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Abstract

Creating dense 3D reconstructions from real-world scenes has been an active research topic

in recent years, especially with the emergence of cheap RGBD sensors like the Microsoft

Kinect. Accurate 3D models from scans can be employed in a variety of fields includ-

ing robotics (navigation), augmented/virtual reality and gaming. The challenges of such

a system are manifold, from the accuracy of the trajectory estimation via the efficient

memory usage through to the ability to react to model updates in real-time.

In this thesis, we present a dense 3D reconstruction framework for RGBD data that can

handle loop closure, i.e. a closure in the trajectory through recognition of an already visited

scene, and other pose updates online. Handling updates online is essential to get instant

feedback about the coverage and quality of the scan and generate a globally consistent

3D reconstruction in real-time. Hence, we introduce fused depth maps for each keyframe

that contain the fused depths of all associated frames to greatly increase the speed for

model updates. Furthermore, we show how we can use integration and de-integration in a

volumetric fusion system to adjust our model to online updated camera poses. In addition,

we propose a plane estimation algorithm to detect and complete large planes within our

model. Based on the Manhattan environment assumption, i.e. man-made environments

are build on a Cartesian grid which leads to regularities, this idea can further improve the

model.

We build our system on top of the InfiniTAM framework to generate a dense 3D model

from the sparse, keyframe-based ORB-SLAM2 reconstruction. We extensively evaluate our

system on real world and synthetic generated RGBD data regarding tracking accuracy and

surface reconstruction.

Keywords. dense 3D reconstruction, RGBD data, volumetric fusion, SLAM, plane es-

timation
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Kurzfassung

Die Erstellung dichter 3D-Rekonstruktionen aus realen Szenen war in den letzten Jahren

ein vieldiskutiertes Forschungsthema, insbesondere wegen des Aufkommens leistbarer

RGBD-Sensoren, wie der Microsoft Kinect. Präzise 3D-Modelle durch Scans können in

einer Vielzahl von Bereichen wie Robotik (Navigation), Augmented / Virtual Reality und

Gaming eingesetzt werden. Die Anforderungen an ein solches Systems sind vielschichtig,

von der Genauigkeit der Trajektorienabschätzung über die effiziente Speichernutzung bis

hin zur Fähigkeit, auf Modellaktualisierungen in Echtzeit zu reagieren.

In dieser Arbeit präsentieren wir ein dichtes 3D-Rekonstruktions-Framework für

RGBD-Daten, das Loop-Closure, i.e. Schließung der Trajektorie durch Wiedererkennung

bereits besuchter Szeneteile, und andere Posenveränderungen online durchführen kann.

Online-Updates sind wichtig, um sofort Rückmeldung über die Vollständigkeit und

Qualität des Scans zu erhalten und eine global konsistente 3D-Rekonstruktion in Echtzeit

zu erstellen. Für diesen Zweck führen wir fusionierte Tiefenkarten für jedes Schlüsselbild

ein, die die Information der Tiefen aller zugehörigen Bildern enthalten, um die

Geschwindigkeit für die Modellaktualisierung erheblich zu erhöhen. Des Weiteren zeigen

wir, wie wir Integration und De-Integration in einem volumetrischen Fusionssystem

nutzen können, um unser Modell an in Echtzeit aktualisierte Kameraposen anzupassen.

Darüber hinaus stellen wir einen Algorithmus zur Schätzung von Ebenen vor, um

große Ebenen innerhalb unseres Modells zu erkennen und zu vervollständigen. Diese

Idee basiert auf der Annahme der Manhattan-Umgebung, i.e. von Menschen erbaute

Strukturen weisen geometrische Regelmäßigkeiten auf (Wände, Böden), und kann das 3D

Modell weiter verbessern.

Wir bauen unser System auf dem InfiniTAM-Framework auf, und generieren aus der

spärlichen, Schlüsselbild-basierten ORB-SLAM2 Rekonstruktion ein dichtes 3D-Modell.

Wir evaluieren unser System auf realen und synthetisch generierten RGBD-Daten

bezüglich Trajektorienabschätzung und Oberflächenrekonstruktion.
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1
Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Motivation

In this thesis, we address the problem of creating accurate, dense 3D models in real-time.

Building dense 3D models has potential in a variety of fields including cultural heritage

or famous touristic sites scans, reconstruction of houses, buildings, rooms, objects etc.

In recent years, the ubiquity of inexpensive RGBD cameras, pioneered by the Microsoft

Kinect, has led to a series of applications for indoor 3D scene reconstruction in research

areas such as augmented/virtual reality, robotics and gaming. The generated 3D models

can also be of advantage to the technical inexperienced consumer: For example, an ac-

curate, photo-realistic model of a room, can enable scenarios like virtual remodeling or

online furniture shopping. Furthermore, such a model can help in court proceedings by

providing a precise snapshot of the crime scene for later investigations. In order to be

usable in these scenarios, the system needs to run on a portable device, ideally a laptop

or tablet with standard hardware. Moreover, the challenges lie in an automated model

generation and adaption in real-time, allowing the user to get instant feedback about the

coverage and quality of the scan. This does not only require a robust camera pose esti-

mation algorithm but also on-the-fly model updates that incorporate loop closures and

pose refinements. The robust camera motion estimation process is the main difference

between current systems and roughly divides them into three categories: (i) Iterative clos-

est point (ICP) methods aim to align 3D points but require sufficient 3D structure and a

correspondence matching step [29, 43]. Instead of point clouds, (ii) direct methods esti-
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2 Chapter 1. Introduction

mate motion by processing image information directly. Dense [31], semi-dense [8, 15] and

sparse [13] variants based on the photo-consistency assumption exist. This makes these

approaches especially susceptible to illumination changes and direct methods are typically

restricted to small inter-frame motion. (iii) Feature-based methods extract features, match

correspondences and estimate motion by minimizing the reprojection error [12, 42]. The

extracted features are more robust to illumination changes than the direct methods based

on the photo-consistency assumption and are also suitable for larger inter-frame motions.

Regardless of the applied method, many systems rely solely on frame-to-model tracking

to estimate the camera movement in real-time and sequentially build a dense 3D model [29,

43]. While such systems are real-time capable they accumulate significant drift over time

and usually cannot correct this drift by revisiting the same place (see Fig. 1.1). To tackle

this problem, more advanced Simultaneous Localization and Mapping (SLAM ) systems

perform loop closure and pose graph optimization to reduce the drift. However, such an

approach is computationally very expensive and often only acquires a semi-dense [15] or

sparse map [13, 42]. If in addition a dense 3D model is desired, the SLAM system usually

relies on expensive hardware, e.g. the Bundle Fusion system [8] only runs on a combination

of an NVIDIA GeForce GTX Titan X and a GTX Titan Black.

1.2 Contribution

In this thesis, we propose a real-time dense 3D reconstruction method that successfully

combines the state-of-the-art ORB-SLAM2 system [42] with the dense volumetric fusion

framework InfiniTAM [29] and works on standard consumer hardware. We extend Infini-

TAM to support the necessary operations that are required for online dense reconstruction

such as updating and re-adjusting the 3D model to find and estimate loop closures and

pose refinements in real-time. Furthermore, we propose a method to estimate large planes

in our 3D model to complete geometric structures (see Fig. 1.2). The idea is based on the

Manhattan environment assumption, i.e. the assumption that in man-made environments

plane-like structures dominate (e.g. walls, floors, etc.) and can contribute to a more com-

plete model. This can be especially important in applications where boundaries need to

be checked, e.g. in an augmented reality application a character might be prevented from

falling through a ”hole” in an incompletely scanned wall.

To validate our method, we compare the trajectory estimations and surface recon-

struction accuracy of several methods on the standard TUM RGBD benchmark dataset,

the BundleFusion dataset and the synthetic ICL NUIM dataset. The key contributions

presented in this work can be summarized as:

• Implementation of a de-integration method which allows to refine and alter the 3D

model online when large changes in the estimated trajectory occur, e.g. in the case

of a loop closure detection.

• A global model update which can delete and merge keyframes in retrospect.
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Figure 1.1: Reconstructed dense 3D Models: Standard InfiniTAM vs our system with keyframe-
based depth map fusion and global model update. We can see the effects especially in the upper
left corners where a loop closure occurs.

• A keyframe-based depth fusion, where we fuse information of frames into their re-

spective keyframes instead of integrating them directly into the model. This signifi-

cantly speeds up the re-integration process required for a global model update.

• A method to estimate planes in a dense 3D model to further improve the model by

eradicating noise and filling holes in scans of planar geometry like walls and floors

• An extensive evaluation of both, the trajectory error and the surface reconstruction

error on several benchmark data sets

Parts of this thesis were submitted as a paper [66] to the Austrian Association for

Pattern Recognition (OAGM/AAPR) Workshop 2018 and accepted. The covered topics

include de-integration, depth fusion and global model update.



4 Chapter 1. Introduction

(a) Original InfiniTAM (b) Our approach

Figure 1.2: Original InfiniTAM vs our approach with model update and plane estimation.

1.3 Outline

The remainder of this thesis is structured as follows: In Chapter 2, we introduce the reader

to the theoretical concepts which form the basis of this thesis. We also discuss related

work and state-of-the-art methods.

Chapter 3 explains our approach in detail. We show the work flow of our system and

how we apply the mathematical theory.

We describe our experiments and results in Chapter 4. We provide a comprehensive

evaluation on several real-world and synthetic datasets. Furthermore, we present the

globally consistent 3D models of our own RGBD sensor recordings.

We conclude the thesis in Chapter 5, where we summarize our method and discuss

potential future directions.



2
Background and Related Work

This chapter describes the sensor and the theoretical concepts of this thesis. We explain

the majority of appearing terms and the underlying mathematical theory. At first we

introduce the notations and conventions we follow throughout this thesis. Then we give

an overview of how to describe a motion in an image series. Next, we discuss different

methods of how to obtain a movement trajectory and estimate a 3D model from visual

input only. Furthermore, we discuss related work in the area of VO/SLAM and dense

reconstruction. Finally, we talk about how plane estimation can help to improve the 3D

model estimation.
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6 Chapter 2. Background and Related Work

Entity Notation

Scalar a, bi
Vector 3D X = (X,Y, Z)>

Homogeneous Vector 3D X̃ =
(
X>, 1

)>
Vector x

Homogeneous Vector x̃ =
(
x>, 1

)>
Matrix M =

[
a b
c d

]
Transformation Matrix (a→ b) Tb,a =

[
R t
0> 1

]
Vector Space R3

Mappings π : R3 → R2

Functions P

Table 2.1: Mathematical notations used in this thesis.

2.1 Notation and Conventions

Throughout this thesis, we adopt the following conventions:

• Scalar values are denoted by italic fonts, e.g. a or bi,

• Matrices and 3D (column-)vectors are represented by bold, upper-case letters, e.g. M

or X, and all other (column-)vectors by bold, lower-case letters, e.g. v,

• Vector spaces are given by double-lined upper case letters, e.g. R3 or Z3,

• Homogeneous representations of points/vectors x ∈ R2 or X ∈ R3 are characterized

by a tilde, e.g. x̃ =
(
x>, 1

)> ∈ R3 or X̃ =
(
X>, 1

)> ∈ R4,

• Mappings between different spaces are denoted in lower case Greek letters, e.g. π :

R3 → R2,

• Functions are denoted in upper case calligraphic letters, e.g. G or T ,

• Transformation matrices, which transform a homogeneous 3D point X̃ from frame

a to frame b are given by Tb,a ∈ R4×4.

Table Table 2.1 shows an overview of the notations we follow in this thesis.

2.2 Sensors

One of the crucial parts of any image-requiring computer application is the selection of an

adequate image sensor, i.e. a camera. A first choice would be a monocular camera, which
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(a) Passive Stereo (b) Active Stereo

Figure 2.1: Canonical stereo configuration: (a) Passive Stereo: A 3D point X is projected through
the two camera centers A and C. The relationship between a + c, b, f and z is determined by
the similar triangle pairs (XBA, AED) and (XCB, CGF). (b) Active Stereo: The baseline is now
between the projector center A and the camera center C. A change in depth (P1, P2, P3) results
in a horizontal shift in the image plane (p1, p2, p3).

passively captures a single image/image stream. However, as this thesis focuses on 3D

scene reconstruction and a monocular setup is unable to provide a scale factor we dismiss

this option. 3D lasers are a costly alternative and not all of them do provide the often

needed color information (for visual features).

Therefore, we consider a stereo setup: In order to recover the depth z of point X we

need to apply stereo geometry to Figure 2.1. Since the triangles XBA and AED as well as

XCB and CGF are similar we get z : b = f : d, with d = a+ c and can therefore calculate:

z =
bf

d
, (2.1)

where d is the disparity, b the baseline and f the focal length. This is known as the

canonical stereo configuration.
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Figure 2.2: Orbbec Astra Pro sensor [46] with its main components: IR Projector, IR Sensor
and RGB Sensor. It furthermore includes 2 microphones and an Advanced Eye Protector which
shuts down the projector if an obstacle is within 40cm of the sensor. The baseline in the active
stereo case is between the projector center and the camera center.

