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Abstract

Everyday human environments have an underlying structure. Knowledge
about this structure is used by humans to carry out tasks efficiently. In this
thesis a robotic system is presented which uses such commonsense knowl-
edge to execute an intelligent active object search in unknown open indoor
environments. The main challenges are the selection of useful commonsense
knowledge, the design of a suitable representation of the environment, and
the development of a search planner which utilizes the gathered information.
The concept of rooms, and commonsense knowledge about the connection
between the room type of an area and the objects usually located in that
area are utilized in this thesis. Using the commonsense knowledge, the
room type of an area allows to estimate object probabilities in this area and
the room type detected after peeking into a room allows to estimate the
object probabilities in the whole room. A mapping system was developed
which creates a semantic map of the environment containing the room
structure and information about seen objects and room types of areas of the
environment. This information is extracted from images using convolutional
neural networks. Based on this map, a probabilistic planner generates view
poses for the robot to drive to which minimize the expected search time. Test
runs of the developed system showed a more intelligent behavior, where
likely areas were searched first, and an improved performance compared
to a coverage-maximizing search system. The findings of this work can be
used in similar tasks with the goal to create robotic systems being able to
help humans with a wide variety of tasks.
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1 Introduction

With technical progress in the field of robotics and related areas, autonomous
robots are now able to execute many tasks in factories, even without mod-
ifications to the environment like painted lines. However, robots struggle
to conquer everyday human environments. Domestic environments might
seem very chaotic at the first glance, with a wide variety of different types
of environments and huge differences in their appearance. However, those
environments have an underlying structure which is used by humans all
the time to carry out tasks efficiently. Indoor environments are usually
segmented into rooms which are separated by walls and only connected
by doors. A room consists of one or a small number of areas, where each
area has specific purposes, e.g. a kitchen is used for baking and cooking.
For each purpose specific objects are used, e.g. a pan for cooking which can
be assumed to be somewhere around.

The goal of this thesis is to equip a robot with commonsense knowledge
about indoor environments to execute a task efficiently. The investigated
task is to search an object in an unknown open indoor environment. This is
a relative simple task, but can benefit a lot from commonsense knowledge
about indoor environments, e.g. knowledge about room types and which
objects are usually located in rooms of a certain type. It is also an essential
skill for a robot working in domestic environments. Therefore, research
on this topic will be useful to enable future robotic systems. During the
execution of this task the robot has to find the best next view poses. In
this thesis the best next view pose is the pose that minimizes the expected
search time. The robot has to decide which areas are promising to contain
the searched object. It also has to find a balance between exploration and
the search of already explored areas because the environment is unknown
at the start of a search. Here the commonsense knowledge is important to
make better estimations about unseen or only vaguely seen areas.
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1 Introduction

The system presented in this work uses a hierarchical approach. The envi-
ronment is seen as a topology of rooms at a higher abstraction level and the
details are handled for every room separately. Within a room convolutional
neural networks (CNNs) for object detection and place classification are
used to create semantic maps containing information about the positions
where objects were seen and the room types of areas in the room. Using the
results of the object detection, the place classification and the connection
between the type of an area and the objects usually located in that area,
object probabilities are estimated, even for not or only vaguely seen areas.
To achieve this a new mapping system was developed, capable to create
hybrid maps which combine the room topology and semantic maps of
the rooms. The developed mapping system is also able to cope with the
uncertain results of the sensors and the CNNs. The hybrid map is then used
by the developed hierarchical search planner which first selects the next
room to search and then plans the search within that room, to execute the
search task efficiently.

Similar systems were already developed, e.g. by Aydemir et al. [1]. However,
the generality of the used CNNs are a step towards the flexibility which will
be necessary in future robots used for example in households. The proposed
system was tested in common indoor environments, where the behavior
was investigated and a comparison with a system using no commonsense
knowledge was done.

1.1 Challenges

The development of an intelligent active object search system poses various
challenges. The main questions to answer during the development were:

• What commonsense knowledge can be used to execute the object
search intelligently: Not only useful types of commonsense knowl-
edge have to be found, but also ways to obtain and represent the
knowledge.

• What information the robot should gather and what sensors are
necessary for that: This includes not only the question of how to
detect objects, but also what data is necessary for the navigation and

2



1.2 Contribution

the application of the commonsense knowledge. Also suitable sensors
have to be found.

• How the gathered information about the environment should be
represented: This involves the design of a semantic map representation
which contains all the gathered information. This design has to take
into account the types and quality of the incoming data and has also
to be suitable for the planning of the search.

• How the search planning, using this knowledge, should be done:
The questions are how to use the gathered knowledge and especially
how to handle the complexity of the active object search problem.

To reduce the amount of work suitable existing software packages have to
be found and if necessary adapted. Furthermore, as this is a robotic system,
many unexpected problems occur during the developed of the active object
search system which have to be solved.

1.2 Contribution

In this thesis an intelligent object search system is presented and evaluated
which can efficiently find objects of various different types in indoor envi-
ronments. A hybrid semantic map design was therefore developed which
represents the room structure of the environment as a topological map and
the details of each room as separated semantic metric maps. These room
maps contain, in addition to occupancy information, also information about
detected objects and the room types of areas in the room. The developed
system is also able to estimate object probabilities in vaguely seen areas and
in partially explored rooms, using the information about the room types
and commonsense knowledge about the connection between room types
and objects usually located there. Furthermore, a hierarchical search planner
was developed which in a first step selects the optimal next room to search
based on the estimated object probabilities and the expected search times in
the rooms and in a second step plans the search within the chosen room,
where likely object locations are searched first. This enables the robot to
search in likely rooms and room areas first and to postpone the search in
unlikely rooms.

3



1 Introduction

1.3 Outline

The structure of this thesis is as follows. In Chapter 2 a formal representation
of the problem is given. Chapter 3 covers related research on the topic of
active object search and its subproblems and Chapter 4 contains information
about basic components used in this work. Chapter 5 describes the concept
of the proposed active object search system, while Chapter 6 focuses on the
Implementation of the concept. In Chapter 7 the results of the evaluation are
presented. Finally, Chapter 8 contains a summary of the thesis, a discussion
of the results and possible future work on this topic.
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2 Problem Formulation

This thesis describes an autonomous robot executing an active object search
task in an intelligent way. Active object search is the problem of deriving
an efficient policy to find an object in a large scale, unknown, 3D indoor
environment ψ, with ψ ⊆ R3.

In this thesis an object is defined as O := 〈x, y, z, o〉, where the vector [x, y, z]
is the position of the object and o is the object class or object type with
o ∈ CO and CO being the set of detectable object classes.

An indoor environment can be segmented into a set of rooms R := {r1, ..., rK},
with K being the number of rooms and a room ri ⊆ R3. Further holds
ψ = r1 ∪ r2 ∪ ...∪ rK and rk ∩ rl = ∅ ∀k ∈ K, l ∈ K, k 6= l.

We define a grid map, which discretizes the world into equally sized cells,
with grid map := {cellc}. Further, for every object class o ∈ CO a three
dimensional grid map Po

ψ is introduced. Each cell in these maps contains
the probability Po

c of an object of type o being in the cell c. In contrast to an
uninformed object search, where Po

c is constant, these probabilities are not
equal for all cells, enabling the possibility to find a more intelligent search
policy.

Further, we introduce a three dimensional grid maps PR
ψ , where each cell

contains a probability distribution over the detectable room types PR
c . Fur-

ther, a ground plane is assumed and cells over the same area of the ground
plane are assumed to have the same probability distribution. This grid map
is used to estimate Po

c , as Po
c depends on PR

c .

A search task comprises searching for an object of a given target object class
o ∈ CO in the current indoor environment until it is found or the whole
environment was searched. In this thesis no prior knowledge about ψ, like

5



2 Problem Formulation

occupied space or likely object locations, is available at the beginning of the
search.

Assuming a ground plane the robot can execute two dimensional motion
actions to goal pose g := 〈x, y, θ〉 in the motion space φ, with φ ∈ R2, x
and y specifying the position and the angle θ specifying the orientation.
The motion space φ is a projection of the search space ψ onto the xy-
plane. The robot performs sensing actions periodically, where S is the
sequence of all acquired sensor information. The system should execute
the search task on the path p∗ := arg minpi

(cost(pi)) with pi being the
ith possible path pi := (g1

i , g2
i , ..., gend

i ) and cost(pi) being the cost of the
path pi. The cost function used in this thesis is the expected search time
E[t|pi] =

∫ ∞
0 t · foi(t|pi)dt with foi(t) being the probability density function

of stopping the search of object oi at time t.

The probability density function foi(t|pi) depends on the path pi and the
object probability map Po

ψ. Po
ψ has to be estimated based on the acquired

sensor information S and commonsense knowledge K. The sensor informa-
tion is defined as a set of laser scans and RGBD-images S = {I1:t, l1:t}. A
laser scan consists of a set of range measurements li = {l1

i , ..., lN
i } and an

RGBD-image is defined as a matrix of pixels Ij[x, y] = px,y, where every
pixel is a tuple of values for red, green, blue and depth px,y = 〈r, g, b, d〉. The
commonsense knowledge K is a |CR|x|CO| matrix, where |CR| is the number
of detectable room types. A matrix element Kr,o contains the probability
P(o|r) of an object of type o being in a room of type r.

6



3 Related Research

In this chapter some relevant literature related to the topic of active object
search and also to the subproblems encountered in this thesis are presented.
The first section covers what commonsense knowledge can be used in visual
active object search. The second section focuses on the detection of objects,
while the third section discusses semantic maps and their creation. The last
section covers relevant literature about exploration and search planning.

3.1 Commonsense Knowledge Used in Active
Object Search

In an active object search task the goal is to find an object as fast as possible
by an active movement of the used sensors. Without further knowledge this
results in a coverage search problem, as tackled for example by Dornhege
et al. [2]. In this work the two subproblems of an active object search,
the set cover problem [3] and the the traveling salesman problem [4], are
solved separately. In a first step high-utility view poses covering the search
region are generated by calculating the minimal partition of sample view
poses covering the search region. The sequence of the high-utility view
poses minimizing the travel cost is then calculated by solving the traveling
salesman problem, which is feasible with the reduced number of view
poses. Additional knowledge about the environment and the searched
object can make the search much faster because it allows to reason where
an object is more likely. One type of useful knowledge is the knowledge
about object-object relations, which is for example used by Kollar and Roy
[5]. For example, a remote is more likely near a sofa than near a sink. Kunze
et al. [6] go beyond that and use stricter relation between objects, like a

7



3 Related Research

keyboard is usually in front of a monitor. Also useful is knowledge about
types of places and the correlation between place type and the objects in
this place, which is for example used by Viswanathan et al. [7]. For example,
a knife is more likely in a kitchen than in a bedroom. Important work on
the topic of active object search was done in the CogX project by Aydemir,
Sjöö and other coworkers [8][1][9]. In their work they presented a system
which combines knowledge about object-object relations and place-object
relations with reasoning about unexplored space. Based on the type of a
room assumptions about neighboring rooms are made in this work, like
a corridor has usually multiple neighboring rooms while an office has
probably only one.

3.2 Object Detection

The detection of an object is an essential part of an active object search
system. In this thesis the task is to find an object of a specified type instead
of an object instance. Therefore a general object detector is needed. Visual
object detection using convolutional neural networks (CNNs) [10] is the
most promising method for general object detection at the moment [11].
There the detections are typically in the form of bounding boxes and large
datasets exists for the training of object detection CNNs, like PASCAL
VOC [12] and COCO [13]. One type of architecture used for visual object
detection are region-based convolutional neural networks (R-CNNs) [11].
R-CNNs generate in a first step region proposals, which are then classified.
However, R-CNNs are slow and even their faster versions Fast R-CNN
[14] and Faster R-CNN [15] are computational expensive. There are also
visual object detectors using only a single CNN, like SSD [16] and YOLO
[17][18][19]. YOLO divides the image into a coarse grid. For each grid cell
the probabilities of the detectable object types are predicted. Furthermore,
for each cell multiple bounding boxes are predicted, where each bounding
box has also a confidence score. The newest version of YOLO, YOLOv3,
predicts those bounding boxes at three different scales. This is all done in a
single forward pass of the CNN. The confidence of the bounding boxes are
then combined with the object probabilities of the corresponding cells to
get the final result.

8



3.3 Semantic Maps

If a point cloud was created together with the image, which is the case if
an RGBD-camera was used, the location of the object in 3D space can be
estimated. The point cloud can also be used to segment the bounding boxes
into object and background. Schwarz et al. [20] used this approach for an
exact detection of objects for grasping and Sünderhauf et al. [21] used this
to insert objects into semantic maps.

3.3 Semantic Maps

The creation of a map and the localization within this map is an essential
skill for a robot working in an unknown environment. In the literature
this problem is called simultaneous localization and mapping (SLAM). One
approach to solve SLAM is the use of a particle filter. A good example for this
approach is GMapping [22]. GMapping implements a Rao-Blackwellized
particle filter [23], where every particle has its own map and trajectory.
Using a proposal distribution which is based on the odometry data and
the incoming range measurements, the particles of the next generation are
drawn. For every particle an importance weight is calculated and unlikely
particles get replaced in the following resampling step, which is necessary
due to the limited number of particles. As a particle itself has no uncertainty
in its trajectory, the maps of the particles can be created using mapping with
known pose [24]. Another method for SLAM is using a graph representation.
Each node in the graph is a robot pose at a certain time, carrying the
sensor information. The edges connect the nodes using some measurement
observations like odometry. A famous framework for graph-based SLAM
is g2o [25]. Another important work on SLAM is FastSLAM [26][27]. The
representation of the trajectories is similar to GMapping as also a Rao-
Blackwellized particle filter is used. In contrast to GMapping, FastSLAM
works with landmarks, where each particle has a Kalman filter for each
landmark to estimate the locations of the landmarks.

For intelligent active object search the map has to contain more informa-
tion than just occupancy information for navigation. Segmentation of the
environment into rooms is beneficial as it allows to use the topological
structure of the environment. Kleiner et al. [28] achieve this by applying
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3 Related Research

watershed segmentation on the 2D grid map. Friedman et al. [29] create a
Voronoi graph from the 2D grid map and the points on the Voronoi graph
are inserted as nodes into a conditional random field. Using this technique
they are not only able to segment the environment into rooms but can also
label areas into hallway, doorway or room. Aydemir et al. [1] create nodes at
equal intervals, where each node corresponds to a discrete place in the envi-
ronment. Together with edges representing direct paths between the nodes
an undirected graph is formed. By detecting doors these nodes are grouped
into rooms. These nodes also contain shape, size and appearance properties
of the surrounding area, which are used for room type classification. Also
objects found in a room are attached to the grouped nodes of a room. For
active object search it is beneficial to have a more detailed representation
for object locations, which improves the generation of the best next view
pose. Wada et al. [30] use a 3D grid map containing object probabilities to
represent object locations.

3.4 Exploration and Search Planning

A widely used approach for exploration proposed by Yamauchi [31] is to
drive to frontiers, which are areas on the boundary between accessible
space and unexplored space. The planning of the search is much more
complicated. In a first step reasoning about likely object locations has to
be done. Aydemir et al. [1] use a chain graph model [32]. Kollar and Roy
[5] explored two models, a Markov random field model and a Naive-Bayes
model. The Naive-Bayes model simplifies the problem by making “naive”
independence assumptions. Aydemir et al. [1] formulated the problem of
finding the optimal search path as a partially observable Markov decision
process (POMDP). In large environments the state space is far too large for
the problem to be solved by a POMDP-planner. Therefore, they decided
to use a hierarchical approach with a classical planner for the selection of
the next room and a POMDP planner for the search within the room. The
classical planner makes an all outcome determinization, which creates a distinct
deterministic instance for every probabilistic outcome [33], to make the
problem, which contains uncertainty, solvable. Using an objective function
which combines the cost to execute the plan and a reward dependent on
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the probability of finding the object, the next room is selected. Kollar and
Roy [5] formulated the problem as a minimization of the expected travel
distance. The expected travel distance is calculated using the likelihood of
finding the object at a certain location. The best view pose is selected using
a breadth-first search to a specified horizon.
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4 Prerequisites

This chapter gives an overview of the basic components used in this work.
It contains information about the Robot Operating System (ROS), a robotics
framework used in this work, the move base package used for navigation,
and the GMapping library used for simultaneous localization and mapping
(SLAM).

4.1 ROS Robot Operating System

The Robot Operating System (ROS) [34] is an open-source robotics frame-
work. It provides a structured communication layer for interprocess commu-
nication. As TCP-IP sockets are used, the processes can also run on different
machines, so outsourcing of computational heavy tasks to off-board com-
puters and communication between multiple robots can easily be done with
ROS. ROS also includes the tf transformation system. The tf system collects
coordinate transformations and constructs a dynamic transformation tree.
Using this transformation tree the tf system can provide transformations
between all coordinate frames in the transformation tree. It is also able to
handle changing transformations, like transformations between joints of a
robot arm, and can interpolate between transformations at different times.
Furthermore, ROS includes build tools and tools for package managing.
This makes using third party packages, contributed by members of a big
community, easy. These packages range from ROS-wrappers for device
drivers and software libraries to complete implementations of algorithms.
ROS supports multiple programming languages, the most important are
C++ and Python.
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A robotics system using ROS is typically split into multiple processes, called
nodes, where each node executes an individual task. Different ways for
the communication between the nodes are available in ROS. The most
important ones are messages, which are predefined data-structures which
can hold information described through the interface definition language
(IDL). The messages can be published on and received from topics, which
are named data channels. The topics are managed by a special node, the
ROS master, which also keeps track of all the running nodes. As ROS uses
peer-to-peer communication, the ROS master is only responsible for setting
up connections between the nodes, but not for the data transmission. Before
a node can publish on a topic, the topic has to be advertised and before a
message of a certain topic can be received the node has to subscribe to the
topic. A topic can be advertised by multiple nodes and also multiple nodes
can subscribe to a topic. The most important property of messages is that
the sender of a message has no knowledge about the receiving nodes and if
the messages are processed by the receivers.

A second way of communication between nodes are services. Services are
used for synchronous communication, where a request is sent to another
node and a response is sent back after the request is processed. The structure
of the request and the response are also described through the IDL. The
actionlib package enables a third way of communication. Using messages
the functionality of services is implemented, with the additional possibility
for feedback during the execution. This is especially useful during long-
lasting tasks.

4.2 move base

The move base package [35] is the most important part of the ROS navigation
stack and is used for path planning, both for local planning and global
planning, and their execution. The move base package receives goal poses as
input and calculates velocity commands for the robot to reach the goal. In
Figure 4.1 an overview over the move base package architecture is given.

The modular architecture is beneficial as each component can be chosen
separately to fit the robot and the task. The planning problem is split into
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Figure 4.1: move base architecture (source: http://wiki.ros.org/move_base)

two parts, the global planning and the local planning. The global planner

receives the goal pose and plans a path from the current robot location to
the goal. For the generation of valid paths a costmap of the environment is
necessary. A costmap is a grid map, where each cell contains information
about how much the planner should avoid the cell. Cells containing obstacles
have very high costs and the cost decreases with increasing distance to
an obstacle. The costmap used by the global planner is usually based
on a map of the environment and additional information from sensors.
The local planner receives the path generated by the global planner and
generates velocity commands to follow this path. To avoid collisions the
local planner has a costmap of the local neighborhood which is generated
from incoming sensor data. If either the global planner fails to generate a
valid path or the local planner fails to generate valid velocity commands,
recovery behaviors are executed. These involve the clearance of the costmaps
and, if possible, in-place rotations. If the recovery behaviors do not solve
the problem, the navigation is aborted.

4.3 GMapping

GMapping [22] is an open-source library implementing two dimensional
simultaneous localization and mapping (SLAM). The sensor data used by
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GMapping are range measurements from a light detection and ranging
sensor (LIDAR) and odometry data.

SLAM is a difficult problem because for the creation of a map the pose
of the robot is necessary and for accurate localization a map is necessary.
GMapping implements a Rao-Blackwellized particle filter [23] to solve
this chicken-and-egg problem. The SLAM problem is split into two parts,
the estimation of the trajectory and the mapping given the trajectory. The
probability distribution over the trajectories is represented by a particle filter.
Each particle in the particle filter has a weight and its own map which is
created by occupancy grid mapping with known pose.

The particle filter algorithm consists of three steps, sampling, importance
weighting and resampling. In the sampling step the poses of the particles
are updated by a movement step sampled from a proposal distribution.
This proposal distribution is based on the odometry data and in more
sophisticated systems further sensor data. In the importance weighting
step a weight is assigned to each particle representing the likelihood that
the particle represents the true trajectory. In the resampling step particles
with low weight are replaced by particles with a higher weight. This step is
needed as a continuous distribution is approximated by only a finite number
of particles. After the resampling the maps of the particles are updated
using the particle pose and the range measurements from the LIDAR.

