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Kurzfassung

Thermodynamische Eigenschaften von kondensierten Fluiden im Gleichgewicht wer-
den durch diskrete Zustände von Molekülen im Gittersystem und deren direkte Nach-
barn gemeinsam mit der Shannon-Entropie beschrieben. Diese Arbeit beschäftigt
sich mit der Weiterentwicklung eines von Vinograd entwickelten Modells, welches auf
einem sequenziellen Gitteraufbau beschrieben mit Hilfe von Markov Ketten basiert.
Die existierende zweidimensionale Methode wird auf drei Dimensionen erweitert
und auf das kubisch primitive Gitter angewendet. Weiters ist auch die Genauigkeit
bezüglich Monte Carlo Simulationen verbessert. Das resultierende Modell stellt einen
Fortschritt gegenüber der häufig verwendeten quasichemischen Approximation von
Guggenheim dar und entspricht damit einer aussichtsreichen Basis für ein zukünftiges
gE Modell.

Abstract

Thermodynamic properties of condensed-phase lattice fluids in equilibrium are de-
scribed using discrete states of molecules and their respective neighbors in con-
junction with Shannon entropy. This work is focused on further developing a model
proposed by Vinograd, which is based on the description of a sequential lattice
construction using discrete Markov chains. The existing two-dimensional method
is extended to three dimensions and applied to the simple cubic lattice. Further-
more, the accuracy compared to Monte Carlo simulations is improved. The resulting
model presents an improvement over the frequently used quasi-chemical theory pro-
posed by Guggenheim and therefore provides a promising basis for future gE-model
development.
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1. Introduction
Lattice models have long been an important tool for the description of condensed
phases in the field of statistical mechanics. Some of their most common applications
include the description of crystals and excess Gibbs enthalpy models. The latter
is the emphasis of this work. Excess Gibbs enthalpy models are used to describe
mixture equilibria. Regarding chemical engineering, they are central for the design
and optimization of production processes.

The earliest models with nearest neighbor interactions are those using independent
pair approximation. These models assume that all pairs of sites, and therefore all
nearest neighbor contacts, are independent of each other. One of these models is the
quasi-chemical method developed by Guggenheim [3], which is the basis of all activity
coefficient models. This solution is only exact for the one-dimensional case with a
coordination number of two. For higher coordination numbers the quasi-chemical
method shows an increasing deviation from Monte Carlo simulations. This is due the
approximate character of the degeneracy function for coordination numbers larger
than two. [10]

The necessity of a higher accuracy than the independent pair approximation methods
can provide sprouted various more elaborate models. A popular one of these is the
cluster variation method, first introduced by Kikuchi in 1951. [6] Since then this method
has been improved and expanded by Kikuchi and others. [8, 15] The predominant
application is the traditional one, which is the creation of phase diagrams of alloys.
However, the application of this method is currently expanding into new areas. [11]

The cluster variation method works by minimizing the Helmholtz free energy. The
Helmholtz free energy can be expressed in terms of internal energy and entropy. For
the internal energy, an exact expression can be found. The entropy term is usually
modeled via an approximation. It should be noted that special cases exist where the
cluster variation method results in an exact model rather than an approximation. The
entropy is approximated by a truncated cumulant expansion. [11] A significant cluster
is chosen and all possible subclusters including the original one are associated with
a term in the entropy formula. It is assumed that all clusters that are bigger than the
chosen one have a neglectable contribution to the entropy. [6]

The Helmholtz free energy is minimized with constraints. These constraints are
general stochastic conditions, like the law of total probability or the Bayes theorem,
that link the different clusters together. [6] This set of nonlinear equations is typically
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solved numerically. For moderately sized clusters an algorithm was created by Kikuchi
(the so called natural iteration method) which is designed to handle the large number
of variables that arise from this system of equations. [7] For large clusters, like the
4x4x2 cluster considered by Pelizzola in 2014, the natural iteration method requires
too much computational effort so that new algorithms have to be developed. The
4x4x2 cluster is the largest that is currently known. [12]

There are two main problems one has to solve when applying the cluster variation
method. One is finding adequate approximations for the entropy as the number of
expressions needed for this increases rapidly with the cluster size. The other problem
is the minimization of the free energy regarding the large number of variables. The
resulting long computation times are unsuitable for activity coefficient models. [2]

Because of these challenges of the cluster variation method Vinograd developed a
different model which is based on the sequential construction of the lattice. The calcu-
lation is based on Markov chain theory and models the entropy using the information
of a message defined by Shannon in the field of communication theory. [16]

This work explores the applications, expandability, and limitations of the Vinograd
approach and proposes a model for the simple cubic lattice (coordination number of
six) based on the same approach. The intention behind the derivation of this model is
to provide a better foundation for activity coefficient models on the level of spherical
molecules. The results are compared with the quasi-chemical method and data from
Monte Carlo simulations.
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2. General

2.1. Stochastic Basics and Nomenclature
The following nomenclature is introduced in order to shorten mathematical definitions
and increase the readability of the equations in this work. In the case of a binary
mixture each site in the lattice can be of type 1 or 2. In order to express the probability
of a certain site to be of a specific type the following will be written: The probability of
site A to be of type a is

pa = Pr[A = a]. (2-1)

The uppercase letters denote the position of the site within the lattice, while the
lowercase letters describe the type of the molecule at that position. The combined
probability of a group of sites, a so called cluster, is expressed by chaining the types
with centered dots.

pa · b · c = Pr[A = a ∧ B = b ∧ C = c] (2-2)

Expressed in plain text both sides in equation (2-2) represent the probability of site A
to be of type a and site B to be of type b and site C to be of type c.

A B C

Figure 2-1.: a · b · c cluster

Figure 2-1 shows an a · b · c cluster in a chain configuration.

Conditional probabilities

In order to describe nearest neighbor interactions conditional probabilities are required.
The probability that the site A is of type a given that site B is of type b is defined as

pa|b = Pr[A = a|B = b] = Pr[A = a ∧ B = b]
Pr[B = b] = pa · b

pb
. (2-3)

[5]

Various combinations of cluster and conditional probabilities are possible. One
example is that the site A is dependent on the sites B and C.

pa|b · c = Pr[A = a|B = b ∧ C = c] = Pr[A = a ∧ B = b ∧ C = c]
Pr[B = b ∧ C = c] = pa · b · c

pb · c
(2-4)
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The insertion of a further conditional probability can be written similar to the definition
of the conditional probability.

pa · b|c = pa|b · c · pb|c (2-5)

Equation (2-5) shows that the probability of the a · b cluster dependent on c can be
calculated from the probability of a dependent on the b · c cluster times the probability
of b dependent on c.

Another important theorem when dealing with conditional probabilities is the law of
total probability. Applied to cluster probabilities it means that the sum over all possible
states of a site yields the probability of the cluster without that site. For the case of a
simple two site cluster this means that the sum over all states of b of the a · b cluster
results in the probability of a:

pa =
∑

b

pa|b · pb =
∑

b

pa · b (2-6)

Again a dependency on c can be inserted which yields

pa|c =
∑

b

pa|b · c · pb|c =
∑

b

pa · b|c. (2-7)

[1]

2.2. Thermodynamic Basics
This section is dedicated to giving definitions and general relations of basic thermody-
namic variables used in this work. Most of the definitions and derivations are taken
from Pielen. [14] The system considered is a binary mixture of molecules in a lattice
arrangement with a constant coordination number z. N1 is the number of molecules
of component 1 and N2 is the number of molecules of component 2. N is the total
number of molecules in the system and defined as:

N = N1 + N2 (2-8)

The global composition is introduced in order to move from the extensive numbers of
molecules to intensive variables.

x1 = N1/N
x2 = N2/N

(2-9)
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The energetic interactions of the molecules are described by the contact between a
pair of molecules, because nearest neighbor interactions are considered exclusively.
Ni j is the number of contacts between molecules of type i and molecules of type j.
The relations between the numbers of contacts is given by:

zN1 = 2N11 + N12

zN2 = 2N22 + N21

N12 = N21

(2-10)

The energies of the contacts are given by ε11, ε22, and ε12. It is convenient to define
an exchange energy:

ω = ω12 = ε12 + ε21 − ε11 − ε22 (2-11)

The local composition is an intensive analog to the number of contact pairs and is
defined as:

x11 = N11

zN1

x22 = N22

zN2

x12 = N12

zN2

x21 = N21

zN1

(2-12)

The local composition xi j is the relative frequency of molecule type i next to molecule
type j. From these definitions several correlations between the local compositions
can be extracted.∑

i

xi j = 1

xjxi j = xixj i

(2-13)

2.2.1. Quasi-chemical Approximation
The model proposed by Guggenheim is referred to as quasi-chemical because the
exchange of one molecule of the considered contact pair is modeled similar to a
chemical equilibrium reaction, as illustrated in figure 2-2.
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+ ⇌ +

Figure 2-2.: Quasi-chemical equilibrium reaction

For this equilibrium reaction Guggenheim formulated the following expression:

N2
12 = 4N11N22 exp

(
− ω

kBT

)
(2-14)

On the basis of equation (2-14) the internal energy and the entropy can be formulated.
For this, two auxiliary variables are introduced.

η = exp
(

ω

2kBT

)
β =

√
1 + 4x1x2

(
η2 − 1

) (2-15)

The internal energy and entropy equations of the quasi-chemical approximation using
β yield:

U = N z
2

(
x1ε11 + x2ε22 + x1x2

ω

β + 1

)
S = −NkB

(
x1 ln x1 + x2 ln x2 −

x1x2zω
kBT (β + 1)

+ z
2

(
x1 ln 2x1 + β − 1

x1 (β + 1) + x2 ln −2x1 + β − 1
x2 (β + 1)

)) (2-16)

For a detailed derivation of the quasi-chemical theory in German, the work of Pie-
len [14] can be recommended. For an English version, the original publications of
Guggenheim [3, 4] can be referred to.