(a) RGB image (b) IR image (c) Depth image

Figure 2.3: Orbbec Astra Pro images: (a) acquired from the RGB sensor, (b) aquired from the
IR sensor and (c) calculated from the known pattern in the IR image (blue near, red far).

In the passive case, (at least) two conventional cameras with known baseline, known

focal length and overlapping fields of view are used. To obtain the disparity, image corre-

spondences need to be found, i.e. finding the same scene point in the two images (see Sec.

2.6). Nevertheless, such a system suffers from a lack or a repeating of texture and when

no correspondences can be found, e.g. walls, floors, too much rotation between images,

etc.

To tackle these problems, we can take advantage of active stereo, i.e a system that

actively emits light. With the release of the Microsoft Kinect, these RGBD-Sensors have

become available to a broad audience. RGB refers to the 3 colors red, green and blue,

which are added in various ways in the RGB color model to represent a broad array of
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colors. In addition to the 3 RGB channels the ”D” refers to a fourth ”depth” or ”distance”

channel. RGBD-Sensors consist of 3 main components: (i) an InfraRed (IR) projector,

(ii) an IR sensor and (iii) an RGB camera. The depth data of the fourth channel can be

acquired by different principles such as structured light or Time of Flight (ToF). In the

first case, a known infrared light pattern is projected onto the scene. The illumination

appears to be distorted from the infrared sensor view point, which is different from that of

the projector. This distortion allows to geometrically reconstruct the surface and extract

a depth measurement with Equation 2.1, where the baseline b is now the distance between

IR projector and IR sensor. On the other hand, the TOF approach uses the known speed

of light to determine the distance. A light pulse is emitted from a projector to illuminate

the scene for a short time. Afterwards, the reflected light is collected by the camera lens

and the distance can be calculated from the time delay.

A natural application for the data provided by such sensors is 3D reconstruction and

SLAM, which will be discussed in the later sections. The downsides of both principles

include their ineptitude for outdoor reconstructions due to sunlight, which can render the

IR sensor unable to detect the projected IR pattern, their faultiness on reflective surfaces

like glass and their susceptibility to noise. Despite these disadvantages we choose the

structured light approach due to its ubiquitous availability, real time capacity and our

focus on indoor environments.

The RGBD-Sensor providing the image stream in this thesis is the Orbbec Astra

Pro sensor, which can be seen in Figure 2.2. This version has an enhanced 720p @ 30

frames-per-second RGB camera and a range of 0.6m - 8m. Table 2.2 shows the further

specifications for this sensor. It captures RGB and IR images and provides a depth image

(see Fig. 2.3).

We choose this sensor due to its high resolution, high range and its relatively small

size (compared for example to the Microsoft Kinect). Further selection criteria included

that the Asus Xtion is no longer produced and that the Intel RealSense ZR300, which is

comparable in size, suffers from heavy noise above 2 - 2.5m distance.

2.3 Camera Model

The camera model describes the relationship of points in the real 3D world to those in the

2D image plane. We utilize the common pinhole camera model (see Fig. 2.4).

At each timestep t, we receive an RGBD frame that consists of an RGB image It and

a depth map Dt from our sensor. We expect It and Dt to be aligned and synchronized,

such that at a certain pixel position x = (x, y)> the RGB values are given as It(x) and

the corresponding depth as Dt(x). Let X = (X,Y, Z)> be a 3D point in the camera

reference frame with depth measurement Z = Dt(x) and x = (x, y)> its projected image

coordinates. The mapping π(X) : R3 → R2 is then given by the perspective projection
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Entity Value

Size/Dimensions 160× 30× 40 mm
Weight 0.3 kg
Range 0.6 - 8m (Optimal 0.6 - 5m)
Depth Image Size 640× 480 (VGA) @ 30FPS
RGB Image Size 1280× 720 @ 30FPS (UVC Support)
Field of View 60◦ horiz × 49.5◦ vert. (73◦diag)
Data Interface USB 2.0
Microphones 2
Operating Systems Windows, Linux, Android
Power USB 2.0
Software libUVC + OpenNI

Table 2.2: Specifics of the Orbbec Astra Pro sensor [46].

Figure 2.4: Pinhole camera model [24]. The focal length f scales the image coordinates x and y.

Figure 2.5: Depiction of intrinsic and extrinsic camera parameters [38].
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equation with scaling factor a:

a

xy
1

 = KX =

fx 0 cx
0 fy cy
0 0 1


XY
Z

 , (2.2)

where K is the intrinsic camera matrix, fx and fy the focal lengths and cx, cy the offset

of the optical center C . The two different focal lengths are obtained through multiplying

the actual physical focal length, as seen in 2.4, with the scaling factors sx and sy in the

respective direction, thus fx = f · sx and fy = f · sy. They possess different values, if

the pixels in the Charge-Coupled Device (CCD) array are not square. All these intrinsic

parameters are measured in pixels. Note that in this model, the sensor skew parameter

gets neglected due to the assumption that the image coordinate axes are orthogonal to

each other and therefore the parameter equals zero. The mapping π(X) can be written in

compact notation:
π(X) = x

π


XY
Z


 =

[
X·fx
Z + cx

Y ·fy
Z + cy

]
.

(2.3)

If the depth measurement Z = Dt(x) is known, the 3D scene point can be recovered from

the image coordinates by using the inverse mapping π−1(x):

π−1(x, Dt(x)) = X

π−1

([
x

y

]
, Dt(x)

)
=


x−cx
fx

Dt(x)
y−cy
fy

Dt(x)

Dt(x)

 .
(2.4)

So far, the camera is always located in the 3D world center (0, 0, 0). If the 3D position

of the camera needs to be considered, the extrinsic parameters R, t have to be taken into

account:

ax̃ = K[R t]X̃ = PX̃ (2.5)

where P is the so called camera matrix, R the rotation matrix and t the translation vector.

The properties of R and t will be discussed in detail in Section 2.5. As depicted in Figure

2.5, the extrinsic parameters determine the rigid body transformation R3 → R3 from 3D

world coordinates to the 3D camera’s coordinate system. How to obtain the intrinsic (fx,

fy, cx, cy) and extrinsic (R, t) parameters is described in the next section.
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Figure 2.6: Camera calibration target with circular pattern from different positions and angles
as captured by the RGB sensor (top) and the IR sensor (bottom).

2.4 Camera Calibration

Camera calibration is the process of estimating the intrinsic, extrinsic and distortion cam-

era parameters. For this task we need 3D scene points and their corresponding 2D image

points. We acquire these by taking multiple images from different angles and positions of

a calibration target with known dimensions, which contains a specific pattern (i.e. squares

(checkerboard), circles, QR-codes and so on). From these correspondences we then calcu-

late the camera parameters.

For calibration, we use the target depicted in Figure 2.6. It consists of a central marker

with other circular patterns around it. This calibration target has several advantages

[17]: Firstly, the target does not have to be visible as a whole as opposed to standard

checkerboard targets. Secondly, groups of circular patterns are more robust to distortion.

Thirdly, the feature detection is more accurate for low-resolution cameras.

We perform the calibration in this thesis with the matlab calibration toolbox [3] with

the ICG addon ”automatic feature extraction for camera calibration” [17] which utilizes

the pinhole camera model that was described in Section 2.3. Note that, although this

model does not account for lens distortion due to the fact that an ideal pinhole does

simply not have a lens, the radial and tangential lens distortion is still calculated by the

algorithm. However, as shown in [58], the lens distortion effects can be neglected, if the

distortion parameters are low enough and the accuracy requirement can still be met. We

record 55 IR and RGB images as input for the algorithm whose camera positions and

angles can be seen in Figure 2.7. Table 2.3 shows the calibration results of our sensor

and also lists the skew parameter α and distortion coefficients kc. We usually operate our

sensor within a working distance of 1 - 5m.
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(a) All camera positions (b) Feature extraction from target

Figure 2.7: Camera positions and target detection: (a) Estimated camera positions and angles
of the recorded data. The target is fixed and can be seen at the bottom. (b) Extracted features
from a sample image of the target.

Parameter Result

fx 594.83209
fy 596.78291
cx 320.97477
cy 238.99285
α 0.00000
kc [0.11909;−0.16726; 0.00156; 0.00081; 0.00000]

Table 2.3: Camera calibration results. Focal lenghts fx, fy: The focal lengths in pixels. Principal
point offsets cx, cy: Offset coordinates in pixels. Skew parameter α: The skew coefficient defining
the angle between the x and y pixel axes. Distortion coefficient kc: The image distortion coefficients
(radial and tangential distortions), stored in a 5× 1 vector.

2.5 Rigid Body Motion

A rigid body is an object that does not have any internal degrees of freedom, i.e. the

distances between any point pair p, q is fixed:

|p− q| = constant . (2.6)
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Hence, a rigid body motion is a mapping R3 → R3 which preserves the orientation and

distance between any such pair, also known as a special Euclidean transformation. The

set of all these direct displacements in the 3D Euclidean space forms the special Euclidean

group SE(3).

A rigid body transformation is always relative to some reference coordinate frame and

has 6 degrees of freedom: three for translation and three for rotation. The translation part

is able to change the location of the object in space, whereas the rotational part can change

its orientation. In order to represent the rotation, various alternatives like quaternions,

Euler angles, rotation vectors or rotation matrices exist [9]. Due to the neat mathematical

attributes a matrix offers, the latter is widely used. A proper rotation matrix is a 3 × 3

orthogonal Matrix R and belongs to the special orthogonal group SO(3). This is expressed

by the properties

R>R = RR> = I , R> = R−1 , (2.7)

where R> denotes the transpose of R, R−1 denotes the inverse of R and I is the 3 × 3

identity matrix, and

detR = 1 , (2.8)

Note, that if the determinant is −1, the rotation matrix is called improper (produces a

reflection) and is not a rigid body transformation. Although R has 9 components, it only

has 3 degrees of freedom (corresponding to the possible rotation angles around the x, y

and z axis respectively), being restricted by its orthogonality requirement and a norm of

1 for all its rows and columns to preserve the length of any vector it is applied to. The

translation of the rigid body motion is expressed as a translation vector t = (tx, ty, tz)
>.

It also represents 3 degrees of freedom for the 3 possible displacements tx, ty and tz in

the x, y and z directions respectively. By combining those two components, a rigid body

motion G for any 3D point X = (X,Y, Z)> is defined as

G(X) = R ·X + t . (2.9)

This can also be expressed with the help of a transformation matrix T and the extension

of X to its homogeneous coordinates X̃ = (X,Y, Z, 1)>:

G(X̃) = G(T, X̃) = T · X̃ , (2.10)

with

T =

[
R t

0> 1

]
=


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

 , T−1 =

[
R> −R>t

0> 1

]
. (2.11)

From Equation 2.10, we can calculate the coordinates of the transformed point X̃′ =
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(X ′, Y ′, Z ′, 1)>:

X ′ = r11X + r12Y + r13Z + tx ,

Y ′ = r21X + r22Y + r23Z + ty ,

Z ′ = r31X + r32Y + r33Z + tz .

(2.12)

The matrix representation is particularly advantageous when multiple transformations

need to be chained (left multiplication of transformation matrices):

Tj(Ti · p̃) = (TjTi) · X̃ = T · X̃ , (2.13)

or X̃ needs to be recovered from X̃′ (using the inverse):

X̃ = T−1 · X̃′ . (2.14)

A rigid body motion can also be regarded as a change of reference frame, i.e. a change

of observer. For example if we have two images taken from different angles and/or posi-

tions and know the transformation matrix between the two cameras, we can project the

information from one image into the frame of the other.

The transformation matrices for such an operation are denoted as follows:

• Converting from frame i to j: Tj,i

• Converting from frame i to j: Tj,i
−1 = Ti,j

With the knowledge of Equation 2.13 and 2.14, transformations e.g. from frame j into

frame k, while only knowing the transformations Tj,i and Tk,i, can now be conveniently

written:

Tk,iTj,i
−1 · X̃ = Tk,iTi,j · X̃ = Tk,j · X̃ . (2.15)

We choose this definition because it can easily be seen which frame (rightmost) is trans-

formed into which (leftmost) and in which order the matrices must be chained (numbers

of transformation matrices must be aligned, highlighted in red in Eq. 2.15). If we want to

estimate Tj,i, point correspondences between two different images have to be found. This

can be done algorithmically and is described in the next section.

Since the rigid motion G only has 6 degrees of freedom, T with its 12 parameters is

over-parametrized. We use a minimal representation as twist coordinates ξ defined by the

Lie algebra se(3) associated with the group SE(3). From the 6-vector ξ the transformation

matrix T can be recovered by the matrix exponential T = exp(ξ).