The problem of this approach is the high computational cost when using a
large number of particles, which is usually needed for a good representation
of the distribution over the trajectories. Therefore, GMapping also takes the
range measurements into account in the sampling step. This way unlikely
particle poses can be ruled out immediately and a much lower particle num-
ber is sufficient. GMapping also uses a sophisticated resampling technique
which only does resampling if necessary. This reduces the probability of
discarding good particles, which is especially important for low particle
numbers.
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5.1 Overview

A number of fundamental design decision had to be made in the early
stages of the development of this active object search system. The main
questions were:

• what commonsense knowledge can be used to execute the object
search intelligently

• what information the robot should gather and what sensors are needed
for that

• how the gathered knowledge about the environment should be repre-
sented

• how the search planning, using this knowledge, should be done

Indoor environments can be segmented into rooms and room areas which
serve specific purposes, e.g. a kitchen is used for cooking. Therefore, the
objects located in an area correlate with the type of the area. This connection
is used in this work to make the search intelligent and therefore more
efficient. Furthermore, knowledge to recognize objects of the searched type
and to classify areas into room types is needed. Neural networks, trained
on thousands of images, are used, which represents this knowledge in their
learned weights.

An RGBD-camera is used to gather the input images for the neural networks.
The additional depth information is helpful to estimate the positions of
the detected objects in space. This would be difficult otherwise. The depth
measurements are also necessary for 3D obstacle detection and mapping.
The camera is mounted on the robot on a fixed location to keep the setup
simple. Therefore, the camera pose can only be change by the movement of
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Figure 5.1: Example of a topological map with 5 rooms and 4 doorways

the robot in the plane. As the depth data from the RGBD-camera is not very
accurate, a light detection and ranging sensor (LIDAR) is also mounted on
the robot. Together with the odometry data from the robot it is used for
2D simultaneous localization and mapping (SLAM). Finally, the robot is
equipped with a second RGBD-camera which is used for the detection of
doorways. The robot setup is depicted in Figure 5.4.

A hybrid map is used to represent the environment. In this hybrid map
each room has its own semantic metric map. These semantic maps contain,
in addition to the standard occupancy information for navigation, infor-
mation about object locations and the room type of areas within the room.
Furthermore, locations of detected doorways are inserted into the map. The
information in the semantic map and commonsense knowledge are com-
bined to estimate likely object locations within the room which is then used
to find objects faster. On the other hand a topological map is created with
a node for every discovered room. These nodes contain references to the
corresponding semantic room maps and also additional data generated from
those maps. This additional data consists of the probability of a searched
object being in a room, an estimation of the time needed to fully search a
room, the expected time spent searching in a room, and an estimation for
the time needed to leave or traverse a room. The nodes are linked by edges
which correspond to the doorways connecting two rooms. Figure 5.1 shows
an example of such a topological map.
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The objective of the search planning is to minimize the expected search
time. The complexity of the problem makes finding the optimal next view
pose infeasible since it contains the traveling salesman problem [4] and the
set cover problem [3] [2]. Therefore, a heuristic is needed. In this thesis
the planning problem is split into two abstraction levels. The high-level
planner selects the optimal next room to search based on the topological
map and also generates high-level tasks, like move through a doorway,
explore a room or search a room. Based on the pending high-level tasks the
low-level planner generates the best next goal pose for the robot using a
greedy strategy. Figure 5.2 shows a flowchart depicting the general planning
procedure. This planner design fits perfectly to the hybrid map as the high-
level planner does its planning only on the topological map, while the
low-level planner operates only on the metric map of the current room.

Figure 5.3 gives an overview over the structure of this intelligent active
object search system, showing the main components of the system and also
the most important data exchanged by these components.

5.2 Hardware

The robot used in this master’s thesis is a modified version of the Turtlebot
2 and is shown in Figure 5.4. The Yujin Kobuki base of the Turtlebot is
a differential drive base with an odometry amended by a gyroscope. The
maximum translational velocity of this base is 0.7 m/s and the maximum ro-
tational velocity is 180 °/s, though the full speed is not used. The maximum
payload is 5 kg, which is about the weight of the notebook, the sensors and
the construction.

For accurate localization and 2D mapping a Hokuyo URG-04LX LIDAR
is mounted on the base at a height of about 15 cm. The specified range is
from 0.02 m to 4 m with an accuracy of ±10 mm and the angular range is
from -120° to 120° with a resolution of 0.36°. The LIDAR scans at a rate of
10 Hz.

The main camera for object detection, place classification and 3D mapping
is an ASUS Xtion PRO LIVE RGBD-camera mounted at a height of about
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Figure 5.2: Flowchart of the planning procedure
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1m facing slightly downwards. The camera takes color images and depth
images at a rate of 30 Hz with a resolution of 640x480. The field of view is
58° horizontally and 45° vertically. With the orientation of the camera on
the robot the visible area is from -29° to 29° horizontally and from -30° to
15° vertically. The range of the depth measurements is specified with 0.8 m
to 3.5 m, though experiments showed a minimum range of about 0.55 m.
A second ASUS Xtion PRO LIVE camera, used for doorway detection, is
mounted looking upwards.

An ASUS notebook is mounted on the robot running the complete software.
It is equipped with a 7th generation Intel i7 quadcore CPU working at
2.8 GHz, 16 GB DDR4 RAM and an NVidia Geforce GTX 1050 Ti Mobile GPU
with 4 GB memory. Those components are up to date and quiet powerful
for a notebook. However, high-end hardware, especially state-of-the-art
desktop GPUs, are much more powerful. The lack in computational power
was needed to be taken into account in the design of this active object search
system.
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5.3 Commonsense Knowledge

An inevitable prerequisite for intelligent behavior is knowledge. A learning
system is out of the scope of this thesis because of the huge amount of
time it takes a robot to learn enough about indoor environments to make
reasonable decisions. Therefore, the knowledge useful for the robot has to be
chosen and prepared. In this work commonsense knowledge about indoor
environments, rooms, and objects is important. Some knowledge, like the
concept of a room, is implicitly used through the design of the system.
Other knowledge, like the visual appearance of objects and room types is
encoded in the weights of the CNNs which are trained on thousands of
labeled images. Many already trained CNNs are available and ready to
use.

Additionally the robot is equipped with knowledge about the correlation
between the type of a room area and the objects located in this area. One
application of this knowledge is the estimation of object probabilities in
unexplored areas of a room. Based on the room types in already explored
areas of a room the room type of the unexplored areas can be estimated and
in further consequence also the object probabilities. Therefore, it is possible
to make a reasonable estimate about the probability of the searched object
being in a room after just peeking into the room. The second application is
to find likely object locations based on the room type of an area. The room
type of areas in the room can be determined quickly but many objects are
only detected when taking a closer look. Knowing in what type of area the
object we are searching for is more likely helps to find the object faster.

Only correlations between the detectable object classes and detectable room
types are important. These are the classes the neural networks are trained
for. With NR room types and NO object classes this results in a NRxNO
matrix KB, where the element KBr,o represents the probability of an object
of type o being in a room of type r.

The idea is to use the information from image datasets created for computer
vision challenges. The dataset the object detector was trained on consists of
thousands of images with annotations specifying the objects visible in the
images. To get also the place categories of the images the place classification
CNN proposed by Wang et al. [36] was run on all images of the dataset and
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the probability distribution over all place classes was stored for every image.
With this information the matrix elements were calculated with

KBr,o =
∑
|Images|
i=1 Pi(r)Pi(o)

∑
|Images|
i=1 Pi(r)

(5.1)

where Pi(r) is the probability of the image i showing a place r, which is the
result of the place classification CNN, and

Pi(o) =

{
1 i f object in image
0 else

(5.2)

This approach is more promising than other approaches, like the estimation
based on the number of search results in image search engines proposed
by Hanheide et al. [37]. One reason is that the images in computer vision
challenge datasets are intended to be representative for the world. In contrast
some uncommon scenes are highly overrepresented on the Internet, like the
duck in the bath tube. A second benefit is that the names of objects and
room types are not used in the proposed method, but only the concepts
learned by the CNNs. This avoids problems with ambiguous terms like
mouse, which can describe an animal or an electronic device, and not clearly
defined terms like most room types.

With this approach the meaning of the matrix KB is slightly different. The
matrix element KBr,o is now the probability of an object of type o being in
an image taken in a room of type r. So the size of the space usually seen
in an image in the dataset has to be taken into consideration, as images
covering more space are more likely to contain an object. On the other hand
the size of the region of interest has also to be considered because smaller
areas have lower object probabilities. This is described in more detail in
Section 5.5.5.

5.4 Visual Data Extraction

This section describes the extraction of the information from the input
images needed in later stages of the system. It covers the object detection,
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the room type classification, and the doorway detection.

5.4.1 Object Detection

The object detection uses the images taken from the main RGBD-camera to
find objects visible in the images and also estimates their positions in space.
The most common way at the moment is to use a visual object detection.
Visual features of objects are very descriptive, a lot of research was already
done in this field and huge datasets containing labeled images are available
for the training of the proposed object detectors. This resulted in the decision
to use an object detector working on 2D images and then projecting the
object detections into 3D space using the depth image.

Convolutional Neural Networks (CNNs) are the best performing systems
for visual object detection at the moment. The quality of the dataset used
to train a CNN is very important for the performance of a CNN and the
object types the CNN can detect are dependent on the objects labeled in the
dataset. In this thesis a CNN trained on the COCO dataset is used because
it provides a sufficient number of object types without being too specific. In
Table 5.1 a list of the object types in the COCO-dataset is shown. The dataset
also contains enough images, so there is enough variation in the objects to
achieve a good generality. The drawback is that objects are not labeled per
pixel, but only bounding boxes are given. Therefore, the detected objects
are also only represented by bounding boxes, which is neither an accurate
representation nor ideal for further processing. As no suitable dataset with
objects labeled per pixel is available, the object detection and the later stages
of the system have to cope with this problem.

The result of such an object detection CNN is a set of bounding boxes.
Each bounding box, specified by location in the image and size, has also
probability values for each detectable object class attached. In Figure 5.5
a typical result of the object detection is shown. In this image only the
most likely detections are displayed. As one can see the result is far from
perfect, even with state-of-the-art object detection CNNs. Many objects
are not detected or have a low confidence. Another problem visible in the
image is the possibility of overlapping bounding boxes. These problems
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Table 5.1: Detectable object classes grouped in categories, crossed out classes are ignored
in this thesis

categories classes
person person
accessory backpack, umbrella, handbag, tie, suitcase
animal bird, cat, dog, horse, sheep, cow, elephant, bear,

zebra, giraffe
vehicle bicycle, car, motorbike, aeroplane, bus, train, truck,

boat
outdoor objects traffic light, fire hydrant, stop sign, parking meter,

bench
sports frisbee, skis, snowboard, sports ball, kite,

baseball bat, baseball glove, skateboard, surfboard,
tennis racket

kitchenware bottle, wine glass, cup, fork, knife, spoon, bowl
food banana, apple, sandwich, orange, broccoli, carrot,

hot dog, pizza, donut, cake
furniture chair, sofa, potted plant, bed, dining table, toilet
appliance microwave, oven, toaster, sink, refrigerator
electronics monitor, laptop, mouse, remote, keyboard, cell phone
indoor objects book, clock, vase, scissors, teddy bear, hair drier,

toothbrush

26



5.4 Visual Data Extraction

have to be taken into account in the design of the object mapping system, as
the accumulation of information from multiple images is needed for more
reliable results.

Figure 5.5: A typical result of the object detection and the room type classification; detec-
tions with a probability greater than 0.1 are shown with bounding box, most
likely class and its probability; in the upper left corner of the image the top
classifications of the room type classifier and their probabilities are shown

Alongside with the color image the RGBD-camera takes also an depth
image which contains depth measurements for every pixel. Due to technical
limitations the depth of some pixels cannot be measured. Combining the
position of the pixel, the depth value and the intrinsic camera parameters
the position of the pixel in space can be calculated. Projecting a bounding
box into 3D space on the other hand is not meaningful as neighboring pixels
in the image are not necessarily nearby in 3D. The approximate location of
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(a) RGB-image (b) point cloud containing
all pixels with valid
depth values

(c) sampled point cloud

Figure 5.6: Example image with corresponding point cloud and sampled point cloud; the
points in the sampled could are depicted larger for better visibility

a detected object can be estimated using the median depth in the bounding
box. However, the extend of an object is difficult to estimate. Therefore, a
sample-based approach is used. A sufficient number of pixels with valid
depth values is drawn randomly from the image. This is illustrated in
Figure 5.6. Each of those samples holds an object probability for every
object class. The problem is that bounding boxes also contain pixels not
belonging to the object and pixels can be within multiple bounding boxes.
A per-pixel segmentation of the detected objects is an option to solve this
problem, but the segmentation is costly for a large number of detections
and wrong segmentations are possible, especially with small or complex
objects, overlapping bounding boxes and occlusion. Therefore, following a
simple approach, the maximum object probability of all bounding boxes
overlapping a pixel is used. The idea behind this is the assumption that all
bounding boxes with lower probabilities are just accidentally overlapping.
The unreliability of this approach is then taken into account in the inverse
sensor model of the object mapping.

Ultimately, the result of the object detection is a set of 3D points, each
one holding probabilities for every detectable object type. Furthermore,
the result contains the object type and the estimated 3D location of very
confident object detections.
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Table 5.2: indoor room categories
art gallery cafeteria game room music studio
art studio candy store gift shop nursery
assembly line classroom home office office
attic closet hospital room pantry
auditorium clothe store hotel room parlor
bakery coffee shop ice cream parlor reception
ballroom conference center jail cell restaurant
banquette hall conference room kindergarden restaurant kitchen
bar corridor kitchen shoe shop
basement dinette kitchenette shower
beauty salon dining room laundromat staircase
bedroom dorm room livingroom supermarket
bookstore engine room lobby television studio
bowling alley food court locker room veranda
butcher shop galley martial arts gym waiting room

5.4.2 Room Type Classification

In this thesis room type classification is done base on images. Visual features
are very expressive for room type classification and also image datasets
containing lots of labeled images exist. One of those is the MIT Places-
205 dataset. It contains about 2.5 million images assigned to 205 place
categories and CNNs trained on this dataset are publicly available. 60
of those categories are relevant as the other categories are outdoor place
categories. These indoor place categories, which are room types and types
of areas in rooms, are listed in Table 5.2. The result of a CNN trained
on the Places-205 dataset is a probability distribution over the 205 place
categories. The irrelevant outdoor categories are then ignored by setting
their probabilities to zero. The remaining probabilities are normalized to
1.0, resulting in a probability distribution over the 60 indoor categories for
the room type seen in the input image.
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5.4.3 Doorway Detection

The detection of doorways is important for the segmentation of the environ-
ment into rooms. In this thesis doorways are detected based on the typical
height and shape of the top part of the door frame. Doorways are usually
2 meters high and at this height few objects can be found. Therefore, the
detection is very reliable using the depth images of an upward looking
RGBD-camera. A passable doorway is detected if

• there is a rectangular surface at about 2 meters height
• this surface has a typical width and depth for a door frame
• the area beside the door is occupied, as there has to be a wall
• the area in front of and behind the door is free of obstacles, so the

robot can drive through

Using the depth image of the upward looking RGBD-camera, an image of
the projections onto the ground plane of surfaces at about 2 meters height
is created. This image is filtered and rectangles in the filtered image are
extracted. Rectangles that have no typical size for a door frame are then
discarded and the others are possible doorways. The range measurements
from the LIDAR are then used to check if the area within, in front and
behind a possible doorway is free and if the area beside the doorway is
occupied. If this is the case, a doorway is found. The position of the detected
doorway is set to the center of the rectangle and the orientation is set parallel
to the smaller axis of the rectangle. To be unambiguous the doorway has to
face in positive x-direction. This results in detected doorways always facing
out of the room. In Figure 5.7 this procedure is illustrated.

5.5 Mapping

This section describes the mapping concept used in this thesis. The mapping
fuses the data gathered by the sensors and the results of the visual data
extraction into a semantic map. In addition to the information about drivable
space and obstacles needed for navigation, the semantic map also contains
information about rooms, room types, and objects to enable an intelligent
search planning.
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Figure 5.7: A successfully detected doorway marked by the purple arrow in the coordinate
frame of the robot; black dots are the projections onto the ground plane of
points at about 2 meters height detected by the RGBD-camera; the yellow points
are range measurements from the LIDAR; the detected door frame is marked
with the blue rectangle; the red rectangles are the area within the door frame
and the area on both sides of the doorway and the green rectangle contains the
area beside the doorway; those rectangles depend on the size of the doorway
and size parameters, which are described in more detail in Section 6.3.
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The first main idea in the mapping design used in this work is to use a
hybrid map. The chosen hybrid map design combines two paradigms, grid-
based and topological. Grid-based maps are accurate metric maps optimized
for navigation. However, with increasing size grid-based maps are difficult
to be kept consistent and the efficiency goes down, especially for movement
planning. Topological maps on the other hand are more difficult to use for
local navigation, but scale very well. A hybrid map can combine the benefits
of both map types. Indoor environments are very suitable for such a hybrid
map. On a higher level an indoor environment can be represented by a
topology of rooms and every room can then be described separately in more
detail using a grid-based map. Therefore, this approach was used in this
thesis. Every discovered room is represented by its own grid-based metric
map, not only containing occupancy information but also information about
the types of areas in the room and object locations. Each room is also a
node in the high-level topological map, capturing the room structure of the
environment. Another benefit of this design is the possibility to split the
search problem into two abstraction levels, which will be described later in
this chapter.

The second main idea is to use a 2D simultaneous localization and mapping
(SLAM) system based on a Rao-Blackwellized particle filter [23]. SLAM is a
difficult problem as the quality of the map depends on the quality of the
localization and vice versa. This leads to uncertainty in the map, the current
pose, and also the path taken during mapping. This uncertainty has to be
taken into account when information is added to the map. The easiest way
to do this is probably using a SLAM systems based on a Rao-Blackwellized
particle filter. In this approach the uncertainty about the path is represented
by particles and their weights. The particle itself represents no uncertainty.
For every particle a map is created with known pose. In 2D SLAM this is
only a 2D occupancy map, but further information can also be mapped
the same way and because the mapping is done with known pose, this
additional information is consistent with the 2D map. The drawback of this
approach is that every particle needs its own set of maps, making it only
feasible for low particle numbers. To overcome this drawback sophisticated
sampling techniques, like the one used in GMapping [22], can be used,
which allow to create high-quality maps even with low particle numbers. 2D
SLAM is preferable to 3D SLAM as tests using 3D SLAM systems showed
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mediocre results, probably because of the inaccuracy and unreliability of
the depth measurements from the RGBD-camera.

The map representation consists of a topological map with a node for every
room and an edge for every doorway connecting two rooms. Each room
has a set of maps, called semantic room map, where each map contains
different information. These are:

• Two 2D occupancy grid maps: One is created by the SLAM system
based on the range measurements of the LIDAR and used for lo-
calization. The second one is based on the first 2D map, but also
represents the projections onto the ground of the obstacles detected
by 3D mapping and is used for navigation, exploration and in-room
search planning.

• A 3D occupancy grid map: This map is created using the RGBD-
camera. It is used in the creation of the 2D occupancy grid map for
navigation and also in the calculation of likely object locations.

• A Room-Type-Map: This is a 2D grid map, where every grid cell
contains a probability distribution over all detectable room types. It is
created using the results of the room type classification.

• An Object-Map for every detectable object class: These are 61 3D grid
maps containing the probability of an object of the corresponding type
being seen in a grid cell given the cell is occupied. These maps are
created based on the results of the object detection.

• An Object-Probability-Map: This is a 3D grid map containing the
probability of the currently searched object being in a grid cell. This
map is only created for the searched object type. It is created from
the information in the other maps and the commonsense knowledge
which is described in more detail in Section 5.5.5.

Furthermore, the semantic room map contains estimated locations of de-
tected doorways. In further stages of the system the maps of the currently
best particle are used.

In the following subsections the individual parts of the mapping system
are presented in more detail. The generation of the high-level attributes of
the room, like the total object probability and the expected search time, is
described at the end of this section.
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5.5.1 3D Mapping and Creation of the 2D Map for
Navigation

3D mapping is done using the OctoMap library [38] which does 3D mapping
with known pose using an Octree representation for the map. Each node
in the Octree represents a cube in space and contains a probability value
for being occupied. These probabilities are later used in the creation of the
Object-Probability-Map. As some obstacles, like tables, are not sufficiently
detectable by the LIDAR, the information in the 3D map is also necessary
for safe navigation. To avoid the more complex path planning in 3D this
additional information about obstacles is inserted into a second 2D map
which is then used for navigation. Therefore, all nodes in the Octomap with
an occupancy probability higher than a threshold and a z-coordinate smaller
than the robots height are projected into the 2D map. This is illustrated in
Figure 5.8.