2.3. Thermodynamic Consistency
One of the methods used to validate the thermodynamic consistency of the models
analysed in this work is via a Gibbs-Helmholtz correlation. Gibbs-Helmholtz corre-
lations are derived from the fundamental equations of thermodynamics and exist in
different forms. The form used here is taken from Pfennig [13] and is as follows:(

∂ A
T

∂T

)
V ,xi

= − U
T 2 (2-17)

The symbol A in equation (2-17) denotes the Helmholtz free energy, T is the absolute
temperature, U is the internal energy, V is the volume and xi is the global composi-
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tion. Equation (2-17) states that the partial derivative of the free energy divided by
temperature with respect to the temperature and constant volume and composition
equals the negative internal energy divided by the squared temperature.

The consistency check is performed numerically because the models have no explicit
solutions. For this the partial derivative is approximated using the quotient of differ-
ences. For a constant value of the global composition and the interaction energies,
the temperature is varied in steps of about half the precision of the working precision
of the equation solving algorithm. The models are solved for these temperatures and
the free energy and the internal energy are determined. For the left hand side the
differences that approximate the derivative are formed. In order to calculate the right
hand side of equation (2-17) the mean of the two values is formed. The difference of
the two sides of the equation is then tested for equality with zero. Aj+1

Tj+1
− Aj

Tj

Tj+1 − Tj

 +
2
(
Uj+1 + Uj

)(
Tj+1 + Tj

)2 = 0 (2-18)

2.4. Monte Carlo Simulations
Throughout this work, the developed models are compared to data from Monte Carlo
simulations. These simulations are based on the work of Lisa König and were modified
to output the probabilities of clusters. [9] Monte Carlo simulations are considered
for comparison because they give the most accurate representation of the initial
lattice assumptions. A hypothetical simulation of an infinite lattice with infinitely many
steps would accurately describe the regular mixture with the given assumptions. The
lattice size and number of steps are chosen as a compromise between precision and
computation time.

The simulations work by constantly exchanging two neighboring molecules. The ener-
getic state of the lattice before and after the exchange are evaluated and compared.
If the exchange is energetically favorable it is performed. If the energy of the lattice
increases because of this exchange it has a random chance of occurrence. This
random chance is dependent on the magnitude of the increase of energy. The bigger
the increase of energy in the lattice is, the smaller is the chance of the exchange
occurring.

The simulations yield information about the local composition as well as the internal
energy of the lattice in equilibrium. The entropy of the lattice is calculated from the
internal energy using a Gibbs-Helmholtz integration.
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2.5. Model Development using Wolfram Mathematica
During the development of the models, all calculations were executed using Wolfram
Mathematica in the versions 10.3 and 11.0. [18, 19]

2.5.1. Applications and Packages
A few applications and packages were developed to extend the Wolfram Language
with functions that simplify the manipulation of systems of equations containing
probabilities. Some of the key features are presented in this section.

The main Mathematica application developed in this work is named "MasterThesis-
Mayer". The application’s containing functions focus on creating and manipulating
symbolic expressions with lattice probabilities as variables. At the center of this is the
function P which creates probability symbols based on their indices and thus allows
the use of iterators during the cration of symbols. The functions PTable and PSum

are versions of the built in functions Table and Sum that are designed to work well
with the function P in the context of lattice systems. This application also includes
functions for graphical representations of lattice systems and shortcuts for working
with logarithms and applying the Lagrange optimization method. Some intermediate
results, graphics and descriptions thereof are collected in a database which can be
accessed through the package "MasterThesisMayer‘Database‘".

The application "FormattedOutput" was created for styling the notebooks and present-
ing the calculation results. A noteworthy function of this application is Deviation-

View which calculates the relative deviations of lists of data and displays the result in
a grid. This function is used in most notebooks to compare different models to each
other and to Monte Carlo data.

More information about these applications can be found in their documentation which
can be accessed through theMathematica documentation center once the applications
are loaded.

The resulting models together with the quasi-chemical approximation and some
Monte Carlo data are combined into the package "NumericalModelSolutions". All
numerical model functions are structured the same. As arguments they expect the
global composition of molecule type 1 x1, the dimensionless exchange energy ω/kBT ,
the dimensionless interaction energy of component 1 with itself ε11/kBT , and the
dimensionless interaction energy of component 2 with itself ε22/kBT . The output of
these functions is in form of an Association, which is the Wolfram Language’s
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implementation of key and value pairs. The six lists of entries in this Association are
the conditional pair probabilities, the cluster probabilities, the conditional probabilities,
the neighborhood probabilities, the internal energy, and the entropy for the respective
model. The identical structure of input and output of all model functions allows
a relatively simple automation of tests and comparisons to be performed with the
models.

2.5.2. Manipulation of Systems of Equations
Wolfram Mathematica lends itself nicely towards working with symbolic expressions.
One very important feature for manipulating symbolic expressions is ReplaceAll

together with rules. A Rule connects two expressions together and with ReplaceAll

these rules can be applied to change part of an expression according to these rules.
Working with rules allows for more flexibility and reusability of code compared to
assigning each subexpression to a variable. Even Mathematica’s output of equation
solving algorithms is in the form of lists of rules.

Simplifying or restructuring expressions can be achieved with functions like Simplify,
Cancel, and Collect. These functions are very powerful and are only limited by
the available computational performance and system memory. They also allow the
definition of Assumptions which can aid the simplifications. One example would be
to limit the probabilities to a range between zero and one.

The function Solve is used for symbolic solutions of equations. For numerical
evaluations the functions FindRoot and FindMinimum were used, because they
allow for a higher complexity and size of the system of equations than their alternatives
NSolve and NMinimize. The numerical precision of these algorithms can easily be
set with the option WorkingPrecision.
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3. Chain Lattice (1D)
This chapter contains the one-dimensional approach developed by Vinograd. [16] For
the one-dimensional case, a lattice in the shape of a chain is constructed. This chain
shall contain a sufficiently large number of molecules (N) so that boundary effects
are neglectable. In the following paragraphs, the addition of site A to the end of the
chain is considered, as illustrated in figure 3-1.

B A

Figure 3-1.: 1D chain construction - addition of site A to the end of the chain

Since nearest neighbor interactions are considered exclusively, the insertion process
of site A is only dependent on the previously placed site B. The probability of site A
being of type a dependent on site B being of type b (pa|b) forms the transition matrix
of the discrete Markov process.

1 2
1 p1|1 p2|1

2 p1|2 p2|2

(3-1)

The application of the law of total probability to the transition probabilities results in
the expressions

p1|1 + p2|1 = 1
p1|2 + p2|2 = 1.

(3-2)

This Markov chain is ergodic except for a special case (p1|1 = 1, p2|2 = 0). This means
that the probabilities of a certain site to be of type 1 or 2 (p1, p2) take on constant
values after an infinite amount of steps. These values equal the global composition
of the mixture:

p1 = x1

p2 = x2
(3-3)

The law of total probability can also be applied over a column in the transition matrix:

p1 p1|1 + p2 p1|2 = p1 (3-4)
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Replacing p1|1 with expression (3-2) yields

p1 p2|1 = p2 p1|2 (3-5)

which can be interpreted as a condition of symmetry. It states that the probability of a
molecule 1 being next to a molecule 2 is the same as the probability of a molecule 2
being next to a molecule 1. Expressed with cluster probabilities this can be written as

p1 · 2 = p2 · 1. (3-6)

Equation (3-5) together with equations (3-2) reduces the number of independent
transition probabilities to one, i.e. p1|2. In order to calculate this last probability, the
equilibrium state has to be considered. Similar to many other models in statistical
thermodynamics, the equilibrium is achieved via the minimization of the Helmholtz
free energy at a given temperature. The Helmholtz free energy can be expressed
using the internal energy and the entropy.

A = U − TS (3-7)

The internal energy for nearest neighbor interactions is calculated by adding up the
interaction energies of all molecule pairs in the lattice. In terms of probabilities, this
is equal to the sum of all interaction energies weighted with each respective pair
probability and multiplied by the total number of molecules.

U = N
∑

b

pb
∑

a
pa|b εab (3-8)

After applying the sums the energy equation results in

U = N
(
p1
(
p1|1 ε11 + p2|1 ε12

)
+ p2

(
p1|2 ε21 + p2|2 ε22

))
. (3-9)

This equation can be rewritten using ω as defined in equation (2-11)) and afterwards
simplified by considering the correlations in equations (3-2) and (3-5):

U = N
(
p1 ε11 + p2 ε22 + p2 p1|2 ω

)
(3-10)

The entropy of this lattice is modeled by applying concepts of communication theory.
In this field, Shannon defined the information of a message as a function of the
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probability of an event. This information can be used to develop an expression for the
entropy. In case of the one-dimensional lattice, this expression is

S = −NkB
∑

b

pb
∑

a
pa|b ln(pa|b). (3-11)

3.1. Minimization of the Helmholtz free energy
Since the number of molecules and the temperature are constant it is convenient to
minimize the dimensionless free energy.

A
kBNT = min (3-12)

Inserting the expressions for entropy (equation (3-11)) and internal energy (equation
(3-10)) into equation (3-7) yields

A = N
(
p1 ε11 + p2 ε22 + p2 p1|2 ω

)
+ TNkB

(
p1 p1|1 ln(p1|1) + p1 p2|1 ln(p2|1) + p2 p1|2 ln(p1|2) + p2 p2|2 ln(p2|2)

)
.

