x00000000
iChannelNames 11 Analogue 1
AudioStreaming Interface Descriptor:
bLength 6
bDescriptorType 36
bDescriptorSubtype 2 (FORMAT_TYPE)
bFormatType 1 (FORMAT_TYPE_T)
bSubslotSize 4
bBitResolution 24
Endpoint Descriptor:
bLength 7
bDescriptorType 5
bEndpointAddress 0x01 EP 1 OUT
bmAttributes 5
Transfer Type Isochronous
Synch Type Asynchronous
Usage Type Data
wMaxPacketSize 0x0038 1x 56 bytes
bInterval 1
AudioControl Endpoint Descriptor:
bLength 8
bDescriptorType 37
bDescriptorSubtype 1 (EP_GENERAL)
bmAttributes 0x00
bmControls 0x00
bLockDelayUnits 2 Decoded PCM samples
wLockDelay 8
Interface Descriptor:
bLength 9
bDescriptorType 4
bInterfaceNumber 1
bAlternateSetting 2
bNumEndpoints 1
bInterfaceClass 1 Audio
bInterfaceSubClass 2 Streaming
bInterfaceProtocol 32
iInterface 4 XMOS Microphone Array
UAC2.0
AudioStreaming Interface Descriptor:
bLength 16
bDescriptorType 36
bDescriptorSubtype 1 (AS_GENERAL)
bTerminalLink 2
bmControls 0x00
bFormatType 1
bmFormats 0x00000001
PCM
bNrChannels 2
bmChannelConfig 0x00000000
iChannelNames 11 Analogue 1
AudioStreaming Interface Descriptor:
bLength 6
bDescriptorType 36
bDescriptorSubtype 2 (FORMAT_TYPE)
bFormatType 1 (FORMAT_TYPE_TI)
bSubslotSize 2
bBitResolution 16
Endpoint Descriptor:
bLength 7



bDescriptorType 5
bEndpointAddress 0x01 EP 1 OUT
bmAttributes 5
Transfer Type Isochronous
Synch Type Asynchronous
Usage Type Data
wMaxPacketSize 0x001lc 1x 28 bytes
bInterval 1
AudioControl Endpoint Descriptor:
bLength 8
bDescriptorType 37
bDescriptorSubtype 1 (EP_GENERAL)
bmAttributes 0x00
bmControls 0x00
bLockDelayUnits 2 Decoded PCM samples
wLockDelay 8
Interface Descriptor:
bLength 9
bDescriptorType 4
bInterfaceNumber 2
bAlternateSetting 0
bNumEndpoints 0
bInterfaceClass 1 Audio
bInterfaceSubClass 2 Streaming
bInterfaceProtocol 32
iInterface 5 XMOS Microphone Array
UAC2.0
Interface Descriptor:
bLength 9
bDescriptorType 4
bInterfaceNumber 2
bAlternateSetting 1
bNumEndpoints 1
bInterfaceClass 1 Audio
bInterfaceSubClass 2 Streaming
bInterfaceProtocol 32
iInterface 5 XMOS Microphone Array
UAC2.0
AudioStreaming Interface Descriptor:
bLength 16
bDescriptorType 36
bDescriptorSubtype 1 (AS_GENERAL)
bTerminalLink 22
bmControls 0x00
bFormatType 1
bmFormats 0x00000001
PCM
bNrChannels 16
bmChannelConfig 0x00000000
iChannelNames 13
AudioStreaming Interface Descriptor:
bLength 6
bDescriptorType 36

(FORMAT_TYPE)
(FORMAT_TYPE_T)

bDescriptorSubtype
bFormatType
bSubslotSize
bBitResolution 2
Endpoint Descriptor:
bLength 7
bDescriptorType 5
bEndpointAddress 0x81 EP 1 IN
bmAttributes 37
Transfer Type Isochronous
Synch Type Asynchronous

BN

Usage Type Implicit feedback Data

wMaxPacketSize 0x01cO 1x 448 bytes
bInterval 1
AudioControl Endpoint Descriptor:
bLength 8
bDescriptorType 37
bDescriptorSubtype 1 (EP_GENERAL)
bmAttributes 0x00
bmControls 0x00
bLockDelayUnits
wLockDelay 8
Interface Descriptor:
bLength
bDescriptorType
bInterfaceNumber
bAlternateSetting
bNumEndpoints 0
bInterfaceClass
Interface
bInterfaceSubClass
bInterfaceProtocol 1
iInterface 10 XMOS DFU
Device Firmware Upgrade Interface Descriptor:
bLength 9
bDescriptorType 33
bmAttributes 7
Will Not Detach
Manifestation Tolerant
Upload Supported
Download Supported

o w s ©

wDetachTimeout
wTransferSize 64 bytes
bcdDFUVersion 1.10
Device Qualifier (for other device speed):
bLength 10
bDescriptorType 6
bcdUSB 2.00
bDeviceClass 239 Miscellaneous Device
bDeviceSubClass 22
bDeviceProtocol 1 Interface Association
bMaxPacketSize0 64
bNumConfigurations 2
Device Status: 0x0000

(Bus Powered)

2 Decoded PCM samples

254 RApplication Specific

1 Device Firmware Update

250 milliseconds
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