We define the full warping function τ that re-projects x from frame j with depth Dj(x)

to frame i under the transformation matrix Tij as:

x′ = τ(ξi,j,x, Dj(x)) = π(Ti,jπ
−1(x, Dj(x))) . (2.16)
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2.6 Features

Figure 2.8: Real world data of ORB features and matches. Only the 50 best matches are drawn.

Figure 2.9: Real world data of SIFT features and matches. Only the 50 best matches are drawn.

Features describe salient parts of an image. There are several different types of image

features: (i) Edges are points, which appear as boundaries between two image regions.

Edge points usually possess a strong gradient magnitude. (ii) Corners are edges with a

rapid change in direction. They are also known as interest points. (iii) Blobs are regions

that differ in certain properties (e.g. brightness, color) from their neighboring regions.

Inside the blob, the properties are approximately constant and similar. Further types

of features may include lines (see Line Segment Detector (LSD) [63]), especially seen in

elongated objects, or represent the underlying surface model properties like Fast Point

Feature Histograms (FPFH) in [54].

In order to be able to work with features, they have to be detected, extracted and
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Figure 2.10: Real world data of SURF features and matches. Only the 50 best matches are
drawn.

(a) ORB (b) SIFT (c) SURF

Figure 2.11: All extracted features for ORB, SIFT and SURF. The circles represent the chosen
neighborhood area with the dominant orientation.

described algorithmically at first. This series of actions is often the initial step in many

computer vision applications and thus a large number of feature detectors and descrip-

tors exists. The task of the feature detector is to identify significant points/areas (i.e.

edges, corners, blobs, ridges) which are then represented by the descriptor, usually in a

multi-dimensional vector. Being part of the initial step, subsequent algorithms depend

heavily on their feature selection. Therefore, it is desirable for the features to possess

repeatability and robustness. A few of the more prominent representatives of feature de-

tectors and descriptors are Scale-Invariant Feature Transform (SIFT ) [36], Speeded Up

Robust Features (SURF ) [1], and Features from Accelerated Segment Test (FAST ) [51]

(the latter beeing only a detector). SIFT is a texture-based algorithm that models the

image rotation, affine transformations, intensity and viewpoint changes in feature match-

ings (see Fig. 2.9). SURF is also texture-based, uses wavelet responses in horizontal and

vertical direction for feature detection and improves its matching speed by only comparing
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features with the same type of contrast (based on sign of the Laplacian) (see Fig. 2.10).

FAST, in contrast to the former two, is a very fast feature-based corner detector which

relies on a corner response function. A detailed comparison of the mentioned algorithms

can be found in [21], which concludes that FAST has the best overall performance.

Another example is Oriented FAST and Rotated BRIEF (ORB) [52]. ORB is a com-

bination of the FAST keypoint detector and the Binary Robust Independent Elementary

Features (BRIEF ) descriptor [4]) and speed wise it outperforms SIFT and SURF [30].

Due to the fact that BRIEF is not rotation-aware, ORB introduces the rBRIEF descrip-

tor. Like BRIEF, at first it performs binary tests between pixels on a smoothed image

patch, but tries to find less correlated tests. Then, the descriptor is steered according to

the orientation of keypoints (called steered BRIEF). Since BRIEF is only a descriptor,

FAST is needed as the feature detector and extended by an orientation component (hence

oFAST). The orientation in turn is calculated by a measure of corner orientation, the so

called intensity centroid [50]. An example of extracted orb features and their correspond-

ing matches in two images is depicted in Figure 2.8 and Figure 2.11 shows a comparison

of the different feature extractions. In this thesis, we choose ORB over the others because

of the following advantages: ORB is at two orders of magnitude faster than SIFT and an

order of magnitude faster than SURF. It is free of any licensing restrictions that apply to

SIFT and SURF. Furthermore it is relatively immune to Gaussian image noise.

Independent of the method, the goal is to find matching features in different images

of the same scene. The matching performance under synthetic rotations can be found

in Figure 2.12, where ORB was tested against SIFT, SURF and BRIEF. Note that the

standard BRIEF descriptor falls off drastically after only a few degrees. With enough of

these point correspondences, we can estimate a transformation matrix T (see Sec. 2.5)

in a least squares manner and therefore estimate the motion between two images or fuse

information from one image into the other. A problem when finding correspondences can

be outliers, which lead to a wrong estimate. Random Sample Consesus (RANSAC ) is

widely applied to combat this issue. RANSAC basically consists of 3 steps: (i) randomly

sample a minimal subset of data points required to fit the model. (ii) solve for the model

parameters using this subset. (iii) check the inliers of the whole set with the calculated

parameters (consensus set). The parameters may be improved by re-estimating them

with all inliers. Repeat (i) - (iii) a fixed number of times and keep the parameters of the

transformation matrix T with the largest consensus set.

2.7 Visual Odometry (VO)

Visual Odometry (VO) [45] estimates the local egomotion of an agent, e.g. a robot or

a vehicle, exclusively from visual input of one or more cameras. It has been an active

research field for many decades and was already used as a real time navigation system on

planetary rovers in the 1980s [39]. In its essence, VO detects similarities between frames

in an image stream, tracks them over time and recovers a complete trajectory from the
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Figure 2.12: Matching performance of SIFT, SURF, BRIEF with FAST, and ORB (oFAST with
rBRIEF) under synthetic rotations with Gaussian noise of 10 [52]. The standard BRIEF operator
falls off severely after a few degrees.

relative transformation matrices Ti,j (see Sec. 2.5).

In appropriate conditions, VO is superior to wheel odometry. It is of uttermost im-

portance in Global Positioning System (GPS) denied environments, like indoors or under-

water. However, there are several constraints regarding the acquisition of good results:

To begin with, there needs to be sufficient illumination. Moreover, the scene should be

static (i.e. no moving objects) and provide enough texture. Last but not least, consecutive

frames must contain enough scene overlap (motion constraint). Furthermore, even if there

are nearly perfect conditions, the estimate will still contain some error. Due to the fact

that VO recovers the path incrementally, this error accumulates over time and leads to

drift, a difference between real and estimated trajectory. A countermeasure to reduce this

drift is to locally optimize over the last n poses as was suggested in [19].

For more details on VO, the reader is referred to [55]. To further improve accuracy, a

method that considers a global model, like SLAM, is needed.

2.8 Simultaneous Localization and Mapping (SLAM)

The task of SLAM is to map an unknown environment while simultaneously keeping track

of the position of an agent/sensor within it [64, 65]. It is one of the fundamental problems

in robotics and has a strong focus on real-time operation. SLAM can be performed with

a variety of sensors, but since the increasing ubiquity and affordability of cameras (e.g. in

mobile devices) there is a raised focus on Visual SLAM (VSLAM ) [13, 14, 41]. VSLAM

takes advantage of the rich information provided by one or multiple cameras. In contrast
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to VO, VSLAM needs to keep a global map of the environment, regardless if the map

is required per se, for place recognition at all times. If a place is revisited, i.e. the

robot has recognized that this place has been seen before, a ”loop closure” procedure is

executed, which reduces drift in both the map and camera path. The detection of a loop

closure and the integration of this new information are two crucial parts of VSLAM. Since

VSLAM enforces additional constraints on the path, it is potentially more precise than a

VO technique. However, it suffers heavily from wrong matches against the global map.

Especially wrong loop closure can destroy the whole map and trajectory. Furthermore,

due to the necessary estimation of a map, VSLAM is computationally far more complex

and expensive.

Although one monocular camera is already sufficient to perform VSLAM, there are

several problems: Firstly, because of its inability to provide depth information, the scale

of the map and the agent’s trajectory is unknown. Secondly, pure rotation can lead to

failure of the algorithm, because the recorded frames do not provide enough information

to triangulate new map points. Thirdly, like pure rotation, pure forward/backward trans-

lation of the camera may lead to failure due to only providing a very small baseline. Still,

the interest for monocular VSLAM is ongoing due to the wide availability and because

the stereo case can degenerate to this case if the observed distance in the scene is much

larger than the stereo baseline

To tackle these challenges and since we primarily focus on indoor scenes, we work with

an RGBD camera in this thesis.

2.9 Direct Methods

Whether it is a VO or VSLAM system, the robust camera pose estimation process can be

performed in a variety of ways:

Firstly, one can directly align 3D point clouds geometrically via an Iterative Closest

Point (ICP) algorithm [2], whereof several different variants exist [53]. Essentially, ICP

minimizes the (squared) difference between a source point cloud set S and a destination

point cloud set D by finding the closest point di ∈ D for each given point si ∈ S. From

these correspondences, a transformation matrix Td,s can be calculated and applied to

S. This process is repeated until some criteria has been met (e.g. max iteration steps

reached or the error becomes smaller than a threshold). If the starting positions of the

points are close enough, the algorithm converges. Instead of calculating the point-to-

point error metric, one can also minimize the distance between a point and the tangent

plane of its corresponding point (point-to-plane). Figure 2.13 illustrates the difference

between the point-to-point error ept2pt and the point-to-plane error ept2plane. Let si =

(six, siy, siz, 1)> be a source point, di = (dix, diy, diz, 1)> its corresponding destination

point and ni = (nix, niy, niz, 0)> the unit normal vector at di. Each ICP iteration tries to
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Figure 2.13: Point-to-point vs point-to-plane error: While the point-to-point error ept2pt is
measured directly between the source point si and its corresponding destination point di, the
point-to-plane error ept2plane is calculated from source point to the tangent plane of the destination
point.

find the optimal rigid body transformation Td,s,opt such that:

T∗d,s = arg min
Td,s

∑
i

((Td,s · si − di)
>ni)

2 , ept2pt = Td,s · si − di . (2.17)

The problem has no closed-form solution and needs a nonlinear least squares method,

such as the Levenberg-Marquard Algorithm (LMA) (see Sec. 2.14). Despite the slower

execution of each iteration step, Rusinkiewicz and Levoy [53] observed a significantly better

convergence rate for the point-to-plane approach.

Other direct methods process the complete image information and minimize the pho-

tometric error. The photometric error is usually formulated as a pairwise alignment of 2

images: Let Ii be the reference image and Ij the other input image. Then we can warp a

subset of pixel coordinates x ∈ Ωi into image Ij under the warping function τ(ξj,i,x, Di(x))

and estimate the parameters of ξj,i such that the squared intensity error is minimized:

ξj,i
∗ = arg min

ξj,i

∑
x∈Ω0

1

2
||Ii(x)− Ij(τ(ξj,i,x, Di(x)))||2 . (2.18)

This minimization of the photometric error dates back to the works of Lucas and

Kanade [37] and Horn and Schunk [27], but has recently resurfaced due to availability
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of high computational power [15, 32, 59]. Kerl at al. [31] proposed a combination of

photometric and geometric error minimization in their visual SLAM system. To reduce

the acquired drift, they adapted the idea of keyframes [25]: Every new frame is at first

matched to the latest keyframe and as long as there is not too much difference, i.e. the

camera has not moved to far, no drift is accumulated. Furthermore, when revisiting a

previously seen region old keyframes can enforce additional constraints on the pose graph,

also known as loop closures. Although this system is capable of real-time performance on

a Central Processing Unit (CPU ), it can not do so at a full resolution of 640× 480.

With a similar approach, Concha et al. [6] implement a real-time capable system

at full resolution by additionally applying multi-view constraints and only using a semi-

dense photometric error (see Sec. 2.11 for more information on semi-dense reconstruction).

Their system even outperforms Elastic Fusion [70], which in turn claims to outperform all

previous baselines.

However, for direct methods to work accurately, two key assumptions must be met:

1. Brightness constancy:

I(x, y, t) = I(x+ u, y + v, t+ 1) , (2.19)

where, x, y are image coordinates, t is the time, and (u, v) is some spacial displace-

ment.

2. Small inter-frame motion:

I(x+ u, y + v) ≈ I(x, y) +
∂I

∂x
u+

∂I

∂y
v , (2.20)

which can be obtained through Taylor series expansion.

Together these two assumptions form the brightness constancy constraint equation:

∂I

∂x
u+

∂I

∂y
v +

∂I

∂t
= 0 . (2.21)

Furthermore, direct methods need a good initialization and may get stuck in local minima.

Another issue is that they cannot handle outliers very well. Their whole image alignment

approach will always try to fit all of the available information.

2.10 Feature Based Methods

In contrast to direct methods, the error for feature-based methods is based on distances

between the corresponding features (reprojection error).

e(xi,xj) = ||xi − τ(ξi,j,xj, Dj(xj))|| , (2.22)
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(a) Standard ORB extraction (b) ORB-SLAM2 ORB extraction

Figure 2.14: Comparison of ORB and ORB-SLAM2 feature extraction: We can see that the
cell division approach of ORB-SLAM2 also yields feature extractions in regions where texture is
scarce, e.g. on the left wall

where xi, xj are two corresponding feature points in frame i and j respectively and

τ(ξi,j,xj, Dj(xj)) warps point xj into frame i.