Figure 5.8: A snippet of a room showing a table and chairs, which are insufficiently detected
by the LIDAR: 3D map (teal) and 2D map are shown; the light area is free, the
black cells are obstacles in the 2D map and the dark gray cells are set occupied
by the down-projection procedure
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5.5.2 Object-Map Creation

This section covers the creation of the Object-Map which contains informa-
tion about the positions of the objects seen by the robot. The object detection
can detect lots of objects in an image, especially in cluttered indoor en-
vironments. Those detections are often not reliable and the location and
especially the extent of detected objects is inaccurate. Moreover, an object
tracking approach is not very promising. Therefore, a grid map representa-
tion containing object probabilities was chosen. This approach can handle
uncertainty much better and the number of detected objects has no impact
on the performance.

For every detectable object class an independent 3D grid map is created.
Every cell in this grid map holds the probability of containing an object
of the corresponding type given it is occupied. Mapping this conditional
probability is beneficial, as the result of the object detection are sample
points which lie on object surfaces and therefore in occupied cells, assuming
the depth measurements are accurate. The unconditional probability can
be calculated using the 3D occupancy map. With this approach the costly
ray-tracing which is necessary to find the cells to be marked as free, has
only to be done in the 3D mapping.

Some assumptions were made to make this approach feasible. The inde-
pendence of the grid cells and a static map are assumed. Furthermore, the
assumption is made that the process follows a hidden Markov model. These
are assumptions frequently made for similar problems, like occupancy grid
mapping [24]. Another assumption is the independence of different object
types. This assumption implies that multiple objects can be located in a grid
cell. This is reasonable if the resolution of the grid is not very high. This is
the case in our application.

Using those assumptions and Bayes’ theorem the formula for the update of
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a cell is derived:

P(Oo
c |I1:t, x1:t, occc) =
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=
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=
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(5.3)

P(Oo
c |I1:t, x1:t, occc) is the probability of cell c containing an object of type o

given the RGBD-images I1:t, the poses these images were taken at x1:t and be-
ing occupied. P(Oo

c |It, xt, occc) is the inverse sensor model,
P(Oo

c |I1:t−1, x1:t−1, occc) is the recursive term and P(Oo
c |occc) is the prior.

Z is a normalization term, which can also be calculated by:

Z =
P(Oo

c |It, xt, occc)P(Oo
c |I1:t−1, x1:t−1, occc)

P(Oo
c |occc)

+

P(¬Oo
c |It, xt, occc)P(¬Oo

c |I1:t−1, x1:t−1, occc)

P(¬OOT
occ,c|occc)

(5.4)

as the sum of P(Oo
c |I1:t, x1:t, occc) and P(¬Oo

c |I1:t, x1:t, occc) has to be 1.0.

In this problem the prior cannot be set to 0.5 as an occupied cell usually
does not contain an object of a certain object type. Furthermore, a low prior
probability is necessary for many very uncertain object detections, resulting
in a high object probability, which is an intended behavior. The value of the
prior had to be estimated empirically.

Finding a suitable inverse sensor model is a difficult task. It has to cope
with the uncertain results of the object detection and also the possibility
that other objects are within the cell has to be taken into account.
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The chosen inverse sensor model is

P(Oo
c |It, xt, occc) =

{
maxs∈Sc

t
VhitP(Oo

s |It) + Vmiss(1− P(Oo
s |It)) |Sc

t | > 0
P(Oo

c |occc) |Sc
t | = 0

(5.5)
with P(Oo

s |It) being the probability for object type o of sample s given the
image It. Sc

t is the set of samples which are the result of the object detection
on image It, falling into cell c. Vhit and Vmiss are scalar parameters modeling
the probabilities for false positives and false negatives.

In words, the inverse sensor model is the highest probability for an object
type of all samples falling into a cell with the integration application of
uncertainty. The assumption behind this approach is that the sample with
the highest probability is on the object, the other samples are on other
objects in the cell.

The problem of pixels in a bounding box not belonging to the object is not
explicitly handled by this approach. Suitable values for the parameters Vhit
and Vmiss and the integration of information from images taken at different
poses should cope with this problem.

The final probability of an object of type o being seen in a cell can be
calculated with:

P(Oo
c |It, xt) = P(Oo

c |It, xt, occc)P(occc|It, xt) (5.6)

P(occc|It, xt) is the probability of the cell being occupied, which is stored in
the 3D map. If the cell is not occupied no object can be within the cell.

5.5.3 Room-Type-Map Creation

Assigning a single room type to a whole room is not sufficient for many
rooms. On the one hand it is quiet common that different types of rooms,
like a kitchen and a living room, are only partially or not at all separated by
walls. On the other hand more accurate classes can often be found for areas
in a room, like a pantry-like area in a kitchen. Therefore, a Room-Type-Map
is created for every room, which is a 2D grid map where each grid cell has
its own probability distribution over the detectable room types.
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The mapping procedure is similar to the creation of the Object-Map and
also assumes independent grid cells. Another assumption is that a cell is
entirely of one type. The formula of the probability update is:

P(Rc|I1:t, x1:t) =

P(Rc|It, xt)P(It|xt)P(Rc|I1:t−1, x1:t−1)

P(Rc)P(It|I1:t−1, x1:t)
=

1
Z

P(Rc|It, xt)P(Rc|I1:t−1, x1:t−1)

P(Rc)
(5.7)

P(Rc|I1:t, x1:t) is the probability distribution over the detectable room types
of cell c given the RGBD-images I1:t and the poses these images were taken
at x1:t. P(Rc|It, xt) is the inverse sensor model, P(Rc|I1:t−1, x1:t−1) is the
recursive term and P(Rc) is the prior. Presuming no prior knowledge the
prior P(Rc) is set to 1

|R| , with |R| being the number of detectable room types.
Z is a normalization term which can also be calculated with

Z = ∑
Rc

P(Rc|It, xt)P(Rc|I1:t−1, x1:t−1)

P(Rc)
(5.8)

as the probabilities have to sum to 1.0.

The inverse sensor model P(Rc|It, xt) uses the result of the room type
classification for the image It, P(RIt |It). Also the visibility of the cells has to
be taken into account. A simple approach is used, assuming all cells with a
cell center within the view cone of the camera and within a certain range,
are visible and receive the same update. This is illustrated in Figure 5.9.
A more complex mode is not used for two reasons. One reason is that no
reasonable estimation can be made how much a visible area contributed
to the classification result. The other one is that most of the cells wrongly
updated using the simple model lie behind walls. The area behind a wall is
usually outside of the room and therefore ignored anyway in later stages of
the system. Most other obstacles, like tables, only partially block the view,
so the area behind those obstacles is assumed to be sufficiently visible.

The inverse sensor model also models the uncertainty of the classification
result and the possibility of an image showing areas with different room
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Figure 5.9: The cells updated in the Room-Type-Map using the image taken at the robot
position marked with the arrow, light gray cells are later ignored for being
behind a wall and outside the room

types. The connection between classification result and room type prob-
ability of the cell based on the classified image is given by the following
formula:

P(Rc|It, xt) =

{
∑RIt

P(RIt |It) P(Rc|RIt) i f cell c visible

P(Rc) else
(5.9)

P(Rc|RIt) is the probability of the room type of a cell c given the room type
mainly shown in the image RIt . This conditional probability is important
because one probability distribution is calculated for the whole image. The
combinations form a |R|x|R|matrix. The diagonal elements, where Rc = RIt ,
are set to a parameter Veq. Instead of presuming no prior knowledge and
making all other values equal, prior knowledge is gathered to get better
mapping results. The off-diagonal elements are weighted based on how
related the two room types are. How much two room types are related
is estimated using Divisi21, a library for extraction of information from
commonsense databases, and the ConceptNet4 commonsense knowledge
base.

1https://github.com/commonsense/divisi2
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5.5.4 Doorway Mapping

The doorway mapping inserts and updates the poses of doorways in the
semantic room map, using the result of the doorway detection. The result of
the doorway detection is a set of doorway proposal poses in the coordinate
frame of the robot. These proposal poses are transformed into the map
frames of the particles and a data association problem has to be solved. If
no already found doorway is within a threshold distance to a proposal pose,
a new doorway is added into the map. Otherwise the best fitting doorway,
selected based on distance and orientation, is updated. This is shown in
Figure 5.10. A running average filter is used to estimate the true doorway
pose. Due to the orientation constraint of doorway detections, doorways are
always facing out of the room.

Figure 5.10: Doorway mapping example: The red arrow is the current robot pose, the green
arrows are already found doorways, the yellow arrow is the result of the door
detection which is used to update the pose of the nearby doorway and the
blue circle marks the area which had to be free of doorways for a doorway to
be added

40



5.5 Mapping

5.5.5 Object-Probability-Map Estimation

This subsection describes how all the information stored in the semantic
room map is put together to get a 3D grid map containing the probabilities
of an object of the searched type being in a grid cell. In a first step the room
types in areas which were seen by the LIDAR, but not by the RGBD-camera,
are estimated. Then the object probabilities based on the Room-Type-Map
and the commonsense knowledge are calculated and in a last step these
are fused with the information in the Object-Map to obtain the Object-
Probability-Map. The Object-Probability-Map contains no information not
already present in another map. Therefore, this map is only created when
requested and only for the searched object type.

Estimation of room types in areas seen by the LIDAR, but not by the
camera

The LIDAR has a field of view of 240°, while the RGBD-camera has a
horizontal field of view of only 58°. Therefore, it is possible that areas
were seen by the LIDAR, but not by the RGBD-camera. An example is
shown in Figure 5.11. Those cells are considered as possible object locations
and are therefore of interest. Cells neither seen by the camera nor the
LIDAR are ignored, as they are most likely outside the room. The room type
distributions in the areas only seen by the LIDAR are estimated based on the
average room type distribution Pavg(R|I1:t, x1:t) in the room and the room
type distribution of the neighborhood. The average room type distribution
is calculated with:

Pavg(R|I1:t, x1:t) =
1

|Cseen| ∑
c∈Cseen

P(Rc|I1:t, x1:t) (5.10)

Cseen is the set of cells in the Room-Type-Map which were at least once
updated. The room type distributions in cells only seen by the LIDAR are
estimated using a two dimensional Gaussian kernel G(∆x, ∆y), as can be
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Figure 5.11: An explored room; blueish areas were seen by the LIDAR, but not by the
camera; dark blue cells are occupied, light blue cells are free

seen in the following formula:

P(Rc|I1:t, x1:t) = ∑
c2

{
G(∆x, ∆y)P(Rc2 |I1:t, x1:t) i f c2 was seen by camera
G(∆x, ∆y)Pavg(R|I1:t, x1:t) else

(5.11)

Object probabilities based on the Room-Type-Map

As described in Section 5.3 there exists a correlation between the room type
of an area and the objects located in this area. This correlation is captured
in the matrix KB which contains the probability of an object o being in an
image showing room type r. In a first step another matrix KB∗r,o has to be
calculated, which contains the probability of an object of type o being in a
grid cell of room type r. Assuming an object does not occupy multiple cells
and Nv cells being visible in an typical image of the dataset, the following
formula is derived:

KB∗r,o = 1− (1− KBr,o)
1

Nv (5.12)
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The probability of an object of the searched object type being in a cell based
on the probability distribution of the room type of the cell P(Oo

R,c|I1:t, x1:t)
can be calculated with:

P(Oo
R,c|I1:t, x1:t) = ∑

Rc

P(Rc|I1:t, x1:t)P(Oo
R,c|Rc) = ∑

Rc

P(Rc|I1:t, x1:t)KB∗Rc,o

(5.13)

This calculation uses the assumption that the room type is independent of
the z-coordinate of a cell, so the 2D Room-Type-Map is sufficient.

Object probabilities based on all information

In a last step the information in the Object-Map is combined with the object
probabilities estimated based on the Room-Type-Map. This is done using
the following formula:

P(Objo
c |I1:t, x1:t) =

1
Z

P(Oo
R,c|I1:t, x1:t)P(Oo

c |I1:t, x1:t) (5.14)

Z is a normalization term, as P(Objo
c |I1:t, x1:t) + P(¬Objo

c |I1:t, x1:t) = 1 and
can be calculated with:

Z = P(Oo
R,c|I1:t, x1:t)P(Oo

c |I1:t, x1:t) + P(¬Oo
R,c|I1:t, x1:t)P(¬Oo

c |I1:t, x1:t)
(5.15)

Some post-processing is done on the Object-Probability-Map. The probabili-
ties of cells assumed to be outside the room are set to zero. These cells are
in areas never seen by the RGBD-camera or the LIDAR, or in areas behind
doorways. Probabilities in free space are set to zero because if there would
be an object, the robot would not be able to drive there and also probabilities
of cells near the ground are set to zero because the ground is ignored in the
3D map. For every other cell a minimum probability is set which is half the
value of the room type based probability.
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5.5.6 Topological Mapping and Room Transitioning

The topological map consists of nodes for every room which contain the
semantic room maps and condensed information for the high-level planning
based on the semantic room maps. It also contains edges, where each
edge corresponds to a doorway and holds information about which rooms
are connected and the pose of the connecting doorway in both rooms.
The topological mapping is responsible for the creation of this topological
structure, including the initialization of new room maps, the localization in
the topological map and the handling of room transitions.

When a new doorway is found a new node is inserted into the graph with
an edge connecting the node of the current room and the new node. An
empty semantic room map is assigned to the new node. In this map the
newly detected doorway is inserted to have a valid connection between
the two rooms with corresponding doorway poses in both room maps. In
this work environments are assumed to have no loops. Therefore, the room
behind a newly found doorway cannot be already discovered. Without this
assumption complicated loop closure would be necessary.

When a doorway is passed the semantic room map of the new room has to
be activate and the old one deactivated. A doorway is passed if the robot
is more than a threshold distance through the doorway. The threshold is
marked with a blue line in the left image in Figure 5.12. It is important to
achieve a hysteresis and avoid unstable behavior at the doorway. In a first
step the mapping in the old room is stopped. Then the mapping in the new
room is set up. If the room was never visited before, a new particle filter
is created with the specified number of particles and empty maps for all
particles. Otherwise the best particle, including its maps, is duplicated to
have the specified number of particles for the mapping. In a next step the
poses of the new room’s particles are set to the pose of the best particle of
the old room. This is sufficient as within a doorway the localization is very
accurate. The pose has to be transformed into the new room’s coordinate
frame with

Pnew = PDnew Tf lipP−1
Dold

Pold (5.16)

Pold is the particle pose in the old room’s coordinate frame and Pnew is the
particle pose in the new room’s coordinate frame. PDold and PDnew are the

44



5.5 Mapping

poses of the doorway in the old and new room and Tf lip is a 180° rotation
matrix. The rotation is necessary as the doorway poses have an opposite
orientation. After that all particles except the best one in the old rooms
particle filter are discarded, as those particles are not meaningful when
the robot returns to the room. In the last step the mapping in the new
room is started. Figure 5.12 shows the map before and after a doorway
passing. The maps contain also space in the other room. This is necessary
for safe navigation through the doorway. However, space behind doorways
is ignored in the Object-Probability-Map and in the search planning.

(a) Room before doorway passing (b) Room after doorway passing

Figure 5.12: Doorway passing; red arrow is the robot pose, green arrow is the doorway
pose and the blue line marks where the map switch is triggered

5.5.7 High-Level Room Information Generation

The information in the semantic room maps has to be condensed into a
compact form containing only the information necessary for the high-level
planning. These high-level attributes of a room are

• the total probability of an object of the searched object type being in
the room

• the time needed to completely search the room
• the expected value of the time the robot searches in the room until an

object of searched type is found or the room is completely searched
• the time to traverse the room for all doorway pairs
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• the time to leave the room for all doorways

The time necessary for exploration is ignored, as the exploration is difficult
to model. On the one hand it takes time, but on the other hand some objects
might be found during the process and information about other rooms
and likely object locations is gathered. Therefore, ignoring the time for
exploration seems to be a reasonable idea. Another used idea concerning
exploration is setting the high-level attributes of unvisited rooms to very
optimistic values. This is done to encourage the robot to peek into rooms.
Peeking into a room is a desirable behavior as it takes relatively little time
and gives the robot much more information about the environment.

Total object probability in a room r Pr(o)

A searched object being in a room is the complementary event of no cell
within the room containing the searched object and therefore can be calcu-
lated with:

Pr(o) = P(Objo|I1:t, x1:t) = 1−
(

∏
c∈Cr

(1− P(Objo
c |I1:t, x1:t))

)
(5.17)

Three types of cells within a room Cr have to be distinguished. There are
the explored cells Cr,ex, whose object probabilities are known. In not fully
explored rooms also not explored cells, lying in unexplored areas of the
room, have to be considered. The number of unexplored cells is estimated
with:

Nunex =

{
0 i f room explored
max(Nroom − |Cr,ex|, Nmin) else

(5.18)

Nroom is a general estimate of the size of an unexplored room and Nmin is
a minimal number of unexplored cells in a not explored room. The object
probability in those cells is estimated based on the average room type
probability distribution P(Ravg) which is calculated according to Equation
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5.10. For the calculation of P(Objo
unex) the correlation matrix between room

type and object KB∗ is used:

P(Objo
unex) = ∑

Ravg

P(Ravg)P(Objo
unex|Ravg) = ∑

Ravg

P(Ravg)KB∗Ravg,Objounex

(5.19)
Cells of the third type are technically not within the room. Those are cells
in undiscovered adjacent rooms. To avoid the addition of uncertain rooms
into the topological map those are considered to be part of the discovered
adjacent room during the probability calculation. The expected number of
those cells Nundis is estimated with:

Nundis =

{
0 i f room explored

max
(

∑Ravg P(Ravg)Nadj(Ravg)− Nr,dis, 0
)

Nr else
(5.20)

Nadj(Ravg) is the average number of adjacent rooms for a room of type Ravg.
Based on results presented in [39] Nadj(corridor) is set to 6 and Nadj(R) is
1.2 for all other room types. The number of already discovered adjacent
rooms Nr,dis has to be subtracted and obviously the number of undiscovered
adjacent rooms cannot be smaller than zero. The probability of the object
being in one of those cells P(Objo

undis) is calculated assuming an equally
distributed room type probability distribution in the undiscovered room.

Putting all together the following formula is obtained:

Pr(o) = 1−
(

∏
c∈Cr,ex

(1− P(Objo
c |I1:t, x1:t))

)
(1− P(Objo

unex))
Nunex(1− P(Objo

undis))
Nundis (5.21)

Full search time in room r Tr

The time needed to search a room is difficult to estimate because it not
only depends on the room but also on what the search planner is doing
and how well the navigation works. In this work a minimalistic model is
used because a lot of test data would be needed for a more sophisticated
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model which is not possible to generate in a reasonable time. The number
of occupied cells in the 2D map |Cocc2d| has a high correlation with the
search time. A high number means many possible object locations and also
many obstacles, which slow down the robot movement. Therefore, the time
needed to completely search a room is the number of occupied cells in the
2D map within the room times a parameter Tc found in test runs. As in
the calculation of the total object probability, unexplored areas in the room
have to be taken into account. This is done using a general estimate for the
search time in an unexplored room Troom and a minimum time needed for
searching in unexplored areas of the room Tmin. This results in

Tr =

{
|Cocc2d|Tc i f room explored
max(Troom, |Cocc2d|Tc + Tmin) else

(5.22)

Expected search time in room r Er(o)

The expected time spent searching in a room also takes into consideration
that a searched object might be found and the search can be stopped earlier.
The expected value is calculated with

Er(o) =
∫ ∞

0
f o
r (t) · t · dt (5.23)

The search ends if the object is found or all areas in the room are covered.
Therefore, the probability distribution of ending the search over time f o

r (t)
is

f o
r (t) = (1− Pr(o))δ(Tr) + f o

f ind,r(t) (5.24)

with f o
f ind,r(t) being the probability distribution over time for finding the

object which has to fulfill∫ ∞

0
f o

f ind,r(t) · dt = Pr(o) (5.25)

and
f o

f ind,r(t) = 0 ∀ t < 0, t ≥ Tr (5.26)
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The estimation of f o
f ind,r(t) is done by discretization of time. To calculate

the probability of finding the object in a time step [Ti−1, Ti) the object
probabilities of all cells in the room are sorted and assigned to the time
steps in decreasing order. The probability of finding the object in a certain
time step [Ti−1, Ti), Pi, is then calculated with

Pi =
i−1

∏
j=0

(1− Pj) · (1− ∏
c∈Ci

(1− P(Objo
c |I1:t, x1:t)) (5.27)

P0 is set to 0. The estimated search time is then

Er(o) = ∑
i

PiTi + (1− Pr(o))Tr (5.28)

This model was chosen as it takes into account the distribution of object
probabilities in the room and the decreasing probability of finding an object
due to the objective of the search planner. While the time discretization
results in too high expected search times, the ordering is too optimistic and
results in too low times. These two effects should balance each other out.

