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Abstract

Over two decades ago Peter Shor presented an algorithm that allows conceptual quantum
computers to factorise integers and to solve the discrete logarithm problem in polynomial
time. Years later quantum computers were rendered possible. Since then they are becoming
more and more powerful and an increasing problem for today’s cryptographic systems.

While this might render conventional asymmetric cryptosystems obsolete in the future,
it also is a chance for the development of new cryptographic primitives created with quan-
tum computers in mind. An example is BLISS, a family of lattice-based signature schemes
developed by Ducas et al.. Algorithms based on lattices are secure against quantum com-
puting and offer a level of security and performance very similar to current state-of-the-art
schemes based on RSA or ECC. They are therefore a promising replacement for conven-
tional schemes. As a matter of fact, BLISS is already available in the strongSwan VPN
solution. Additionally, Pöppelmann et al. demonstrated a hardware implementation of
BLISS designed for the Spartan 6 FPGA family, further indicating the practicability of the
algorithm.

However, due to lattice-based schemes being a very recent topic, little thought has been
given on implementation security. Still, side-channel attacks targeting the polynomial
multiplication or the sampler used in BLISS have already been proposed. They utilise
power and cache side-channels and target software implementations. However, other parts
of the algorithm and also the hardware implementation have not received much attention.

Consequently, this thesis aims at exploring the capabilities of side-channel attacks on
the hardware implementation of the BLISS signature scheme. The sparse multiplication
has been identified as an ideal target for the attack due to the operation representing
a step directly involving the secret key during the signature creation. Using means of
differential power analysis and simple power analysis, the process of recovering the secret
key is evaluated. It is demonstrated that the multiplication shows a significant leakage when
loading the secret key. Additionally, the leakage is time-invariant and allows to extract
more information from each trace. Using this information, a clustering-based attack is
built that reveals the secret key using 36 power traces. By also allowing for a number of
wrongly detected key elements and additional post-processing, the attack can be improved
to only require four traces for a successful key-recovery.

The success of the attack raises the need for a countermeasure. Several potential
methods based on shuffling, hiding and masking are discussed. A countermeasure based
on additive masking of the secret key is then selected as the most suitable method and
added to the existing design. To show its effectiveness, the same attack is executed on
the protected implementation. The results showed no leakage with the protected design,
indicating the effectiveness of the countermeasure.

Keywords: BLISS Signature Scheme, Differential Power Analysis, DPA, Simple Power
Analysis, Clustering-based Attack, Shuffling, Hiding, Masking, Side-Channel Attack, Post-
Quantum Cryptography, Reconfigurable Hardware, FPGA
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Kurzfassung

Vor mehr als zwei Jahrzehnten hat Peter Shor einen Algorithmus vorgestellt, der es kon-
zeptuellen Quantencomputern erlaubt in polynomieller Zeit, Zahlen zu faktorisieren und
das diskrete Logarithmus-Problem zu lösen. Jahre später wurden Quantencomputer ermög-
licht. Seitdem werden sie immer leistungsfähiger und stellen ein zunehmendes Problem für
heutige kryptographische Systeme dar.

Während das konventionelle asymmetrische Kryptographie in Zukunft womöglich ob-
solet macht, bietet es auch eine Chance für die Entwicklung von neuen kryptographischen
Primitiven, die mit Blick auf Quantencomputer erstellt werden. Ein Beispiel ist BLISS,
eine Familie von auf mathematischen Gittern basierenden Signaturschemen, die von Du-
cas et al. entwickelt wurden. Algorithmen die auf Gittern basieren sind sicher gegenüber
Quantencomputern und bieten ein Niveau an Sicherheit und an Leistungsfähigkeit das sehr
ähnlich zu modernen Systemen, basierend auf ECC und RSA, ist. Sie sind daher ein viel-
versprechender Ersatz für konventionelle Systeme. In der Tat ist BLISS bereits Bestandteil
der strongSwan VPN Lösung. Zusätzlich haben Pöppelmann et al. eine Hardwareimple-
mentierung von BLISS für die Spartan 6 FPGA Familie gezeigt, was einen weiteren Hinweis
auf die Praktikabilität des Algorithmus gibt.

Da gitterbasierende Schemen ein sehr neues Thema sind, wurde der Implementierungs-
sicherheit nur wenig Aufmerksamkeit geschenkt. Dennoch wurden Seitenkanalattacken
auf die Polynommultiplikation und den Sampler in BLISS vorgeschlagen. Sie verwenden
Leistungs- und Cache-Seitenkanäle und zielen auf Software-Implementierungen ab. Andere
Teile des Algorithmus sowie die Hardware-Implementierung wurden noch nicht eingängig
untersucht.

