
Christopher TSCHERNE, BSc.

Straight Skeletons & Motorcycle Graphs

to achieve the university degree of

MASTER'S THESIS

 Diplom-Ingenieur

 Master's degree programme: Mathematical Computer Science

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Franz AURENHAMMER

Institute for Theoretical Computer Science

Graz, May 2018

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis.

Date Signature

Abstract
The straight skeleton is a skeletal structure for polygons that results from a self-
parallel shrinking process. Compared to the medial axis it only contains straight
line segments and has a lower combinatorial complexity. There are many uses for
the straight skeleton in computer science.

In 2014 Cheng, Mencel and Vigneron [10] presented an algorithm for computing
the straight skeleton of a polygon. This algorithm runs in O(n log(n) log(r)+r 4

3 +ε)
time for polygons with n vertices and r reflex vertices. This is currently the best
known theoretical running time. However, this algorithm is quite involved and no
implementation was provided to show its practical usefulness.

This thesis presents a practical divide-and-conquer algorithm [1] for computing
the straight skeleton of a simple polygon based on motorcycle graphs that runs in
O(d n log(n)) expected time where d is the height of the merge tree. In the best
case, the merge tree has a height of O(log(n)) and a linear height in the worst
case. Furthermore, an implementation of this algorithm is presented to show its
practical usefulness.

iii

Contents

Contents
1 Introduction 1

1.1 Motivation and Problem Statement 1
1.1.1 Medial Axis . 1
1.1.2 Straight Skeletons . 2
1.1.3 Motorcycle Graphs . 3

1.2 Outline of the Thesis . 4

2 Straight Skeletons & Motorcycle Graphs 5
2.1 Basics & Notation . 5
2.2 Straight Skeletons . 7

2.2.1 Properties . 9
2.2.2 Computation . 10

2.3 Bisector Graphs . 11
2.4 Motorcycle Graphs . 13

3 Related Work 20
3.1 Motorcycle Graphs and Straight Skeletons 20
3.2 A Faster Algorithm for Computing Straight Skeletons 20
3.3 Weighted Straight Skeletons . 21
3.4 Straight Skeleton in Space . 22
3.5 Applications . 23

4 Algorithm 24
4.1 Base Algorithm . 24

4.1.1 Overlapping Edges . 25
4.1.2 Edge Insertion . 27
4.1.3 Merge Process . 30

4.2 Problems & Difficulties . 32
4.2.1 Merge Order . 32
4.2.2 Single Edge Regions . 35
4.2.3 Open Polygons . 37
4.2.4 Induced Polygons with Crossings 39

4.3 Cycles . 40
4.3.1 Properties of intermediate skeletons 42

5 Implementation 44
5.1 Program . 44

5.1.1 Input . 44
5.1.2 Output . 45

iv

Contents

5.2 Data Structures . 46
5.2.1 Polygons . 46
5.2.2 Motorcycle Graphs . 46
5.2.3 Straight Skeletons . 46
5.2.4 Motorcycle Cells . 46
5.2.5 Reflex Vertices . 47

5.3 Details . 47
5.3.1 Polygon Orientation . 47
5.3.2 Detecting Induced Polygons 47
5.3.3 Bisector Computation . 49
5.3.4 Edge Selection . 50
5.3.5 Overlapping Edges . 51

6 Experimental Evaluation 52
6.1 Parameters . 52
6.2 Tested Polygons . 52
6.3 Disconnected Motorcycle Graphs 52
6.4 Linear Merge Tree . 55

6.4.1 Zipper Motorcycle Graphs 55
6.4.2 Pseudo Cycle Motorcycle Graphs 56
6.4.3 General Polygons . 60

7 Conclusion 62

A Examples 64

B Evaluation 66
B.1 Bouncing Reflex . 66
B.2 Convex Bottom . 67
B.3 Space Partitioning . 69
B.4 Steady Growth . 71

Bibliography 72

v

List of Figures

List of Figures
1.1 Medial axis . 1
1.2 Shrinking process . 2
1.3 Motorcycle graph . 3
2.1 Simple polygon . 5
2.2 Complex polygon . 5
2.3 Polygon with holes . 5
2.4 Reflex vertex . 6
2.5 Offset polygons . 7
2.6 Events during the shrinking process 8
2.7 Straight skeleton . 8
2.8 Monotonicity . 9
2.9 Sensitivity of local changes . 10
2.10 Self-intersecting bisector graph . 11
2.11 Different bisector graphs for one polygon 11
2.12 Roof model . 12
2.13 Motorcycle graph with uniform velocities 13
2.14 Motorcycle graph velocities . 14
2.15 Geometric analysis of the velocity 14
2.16 Degenerate polygon . 15
2.17 Cycle in a motorcycle graph . 16
2.18 Dominance graph . 16
2.19 Motorcycle cell . 17
2.20 Induced polygon . 17
2.21 Induced polygon (unbounded) . 17
2.22 Region and region polygon . 18
3.1 Weighted straight skeleton . 21
3.2 3-dimensional straight skeleton . 22
3.3 Fold-and-cut . 23
3.4 Road centerlines . 23
4.1 Example polygon P . 25
4.2 Straight skeletons of motorcycle cells 25
4.3 Overlapping edges . 26
4.4 Overlapping edges and irrelevant overlapping edges 26
4.5 Insertion of e into S(PL) . 28
4.6 Adding the final edge in the insertion step 29
4.7 Straight skeleton of each side . 29
4.8 Merge process . 30
4.9 Merge trees . 31
4.10 Polygons with merge trees of linear height 31

vi

List of Figures

4.11 Merging dominant motorcycle edges 32
4.12 Lost information in the motorcycle graph 33
4.13 Wrong merge order . 33
4.14 Comparison between different merge orders 34
4.15 Solution of the merge order problem 34
4.16 Region with only one polygon edge 35
4.17 Adding the final edge to the left side (green) 35
4.18 Disconnected straight skeleton . 36
4.19 Polygon with multiple neighbored one-edged regions 36
4.20 Special case with only one intersection 37
4.21 No intersection . 38
4.22 Induced polygon with crossing . 39
4.23 Self-intersecting straight skeleton 39
4.24 Cycle in a motorcycle graph . 40
4.25 Merging cycles . 42
4.26 Calculated straight skeleton and the region polygon 43
5.1 User interface . 44
5.3 Polygon output . 45
5.4 Structures . 46
5.5 Orthogonal projection . 49
5.6 Adding first bisector . 49
5.7 Edges a, b and e . 50
5.8 Finding overlapping edges . 51
6.1 Sparse motorcycle graph . 53
6.2 Histogram of iteration steps for sparse polygons 53
6.3 Many iteration steps for a single reflex vertex 54
6.4 Zipper motorcycle graph . 55
6.5 Pseudo cycle motorcycle graphs . 56
6.6 Pseudo cycles with small central region 57
6.7 Pseudo cycle (n = 301, r = 100) . 58
6.8 Maximum number of steps for different numbers of reflex vertices . 59
6.9 Examples of tested polygons . 60
6.10 Histogram of iteration steps for general polygons 61
A.1 Straight skeleton of polygon with 99 vertices 64
A.2 Straight skeleton of polygon with 69 vertices 64
A.3 Polygon in the shape of Austria containing a cycle 64
A.4 Ineffcient pseudo cycle . 65
A.5 Zipper motorcycle graph . 65
B.1 Bouncing reflex . 66
B.2 Histogram of iteration steps (bouncing reflex) 66

vii

List of Figures

B.3 Convex bottom . 67
B.4 Histogram of iteration steps (convex bottom) 67
B.5 Comparison of histograms (convex bottom) 68
B.6 Space partitioning . 69
B.7 Histogram of iteration steps (space partitioning) 69
B.8 Average steps per reflex vertex (space partitioning) 70
B.9 Steady growth . 71
B.10 Histogram of iteration steps (steady growth) 71

viii

1 Introduction

1 Introduction

1.1 Motivation and Problem Statement
A skeleton can be interpreted as a thinner and more compact representation of an
object that still shows geometrical and topological features of the original object.

In biology, skeletons are the supporting structures of many organisms. The
skeleton of a human being for example shows these features even though it is a
simpler version of the whole body. Features as height, connectivity between body
parts and deformations can be reconstructed from the skeleton. In addition, the
shape and species of the living being can be distinguished between skeletons of the
same size - a bird and a cat have very distinct skeletons.

In mathematics and computer science, the notion of skeletons for polygons is
similar to skeletons in biology. Skeletons contain relevant information about the
polygon such as size and shape.

1.1.1 Medial Axis

The medial axis of a polygon is one of the most well-known skeletal structures. It is
defined as the set of all points that have no unique closest point on the boundary of
the polygon. An equivalent definition is given by the set of all centers of maximal
circles inside the polygon.

For convex polygons the medial axis always consists of straight line segments.
On the other hand, the medial axis contains parabolic curves for non-convex poly-
gons.

(a) Convex polygon (b) Non-convex polygon

Figure 1.1: Medial axis

1

1 Introduction

1.1.2 Straight Skeletons

The straight skeleton is another skeletal structure for polygons and was first in-
troduced by Aichholzer et al. (1995) [2].

In comparison to other skeletons like the medial axis, it only contains straight
line segments even for non-convex polygons. This structure is not defined by a
distance function like the medial axis but uses a continuous shrinking process to
create event points which are connected by straight line segments (Details for the
straight skeleton are explained in Chapter 2).

The simple structure of the straight skeleton might suggest an easy solution
for its computation. However, the continuous shrinking process makes it hard to
design fast algorithms for its computation.

(a) Offset polygons (b) Straight skeleton (blue)

Figure 1.2: Shrinking process

2

1 Introduction

1.1.3 Motorcycle Graphs

Imagine motorcycles driving on a plane on different directions represented by
straight lines. Every motorcyclist is dropping dangerous spikes behind them, caus-
ing other motorcycles to crash on the spot when they cross the path of another
motorcyclist.

After all motorcycles are either crashed or the motorcyclists ensured that they
escaped into safety, their paths will form a graph like the one in Figure 1.3a. This
graph is called the motorcycle graph based on the idea of the crashing motorcycles.

This concept can also be used for polygons. Motorcycles start at vertices of
the polygon that have an interior angle larger than 180◦. In addition, they also
crash when they hit the boundary of the polygon. The resulting graph is called
induced motorcycle graph or motorcycle graph of the polygon (Figure 1.3b).

(a) General motorcycle graph (b) Motorcycle graph of a polygon

Figure 1.3: Motorcycle graph

This graph can be used as a tool for the computation of the straight skeleton
because it contains information about the interaction of the non-convex vertices
during the shrinking process.

3

1 Introduction

1.2 Outline of the Thesis
Chapter 2 introduces formal definitions for the straight skeleton and motorcycle
graphs and gives basic properties and relevant notations.

Chapter 3 gives an overview of previous works on straight skeletons and motor-
cycle graphs and discusses algorithms for finding these structures. Furthermore,
related topics are presented.

Chapter 4 presents a new divide-and-conquer algorithm for finding the straight
skeleton with the help of motorcycle graphs.

In Chapter 5 an implementation of the algorithm is presented with further de-
tails.

Chapter 6 shows experimental results for different types of polygons that were
achieved with the implementation of the algorithm.

Chapter 7 summarizes the results of this thesis. Furthermore, possible improve-
ments are discussed.

