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Abstract

Deciphering gene regulation and its mode of function is one of the major challenges in

systems biology. Many different factors impact gene regulation and many studies have been

carried out to elucidate what triggers genetic transcription and how different genes impact

each other. In the last decade it has been shown that epigenetic modifications have a major

impact on gene regulation. New sequencing technologies have become available which allow

analysis of complex relations in the living cell.

The innovations of RNA-seq and ChIP-seq made it feasible to perform whole genome

sequencing for detection of novel splicing, quantification of transcriptional activity, detection

of transcription factor binding sites and analysis of histone modifications. Integration of

different -omics datasets is a promising approach to gain deeper insights in gene regulation.

In this thesis RNA-seq data and ChIP-seq data for Saccharomyces cerevisiae were analyzed.

Clustering of the histone modification patterns was performed and a relation between histone

modifications and their impact on expression was analyzed. The adaption of a genetic

regulatory network reconstruction algorithm was evaluated and different approaches for

integrative analysis were performed.

For a set of histone modifications a strong impact on gene expression could be established,

as well as that rather combinations of modifications are responsible for regulation of gene

expression than a single modification alone, i.e. that H3K9ac, H4K5ac, and H3K14ac act

together in gene activation while H3K36me3 regulates the impact which H3K9ac, H4K5ac,

and H3K14ac have on gene regulation.

Furthermore the use of the ARACNE algorithm on datasets other than gene expression data

is discussed, and its mode of function is explained in detail. The different approaches for

deduction of histone modifications impact on gene regulation which were used in this thesis

are discussed in detail.
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1 Introduction

Genetic regulatory networks play an important role in living organisms and their

reconstruction is one of the major challenges of systems biology. In the past decade many

studies have been carried out to elucidate the regulatory interactions of different genes, that

is to say how RNA- and protein products from expressed DNA segments govern

transcription.

To gain deeper insights into those complex processes, mathematical models and algorithms

for inference of such regulatory networks from gene expression data have been developed.

Integration of different types of ’omics’ data (e.g. genomic, transcriptomic, epigenomic,

proteomic data) and prior knowledge from literature could drastically improve the quality of

network reconstruction [1].

Reconstruction of regulatory networks and the analysis how histone modifications control

gene regulation by integrating epigenetic and transcriptomic data is the goal of this thesis,

and different analysis approaches are evaluated.

1.1 Epigenomics

Epigenomics refers to the study of DNA and chromatin modifications which are, in contrast

to mutations, not based on an alteration of the DNAs nucleotide sequence. The epigenome is

associated with many regulatory processes in eukaryotic organisms. It plays an important

role in cell differentiation [2], apoptosis [3] and DNA repair mechanisms [4]. Epigenetic

modifications create a complex set of combinations of positive or negative regulatory signals,

which provides a flexible means for a cell to react to environmental changes and adapt
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1 Introduction

quickly to them.

The modifications are accomplished by molecular markers on the DNA itself (e.g. DNA

methylation) or on the proteins involved in chromatin packaging (histone modifications).

In contrast to mutations, epigenetic modifications are specific for a cell. Therefore each cell

has its own epigenetic code which enables each cell to act differently than other cells of the

same type. Thus, the analysis of the epigenome of a multicellular organism must consider

the tissue from which the cell was taken.

With the development of next generation sequencing (NGS) technologies new possibilities

for genome wide profiling of the epigenome have emerged, thus a vast variety of epigenetic

datasets has become available in public databases.

1.1.1 DNA methylation

When methyl groups are covalently bound to specific parts of the DNA backbone, thus

changing the chemical structure of the DNA, while keeping the sequence of nucleobases in

place, is called DNA methylation. Those changes are heritable and are essential for normal

development of an organism [5]. They are also tightly linked to gene regulation and histone

modifications and it appears that a reciprocal influence between DNA-methylation and

specific histone modifications exists [5].

1.1.2 Histone modifications

Structural organization of the chromatin

The chromatin of a eukaryotic cell consists of DNA, RNA, and proteins, and embodies the

state in which DNA is packaged within the cell. The first level of the cascadic packaging is

the assembly of the DNA in nucleosomes. The nucleosome, which represents a basic unit

of chromatin, is composed of an octamer of the four core histones (H2A, H2B, H3, H4) and

DNA coiled around it, which is about 146 base pairs long. Those proteins are composed of

a high quantity of positively charged aminoacids which warrant the electrostatic attraction
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1.1 Epigenomics

to the negatively charged DNA. The nucleosome can be considered as a basic unit DNA

packaging which repeats itself throughout the whole chromatin (figure 1.1).

Figure 1.1: Schematic assembly of the nucleosome [6].

Nucleosomes are interconnected via so-called ’linker-DNA’, which is associated with the

linker-histone H1 (see figure 1.2).

The nucleosomal core histones have elongated tails which point outwards of the core and can

be accessed by other proteins, thus providing mechanisms to control gene expression.

Those N-terminal tails of the core histones can be modified by mono-, di- and trimethylation,

phosphorylation, ubiquitylation, acetylation and SUMOylation [8]. Those modifications

change the strength of the bond between DNA and the histones, leading to a change of the

three-dimensional structure of the packaged chromatin.

Tightly packed DNA is referred to as Heterochromatin whereas loosely assembled DNA is

called Euchromatin. Due to this difference in condensation, genes are accessible or inaccessible

for transcription, leading to activation or silencing of the gene.
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1 Introduction

Figure 1.2: Schematic assembly of the the histones of two nucleosomes showing the linker DNA [7].

Acetylations and Methylations

A variety of studies has been carried out to characterize histone modifications for different

organisms in detail.

Krogan et al. for example showed that in yeast, the methylation of Lys36 of the histone H3

(H3K36me) by enzyme Set2 is linked to active transcription [10], whereas Briggs et al.

suggested that Set1-mediated H3 Lys4 methylation (H3K4me) is associated with

transcriptional silencing [11].

In this thesis a set of lysine acetylations and trimethylations of the H3 and H4 histones for

the organism S. cerevisiae is considered: H3K4me3, H3K36me3, H3K9ac, H3K14ac, H3K56ac,

H4K16ac, and H4K5ac [12].
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1.1 Epigenomics

Figure 1.3: A nucleosome core particle, which shows six of the eight core histone N-terminal tail

domains and two C-terminal tails. The colored dots show sites of modifications [9].

Histone acetylation

Acetylation of lysines is a common and highly dynamic process, carried out by two families

of enzymes, the so-called histone acetyltransferase (HATs) and histone deacetylase (HDACs).

HATs trigger a replacement of a hydrogen atom in a reactive amino group with an acetyl

moiety (CO-CH3) [13]. The N-terminal acetylation of the ε-amino group of the lateral chain

of lysines is shown in figure 1.4. The positively charged residues of a histone make it a

highly basic protein which leads to a high affinity for the negatively charged DNA. The

acetylation of lysines and aginines neutralizes the positive charge and so weakens the bond

between histone and DNA. It is thus often associated with euchromatin.

Table 1.1 shows a list of the yeast genes associated with the GO term histone
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1 Introduction

Figure 1.4: Structural change by N-terminal acetylation of the ε-amino group of the lateral chain of

lysines.

acetyltransferase (GO:0004402)

Histone deacetylases (HDACs) revert the acetylation carried out by HATs and are associated

with the GO term GO:0004407. An overview of genes associated with HDAC is shown in

table 1.2.

Histone methylation

In constrast to acetylation and phosphorylation, methylation does not change the overall

charge of a histone / a nucleosome. Therefore no clear linkage to Heterochromatin and

Euchromatin can be established and histone methylation can be either repressive or

activating, depending on the location of the methylated residue, which suggests that other

proteins interact with the chromatin due to specific pattern of the histone marks. It has been

shown that methylations occur on the side chains of lysine, arginine and histidine [13].
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1.1 Epigenomics

Table 1.1: S. cerevisiae genes which are related to histone acetyl transferase activity (GO:0004402) [14]

Name Description

GCN5 Catalytic subunit of ADA and SAGA histone acetyltransferase complexes

HAT1 Catalytic subunit of the Hat1p-Hat2p histone acetyltransferase complex

ADA2 Transcription coactivator

YOR338W Putative protein of unknown function

HPA2 Tetrameric histone acetyltransferase

SPT10 Histone H3 acetylase with a role in transcriptional regulation

ARP4 Nuclear actin-related protein involved in chromatin remodeling

TRA1 Subunit of SAGA and NuA4 histone acetyltransferase complexes

YNG2 Subunit of NuA4, an essential histone acetyltransferase complex

AHC1 Subunit of the Ada histone acetyltransferase complex

Histone methyltransferases (HMTs) are enzymes, which catalyse the mono-, di- and

trimethylation of mainly lysine and arginine. This multiple stages of methylations add an

additional level of complexity to the analysis of their modes of actions.

HMTs are highly specific enzymes when it comes to the location of the modification, which

necessitates a more complex classification of the modifying proteins. Yet, most of the HMTs

that methylate N-terminal lysines share the SET domain, with the exception of the Dot1

enzyme [16]. Nevertheless, abundance of proteins of the SET family is not soley linked to

histone methylation, as they also modify some other proteins in addition to histones [17].

The N-terminal (de)methylation of lysine by histone lysine methyltransferase (KMT) and

histone lysine demethylase (KDM) is shown in figure 1.5.
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1 Introduction

Table 1.2: S. cerevisiae genes which are related to histone deacetylation activity (GO:0004407) [15]

Name Description

HST2 Cytoplasmic NAD(+)-dependent protein deacetylase

RXT2 Component of the histone deacetylase Rpd3L complex

HDA2 Subunit of the HDA1 histone deacetylase complex

HST3 Member of the Sir2 family of NAD(+)-dependent protein deacetylases

HDA1 Putative catalytic subunit of a class II histone deacetylase complex

RPD3 Histone deacetylase, component of both the Rpd3S and Rpd3L complexes

HOS3 Trichostatin A-insensitive homodimeric histone deacetylase (HDAC)

SIN3 Component of both the Rpd3S and Rpd3L histone deacetylase complexes

HST1 NAD(+)-dependent histone deacetylase

SAP30 Component of Rpd3L histone deacetylase complex

SIR2 Conserved NAD+ dependent histone deacetylase of the Sirtuin family

HOS2 Histone deacetylase and subunit of Set3 and Rpd3L complexes

SDS3 Component of the Rpd3L histone deacetylase complex

HDA3 Subunit of the HDA1 histone deacetylase complex

HOS1 Class I histone deacetylase (HDAC) family member

HST4 NAD(+)-dependent protein deacetylase

8



1.1 Epigenomics

Figure 1.5: Structural change by N-terminal (de)methylation of lysine by histone lysine

methyltransferase (KMT) and histone lysine demethylalse (KDM).

Histone code

The histone code hypothesis states that transcription of genes is not only regulated by the

genetic information stored in the DNA, but also in the packaging of the chromatin [18]. A

variety of proteins has been discovered, which can recognize specific patterns of histone

modifications (Histone Readers) and interact with the chromatin accordingly [19, 20].

Therefore, it is standing to reason that many modifications serve as binding sites for proteins

which translate the information stored in the histone modifications into certain processes.

Thus, the combination of different histone modifications at different loci leads to an

enormous amount of information, which could be possibly encoded in the chromatin, hence

called the histone code.

Complexity of the histone code

To give an impression of the sheer complexity of histone code, the following example can be

considered. Lysine methylation occurs on 5 sites on H3: H3K4, H3K36, H3K79, H3K9, and

H3K27 [21]. If the modifications are considered independent from each other and each lysine

can be un-, mono, di- or trimethylated, then 1024 different combinations times the number of

H3 histones in a cell are possible, only for this small set of lysine methylations of a single

histone.

For S. cerevisiae, the reference genome of the haploid strain S288c contains 12.3273 mega base

pairs [22]. Assuming that the spacing of each nucleosome is about 200 base pairs [23] and
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each nucleosome contains 2 H3 histones, for 1024 different lysine methylation patterns can

be deducted that

#combinations =
12.3273 · 106

200
· 2 · 1024 = 1.2623155 · 108 (1.1)

Each other modification multiplies the number of patterns, thus the set of possible

permutations grows exponentially with the number of different modifications.

Although this estimation is only a very rough estimate, it becomes clear how vast the number

of different patters is and how much information can be encoded by such patterns.

1.1.3 NGS technologies for epigenetic profiling

Next generation sequencing technologies, also known as high throughput sequencing, aim at

parallelizing the sequencing process to obtain millions of sequences concurrently [24].

The high demand for cheap whole genome sequencing has driven the development of high

throughput methods. This progress facilitated the genome wide survey of epigenetic markers

and the cost of DNA sequencing has been decreased more than a million fold in the last

decade [25].

An overview of current NGS sequencing technologies [26] is given in table 1.3.

RNA-seq

RNA-seq is also referred to as whole transcriptome shotgun sequencing, as sequencing of all

transcripts, including mRNAs, small RNAs, and non-coding RNAs [28] becomes feasible.

With RNA-seq it can be determined, which exons are expressed and the detection of novel

splicing variants is possible.

For expression profiling, DNA microarrays have been, and still are a common technique. Due

to background noise and cross-hybridization, microarrays perform poorly in detecting genes

with low expression. Furthermore, the measured microarray probe intensity depends on the

transcript affinity under the specific hybridization conditions. Due to this fact, the probe

intensity is not actually proportional to transcript abundance. Those issues do not impact

RNA-seq [29].

10



1.1 Epigenomics

Table 1.3: Selection of current NGS technologies (adapted from [27]).

Sequencing

devices
Chemistry

Read length

(bp)
Run time

Throughput

per run

Reads

per run

High-end instruments

Ion

Proton

Proton

detection
200 2.5h 15GB 60 - 80 million

Pacific

BioSciences

RS II

SMRT - P6-C4

50% ≥ 14kb

5 % ≥ 24kb

max ≥ 40kb

0.5 - 6h

0.5–1 billion

bases per

SMRT cell

-

HiSeq 2000/2500

(Illumina)

Reversible

terminator
2 x 150

High

output:

11 days

Rapid run:

27 h

High

output:

600 Gb

Rapid run:

120 Gb

High output:

3 billion x 2

Rapid run:

600 million x 2

5500xl W SOLiD

(Life Technologies)
Ligation

1x75 Frag,

2x50 MP
8 days 320 Gb 1.4 billion x 2

Bench-top devices

Ion PGM

(Life Technologies)

Proton

detection
100 or 200 3 h

100 Mb

(314 chip)

1 Gb (316

chip)

2 Gb (318

chip)

400–550

thousand

(314 chip)

2–3 million

(316 chip)

4–5.5 million

(318 chip)

MiSeq

(Illumina)

Reversible

terminator
2x250 27 h 8.35 Gb

6.8 million

(LRGC routinely

getting > 15 M)
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1 Introduction

In this thesis RNA-seq data from the study High-temporal-resolution view of transcription and

chromatin states across distinct metabolic states in budding yeast [12] is used to profile the gene

expression level of S. cerevisiae cells at different points in time.

ChIP-seq

Chromatin immunoprecipitation (ChIP) followed by sequencing is a direct way for the

identification of histone modifications or DNA binding sites of proteins [30].

ChIP-seq is a methodology to study DNA-binding proteins or other factors that associate with

DNA or chromatin. The cell nucleus is isolated and proteins bound to DNA are covalently

cross-linked with DNA. The resulting chromatin-protein complexes are sheared into suitable

fragments using sonication or nuclease digestion. Then an antibody against the specific

protein or protein modification is used to precipitate the protein bound to DNA; cross-linking

is reversed, and DNA is purified.

The purified DNA fragments are made suitable for sequencing by adding appropriate

adapters in order to create libraries that can be loaded into deep sequencing instruments,

such as the HiSeq 2500 from Illumina.

The sequenced reads are then mapped back to the genome, and enriched regions are identified

(peaks) as areas where the protein was bound [31].

This technique is used to detect occupancy of transcription factor binding sites and histone

modifications in the living cell.