This approach can discard most of the image information, i.e. everything that is not

a feature point. A major advantage of feature-based methods is their ability to over-

come outliers with RANSAC-based [18] schemes. Examples for systems with this type of

approach include PTAM [33], DT-SLAM [26] and more recently RGBD-SLAM [12] and

ORB-SLAM2 [42]. While the former two rely solely on FAST features, RGBD-SLAM

and ORB-SLAM2 extract ORB features (which, however, are also based on FAST; see

Sec. 2.6). Note that RGBD-SLAM also works with SIFT or SURF features but both are

outperformed by ORB in the latest version [11].

In this thesis, we substitute the trackers provided by InfiniTAM with ORB-SLAM2

which already showed very promising results regarding runtime and tracking accuracy in

several comparisons [6, 42]. ORB-SLAM2 is an open-source real-time SLAM system for

monocular, stereo and RGBD cameras which implements loop closure, map reuse and

relocalization. It is composed of three main parallel threads: (i) Tracking: finds ORB

feature matches in every camera frame and matches them with the local map. (ii) Local

Mapping: optimizes the local map by performing local Bundle Adjustment (BA). (iii)

Loop Closing: If a loop is detected, this thread corrects the accumulated drift. After the

adjustment by pose-graph optimization, a fourth thread is launched to perform a global

BA. The loop detection and place recognition is based on DBoW2 [20].

ORB SLAM2 extracts ORB features at 8 scale levels with a standard scale factor of

1.2. To ensure a homogeneous distribution, each scale level is divided into a grid and a

minimum number of features has to be found for each grid. Figure 2.14 shows a comparison
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of the normal ORB feature extraction and the ORB-SLAM2 approach. Keypoints in the

tracking stage are classified as close or far, depending on their associated depth and only

close keypoints are triangulated from one frame while far keypoints are only processed if

they are supported by multiple views.

ORB-SLAM2 inserts keyframes very frequently and culls redundant ones afterwards.

A new keyframe is inserted if all of the following conditions are met:

1. More than 20 frames have passed since the last global relocalization.

2. More than 20 frames have passed since the last keyframe insertion or local mapping

is idle.

3. At least 50 keypoints are tracked in the current frame.

4. More than 10% of keypoints in the current frame are not seen by its reference

keyframe, i.e. the keyframe with the most points in common.

Additionally (for stereo and RGBD image data), a keyframe is added whenever the number

of close keypoints drops below a certain threshold τt = 100 and the frame could at least

create τc = 70 new close keypoints. A keyframe is deleted if 90% of its points are seen in

at least 3 other keyframes in the same or finer scale.

An evaluation of the performance of ORB-SLAM2 can be found in Section 4.

2.11 SLAM and VO Systems with Dense 3D Reconstruction

If we now know the motion of a camera through the environment, we can reconstruct a

3D model of the world by using the motion and image information. This 3D model can

be represented either in sparse, semi-dense or dense form. Since feature-based methods

only keep information from feature points, their model usually only contains a sparse

representation of the scene (see Fig. 2.15(a)). Semi-dense models, like produced by LSD-

SLAM [14] (see Fig. 2.15(b)), can propagate a depth map from frame to frame which is

dense in all image regions that carry information. In this manner memory can be saved,

but both approaches only provide an incomplete world reconstruction.

With the increased memory capacity of computers in recent years, volumetric rep-

resentations have become a powerful tool to generate dense 3D models (see Fig. 2.16)

from image data [8, 28, 60, 69, 70]. They can be used in a variety of applications such as

augmented reality, virtual reality, robotics and gaming. Furthermore, inexpensive RGBD

cameras, foremost the Microsoft Kinect, have also enforced the positive development and

led to the Kinect Fusion system [28, 43]. The Kinect Fusion system estimates the current

sensor pose with an ICP algorithm (see Sec. 2.9) and integrates the aquired data via

Truncated Signed Distance Function (TSDF ) (see Sec. 2.12). In order to achieve real-

time performance, the algorithms for both tracking and mapping are fully parallelized and
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(a) ORB-SLAM2 (b) LSD-SLAM

Figure 2.15: Sparse and semi-dense models: (a) The sparse model of ORB-SLAM2. The points
correspond to extracted feature points. (b) A semi-dense map of LSD-SLAM [14]. The colored
points correspond to map points.

Figure 2.16: A dense 3D model created by InfiniTAM.

exploit the massively parallel processors on the Graphics Processing Unit (GPU ). How-

ever, the Kinect Fusion system lacks the scalability for larger scenes due to memory issues

(addressing and/or lack thereof). As a further work of the former, Kintinuous addresses

this issue, but does not implement a full SLAM approach which leads to the accumulation

of drift in the estimated trajectory.

In order to tackle the problem of a large memory footprint, research on sparse volu-

metric representations [5, 44, 60, 71] has sprouted. These works successfully use either

octrees or hashtables to efficiently refer to allocated memory blocks.
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Dai et al. proposed BundleFusion [8] that models the world with a voxel block hashing

framework. In their work, they combine sparse features (SIFT) and dense geometric and

photometric correspondences for trajectory estimation (explained in Sec. 2.9 and 2.10).

Then they globally optimize the poses and dynamically integrate and de-integrate image

data into their 3D model. Nevertheless, Bundle Fusion needs a combination of an NVIDIA

GeForce GTX Titan X and a GTX Titan Black to run. Since we wanted our method to

work on a portable system with a more standard hardware, their approach was disregarded.

Another system which relies on strong hardware is Elastic Fusion [70], which reconstructs

the 3D world as a number of circular surfels that correspond to the surfaces in the real

world but it is not capable of large-scale reconstructions on standard hardware.

Therefore, we looked into alternatives and build this thesis on the framework of Infini-

TAM v2 [29]. InfiniTAM implements a volumetric 3D reconstruction from depth images

based on voxel block hashing and offers a very high rate for frame integration. The 3D

world is also modeled using a TSDF, which we will discuss in more detail in the next sec-

tion. In order to reduce memory usage, only the scene parts inside the truncation band,

i.e. the voxels close to a surface, are represented densely in a usually 8 × 8 × 8 block. A

hash table manages these voxel block to guarantee a constant lookup time. This is called

voxel block hashing and works as follows (see Fig. 2.17): From every 3D location in world

coordinates a hash value can be calculated. The hash value is then looked up in the hash

table, which consists of ordered entries and an excess list (also called unordered entries).

Each ordered entry has exactly 1 bucket where a pointer to the voxel block array, i.e. a

large array where the TSDF data of all 8 × 8 × 8 blocks, is stored. Additionally, each

bucket stores the 3D block position and the index to the next entry in the excess list. If

multiple different 3D voxel block locations are mapped to the same bucket, the data is

stored in the excess list. By only using 1 bucket for each hash value, but a larger number

of overall buckets, the overall system performance improves. The reason behind this is,

that by investing additional storage space into more buckets instead of a larger bucket

size, the number of hash collisions is reduced [29].

InfiniTAM performs camera data integration in the same way as the original Kinect

Fusion [43] system (see Sec. 2.12). The extraction of information from the implicit repre-

sentation as a TSDF is done in the rendering stage by raycasting and needed for tracking

and visualisation in the user interface.

InfiniTAM implements two different trackers: An ICP tracker as in [43] and a direct

image alignment tracker based on color (see Sec. 2.9). Furthermore, since InfiniTAM aims

to run on tablet computers, an (optional) implementation to utilize Intertial Measurement

Unit (IMU ) data exists to provide a much more accurate result.

InfiniTAM also offers a swapping algorithm to swap out memory from the GPU. How-

ever, after a lot of testing we came to the realization that there appeared inconsistencies in

the 3D model when applying de-integration and swapping together. Therefore, we do not

activate swapping in this thesis. To sum up, InfiniTAM provides an excellent runtime and

a small memory footprint, but suffers from inaccurate tracking (compared to state of the
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Figure 2.17: The logical hash table structure of InfiniTAM [29].

art algorithms), lack of loop-closure detection and no means of pose-graph optimization

or relocalization. These are the issues we address in this thesis.

Note that during the work on this thesis, InfiniTAM v3 [49] was released, which im-

plements a more robust camera tracking module, a camera relocaliser and relative pose

optimization next to a surfel-based reconstruction approach. However, the tracking ap-

proach is still the same and loop closure is only applied to submaps, which in itself may

accumulate error.

2.12 Volumetric Fusion

We model the 3D world in this thesis with the help of the TSDF. The TSDF determines the

distance of each 3D voxel to its nearest surface. It can be a great tool to get a volumetric

representation for many computer applications [8, 29, 43]. In order to achieve that, the

entire space is divided into grids of equally sized voxels. For each voxel, the value of the

Signed Distance Function (SDF ) S(V) is calculated:

S(V) = Dt(π(V))− Z , (2.23)

where V = (X,Y, Z)> is a voxel given by its center coordinates in its respective camera

frame, π(V) computes the projection of the voxel onto the depth image (see Sec. 2.3),

while Dt(π(V)) is the measured depth at the calculated image location at time t. Since

π(V) maps the voxel into the camera frame, Z is the distance between the camera and
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Figure 2.18: Truncated Signed Distance Function [22]: Voxels between surface and sensor are
assigned positive values. Voxels behind the surface contain negative values.

Figure 2.19: TSDF representation in InfiniTAM: The 8 × 8 × 8 voxel block is depicted in red,
the view frustum of the sensor in green and the surface in blue. Values above 1.0 which lie outside
the voxel block of the surface do not need to be allocated (orange values). Note that only voxels
with values between −1.0 < T (V) < 1.0 are assigned a weight.
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voxel along the optical axis. Consequently S(V) assigns a distance value relative to the

camera. As a result, positive values are assigned to voxels that reside in free space: The

closer the voxel is to the surface, the smaller its value. If the voxel lies directly on the

surface, its value is set to zero and behind the surface, increasing negative values are

assigned. Extending this idea with an additional parameter δ, the TSDF is denoted as:

T (V) = max

(
−1,min

(
1,
S(V)

δ

))
, (2.24)

which allows only values between -1 and 1 to be assigned, corresponding to the distances

−δ and δ respectively as depicted in Figure 2.18.

This kind of volumetric representation has several benefits: In order to save memory,

any point outside the truncation band [−δ...δ] can be set to an out-of-range value and be

disregarded due to the fact that large distances are not relevant for surface reconstruction

(see Fig. 2.19). Other advantages include time as well as space efficiency and its feasibility

for parallel processing on GPUs [7, 67]. This makes a TSDF representation a prime

candidate for real time applications. Furthermore, multiple observations of 3D points can

be fused into the same model and thus decrease uncertainty or add missing information.

Combining information from different viewpoints, also known as integration, is done by

weighted summation in iterative steps. At first, every voxel in the grid is initialized with

some initial value for D0(V) and W0(V) = 0. For every new observation i we calculate

the updated TSDF:

Di(V) =
Wi−1(V)Di−1(V) + wi(V)T (V)

Wi−1(V) + wi(V)
, Wi(V) = Wi−1(V) + wi(V) . (2.25)

Note that at the first observation D1(V) is set to the value of T (V) regardless of its initial

value D0(V) (since W0(V) = 0). The uncertainty weight wi(V) is usually set to 1, which

results in an averaging of the measured TSDF observations.

Similarly, we can de-integrate an observation by reversing this operation as shown in

[8]. The update step is then denoted as:

Di(V) =
Wi−1(V)Di−1(V)− wi(V)T (V)

Wi−1(V)− wi(V)
, Wi(V) = Wi−1(V)− wi(V) . (2.26)

The operations of integrating and de-integrating are symmetric, i.e. one inverts the other.

Thus, an observation, if it becomes invalid or updated, can be deleted by de-integrating

it from its original pose and re-integrating it with a new pose if necessary.

2.13 Plane Estimation

Since estimated 3D models from RGBD data are usually noisy and incomplete, we incor-

porate geometric priors to further improve the 3D model. Plane estimation is especially
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applicable in man-made environments such as cities or rooms where plane-like structures

dominate, e.g. walls, floors, ceilings, etc. In this so-called ”Manhattan environment”,

plane estimation can help to eliminate noise and fill unobserved regions. Common meth-

ods for this task are RANSAC-based [56, 57]. However, RANSAC often requires a lot

of computational time to estimate planes in 3D point clouds. In order to tackle this

problem, region-growing algorithms have emerged. Poppinga et al. [47] proposed a fast

surface extraction from 3D point clouds by exploiting the sequential data acquisition of

range images on robots. Their algorithm segments 3D point cloud into regions with a

common plane and extracts proper surface models. Feng et al. [16] developed an efficient

plane extraction algorithm based on agglomerative hierarchical clustering for organized

point clouds. Zhang et al. [72] extend the Kinect Fusion [43] framework by an online

structure analysis which allows primitive shapes and heuristics to be incorporated into the

3D model. This can be used to fill holes, reduce drift (through plane structure analysis)

and segment objects.