4

2 Straight Skeletons & Motorcycle Graphs

2 Straight Skeletons & Motorcycle Graphs
This chapter presents a formal definition for both the straight skeleton and the
motorcycle graph. Furthermore, relevant properties and basics are introduced that
will be important during later chapters.

2.1 Basics & Notation
Notation (Polygon). A polygon is a plane shape (two-dimensional) bounded by
connected straight line segments. These line segments are called edges. The points
where two edges meet are called vertices (singular: vertex).
Definition 2.1 (Simple Polygon). A polygon is called simple if all intersections of
two edges are the vertices of the polygon and each vertex lies on exactly two edges.
Otherwise, it is called self-intersecting, non-simple or complex.

Figure 2.1: Simple polygon Figure 2.2: Complex polygon

Definition 2.2 (Boundary, Interior). Let P be a simple polygon. The boundary
of P is defined as ∂(P) = {x ∈ R2 | ∀ε > 0 ∃y1 ∈ P, y2 /∈ P : y1, y2 ∈ Bε(x)} where
Bε(x) = {y ∈ R2 | ‖x−y‖ < ε}. The interior of P is defined as int(P) = P \∂(P).
Definition 2.3 (Hole). Let P ′ and Pi, i ∈ {1, . . . , k}, be simple polygons. A
polygon P is called polygon with k holes if P = P ′ \ ⋃ki=1 int(Pi) with ⋃i∈I Pi ⊂
int(P ′) and Pi ∩ Pj = ∅, i 6= j. The polygons Pi are called holes.
Remark. In this thesis all polygons are simple polygons without holes in the plane
if not mentioned otherwise.

Figure 2.3: Polygon (gray) with two holes

5

2 Straight Skeletons & Motorcycle Graphs

Definition 2.4 (Reflex Vertex). A vertex of a polygon is called reflex if its interior
angle is larger than π radians (180◦). Otherwise, it is called convex.

Remark. In this thesis, n denotes the number of vertices of a polygon and r
denotes the number of reflex vertices.

Figure 2.4: Polygon with one reflex vertex

Remark. Edges that meet in a vertex with an angle of π radians can be merged
into one edge without changing the skeleton. Therefore, w.l.o.g., vertices never
have an interior angle of π radians.

Notation (Bisector). The angular bisector of two edges x and y is denoted by
bis(x, y).

Remark. Edges x and y will not always be connected and the bisector of two lines
is not uniquely defined. bis(x, y) is the bisector that is relevant inside the polygon.

Definition 2.5. For an edge e of a polygon P , le denotes the line supported by e.

Definition 2.6. The intersection of two lines (or edges) a, b is denoted by a ∩ b.
a ∩ b is well-defined for lines if and only if a and b are not parallel. a ∩ b is
well-defined for edges if and only if the line segments created by a and b have an
intersection.

6

2 Straight Skeletons & Motorcycle Graphs

2.2 Straight Skeletons
The straight skeleton is a skeletal structure similar to the well-known medial axis.
Both structures are even identical for convex polygons. However, the medial axis
may contain parabolic curves, whereas the straight skeleton is only made up of
straight line segments, namely, the angular bisectors.

The medial axis for a polygon can be defined as the set of all points that do
not have a unique closest point on the boundary of the polygon. While the medial
axis can be defined using a distance function, the straight skeleton is defined by
a continuous shrinking process. The straight skeleton for simple polygons and the
shrinking process were first introduced by Aichholzer et al. (1995) [2].

Imagine that the edges of a polygon P are moving inwards in a self-parallel
manner at a certain speed. The vertices are moving along the bisector of its ad-
jacent edges if the edges have the same speed. The resulting polygons are called
offset polygons. An example is shown in Figure 2.5

Figure 2.5: Offset polygons

This process continues until one of the following events changes the topology of
the polygon:

1. Edge event: Happens when an edge shrinks until it vanishes (Figure 2.6a).

2. Split event: This event occurs when a reflex vertex hits another edge of the
polygon. This splits the polygon into two parts and the shrinking process
continues for each of them (Figure 2.6b).

7

2 Straight Skeletons & Motorcycle Graphs

(a) Edge event (b) Split event

Figure 2.6: Events during the shrinking process

The shrinking process continues for the resulting polygons until they vanish them-
selves.

Definition 2.7 (Straight Skeleton [2]). Let P be a polygon. The straight skeleton
S(P) is defined as the union of the pieces of angular bisectors traced out by polygon
vertices during the shrinking process described above.

Figure 2.7: Straight skeleton

The bisector segments are called arcs and their endpoints (ignoring points on the
polygon) are called nodes of S(P). The straight skeleton divides the polygon in
regions which are called faces. Each edge e is connected to exactly one face which
is denoted by f(e).

8

2 Straight Skeletons & Motorcycle Graphs

2.2.1 Properties

Definition 2.8 (Monotonicity). A polygon P is called monotone with respect to
an edge e, if every line L normal to e intersects the boundary of P at most twice.

(a) Monotone (b) Not monotone

Figure 2.8: Monotonicity with respect to the edge e

Lemma 2.9. (Aichholzer et al. (1995) [2]) A face f(e) created by the straight
skeleton is monotone with respect to its defining edge e.

Lemma 2.10. (Aichholzer et al. (1995) [2]) The straight skeleton S(P) of a
polygon P with n vertices has the following properties:

1. S(P) is a tree

2. S(P) divides P into n connected faces

3. S(P) has n− 2 nodes

4. S(P) has 2n− 3 arcs

The geometry of the straight skeleton is simpler than the geometry of the medial
axis because it only contains straight line segments. The straight skeleton has
2n − 3 arcs for a polygon P of size n with r reflex vertices. On the other hand,
the medial axis has 2n+ r − 3 arcs with r of them being parabolic curves.

The straight skeleton and the medial axis both represent the polygon in a
compact way. However, the straight skeleton can be very sensitive to small changes
(Figure 2.9). This is caused by a drastic speed changes for some motorcycle edges
which can affect all other regions.

9

2 Straight Skeletons & Motorcycle Graphs

Figure 2.9: Small local changes affecting the straight skeleton

2.2.2 Computation

Aichholzer et al. (1995) [2] presented a direct method to compute the straight
skeleton which results in an O(n3) time and O(n) space algorithm. This approach
considers each pair of edges to compute the next event. This algorithm can be
modified by using a priority queue for the events which improves the runtime to
O(n2 log(n)) at the cost of O(n2) storage.

Improvements for this rather slow runtime and related work will be reviewed
in Chapter 3.

10

2 Straight Skeletons & Motorcycle Graphs

2.3 Bisector Graphs
S(P) contains line segments supported by bisectors of polygon edges. Every node
in S(P) is the intersection point of three of these bisector pieces.

Definition 2.11 (Bisector Graph). Let P be a polygon. A straight line graph is
called bisector graph B(P) of P if

1. each line segment of B(P) is a bisector piece of two edges of P .

2. every internal node has degree three and

3. there is a bijection of the vertices of P to all nodes of degree one.

The bisector graph is not unique. A bisector graph can have self-intersections and
parts of it can lie outside of the polygon (Figure 2.10). Therefore, a bisector graph
does not necessarily define a proper face structure of the polygon P .

Figure 2.10: Self-intersecting bisector graph (Based on polygons from [2])

Thus, only plane (implies no self-intersection) and cycle-free bisector graphs that
lie completely inside of the polygon are of interest. However, even that does not
imply a unique structure.

Figure 2.11: Different bisector graphs of the same polygon (Based on polygons
from [2])

11

2 Straight Skeletons & Motorcycle Graphs

Roof Model

A plane bisector graph can be interpreted as a projection of a roof. For the straight
skeleton this roof can be defined by the shrinking process. The polygon lies on a
plane and the time indicates the height for the offset polygons.

Figure 2.12: Roof model and corresponding straight skeleton (Input from [2])

Aichholzer et al. (1995) [2] showed that there is a bijection between roofs and
plane bisector graphs and used roof models to prove basic properties of the straight
skeleton.

12

2 Straight Skeletons & Motorcycle Graphs

2.4 Motorcycle Graphs
Definition 2.12 (Motorcycle). Let P be a polygon and R be the set of all reflex
vertices of P. A motorcycle mi, i ∈ {1, . . . , |R|}, is a point starting at a reflex
vertex ri ∈ R with velocity vi ∈ R+ and moving in a direction di.

Remark. In this thesis, the direction di always coincides with the direction of the
outgoing bisector of ri. In general, a motorcycle does not have to move along the
bisector of its reflex vertex.

Definition 2.13 (Track). The path pi of a motorcycle mi is defined as the outgoing
ray {ri + τ · vi · di|τ > 0} of ri with direction di. The track pi,τ is the line segment
from pi(0) to pi(τ), τ > 0. A track ends if it collides with the track of another
motorcycle mj that reaches the collision point first or collides with an edge of P
for increasing values of τ . Let ti be the resulting track of the motorcycle mi.

Definition 2.14 (Motorcycle Graph). The motorcycle graph M(P) of a polygon
P is defined as the arrangement of the line segments ti. These line segments are
also called motorcycle edges.

Figure 2.13: Motorcycle graph (red) with uniform velocities

Remark. The motorcycle graph is empty for convex polygons and a motorcycle
might never crash for an unbounded polygon.

The velocity vi of a motorcycle mi can be arbitrary in general. However, there is
a correlation between the straight skeleton and the motorcycle graph of a polygon
P : Reflex vertices with an obtuse angle move slower during the shrinking process
than reflex vertices with an acute angle. An example is shown in Figure 2.14.

13

2 Straight Skeletons & Motorcycle Graphs

(a) Obtuse angle (b) Acute Angle

Figure 2.14: Motorcycle graph velocities

Lemma 2.15 (Velocity). Let α ∈ (π, 2π) be the angle of the reflex vertex. Then
the velocity v of the outgoing motorcycle during the shrinking process is given by

v = 1
sin

(
α
2

) ∈ (1,∞)

Proof. It needs to be shown that v is well-defined. This follows directly from the
domain of α:

α ∈ (π, 2π)⇔ α

2 ∈
(

0, π2

)
⇒ sin

(
α

2

)
∈ (0, 1)

⇒ sin
(
α

2

)
6= 0.

Let t > 0 be the current time during the shrinking process and β be the angle
between l and t.

Figure 2.15: Geometric analysis of the velocity

The edges grow in a self-parallel manner and therefore β can be obtained by

β = 1
2

(
α− 2 · π2

)
.

14

2 Straight Skeletons & Motorcycle Graphs

Using basic properties of angles it follows

γ = π − π

2 − β = π

2 − β = π

2 −
1
2 (α− π)

= π − α

2 .

By using the law of sine it finally follows that

l

sin π
2

= t

sin
(
π − α

2

) ⇔ l = t · 1
sin

(
π − α

2

) ⇔ l = t · 1
sin

(
α
2

)
︸ ︷︷ ︸

v

Definition 2.16 (Degenerate). A polygon is called degenerate if two motorcycles
collide with each other at the same time.

Remark. In this thesis all polygons are non-degenerate polygons if not mentioned
otherwise.

Figure 2.16: Degenerate polygon

Remark. The motorcycle graph of a degenerate polygon is created by introducing a
new reflex vertex at the collision position. The offset polygon at the time of the col-
lision defines the angle of the reflex vertex and the properties of the corresponding
motorcycle edge.