In this thesis ChIP-seq data from the study High-temporal-resolution view of transcription and

chromatin states across distinct metabolic states in budding yeast [12] is used to analyze 7 different

histone modifications of S. cerevisiae cells at different points in time.

12



1.2 Goals of this thesis

1.2 Goals of this thesis

In this thesis, publicly available RNA-seq and ChIP-seq should be used to investigate relations

between histone modifications and gene expression, i.e. how certain histone modifications

impact gene regulation and how well a given modification pattern can be used to predict a

gene’s expression level.

Specifically the following should be done/analyzed:

• Finding a suitable dataset

• Downloading and preprocessing the dataset

• Analysis of the relation between histone modifications and gene expression

• Using an algorithm for gene regulatory network reconstruction, i.e. ARACNE, for the

epigenetic data

• Gene onthology enrichment analysis for epigenetic data

13





2 Methods

2.1 Data aquisition

In 2014, Kuang et al. carried out a study in which they analyzed transcriptome and chromation

changes of Saccharomyces cerevisiae under glucose-limited conditions [12] for 16 different points

in time. Under continuous, nutrient-limited conditions, a periodic respiratory cycle, called

the yeast metabolic cycle (YMC), can be observed, where more than 3000 transcripts oscillate

at the same pace. The metabolic cycle can be divided in the oxidative phase, the reductive

building phase, and the reductive charging phase.

Kuang et al. exploited that robust oscillation to create a high-temporal-resolution dataset for

transcription and chromatin states throughout this cycle.

ChIP-seq and RNA-seq samples were sequenced with Illumina HiSeq 2000, Illumina Genome

Analyzer and AB SOLiD System and made publicly available in the NCBI GEO database [32]

under accession GSE52339.

The raw RNA-seq reads were mapped and further processed in this thesis. Therefore, the 16

raw sequence read archives (SRA) were downloaded, one for each point in time (an overview

over that data and it’s dimensions are given in table 2.1).

The ChIP-seq reads are also available on the NCBI, but the mapping and peak calling

was not performed in the thesis and the modification signals for H3K4me3, H3K36me3,

H3K9ac, H3K56ac, H4K16ac, H4K5ac, and H3K14ac for 16 points in time were taken from

the supplementary data of the publication.

15



2 Methods

Table 2.1: Overview over the raw RNA-seq data from the NCBI database [32].

Point in time Sample Run # of Spots # of Bases Size

1 RNA-seq t1 SRR1029143 11 339 219 567M 367.3Mb

2 RNA-seq t2 SRR1029144 10 650 839 532.5M 344.8Mb

3 RNA-seq t3 SRR1029145 9 251 840 462.6M 301.6Mb

4 RNA-seq t4 SRR1029146 9 891 366 494.6M 319.8Mb

5 RNA-seq t5 SRR1029147 10 120 711 506M 326.6Mb

6 RNA-seq t6 SRR1029148 9 930 864 496.5M 321.6Mb

7 RNA-seq t7 SRR1029149 10 099 686 505M 326.2Mb

8 RNA-seq t8 SRR1029150 10 926 593 546.3M 352.6Mb

9 RNA-seq t9 SRR1029151 9 017 221 450.9M 291.3Mb

10 RNA-seq t10 SRR1029152 10 612 655 530.6M 343.2Mb

11 RNA-seq t11 SRR1029153 8 732 109 436.6M 282.8Mb

12 RNA-seq t12 SRR1029154 9 746 383 487.3M 315.4Mb

13 RNA-seq t13 SRR1029155 10 524 434 526.2M 340.3Mb

14 RNA-seq t14 SRR1029156 9 756 118 487.8M 315.9Mb

15 RNA-seq t15 SRR1029157 9 753 159 487.7M 315.4Mb

16 RNA-seq t16 SRR1029158 15 842 279 792.1M 514.8Mb

16



2.1 Data aquisition

The download of the data from the NCBI was performed using the SRA Toolkit [33]. Using the

NCBI GEO accession number GSE52339 a list of the entries was compiled in a file SSRindex

(appendix A1). To download the data form the NCBI, the following command was issued:

1 cat SRRindex | sed -r ’s/^(\w+) .*/\1/g’ | while read in; do (fastq -

dump "$in") >> out ; done

Listing 2.1: Read archives download

This creates a set of fastq-files using the fastq-dump utility from the SRA Toolkit [33]. The

files were then renamed to a human readable name with a Ruby [34] interpreter:

1 filenames = Dir.glob ("*. fastq")

2 fileNamesMap = Hash[*File.read(’../ SRRindex ’).split (/[\t \n]+/)]

3 filenames.each do |filename|

4 File.rename(filename , fileNamesMap[filename.gsub (/. fastq/,’’)].to_s

+ ". fastq")

5 end

Listing 2.2: Human readable file names

Although this script downloads all the RNA-seq and ChIP-seq files, only the RNA-seq files

were used for further processing, as the preprocessed ChIP-seq data was taken from the

original study.

2.1.1 Analysis

The operating system Ubuntu 16.04 was used as the platform for the analysis.

For the processing of the RNA-seq data Tophat 2.1.1 [35] and Cufflinks 2.2.1 [36] were used.

Used programming languages:

• Ruby 1.9 [34]

• Groovy 2.4 [37]

• Matlab 1205b [38]

• Linux Bash

17



2 Methods

2.1.2 Data preprocessing

RNA-seq

In the last few years many mapping programs have been developed, which use different

concepts to achieve good mapping results [39–41].

Among those, a very efficient and popular one is Bowtie [42]. It uses a data structure

called FM index for the storage of the reference genome which allows a fast search.

Yet Bowtie is not the ideal choice for all alignment tasks as alignments between a read

and the reference genome must not contain large gaps. This makes it unsuitable for

RNA-seq data which often spans introns and is subjected to splicing.

Tophat [35] is a mapper which uses Bowtie internally, but overcomes those problems,

which makes it suitable for RNA-seq data mapping.

The workflow for obtaining between-sample normalized gene expression levels is shown

in figure 2.1.

To map the reads with Tophat, gene annotation information and a reference genome is

required.

Those were downloaded from the Saccharomyces Genome Database.

1 url = "http :// downloads.yeastgenome.org/sequence/S288C_reference/

genome_releases /"

2 url = "${url}S288C_reference_genome_Current_Release.tgz"

3 curl $url | tar xvz

Listing 2.3: Annotation and reference download
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2.1 Data aquisition

Figure 2.1: The Cufflinks toolchain shows the workflow used to obtain gene expression signals from

the RNA-seq data (adapted from [36]).
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The reference file in fasta-format must contain the same identifiers for the chromosomes

as the annotation file. Therefore the identifiers were fixed with a ’regular expression’:

1 cp S288C_reference_genome_R64 -2-1 _20150113/

S288C_reference_sequence_R64 -2-1 _20150113.fsa ./ reference.fa

2 sed -i ’s/ref.* chromosome =\(.*\) \]/ chr \1/g’ reference.fa

3 sed -i ’s/ref .*/ chrmt/g’ reference.fa

Listing 2.4: Rename chromosome identifiers in reference genome

Tophat was called with the following parameters:

1 while read p; do

2 tophat --bowtie1 -i 40 -N 4 -p 8 -o "tophatOut_$p" \

3 --read -edit -dist 4 --segment -length 18 --no -coverage -search -

G \

4 S288C_reference_genome_R64 -2-1 _20150113/

saccharomyces_cerevisiae_R64 -2-1 _20150113.gff \

5 genome "$p.fastq" > "tophat_$p.out"

6 done < rnaseqfiles.txt

Listing 2.5: Mapping with Tophat

The manually created file rnaseqfiles.txt (appendix A2) contains a list of the 16 RNA-seq

filenames.

The resulting alignment files were then passed to Cufflinks, which assembles the

transcriptome for each time sample.

1 find ../ -type f -name ’accept*’ -execdir cufflinks -p 8 {} +

2 find . -name transcripts.gtf > manifest

3 cuffmerge -p 8 -g S288C_reference_genome_R64 -2-1 _20150113/

saccharomyces_cerevisiae_R64 -2-1 _20150113.gff manifest

Listing 2.6: Cufflinks toolchain

Then Cuffnorm was used to obtain the normalized gene expression fragments per

kilobase million (FPKM) values for all samples:

1 cuffnorm -p 8 -o cuffdiff_out merged_asm/merged.gtf $samples

Listing 2.7: Cuffdiff
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2.2 Clustering

The resulting FPKM values for each gene represent the gene expression. Matlab was

used to visualize the expression in a heatmap (figure A10).

ChIP-seq

The histone modification profiles were obtained from Kuang et al. [12]. They state that

ChIP signals of histone modifications were evaluated by counting the reads which

overlap defined regions of every gene.

For H3K9ac, H3K14ac, H3K56ac, H4K5ac, and H3K4me3 they used -100 to +400 base

pair windows spanning the transcription start site (TSS) of each gene.

For H3K36me3, H4K16ac, and H4 signals were calculated from TSS to the transcription

end site (TES). Furthermore, they used the MACS peak-calling package [43] with a

p-value cutoff of 0.01 and annotated the peaks with the nearest TSS.

The ChIP-seq samples were normalized by Kuang et al. according to the total number

of aligned reads, followed by standardization of the 16 observed values for each point

in time, yielding 7 standardized modification levels for 5205 genes for each point in

time.

The Pearson correlation was calculated with Matlab between each modification

dimension and gene expression using the samples from all points in time at once.

2.2 Clustering

2.2.1 k-means

To find similar histone modification profiles, k-means clustering [44] was used.

Therefore the modifications for all time samples were considered simultaneously. Each

of the 5205 gene modification patterns at all 16 points in time was concatenated in one

big matrix, which gave a total of 83280 profiles for 7 different modifications.

The k-means algorithm starts with a predefined number of random cluster centers and

tries to position them in a way that the variance within a cluster is minimized. Different

algorithms exist, which are commonly referred to as k-means. Here the Lloyd k-means

algorithm variant [45] was used, which iteratively assigns each point to the closest
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cluster center and then calculates the new cluster center as the center of all the points

in a cluster.

Thus, it is obvious that the distance metric plays an important role. In this case the

Euclidean distance measure was used, as the data for each column is normalized and

therefore the distance between different modifications is comparable.

One drawback compared to other clustering algorithms, such as hierarchical clustering,

is that the number of clusters k must be chosen in advance. Therefore, a criterion for

quantifying the quality of the model is necessary.

In this thesis, several different approaches were tried to determine the optimum number

of clusters.

A higher number of clusters results in a lower sum of squared distance within each

cluster, but leads to overfitting and generalizes the data badly. Thus, the criterion should

penalize a high number of parameters for the model which describes the data.

Several methods for rating the quality of the clustering results exist. One popular

method is the silhouette method proposed by Peter J. Rousseeuw [46].

For each point in the dataset a silhouette value is calculated, which measures how

similar that point is to other points in its cluster in comparison with points in other

clusters.

For n clusters the silhouette value Si for the ith point pi is defined as

Si =
bi − ai

max{ai, bi}
(2.1)

where ai is the average distance between the ith point and other points within the

cluster ck where {k ∈ N|1 ≤ k ≤ n} to which the ith point was assigned and bi is the

average distance to points within another cluster cl , where cl is the cluster for which bi

is minimal with {l ∈ N|{1 ≤ l ≤ n}\k}. This results in a silhouette value for each

point pi which ranges between −1 to +1. The higher a silhouette SI value for a point pi

the better the match to its own cluster, and the poorer the match to another cluster. If

many points have a low or negative silhouette value, the number of clusters selected

have been either too high or too low.

Using this measure for evaluation of a clustering result, different values k for the

number of clusters can be compared.
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2.2 Clustering

In the given scenario this method proved to be computationally very intensive, as 83280

values in 7 dimensions were clustered, and was therefore not usable.

Another approach is Figure of Merit (FoM) [47], which quantifies the predictive power

of the model. For each number of clusters the model is trained while omitting one

sample. Then the variance within the omitted sample is calculated for each cluster.

The FoM was calculated, but promoted a very low number of clusters, which is why

another criterion was used.

A well-known method is the Akaike Information Criterion (AIC) [48] which is based

on an information theoretic approach, namely the Kullback-Leibler divergence which

quantifies the information loss when a distribution f (x) is represented by a model

g(x|Θ).

Akaike was able to show the relation between the Kullback-Leibler information and the

likelihood theory. He introduced his formula for an information criterion

AIC = −2L(Θ) + 2p (2.2)

where L is the log-likelihood function, Θ are the model parameters and p is the number

of parameters.

For k-means, the number of parameters is the number of cluster centers k times the

dimensionality of each cluster center µi, because each dimension can be varied freely.

The AIC can be derived as

AIC =
1
σ2

n

∑
i=1

(~xi −~µ)2 + 2kd (2.3)

The derivation of this formula can be found in theorem 1 in the appendix.

The AIC decreased very slowly which is why another scoring function, namely the

Bayesian Information Criterion (BIC) was evaluated, which penalizes the number of

parameters more strongly. The name of the BIC is misleading, as it is not based on an

information theoretic approach, but on Bayesian inference [49].

Gideon Schwarz derived the Bayesian information criterion [50] as

BIC = −2 log(L(Θ)) + p log(n) (2.4)
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Using the same assumptions about the likelihood function L for k-means as for the

AIC (theorem 1), the BIC can be formulated in the following way

BIC =
1
σ2

n

∑
i=1

(~xi −~µ)2 + 2kd log(n). (2.5)

where σ denotes the standard deviation, µ is the mean of the data, k is the number of

clusters, d is the dimensionality of the data, and n is the number of data points.

2.2.2 Cluster evaluation

Since the focus of clustering was not on detecting genes, which exhibit similar

modification patterns, but on investigating the correlation between histone

modification and transcription, the clusters were evaluated for their average expression.

Each cluster contains a set of modification profiles where each profile can be mapped

to a gene at a specific point in time. Thus, transcriptional activity for each profile is

known from the RNA-seq dataset.

With that additional information, the expression values associated with the profiles

within each cluster were obtained. In order to quantify transcriptional activity, the

mean of all expression values within a cluster clmodpro f was calculated and divided by

the standard deviation (z-score) of the expression values within the cluster, as shown in

equation 2.6, to make the expression values of the clusters comparable.

exprclmodpro f =
1

nσ2

n

∑
i=1

(xi − µcl)
2 (2.6)

where µ is the mean expression in each cluster, σ is the expression standard deviation

in each cluster, and n is the number of elements within the cluster.

Thresholds of −0.5 and 0.5 were used to assign each cluster a label of silencing for

clusters with exprclmodpro f below −0.5, no impact for clusters between 0.5 to 0.5 and

activating for clusters above 0.5.

For each of the groups (silencing, no impact, activating) all patterns belonging to the

respective group were extracted and an estimate of the density function for each

modification was plotted. The cluster centers of the groups silencing and activating were

used to generate a color-encoded table, which gives an overview of the patterns and

their impact on gene expression.
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2.3 Mutual information

To visualize the clustering result and the clusters’ impact on expression, a scatterplot

matrix was created where each modification is plotted against all others and the

clusters’ segmentation into silencing, no impact and activating is encoded with different

colors.

In order to elucidate linear relations between different modifications, the correlation

of all modification patterns within clusters of the groups silencing and activating was

calculated and compared with the correlation of clusters in the group no impact.

Tables with conditional formatting were created with OpenOffice Calc.

The give a better visualization, the correlation matrix was interpreted as an adjacency

matrix and a graph was generated with Javascript [51] and D3 [52] (figures 3.7 and 3.6)

2.3 Mutual information

Detecting and analyzing interactions and dependencies in a multivariate setting is very

useful in many different areas, like life sciences, finance and many machine learning

applications.

Surprisingly, no formal definition of dependence in a multivariate setting exists, but a

variety of dependence concepts has been formulated using standard statistical methods,

which are mostly only applicable in a restricted context [53].

Correlation for example is very useful in finding linear dependencies between two

random variables X and Y, but may result in a correlation coefficient r = 0 for non

linear relations.

Mutual information [54] is a concept based on information theory, i.e. a comparison of

the marginal entropies of the random variables and the entropy of the joint probability

distribution (JPD) of the random variables.