However, none of the above mentioned works are developed for implicit surface rep-

resentations such as TSDFs. This was addressed in [10], where Dzitsiuk et al. build a

plane estimation algorithm on top of CHISEL [34]. They efficiently compute local plane

candidates in a least squares approach directly on the TSDF grid. Planes are then globally

clustered by a 1-point RANSAC. Their approach proved to be successful in significantly

reducing noise and recover missing information by extending planar regions.

In this thesis we utilize the Levenberg-Marquardt Algorithm (LMA) for plane estima-

tion (see Sec 2.14).

2.14 Levenberg-Marquardt Algorithm (LMA)

The LMA [40] is an iterative technique to solve a non-linear least squares curve fitting

problem. Its goal is to find the n parameters of β ∈ Rn by solving:

β∗ = arg min
β

S(β) = arg min
β

m∑
i=1

(yi −F(xi,β))2 , (2.27)

where m is the set of empirical data pairs (xi, yi) and F(xi,β) the function of the curve.

The term (yi −F(xi,β) is called residual.

As with all non-linear optimization methods, the solution is found through iteration

[35]. In each iteration step, we substitute β with its new estimate β + δ:

βi+1 = βi + δ . (2.28)

Combining the measured data xi into a vector x and assuming that δ is small, the Taylor

series expansion leads to the linear approximation:

F(x,β + δ) = F(β + δ) ≈ F(β) + Jδ , (2.29)
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where

J =
∂F(β)

∂β
(2.30)

is the Jacobian matrix.

Due to the knowledge that the sum of square deviations S(β) has at its minimum a

zero gradient, we calculate:

S(β + δ) ≈ ||y −F(β)− Jδ||2

= [y −F(β)− Jδ]> [y −F(β)− Jδ]

= [y −F(β)]> [y −F(β)]− [y −F(β)]> Jδ − (Jδ)> [y −F(β)] + δ>J>Jδ

= [y −F(β)]> [y −F(β)]− 2 [y −F(β)]> Jδ + δ>J>Jδ .

(2.31)

Taking the derivative of Equation 2.31 with respect to δ and setting its result to zero

yields:

−2 [y −F(β)]> J + 2δ>(J>J) = 0

2δ>(J>J) = 2 [y −F(β)]> J

(J>J)δ = J> [y −F(β)] ,

(2.32)

where J>J is the approximate Hessian matrix, i.e. the matrix of second order derivatives.

The acquired set of linear equations can now be solved for δ in a least squares manner of

the form Ax = b, where A = (J>J), x = δ and b = J> [y −F(β)].

Levenberg introduces a slight variation to Equation 2.32 by adding a dampening pa-

rameter λ which is adapted in every iteration:

(J>J + λI)δ = J> [y −F(β)] . (2.33)

If the current solution is close to the final solution, i.e. the reduction of S is rapid, λ can

be assigned a smaller value and therefore bring the algorithm closer to the Gauss-Newton

method. On the other hand, if the residual reduction is insufficient, λ can be increased

to bring it closer to the gradient-descent method. The algorithm terminates if either the

step size or the residual reduction becomes to small. Marquardt further improved the

algorithm by scaling each component of the gradient according to the curvature, which

resulted in the following equation for the LMA:

(J>J + λ · diag(J>J))δ = J> [y −F(β)] . (2.34)

At the start of the LMA, we have to provide a guess for the parameter vector β.

Provided that there is only one minimum, an arbitrary initialization will suffice. In cases

of several minima, the global minimum can only be found if the initial guess is already

close to the solution.
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3.1 Method Overview

In this thesis we present an approach for real-time dense 3D model reconstruction from

RGBD data by extending the volumetric fusion framework of InfiniTAM v2 [29] and

combining it with the accurate SLAM trajectory estimation of ORB-SLAM2 [42]. We add

novel techniques to InfiniTAM in order to support global model updates that arise from

e.g. loop closure. Our main contributions include:

• Implementation of a de-integration method, which allows to refine and alter the 3D

model. This is especially important when large changes in the estimated trajectory

occur, e.g. in the case of a loop closure detection.

• Keyframe-based depth fusion: Instead of integrating every frame, we fuse informa-

tion of similar frames into one keyframe (selected by the ORB-SLAM2 algorithm)

to decrease computational time. Although this might not provide a huge improve-

ment in the integration step because we still have to transform all points into the

keyframe, it significantly reduces the runtime for de-integration. Furthermore, we

can stop integrating additional frames when a certain threshold of observations has

been reached for a given keyframe.

33
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Figure 3.1: Globally consistent real-time dense 3D model update: Our system takes as input the
estimated poses from ORB-SLAM2 and the RGBD data from the sensor. If the current frame is
not a keyframe, we update the corresponding depth map. Otherwise we fuse its depth map with
the pointcloud and update the global model. In case that a keyframe has been deleted, we de-
integrate it and fuse its information into the next best (closest) keyframe. If not, we de-integrate
the frame with its old pose and re-integrate it with its new pose.

• A global model update which can delete and merge keyframes in retrospect. The

ORB-SLAM2 system continuously refines the estimated poses and whenever a new

keyframe is selected, we verify the integrated poses from the model with the updated

poses. If a significant change occurs, we update our 3D model in real-time.

• A method to estimate planes in a 3D scene by using the Levenberg-Marquardt Al-

gorithm. This optional step enables us to significantly reduce noise in plane re-

constructions and even fill holes in the 3D model where no observations have been

made.

Figure 3.1 depicts the work flow of our system. Note that our contributions are depicted

in green. We feed the RGBD data (either acquired live via sensor, or from a dataset) into

the ORB-SLAM2 system and receive the estimated poses for every frame. Then the

provided pose estimate is used in the fusion step to integrate new data into the existing

3D world, which we model as described in Section 2.12. Afterwards, we update our depth

maps and adjust the global model if necessary, before we integrate the new information into

the volumetric representation of InfiniTAM. (see Sec. 3.5). Finally we add a function to

estimate planes, which can optionally be called from the user interface. Further features

include reading and writing of pose-files which support keyframe enumerations, several

evaluation options like reading from ground-truth and alteration of almost any parameter

through a configuration file.

We explain our depth map updates, global model updates and plane estimation in

detail in the following sections.
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3.2 Combining ORB-SLAM2 and InfiniTAM

The system is implemented in C++ utilizing CUDA. We extend the existing InfiniTAM

framework [48] in the following manner: A new class ITMORBTracker which derives from

the standard ITMTracker is introduced as the interface to the ORB-SLAM2 algorithm. We

add several functionalities to the ITMMainEngine class which are all called from within the

ProcessFrame() method, like deleteFrame(), insertFrame() or GlobalModelUpdate().

For a fast interaction, we integrate the whole ORB-SLAM2 system into the Infini-

TAM code. As stated above, the ITMORBTracker class provides the two necessary func-

tions to get all the essential information from ORB-SLAM2, namely TrackCamera()

(adopted from the original InfiniTAM) and GetUpdatedKFPoses(). The former takes

an ITMTrackingState object as one of two arguments, which we extend by the following

variables:

• bool trackLost: indicates if track was lost (no pose → no model update)

• bool isKeyFrame: indicates if the current frame was selected as keyframe

• int refKF: refers to the keyframe the frame is associated with (refers to itself if it

is a keyframe)

• std::vector<int> connectedKFs: list of keyframes which are connected to the

current keyframe (used for point cloud fusion and culling; optional)

• ITMPose pose d relative: relative position of the frame to its keyframe

All these informations are extracted via the ORB-SLAM2 function TrackRGBD which

is only slightly altered to pipe all the necessary data through. The GetUpdatedKFPoses()

function iterates through all pose estimations the ORB-SLAM2 system currently holds,

identifies deleted entries and returns the updated poses.

3.3 Integration and De-integration

We describe the mathematical concepts for integration and de-integration in a volumetric

fusion method using a TSDF in Section 2.11. As part of the fusion step, integration

is already implemented in the InfiniTAM framework (see Sec. 2.12). In order for de-

integration to work, a new method DeleteFrame() is implemented in the ITMDenseMapper

class: At first it calls the sceneRecoEngine function AllocateSceneFromDepth() with

the parameter onlyUpdateVisibleList set to true, which means that no new voxelblocks

need to be allocated in the hashtable. We substitute the original setToType3() function

with our new setToType0() function that sets all previously seen voxel blocks to ”not

visible”. If this is not done, some voxels might still have values left after de-integrating.

This is because the original method would also check for visible blocks in the last seen

frame, but as we de-integrate images, the order of seen frames changes.
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Then, we call DeintegrateFromScene(), another SceneRecoEngine function. The

steps are identical to IntegrateIntoScene() up to the point where deintegrate() in

DeviceAgnostic/ITMSceneReconstructionEngine.h is executed. Here the integration step

gets reversed by using subtraction (see Eq. 3.3). Additionally, a few checks have to be

made to make sure that the right values are written back to the voxel (i.e. color vector

does not become negative and sdf value is between -1.0 and 1.0). We propagate these

checks also into the integration step.

Re-Integration can be performed by using ProcessFrame() as usual. Note that

AllocateSceneFromDepth() now uses the same setToType0() function.

3.4 Depth Map Fusion in Keyframes

Figure 3.2: Our depth map update complements and smooths the depth map of the keyframe.

The idea behind fusing the depth maps of frames into their reference keyframe is to

create a system that is able to adapt to global changes within real-time. Without the depth

map fusion each frame would have to be re-integrated separately when a model update is

induced, while our technique re-integrates only the fused depth maps of keyframes. Since

on average only every 10th frame is selected as keyframe, this reduces the amount of

operations by a factor of 10. As the ORB-SLAM2 algorithm already identifies keyframes

and associates them with other frames we only have to extend the fusion step.

In order to fuse information from a frame into its reference keyframe we introduce the

DepthMap and DepthMapEngine classes. The DepthMap class represents a keyframe and

does not provide any significant functions but rather contains all relevant information: the

(fused) depth map, the rgb image, the absolute camera position of the keyframe in the 3D

world (pose d), the current keyframe ID, a vector of keyframe IDs that are connected to

this current keyframe and a possible pointcloud.

Fig. 3.1 depicts our process flow: At the beginning, when we register the first frame as

keyframe, all information, except the pointcloud, is provided by the ORB-SLAM2 tracker

and the depth map is the recorded depth measurement of the frame. The keyframe is
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then integrated into the 3D world model. Subsequent frames, which are not chosen as

keyframes, will update the depth map data of their associated keyframe (see Fig. 3.2).

This is done via the DepthMapEngine class, a CUDA - CPU hybrid implementation to

combine information from several images into a single depth map. The update step is

closely related to the volumetric fusion integration step presented in (2.25) :

DKF,i(x
′) =

Wi−1(x′)DKF,i−1(x′) + wi(x)Z ′

Wi−1(x′) + wi(x)
,

Wi(x
′) = Wi−1(x′) + wi(x) ,

(3.1)

where x′ = τ(ξKF,c,x, Dc(x)) is the reprojected pixel position, Z ′ = [TKF,cπ
−1(x, Dc(x))]z

is the z-coordinate of the transformed point, Dc the depth map of the current frame, TKF,c

the transformation from current frame to keyframe and the weight wi(x) is set equal to

1, which leads to an averaging of the depth values. Please note that we truncate x′ to

always work on integer pixel positions. The difference to the volumetric fusion (2.25) step

is that we update the depth map of the keyframe DKF,i instead of the TSDF values in

the model.

In order to not lose any information, we store unfused points in a pointcloud. The

pointcloud is represented as a vector, where each entry corresponds to a 3D point, which

is transformed into the keyframe coordinates but could not be added to the depth map.

Points are not fused into the depth map and added to the pointcloud when either of the

following conditions arise: (i) points transform to out of boundaries, i.e. the x and/or y

coordinate are negative or larger than the image size, (ii) the depth difference is too large,

(iii) a transformed point maps to an invalid depth measurement. The provided depth

map may contain invalid values (DKF (x) = 0) due to reflective, absorptive or transparent

surfaces or occlusion of the IR pattern. In this case it can either be added to the pointcloud

or overwrite the invalid measurement (controlled via the use invalid depths parameter

in the configuration file). We kept use invalid depths set to true in order to gather

more information in the keyframes and close invalid pixel holes. However, this might lead

to depth inconsistencies as it cannot check the depth difference. This depth difference of

(ii) can be described as: ∣∣∣∣ 1

DKF (x′)
− 1

Z ′

∣∣∣∣ < Θτ , (3.2)

where DKF (x) is the entry in the keyframe depth map at position x = (x, y)>, Z ′ is the

z-coordinate of the transformed point and Θτ is some threshold value. This is especially

needed on edges in the scene (e.g. table edge vs floor), where it might occur that a point

far behind the edge in the new frame would transform onto the edge in the keyframe, e.g.

due to rounding. Algorithm 1 depicts the whole depth map update process.