Definition 2.17 (Dominance Relation). The line segment tj dominates ti (tj � ti)
if the track of mi collides with the track of mj and ti ends at the collision point.

Definition 2.18 (Cycle). Let T = {ti | i ∈ {1, . . . , k}} be a subset of size k ∈ N
of line segments of M(P). T is called a cycle if there is a permutation π ∈ Sk
with tπ(1) � tπ(2) � . . . � tπ(k−1) � tπ(k) � tπ(1)

15

2 Straight Skeletons & Motorcycle Graphs

Figure 2.17: Cycle in a motorcycle graph

Definition 2.19 (Dominance Graph, Dominance Tree). Let P be a polygon and
M(P) its motorcycle graph. The dominance relation � induces a directed graph
T = (V,E) where V represents edges ofM(P) and E = {(e, f) | e, f ∈ V, e � f}.
T is called dominance graph. A component G of T is called dominance tree if the
defining edges of G do not contain a cycle inM(P).

(a) Motorcycle graph

e1

e2 e3

e4

e5

e6

(b) Dominance trees

Figure 2.18: Dominance graph

Remark. IfM(P) does not contain a cycle then each component of the dominance
graph is a directed, rooted tree and the underlying undirected graph of a dominance
graph is a forest.

Definition 2.20 (Motorcycle Cell). The motorcycle graph M(P) partitions the
polygon P into subpolygons. These subpolygons are called motorcycle cells.

Remark. A motorcycle cell is convex.

Proof. Let C be a motorcycle cell and let e(C) be the set of edges of the polygon
that bound C. Chains of edges in e(C) are in convex position, otherwise C would

16

2 Straight Skeletons & Motorcycle Graphs

contain a reflex vertex. Motorcycle edges are in convex position with the adjacent
edges of their defining reflex vertex because the motorcycle edge divides the interior
angle into two equal parts. Furthermore, motorcycle edges either crash into other
motorcycle edges or into polygon edges. In both scenarios, only convex angles are
created.

Therefore, all interior angles of a motorcycle cell are convex.

Remark. IfM(P) is empty, then P is the only motorcycle cell induced byM(P).
A motorcycle cell is bounded by edges of the motorcycle graph and edges of P .
These edges are in convex position because the motorcycle cell itself is convex.

Definition 2.21 (Induced Polygon). Let C be a motorcycle cell and let e(C) be
the set of edges of the polygon that bound C. Hle denotes the closed half-plane
defined by le, e ∈ e(C), such that C ⊆ Hle. The convex polygon PC = ⋂

e∈e(C)Hle

is called the induced polygon of the motorcycle cell C.

Figure 2.19: Motorcycle cell Figure 2.20: Induced polygon

Remark. Induced polygons are well-defined because the intersection is not empty
due to C ⊆ PC and the intersection of half-planes is convex.

The induced polygons might be unbounded and it is also possible that an induced
polygon is only defined by a single edge. Cycles are another special case. The
motorcycle graph does not induce a special polygon for the closed region in the
center of a cycle but induces polygons normally everywhere else.

Figure 2.21: Induced polygon (unbounded)

17

2 Straight Skeletons & Motorcycle Graphs

Definition 2.22 (Region). A (motorcycle) region is either a motorcycle cell or
results from merging (two) regions that share an entire motorcycle edge.

The edges of a region also define a polygon. However, this polygon is not convex
anymore and is defined as a polygonal chain (might be open) constructed by using
the two involved region polygons. This chain starts at the reflex vertex of the
shared motorcycle edge and follows all edges of one polygon and then follows the
edges of the other polygon until it meets the reflex vertex again. The resulting
polygonal chain can have multiple open sections and can also have crossings which
will be covered in Section 4.2.4.

For cycles a new region results from merging all involved regions and the center
region together instead of just merging two regions.

Figure 2.22: Region and region polygon

Lemma 2.23. There are r + 1 motorcycle cells.

Proof. Let M(P) be cycle-free. There is one cell if there are no reflex vertices.
Let |M(P)| ≥ 1. Insert each line segment of M(P) in breadth-first order with
respect to the dominance graph starting with the root of each component. Every
line splits one region into two other regions. This creates r + 1 cells.

Every cycle of size k in M(P) splits one region into k new ones that are
connected to the boundary of P and creates one extra motorcycle cell in the center.
The number of cells increases by k and therefore by one for each motorcycle edge
in the cycle.

Computation

The motorcycle graph plays an important role for the computation of the straight
skeleton. For the algorithm that will be presented in Chapter 4 it is necessary
to have the motorcycle graph precomputed. Therefore, a fast algorithm for the
straight skeleton is only useful if the motorcycle graph can be calculated in a fast
way as well.

18

2 Straight Skeletons & Motorcycle Graphs

A basic approach for computing the motorcycle graph involves the usage of
all potential crashes of the motorcycle edges. There are O(n) motorcycle edges
which results in O(n2) intersections of these edges. These intersections can then
be sorted in O(n2 log(n)) time by the time they occur and the actual crashes can
then be calculated in chronological order. Overall this results in a O(n2 log(n))
algorithm for computing the motorcycle graph of a polygon.

However, this is rather slow and it is desirable to have a subquadratic algorithm.
Fortunately, it turns out that this is possible. This will be discussed in the next
chapter.

19

3 Related Work

3 Related Work
This chapter reviews related work and presents different approaches for computing
the motorcycle graph and the straight skeleton of polygons.

3.1 Motorcycle Graphs and Straight Skeletons
Vigneron and Cheng (2007) [8] presented a new algorithm for computing the motor-
cycle graph that runs in O(r

√
r log(r)) time where r is the number of motorcycles.

Their approach is similar to the basic algorithm with O(n2 log(n)). While they
also keep track of the chronological order they do not just calculate those straight-
forwardly. They use additional events and a partition of the plane. Then the
algorithm runs the basic algorithm simultaneously in different regions and creates
events based on motorcycles entering different regions.

They also presented a randomized algorithm which reduces the computation of
the straight skeleton to a motorcycle graph in O(n

√
h+ 1 log2(n)) expected time

where n is the number of vertices and h is the number of holes. Combining these
with the computation of the motorcycle graph yields an algorithm for the compu-
tation of the straight skeleton in O(n

√
h+ 1 log2(n)+r

√
rlogr) expected time. For

simple polygons this results in an algorithm that runs in O(n
√
n log2(n)) expected

time.
However, they did not provide experimental results or an implementation of

their algorithm.

3.2 A Faster Algorithm for Computing Motorcycle Graphs
and Straight Skeletons

Vigneron and Yan [9] presented a better algorithm in 2014 and managed to com-
pute the motorcycle graph in O(n 4

3 +ε) time.
They use a tentative track for each motorcycle edge which can be longer than

the resulting motorcycle edge in the end. At the beginning the tentative tracks
are empty and then one tries to extend them one by one. This results in possible
intersections and events that can be used to calculate the actual motorcycle edge
step by step and not necessarily in chronological order.

In 2014 Cheng, Mencel and Vigneron [10] presented a new algorithm for com-
puting the straight skeleton of a polygon. They also presented a deterministic al-
gorithm that reduces the computation of the straight skeleton to the computation
of the motorcycle graph in O(n log(n) log(r)) time. The algorithm for comput-

20

3 Related Work

ing the straight skeleton runs in O(n log(n) log(r) + r
4
3 +ε) time for non-degenerate

polygons.

3.3 Weighted Straight Skeletons
Aichholzer and Aurenhammer (1996) [3] introduced the straight skeleton for gen-
eral planar straight line graphs.

This resulted in the concept of weighted straight skeletons. For the normal
unweighted variant of the straight skeleton edges have the same speed during the
shrinking process. The straight skeleton only consists of line segments of bisectors.

The weighted straight skeleton however uses weights for each edge. Each weight
indicates a different speed for the corresponding line during the shrinking process.
Weights are positive values and higher weights indicate a higher speed. The normal
straight skeleton can be interpreted as a weighted straight skeleton with uniform
weights.

(a) Unweighted (b) Weighted

Figure 3.1: Straight Skeleton with different weights for the bottom edge

The weighted straight skeleton does not have the same properties as the unweighted
version. Its faces are, in general, not monotone. This can be see in Figure 3.1b
where the face of the bottom edge is not monotone.

21

3 Related Work

3.4 Straight Skeleton in Space
Straight skeletons in three dimensions were first discussed by Demaine et al. (2005)
[24] and Barequet, Eppstein, Goodrich and Vaxman (2008)[25].

The concept of straight skeletons naturally transfers to polyhedra in three
dimensions. In addition to vertices and edges, a polyhedron has facets and a
straight skeleton results from a shrinking process where the facets move in a self-
parallel manner.

Figure 3.2: 3-dimensional straight skeleton (Walzl, 2015) [4]

In two dimensions a vertex is connected to exactly two edges if the polygon is
closed. In three dimensions the facets are moved and a vertex can be adjacent to
arbitrarily many facets. This results in vertices being split during the shrinking
process. An algorithm for calculating the straight skeleton in 3D is presented by
Walzl (2015) [4] and more work about three dimensional straight skeletons was
done by Aurenhammer and Walzl (2016) [11], including a rigorous definition and
a discussion of its various constructing events.

22

3 Related Work

3.5 Applications
The straight skeleton has multiple applications in computer science.

For example straight skeletons are used in computer graphics for modeling.
Laycock and Day [26] show a modified usage of the straight skeleton to generate
roof models. Kelly and Wonka [27] present an interactive procedural modeling
system for the exterior of architectural models.

Demaine et al [23] presented an algorithm to fold a piece of paper in such a way
that one single straight cut results in any given polygon for the unfolded piece of
paper. This process is based on the straight skeleton to find such a fold.

(a) Creating a five-pointed star (b) Crease pattern

Figure 3.3: Fold-and-cut of different structures (Input from [23])

There are also applications in other areas such as geographic information science.
As a skeletal structure the straight skeleton can be used as a simplified representa-
tion of objects. Haunert and Sester [28] used the straight skeleton for the collapse
of small areas and finding the centerlines of roads.

(a) Straight skeleton of input data (b) Resulting centerlines

Figure 3.4: Finding road centerlines (Input from [28])

23

4 Algorithm

4 Algorithm
This chapter presents a new algorithm [1] to compute the straight skeleton S(P) of
a polygon P . At first, the basic idea of the algorithm is introduced and afterwards
details are discussed.

The basic idea of the algorithm is to use the motorcycle graph and the result-
ing cells for a divide-and-conquer algorithm. The motorcycle graph partitions the
polygon into convex cells, which in turn induce convex subpolygons. The straight
skeleton of these subpolygons coincides with their medial axis because they are
convex. The medial axis of simple polygons can be computed in linear time and
therefore the straight skeleton of these subpolygons can be computed in linear
time.

For the divide-and-conquer algorithm it is important to know how to divide the
polygon and merge the resulting straight skeletons. This process is not straight-
forward because the motorcycle cells can get larger during the merge step (Fig-
ure 4.15). These details will be explained in the following subsections.

4.1 Base Algorithm
Let P be a polygon with clockwise orientation and M(P) the motorcycle graph
of P . Let vr be a reflex vertex and m be the outgoing motorcycle edge of vr.
Let Dm = {m′|m � m′} be the set of all motorcycle edges m′ that crash into m.
Furthermore, let PL and PR be the two polygons induced by the two motorcycle
cells that contain vr. PL corresponds to the region containing the outgoing edge
of vr and PR corresponds to the region containing the incoming edge of vr.

