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ABSTRACT

In the recent century, Computer Vision and Image Understanding tremendously advanced

from a scientific perspective, but also finally arrived in the midst of society due to imple-

mentations in digital cameras, mobile phones and, most recently, self-driving cars. Unde-

niably, Computer Vision will continue conquering a much larger spectrum of applications

in everybody’s life. One example is addressed in this thesis. We developed a vision-based

algorithm for detecting wall-mounted electrical devices as part of an EU-founded, pub-

licly accessible framework for digitalizing buildings that targets a widespread audience. In

order to meet the requirements for this use-case, we carefully analyze the given data to

derive the most promising solutions. In particular, the low number of training samples,

the insufficient data quality and the plain, texture-less nature of the target objects form

the most challenging aspects of the addressed detection task. We propose to tackle these

problems by utilizing pre-calculated wall-texture images as input for a classical vision

pipeline consisting of feature descriptors and a classifier. To best exploit the characteristic

properties of the target objects, we introduce a novel, specially designed feature descriptor,

but also apply well-established approaches for describing texture-less objects. The feature

representation is evaluated by a random forest classifier for which we propose some modi-

fications to better handle the highly imbalanced and general low amount of training data,

as well as incorporating prior knowledge about the common mounting practice. The eval-

uation on our testdata attests the derived algorithm good detection results under various

difficult circumstances. We also demonstrate the limits of the method.

Keywords. object detection, untextured targets, gradient features, random forest, im-

balanced data, small training-set, practical application
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KURZFASSUNG

Im Laufe des letzten Jahrzehnts wurde computergestützte Bilderkennung nicht nur von

Wissenschaftlern technischer Disziplinen wahrgenommen und eingesetzt, sondern fand

zunehmends auch den Weg in die Wahrnehmung der breiten Öffentlichkeit. Obwohl

sich hier die Anwendungsgebiete von Bilderkennung noch hauptsächlich auf Digitalka-

meras, Mobiltelefone und aktuell selbstfahrende Fahrzeuge konzentriert, wird die comput-

ergestützte Bilderkennung ohne Zweifel auch andere, breitgefächerte Anwendungsgebiete

erobern. Diese Diplomarbeit behandelt die Entwicklung eines Detektions-Algorithmus

für Elektroinstallationen in Innenräumen als Teil eines EU-geförderten und öffentlich

zugänglichen IT-Services zur Digitalisierung von bestehenden Gebäuden, welches einen

hohen Nutzen für zahlreiche Berufsgruppen darstellt. Dieser Anwendungsfall bringt auch

einige schwierige Anforderungen mit sich. Als ersten Schritt werden in dieser Arbeit die

zur Verfügung gestellten Ausgangsdaten analysiert um daraus die vielversprechendsten

Bilderkennungs-Methoden abzuleiten. Insbesondere die geringe Anzahl an Trainingsdaten,

deren unzureichende Qualität und die flache, untexturierte Bauart der Zielobjekte stellen

die größten Herausforderungen für den entwickelten Algorithmus dar. Als Lösungsansatz

präsentieren wir die Verwendung von Texturbildern der zu untersuchenden Wände, welche

aus den Daten des 3D Scanners vorausberechnet werden. Um die speziellen Eigenschaften

der Eingangsdaten und der Zielobjekte zu nutzen, stellen wir eine neue eigens dafür en-

twickelte Bildrepräsentation vor, verwenden aber zugleich auch existierende und bereits

erfolgreich eingesetzte Methoden. Um die Bildrepräsentationen einer bestimmten Kate-

gorie zuzuordnen, verwenden wir einen Random Forest Klassifikator mit einigen Modi-

fikationen um die ungleiche Verteilung und geringe Anzahl der Trainingsdaten zu kom-

pensieren. Weiters präsentieren wir Methoden zur Verwendung des Vorwissens über die

gebräuchlichen Einbaupraktiken der gesuchten Objekte. Auf den Testdaten erreicht der

entwickelte Algorithmus gute Detektionsergebnisse unter verschiedenen und teilweise sehr

schwierigen Bedingen, welche jedoch auch die Grenzen unserer Methoden aufzeigen.
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CHAPTER 1

INTRODUCTION

Contents

1.1 Application context . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Target objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Deriving the Computer Vision Problem . . . . . . . . . . . . . . 8

1.4 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . 14

In the recent decades of modern society, computers changed and affected almost every

part of our working routines by enabling us to process tasks faster, more efficient and

more reliable through automatization. The utilization of computers for increasing work

effectiveness is still rapidly growing due to the expanding, more and more specializing

fields in computer science - with no end in sight. One of the fastest growing research

areas of the last few decades is Computer Vision, which aims at enabling computers to

interpret visual information by mimicking the visual sense of humans, developing a vast

amount of new application fields for computer systems. This Master’s Thesis addresses the

development and implementation of an automatic visual object detection system within a

challenging practical application context.

Recent research came up with many object detection approaches on any kind of data,

each showing different strengths and weaknesses regarding various application-dependent

aspects like appearance of the physical target objects, properties of the data, computa-

tional costs and other characteristics. Thus, analyzing the target objects along with the

application context yielding a well-defined problem description is a basic requirement in

order to determine the best performing method for a practical use case.

In this first chapter we will outline the approached application, followed by a detailed

discussion of the data and its acquisition procedure. Afterwards, we analyze the charac-

teristics of the actual target objects along with their environment. All technically relevant

aspects are then consolidated in order to derive the key requirements for our visual object

1



2 Chapter 1. Introduction

detection algorithm. Finally, this chapter is concluded by a summary, followed by a short

outline of the thesis.

1.1 Application context

1.1.1 The DURAARK-Project

Figure 1.1: The official logo of the DURAARK project (taken from 1)

The application this thesis is addressing was derived in the course of a Europe-wide

research project named DURAARK, the abbreviation of ‘Durable Architectural

Knowledge’. 1 It is funded by the European Commission within the 7th Framework

Programme, aiming at developing tools for the architecture community performing

computer aided analysis and preservation of existing buildings and built structures. The

project is organized in functional work packages, collectively pursuing multiple objectives:

• Enrich existing construction plans with ‘as-build’ data, enabling difference and evo-

lution over time analysis

• Gaining additional semantic information about buildings, for instance connections

of rooms and floors

• Longterm digital preservation of highly detailed 3D models

Thus the resulting tools are beneficial for various stakeholders like architects, engineers,

construction companies, building owners, lawyers, researchers, public administrators, cul-

tural heritage institutions etc., operating nationally or throughout Europe. Research, de-

velopment and implementation of the DURAARK framework is cooperatively conducted

by several consortium members, as depicted in Figure 1.2.

The approach presented in this thesis contributes to the DURAARK work package

‘Recognition of Architecturally Meaningful Structures and Shapes’, aiming at semantically

enriching building models. A subcomponent named ‘Shape grammars for almost invisible

objects’ is therefore supposed to estimate the location of electrical power lines inside

walls. Necessary input for these shape grammar models are the locations of wall-mounted

1Official DURAARK Website - http://www.duraark.eu
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Figure 1.2: DURAARK contributors all over Europe. This map is taken from 1, where also more
detailed information about all components and the ongoing development progress can be found.

power sockets and light switches, which should be automatically detected without the

need for user interaction. More precisely, also the correct type of electrical device needs

to be determined, since an existing light switch that is detected as power outlet, or vice

versa, can lead to different results of the estimated power lines. This thesis approaches

the automatic detection and categorization of these objects by machine vision methods. 2

Additionally, the developed algorithm has to feature adding and updating object categories

to preserve general usability and maintainability.

1.1.2 Data acquisition and properties

All developed tools of the DURAARK framework are designed to operate on collectively

shared input data that is retrieved from an onetime acquisition procedure. This

convention is supposed to minimize the operators effort and maximize the benefit of the

DURAARK tools for all stakeholders. In practice, the data is captured by a stationary,

commercial laser scanner placed at different locations inside a building and consists of

typically one colored 3D point cloud per room and an associated panoramic image of the

indoor scene, which are generated by a proprietary scanner software. Obviously, the de-

tection algorithm we address in this thesis should also operate on the same data standards

defined for the DURAARK framework. Figure 1.3 illustrates an acquired point cloud and

panoramic image of a sample room that fulfills the requirements for the DURAARK tools.

Basically, for data acquisition any arbitrary scanner that is capable of retrieving a

complete 3D point cloud and a panoramic image of a room can be used. Nevertheless,

2Note that the development of the associated DURAARK component is assigned to Fraunhofer Austria.
Thus, some denoted approaches beyond image recognition that are mentioned in this thesis were developed
in cooperation, as they form necessary actions for the component integration.
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a)

b)

Figure 1.3: Data samples of a sample room acquired by a Faro Focus 3D LiDAR-scanner for
the DURAARK framework. Figure a) depicts a snippet of the colored point cloud. This scanner
type acquires the range data by measuring the traveling time of an emitted laser beam that gets
reflected by the scenery. Typical phenomenons in LiDAR-scans like hidden regions or hallucinated
points induced by occlusion, transparency, multi-path reflections or depth discontinuities are clearly
visible. Figure b) shows the corresponding panoramic image that is additionally acquired by the
scanner software by stitching single shots from an embedded camera. Since the purpose of this
camera is mainly to retrieve the color information for the 3D points, it operates on fixed zoom
level and its native resolution is rather low. Also the dynamic range of the camera is insufficiently
adapted to capture objects near the light-flooded windows.
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in order to estimate the expectable density of the data, we shortly cover some relevant

specifications of the Faro Focus 3D scanner, since this model was used for capturing the

reference data.

This particular LiDAR-scanner emits the laser beam via a horizontal and vertical

rotating deflection unit. A distance measurement is triggered 40.960 times per rotation,

or at fixed angular steps of 0.009◦ for each axis. A proprietary noise reduction algorithm

reduces the ranging error to ±2mm, but simultaneously decreasing the number of points by

a factor up to 16. Thus, the scanner achieves a theoretical number of over 100M points per

scan. Due to self occlusion and redundancy filters, the effective resolution of the resulting

point cloud is about 25M points for a single scan. This is an excellent value for a modern

3D scanner, nevertheless, the number of 3D points are limited. In varying geometric setups,

this limitation may become relevant for the detection of small objects. Due to the rotation-

based capturing mechanism of almost every LiDAR-scanner, the density of measurement

points sensing a cuboid room is not homogeneous. The expected scan resolution of a

planar wall segment significantly decreases with the relative distance and angle between

the scanner and the walls surface. As light switches, but especially power sockets are

often mounted close to room corners where the measurement density is supposed to reach

its minimum, a more detailed analysis of the lowest expectable data resolution becomes

necessary. For example, in a room of 5m × 6m and a height of 3m, a center-placed Faro

Focus 3D scanner achieves a spatial resolution of only about 7 to 8 points per cm2 at

the least dense sampled wall regions, which is about one point each 3mm. In a scenario

similar to the test room shown in Figure 1.3 where the scanner is positioned off-center,

the lowest achievable resolution further drops to 3 to 4 points per cm2. The calculation

and simulated scenarios are described in Appendix A in more detail.

Beside the 3D point cloud, also a panoramic image of the room is generated by the

scanner. The necessary 2D data is captured by a build-in RGB camera with a native

resolution of 2 megapixels that takes about 85 separate images during a 360◦ scan. The

proprietary scanner software warps and stitches those images internally, yielding the reg-

istered panoramic image. Although the single images can be exported from the raw data

format, it is difficult to utilize them as an additional information source since even after

a request to the scanner manufacturer the capture poses of the individual images are not

accessible. Anyway, similarly to the 3D point cloud, the level of detail conveyed by the

2D data strongly varies with the scan position relative to the corresponding wall segment.

Practically, off-centered acquisition setups can quickly become the norm since stake-

holders using the DURAARK tools will most likely tend to select the scanning positions as

economical as possible to fulfill their main intention, which is digitally modeling a build-

ings structure. In other words, the scanner will be placed where the majority of the walls

can be observed at once, in some cases simultaneously decreasing the effective resolution

of the acquired 3D point cloud and the panoramic image significantly. Figure 1.4 shows an

illustrative sample of a scanned room, where the chosen scanner position clearly supports

recovering the rooms full structure, while causing a highly inhomogeneous and tremen-
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dously low data resolution at some wall segments. Beside the rooms architecture, also

existing furniture may drive a stakeholder to choose a suboptimal scanning position in

respect to sampling density, as happened in the example of Figure 1.3. Figure 1.5 presents

data snippets of different target objects from Figure 1.3, pointing out the effects of the

chosen scanner position and limited data resolution on the actual data.

Figure 1.4: A sample room scanned in the course of the DURAARK project. The scanner was
placed above the dark spot. Due to the chosen scanning position, the wall surfaces and thus the
room structure is captured at once. However, the chosen scan position is unfavorable in terms of
data density on long-sided wall segments. This image was taken from [33].

1.2 Target objects

Considering their physical appearance, wall-mounted light switches and power outlets

generally consist of rather plain, untextured, monochromatic surfaces. They are typically

designed to be unobtrusive and assimilate with the walls surface and their most distinctive

visual information are edges caused by the objects silhouette and functional indentations.

Although separate instances of target objects serve the same purpose, their appearance

strongly varies as a result of manufacturers offering many different designs to fulfill all

possible customer requirements regarding color, shape and functionality. Furthermore,

different national standards for electrical installations and miscellaneous jointly framed

switch-socket combinations additionally increase the design-induced object variability. For

illustration, Figure 1.6 shows different designs of similar instances of a widely used mount-

ing setup. However, common practice limits the expectable rotation of a mounting frame

relative to the wall to 90◦ steps. The most common visual characteristics of our target

objects are therefore strictly horizontal or vertical orientation of edges, accompanied by

a rather fixed physical size and a symmetric shape. As defined by the application, the

environment in which the electrical devices should be detected are typically full-furnished

rooms.

Reference:

 ()
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a) b) c)

Figure 1.5: Snippets of the point cloud and the corresponding parts of the panoramic image. For
better visibility, the acquired 3D points are shown as black dots on white background. Figure a)
shows a target object that is represented in a high level of detail, since the scanner was positioned
right in front of the electrical device at a distance of about 1 meter. Other parts of the room are
scanned less dense due to higher relative distances and acquisition angles, as shown in b) and c).
Whereas the power sockets in b) were scanned from a higher distance compared to c), the outlets
in c) were captured from a more skewed view point, which results in a diverging horizontal and
vertical resolution and an overall lower number of points. Therefore, the most distinctive parts,
the object gradients, are only barely captured in b) and c). For this visualization, the image parts
were taken from an HDR panoramic image, which was captured by a separate DSLR camera.
Its alignment and size were fitted to the original panoramic image, that was generated by the
proprietary scanner software.

a) b) c) d) e)

Figure 1.6: Target objects of the same type and arrangement, but different designs. Figure a)
shows a Danish socket model without the commonly known cylindrical notch, whereas b) to e)
show the in German speaking countries more established Schuko plugs. Regardless of the type of
an electrical device, there exist a vast of different models and designs.
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When analyzing the visual properties of target instances with respect to data charac-

teristics, we can obtain that the object classes show a high intra-class variability, which

denotes the variances within a single object category. Further, the expected environmental

scene is also characterized by a high variety. Since all these possible non-target objects

can be collectively represented by a background (or ‘negative’) class, also this class is char-

acterized by a high intra-class variability. When observing possible environmental objects

at the targets scale, they often show similar structures and edges compared to the actual

target objects. This occurring similarities between environmental structures and targets

cause a low, so-called inter -class variability, which describes the discriminability between

different data classes. Furthermore, the rather similar appearance between different cate-

gories of electrical installation devices (e.g. power outlets and light switches) confirms a

low inter -class variability also for object type, or ‘positive’ classes.

Both properties, a high intra-class variability combined with a low inter-class vari-

ability over all positive and negative classes, unavoidably evoke several situations where

target objects of different classes and/or their environment are hard to distinguish. This

characterizes a challenging task for data separation in general and so for the automatic

detection algorithm we are addressing, already when considering the bare appearance of

the target objects.

1.3 Deriving the Computer Vision Problem

Based on all aspects of the practical problem, the technical requirements of the automatic

visual object detection algorithm can be derived. First of all we notice, that since the

shape grammar models of the associated DURAARK tool also require information about

the type of electrical device, we are facing a multi-class detection problem. Thus, our

automatic object detection algorithm has to be capable of detecting and, additionally,

identify the correct object category. Furthermore, the corresponding DURAARK module

should offer the possibility to add additional training examples and classes. Therefore,

(re-)training and detection should be executed as short as possible in order to keep a

certain level of usability. However, since training and detection can be done off-line on a

provided server machine, resources and computation time are not strictly bound to specific

requirements.