(3-13)

Bringing equation (3-13) into the dimensionless form results in

A
kBNT = p1

ε11

kBT + p2
ε22

kBT + p2 p1|2
ω

kBT
+ p1 p1|1 ln(p1|1) + p1 p2|1 ln(p2|1) + p2 p1|2 ln(p1|2) + p2 p2|2 ln(p2|2). (3-14)

For the minimization of equation (3-14) equations (3-2) and (3-5) have to be included
as constraints in order to correctly account for the dependencies between the transi-
tional probabilities:

p1|1 + p2|1 = 1
p1|2 + p2|2 = 1

p1 p2|1 − p2 p1|2 = 0

(3-15)
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The constrainedminimization is executed by using the Lagrangemethod. The resulting
Lagrange function takes on the form of

L = p1
ε11

kBT + p2
ε22

kBT + p2 p1|2
ω

kBT
+ p1 p1|1 ln(p1|1) + p1 p2|1 ln(p2|1) + p2 p1|2 ln(p1|2) + p2 p2|2 ln(p2|2)
− λ1

(
p1|1 + p2|1 − 1

)
− λ2

(
p1|2 + p2|2 − 1

)
− λ3

(
p1 p2|1 − p2 p1|2

)
(3-16)

where the lambdas represent the Lagrangian multipliers. The Lagrangian multipliers
connect the target function with the constraints. They are independent from the
transitional probabilities. [17] The partial derivatives of the Lagrange function with
respect to the transitional probabilities are set to zero as the necessary condition of
the minimum at the equilibrium point.

∂L
∂p1|1

= 0 = p1 − λ1 + p1 ln(p1|1)

∂L
∂p2|1

= 0 = p1 − λ1 − p1λ3 + p1 ln(p2|1)

∂L
∂p1|2

= 0 = p2 − λ2 + p2λ3 + p2
ω

kBT + p2 ln(p1|2)

∂L
∂p2|2

= 0 = p2 − λ2 + p2 ln(p2|2)

(3-17)

Eliminating the three lambdas from this set of equations yields

exp
(

ω

kBT

)
= p1|1 p2|2

p1|2 p2|1
. (3-18)
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The equation (3-18) together with the constraints (equation (3-15)) can be solved with
regard to the transitional probabilities.

p1|1 = 1− 2p2

1 +
√

1 + 4(exp( ω
kBT )− 1)p1p2

p2|1 = 2p2

1 +
√

1 + 4(exp( ω
kBT )− 1)p1p2

p1|2 = 2p1

1 +
√

1 + 4(exp( ω
kBT )− 1)p1p2

p2|2 = 1− 2p1

1 +
√

1 + 4(exp( ω
kBT )− 1)p1p2

(3-19)

Equation (3-19) gives the solution for the one-dimensional case. It should be noted,
that the one-dimensional lattice is the only case where an explicit solution of Vinograd’s
approach is possible. The systems of equations for the higher dimensional cases
must, therefore, be solved numerically.

3.2. Comparison to Guggenheim
For the one-dimensional chain lattice, the exclusive consideration of nearest neighbor
interactions leads to the equality of Vinograd’s approach and Guggenheim’s quasi-
chemical theory. This relation is important because the quasi-chemical theory is an
exact solution of the simple chain lattice. However, the degeneracy function of the
quasi-chemical theory is only exact for the one-dimensional chain. The approximations
of higher dimensions using this degeneracy function are rather crude, which leads to
the necessity of alternative models. [10]
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4. Square Lattice (2D)
The two-dimensional square lattice is constructed, in terms of Markov chains, similarly
to the one-dimensional chain. This construction of the square lattice is proposed
by Vinograd. [16] Again, the addition of site A is considered in order to illustrate
the sequential construction procedure. This addition procedure is depicted in figure
4-1.

B

D C →

B

D

A

C

Figure 4-1.: 2D square lattice construction - addition of site A to the lattice

Each row of the lattice is filled with molecules from left to right. After a row is completed,
the next row below it is started. This one is also filled from left to right. This lattice
is, similar to the one-dimensional case, large enough so that boundary effects are
neglectable. Therefore the further considerations are based on an infinitely large
lattice. Because of the exclusive consideration of nearest neighbor interactions, the
addition of site A is only dependent on the sites B and C. What may at first seem a bit
counterintuitive is the fact that the insertion of site B is independent of the insertion
of site C. All site additions are only dependent on the sites directly above and left
of them. This means that the sites B and C are both dependent on site D, but not
on one another. In fact, the additions of sites B and C are separated by an infinite
number of steps.

With this construction in mind, the entropy of the two-dimensional square lattice can
be modeled as

S = −NkB
∑
b,c

pb · c
∑

a
pa|b · c ln(pa|b · c) (4-1)

In equation (4-1), pb · c is the probability of the neighborhood that site A is placed into.
The probability of the insertion process is pa|b · c.
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The internal energy is again modeled as the sum of all contact pairs weighted with
each respective probability of occurrence.

U = N
∑
b,c

pb · c
∑

a
pa|b · c (εab + εac) (4-2)

This expression can be rewritten with cluster probabilities by applying the stochastic
rules defined in section 2.1. The neighborhood probability multiplied with the prob-
ability of the A insertion yields the cluster probability of the sites A, B and C which
contains both contact pairs.

pa · b · c = pb · c pa|b · c (4-3)

Applied to the internal energy this gives

U = N
∑
a,b,c

pa · b · c (εab + εac). (4-4)

The equation for the entropy can also be rewritten with cluster probabilities. Besides
the correlation between the cluster probabilities (pa · b · c), the neighborhood probabili-
ties (pb · c) and the conditional probabilities (pa|b · c) given in equation (4-3), also the
calculation of the neighborhood probabilities from the cluster probabilities is required.
This correlation can be found by applying the law of total probability. The summa-
tion of the cluster probabilities over all possible states of a yields the neighborhood
probabilities.

pb · c =
∑

a
pa · b · c (4-5)

The application of equations (4-3) and (4-5) to equation (4-1) results in the entropy
expressed with the probabilities of the a · b · c cluster.

S = −NkB
∑
a,b,c

pa · b · c ln
(

pa · b · c∑
a pa · b · c

)
(4-6)

Because of these connections between the cluster probabilities and the conditional
probabilities, it is inherent that both can be used interchangeably.

All two-dimensional models are solved with a numerical minimization of the Helmholtz
free energy under consideration of the approximation of the cluster probabilities using
pair probabilities that each model provides and with the dependencies between the
pair probabilities, which are given in equation (3-15). The Lagrange method for solving
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the system of equations has also been tested. The result of this investigation is the
realization that no explicit solution for the models is possible. This method requires a
higher computational effort than a minimization. Therefore, it is recommended that
the equations are solved by applying a numerical minimization. Multiple models for
approximating the cluster probabilities are presented in the following sections.
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4.1. Vinograd’s First Approximation
D

→

D C

→

B

D C

→

B

D

A

C

Figure 4-2.: 2D Vinograd’s first approximation lattice construction

This section deals with the derivation of Vinograd’s first approximation. [16] The
construction of the considered cluster is illustrated in figure 4-2. The first approximation
proposed by Vinograd treats the cluster formed by the sites B, C and D like a one-
dimensional chain. Site D is the starting point. Sites B and C are each placed
dependent on site D. They are, however, independent from one another. Therefore
the starting point of this chain, as well as its construction direction, do not matter.

pb · c · d = pd pc|d pb|d = pb pd|b pc|d = pc pd|c pb|d (4-7)

The probability of the b · c · d cluster can be used to calculate the probability of the
b · c cluster. This happens via a summation over all possible paths that lead to this
cluster. In this case, it means the summation over all possible states of d, which are
two for a binary system. The resulting cluster represents the neighborhood in which
the molecule a is to be placed.

pb · c =
∑

d

pb · c · d =
∑

d

pd pc|d pb|d (4-8)

Together with equation (4-3), which shows the insertion of molecule a into this neigh-
borhood, it yields

pa|b · c = pa · b · c/
∑

d

pb · c · d . (4-9)

The following correlation can be found because the sum of all options for the addition
of molecule a must equal one.∑

a
pa|b · c = 1 =

∑
a

pa · b · c/
∑

d

pb · c · d (4-10)
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From equation (4-10) Vinograd deduces that the probability of the a · b · c cluster is
given by

pa · b · c = pa pb|a pc|a. (4-11)

p1 · 1 · 1 = p1 p2
1|1

p1 · 1 · 2 = p1 p1|1 p2|1

p1 · 2 · 1 = p1 p1|1 p2|1

p1 · 2 · 2 = p1 p2
2|1

p2 · 1 · 1 = p2 p2
1|2

p2 · 1 · 2 = p2 p1|2 p2|2

p2 · 2 · 1 = p2 p1|2 p2|2

p2 · 2 · 2 = p2 p2
2|2

Table 4-1.: 2D first approximation: cluster probabilities

Table 4-1 lists all eight cluster probabilities pa · b · c and their respective approximations.
In the lattice graphics, molecules of type 1 are represented by black disks and
molecules of type 2 by white disks.

Resulting System of Equations

The system in equilibrium is calculated by minimizing the Helmholtz free energy.
Inserting the expressions for the internal energy and the entropy given at equations
(4-4) and (4-6) into equation (3-7) yields the target function for the minimization.

A
kBNT =

∑
a,b,c

pa · b · c

(
εab

kBT + εac

kBT + ln
(

pa · b · c∑
a pa · b · c

))
(4-12)
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The constraints of this optimization are the equations that connect the eight cluster
probabilities pa · b · c to the four conditional pair probabilities pa|b given by formula
(4-11).

pa · b · c = pa pb|a pc|a (4-13)

The formula (4-13) describes 8 equations where the iterators a, b and c each take on
the states 1 and 2. Also, the correlations between the conditional pair probabilities
are needed. It is recommended to express three of the conditional pair probabilities
as a function of the fourth, in order to reduce the number of variables. The formulas
that are given by equation (3-15) are therefore transformed into the following form.

p1|1 = 1− p1|2 p2

p1

p2|2 = 1− p1|2

p2|1 = p1|2 p2

p1

(4-14)

The resulting system of equations consists of 12 equations and 13 variables which are
the free energy A, the 4 conditional pair probabilities pi|j and the 8 cluster probabilities
pa · b · c. The equations (4-13) and (4-14) can be inserted into equation (4-12) which
would yield one single equation dependent on one variable (p1|2). This equation,
however, can only be minimized numerically. Due to the size of the resulting equation
it is in general recommended to work with the system of equations and constrained
minimization instead.