The merge algorithm is defined recursively: If Dm is empty, merge the straight
skeletons of PL and PR otherwise compute the straight skeleton along motorcycle
edges in Dm first.

In this section it is explained how the basic idea works on polygons with only
one reflex vertex (Figure 4.1). Afterwards, the general case will be explained.

24

4 Algorithm

Figure 4.1: Example polygon P

It is assumed that the straight skeletons of PL and PR are already computed. A
new polygon T is created by joining both polygons PL and PR at the reflex vertex
r. Both polygons PL and PR can be open and therefore T can also be open. If
the motorcycle edge m does not hit the boundary of T , it is extended until it hits
the boundary of T or extends to infinity if the polygon is open and the motorcycle
edge never crosses the boundary of the polygon again.

(a) S(PL) (b) S(PR)

Figure 4.2: Straight skeletons of motorcycle cells

4.1.1 Overlapping Edges

Overlapping edges are the edges of the polygon that intersect the motorcycle edge
m and can have an influence [1] on the other side in the final straight skeleton of
P . Not all edges whose motorcycle cells overlap into the other side are relevant for
the straight skeleton of the other polygon. This includes the adjacent edges of the
reflex vertex vr as well as the edge that m crashes into (This edge can be shared
by both polygons). If the edge is adjacent to vr or already part of the polygon on

25

4 Algorithm

the other side then these edges are excluded from the relevant overlapping edges
because they have no further influence on the other side. The adjacent edges have
no influence because the arc supported by m separates the regions of the adjacent
edges.

Definition 4.1 (Overlapping Edges). Let OL (OR) be the set of all relevant edges
of PL (PR) whose faces intersect m.

(a) OL (green) (b) OR (green)

Figure 4.3: Relevant overlapping edges (green)

(a) OL with irrelevant edges (b) OR with irrelevant edges

Figure 4.4: All overlapping edges (green)

Remark. The overlapping edges are not necessarily connected (Figure 4.3) but
they form a convex polygon [1].

26

4 Algorithm

4.1.2 Edge Insertion

The edges of OL (OR) are now inserted in random order into PR (PL) to update
S(PR) (S(PL)). This is an adaption of Chew’s algorithm [12] for computing the
medial axis of a convex polygon. In the following it is described how to insert an
edge from OR into the straight skeleton of PL. Inserting edges from OL into S(PR)
works analogously.

Let e ∈ OR. Let a and b be the edges of PL that are adjacent to e in P ′ =
PL∪{e} (Figure 4.5a). The edge e intersects the face of a because a is adjacent to
e in P ′. In the next step bis(a, e) needs to be calculated and the arc sa of S(PL)
on the boundary of the face of a that intersects this bisector needs to be identified.
This intersection point marks the end point of bis(a, e) and sa. Besides the update
of these two arcs the region needs to be updated too: Obsolete edges (dominated
by f(e)) are removed from the straight skeleton.

Furthermore, the intersected arc sa is supported by a (as it is part of the region
of a) and another edge x. The algorithm continues by updating a← x and doing
the same update step again. This procedure continues until a matches b and the
last intersection is simply connected to the intersection of b and e. An example of
the insertion of the first edge is shown in Figure 4.5.

27

4 Algorithm

(a) Start (b) Step 1

(c) Step 2 (d) Step 3

(e) Step 4 (f) S(P ′L = PL ∪ {e})

Figure 4.5: Insertion of e into S(PL)

28

4 Algorithm

Afterwards the polygon is updated PL ← PL ∪ {e} and the edges from OR are
inserted until there are none left. This results in the straight skeleton of the left
side.

(a) Start (b) S(P ′′L = P ′L ∪ {e})

Figure 4.6: Adding the final edge to the left side (green)

The same process is used to calculate the straight skeleton of the other side. Now
that the straight skeletons of both sides are finished they need to be merged.

(a) S(PL) (b) S(PR)

Figure 4.7: Straight skeleton of each side

29

4 Algorithm

4.1.3 Merge Process

Observation. The straight skeletons S(PL) and S(PR) coincide with the final
straight skeleton along their defining motorcycle edge m.

This is because of the supported edges of the arcs of S(PL) and S(PR) that cross
the motorcycle edge that also exist in P . In particular, the straight skeletons of
each side coincide along the motocycle edge. Let R be the region that results from
merging the left and right region of the reflex vertex. Finally, S(R) is obtained by
merging the straight skeletons S(PL) and S(PR) along the motorcycle edge m.

Lines that cross m and share the same intersection as a line from the other
side are supported by the same edges with the exception of the intersection closest
to the reflex vertex. This exception is due to the fact that the arcs that cross the
motorcycle edge closest to the reflex vertex are supported by the adjacent edges of
the reflex vertex. These edges are not included for the computation of the straight
skeleton of the other side as they have no influence.

(a) Overlay of both straight skeletons (b) Final straight skeleton

Figure 4.8: Merge process

Definition 4.2 (Merge Tree). Let P be a polygon andM(P) its motorcycle graph.
The merge processes induce a graph T = (V,E) where V represents each region
induced byM(P) and every new region that is created by the merge process. Every
new region is connected by an edge to the regions that define it and form the set
of edges E.

Remark. Every merge of two regions results in a new region and this results in
r − 1 created regions during the merge process. Therefore, a merge tree contains
r + (r − 1) = 2r − 1 vertices.

The height of a merge tree depends on the merge order of the motorcycle edges.
In general, various different merge trees are possible (Figure 4.9).

30

4 Algorithm

(a) Polygon with cells
c1 c2 c3 c4

c12 c34

c1234

c5 c6 c7 c8

c56 c78

c5678

c1−8

(b) Balanced
c1 c2 c3 c4 c5 c6 c7 c8

c12

c123

c1−4

c1−5

c1−6

c1−7

c1−8

(c) Linear height

Figure 4.9: Polygon with different possible merge trees

Theorem 4.3 (Aurenhammer and Steinkogler, 2018 [1]). The straight skeleton of
a polygon P can be computed in O(d n log(n)) expected time using this algorithm
where d is the height of the merge tree.
Remark. The optimal height of a merge tree is O(log(n)) if the tree is balanced and
O(n) in the worst case. This results in an expected running time of O(n log2(n))
in the best case, which competes with the best algorithms currently known.
Certain motorcycle graphs dictate a structure of the merge tree because regions
cannot be combined arbitrarily (Figure 4.11). Some may force a balanced tree.
However, these polygons have a good expected running time in the first place.
Therefore, polygons with merge trees that have a worse structure are of interest.
Polygons with such structure might have only one possible merge order which
results in only one possible outcome of the merge tree. Other polygons might
have multiple possible merge orders but all result in the same bad structure of the
merge tree. Examples of such polygons are shown in Figure 4.10.

(a) Only one merge order
(b) Different merge orders with same merge
tree

Figure 4.10: Polygons with merge trees of linear height

31

4 Algorithm

4.2 Problems & Difficulties
The following sections cover certain problems that occur for the base algorithm
and present solutions for it.

4.2.1 Merge Order

It is sometimes possible to merge along motorcycle edge that dominate unmerged
motorcycle edges. However, this is not the case in general. There are several
problems that occur when such a motorcycle edge is used during the algorithm:

1. Reflex vertices are overlapping into other regions which creates non-convex
polygons that overlap the current motorcycle edge.

2. Overlapping edges can cut off huge parts of the other region polygon and/or
create non-convex polygons.

Figure 4.11: Merge along dominant motorcycle edge (Using r1)

As long as there are no cycles there will always be at least one motorcycle edge
that does not dominate any other unmerged motorcycle edge. In these cases it
will never be necessary to merge along such motorcycle edges.

However, a similar problem arises when motorcycle edges are merged that
dominate no other motorcycle edge. This can be seen in Figure 4.12. It is possible
to start with the outgoing motorcycle edges of the reflex vertices r2, r3 and r4
because they do not dominate any other active motorcycle edge. However, merging
along the outgoing motorcycle edge mr3 of the reflex vertex r3 is not a good idea
because this essentially results in a merging process with motorcycle edges that
dominate unmerged motorcycle edges as described above.

32

4 Algorithm

(a) Motorcycle graph (b) Extended motorcycle graph

Figure 4.12: Lost information

The merge process is shown in Figure 4.13. Merging along mr3 works fine and
results in the correct straight skeleton for the subpolygon. However, the faces
corresponding to the edges adjacent to the reflex vertex r3 overlap mr4 . In the
final straight skeleton this overlap should not be there anymore.

Figure 4.13: Merge along mr3

Trying to merge the straight skeletons along mr4 (Figure 4.14a) results in two
problems

1. Right side: The overlapping faces (from the left side) of the adjacent edges
of r3 result in a non-convex overlapping polygon and the merge process is
either undefined or results in a wrong outcome for the right side.

2. Left side: There is no overlapping edge from the right side. This means that
the left side is not updated correctly. The correct straight skeleton for this
subpolygon can be seen in Figure 4.14b. One adjacent edge of r4 had an
influence on the straight skeleton arc corresponding to mr3 and cuts it off.
By merging along mr4 this influence is removed and this arc needs to be
extended now.

33

4 Algorithm

(a) Merge along mr3 (b) Merge along mr4 then mr3

Figure 4.14: Comparison between different merge orders

Some motorcycle edges remove important information about the motorcycle graph
of subpolygons (Figure 4.12b). Reconstructing the motorcycle graph from subpoly-
gons of P by usingM(P) or simply computing a new motorcycle graph to get a
correct merge order of subpolygons is not efficient.

Solution

The key issue for these problems is the overlap of edges over motorcycle edges that
should not happen in the first place. To solve these issues the adjacent edge of the
dominant motorcycle edge is added to both sides (if it is not already included) as
an overlapping edge. For the polygon in Figure 4.12a this corresponds to the right
edge of r1.

(a) Merge with overlapping dominant edge (b) Final straight skeleton

Figure 4.15: Solution of the merge order problem

34

4 Algorithm

4.2.2 Single Edge Regions

One of two regions contains only one edge which means that there is no straight
skeleton to begin with.

Figure 4.16: Region with only one polygon edge (C2)

PR is the polygon with only one edge. There is no edge that needs to be inserted
to S(PL) because the only edge in PR is adjacent to the reflex vertex and has no
influence on the straight skeleton of the left side.

On the other side, all edges that overlap the motorcycle edge of r1 are combined
with the one edge of PR and induce a convex polygon. It is easy to compute the
straight skeleton of this polygon. Afterwards the straight skeletons of both sides
can be merged along the motorcycle edge.

(a) S(C1 ∪ C2) (b) S(P)

Figure 4.17: Adding the final edge to the left side (green)

However, it is also possible that there is no arc of S(C1) that overlaps the mo-
torcycle edge in the first place. This can be seen in Figure 4.18a. It turns out
that this is easier to solve because there is nothing that needs to be added on each
side. Only a ray supported by the motorcycle edge needs to be added for the final
straight skeleton of these two polygons.