1.3.1 Handcrafted vs. Automatically Generated Features

Usually, visual data in its original form has a tremendously high degree of freedom, thus,

it can transport a vast of informational content, as expressed by a famous idiom ‘A pic-

ture is worth a thousand words’. However, for an automatic recognition system to operate

computationally feasible, the data has to be reduced in dimensionality by some mechanism

while preserving the essential informations. Even when considering the recently trending

convolutional neural networks (CNNs) for automatized pattern recognition [34, 47, 50],
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dimensionality reduction is intrinsically performed by forcing the network to convey the

input information by only a relative few amount of neurons in inner layers. Anyway, the re-

quired properties that assess visual information as essential are most often task-dependent.

In computer vision, the common terminology of compressed data representing semanti-

cally meaningful information about the scene is a feature. In conventional computer vision

approaches, algorithms that extract features from input data are mostly handcrafted and

do not require an extra training procedure. Thus, in contrast to methods which are able

to learn features automatically (like CNNs), training decision algorithms on handcrafted

feature descriptors usually requires much less data examples in order to reach a sufficient

level of performance. Considering our application, the amount of available data examples

showing electrical installation devices is very limited, simply due to the relatively high

effort that is necessary for capturing those data. Therefore, in the huge field of computer

vision algorithms, we focus on classical object detection and recognition methods that are

based on a pipeline consisting of carefully selected feature descriptors evaluated by a well

designed machine learning classifier.

1.3.2 Exploring the 3D Data

As already outlined above, simulations (see Appendix A) and actual sample scans clearly

indicate that the expectable, effective sampling resolution of the target objects is rather

low. Especially for 3D points, low data quality may become very critical for the detection

of relatively small and undistinctive structures. Therefore, we shortly cover existing com-

puter vision approaches on 3D object description and detection in order to evaluate the

quality of the available 3D data for our problem.

In the past years, free-form object detection and recognition on 3D data has been an

important research field in computer vision. Basically, we can observe three trends in

the recent development of detection algorithms on 3D data. The first pioneering kind of

methods are based on point-wise, local 3D surface description and matching [1, 11, 30, 49],

following the same intention as highly successful interest point descriptors for 2D images,

like the SIFT [36] or SURF [2] descriptor. In general, all local 3D point representations

are generated by evaluating geometric measures of the narrow surface region around the

normal vector of a certain point. Whereas Point Signatures [11] record a one dimensional

distance profile derived from the intersections of an imaginary sphere, Spin Images [30]

project the 3D surface information to a discretized 2D image by accumulating the surface

coordinates mapped to a cylindrical basis. Another point descriptor called Point Finger-

print [49] is generated by projecting centered geodesic circles of different radii onto the

feature points tangent plane. Whereas [11, 30, 49] operate on a fixed, predefined size of

their support regions, [1] additionally utilized the information of the natural scale of each

point by searching for the maximum response over a discrete scale space.

The next generation of 3D object recognition approaches exploit the overall structure

of target objects already in the matching phase by incorporating the spatial information of
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two or more local surface cues, introducing an additional amount of discrimination power

and robustness to clutter and occlusions [17, 19, 40]. In the early COSMOS framework

[17] shapes are matched by modeling free-form objects as a combination of stereotypical

shape primitives. A more modern approach utilizes vertex pairs to construct the bases

for surface-descriptive 3D tensors which store intersecting areas of the local 3D surface

[40]. The approach of [19] pre-calculates point-pair features from every possible pair

constellation of a training object, which can be recognized within the query data by a fast

Hough voting scheme.

The latest trend in 3D object detection algorithms advanced the incorporation

of multi-modal data [18, 26], since modern acquisition hardware usually retrieve not

only the 3D structure, but additional intensity or color information from the scene.

The basic intention of those multi-modal detection algorithms is to combine the

strength and compensate the weaknesses of different data modalities. [18] extends

the point-pair features of [19] by aggregating both, intensity and depth values,

to extract the more descriptive geometric edges of objects. In contrast, a more

generic approach [25, 26] utilizes a large set of pre-calculated multi-modal tem-

plates, which in turn consist of the most discriminant features of the individual modalities.

Although recent research brought up many successful approaches on object detection

and recognition in 3D data, applying them straight-forward to our problem is not sup-

posed to work equally superior. To perform 3D object detection by matching local 3D

surface representations, in general a high degree of repeatability, unambiguity and robust-

ness to rigid transformations has to be achieved. These properties strongly depend on the

distinctiveness of the target objects and a robust acquisition of the surface information.

Considering the simple, flat and symmetric shape of our target objects, the error-proneness

to self-similar structures when matching local interest point descriptors is nearly impossi-

ble to compensate by post-filtering the matching results. Furthermore, the low-resolution

data due to unfavorable view-points inhibits a repeatable and accurate measurement of the

surface and its normal vectors, which are mandatory for the calculation of local surface de-

scriptors. Matching low-resolution data would require more relaxing tolerance parameters,

which result in an additionally increasing probability of false matches.

Approaches modeling the global appearance of targets via a few amount of distinct

local cues combined with their spatial configuration are therefore better suited for our

small, unobtrusive objects. However, these methods are very sensible to even slight shape

variations, since their trained object models are mostly designed to match the exact learned

3D structure within the scene. This lack of generalization capability makes these methods

very hard to utilize for detecting a group of highly varying shapes. A high training effort of

providing models of all possible targets, or loosened matching criteria would be required,

however, which in consequence would introduce a higher possibility to falsely respond

to all other planar non-object structures. Nevertheless, the recognition performance of

global model descriptors also significantly decrease with the low data resolution. These
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restrictions also apply to approaches processing multi-modal information. Further, the

expected improvement of recognition performance by exploiting multi-modal data is also

very limited for our problem due to the weak distinctiveness of the target objects in every

modality.

We conclude that, in contrast to tasks whereat prominent objects with an unique

and distinct 3D structure should be detected, for the wall-embedded and planar targets

we are interested in, the available 3D data is neither valuable nor detailed enough to

perform reliable object detection and recognition directly on that data. However, the

acquired 3D data contains other very useful cues we can exploit.

1.3.3 Wall Texture Images and 2D Feature Requirements

Whereas the 3D information does not feature enough details for directly detecting the

target objects, the room structure and thus the alignment and size of single wall segments

can be reliably recovered. Thus, we pursue an approach that uses the knowledge about the

room geometry in combination with the available panoramic image to generate separate

rectified texture images of each wall segment. Performing object detection on such texture

images benefits from a significant reduction of the complexity of our object detection

problem because of two main reasons. First, due to the known physical dimensions of

the room and the almost constant size of our wall-mounted target objects, a detection

on texture images can be performed on a fixed scale representation by utilizing a simple

sliding window approach. And second, whereas the prominent planarity of our target

objects is in general an unfavorable property for almost every 3D recognition technique,

on a texture image that is aligned to the major plane of flat objects otherwise challenging

view-dependent distortions are rectified to a more invariant appearance. Furthermore,

this approach also serves a more convenient usability for stakeholders when using the final

software, since adding additional object classes or instances of their own interests requires

only providing rectified images. This generally involves much less effort compared to

providing new 3D data of unseen objects to retrain the algorithm. Beside the generation

of texture images, a known room geometry can be also utilized to exclude certain areas

from object search that naturally do not contain electrical wiring, like doors or windows,

and positive matches can be verified by additional constraints like common mounting

heights of specific object categories.

The texture generation algorithm was developed in cooperation and implemented by

Fraunhofer Austria [33], as the room geometry is also a mandatory input for their power

line estimation. In order to extract the wall segments from the 3D data they designed

a semi-automatic approach involving several existing software tools. Given the wall con-

figuration of a room, a texture image is created by back-projecting the panoramic image

from the surface of a sphere onto the corresponding wall plane. In their work, they also

describe the registration of an additionally captured HDR panoramic image to the original
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panoramic image taken from the laser scanner. Although such a separately acquired image

could be theoretically utilized to enhance the resolution and thus the level of detail of the

2D information, the main intention in [33] was to improve the lightning conditions of the

result images, therefore, they resampled the HDR panoramic image in advance to match

the scanner image size. However, for real application scenarios using the DURAARK

framework we can not assume the presence of a secondary image source. By convention,

the texture images are mapped to a spatial resolution of 1mm2 per pixel, thus a common

light switch of 90mm× 90mm covers 90 px× 90 px on the resulting texture image, which

form the final input data of the detection algorithm that is addressed by this thesis. Fig-

ure 1.7 shows the generated wall textures of the same sample room of Figure 1.3, which

are based on an additionally acquired HDR panoramic image that was aligned with the

original scanner panorama.

As discussed in previous sections, it can be observed that also for captured 2D images

unfavorable scan positions have a significant impact on the expected data quality. How-

ever, in contrast to 3D points where with increasing sparsity sometimes indentations on

surfaces are not captured at all, in the case of low resolution 2D images the visual edges are

smoothed out without loosing the information entirely. Nevertheless, for many physical

locations the wall textures show a very high level of image blur. This is mainly caused by

disadvantageous acquisition locations but also by two subsequent processing steps of the

original image data, as the panoramic image is in advance already generated by warping

and stitching individual images before the panorama is warped and resampled again when

calculating the wall projections.

Consequently, well designed 2D descriptors are required to reliably model the visual

appearance of wall mounted objects on the resulting texture images. Basically, on the

one hand a feature descriptor is constrained to yield similar vectors for the same type of

target objects, regardless of varying preconditions during the data acquisition procedure,

while on the other hand good features are supposed to group instances in feature space

according to their object class as clearly as possible. Matching both demands is especially

challenging if already the physical appearance of the classes is characterized by a high

inter- and a low intra-class variability.

For practical computer vision applications in general, probably the most successful

object detection approaches are based on local patch descriptors calculated on around

saliency points [8, 36]. However, in the case of untextured electrical devices exclusively

consisting of undistinctive edges and corners, these methods are prone to generate only

an insufficient amount of interest points which also have a high chance to form false

correspondences in heavily cluttered scenes. Furthermore, when considering our approach

of using rectified texture images combined with the physical shape and mounting practices

of the target objects, the advantageous properties of algorithms based on local patch

descriptors on handling occlusions and most likely a certain degree of invariance to scale,

affine and perspective distortions become minor demands.

In contrast, a well suited feature descriptor for our addressed application requires
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to yield similar values for images of highly varying quality. Related to this property,

another important demand is a high invariance to illumination changes since different wall

segments of a room show significantly diverging lightning conditions. Therefore, we favor

image descriptors that are designed to model the overall visual appearance of a larger image

patch showing an electrical device in its entirety, and focusing on specific arrangements

of image gradients while at the same time also tolerating an adequate level of diversity In

order to exploit various visual cues that are emphasized differently by certain descriptors,

we consider combining multiple algorithms forming a high-dimensional vector.

1.3.4 Classifier Requirements

Whereas choosing proper image descriptors is basically the most crucial step in designing

a classical computer vision pipeline, the addressed problem also requires a well considered

learning algorithm. As an initial step on defining the requirements on the classifier, a

first choice on the actual learning objective has to be made. In general, an automatic

data classifier can either directly learn a posterior probability model via parameter fitting

according to given data for each class, or, learning a conditional probability model from

discrete observations how to best separate the classes. Classifiers where the first case

applies are commonly known as generative models, whereas the latter type of classifiers

form the group of discriminative models. The first decision that has to be made for

selecting an appropriate algorithm is whether a generative or a discriminative approach

is better suited for the corresponding task. As shown for example by [41], the common

belief that discriminative approaches necessarily perform better than generative models

is not always correct. Furthermore, Bishop and Lasserre [3] even proposed a method to

combine both, generative and discriminative models.

However, the environment in which our rather undistinctive target objects need to

be detected introduce a lot of clutter which can mislead the detection algorithm due to

similar looking structures. The high amount of common visual cues between different ob-

ject categories of electrical components may also result in confusing target object classes.

Therefore, we prefer a discriminative approach to learn different object classes and back-

ground against each other, because those algorithms typically focus on finding distinctive

features that best discriminate the classes, instead of generally modeling the target object

appearance whereat the probability of producing a high feature overlap between similar

looking object categories is potentially much more likely. Additionally, discriminating clas-

sifier models typically require much less training data compared to generative approaches,

which facilitates the process of extending and adding object classes.

On the downside, this decision requires establishing a ‘background’ or ‘negative’ class

that is theoretically supposed to hold all possible non-target image patches of indoor

environments, i.e. basically everything imaginable inside a room that is not a component

of electrical installation. Needless to mention, that this class has to contain of a very large

amount of samples.
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In contrast, for usability purposes introducing new object classes should be feasible

even for non-experts while requiring as less effort as possible. Beside other consequences,

this aspect also yields a low expectable amount of actual target samples. Thus, whereas

the background class needs to contain a huge amount of training samples, only a small

amount of training instances of target objects should be sufficient. This results in a highly

imbalanced data set. In order to handle imbalanced training data, basically for every

classifier approach over- or under-sampling techniques can be applied. However, we assume

that re-sampling in an amount-compensating scale of such extreme imbalanced data like

ours will exceed its reasonable legitimation relatively fast, as the representativeness of

real-world scenarios by the training data would drift away too far from reality. Hence, one

key requirement on the classifier is that it can deal intrinsically with extremely imbalanced

training data associated with a relatively small absolute amount of target samples.

This context in conjunction with a high dimensional feature vector, another impor-

tant characteristic of a suitable classifier algorithm can be formulated. As someone would

naively expect using more image descriptor approaches yields more valuable data for the

classifier and thus necessarily increases classification performance, on the downside also

many redundant or generally weakly informative measures are produced. This may com-

promise the final performance of a classification hypothesis, especially when the classifier

is trained from very few data samples and easily struggles with under-determined learning

problems in general. Thus, the capability of identifying and focusing on the best features

out of a large feature pool while paying less attention to those of less discriminative power

is also a desirable property.

Reconsidering non-expert users providing new training data on purpose, other

demands on the classifier algorithm are the ability to deal with a certain level of noise in

the data, providing a fast re-training procedure and an extensible multi-class capability,

all without the need of extensive testing and special parameter tuning.

1.4 Summary and Outlook

Concluding, we are addressing a multi-class object detection problem targeting wall-

mounted electrical devices in full-furnished rooms. To ensure an adequate level of as-

similation to interior design and additionally serving various customer needs, their 3D

structure and their visual appearance is very unobtrusive, but simultaneously showing a

high degree of diversity. More generic, the targets can be characterized as untextured,

plain, small but individual objects, whose most distinctive parts are a small amount of

gradients caused by functional indentations and the outer object boundaries. The data is

given by a real-world application and consists of a 3D point cloud and a 2D panoramic

image which are captured by a LiDAR scanner utilizing its proprietary software. Since

the LiDAR scanner operates on a fixed radial scan grid, more distant and skewed surfaces

can show a very low level of detail in the acquired data. These conditions combined with



1.4. Summary and Outlook 15

a desired economical usage of scans limit the expectable acquired details of the target

objects in the investigated scenes significantly. In fact, the most discriminative parts of

power sockets and light switches are not captured reliably by the available 3D scans, which

consequently disqualifies existing object detection methods on 3D data to sufficiently solve

our problem. However, the characteristic visual structures have a much higher chance to

be captured by the panoramic images although they may show a very high level of blur.

Therefore, we propose an object detection approach based on 2D wall texture images that

was especially designed for the addressed application and exploits the available information

and the properties of our targets the most beneficial way. First, the extracted 3D infor-

mation about the room geometry is used to map the panoramic image to a rectified, fixed

scale representation. Afterwards, a standard computer vision pipeline consisting of well

designed feature descriptors and a classifier algorithm is applied under a sliding-window

approach to detect the target objects. While the extraction of the texture images is neces-

sarily conducted by software modules assigned to Fraunhofer Austria, this thesis addresses

the visual object detection based on those wall texture images. Here, the main challenges

lie in reliably modeling object-sized image patches under varying quality and illumination

conditions and dealing with highly imbalanced datasets. In order to achieve satisfying

detection performance we claim that both, the feature descriptors and the classifier, need

to be carefully designed and adapted to each other.