4.1.1. Comparison to Guggenheim and Monte Carlo
Simulations

Vinograd’s first approximation is compared to Monte Carlo simulation results in order
to assess the quality of this model. Guggenheim’s quasi-chemical approach is used
as a reference model.

The figures 4-3 and 4-4 show the relative deviation of Vinograd’s first approximation
and Guggenheim’s quasi-chemical theory to the Monte Carlo simulation results.
Figure 4-3 depicts the relative deviation of the internal energy and figure 4-4 shows
the relative deviation of the entropy. The relative deviation is calculated by subtracting
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Figure 4-3.: Comparison of Vinograd’s first approximation with MC-
Simulations and Guggenheim: Internal Energy (p1 = 0.3, ε11 = ε22 =
0, rel. dev. = ((model− simulation) /simulation) 100%)
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Figure 4-4.: Comparison of Vinograd’s first approximation with MC-
Simulations and Guggenheim: Entropy (p1 = 0.3, ε11 = ε22 = 0,
rel. dev. = ((model− simulation) /simulation) 100%)

the Monte Carlo simulation data from the model solution and dividing this by the
simulation data.

relative deviation = model− simulation
simulation 100% (4-15)

The deviations are evaluated at different dimensionless interaction energies with the
global composition of molecule 1 being 0.3 and the interaction energies of the pure
components set to zero. The interaction energies of the pure components do not
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influence the equilibrium compositions. They only change the value of the internal
energy.

In the case of the two-dimensional square lattice, the deviation of Vinograd’s first
approximation is roughly half of the deviation of Guggenheim’s quasi-chemical theory.
This means, that this first approximation already offers a considerable advantage
compared to the quasi-chemical theory.

4.1.2. Thermodynamic Consistency Check
The model is not only compared with simulation results but also investigated regarding
thermodynamic properties and correlations. Two different methods for testing the
consistency are performed. The first is a numerical evaluation of a Gibbs-Helmholtz
equation.(

∂ A
T

∂T

)
V ,xi

= − U
T 2 (4-16)

Equation (4-16) checks the thermodynamic correlation between the internal energy
and the Helmholtz free energy. Details of this procedure are given in section 2.3. The
result of this validation is that Vinograd’s first approximation fulfills the Gibbs-Helmholtz
correlation.

The second consistency check is the analysis of boundary conditions. For this
purpose, the ratio of the probability of a molecule being of type 1 with the condition
that its neighbor is of type 2 to the global probability of the molecule being of type 1 is
evaluated for different exchange energies. Figure 4-5 shows this ratio of p1|2/p1 which
can also be expressed as the ratio of the local composition to the global composition
x12/x1. The abscissa marks the dimensionless exchange energy ω/kBT where the
negative values denote an attraction between the molecules of types 1 and 2 and the
positive values denote a repulsion between the two. Each line in the figure represents
one global composition. One important point is random mixing where there is no
interaction between the molecules. No interaction results in the fact that all molecules
are independent of each other which in turn leads to p1|2/p1 = 1. In figure 4-5 it is
clearly visible that p1|2/p1 equals one for Vinograd’s first approximation calculated
with zero interaction. This means that this model perfectly describes the case of
random mixing.

The next boundary which is considered is that of ω/kBT approaching negative infinity.
This state of maximum attraction yields a lattice where each molecule of the less
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Figure 4-5.: 2D Vinograd’s first approximation: p1|2
p1

over ω
kBT

frequent type 1 is completely surrounded by molecules of type 2. Therefore the
value for p1|1 approaches zero. Using the correlations between the conditional pair
probabilities given by equation (3-15) the limit for p1|2/p1 can be calculated.

lim
ω

kBT→−∞

p1|2

p1
= 1

p2
(4-17)

Figure 4-5 shows that even though the model approaches these limits, it does so
quite slowly. This slow convergence is caused by the assumption of independence of
the pairs of molecules, which is the basis of Vinograd’s first approximation.

The boundary where ω/kBT is approaching positive infinity cannot be described in a
similar fashion because of the miscibility gap that occurs before the system converges.
It should be noted that this model will not give solutions for separate phases in the
miscibility gap. The reason for this is the fact that this model considers the lattice as
a whole and therefore returns the probabilities averaged over all phases.

4.1.3. Asymmetry
The problem with this model, as Vinograd mentions, is that the sequential algorithm
of lattice construction causes an asymmetry in next to nearest neighbor pairs. This
means that the direction of lattice growth has an influence on the neighborhood
probability and therefore the whole a · b · c · d cluster. To illustrate this, the square
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cluster will be constructed in two different directions. One starting with site D, as was
shown before and the other starting with site C.

D

→

B

D C

→

B

D

A

C

C

→

D

A

C

→

B

D

A

C

Figure 4-6.: Two construction directions for the 2D lattice

Figure 4-6 shows the two different construction directions. During the second step,
the order in which the two molecules are placed is irrelevant. The reason for this is
the fact that the two events are independent of one another.

pa · b · c · d = pd pb|d pc|d pa|b · c

pa · b · c · d = pc pa|c pd|c pb|a · d
(4-18)

The probability of the last insertion step can be calculated from equation (4-11):

pa|b · c = pa · b · c∑
a pa · b · c

= pa pb|a pc|a∑
a pa pb|a pc|a

pb|a · d = pa · b · d∑
b pa · b · d

= pb pa|b pd|b∑
b pb pa|b pd|b

(4-19)

Replacing the probability of each last insertion step in equations (4-18) with the
expressions developed in equations (4-19) yields

pa · b · c · d = pd pb|d pc|d pa pb|a pc|a∑
a pa pb|a pc|a

pa · b · c · d = pc pa|c pd|c pb pa|b pd|b∑
b pb pa|b pd|b

(4-20)

The table 4-2 shows that this first approximation is asymmetric and therefore lacks a
property which is expected from such a model.
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pa · b · c · d construction direction 1 construction direction 2

p1 · 1 · 1 · 1
p2

1p4
1|1

p1p2
1|1+p2p2

1|2

p2
1p4

1|1
p1p2

1|1+p2p2
1|2

symmetric

p1 · 1 · 1 · 2
p1p2p2

1|1p2
1|2

p1p2
1|1+p2p2

1|2

p2
1p2

1|1p2
2|1

p1p1|1p2|1+p2p1|2p2|2
asymmetric

p1 · 1 · 2 · 1
p2

1p2
1|1p2

2|1
p1p1|1p2|1+p2p1|2p2|2

p1p2p2
1|1p2

1|2
p1p2

1|1+p2p2
1|2

asymmetric

p1 · 1 · 2 · 2
p1p2p1|1p1|2p2|1p2|2

p1p1|1p2|1+p2p1|2p2|2

p1p2p1|1p1|2p2|1p2|2
p1p1|1p2|1+p2p1|2p2|2

symmetric

p1 · 2 · 1 · 1
p2

1p2
1|1p2

2|1
p1p1|1p2|1+p2p1|2p2|2

p1p2p2
1|1p2

1|2
p1p2

1|1+p2p2
1|2

asymmetric

p1 · 2 · 1 · 2
p1p2p1|1p1|2p2|1p2|2

p1p1|1p2|1+p2p1|2p2|2

p1p2p1|1p1|2p2|1p2|2
p1p1|1p2|1+p2p1|2p2|2

symmetric

p1 · 2 · 2 · 1
p2

1p4
2|1

p1p2
2|1+p2p2

2|2

p2
2p4

1|2
p1p2

1|1+p2p2
1|2

asymmetric

p1 · 2 · 2 · 2
p1p2p2

2|1p2
2|2

p1p2
2|1+p2p2

2|2

p2
2p2

1|2p2
2|2

p1p1|1p2|1+p2p1|2p2|2
asymmetric

p2 · 1 · 1 · 1
p1p2p2

1|1p2
1|2

p1p2
1|1+p2p2

1|2

p2
1p2

1|1p2
2|1

p1p1|1p2|1+p2p1|2p2|2
asymmetric

p2 · 1 · 1 · 2
p2

2p4
1|2

p1p2
1|1+p2p2

1|2

p2
1p4

2|1
p1p2

2|1+p2p2
2|2

asymmetric

p2 · 1 · 2 · 1
p1p2p1|1p1|2p2|1p2|2

p1p1|1p2|1+p2p1|2p2|2

p1p2p1|1p1|2p2|1p2|2
p1p1|1p2|1+p2p1|2p2|2

symmetric

p2 · 1 · 2 · 2
p2

2p2
1|2p2

2|2
p1p1|1p2|1+p2p1|2p2|2

p1p2p2
2|1p2

2|2
p1p2

2|1+p2p2
2|2

asymmetric

p2 · 2 · 1 · 1
p1p2p1|1p1|2p2|1p2|2

p1p1|1p2|1+p2p1|2p2|2

p1p2p1|1p1|2p2|1p2|2
p1p1|1p2|1+p2p1|2p2|2

symmetric

p2 · 2 · 1 · 2
p2

2p2
1|2p2

2|2
p1p1|1p2|1+p2p1|2p2|2

p1p2p2
2|1p2

2|2
p1p2

2|1+p2p2
2|2

asymmetric

p2 · 2 · 2 · 1
p1p2p2

2|1p2
2|2

p1p2
2|1+p2p2

2|2

p2
2p2

1|2p2
2|2

p1p1|1p2|1+p2p1|2p2|2
asymmetric

p2 · 2 · 2 · 2
p2

2p4
2|2

p1p2
2|1+p2p2

2|2

p2
2p4

2|2
p1p2

2|1+p2p2
2|2

symmetric

Table 4-2.: 2D first approximation: asymmetry
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4.2. Vinograd’s Second Approximation
Vinograd proposes a second approximation in order to remedy the asymmetry that
the first approximation contains. [16] The aim of this approximation is to keep the
structure of the first approximation whilst making the cluster probabilities independent
of the lattice growth direction. The proposed method of achieving this goal is by
defining the probability of the square cluster pa · b · c · d as the average over all possible
lattice growth directions.