Times for movement

The time spent moving between the rooms is also considered in the high-
level planning. The time necessary to drive from a starting room to a target
room is split into the time necessary to leave the starting room and the times
necessary to traverse rooms on the way. The time it takes the robot to drive
from a pose A to a pose B is estimated by the distance between A and B
multiplied with an average velocity. So for every pair of doorways in the
room the estimated movement time is calculated based on their distance.
The time to leave a room depends on the location of the robot which can be
anywhere in the room after exploration or search. Therefore, an assumption
is made that the robot is in the middle of the room which is the center of
mass of all free cells. For every doorway the time necessary to leave the
room is calculated based on the distance from the center of the room to the
doorway.
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5.6 High-Level Planner

This section covers the high-level planner which operates on the topological
map and selects the room the robot should search next. Based on the selected
target room it also generates high-level tasks which are then planned and
executed by the low-level planner. The expected search time was chosen
as the objective function to be minimized by the planner. Other possible
objectives for the planner would be maximizing the probability of finding
the object in limited time or minimizing the time until a certain confidence
about the existence of a searched object is reached. These tackle slightly
different problems, but the results should be quiet similar in most scenarios.
The high-level planner is executed when a search task is started and also
every time a high-level tasks finishes.

5.6.1 High-Level Planning

The objective of the high-level planner is to find the optimal search path
p∗ = (r1, r2, ..., r|R|) with ri being the ith room to search and |R| being the
number of not searched rooms given a starting room r0. A valid search path
contains every not already searched room exactly once. In this work the
optimal path is the valid path with the minimal expected search time.

p∗ = arg min
p∈validpaths

E(t|p, r0) (5.29)

The expected search time given a staring room r0 and a search path p can
be calculated with

E(t|p, r0) =
|p|

∑
i=1

( i−1

∏
j=1

(1− Prj(o))
)
(Mri−1,ri + Eri(o)) (5.30)

The definition ∏j∈∅ = 1 is used. This calculation is illustrated in an example
calculation in Figure 5.13. Searching rooms with high object probabilities
first results in a lower expected search time as it is more likely that other
rooms do not have to be searched. However, the probability of finding the
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object is the same for all paths. The matrix M contains estimations of the
movement times, where Mri,rj is the time needed to drive from room ri
to room rj. The matrix elements are calculated using the movement times
described at the end of Section 5.5.7 and the topological map. The expected
search timers Eri(o) and the total object probabilities Prj(o) are also described
in Section 5.5.7.

The possible paths form a search tree, as illustrated in Figure 5.13. The tree
representation shows possibilities for optimizations in the calculation like
the reuse of intermediate results and pruning.
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E21(t)
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P31(o) 
E31(t)

P32(o) 
E32(t)
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E321(t)
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E312(t)

P231(o) 
E231(t)

P213(o) 
E213(t)

P132(o) 
E132(t)

P123(o) 
E123(t)

Mr2,r3,Pr3(o),Er3(o)

P3(o)=1-(1-P0(o))(1-Pr3(o)) 
E3(t)=E0(t)+(1-P0(o))(Mr2,r3+Er3(o)) 
current room = 3, not searched: 1,2 

current room = 2

P32(o)=1-(1-P3(o))(1-Pr2(o)) 
E32(t)=E3(t)+(1-P3(o))(Mr3,r2+Er2(o)) 
current room = 2, not searched: 1 

Mr3,r2,Pr2(o),Er2(o)

P321(o)=1-(1-P32(o))(1-Pr1(o)) 
E321(t)=E32(t)+(1-P32(o))(Mr2,r1+Er1(o)) 
current room = 1, every room searched 

Mr2r,1,Pr1(o),Er1(o)

Figure 5.13: Search tree of all possible search paths: The edges are search actions and the
nodes are states which also hold the probability of the object already been
found and the expected search time so far; in green an example calculation is
shown

5.6.2 Generation of next High-Level task

The search path contains only the order, in which the rooms are searched. To
execute the search path tasks have to be generated, which are then planned
and executed by the low-level planner. These high-level tasks are:

• Move through doorway: A doorway is specified through which the
robot should drive to enter another room.
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• Peek: The robot should turn left and right to quickly gather some
information about the room.

• Explore room: The robot should explore the current room to obtain
knowledge about likely object locations and find all doorways in the
room.

• Search room: The robot should search for the target object in the
current room

The high-level planner keeps track of whether a room was visited, explored
or searched. Using this information the generation of the high-level tasks is
done as shown in Figure 5.14. The path to the room to search, containing
the rooms on the way, is retrieved out of the topological map. As replanning
is done after every high-level task only the generation of the next high-level
task is necessary.

Move to next room
on the way to the

target room

Target room
reached?

Room  
already  
visited?

Peek

Is room  
explored?

Explore room Search room

No NoNo

YesYesYes

Figure 5.14: Flow diagram for high-level task generation

5.7 Low-Level Planner

Based on the currently pending high-level task the low-level planner gen-
erates goal poses for the robot. All high-level tasks can be executed within
a single room, with the exception of the move through doorway task. For
the other tasks the low-level planner can ignore other rooms to make the
planning easier. The low-level planner also decides if the searched object
was found, using the results of the object detection. An overview on how
those tasks are planned and executed is given in this section.
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5.7.1 Move Through Doorway Task

With this task the robot is initiated to drive through a specified doorway
into the next room. It is the only high-level task where the robot can drive
into another room. The execution of this task is illustrated in Figure 5.15.
In a first step the robot is sent to a position in front of the doorway facing
towards the doorway. In this process the door pose becomes more accurate
and possible obstacles behind the doorway are detected. In a second step
the robot is sent to a goal behind the doorway to drive into the next room.
During the execution the low-level planner keeps track of the doorway pose
and changes the goal pose accordingly. This is especially important when
the map switch occurs, as the doorway pose might be very different in the
new room’s map coordinate frame.

(a) align in front of doorway (b) set goal behind doorway (c) finish after map switch

Figure 5.15: The three steps of the move through doorway task: the robot pose is in red,
the current goal pose is in orange, and the door pose is in green

5.7.2 Peek Task

The purpose of this task is to quickly get a first impression of a room never
visited before. This is achieved by turning the robot left and right, so the
area seen by the robot is increased. If the object detection detects a searched
object with a sufficiently high confidence during this task, the object is
assumed to be found and the task is stopped.
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5.7.3 Explore Room Task

The goals of the explore room task is to find all doorways in the room, to
detect likely object locations and also to find easy to spot target objects. 2D
exploration is done to achieve these goals. After finishing 2D exploration all
doorways are guaranteed to be found, as unexplored space would be behind
an undiscovered doorway. During the exploration most of the room is seen
with the camera, though most areas only in a few images. Some areas might
not be seen at all by the camera because the exploration is finished when all
accessible cells were seen by the LIDAR. Due to the smaller field of view
of the camera, some cells might only be seen by the LIDAR and not by the
camera and also some cells in inaccessible areas might not be seen.

A frontier-based approach is used for the exploration, similar to the ap-
proach proposed by Yamauchi [31]. In this thesis a frontier is defined as an
accessible cell in the occupancy grid map adjacent to at least one unexplored
cell, as shown in Figure 5.16. Based on an objective function a frontier is
selected and the robot is sent to this frontier. On the way to the frontier some
area beyond the frontier is explored. In this work the objective function is
the distance between the robot and the frontier, where nearer frontiers are
preferred.

Only the current room should be explored. To prevent the robot from driving
out of the room during exploration all detected doorways are blocked by
virtual obstacles, as shown in Figure 5.17.

If the object detection detects the searched object with a sufficiently high
confidence, the object is assumed to be found. The estimated location in
space is reported and the search is stopped. A decision based on multiple
images, like during the search task, is not done during the exploration.
Another reason to stop the exploration early is the detection of a new door-
way, so the high-level planner can be executed on the updated topological
map.
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Figure 5.16: A map with accessible cells (purple and yellow cells) and frontiers
(yellow cells)

5.7.4 Search Room Task

The goal of the search room task is to find an object of a given type within
the current room or to search the whole room if no searched object is in
the room. The low-level planner has to find the best next view pose which
minimizes the expected search time, based on the information gathered.
Also the decisions have to be made if an object was found and if the room
was fully searched.

In this work a greedy approach is used to find the best next view pose. The
best view pose p∗ is selected by:

p∗ = arg max
p

P(o|p) + B(p)
T(p0, p)

(5.31)
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Figure 5.17: Doorway (green arrow) is blocked by a virtual obstacle (blue) during explo-
ration

P(o|p) is the probability of finding an object of type o when the robot is at
pose p. B(p) is an additional term to promote coverage and is also necessary
for the termination criteria, as described later. T(p0, p) is the time to drive
from the current pose p0 to the pose p. Assuming movement on the shortest
path between two poses, T(p0, p) is estimated with:

T(p0, p) =
|](p0,−→p0p)|+ |](−→p0p, p)|

ω
+
|−→p0p|

v
+ Tconst (5.32)

ω and v are the average rotational and translational velocities and Tconst is a
constant time added to account for planning time and other delays.

Estimating the probability P(o|p) is much more difficult. It depends on
what is visible when taking an image at pose p, the object probabilities in
the visible space and how likely a searched object located in the visible
space is detected. Therefore, P(o|p) is calculated with:

P(o|p) = 1− ∏
c∈cells in room

(1− P(Objo
c |I1:t, x1:t)P(visc|p)P(detc|p)) (5.33)
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Determining visible space is computational expensive and also not really
possible in messy environments without a high quality 3D map, therefore a
heuristic is used. The used heuristic reduces the problem from 3D to 2D and
the limited vertical field of view is ignored. The basic assumption is that an
object can always be seen from the direction of the nearest cell accessible by
the robot. This is true if objects are side-by-side and not behind each other.
The yellow arrows in Figure 5.18 show these directions, which are referred
to as best directions. The probability of an object being visible depends on
the angle between the best view direction and the direction from robot to
object. This is modeled with

P(visc|p) =

e
−](p,−→pc)2

2σ2
view i f in f ield o f view

0 else
(5.34)

Figure 5.18: Directions from the nearest accessible cell for every cell outside of the border
(yellow arrows), accessible area (purple), border of free space (orange) and 2D
grid map in the background

This model of visibility is very pessimistic as many objects are also visible
from other view angles. To reduce the number of unnecessary views, cells
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seen more often than a threshold value are assumed to be sufficiently viewed
and ignored in later probability calculations.

The model used to estimate the probability of detecting the object depending
on its location relative to the robot is shown in Figure 5.19. Near cells are
weighted higher as small objects are difficult to detect from far away. Large
objects on the other hand occupy multiple cells and therefore view poses
covering the whole object are implicitly preferred. At the edge of the field
of view successful object detections are less likely, which is also taken into
account.

Figure 5.19: Probabilities for detecting the object depending on the location relative to the
robot (red arrow); the probability of cells is 1 for black cells and 0 for white
cells

To find the best next view pose sample poses are generated at regular x
and y distances with multiple different orientations. This discretization
is necessary because only a limited number of poses can be evaluated. A
sample pose is valid if it is accessible by the robot and was not visited before.
From the valid sample poses the best one is chosen based on Equation 5.31.

Two approaches are used to decide if an object was found. The first approach
uses only the current image. The object is assumed to be found if a searched
object was detected by the CNN with a sufficiently high confidence. In this
case the location of the found object is estimated based on the position
in the image and the depth values of the detection. The second approach
combines the information from multiple images and is done like the creation
of the Object-Map in Section 5.5.2. Thus, also a 3D map is created. Here the

58



5.7 Low-Level Planner

performance is not as much a concern for two reasons. Firstly, the accuracy
of the localization should be accurate enough after exploration, so this has
not to be done for multiple particles. Secondly, only the searched object
is of interest. Therefore, more detection samples can be used, leading to
more reliable results. If the probability of a searched object being in a cell is
higher than a threshold, the object is assumed to be found. If an object is
found the position of the object is signaled and the search is stopped.

In case that no object can be found the planner needs to decide if the room
was fully searched. It is impossible for the system to decide which cells
in a room can possibly be seen, at least based on the generated 3D map.
Therefore, another heuristic is used to define a termination criteria. Above
the assumption was made that a cell is seen from the nearest accessible
cell. In reverse this means the room is fully searched if the robot has
looked outward at every accessible cell. Assuming that only the direction
is important and not the distance, the robot has only to look outward over
the border of the accessible area. A set of cells representing this border is
created and the direction from the nearest accessible cell to the border is
calculated for every cell in this set. This is shown in Figure 5.20. In addition
every cell in the set gets a counter. When the object detection is executed on
an image, all cells of the border in the field of view of the camera with an
orientation similar to the direction of the camera are increased by one. This
is illustrated in Figure 5.21. Using the same line of thought the term B(p) is
calculated with:

B(p) =

{
VB|CBinterest | i f |CBinterest | > 0
−∞ else

(5.35)

where |CBinterest | is the number of border cells, whose counter would be
increased in a view from pose p and is lower than a threshold parameter.
VB is a parameter weighting coverage versus finding probability. Ultimately
the termination criteria is defined with P(o|p∗) = 0∨ B(p∗) ≤ 0.
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Figure 5.20: Accessible area (purple), border of free space (orange), outward directions of
the border cells (yellow arrows) and 2D grid map in background
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Figure 5.21: Update of border cell counter: Only cells within the field of view (black triangle)
and having a similar orientation as the camera (red arrow) are updated (green
cells); other cells on the border are not updated (orange cells)
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6 Implementation

In this chapter details of the implementation of the concept presented in
Chapter 5 are described. The software runs on a Linux operation system
and uses ROS Kinetic as middle-ware. The usage of ROS allows easy com-
munication between different processes, also called nodes, and the easy
integration of existing software packages. Existing packages are used for
the communication with the robot and the sensors. The source code of some
packages was used as a starting point for the implementation. The in ROS
integrated tf library, which keeps track of the coordinate frames and allows
nodes to obtain the most recent transformation between two coordinate
frames and also transformations between coordinate frames at past times,
is also useful. Other used libraries are OpenCV1, PCL2, the mapping li-
braries Octomap3 and GMapping4, and the deep learning libraries Caffe5

and Darknet6. OpenCV is an open-source image processing library. In this
work it was not only used for image processing, but also in the internal
representation of grid maps and for operations executed on those maps.
PCL (Point Cloud Library) was used for operations on point clouds, like
coordinate transformations or filtering. Except for some debug programs
written in Python and the message specifications, the whole implementation
was written in C++.

Figure 6.1 shows the architecture of the implementation, with its nodes and
the communication channels between the nodes.

1https://opencv.org/
2http://pointclouds.org/
3https://octomap.github.io/
4https://www.openslam.org/GMapping.html
5http://caffe.berkeleyvision.org/
6https://pjreddie.com/darknet/
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Figure 6.1: Overview over the nodes in the system and the messages, services, and actions for inter-node communication;
message connections are drawn from publishing node to the subscribed nodes; nodes connected with the tf
package publish updated coordinate transformations
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The following sections contain an in-depth description of the implementa-
tion of the nodes and the communication between the nodes.

6.1 Hardware Interface

The ASUS Xtion Pro RGBD-cameras communicate with the rest of the
system via the openni2-package. The nodes of this package connects to
the camera and transforms the raw data from the camera into various
ROS-messages. The RGB-image and the depth-registered point cloud of the
main camera are used by the vision node. The depth-registration assigns
a 3D point to every pixel in the RGB-image. For pixels where this is not
possible, the point is set to (NaN,NaN,NaN). The point cloud from the
upward looking camera is sent to the door detection node. To reduce the
computational cost, the frame rates of the cameras are reduced to 5 frames
per second, as more images cannot be processed anyway.

The hokuyo node provides access to the LIDAR. It publishes a laser scan
message, which contains an array of range measurements in polar coordi-
nates and the information about the angle range and the resolution of the
laser scan.

The transformation publisher publishes the transformations of the robot, so
the transformations from all the components of the robot into the robot base
coordinate frame are available. For this implementation important are the
transformations between the two cameras and the robot base and between
the LIDAR and robot base.

The interface to the Turtlebot takes velocity commands, which contain a
translational and a rotational velocity. These commands are then executed
by the robot. The interface also provides the data from the odometry as a
transformation between the robot and the odometry coordinate frame.
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6.2 Preprocessing

The images and the point clouds can be used without preprocessing. The
laser scans on the other hand have to be modified for further use. The
scan filter node prepares the laser scans for the mapping. Therefore, range
measurements on the far left and far right of the field of view are discarded.
This is necessary as some parts of the robot are visible to the LIDAR,
as shown in Figure 6.2. Further, invalid range measurements need to be
handled. There are two causes for invalid range measurements. Firstly, the
laser beam was not sufficiently reflected by an obstacle. In this case the
range measurement should be ignored. Secondly, no obstacle is within the
maximum range of the LIDAR. In this case the range measurement should
be set to the maximum range, so the mapping can use those beams to clear
space. Due to the short range of the used LIDAR this happens often. There
is no way to distinguish between these two cases and always assuming one
case is not sufficient. Discarding all invalid measurements causes problems
in open areas and corridors, as no or not enough information is sent to the
mapping. Setting all range measurements to maximum range can result
in occupied cells being wrongly classified as free. Therefore only invalid
measurements of every fifth scan are set to the maximum range, which tests
showed to be a reasonable trade-off.

The navigation is done in 2D, but it is also necessary to consider the obstacles
seen by the RGBD-camera. Therefore the laser scans sent to the local planner
are modified to contain also those obstacles. This is done by intersecting
the beams sent by the LIDAR with the projected point cloud of the RGBD-
camera. The range measurement of a beam is then the minimum of the
range measurement from the LIDAR and the distance to the first intersection
with the projected point cloud. This is show in Figure 6.2.

6.3 Doorway Detection Node

The input data for the doorway detection node are the point clouds from
the upward looking RGBD-camera and the range measurements from the
LIDAR. The most recent range measurements from the LIDAR are stored for
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Figure 6.2: Preprocessing of the laser scan: Discarded range measurements (green); result
of the scan filter node (red); projected point cloud of the RGBD-camera (black);
example beam (purple); range measurements changed by the scan costmap
node (blue)

further processing. When a new point cloud arrives and the robot has moved
considerably since the last execution of the doorway detection, the doorway
detection is started. The movement check is done because of performance
reasons and to avoid redundant information in the mapping. The output is
a set of doorway detections represented as an array of poses in the robot
coordinate frame.

The first step is to transform the point cloud from the coordinate frame
of the camera into the coordinate frame of the robot using the known
static transformation. This transformation was determined manually. First,
the z-coordinate, the pitch angle, and the roll angle were determined by
comparing the point cloud of the camera with a ceiling of known height. The
x-coordinate, y-coordinate, and yaw angle were determined by comparing
the point cloud with the laser scan in front of a room corner. In a second
step two subsets of points are extracted from the point cloud, one subset
containing only points with a height between 1.95 m and 2.05 m and one
subset containing only points lower than 1.95 m. Both subsets of points
are projected onto the ground and converted into 2D images represented
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as OpenCV matrices, as shown in Listing 6.1. The resolution and the
origin specify the conversion between the robot coordinates and the image
coordinates. The resulting images are shown in Figure 6.3 (a) and (b). From
the left image it can be seen that not only points of the upper part of the
door frame are at about 2 m height, but also points on the walls beside
the doorway. The purpose of the second image, which also contains those
walls, is to eliminate the undesired pixels from the walls. Therefore the
second image is subtracted from the first one. Applying the morphological
operations closing, to fill possible holes, and opening, to remove stray pixels,
results in the filtered image shown in Figure 6.3 (c).

Listing 6.1: Projection of points into corresponding image

for(point in pointCloud){
if(point.z>=1.95 and point.z<=2.05)

at2mImage(point.y∗resolution+origin.y,point.x∗resolution+origin.x) = 255
if(point.z<1.95)

under2mImage(point.y∗resolution+origin.y,point.x∗resolution+origin.x) = 255
}

(a) Projection onto the
ground of points at
about 2 m

(b) Projection onto the
ground of points lower
than 1.95 m

(c) Filtered image

Figure 6.3: Preprocessing of the doorway detection

The filtered image is searched for contours and around every contour found
a minimum area rectangle is fitted. Both is done using OpenCV functions.
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This is depicted in Figure 6.4, where only one contour was found. All
rectangles with d < 0.05 m ∧ d > 0.5 m ∧w < 0.6 m are ruled out. The width
and depth can be converted from pixels to meters using the same resolution
as in the conversion into an image.