The definition of mutual information I(X; Y) is

I(X; Y) = ∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(2.7)

where X and Y are random variables, p(x) and p(y) are the marginal distributions and
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p(x, y) is the JPD.

This definition is very closely related to the Kullback-Leiber divergence D( f ||g), also

known as relative entropy, which measures the distance between two models f and g

[55]:

D( f ||g) =
∫

f (x) log
f (x)
g(x)

dx (2.8)

D( f ||g) quantifies the loss of information, when g is used to approximate f . This leads

to an intuitive understanding of mutual information which can be expressed as relative

entropy:

I(X; Y) = D(p(x, y)||p(x)p(y)) = ∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
(2.9)

This equation can be interpreted as ”How much information is lost, when the product

of the marginal distributions p(x)p(y) is used to approximate the JPD p(x, y)?”, which

is why independence can be formulated as I(X; Y) = 0 iff p(x, y) = p(x)p(y).

This statement can easily be visualized by using Gaussian mixtures of two dependent

random variables and comparing the approximation of the JPD with the actual JPD

(figure 2.2).
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Figure 2.2: Example of Gaussian mixtures for dependent and independent random variables which

share the same marginal distributions. The Gaussians on the right share no mutual

information, as the joint distributions can be perfectly approximated by the product of

the marginal distributions. The Gaussians on the left share mutual information, as the

approximation of the joint distribution from the marginals is not possible - hence X and Y

can be considered dependent on each other.
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In the case of independent random variables X and Y the JPD is the product of the

marginal distributions. In the case of dependent random variables in figure 2.2 the

marginal distributions are exactly the same as in the independent case, but the

distribution of the independent random variables would be a bad approximation of the

JPD of the dependent case.

As mutual information measures the Kullback-Leibler divergence between the product

of the marginal distributions and the JPD function, it is also sensitive to dependencies

which do not manifest themselves in the covariance and thus cannot be detected with a

correlation coefficient [56].

It is also very common to formulate the mutual information between X and Y using

the entropy:

I(X; Y) = H(X) + H(Y)− H(X, Y) (2.10)

where H(X) is the entropy of X and H(X, Y) is the entropy of the JPD of X and Y.

Another important feature of mutual information is its reparametrization invariance,

i.e. if X′ = f (X) and Y′ = g(Y) are homeomorphisms then I(X′; Y′) = I(X; Y) [56].

2.4 ARACNE

ARACNE [57] uses the concept of mutual information to calculate pairwise statistical

dependencies between the samples of two genes.

As mutual information is reparametrization invariant, the expression values for g1 and

g2 are first copula-transformed [57], which gives identically distributed marginals in

the range of [0,1].

Therefore, a performant calculation of the mutual information, using a Gaussian Kernel

estimator for the JPD, is possible, where the kernel width is not position dependent.

The resulting mutual information I(gi, gj) is then filtered by an appropriate threshold I0,

which is computed for a specific p-value p0. This approach suffers from the limitation

that highly co-regulated genes may lead to false positives, as indirect relationships but

no direct interactions exist.
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To cope with that problem, ARACNE removes a majority of detected interactions by

using the so called data processing inequality.

The data processing inequality states that if an interaction between g1 and g2 only exists

over a third gene g3, then

I(g1, g2) ≤ min [I(g1, g3), I(g2, g3)] (2.11)

i.e. the mutual information from the indirect interaction between g1 and g2 must be less

or equal than the mutual information between g1 and g3 or g2 and g3.

The full algorithm can be described as calculating the mutual information for each

gene pair after copula-transforming their expression values and building a graph from

the mutual information values while rejecting adjacencies between genes gi and gj if

I(gi, gj) ≤ I0.

All connected gene triplets in the graph are examined and the edge with the least

mutual information is removed. It is worth noting that in order to account for variance

of the mutual information a tolerance for the removal of edges can be specified for

cases where the mutual information between the three genes exhibits little difference,

thus leading to persistence of loops between three genes in some cases.

ARANCE was used for assessment of mutual information between the different

modification profile clusters. A dataset containing the modification patterns from all

clusters labeled with no impact was exported as *.tsv file, as well as another file

containing all patterns from clusters activating and silencing.

Then ARACNE was called from the commandline for both files, in a way that the

algorithm searches mutual information between each modification, using the

modification signals for each gene in that group as sample.

1 aracne2 -H ARACNE -i alltimeModsUnknExprAracne.tsv -o

alltimeModsUnknExprAracne.adj -p 1e-20 -a variable_bandwidth

Listing 2.8: Aracne commandline call for patterns with no impact on expression
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1 aracne2 -H ARACNE -i alltimeModsUnknExprAracne.tsv -o

alltimeModsUnknExprAracne.adj -p 1e-20 -a variable_bandwidth

Listing 2.9: Aracne commandline call for patterns with impact on expression

The resulting mutual information was again conditionally-color-formatted with

OpenOffice Calc [58] and graphs were generated with the same script which was used

for generating the correlation graphs.

2.5 Decision Trees

To obtain a model which shows the relation between histone modifications and gene

expression and is also well interpretable, decision trees [59] were trained with Matlab

using the trainTree function [60].

In a first approach, all the patterns and their corresponding expression values were

used as dataset. The modification profiles were segmented into two classes, based on

the corresponding expression signal for the pattern, i.e. class -1 for expression level less

than 0 and class 1 for expression level greater than 0. The data was split into a training

set containing 30% of the data and a validation set containing the remaining 70%.

The tree was trained with the training set using 20 fold cross validation and pruned to

a height giving the best cross validation result.

This was accomplished by training the tree to a much larger height than the optimum

and then using cross-validated classification error for the cutting it back down to a

hight where the performance on the cross validation data starts declining.

In an attempt to increase the classification accuracy, patterns with an expression level

between -0.5 and 0.5 were removed.

In a third experiment, a tree was trained to distinguish between patterns which show

an impact on expression and patterns which show no impact. Therefore, patterns

which correspond to an expression value less than -0.5 and greater than 0.5 were
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labeled as class 1 and all other patterns were assigned to class 0. Again, the data was

split into 30% training and 70% validation. The size of the overall data set was 83280

samples and 20 fold cross validation was used for training.

Table 2.2: Overview of the trees which were trained on the modification patterns in order to obtain

well interpretable results on how the modification patterns impact gene expression. Different

data subsets were used, either depending on the associated standardized gene expression e

of a modification pattern or on the association of the modification pattern with a k-means

cluster of the groups activating, silencing or no impact.

The prediction targets of the different trees is a binary classification of either a binarized

expression value or a cluster group.

Subset #Samples Prediction

Full dataset 83280 e ≤ 0 or e ≥ 0

e ≤ -0.5 or e ≥ 0.5 52421 e ≤ -0.5 or e ≥ 0.5

Full dataset 83280 -0.5 ≤ e ≤ 0.5

Patterns from cluster

activating or silencing
19136 Cluster group

Patterns from cluster

activating or silencing
25688 e ≤ 0 or e ≥ 0

Patterns from cluster

activating or silencing

where e ≤ -0.5 or e ≥ 0.5

18574 e ≤ -0.5 or e ≥ 0.5

Another experiment was to train a decision tree to predict whether a pattern belongs to

one of the previously calculated k-means clusters, labeled with positive or negative

impact on expression.

A similar task as the previous was executed by segmenting the modification patterns

into three classes, based on the cluster group they were assigned to. The three class

labels were -1 for patterns, assigned to clusters of the group silencing, 0 for no impact

and 1 for activating.
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2.6 GO enrichment analysis

Another data set was generated by selecting only patterns that belonged to a k-means

cluster which was labeled with positive or negative impact on expression. In contrast

to the previous experiments, the class labels were not the ones assigned to the cluster,

but the actual expression values for the pattern itself. Those expression values were

quantified to -1 and 1, thus dividing the dataset into two classes and resulting in an

overall dataset of size 19136.

A last experiment was executed with the same setup as the previous one, but with the

difference that all patterns which showed an expression between -0.5 and 0.5 were

removed.

2.6 GO enrichment analysis

The set of genes belonging to two clusters, which showed the strongest relation to

gene expression were exported and imported into GORILLA [61] to perform a GO

enrichment analysis for cellular component, molecular function and biological processes.
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3 Results

The Pearson correlation coefficient between each modification dimension and gene

expression shows that the available modifications mostly have an activating impact on

gene regulation (see table 3.1). H3K9ac and H4K5ac show the highest correlation with

gene expression.

Table 3.1: Pearson correlation was calculated for each histone modification and gene expression using

all time samples at once. H3K9ac and H4K5ac show the highest correlation, followed

by H3K14ac and H3K4me3. The only negative correlation is seen for H3K56ac, but the

coefficient is close to zero.

Modification correlation coeff p-Value

H3K9ac 0.37 0

H4K5ac 0.34 0

H3K14ac 0.25 0

H3K4me3 0.20 0

H3K36me3 0.15 0

H3K56ac 0.01 0

H4K16ac -0.10 0

3.1 Clustering

The Bayesian Information Criterion was used for determination of the number of

clusters for k-means (figure 3.1). Although the BIC exhibited a minimum at 400, only

200 cluster centers were chosen, as difference of the BIC at k=200 and k=400 is low.

The formula for the calculation of the AIC and BIC was derived for k-means (theorem

1).
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Figure 3.1: The cluster score for the Akaike Information Criterion and the Bayesian Information

Criterion for k-mean clustering of the modification profiles. The selected value for k is 200,

as the slope of the BIC curve is very flat.

Each of those clusters was assigned a class label based on the mean expression of

the genes within a cluster. The threshold for assignment to class silencing was a mean

expression level divided by the standard deviation (as described in section 2.2.2) within

the cluster below −0.5, clusters with mean expression levels between −0.5 to 0.5 were

labeled as no impact and clusters with mean expression above 0.5 were labeled as

activating.

The majority of the clusters could not be related to having an activating or silencing

effect on transcription; namely 135 clusters, containing 57588 modification profiles,

which is 69.15% of all samples.

39 clusters were labeled as activating, containing 13284 modification profiles (15.95% of

all samples) whereas 26 clusters were considered as silencing, which contained 12408

modification profiles (14.90% of all samples).

The density function for the mean expression was estimated and normalized by the

clusters’ standard deviation (figure 3.2) for the purpose of visualization.
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Figure 3.2: Estimated density function of mean expression values for each cluster, normalized by the

standard deviation of each cluster. The blue area denotes the expression values which

will be considered as silenced, the red area marks the expression values for which the

modification patterns will be treated as unknown impact on expression and the green area

will be considered as activated.

The density function for each modification dimension was estimated from all profiles

for clusters for which no impact on expression was observed, as well as for upregulated

clusters and downregulated ones (figure 3.4).

In the case of no impact on expression it can be seen that most modifications are well

centered at zero, whereas in the other two cases almost all signal means are shifted

away from zero.

It could be shown that certain modifications are related very closely to gene expression.

H3K9ac and H4K5ac exhibit positive signals for almost all clusters associated with

activation and negative signals for silenced ones. For H3K56ac and H4K16ac no obvious

relation can be deducted visually from figure 3.3, which shows a matrix plot of all

cluster centers for each modification dimension’s cross section.

Centers of clusters whose average expression is not impacted are randomly distributed

(figure 3.5).

To obtain another representation of the modifications’ impact on expression, tables were
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created for the cluster centers which were linked to activation, silencing and no impact

and sorted by their mean expression within the cluster, normalized with its standard

deviation (tables 3.2 and 3.3).
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Figure 3.3: Cluster centers of the k-means clustering shown for each modification dimension tuple.

The green circles show the cluster centers labeled as activating and the blue circles denote

cluster centers related to silencing. In some dimensions the two groups are well linearly

separable (e.g. H3K4me3 and H3K9ac), whereas in other dimensions no obvious relation

on expression is visible.
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3 Results
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Figure 3.5:

Cluster centers of the k-means clustering shown for each modification dimension tuple.

The green and blue circles show the same data as in figure 3.3, and the red dots show the

cluster centers where no clear impact on expression could be deducted. In cases where

the covariance for the activating and silencing is high, the unknown impact group shows no

obvious covariance (e.g. H3K14ac and H4K4ac).

For some modifications, an obvious impact on expression becomes clearly visible, like

for H3K9ac and H4K5ac, where a linear separation at a specific threshold is possible

to distinguish between activated and silenced clusters. For others, like H4K16ac, no

obvious correlation with the expression can be deducted from the visualization.
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3.1 Clustering

Table 3.2: The modification cluster centers for which low gene expression was observed. The size of

each cluster as well as the normalized expression mean is shown.

H3K4me3 H3K36me3 H3K9ac H3K56ac H4K16ac H4K5ac H3K14ac Cluster Size Normalized Mean

0.194 -2.117 -1.309 -0.65 0.309 -1.604 -1.334 287 -1.891

-0.272 0.049 -1.681 -0.659 0.59 -1.934 -1.939 316 -1.518

-1.2 -0.41 -0.785 0.1 -0.096 -0.805 -1.018 725 -1.214

0.265 2.385 -1.096 -0.446 0.254 -1.568 -1.232 309 -1.169

-0.202 -0.552 -0.914 -0.268 -0.111 -1.661 0.908 332 -1.153

0.913 0.183 -1.542 -0.889 -0.703 -1.733 -1.697 370 -1.063

-0.697 -0.765 -0.743 1.098 1.316 -0.804 -0.974 541 -1.036

-1.064 -0.488 -0.418 1.434 0.038 -0.585 -0.65 636 -1.002

-1.812 -0.264 -1.026 0.877 0.713 -0.12 -1.127 393 -0.967

0.981 -0.125 -1.228 -0.951 1.155 -1.569 -1.263 379 -0.904

-1.145 -0.043 -1.013 -0.475 1.134 -0.593 -1.239 504 -0.887

-0.837 -0.192 -0.648 1.029 -1.231 -0.628 -1.048 567 -0.829

-0.479 0.973 -0.631 1.034 0.107 -0.964 1.349 271 -0.812

0.185 -0.38 -0.976 1.205 -0.047 -1.514 -1.428 321 -0.804

-0.823 -1.481 -0.614 -0.689 0.092 -0.904 -0.657 513 -0.797

-0.663 -0.479 -1.06 -0.719 -1.043 -1.454 -1.175 482 -0.745

-1.076 -0.84 -0.38 -0.921 0.888 -0.26 -0.433 699 -0.654

-0.848 -1.078 -0.321 0.526 0.258 0.021 -0.332 614 -0.636

-0.89 -0.137 -0.59 0.862 -0.674 -0.845 0.515 389 -0.617

-0.316 -0.29 -0.665 -0.697 1.832 -0.952 -0.707 463 -0.615

0.143 -0.096 -0.963 -0.099 -0.462 -0.719 -1.023 759 -0.611

-1.189 -0.745 -0.33 0.233 1.407 -0.087 -0.2 594 -0.597

-0.977 -1.255 -0.366 -0.539 0.201 -0.467 0.869 404 -0.555

-0.38 1.244 -0.547 -0.566 -0.015 -1.12 1.044 388 -0.546

-0.788 -0.298 -0.924 -1.295 0.587 -1.024 -0.707 590 -0.54

-0.919 0.491 -0.587 0.867 0.656 -0.813 -0.525 562 -0.511
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3 Results

Table 3.3: The modification cluster centers for which high gene expression was observed. The size of

each cluster as well as the normalized expression mean is shown.