Folglich zielt diese Arbeit darauf ab, die Möglichkeiten von Seitenkanalattacken auf die
Hardware-Implementierung des BLISS Signaturschemas zu erforschen. Die Multiplikation
mit einem dünnbesetzten Vektor wurde als idealer Angriffspunkt bestimmt, da während der
Signaturerstellung dieser Schritt den geheimen Schlüssel direkt involviert. Mit Mitteln der
Differential Power Analysis und der Simple Power Analysis wird das Auslesen des geheimen
Schlüssels evaluiert. Es wird gezeigt, dass das Laden des geheimen Schlüssels, während der
Multiplikation, Informationen über diesen liefert. Außerdem ist diese Leistungsaufnahme
zeitinvariant, was es ermöglicht mehr Information aus jeder Messung auszulesen. Mit Hilfe
dieser Information wird ein Clustering-basierter-Angriff erstellt, der den geheimen Schlüssel
mit 36 Messungen bestimmt. Durch das zusätzliche Erlauben einer gewissen Anzahl an
falsch klassifizierten Elementen des geheimen Schlüssels und weiterer Nachbearbeitung,
kann diese Attacke verbessert werden und benötigt nur mehr vier Messungen um den
Schlüssel erfolgreich zu ermitteln.

Der Erfolg der Attacke zeigt den Bedarf für eine Gegenmaßnahme. Mehrere potentielle
Methoden basierend auf Shuffling, Hiding und Maskierung werden diskutiert. Eine Gegen-
maßnahme basierend auf additiver Maskierung des geheimen Schlüssels wird dann als die
vielversprechendste Methode ausgewählt und zum bestehenden Design hinzugefügt. Um
die Effektivität zu zeigen wird derselbe Angriff auf die geschützte Implementierung durch-
geführt. Das Ergebnis zeigt, dass die Leistungsaufnahme der geschützten Implementierung
keinen Aufschluss über den geheimen Schlüssel zulässt, was die Effektivität der Gegenmaß-
nahme zeigt.
Stichwörter: BLISS Signaturschema, Differential Power Analysis, DPA, Simple Power
Analysis, Clustering Attacke, Shuffling, Hiding, Maskierung, Seitenkanalattacke, Post-Quan-
ten-Kryptographie, Programmierbare Hardware, FPGA
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Chapter 1

Introduction

State-of-the-art asymmetric cryptographic schemes such as RSA (Rivest – Shamir – Adle-
man) [45] and ECC (Elliptic-curve cryptography) [22, 32] rely on mathematical problems
like the factorisation problem and the discrete logarithm problem, respectively. Although
these primitives have been around for decades, in terms of widespread usage, they still gain
popularity due to, among other things, browser vendors pushing for an encrypted inter-
net [58, 49, 50]. The underlying factorisation and discrete logarithm problem of RSA and
ECC, if used with integers sufficiently large, are infeasible to solve for today’s conventional
computers.

However, despite their popularity, these schemes become threatened by the increasing
capabilities of quantum computers [12, 33]. As a matter of fact, in 1994 Peter Shor [52] pre-
sented a quantum algorithm capable of factoring integers and finding discrete logarithms.
Later, in 1997, he even showed an algorithm solving these problems in polynomial time [53].
However, in both cases, a quantum computer is necessary to execute the algorithms.

With the progress made in building quantum computers [10, 12, 26], it is necessary to
start finding viable alternatives that can be used in such a post-quantum scenario and en-
sure security in the long-term. In 2016 the National Institute of Standards and Technology
(NIST) put out a call for proposals for post-quantum cryptography [55]. Additionally, the
NSA is researching quantum computers as well as cryptography secure against quantum
computers [44, 51], further indicating the need for new types of cryptosystems.

Cryptographic schemes based on lattices [2] pose a promising candidate for quan-
tum secure cryptosystems. While the initial proposals were unsuited for real-life appli-
cations due to impractical key-sizes [31], these downsides were improved in the following
years [29, 27] and lattice-based schemes became more practical. First tests of a lattice-based
key exchange called A New Hope [3] in browsers in 2016 further showed the practicability
of lattice-based cryptography [8].

Regarding digital signatures, Ducas et al. [15] developed a scheme called BLISS. It
shows promising results and comparable performance to state-of-the-art implementations of
asymmetric cryptography. An improved variant called BLISS-B is even used in StrongSwan’s
VPN solution [37].

While there already is some research on attacks and countermeasure for implementa-
tions of the BLISS signature scheme [17, 37, 47, 36], implementations for reconfigurable
hardware [39] have stayed mostly unexplored. For this reason, this thesis explores the
capabilities of side channel-attacks on an FPGA implementation of the BLISS signature
scheme. After analysis of possible weak points of the BLISS algorithm, the sparse mul-
tiplication is selected as a suitable target to recover the secret key. Because the sparse

1



CHAPTER 1. INTRODUCTION 2

multiplication is also present in other lattice-based schemes, a successful attack on this
operation also affects other schemes. For the analysis of the multiplication, the implemen-
tation of Pöppelmann et al. [39] is modified such that the FPGA can be controlled with a
PC. The implementation can then be used as the target device to evaluate the power side-
channel leakage. For this purpose, the BLISS algorithm on the FPGA is used to compute
signatures while its power consumption is measured.

After some initial pre-processing it is first shown that the sparse multiplication shows a
data-dependent power leakage. Using means of differential power analysis, it is then further
shown that this leakage is time-invariant, which allows for extracting more information from
each power trace. The observed leakage is then used to build a clustering-based attack
capable of recovering the secret key. Moreover, it is explored how the number of traces
can be reduced by allowing for a certain amount of wrongly classified key elements. This
is achieved by combining the attack with a method proposed by Pessl et al. [37].