In Chapter 2 we cover state-of-the-art methods on feature descriptors and classifier

algorithms which are most suitable for the given problem. The best suited concepts

form the basis of our developed approach, which is described in more detail in Chapter

3. Experiments and evaluations of the vision pipeline on real test data are presented in

Chapter 4. Finally, thesis is concluded in Chapter 5, followed by a discussion of possible

further improvements that may enhance the achieved results.
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a) Wall textures (top, bottom) extracted from panoramic image (center)

b) Rectified target objects

Figure 1.7: Figure a) shows all relevant wall textures in their original scales ratio that were
generated from a panoramic image and a known wall configuration by projecting the image onto
a canonical plane of a fixed spatial resolution. Hence, the geometric scale of all wall-mounted
objects is constant over all resulting texture images. Figure b) shows equally sized snippets taken
from different texture images that contain power sockets. Due to the spatial rectification the
cylindrical notches of all sockets are shown as equally sized circles, whereas the image quality
varies significantly.
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In this chapter we outline state-of-the-art methods addressing to our object detection

problem and discuss their applicability in respect to the derived requirements. We

begin with an insight into recent achievements on detecting power sockets in the field of

robotics, although they basically have to fulfill different requirements. The main part is

divided into three sections. The first part gives the reader a general overview of recent

approaches tackling visual detection of untextured objects. The second part covers

potential candidates of feature extractor algorithms that fulfill our demands, where each

of them represents a diverse, powerful concept of describing the overall appearance of

an image patch. Due to the special requirements on the classifier, we complete the

main part with an outline of three machine learning techniques that have successfully

proven their applicability in many practical applications and discuss their strengths and

weaknesses in respect to our problem. Finally, this chapter is concluded by a summary of

the acquired knowledge.

2.1 Detecting Power Outlets in Robotics

Considering the task of detecting power sockets, recently this problem gained much at-

tention in the field of robotics in order to build self-charging robots [7, 20, 39]. In [7] and

[39] the recognition task is basically done by template matching after image rectification

according to the normal vector of the wall. In [20], they segment different hole candidates
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of a power outlet by applying a simple version of the Maximally Stable Extremal Regions

(‘MSER’) approach [16, 38]. Then they classify them as power holes, ground holes or back-

ground by applying the one way descriptor method [27] and finding the nearest neighbor

in PCA space, followed by geometric filtering the results.

Although these approaches have successfully enabled autonomous robots to detect

power sockets in indoor environments which basically matches also our problem descrip-

tion, however, further investigations reveal significantly different requirements of these

methods which disqualify them for our application. Generally, in robotic applications, the

remote camera is actively movable and thus able to investigate a wall segment multiple

times from different perspectives and positions. This opportunity is deliberately exploited

by robotic scientists. Whereas in [20, 39] the robot actively navigates to a known position

of a power outlet before visual detection is performed, in [7] only a standardized mounting

height is investigated while moving the robot along the wall.

Considered from a computer vision perspective, these methods are rather error-prone

to bad image quality, clutter, and a high intra-class variability, e.g. different designs and

models of sockets. Furthermore, typically only one specific socket type has to be recognized

and false negative detections (missed sockets) on a single image are not critical in the

application context. When object detection on fewer or even just one single scan should

be performed, much more reliable approaches which are capable of handling a wider range

of view angles and appearances become necessary.

2.2 Detection of texture-less Objects

2.2.1 Recent approaches

Since untextured objects mostly require specialized approaches to describe their appear-

ance the most expressive way, texture-less object detection in general became a rather

independent research field in computer vision. When objects cannot provide specific tex-

tures, their contour typically becomes their most discriminative feature, on which untex-

tured object detection algorithms usually focus on. Thus, a reliable extraction of the

object boundaries is a mandatory preprocessing step for many methods. Holzer et al.

[28] utilized distance transform templates to detect and estimate the relative pose of un-

textured objects based on their contour for augmented reality purposes. Their approach

requires extraction of almost closed contours, which they compute by applying the Canny

edge detector [9]. Likewise, the point pair features of Drost et al. [18] which describe

constellations of geometric edges for texture-less object detection, also uses the Canny

edge detector in combination with a depth image to extract the edges.

A different approach to acquire and describe object contours, more precisely regions

enclosed by contours, is the MSER detector and descriptor [38]. This approach eval-

uates the evolution of the resulting binary regions when thresholding the input image

over the full range of intensity values. Regions are considered as maximally stable when
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their appearance does not change significantly over a pre-specified amount of consecutive

thresholds. For efficient calculation, a connected graph structure can be utilized to model

the evolution of regions over different thresholds and allows using the MSER detector and

descriptor even for real-time applications [16].

In an approach less dependent on the clarity of gradients, Hinterstoisser et al. [26]

match templates consisting of gradient responses to implement fast and reliable detection

of untextured objects in natural scenes. Their concept is based on describing a target

object by a set of gradient response maps incorporating the location and the dominant

orientation of a gradients for different poses. In order to extract the gradient information,

they simply use the maximum derivative of the intensity values over each color channel.

Discussion Considering the challenging input data of our task, in which the visible

object boundaries are usually blurred and tend to vanish in the surrounding, we do not

consider approaches relying on reproducible results of the Canny edge detector as suffi-

ciently robust. Similarly, although the MSER descriptor and detector is very robust to

illumination changes, this detector only retrieves regions that show a sufficiently stable

and closed contour. On the other hand, template based approaches are much less vulner-

able to missing fragments of the object contour. However, they require a relatively high

number of templates for representing one object and are rather restricted to recognize

only the exact instances represented in the training data, which is a significant drawback

considering the usability of our application.

Concluding, in literature we could not find an approach that promises good results

when applied directly to our task, mostly due to the special properties of the input data.

Therefore, as already mentioned, we aim at developing a standard computer vision pipeline

consisting of carefully selected feature descriptors and classifier, of which the most promis-

ing concepts are discussed in the next sections.

2.2.2 Feature Descriptors

2.2.2.1 Histogram of Oriented Gradients

The first image descriptor that matches the majority our requirements, is the

‘Histogram of Oriented Gradients’ (HoG) descriptor of Dalal and Triggs [13]. This very

discriminative and at the same time generalizing representation of object silhouettes

compiles gradient histograms binned to their direction over certain sub-image-patches

(referred to as ‘cells’) via a weighted voting scheme incorporating the gradient magnitude.

These cell histograms are then normalized over (usually overlapping) cell-blocks

forming the descriptor values. While this approach also effectively codes the spatial

configuration of the gradients strength and orientation, it simultaneously tolerates a

certain level of variation given by the adjustable size of the cells and blocks. Undeniably,

the discriminative power and thus the success of this descriptor also relies on a well

considered preprocessing, including gamma and color normalization, and an aliasing
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avoiding interpolation of the histogram votes. Beside the basic algorithm, Dalal and

Triggs also described and investigated different variants of their descriptor. In order to

exploit color information, they proposed calculating separate gradients for each color

channel and considering only the one with the highest magnitude for each pixel. In

order to equally model silhouettes that can be formed either by light-dark or dark-light

transitions, they defined an undirected version of the HoG descriptor that bins gradients

in a range of [0◦, 180◦) instead of the full range of [0◦, 360◦). Furthermore, they also

investigated rectangular and circular arrangements of the cells to form different block

geometries. In the original paper, Dalal and Triggs applied a Support Vector Machine

(‘SVM’) classifier to their descriptor in order to perform detection of humans. Since then,

many object detection methods successfully reused the concept of the HoG descriptor

combined with a SVM classifier as a basis for more sophisticated algorithms. However,

considering our problem of detecting rigid, planar object on a fixed scale, the original

HoG implementation fulfills all necessary constraints. A common visualization of the

HoG descriptor on the original example of [13] is shown in Figure 2.1.

a) Input image b) Hog features c) Weighted HoG features

Figure 2.1: Visualization of the undirected, rectangular version of the Histogram of Gradients
(HoG) descriptor applied on an image of a human. Figure a) shows the input image. Figure b)
illustrates the calculated Histogram of oriented Gradients descriptor, where the length of the white
lines in each cell represents the strength of the binned gradients in their corresponding direction.
Additionally to b), in Figure c) these lines are weighted by their importance values for the task of
a human detector, which were learned by a Support Vector Machine. All three figures are taken
from [13].
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2.2.2.2 Statistics over local subregions

An other, more generic technique to describe the content of image patches by a few values

is to evaluate first- and higher-order statistics over spatially distributed subregions. Based

on this concept, a lot of different image, but also interest point descriptors emerged to

fulfill various requirements, spanning from very simple but highly efficient binary tests of

single pixel values in the BRIEF descriptor [8], over rectangular Haar-like wavelet features

[42, 53] that estimate local derivatives, up to more complex weighted combinations of

multiple rectangular subregions [15]. The usage of rectangular subregions in this context

allows very efficient computation of sums over these regions via integral images [53].

In order to cover as much diverse characteristics of target objects as possible, the

majority of the most successful approaches select their feature regions in a highly ran-

domized fashion. Whereas this random generation strategy often brings up very powerful

and sometimes unexpected features, also many rather weakly informative values are pro-

duced. Therefore, usually a classifier with good feature selection capabilities is required

for those image description strategies. Whereas the first upcoming approaches evaluated

subregional statistics only on the original intensity images, this technique also enables

expressing multiple filter responses or image sources by a common feature vectors in an

effective way.

This methodology was intensively used by Dollar et al. in [14] to generate features

from a diverse collection of image filters, which they refer to as ‘feature channels’. These

feature channels were then described by a large amount of randomly generated first order

sums of rectangular subregions and more complex weighted combinations, even spanning

over different filter responses. In their work, as feature channels they used gray- and

color-information, Gabor-filter responses, gradient magnitudes, Canny edges, thresholded

images, product-, mean- and maximum-values and gradient histograms, forming a compet-

itive pedestrian detector. A more general object detector [31] combines scene information

from different sensors (i.e. a depth image aligned with various filtered responses of color

image) and aggregates the feature values by applying Haar-like wavelets over the different

scene representations. With the concept of statistically interpreting image information

of certain subregions, also histograms can be calculated via first order sums of spatially

distributed rectangles applied on quantized versions of the original image. For example,

in [56] Zhu et al. used integral images to approximate HoG features.

A graphical illustration of the calculation of first order sums over rectangular subre-

gions via integral images that combine different filer responses to a single feature vector

is shown in Figure 2.2.

2.2.2.3 Principal Component Analysis

Instead of extracting visual features as partial quantities directly from the image data,

another approach to describe image content is based on interpreting whole images as single

data points in a high-dimensional data-space whereat each dimension represents a pixel.
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P1

Origin Image Filter responses Integral Images Feature Vector

P4

P2

P3

Figure 2.2: Calculation of first order sum features over rectangular subregions via integral images
from different channels. Multiple image filters that are applied to the query image to form different
feature channels. These feature channels can be effectively described by spatial first order statistics
of randomly generated rectangular subregions. For efficient computation, for each filter response
image R(x, y), an integral image representation is calculated as IR(x, y) =

∑x
i=1

∑y
j=1R(i, j).

Using this representation, the sum of a rectangular subregion Sk in image R(x, y) can be determined
just by evaluating the values of its 4 corner points in the corresponding integral image as Sk =
IR(P3) − IR(P2) − IR(P4) + IR(P1). In order to describe the origin image, the calculated sums
of all feature channels are concatenated in one feature vector. Also other measurements can form
the image description vector, like differences of sums of rectangle pairs or more complex, weighted
sums distributed over multiple feature channels.

While directly classifying these data is usually unfeasible due to the high dimensionality,

data compression methods can be applied as a form of a learned feature descriptor that

reduces dimensionality by mapping images onto a much lower dimensional feature space.

In order to preserve a high level of informational content, this feature space is spanned by

precomputed basis vectors representing the most descriptive characteristics of a training

set.

One data compression method that was successfully applied to images is the Principal

Component Analysis (PCA) which finds new orthogonal basis vectors in whose direction

the original data points show the highest variance. These directions are calculated by

the Eigen-vectors of the covariance matrix containing all input points. After projecting

data points from the original data space to their so called Eigen-space, only the dimensions

corresponding to the highest Eigen-values are needed to represent the most essential infor-

mation of the original data. Hence, this method is a lossy data compression method that

performs dimensionality reduction in a derived orthogonal subspace, whereat the variance

of projection of pre-observed data is maximized and simultaneously their reconstruction

error is minimized. Mathematically, for a data matrix

X =
[
x0 x1 x2 . . . xn−1

]
; X ∈ Rm×n
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holding n m-dimensional data points as column vectors, an Eigen-vector ui and its corre-

sponding Eigen-value λi must fulfill

XXTui = λiui.

Theoretically, there exist m Eigen-vectors where λi 6= 0. In PCA data compression, only

a small amount k � m of Eigen-vectors u1..k are considered as new basis, which are

ordered by their dominance represented by their corresponding Eigen-values λ1..k. When

concatenating the Eigen-vectors u1..k to a matrix

U =
[
u1 u2 u3 . . . uk

]
; U ∈ Rm×k

because of their orthogonality (thus, U−1 = UT ), a data point xi can be

projected by: x′i = UT (xi − µ)

back-projected by: xi = Ux′i + µ

to and from its Eigen-space representation x′i, whereas µ is the mean vector of all data

points from which the Eigen-values and Eigen-vectors are calculated. Figure 2.3 graphi-

cally illustrates the compression principle for sample two-dimensional data.

In image processing, PCA, or ‘Karhunen-Loeve transform’, can be utilized to represent

whole images as linear combination of a few pre-calculated Eigen-images. When each

image is considered as one data point in a pixel data space, the data matrix X ∈ Rm×n

then holds all pixels of each training image as column vectors, whereas m is the number

of pixels and n is the number of training images. Further, the PCA revealed basis vectors

can be considered themselves as images of m pixels, which represent the most significant

variations across the training images. Since the projection of a query image onto a new

basis is done by calculating the dot-product of the two vectors, the resulting projections

can be basically interpreted as cross-correlation scores between the query and the Eigen-

images.

2.2.3 Classifier candidates

After collecting good discriminative features, in a classical object detection pipeline a

classifier algorithm is utilized to assign a certain class label to the corresponding feature

vector generated from an image patch. Although choosing proper feature descriptors

is probably the most important step in designing an object detection system, the

addressed problem also imposes high requirements on the classifier. Thus, we will outline

the Support Vector Machine (‘SVM’), AdaBoost and the Random Forest classifier

and discuss their applicability for our object detection problem in special respect to

imbalanced training data, multi-label classification and feature selection capabilities.
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x1
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u1
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a) original data

u1

u2

projection back-projection

b) neglect less dominant components

x1

x2

c) compressed data

Figure 2.3: Principal components of two-dimensional sample data. Figure a) shows the scatter
plot of the original data, whereat their principal component vectors are drawn as blue, dashed lines.
Figure b) shows the data points projected to their Eigen-space. Here, the dimension corresponding
to the lower Eigen-value is neglected to perform data compression. Figure c) shows the compressed
data back-projected to the original data space. The most important information of the data,
measured by its value on the axis of the highest variance, was preserved.

2.2.3.1 Support Vector Machine

The first mathematical formulation on Support Vector Machines came up by Boser et al.

[4] in the early nineties, as a concept of optimal data separation. Although this approach

was already known for a long time, it attracted the attention of Computer Vision about

a decade later. Nowadays, in many scientific papers, Support Vector Machines are used

as reliable standard classifier algorithm for any type of classification and regression task

[13, 22]. Additionally, the clean mathematical formulation of SVMs enables scientists to

derive more and more flexible and application-optimized versions.

The basic learning objective of a SVM is to find an optimal decision boundary for

training samples of two classes that minimizes the classification error and maximizes the

margin between data samples and the learned data separator. Figure 2.4 illustrates this

objective of a linear SVM classifier in a two-dimensional feature space.

Considering the training samples as vectors xi ∈ RD in the feature space along with

their corresponding data label yi ∈ {−1,+1}, then solving a SVM reveals, that the optimal
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max margin

F1

F2

Support Vectors

decision boundary

Figure 2.4: Learning objective of a SVM classifier. To discriminate provided training samples
of different classes, a (hyper-)plane, respectively a line, is determined that optimally separates the
data classes. A solution is considered as optimal when the data samples are separated properly
and the margin between the nearest training samples of the confronted classes to the plane/line is
maximized. As the found solution only depends on the data points closest to this linear separator, a
SVM is completely described by these so called ‘Support Vectors’. The classification of a query data
point is performed by determining on which side of the separation plane (aka decision boundary)
the point is located.

separation plane parameters ω∗, b∗ only depend on a small set S of training samples

where ys · (ω∗ · xs + b∗) = 1, s ∈ S. The training samples xs, s ∈ S are referred to

as Support Vectors. This property results in a very efficient classification of a query

sample xq, since only dot-products of and with those Support Vectors 〈xq,xi〉 , i ∈ S and

〈xi,xj〉 , i, k ∈ S need to be evaluated. Furthermore, this observation allows mapping the

original feature space into another feature space via applying kernel functions with minimal

computational costs. As also for the training procedure only dot-products of (projected)

samples are required for the calculations, it is unnecessary to ever directly evaluate the

mapping function. Thus, usually special mappings are chosen whose dot-products can be

calculated very cheaply, therefore, polynomials or radial basis functions became popular

kernel functions. These non-linear projections can be particularly useful when no or only

an insufficient linearly separating hyperplane can be found in the original feature space.