To execute the other checks described in Section 5.4.3, the latest laser scan
from the LIDAR has to be transformed into the correct coordinate frame.
Laser scan and point cloud are usually not acquired at the same time,
so robot movement in the time between the measurements has also to be
considered. This is done using the tf library, which allows to specify not only
the coordinate frames when accessing a transformation but also the time of
interest. Three areas are defined in Figure 6.4. For every area the number of
points from the transformed laser scan within the area are counted. If the
sum of points in the red areas is less than 5 and the number of points in the
green area is greater than 30, a doorway is found. The former is necessary
for a doorway to be not blocked and the parameter was chosen to be 5 to
allow some outliers in the laser scan. The latter is necessary as there have to
be walls beside the doorway and the parameter was found in tests. If the
rectangle was classified as doorway, the pose of the doorway is estimated
as described in Section 5.4.3 and added to the result array. This is done for
all fitted rectangles fulfilling the size constrains, so the result is an array
containing all detected doorways.

6.4 Vision Node

The vision node operates on the RGB-image and the depth-registered point
cloud from the main RGBD-camera. The output are two messages. The
VisionResult message, sent to the mapping node and the low level planner
node, contains the results of the room type classification and the object
detection and is described in Listing 6.2. The HighConfidenceObjects mes-
sage, sent only to the low level planner, contains the types and locations
of object detections with very high confidence and is described in Listing
6.3.
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Figure 6.4: The minimum area rectangle (blue) around the filtered doorway contour (black)
and specifications of the areas for the doorway check; the number of points from
the laser scan has to be less than a threshold in the red rectangles and greater
than another threshold in the green rectangle for a doorway being detected

Listing 6.2: vision/VisionResult

Header header
DetectionSample [] samples

geometry msgs /Point position
float32 [] probabilities

float32 [] room type probabilities

Listing 6.3: vision/HighConfidenceObjects

Header header
geometry msgs /Point[] positions
int16[] object types

The implementation of this node uses two threads. The first thread waits
for input images and point clouds and decides if an images should be
processed. The second thread runs the CNNs on the images delivered by
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the first thread, creates the output messages and publishes these messages.
The multi-threaded approach is used to avoid waiting for a new image and
to be able to receive images all the time.

The decision to process an image is made based on the movement of
the robot. If the robot turns too fast the images are blurry and therefore
discarded. A rotational velocity of 0.5 radians per second was found to be
the maximum speed where the object detection produces still reasonable
results. If the robot does not move no new information is gathered and
no processing is necessary. This also avoids using the same information
multiple times in the mapping. The movement of the robot is obtained from
the odometry data, which is accessible through the tf library. The robot
has to move at least 0.3 meters or turn 0.1 radians until a new image is
processed. If an image should be processed, the image and the current point
cloud are stored in a buffer for the second thread. If an old image is still in
the buffer, the old image is discarded.

The images are processed in three steps, starting with the execution of
the place classification CNN and followed by the execution of the object
detection CNN. In the last step the output messages are created using the
results of the CNNs. In the following these steps are described in more
detail.

6.4.1 Place Classification

In this thesis a CNN using the VGGNet-16 model and trained on the
Places205 dataset is used. The training was done by Wang et al. as described
in [36]. This CNN was chosen as it achieves state-of-the-art performance
with an accuracy of about 60% on the Place205 testset. Another advantage
is that the model of the CNN and the trained weights are publicly available
and ready to use with the Caffe deep learning library. Caffe [40] is an open-
source deep-learning framework written in C++. Using CUDA, a framework
for executing code on the GPU, the CNN can be executed on the GPU,
which is essential for running large neural networks with reasonable frame
rates. On the used hardware a forward pass takes about 25 ms.
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An example code for setting up a CNN and the execution of the classification
on an image is distributed with Caffe. This code was modified to use
the chosen CNN and adapted to fit into the vision node. The result of
the classification is an array of 205 probability values, one for each place
category.

6.4.2 Object Detection

For object detection the YOLOv3 [19] object detection CNN is used. This
CNN was chosen because according to the related publication it has the
best trade-off between speed and accuracy. State-of-the-art object detection
systems cannot be used because the used GPU is not fast enough to achieve
reasonable frame rates. With YOLOv3 a forward pass still takes about
150 ms. YOLOv3 is available running on a second deep learning framework,
which is Darknet [41]. Darknet is open-source, written in C and also uses
CUDA for GPU support. This causes problems when linking the vision node
because Caffe links CUDA with C++-linkage and Darknet with C-linkage.
To resolve this problem Darknet was ported to C++, which involved mainly
the renaming of variables with names forbidden in C++.

The code of an example program using YOLOv3 is shipped with Darknet.
The necessary post-processing of the result of the CNN is also included
in the example code. First the bounding boxes are transformed into image
coordinates. Then a non-maximum-suppression is applied. In decreasing
order, based on their probability, the overlap with all already processed
bounding boxes is calculated and if it is greater than a threshold, the
bounding box is discarded. The example code was adapted and integrated
into the vision node code. The main adaptation was to change the input
size to 640x480, which is the resolution of the RGBD-camera.

The output is an array of object detections. Each object consists of a bounding
box, given by the location of its center and its size in pixels, and an array of
probabilities, one probability for every object class.
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6.4.3 Output Generation

The VisionResult message should only contain the probabilities of the
relevant indoor place categories, also called room types. Using an array
containing the information about what place categories are relevant, all irrel-
evant place categories are removed from the result of the place classification.
The remaining probabilities are normalized to one and the resulting array is
inserted into the VisionResult message.

The handling of the object detections is more complex. In a first step all
probabilities of irrelevant types, which are stated in Table 5.5, are removed
from the probability arrays of the object detections. Furthermore, all very
unlikely detections, which are detections with no class having a probability
greater than 0.00001, are also discarded because their impact is negligible.
Then samples are drawn randomly from the valid points in the point
cloud. The point cloud created by the openni2-package is organized like the
corresponding image with rows and columns. Not for all pixels in the image
depth measurements are available. Therefore, some points in the point cloud
are marked as invalid and have to be avoided in the sampling procedure.
However, the structure of the point cloud allows to find the pixels in the
image corresponding to the samples. For every sample and every relevant
object type the maximum probability of all overlapping object detections is
assigned. The samples, consisting of a 3D point and a probability for every
object type, are then inserted into the VisionResult message.

To generate the HighConfidenceObjects message, an iteration over all object
detections is done. If the probability of the most likely object class of a
detection is higher than 0.9, the detection is assumed to be correct. This
value was found in tests to result in almost no false positives and is low
enough for reliable detections having a higher probability. In this case the
median z-coordinate, which is in the direction the camera is facing, of all
points in the bounding box is calculated. This is a robust estimation of
the distance to the object. The direction to the object is calculated using
the center of the bounding box and the intrinsic parameters of the camera,
which is then used together with the estimated distance to calculate the
object location. This object location and the ID of the found object class are
then inserted into the HighConfidenceObjects message.
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Figure 6.5: An overview over structure of the mapping node

Finally both generated messages are published.

6.5 Mapping Node

As shown in Figure 6.1 the mapping node has a central position in the
system. It is also the largest node in terms of written code. This section is
split into two parts: the class structure and the execution of the node.

6.5.1 Class Stucture

In Figure 6.5 the general structure of the mapping node is shown. The
TopologicalMapper class is the main class in this structure, holding an
instance of the RoomMapper class for every room. The RoomMapper class
is derived from the SlamGmapper class, which does the 2D SLAM using
GMapping. The RoomMapper class holds a separate mapping class for every
type of map and every particle. This design was chosen to reduce the
required adaptation to the existing code of GMapping and to have a more
modular structure.
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In Listing 6.4 the most important member variables and methods of the
TopologicalMapper class are shown.

Listing 6.4: TopologicalMapper class

// members
RoomMapper [] room mapper
int current mapper
bool[] room explored
topologicalMapSrv :: Response topology
bool[] room changed
int current task

// methods
run()

pointcloudCallback( point cloud )
laserCallback( laser scan )
doorwayCallback( doorway detections )
visionCallback( vision result )
currentTaskCallback( current task )
exploredCallback( explored room )

topologicalMapServiceCallback ()
objectMapServiceCallback ()

Beside an array of RoomMapper it also contains variables to keep track of the
current room and the rooms already explored. The latter is important in
the generation of the high-level attributes in the topologicalMapSrv service.
The variable topology stores the last topologicalMapSrv service response
and room changed keeps track of which rooms’ maps were updated since the
last execution of the topologicalMapSrv service. Together they are used to
avoid unnecessary calculations on unchanged room maps. Also the current
task is stored to decide if the doorways have to be blocked by virtual
obstacles.

The TopologicalMapper class contains the run function, which is started
during initialization and contains the main processing loop. The class also
contains the callback functions for all messages and services, which are
processed by the node. More details on the messages and services is given
in Section 6.5.2.
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The code in the ROS-node for GMapping 7 was the starting point for the
implementation of the SlamGmapper class, whose most important member
variables and methods are shown in Listing 6.5.

Listing 6.5: SlamGmapper class

// members
ParticleFilter particle filter
OccupancyGrid map
Transform map to odometry transform

// methods
processLaser( laser scan )

This class is the interface to the GMapping library used for 2D SLAM. It
contains an instance of the ParticleFilter class, which is derived from
GMapping’s particle filter class and has additional functionality for map
switching and access to the particles implemented. The SlamGmapper class
also stores the currently most likely map and the transformation between
the map and the odometry coordinate frames. While the transformation is
only updated when a laser scan is processed, the robot pose can still change
based on the odometry data. The processLaser function is called to update
the localization and the map.

The RoomMapper class is the main class for the mapping within a room and
an overview over the most important members and methods is given in
Listing 6.6.

7https://github.com/ros-perception/slam_gmapping
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Listing 6.6: RoomMapper class

// members
OctoMapper [] octo mapper
ObjectMapper [] object mapper
RoomTypeMapper [] roomtype mapper
DoorwayMapper [] doorway mapper

// methods
activate(robot pose , doorway)
deactivate ()

processCloud( point cloud )
processDoorway( doorway detections )
processVision( vision result )

The class inherits the 2D SLAM functionality from the SlamGmapper class
and also contains the mappers for all the other information. It has functions
for activation and deactivation, and also to update the different map types.

The OctoMapper class is based on the code of the octomap server ROS-node8.
It is the interface to the OctoMap library. In addition to the processCloud

function, which is called to update the 3D map, it has a projectDown

function, which projects the obstacles found in the 3D map into the 2D
map.

Listing 6.7: OctoMapper class

// members
Octree octree

// methods
processCloud( point cloud )
projectDown(map2D)

The RoomTypeMapper class contains 60 instances of the RoomTypeMap class,
one for each room type. In Listing 6.8 the most important member variables

8https://github.com/OctoMap/octomap_mapping
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and methods of the RoomTypeMapper class and the RoomTypeMap class are
shown.

Listing 6.8: RoomTypeMapper class and nested RoomTypeMap class

// members
RoomTypeMap [] room type maps

cv::Mat probability map
cv::Mat seen count map
float resolution
cv::Point origin

// methods
updateMaps(vision result , particle pose )

The RoomTypeMap class is implemented using OpenCV’s cv::Mat to repre-
sent the two dimensional grid map. The probability map contains the prob-
abilities of the given room type for all cells in the map. The seen count map

stores the number of updates of a cell. This information is important when
estimating the object probability in unseen areas. Additionally, the resolu-
tion and the origin are stored, so transforming world coordinates to map
coordinates and vice versa is possible. The updateMaps function is called to
update the map.

The ObjectMapper class contains 61 instances of the ObjectMap class, one
for each object type. In Listing 6.9 the most important member variables and
methods of the ObjectMapper class and the ObjectMap class are shown.
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Listing 6.9: ObjectMapper class and nested ObjectMap class

// members
ObjectMap object maps

cv::Mat[] probability map
cv::Mat[] seen count map
float resolution
cv::Point origin

updateMap( vision result )

// methods
updateMaps(vision result , particle pose )

The ObjectMap class is implemented using an array of OpenCV’s cv::Mat.
All cells at the same height are stored in one cv::Mat and those cv::Mats
are stacked on top of each other to form the 3D grid. The probability map,
the seen count map, the resolution and the origin are similar to those in the
RoomTypeMap class. The updateMaps function is called to update the maps.
The ObjectMap class also has its own updateMap function because the maps
for every object type can be updated independently.

The DoorwayMapper class holds an array containing all doorways found
in this room. Besides the pose of the doorway the Doorway class contains
an ID and the information about its corresponding doorway in the other
room. This design to store connections between rooms is easy to maintain,
though the access to the topological structure is more complicated. However,
the topological structure is not needed frequently, only on map switches
and topologicalMapSrv service requests. The pose array member stores
the last poses for the running average filter, which is used to calculate the
pose of the doorway. The processDoorway function is called to update the
doorway poses or insert a new doorway.
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Listing 6.10: DoorwayMapper class and nested Doorway class

// members
Doorway [] doorways

Pose pose
Pose[] pose array
int id
int counterpart id
int this room
int other room

// methods
processDoorway( doorway detections )

6.5.2 Execution

This node is implemented using multiple threads to distribute the computa-
tional load and to avoid that computational expensive tasks block the rest
of the execution.

After the initialization the main thread calls the run function of the
TopologicalMapper, which executes the main processing loop. The main
processing loop is illustrated in Figure 6.6.

First, the correct callbacks for all pending messages are executed. Most of
the code gets called this way. After all messages are processed, the 2D map
for navigation is created and published. The last step in the loop is to check
if a doorway was passed and, if necessary, execute the room map switch.

Message processing

Six types of message can be received, which are all first processed by
the TopologicalMapper. The current high level task messages and the
exploration finished messages are processed directly in the
TopologicalMapper. The current high level task messages are used to
update the current task variable, which is used to decide if the doorways
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Figure 6.6: The main processing loop of the mapping node

have to be blocked by virtual obstacles. The exploration finished mes-
sages are used to update the room explored variable of the corresponding
room, which is important in the generation of the high-level attributes in
the topologicalMapSrv service. The other messages are forwarded to the
RoomMapper of the current room.

The processing of the laser scan filtered message involves calling the
processLaser function of the RoomMapper of the current room, which sends
the laser scan to GMapping for localization and mapping. After the pro-
cessing of a laser scan GMapping might do a resampling of the particles
to discard unlikely particles. The discarded particles are replaced by more
likely particles. When particles in the particle filter are replaced by GMap-
ping also the corresponding mappers in the RoomMapper have to be replaced.
The extended ParticleFilter class allows access to the result of the re-
sampling. Using this result the correct replacement of the mappers is done.
The transformation between the map coordinate frame of the best particle
and the odometry frame is done in a separate thread to ensure regular
publishing.

The 3D mapping is done in a separate thread because the 3D mapping takes
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significantly time. Using a separate thread distributes the computational
load on multiple cores of the processor and the other mapping is not
slowed down. Therefore, the processCloud function of the RoomMapper of
the current room only stores the main camera/pointcloud message in a
buffer. The thread for 3D mapping idles until a new message is in the buffer
and executes the update of the 3D map. First all operations independent
of the particle poses are executed. These are downsampling, as processing
all points in the point cloud takes too long, the transformation of the
point cloud from the camera coordinate frame into the robot coordinate
frame, and splitting the point cloud into two point clouds, one for points
near the ground and one for points at heights considered in the 3D map.
Obstacles near the ground are not mapped, so the points near the ground
have to be handled differently. For every particle these point clouds are
then transformed into the map coordinate frames of the particle and the
processCloud function of the corresponding OctoMapper is called. Using
the point clouds and ray-tracing a list of cells containing points and a
list of visible cells containing no points are created. The point cloud with
points near the ground is only used for the latter. This way no obstacles
are mapped near the ground. Then the 3D map is updated using the two
lists. The ray-tracing and the map update are done using functions of the
OctoMap library.

To achieve good results the transformation from the robot coordinate frame
into the coordinate frame of the particles has to be accurate, especially the
rotation. Particle poses are only known at times a processed laser scan was
recorded, but for accurate mapping the particle pose at the time the point
cloud was recorded is necessary. Therefore the particle pose at that time is
estimated using the available particle pose nearest in time and the odometry
data to estimate the movement of the robot in between.

In the callback for the vision result messages the processVision function
of the RoomMapper of the current room is called. For every particle the
particle pose is calculated as described above and the updateMaps function
of the corresponding RoomTypeMapper is called. There the map update is
done according to Section 5.5.3. Also for every particle the updateMaps

function of the corresponding ObjectMapper is called. In this function the
updateMap functions of all ObjectMap instances are called. There the map
update is done according to Section 5.5.2.
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The doorway poses in the door detections message are transformed into
the map frames of all particles and the processDoorway functions of the
corresponding DoorwayMapper instances are called. According to Section
5.5.4, the decision is made if it is a new doorway or another detection of an
already found doorway. If it is a new doorway, a new instance of Doorway
is added to the array of doorways. All elements in the pose array and
the pose variable of the new Doorway instance are set to the pose of the
detected door, a new ID is generated for the doorway and the values of
counterpart id and other room are set to -1. -1 signals that the doorway
was never passed. If the detection is from an already found doorway, the
oldest element in the pose array is replaced by the pose of the doorway
detection. Then the average of the poses in the pose array is assigned to
the pose variable. To calculate the average orientation the corresponding
points on the unit circle are calculated for all orientations of the poses in
the pose array. The angle of the average of these points is used to calculate
the average orientation.

Map creation and publishing

The creation of the map used for navigation and low-level planning is
done as described in Section 5.5.6. As a second thread is working on the
3D map, locking is important to avoid race conditions, which can cause
wrong results and program crashes. Additionally, if current task is not
zero, which corresponds to the move-through-doorway high-level task,
the doorways are blocked. This is done by setting cells on a short line
perpendicular to the doorway poses to occupied. This created map is then
published.

Map switch

The last step in the main loop is the check if a doorway was passed. Therefore
a test is executed on all doorways in the DoorwayMapper of the best particle.
For this test the robot pose is transformed into the coordinate frame of the
doorway. The first condition is that the x-coordinate of the transformed
robot pose is greater than a threshold of 0.2 m, meaning the robot has
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driven beyond the doorway. The second condition is that the distance to
the doorway is smaller than second threshold of 1 m, which ensures the
robot has really driven through the doorway. If both conditions are true, the
currently checked doorway is passed and the map switch is triggered.

In Figure 6.7 the steps of the map switch are depicted. Firstly, the deactivate
function of the RoomMapper of the current room is called. This function dis-
cards all particles except the best in the particle filter. Also the corresponding
mappers of the discard particles are removed. Then the thread for publishing
the map-to-odometry-transformation is paused.

Call deactivate
function of  

leaved room

Entered room 
unvisited?

Add new room
and initialize

Yes No

Call activate
function of

entered room

Start mapping in
entered room

Figure 6.7: Steps when switching maps

If the other room variable of the passed doorway is negative, a never visited
room is entered and a new RoomMapper is created. The particle poses in
the particle filter of the new RoomMapper are set to the pose of the best
particle in the old room and also the map-to-odometry-transformation is
copied to the new mapper, so the map coordinate frames of both rooms are
initially the same. The pose of the passed doorway is flipped, so it is facing
outwards in the new room, and added to the DoorwayMappers of the new
RoomMapper. Then the new RoomMapper is added to the room mapper array
of the TopologicalMapper. The doorway in the old RoomMapper is updated,
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so it contains the ID of the new room in the other room variable and the ID
of the passed doorway in the new room in the counterpart id variable.

If the other room variable of the doorway is not negative, it specifies the
room to switch to. Using the ID in the counterpart id variable of the door-
way the corresponding doorway in the other room is found. As described
in Section 5.5.6 the robot pose is transformed into the coordinate frame of
the other room. With the transformed pose as parameter the activate func-
tion of the other RoomMapper is called. There the pose of the particle in the
other room is set to this transformed pose and also the map-to-odometry-
transformation is set accordingly. After that the particle and the mappers
of the other rooms RoomMapper are duplicated, so the correct number of
particles is available.

In both cases the next step is to set the current room variable to the en-
tered room and resume the thread for publishing the map-to-odometry-
transformation in the entered room’s RoomMapper. A message containing the
transformation between the leaved and the entered room is then published
as the last step.

Processing of Service Requests

The services requests are processed in a separate thread because otherwise
the processing of the service requests would block the mapping for too long.
This is especially true for the TopologicalMapSrv service, which can take
more than one second.

In Listing 6.11 the request and response specifications of the
TopologicalMapSrv service are shown. The request specifies the ID of the
object of interest. Important to note is that references to the doorways in a
room are stored in the rooms as well as the rooms connected by a doorway
in the doorways. Also noteworthy is that the times to traverse a room are
stored in the doorways. Therefore every doorway stores the times to travel
to any doorway if the doorways are in the same room or -1 otherwise.
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Listing 6.11: mapping/TopologicalMapSrv

# request
int16 object id
−−−
# response
int16 current room
RoomMsg [] rooms

int16 id
float32 object probability
int16[] doorways # doorways in the room
float32 [] to doorway times
float32 search time
float32 expected search time

DoorwayMsg [] doorways
int16 room1
int16 room2
geometry msgs /Pose door1 pose # doorway pose in room 1
geometry msgs /Pose door2 pose # doorway pose in room 2
float32 [] traverse times # distances to other doorways

When processing a service the first step is to copy the interesting data
from the mapping structure. This way the mapping can proceed during
the processing of the service request without creating race conditions. In
a second step all maps of a room have to be brought into a common
structure. Therefore, all types of maps are converted into an ObjectMap

class. Furthermore, resampling is done to have the same resolution in all
maps and the sizes of the maps are made equal by adding additional space
to the maps if necessary. Now the calculation of the Object-Probability-Map
is done for every room as described in Section 5.5.5. The response message is
created according to Section 5.5.7, using the Object-Probability-Map and the
other information stored in the RoomMapper class. If the result of a previous
TopologicalMapSrv request exists, the calculations have only to be done for
rooms marked as changed.