The success of the attack shows the need for an effective countermeasure. Therefore,
countermeasures based on hiding, shuffling and masking are discussed regarding their ef-
fectiveness and how well they are suited for hardware implementations. A countermeasure
based on masking is then used to protect the hardware implementation. To evaluate its
effectiveness, the protected operation is evaluated using the same methods based on differ-
ential power analysis and a clustering-based attack. The results are discussed to establish
the effectiveness of the countermeasure compared to the unprotected implementation.

Organisation

First, in Chapter 2 a general definition of lattices is given. Furthermore, the various types
of lattice problems and lattice-related problems are explained as well as reasons for using
rings when operating with lattices.

Next, an overview of a type of signature algorithms called BLISS is given in Chapter 3.
Besides presenting the different configurations of the scheme, the algorithm to create the
keys, the signature and also how to verify an existing signature are given. More detail is
given on the sparse multiplication, which represents an essential step during the signing
process. The advantages that come with it, its performance and the hardware implemen-
tation are discussed.

Chapter 4 gives an in-depth description of the fundamentals of side-channel attacks
and ways to counteract them. Furthermore, this chapter also covers existing attacks and
countermeasures regarding lattice-based cryptography found in the literature.

Starting with Chapter 5 the practical aspect of this thesis is described. First, the way
the hardware implementation of the BLISS signature scheme by Pöppelmann et al. [39]
is extended to enable the communication between a PC and the algorithm on an FPGA.
Also, a description of the measurement setup to acquire power traces of the FPGA and the
pre-processing of these traces is given. It is further shown why the sparse multiplication is
a suitable target for the evaluation. Additionally, the evaluation of the power side-channel
is discussed and a description of the attack to recover the secret key of the scheme is given.

In Chapter 6 the practical part is continued albeit with the motivation to protect the
secret key instead of revealing it. Thus numerous means to protect the design are discussed
and evaluated regarding their use in the hardware design. The most fitting countermeasure
is picked. Its integration in the existing design and the effect on metrics like area and
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throughput are then discussed. To elaborate the quality of the method, another attempt
to exploit the power side-channel is made.

The results of the experiments are then summarised in Chapter 7. Additionally, ideas
for future works and for related attacks on the BLISS scheme are given.



Chapter 2

Lattice-based Cryptography

This chapter discusses lattices and some of their underlying problems utilised in modern
post-quantum cryptography. With early references to lattices being dated back to the 18th
century, the mathematical problems have become increasingly popular over the last years
due to the efforts of finding post-quantum secure cryptographic schemes. Section 2.1 defines
fundamental properties of lattices and lattice-based problems. This is then elaborated
further by discussing the mathematical problems defined on lattices, like the Short Integer
Solution problem in Section 2.2 or the Ring-Short Integer Solution problem in Section 2.3.
Both are used to base more modern schemes on. Characteristics making a lattice an ideal
lattice are described in Section 2.3.1 and advantages of basing lattices on a ring to perform
more efficient computations are given in Section 2.3.2.

2.1 Lattices

In general, the term lattice refers to a set of regular discrete points in an n-dimensional
space. This leads to the definition:

Definition 1. Given an ordered basis B = (b1, ...,bn) with n-linearly independent column
vectors bi ∈ Rn. The set B is referred to as the basis for the lattice [30]. Any point on the
lattice can be expressed by an integer combination of the vectors of the basis. A lattice L
is then defined as

L = L(B) =

{
n∑
i=1

xibi : xi ∈ Z

}
(2.1)

A particular type of lattices are q-ary lattices. It is a commonly used type of lattices for
lattice-based cryptography. For a q-ary lattice a vector x is only part of the given lattice
iff the vector x mod q is also part of the same lattice, thus satisfying qZn ⊆ L ⊆ Zn for
some integer q [30].
Furthermore, any lattice can be represented by infinitely many different bases. A simple
example of a two-dimensional lattice with two different bases can be seen in Figure 2.1.

2.1.1 Lattice-based Problems

Cryptographic schemes based on lattices build on hard to solve mathematical problems
defined on lattices. Problems that are related to lattices, but are not directly based on
them, are traced back to these as well to show that they are at least as difficult to solve.
Next, two such lattice problems are stated.

4
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Figure 2.1: Example of a two-dimensional lattice, with two different bases given
in blue and green.

Shortest Vector Problem

The Shortest Vector Problem (SVP) is one of the most commonly used lattice problems in
cryptography and more than 250 years old [1].

With || · || denoting the Euclidean norm, the basic task is to find a shortest vector or
its length in a given lattice. In other words: Given a lattice L defined over its basis B the
task is to find the shortest, but non-zero, vector x based on an integer combination of the
basis vectors bi. This minimum distance within the lattice is defined as λ [35]:

λ(L) := min
x∈L\{0}

||x|| (2.2)

The SVP has an exact and an approximate form. The exact SVP requires to find a
vector x ∈ L(B) to which applies:

||x|| = λ(L) (2.3)

A variant of this problem is the approximate or γ-approximate SVP. In contrast to
the exact version it aims at finding a short, non-zero, vector x which is smaller than λ(L)
multiplied with a specified factor γ ≥ 1:

||x|| ≤ γλ(L) (2.4)

A further variation of this problem is the so-called GapSVP. While the previous prob-
lems required to determine the shortest vector of the lattice, the GapSVP is a (binary)
decision-based approximation of the underlying issue. Given the lattice L the goal is to find
if the shortest vector x is shorter than one (λ(L) ≤ 1) or longer than a given approximation
factor γ (λ(L) ≥ γ).