For practical classification tasks, the so called C-SVM [12] is probably the most common

variant of the Support Vector Machine. It extends the original hard-margin classifier by a

soft margin classifier that accepts, but penalizes outliers in the calculation of the separation

plane. This modification usually leads to better results on the test data by lowering

overfitting effects, but often requires extensive searching for the best suited regularization

parameter C. In order to rate certain parameters for a specific problem during training,

k-fold cross validation is a recommended training procedure.
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Imbalanced Training Data Since the soft margin based models minimize a cost func-

tion that is basically a trade-off between penalizing single instances and maximizing the

margin for all other samples, for extremely imbalanced training data most likely the major-

ity class is undesirably preferred in a reasonable penalty parameter setting. As proposed

in [35], a possible solution is to use different penalty parameters for the classes, which

significantly increases the complexity of searching their optimal values.

Multi-Class classification Due to the binary nature of Support Vector Machines, in

the case of multi-class problems additional strategies must be applied. [29] shows that the

one-vs-one approach as described in [32] is one of the best methods to implement multi-

label classification for Support Vector Machines. Thus, especially for multi-class problems

that have to be split up in multiple binary problems, proper training of a C-SVM classifier

can become highly intensive very quickly.

Feature selection A challenging configuration for SVMs is when the number of samples

is much lower compared to the number of feature dimensions, especially if the data contains

a high ratio of weakly informative features. Instead of cherry-picking the most useful

features, a SVM always tries to optimize its decision boundary over all feature dimensions

simultaneously which may fail in achieving a sufficient level of generalization due to the

lack of training samples. One way to provide a quality measure as a basis to choose a

certain feature subset is applying cross validation also in the feature space, however, this

would additionally increase the computational costs and amount of required samples for

training the classifier. Therefore, we do not consider this approach as an practicable option

for our task. In such a case that no additional feature-selection algorithm can be applied,

for extremely imbalanced classification problems formulated in a high dimensional and

relatively noisy feature space [43] suggests to use one-class SVMs [45] separately trained

on the object classes. However, since we suppose that individual one-class SVMs trained

on very similar looking objects will necessarily share many joint features and thus imply

a higher risk to confuse object classes than discriminative trained models, we probably do

not overcome this potential problem of SVMs for our application.

2.2.3.2 AdaBoost

Adaptive Boosting (short ‘AdaBoost’) is a powerful technique to form a strong classifier

from several individual weak classifiers in an iterative fashion [23]. As weak classifier,

basically any data separation heuristic can be chosen that supports weighting of its training

samples. Due to its greedy iterative training procedure the resulting strong classifier

converges when each single weak classifier achieves an prediction accuracy of only > 50%.

Considering a binary classification task, this means slightly better than random guessing.

Furthermore, it can be proven that with each iteration the error on the training data

decreases exponentially fast, while the resulting decision boundary is automatically refined

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()



2.2. Detection of texture-less Objects 27

at each iteration step. However, this only holds when it can be ensured that each weak

classifier is independent of the others, which is in practice difficult to achieve since usually

the training data provided for each iteration rely on the same database. As additionally

the sample weights of each iteration depend on previous calculations, an other practically

related drawback of Boosting in general is the lack of possibilities to exploit the full

speedup potential of modern hardware for the training procedure. Figure 1 outlines the

basic AdaBoost algorithm, whereas Figure 2.6 illustrates the resulting strong classifier of

a training example in a two-dimensional feature space.

Imbalanced Training Data In scenarios of imbalanced amounts of training instances

per class, just like most of the standard classifiers AdaBoost tend to develop weak

classification performance on minority classes. Considering the basic algorithm, there

are only a few possibilities to tackle this problem. First, someone could adjust the

prior probability of the training data by setting higher initial weights on samples of

minority classes. Nevertheless, after a few iterations, the sample weights will converge

to similar values compared to using uniform starting weights, thus the corrective effect

of non-uniform weight initialization fades with every iteration. The second possibility

on handling class imbalance is to use cost-sensitive boosting [21, 37, 48]. However, cost

parameter selection is very crucial and these approaches show very diverging performance

results on varying datasets. Additionally, the absolute performance gain compared to

non-cost-sensitive boosting methods applied on the same data is also very dependent on

the dataset and sometimes inconsiderably small even when the best cost parameters were

found.

Multi-Class classification For multi-label classification problems, the original Ad-

aBoost framework is much less powerful. First, the weak classifiers have to be capable

of processing multi-labeled data, and second, their classification performance also has to

reach over 50% prediction accuracy regardless of the amount of classes, which is much

more challenging to achieve compared to a binary classification scenario. An extension of

the basic boosting algorithm named ‘AdaBoost.MH’ [44] introduced a much better support

for multi-class problems by exchanging each weak classifier with an ensemble of binary

classifiers trained on one-vs-all representations of the original problem. The predicted

class is then jointly determined by the majority vote.

Another approach to improve multi-class support for the basic AdaBoost framework is

the ‘SAMME’ algorithm [55] which is based on a modified weight calculation of the weak

hypothesis, such that the algorithm still converges when the weak classifier performs just

slightly better than random guessing also in multi-class scenarios.

However, both SAMME and AdaBoost.MH are prone to reject potentially strong fea-

tures that could separate similar classes jointly from others very effectively, since only the

one-vs-all performance of simple classifiers are taken into account. Especially for applica-
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Algorithm 1: Basic AdaBoost Algorithm

Data: (x1, y1), . . . (xN , yN ) : xi ∈ RD, yi ∈ {−1,+1}
initialize sample weight distribution D1(i) = 1

N ∀i = 1..N
for t = 1 . . . T do

train/choose optimal weak classifier ht(x) 7→ {−1,+1} using Dt(i)
calculate error on the training set

εt =
N∑
i=1

Dt(i) [ht(xi) 6= yi]

assign weak classifier weight

αt =
1

2
ln

(
1− εt
εt

)

update sample weights

Dt+1(i) =
Dt(i)

Zt
×
{
e−αt , if ht(xi) = yi

eαt , if ht(xi) 6= yi

=
Dt(i)

Zt
· e−αtht(xi)yi

where Zt is a normalization constant s.t. Dt+1 yield a distribution

end
Result: Final strong classifier

H(x) = sign

(
T∑
t=1

αtht(x)

)

Figure 2.5: The basic AdaBoost Algorithm for binary classification problems. For initialization,
to each training sample (xi, yi) an uniform starting weight D1(i) is assigned and a first weak classi-
fier h1(x) is trained with respect to perform best on the training data. According to the prediction
of this weak classifier, the weight of each training sample is increased if classified incorrectly, or
decreased if the prediction is correct. After renormalization of the training sample weights, the
next optimal weak classifier is chosen that minimizes the error on the re-weighted data. The final
strong classifier is then formed by a weighted combination of the weak classifiers ht(x), whose
weights αt are determined by their evaluated classification performance.
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F1

F2

weak classifier

combined strong classifier

Figure 2.6: The AdaBoost algorithm demonstrated in a two-dimensional feature space. Separate
single weak classifiers (here simple decision stumps represented by dashed lines) are combined as
weighted linear combination yielding a strong classifier. This simulation shows the result after
performing 5 iterations.

tion scenarios where the object classes share most of their visual cues we consider this a

suboptimal strategy. Exactly this observation was the initial motivation for another vari-

ant of AdaBoost called ‘JointBoost’ [51, 52]. JointBoost aims at finding the most useful

feature that can also be descriptive for more than one class in order to best separate the

weighted training samples at each boosting iteration. This is achieved by investigating all

possible groupings of the classes that can form a binary problem, not just one-vs-all config-

urations. On its downside, JointBoost requires a much more extensive training compared

to other boosting variants and we have also not found any cost-sensitive modifications in

literature to improve handling of class imbalance.

Feature selection Due to its greedy iterative fashion, AdaBoost and all derived algo-

rithms provide effective intrinsic feature selection capabilities. Out of a large pool of weak

classifier candidates each representing to a selectable feature, the algorithm will choose

the one that best improves the performance on the weighted training samples at each

iteration. The sample weights themselves model how well they are already represented by

previously selected features, and therefore, redundant features are omitted. These proper-

ties were often proven and exploited by many research papers over the last decades which

successfully applied Boosting to select the most useful features from a large feature pool

[14, 31, 53]. On its downside, the greedy fashion of selecting weak classifiers makes Ad-

aBoost in general error-prone to outliers and overlaps in the training data, a scenario that

cannot be excluded for our application considering users adding new samples of similar

looking target classes for their purpose and re-training the framework.
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2.2.3.3 Random Forests

As final classifier algorithm candidate we discuss random forests [6], which show a remark-

able record of successful implementations in practical and even commercial applications

[46]. Similar to AdaBoost, its basic principle is to form a strong classifier from an ensemble

of weak classifiers, more precisely randomized binary decision trees. However, in contrast

to AdaBoost where training follows an iterative, deterministic procedure, random forests

gain their strength from compiling randomized, and therefore, non-deterministically cre-

ated hypothesis. Furthermore, while AdaBoost rates the individual prediction errors of

the weak classifiers and thus their influence on the final result, the final decision of a

random forest classifier is simply determined by the majority vote of all decision trees,

regardless of their single classification performance.

When training a sufficient amount of trees, due to this basic concept of randomized

and equally treated predictors the combined ensemble show good generalization perfor-

mance while the recursive structure of the trees necessarily minimizes the training error.

The underlaying strategy of a single binary decision tree that separates given samples by

consecutively applying randomly chosen split functions is demonstrated in Figure 2.7.

In this illustration, for a training set S = {X1, X2, .. XN} whose samples Xi = {xi, yi}
consist of a feature vector xi ∈ RD and a class label yi ∈ {1, 2, .. C}, the binary split

function fn(Xi) 7→ {L,R} that divides S into two subsets SL and SR is defined as

fn(Xi) =

{
L, if xi(d) < xth

R, otherwise

where xth is a fixed threshold applied on the dth dimension of xi. Therefore, fn(Xi) is fully

defined by the tuple [xth, d], d ∈ {1 .. D}. As this is probably the most common definition

of a split function for binary decision trees, also other heuristics of fn(Xi) 7→ {L,R} are

conceivable.

During the training procedure of a single decision tree for a random forest classifier,

the randomness is induced mainly by the choice of the split function. Typically for each

newly created node the best split function is selected from a moderately large pool of

randomly generated candidates according to a certain scoring measure. In [6], Breiman

suggests to select candidates for a split node only from a small subset of the feature space

to achieve good generalization, hence d should be chosen from a subset D′ ∈ {1 .. D} where

|D′| � D. However, also more extreme randomization approaches have been studied [24].

One common quality measure of candidate split functions is the information gain, which

describes the relative change in entropy of a data set when it is divided into subsets. The

information gain for a binary split function fs(Xi) 7→ {L,R} that divides S into two
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Figure 2.7: Illustration of the basic principle of a binary decision tree in a two-dimensional
feature space. At each ‘split node’ of the tree, a selected threshold and feature dimension separates
the feature space into two parts. The tree structure is build up by recursively performing such
binary test functions continuously dividing the feature space into smaller sections and passing
the corresponding training samples to the child nodes. In this visualization, the left paths follow
the condition of the value of the chosen feature dimension to be lower then the corresponding
threshold, otherwise, the right paths are selected. The creation of new child nodes during training
is typically aborted at a maximum depth level, when a minimum number of training samples within
a child node is reached, or when the training samples show a unary label distribution. Under this
conditions a ‘leaf node’ is formed, that can store a full label histogram of the remaining training
samples or simply the label of their majority, finally yielding a fully partitioned feature space. A
query sample can then be classified according to the leaf node that is reached after carrying out
the subsequent binary tests down the tree.

subsets SL and SR is defined as

IG(fs(S)) = H(S)−
∑

k∈{L,R}

|Sk|
|S| ·H(Sk) (2.1)

where H(S) denotes the entropy of a sample set S in respect to their labels yi, that in

turn is calculated as

H(S) = −
C∑
c=1

|Sc|
|S| · log

|Sc|
|S| (2.2)

whereat |Sc| names the cardinality of the subset Sc ⊆ S containing all samples in S with

label c.

Focusing on the ensemble of trees, additional randomization techniques can be ap-

plied on the selection of samples from which a whole tree is trained. A well-established

approach is to generate different training sets for each tree learner by random selection
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Figure 2.8: Bagging applied on the training procedure of a random forest classifier. For each
individual tree the training set is re-sampled via random selection with replacement. Those samples
that are left out for a particular decision tree are marked as ‘out-of-bag’ (gray background color).
After training, the generalization error of the final random forest can be estimated by classifying
each out-of-bag sample via an ensemble of trees that share this particular sample as out-of-bag
data.

with replacement. This method is commonly known as bootstrap aggregating, or short

‘bagging’ [5]. The hereby generated varying training sets used for each tree produce more

decoupled weak hypothesis, and thus, further improve classification performance of the

whole ensemble while simultaneously reducing the risk of over-fitting on the training data.

Additionally, bagging enables an elegant method for estimating the generalization error

of the resulting random forest without the need for an extra validation set. When con-

sidering N training samples, the probability of selecting a certain sample when randomly

choosing exactly N samples with replacement is 1 − 1
e u 63.21%. Thus, about 36.79%

of the samples remain unseen for a particular tree, which form the so called ‘out-of-bag’

data. Each out-of-bag sample can then be evaluated by an ensemble consisting of those

trees which share this particular sample as out-of-bag data. Testing all out-of-bag sam-

ples by this method gives a good estimation of the expected classification performance of

the resulting random forest classifier on unseen samples, without the need for an extra

validation dataset. Figure 2.8 graphically illustrates the training procedure of a random

forest using bagging.

Additionally, random forests also have a huge advantage in respect to computation time

at the training stage. Compared to other classifiers, single decision trees can be trained

completely in parallel without the need of exchanging information with other trees.

Imbalanced Training Data The standard implementation of random forests is no

exception in terms of favoring the majority classes in the presence of imbalanced data.
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However, the algorithm intrinsically provides many possibilities for modifications in order

to effectively handle imbalanced data. One approach is to assign class weights according to

their occurrence rate in the training data, such that minority samples have a larger impact

on the score of a split function and on the vote of a leaf node. This correctively interferes

the voting result of single trees, but also influences the creation of the tree structure in

favor of imbalanced data. In [10] this approach is referred to as ‘Weighted Random Forest’.

A different method also described in [10] is to generate balanced data for each single tree

by stratified down-sampling and evaluating only a few randomly chosen variables for a split

without pruning. As this approach seems to be less problematic than down-sampling the

training set for the whole forest in advance, we still consider this method prone to reject

too many samples for reaching a reasonable tree depth that can model the complexity

of our classification task. Anyway, this approach shows that more randomness in split

node selection can improve the stability of the final classifier in the presence of challenging

training data.

Multi-Class classification Since the information gain is well-defined for multi class

data and the leaf node votes are not restricted to binary values only, the random forest

classifier does not require any structural modifications in order to learn and classify multi-

labeled data. Furthermore, as the trees are basically unrestricted in their depth, the

random forests can process data of an arbitrarily high amount of class labels, without the

need of applying data simplification or grouping heuristics in advance.

Feature Selection The hierarchical structure of the single trees in combination with

selecting the split function according to their information gain score ensures good feature

selection properties of the overall classifier. Whereas for the first nodes the most discrim-

inative features are chosen for the splitting the data, consecutive nodes in deeper tree

levels will then automatically neglect redundant split functions. Furthermore, a trained

random forest can be directly evaluated to estimate the importance of feature dimensions

by accumulating the information gain score over all nodes which use a certain feature vari-

able in its split function and weighting the single terms by the relative amount of training

samples that were considered in the particular node.

2.3 Summary

In this chapter, we first investigated existing approaches that explicitly aim at detecting

electrical installation devices in indoor environments. However, as these approaches are

intended for being deployed on actively moving robot systems and thus basically need to

fulfill different requirements, they are not applicable to our detection problem.

We then described other, more general computer vision concepts that successfully tack-

led detection of untextured objects. Basically, these approaches can be divided into two

groups. The first group of approaches relies on the detection of a closed contour, whereas
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methods of the second group basically perform template matching using different represen-

tations of the gradient information. Considering our problem description, we can identify

major drawbacks of both groups. Where on the one hand extracting closed contours can

not be reliably achieved due to the difficult input data, on the other hand approaches

based on template matching mostly support only distinct appearances of objects.

In order to exploit the given data and constraints of our detection task the most ben-

eficial way, we then discussed feature descriptors and classification algorithms separately.

With the histogram of orientated gradients (HoG) descriptor, expressing different filter

responses by spatially distributed statistical measures and PCA compression applied on

images we described various powerful concepts on describing whole image patches that

show untextured objects.