pa · b · c · d = 1
4
(
pb · c · d pa|b · c + pa · c · d pb|a · d + pa · b · d pc|a · d + pa · b · c pd|b · c

)
(4-21)

The different construction directions have a diagonal symmetry because of the struc-
ture of the equations. Therefore it is only necessary to calculate the mean of two
directions.

pa · b · c · d = 1
2
(
pb · c · d pa|b · c + pa · c · d pb|a · d

)
(4-22)

Figure 4-7 depicts the two construction directions of the square cluster. The neighbor-
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Figure 4-7.: 2D Vinograd’s second approximation lattice construction

hood probabilities of the first direction are constructed by starting with site D. Then
site C is placed which is dependent on site D. Site B is inserted depending on site
D but not site C because they are not nearest neighbors and in the complete lattice,
site C is placed infinitely many steps before site B.

pb · c · d = pd pc|d pb|d (4-23)
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The insertion of site A is dependent on the sites B and C and can be calculated with
the expression developed in equation (4-19).

pa|b · c = pa pb|a pc|a∑
a pa pb|a pc|a

(4-24)

Inserting the equations (4-23) and (4-24) into equation (4-22) yields the correlation of
the probabilities of the square cluster with the conditional pair probabilities according
to Vinograd’s second approximation.

pa · b · c · d = 1
2

(
pd pb|d pc|d

pa pb|a pc|a∑
a pa pb|a pc|a

+ pc pa|c pd|c
pb pa|b pd|b∑
b pb pa|b pd|b

)
(4-25)

The entropy and energy formulas have to be expanded, in order to accommodate
the four site cluster probabilities. Regarding the entropy, this is achieved by taking
equation (4-1) and adding the new fourth site to the outer sum.

S = −NkB
∑
b,c,d

pb · c · d
∑

a
pa|b · c · d ln(pa|b · c · d) (4-26)

The conditional probabilities of the insertion of site A using the definition of conditional
probabilities yields:

pa|b · c · d = pa · b · c · d

pb · c · d
(4-27)

The neighborhood probabilities can be calculated from the four site cluster probabilities
by applying the law of total probability.

pb · c · d =
∑

a
pa · b · c · d (4-28)

Substituting the conditional probabilities with equation (4-27) and the neighborhood
probabilities with equation (4-28), the entropy with regard to the square cluster can
be rewritten as:

S = −NkB
∑
b,c,d

pa · b · c · d ln
(

pa · b · c · d∑
a pa · b · c · d

)
(4-29)
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The equation for the internal energy can bemodified similar to the entropy. Considering
equation (4-4) as the basis, the adaptation consists again of replacing the probabilities
and expanding the summation to incorporate the molecule d.

U = N
∑

a,b,c,d

pa · b · c · d (εab + εac). (4-30)

It is noteworthy to mention that even though the new cluster contains two additional
contact pairs, b · d and c · d, their interaction energies are not added to the equation.
The reason is that equation (4-30) already sums over all contact pairs in the lattice.
The addition of the new interactions would merely double the resulting value for the
internal energy.

Resulting System of Equations

The system in equilibrium is calculated by minimizing the Helmholtz free energy.
Inserting the just developed expressions for the internal energy and the entropy given
at equations (4-30) and (4-29) into equation (3-7) yields the target function for the
minimization.

A
kBNT =

∑
a,b,c,d

pa · b · c · d

(
εab

kBT + εac

kBT + ln
(

pa · b · c · d∑
a pa · b · c · d

))
(4-31)

In addition to the free energy, constraints are necessary for this minimization. These
consist of the approximation of the square cluster probabilities using conditional pair
probabilities and the relationships between the pair probabilities.

pa · b · c · d = 1
2

(
pd pb|d pc|d

pa pb|a pc|a∑
a pa pb|a pc|a

+ pc pa|c pd|c
pb pa|b pd|b∑
b pb pa|b pd|b

)
(4-32)

The formula (4-32) describes 16 equations where the iterators a, b, c and d each
take on the states 1 and 2. It is recommended that the number of variables is reduced
by replacing three of the four conditional pair probabilities with their relationship to
the fourth one.

p1|1 = 1− p1|2 p2

p1

p2|2 = 1− p1|2

p2|1 = p1|2 p2

p1

(4-33)

The resulting system of equations consists of 20 equations and 21 variables which are
the free energy A, the 4 conditional pair probabilities pi|j and the 16 cluster probabilities
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pa · b · c · d . The equations (4-32) and (4-33) can be inserted into equation (4-31) which
would yield one single equation dependent on one variable (p1|2). This equation,
however, can only be minimized numerically. Due to the size of the resulting equation
it is in general recommended to work with the system of equations and constrained
minimization instead.

4.2.1. Comparison to Guggenheim and Monte Carlo
Simulations

Vinograd’s second approximation is compared to Monte Carlo simulations, Guggen-
heim’s quasi-chemical theory, and Vinograd’s first approximation.
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Figure 4-8.: Comparison of Vinograd’s second approximation with MC-
Simulations and Guggenheim: Internal Energy (p1 = 0.3, ε11 = ε22 =
0, rel. dev. = ((model− simulation) /simulation) 100%)

The figures 4-8 and 4-9 show the relative deviation of the models with regard to the
Monte Carlo simulation results. Figure 4-8 depicts the relative deviation of the internal
energy and figure 4-9 shows the relative deviation of the entropy.

The second approximation is a significant improvement compared to the first ap-
proximation. The additional information of site B and C being connected with site D
together with the symmetric lattice yields a much improved agreement with the Monte
Carlo simulations.
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Figure 4-9.: Comparison of Vinograd’s second approximation with MC-
Simulations and Guggenheim: Entropy (p1 = 0.3, ε11 = ε22 = 0,
rel. dev. = ((model− simulation) /simulation) 100%)

4.2.2. Thermodynamic Consistency Check
The thermodynamic consistency check is performed according to the description in
section 4.1.2.
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Figure 4-10.: 2D Vinograd’s second approximation: p1|2
p1

over ω
kBT

Figure 4-10 shows this ratio of p1|2/p1 which can also be expressed as the ratio
of the local composition to the global composition x12/x1. The abscissa marks the
dimensionless exchange energy ω/kBT where the negative values denote an attraction
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between the molecules of types 1 and 2 and the positive values denote a repulsion
between the two. Each line in the figure represents one global composition.

Figure 4-10 illustrates that the second approximation converges significantly faster
than the first approximation. This can be attributed to the consideration of more
interactions between the molecules by including the site D.
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4.3. Refinement of Vinograd’s Second Approximation
A refined version of Vinograd’s second approximation is developed. This modification
has the intention of retaining the symmetric cluster probabilities, acquired in the
second approximation while using the same entropy and energy formulas that the first
approximation uses which are given by the equations (4-6) and (4-4). This can be
achieved by taking the cluster probabilities from the second approximation, defined
by equation (4-25), and applying the law of total probability. Therefore the probability


d
B

D

A

C

→

B A

C

Figure 4-11.: Calculation of the a neighborhood from the square cluster

of the a · b · c cluster is calculated via a summation of pa · b · c · d over all possible states
of d, as illustrated in figure 4-11.

pa · b · c =
∑

d

pa · b · c · d (4-34)

Resulting System of Equations

The system in equilibrium is calculated by minimizing the Helmholtz free energy. The
formula for the free energy of the refinement of Vinograd’s second approximation
expressed with cluster probabilities is the same as the one from Vinograd’s first
approximation which is given by equation (4-12).

A
kBNT =

∑
a,b,c

pa · b · c

(
εab

kBT + εac

kBT + ln
(

pa · b · c∑
a pa · b · c

))
(4-35)

The cluster probabilities expressed with conditional pair probabilities are the result of
inserting equation (4-32), which describes the square cluster probabilities from the
second approximation, into equation (4-34).

pa · b · c = 1
2
∑

d

(
pd pb|d pc|d

pa pb|a pc|a∑
a pa pb|a pc|a

+ pc pa|c pd|c
pb pa|b pd|b∑
b pb pa|b pd|b

)
(4-36)

The formula (4-36) describes 8 equations where the iterators a, b, c and d each take
on the states 1 and 2. Also, the correlations between the conditional pair probabilities
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are needed. It is recommended to express three of the conditional pair probabilities
as a function of the fourth, in order to reduce the number of variables.

p1|1 = 1− p1|2 p2

p1

p2|2 = 1− p1|2

p2|1 = p1|2 p2

p1

(4-37)

The resulting system of equations consists of 12 equations and 13 variables which are
the free energy A, the 4 conditional pair probabilities pi|j and the 8 cluster probabilities
pa · b · c. The equations (4-36) and (4-37) can be inserted into equation (4-35) which
would yield one single equation dependent on one variable (p1|2). This equation,
however, can only be minimized numerically. Due to the size of the resulting equation
it is in general recommended to work with the system of equations and constrained
minimization instead.

4.3.1. Comparison to Guggenheim and Monte Carlo
Simulations
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Figure 4-12.: Comparison of the refinement of Vinograd’s second ap-
proximation with MC-Simulations and Guggenheim: Inter-
nal Energy (p1 = 0.3, ε11 = ε22 = 0, rel. dev. =
((model− simulation) /simulation) 100%)

Figures 4-12 and 4-13 compare all two-dimensional models with each other regarding
their relative deviations to Monte Carlo simulations. Figure 4-12 depicts the relative
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Figure 4-13.: Comparison of the refinement of Vinograd’s second approxima-
tion with MC-Simulations and Guggenheim: Entropy (p1 = 0.3, ε11 =
ε22 = 0, rel. dev. = ((model− simulation) /simulation) 100%)

deviation of the internal energy and figure 4-13 shows the relative deviation of the
entropy.