In Listing 6.12 the request and response specifications of the
ObjectProbabilityMapSrv service are shown. The request specifies the
room of interest and the searched object. The processing is done similar to
the processing of the TopologicalMapSrv service, except only one room is
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of interest and the response message can be created after the calculation of
the Object-Probability-Map.

Listing 6.12: mapping/ObjectProbabilityMapSrv

int16 room id
int16 object id
−−−
ObjectMapMsg map

int16 width
int16 height
int16 z steps
int16 origin x # position of the origin in the map
int16 origin y
float32 resolution
float32 [] data

6.6 High-Level-Planner Node

The high level planner node does the high-level control of the system, which
also includes receiving search commands from the user. In Figure 6.8 an
overview of the execution of a search is given. After an description of
the data structures used in the implementation the individual steps are
described in more detail.

6.6.1 Data Structures

The TopologicalMap class stores the information of the topological map in
a form which is easier to use by the planner. For every room the object
probabilities, the times to completely search the room, and the expected
search times are stored. Furthermore, for every pair of rooms the time to
travel from room A to room B, the rooms on the way from A to B, and the
poses of the doorways on the way are stored.
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Figure 6.8: High-level planner execution overview
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Listing 6.13: TopologicalMap

float[] object probabilities
float[] search times
float[] expected search times
float [][] travel times
int [][][] travel paths
Pose [][][] travel waypoints

The Action class specifies the high-level tasks. Its variables contain the
information needed for the execution of the task. The type variable spec-
ifies what high-level task to execute, the target object and target room

variables contain the searched object and the current room. In case of the
move-through-doorway task the next room is stored in the target room

variable and the pose variable contains the doorway pose.

Listing 6.14: Action

Type type
int target object
int target room
Pose pose

The State class represents the current state of the search, storing the cur-
rent room and which rooms are already visited, explored or searched.
The getPossibleSearchActions function returns a list of Actions with
type=SEARCH, one Action for every not searched room.

Listing 6.15: State

int current room
int[] searched
int[] explored
int[] visited

getPossibleSearchActions ()

The Plan class contains the actions to be executed in the plan and also the
final state of the search after the correct execution of all actions in the
path. This state is important for incomplete plans, which occur during the
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planning, to know, which rooms are not searched in this path. Additionally,
the probability of finding the object, the estimated time to fully execute
the plan and the expected time of the search using this plan are stored
in the Plan class. It has an addAction function, which adds an action to
the plan and also updates the other member variables. The update of the
expected search time is done according to Equation 5.30.

Listing 6.16: Plan

Action [] actions
State final state
float expected search time
float full search time
float object probability

addAction(Action , TopologicalMap)

6.6.2 Execution

The object search starts when the high-level planer gets the input of the
object, which should be searched. If this is the first search in a session, there
is only one room, which is set to not explored and not searched. Otherwise,
all rooms are set to not searched, but the rest of the state is kept from
previous searches because the mapping is not reseted in this case.

Update of the topological map

At the start of the search or after the execution of a high-level task a
TopologicalMapSrv request is sent to the mapping node. Using the re-
sponse of the service call, the internal representation is updated. This
involves updating the data in the TopologicalMap instance and adding
new rooms to the state if new rooms were discovered. The values in
object probabilities, search times and expected search times can be
copied from the response. To calculate the travel times, travel paths and
travel waypoints a graph is created, where each doorway is a node and
doorways belonging to the same room are connected by an edge. The weight
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of the edge, which is the time needed to drive from one doorway to the
other, is given in the service response. Using the Floyd–Warshall algorithm
the shortest paths and the length of the shortest paths are calculated for
every pair of doorways. The travel waypoints are the poses of the door-
ways on the shortest path, the travel path contains the rooms between the
doorways on the shortest path with the addition of the final room, and the
travel times are calculated by adding the correct to doorway times from
the service response to the length of the shortest path. Those calculations
are done for every pair of doorways, which is in further consequence also
for every pair of different rooms. Pairs of the same room have travel times

of zero and empty paths.

Planning

The planning is done in three steps. In a first step a plan is generated using
a greedy strategy. The second step is to execute a depth-first search on the
tree of possible plans described in Section 5.6.1. The result of the greedy
planning is used as a first estimate to enable effective pruning, which can
reduce the planning time dramatically. From the result of the full planning,
which only contains search actions, the next high-level task is generated.

The pseudo-code of the greedy planning is shown in Listing 6.17. First, an
empty plan is created with the final state being set to the current state.
If the list of actions returned by the getPossibleSearchActions function is
not empty, speed values for all actions in the list are calculated. The search
speed value is the probability of finding the object in the corresponding
room divided by the expected search time, which also includes the time to
travel to the room to search. The search action with the highest search speed
is added to the plan, using the addAction function described in Section
6.6.1. This is repeated until search actions for all not searched rooms are
added to the plan, resulting in the greedy plan.
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Listing 6.17: Greedy planning

Plan greedyPlan(TopologicalMap map , State state){
Plan plan(state);
Action [] possible actions = plan. final state .getPossibleSearchActions ();
while(! possible actions .empty()){

Action best action ;
float max speed = 0.0;
for(action in possible actions){

float time = map. travel times [plan. final state . current room ][ action. target room ]
+ map. search times [action. target room ];

float speed = map. object probabilities [action. target room ] / time;
if(speed > max speed){

max speed = speed;
best action = action;
}
}
plan.addAction(best action , map);
possible actions = plan. final state .getPossibleSearchActions ();
}
return plan;
}

The depth-first search of the search tree depicted in Figure 5.13 is imple-
mented with a recursive function, which is shown in Listing 6.18. To start
the depth-first search the plan function is called with the topological map,
an empty plan, which is initialized with the current search state, and the
expected search time of the greedy plan. If the list of actions returned by the
getPossibleSearchActions function is empty, a leaf node is reached and
the old plan is returned. Otherwise new plans are created, which contain
an additional search action. These plans are then evaluated further or dis-
carded, if the expected search time is already higher than the cutoff time.
The best of those plans is then returned. If a complete plan, which is a
plan where all rooms are searched in the final state, is found, which
has a lower expected search time than the cutoff time, the cutoff time is
updated.
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Listing 6.18: plan function

Plan plan(TopologicalMap map , Plan old plan , float& cutoff time){
Action [] possible actions = old plan . final state .getPossibleSearchActions ();
if( possible actions .empty()){

return old plan ;
}

SearchPlan best plan ;
best plan . expected search time = Infinity;
for(action : possible actions){

SearchPlan new plan = old plan ;
new plan .addAction(action , map);
if( new plan . expected search time >= cutoff time){

continue;
}

new plan = plan(map , new plan , cutoff time );
if( new plan . expected search time < best plan . expected search time){

best plan = new plan ;
if( best plan . expected search time < cutoff time )

cutoff time = best plan . expected search time ;
}
}
return best plan ;
}

The generated plan only contains the order in which the rooms are searched.
If the plan is empty, the search is finished and no object was found. Other-
wise, the generation of the high-level task is done according to Section 5.6.2,
as shown in Listing 6.19.
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Listing 6.19: generateNextTask function

Action generateNextTask(Plan plan , TopologicalMap map , State state){
if(plan.actions.front. target room != state. current room )

return Action(MOVE TO , searched object ,
map. travel paths [state. current room ][plan.actions.front. target room ].front ,
map. travel waypoints [state. current room ][ plans.actions.front. target room ]. front );

else if(state.visited[state. current room ] == false)
return Action(PEEK , searched object , state.current room , Pose ());

else if(state.explored[state. current room ] == false)
return Action(EXPLORE , searched object , state.current room , Pose ());

else
return Action(SEARCH , searched object , state.current room , Pose ());

}

Executing the next high-level task

The generated next high-level task is sent to the low-level-planner in form
of a HighLevelTask action, which is shown in Listing 6.20.

Listing 6.20: HighLevelTask

# goal
int16 type
geometry msgs /Pose pose
int16 target room
int16 target obj
−−−
# result
int16 result number
−−−
# feedback

The low-level-planner tries to execute the high-level tasks and sends back a
result. Based on the result the state is updated. Possible results are:

• SUCCEEDED: The high-level task was successfully executed and nothing
special happened. If a move-through-doorway task was executed, the
entered room is set to visited. If an explore-room task was executed,
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the current room is set to explored. If a search-room task was executed,
the current room is set to searched.

• ABORTED: The high-level task could not be executed. In this case the
state is not changed.

• OBJECT FOUND: The high-level task was stopped because the object was
found. In this case the state is not changed, but the search is finished.

• NEW DOORWAY FOUND: The high-level task was stopped because a new
doorway was found. This result is only possible when executing an
explore-room task. The state will be changed after receiving the new
topological map.

6.7 Low-Level-Planner Node

The high level planner node sends HighLevelTask actions to the
low level planner node, which tries to execute them and sends the result
of the execution back to the high level planner. The execution of the robot
movements is mainly done via the move base package. The move base takes
goal poses and plans the robot controls to get to this goal poses, considering
the map and sensor inputs for obstacle avoidance. If the goal is reached the
move base returns SUCCEEDED and if the goal could not be reached ABORTED

is returned. Only during the peek task velocity commands are directly sent
to the Turtlebot interface.

The node runs a loop, which is depicted in Figure 6.9. Which messages are
processed depends on the currently active task, but the latest map message is
always stored to have the most recent map available. Next, code dependent
on the task, the received messages, and the result of the move base is
executed. This code involves the start of the task execution, the generation
and sending of goal poses or velocity commands, and the sending of the
results back to the high level planner. At the end of the loop the current
action is published to inform the mapping node about the high-level task in
execution. In the following sections the implementation of the individual
tasks is described in more detail.
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process messages

publish current task

do task stuff

Figure 6.9: Overview over the execution of the low level planner node

6.7.1 Move Through Doorway Task

The steps of the execution of this task are already described in Section 5.7.1.
The current state of the execution is stored in a state variable, which can
either be STARTED, FIRST GOAL REACHED, OTHER ROOM REACHED or FINISHED.
Depending on the state the goal pose is calculated and sent to the move base.
In Figure 6.10 the calculation of the goal poses is depicted. The obstacles in
the map are inflated to get the area the robot can drive to. Depending on
the state the goal is 0.5 m in front of the doorway (state = STARTED), 0.5 m
behind the doorway (state = FIRST GOAL REACHED) or again 0.5 m in front
of the doorway, but with flipped orientation (state = REACHED OTHER ROOM).
If the location directly in front of the doorway is inaccessible, goal poses
shifted to the side are tested until an accessible pose is found. A state change
happens if the goal is reached or the map switch occurs. At any state change
a new goal pose is calculated and sent to the move base. Furthermore, every
time a dorway poses message arrives a new goal pose is calculated. This
goal pose is only sent to the move base if the goal has changed noteworthy.
If the move base fails to execute a movement, the task is aborted. Otherwise,
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after reaching the final goal, SUCCEEDED is returned to the high level planner
node.

Figure 6.10: Goal calculation during drive-through-doorway task: The map and the acces-
sible cells (white) are shown in the background. The doorway poses (green
arrow before map switch, purple arrow afterwards) and the goal poses (red
arrows) are shown. If the preferred goal pose is not accessible, an accessible
pose on the blue lines is chosen.

6.7.2 Peek Task

In this task velocity commands are sent directly to the Turtlebot interface be-
cause collisions are nearly impossible during the in-place rotations executed
in this task. At the start of the task the current orientation of the robot is
stored. Then a velocity command with zero translational velocity and a low
negative rotational velocity is sent repetitively to the robot until a rotation
of -90° is done. This is repeated with a positive angular velocity until a
rotation of 90° compared to the starting orientation is reached. With an again
negative angular velocity the robot is rotated back to the starting position
and SUCCEEDED is reported to the high-level planner. During the execution
high confidence objects messages can be received. If a confident detection
of a searched object is received, the task is stopped and OBJECT FOUND is
reported to the high-level planner.
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6.7.3 Explore Room Task

Four events can trigger a new goal pose during the execution of the explo-
ration task. The first is reaching the current goal pose. The second trigger is
the reception of a new map. In this case a new goal pose is calculated. If
the new pose differs significantly from the old goal pose, the goal is sent
to the move base. The third trigger is a failed movement execution. In this
case a new goal pose is calculated with exclusion of poses similar to the
failed goal pose and sent to the move base. The fourth event is triggered if
the robot has not moved for a specified time. In this case a problem in the
path planning is assumed and a new goal is calculated like in the previous
case.

The calculation of the next goal pose is done according to Section 5.7.3. The
calculation of the frontiers is shown in Figure 6.11. At first three cv::Mat-
images are created from the map, one containing the free cells, one the
occupied cells and one the unknown cells. The image of the free cells is
filtered by the morphological operation opening with a circular kernel. The
diameter of the kernel is the robot diameter. The image of the occupied
cells is dilated using the same kernel. The image of the unknown cells is
dilated with a 3x3 kernel, to get an overlap with the free cells. The not-
forbidden cells are the filtered free cells minus the dilated occupied cells.
Not-forbidden cells are valid locations for the robot. However, these cells
need not be accessible because obstacles could block the way to some of
those cells. Therefore a flood fill algorithm is executed on the image of the
not-forbidden cells with the current robot location being the starting pixel
for the flood fill. This results in the cells accessible by the robot, which are
identical to the not-forbidden cells in the example shown in Figure 6.11.
The frontiers are then the intersection of the dilated unknown cells and the
accessible cells.

The goal pose is not set to the nearest frontier. Instead poses near the
frontiers are considered, which are depicted in Figure 6.12. This is done to
avoid goal poses at the border of the accessible space, which have a higher
probability for a failed navigation. Additionally a penalty distance is added
to cells near the border of accessible space, so those cells are only chosen
as goal locations if necessary. The resulting goal pose is the location of the
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(a) free cells (b) occupied cells (c) unknown cells

(d) filtered free cells (e) dilated occupied cells (f) dilated unknown cells

(g) not-forbidden cells (h) accessible cells (i) frontiers

Figure 6.11: Calculation of the frontiers: In those binary images black is 1 and white is 0;
the gray accessible area in the last image is just for clarity
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nearest possible goal cell, including the penalty, with an orientation towards
the frontier.

Figure 6.12: Possible goal cells are shown in dark gray, accessible cells in light gray and
frontiers in black

A special case are goal poses within the robots footprint. This can happen
because no clearing of the footprint is done in the mapping. In this case the
goal is set to a pose outside the footprint facing towards the frontier.

During the execution, high confidence objects messages can be received.
If a confident detection of a searched object is received, the task is stopped
and OBJECT FOUND is reported to the high-level planner. Also doorwy found

messages can be received. If a doorwy found message is received, the ex-
ploration is stopped and NEW DOORWAY FOUND is reported to the high-level
planner.

6.7.4 Search Room Task

The search room task is implemented using the Searcher class, which
contains and maintains the data needed for the search planning. In Listing
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6.21 the most important member variables and the callback functions for
the necessary messages are shown.

Listing 6.21: Searcher

ObjectMap object map
OctoMapper octo mapper
ObjectMap mapping object map
cv::Mat accessible map
cv::Mat border map
cv::Mat direction map
cv::Mat[] previous pose maps
cv::Mat[] seen maps
cv::Mat not fully viewed border map

mapCallback ()
visionResultCallback ()

The object map and the octo mapper variables are used for the creation of
an Object-Map and a 3D map like in the mapping node. The same classes
are used, except the OctoMapper class has an additional value per node
for counting the number of updates. The mapping has only to be done
for the robot pose, instead of all particles, as the localization is assumed
to be accurate enough after the exploration. Furthermore, only the Object-
Map for the searched object type has to be created. This means that more
samples from the object detection can be used without slowing down the
node. Instead of using the point cloud from the camera the samples from
the VisionResult message are used as input for the 3D mapping. When a
VisionResult message arrives the two maps are updated. After the update
the object probability is calculated for each cell and if it is greater than a
threshold, the object is found. In this case OBJECT FOUND is reported to the
high-level planner and the search is stopped.

The mapping object map variable stores the response of the last
ObjectProbabilityMapSrv service call. Storing the response speeds up the
pose calculation because the service can be skipped for some pose calcula-
tions until it is done again.

The accesible map stores the area accessible by the robot. It is calculated
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Figure 6.13: Border calculation: In black is the accesible map, in the red the area, which is
added by the first dilation and the green area is the border, which is added by
the dilation with the 3x3 kernel

like in the exploration task. The border map stores the border described in
Section 5.7.4. To get a smoother result a dilated version of the accesible map

is created. This dilated map is further dilated with a 3x3 kernel and the
less dilated image is subtracted. The result is the border. The operations
are shown in Figure 6.13. The direction map contains the directions away
from the accessible area for each cell, as described in Section 5.7.4. To
calculate this map a distance transform is applied on a dilated version of the
accesible map. The gradient of the distance transform result is calculated
by filtering the image with Sobel kernels, once to calculate the x-derivative
and once to calculate the y-derivative. The direction of the gradient is the
direction map. The three maps described in this paragraph are calculated
when new map messages are received.

The remaining maps are updated every time a VisionResult message is
processed. The previous pose maps store the poses at which an image,
whose VisionResult was used, was taken. The 360° are split into sectors
and for each sector a map is stored in the previous pose maps array. If a
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VisionResult message is processed, the time stamp of the message, which
is also the time stamp of the image, is used to get the robot pose at that
time from the tf-library. The corresponding cell in the previous pose maps

is then set to one. The seen maps array has the same structure, one 2D map
for each sector. It stores which cells were seen from which direction. This is
important for the decision if a cell on the border was seen well enough. The
cells within the view cone and with a distance to the robot of less than 2.2 m
are determined. The reason to limit the distance at 2.2 m instead of 3.5 m,
which is the specified maximum range of the RGBD-camera, is that not
the border is of interest, but the area behind the border. In the seen maps
of the corresponding sector and its neighboring sectors the values in the
determined cells are incremented. The neighboring sectors are also updated,
so the angle constraint is not that strict. The not fully viewed border map is
then created based on the border map, the direction map and the seen maps.
It contains border cells, which were not seen well enough. For each cell
set in the border map the direction in the direction map is used to find the
correct cell in the seen maps. If the value of the cell in the seen maps is lower
than a threshold, the cell is set in the not fully viewed border map.

The calculation of a new goal pose is triggered by three events. The standard
trigger is that a VisionResult message was received from the last goal pose.
This design ensures that a view is done at the calculated pose. The other
two are the same as in the exploration task, the failed movement execution
and no movement for some time.