35

4 Algorithm

(a) No overlapping edges (b) Solution

Figure 4.18: Disconnected straight skeleton

This also works if both polygons consist of only one edge. It is also possible
that there are arbitrarily many consecutive regions consisting of only one edge. A
relevant polygon is shown in Figure 4.19

Figure 4.19: Polygon with multiple neighbored one-edged regions

Another approach is adding the adjacent edge of the dominant motorcycle edge to
the single edge region which creates a convex polygon. This gets rid of single edge
regions. Then the straight skeleton (in this case only a single arc) of this convex
polygon can be computed and the merge process can be done normally.

36

4 Algorithm

4.2.3 Open Polygons

The algorithm starts with bis(a, e) and ends if it reaches the region of b. However,
there are two problematic cases for the definitions of a and b:

1. The inserted edge e has only one intersection with the region polygon.

2. The inserted edge e has no intersection with the region polygon.

One Intersection

This can happen if one of the polygons is open. An example is shown in Fig-
ure 4.20a: The edge e intersects the polygon only in one point (Intersection with
a). In this case the algorithm starts as usual with bis(a, e) and updates a as usual.
It stops when bis(a, e) does not hit the boundary of a face anymore which means
that bis(a, e) is extended to infinity.

(a) Only one intersection (b) Solution

Figure 4.20: Special case with only one intersection

It is not always the case that the last updated edge a coincides with the open edge
of the polygon on the other side (Figure 4.22b).

37

4 Algorithm

No Intersection

This is essentially the same problem as described in the previous section and can
happen for open polygons. Inserting an edge e might result in no intersection with
the polygon on the other side at all (Figure 4.21). Therefore, the edges a and b
are not defined as described in the base algorithm.

Let P be the region polygon of one side that results in such an open polygon.
The resulting merged polygon P ∪ {e} is open around the motorcycle edge. This
means that the edge of P that coincides with one of the adjacent edges of the
reflex vertex is needed for the first step of the computation. This edge is used as
the edge a for further computations.

The edge b does not need to be defined yet as seen in the previous section. The
insertion procedure simply continues again until bis(a, e) no longer intersects the
boundary of a face.

Figure 4.21: No intersection

38

4 Algorithm

4.2.4 Induced Polygons with Crossings

The original polygon P is simple. However, this is not true for the induced polygons
during the merge process.

Merging along the reflex vertex r1 (Figure 4.22a) results in a self-intersection
of the polygon to its right side.

(a) Self-intersecting polygon (b) Resulting polygon (green edges)

Figure 4.22: Induced polygon with crossing

This also implies that the straight skeletons during the merge process do not need
to be crossing-free.

The overlapping edges can be affected by this, because there can be lines from
the straight skeleton that cross the current motorcycle edge without having any
influence on the merged skeleton (Figure 4.23a). This means that they have to be
excluded from the definition of the overlapping edges.

To avoid problems during the selection of overlapping regions, the lines of
the straight skeleton can be trimmed with respect to the region polygon and its
motorcycle edges (Figure 4.23b).

These crossings do not occur locally which means that it is possible to ignore
these edges by looking at the cells around the motorcycle edge.

(a) Self-intersecting straight skeleton (b) Bounded by motorcycle edges

Figure 4.23: Self-intersecting straight skeleton

39

4 Algorithm

4.3 Cycles
Cycles cannot be resolved normally because the dominance graph has a cycle in
it.

(a) Motorcycle graph

e1

e2 e3

e4

(b) Dominance graph

Figure 4.24: Cycle in a motorcycle graph

Lemma 4.4. A cycle in the underlying undirected graph of the dominance graph
can only correspond to a cycle in the motorcycle graph.

Proof. Let C = {c1, . . . , ck} be a cycle in the dominance graph. If there is a
permutation of C with cπ(1) � cπ(2) � . . . � cπ(k−1) � cπ(k) � cπ(1) (all edges have
the same orientation) then C corresponds to a cycle in the motorcycle graph by
definition. Otherwise, there exist vertices ci, cj, ck with cj � ci and ck � ci which
is not possible because a line in the motorcycle graph can only crash into exactly
one other line.

Lemma 4.5. There is at most one cycle per component in the dominance graph.

Proof. Assume there are at least two cycles C1 and C2 in one component.
There is no undirected path from vertices in C1 to another vertex in C1 without

using vertices from C1 (4.4). Let c, d2 ∈ C1. There can only be one incoming
edge per vertex and c and d already have one incoming edge from a vertex in C.
Therefore, a path from c to d has an outgoing edge from c in the beginning and
an outgoing edge from d at the end. Those two edges point in different directions
which implies that there is at least one vertex in this path with two incoming edges
and thus contradicting the fact that there can only be on incoming edge.

C1 and C2 are in the same component and therefore there exists a path from
c1 ∈ C1 to c2 ∈ C2. This path does not include any other vertex from C1 or C2.
The path from c1 to c2 has outgoing edges from c1 and c2 with opposite directions
at each end and that results again in a vertex with two incoming edges. This
contradicts the assumption that there are at least two cycles in one component.

40

4 Algorithm

Before resolving the cycle all other motorcycle edges in the component need to be
resolved. This is possible due to Lemma 4.5 and the cycle will be the only thing
that is left to merge in one component of the dominance graph.

In the following it is shown w.l.o.g. how to resolve a motorcycle graph that
only consists of a cycle.

Merging along a motorcycle edge in the absence of cycles results in adding all
relevant edges from both sides with a possible extra edge from the dominant mo-
torcycle edge. However, simply merging together two regions along one motorcycle
edge that is part of a cycle like this results in multiple problems. A motorcycle
edge like this is not shared fully by two adjacent regions which effectively results in
the same problem as merging along a motorcycle edge that dominates unresolved
motorcycle edges. In the case of cycle-free motorcycle graphs this could be avoided
by merging the dominated motorcycle edges first. This is not possible for a cycle
since there is no such line.

The inner motorcycle cell is used to solve this problem. Let C be this motor-
cycle cell and m be the motorcycle edge of the cycle that is currently used in the
merge process. m is covered by the two adjacent regions of m that are left and
right of its reflex vertex and C. Every edge of the polygon that will have a face
that intersects m has to either come from the left or right region or has to sweep
over C.

The straight skeleton S(C) of C is calculated by using all edges of the polygon
whose regions overlap the cycle (Figure 4.25a). These edges form a convex polygon.

The overlapping edges (with respect to the common part of m) and the edges
from C that overlap from the cycle into the outer region are inserted into the other
outer region normally (Figure 4.25b). Resolving the cycle like this results in the
final straight skeleton S(P) (Figure 4.25c).

This process can be done in O(l log(l)) expected time where l is the total number
of overlapping edges [1]. Merging along motorcycle edges step by step results in
a dominance graph with linear height. However, this can be improved by merg-
ing pairs of adjacent regions together first and resolving them like a binary tree
structure. This can be used to achieve an overall runtime of O(k log2(k)) where k
is the size of the cycle.

41

4 Algorithm

(a) S(C) (b) Merging along one motorcycle edge

(c) S(P)

Figure 4.25: Merging cycles

4.3.1 Properties of intermediate skeletons

The underlying structure of the straight skeleton of a simple polygon is a plane
tree. This chapter showed that the straight skeletons created during the algorithm
do not necessarily have this property. The straight skeletons can be disconnected
(Figure 4.19) and/or have crossings (Figure 4.23b).

The straight skeletons created in each merge step equal the actual straight
skeletons of the region polygons if the motorcycle graph does not contain a cycle.
For cycles this is true if the whole cycle is resolved (Figure 4.25c). In general, the
straight skeleton resulting from merging along a single motorcycle edge of the cycle
only coincides with the actual straight skeleton on the left and right motorcycle
cell and the center region (Figure 4.25b). An example of a straight skeleton that
does not coincide with the actual straight skeleton outside of these cells is shown
in Figure 4.26.

42

4 Algorithm

Figure 4.26: Calculated straight skeleton and the region polygon

43

5 Implementation

5 Implementation
This chapter will discuss the implementation of the algorithm presented in Chapter
4. The program has been implemented with Java (JSE 7) using Piccolo2D for the
visualization.

Usage of the program and compatibility to GeoGebra will be discussed briefly.
Furthermore, used data structures and explanations for key parts of the imple-
mentation will be discussed as well.

5.1 Program
The interface of the program is inspired by GeoGebra.

Figure 5.1: User interface

5.1.1 Input

The program needs a closed simple polygon as input. This can be either added
manually using the interface or by importing a .dat file. The file contains a list
of vertices where each vertex is connected to the one below it. The polygon is
closed if the last vertex in the list is equal to the first one and open otherwise. An
open polygon needs to be closed manually because the program cannot compute
the straight skeleton of an open polygon for multiple reasons. The main reasons
are that it is sometimes hard to decide what should be the inside of the polygon
and the polygon can be self-intersecting by simply closing it.

44

5 Implementation

326.0 71.0
259.0 203.0
175.0 267.0
251.0 352.0
280.0 455.0
405.0 431.0
496.0 542.0
589.0 324.0
588.0 230.0
480.0 81.0
326.0 71.0

(a) .dat file (b) Polygon

5.1.2 Output

The program is capable of calculating a few things related to the straight skeleton.
Besides the calculation of the straight skeleton and the motorcycle graph, the
medial axis of each convex region polygon can be calculated (The straight skeleton
coincides with the medial axis for convex polygons). This can be used to merge
along reflex vertices by hand.

Furthermore, it is possible to run a folder of polygons and analyze parameters
of the straight skeleton for each of them to obtain experimental results. This will
be covered in Chapter 6.

There is also the possibility to export the straight skeleton to a .txt file due to
the fact that GeoGebra is a way more powerful tool and general gemeotric manip-
ulations can be performed there instead. After a successful export there will be
a file containing two commands for GeoGebra: One to import all points and line
segments and another one to format them.

(a) Original polygon (b) Exported to GeoGebra

Figure 5.3: Polygon output

45

5 Implementation

5.2 Data Structures
5.2.1 Polygons

Polygons are represented by an ordered list of vertices and edges. Each vertex has
an incoming edge and an outgoing edge.

All edges are directed and the polygon is represented by a directed cycle. Fur-
thermore, each edge stores information about its start and end vertex.

5.2.2 Motorcycle Graphs

The motorcycle graph is represented by an arrangement of directed edges. Each
motorcycle edge l has the following information:

• The reflex vertex defining the start of the motorcycle edge

• The dominant motorcycle track that l crashes into

• A set of motorcycle edges that crash into l

5.2.3 Straight Skeletons

The tree structure of the straight skeleton is represented by an unordered list of
vertices and edges. Each edge is directed and has a start and an end vertex.

Each vertex of the straight skeleton has a list of adjacent edges.

(a) Polygon and straight skeleton (b) Motorcycle graph

Figure 5.4: Structures

5.2.4 Motorcycle Cells

Motorcycle cells consist of edges of the polygon that are part of the motorcycle cell
and motorcycle edges that separate it from other motorcycle cells. In addition,
the region polygon induced by the edges and the reflex vertices of the motorcycle
cell are stored.

46

5 Implementation

5.2.5 Reflex Vertices

A reflex vertex stores the following information

• The outgoing motorcycle edge

• The adjacent edges from the original polygon

• The adjacent motorcycle cells

5.3 Details
5.3.1 Polygon Orientation

The orientation of the polygon is calculated by using the shoelace formula.