There are two main observations that can be gathered from the figures 4-12 and
4-13. The first property of the refinement of the second approximation that can
be extracted from these figures is that the deviations are smaller than the ones
from Vinograd’s second approximation. A possible explanation for this might be
that since we approximate the cluster by using pair probabilities the entropy formula
containing just nearest neighbors is more appropriate. The consideration of the site
D improves the neighborhood probabilities while the conditional probabilities retain
the high accuracy that the first approximation shows.

The second is the fact that the relative deviations are negative. In all the previous
models, however, the deviations are always positive. An explanation for this is, that
the deviations of this model are so small that the inaccuracy of the Monte Carlo
simulations is noticeable.

4.3.2. Thermodynamic Consistency Check
The thermodynamic consistency check is performed according to the description in
section 4.1.2.

Figure 4-14 shows this ratio of p1|2/p1 which can also be expressed as the ratio
of the local composition to the global composition x12/x1. The abscissa marks the
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Figure 4-14.: 2D refinement of Vinograd’s second approximation: p1|2
p1

over
ω

kBT

dimensionless exchange energy ω/kBT where the negative values denote an attraction
between the molecules of types 1 and 2 and the positive values denote a repulsion
between the two. Each line in the figure represents one global composition.

Figure 4-14 illustrates that the refinement of the second approximation behaves
similarly to the second approximation. The similarity of the two models is expected,
because no new interactions are considered.
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4.4. Comparison of Models
This section provides a brief summary of the differences between the two-dimensional
models. Guggenheim’s quasi-chemical theory assumes that all pairs of contacts
are independent from each other. This assumption leads to the fact that the quasi-
chemical theory is the simplest model, but also the one with the largest deviations
from the Monte Carlo simulations.

Vinograd’s first approximation uses the sequential lattice construction to model the
entropy. The pairs of contacts share the common site A but are still independent
regarding all other sites. This results in a noticeable improvement over the quasi-
chemical theory. Also, the first approximation yields an asymmetric lattice which
means that not general relations between cluster probabilities are fulfilled.

Vinograd’s second approximation solves the issue of the asymmetry by averaging
all construction directions. A dependency of the neighbors of site A on site D is
also introduced. The second approximation shows an improved agreeance with the
simulation data than the previous models.

The refinement of Vinograd’s second approximation retains the beneficial properties
of the second approximation and improves the modeling of the entropy. Therefore
this model shows the smallest deviations from the Monte Carlo simulation data.

The next step is to apply the methods used to develop these models to a three-
dimensional simple cubic lattice.
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5. Simple Cubic Lattice (3D)
The three-dimensional cubic lattice is also constructed in a sequential manner. The
lattice is built up layer by layer. Each new layer is constructed like the two-dimensional
square lattice. The number of nearest neighbors that every new site is placed into
increases to three.

D

F

G

H

B

C

E
→

D

F

G

H

A

B

C

E

Figure 5-1.: 3D cubic lattice construction - addition of site A to the lattice

The figure 5-1 depicts the insertion of site A into the lattice. The three construction
directions are from back to front, from top to bottom and from left to right. The addition
of site A is dependent on its neighbors B, C and D. The sites B, C and D have no direct
dependencies to one another. However, each pair of them has a common neighbor
besides A. These neighbors are the sites E, F and G, which are all dependent on
the site H.

The entropy can be formulated based on this lattice construction. It is the sum over all
possible insertions a expressed as the insertion probability times its natural logarithm.
All of these are weighted with each respective neighborhood probability and multiplied
with minus the number of molecules in the system and Boltzmann’s constant.

S = −NkB
∑
b,c,d

pb · c · d
∑

a
pa|b · c · d ln(pa|b · c · d) (5-1)

By applying the definition of conditional probabilities to the probability of the insertion
of molecule a, it can be expressed as the a · b · c · d cluster probability divided by the
neighborhood probability.

pa|b · c · d = pa · b · c · d

pb · c · d
(5-2)
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The neighborhood probabilities can be calculated from the cluster probabilities via a
summation of all possible states of molecule a.

pb · c · d =
∑

a
pa · b · c · d (5-3)

Equation (5-1) can be rewritten using cluster probabilities instead of conditional and
neighborhood probabilities by inserting the equations (5-2) and (5-3).

S = −NkB
∑

a,b,c,d

pa · b · c · d ln
(

pa · b · c · d∑
a pa · b · c · d

)
(5-4)

The internal energy is again modeled as the sum of all contact pairs weighted with
each respective probability of occurrence.

U = N
∑
b,c,d

pb · c · d
∑

a
pa|b · c · d (εab + εac + εad) (5-5)

The internal energy can also be expressed in terms of cluster probabilities by applying
equation (5-2) to equation (5-5).

U = N
∑

a,b,c,d

pa · b · c · d (εab + εac + εad) (5-6)

All three-dimensional models are solved with a numerical minimization of the Helmholtz
free energy under consideration of the dependencies between the pair probabilities
given by equation (3-15). The Lagrange method for solving the system of equations
has also been tested. The result of this investigation is the realization that no explicit
solution for the models is possible. This method requires a higher computational
effort than a minimization. Therefore, it is recommended that the equations are solved
by applying a numerical minimization. Multiple models for approximating the cluster
probabilities with pair probabilities are presented in the following sections.
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5.1. Vinograd’s First Approximation Applied to 3D
The first approximation, defined in section 4.1, is extended to be able to describe
a three-dimensional lattice. The starting point of this model is equation (4-11) from
the square lattice. This equation defines the cluster probability of a and its nearest
neighbors as the probability of a times the probabilities of the neighbors depending on
a. For the three-dimensional case, this can be expanded to include all three neighbors.
The probability of the a · b · c · d cluster is thus approximated by the probability of a
and the probabilities of b, c and d dependent on a.

pa · b · c · d = pa pb|a pc|a pd|a (5-7)

Equation (5-7) represents the simplest possible approximation for the three-dimensional
lattice. It has an asymmetry similar to the first approximation for the square lattice.
The effect of this asymmetry is even more significant for the cubic lattice than for the
square lattice.

Resulting System of Equations

The system in equilibrium is calculated by minimizing the Helmholtz free energy.
Inserting the expressions for the internal energy and the entropy given at equations
(5-6) and (5-4) into equation (3-7) yields the target function for the minimization.

A
kBNT =

∑
a,b,c,d

pa · b · c · d

(
εab

kBT + εac

kBT + εad

kBT + ln
(

pa · b · c · d∑
a pa · b · c · d

))
(5-8)

The constraints of this optimization are the equations that connect the 16 cluster
probabilities pa · b · c · d to the four conditional pair probabilities pa|b given by formula
(5-7).

pa · b · c · d = pa pb|a pc|a pd|a (5-9)

The formula (5-9) describes 16 equations where the iterators a, b, c and d each take
on the states 1 and 2. Also, the correlations between the conditional pair probabilities
are needed. It is recommended to express three of the conditional pair probabilities
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as a function of the fourth, in order to reduce the number of variables. The formulas
that are given by equation (3-15) are therefore transformed into the following form.

p1|1 = 1− p1|2 p2

p1

p2|2 = 1− p1|2

p2|1 = p1|2 p2

p1

(5-10)

The resulting system of equations consists of 20 equations and 21 variables which are
the free energy A, the 4 conditional pair probabilities pi|j and the 16 cluster probabilities
pa · b · c · d . The equations (5-9) and (5-10) can be inserted into equation (5-8) which
would yield one single equation dependent on one variable (p1|2). This equation,
however, can only be minimized numerically. Due to the size of the resulting equation
it is in general recommended to work with the system of equations and constrained
minimization instead.

5.1.1. Comparison to Guggenheim and Monte Carlo
Simulations
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Figure 5-2.: Comparison of 3D Vinograd’s first approximation with MC-
Simulations and Guggenheim: Internal Energy (p1 = 0.3, ε11 = ε22 =
0, rel. dev. = ((model− simulation) /simulation) 100%)

Vinograd’s first approximation applied to 3D is compared to Monte Carlo simulation
results in order to assess the quality of this model. Guggenheim’s quasi-chemical
approach is used as a reference model.
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Figure 5-3.: Comparison of 3D Vinograd’s first approximation with MC-
Simulations and Guggenheim: Entropy (p1 = 0.3, ε11 = ε22 = 0,
rel. dev. = ((model− simulation) /simulation) 100%)

The figures 5-2 and 5-3 show the relative deviation of Vinograd’s first approximation
applied to 3D and Guggenheim’s quasi-chemical theory to the Monte Carlo simulation
results. Figure 5-2 depicts the relative deviation of the internal energy and figure 5-3
shows the relative deviation of the entropy.

The figures 5-2 and 5-3 indicate that the assumptions made for this model are not
that dissimilar to the assumptions of the quasi-chemical theory. The deviations of
this model from the Monte Carlo simulations show only a slight improvement over the
quasi-chemical theory.

5.1.2. Thermodynamic Consistency Check
The thermodynamic consistency check is performed according to the description in
section 4.1.2.

Figure 5-4 shows this ratio of p1|2/p1 which can also be expressed as the ratio
of the local composition to the global composition x12/x1. The abscissa marks the
dimensionless exchange energy ω/kBT where the negative values denote an attraction
between the molecules of types 1 and 2 and the positive values denote a repulsion
between the two. Each line in the figure represents one global composition.