In Listing 6.22 the general execution of the calculation of the next pose is
shown. The get2DProbabilityMap function, which calculates the 2D proba-
bility map, is described below. For every sector in the previous pose maps

and every cell in the grid map a view pose is generated, where the posi-
tion is the center of the cell and the orientation the angle in the middle
of the sector. If the cell is accessible and the view pose was never visited,
the view pose is evaluated by the calculateViewValue function, which is
also described below. The getPose function calculates then the goal the
robot should drive to from the best evaluated cell. If no pose has a value
greater than 0, the room is completely searched, SUCCEEDED is reported to
the high-level planner and the task is stopped. Otherwise, the goal is sent
to the move base.
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Listing 6.22: Calculation of the next pose

prob map = get2DProbabilityMap ();
float best value = 0.0;
Pose best pose ;
for(s in sectors){

for(cell in map){
if( accessible map (cell) and not previous pose maps [s](cell)){

float value = calculateViewValue(cell);
if(value > best value){

best value = value;
best pose = getPose(cell , sector );
}
}
}
}
if( best value > 0.0)

sendGoal( best pose );

The calculation of the 2D probability map can be seen in Listing 6.24. The
getMapFromMapping function, which calls the ObjectProbabilityMapSrv ser-
vice, is only executed every fifth time a new pose is calculated. The 3D
probability grid map is then collapsed to 2D as can be seen in the for-loop.
The line if(octo mapper.getUpdateCount(x,y,z) < threshold) checks if
the number of updates of a cell in the 3D map is higher than a threshold
value, which was set to 20 after tests. If this is true, the probability for the
object being in that cell is 0 because the cell was seen often enough to make
the assumption that the object is not there.
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Listing 6.23: get2DProbabilityMap()

cv::Mat get2DProbabilityMap(){
if( goal calculation counter %5 == 0)

mapping object map = getMapFromMapping ();
goal calculation counter ++;

for((x,y) in map){
float prob = 1.0;
for(z=0; z<object map . z steps ; z++){

if( octo mapper .getUpdateCount(x,y,z) < threshold){
prob = prob∗(1−mapping object map .getProbability(x,y,z));
}
}
2Dmap(x,y) = 1−prob;
}
return 2Dmap(x,y);
}

The calculateViewValue can be seen in Listing 6.24. The probability of
detecting an object P is calculated according to Equation 5.33 and the
term for coverage B is calculated according to Equation 5.35. The vari-
able seenKernelValues contains pre-calculated values for the probability
of detecting an object in a cell according to Figure 5.19 and the variable
seenKernelPoints is a list of offsets, where those are non-zero. The func-
tion getVisibilityProb implements the calculation of the probability of
an object being visible according to Equation 5.34. The time to get to the
view pose T is calculated according to Equation 5.32 and the return value
according to Equation 5.31.
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Listing 6.24: calculateViewValue()

float calculateViewValue(cv::Point cell , int sector , cv::Mat prob map ,
Pose current pose){

float B = 0.0, P = 1.0;
for(int i=0; i<seenKernelPoints.size (); i++){

cv::Point offset = seenKernelPoints[sector ][i];
cv::Point c = cell+offset;
P = P ∗ (1−getVisibilityProb(sector ,offset )∗

seenKernelValues[sector ][i]∗ prob map (c));
B = B + V B ∗ not fully viewed border map (c);
}
P = 1−P;
if(B == 0.0)

return−Infinity;

float T = calculateTime(getPose(cell , sector), current pose );
return (P+B)/T;
}
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In this chapter we present an evaluation of the active object search system
described in this thesis. A detailed and meaningful quantitative evaluation
of the complete system is very demanding for multiple reasons. The test
conditions, like the environment, the searched object type, the object location
and the starting pose, have a huge impact on the search time and the utility
of an intelligent behavior. The result is also influenced by random factors,
like measurement noise, inaccuracies of the robot movement, and timing of
actions, which can lead to very different results even with similar settings.
Furthermore, test runs can easily take more than half an hour, so extensive
testing needs time. Therefore this evaluation is mostly done qualitatively by
investigating representative runs and discussing special cases.

The evaluation is split into three parts. The first part covers the basic func-
tionality, where the results of the computer vision and the performance of
the navigation are discussed. In the second part the quality of the generated
maps is investigated. The last part covers the performance of the actual
object search.

Three environments were available for testing. Environment 1 is a home
environment in a small flat, consisting of three rooms. Environment 2 is an
atypical university environment consisting of some offices, and a robotics lab.
Environment 3 is a part of an university floor with rooms of various types.
A more detailed description of the environments can be found in Section
7.2.1. For a first testing of the active object search system, environments
with more space for navigation and less clutter would be better to reduce
the influence of disturbing factors, like navigation problems, on the test
results. As such environments were not available the robot has to cope with
the difficulties and these have to be considered in the results. Some minor
modifications were made to the environments, like fencing off obstacles
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the robot cannot detect neither with the LIDAR nor with the camera and
dangerous areas like stairs.

7.1 Basic Functionality

In this section an overview is given of how well the basic components of
the developed system work in practice. This should help to get a better
understanding for the results presented in the following sections.

7.1.1 Computer Vision

Room type classification

In most cases the room type classifier returns reasonable results. If there is
a clearly correct room type, the probability for this room type in the result
of the room type classifier is high, as can be seen in Figure 7.1.

(a) living room: 0.708, parlor: 0.239 (b) corridor: 0.956

Figure 7.1: Images with a high probability for the correct room type in the room type
classification result; the result of the room type classifier is shown in the caption
(only for room types with a significant probability)

In many cases multiple similar room types, e.g. kitchen and kitchenette, are
fitting. In this case most of the probability in the room type classification
result is split between the fitting room types, as can be seen in Figure 7.2.
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(a) kitchen: 0.579, kitchenette: 0.399 (b) office: 0.561, home office: 0.424

Figure 7.2: Images, where most of the probability in the room type classification result is
split between two fitting types; the result of the room type classifier is shown in
the caption (only for room types with a significant probability)

In some images the room type is not clear. In this case multiple different
room types have a significant probability in the result of the place classifier
and some of those are not fitting. In the image on the left of Figure 7.3 a
living room area with a kitchen area in the background is show. The result
of the room type classifier does not reflect this. In the image on the right
the room types office and corridor are reasonable, but the other room types
which have a significant probability, are wrong.

(a) office: 0.242, home office: 0.240,
pantry: 0.104, dorm room: 0.083,
kitchen: 0.072, kitchenette: 0.062

(b) office: 0.347, reception: 0.178,
corridor: 0.126, art gallery: 0.120,
lobby: 0.067, art studio: 0.063

Figure 7.3: Images with no clear room type; the result of the room type classifier is shown
in the caption (only for room types with a significant probability)
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The place classifier has obviously problems when the robot is in front of
a wall or another object which covers the whole image, as can be seen in
Figure 7.4. In this case the room types closet, corridor, shower and basement
have usually a high probability in the room type classification result.

(a) closet: 0.535, corridor: 0.206,
shower: 0.092

Figure 7.4: Image taken directly in front of a wardrobe; the result of the room type classifier
is shown in the caption (only for room types with a significant probability)

(a) Image showing a dine room area
and a kitchen area:
kitchen: 0.459, kitchenette: 0.397,
dine room: 0.060

(b) Image showing only a dine room
area:
dine room: 0.591, kitchen: 0.066

Figure 7.5: Image showing two areas of different types and comparison image; the result
of the room type classifier is shown in the caption (only for room types with a
significant probability)
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If multiple areas of different room types are visible in one image, this is
most of the time not reflected in the result of the place classifier because
the more prominent room type overrules the other one. This can be seen in
Figure 7.5: on the left, where also a kitchen area is visible, the probability
for dine room is low, whereas in the right image, where no kitchen area is
visible, the probability for dine room is high.

(a) dark and noisy image:
kitchen: 0.481, kitchenette: 0.151,
restaurant kitchen: 0.115

(b) comparison image:
kitchen: 0.579, kitchenette: 0.399

(c) blurry image:
kitchen: 0.594, kitchenette: 0.355

(d) comparison image:
kitchen: 0.511, kitchenette: 0.441

Figure 7.6: Impact of bad lighting, noise and motion blur on the place classifier; the result
of the room type classifier is shown in the caption (only for room types with a
significant probability)

The place classifier is quiet robust against bad lighting and noise in the
image, as can be seen by comparing image (a) and (b) in Figure 7.6. Also
blurry images caused by the robot movement have no big impact, as can be
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(a) The mouse takes little space in the im-
age, but was still detected with high
confidence

(b) The cutlery is perfectly visible, but
only the spoon was detected correctly

Figure 7.7: Detected objects (given by bounding box, type and confidence) with a confidence
greater than 0.1

seen by comparing image (c) and (d) in Figure 7.6.

Object detection

A quantitative evaluation of the used YOLOv3 object detection CNN can be
found in the related paper [19]. There can be seen that the object detection
works better for large objects than for small ones. This trend was also ob-
served during the test runs. During tests was found that not all small objects
are equally difficult to detect for the CNN. E.g. remotes and especially
mouses were detected most of the time with high confidence, even from
some distance, as can be seen in image (a) of Figure 7.7. On the other hand
other small objects, e.g. spoons, knifes and forks, were only detected when
the robot was right in front, as shown in image (b) of Figure 7.7, and then
only sometimes with high confidence.

The confidence of the detections was found to vary a lot, like in image (a)
of Figure 7.8. Also some completely wrong detections were encountered,
e.g the refrigerator in image (b) of Figure 7.8.
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(a) High confidence for the chairs in front
and the bowl, low confidences for all
other objects; the wine glass on the
right of the potted plant was not de-
tected at all

(b) Refrigerator detected at wall

Figure 7.8: Detected objects (given by bounding box, type and confidence) with a confidence
greater than 0.1

The performance of the object detection drops significantly with bad lighting,
as can be seen in Figure 7.9. This is especially a problem because the
sensitivity of the used RGBD-camera is not very high and the dynamic
range is low.

The performance of the object detection also drops with motion blur, as can
be seen in Figure 7.10. This, in combination with the low sensitivity of the
camera and the therefore necessary high exposure time, made the limitation
of the rotational velocity during movement necessary.

In general can be said that the object detection is sufficient if no objects,
which are difficult to detect, are searched. However, a better object detection
would make the problem easier and the object search more reliable.

Doorway detection

During the nearly 50 test runs with enabled doorway detection done for
the evaluation, more than 100 doorways were correctly inserted into the
maps with no false negatives and only one false positives. Also during the
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(a) Many detections with good lighting (b) Few and wrong detections with bad
lighting

Figure 7.9: Detected objects (given by bounding box, type and confidence) with a confidence
greater than 0.1

(a) Many detections without motion blur (b) Few detections with motion blur

Figure 7.10: Detected objects (given by bounding box, type and confidence) with a confi-
dence greater than 0.1

development process only one false positive was encountered after good
parameters were found.

114



7.2 Mapping

7.1.2 Navigation

Most of the navigation goals are reached without difficulties or major delays.
The global planning in the 2D map of the room works without problems.
However the local planner and the robot movement cause some problems.
The high payload brings the robot to its limits. On even and clean floors the
robot moves fine, but on slippery or uneven floors the robot has not enough
grip on the active wheels to execute the movements as planned because
too much weight is on the passive wheels. Due to the robot’s design, with
the passive wheels being fixed in forward direction, rotational movements
are more difficult to execute for the robot. Thus, the problem with slipping
wheels only affects the rotational component of the movement. The result is
that rotations are slower, curves are driven wider as planned and changes
in the direction are delayed. In open areas this does not cause problems but
in narrow areas the local planner sometimes fails to keep enough distance
between the robot and the obstacles. In this case the planner fails to find a
valid path because every path is assumed to cause a collision. The robot can
also get into this situation if it drifts towards an obstacle during an in-place
rotation which happens if only one active wheel is slipping. The recovery
behaviors of the move base and short backward movements are usually
sufficient to recover from this situation, but these take some time. This is
a major factor for the varying search times for the same test scenario. The
local planner has in general a big impact on the search time. The smoother
it can navigate the robot through narrow areas and around obstacles, the
faster the search will be.

7.2 Mapping

The quality of the maps is investigated after a complete exploration of the
environment, as the goal of the exploration is to gather information for
an efficient object search. Therefore, a modified high-level planner is used
which does not generate search tasks. This was done in all three environ-
ments multiple times. In this section typical results of those exploration runs
are presented and also the encountered problems are described. At first the
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metric maps are investigated, followed by an investigation of the Room-
Type-Maps and the Object-Probability-Maps. At the end of this section the
estimations after peeking into a room are presented.

7.2.1 Hybrid Metric Map

In Figure 7.11 - 7.13 maps automatically created in the three test environ-
ments are shown. The 2D maps of the rooms have in general a good quality,
especially for small rooms. In all maps some cells outside the room were
set to free. This is due to invalid range measurements which are handled
as described in Section 6.2. In general these free cells have no significant
negative impact. In larger rooms the quality of the maps decreases, which
can be seen in the map of room lab1. There the top part leans to the left
while the bottom right part is rotated towards the bottom left part. Another
example can be seen in the map of the room institute1, where the bottom
corridor is curved upwards. The reason for these distortions is probably
the limited range of the LIDAR, which results in many invalid range mea-
surements in open areas. In further consequence less distinctive features are
seen by the LIDAR and so the localization of the robot has to rely on the
odometry, which can lead to inaccurate localization and therefore also to
inaccurate maps. The larger the rooms are, the bigger is the impact of those
inaccuracies. This shows the benefit of the hybrid map design which splits
larger environments into easier to handle room maps.

The doorway mapping works nicely in all explored environments, as can be
seen in the hybrid maps in Figure 7.11 - 7.13. The doorway positions and
orientations are very accurate in almost all cases, except for the doorway
between rooms lab1 and lab3. There a door closer mounted on top of the
door confused the doorway detection and was responsible for the doorway
detections being not in the center of the doorway. In this case the doorway
pose is still within the doorway and as the shift is the same in both rooms,
it causes no problems.
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Figure 7.11: Hybrid map of the home environment: Room home1 is a combination of a
kitchen and a living room, room home2 is a bedroom with an office-like area in
the upper right corner and room home3 is an anteroom. The topological map
consists of the three rooms and the two edges represented by the red lines
between the doorway poses.
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Figure 7.12: Hybrid map of robotics-lab environment: Room lab1 is the robotics-lab which
consists mainly of an office area. It has free space at the bottom left and a sofa
and a kitchen area at the bottom right. Room lab2 is an office, room lab3 is a
corridor, room lab4 is also an office and room lab5 is a workshop/storage room.
The topological map consists of the five rooms and the four edges represented
by the red lines between the doorway poses.
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Figure 7.13: Hybrid map of a part of an university floor: Room institute1 is a corridor with
a copier in the open area on the left, room institute2 consists of a kitchen area
and a dining table, room institute3 is a meeting room, room institute4 is a
bathroom and room institute5 is a secretariat. The topological map consists of
the five rooms and the four edges represented by the red lines between the
doorway poses.
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7.2.2 Room Type Map

The room home1 was chosen for the evaluation of the quality of the Room-
Type-Maps because in this room areas of different room types exist. Assign-
ing a ground truth Room-Type-Map is only possible to a limited extend,
because for some areas multiple room types are fitting and the boundary
between areas of different room types is even hard to judge for humans.
Instead of a somewhat arbitrary ground truth, images covering the whole
room are used in the evaluation as comparison for the generated maps.
These images are shown in Figure 7.14. In Figure 7.15 the poses, where the
images were taken, are depicted and also the room types of the main areas
are marked.

In Figure 7.16 the most likely room types for different runs and settings
are shown. In general the main areas of the room are correctly classified,
though the borders of the areas vary a lot for different runs and settings.
After the exploration in run 1, the kitchen area, the dining table and the
living room area are correctly classified. The areas near the doorways are
classified as closet, probably because of the wooden door frames. The area
around the TV is classified as dine room, which is definitely not correct.
However, this area was only seen at the edge of a few images which were
mostly classified as dine room.

In image (b) of Figure 7.16 the Room-Type-Map created without using the
correlation between room types described at the end of Section 5.5.3 is
shown. On the one hand the dining room area is much larger there. This is
caused by the uncertainty of the room type classification between the similar
room types kitchen and kitchenette. Without considering this similarity a
third room type, in this case the type dine room, becomes more likely. On
the other hand the closet area is much larger because it is not penalized for
not really fitting to the other room types. In general the impact of using the
correlation between room types is not that big, but the tests showed at least
a small positive effect.

In the images (c) and (d) of Figure 7.16 the resulting Room-Type-Maps
for a second and third run are shown. After run 2 the living room area is
much larger than after run 1, whereas in run 3 the kitchen and kitchenette
area is much larger. This shows the impact of the trajectory during the
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(1) kitchen: 0.414, kitchenette: 0.401,
dinette: 0.087, dine room: 0.077

(2) kitchenette: 0.468, kitchen: 0.245,
living room: 0.066, galley: 0.053

(3) kitchen: 0.444, kitchenette: 0.418 (4) living room: 0.708, parlor: 0.239

(5) kitchen: 0.481, kitchenette: 0.297,
galley: 0.205

(6) closet: 0.243, pantry: 0.144, liv-
ing room: 0.092, basement: 0.076,
lobby: 0.069, reception: 0.060,
kitchenette: 0.052

Figure 7.14: Images of the room home1 with place classification results
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Figure 7.15: Detailed map of the room home1: Green arrows mark the doorways and the
numbered red arrows are the view poses of the corresponding images in Figure
7.14. The red area is a kitchen area, the yellow area is a dining table and the
green area is a living room.
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(a) run 1 (b) run 1, without room
type correlation

(c) run 2

(d) run 3 (e) after executed search

kitchen
kitchenette
dine room
living room
basement
closet
restaurant kitchen

Figure 7.16: Map of the most likely room types for the room home1; robot trajectory is
depicted as black line
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(a) kitchen (b) kitchenette (c) living room

(d) dine room (e) closet

1

0

0.8

0.6

0.4

0.2

Figure 7.17: Probabilities of the stated room types in room home1 after run 1; in the legend
the probability values for the different colors are stated; blue areas have a
high probability of being of the given type, red ares a low probability; The
probabilities fit to the most likely room types shown in image (a) of Figure
7.16.

exploration on the result. The trajectory decides which areas are seen how
often and from which direction and which areas are seen together in one
image. Especially the room type of areas, where the room type classifier is
not sure, depends highly on the trajectory. Also the border between areas of
different room type is shifted depending on the taken images because one
room type might be overruled by the neighboring room type, as described
in Section 7.1.1.

In image (e) of Figure 7.16 the result after an object search is shown. Here
the favor of the room type classification to detect kitchenettes can be seen.
Also noteworthy is the nice shape of the living room area and the basement
area, which is probability caused by the robot looking into the wall.

The maps containing the probabilities of the most important room types
in the room home1 after exploration run 1 are shown in Figure 7.17. When
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comparing with image (a) in Figure 7.16, it can be seen, as expected, that
at every cell the probability of the most likely room type is high. Except
at the border of areas, the probability of the most likely room type is very
high. This is because the parameters have to be chosen in a way that a quick
estimation of the room type during the peek task is possible. Therefore,
the probability of the most likely room type of a cell increases relatively
quickly to the saturation value of 0.8. Also noteworthy is the relatively high
probability for kitchenette on the right side of the room. As can be seen in
image (6) of Figure 7.14 the room type classification is not sure about the
room type there and proposes multiple room types, including kitchenette.

7.2.3 Object Probability Map

In this section the Object-Probability-Maps are evaluated based on the results
of exploration runs in room home1. This room is suitable for the evaluation
because it consists of areas of different room types and also a variety of
different object were present during the runs. For the evaluation in this
section the 2D projections of the Object-Probability-Maps are used because
the search planning uses the 2D projections and a 3D Object-Probability-Map
is difficult to visualize.

In Figure 7.18 all cells with a probability greater than 0.25 in the Object-
Probability-Maps of any object type are depicted together with the type of
the object. In some cells multiple objects were detected and therefore three
images are used for the visualization. These cells are basically where the
robot thinks it might have seen an object. The results of the two depicted runs
show that big objects, like sofas or tables, are reliably detected. However,
the object probabilities of those objects are also high in the areas around
the objects due to the missing per-pixel segmentation of the objects. For
example parts of the dining table have also a high probability for being
a sofa. For the search planning this is usually no problem as the object is
either already found during the exploration or found quickly anyway. On
the other hand only some smaller objects have a high probability in the
Object-Probability-Map. The problem with small objects is that they are often
not detected and so the object probability does not increase high enough.
The trajectory has a big impact on what objects have a high probability
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(a) bowl(green),
sink(blue), cup(cyan),
sofa(red)

(b) refrigerator(green),
microwave(blue),
book(cyan), chair(red)

(c) bottle(green),
oven(blue), pot-
ted plant(cyan),
table(red)

(d) bowl(green),
sink(blue), cup(cyan),
sofa(red)

(e) refrigerator(green),
microwave(blue),
book(cyan), chair(red)

(f) monitor(yellow),
oven(blue), potted
plant(cyan), table(red)

(g) bowl(green),
sink(blue), cup(cyan),
sofa(red), or-
ange(yellow)

(h) refrigerator(green),
microwave(blue),
book(cyan),
chair(red), wine
glass(yellow),
knife(purple)

(i) monitor(yellow), bot-
tle(green), oven(blue),
potted plant(cyan), ta-
ble(red)

Figure 7.18: Objects probabilities higher than 0.25 after exploration; first row shows results
of run 1, second row shows results from run 2, 3rd row shows the ground
truth
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in the Object-Probability-Map. For example the monitor was not seen in
run 1 and also not the same cups were detected in the two runs. This is as
intended because the exploration is only done to quickly obtain enough
data for an intelligent search planning and some areas are not at all or only
vague seen in this process.

The probabilities in the Object-Probability-Map do not only depend on the
object detections. The information in the Room-Type-Maps is also used to
estimate the object probabilities, as described in Section 5.5.5. This indirect
way of estimating object probabilities has the most impact if no detections of
the given object type were made. In Figure 7.19 the Object-Probability-Maps
of some objects not detected during the exploration are depicted, together
with the most likely room types of the corresponding Room-Type-Map. In
general those probabilities are very low, but many cells together may have a
significant object probability. The connection to the Room-Type-Maps can
be seen nicely in the images. For example a fork is more likely in a dine
room than in areas of other room types or a dog is more likely in a living
room. On the other hand a suitcase is very unlikely in a kitchen.