H3K4me3 H3K36me3 H3K9ac H3K56ac H4K16ac H4K5ac H3K14ac Cluster Size Normalized Mean

-0.039 -0.122 2.768 -0.414 -1.18 2.484 2.347 316 2.774

0.257 -0.393 2.605 1.598 -0.826 2.009 2.056 242 2.093

0.101 0.1 2.607 -0.181 0.391 2.21 2.119 307 2.048

1.469 0.975 1.857 -0.315 -0.988 1.54 1.57 318 1.843

1.119 2.689 1.83 -0.331 -0.194 1.45 1.362 227 1.633

1.203 -1.036 1.763 -0.221 -1.136 1.668 1.476 269 1.546

0.692 2.024 1.543 1.197 -0.711 0.663 1.024 263 1.306

1.14 0.521 1.35 1.274 -0.906 1.087 1.252 388 1.286

1.066 0.214 1.2 1.705 0.24 0.887 -1.195 233 1.259

0.54 0.244 0.216 -1.397 -0.672 0.842 -1.526 298 1.177

0.075 0.786 1.394 -0.757 -1.074 1.208 1.037 403 0.991

0.622 0.091 1.168 1.61 1.321 1.023 1.011 323 0.955

-0.097 0.129 1.501 1.792 -1.13 1.068 -1.084 250 0.877

1.364 1.174 0.169 0.505 -0.327 0.444 0.84 431 0.859

0.479 0.145 1.694 0.43 0.209 1.051 1.075 483 0.844

0.969 1.17 1.419 -0.596 0.638 1.123 1 325 0.842

0.676 -1.277 1.706 1.67 -0.305 0.68 1.358 258 0.801

1.341 0.532 0.352 -0.601 -0.655 1.483 0.998 471 0.787

0.6 2.042 0.208 -0.728 -0.89 0.89 0.903 329 0.779

1.404 0.282 0.267 0.583 0.664 1.422 0.943 389 0.755

1.291 0.598 0.344 1.332 1.578 -0.058 0.015 296 0.725

-0.251 -0.56 1.148 -0.59 -0.806 1.906 1.412 360 0.721

0.162 0.145 0.744 -1.318 -1.068 -0.533 -1.369 387 0.675

0.673 1.158 1.475 -0.341 -0.813 0.245 -0.072 397 0.652

1.132 -2.287 1.09 -0.132 -0.801 0.442 0.391 296 0.652

1.142 -1.139 1.481 -0.135 0.861 1.185 1.218 339 0.642

1.191 0.732 -0.03 0.966 -1.457 0.555 -0.299 388 0.634

1.302 0.231 1.121 1.051 -0.192 -0.456 0.687 397 0.634

-0.916 1.784 1.074 -0.357 0.169 0.838 0.917 282 0.632

0.629 -0.0 0.397 1.617 -0.378 1.008 0.23 416 0.599

0.252 0.259 0.629 -0.495 1.339 1.266 0.367 394 0.592

-0.136 -1.964 1.482 -0.593 -0.191 0.778 1.366 269 0.591

0.21 0.328 0.107 0.489 -0.665 1.431 1.041 532 0.585

1.241 2.366 0.542 0.774 -0.706 -0.342 -0.064 244 0.579

-0.864 -0.29 1.651 -0.151 -1.135 0.735 1.116 331 0.547

1.168 -0.259 1.235 -0.883 0.012 0.747 0.536 406 0.544
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3.1 Clustering

Furthermore, it can be observed that H3K14ac, H3K9ac and H4K5ac exhibit a strong

covariance and therefore a linear dependency for the activating and silencing clusters

(green, blue), but apparently none for the clusters where no impact on expression could

be detected (red).

The distribution of clusters with no impact on expression shows that a modification

level above average of H3K9ac or H4K5ac alone does not automatically result in high

transcriptional activity.

This leads to the conclusion that specific patterns of different modifications can be

associated with activation or silencing, but no single modification is responsible for

activating or silencing a gene.

As mentioned before, clusters which have an impact on expression show a higher corr

for H3K14ac-H3K9ac, H3k14ac-H4K5ac and H4K5ac-H3K9ac as the ones which do not

have an impact (figure 3.5). To validate this hypothesis, the correlation was calculated

for genes in the clusters of the no impact group (table 3.4 and figure 3.6) as well as for

the clusters where activation or silencing was observed (table 3.5 and figure 3.7).

Only weak correlation between the modifications exist for the clusters from the no

impact group, whereas the correlation of some modifications for clusters which were

linked with activation or silencing is much higher; H4K5ac, H3K9ac and H3K14ac

show very strong correlation, whereas H4K16ac exhibits a negative correlation with

most of the other modifications, especially with H4K5ac, H3K9ac and H3K14ac.
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3 Results

Table 3.4: Correlation of modification signals for the genes assigned to a cluster which is not associated

with an impact on transcription. Red signifies a negative correlation, yellow a correlation

close to zero and green marks a highly positive correlation (a color gradient is used). Only

weak correlation exists; its range is between -0.14462 to 0.26143.

H3K4me3 H3K36me3 H3K9ac H3K56ac H4K16ac H4K5ac H3K14ac

H3K4me3 0.06 -0.021 -0.088 0.033 -0.145 -0.023

H3K36me3 0.06 -0.092 -0.039 -0.028 -0.078 -0.092

H3K9ac -0.021 -0.092 0.052 -0.013 -0.006 0.261

H3K56ac -0.088 -0.039 0.052 0.093 0.052 -0.04

H4K16ac 0.033 -0.028 -0.013 0.093 -0.006 0.092

H4K5ac -0.145 -0.078 -0.006 0.052 -0.006 0.19

H3K14ac -0.023 -0.092 0.261 -0.04 0.092 0.19

H4K16ac

H3K4me3
H3K36me3

H3K9ac
H3K56ac

H4K5ac

H3K14ac

Figure 3.6: Correlation between modifications for genes assigned to clusters which are not associated

with an impact on transcription. It uses the values from table 3.4 as adjacency matrix. The

thicker the edge, the higher the absolute value of the correlation. Red signifies a negative

correlation, yellow a correlation close to zero and green marks a highly positive correlation.
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3.1 Clustering

Table 3.5: Correlation of modification signals for the genes assigned to a cluster which is associated

with activation or silencing. Again, red signifies a negative correlation, yellow a correlation

close to zero and green marks a highly positive correlation. Compared to the correlation in

figure 3.4, much stronger correlation between the modifications exist, ranging from -0.24555

to 0.7095. This suggests a high codependency between the different modifications in relation

to their impact on gene expression.

H3K4me3 H3K36me3 H3K9ac H3K56ac H4K16ac H4K5ac H3K14ac

H3K4me3 0.266 0.372 0.025 -0.182 0.325 0.278

H3K36me3 0.266 0.159 0.055 -0.155 0.145 0.16

H3K9ac 0.372 0.159 0.118 -0.246 0.71 0.635

H3K56ac 0.025 0.055 0.118 -0.073 0.125 0.12

H4K16ac -0.182 -0.155 -0.246 -0.073 -0.213 -0.198

H4K5ac 0.325 0.145 0.71 0.125 -0.213 0.62

H3K14ac 0.278 0.16 0.635 0.12 -0.198 0.62

H3K4me3
H3K36me3

H3K9ac
H3K56ac

H4K16ac

H4K5ac

H3K14ac

Figure 3.7: Graphical visualization of the correlation between modifications for genes assigned to a

cluster which is not associated with activation or silencing It uses the values from table 3.5

as adjacency matrix. The thicker the edge, the higher the absolute value of the correlation.

The color scheme is the same as in table 3.5.
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3 Results

3.2 Quantification of the impact of histone modifications on

expression

3.2.1 ARACNE

To further elaborate the codependency between different histone modifications and

their impact on expression, ARACNE was used to calculate the mutual information

between the different modifications.

It was previously shown in this thesis that a higher linear relationship between the

different histone modifications exists for clusters of histone profiles (table 3.5), which

exhibit an impact on transcription, compared to those clusters which show no impact

(see section 2.2.2). This relationship was further investigated with ARACNE.

ARACNE uses the data processing inequality to remove the edge with the least mutual

information between each gene triplet loop. This is useful when dealing with gene

expression, where one gene might indirectly be influencing another gene, but is not

meaningful when the algorithm is presented with different modification signals instead

of genes and genes instead of different time samples.

Therefore, the data processing inequality postprocessing was turned off, thus giving a

graph where each node is connected with every other node. Nonlinear relationships

between some of the modifications, which were not detected by calculating the

correlation, would have been revealed by ARACNE, but the modifications with high

mutual information also had a high correlation and vice versa.

The strong linear dependency for modifications, which have an impact on gene

expression (table 3.5), can also be seen in the mutual information results of ARACNE

(tables 3.6, 3.7 and figures 3.8, 3.9).
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3.2 Quantification of the impact of histone modifications on expression

Table 3.6: Mutual information as calculated with ARACNE for the genes assigned to clusters which

are not associated with an impact on transcription. Red signifies a mutual information close

to 0 and green represents a high mutual information. It can be seen that no strong mutual

information exists.

H3K4me3 H3K36me3 H3K9ac H3K56ac H4K16ac H4K5ac H3K14ac

H3K4me3 0.013 0.01 0.011 0.008 0.019 0.008

H3K36me3 0.013 0.024 0.014 0.01 0.023 0.021

H3K9ac 0.01 0.024 0.014 0.007 0.011 0.054

H3K56ac 0.011 0.014 0.014 0.013 0.012 0.016

H4K16ac 0.008 0.01 0.007 0.013 0.007 0.017

H4K5ac 0.019 0.023 0.011 0.012 0.007 0.035

H3K14ac 0.008 0.021 0.054 0.016 0.017 0.035

H3K4me3
H3K36me3

H3K9ac
H3K56ac

H4K16ac

H4K5ac

H3K14ac

Figure 3.8: Visualization of the mutual information between modifications for genes assigned to

clusters which are not associated with an impact on transcription. It uses the values from

table 3.6 as adjacency matrix. The thicker the edge, the higher the mutual information

shared between the two modifications. The color scheme is the same as in table 3.6.
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3 Results

Table 3.7: Mutual information as calculated with ARACNE for the genes assigned to clusters which

are associated with an impact on transcription. Red signifies a mutual information close to

0 and green represents a high mutual information. It can be seen that much more mutual

information exists than in table 3.6. The modification pairs with the strongest mutual

information are also the same as the ones with the strongest correlation.

H3K4me3 H3K36me3 H3K9ac H3K56ac H4K16ac H4K5ac H3K14ac

H3K4me3 0.081 0.145 0.019 0.036 0.139 0.093

H3K36me3 0.081 0.072 0.027 0.038 0.061 0.075

H3K9ac 0.145 0.072 0.036 0.048 0.384 0.317

H3K56ac 0.019 0.027 0.036 0.014 0.04 0.038

H4K16ac 0.036 0.038 0.048 0.014 0.039 0.045

H4K5ac 0.139 0.061 0.384 0.04 0.039 0.301

H3K14ac 0.093 0.075 0.317 0.038 0.045 0.301

H3K4me3 H3K36me3

H3K9ac H3K56ac

H4K16acH4K5ac

H3K14ac

Figure 3.9: This graph visualizes the mutual information between modifications for genes assigned to

clusters which are associated with activation or silencing. It uses the values from table 3.7

as adjacency matrix. The thicker the edge, the higher the absolute value of the correlation.

The color scheme is the same as in table 3.7.
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3.2 Quantification of the impact of histone modifications on expression

3.2.2 Decision trees

Interpretation of how the different histone modifications impact gene expression

becomes feasible, when decision trees are used.

Table 3.8: Overview of the trees which were trained on the modification patterns in order to obtain

well interpretable results on how the modification patterns impact gene expression. Different

data subsets were used, either depending on the associated standardized gene expression e

of a modification pattern or on the association of the modification pattern with a k-means

cluster of the groups activating, silencing or no impact.

The prediction targets of the different trees is a binary classification of either a binarized

expression value or a cluster group.

Subset #Samples Prediction Accuracy Figure

Full dataset 83280 e ≤ 0 or e ≥ 0 66.52% 3.10

e ≤ -0.5 or e ≥ 0.5 52421 e ≤ -0.5 or e ≥ 0.5 72.35% 3.11, 3.12

Full dataset 83280 -0.5 ≤ e ≤ 0.5 63.48% 3.13

Patterns from cluster

activating or silencing
19136 Cluster group 98.24% 3.14

Patterns from cluster

activating or silencing
25688 e ≤ 0 or e ≥ 0 78.72% 3.15

Patterns from cluster

activating or silencing

where e ≤ -0.5 or e ≥ 0.5

18574 e ≤ -0.5 or e ≥ 0.5 85.35% 3.16

A decision tree was trained with all 83280 samples, using class label 1 for modification

patterns associated with a standardized expression greater than zero and class label

-1 for the rest (figure 3.10). The tree was pruned to the optimal height using the cross

validation data, as shown in figure A1. For training and pruning 30% of all available

data was used and the tree was pruned to a height of 6.

Its classification accuracy is low, as it only classifies 66.52% of the validation data
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3 Results

correctly.

1

-1 1

-1 -1 1 1

-1 1 -1 1 -1 1 -1 1

H3K9ac < -0.210304   

H3K36me3 < 0.114499   
H4K5ac < 0.0143625   

H4K5ac < 0.294732   H4K5ac < -0.514901   H3K36me3 < 0.0709531   

H3K36me3 < -0.488634   H3K9ac < -0.721906   H3K4me3 < 0.25518   H3K9ac < 0.579211   

H3K4me3 < -0.527212   

H3K4me3 < -0.0632548   

H4K5ac < 0.459224   

H3K4me3 < 0.780431   

Figure 3.10: A tree which predicts whether gene expression is greater than zero or less, based on

the histone modification profile. All modification patterns were used; patterns which

were associated with standardized expression greater than one are labeled with 1 and the

rest with -1. For the training of this tree 30% of available data was used. Classification

accuracy on the validation data is low at 66.52%

To avoid misclassification of modification patterns with expression close to zero, an

additional tree was trained, using only patterns for which expression less than -0.5

(class label -1) and greater than 0.5 (class label 1) was observed, which gave a total of

52421 samples (figures 3.11 and A2). The accuracy on the validation set (70% of the

data) was 72.35%.
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3.2 Quantification of the impact of histone modifications on expression

-1 -1 1 1

1 -1 1 1

-1 1 -1 1 -1

-1 1 1 1 -1

-1 1

H3K9ac < -0.270511   

H4K5ac < 0.172358   H4K5ac < 0.0121184   

H3K36me3 < -0.236601   H3K36me3 < -0.277999   H3K36me3 < -0.140739   H3K9ac < 0.53223   

H3K56ac < -1.3544   H3K4me3 < 0.764646   
H3K9ac < 0.571735   

H3K36me3 < -0.0523067   

H4K5ac < -1.4101   
H3K4me3 < 0.65296   

H3K14ac < -0.377017   H3K4me3 < -1.14054   

H4K5ac < -0.933794   
H4K16ac < -1.23545   

H4K16ac < 0.620321   

H3K36me3 < 0.203118   

Figure 3.11: Tree predicting whether gene expression is greater or less than zero based on the histone

modification profile. It was only trained and validated with histone profiles for which the

expression value was greater than 0.5 or less than -0.5. For the training of this tree 30% of

available data was used. Classification accuracy on the validation data is 72.35%.

-1 -1 1 1

1 -1 1 1

-1 1 -1 1 -1

-1 1 1 1 -1

-1 1

H3K9ac

H4K5ac H4K5ac

H3K36me3 H3K36me3
H3K36me3 H3K9ac  

H3K56ac H3K4me3 H3K9ac   H3K36me3  
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73.26% 53.11%

70.32%

61.49%

64.50% 52.61%

58.89%

71.56% 61.46% 58.97%

65.43%

65.55%

63.79% 51.06%

77.06%

83.96%

12.4816%

1.5337% 2.0869%

4.6336% 

0.3071%

1.0587% 1.1713%

4.2273%

1.9114%
6.0434%

3.989%  

12.6629%

0.7421%

3.6722% 1.3487%

7.1937%

19.4102%

2.23%

2.537%

6.7644%

8.6758%

13.3094%

3.6206% 5.0209%

5.7630%

12.9567%

32.3669%

Figure 3.12: The same tree as in figure 3.11 is shown, but instead of the conditions, the data flow (blue

percentage values) and the classification accuracy is shown (green).

Both trees (figure 3.10 and 3.11) have H3K9ac as root node with a decision value

between -0.2 and -0.1, but differ already on the second level. The tree trained with the

full dataset tends to classify a pattern as activating based on very few decisions, if

H3K9ac is greater than -0.21, but is only able to achieve 66.52% classification accuracy
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on its validation data.