After this procedure, all relevant information resides within the DepthMap object and

the processed frame can be disregarded. We choose to not update the RGB data which

might yield better coloring results but would also increase runtime. Furthermore, unlike
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Algorithm 1: Depth Map Update

1 w(x)← w(x)init = 1

2 forall pixels x ∈ Dc do

3 x′ ← τ(ξi,j,x, Dc(x))
4 X′ ← TKF,cπ

−1(x, Dc(x)))

5 if x′ /∈ DKF then
// point is outside of reference keyframe

6 AddToPointCloud(X′)

7 else if DKF (x′) = 0 then
// invalid depth measurement

8 if use invalid depths then
// overwrite invalid depth measurement

9 DKF (x′)← Z ′

10 else
11 AddToPointCloud(X′)

12 else if
∣∣∣ 1
DKF (x′) −

1
Z′

∣∣∣ < Θτ then

// update reference depth map

13 DKF (x′)← W (x′)DKF (x′)+w(x)Z′

W (x′)+w(x)

14 W (x′)←W (x′) + w(x)

15 else
// depth difference too large

16 AddToPointCloud(X′)

depth information, where invalid measurements can occur, color information is available

for every pixel and it is therefore sufficient to color the whole 3D model by just using the

RGB image of the keyframe.

There is one catch if the current frame is not a keyframe: Since after every new frame

the 3D world model is updated, we need to de-integrated the depth map of the reference

keyframe ID first, then update it with the new depth map and finally re-integrate it. We

speed up this process by setting the fast mode parameter in the configuration file: If

fast mode is activated, frames will only be integrated into the model if a new keyframe

is processed, i.e. new frames will only be integrated in the DepthMap object and not the

volumetric model. A downside to this is that less visual feedback is provided.

On the other side, if the current frame is a subsequent keyframe (so the very first

keyframe is already registered in the 3D world model), we try to fuse the pointclouds

into the depth map of the new keyframe KFnew. For this case, the DepthMapEngine

class provides the fusePCS() function. It requires as input the depth map of the new

keyframe, its DepthMap object and a list of all already processed DepthMap objects. The

frames to check parameter regulates how many previous pointclouds should be checked
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(reminder: every DepthMap has its own pointcloud). Every homogeneous 3D point X̃ of

the pointcloud is then transformed from its keyframe KF into the new keyframe KFnew
by the transformation matrix TKFnew,KF :

X̃′ = TKFnew,KF · X̃ , TKFnew,KF = TKFnew,w ·Tw,KF , (3.3)

where TKFnew,w is the transformation matrix from world coordinates into the current

keyframe, and Tw,KF = T−1
KF,w the inverse of the transformation matrix from world

coordinates into the keyframe KF . We now apply the mapping π(X′) (2.3) to get the 2D

image coordinates of the current keyframe the 3D point maps to. Finally, we can again

calculate the update step (3.1) if the mapped point satisfies our previously mentioned

conditions. Every point we are able to map in this manner is deleted from its pointcloud

and if the number of points within a pointcloud falls below a certain threshold Θpc, we

discard the whole pointcloud. After this process, we use the depth map as a complemented

and smoothed depth image (see Fig. 3.2), which we integrate into the InfiniTAM model.

Both update() and fusePCS() can be parallelized on the GPU via CUDA specific

code. However, since saving all DepthMaps with their respective point clouds on the GPU

is infeasible, we transfer only the pointcloud data to the GPU for the fusePCS() function.

As a result, the increased processing speed of the operation is overshadowed by the time

it takes for the memory transfer. Nevertheless, we successfully implemented a CUDA

version of the update() function since here we only need the current keyframe and the

frame that is currently processed in the GPU memory. Note that in a few cases we run

into the problem of collision when two or more points in the frame correspond to the same

coordinates in the keyframe. In this case, only 1 point will be integrated and the other

points are lost. However, this loss of information can be tolerated for the sake of speed

because no atomic operations are required.

3.5 Global Model Update

As stated above, every time a new keyframe is detected, all currently integrated poses are

re-evaluated with the ORB-SLAM2 system, which continuously refines estimated poses

and if a significant change occurred, i.e. the translation and/or the rotation are above a

threshold, the model will be updated. This is done by the updateGlobalModel() or the

updateGlobalModelCulling() function, which is called after a new keyframe has been

integrated. In the first function, the GetUpdatedKFPoses() of the ITMORBTracker is called

and returns all the (updated) poses for each keyframe. If a change is big enough, the old

keyframe will be de-integrated at its old pose and re-integrated at the updated pose.

ORB-SLAM2 follows the policy to insert many keyframes and cull them later. This

requires the updateGlobalModelCulling() function which can delete and re-integrate

keyframes in retrospect into the 3D model. For this case, the ITMORBTracker can provide

an additional list with the IDs of every deleted keyframe since the last check. The infor-
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mation of the deleted keyframe KFdelete is also deleted from the 3D model, then fused

into its closest keyframe KFclosest, which is de-integrated from the 3D model beforehand,

via the DepthMapEngine function fuseKeyFrame() and finally re-integrated. This process

is identical to the update step of the DepthMap in Section 3.4 with the exception that the

weight wi(x
′) is now set to the number of points which have been fused.

3.6 Plane Estimation

Figure 3.3: Plane estimation flow chart: At first we estimate plane parameters for every multi
voxel block in our 3D model. Then we merge similar neighboring planes to refine them (depicted in
red and blue). After the refinement, we propagate the plane parameters within a certain distance.
Finally, we apply the estimated parameters to the model (estimated planes are depicted in red).

After we have acquired a 3D model by utilizing the previously explained methods,
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Figure 3.4: A voxel is the smallest possible representation in our method. A voxel block consists
of 8× 8× 8 = 256 voxels and is always allocated as a whole. We introduce the multi voxel block as
a multiple of voxel blocks, e.g. 3×3×3 = 27, to estimate our plane parameters in a wider volume.

the EstimatePlanes() function can be called manually from within the InfiniTAM User

Interface (UI). This method is inspired by [10] and discussed in Section 2.13.

Essentially there are 3 steps in our plane estimation algorithm (see Fig. 3.3): At first,

we calculate the plane parameters for every multi voxel block. The size of a multi voxel

block within the scope of our algorithm is a multiple of the SDF BLOCK SIZE defined in

InfiniTAM (see Fig. 3.4). Then, these parameters are refined and propagated through

their block’s neighboring blocks. Finally, we apply the best fitting parameters to the 3D

model.

3.6.1 Estimating Plane Parameters

In the first step we estimate the best fitting plane for each multi voxel block in parallel

on the GPU. We do so, by using the Levenberg-Marquardt Algorithm (see Sec. 2.14) and

solving:

(J>J + λ · diag(J>J))δ = J> [y −F(β)] , y = (D(X1)δ,D(X2)δ, . . . ,D(Xn)δ)> ,

(3.4)

where J is the Jacobian matrix and F(β) is the vector of SDFs from point to plane.

The data vector y consists of the updated TSDF values D(Xk) (see Sec. 2.24) for every

voxel coordinate Xk = (X,Y, Z)> multiplied by the truncation band value δ. In this

manner, every entry of y with a TSDF value below 1 can be compared to F(β). The

parameter vector β we need to find, is the one of the 3D plane in Hessian normal form

β = (n1, n2, n3, d)>, where n = (n1, n2, n3)> is the plane normal of unit length, i.e. |n| = 1

and d is the distance to the coordinate center.
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As depicted in Algorithm 2, we start with the arbitrary guess β = (0.0, 0.0,−1.0, d)>

and set d to the length of the first voxel vector in the block, i.e. to the length of its world

coordinates. The initial value for λ is 0.01 and the maximum number of iteration steps

stepsmax is set to 50. Then we calculate the error for this first guess before we start with

the LMA iteration. The CalculateError() function solves the error equation ek for each

voxel k and returns the average value:

ek = r2
k · w(rk) , (3.5)

with

rk = β>X̃k −D(Xk)δ , (3.6)

w(rk) =

{
1
2r

2
k, for |rk| ≤ ΘH

ΘH(|rk| − 1
2ΘH), otherwise

, (3.7)

where X̃k = (Xk, Yk, Zk, 1)> are the homogeneous coordinates of voxel k and D(Xk) is

the updated TSDF value of the same voxel. The weighting function w(rk) is based on the

robust Huber loss function (with threshold parameter ΘH) and gives less weight to outliers.

We exclude voxels with a TSDF value which exceeds the sdfThreshold parameter (set in

the configuration file) and voxels with no observation value, i.e. with weight zero. If not

enough voxels with these criteria can be found, we stop the algorithm here and do not

return an estimated plane. In our experiments, we found that a threshold of θV = 128)

works well.

In every iteration cycle (Alg. 2, l. 3) we calculate the updated values for H and b:

The matrix H here is the approximated Hessian matrix J>J scaled with the weight w(rk)

from (3.7) and J is the Jacobian matrix of F with respect to β:

J =
∂F(β)

∂β
, Fk(β) = β>X̃k = n1Xk + n2Yk + n3Zk + d , (3.8)

J =


∂F1(β)
∂n1

∂F1(β)
∂n2

∂F1(β)
∂n3

∂F1(β)
∂d

∂F2(β)
∂n1

∂F2(β)
∂n2

∂F2(β)
∂n3

∂F2(β)
∂d

...
...

...
...

∂Fn(β)
∂n1

∂Fn(β)
∂n2

∂Fn(β)
∂n3

∂Fn(β)
∂d

 =


X1 Y1 Z1 1

X2 Y2 Z2 1
...

...
...

...

Xn Yn Zn 1

 . (3.9)

We can see that the row entries of the Jacobian equal the homogeneous coordinates of the

voxel. To obtain H we compute (J>k Jk)w(rk) for every voxel k individually and add the

results:

H =
n∑
k=1

(J>k Jk)w(rk) , (3.10)



3.6. Plane Estimation 43

(J>k Jk)w(rk) = (X̃kX̃k
>

)w(rk) =


X2
k XkYk XkZk Xk

XkYk Y 2
k YkZk Yk

XkZk YkZk Z2
k Zk

Xk Yk Zk 1

w(rk) . (3.11)

Similarly, we compute b = J>[y −F(β)] and scale it with w(rk):

b = −
n∑
k=1

J>k rkw(rk) , (3.12)

Since the residual is in the form of rk = F(β)− y = (−1)[y −F(β)] we need to multiply

b by −1 resulting in a subtraction.

If we substitute the parameters in (3.4) by H and b, we get the equation system

(H + λ · diag(H))δ = b. With A = (H + λ · diag(H)) we can calculate δ = A−1b. In a

loop (Alg. 2, l. 6) we try to find a value for λ so that the error gets smaller. If this is

the case, the parameter β and the error value get updated and the next iteration of the

LMA commences. We alter λ in the following manner: If the update step led to an error

decrease, λ is either set to 0 if it was below 0.2 or halved otherwise. If the error increased,

λ is either set to 0.2 if it was close to 0 or multiplied by 2incTry otherwise. The LMA

terminates in the following cases: (i) if A is not invertible, e.g. due to rounding issues.

(ii) if the residual reduction is too small (line 17). (iii) if the stepsize gets too small or

the maximum number of tries (incTrymax = 50) has been reached (line 27). Lastly, we

check if the final error value is below the empirically found threshold of 0.02. In this case,

we return the estimated plane parameters. Otherwise a zero vector is returned, which

indicates that no fitting plane could be found.

3.6.2 Plane Refinement and Propagation

This step consists of two parts: Firstly, we traverse the multi voxel blocks and com-

pare their plane parameters. If they are similar, i.e. their angular (diff degree) and

Euclidean (diff euclidean) differences are below a threshold, we merge them to get a

new, refined plane estimation. Secondly, we create a proximity map, where we prop-

agate the plane parameters of every block to its neighbors (up to a distance defined in

plane propagation dist). Since the plane parameters can be altered from different multi

voxel blocks, this step is not processed in parallel on the GPU.

For the first part we apply a traversal queue: We start with the plane parameters of

one multi voxel block and compare them to all its (max 3× 3× 3− 1 = 26) neighbors. To

determine if two planes are similar, we check the following two conditions:

1. The angular difference:

n>i nj > cos(Θα) , (3.13)

where ni, nj are the normal vectors of plane i and j and Θα is the threshold angle.
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Algorithm 2: Estimate Plane Parameters

1 β ← βinit , λ← λinit

2 errorold ← CalculateError(...)