In the upper center the probabilities are relatively high, as can be seen
especially in (g) and (h). This area was only seen by the LIDAR, but never by
the camera. Therefore, the probabilities for those cells in the Object-Map are
still the initial probabilities. In the other cells which were seen by the camera
and no object of the given type was found, the probability is lower than the
initial value. Therefore, also the values in the Object-Probability-Maps are
lower in those cells, which means the cells only seen by the LIDAR have
relative high probabilities for containing the object.

The resulting Object-Probability-Maps are reasonable at first glance and the
search tests will show how much they improve the object search.

In Table 7.1 the probabilities for an object of the given type being anywhere
in the room are shown for the object types in Figure 7.19. The probabilities
are according to the Object-Probability-Map. The larger living room area
in run 2 results in a larger probability for a dog being in the room. Also
noteworthy are the unexpectedly low probabilities for apple and toaster.
The reason is that according to the used commonsense knowledge apples
or toasters are not very frequent in indoor environments.
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(a) kitchen (b) kitchenette (c) living room

(d) dine room (e) closet

1

0

0.8

0.6

0.4

0.2

(g) fork (h) knife (i) apple

(j) toaster (k) suitcase (l) dog

Figure 7.19: Room type probabilities and object probabilities of given types after exploration
run 1
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run 1 run 2 run 3 average
fork 0.184 0.161 0.159 0.168
knife 0.315 0.331 0.314 0.320
apple 0.085 0.095 0.080 0.087
toaster 0.050 0.064 0.052 0.055
suitcase 0.076 0.089 0.061 0.075
dog 0.138 0.179 0.131 0.149

Table 7.1: Object probabilities in room home1

7.2.4 Probability Estimations after Peek Task

The estimation of the probability for a searched object being in a room after
the peek task is very important for the system to work well. Using this
estimation the robot decides if the room should be investigated further or if
other rooms are more promising. During the peek task only a fraction of the
room is seen and so the object probability in the whole room depends on the
estimation of the object probability in the rest of the room. This estimation
is done using the average room type probabilities of the explored area, as
described in Section 5.5.7. In Figure 7.20 images taken at the doorways into
different rooms are shown together with the average room type probabilities
of the rooms. The average room type probabilities are reasonable, maybe
with the exception of the images (e) and (f), but there is neither a meeting
room category nor a bathroom category in the detectable room types. One
thing to note is that the images (b) and (c) show the same room, but different
areas are seen from the different doorways, leading to different results. This
shows that the information gathered during the peek task is limited and
wrong assumptions might be made.

In Table 7.2 the object probabilities of some selected object types after the
peek task are shown. Except for the wine glass in room (d) and the toilet
in room (e) none of those objects were seen during the peek task. The
toilet was detected with high confidence, which can be seen on the high
probability, while the wine glass was only detected in one image, therefore
its probability is lower. The general trend of the probabilities looks good,
though the accuracy of the probabilities is hard to evaluate without a huge
amount of collected data. Only the relatively high probability for toilets is a
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(a) office: 0.4442
home office: 0.3214
attic: 0.0174

(b) dining room: 0.3918
livingroom: 0.3093
closet: 0.0878

(c) kitchen: 0.4841
restaurant kitchen: 0.2690
kitchenette: 0.0439

(d) kitchen: 0.3211
dining room: 0.2779
restaurant kitchen: 0.0978

(e) shower: 0.7556
locker room: 0.1701
martial arts gym: 0.0038

(f) classroom: 0.6971
cafeteria: 0.0919
conference auditorium: 0.0256

Figure 7.20: Images taken at the doorway into a room and the average room type probabili-
ties of the top 3 room types
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object type a b c d e f
microwave 0.065 0.099 0.317 0.287 0.029 0.050
wine glass 0.088 0.201 0.128 0.223 0.029 0.095
spoon 0.087 0.190 0.323 0.324 0.036 0.156
apple 0.040 0.049 0.074 0.083 0.015 0.041
laptop 0.665 0.152 0.053 0.106 0.046 0.431
mouse 0.584 0.043 0.019 0.041 0.024 0.176
remote 0.288 0.255 0.048 0.103 0.057 0.258
toilet 0.075 0.056 0.098 0.104 0.999 0.065

Table 7.2: Object probabilities of selected object types after peeking into the rooms shown
in Figure 7.20

bit weird, as toilets are very uncommon outside bathrooms.

7.3 Search

The search results of a series of test runs are presented in the first part of
this section, where the proposed intelligent active object search system and
an uninformed system which does not estimate likely object locations, are
compared. In the second part of this section the behavior of the proposed
system is evaluated in more detail based on individual runs.

7.3.1 Comparison between Intelligent and Uninformed
Search

Settings

The test runs were carried out using two different active object search
systems. One is the proposed intelligent active object search system which
uses the gathered information about rooms, room types, and object locations
to speed up the search. The second one is a modified version of the proposed
system which does not use this additional information and is therefore called
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uninformed search system. In this system the doorway detection is disabled,
which means that the room structure is ignored, and all occupied cells
have the same probability of containing the searched object. This results
in a coverage maximizing search strategy because the objective function of
the search planning in the uninformed system increases with the number
of well seen cells in a view. The uninformed search system explores the
environment before the search is started, so the high-level tasks are the same
as for the intelligent search system within a single room.

The test runs were executed in the home environment. Eight different
settings were chosen for the test runs, with four different searched objects
and two different starting positions per object. Reliable detected objects
were chosen to reduce the influence of the object detection and have more
emphasis on the search planning. The objects were positioned in for the
objects typical locations and between other objects, which means the robot
really has to search for them and does not find the objects during the
exploration. One example is shown in Figure 7.21, where some knifes are
hidden behind some bottles. In Figure 7.22 the map of the environment
is shown with marked room types, starting poses and object locations. In
Table 7.3 the searched objects, their locations in the map and the starting
poses are given for each setting. Also the areas where, according to the
used commonsense knowledge, the object is more likely are stated. For each
setting six search runs were done, three with the proposed intelligent search
system and three with the uninformed search system, which makes in total
48 runs.

setting start object location likely locations
1 1 remote 1 living room, hotel room, home office
2 3 remote 1 living room, hotel room, home office
3 1 mouse 2 home office
4 3 mouse 2 home office
5 1 knife 3 kitchen, kitchenette, dine room
6 2 knife 3 kitchen, kitchenette, dine room
7 1 spoon 4 kitchen, kitchenette, dine room
8 2 spoon 4 kitchen, kitchenette, dine room

Table 7.3: The eight different settings of the test runs
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Figure 7.21: Image of the location of the knifes searched with settings 5 and 6

home1

home3 home2

kitchen
kitchenette
dine room
living room
corridor
closet
hotel room
home office

1

3

3

2

1
4

starting pose
object location

2

Figure 7.22: Test environment with room types, starting poses and object locations (1:
remote, 2: mouse, 3: knife, 4: spoon)
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Results

In Figure 7.23 the average search times and average trajectory lengths of the
runs of the test series are shown.

The average search time of the intelligent search system was about 30%
lower than the average search time of the uninformed search system and
the difference between the systems was even higher in the trajectory length,
with the intelligent search system traveling nearly 40% less distance. The
reason for the greater difference in the trajectory length is that the switching
of high-level tasks and the peek tasks take some time (about 5 seconds per
high level task switch and about 20 seconds per peek task). This happens
more often with the intelligent search system and during this time the
robot stays at the same position. The variance in the search runs was high,
therefore the search times and trajectory lengths are shown in more detail
in Figure 7.24.
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Figure 7.23: Average search times and average trajectory lengths of the test runs

With settings 1 and 2 the uninformed search system performed better than
the intelligent search system. This has two reasons. On the one hand the
intelligent search system decided in 4 of the 6 runs to search room home2
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Figure 7.24: Search times and trajectory lengths in test series: The lines show the individual
test runs and the bars show the average search times and trajectory lengths of
a setting

first, so a lot of time was lost searching there. A more detailed description
of the search behavior in these runs is given in the next section. In the other
two cases, where room home1 was searched first, the remote was found
quickly. On the other hand the uninformed search system found the remote
relatively quickly because the remote could be seen from a view pose, where
the robot could cover many occupied cells, which makes it a preferred view
pose. Only once the remote was missed at the beginning, which, together
with navigation problems, resulted in the one longer search time of the
uninformed search system.

The search times for setting 3 highly depended on the direction the robot
started to explore. In Figure 7.25 can be seen that the exploration from
starting pose 1 can go either first towards room home3 (image (a)) or towards
room home2 (image (b)). The reason were probably small differences in the
navigation. Case (a) was found to happen about twice as often as case (b). In
case (a) the intelligent search system first searched room home3, which cost
some time, before room home2 was discovered and the object was found.
This problem of exploration versus exploitation is described in more detail
in the next section. In case (b) the mouse was found quickly. On the other
hand the uninformed search system performed better in case (a) because
then the exploration ended near the searched mouse and the mouse was
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found quickly. This is shown in Figure 7.26.

(a) (b)

Figure 7.25: Possible exploration trajectories from starting pose 1

The intelligent search system found the object very quickly with setting
4 because the robot recognized that it was already in a promising room,
so only this room was explored and the mouse was found quickly. The
uninformed search system was also relatively quick in this setting as the
mouse could be seen from a preferred view pose, where many cells were
covered.

With test settings 5, 6, 7 and 8 the intelligent search system performed much
better than the uninformed search system. The uninformed search system
needed more time with these settings because the searched objects were
positioned at locations where they could not be seen form view poses which
covered a lot of cells. As the uninformed search used these poses in the
beginning of the search it took some time in this mode to find the searched
object. The intelligent search system always selected the correct room to
search with these settings and most of the time the object was found quickly.
In Figure 7.27 the search trajectories for setting 7 and 8 of the intelligent
search system are depicted.

The search trajectory lengths show slightly different results because switch-
ing high-level tasks and executing the peek tasks have no impact on the
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Figure 7.26: Uninformed search for a mouse: The trajectories during exploration (blue)
and search (green) are show as well as the starting pose (cyan) and the final
pose, where the object was found (purple); The search trajectory is very short
because the exploration finished near the searched object

trajectory length. Further the search trajectory lengths are not affected by
navigation problems because there the robot does not move. The navigation
problems had a big impact on the time necessary to search room home2
which consisted mainly of narrow areas, as can be seen in the results of the
intelligent search with setting 1. However, the trajectory lengths ignore the
rotations of the robot, so the search time is still the better measurement for
the search performance.

To wrap things up, the intelligent active object search system performs much
better than the uninformed system except if there exist multiple rooms with
similar probability to contain the object. In this case a lot of time is lost by
completely searching a room not containing the object.
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Figure 7.27: Search trajectories for the intelligent search system with settings 7 and 8 (spoon
hidden in room home1): The trajectories during the exploration (blue), the move
through doorway tasks (red) and the search (green) are shown as well as the
starting pose (cyan) and the final pose, where the object was found (purple);
only the map of room home1 is shown; in (b) and (f) the object was found very
quickly and in (a) and (c) and (e) it took slightly longer; in (d) the robot had
difficulties to find the object
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7.3.2 Qualitative Evaluation of the Proposed System

Search within a room

The trajectories of the test runs of the intelligent search system with settings
7 and 8, where a spoon was searched, are depicted in Figure 7.27. From the
figure it can be seen that the search within a room works very well most of
the time. In run (b) and (f) the object was found in one of the first generated
view poses, while in run (a), (c) and (e) the search took a bit longer. These
small differences are mainly due to the starting position of the robot. In run
(d) the object was missed at the beginning, so most of room was searched
before the table with the searched spoon was investigated again.

(a) with exploration task; object was
found quickly after exploration

(b) without exploration task; the room is
only explored as a side effect of the
search and therefore the kitchen area
was not discovered for a long time

Figure 7.28: Search for a bowl in room lab1: The bowl is hidden in the kitchen area in the
top left corner. The trajectories during exploration (blue) and search (green)
are shown as well as the starting pose (cyan) and the final pose, where the
object was found (purple)
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Test runs for the search within a room were also executed in room lab1. A
bowl was hidden in the kitchen part in the top left corner of the room. In
image (a) of Figure 7.28 the trajectory of one of those test runs is shown.
The exploration took most of the search time. After the exploration the
robot drove to some view poses in its vicinity and then immediately to the
kitchen area and found the object. Also some test runs were executed with
disabled exploration. In this case the exploration and mapping of the room
is done during the search and therefore the room is explored only slowly.
The trajectory of one of those runs is shown in image (b) of Figure 7.28.
In this run the kitchen area was not found for a long time and much time
was lost searching in unlikely areas. This shows the benefit of executing an
exploration task before the search task.

Search in environments with multiple rooms

Using the commonsense knowledge about which objects are likely in areas
of which room types, the robot can decide in which rooms a search is
promising. In Figure 7.27 tests runs are shown where the robot searched the
room, where the object was located, first.

As already mentioned in Section 7.3.1, with setting 2, where a remote
was hidden in room home1, the robot sometimes searched first in room
home2 and sometimes first in room home1. Runs for both cases are depicted
in Figure 7.29. In Table 7.4 the object probabilities and expected search
times of all rooms, and the expected search times of the path, where room
home1 was searched first, and the path, where room home2 was searched
first, are stated for both runs. In both runs room home1 was found to be
more likely to contain the object, but also larger, compared to room home2.

home1 home2 home3 1-2-3 2-1-3
P(o) T E(t)) P(o) T E(t) P(o) T E(t) E(t) E(t)

run (a) 0.213 728 616 0.158 400 360 0.034 232 227 1124 1107
run (b) 0.249 684 563 0.153 484 438 0.041 256 250 1122 1152

Table 7.4: Object probabilities (P(o)), times to completely search the room (T) and expected
search times (E(t) of the three rooms, and the expected search times for the search
sequences home1-home2-home3 and home2-home1-home3 for the two runs shown in
Figure 7.29
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(a) robot decided to search room home2 be-
fore room home1

(b) robot decided to search room home1
first

Figure 7.29: Example runs of searches for a remote: The trajectories during exploration
(blue), move through doorway (red) and search (green) are shown as well as
the starting pose (cyan), the final pose, where the object was found (purple),
and the connections of the paths over room borders (red lines); room home1 is
at the bottom, room home2 is at the top right and room home3 is at the top left

Therefore, the expected search times for the search sequence home1-home2-
home3 and the search sequence home2-home1-home3 are similar. The other
possible search sequences have a higher expected search time because room
home3 is very unlikely to contain the object and is therefore better searched
last. In run (a) the difference of the object probabilities in room home1 and
room home2 is small and the difference in the expected search time is high,
therefore searching room home2 first is optimal. In run (b) the difference in
the object probabilities is higher and the difference in the expected search
times is lower. This makes searching room home1 first the optimal decision
because the probability that home2 need not be searched is high enough to
compensate for the higher expected search time in room home1.

The robot sometimes makes suboptimal decision when no likely room was
discovered yet. In Figure 7.30 two search runs with test setting 3, where a
mouse is hidden in room home2, are depicted. In both runs the robot started
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in the middle of room home1, but in the run shown in (a) the exploration
was done towards room home3 and in the run shown in (b) towards room
home2. Therefore, in run (a) room home3 was entered first and as both visited
rooms had a low probability for containing the searched mouse, the smaller
room home3 was searched. Only after that room home1 was further explored,
room home2 was discovered, and the mouse was found. In run (b) room
home2 was discovered first and the mouse was found quickly. In both runs
the robot correctly recognized that room home1 was less likely to contain a
mouse than room home2.

(a) room home3 was discovered before
room home2; the robot decided to search
room home3 because it is a small room
and no room with a high object proba-
bility was yet discovered

(b) room home2 was discovered before
room home3; the object probability in
room home2 was high, therefore the
robot searched there

Figure 7.30: Example runs of searches for a remote: The trajectories during exploration
(blue), move through doorway (red) and search (green) are shown as well as
the starting pose (cyan), the final pose, where the object was found (purple),
and the connections of the paths over room borders (red lines); room home1 is
at the bottom, room home2 is at the top right and room home3 is at the top left

In Figure 7.31 a search for a wine glass hidden in the kitchen of the institute
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environment is shown. In this run the kitchen was the last room which
was discovered. The search in the bathroom was postponed, but in two
other unlikely rooms a search was executed. This is similar to the above
mentioned search run for the mouse, where the robot prefers to searches
a small, unlikely room before exploring a larger, unlikely room. After
discovering the kitchen the robot correctly recognized that the kitchen was
the most promising room to search.

In Figure 7.32 a search for a toilet in the institute environment is depicted. In
this run the robot correctly recognized all discovered rooms to be unlikely
to contain a toilet until the bathroom was found, where the toilet was found.

Search in already explored environments

In Figure 7.33 two runs executed after the exploration of the institute
environment are shown. The toilet which was searched in the first run, was
seen during the exploration and the robot used this information and directly
drove to the bathroom, where the toilet was. The wine glass which was
searched in the second run, was put out of a cupboard after the exploration,
so the robot had not seen it. Nevertheless, the robot recognized that the
kitchen was the most likely location for a wine glass and immediately drove
there. After a short search in the kitchen the wine glass was found.

Summary

To recap the findings in the test runs, the search within a room is executed
efficiently. Areas within a room where the object is more likely are searched
first, leading to low search times. In environments with multiple rooms the
proposed system makes suboptimal decisions if no room is found where the
object is likely. This problem of weighting exploration versus exploitation is
difficult to solve. However, when the discovered rooms have either a high
or very low probability to contain the object, reasonable decisions are made
by the robot.
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Figure 7.31: Search of a wine glass in the institute environment: The wine glass is in the
kitchen (bottom left room). The trajectories during exploration (blue), move
through doorway (red) and search (green) are shown as well as the starting
pose (cyan), the final pose, where the object was found (purple), and the
connections of the paths over room borders (red lines)
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Figure 7.32: Search of a toilet in the institute environment: The trajectories during explo-
ration (blue), move through doorway (red) and search (green) are shown as
well as the starting pose (cyan) and the final pose, where the object was found
(purple). Only the map of room institute1 is shown because all other rooms are
just entered and left immediately after the peek task.
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(a) search for a toilet (b) search for a wine glass

Figure 7.33: Search runs in the explored institute environment: Search for a toilet (a) and
search for a wine glass (b)
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In general the performance of the proposed system depends on the envi-
ronment and the searched object. In environments with similar rooms and
when searching for objects which can be nearly everywhere in the envi-
ronment, the proposed system has no advantages and might even perform
worse than uninformed search systems. However, in most scenarios some
rooms are very unlikely to contain a searched object and some rooms have
a high probability to contain a searched object. Then the proposed system
significantly outperforms an uninformed search system by searching in
likely rooms and postponing searches in unlikely rooms.
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In this thesis an intelligent active object search system was presented. The
information available about the search environment is important for an effi-
cient execution of the object search. Therefore a hybrid, semantic mapping
system was developed. The proposed hybrid map design which combines
a topological representation of the room structure and separated semantic
metric maps for each room, allows to split the search problem into two
abstraction levels. Furthermore, the segmentation of the environment into
rooms resulted in smaller metric maps which proved to be less prone to
inaccuracies in the map creation procedure. The semantic maps of the rooms
contain, in addition to occupancy information, information about where
objects were seen, which is obtained using a CNN for object detection, and
information about the room types of areas in the room which is obtained
using a CNN for place classification. Using the information in the maps and
the commonsense knowledge about the connection between room types
and objects typically located there, likely object locations within a room and
the probability of a searched object being in a room were estimated. This
estimation is also possible in partially explored rooms, like after peeking
into a room. The search is planned in two steps. At first the next room to
search was selected based on the topological map and then the actual search
was planned by a second planner which had only to consider the semantic
metric map of the current room.

The generated maps appear reasonable, though an exact evaluation of
the maps was not possible due to the lack of a reasonable ground truth.
Comparisons with a coverage maximizing search system and the evaluation
of the behavior of the robot using the proposed intelligent search system
showed that this system improves the search performance, measured by
the search time and the search path, significantly. However, also some
problems and suboptimal behaviors were encountered. Basic components of
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the system, like the navigation and the object detection, were still far from
being perfect and problems of those components had a negative impact
on the overall search performance. Also the search system itself has much
room for further improvements. The information in the maps was found
to be vague and the search planning has especially problems to find a
good balance between exploration and exploitation. This resulted in some
suboptimal decision about what room should be searched next.

The way to a human-like search performance is still very long and a lot of
further research in many different areas is needed to achieve this. Better
object detection systems are necessary to find objects faster and more reliably.
More accurate and more extensive commonsense knowledge about indoor
environments can help to improve the reasoning about object locations and
also the interaction with humans or other robots can help to find objects
faster. Also more sophisticated search planning approaches are necessary
which can better handle the complexity of the problem and the uncertainty
of the sensor data and the commonsense knowledge. While there is much
room for improvements, this work showed some promising ideas and the
potential of intelligent robot behavior in everyday human environments.
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