It can also be noticed how H3K36me3 plays a role in gene regulation (figure 3.12). This

modification only shows a slight change in mutual information between clusters from

the group no impact and the rest (see figures 3.9 and 3.8), but can be found on a high

level of the tree. This indicates that H3K36me3 and the modifications with high mutual

information (H3K9ac, H3K14ac and H4K5ac) together impact gene regulation, but are

independent from each other.

19.4% of the whole data were classified as upregulated, only based on the conditions

that H3K9ac > 0.5322 and H4K5ac > 0.0121184 with an accuracy of 83.96%, whereas

14% where classified as downreguated by the condition that H3K9ac < 0.5322 and

H4K5ac < 0.172358 and H3K36me3 < -0.2366 with an accuracy of 85.96%.

It is also worth noting that 67.95% of the data were only classified based on H3K9ac,

H4K5ac and H3K36me3 with an average accuracy of 75.79%.

1

1

1

1

1

1

1

1 0

H3K9ac < 1.46884   

H3K9ac < -0.6333   

H4K5ac < 0.585166   

H3K14ac < -0.971867   

H3K9ac < 0.0747468   

H3K36me3 < 0.0990515   

H3K14ac < 0.171722   

H3K14ac < -0.632619   

  H3K9ac >= 1.46884

  H3K9ac >= -0.6333

  H4K5ac >= 0.585166

  H3K14ac >= -0.971867

  H3K9ac >= 0.0747468

  H3K36me3 >= 0.0990515

  H3K14ac >= 0.171722

  H3K14ac >= -0.632619

Figure 3.13: This tree was trained to predict whether a profile has an impact on gene expression or not.

The classification performance was low at 66.52%, but the structure shows an interesting

pattern of looking only for extremes of 4 different modifications, but at especially at

H3K9ac, H4K5ac and H3K14ac, which are the ones that exhibit the greatest covarinace

and mutual information (see figures 3.5 and 3.7).
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3.2 Quantification of the impact of histone modifications on expression

The classification accuracy of a tree to predict whether a cluster was labeled as activating

or silencing achieved 98.08% correct classifications (figure 3.14). The tree exhibits a

somewhat more complex structure than the previous ones, but it can be seen as well that

H3K9ac > 0.5743 alone is sufficient to classify a pattern as belonging to an activating

cluster. The shortest path to classify a pattern as silencing consists of H3K9ac < -0.0275,

H4K5ac < 0.557, H3K4me3 < -0.546 and interestingly H4K16ac > -0.1687. The first

three modifications have been shown to have the most impact on expression and also

show the highest codependency but for H4K16ac only a slight negative impact has been

observed so far.

1 1

-1 1 1 -1 1

-1 -1 1 1 1 1

1 -1 1 1 -1 -1 1 1 -1 -1 1

1 -1 -1 1 -1 1 -1 1

1 -1 -1 1

H3K9ac < -0.0275381   

H4K5ac < 0.557199   H3K9ac < 0.363523   

H3K4me3 < 1.12672   
H3K4me3 < -0.545608   

H3K4me3 < -0.200301   H3K9ac < 0.574268   

H3K56ac < -1.7415   
H4K5ac < -0.844986   

H4K16ac < -0.168705   
H4K5ac < 0.652159   

H4K5ac < -0.627607   
H3K4me3 < -0.714813   

H3K9ac < -0.643436   
H4K5ac < 0.241964   H3K56ac < -1.40056   

H3K36me3 < -0.42607   

H3K56ac < -0.960191   
H4K5ac < 0.68326   

H3K4me3 < -0.170189   

H3K14ac < -1.1296   
H3K9ac < -0.300887   

H3K36me3 < 0.32671   
H3K14ac < -0.505763   

H4K16ac < -0.665297   
H4K16ac < -0.785704   

H3K56ac < -1.31452   

H3K36me3 < -0.613845   

H3K9ac < -0.571344   
H3K4me3 < 0.374455   

H3K4me3 < 0.447501   H4K5ac < -0.541801   H3K4me3 < 1.3455   

H3K56ac < -1.55746   
H4K5ac < -0.895387   

Figure 3.14: Tree trained to distinguish between patterns belonging to an activating or silencing

cluster from the k-means clustering. It yields a classification performance of 98.08% on

the validation data.

The interpretation of the tree reveals some interesting relations between the

modifications, but has little value for classification of the patterns, as it does not predict

if a gene is activated or silenced by a modification pattern, but only if that gene was

assigned to a cluster where most of the genes where activated or silenced.

Nevertheless, the approach of only using patterns from clusters in those groups was

promising, as they are apparently much better classifiable.

Therefore, only the data from the clusters activating and silencing was taken for the next

experiment. The actual expression levels of the profiles were passed through a signum

function, so that two expression classes (-1 and 1) were obtained. The decision tree was
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then trained to predict those class labels based on the modification pattern.

The resulting tree (figure 3.15) shows a very simple structure and achieves a

classification performance of 78.72% on the validation data, which was 70% of the

dataset with a size of 25688. Again, the modifications with the highest mutual

information, i.e. H3K9ac and H4K5ac, but not H3K14ac, are mainly used for the

classification. The only other modification in the tree is H3K56ac, which is only present

on the last level and shows a negative impact on expression (H3K56ac < -0.757434

signifies higher expression).

-1 1

-1 1 1

1

1 -1

H3K9ac < 0.0847269   

H4K5ac < -0.0128847   H4K5ac < 0.324781   

H3K4me3 < -0.421631 H3K4me3 < -0.202355

H3K9ac < 0.730908   

H3K56ac < -0.757434   

  H3K9ac >= 0.0847269

  H4K5ac >= -0.0128847   H4K5ac >= 0.324781

H3K4me3 >= -0.421631 H3K4me3 >= -0.202355

  H3K9ac >= 0.730908

  H3K56ac >= -0.757434

Figure 3.15: For training and evaluating this tree, only the patterns from clusters labeled with activating

and silencing were used. In contrast to the tree in figure 3.14 the actual expression values

were binarized (label -1 and 1) at a threshold of zero and used as target values.

The classification accuracy can be further improved by filtering the dataset which was

used for the tree in figure 3.15, so that only patterns which show an expression level

below -0.5 or above 0.5, are used for the classification. This dataset contained 18574

values and resulted in a tree with a very simple structure (figure 3.16). A classification

performance on the validation data of 85.35% was achieved.

This tree only contains three different modifications, namely H3K9ac, H4K5ac and

H3K36me3, and like the tree in figure 3.15, classification is mainly based on H3K9ac
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3.2 Quantification of the impact of histone modifications on expression

and H4K5ac and does not include H3K14ac, which also shares high mutual information

with H3K9ac and H4K5ac.

-1 1

-1 1 -1 1

H3K9ac < -0.085163   

H4K5ac < 0.329947   H4K5ac < -0.320273   

H3K36me3 < -0.247776

H3K9ac < 0.202263   

  H3K9ac >= -0.085163

  H4K5ac >= 0.329947   H4K5ac >= -0.320273

H3K36me3 >= -0.247776

  H3K9ac >= 0.202263

Figure 3.16: The tree was trained to predict the associated expression for a pattern. Only patterns

contained in the cluster groups silencing and activating which showed an expression level

below -0.5 or above 0.5 were used to train and evaluate the tree.

The comparison of the decision trees shows that H3K9ac has the strongest impact on

expression, as this modification is in the root of every trained tree.

Also, H4K5ac, H3K14ac and H3K36me3, exhibit a significant positive impact on

expression, whereas H4K16ac shows a slight negative impact.

It could be shown that by selecting only the patterns for which H4K5ac, H3K14ac and

H3K9ac have the same sign as H3K36me3 (19396 samples) and removing those for

which the corresponding transcription level is between -0.15 and 0.15 to prevent noise

effects, only the signs of either H4K5ac, H3K14ac or H3K9ac allow prediction with an

accuracy of 80.25%. If patterns with expression between -0.5 and 0.5 are also removed,

the accuracy increases to 84.59%.

These results implicate that H4K5ac, H3K14ac and H3K9ac have the same sign.

Therefore a check was made by only selecting patterns where H4K5ac, H3K14ac and

H3K9ac have the same sign. A tree was trained to quantify the classifiability of the data.
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A performance of 74.50% was achieved.

As another control experiment, all those patterns where H4K5ac, H3K14ac and H3K9ac

have the opposite signs as H3K36me3 (for which samples with expression between

-0.15 and 0.15 were removed again - giving 15839 patterns), a tree was trained to predict

whether expression is below or above zero. This tree performed significantly worse,

classifying only 68.81% correctly.

3.2.3 Analysis of false positives

In the previous section, prediction of gene expression based on histone modification

profiles was evaluated. The analysis of patterns, where the prediction contradicts the

actual gene expression, reveals further insights.

The full dataset was queried for patterns where H3K9ac gives a modification signal

greater than 1 but with an expression level less then -1. Using this criterion, only 744

patterns were found. For those patterns, the mean of each modification dimension was

calculated and divided by the standard deviation of the modification values. The result

which was obtained that way for H3K14ac was positive with a value of 0.61; H4K5ac

was close to zero with 0.064, and H3K36me3 was the only modification which showed

a strong impact on expression in this thesis that gave a negative mean modification of

-0.21.

The same test was repeated for the inverted scenario, i.e. a modification signal less than

-1 and an expression value greater 1. Here 1037 patterns were found. H3K14ac again

moved in the same direction as H3K9ac, giving a mean of -0.24 and H3K36me3 again

moved in the opposite direction, resulting in a mean of 0.25. H4K5ac has a mean value

of 0.22.

These two tests were rerun for H4K5ac (yielding 936 for the first test and 1002 for the

second), H3K14ac (yielding 1511 for the first and 1556 for the second) and H3K36me3

(yielding 1159 for the first and 1099 for the second).

In each of those tests it could be observed that H3K36me3 moves in the opposite

direction as the modification under test (tables 3.9 and 3.10)
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3.2 Quantification of the impact of histone modifications on expression

Table 3.9: For each modification all patterns were selected, where the modification under test has a

signal strength less than -1. The resulting patterns were then filtered for corresponding

expression values greater than 1. For modifications associated with silencing, this gives a

set of patterns, in which prediction of expression based on that modification is incorrect.

For each modification dimension in the resulting dataset the z-score was calculated as

described in section 2.2.2. Each row in the table contains the mean values of the patterns for

the specific modification under test.

H3K4me3 H3K36me3 H3K9ac H3K56ac H4K16ac H4K5ac H3K14ac

H3K4me3 -4.244 0.048 0.209 0.061 -0.136 0.352 0.216

H3K36me3 0.332 -2.909 1.063 0.007 -0.218 0.559 0.676

H3K9ac 0.001 0.25 -4.056 -0.275 0.054 0.217 -0.241

H3K56ac 0.28 0.208 0.182 -4.226 -0.251 0.265 -0.165

H4K16ac 0.346 0.2 0.684 -0.063 -3.947 0.641 0.339

H4K5ac 0.286 0.172 0.043 -0.166 -0.034 -4.451 -0.44

H3K14ac 0.271 0.336 0.015 -0.24 -0.248 -0.019 -4.296

Table 3.10: In analogy to table 3.9 all the patterns for each modification were selected, where the

modification under test has a signal strength greater than 1. The resulting patterns were

then filtered for corresponding expression values less than -1. For modifications associated

with activation, this also gives a set of patterns, in which prediction of expression based

on that modification is incorrect.

For each modification dimension in the resulting dataset the z-score was calculated. Each

row in the table contains the mean values of the patterns for the specific modification

under test.

H3K4me3 H3K36me3 H3K9ac H3K56ac H4K16ac H4K5ac H3K14ac

H3K4me3 3.79 -0.095 -0.479 -0.355 0.134 -0.582 -0.225

H3K36me3 -0.024 2.702 -0.664 -0.209 0.071 -0.828 -0.297

H3K9ac -0.057 -0.21 3.603 0.07 -0.19 0.064 0.615

H3K56ac -0.631 -0.254 -0.521 4.413 0.127 -0.486 -0.375

H4K16ac -0.202 -0.291 -0.79 -0.061 3.835 -0.534 -0.288

H4K5ac -0.281 -0.265 -0.146 -0.02 0.084 3.915 0.383

H3K14ac -0.089 -0.189 -0.013 -0.011 0.168 -0.098 4.43
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3.3 GO enrichment analysis

It could be shown that the histone modification clusters which exhibit an impact on

gene expression can also be linked to biological processes and molecular functions, i.e.

that histone modifications do not only regulate specific genes but also specific functions

and processes within the cell.

For the two k-means histone profile clusters with the greatest average gene expression

a GO term enrichment analysis was performed with GORILLA, i.e. for biological process

(figures 3.17, A7), molecular function (figures 3.18, A8) and cellular component (figures

3.19, A9). A biological process is a recognized series of events or molecular functions. A

process is a collection of molecular events with a defined beginning and end.

For the cluster with the most activating impact on gene expression a relation to RNA,

rRNA, and ncRNA processing was observed (figures 3.17, 3.18, 3.19).
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3 Results

Figure 3.18: GO term analysis for molecular functions for the cluster with the greatest observed impact

on gene expression. A list of the GO terms with the according p-value is provided in

table A2.

Figure 3.19: GO term analysis for cellular component for the cluster with the greatest observed impact

on gene expression. A list of the GO terms with the according p-value is provided in

table A3.
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4 Discussion

In this thesis RNA-seq data and ChIP-seq data for Saccharomyces cerevisiae were analyzed.

The RNA-seq data spanned 16 points in time, and provided transcript enrichment

signals for 5205 genes after mapping. The ChIP-seq data was used to obtain modification

signals for 7 different histone modifications for the same 16 points in time as the RNA-

seq data and the same 5205 genes. Both datasets are publicly available on the NCBI

GEO database [32].

Clustering of the histone modification patterns was performed, and a relation between

histone modifications and their impact on gene expression was analyzed.

The adaption of a genetic regulatory network reconstruction algorithm was evaluated,

and different approaches for integrative analysis were performed.

For a set of histone modifications a strong impact on gene expression could be shown

as well as that rather combinations of modifications are responsible for regulation of

gene expression than a single modification, i.e. that H3K9ac, H4K5ac and H3K14ac

act together in gene activation while H3K36me3 regulates the impact which H3K9ac,

H4K5ac and H3K14ac have on gene regulation.

4.1 Clustering

For clustering of the histone modifications the k-means algorithm was used because of

its efficiency for calculating 200 cluster centers for the dataset which contained 83280

entries with 7 dimensions.

In this thesis different numbers of cluster centers were evaluated for most of the

calculations and it was observed that, as long as the number of clusters was not very

low (≤ 20), all further calculations showed very similar results.

This can be explained by the fact that each cluster was labeled as activating, silencing
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or no impact and that those labels were then used to categorize the 83280 modification

profiles into three groups. So even for a very small number of clusters most of the

profiles still got the same labels.

4.2 Quantification of the impact of histone modifications on

expression

4.2.1 ARACNE

When a dataset with linear, monotonic relationships is to be analyzed, classical

correlation functions like Pearson correlation are a suitable choice. In the case of

non-linear relationships, methods which are based on mutual information are better

suited to detect interrelations.

ARACNE [57] is an algorithm which was developed for reconstructing gene regulatory

networks from microarray expression profiles. The algorithm is based on mutual

information and uses an information theoretic approach for eliminating most of the

indirect interactions inferred by co-expression methods. ARACNE has proven to be a

powerful tool for reverse engineering of regulatory networks from microarray

experiments for the human organism [57].

Due to the fact that ARACNE’s way of detecting related genes is based on calculating

the pairwise mutual information, it can be used to infer relations in other datasets

as well. Hereby, an important caveat has to be considered, namely that ARACNE is

pruning the graph using the data processing inequality and therefore no loops between

gene triplets are allowed unless a tolerance for pruning is set. This may lead to false

negatives and it depends on the underlying data whether such triplet loops are valid or

not. Furthermore, ARACNE only investigates pairwise interactions and is therefore not

able to find any interactions that are only expressed indirectly between two genes.