Figure 5-4 indicates that even though the model approaches the limits, it does so quite
slowly. This slow convergence is caused by the assumption of independence of the
pairs of molecules, which is the basis of Vinograd’s first approximation. However, the
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Figure 5-4.: 3D Vinograd’s first approximation: p1|2
p1

over ω
kBT

three-dimensional model converges quicker than the two-dimensional one. This can
be explained with the fact that the three-dimensional lattice contains more interactions
of the molecules than the two-dimensional lattice.
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5.2. Vinograd’s Second Approximation Applied to 3D
An eight site cluster containing sites A to H is considered for Vinograd’s second
approximation applied to 3D. As with the square cluster, this cubic cluster is approxi-
mated by using pair probabilities. Special attention has to be given to the averaging
of all construction directions.
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D C

→

B

D C

→

B

D

A

C

C

→

D C

→

D

A

C

→

B

D

A

C

Figure 5-5.: Square cluster construction directions

Figure 5-5 displays the two construction directions that need to be considered in order
to create a symmetric square cluster. The resulting formula is developed in equations
(4-21) to (4-25).

psq
a · b · c · d = 1

2
(
pd pc|d pb|d pa|b · c + pc pd|c pa|c pb|a · d

)
(5-11)

It is possible to use these symmetric probabilities of the square cluster for the con-
struction of the cubic cluster. The sq at the cluster probability denotes the fact that
this is the probability of the square cluster and exists to avoid confusion with the three-
dimensional four site cluster formed by A and its nearest neighbors. The conditional
probability of the addition of two neighboring sites depending on the two other sites
can be calculated by applying the law of total probability to this cluster.

pa · b|d · f =
psq

a · b · d · f
pd · f

=
psq

a · b · d · f∑
a,b psq

a · b · d · f
(5-12)

Figure 5-6 shows one construction direction of the cubic cluster. The starting point is
the a · b · d · f cluster. Next, the c · e cluster is inserted with dependencies to a and b.
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Figure 5-6.: Cubic cluster construction from square cluster

This newly formed L-shaped cluster can be used to calculate the probability of g · h
depending on c, d, e and f .

pa · b|c · e · d · f =
psq

a · b · d · f pc · e|a · b∑
a,b psq

a · b · d · f pc · e|a · b
(5-13)

This procedure has to be averaged over the different construction directions.

Again, because of the structure of the equations, not all construction directions have
to be considered. Figure 5-7 shows the six construction directions which suffice to
generate a symmetric cluster.

pa · b · c · d · e · f · g · h = 1
6(psq

a · b · d · f pc · e|a · b pg · h|c · e · d · f

+psq
a · c · b · e pd · g|a · c pf · h|d · g · b · e

+psq
a · d · b · f pc · g|a · d pe · h|b · f · c · g

+psq
c · e · a · b pg · h|c · e pd · f |g · h · a · b

+psq
b · e · a · c pf · h|b · e pd · g|f · h · a · c

+psq
c · g · a · d pe · h|c · g pb · f |e · h · a · d)

(5-14)

One might think that as an alternative it would be possible to construct the cubic
cluster similar to the square cluster by starting in one corner, sequentially add sites
till the opposite corner is reached and averaging the eight construction directions
starting at each corner. This method would, however, still return an asymmetric cluster.
Therefore the previously described procedure is necessary.

The equation for the entropy of the lattice is formulated using the probability of the
insertion of a into the b, c, d, e, f , g and h neighborhood.

S = −kBN
∑

b,c,d,e,f ,g,h

pb · c · d · e · f · g · h
∑

a
pa|b · c · d · e · f · g · h ln

(
pa|b · c · d · e · f · g · h

)
(5-15)
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Figure 5-7.: Cubic cluster construction directions

The probability of the insertion of molecule a can be expressed as the ratio of the
cluster probability to the neighborhood probability.

pa|b · c · d · e · f · g · h =
pa · b · c · d · e · f · g · h

pb · c · d · e · f · g · h
(5-16)
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The neighborhood probability can be expressed as the summation of the cluster
probabilities over all possibilities of a.

pb · c · d · e · f · g · h =
∑

a
pa · b · c · d · e · f · g · h (5-17)

Rewritten in terms of cluster probabilities, by combining equations (5-15), (5-16) and
(5-17), the equation for the entropy yields:

S = −kBN
∑

a,b,c,d,e,f ,g,h

pa · b · c · d · e · f · g · h ln
( pa · b · c · d · e · f · g · h∑

a pa · b · c · d · e · f · g · h

)
(5-18)

The internal energy of this model is calculated as a weighted sum of the interaction
energies of all pairs. The three new pairs that are formed during the insertion of
molecule a describe all pairs of molecules in the lattice.

U = N
∑

b,c,d,e,f ,g,h

pb · c · d · e · f · g · h
∑

a
pa|b · c · d · e · f · g · h (εab + εac + εad) (5-19)

The equation for the internal energy can be expressed using cluster probabilities by
combining equations (5-16) and (5-19).

U = N
∑

a,b,c,d,e,f ,g,h

pa · b · c · d · e · f · g · h (εab + εac + εad) (5-20)

Resulting System of Equations

The system in equilibrium is calculated by minimizing the Helmholtz free energy.
Inserting the expressions for the internal energy and the entropy given at equations
(5-18) and (5-20) into equation (3-7) yields the target function for the minimization.

A
kBNT =

∑
a,b,c,d,e,f ,g,h

pa · b · c · d · e · f · g · h

(
εab

kBT + εac

kBT + εad

kBT + ln
( pa · b · c · d · e · f · g · h∑

a pa · b · c · d · e · f · g · h

))
(5-21)
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The constraints of this optimization are the equations that connect the 256 cluster
probabilities pa · b · c · d · e · f · g · h to the four conditional pair probabilities pa|b.

pa · b · c · d · e · f · g · h = 1
6

 psq
a · d · b · f p

sq
c · g · a · dpsq

b · f · e · hpsq
e · h · c · g(∑

c,g psq
c · g · a · d

) (∑
b,f psq

b · f · e · h
)∑

e,h
psq

b · f · e · h
psq

e · h · c · g∑
b,f psq

b · f · e · h

+
psq

b · f · a · dpsq
c · g · a · dpsq

e · h · b · f p
sq
e · h · c · g(∑

e,h psq
e · h · b · f

) (∑
e,h psq

e · h · c · g

)∑
b,f

psq
b · f · a · d

psq
e · h · b · f∑

e,h psq
e · h · b · f

+
psq

c · e · a · bpsq
a · b · d · f p

sq
c · e · g · hpsq

g · h · d · f(∑
c,e psq

c · e · a · b
) (∑

c,e psq
c · e · g · h

)∑
g,h

psq
c · e · g · h

psq
g · h · d · f∑

c,e psq
c · e · g · h

+
psq

a · c · b · epsq
d · g · a · cp

sq
f · h · b · epsq

d · g · f · h(∑
d,g psq

d · g · a · c

)(∑
d,g psq

d · g · f · h

)∑
f ,h

psq
f · h · b · e

psq
d · g · f · h∑

d,g psq
d · g · f · h

+
psq

b · e · a · cp
sq
d · g · a · cp

sq
f · h · b · epsq

f · h · d · g(∑
f ,h psq

f · h · b · e
) (∑

f ,h psq
f · h · d · g

)∑
d,g

psq
d · g · a · c

psq
f · h · d · g∑

f ,h psq
f · h · d · g

+
psq

c · e · a · bpsq
d · f · a · bpsq

g · h · c · epsq
g · h · d · f(∑

g,h psq
g · h · c · e

)(∑
g,h psq

g · h · d · f

)∑
d,f

psq
d · f · a · b

psq
g · h · d · f∑

g,h psq
g · h · d · f


(5-22)

The formula (5-22) describes 256 equations where the iterators a, b, c, d, e, f , g
and h each take on the states 1 and 2. The cubic cluster probabilities are expressed
in terms of the square cluster probabilities. In addition to that, equation (5-11) after
insertion of equation (4-24) is used which connects the 16 square cluster probabilities
to the pair probabilities.

psq
a · b · c · d = 1

2

(
pd pb|d pc|d

pa pb|a pc|a∑
a pa pb|a pc|a

+ pc pa|c pd|c
pb pa|b pd|b∑
b pb pa|b pd|b

)
(5-23)

Also, the correlations between the conditional pair probabilities are needed. It is
recommended to express three of the conditional pair probabilities as a function of
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the fourth, in order to reduce the number of variables. The formulas that are given by
equation (3-15) are therefore transformed into the following form.

p1|1 = 1− p1|2 p2

p1

p2|2 = 1− p1|2

p2|1 = p1|2 p2

p1

(5-24)

The resulting system of equations consists of 276 equations and 277 variables which
are the free energy A, the 4 conditional pair probabilities pi|j , the 16 square cluster
probabilities psq

a · b · c · d and the 256 cluster probabilities pa · b · c · d · e · f · g · h. The equations
(5-22), (5-23) and (5-24) can be inserted into equation (5-21) which would yield one
single equation dependent on one variable (p1|2). This equation, however, can only
be minimized numerically. Due to the size of the resulting equation it is in general
recommended to work with the system of equations and constrained minimization
instead.

5.2.1. Comparison to Guggenheim and Monte Carlo
Simulations

Vinograd’s second approximation applied to 3D is compared to Monte Carlo simulation
results in order to assess the quality of this model. Guggenheim’s quasi-chemical
approach and the first approximation are used as reference models.
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Simulations and Guggenheim: Internal Energy (p1 = 0.3, ε11 = ε22 =
0, rel. dev. = ((model− simulation) /simulation) 100%)
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Figure 5-9.: Comparison of 3D Vinograd’s second approximation with MC-
Simulations and Guggenheim: Entropy (p1 = 0.3, ε11 = ε22 = 0,
rel. dev. = ((model− simulation) /simulation) 100%)

The figures 5-8 and 5-9 show the relative deviation of Vinograd’s second approximation
applied to 3D, Vinograd’s first approximation applied to 3D and Guggenheim’s quasi-
chemical theory to the Monte Carlo simulation results. Figure 5-8 depicts the relative
deviation of the internal energy and figure 5-9 shows the relative deviation of the
entropy.