Approximate Shortest Independent Vectors Problem

The Approximate Shortest Independent Vectors Problem (SIVP) is very similar to the
approximate SVP. While the latter requires finding a single vector x that is within a
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margin γ, the approximate SIVP aims a finding a set of n linearly independent vectors
||xi|| ≤ γ · λ(L) for i ∈ {1, 2, ..., n}.

2.2 Short Integer Solution Problem

The Short Integer Solution (SIS) problem is commonly used for cryptographic schemes.
There exist hash functions, identification- and signature schemes based on the SIS prob-
lem [35]. It was first described by Ajtai [1] in 1996. Unlike the lattice-based problems
described in Section 2.1.1, the SIS problem is not directly based on a lattice problem but
can be reduced to the GapSVP or the approximate SIVP problem [35].

Given a matrix A ∈ Zn×mq with column vectors (a1, ...,am) the SIS problem asks to
find a non-zero integer vector x ∈ Zm with an Euclidean norm ||x|| ≤ β < q, that satisfies:

Ax =
m∑
i=1

ai · xi = 0 ∈ Znq (2.5)

Without the further constraint of limiting the Euclidean norm of x to be smaller than
β, it would be easy to solve this problem using Gaussian elimination. Similarly, the zero-
vector is excluded from this problem as it would always be a solution to the equation.
Furthermore, it is essential to require β < q, because otherwise, it allows for the solution
x = (q, 0, 0, ..., 0) ∈ Zm. This problem can be shown to be as hard as the approximate
GapSVP or the approximate SIVP if the parameters are chosen reasonably [35].

2.3 Ring-Short Integer Solution Problem

This section describes the ring-version of SIS (R-SIS) and how it can be used to improve
the efficiency of cryptographic algorithms.

The R-SIS problem is defined over a polynomial ring. A very commonly used ring is
Rq = Zq[x]/(xn + 1). The R-SIS problem is then defined as follows: Given the uniformly
random vector a ∈ Rmq with elements (a1, ..., am) ∈ Rq the R-SIS problem asks to find a
non-zero vector x ∈ Rmq , with ||x|| ≤ β and the same number of elements as a fulfilling
the equation

m∑
i=1

ai · xi = 0 ∈ Rq (2.6)

Overall the R-SIS is similar to the SIS problem with the difference being the defined
space of the occurring vectors. While the SIS solution utilises elements from Zq, the R-SIS
solution uses elements from the ring Rq. Due to the R-SIS utilising a ring, it is only
necessary to store the coefficients of the polynomial as a vector, reducing the memory
requirement. Furthermore, mathematical operations over a ring implemented in hardware
require less area on the chip and tend to compute the result faster.

While the use of rings already offers several advantages and improvements in practica-
bility, the usage of rings allows for further improvements by using ideal lattices.

2.3.1 Ideal Lattices

In case of the SIS problem, the basis B can be written as a matrix, requiring O(n2)
memory. The quadratic growth and an increasingly large security parameter n make the
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Figure 2.2: An example of a regular lattice basis on the left and an ideal lattice
basis based on a polynomial ring on the right. The second to fourth column are
basically the first column rotated with a flipped sign.

scheme less suited for practical usage. This issue can be tackled by using ideal lattices, a
more generalised form of cyclic lattices and R-SIS as the underlying problem. An ideal
lattice is defined over some ring Z[x]/ (f) with f being an irreducible polynomial of degree
n. An example of a commonly used polynomial f is f(x) = xn + 1, with n being a power
of two and a prime q such that q ≡ 1 mod 2n, resulting in the ring Rq = Zq/ (xn + 1) [41].

In practice, this removes the need to store the full sized n× n matrix, and instead, it
suffices to only save the first column. The other columns can then be computed on the fly
based on rotations of the first one, fully describing the matrix as seen in Figure 2.2 [30].
This reduces the memory consumption to O(n), i.e., growing only linearly.

2.3.2 Number Theoretic Transform

While additions in the ring Rq = Zq/ (xn + 1) can already be performed efficiently, coef-
ficient-wise with a complexity of O(n), multiplications in this ring still have a complexity
of O(n2) when using the schoolbook method. The computation of the product of the two
polynomials a · b over Rq is then performed by computing:

a · b =

n−1∑
i=0

n−1∑
j=0

aibjx
i+j

 mod (xn + 1) (2.7)

This approach requires n2 multiplications and (n − 1)2 additions or subtractions. Algo-
rithms like the Karatsuba method [21] reduce this complexity to O(nlog(3)), but due to
their recursive structure, they are not suitable for hardware implementations [41].

However, the multiplication in Rq can be even more efficiently implemented using
a Number Theoretic Transform (NTT) which is very similar to a Fast Fourier Trans-
form (FFT) defined over a finite field or ring [41]. While the FFT would require floating
point operations and complex arithmetic, the NTT is defined over Zq, eliminating the need
for this kind of operations.