An interaction between two genes g1 and g2 as detected by ARACNE from expression

data can be interpreted as ”If g1 exhibits a high expression then it is probable that the

expression of g2 is also impacted”.

When histone modification signals for a specific modification at the TSS are used
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4.2 Quantification of the impact of histone modifications on expression

instead of expression values, high mutual information between two genes implies that

a high modification of one gene impacts the modification of another gene.

Unfortunately, this kind of analysis could not be performed, as the number of samples

per modification was limited to 16 samples per gene and ARACNE does not perform

well with less than 100 samples [57].

Nevertheless, ARACNE proved to be a useful tool for epigenetic research. Instead of

calculating the mutual information between tuples of genes, the algorithm was utilized

to obtain information of the relationship between combinations of modifications. It was

previously shown in this thesis that a higher linear relationship between the different

histone modifications exists for clusters of histone profiles (table 3.5), which exhibit an

impact on transcription, compared to those clusters which show no impact (see section

2.2.2). This relationship was further investigated with ARACNE.

As already mentioned, ARACNE uses the data processing inequality to remove the

edge with the least mutual information between each gene triplet loop. This is useful

when dealing with gene expression, where one gene might indirectly be influencing

another gene, but is not meaningful when the algorithm is presented with different

modification signals instead of genes and genes instead of different time samples.

Therefore, the data processing inequality postprocessing was turned off, thus giving a

graph where each node is connected with every other node. Nonlinear relationships

between some of the modifications, which were not detected by calculating the

correlation, would have been revealed by ARACNE, but the modifications with high

mutual information also had a high correlation and vice versa.

When the data is split into two groups, and one group consists of all histone modification

patterns from the clusters labeled with no impact, and the other group contains all the

remaining patters, an interesting fact can be observed. The patterns from the group

no impact show very little mutual information, whereas the patterns which exhibit an

impact on gene expression are highly correlated and therefore also share high mutual

information.

This shows that not a single modification alone is responsible for gene regulation. A

liaison of different modifications is involved in the regulatory process. In this thesis we

could show that H3K9ac, H4K5ac and H3K14ac have a high covariance for modification
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profiles with a non-average expression level and furthermore correlate with gene

expression.

For H3K36me3 only a low mutual information/covariance with other modifications

was observed, but it was shown that H3K36me3 also plays an important role in gene

regulation, but is modified independently of H3K9ac, H4K5ac and H3K14ac.

Kuang et al. also studied the correlation of different modifications, but in contrast to

this thesis, where the data was split into groups based on the modification profiles

impact on gene expression, they ran their tests on subsets of the data based on the

yeast metabolic cycles phases. They observed a high correlation for the distribution of

H3K4me3, H3K36me3, H3K9ac, H3K14ac, and H4K5ac in the oxidative phase, whereas

little correlation was observed in the reductive building phase.

According to their study, H3K9ac is a very active modification which primarily regulates

oxidative growth genes. As the distinction between different sets of genes, which

are related to different phases of the YMC, was not made in this thesis, it was not

investigated how the modification of H3K9ac relates to the genes on which it acts as a

regulatory mechanism.

4.2.2 Decision trees

Decision trees are predictive models which can be used not only for classification of

observations but also for regression of continuous targets. They are often used in data

mining for classification in multivariate systems for obtaining easily interpretable

models. Common usages are variable selection and assessment of the relative

importance of variables, prediction or how to subdivide heavily skewed variables into

ranges [62].

In this thesis decision trees were used to quantify the impact of histone modifications

on gene regulation.

The training of decision trees proved to be a useful tool to obtain models that can be

interpreted. Here they were not used for predicton − the classification results on the

validation data rather gave an indication of how trustworthy the model is.

The trees were mainly used for binary classification. Prefiltering the dataset and

defining the target classes, to find out which configuration results in a model that

62



4.2 Quantification of the impact of histone modifications on expression

abstracts the data well, was useful for quantifying the importance of specific histone

modifications for gene expression.

The decision tree derived from the full dataset achieved only a classification performance

of 66.52 % (figure 3.10). It is not surprising that such a model has such a rather low

performance, as many other factors influencing gene expression, like other epigenetic

modifications or completely different regulatory mechanisms, are not covered in the

training data. Therefore, a strategy for selection of the patterns, where the given set of

histone modifications plays a major role in gene regulation, was necessary for increasing

the model performance.

The prediction whether a pattern belongs to a cluster for which an impact on expression

was observed worked almost perfectly; a fact that is not further surprising as the data

space had already been segmented by the clustering algorithm. Nevertheless, this shows

that this space could be further segmented based on expression signals − information

which was not used during clustering. Furthermore, is was valuable to observe that a

tree with the shortest path to a leave of 3 intermediate nodes and a maximum depth of

8 was sufficient to achieve more than 98% classification performance on the validation

data.

More significance can be attributed to the analysis, where only data belonging to

clusters of the groups activating and silencing was used to create the decision tree, but

the target classes were determined by the actual expression values.

This model was still further improved by removing genes with an average expression

value (between -0.5 and 0.5). This resulted in good prediction of gene expression based

on the modification signals (85.35% validation performance).

This tree was also the one with the least height and decided only based on H3K9ac,

H4K5ac, and H3K36me3, but not based on H3K14ac. This observation shows that,

although correlation of H3K14ac with expression is high, H3K14ac does not serve as a

good predictor for gene expression.

Although the tree which distinguishes between profiles that have no impact on

expression and the rest (figure 3.13) yields a low classification accuracy of 63.48%, it

shows an interesting structure. The modification signal of H3K9ac ≥ 1.46884 alone is
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considered sufficient to classify the profile as having an impact. Based on what was

observed in figure 3.3, it can be assumed that primarily activating profiles are

evaluated with that branch. On the other hand H3K9ac ≤ -0.6333 is also a sufficient

signal to classify the pattern as having an impact. This can be assumed to account for

silencing profiles.

If the pattern falls within the H3K9ac range of -0.6333 ≤ H3K9ac ≥ 1.46884, H4K5ac is

checked if it shows a greater signal than 0.585166. If that is the case, the pattern is

again classified as having an impact. On the next level the modification signal of

H3K14ac is reviewed for having a value less than 0.971867. On the following levels,

each of those modifications is checked once more and H3K36me3 is the only other one

used in that classification tree.

Interestingly, H3K9ac, H4K5ac and H3K14ac are exactly those modifications, which

correlate the most with each other and share the highest mutual information and

therefore contain interdependent information. When the structure of the tree is

analyzed, it can be observed that each of the mentioned modification signals is only

checked for extremes to decide whether the pattern has an impact on gene expression

or not.

Throughout all decision tree setups, H3K9ac was always in the root of the trees. In the

model, distinguishing patterns that are associated with an impact on expression from

the rest, the first two decisions are solely based on H3K9ac. This also shows how closely

this modification is linked to gene expression.

4.2.3 Analysis of false positives

The prediction of gene expression based on H3K9ac, H4K5ac and H3K14ac is viable to

some extent, but obviously many other factors influence gene expression, thus

reducing the accuracy of the prediction.

Investigating those factors was beyond the scope of this thesis. Nevertheless, it was

important to analyze the modification patterns where the interpretation of the

modification signals leads to false assumptions about expression.

To this end, the modification patterns where H3K9ac, H4K5ac and H3K14ac exhibit

strong signals, but gene expression is low and vice versa, were extracted.
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It was observed that H3K36me3 always moved in the opposite direction to the

modification signal under test. Although no direct impact of H3K36me3 on expression

could be shown, this behavior suggests that H3K36me3 plays a role in how H3K9ac,

H4K5ac and H3K14ac impact gene expression.

4.3 GO enchrichment analysis

GO term enrichment analysis showed that the two most activating clusters can be

significantly related to specific biological processes, molecular functions and cellular

components. This reveals that sets of genes which work together to accomplish processes

within a cell are regulated by histone modifications. As the GO enrichment analysis

was not the main focus of this thesis, it was only performed for the two clusters for

which the strongest impact on gene expression was observed. In a more exhaustive

analysis, a broader set of modification pattern clusters could be tested.

4.4 Conclusion

In this thesis RNA-seq data and ChIP-seq was analyzed to investigate how histone

modifications affect gene expression.

The modification data was clustered using k-means and 39 clusters were identified

which can be associated with increased transcription and 26 clusters were related to

reduced transcription.

The mode of function of ARACNE was studied in detail and its use for modification

profiling was discussed. A promising application of the algorithm, i.e. creating a

network of how the modification level for a specific modification for each gene affects

other genes, could not be executed, as an insufficient number of time samples was

available to produce meaningful results.

Nevertheless, ARACNE was used to calculate the mutual information between the

different modifications for genes assigned to the clusters of the no impact group and the

groups activating and silencing.

This revealed that H3K9ac, H4K5ac and H3K14ac exhibit a much higher mutual
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4 Discussion

information for these clusters, compared to those which were not associated with an

impact on gene expression. This can also be interpreted as that H3K9ac, H4K5ac and

H3K14ac together activate genes, thus showing that a combination of modifications is

responsible for gene expression and not a single one of them is sufficient to activate a

gene. Furthermore, it was shown that H3K36me3 which shows no comodification with

H3K9ac, H4K5ac and H3K14ac also impacts how those three modifications regulate

gene expression.

For H4K16ac and H3K56ac no significant impact on expression could be detected,

whereas a small impact for H3K4me3 could be observed, although H3K4me3 shows a

higher correlation value than the one of H3K36me3 (H3K36me3).

GO term analysis was performed on genes that exhibit similar modification patterns

which were linked with transcriptional activation. It was possible to show that sets

of genes which work together to accomplish processes within a cell are regulated by

histone modifications.

4.5 Outlook

Several aspects of the influence of histone modifications on gene expression were

analyzed in this thesis, and interesting results were found, which show the complexity

of the topic. Nevertheless, additional aspects can be investigated using similar methods

and data.

A very promising approach would be using ARACNE to detect how a modification

of a gene impacts the same modification for other genes. However, in order to apply

ARACNE a much larger number of samples is necessary. The authors of ARACNE state

that at least 100 different samples for each gene must be available for the algorithm to

produce reliable results.

This thesis evaluated a dataset of 7 different histone modifications for 16 points in

time, but only modifications with no impact or an activating impact on gene expression

were available. A far more detailed study would be possible if a more diverse set of

histone modifications was available. The analysis of which modifications share mutual

information could reveal how they work together to regulate gene expression.
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4.5 Outlook

Gene onthology enrichment analysis was only performed on those two clusters which

showed the greatest activating impact on gene expression. In a further study, more

clusters could be examined to obtain a model of how histone modifications govern

functional processes.
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5 Appendix

Theorem 1 If a normal distribution is assumed for each cluster

fcli(~x, ~µi, Σ) =
1√

(2π)ddet(Σ)
exp(−1

2
(~x−~µ)TΣ−1(~x−~µ)) (A1)

where Σ is the covariance matrix, d is the dimensionality of the space and µ is the cluster center.

As the k-means algorithm minimizes the sum of squares within each cluster and assigns each

point to the cluster with minimum distance to the center, each cluster forms a spheroid. Thus the

covariance matrix can be written as

Σ = σ2 I (A2)

where σ2 is the variance and I is the identity matrix. Therefore equation A1 can be simplified to

fcli(~x, ~µi, Σ) =
1√

(2πσ2)d
exp(− (~x−~µ)2

2σ2 ) (A3)

As a consequence the log-likelihood can be written as

L(Θ;~x) =
n

∑
i=1

log(
1√

(2πσ2)d
exp(− (~xi −~µ)2

2σ2 ))

= −n log(
√
(2πσ2)d)− 1

2σ2

n

∑
i=1

(~xi −~µ)2
(A4)

When using the log-likelihood function in the context of the AIC, we only want to compare

differences between different AICs. The term −n log(
√
(2πσ2)d) is constant over experiments

with different values for k and can therefore be omitted.

This results in a formula for the AIC as shown in A5

AIC =
1
σ2

n

∑
i=1

(~xi −~µ)2 + 2kd (A5)

The derivation of the likelihood function for k-means considers the algorithm as a version of an

Expectation Maximization algorithm with a Gaussian mixture model with a constant value for
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σ for all Gaussians. Using the Lloyd k-means algorithm, the value for σ is not a free parameter

but can be chosen arbitrarily. Unfortunately, the value for σ does have an impact on the AIC in

a way that a greater value for σ favors a model with less parameters. In this thesis, the value for

σ was set to 1, as the data is standardized in each dimension and this would be the correct value,

if a single cluster was calculated.
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Figure A1: Training result for the tree shown in figure 3.10 where the full dataset was used. The tree

generalizes very badly, as training took around 3000 terminal nodes to approximate the

training data, but at a height of 8 the cross validation error started to increase.
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Figure A2: Training result of the tree shown in figure 3.11 where only patterns with expression values

less than 0.5 or greater than -0.5 were used. The tree took less height to approximate the

training data compared to 3.10, but cross validation still diverges very fast.
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Figure A3: The training performance for the tree shown in figure 3.13 where the full dataset was used.

The tree resulted in bad generalization with classification performance of 66.52% on the

validation data.
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Figure A4: Training result for the tree in figure 3.14 where only patterns from the clusters activating

and silencing were used. The tree converges fast and also approximates the cross validation

data very well.
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Figure A5: Training result for the tree in figure 3.15 where only patterns from the clusters activating

and silencing were used. It can be observed that the cross-valdation still diverges fast, but

the overall performance on the validation data was 78.72% accuracy.
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Figure A6: Training performance for the tree shown in figure 3.16 where only patterns from the

clusters activating and silencing with mean expression between -0.5 and 0.5 were used.
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Figure A8: GO term analysis for molecular functions for the cluster with the second greatest observed

impact on gene expression. A list of the GO terms with the according p-value is provided

in table A5.
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Figure A9: GO term analysis for cellular component for the cluster with the second greatest observed

impact on gene expression. A list of the GO terms with the according p-value is provided

in table A6.

Table A1: Enriched GO terms for biological process of the cluster with the highest expression

mean.