Furthermore, we discussed three well-established classifier concepts for practical appli-

cations and analyzed their characteristics in the context of our most critical application

requirements. This revealed a clear preference of the random forest classifier due to its

intrinsic feature selection capabilities, handling of multi-labeled classes and the straight-

forward modifications to enable support for highly imbalanced training data.



CHAPTER 3

IMPLEMENTATION

Contents

3.1 Sliding Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Feature Extractors . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Summarizing, we face a multi-class detection problem of small and untextured objects on

rectified images, which are generated from a rather low-quality panoramic image. Ap-

proaches we found in literature which address detection of untextured objects either de-

mand a reliable extraction of the object boundaries, or only support distinct instances

while requiring a high amount of training data to cover each possible view angle. How-

ever, there exist various separate image descriptor and classifier approaches which allow

certain modifications to better meet the special requirements of our application.

In this chapter, we describe the implementation details of our final approach based

on such a decision pipeline formed by a separate feature extraction and a classifier stage.

Utilizing this classification framework, the detection of electrical devices on the rectified

input images is performed by applying a sliding window approach. In the first part of this

chapter we address the implementation details of the sliding window, since it also defines

the input for the decision algorithm. Afterwards, the applied image feature extractors

and their parametrization are described in more detail. Beside the HoG feature descrip-

tor, Haar-like wavelets applied on a set of image filter responses and template matching

against auto-generated templates via PCA, we will also introduce a novel feature descriptor

named ‘Gradient Orientation Features’, that is based on concepts across several outlined

approaches and is especially designed for our problem. All feature values are concatenated

to form a single vector that is passed to a random forest classifier, to which the next section

of this chapter is dedicated. Beside discussing the basic algorithm, we will also introduce

35
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some additional modifications to better fit the given application constraints. Finally, this

chapter is concluded by a summary of the implemented approach.

3.1 Sliding Window

Given a wall texture image of arbitrary size, the detection of multiple instances of electrical

devices is done by a basic sliding window approach. Therefore, around each pixel of the

input image an image patch of a fixed size is extracted and passed to the classification

pipeline. By collecting the multi-labeled classification result over each center pixel, a

response map is created for each object class. In order to gather the final detection results,

the response maps are post-processed by a non-maxima suppression stage. Note that in

this thesis, for evaluation purposes we treat each object class separately, however, for the

finally deployed algorithm only the result assigned to the highest response is reported if

at some locations detection results of multiple classes are overlapping.

Due to the fixed spatial resolution of 1mm2 per pixel and the fact that instances of

the target object classes do not differ much in size, we can omit to search in different scale

levels. As a common housing frame for electrical devices is typically 90mm× 90mm and

we consider the immediate surrounding as additional valuable information, we decided

to use a fixed window size of 128px × 128px. This certain size ensures a prominent

representation of a single target object in the image patch while capturing a sufficient

amount of the surrounding and, furthermore, allows directly applying a wide range of

HoG descriptor configurations without the need to rescale the sliding window content.

3.2 Feature Extractors

The basis of our derived detection algorithm is a pool of well-selected descriptors, each

focusing on an important visual property of our target objects. The formation of a feature

pool aims at combining the strengths and compensating the weaknesses of the individual

descriptors. Since the silhouette and functional indentations of our target objects are the

most valuable visual information, the major part of the added descriptors focuses on mod-

eling image gradients and their constellation. However, we also add features coding other

object properties like the color distribution and the strictly horizontal/vertical mounting

practice.

3.2.1 Histograms of oriented gradients

Because of its strong properties in modeling the gradients of an image patch, the HoG

descriptor is our first choice for the feature pool. However, applying this descriptor is not

straight forward, as it provides a relative high amount of parameters that need to be set
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carefully. Since objects and background can have different illumination transitions (dark-

light, light-dark), the first decision is to use the undirected version of the HoG descriptor.

Furthermore, we use a rectangular shape of the histogram cells. In order to determine the

remaining parameters for our use case, we test three configuration settings, representing a

fine-structured cell grid, a coarse-structured cell grid and a coarse-structured cell grid with

a high overlap of the normalization blocks. The results of the three tested configurations

are discussed in more detail in Section 4.3.1. A visualization of the HoG descriptor applied

on a target image using the first setting is shown in Figure 3.1.

a) b)

Figure 3.1: Figure a) shows an overlay of the corresponding HoG descriptor values on a sample
object, where the gradient strength determines the length of the direction lines. For better visibility,
directions and strengths are color-coded by applying the Hue-Saturation plane mapped on 180◦ of
the HSV color space. Figure b) illustrates the average importance of the HoG gradients, coded by
the value component of the HSV space. The feature variable importance values are determined by
a Random Forest classifier trained on multi-class data consisting of 3 classes (background, power
sockets and light switches). It can be observed, that the vertical and horizontal edges forming the
object silhouettes are the most important features. Additionally, in order to distinguish between
power outlets and light switches, also inner, rather diagonally oriented gradients are considered as
essential features.

3.2.2 Novel Gradient Orientation Features

When investigating successful feature descriptors for untextured objects of the recent past,

we observed that modeling constellations of image gradients is predominantly achieved by

heavily quantizing in magnitude, orientation and position [13, 25, 26]. In general, the

main advantages these approaches see in quantizing the information is to gain more in-

variance to various circumstances, and reducing the dimensionality of the resulting feature

vector. We agree that suppressing variations in magnitudes can introduce a necessary level

of illumination invariance, however, we see in quantizing positions and orientations the
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potential to lose and distort valuable information. Especially when targeting rigid objects

on rectified images which consist only of a few distinctive gradients, spatial and directional

quantization can result in significantly diverging feature representations of similar objects

when they show their differences near the quantization levels. In order to provide less dis-

torted information about the underlaying image patch such that the classifier can decide

more freely on discriminating thresholds, we propose a feature descriptor that models po-

sition and orientation of image gradients with respect to introducing as less quantization

mechanisms as possible. This is achieved by representing the gradient orientations via

cosine similarity measures evaluated over randomly distributed subregions, which are not

aligned to any fixed pattern.

Similar to [25], we utilize a gradient response map as basis for our descriptor, where

the gradients are determined in a max-pooling fashion over the color channels. Thus, we

calculate gradient images ∇Ic(i, j) separately for each color channel Ic(i, j), c ∈ {R,G,B}
of the input image I(i, j) by applying a Sobel operator in both x- and y-direction:

∇Ic(i, j) =

(
Gx,c(i, j)

Gy,c(i, j)

)

where

Gx,c =

−1 0 1

−2 0 2

−1 0 1

 ∗ Ic and Gy,c =

−1 −2 −1

0 0 0

1 2 1

 ∗ Ic

From this filter responses we can construct a gradient direction mapM(i, j) consisting

of unit vectors pointing at the corresponding direction by selecting for each pixel the

color channel showing the highest gradient magnitude, while suppressing gradients whose

magnitude is below a certain threshold thmag:

ĉ(i, j) = argmaxc∈{R,G,B} ‖∇Ic(i, j)‖2 (3.1)

M(i, j) =

{
1 ∠ θ(∇Iĉ(i,j)(i, j)), if ‖∇Iĉ(i,j)(i, j)‖2 > thmag

0 otherwise
(3.2)

where θ(∇I(i, j)) retrieves the direction of the gradient on position (i, j).

Using M(i, j) we generate a cosine-similarity representation by projecting the unit

vectors onto a set of reference vectors {R1 . . .RK}. In order to cover the full range

of possible gradient directions, one would usually utilize 2 orthogonal reference vectors.

As specifically for our application we prefer a feature representation that is invariant to

the direction of the gradient similar to the undirected version of the HoG descriptor, we

demand the cosine-similarity values to repeat each 180◦. One naive solution to achieve this

would be to map directions between [π . . . 2π) onto the range [0 . . . π) and use the same
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2 orthogonal reference vectors. However, this would cause an undesired discontinuity of

the descriptor values near orientations of 0, respectively π. To avoid this behavior, we

propose to take only the absolute values of the projections on the reference vectors into

account. Whereas this strategy applied on 2 reference vectors would yield ambiguous

representations each 90◦, we instead use 4 reference vectors R1 . . .R4 which differ by an

angle of π
4 (45◦). The projections of M(i, j) form a set of 4 scalar valued image channels

Sk(i, j), k = 1..4:

Sk(i, j) = |M(i, j) ·Rk| , k = 1..4 (3.3)

where R1 = 1 ∠ 0, R2 = 1 ∠ π
4 , R3 = 1 ∠ π

2 and R4 = 1 ∠ 3π
4 .

In order to express these gradient projections by a real-valued feature vector which can

be further processed by a classifier, we utilize randomly sized and distributed Haar-like

features Hi to calculate subregional mean values separately over the 4 orientation channels.

These 4 values are then normalized s.t.
∑

k avg(Sk(Hi)) = 1. The resulting feature vector

of an input image is then composed by applying npairs pairs of Haar-like features and

concatenating their channel-wise differences of the 4 normalized mean orientation values.

Because we use Haar-like features, our descriptor can be efficiently calculated via integral

images. Figure 3.2 depicts all essential steps of our feature descriptor approach.

Since one descriptor dimension codes the visual difference of 2 subregions, we can

emphasize the focus on the symmetry of an object by forcing the Haar-like feature pairs

to describe spatial counterparts of an image patch. Given one rectangle, we consider three

possible strategies to choose the second rectangle yielding a ‘symmetric’ constellation:

vertical, horizontal and centric. Including pairs where both rectangles are completely

chosen at random, this results in a total number of 4 pair selection strategies, which are

depicted in Figure 3.3.

In order to configure our feature descriptor to work best for a certain task, we define

a set of parameters. The first parameter defines the number of Haar-like feature pairs

npairs, which directly impacts the resulting length of the feature descriptor as 4× npairs.
Furthermore, we add the threshold thmag to the parameterization, which is applied on

the gradient magnitude to suppress image noise. To adjust the granularity of the image

description, we introduce szmin and szmax as a lower, respectively, upper limit for the

width and the height of the randomly generated Haar-like features, given in percent of

the input image size. The parameter set is completed by the symmetry ratio rsym which

defines the ratio between symmetric and completely random feature pairs, whereat the

probability of choosing a certain type of the three symmetric constellations is always kept

equal. All described parameters are summarized in Table 3.1.

3.2.3 Feature channels from image filter responses

With the HoG and the novel gradient orientation features, we already use two

very strong approaches for describing the spatial constellation of image gradients.
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Figure 3.2: Illustration of our gradient orientation features approach. As a first step, a gradient
map M consisting of unit vectors is calculated from the input image. Note that at this stage
M contains directed gradients, but for a better visualization of the undirected gradient modeling
property of our descriptor a repetitive color mapping is applied. By pixel-wise projecting the
vectors of M onto a set of 4 reference vectors, we obtain 4 scalar-valued image channels showing
the corresponding cosine-similarity values. To achieve a feature representation that is invariant
to the direction of the gradient, we only consider the absolute values of the projections. The
function fn(Sk, H

′, H ′′) denotes the evaluation of the Haar-like feature pairs H ′, H ′′ forming the

final descriptor values, which is defined as fn(Sk, H
′, H ′′) = avg(Sk(H

′))∑
S avg(S(H′)) −

avg(Sk(H
′′))∑

S avg(S(H′′))

Parameter Value Range Description

npairs N+ Number of Haar feature pairs
thmag R+ Magnitude threshold for the gradient calculation
szmin (0, 100]% Minimum size of a Haar-feature
szmax (0, 100]% Maximum size of a Haar-feature
rsym 0− 100% Symmetry ratio

Table 3.1: Gradient orientation features parametrization.

Although this is the most valuable information of our target objects, however,

there are also other characteristic and meaningful features that are not yet fully

exploited by these descriptors. Therefore, we additionally utilize a set of specifically

chosen image filters to generate feature channels and describe their responses by

applying Haar-like features, similar to [14]. Considering our application, we aim at

modeling the color distribution and the physical alignment of the objects in this descriptor.
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a) random b) vert. symetric c) horiz. symetric d) centric symetric

Figure 3.3: Different feature pair selection strategies for our gradient orientation feature de-
scriptor. While a) shows an example of 2 completely random sampled rectangles, c), b) and d)
each represent a symmetric constellation. In c) and b) the two selected subregions are each others
counterpart when mirrored vertically, respectively, horizontally, where in d) the origin rectangle
was flipped in both axis, yielding a symmetry in respect to the center point of the image.

Color One characteristic property of our target objects that is only indirectly expressed

by gradient-based descriptors is the color information. Since electrical installation devices

are mostly single-colored and sometimes stand out against the color of the background,

we consider the color distribution over an investigated sliding window as an additional

valuable detection feature. To best differentiate colors by their numerical representation,

this feature channel simply consists of the input image converted to the Luv color space.

Alignment An other not explicitly handled but descriptive property of the target

objects is their strictly horizontal/vertical mounting practice. Since this is a global

property of an object and thus could be expressed by a single value describing the

mounting angle, one could also incorporate this information when evaluating the

posteriori probability of a detection result. However, this angle would require to be

measured also somehow visually and would introduce additional uncertainties. Therefore,

exploiting that electrical installation devices mainly consist of horizontal and vertical

edges too, we propose to feed the information about the presence of strictly horizontal

and vertical edges directly to the classifier along with the other visual features. For this

feature channel we designed an image filter that solely responds to strictly horizontal

and vertical gradients, simply consisting of separate, undirected Sobel filters while

suppressing responses below a minimum value.

The result of the designed image filters forming the feature channels for this descriptor

are visualized in Figure 3.4 on an example. In order to generate feature values from the

image filter responses we basically use the same approach as in our gradient orientation

feature descriptor: We apply randomly sized and distributed Haar-like feature pairs and
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Parameter Value Range Description

npairs N+ Number of Haar feature pairs
szmin (0, 100]% Minimum size of a Haar-feature
szmax (0, 100]% Maximum size of a Haar-feature

Table 3.2: Parametrization used for describing the introduced feature channels. The number of
generated Haar-wavelet pairs npairs directly corresponds to the dimension of the resulting feature
vector. Analogue to our gradient orientation features, szmin and szmax can be used to control the
granularity of the image description.

obtain the final descriptor values from the pair-wise differences of the mean values of

the rectangular subregions. The feature channel on which a certain Haar-wavelet pair is

applied, is also chosen randomly from an uniform distribution. This yields a very simple

parametrization of the resulting descriptor coding the color distribution and the alignment

of the target objects, as listed in Table 3.2.

a) origin image b) horizontal gradients c) vertical gradients

d) L–channel e) u-channel f) v-channel

Figure 3.4: The used image filters applied on a sample input image (Figure a)). Figure b) and
c) show the response of the horizontal and vertical gradient filter, respectively. The L, u and v
channel of the input image is displayed in Figure d), e) and f). For better visibility, for e) and f) we
magnified the intensity spectrum by about 6 times. While the u channel seems to share the same
value for the power socket and the wall, we can observe a significant difference in the v channel,
indicating the slightly diverging color of the wall and the actual object.
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3.2.4 PCA for auto-generated templates

In general, the above discussed feature descriptors model the overall appearance of an

image patch by concatenating measures of subregions, directly expressing the image

content which results in a relatively high dimensional vector. A rather complementary

approach that could further enrich this information by a more global representation

of the sliding window patch, is matching the whole image patch against templates.

Especially when detecting rigid, fixed-sized, untextured objects, where robustness against

occlusion plays a minor role, we consider template matching responses as potentially

useful features. Since in our application we cannot expect user-provided templates of any

form, we propose to apply principal component analysis to obtain auto-generated image

templates. When projecting a query image represented as vector to an Eigen-space

spanned by pre-calculated Eigen-vectors, each dimension in the Eigen-representation is

calculated via the dot-product with the corresponding basis- or Eigen-vector. Since an

Eigen-vector can also be interpreted as image, casted in a sliding window approach,

the pixel-wise obtained subspace representation yield multi-channel response maps

of cross-correlation matching with the Eigen-images acting as templates. In order

to generate specialized templates for each class, we calculate the Eigen-spaces of the

different object categories separately. The coordinates of a query image transformed to

the class-specific Eigen-spaces are then directly added to the feature vector that is passed

to the classifier. Figure 3.5 shows the pre-trained Eigen-vectors represented as images for

power sockets and light switches.

3.2.5 Final selection

Each of the described feature descriptors implements a diverse, powerful concept of rep-

resenting the untextured target objects on 2D images. However, the final selection and

parameterization of the algorithms which works best for our use case needs to be deter-

mined by conducted experiments, which are addressed in Chapter 4.

3.3 Classifier

As an undeniable drawback of forming a pool of various, mostly randomized features,

the feature-space becomes relatively large while containing many redundant and noisy

dimensions. In combination with the very limited and unbalanced amount of training

examples, these circumstances state a rather challenging use case for a classifier. To

tackle this problem, we utilize a random forest that is especially configured for this use case.