Performing the NTT on a given polynomial requires the primitive n-th root of unity ω to
exist. An integer qualifies as the primitive n-th root of unity ω modulo q iff ωn ≡ 1 mod q
and ωn/p − 1 6≡ 0 mod q for any prime divisor p of n [4]. Choosing the ring Rq with
q ≡ 1 mod 2n and n a power of two ensures that ω exists.

The parameter ω can then be used to calculate the NTT of a polynomial a:

â = NTT(a) := âi =
n−1∑
j=0

ajω
ij mod q, i = {0, 1, ..., n− 1} (2.8)
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To inverse the calculation using the iNTT and receive the polynomial a:

a = iNTT(â) := ai =
1

n

n−1∑
j=0

âjω
−ij mod q, i = {0, 1, ..., n− 1} (2.9)

To perform the multiplication c = a · b ∈ Rq, both factors need to be transformed
using the NTT, then component-wise multiplied (indicated by �), before using the iNTT
to get the result:

c = a · b = iNTT(NTT(a)�NTT(b)) (2.10)

Algorithm 2.1, from [41], shows an iterative approach to perform the NTT operation.
It takes a polynomial g ∈ Rq with a degree smaller than n and with a primitive n-th root
of unity ω. The Bit-Reverse function refers to a mathematical bit-reversal permutation.
It uses the bit representation of each index and reverses its binary representation to de-
termine the new location of the value, effectively reordering all values. The algorithm has
a complexity of O(n log(n)) and is suited for hardware implementations. The algorithm
uses a butterfly network similar to the FFT, which can be seen in line 13f. of Algorithm 2.1

Algorithm 2.1 Iterative algorithm computing the NTT, based on the Cooley and Turkey
radix-2 decimation according to Pöppelmann and Güneysu [41]

1: procedure NTT(Polynomial g ∈ Rq)
2: A← Bit-Reverse(g)
3: m← 2
4: while m ≤ N do
5: s← 0
6: while s < N do
7: for all i to m/2− 1 do
8: N ← i · n/m
9: a← s+ i

10: b← s+ i+m/2
11: c← A[a]
12: d← A[b]
13: A[a]← c+ ωN mod nd mod q
14: A[b]← c− ωN mod nd mod q

15: s← s+m

16: m← m · 2
17: return A



Chapter 3

BLISS Signature Family

This chapter describes a family of lattice-based signature schemes called BLISS (Bimodal
Lattice Signature Scheme) proposed by Ducas et al. [15], which is based on the R-SIS
problem and utilises a bimodal Gaussian distribution for rejection sampling. Section 3.1
details different possible parameter sets of the BLISS algorithm. Section 3.2.1 explains
how a key is generated. Then, Section 3.2.2 shows the algorithm that uses the key to
create a signature. In Section 3.2.3 the verification process is illustrated. Section 3.3 goes
into detail with the sparse multiplication, an essential step during the signature process,
directly interacting with the secret key. Furthermore, the performance of algorithms of
the BLISS-family implemented in hard- and software is compared to other state-of-the-art
cryptographic primitives in Section 3.4. Finally, in Section 3.5 details on the hardware
implementations are discussed, with a focus on the BLISS signing algorithm.

3.1 Parameter Sets

The BLISS signature family allows for changing its parameters, tuning the algorithm in
terms of security level, signature size and speed. Ducas et al. [15] propose five parameter
sets named BLISS-0 to BLISS-IV shown in Table 3.1. BLISS-0 is considered a toy example
and challenge to improve attacks on lattice-based cryptography. BLISS-I and BLISS-II use
similar parameter sets and offer the same 128 bits level of security. BLISS-I is optimised for
speed, with fewer repetitions per signature, whereas BLISS-II is optimised for size, resulting
in smaller signatures. BLISS-III and BLISS-IV each represent more secure parameter sets,
with 160 bits and 192 bits of security respectively at the cost of larger signatures.
Throughout this work, the BLISS-I parametrisation will be used.

3.2 Algorithms

In this section, the algorithms proposed by Ducas et al. [15] for key generation, creating
and verifying signatures are discussed.

3.2.1 Key Generation

Key generation for BLISS is done by generating two random polynomials f ,g based on the
secret key densities δ1, δ2. Each polynomial has d1 = dδ1ne coefficients from the set {±1}
and d2 = dδ2ne coefficients from the set {±2}. The remaining coefficients are set to 0; this

9
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Name BLISS-0 BLISS-I BLISS-II BLISS-III BLISS-IV

Security level ≤ 60 bits 128 bits 128 bits 160 bits 192 bits
Optimisation Fun Speed Size Security Security

n 256 512 512 512 512
Modulus q 7681 12289 12289 12289 12289

Secret key densities δ1, δ2 0.55, 0.15 0.3, 0 0.3, 0 0.42, 0.03 0.45, 0.06
Gaussian standard deviaten σ 100 215 107 250 271

κ 12 23 23 30 30
Nk-Threshold C 1.5 1.62 1.62 1.75 1.88

d dropped Bits in z2 5 10 10 9 8
Verification thresholds B2, B∞ 2492,530 12872,2100 11074,1563 10206,1760 9901,1613

Repetition rate 7.4 1.6 7.4 2.8 5.2
Signature size 3.3kb 5.6kb 5kb 6kb 6.5kb
Secret key size 1.5kb 2kb 2kb 3kb 3kb
Public key size 3.3kb 7kb 7kb 7kb 7kb