GO term Description P-value

GO:0034660 ncRNA metabolic process 3.76E-77

GO:0022613 ribonucleoprotein complex biogenesis 9.99E-65

GO:0034470 ncRNA processing 1.51E-63

GO:0016072 rRNA metabolic process 8.91E-60

GO:0042254 ribosome biogenesis 1.04E-59

GO:0006364 rRNA processing 5.55E-57

GO:0044085 cellular component biogenesis 3.66E-54

GO:0006396 RNA processing 1.03E-47

GO:0016070 RNA metabolic process 5.61E-39
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GO term Description P-value

GO:0090304 nucleic acid metabolic process 1.06E-32

GO:0006139 nucleobase-containing compound metabolic process 9.01E-32

GO:0006725 cellular aromatic compound metabolic process 9.33E-32

GO:0046483 heterocycle metabolic process 3.02E-30

GO:0034641 cellular nitrogen compound metabolic process 3.62E-30

GO:1901360 organic cyclic compound metabolic process 2.32E-29

GO:0044260 cellular macromolecule metabolic process 3.42E-23

GO:0006807 nitrogen compound metabolic process 3.95E-23

GO:0043170 macromolecule metabolic process 9.15E-23

GO:0000469 cleavage involved in rRNA processing 2.78E-21

GO:0000447

endonucleolytic cleavage in ITS1 to separate SSU-rRNA from

5.8S rRNA and LSU-rRNA from tricistronic rRNA

transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA)

2.2E-20

GO:0000478 endonucleolytic cleavage involved in rRNA processing 1.78E-19

GO:0000479

endonucleolytic cleavage of tricistronic rRNA transcript

(SSU-rRNA, 5.8S rRNA, LSU-rRNA)
1.78E-19

GO:0000463

maturation of LSU-rRNA from tricistronic rRNA transcript

(SSU-rRNA, 5.8S rRNA, LSU-rRNA)
2.33E-19

GO:0000480

endonucleolytic cleavage in 5’-ETS of tricistronic rRNA transcript

(SSU-rRNA, 5.8S rRNA, LSU-rRNA)
1.15E-18

GO:0034471 ncRNA 5’-end processing 7.07E-18

GO:0000967 rRNA 5’-end processing 7.07E-18

GO:0044238 primary metabolic process 1.09E-17

GO:0000966 RNA 5’-end processing 1.63E-17

GO:0006399 tRNA metabolic process 3.25E-17

GO:0000470 maturation of LSU-rRNA 4.25E-17

GO:0030490 maturation of SSU-rRNA 4.39E-17

GO:0000472

endonucleolytic cleavage to generate mature 5’-end of

SSU-rRNA from (SSU-rRNA, 5.8S rRNA, LSU-rRNA)
8.43E-17
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GO term Description P-value

GO:0000462

maturation of SSU-rRNA from tricistronic rRNA transcript

(SSU-rRNA, 5.8S rRNA, LSU-rRNA)
2.84E-16

GO:0044237 cellular metabolic process 3.96E-16

GO:0071704 organic substance metabolic process 6.34E-16

GO:0008152 metabolic process 3.67E-14

GO:0042273 ribosomal large subunit biogenesis 7.76E-14

GO:0009451 RNA modification 5.69E-13

GO:0090501 RNA phosphodiester bond hydrolysis 1.87E-12

GO:0000466

maturation of 5.8S rRNA from tricistronic rRNA transcript

(SSU-rRNA, 5.8S rRNA, LSU-rRNA)
1.05E-11

GO:0000460 maturation of 5.8S rRNA 8.61E-11

GO:0090502 RNA phosphodiester bond hydrolysis, endonucleolytic 3.49E-10

GO:0090305 nucleic acid phosphodiester bond hydrolysis 3.62E-10

GO:0042274 ribosomal small subunit biogenesis 1.31E-09

GO:0006400 tRNA modification 3.36E-09

GO:0071840 cellular component organization or biogenesis 8.78E-09

GO:0006405 RNA export from nucleus 1.65E-08

GO:0001510 RNA methylation 1.74E-08

GO:0051169 nuclear transport 2.24E-08

GO:0051168 nuclear export 2.27E-08

GO:0010501 RNA secondary structure unwinding 3.47E-08

GO:0008033 tRNA processing 4.59E-08

GO:0071826 ribonucleoprotein complex subunit organization 5.34E-08

GO:0098781 ncRNA transcription 6.45E-08

GO:0006913 nucleocytoplasmic transport 7.61E-08

GO:0022618 ribonucleoprotein complex assembly 0.000000163

GO:0032259 methylation 0.000000322

GO:0043414 macromolecule methylation 0.000000329

GO:0009987 cellular process 0.000000357
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GO term Description P-value

GO:0050658 RNA transport 0.000000436

GO:0051236 establishment of RNA localization 0.000000436

GO:0050657 nucleic acid transport 0.000000558

GO:0006413 translational initiation 0.00000236

GO:0006418 tRNA aminoacylation for protein translation 0.00000301

GO:0000027 ribosomal large subunit assembly 0.00000301

GO:0071426 ribonucleoprotein complex export from nucleus 0.00000358

GO:0071428 rRNA-containing ribonucleoprotein complex export from nucleus 0.00000358

GO:0033753 establishment of ribosome localization 0.00000358

GO:0000054 ribosomal subunit export from nucleus 0.00000358

GO:1902626 assembly of large subunit precursor of preribosome 0.00000406

GO:0033750 ribosome localization 0.00000458

GO:0000154 rRNA modification 0.0000047

GO:0043038 amino acid activation 0.00000683

GO:0043039 tRNA aminoacylation 0.00000683

GO:0002097 tRNA wobble base modification 0.000013

GO:0006360 transcription from RNA polymerase I promoter 0.000013

GO:0009303 rRNA transcription 0.000013

GO:0042790

transcription of nuclear large

rRNA transcript from RNA polymerase I promoter
0.000015

GO:0015931 nucleobase-containing compound transport 0.0000152

GO:0016073 snRNA metabolic process 0.0000178

GO:0006611 protein export from nucleus 0.0000214

GO:0071035 nuclear polyadenylation-dependent rRNA catabolic process 0.0000353

GO:0000055 ribosomal large subunit export from nucleus 0.000043

GO:0031167 rRNA methylation 0.0000483

GO:0043634 polyadenylation-dependent ncRNA catabolic process 0.0000518

GO:0071029 nuclear ncRNA surveillance 0.0000518

GO:0071046 nuclear polyadenylation-dependent ncRNA catabolic process 0.0000518
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GO term Description P-value

GO:0009116 nucleoside metabolic process 0.0000693

GO:0044271 cellular nitrogen compound biosynthetic process 0.0000908

GO:0043633 polyadenylation-dependent RNA catabolic process 0.000104

GO:0030488 tRNA methylation 0.000142

GO:0034476 U5 snRNA 3’-end processing 0.000155

GO:1901657 glycosyl compound metabolic process 0.000186

GO:0042797 tRNA transcription from RNA polymerase III promoter 0.000248

GO:0071027 nuclear RNA surveillance 0.000254

GO:0009163 nucleoside biosynthetic process 0.000254

GO:0006356 regulation of transcription from RNA polymerase I promoter 0.000257

GO:0043604 amide biosynthetic process 0.000292

GO:0000459 exonucleolytic trimming involved in rRNA processing 0.000347

GO:0009304 tRNA transcription 0.000347

GO:0043628 ncRNA 3’-end processing 0.000376

GO:0002098 tRNA wobble uridine modification 0.000428

GO:0071025 RNA surveillance 0.000428

GO:0034504 protein localization to nucleus 0.000459

GO:0034472 snRNA 3’-end processing 0.000473

GO:0071049

nuclear retention of pre-mRNA with

aberrant 3’-ends at the site of transcription
0.000594

GO:0006361 transcription initiation from RNA polymerase I promoter 0.000594

GO:0016180 snRNA processing 0.000633

GO:1901659 glycosyl compound biosynthetic process 0.000685

GO:0034661 ncRNA catabolic process 0.000764

GO:0010468 regulation of gene expression 0.000783

GO:0031119 tRNA pseudouridine synthesis 0.000837

GO:0042255 ribosome assembly 0.000837

GO:0046134 pyrimidine nucleoside biosynthetic process 0.000837

GO:0034475 U4 snRNA 3’-end processing 0.000841
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GO term Description P-value

GO:0090503 RNA phosphodiester bond hydrolysis, exonucleolytic 0.000853

GO:0006353 DNA-templated transcription, termination 0.000917

GO:0006412 translation 0.000969

Table A2: Enriched GO terms for molecular function of the cluster with the highest expression

mean.

GO term Description P-value

GO:0003723 RNA binding 6.34E-28

GO:0003676 nucleic acid binding 3.87E-19

GO:0097159 organic cyclic compound binding 1.44E-15

GO:1901363 heterocyclic compound binding 2E-15

GO:0030515 snoRNA binding 1.38E-11

GO:0004004 ATP-dependent RNA helicase activity 1.75E-09

GO:0008186 RNA-dependent ATPase activity 1.75E-09

GO:0003729 mRNA binding 3.64E-09

GO:0003724 RNA helicase activity 3.7E-09

GO:0005488 binding 1.33E-08

GO:0003743 translation initiation factor activity 1.88E-08

GO:0008135 translation factor activity, RNA binding 2.64E-08

GO:0008173 RNA methyltransferase activity 0.000000131

GO:0000049 tRNA binding 0.000000188

GO:0008026 ATP-dependent helicase activity 0.000000596

GO:0070035 purine NTP-dependent helicase activity 0.000000596

GO:0034062 5’-3’ RNA polymerase activity 0.000000869

GO:0003899 DNA-directed 5’-3’ RNA polymerase activity 0.000000869

GO:0097747 RNA polymerase activity 0.000000869

GO:0004812 aminoacyl-tRNA ligase activity 0.00000225

GO:0016875 ligase activity, forming carbon-oxygen bonds 0.00000225

GO:0016876 ligase activity, forming aminoacyl-tRNA and related compounds 0.00000225
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GO term Description P-value

GO:0001054 RNA polymerase I activity 0.00000304

GO:0008168 methyltransferase activity 0.00000357

GO:0016741 transferase activity, transferring one-carbon groups 0.0000129

GO:0004386 helicase activity 0.0000191

GO:0008649 rRNA methyltransferase activity 0.0000483

GO:0016874 ligase activity 0.000136

GO:0001056 RNA polymerase III activity 0.000173

GO:0008757 S-adenosylmethionine-dependent methyltransferase activity 0.000262

GO:0008175 tRNA methyltransferase activity 0.000347

GO:0009982 pseudouridine synthase activity 0.000394

GO:0097367 carbohydrate derivative binding 0.000496

GO:0019843 rRNA binding 0.000528

GO:0035639 purine ribonucleoside triphosphate binding 0.000576

GO:0032555 purine ribonucleotide binding 0.000597

GO:0017076 purine nucleotide binding 0.000709

GO:0042134 rRNA primary transcript binding 0.000837

Table A3: Enriched GO terms for cellular component of the cluster with the highest expression

mean.

GO term Description P-value

GO:0005730 nucleolus 2.52E-75

GO:0030684 preribosome 5.5E-50

GO:0030686 90S preribosome 1.43E-28

GO:0043228 non-membrane-bounded organelle 8.32E-27

GO:0043232 intracellular non-membrane-bounded organelle 8.32E-27

GO:0005634 nucleus 3.25E-25

GO:1990904 ribonucleoprotein complex 2.56E-24

GO:0030529 intracellular ribonucleoprotein complex 2.56E-24

GO:0044428 nuclear part 4.04E-23
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GO term Description P-value

GO:0032040 small-subunit processome 5.89E-23

GO:0030687 preribosome, large subunit precursor 1.75E-18

GO:0044452 nucleolar part 1.92E-17

GO:0032991 macromolecular complex 1.9E-10

GO:0044424 intracellular part 3.49E-08

GO:0044464 cell part 4.05E-08

GO:0043229 intracellular organelle 0.000000109

GO:0043226 organelle 0.000000113

GO:0034455 t-UTP complex 0.000000156

GO:0005654 nucleoplasm 0.000000273

GO:0043231 intracellular membrane-bounded organelle 0.00000117

GO:0043227 membrane-bounded organelle 0.00000259

GO:0005736 DNA-directed RNA polymerase I complex 0.00000304

GO:0033553 rDNA heterochromatin 0.00000854

GO:0055029 nuclear DNA-directed RNA polymerase complex 0.0000113

GO:0000428 DNA-directed RNA polymerase complex 0.0000181

GO:0030880 RNA polymerase complex 0.0000181

GO:0030689 Noc complex 0.0000395

GO:0005851 eukaryotic translation initiation factor 2B complex 0.000114

GO:0034457 Mpp10 complex 0.000155

GO:0005666 DNA-directed RNA polymerase III complex 0.000173

GO:0000792 heterochromatin 0.000248

GO:0032045 guanyl-nucleotide exchange factor complex 0.000254

GO:0030688 preribosome, small subunit precursor 0.000586

Table A4: Enriched GO terms for biological process of the cluster with the second greatest

expression mean.

GO term Description P-value

GO:0002181 cytoplasmic translation 1.53E-82
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GO term Description P-value

GO:0006412 translation 2.51E-56

GO:0043043 peptide biosynthetic process 8.22E-56

GO:0043604 amide biosynthetic process 6.09E-53

GO:0006518 peptide metabolic process 5.93E-51

GO:0043603 cellular amide metabolic process 4.26E-47

GO:1901566 organonitrogen compound biosynthetic process 5.6E-35

GO:0044271 cellular nitrogen compound biosynthetic process 3.24E-25

GO:0044267 cellular protein metabolic process 8.45E-24

GO:0034645 cellular macromolecule biosynthetic process 1.74E-23

GO:0009059 macromolecule biosynthetic process 2.09E-23

GO:0006364 rRNA processing 8E-22

GO:0022613 ribonucleoprotein complex biogenesis 5.44E-21

GO:0042254 ribosome biogenesis 8.1E-20

GO:0016072 rRNA metabolic process 1.36E-19

GO:0034641 cellular nitrogen compound metabolic process 1.75E-19

GO:0034470 ncRNA processing 3.55E-18

GO:0019538 protein metabolic process 2.23E-17

GO:0044085 cellular component biogenesis 1.44E-16

GO:0034660 ncRNA metabolic process 1.46E-16

GO:1901576 organic substance biosynthetic process 4.46E-16

GO:0009058 biosynthetic process 8.4E-16

GO:0044249 cellular biosynthetic process 9.66E-16

GO:0044260 cellular macromolecule metabolic process 1.03E-14

GO:0022618 ribonucleoprotein complex assembly 7.8E-14

GO:0043170 macromolecule metabolic process 1.07E-13

GO:0030490 maturation of SSU-rRNA 3.82E-13

GO:0071826 ribonucleoprotein complex subunit organization 5.27E-13

GO:0000462

maturation of SSU-rRNA from tricistronic rRNA

transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA)
9.29E-13
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GO term Description P-value

GO:0006396 RNA processing 1.06E-11

GO:1901564 organonitrogen compound metabolic process 1.6E-11

GO:0006807 nitrogen compound metabolic process 7.51E-11

GO:0000027 ribosomal large subunit assembly 7.07E-10

GO:0006407 rRNA export from nucleus 3.07E-09

GO:0051029 rRNA transport 3.07E-09

GO:0044238 primary metabolic process 6.58E-09

GO:0000028 ribosomal small subunit assembly 0.000000197

GO:0071704 organic substance metabolic process 0.000000376

GO:0006405 RNA export from nucleus 0.000000452

GO:0006913 nucleocytoplasmic transport 0.000000479

GO:0051169 nuclear transport 0.000000531

GO:0051168 nuclear export 0.000000576

GO:0044237 cellular metabolic process 0.00000152

GO:0008152 metabolic process 0.00000293

GO:0050658 RNA transport 0.00000379

GO:0051236 establishment of RNA localization 0.00000379

GO:0042273 ribosomal large subunit biogenesis 0.00000413

GO:0050657 nucleic acid transport 0.00000459

GO:0071426 ribonucleoprotein complex export from nucleus 0.00000736

GO:0071428 rRNA-containing ribonucleoprotein complex export from nucleus 0.00000736

GO:0033753 establishment of ribosome localization 0.00000736

GO:0000054 ribosomal subunit export from nucleus 0.00000736

GO:0016070 RNA metabolic process 0.00000887

GO:0033750 ribosome localization 0.00000904

GO:0006611 protein export from nucleus 0.0000329

GO:0000469 cleavage involved in rRNA processing 0.0000331

GO:0000470 maturation of LSU-rRNA 0.0000359

GO:0034622 cellular macromolecular complex assembly 0.0000438

91



5 Appendix

GO term Description P-value

GO:0065003 macromolecular complex assembly 0.0000959

GO:0015931 nucleobase-containing compound transport 0.000137

GO:0000478 endonucleolytic cleavage involved in rRNA processing 0.000192

GO:0000479

endonucleolytic cleavage of tricistronic rRNA

transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA)
0.000192

GO:0006448 regulation of translational elongation 0.000314

GO:0006450 regulation of translational fidelity 0.000376

GO:0000154 rRNA modification 0.000376

GO:0051083 ’de novo’ cotranslational protein folding 0.000539

Table A5: Enriched GO terms for molecular function of the cluster with the second greatest

expression mean.

GO term Description P-value

GO:0003735 structural constituent of ribosome 1.46E-67

GO:0005198 structural molecule activity 2.63E-44

GO:0003723 RNA binding 6.63E-16

GO:0019843 rRNA binding 1.42E-11

GO:0003676 nucleic acid binding 2.77E-08

GO:1901363 heterocyclic compound binding 0.0000051

GO:0097159 organic cyclic compound binding 0.00000681

GO:0001054 RNA polymerase I activity 0.000125

GO:0070181 small ribosomal subunit rRNA binding 0.000135

GO:0070180 large ribosomal subunit rRNA binding 0.000381

GO:0003729 mRNA binding 0.000892
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Table A6: Enriched GO terms for cellular component of the cluster with the second greatest

expression mean.