Weighted samples The first modification to handle the high class imbalance in the

training data is similar to the idea of a ‘Weighted Random Forest’ in [10], where Chen et
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a) Eigen-images of power sockets

b) Eigen-images of light switches

Figure 3.5: These images show the obtained Eigen-images for power sockets a) and light switches
b) representing their major visual commonalities, ordered by the corresponding Eigen-value from
top-left to bottom-right. The first 3 rows show the first 30 Eigen-templates, whereas each last row
holds the 61st to 70th most dominant Eigen-representation of our training data. It can be observed,
that the most significant characteristics of the training samples are the varying intensity values
between the wall and the overall objects, followed by different intensities of more local parts. The
obtained principal components of a higher order contain certain arrangements of the characteristic
edges and gradients.

al. introduced class weights that influence the split criterion and the vote of a tree. In

their approach, they base their split functions on the Gini impurity measure and propose

to determine the weights by the out-of-bag estimate or tune them by hand. In our im-

plementation, we use the information gain criterion based on the Shannon entropy and

weight the samples by a class rarity score determined from the training data that is given
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to the forest. From a set of samples S whereat to each instance a class c ∈ C is assigned,

the weights wc are calculated as

wc =
1

Z
· |S||Sc|

(3.4)

where Sc is the subset of S containing all samples with label c and Z =
∑

c∈C
|S|
|Sc| is a

normalization factor. Using these weights, we can reformulate the entropy H(S ′) of a

subset S ′ ∈ S as

p(S ′, c) =
1

Z ′
· wc ·

|S ′c|
|S ′| (3.5)

H(S ′) = −
C∑
c=1

p(S ′, c) · log p(S ′, c) (3.6)

where p(S ′, c) is the weighted occurrence probability of class c in S ′ and Z ′ =
∑

c∈C wc ·
|S′c|
|S′|

ensures normalization. This weighted formulation of the entropy is applied to determine

the information gain when evaluating a split function during training of the forest (Equa-

tion 2.1).

At classification stage, the weights wc also impact the class prediction of the single

trees. Whereas usually a tree votes according to the class majority of the training samples

S ′N that reached the corresponding leaf node N , we instead determine the prediction PN
of a leaf node by evaluating the weighted amount of those samples via

PN = argmaxc∈C wc · |S ′N ,c|. (3.7)

The final prediction outcome of the random forest classifier is then aggregated by collecting

the predictions over all trees in a normalized histogram to obtain the probabilities for each

class.

In order to additionally enhance generalization, we apply bagging of the

initial training data S to generate diverse training sets S ′k for each tree k, with

|S| = |S ′k|. Note that for calculating the class weights wc in Equation 3.4, we use the

initial data set, whereas in Equation 3.5, 3.6 and 3.7 the set S ′ is based on the bagged data.

Feature noise Weighting the training samples according to their class can tackle

the problem of class imbalance, however, it does not solve the challenges of a very

high dimensional and rather noisy feature space containing many redundant and

non-descriptive dimensions. Especially in combination with an extremely low absolute

amount of positive training samples, we consider preventing overfitting the provided data

as the biggest challenge. Therefore, in order to enhance generalization, we select the split

functions by considering only a rather small subset D′ of randomly chosen dimensions

of the D-dimensional feature space s.t. |D′| =
√
D , while at the same time, training a

relatively large amount of trees. Furthermore, we let the trees grow rather deep to enhance
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the chances of finding more expressive combinations of features in order to compensate

the high degree of randomization and the general lack of single well-discriminating features.

Iterative training Beside the described modifications made to the forest itself, we also

apply an iterative training procedure inspired by the concept of boosting. This minimizes

the error on the training set and encourages the classifier to discriminate even single,

visually outstanding instances correctly.

As a first step, we select a subset S1 ⊂ S of the initial training data randomly without

replacement to train the classifier. Then we predict the class labels of all samples. The

samples that were predicted wrong, are added to a set of ‘hard samples’ SH . In a next

iteration, we re-sample the original data and add the hard samples to re-train the classifier.

This process is repeated by again predicting the label of all initial samples and adding

wrong predictions to the set of hard samples, while this set is never cleared during the

whole process. We stop re-training the forest if the error on the training samples drops

below a specified threshold, the number of iterations exceeds a certain limit, or if the

training error cannot be further improved after 2 retries.

The random sampling of the full training set is done in respect to an inverse class

occurrence rate, such that a certain sample belonging to a minority classes is chosen more

likely. This approach serves two purposes: The learning problem is much more balanced

when training the forest, and redundant instances in majority classes are less dominating

over others after fewer iterations. The class-dependent probability of a certain sample s

to be chosen is calculated according to

r(c) = 1− |Sc||S| (3.8)

psel(s) = lo+ (hi− lo) · e−
r(c(s))
λ (3.9)

where Sc is the subset of all training samples S with class label c, c(s) is the class label of

a certain sample s and the constants lo, hi and λ are set to 0.2, 0.5 and 0.2, respectively.

These settings limit the number of chosen samples from a certain class between 20% and

50% of their respective total amount.

The complete algorithm is summarized in Figure 3.6. Drawback of this iterative train-

ing procedure, however, is its error-proneness to noise in the training data, e.g. falsely

labeled instances.

Assumed prior probability So far, the trained random forest serves as a predictor

for the sliding window approach, solely relying on the visual information of the provided

image patch. Considering the task of detecting electrical devices based on 3d scans, there

are also other, non-visual features that can be exploited in the decision making process. In

our approach, we incorporate the knowledge of the physical geometry of the room. Since
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Algorithm 2: Iterative training procedure

Data: S : {s1 . . . sN}
Result: H(s)
SH ← {∅}
while t = 1 . . . T do

sample randomly St ⊂ S according to psel(s)
train classifier Ht(s) using St ∪ SH
predict label of all training samples; add wrong predicted to SH :

SH ← SH ∪ sk if Ht(sk) 6= c(sk), ∀k ∈ {1 . . . N}
end

Figure 3.6: Iterative training procedure algorithm

an electrical installation device is usually mounted in a way that it is easily accessible or

is the least distractive when an appliance is permanently plugged-in, we can assume that

the mounting height is highly correlated with the actual presence of an object. We can

model this property by considering Bayes’ theorem:

P (A|I) =
P (I|A) · P (A)

P (I)
(3.10)

where P (A|I) is the probability of the presence of a device A given an image patch I,

P (I|A) the probability of observing a certain image given the information being a device,

P (A) is the prior probability of the presence of a target object and P (I) is practically

considered as a constant scaling factor. As the random forest is a discriminating classifier

trained from labeled examples, it can basically model only the probability P (I|A). This

is sufficient in use-cases where the prior probability P (A) is also constant, since then the

assumption holds that P (A|I) ∼ P (I|A).

However, in this work, we set the prior probability P (A) to model the general relation

between the physical height measured from the floor and the presence of an electrical

device. Since our training data solely consists of image patches and lacks the information

of the mounting height, we approximate the prior by a combination of multiple Gaussian

distributions, each representing a characteristic mounting position at floor level, 1 meter

above the floor, and, for devices supplying ceiling-mounted appliances, at ceiling level.

In respect to the purpose of an electrical device, we can differentiate two patterns of the

expected mounting height, from which we derive two groups of object classes: The first

group holds all types of devices which are intended to gain access to the household power

grid in a rather permanent fashion, while devices of the second group usually require user-

interaction for operation. Typical examples for each group are power outlets, respectively,

light switches. Figure 3.7 outlines the two distributions from which we obtain the expected

mounting height for a specific object class.

Using these assumed prior probabilities, the final detection result of our algorithm is
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determined by the response map of the visual detection from the sliding window approach,

multiplied by the value obtained from P (A) for the corresponding class and mounting

height.
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a) prior for primarily static installations
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b) prior for accessible devices

Figure 3.7: Applied prior probabilities modeling the correlation between the mounting height
and the presence of electrical devices. Since the expected mounting height varies with the purpose
of an electrical device, we group devices that provide access to the electrical wiring as a rather
permanent installation (e.g. power outlets, Figure a)), and devices that are supposed to regularly
receive user-input (e.g. light switches, Figure b)). While the common mounting height of devices
belonging the first group has basically three peaks, we do not assume electrical devices that usually
require user-interaction at ceiling level. It may also seem counter-intuitive to expect f.i. switches
at floor level, however, form the provided testing data from various countries we could obtain this
mounting practice. Note that in order to achieve final prediction probabilities in a proper range
of (0, 1) ∈ R, we scale the prior probability functions s.t. their maximum is equal to 1. Further,
to not completely disregard objects that are mounted in less common heights, we ensure that the
applied prior probability does not fall below 0.5.

3.4 Summary

Concluding, our algorithm for detecting wall-mounted electrical devices utilizes a sliding

window to generate a response map for each trained class. Since the input images are

rectified wall textures with a fixed physical spatial resolution and the target objects are

also sized consistently, we can omit to search in different scale levels. The values of

the response maps for a certain sliding window position are retrieved from a pre-trained

random forest classifier. Input for the classifier is a high dimensional feature vector,

which is composed by concatenating the results of several feature description approaches

in order to combine different visual properties. For the addressed application, the most

expressive characteristics are the constellation of visual gradients. Therefore, we apply the

‘Histogram of oriented Gradients’ and an own, especially designed ‘Gradient orientation
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Features’ descriptor. Other visual features, i.e. the color distribution and the strict

horizontal and vertical alignment of the electrical devices, are modeled by image filters

forming additional ‘feature channels’, which are then encoded by Haar-like wavelet pairs.

Furthermore, we attempt to add with auto-generated template-matching an additional

facet of describing the sliding window content.

Due to the high dimensional and noisy feature space, and the highly unbalanced train-

ing data, special attention is required for designing an appropriate classifier. Thus, we let

the random forest grow rather deep and use a high degree of randomization in the split

selection. Further, we introduce class-dependent sample weights derived from the relative

class distribution of the provided training data. An iterative training procedure is applied

to additionally enhance the discrimination capabilities between the classes.

In order to incorporate information about the strong correlation between the physical

distance to the floor and the presence of an electrical device, we introduce an assumed

prior probability with respect to the detected class. The final detection results are deter-

mined by applying this prior on the sliding window response maps, followed by a non-max

suppression step.
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In this chapter, we evaluate and present the detection performance of our derived algo-

rithm. The first section describes the training and test data we use for the evaluation,

followed by an explanation of the applied quality measures and methods to objectively rate

the detection performance. Afterwards, we test different parameterizations of the HoG

and our novel gradient orientation feature descriptor in order to find their best performing

setting for the targeted use case. We proceed with evaluating different combinations of

descriptor approaches when concatenating their results to a single feature vector. Us-

ing the best performing descriptor setting, we evaluate different values for the maximum

depth and number of trees in the random forest, followed by analyzing the impact of the

proposed iterative training procedure and the assumed prior probability on the detection

result. A subsequent visual examination of the best performing algorithm setup is then

conducted to confirm a properly working detection in different scenarios. Finally, this

chapter is completed with a summary.

51
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4.1 Dataset

We gathered our testing data from two different sources. On the one hand, we have been

provided with 7 relevant wall-texture images derived from real 3D scans of 3 rooms, using

the approach of [33]. In order to increase the variety of the test data, we additionally

recorded an own set of 24 images showing indoor scenes featuring electrical devices of

different design and view angles. To best simulate how these scenes would look in the final

DURAARK approach, we took the images with the same resolution as the build-in camera

of the scanner and rectified them in respect to the wall geometry using an open-source

image processing tool. In total, our test data contains 52 annotated instances of power

outlets and 63 light switches, along with their physical mounting height.

For training our algorithm, we collected and annotated 291 images containing 198

power sockets and 401 light switches in a natural surrounding. Each annotation was rec-

tified accordingly to yield squared patches of 128×128 pixel. Additionally, we augmented

4 training samples per annotation by slightly modifying the annotated corners, a random

variation of the scale by ±10% and a randomly applied horizontal flip of the resulting

image patch. This results in a total amount of 990 and 2.005 training samples for power

sockets and light switches, respectively.

In order to form a representative negative set that is supposed to contain everything

except electrical devices, we randomly extracted 12 patches from the not selected regions

for each annotated image and applied the rectifying homography. Additionally, we ex-

tracted random patches all across the SUN2012 dataset of indoor scenes [54]. This yields

a total amount of 159.165 negative samples. Figure 4.1 presents some instances of our

training data.

Figure 4.1: Examples of our applied training data. The first row shows some instances forming
the class of power outlets, whereas the second row holds examples of light switches. The lower
two rows show randomly selected patches of the group of negative samples, which is supposed to
contain every observable pattern in indoor scenes except the object classes.
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4.2 Quality Measures

In order to objectively measure the quality of certain configurations of our algorithm,

we evaluate precision vs. recall curves and compare their F-scores, as described below.

Since the training of the classifier and thus the outcoming detection results are relying

on a random process, we run each configuration 4 times and accumulate the results to

minimize fluctuations caused by the randomization of the algorithm. To further increase

the comparability of the different algorithms and their configurations, we set the seed of

the random number generator to a distinct value bound to the run count.

Precision vs. Recall A common quality measure for detection algorithms is to plot

precision vs. recall in a diagram, while varying the decision threshold. When comparing

the detection results against an underlaying ground truth, we can distinguish 4 quantities:

ground truth
positive negative

predicted
positive true positive (TP) false positive (FP)
negative false negative (FN) true negative (TN)

Table 4.1: The 4 possible entities of a detection result compared to a ground truth.

If an instance is predicted where also a corresponding ground truth entry is present, it is

considered to the group of true positives (TP). Predicted objects lacking a ground truth

entry are categorized as false positives (FP). Undetected, or missed objects, which are

present in the ground truth belong to the group of false negatives (FN). The last group of

true negatives (TN) contains all entities with negative detection result, which are also not

present in the ground truth. Considering an object detection task whose result space is

basically infinite, this last category is rather hypothetical since the quantity of correctly

missing items is difficult to determine.

Given the quantities of the described categories of a detection run on the full testset,

the precision is calculated as the ratio of correctly predicted instances to the total number

of predictions

precision =
TP

TP + FP

On the other hand, the recall is defined by the ratio of correctly predicted instances to all

real existing instances

recall =
TP

TP + FN

Both, precision and recall are thus bounded in the range of [0, 1] ∈ R. We plot these two

measures in a diagram with 1 − precision on the abscissa versus recall on the ordinate.

Therefore, an optimal detection result would reach the upper left corner of the diagram.
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However, under some circumstances (higher detection probability for wrong predictions as

for correct ones) the raw plot of precision vs. recall can wiggle in a way that it gets rather

difficult to interpret and compare. Thus, we plot the left sided convex hull of the data

points. Additionally, we manually add the top right point representing the theoretical

decision threshold of 0% and interpolate the missing segments by a spline to get a well

comparable and least distorting visualization of the classifier performance.

F-Score The F-score is a real-valued measure of the relation between precision and

recall, and is defined as

F = 2 · precision · recall

precision + recall

Therefore, the F-score is the harmonic mean of precision and recall and is also bound by

[0, 1] ∈ R, where 1.0 is the highest achievable value for an optimal classifier. For evaluation,

we compare the maximum F-score observed over varying the decision threshold, which we

also highlight on the corresponding precision vs. recall curves as circle.

4.3 Feature Parameters

Utilizing the described evaluation procedure and data, we determine the best suited con-

figuration of the algorithm for our task. Therefore, we systematically investigate different

settings of parameters one after another, beginning from the entity we attribute having the

biggest impact on the overall detection performance. We begin with investigating differ-

ent configurations for the HoG descriptor, followed by testing various parameters for our

gradient orientation features, further abbreviated as ‘GoF’. Since the HoG and the GoF

descriptor target the main features, i.e. the gradient information with spatial context, we

omit individual testing of other outlined descriptors that focus more on supplementary

features. Hence, we continue directly with evaluating different combinations of descrip-

tors. In order to evaluate all feature tests already with the best performing classifier setup,

we use a random forest consisting of 250 trees and a maximum depth of 22. As discussed

in 3.3, the rather depth growing trees should compensate the increased randomization in

the split selection, which we proposed to tackle the relatively noisy feature space. Addi-

tionally, we expect a higher number of trees preventing a loss of generalization due to the

low total amount of positive samples when applying bagging on the dataset given to a

single tree. Furthermore, we train the random forest using the introduced iterative train-

ing procedure with a maximum of 10 iterations and apply the assumed prior probability

on the result. The impact on the detection performance of those actions is investigated

separately in Section 4.5.
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Parameter Config 1 Config 2 Config 3

Window size 128 px 128 px 128 px
Cell size 8 px 16 px 16 px
Block size 16 px 32 px 32 px
Block stride 8 px 16 px 8 px
Number of bins 9 9 9
Overlap 1

2
1
2

3
4

Resulting Dimension 8100 1764 6084

Table 4.2: Investigated parameterizations of the HoG descriptor, ordered by the objectives of
modeling a fine-structured cell grid, a coarse-structured cell grid and a coarse-structured cell grid
with a high overlap of the blocks.