Table 3.1: Different parameter sets as published in [15]. The implementation
used later in this thesis uses the parameters for BLISS-I, highlighted in grey.

is repeated until f is invertible. The secret key S is then calculated as

S = (s1, s2)
t = (f , 2g + 1)t (3.1)

Each set of parameters defines a value C that is used to compute a threshold setting
the upper limit for the function Nκ(S). The key is rejected if Nκ(S) ≥ C2 · 5 (d1 + 4d2) ·κ,
whereas Nκ(S) is calculated by

Nκ(S) = max
I⊂{1,...,n}

#I=κ

∑
i⊂I

 max
J⊂{1,...,n}

#J=κ

∑
j⊂J

Ti,j

 with T = St · S ⊂ Rn×n (3.2)

There are further optimisations to Equation (3.2) described by Ducas et al. [15] to
improve the speed of the calculation of the two nested sums. In practice the calculation of
the Nκ(S) value results in about 25% rejected keys, reducing the overall security by 2 bits.
Additionally, the secret key is rejected if the polynomial f is not invertible, as it would
prevent the calculation of aq needed for the public key.

Given the private key S, the public key A is then defined over the quotient ring
Rq = Zq[x]/(xn + 1) such that AS = qIn(mod 2q) with I being the identity matrix
resulting in:

A = (2aq, q − 2) = (2 · (2g+1)/f , q − 2) ∈ R1×2
2q (3.3)

3.2.2 Signing

Signing a message µ is done by first sampling two random vectors y1, y2 from a discrete
Gaussian distribution D with the specified standard deviation σ. The value for σ is given
in Table 3.1.
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Algorithm 3.1 BLISS key generation according to [15]
1: procedure KeyGen
2: Choose uniform polynomials f ,g with d1 entries in {±1} and d2 entries in {±2}
3: S = (s1, s2)

t ← (f , 2g + 1)t

4: if Nκ(S) ≥ C2 · 5 · (dδ2ne+ 4dδ2ne) · κ then restart
5: if f not invertible then restart
6: aq = (2g + 1)/f mod q
7: return(A = (2aq, q − 2) mod 2q,S)

Next, a polynomial multiplication of ζ · a1 · y1 + y2 mod 2q is performed. Due to
the key-generation, the polynomial a1 is created over the ring Z2q[x]/(xn + 1). At first
glance, this makes it harder to compute the product a1y1, because the multiplication using
the NTT from Section 2.3.2 is defined over the ring Zq[x]/(xn + 1). However by setting
a1 = 2 · a′1 it is possible to compute a′1 ·y1 over Zq[x]/(xn + 1) and afterwards multiplying
the coefficients of the result by 2 to get the result over the ring Z2q[x]/(xn+1). By carrying
out this additional step, the multiplication can be efficiently performed using the NTT.

The upper d bits of the result u are then used together with the message µ as input
for the hash function H. The hash function needs to output a uniform vector c in Bnκ,
i.e., a binary vector with κ elements being 1 and a total length of n, making it a sparse
vector [15].

Next, a single random bit is used to decide if the product of the multiplication s1,2c is
subtracted from or added to the previously generated vector y1,2.

In line 8 a rejection sampling is performed. This ensures that the distribution of the
result of z follows the Gaussian distribution, prohibiting leakage on the secret key [39].
However, it should be noted that due to the rejection sampling, the signature creation is
not performed in constant time.

Finally, a signature compression is carried out, effectively reducing the final signature
size by dropping most of the low-order bits from z2 and in conjunction with u calculating
the output z†2.

Algorithm 3.2 BLISS signature creation according to [15]
1: procedure Sign(Message µ, public key A = (a1, q − 2), secret key S)
2: y1,y2 ← DZn,σ
3: u = ζ · a1 · y1 + y2 mod 2q
4: c← H(bued mod p, µ)
5: Choose random bit b
6: z1 ← y1 + (−1)bs1c
7: z2 ← y2 + (−1)bs2c
8: Continue with probability 1/(M exp(− ‖Sc‖2

2σ2
) cosh(<z,Sc>

σ2
)) Else restart

9: z†2 ← (bued − bu− z2ed) mod p

10: return(z1, z
†
2, c)

3.2.3 Verifying

To verify a signature, the norms of the signature are calculated and compared to the
specified verification thresholds B2, B∞ from Table 3.1. Furthermore, the input of the
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hash function H is reconstructed and the output compared to the vector c. If c equals the
result of the hash function the signature is accepted.

Algorithm 3.3 BLISS signature verification according to [15]

1: procedure Verify(Message µ, public key A, signature (z1, z
†
2, c))

2: if ‖(z1|2d · z†2)‖2 > B2 then Reject
3: if ‖(z1|2d · z†2)‖infty > B∞ then Reject
4: if c == H(bζ · a1 · z1 + ζ · q · ced + z†2 mod p, µ) then
5: Accept
6: else
7: Reject

3.3 Sparse Multiplication

In Algorithm 3.2 on line 6f., the secret key S = (s1, s2) is multiplied by a vector c over
the ring Z2q[x]/(xn + 1). The vector c has κ out of n entries set to one. The value for
κ depends on the parameter set from Table 3.1 and ranges from 12 for BLISS-0 to 39 for
BLISS-IV. With most of its entries being zero, c is a sparse binary vector. Furthermore,
the number of non-zero elements in the key si is limited by the density parameters δ1 and
δ2 during the key generation.