Lemma 5.1 (Shoelace formula [20] [21]). Let P be a planar non-self-intersecting
polygon with vertices (x1, y1), . . . , (xn, yn). The signed area A of the polygon P is
given by

A = 1
2

(∣∣∣∣∣x1 x2
y1 y2

∣∣∣∣∣+
∣∣∣∣∣x2 x3
y2 y3

∣∣∣∣∣+ . . .+
∣∣∣∣∣xn x1
yn y1

∣∣∣∣∣
)

The points are in clockwise order for a normal cartesian coordinate system if the
area of the polygon is negative and in counterclockwise order otherwise. However,
the program uses an inverted y-axis and therefore this rule has to be reversed.

The orientation is used to decide which angle spanned by two polygon edges is
inside the polygon

5.3.2 Detecting Induced Polygons

The motorcycle graph induces convex polygons. The edges for such a polygon are
detected by using the motorcycle graph and is done iteratively. The algorithm
runs over all polygon edges and motorcycle edges of a cell and detects regions in
that way.

Start with an arbitray reflex vertex and follow its motorcycle cell by using the
orientation of the polygon and the motorcycle graph. A motorcycle cell is convex
so this can be used to iterate over all parts of the cell until the reflex vertex is
reached again. All visited edges of the polygon are added to create the induced
polygons.

Each region is connected to at least one reflex vertex so this algorithm is applied
to get each incoming and outgoing region. This is not true for inner motorcycle
cells created by cycles but these are irrelevant for the creation of the induced
polygons in the first place.

47

5 Implementation

Lemma 5.2. Detecting the regions of P induced by M(P) can be done in O(n)
time by using the presented algorithm if the dominated edges of each motorcycle
edge are sorted and O(n log(n)) time otherwise.

Proof. Assume all crashed edges are sorted. The proof is presented in two parts.
First the number of polygon edges are counted and afterwards the number of
motorcycle edges that are visited during the algorithm.

Let n be the number of vertices and r the number of reflex vertices. Each edge
of the polygon is part of at least one cell and an edge is part of multiple cells
if a motorcycle edge crashes into it. This results in at most n + r edges on the
polygon that are counted during the algorithm. The upper bound is achieved by
a motorcycle graph without intersections.

Every edge of the motorcycle graph is part of at least two cells. A motorcycle
edge is part of one extra region for each intersection on it. There are at most r
intersections. This results in at most 2r + r counted line segments.

Together this results in∑
Cell c
|c| ≤ n+ r + 2 · r + r ≤ 5 · n = O(n).

However, the dominated edges of each motorcycle edge have to be sorted first to
find the next point of a region on a motorcycle edge. Each motorcycle edge is
processed separately in O(ri log(ri)) time where ri is the number of crashed edges
on the motorcycle edge mi. There are r end points, one for each motorcycle edge
and an end point lies on at most two edges. Therefore,

r∑
i
ri = O(n) and the points

can be sorted in
r∑
i

ri log(ri) ≤
r∑
i

ri log(r) =
(

r∑
i

ri

)
log(r) = O(n log(n))

time.

48

5 Implementation

5.3.3 Bisector Computation

Remark. Two points A, B lie on the opposite side of a line l if and only if the
segment AB and l have an intersection point.

Figure 5.5: Orthogonal projection

A bisector of two non-parallel lines is not uniquely defined because there are two
possible bisector lines. Furthermore, bisectors are generated as rays with the
intersection of its supported lines as the start vertex. This results in four possible
bisectors during the calculation but only one of them will be relevant for the
calculation of the straight skeleton.

Furthermore, bisectors that are added during the insertion step do not always
start in the intersection point of its two supported lines. This makes it necessary
to calculate the correct side where the bisector needs to start, which is either the
intersection of its supported lines or a point at infinity.

Let b be the bisector generated by the inserted edge e and an edge a of the
polygon. Furthermore, let l be the line of f(a) that b crashes into and a2 be the
supporting edge of l that is not a. To determine the start point of b one can use
the intersection of a and e and a point A on the line created by a2 that lies on the
motorcycle cell of a.

Lemma 5.3. The orthogonal projection of b ∩ l onto la2 is a point inside of the
motorcycle cell of a2 (Figure 5.6a).

Proof. Monotonicity of the straight skeleton.

(a) Orthogonal projection (b) Resulting line segments

Figure 5.6: Adding first bisector

49

5 Implementation

This point A can now be used to decide whether the intersection of e and a is the
start vertex or not. The same thing can be done to determine the start and end
points of the line l by using the bisector b in the process. The next bisector is
calculated in the same way by using the line l to calculate the correct direction.

5.3.4 Edge Selection

The selection of edges a and b described in Subsection 4.1.2 with its problems is
not always easily possible and is avoided in general.

Edge a is always selected as the edge connected to the reflex vertex. On the
other side, there are several problems that arise for the selection of b. b is in
general not the last edge of the induced polygon on one side. Furthermore, the
motorcycle cell of b does not necessarily cross the motorcycle edge and is therefore
not always an overlapping edge. This possibly results in the problem that a, b and
the inserted edge e do not define a convex polygon. In addition, not all of these
edges have to be relevant for the construction of the polygon in the first place
(Figure 5.8).

Figure 5.7: Edges a, b and e

50

5 Implementation

5.3.5 Overlapping Edges

Finding edges whose faces overlap the motorcycle edge can be done by checking
arcs of the straight skeleton around the motorcycle edge.

The following describes the identification of OR. Finding edges of OL works
analogously. For a given reflex vertex r start with the motorcycle region of the
right side. If there are overlapping arcs then there is at least one that is part of this
region namely the one closest to the reflex vertex. The overlapping edges can be
identified by iterating over the arcs of the straight skeleton of this motorcycle region
until there is either an intersection with the motorcycle edge or no intersection can
be found. If there is no intersection then there are no overlapping edges in the
first place. Otherwise, an overlapping arc will be found and the supporting edge e
which is not the edge connected to the reflex vertex will be added to OR. However,
the edge will not be added if it is already contained in PL.

Afterwards the arcs of f(e) will be iterated over and this process is repeated
until there is no arc left in the region and no further intersection can be found.

Figure 5.8: Finding overlapping edges

51

6 Experimental Evaluation

6 Experimental Evaluation
This chapter presents experimental results of the algorithm presented in Chapter 4
by using the program discussed in Chapter 5.

The running time of the algorithm depends on the height of the merge tree.
Therefore, there is a special interest in polygons with high merge trees. Their
expected running time is O(n2 log(n)) in the worst case. Some of these polygons
will be examined and discussed.

6.1 Parameters
Let P be a polygon of n vertices with r reflex vertices. The number of merge steps
is constant for a fixed number of reflex vertices because every vertex needs to be
used exactly once. For each merge step a number of parameters are of interest: The
number of edges that need to be inserted into each side, the number of iterations
for each inserted edge and the time the algorithm needs to finish the task. The
time measures the amount of time needed for the iterations after the motorcycle
graph and the medial axis of all induced polygon are calculated.

This will lead to a total number and an average number per reflex vertex for
most parameters.

6.2 Tested Polygons
The main interest during the evalution of different polygons is not necessarily the
structure of the polygon itself but also the structure of the motorcycle graph.
These tested polygons include some special motorcycle graph structures and then
also more general polygons will be discussed.

6.3 Disconnected Motorcycle Graphs
Definition 6.1 (Disconnected Motorcycle Graphs). LetM(P) = {ti |i ∈ {1, . . . , n}
be the motorcycle graph with its line segments. M(P) is called disconnected if there
is no pair i, j with i 6= j and ti � tj.

Definition 6.2 (Sparse Motorcycle Graphs). A motorcycle graph is called sparse
to a degree k if there are at most k connected motorcycle edges.

Remark. A disconnected motorcycle is sparse of degree 1.

The chance to get a disconnected motorcycle graph for random polygons gets
smaller with increasing polygon size. Therefore, polygons with sparse motorcycle
graphs of degree 2 were added to increase the sample size.

52

6 Experimental Evaluation

(a) Disconnected motorcycle graph (b) Sparse motorcycle graph (degree 2)

Figure 6.1: Sparse motorcycle graph

Polygon Overlapping Edges Insertion Steps Time [s]
n r Total per reflex per edge
20 5.38 2.42 5.89 1.09 2.43 0.06
30 9.87 6.39 18.56 1.88 2.90 0.07
40 14.1 8 21 1.49 2.6 0.09
50 18.6 7.2 20.2 1.09 2.81 0.10

Table 1: Sparse motorcycle graphs

0 2 3 4 5 6 7 ≥ 8

0

20

40

60

80 70.79

13.49
3 5.5 1.6 1.3 1 3

iteration steps

%

Figure 6.2: Histogram of iteration steps per reflex vertex (over 3000 tested poly-
gons)

Most often (70.79%) there were no overlapping edges at all and therefore no newly
created arcs during the algorithm besides the one connected to the reflex vertex.
Inserting only one arc is not possible because the algorithm cannot terminate after
just one inserted arc and requires at least a second one to finish it.

53

6 Experimental Evaluation

About 97% of the time a single reflex vertex had less than 8 iteration steps.
The highest number of iteration steps for one step was 49. However, different
merge orders achieved good results on average for some of the bad examples.

The tested polygons could be calculated efficiently. There are many possible merge
orders and they are chosen randomly. However, this did not play a key role for the
fast computations. The main reason for it is that these types of polygons either
have a small number of reflex vertices with respect to n or that they have a rather
thin structure - This means regions do not have many other regions as neighbors
and do not have a large influence on other regions as soon as they are merged once.

An extreme example is shown in Figure 6.3 that achieved a high number of it-
eration steps in one merge step. The reason for the many iteration steps is the
high number of overlapping edges in the first step and this step cannot be avoided
with another merge order. The high number of overlapping edges are a result of
the long but rather thin structure with one motorcycle edge going through the
middle of it to the other side of the polygon.

This structure did not occur very often and less than 1% of the tested polygons
had a reflex vertex with 20 or more iteration steps and only 0.25% of the reflex
vertices had 20 or more steps and most of them had a similar structure.

However, polygons with this structure tend to have either a small average
number of steps per reflex or a small number of steps with respect to n because
most edges are inserted in a single step. This results in a fast computation for
these types of polygons.

Figure 6.3: Many iteration steps (n = 18, overlapping edges in green)

Polygon Overlapping Insertion Steps Time [s]
n r Total max per reflex per edge
17 2 10 40.3 38.3 20.15 4.03 0.08

Table 2: Average parameters for Figure 6.3 from 50 calculations

54

6 Experimental Evaluation

6.4 Linear Merge Tree
In this section specific polygons with a merge tree of height O(n) are discussed.

6.4.1 Zipper Motorcycle Graphs

Definition 6.3 (Zipper Motorcycle Graphs). Let Z = {ti |i ∈ {1, . . . , k}, k ≤
n} be a connected subgraph of the motorcycle graph with its line segments. Z is
called zipper motorcycle graph if there exists a permutation π ∈ Sk with tπ(1) �
tπ(2) > . . . � tπ(k−1) � tπ(k) and every motorcycle cell is bounded by at most three
motorcycle edges of Z.

Figure 6.4: Zipper motorcycle graph

Zipper motorcycle graphs can be interpreted as motorcycle graphs with zigzag
patterns. There is only a single merge order and the height of the merge tree is
O(n).