4.3.1 HoG Parameterization

To configure the HoG descriptor properly for our application, we test 3 different parameter-

izations, each aiming at implementing a certain objective. In fact, we test the performance

of the HoG descriptor using a fine-structured cell grid, a coarse-structured cell grid and a

coarse-structured cell grid with a high overlap of the normalization blocks. Table 4.2 lists

these parameter settings in the described order.

Figure 4.2 shows the precision vs. recall curves observed for the 3 examined config-

urations along with a comparison of the maximum achieved F-scores. We can observe a

significant difference in performance between the configurations, while the third configu-

ration representing a coarse-structured cell grid with a high overlap of the normalization

blocks yielded the best results for both object categories.

4.3.2 GoF Parameterization

In this section we determine the best suited parameters also for our gradient orientation

features descriptor individually. In contrast to the HoG approach where window size, cell

size, block size and block stride need to comply with a coherent setup, the parameters

for our GoF descriptor can be set more independent. Thus, we determine the parameters

sequentially in the order of their considered impact on the detection performance, start-

ing with the size of the randomly selected rectangles szmin and szmax, followed by the

symmetry ratio rsym and the number of selected rectangle pairs npairs.

Rectangle size For determining the best performing setting of of szmin and szmax, we

define 5 meaningful configurations as listed in Table 4.3. For the remaining parameters,

we fix for all tests the number of randomly chosen rectangle pairs as npairs = 1000 and

the symmetry ratio to rsym = 0%. The results are presented in Figure 4.3. In general, it

can be observed that settings featuring only larger rectangles perform inferior to settings
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b) detection result for light switches

F-scores

Category Config 1 Config 2 Config 3

Power sockets 0.826 0.817 0.847
Light switches 0.648 0.770 0.771

Average 0.737 0.794 0.809

c) Observed maximum F-scores

Figure 4.2: Detection performance of using the HoG descriptor only, comparing the parameter-
izations of Table 4.2 separately for power sockets a) and light switches b). The hereby observed
maximum F-scores marked by a circle are tabularly summarized for both object categories along
with their average in c).

which allow also smaller regions. Passing features covering the full range of rectangle

sizes to the classifier performs significantly better, however, the best detection results are

achieved with the two configurations aiming at small regions only, M1 and S1, where the

more restricted setting S1 performs slightly better. Hence, we continue testing the other

parameters with fixing szmin and szmax to the S1 configuration.

Symmetry Ratio As a next step the impact of symmetry ration rsym is investigated.

Therefor, we compare the performance for rsym set to 0%, 10%, 20%, 30%, 40% and 50%.

For this tests, we keep the remaining parameter npairs fixed to 1000. Figure 4.4 shows

these experiments. At a first glance, we can confirm that the impact of the symmetry

ratio on the detection performance is overall less than for the rectangle size. Analyzed

in more detail, higher symmetry ratios tend to perform better for power sockets, whereas
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Identifier szmin szmax Description

L1 3% 100% full size range
M1 3% 60% medium range of rather small rectangle sizes
M2 20% 80% medium range of rather medium sized rectangles
M3 40% 100% medium range of rather large sized rectangles
S1 3% 40% small range of small sized rectangles
S2 30% 70% small range of medium sized rectangles

Table 4.3: Tested configurations for szmin and szmax for the random generated rectangles. ‘L1’
refers to the largest range for selecting the size of the rectangles, most encouraging the classifier to
select the best discriminating features itself. The medium range configuration ‘M1’, ‘M2’ and ‘M3’
bound the size of the rectangles in between 60% of the input patch, while allowing rather small,
medium and large sized regions, respectively. The small range settings ‘S1’ and ‘S2’ limit the size
more strictly to an interval of 40%, again subject to rather small and medium sized rectangles.
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b) detection result for light switches

F-scores

Category setting L1 setting M1 setting M2 setting M3 setting S1 setting S2

Power sockets 0.834 0.856 0.809 0.808 0.847 0.788
Light switches 0.826 0.848 0.769 0.805 0.862 0.778

Average 0.830 0.852 0.789 0.806 0.855 0.783

c) Observed maximum F-scores

Figure 4.3: Detection performance of different szmin and szmax settings as listed in Table 4.2
separately for power sockets a) and light switches b). The observed maximum F-scores are sum-
marized in c).
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this trend follows the opposite relation for light switches. Thus we decide purely based on

the average F-score, which is highest for a symmetry ratio of 0%.
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b) detection result for light switches

F-scores

Category setting S1 rsym = 10% rsym = 20% rsym = 30% rsym = 40% rsym = 50%

Power sockets 0.847 0.847 0.854 0.849 0.854 0.861
Light switches 0.862 0.849 0.851 0.837 0.824 0.815

Average 0.855 0.848 0.853 0.843 0.839 0.838

c) Observed maximum F-scores

Figure 4.4: Detection performance of different values for rsym, separately for power sockets a)
and light switches b). Note that the blue line represents rsym = 0%, however, we kept the notation
of Figure 4.3 to emphasize that it is the same configuration. The observed maximum F-scores are
summarized in c).

Number of Rectangles The last parameter of the GoF descriptor we want to in-

vestigate is the number of randomly generated rectangle-pairs npairs, which is the only

parameter that defines the dimension of the resulting feature vector. Again, we compare

5 discrete values for npairs, namely 250, 500, 750, 1000 and 1500. We can observe that

the impact of npairs on the overall detection performance is rather low for npairs > 750.

However, the best average F-score was achieved by setting npairs = 1500 yielding a 6000-

dimensional feature vector, which is also a legitimate decision in order to balance the

amount of dimensions when concatenating with the best performing configuration of the

HoG descriptor to a single feature vector.
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b) detection result for light switches

F-scores

Category npairs = 250 npairs = 500 npairs = 750 setting S1 npairs = 1500

Power sockets 0.827 0.827 0.844 0.847 0.856
Light switches 0.851 0.864 0.858 0.862 0.856

Average 0.839 0.846 0.851 0.855 0.856

c) Observed maximum F-scores

Figure 4.5: Detection performance of ascending values for npairs, separately for power sock-
ets a) and light switches b). Again, the cyan line represents npairs = 1000, which is the same
parameterization S1 of Figure 4.3 and 4.4. The observed maximum F-scores are listed in c).

4.4 Feature Combinations

In this section, we investigate the detection performance of various descriptors combined

in one large feature vector that serves as input for the classifier. Considering that the

most important visual features, the constellation of gradients, are only well represented

by the HoG and the GoF descriptor, we use them as basis set for testing combinations

with other descriptors that focus more on supplementary visual information. Additionally

to the precision vs. recall curve and the hereby observed maximum F-scores, we analyze

the relative variable importance averaged over the 4 executed runs of each descriptor.

HoG + GoF The first feature combination we investigate is the HoG and GoF de-

scriptor, both in their individually best performing configurations. Figure 4.6 shows the

results of concatenating the feature vectors of both descriptors to a 12.084 dimensional
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vector that is passed to the classifier. It can be observed that the random forest is able to

complement the performance of both descriptors. As the combination of HoG and GoF

clearly outperforms the individual detection performance for power sockets, however, for

light switches, the results are slightly worse compared to the individual GoF descriptor.

We mainly contribute this effect to the initial significantly inferior performance for this

category of the HoG descriptor. The observation that the GoF descriptor can provide

more valuable information to the random forest is also confirmed by the distribution of

the variable importance scores on the descriptors, as presented in Figure 4.7. However, the

average F-score over both categories is significantly improved by combining both feature

descriptors.
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b) detection result for light switches

F-scores

Category HoG (Config 3) GoF (npairs = 1500) HoG+GoF

Power sockets 0.847 0.856 0.883
Light switches 0.771 0.856 0.851

Average 0.809 0.856 0.867

c) Observed maximum F-scores

Figure 4.6: Evaluation of the combined HoG and GoF descriptor compared to their individual
performance. As the combination outperforms both single descriptors for power sockets (a)),
the individual GoF descriptor performs best for light switches (b)). The combination of both
descriptors however clearly reaches the highest F-score averaged over the categories, as listed in c).
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GoF

HoG

0 20 40 60 80 100

percentage

80.7%

19.3% Figure 4.7: The distribution on a percentage basis of
the accumulated variable importance per descriptor, av-
eraged over the 4 test runs. The importance of a feature
variable is determined by the calculated information gain
of the according split nodes, weighted by the relative
amount of training samples reaching that node.

HoG + GoF + Image Filters The first supplementary descriptors we evaluate when

added to the set of HoG and GoF are the additional image filters as introduced in Section

3.2.3. For generating the rectangular subregions to describe the image filter responses, we

tested the equivalent size settings ‘L1’, ‘M1’ and ‘S1’ as listed in Table 4.3. The overall

best results were achieved by the setting ‘L1’, hence we set szmin = 3%, szmax = 100%. To

get a better understanding of the impact of the separate image filters we form two groups

of feature channels, namely ‘Luv’ composed by the L, u and v color channel filter, and

‘H/V’ consisting of the strictly horizontal and vertical gradient filter. To ensure a relevant

amount of these feature channels in the accumulated vector, we generate npairs = 1500

rectangle pairs for each group.

Figure 4.8 shows the evaluation results. Whereas the detection performance for power

outlets decreases with adding additional feature channels, the ratings increase in the case

of light switches. We can explain this effect by the different appearances of the two

categories. Power sockets have with the cylindrical notch a very significant visual feature

that can be modeled best by gradient based descriptors. In this case, adding other feature

channels just introduces additional noise to the vector representation. On the other hand,

the detection of light switches, which in general consist of fewer distinctive edges, slightly

benefits from the additional information about color and the presence of strictly horizontal

or vertical gradients. However, the general low impact of the additional feature channels

is also confirmed by the analysis of the variable importance of the HoG+GoF+Luv+H/V

configuration, as depicted by Figure 4.9. Comparing the importance of H/V and Luv

features, the random forest incorporates the H/V channel significantly more as the Luv

group, which also reflects the observed differences of the detection performance results.

Although the average F-scores are rather unaffected for the different feature compositions,

we prefer the combination of HoG+GoF+Luv+H/V since it most balances the detection

performance between the object classes.

HoG + GoF + PCA The last experiment we evaluate on the feature side is adding

the cross-correlation scores of matching with the pre-trained Eigen-images obtained by

PCA to the feature vector. Since the PCA representation of the search window is rather

low-dimensional, we replicate the resulting vector several times when combining with the

HoG and GoF descriptor in order to provide fair chances of a PCA-feature to be selected

in a split node of the random forest. In our experiments, we have added the PCA based

features to the basic HoG+GoF configuration, as well as to the best performing feature
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F-scores

Category HoG+GoF HoG+GoF+Luv HoG+GoF+H/V HoG+GoF+Luv+H/V

Power sockets 0.883 0.881 0.879 0.868
Light switches 0.851 0.852 0.858 0.869

Average 0.867 0.867 0.868 0.868

c) Observed maximum F-scores

Figure 4.8: Evaluation of the feature channels ‘Luv’ and ‘H/V’. Figure a) and b) show precision
vs. recall for power outlets and light switches, respectively. The maximum F-scores over varying
the decision threshold are listed in c).

Figure 4.9: Percentagewise distribution of the de-
termined variable importance per descriptor of the
HoG+GoF+Luv+H/V feature combination in ascending
order.
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set so far, HoG+GoF+Luv+H/V.

The resulting detection performance is shown in Figure 4.10, Figure 4.11 depicts the

relative feature importance of HoG+GoF+PCA determined by the classifier. It can be ob-

served that adding the Eigen-space representation to the basic HoG+GoF features slightly

increases the detection rating for light switches, however, it decreases the performance for
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power sockets significantly. Similar observations can be made when adding the PCA based

feature to the full set of HoG+GoF+Luv+H/V, but lacking the small boost for the class

of light switches. Summarized, all combinations incorporating the PCA features perform

inferior to the HoG+GoF+Luv+H/V feature configuration. As reasonable conclusion also

in accordance with the determined feature importance, we consider the PCA representa-

tion not able to provide any additional valuable information to the HoG+GoF+Luv+H/V

features since it may be less effective in coding the spatial constellation of gradients than

the HoG and GoF descriptors.
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F-scores

Category HoG+GoF HoG+GoF+PCA HoG+GoF+Luv+H/V+PCA

Power sockets 0.883 0.870 0.866
Light switches 0.851 0.858 0.859

Average 0.867 0.864 0.862

c) Observed maximum F-scores

Figure 4.10: Evaluation of the PCA space representation added to the feature pool.

4.5 Classifier Evaluation

In this section we evaluate different settings for the maximum depth and number of the

trees in the forest, as well as the introduced iterative training procedure and the application

of an assumed prior probability, as outlined in Section 3.3. For comparing the performance
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Figure 4.11: The relative variable importance per de-
scriptor for the PCA Eigen-representations added to the
HoG+GoF feature set. Although the split selection was
artificially encouraged to consider all features, the PCA
based descriptor seem not to provide any additional dis-
criminating information.
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of training and evaluating the classifier with the different options, we utilize the best

performing feature setup, i.e. HoG+GoF+Luv+H/V.

Depth and Number of Trees To demonstrate the impact of the maximum depth

dmax and total number of trees ntrees in the random forest, we evaluate both parameters

separately. Figure 4.12 shows the conducted experiments. In general, we can observe that

higher values for both, dmax and ntrees yield better overall performance. However, the

impact is less significant than expected. When separately analyzing the object classes,

the classifier parameters show a higher influence on the detection performance for light-

switches. This could be explained by more extensive combinations of features required to

model the appearance of light switches due to their less distinct visual cues.

The overall best results were achieved with dmax = 22 and ntrees = 250, for our

evaluation data these numbers may seem a bit overstated though. Nevertheless, our

experiments show that an overestimated depth and amount of trees does not harm the

performance. Considering the expected growth of the DURAARK training database over

time, we decide for the setting of dmax = 22 and ntrees = 250 in order to preserve future

compatibility.

Iterative Training and Prior Probability For investigating the impact of the iter-

ative training procedure, we compare with training the random forest as usual with no

iterations and using all available training samples. To show the effect of the assumed

prior probability, we also add precision vs. recall when applying the decision threshold

directly on the reported certainty of the classifier. Figure 4.13 shows the results for the

described test settings. It can be observed that the assumed prior probability significantly

increases the overall detection performance, however, the lower recall around 0.5 precision

rate for power outlets indicates that some individual instances that may not comply with

the estimated common mounting height are harder to recognize.

Comparing the normal training with the iterative procedure, the performance differ-

ence is less significant. Investigating the maximum observed F-scores, in fact the two meth-

ods achieve equal performance. However, the overall higher recall of the iterative training

procedure indicates that the classifier can better recognize more difficult instances.

In Figure 4.14 we additionally compare the prediction error on the full training set

for the normal and the iterative training procedure. We can see that in the first iteration
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F-scores

Category
ntree 250 125 64 32

dmax 13 16 19 22

Power sockets 0.858 0.868 0.875 0.868 0.872 0.876 0.868
Light switches 0.849 0.850 0.861 0.869 0.851 0.844 0.838

Average 0.854 0.859 0.868 0.868 0.862 0.860 0.853

e) Observed maximum F-scores

Figure 4.12: Evaluation of the maximum depth dmax and number of trees ntrees of the random
forest. Note that the setting dmax = 22 and ntrees = 250 corresponds to the same configuration
everywhere else denoted as HoG+GoF+Luv+H/V.
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the amount of wrong classified samples is about 3 to 4 times larger than using the full

training set at once. Anyway, after only a few iterations the iterative approach is able

to significantly reduce the classification error on the training set. Although in one run

the error could not be reduced below 10 samples in 2 more attempts, in general the

iterative training procedure achieves almost a classification rate twice as good as the

normal approach on the training set.
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b) detection result for light switches

F-scores

Category HoG+GoF+Luv+H/V (normal training) (no prior)

Power sockets 0.868 0.870 0.834
Light switches 0.869 0.859 0.815

Average 0.868 0.864 0.824

c) Observed maximum F-scores

Figure 4.13: Evaluation of the introduced iterative training procedure and applying a prior
probability. The blue line shows precision vs. recall of applying both methods, which were already
used for determining the best feature set. The observed detection performance of normal training
with applying the prior probability is visualized in green. The red line shows precision vs. recall
using iterative training, but without applying the assumed prior probability.