The multiplication sic could be performed using the NTT. However, as c is a sparse
binary vector and si is small it is much more efficient to perform a sparse multiplication
and compute the result by additions over Z [39].

A further advantage is that due to the sparse vector c having a Hamming weight of κ
it is sufficient to store only the κ indices of elements being 1.

3.4 Performance

A performance comparison between state-of-the-art signature schemes and algorithms of
the BLISS-family, implemented in hard- and software, can be seen in Table 3.2. The metrics
of the software implementation are based on an Intel Core i7 desktop computer, with RSA
and ECC using OpenSSL 1.0.1c [15]. In terms of the hardware implementation, a Spartan
6 LX25-3 has been used for 1024 bit messages [39]. The hardware implementation allows
for varying levels of parallelisation because for example the sparse multiplication can be
calculated parallelised. On that matter, the hardware implementation tries to use a trade-
off between speed and resource consumption by using 8 cores for the multiplication [39].
Thus 8 output coefficients of s1,2 are computed simultaneously. Furthermore, it should
be noted, that the software implementation uses SHA-512 as the hash function, while
the hardware implementation uses Keccak for this purpose. The number of sign- and
verification operations per second in Table 3.2 of the hard- and software implementations
should not be compared to each other in terms of their absolute values because they are
optimised for different constraints. The hardware represents an efficient implementation on
a low-cost FPGA [39] with very similar performance to a software implementation running
on a state-of-the-art PC.

When comparing the implementations and schemes, the resulting signature sizes for a
BLISS-signature are somewhat larger than RSA and much larger than ECDSA signatures.
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Secret- and public key sizes are significantly larger than ECDSA keys at similar security
levels as well. Comparing the key sizes to RSA at the same level, shows smaller secret key
sizes favouring BLISS despite the larger public keys. In terms of speed, BLISS, with about
8-9k signatures per second for BLISS-I, is not performing quite as well as ECDSA with
9.5k signatures per seconds, but clearly outperforming RSA 2048 at 0.8k signatures per
second. However, in terms of verification speed, the software implementation of BLISS-I
manages to verify about 13 times as many signatures as the ECDSA implementation at
an equivalent security level. Comparing BLISS-I with 33k verifications per second to RSA
2048 with 27k verifications per second still shows a significant difference.

Implementation Security level Signature size Secret key size Public key size Sign/s Verify/s
bits kb kb kb

BLISS-0 (SW) ≤ 60 3.3 1.5 3.3 4k 59k
BLISS-I (SW) 128 5.6 2 7 8k 33k
BLISS-I (HW) 8.8k 17.1k
BLISS-II (SW) 128 5 2 7 2k 33k
BLISS-III (SW) 160 6 3 7 5k 32k
BLISS-III (HW) 4.8k 17.8k
BLISS-IV (SW) 192 6.5 3 7 2.5k 31k
BLISS-IV (HW) 2.8k 17.8k
RSA 2048 (SW) 103-112 2 2 2 0.8k 27k
RSA 4096 (SW) ≥ 128 4 4 4 0.1k 7.5k

ECDSA 160 (SW) 80 0.32 0.16 0.16 17k 5k
ECDSA 256 (SW) 128 0.5 0.25 0.25 9.5k 2.5k
ECDSA 384 (SW) 192 0.75 0.37 0.37 5k 1k

Table 3.2: Performance comparison of the BLISS signature family to state of the
art signature algorithms. SW indicates a software implementations, HW indicates
an FPGA hardware implementation on a Spartan 6 for 1024 bit messages and
C = 8 cores for the sparse multiplication [39, p. 16f.]. Openssl 1.0.1c was used
for RSA and ECSDA [15, p.2]

3.5 BLISS on Hardware

A BLISS hardware implementation was published by Pöppelmann et al. [39]. It targets the
Xilinx Spartan-6 FPGA, uses the KECCAK-f [1600] hash function and offers modules for
signing and verifying the signature. The algorithm can be configured for various parameter-
sets and allows for tweaking the time it takes to perform the sparse multiplication by
configuring the number of cores performing the operation in parallel. This allows balancing
the speed of the implementation and the area required on actual hardware.

Both the signer and verifier access common dual port BRAMs for the signature triplet
consisting of z1, z2, c. Next, the implementations of the signer and verifier are discussed.

3.5.1 BLISS Signer

The BLISS Signer module features a modular and configurable design as outlined in Fig-
ure 3.1. The Polynomial Multiplication module is based on a microcode engine by Pöppel-
mann and Güneysu [42]. The version used in this BLISS implementation has been scaled
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down by removing polynomial operations not used in this signature scheme and statically
using parameters specified by the BLISS design. Besides calculating the a1 · y1 product
using the NTT, the module is tasked with sampling the random vectors y1, y2. Based on
the configuration either a Bernoulli- or a CDT Gaussian sampler is used for this task [39].