The figures 5-8 and 5-9 indicate that the second approximation applied to 3D has
significant smaller deviations than the quasi-chemical theory and the first approxima-
tion.

5.2.2. Thermodynamic Consistency Check
The thermodynamic consistency check is performed according to the description in
section 4.1.2.

Figure 5-10 illustrates this ratio of p1|2/p1 which can also be expressed as the ratio
of the local composition to the global composition x12/x1. The abscissa marks the
dimensionless exchange energy ω/kBT where the negative values denote an attraction
between the molecules of types 1 and 2 and the positive values denote a repulsion
between the two. Each line in the figure represents one global composition.

Figure 5-10 shows that the three-dimensional second approximation converges signif-
icantly faster than the first approximation. This can be attributed to the consideration
of more interactions between the molecules and the symmetric cluster probabilities.
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5.3. Refinement of Vinograd’s Second Approximation
The basis of the refinement of the second approximation is the eight site cubic
cluster introduced in the second approximation (section 5.2). This cluster is used to
improve the description of the neighborhood that the new molecule is placed into.
The entropy and internal energy are modeled based on the insertion of a into its direct
neighborhood. Their definitions are given in equations (5-4) and (5-6).


e,f,g,h

D
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H

A

B

C

E

→

D A

B

C

Figure 5-11.: Calculation of the a neighborhood from the cubic cluster

The conversion of the cubic cluster to the smaller cluster is achieved by applying the
law of total probability. The sum of the probabilities of all possible states of e, f , g
and h is formed, as illustrated in figure 5-11.

pa · b · c · d =
∑

e,f ,g,h

pa · b · c · d · e · f · g · h (5-25)

Resulting System of Equations

The system in equilibrium is calculated by minimizing the Helmholtz free energy.
Inserting the expressions for the internal energy and the entropy given at equations
(5-6) and (5-4) into equation (3-7) yields the target function for the minimization.

A
kBNT =

∑
a,b,c,d

pa · b · c · d

(
εab

kBT + εac

kBT + εad

kBT + ln
(

pa · b · c · d∑
a pa · b · c · d

))
(5-26)
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The constraints of this optimization are the equations that connect the 16 cluster
probabilities pa · b · c · d to the four conditional pair probabilities pa|b.

pa · b · c · d = 1
6
∑

e,f ,g,h

 psq
a · d · b · f p

sq
c · g · a · dpsq

b · f · e · hpsq
e · h · c · g(∑

c,g psq
c · g · a · d

) (∑
b,f psq

b · f · e · h
)∑

e,h
psq

b · f · e · h
psq

e · h · c · g∑
b,f psq

b · f · e · h

+
psq

b · f · a · dpsq
c · g · a · dpsq

e · h · b · f p
sq
e · h · c · g(∑

e,h psq
e · h · b · f

) (∑
e,h psq

e · h · c · g

)∑
b,f

psq
b · f · a · d

psq
e · h · b · f∑

e,h psq
e · h · b · f

+
psq

c · e · a · bpsq
a · b · d · f p

sq
c · e · g · hpsq

g · h · d · f(∑
c,e psq

c · e · a · b
) (∑

c,e psq
c · e · g · h

)∑
g,h

psq
c · e · g · h

psq
g · h · d · f∑

c,e psq
c · e · g · h

+
psq

a · c · b · epsq
d · g · a · cp

sq
f · h · b · epsq

d · g · f · h(∑
d,g psq

d · g · a · c

)(∑
d,g psq

d · g · f · h

)∑
f ,h

psq
f · h · b · e

psq
d · g · f · h∑

d,g psq
d · g · f · h

+
psq

b · e · a · cp
sq
d · g · a · cp

sq
f · h · b · epsq

f · h · d · g(∑
f ,h psq

f · h · b · e
) (∑

f ,h psq
f · h · d · g

)∑
d,g

psq
d · g · a · c

psq
f · h · d · g∑

f ,h psq
f · h · d · g

+
psq

c · e · a · bpsq
d · f · a · bpsq

g · h · c · epsq
g · h · d · f(∑

g,h psq
g · h · c · e

)(∑
g,h psq

g · h · d · f

)∑
d,f

psq
d · f · a · b

psq
g · h · d · f∑

g,h psq
g · h · d · f



(5-27)

The formula (5-27) describes 16 equations where the iterators a, b, c and d each
take on the states 1 and 2. The probabilities of the a · b · c · d cluster are expressed in
terms of the square cluster probabilities. In addition to that, equation (5-23) is used
which connects the 16 square cluster probabilities to the pair probabilities.

psq
a · b · c · d = 1

2

(
pd pb|d pc|d

pa pb|a pc|a∑
a pa pb|a pc|a

+ pc pa|c pd|c
pb pa|b pd|b∑
b pb pa|b pd|b

)
(5-28)

Also, the correlations between the conditional pair probabilities are needed. It is
recommended to express three of the conditional pair probabilities as a function of
the fourth, in order to reduce the number of variables. The formulas that are given by
equation (3-15) are therefore transformed into the following form.

p1|1 = 1− p1|2 p2

p1

p2|2 = 1− p1|2

p2|1 = p1|2 p2

p1

(5-29)
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The resulting system of equations consists of 36 equations and 37 variables which
are the free energy A, the 4 conditional pair probabilities pi|j , the 16 square cluster
probabilities psq

a · b · c · d and the 16 cluster probabilities pa · b · c · d . The equations (5-27),
(5-28) and (5-29) can be inserted into equation (5-26) which would yield one single
equation dependent on one variable (p1|2). This equation, however, can only be
minimized numerically. Due to the size of the resulting equation it is in general
recommended to work with the system of equations and constrained minimization
instead.

5.3.1. Comparison to Guggenheim and Monte Carlo
Simulations
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Figure 5-12.: Comparison of the 3D refinement of Vinograd’s second
approximation with MC-Simulations and Guggenheim: Inter-
nal Energy (p1 = 0.3, ε11 = ε22 = 0, rel. dev. =
((model− simulation) /simulation) 100%)

Figures 5-12 and 5-13 compare all three-dimensional models with each other re-
garding their relative deviations to Monte Carlo simulations. Figure 5-12 depicts the
relative deviation of the internal energy and figure 5-13 shows the relative deviation
of the entropy.

The refinement of the second approximation has the smallest deviations of all the
models and therefore is a major improvement, especially compared to the quasi-
chemical theory.
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Figure 5-13.: Comparison of the 3D refinement of Vinograd’s sec-
ond approximation with MC-Simulations and Guggen-
heim: Entropy (p1 = 0.3, ε11 = ε22 = 0, rel. dev. =
((model− simulation) /simulation) 100%)

5.3.2. Thermodynamic Consistency Check
The thermodynamic consistency check is performed according to the description in
section 4.1.2.
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Figure 5-14 illustrates this ratio of p1|2/p1 which can also be expressed as the ratio
of the local composition to the global composition x12/x1. The abscissa marks the
dimensionless exchange energy ω/kBT where the negative values denote an attraction
between the molecules of types 1 and 2 and the positive values denote a repulsion
between the two. Each line in the figure represents one global composition.

Figure 5-14 shows that the refinement of the second approximation converges even
faster than the second approximation.
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5.4. Comparison of Models
A brief review of the differences of the three-dimensional models is given in this
section. Guggenheim’s quasi-chemical theory assumes that all pairs of contacts are
independent of each other. This assumption leads to higher deviations the larger the
number of interactions between the sites is.

Vinograd’s first approximation applied to 3D constructs the lattice by inserting mole-
cules sequentially. Every insertion creates three contact pairs which are connected
through the newly inserted site. The three neighbors are modeled to be independent
of each other. These assumptions lead to asymmetric lattice probabilities. This model
is a slight improvement over the quasi-chemical theory.

Vinograd’s second approximation applied to 3D solves the issue of the asymmetry
by averaging all construction directions of an eight site cubic cluster. Through the
consideration of the cubic cluster, the neighbors of site A are not assumed to be
independent of each other. This yields the result that Vinograd’s second approximation
applied to 3D shows a significant improvement over the first approximation.

The refinement of Vinograd’s second approximation further improves upon the second
approximation by modeling the entropy with just the nearest neighbor interactions
and not partially including other interactions. Therefore this model shows the smallest
deviations from the Monte Carlo simulation data.
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6. Conclusion and Outlook
The comparatively small deviations of the refined Vinograd approach fromMonte Carlo
data suggest that this method is a promising basis for a future gE-model that introduces
more geometric information than current gE-models. The models developed in this
work describe spherical molecules of the same size in a lattice. This is the first step
on the road of developing an excess Gibbs enthalpy model. The following paragraphs
propose a couple of possibilities for future development projects.

The consideration of orientations regarding the molecules is a possible expansion
of this model. The first step in this research is to consider dice-like molecules, each
possessing multiple interaction sites, instead of spheres. These molecules already
open up a wide variety of orientation dependent interactions. One example would be
polar molecules.

A further expansion possibility is the consideration of polymers. Polymers can be
modeled as molecules which take up multiple lattice sites.

Another possible expansion is to go beyond the lattice. There the molecules are not
restricted by discrete locations. Also, different molecule sizes and shapes can be
considered.

A different route of expanding this model would be to increase the number of de-
pendencies between the molecules by taking energetic interactions of next-nearest
neighbors into account.
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A. List of Symbols
Symbol Description
A Helmholtz free energy
S entropy
U internal energy
gE excess Gibbs enthalpy
N total number of molecules
Ni number of molecules of component i
T absolute temperature
V volume
kB Boltzmann constant
Pr probability function
p probability
xi global composition of component i
xi j local composition of component i next to component j
z coordination number

β auxiliary variable
η auxiliary variable
ε energy of a molecule pair
ω exchange energy
λ Lagrange multiplier
L Lagrange function

Superscript
sq square lattice

Subscript
a, b, . . . , h molecule type at specific lattice site
i, j general iterator
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