3 for steps← 0 to stepsmax do
4 incTry, error,H,b← 0 // initialize everything with zeros

5 H,b← CalculateUpdate(...)

6 while true do
7 A← H + λ · diag(H)

8 if A invertible then
9 δ ← A−1 · b

10 β ← βest + δ

11 else
12 steps = stepsmax
13 break

14 error ← CalculateError(...)
15 incTry ← incTry + 1

16 if error < errorold then

17 if error/errorold > 0.9999 then
// residual reduction too small

18 steps← stepsmax

19 βest ← β
20 errorold ← error

21 if λ < 0.2 then
22 λ← 0
23 else
24 λ← λ · 0.5
25 break

26 else
27 if (|δ| < 1e− 10)||(incTry > incTrymax) then

// stepsize too small or too many tries for lambda

28 steps← stepsmax
29 break

30 if λ < 1e− 10 then
31 λ← 0.2
32 else
33 λ← λ · 2incTry

34 if error < 0.02 then
// found a plane with low enough error

35 return βest
36 else
37 return 0
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2. The Euclidean difference:

|β>i X̃ij | < Θε , (3.14)

with

Xij = Vj − (β>i Ṽj)ni , (3.15)

where βi are the plane parameters of plane i, X̃ij is the projection of volume center

Vj onto plane i and Θε is the threshold for the Euclidean distance.

If the two criteria are met, we add the block to the traversal queue and assign it a

region ID, e.g. the first checked block gets region ID 1 and all similar blocks are also

marked with 1. After all comparisons we delete the current entry from the queue and

process the next queue entry. If a match is found, we add the plane parameters to a

vector βrefined. Due to the fact that every visited block is marked, we avoid loops and

multiple comparisons. If the traversal queue is empty, i.e. there are no more similar

parameters in the neighborhood, we divide βrefined by the number of matches (resulting

in an averaging) and update the plane parameters of all multi voxel blocks with the current

region ID. Thus, all blocks with the same region ID also have the same plane parameters.

However, a downside to this approach is that every block will not match with its best fit

but with its first.

Afterwards, we take each multi voxel block, iterate through all its neighbors

within a certain distance plane propagation dist and add all found region IDs to

a proximity map. This plane propagation approach also counters the aforementioned

downside of first fit versus best fit, because in the end a multi voxel block will always

adapt to its best plane candidate. After this process every multi voxel block has its own

(merged) plane parameters and a set of plane parameters from the multi voxel blocks

around it. We call the combination of all these parameters plane candidates.

3.6.3 Applying Plane Parameters to 3D Model

In the last step, we update the TSDF values D(Xk) for every multi voxel block of the 3D

world model. Within every multi voxel block with at least 1 plane candidate, we update

D′(Xk) for every voxel k in parallel on the GPU in the following manner:

D′(Xk) =


Dmin(Xk)

δ , if ∃βi,βj : −δ < β>i X̃k · β>j X̃k < 0
Dclosest(Xk)

δ , if |Dclosest(Xk)| < δ and |Dclosest(Xk)
δ −D(Xk)| < 1

D(Xk), otherwise

, (3.16)

Here, the first case addresses voxels near plane intersections (needs more than 1 plane

candidate) where the distances (β>i X̃k for plane i and β>j X̃k for plane j) are not of the

same sign, indicating that the voxel is behind a surface. We therefore assign the smallest

signed distance value Dmin(Xk), which in this case is always negative. Note that we have

to divide this value by our truncation band value δ to fit into our volumetric representation
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(see Sec. 2.12). In the second case, we assign the smallest absolute value Dclosest(Xk) to

any voxel within the truncation band and not too far from its original value D(Xk). This

overwrites the distance values of all voxels close to an estimated plane. If none of the

above cases applies, indicating that the voxel is far from any estimated plane, we leave

the TSDF value unchanged.

Note that we apply this update to our whole multi voxel block (which consists of

multiple allocated and unallocated blocks of the size SDF BLOCK SIZE as stated before)

and therefore might get values for voxels were no observations have been made. We then

allocate new memory if necessary to complete the geometry. This leads to a hole filling in

regions where planes have been estimated.



4
Evaluation and Results

To demonstrate the capabilities of our system, we evaluate several real-world image se-

quences from well known datasets [8, 61] and the synthetic ICL-NUIM dataset [23].

Furthermore, we test our approach on our own Orbbec Astra Pro recordings. At first

we compare the trajectory error of various systems to our ORB-SLAM2-based approach.

Then we qualitatively analyze the surface reconstruction accuracy based on already refined

trajectories and live tracking. Finally, we show how we can further improve the 3D model

with our plane estimation.
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4.1 Trajectory Error

In this section, we examine the trajectory error of several existing VO and VSLAM sys-

tems. As VO systems we choose the ICP-based tracking of InfiniTAM (ITM) [29] and ICP

CUDA [68]. Our tested VSLAM systems include ORB SLAM 2 [42], DVO-SLAM [31] and

RGBD-SLAM [12]. We evaluate all systems on multiple image sequences from the TUM

RGBD dataset [61], the synthetic ICL NUIM dataset [23] and the Bundle Fusion dataset

[8]. We run all systems in their standard settings using the code available online at maxi-

mum resolution of 640×480. For RGBD-SLAM, we set the feature detector and descriptor

type to ORB and extract a maximum of 600 keypoints per frame. In ORB-SLAM2, we

extract 1000 features per frame with a minimum of 7 per cell and 8 scale pyramid levels.

Finally, we run DVO-SLAM with its standard 3 scale pyramid levels. We test all the

systems on an Intel Core 2 Quad CPU Q9550 desktop computer with 8GB RAM and an

NVIDIA GeForce GTX 480.

47
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We use the evaluation tools provided by [62] for the TUM benchmark to calculate the

Absolute Trajectory Error (ATE ) and the Relative Pose Error (RPE ). The ATE directly

compares the absolute distances of the trajectory in the ground truth file and the output

trajectory of the various systems. This is a good measurement for global consistency

in VSLAM systems. Let P1:n be the estimated trajectory and Q1:n the ground truth

trajectory. Then we can find a least-squares solution for the rigid-body transformation S

which maps P1:n onto Q1:n and compute the absolute trajectory error at time step i:

Fi := Q−1
i SPi . (4.1)

Table 4.1 shows the results for the ATE Root-Mean-Square Error (RMSE ) on several

selected TUM RGBD sequences. On the ICL-NUIM datasets (see Tbl. 4.2), DVO-SLAM

outshines ORB-SLAM2. This is due to the synthetic nature of the datasets, where perfect

depth values allow a very accurate tracking for DVO-SLAM, whilst ORB-SLAM2 still

needs to rely on the extracted ORB features. The high error value for the lr/kt1 sequence

with ORB-SLAM2 is a result of not revisiting any structure and therefore being unable to

perform a loop closure. The ”tl” (track lost) entries on the Bundle Fusion datasets (see

Tbl. 4.3) indicate that the system failed and therefore no meaningful comparison could be

made. Furthermore, DVO-SLAM and RGBD-SLAM could not process the large datasets

(over 8000 frames) on our hardware.

The RPE computes the relative difference of the trajectory over a fixed time interval

∆. In VO systems it can evaluate the drift and in VSLAM systems it can measure the

accuracy at loop closures. The RPE at time step i is defined as:

Ei := (Q−1
i Qi+∆)−1(P−1

i Pi+∆) . (4.2)

We choose to evaluate the RPE for every frame (see Tbl. 4.4, Tbl. 4.5 and Tbl. 4.6) and

over the time interval of 1 second (see Tbl. 4.7, Tbl. 4.8 and Tbl. 4.9). Here again, the

synthetic ICL-NUIM datasets show slightly better results for the other systems compared

to ORB-SLAM2.

In order to be able to use the TUM tools [62], we converted all datasets into the TUM

format, i.e. we changed the image and ground truth formats and added the associate files

which can also be generated with the provided tools. In cases where the algorithm non

deterministic, i.e. the estimated trajectories differ for every run, we execute the algorithm

10 times and take the mean value. Algorithms belonging to this category are ORB SLAM

2 and RGBD-SLAM.

4.2 Surface Reconstruction Accuracy

For qualitative evaluation we compare our system on several well known datasets (see Fig.

4.2) and also on datasets recorded with our own Orbbec Astra Pro. For all models we set
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ITM ICP
CUDA

DVO
SLAM

RGBD
SLAM

ORB
SLAM2

fr1/desk 0.291 0.144 0.169 0.027 0.022
fr1/desk2 0.483 0.273 0.148 0.041 0.023
fr1/room 0.523 0.484 0.219 0.104 0.069
fr1/xyz 0.032 0.042 0.031 0.017 0.010
fr2/desk 0.114 1.575 0.125 0.092 0.079
fr2/xyz 0.042 0.223 0.021 0.016 0.013
fr3/office 1.258 1.161 0.120 0.034 0.011
fr3/nstn 1.979 1.666 0.039 0.051 0.018

Table 4.1: Translational ATE RMSE on the TUM RGBD dataset [m]

ITM ICP
CUDA

DVO
SLAM

RGBD
SLAM

ORB
SLAM2

lr/kt0 0.045 0.697 0.006 0.011 0.008
lr/kt1 0.009 0.045 0.005 0.013 0.162
of/kt0 0.054 0.205 0.007 0.029 0.027
of/kt1 0.025 0.275 0.004 0.724 0.051

Table 4.2: Translational ATE RMSE on the synthetic ICL-NUIM dataset [m]

ITM ICP
CUDA

DVO
SLAM

RGBD
SLAM

ORB
SLAM2

apt0 tl 1.242 - - 0.096
apt1 0.818 1.300 - - 0.086
apt2 tl 1.546 - - 0.135
copyroom 1.100 0.571 - - 0.055
office0 1.543 0.656 - - 0.093

Table 4.3: Translational ATE RMSE on the Bundle Fusion dataset [m]

the voxel size to 2 cm, the truncation band µ to 8 cm and limit the depth measurements

from 0.2 m to 5.0 m. We empirically found the parameters Θτ = 0.005 and Θpc = 1000.

To measure the surface reconstruction accuracy, we calculate the one-sided Hausdorff

distance from the groundtruth 3D model to the reconstructed 3D model:

dH(X,Y ) = sup
x∈X

inf
y∈Y

d(x, y) , (4.3)

where X is the set of groundtruth vertices, Y the set of the reconstructed vertices and
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ITM ICP
CUDA

DVO
SLAM

RGBD
SLAM

ORB
SLAM2

fr1/desk 0.018 0.010 0.012 0.011 0.010
fr1/desk2 0.030 0.012 0.011 0.011 0.010
fr1/room 0.021 0.008 0.008 0.008 0.008
fr1/xyz 0.004 0.004 0.007 0.006 0.006
fr2/desk 0.024 0.108 0.016 0.004 0.003
fr2/xyz 0.007 0.027 0.006 0.003 0.002
fr3/office 0.052 0.131 0.017 0.007 0.005
fr3/nstn 0.242 0.263 0.017 0.012 0.010

Table 4.4: Translational RPE RMSE on the TUM RGBD dataset with ∆ = 1frame [m/f]

ITM ICP
CUDA

DVO
SLAM

RGBD
SLAM

ORB
SLAM2

lr kt0 0.005 0.005 0.001 0.004 0.004
lr kt1 0.001 0.001 0.001 0.003 0.016
of kt0 0.003 0.002 0.001 0.009 0.005
of kt1 0.002 0.010 0.001 0.033 0.012

Table 4.5: Translational RPE RMSE on the synthetic ICL-NUIM dataset ∆ = 1frame [m/f]

ITM ICP
CUDA

DVO
SLAM

RGBD
SLAM

ORB
SLAM2

apt0 tl 0.011 - - 0.008
apt1 0.011 0.011 - - 0.009
apt2 tl 0.035 - - 0.032
copyroom 0.021 0.006 - - 0.006
office0 0.021 0.011 - - 0.016

Table 4.6: Translational RPE RMSE on the Bundle Fusion dataset ∆ = 1frame [m/f]

d(x, y) is the Euclidian distance between the two vertices x and y. We sample each vertex

in X, find the distance to the closest point in Y and take the average. Table 4.10 lists

the result of this process for different datasets and methods. ORB-SLAM2 outperforms

all other systems on the evaluated TUM datasets (fr1) when integrating the model frame

by frame without using de-integration (all frames). Note that we used already optimized

trajectories for this test and thus no pose updates had to be incorporated. When we only

integrate keyframes into the model, i.e. all non keyframes will not be processed by the

system, the reconstruction error increases slightly. We show, that we can counter this



4.2. Surface Reconstruction Accuracy 51

ITM ICP
CUDA

DVO
SLAM

RGBD
SLAM

ORB
SLAM2

fr1/desk 0.207 0.100 0.052 0.036 0.026
fr1/desk2 0.327 0.164 0.061 0.045 0.033
fr1/room 0.259 0.129 0.056 0.053 0.048
fr1/xyz 0.047 0.031 0.024 0.027 0.016
fr2/desk 0.024 0.109 0.016 0.018 0.012
fr2/xyz 0.007 0.027 0.005 0.006 0.004
fr3/office 0.052 0.131 0.017 0.016 0.009
fr3/nstn 0.242 0.263 0.017 0.019 0.015

Table 4.7: Translational RPE RMSE on the TUM RGBD dataset with ∆ = 1s [m/s]

ITM ICP
CUDA

DVO
SLAM

RGBD
SLAM

ORB
SLAM2

lr/kt0 0.005 0.140 0.002 0.003 0.008
lr/kt1 0.001 0.017 0.002 0.002 0.074
of/kt0 0.003 0.061 0.003 0.005 0.016
of/kt1 0.002 0.152 0.002 0.007 0.034

Table 4.8: Translational RPE RMSE on the synthetic ICL-NUIM dataset with ∆ = 1s [m/s]

ITM ICP
CUDA

DVO
SLAM

RGBD
SLAM

ORB
SLAM2

apt0 tl 0.011 - - 0.008
apt1 0.010 0.011 - - 0.008
apt2 tl 0.035 - - 0.026
copyroom 0.021 0.006 - - 0.006
office0 0.021 0.011 - - 0.015

Table 4.9: Translational RPE RMSE on the Bundle Fusion dataset ∆ = 1s [m/s]

effect by using our fused depth maps. On the ICL-NUIM datasets, InfiniTAM and DVO-

SLAM outshine ORB-SLAM2. This is due to the previously mentioned synthetic nature of

the dataset, where the trajectory estimation of the former two systems is better. RGBD-

SLAM works well on the icl/lr0 and icl/lr1 datasets, but fails to accurately reconstruct

icl/of1, resulting in a large error. Furthermore, we can see in Fig. 4.1 that no loop closure

could be performed in the icl/lr1 dataset (due to not revisiting any structure), which

leads to a larger error. Note that in the icl/of1 dataset our method shows some areas

with an increased error. The reason for this is that no keyframe was detected there and
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Figure 4.1: Surface reconstruction: Heat maps depicting the error from the ground truth model
to the estimated model. Datasets from top to bottom: fr1/room, icl/lr1, icl/of1.