Polygon Overlapping Edges Insertion Steps Time [s]
n r Total per reflex per edge
52 24 23 46 1.92 2 0.27
60 28 27 54 1.93 2 0.33
68 32 31 62 1.94 2 0.35
76 36 35 70 1.94 2 0.44
84 40 39 78 1.95 2 0.49
92 44 43 86 1.95 2 0.55
100 48 47 94 1.96 2 0.66
108 52 51 102 1.96 2 0.69
116 56 55 110 1.96 2 0.71

Table 3: Zipper motorcycle graphs (Figure 6.4)

55

6 Experimental Evaluation

However, the example in Figure 6.4 shows that this can still be very efficient. The
number of insertion steps per reflex and per edge is almost constant because the
merge process finishes in the first step. This results in a linear running time for
this specific polygon and shows that certain polygons with linear height of the
merge tree can be computed efficiently.

6.4.2 Pseudo Cycle Motorcycle Graphs

Definition 6.4 (Pseudo Cycle). Let M = {mi |i ∈ {1, . . . , k}, k ≤ n} be a con-
nected subgraph of the motorcycle graph with its line segments. M is called a pseudo
cycle if M is not a cycle and there exists a polygon P ′ and a cycle C ⊂ M(P ′)
with M ⊂ C and |C| = |M |+ 1.

Pseudo cycles are structures that are missing one motorcycle edge to be an actual
cycle. A pseudo cycle has a fixed merged order to resolve the pseudo cycle.

(a) Pseudo Cycle (b) Cycle containing the pseudo cycle

Figure 6.5: Pseudo cycle motorcycle graphs

Polygon Overlapping Edges Insertion Steps Time [s]
n r Total per reflex per edge
35 11 17 34 3.1 2 0.22
59 19 29 58 3.05 2 0.37
83 27 41 82 3.04 2 0.52
107 35 53 106 3.03 2 0.73
131 43 65 130 3.02 2 0.87
149 49 74 148 3.02 2 1.00
173 57 86 172 3.02 2 1.20

Table 4: Pseudo cycles (Figure 6.5a)

56

6 Experimental Evaluation

Polygons with pseudo cycles like in Figure 6.5a can be calculated quite efficiently
although the depth of the dominance graph is linear and a fixed merge order is
given. Furthermore, there was one large region that was involved in every merge
step. However, this was still efficient because there were not many overlapping
edges per reflex vertex and they didn’t have much influence on the large region.
This resulted in small local changes and the number of insertion steps was almost
constant per reflex vertex and per overlapping edge.

On the other side, pseudo cycles can be quite inefficient as well. The idea is
to keep the region that is connected to all motorcycle edges rather small so that a
new region overlaps as many of the already merged regions as possible.

(a) Pseudo cycle (b) Zoom of the central region

Figure 6.6: Pseudo cycles with small central region

Polygon Overlapping Edges Insertion Steps Time [s]
n r Total per reflex per edge
31 10 15 61 6.1 4.07 0.22
37 12 19 85 7.08 4.47 0.26
43 14 23 114 8.14 4.97 0.32
49 16 26 143 8.94 5.5 0.39
55 18 29 176 9.78 6.07 0.43
61 20 32 212 10.60 6.625 0.51
67 22 36 254 11.45 7.06 0.56
211 70 121 212 10.60 6.625 2.99
241 80 140 3019 37.74 21.56 3.71
271 90 157 3806 42.29 24.24 4.47
301 100 177 4692 46.92 26.51 5.5
451 150 276 10531 70.21 38.16 10.80

Table 5: Pseudo cycles (Figure 6.6a)

57

6 Experimental Evaluation

The average number of steps per reflex vertex and overlapping edge grow for larger
polygons which was not the case for the pseudo cycles in Table 4. In addition to
the average numbers, the amount of steps for each reflex vertex are of interest as
well. The typical behavior of these specific polygons is shown in Figure 6.7 in the
case of a polygon with 100 reflex vertices.

0 20 40 60 80 100
0

20

40

60

80

100

120

Reflex vertex

St
ep
s

Figure 6.7: Pseudo cycle (n = 301, r = 100)

In the first few steps there are usually not many overlaps because the reflex vertices
start with a rather low speed compared to the remaining reflex vertices. After the
first few reflex vertices are inserted the newly inserted edges start to influence all
or almost all of the already inserted regions. The number of steps and created arcs
grows linearly until the last few vertices.

The first reflex vertices do not cause many overlaps and the last reflex vertices
are the ones that overlap the first few regions the most. This gives a few extra
steps at the end. The drop at the end is caused by the last vertex that merges the
half circle structure at the bottom with the top region.
This linear growth can also be seen in Figure 6.8 where the maximum number of
steps for different amounts of reflex vertices is shown.

The polygons are created with r reflex vertices and n = 3r+ 1 vertices. Therefore,
the dominance graph has a depth of Θ(n) and each merge step (except the first
few) has linearly many created arcs which results in a runtime of Ω(n2) for this
type of polygon.

58

6 Experimental Evaluation

20 40 60 80 100

20

40

60

80

100

120

reflex vertices

M
ax

Figure 6.8: Maximum number of steps for different numbers of reflex vertices

59

6 Experimental Evaluation

6.4.3 General Polygons

In this section more general polygons are tested. These include several different
types and structures of polygons and motorcycle graphs.

Figure 6.9: Examples of tested polygons

Polygon Overlapping Edges Insertion Steps Time [s]
n r Total per reflex per edge
20 6.23 4.10 10.05 1.61 2.45 0.05
30 10.81 6.37 15.64 1.44 2.45 0.09
40 15.97 8.87 21.51 1.35 2.42 0.22
50 19.56 13.08 31.46 1.61 2.40 0.37
60 25.47 17.23 44.82 1.76 2.60 0.52
70 30.43 20.16 49.46 1.62 2.45 0.64
80 34.88 22.49 56.68 1.82 2.52 0.75

Table 6: General polygons

The experimental evaluation of these polygons show that the algorithm works
quite efficiently for them. The average number of iterations per reflex vertex and
per overlapping edge stayed roughly constant.

The maximum number of iteration steps was 43 achieved by a polygon with
28 reflex vertices. However, almost half of the reflex vertices had 0 iteration steps.
All polygons with 10 or more reflex vertices had less than 5 iterations steps per
reflex vertex on average. High averages are caused by structures like the one in
Figure 6.3. Therefore, even extreme cases like polygons with high maximum of
iteration steps and high averages of iteration steps could be computed efficiently.

60

6 Experimental Evaluation

0 2 3 4 5 6 7 ≥ 8

0

20

40

60
64.87

14.07
2.48

11.15
2.6 1.37 1.25 2.18

iteration steps

%

Figure 6.10: Histogram of iteration steps per reflex vertex (over 4000 tested
polygons)

The histogram in Figure B.10 reflects this behavior and shows similar results like
the histogram for sparse motorcycle graphs (Figure 6.2).

There is a spike at 4 iterations. Three iteration steps per reflex vertex are only
possible if there are no newly created arcs on one side and exactly three on the
other side. On the other hand, four iteration steps have the additional combination
of the common two iterations on each side.

61

7 Conclusion

7 Conclusion
The main goal in this thesis was to present a new algorithm for computing the
straight skeleton that is useful for practical purposes and also easy to implement.
For this, an implementation of this algorithm was provided and used to study the
algorithm.

In 2014 Cheng, Mencel and Vigneron [10] presented their algorithm for comput-
ing the straight skeleton of a polygon. Their algorithm runs in O(n log(n) log(r) +
r

4
3 +ε) time, which is currently the best known theoretical running time. However,

this algorithm is quite involved and they did not provide an implementation to
show its practical usefulness.

The algorithm presented in this thesis has an expected running time ofO(d n log(n))
where d is the height of the merge tree. In the best case, the merge tree has a
height of O(log(n)) which results in an expected running time of O(n log2(n)). In
the worst case, the height is linear and this results in an expected running time of
O(n2 log(n)) for computing the straight skeleton of a simple polygon.

The experimental evaluation showed that the algorithm works very well in prac-
tice. The algorithm was shown to be slow for certain types of polygons (pseudo
cycles) where the merge tree has linear height and each newly merged reflex vertex
influences almost all previously added regions. However, this example was specif-
ically constructed and not a single one of the general polygons showed a similar
behavior.

Outlook and further work
There are several open questions related to the presented algorithm. At the mo-
ment, the algorithm and the implementation only work for simple polygons without
holes.

Furthermore, the merge order (merge tree) was chosen randomly and the al-
gorithm was tested multiple times to find an average running time. The open
problem is to find an efficient merge order. It is in general desirable to find a
merge tree with balanced height, but for practical purposes a linear height of the
merge tree can work very well and it is currently unknown to decide a priori which
merge tree results in the optimal running time.

In addition, an open problem are possible optimizations for non-balanced merge
trees. For example, pseudo cycles that have merge trees with linear height can be
approached differently. Cycles can be merged efficiently due to a balanced binary
merge approach. This can be used as an idea to merge pseudo cycles as well be-
cause they almost behave likes cycles. The underlying problem is the resolving
of dominant motorcycle edges which lead to problems when the algorithm is used

62

7 Conclusion

without modifications.

There is a multitude of different polygons and structures of the motorcycle graph.
Only a handful of these could be analyzed within the scope of this thesis. However,
the algorithm and the program can be used to study more polygons for practical
purposes. The tested polygons included general polygons of many different sizes
and structures to study general behavior. Furthermore, a few selected polygons
and structures were chosen to showcase good and bad behavior of the algorithm.
However, it is still of interest to classifiy polygons with good and bad behavior and
find more examples.

The pseudo cycles showed that polygons with identical dominance graphs and
identical merge trees can behave vastly different. Therefore, it might be interest-
ing to study how the structure of the polygon affects the algorithm in general and
for identical dominance graphs. For this, the size and position of motorcycle cells
are especially interesting. Small central cells might have a bad influence because
many other regions can overlap into this cell which can result in a lot of iteration
steps.

63

A Examples

A Examples
This short chapter presents a few selected straight skeletons which are calculated
by using the implementation presented in Chapter 5. These examples include
straight skeletons of polygons that were mentioned in this thesis.

Figure A.1: Straight skeleton of polygon with 99 vertices

Figure A.2: Straight skeleton of polygon with 69 vertices

Figure A.3: Polygon in the shape of Austria containing a cycle

64

A Examples

Figure A.4: Ineffcient pseudo cycle

Figure A.5: Zipper motorcycle graph

65

B Evaluation

B Evaluation

B.1 Bouncing Reflex

Figure B.1: Bouncing reflex [5]

Polygon Overlapping Insertion Steps Time [s]
Polygons n r Total per reflex per edge

64 101 39.30 9.62 21.23 0.54 2.21 0.15
54 105 35.62 9.36 20.05 0.56 2.14 0.14

Table 7

0 2 3 4 5 6 7 ≥ 8

0

50

83.02

7.27 1.44 6.88 0.62 0.33 0.17 0.26

iteration steps

%

Figure B.2: Histogram of iteration steps per reflex vertex (118 tested polygons)

Remark. The highest number of iteration steps for a single reflex vertex was 14.
The highest average value for iterations per reflex was 1.55 (r ≥ 3).