4.6 Qualitative Evaluation

In order to give a better impression of the actual detection capabilities of our derived

algorithm on real images, we present some selected results from our test-set, each demon-
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Figure 4.14: Analysis of the training error of the iterative training procedure compared to the
normal approach. Figure a) shows the evolution of the training error over the iterations using the
HoG + GoF + Luv + H/V feature configuration for the 4 performed runs. The according mean,
standard deviation and extrema values are depicted as box plot in Figure b), along with the same
statistics observed by the normal training procedure.

strating a special condition. For this evaluation we use the best performing setup and

applied the decision thresholds for each category where the highest F-score was obtained.

Figure 4.15a) and 4.15b) show correctly detected electrical devices in a very cluttered

environments, without hallucinating false positives somewhere else. Also in low light con-

ditions, our algorithm is able to correctly detect the target objects, as demonstrated in

Figure 4.15c). Even on very bad image quality and the lack of the characteristic notch for

power outlets, we are able to detect and classify all instances correctly in Figure 4.15d).

Figure 4.15e) shows a scenario where our detection algorithm missed some instances. Rea-

sons are most likely the highly distorted shape due to the steep view angle and the high

image blur at the corresponding location. A wrong detection can be observed on Figure

4.15f), where the round, framed button of the elevator was confused with a power outlet.

Figure 4.15g) depicts a scenario where the classifier was even able to detect power outlets

where an appliance is plugged in, but also classified an Ethernet connector as light switch.

This can be explained by the very similar appearance along with the lack of training data

for Ethernet connectors.

4.7 Summary

In this chapter, we addressed determining the best-suited configurations and evaluating

the performance of our derived detection algorithm. In the first part, we outlined our test

and training data, which we gathered from various sources. The final test-set consists of

31 wall texture images, containing 52 annotated instances of power outlets and 63 light
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a) Cluttered scene b) Noisy texture

c) Low-light condition d) Bad quality, no notch

e) Large view angle f) Similar appearance

g) Altered targets

Figure 4.15: Qualitative evaluation on various examples. The large images show the full scenes
cropped to fit the same aspect ratio with the overlayed detection results. The small images on
the sides show magnified snippets of the detection locations to get a better impression of the
image quality and the actual appearance of the targets. Blue squares mark detected light switches,
whereas power sockets are highlighted orange. The certainty of a detection is printed below each
target and also indicated by the opacity of the drawn boxes.
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switches along with their physical mounting height. For training our detection pipeline,

we collected, annotated, rectified and augmented several images ourselves, yielding a total

amount of 990, 2.005 and 159.165 training samples for power sockets, light switches, and

the negative class, respectively. For comparing the performance of different setups of

the detection algorithm, we utilize precision vs. recall charts and the hereby maximum

obtained F-score of these measures. For each tested configuration, we ran the whole

training and detection process 4 times and combined the results to minimize fluctuations

due to the random processes in the algorithm.

To find the best performing feature setup within the vast amount of parameters and

possible configurations, we investigated the HoG and the specially designed GoF descrip-

tor separately and tested their parameters in the order of their impact on the detection

performance. Afterwards, we observed the results of different combinations also with the

introduced supplementary features. Our experiments show that combining the HoG and

GoF descriptor yielded significantly better results compared to their single performance.

The impact of adding different supplementary features is less significant but noticeable.

Whereas including additional feature channels coding the color distribution and the pres-

ence of strictly horizontal and vertical gradients can increase the performance for one

category, the opposite is the case for the other object class. However, adding these fea-

tures results in better leveling the detection rate between the categories. A similar finding

was made by incorporating matching against PCA autogenerated templates, whereas we

concluded that these features do not create any additional benefit to the detection pipeline

overall. Furthermore, we investigated the impact of the maximum depth and number of

trees in the random forest, as well as the introduced modifications of the training and

evaluation procedure. The conducted experiments on our data attest the depth and size

of the forest only a minor influence on the detection performance, whereat the best results

were achieved with a rather high number for both values. A much bigger impact was ob-

served by utilizing an assumed prior probability to model the common mounting practices

for electrical devices which vastly enhances the results. Moreover, the iterative training

procedure of the classifier also improves the overall performance, along with significantly

reducing the prediction error on the training set. With the best performing configuration

consisting of the HoG+GoF+Luv+H/V features and both modifications on the classifier

side, we achieve at the maximum observed F-scores a recall of 83, 7% and 90, 2% precision

for power sockets, and 80, 2% recall rate at 94, 8% precision for light switches.

A finalizing qualitative evaluation of the results confirmed a good detection perfor-

mance in various difficult situations. Conditions our algorithm struggles the most are a

high blur or bad quality of the query images. Additionally, we could observe some wrong

detections triggered by various objects that share many visual features with our targets.

However, this could be prevented by explicitly adding such instances to the negative class.





CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis we derived and evaluated a detection algorithm for wall-mounted electrical

devices in indoor scenes, which is implemented in a practical application. In fact, the final

approach is part of the EU-funded DURAARK framework for analyzing and digitalizing

building structures, more precisely to estimate the electrical wiring inside walls. Therefore,

our developed algorithm needs to fulfill special demands and requirements concerning input

data, usability and extensibility.

The original input data for processing a single room consists of a 3D point cloud and

a recorded panoramic image, which serves as good basis for reconstruction of buildings in

very high detail. However, our analysis revealed an insufficient spatial resolution of the

point cloud in exposed areas for reliable detection of the plain and undistinctive targets.

Hence it was decided to introduce a pre-processing step that generates rectified wall-texture

images by projecting the panoramic image onto detected 3D planes, which defines the input

for our algorithm. This decision also serves a more user-friendly usability and extensibility

of the corresponding application component, since the user is required to provide images

only in order to extend the training database. Anyway, in general the benefit of having

access to a full 3D point cloud for the addressed detection task turned out to be less

than expected. Despite the rectified representation and the known real scale information,

the partially low quality of the panoramic image, as well as the high variability and lack

of distinctive features of the target objects result in a very challenging detection task.

Additionally, the amount of available training data is very limited, which excluded the

possibility to train an end-to-end detector like the currently hyped convolutional neural

networks (CNN).

In order to solve this specific problem, we decided for a classical detection pipeline

consisting of handcrafted features evaluated by a classifier. Therefore, we investigated
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different descriptor approaches for detecting plain, untextured targets. We fused the most

promising concepts in a novel feature descriptor named ‘gradient orientation features’

(GoF), which is especially designed for our use-case. Additionally, we evaluated concate-

nating the representations of the outlined descriptor algorithms in various combinations,

aiming at combining the strengths of the different approaches. However, joining various

feature descriptors can result in a very noisy and redundant vector representation of the

underlaying image. This demands a classifier with strong feature selection capabilities,

along with handling the multi-class requirement of the application and a highly imbal-

anced training dataset. Therefore, we chose a random forest classifier and added some

modifications to the basic algorithm. In order to handle the imbalanced training data,

we introduced sample weights impacting the split node creation and the vote of a single

tree. Further, an additional iterative training procedure specifically addresses the low

total amount of training samples for the object classes. Last but not least, we modeled

common mounting heights of electrical devices by an assumed prior probability applied

on the result of the classifier.

Our conducted experiments show that our GoF descriptor outperformed the well-

established ‘histograms of oriented gradients’ (HoG) descriptor in a direct comparison.

Furthermore, we were able to show that combinations of feature descriptors can perform

significantly better than single descriptor setups, however, the performance decreases when

adding features not providing any additional value. The evaluation of the iterative training

procedure attests a better detection of more difficult instances while enforcing a lower

prediction error on the training set. However, this approach makes the random forest

more vulnerable to mislabeled training data. The biggest improvements on the classifier

side were achieved by the assumed prior probability, while the maximum depth and number

of trees in the forest show only a minor impact on the results. Using the best performing

feature and classifier setup, we achieved a recall of 83, 7% at 90, 2% precision for power

sockets, and 80, 2% recall at a precision of 94, 8% for light switches, both datapoints

measured at the maximum observed F-scores per object category.

5.2 Future Work

Currently, in the final implementation detection is performed on every plain wall seg-

ment that was extracted by a plane fitting algorithm, also retrieving structures that do

not necessarily contain electrical wires like doors, windows, or large furniture like tables

or wardrobes. Since the semantic classification of those structures is also part of the

DURAARK tools, one could convey this information to exclude certain textures from the

visual detection in advance. However, this semantic information is anyway already incor-

porated by the grammar shape models that estimate the invisible electrical installation.

Another improvement of the detection results could be of course accomplished by

directly passing the 3D information of an investigated region to the classifier, either in the

form of a descriptor modeling the arrangement of the 3D points, or a derived depth image
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described by 2D approaches. However, this would be only possible if also the training

data would provide the same information. We propose two possibilities in gathering this

training data in the future. First, one could simply manually collect and annotate user data

that was uploaded over time to the DURAARK application. The second possibility would

require the user to take multiple images from different angles for one training instance, from

which a 3D reconstruction could be calculated and sampled to best match the appearance

of the point cloud captured by the LiDAR scanner. However, the reconstruction of the

mostly texture-less objects is not trivial and most probably would require high effort to

make it reliably working with user-provided data. Furthermore, pursuing this approach

would at some point require to either generate 3D data also for the negative class, or

implementing a classification deciding on a similarity score or matching distance without

the need for a negative class.





APPENDIX A

CALCULATION OF EFFECTIVE 3D SCAN

RESOLUTION

This chapter investigates the theoretically achievable scan resolution of a 3D LiDAR scan-

ner that is equipped with an angle based deflection unit in a cuboid room. The walls of

the room are modeled as separate upright Cartesian planes.

When recording a point cloud, a scanner emits multiple laser beams by altering its

azimuth and elevation angle by a constant step value, while measuring the euclidean

distance towards a reflecting surface. Hence, the measurement points are organized within

a regular pattern of azimuth and elevation angles in a polar coordinate system. The

amount of measurement points is fixed, therefore, we are interested in the achievable point

density at each position on a Cartesian plane, which is obviously a non-linear function.

To model the relation between the internal 2D Cartesian coordinates of an arbitrary

upright plane and the deflection angles of the laser scanner, we consider a plane ε defined

by

ε : a · x3D + b · y3D + c · z3D + d = 0, with a = c = 0, b = 1, d = ỹ (A.1)

(i.e. a plane spanned by the x3D- and z3D-axis at a distance ỹ to the origin). Considering

the model shown in Figure A.1, the transformation between 3D polar [r, ϕ, ϑ] and 3D

Cartesian coordinates is given by

x3D = r · cosϑ · sinϕ (A.2)

y3D = r · cosϑ · cosϕ (A.3)

z3D = r · sinϑ (A.4)

whereat r represents the euclidean distance, ϕ and ϑ denote the azimuth and the elevation
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angle of the deflection unit, respectively.

z3D

x3D

y3D

y2D

x2D

ε

r

ỹϕϑ

Figure A.1: Geometric model for effective scan resolution calculation

We can calculate the Cartesian 3D points that are part of ε in respect to ϕ and ϑ by

expressing r implicitly as r = ỹ
cosϑ·cosϕ . Hence,

x3D = ỹ · sinϕ

cosϕ
(A.5)

y3D = ỹ (A.6)

z3D = ỹ · sinϑ

cosϑ · cosϕ
(A.7)

with the bounds ϕ ∈ (−π
2 ,+

π
2 ) and ϑ ∈ (−π

2 ,+
π
2 ). Assuming a mapping of the internal

2D coordinate system of the plane by x2D = x3D and y2D = z3D, we can model the

transformation between the azimuth and elevation angle of the deflection unit and the

internal 2D coordinates of ε by

x2D = ỹ · sinϕ

cosϕ
= ỹ · tanϕ

y2D = ỹ · sinϑ

cosϕ · cosϑ
= ỹ · tanϑ

cosϕ

(A.8)

As the area of an arbitrary segment S(x2D, y2D) on the plane ε is defined by A =∫∫
S(x2D,y2D) 1 dx2Ddy2D, we can apply a coordinate transformation (x2D, y2D) → (ϕ, ϑ)

of the area integral via the functional determinate
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resulting a formula for the area of a segment S ′(ϑ, ϕ) on ε, defined by the deflection angles

of the laser beam hitting the plane ε:

A =

∫∫
S′(ϑ,ϕ)

ỹ2

cos3 ϕ · cos2 ϑ
dϑ dϕ (A.10)

By setting proper integration limits, we can calculate the area associated with exactly

one discrete scan point on ε, in respect to 2 concrete deflection angle values (ϑ′, ϕ′).
Therefore, we set

A(ϑ′, ϕ′) =

∫ ϕ′+∆ϕ
2

ϕ′−∆ϕ
2

∫ ϑ′+∆ϑ
2

ϑ′−∆ϑ
2

ỹ2

cos3 ϕ · cos2 ϑ
dϑ dϕ (A.11)

whereat ∆ϕ and ∆ϑ denote the constant step size values of the horizontal and the vertical

component of the deflection unit, and ϕ′ and ϑ′ are the absolute azimuth and elevation an-

gle values of the corresponding discrete measurement point, respectively. For the A(ϑ′, ϕ′)
we get

A(ϑ′, ϕ′) = ỹ2 ·
∫ ϕ′+∆ϕ

2

ϕ′−∆ϕ
2

∫ ϑ′+∆ϑ
2

ϑ′−∆ϑ
2

1

cos3 ϕ · cos2 ϑ
dϑ dϕ

= ỹ2 ·
∫ ϕ′+∆ϕ

2

ϕ′−∆ϕ
2

1

cos3 ϕ
· tan(ϑ)|ϑ′+

∆ϑ
2

ϑ′−∆ϑ
2

dϕ

= ỹ2 · tan(ϑ)|ϑ′+
∆ϑ
2

ϑ′−∆ϑ
2

·
∫ ϕ′+∆ϕ

2

ϕ′−∆ϕ
2

1

cos3 ϕ
dϕ

= ỹ2 · tan(ϑ)|ϑ′+
∆ϑ
2

ϑ′−∆ϑ
2

·
(

sin(ϕ)

2 cos(ϕ)2
+

1

4
ln

∣∣∣∣1 + sin(ϕ)

1− sin(ϕ)

∣∣∣∣)∣∣∣∣ϕ′+∆ϕ
2

ϕ′−∆ϕ
2

(A.12)

Due to the constant step size of the polar azimuth angle ϕ, the result holds not only

for our particular plane ε, but for any upright plane with an arbitrary rotation around
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the z-axis. The inverse value of this function gives the expected scan resolution on a 2

dimensional plane that is scanned by a radial deflected laser beam in pts/m2.

Via the derived formula we can calculate different acquisition setups for rooms con-

sisting of upright, plane walls. Figure A.2 shows simulations of the achievable effective

point cloud resolution on the wall surfaces for two different scenarios. The parameters

of this simulations were matched to the reference scanner Faro Focus 3D, as described

in Section 1.3. We assumed the scanners default noise reduction enabled, which reduces

the number of measurements by a factor of 16. Obviously, the effective scan resolution

of the projected equidistant points of a 3D polar coordinate system to a 2D plane varies

significantly with the position on the wall. Furthermore, we can observe strong distortions

of the spatial order of scan points in regions, where the scanner show a skewed viewpoint

relative to the walls surface. Hence, although the scanner acquires a distance measure

each ∆ϕ = ∆ϑ = 0.009◦ per deflection axis resulting in a total number of about 1.6 billion

points, less dense sampled areas of simulation A.2a) feature only a resolution of about 6

to 7 pts/cm2, or one point each 3 to 4 mm. A standard European electrical appliance

providing a square area of about 25 cm2 that is mounted in a less dense sampled corner,

would got sampled by only about 13×13 points. In this simulation we assume the scanner

to be placed in the exact center of the room.

The simulation shown in A.2b) is based on the real-world example of Figure 1.3. Due

to the off-centered placement of the scanner, the effect of the scan grid distortion is much

more distinctive, as illustrated by the equiangular lines. This distortion contributes to the

minimum achievable resolution dropping down to 3.63 pts/cm2, which yield a standard

socket to be digitalized by only 90 points on average. Beside the loss of data density, the

distorted scan raster leads to additional difficulties when interpreting the measurement

data. In our example, a square area of 25 cm2 in the least densest region would be

sampled by about 6× 15 points, instead of 9× 9. This encourages the chance of missing

important structure information.
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a) Centered placed scanner
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b) Off-centered placed scanner

Figure A.2: Simulation of the achievable scan resolution in 2 different scenarios with a LiDAR
scanner. The round marker represents the center of the scanners measurement unit. In order to
visualize the distortion of the scan point grid, the black lines indicate scan positions every 3◦ of
equal azimuth and elevation angle values. The simulation of a) shows a room of size 6 × 5 m,
where the scanner is placed at the center of the floor. Towards the corners, the lowest achievable
resolution on the walls decreases significantly. Figure b) simulates the scenario of a real example
discussed in Section 1.3. The off-centered scanner position reinforces the loss of resolution at
certain regions and additionally introduces strong distortions of the scanning grid.
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