(a) lr/kt0 (b) fr1/xyz

Figure 4.2: Sample reconstruction models of our approach.

consequently no values exist.

In Figure 4.3 we compare the original InfiniTAM tracker to our approach (top). We can

see that InfiniTAM reconstructs 2 walls in the upper right corner due to an absence of loop

closure detection. On the bottom we compare our approach to tracking and integrating

every frame with ORB-SLAM2 but not using any de-integration.

Figure 4.4 depicts the effects of loop closure. Our method keeps the global model

consistent when revisiting places.
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ORB-SLAM2
ITM DVO

SLAM
RGBD
SLAM

all frames keyframes depth maps

fr1/desk 0.067 0.071 0.037 0.033 0.037 0.034
fr1/desk2 0.091 0.088 0.078 0.043 0.051 0.048
fr1/room 0.228 0.152 0.164 0.084 0.091 0.087
fr1/xyz 0.033 0.046 0.019 0.012 0.017 0.015
icl/lr0 0.004 0.005 0.006 0.008 0.016 0.016
icl/lr1 0.015 0.007 0.008 0.097 0.114 0.113
icl/of1 0.014 0.006 0.095 0.017 0.027 0.025

Table 4.10: Evaluation of the surface reconstruction accuracy: Mean Hausdorff distances from
the ground truth surface to the reconstructed surfaces (m).

4.3 Runtime

Regarding the runtime, InfiniTAM with its own tracker, running completely on the GPU,

needs an average of 6ms per frame in our experiments. ORB-SLAM2, running on the

CPU, combined with the InfiniTAM reconstruction but without depth map update and

global model update needs an average of 56ms. When adding the depth map update, the

time increases to roughly 67ms. This is due to the requirement of the creation of DepthMap

objects on the CPU and the need for de-integration when a new frame is assigned to an

older keyframe. However, we are now able to perform an online adaption of the 3D model

with our global model update at an average runtime of 73ms even when large loop closures

occur like in Figure 4.4. By using only every other frame for a depth map update, this

number could be reduced to 68ms.

There still exist possibilities to optimize the code: (i) optimize swapping between

GPU and CPU memory: Right now, all DepthMap objects of the keyframes reside on

the CPU and need to be transfered to the GPU whenever a new reference keyframe is

needed. We could keep the latest few keyframes on the GPU, because they are most

likely to be referenced again, to avoid constant memory allocation, (ii) let ORB-SLAM2

and InfiniTAM run in separate threads: By decoupling tracking and model generation we

could avoid leaving either system idle, (iii) substitute ORB-SLAM2 for another tracker.

ORB-SLAM2’s principle of first adding a lot of keyframes and later cull them is not ideal

here, because this needs additional de-integration and re-integration steps.

4.4 Plane Estimation

We estimate planes in our 3D model in order to remove noise and fill holes in large

planes like walls, floors or ceilings. Due to the fact that fine structures are smoothed
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and our groundtruth cannot fill holes, a meaningful comparison based on the Hausdorff

distance could not be performed. For the model reconstruction we choose a voxel size of

3 cm, a truncation band of µ = 10 cm and limit the depth measurements to a range of

0.2 m to 5.0 m. The depth map update parameters are again Θτ = 0.005 and Θpc =

1000. Our plane estimation parameters are set in the following manner: multi voxel

block is of size 2, sdfThreshold is set to 0.8, Θα = 5◦, Θε = 0.1 m, ΘH = 0.05 and

plane propagation dist is 10, which means that we consider 10 multi voxel blocks in

every direction from the current position.

In Figure 4.5, 4.6 and 4.7 we can see that our algorithm correctly estimates the planes

for walls and floors. Figure 4.8 shows the effects in more detail: Irregularities in the wall

surface get smoothed and holes due to occlusions from the monitors get closed. However,

since fine structures, e.g. pictures on the wall, only differ minimally from the estimated

wall plane, they disappear too. Depending on the application, this is a trade-off one has to

take into account: If we want to maintain a detailed model of the room, plane estimation

might not be desired. However, if we want to check if a structure is closed, e.g. for an

augmented reality application, plane estimation can be of huge importance.

The whole extend of our method is illustrated in Figure 4.9: The original InfiniTAM

is unable to adapt the model to global updates and therefore structures can appear at the

wrong places, e.g. the reconstruction of 2 walls on the left and the tables at the bottom.

With our approach we obtain a globally consistent model. Plane estimation helps us to

smooth and complete planes. Note that even after plane estimation, a hole in the middle

of the floor remains. This is due to the size of the un-scanned area. If no voxels are

allocated within the multi voxel block from scanning, no plane parameters are propagated

to avoid the closing of actual openings, e.g. windows or open doors. More results of our

plane estimation are depicted in Figure 4.10 and Figure 4.11.

An issue with the current implementation is, that at intersection of planes, i.e. corners,

the planes expand beyond the border in some cases. The reason behind this behavior is

probably, that whenever we detect a plane within a multi voxel block, we allocate all voxels

within the truncation band of the surface.

Regarding the runtime of this plane estimation, it is very parameter dependent. A

choice of a large multi voxel block size with a rather small propagation distance can be

handled within a few hundred milliseconds. Smaller blocks and a larger distance would

take up to 20 seconds in our experiments.
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(a) Original InfiniTAM (b) Our approach

(c) ORB-SLAM2 without model update (d) Our approach

Figure 4.3: Surface reconstruction of office scenes with loop closure: (a) Tracking and integration
of every frame with the original InfiniTAM ICP tracker. (b) Our approach with ORB-SLAM2 pose
estimation, depth map and global model update. (c) Tracking and integration of every frame with
ORB-SLAM2 without model update. (d) Our approach.
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(a) ORB-SLAM2 before loop closure (b) ORB-SLAM2 after loop closure

(c) Our method before loop closure (d) Our method after loop closure

Figure 4.4: Effects of loop closure: (a) ORB-SLAM2 before detecting a loop closure. (b) ORB-
SLAM2 after a loop closure has been recognized and the estimated poses have been adjusted. (c)
Without a loop closure, the InfiniTAM model is inconsistent. (d) With our method we can adapt
the 3D model on the fly.
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Figure 4.5: Plane estimation (depicted in red) in the icl/lr0 dataset with ORB-SLAM2 trajectory.

Figure 4.6: Plane estimation (depicted in red) in the icl/lr1 dataset with groundtruth trajectory.
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Figure 4.7: Plane estimation (depicted in red) in the icl/of1 dataset with ORB-SLAM2 trajectory.
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(a) No plane estimation

(b) Plane estimation

Figure 4.8: Closeup of the plane estimation effects in the icl/of1 dataset: The ripples in the wall
due to slightly wrong pose estimations are eradicated. Furthermore, holes in the wall get filled.
However, also fine structures like pictures dissappear.
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(a) Original InfiniTAM (b) Our Approach

(c) Our Approach with Plane Estimation

Figure 4.9: Sample reconstruction of a room recorded and reconstructed in real-time with our
Orbbec Astra Pro. (a) shows the original InfiniTAM reconstruction, which is unable to adapt the
model to loop closure (see top left corner). (b) depicts our approach with a globally consistent
model. (c) demonstrates the effects of our plane estimation: large planes get smoothed and the
un-scanned area in the middle of the scene shrinks.
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(a) No plane estimation (b) Plane estimation

(c) Combined

Figure 4.10: Closeup of the plane estimation effects in the icl/lr0 dataset: By using a combination
of original reconstruction and plane estimation, holes can be filled while fine structures can still be
maintained.
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(a) No plane estimation

(b) Plane estimation

(c) Combined

Figure 4.11: Closeups of reconstructions from our own recordings. Our plane estimation approach
is able to smooth the geometry and close holes in the wall and floor.



5
Conclusion

In this thesis we presented a real-time capable method to create globally consistent dense

3D models. To solve this challenging problem, we combined the tracking accuracy of a

state-of-the-art SLAM system [42] with the dense model generation of a volumetric fusion

system [29]. We utilize the depth information of all frames but fuse all points into the

depth map of their corresponding keyframes. Any points that we cannot incorporate into

the depth map directly, e.g. because they transform to out-of-boundary values, we store

in a pointcloud. We try to fuse the information of the pointcloud whenever we add a new

keyframe. The fused depth map is then integrated into the 3D model instead of every single

frame. This allows us to dynamically de-integrate and re-integrate keyframes, which hold

the information of several frames, resulting in a speed up of about a factor of 10. In this

manner our system is able to adapt the model online, when updated poses are available,

e.g. after loop closure or bundle adjustment. Furthermore, we proposed a plane estimation

algorithm to improve the quality of the model by significantly reducing noise and filling

holes in large planes. For that purpose, we at first calculate the plane parameters within a

larger voxel neighborhood. We then refine these parameters and propagate them through

the neighboring blocks. Finally, we adapt the 3D model according to its best fitting plane

if appropriate.

For real world data we have shown that our method yields excelling results, especially

when compared to the original InfiniTAM ICP approach. Both, the trajectory and surface

reconstruction error, improve significantly. We have also shown comparable results for

synthetic datasets, despite not utilizing an ideal tracking method for this kind of data. A

downside to our approach is the increased runtime, which is a result of the processing time

of ORB-SLAM2 and the need for constant re-integration. Another issue is that, despite

trying to recycle all of the information, our depth map fusion is a little less dense than

a frame-by-frame integration. Our plane estimation algorithm correctly detected planes

and was able to automatically smooth and complete geometry. However, the parameter

choice can be crucial and fine structures (e.g. pictures on the wall) will disappear.

In the course of this thesis we submitted a paper [66] to the Austrian Association for

63
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Pattern Recognition (OAGM/AAPR) Workshop 2018 and were accepted. The issues of

the paper covered our de-integration process, depth map fusion and global model update.

In future work, it would be desirable to incorporate the swapping feature of InfiniTAM,

which we did not utilize in this thesis. This would allow us to reconstruct larger scenes

even with only limited GPU memory available. Another issue that has not been addressed

in this thesis is texturing. Right now, we only use the RGB values of the keyframes and

average them, which leads to a motion blur. Through a more sophisticated approach the

appearance of the 3D model could probably be further enhanced.

A next step to increase speed is to decouple model creation and tracker, as mentioned

in Section 4.3. Note that our system is not limited to ORB-SLAM2, but can in theory

work with any keyframe-based tracking method. Therefore, a decoupling with a clean

interface would enable means for a dense 3D reconstruction for many different SLAM and

VO systems often lacking this feature.



A
List of Acronyms

ATE Absolute Trajectory Error

BA Bundle Adjustment

BRIEF Binary Robust Independent Elementary Fea-

tures

CPU Central Processing Unit

FAST Features from Accelerated Segment Test

GPU Graphics Processing Unit

ICP Iterative Closest Point

IMU Intertial Measurement Unit

IR InfraRed

LMA Levenberg-Marquard Algorithm

ORB Oriented FAST and Rotated BRIEF

RANSAC Random Sample Consesus

RMSE Root-Mean-Square Error

RPE Relative Pose Error

SDF Signed Distance Function

SIFT Scale-Invariant Feature Transform

SLAM Simultaneous Localization and Mapping

SURF Speeded Up Robust Features

ToF Time of Flight

TSDF Truncated Signed Distance Function

UI User Interface

VO Visual Odometry

VSLAM Visual SLAM
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