66

B Evaluation

B.2 Convex Bottom

Figure B.3: Convex bottom [5][6][19]

Polygon Overl. Insertion Steps Time [s]
Polygons n r Total per reflex per edge

62 100-119 50.92 12.94 32.36 0.64 2.51 0.24
48 120-139 59.88 14.88 38.13 0.64 2.56 0.27
49 140-159 70.73 17.33 44.51 0.63 2.57 0.35
41 160-179 79.87 19.24 49.63 0.62 2.58 0.38
50 180-200 91.22 21.63 55.39 0.61 2.56 0.44

Table 8

0 2 3 4 5 6 7 ≥ 8

0

20

40

60

80
80.65

7.06 6.43 2.56 1.86 0.91 0.25 0.27

iteration steps

%

Figure B.4: Histogram of iteration steps per reflex vertex

67

B Evaluation

0 2 3 4 5 6 7 ≥ 8

0

20

40

60

80
80.9

7.17 6.64
2.14 1.8 0.89 0.22 0.26

80.39

7.51 5.56 3.1 2.06 0.89 0.28 0.21

iteration steps

%
180-200
100-119

Figure B.5: Comparison of histograms

Remark. The highest number of iteration steps for a single reflex vertex was 15.
The highest average value for iterations per reflex was 1.27. However, more than
95% of the tested polygons had an average below 1.

68

B Evaluation

B.3 Space Partitioning

Figure B.6: Space partitioning [5][6][19]

Polygon Overl. Insertion Steps Time [s]
Polygons n r Total per reflex per edge

29 100-119 52.00 26.59 60.59 1.17 2.28 0.37
30 120-139 61.80 31.41 73.25 1.19 2.33 0.45
55 140-159 72.73 33.25 77.15 1.06 2.32 0.53
50 160-179 81.18 35.43 80.05 0.99 2.26 0.63
37 180-200 92.73 42.80 99.95 1.08 2.34 0.72

Table 9

0 2 3 4 5 6 7 ≥ 8

0

20

40

60
66.15

15.02
3.72

9.95
2.36 1.24 0.64 0.92

iteration steps

%

Figure B.7: Histogram of iteration steps per reflex vertex

69

B Evaluation

100 200
0

1

2

polygon size

av
er
ag
e
st
ep
s

Figure B.8: Average number of steps per reflex vertex for increasing polygon
sizes

Remark. The highest number of iteration steps for a single reflex vertex was 19.
The highest average value for iterations per reflex was 2.50. However, only two of
the tested polygons had an average above 2.

70

B Evaluation

B.4 Steady Growth

Figure B.9: Steady growth [5][6][19]

Polygon Overl. Insertion Steps Time [s]
Polygons n r Total per reflex per edge

43 100-119 50.30 20.64 47.56 0.95 2.30 0.32
44 120-139 59.07 23.51 54.20 0.92 2.31 0.45
37 140-159 68.46 25.02 57.16 0.83 2.28 0.56
37 160-179 78.24 30.84 71.09 0.91 2.30 0.74
35 180-189 85.53 31.19 70.26 0.82 2.25 0.82
39 190-200 90.21 31.08 71.96 0.80 2.32 0.83

Table 10

0 2 3 4 5 6 7 ≥ 8

0

20

40

60

80 71.59

12.93
3.9 7.44 1.96 1.06 0.5 0.62

iteration steps

%

Figure B.10: Histogram of iteration steps per reflex vertex

71

Bibliography

Bibliography
[1] Franz Aurenhammer, Michael Steinkogler. On Merging Straight Skeletons. Eu-

roCG, Berlin, 2018.

[2] Oswin Aichholzer, Franz Aurenhammer, David Alberts, and Bernd Gärtner. A
Novel Type of Skeleton for Polygons. Journal of Universal Computer Scienece,
vol. 1, no. 12, pages 752-761, 1995.

[3] Oswin Aichholzer, Franz Aurenhammer. Straight Skeletons for General Polyg-
onal Figures in the Plane. In Computing and Combinatorics, volume 1090 of
Lecture Notes in Computer Science, pages 117–126. Springer, 1996.

[4] Gernot Walzl. Straight Skeletons - From Plane to Space (PhD thesis). Institute
for Theoretical Computer Science, University of Technology, Graz, Austria,
2015.

[5] Thomas Auer. Heuristics for the Generation of Random Polygons (Master’s
thesis). Faculty of Natural Science, University of Salzburg, Austria, 1996.

[6] T. Auer and M. Held. RPG: Heuristics for the Generation of Random Polygons.
In Proc. 8th Canadian Conference Computational Geometry, 1996, pp. 38-44.

[7] F. Aurenhammer. Weighted skeletons and fixed-share decomposition. Compu-
tational Geometry, 40(2), pp.93-101., 2008.

[8] Siu-Wing Cheng and Antoine VigneronMotorcycle Graphs and Straight Skele-
tons. Algorithmica, 47(2), pp.159-182., 2002.

[9] Antoine Vigneron and Lie Yan. A Faster Algorithm for Computing Motorcycle
Graphs. Discrete & Computational Geometry, 52(3), pp.492-514, 2014.

[10] Cheng, S., Mencel, L. and Vigneron, A. A Faster Algorithm for Computing
Straight Skeletons. ACM Transactions on Algorithms, 12(3), pp.1-21., 2016.

[11] Aurenhammer, F. and Walzl, G. Straight Skeletons and Mitered Offsets of
Nonconvex Polytopes. Discrete & Computational Geometry, 56(3), pp.743-
801., 2016.

[12] L Paul Chew. Building voronoi diagrams for convex polygons in linear ex-
pected time. Technical report, 1990.

[13] Chin, F., Snoeyink, J. and Wang, C. Finding the Medial Axis of a Simple
Polygon in Linear Time. Discrete & Computational Geometry, 21(3), pp.405-
420., 1999.

72

Bibliography

[14] Alok Aggarwal, Leonidas Guibas, James Saxe, and Peter Shor. A linear time
algorithm for computing the voronoi diagram of a convex polygon. In Pro-
ceedings of the nineteenth annual ACM symposium on Theory of computing,
STOC ’87, pages 39–45, New York, NY, USA, 1987. ACM.

[15] W. Mann, M. Held, S. Huber. Computing Motorcycle Graphs Based on Ki-
netic Triangulations. Proc. 24th Canadian Conf. on Computational Geometry,
p. 187-192, Charlottetown, P.E.I., Canada, Aug 2012.

[16] Bederson, B. B., Grosjean, J. and Meyer, J. Toolkit Design for Interactive
Structured Graphics, IEEE Transactions on Software Engineering, 30 (8),
pp.535-546., 2004

[17] Web.archive.org. (2018). Piccolo2D - A Structured 2D Graphics Framework.
[online] Available at: https://web.archive.org/web/20180316072624/
http://piccolo2d.org [Accessed 16 Mar. 2018].

[18] Web.archive.org. (2018). GeoGebra - Dynamic Mathematics. [online] Avail-
able at: https://web.archive.org/web/20180415015024/https://www.
geogebra.org/home [Accessed 15 Apr. 2018].

[19] Web.archive.org. (2018). Randomly generated polygons [online] Avail-
able at: https://web.archive.org/web/20170710054754/http://web.
informatik.uni-bonn.de/I/GeomLab/RandomPolygon/index.html.en [Ac-
cessed 27 Apr. 2018].

[20] Weisstein, Eric W. Polygon Area. From MathWorld–A Wolfram Web Re-
source. http://mathworld.wolfram.com/PolygonArea.html

[21] Beyer, W. H. (Ed.). CRC Standard Mathematical Tables, 28th ed. Boca Ra-
ton, FL: CRC Press, pp. 123-124, 1987.

[22] D. Eppstein, J. Erickson Raising roofs, crashing cycles, and playing pool: ap-
plications of a data structure for finding pairwise interactions. Discrete Com-
put. Geom., 22 (4) (1999), pp. 569-592.

[23] Erik D. Demaine, Martin L. Demaine, and Anna Lubiw. Folding and cutting
paper. In Post-Conf. Proc. of the Japan Conference on Discrete and Computa-
tional Geometry (JCDCG 1998), volume 1763 of Lecture Notes in Computer
Science, pages 104–118. Springer, 1998.

[24] E. D. Demaine, M. L. Demaine, J. F. Lindy, and D. L. Souvaine. Hinged
dissection of polypolyhedra. In Proceedings of the 9th Workshop on Algo-
rithms and Data Structures (WADS 2005), volume 3608 of Lecture Notes in

73

https://web.archive.org/web/20180316072624/http://piccolo2d.org
https://web.archive.org/web/20180316072624/http://piccolo2d.org
https://web.archive.org/web/20180415015024/https://www.geogebra.org/home
https://web.archive.org/web/20180415015024/https://www.geogebra.org/home
 https://web.archive.org/web/20170710054754/http://web.informatik.uni-bonn.de/I/GeomLab/RandomPolygon/index.html.en
 https://web.archive.org/web/20170710054754/http://web.informatik.uni-bonn.de/I/GeomLab/RandomPolygon/index.html.en

Bibliography

Computer Science, pages 205–217, Waterloo, Ontario, Canada, August 15–17
2005.

[25] Gill Barequet, David Eppstein, Michael Goodrich, and Amir Vaxman.
Straight skeletons of three-dimensional polyhedra. In Algorithms - ESA, vol-
ume 5193 of Lecture Notes in Computer Science. Springer, 2008.

[26] R. Laycock,A. Day. Automatically generating large urban environments based
on the footprint data of buildings. In: Proceedings of 8th ACM Symposium
on Solid Modeling and Applications, pp. 346–351 (2003)

[27] T. Kelly, P. Wonka. Interactive architectural modeling with procedural ex-
trusions. ACMTrans. Graph. 30(2), 14:1–14:15 (2011)

[28] Jan-Henrik Haunert and Monika Sester. Area collapse and road centerlines
based on straight skeletons. Geoinformatica, 12(2):169–191, 2008.

74

	Introduction
	Motivation and Problem Statement
	Medial Axis
	Straight Skeletons
	Motorcycle Graphs

	Outline of the Thesis

	Straight Skeletons & Motorcycle Graphs
	Basics & Notation
	Straight Skeletons
	Properties
	Computation

	Bisector Graphs
	Motorcycle Graphs

	Related Work
	Motorcycle Graphs and Straight Skeletons
	A Faster Algorithm for Computing Straight Skeletons
	Weighted Straight Skeletons
	Straight Skeleton in Space
	Applications

	Algorithm
	Base Algorithm
	Overlapping Edges
	Edge Insertion
	Merge Process

	Problems & Difficulties
	Merge Order
	Single Edge Regions
	Open Polygons
	Induced Polygons with Crossings

	Cycles
	Properties of intermediate skeletons

	Implementation
	Program
	Input
	Output

	Data Structures
	Polygons
	Motorcycle Graphs
	Straight Skeletons
	Motorcycle Cells
	Reflex Vertices

	Details
	Polygon Orientation
	Detecting Induced Polygons
	Bisector Computation
	Edge Selection
	Overlapping Edges

	Experimental Evaluation
	Parameters
	Tested Polygons
	Disconnected Motorcycle Graphs
	Linear Merge Tree
	Zipper Motorcycle Graphs
	Pseudo Cycle Motorcycle Graphs
	General Polygons

	Conclusion
	Examples
	Evaluation
	Bouncing Reflex
	Convex Bottom
	Space Partitioning
	Steady Growth

	Bibliography