GO term Description P-value

GO:0044391 ribosomal subunit 1.3E-65

GO:0044445 cytosolic part 2.81E-64

GO:0005840 ribosome 3.54E-59

GO:0022625 cytosolic large ribosomal subunit 2.66E-55

GO:1990904 ribonucleoprotein complex 1.1E-54

GO:0030529 intracellular ribonucleoprotein complex 1.1E-54

GO:0005622 intracellular 2.67E-45

GO:0043228 non-membrane-bounded organelle 3.97E-42

GO:0043232 intracellular non-membrane-bounded organelle 3.97E-42

GO:0015934 large ribosomal subunit 8.47E-41

GO:0022627 cytosolic small ribosomal subunit 4.5E-29

GO:0030684 preribosome 5.94E-25

GO:0015935 small ribosomal subunit 3.64E-23

GO:0032991 macromolecular complex 2.12E-16

GO:0030687 preribosome, large subunit precursor 5.62E-15

GO:0005737 cytoplasm 1.09E-13

GO:0005730 nucleolus 2.67E-11

GO:0030686 90S preribosome 4.75E-11

GO:0044446 intracellular organelle part 0.000000153

GO:0044422 organelle part 0.000000175

GO:0044444 cytoplasmic part 0.00000235

GO:0044452 nucleolar part 0.00000395

GO:0032040 small-subunit processome 0.0000195

GO:0031428 box C/D snoRNP complex 0.0000308

GO:0043229 intracellular organelle 0.0000441

GO:0043226 organelle 0.0000451

GO:0044424 intracellular part 0.0000912
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GO term Description P-value

GO:0005732 small nucleolar ribonucleoprotein complex 0.000112

GO:0005736 DNA-directed RNA polymerase I complex 0.000125

GO:0044464 cell part 0.000449

GO:0072588 box H/ACA RNP complex 0.000539

GO:0031429 box H/ACA snoRNP complex 0.000539
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Figure A10: a) Heatmap visualizing the expression for the full set of genes for 16 points in time b)

H3K4me3 modification signals for the 16 points in time c) H3K9ac modification signals d)

H3K14ac modification signals e) H3K36me3 modification signals f) H3K56ac modification

signals g) H4K5ac modification signals h) H4K16ac modification signals
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1 SRR1029143 RNA -seq_t1

2 SRR1029144 RNA -seq_t2

3 SRR1029145 RNA -seq_t3

4 SRR1029146 RNA -seq_t4

5 SRR1029147 RNA -seq_t5

6 SRR1029148 RNA -seq_t6

7 SRR1029149 RNA -seq_t7

8 SRR1029150 RNA -seq_t8

9 SRR1029151 RNA -seq_t9

10 SRR1029152 RNA -seq_t10

11 SRR1029153 RNA -seq_t11

12 SRR1029154 RNA -seq_t12

13 SRR1029155 RNA -seq_t13

14 SRR1029156 RNA -seq_t14

15 SRR1029157 RNA -seq_t15

16 SRR1029158 RNA -seq_t16

17 SRR1029159 H3K9ac_time alignment_ChIP -seq_t1

18 SRR1029160 H3K9ac_time alignment_ChIP -seq_t2

19 SRR1029161 H3K9ac_time alignment_ChIP -seq_t3

20 SRR1029162 H3K9ac_time alignment_ChIP -seq_t4

21 SRR1029163 H3K9ac_time alignment_ChIP -seq_t5

22 SRR1029164 H3K9ac_time alignment_ChIP -seq_t6

23 SRR1029165 H3K9ac_time alignment_ChIP -seq_t7

24 SRR1029166 H3K9ac_time alignment_ChIP -seq_t8

25 SRR1029167 H3K9ac_time alignment_ChIP -seq_t9

26 SRR1029168 H3K9ac_time alignment_ChIP -seq_t10

27 SRR1029169 H3K9ac_time alignment_ChIP -seq_t11

28 SRR1029170 H3K9ac_time alignment_ChIP -seq_t12

29 SRR1029171 H3K9ac_time alignment_ChIP -seq_t13

30 SRR1029172 H3K9ac_time alignment_ChIP -seq_t14

31 SRR1029173 H3K9ac_time alignment_ChIP -seq_t15

32 SRR1029174 H3K9ac_time alignment_ChIP -seq_t16

33 SRR1029175 H3K9ac_ChIP -seq_t1

34 SRR1029176 H3K9ac_ChIP -seq_t2
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35 SRR1029177 H3K9ac_ChIP -seq_t3

36 SRR1029178 H3K9ac_ChIP -seq_t4

37 SRR1029179 H3K9ac_ChIP -seq_t5

38 SRR1029180 H3K9ac_ChIP -seq_t6

39 SRR1029181 H3K9ac_ChIP -seq_t7

40 SRR1029182 H3K9ac_ChIP -seq_t8

41 SRR1029183 H3K9ac_ChIP -seq_t9

42 SRR1029184 H3K9ac_ChIP -seq_t10

43 SRR1029185 H3K9ac_ChIP -seq_t11

44 SRR1029186 H3K9ac_ChIP -seq_t12

45 SRR1029187 H3K9ac_ChIP -seq_t13

46 SRR1029188 H3K9ac_ChIP -seq_t14

47 SRR1029189 H3K9ac_ChIP -seq_t15

48 SRR1029190 H3K9ac_ChIP -seq_t16

49 SRR1029191 H3K14ac_ChIP -seq_t1

50 SRR1029192 H3K14ac_ChIP -seq_t2

51 SRR1029193 H3K14ac_ChIP -seq_t3

52 SRR1029194 H3K14ac_ChIP -seq_t4

53 SRR1029195 H3K14ac_ChIP -seq_t5

54 SRR1029196 H3K14ac_ChIP -seq_t6

55 SRR1029197 H3K14ac_ChIP -seq_t7

56 SRR1029198 H3K14ac_ChIP -seq_t8

57 SRR1029199 H3K14ac_ChIP -seq_t9

58 SRR1029200 H3K14ac_ChIP -seq_t10

59 SRR1029201 H3K14ac_ChIP -seq_t11

60 SRR1029202 H3K14ac_ChIP -seq_t12

61 SRR1029203 H3K14ac_ChIP -seq_t13

62 SRR1029204 H3K14ac_ChIP -seq_t14

63 SRR1029205 H3K14ac_ChIP -seq_t15

64 SRR1029206 H3K14ac_ChIP -seq_t16

65 SRR1029207 H3K56ac_ChIP -seq_t1

66 SRR1029208 H3K56ac_ChIP -seq_t2

67 SRR1029209 H3K56ac_ChIP -seq_t3

68 SRR1029210 H3K56ac_ChIP -seq_t4

69 SRR1029211 H3K56ac_ChIP -seq_t5
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70 SRR1029212 H3K56ac_ChIP -seq_t6

71 SRR1029213 H3K56ac_ChIP -seq_t7

72 SRR1029214 H3K56ac_ChIP -seq_t8

73 SRR1029215 H3K56ac_ChIP -seq_t9

74 SRR1029216 H3K56ac_ChIP -seq_t10

75 SRR1029217 H3K56ac_ChIP -seq_t11

76 SRR1029218 H3K56ac_ChIP -seq_t12

77 SRR1029219 H3K56ac_ChIP -seq_t13

78 SRR1029220 H3K56ac_ChIP -seq_t14

79 SRR1029221 H3K56ac_ChIP -seq_t15

80 SRR1029222 H3K56ac_ChIP -seq_t16

81 SRR1029223 H4K5ac_ChIP -seq_t1

82 SRR1029224 H4K5ac_ChIP -seq_t2

83 SRR1029225 H4K5ac_ChIP -seq_t3

84 SRR1029226 H4K5ac_ChIP -seq_t4

85 SRR1029227 H4K5ac_ChIP -seq_t5

86 SRR1029228 H4K5ac_ChIP -seq_t6

87 SRR1029229 H4K5ac_ChIP -seq_t7

88 SRR1029230 H4K5ac_ChIP -seq_t8

89 SRR1029231 H4K5ac_ChIP -seq_t9

90 SRR1029232 H4K5ac_ChIP -seq_t10

91 SRR1029233 H4K5ac_ChIP -seq_t11

92 SRR1029234 H4K5ac_ChIP -seq_t12

93 SRR1029235 H4K5ac_ChIP -seq_t13

94 SRR1029236 H4K5ac_ChIP -seq_t14

95 SRR1029237 H4K5ac_ChIP -seq_t15

96 SRR1029238 H4K5ac_ChIP -seq_t16

97 SRR1029239 H3_ChIP -seq_t1

98 SRR1029240 H3_ChIP -seq_t2

99 SRR1029241 H3_ChIP -seq_t3

100 SRR1029242 H3_ChIP -seq_t4

101 SRR1029243 H3_ChIP -seq_t5

102 SRR1029244 H3_ChIP -seq_t6

103 SRR1029245 H3_ChIP -seq_t7

104 SRR1029246 H3_ChIP -seq_t8
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105 SRR1029247 H3_ChIP -seq_t9

106 SRR1029248 H3_ChIP -seq_t10

107 SRR1029249 H3_ChIP -seq_t11

108 SRR1029250 H3_ChIP -seq_t12

109 SRR1029251 H3_ChIP -seq_t13

110 SRR1029252 H3_ChIP -seq_t14

111 SRR1029253 H3_ChIP -seq_t15

112 SRR1029254 H3_ChIP -seq_t16

113 SRR1029255 H3K4me3_ChIP -seq_t1

114 SRR1029256 H3K4me3_ChIP -seq_t2

115 SRR1029257 H3K4me3_ChIP -seq_t3

116 SRR1029258 H3K4me3_ChIP -seq_t4

117 SRR1029259 H3K4me3_ChIP -seq_t5

118 SRR1029260 H3K4me3_ChIP -seq_t6

119 SRR1029261 H3K4me3_ChIP -seq_t7

120 SRR1029262 H3K4me3_ChIP -seq_t8

121 SRR1029263 H3K4me3_ChIP -seq_t9

122 SRR1029264 H3K4me3_ChIP -seq_t10

123 SRR1029265 H3K4me3_ChIP -seq_t11

124 SRR1029266 H3K4me3_ChIP -seq_t12

125 SRR1029267 H3K4me3_ChIP -seq_t13

126 SRR1029268 H3K4me3_ChIP -seq_t14

127 SRR1029269 H3K4me3_ChIP -seq_t15

128 SRR1029270 H3K4me3_ChIP -seq_t16

129 SRR1029271 H3K36me3_ChIP -seq_t1

130 SRR1029272 H3K36me3_ChIP -seq_t2

131 SRR1029273 H3K36me3_ChIP -seq_t3

132 SRR1029274 H3K36me3_ChIP -seq_t4

133 SRR1029275 H3K36me3_ChIP -seq_t5

134 SRR1029276 H3K36me3_ChIP -seq_t6

135 SRR1029277 H3K36me3_ChIP -seq_t7

136 SRR1029278 H3K36me3_ChIP -seq_t8

137 SRR1029279 H3K36me3_ChIP -seq_t9

138 SRR1029280 H3K36me3_ChIP -seq_t10

139 SRR1029281 H3K36me3_ChIP -seq_t11
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140 SRR1029282 H3K36me3_ChIP -seq_t12

141 SRR1029283 H3K36me3_ChIP -seq_t13

142 SRR1029284 H3K36me3_ChIP -seq_t14

143 SRR1029285 H3K36me3_ChIP -seq_t15

144 SRR1029286 H3K36me3_ChIP -seq_t16

145 SRR1029287 H4K16ac_ChIP -seq_t1

146 SRR1029288 H4K16ac_ChIP -seq_t2

147 SRR1029289 H4K16ac_ChIP -seq_t3

148 SRR1029290 H4K16ac_ChIP -seq_t4

149 SRR1029291 H4K16ac_ChIP -seq_t5

150 SRR1029292 H4K16ac_ChIP -seq_t6

151 SRR1029293 H4K16ac_ChIP -seq_t7

152 SRR1029294 H4K16ac_ChIP -seq_t8

153 SRR1029295 H4K16ac_ChIP -seq_t9

154 SRR1029296 H4K16ac_ChIP -seq_t10

155 SRR1029297 H4K16ac_ChIP -seq_t11

156 SRR1029298 H4K16ac_ChIP -seq_t12

157 SRR1029299 H4K16ac_ChIP -seq_t13

158 SRR1029300 H4K16ac_ChIP -seq_t14

159 SRR1029301 H4K16ac_ChIP -seq_t15

160 SRR1029302 H4K16ac_ChIP -seq_t16

161 SRR1029303 Gcn5_ChIP -seq_t1

162 SRR1029304 Gcn5_ChIP -seq_t2

163 SRR1029305 Gcn5_ChIP -seq_t3

164 SRR1029306 Gcn5_ChIP -seq_t4

165 SRR1029307 Gcn5_ChIP -seq_t5

166 SRR1029308 Gcn5_ChIP -seq_t6

167 SRR1029309 Gcn5_ChIP -seq_t7

168 SRR1029310 Gcn5_ChIP -seq_t8

169 SRR1029311 Gcn5_ChIP -seq_t9

170 SRR1029312 Gcn5_ChIP -seq_t10

171 SRR1029313 Gcn5_ChIP -seq_t11

172 SRR1029314 Gcn5_ChIP -seq_t12

173 SRR1029315 Gcn5_ChIP -seq_t13

174 SRR1029316 Gcn5_ChIP -seq_t14
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175 SRR1029317 Set1_ChIP -seq_t1

176 SRR1029318 Set1_ChIP -seq_t2

177 SRR1029319 Set1_ChIP -seq_t3

178 SRR1029320 Set1_ChIP -seq_t4

179 SRR1029321 Set1_ChIP -seq_t5

180 SRR1029322 Set1_ChIP -seq_t6

181 SRR1029323 Set1_ChIP -seq_t7

182 SRR1029324 Set1_ChIP -seq_t8

183 SRR1029325 Set1_ChIP -seq_t9

184 SRR1029326 Set1_ChIP -seq_t10

185 SRR1029327 Set1_ChIP -seq_t11

186 SRR1029328 Set1_ChIP -seq_t12

187 SRR1029329 Set1_ChIP -seq_t13

188 SRR1029330 Set1_ChIP -seq_t14

189 SRR1029331 Esa1_ChIP -seq_t1

190 SRR1029332 Esa1_ChIP -seq_t2

191 SRR1029333 Esa1_ChIP -seq_t3

192 SRR1029334 Esa1_ChIP -seq_t4

193 SRR1029335 Esa1_ChIP -seq_t5

194 SRR1029336 Esa1_ChIP -seq_t6

195 SRR1029337 Esa1_ChIP -seq_t7

196 SRR1029338 Esa1_ChIP -seq_t8

197 SRR1029339 Esa1_ChIP -seq_t9

198 SRR1029340 Esa1_ChIP -seq_t10

199 SRR1029341 Esa1_ChIP -seq_t11

200 SRR1029342 Esa1_ChIP -seq_t12

201 SRR1029343 Esa1_ChIP -seq_t13

202 SRR1029344 Esa1_ChIP -seq_t14

Listing A1: SRRindex file for downloading the data from the NCBI.

1 RNA -seq_t1.fastq

2 RNA -seq_t2.fastq

3 RNA -seq_t3.fastq

4 RNA -seq_t4.fastq

5 RNA -seq_t5.fastq
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5 Appendix

6 RNA -seq_t6.fastq

7 RNA -seq_t7.fastq

8 RNA -seq_t8.fastq

9 RNA -seq_t9.fastq

10 RNA -seq_t10.fastq

11 RNA -seq_t11.fastq

12 RNA -seq_t12.fastq

13 RNA -seq_t13.fastq

14 RNA -seq_t14.fastq

15 RNA -seq_t15.fastq

16 RNA -seq_t16.fastq

Listing A2: rnaseqfiless.txt file used for mapping of the RNA-seq data.
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