The product a1 · y1 of the polynomial multiplication is used to compute
u = ζa1 · y1 + y2 mod 2q. The result u, as well as the randomly sampled vectors y1,
y2 are then saved to the respective block memories BRAM-U, BRAM-Z1 and BRAM-Z2. Based
on the configuration of the number of dropped bits d from Table 3.1 the lower order part
of bued mod p is stored in RAM-U. For the hash function used to generate the vector c,
Keccak processing 16 slices in parallel, configured with a rate of 1024 bits and a capacity
of 576 bits is used. In its current form, the implementation can only handle messages
with a length being a multiple of 1024 bits as no padding scheme has been implemented.
Furthermore, it is limited to a total size of 4096 bits due to the size of the internal message
buffer RAM-M, which needs to hold the message in case the signature gets rejected. Due to
the rejection sampling at the end of the BLISS-algorithm, the hash function has to be able
to rehash the concatenation of the original message µ and a new different u. The issue
could be solved by saving the internal state of Keccak after hashing the blocks related to
the message, or by rehashing the full message again. This implementation uses the second
approach and the full message has to be rehashed, limiting the maximum message length
to the size of RAM-M. This can be considered a limitation of this particular design. After κ
unique positions have been extracted from the hash function H, they are saved to RAM-Pos
to be used for the sparse multiplication. It should be noted that only the indices of the
elements of the sparse vector c that are equal to 1 are stored in RAM-Pos and not the vector
as such.

NTT

Polynomial
Multiplication

ALU Decoder

Gaussian
Sampler

Bernoullie Sampler

CDT Sampler

BRAM-U

BRAM-Y2

BRAM-Y1

Compute-U

Random Oracle

RAM-U RAM-M

Keccak-f [1600]

ExtractPos

RAM-Pos

Sparse 
Multiplication

MAC

Core-s2-1 

RAM-s2

MAC

MAC MAC

Core-s1-1 

RAM-s1

Core-s2-2 

RAM-s2

Core-s1-2 

RAM-s1

Compression

Z2

Z1

Compress

Rejection
Sampling

Norm Scalar

Bexp(-x/f) Trivium

BLISS Signer

message secret key S

reject

c

Z1

Z2

Figure 3.1: Block diagram of the FPGA implementation of the BLISS-I signa-
ture algorithm on reconfigurable hardware. The illustration shows the algorithm
for C = 2 sparse multiplication cores.
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The content of RAM-Pos is then used for the sparse multiplication in the SparseMul
module. This module contains a specified number of cores C for each secret key si with
i ∈ {1, 2} and calculates the product of sic. The number of cores can be configured and
impacts the size and runtime of the scheme. As each core is dedicated to one part of
the secret key, each core holds a full copy of either s1 or s2. The internals of the sparse
multiplication are discussed in Section 3.5.2.

The partial results of the vector multiplication are then used, in parallel to the sparse
multiplication, together with z1, z2 to calculate the norms and scalar products, needed for
the rejection sampling of the signature algorithm.

3.5.2 Sparse Multiplication in Hardware

A critical part of the signature generation is the multiplication of the secret key S with the
sparse vector c as described in Section 3.3. The hardware implementation is capable of
doing a polynomial multiplication with the help of the NTT as described in Section 2.3.2
because computing the vector u can be efficiently done by utilising this transformation.
However, due to all except κ coefficients of c being 0, the product can be calculated more
efficiently by performing a sparse multiplication.
The implemented algorithm on the FPGA performs the sparse multiplication using the
schoolbook method as seen in Algorithm 3.4. The algorithm performs a column-wise
multiplication, consequently allowing for an on the fly computation of the norm and inner
product for the rejection sampling afterwards [39].

Algorithm 3.4 The algorithm to compute the product of the sparse multiplication using
a column-wise schoolbook method according to [39]

1: procedure SparseMultiplication(Secret Key s , Index Vector c, Result coefficient
Index j, n )

2: result← 0
3: for i← 1, κ do
4: position← n− ci + j
5: k ← position mod n
6: if position < n then
7: result← result− sk
8: else
9: result← result+ sk

10: return result

The waveform of a reduced example of the sparse multiplication can be seen in Fig-
ure 3.2, with κ being 8 and only two cores performing the multiplication.

The c_index acts as a counter to feed the saved c_data into all cores simultaneously.
The c_data signal is the index of those elements of the sparse vector c that are set to 1.
If the sc_valid signal is high, the signal sc_out holds the results of the multiplication for
the indicated location of sc_address.

Each core computes its part of the result independently. Core 1 will calculate the
results of the sc_address in steps of two, starting at zero, and Core 2 will start at 1.
Knowing the output position, each core will then compute the actual address s_address
of the involved elements of the key si as also indicated on line 4 of Algorithm 3.4. The
content of the key si is then available through s_data and depending on the calculated
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key address, the key is added or subtracted from the content of the temporary register
result_reg as seen on line 6 of Algorithm 3.4.

After adding or subtracting all involved keys, the result of each result_reg is written
to result_out in parallel and then element-wise written to sc_out by the top module of
the sparse multiplication.
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Figure 3.2: Waveform of the sparse multiplication involving the key s1 using
two multiplication cores and κ = 8, computing subsequent results.



Chapter 4

Side-Channel Attacks

This chapter gives an overview of side channel attacks. While this kind of attack applies to
various types of systems and protocols (e.g., the Lucky Thirteen attack on TLS described
in [18] ), this chapter focuses on side-channel attacks on cryptographic hardware. Some of
the concepts, however, can be used for other fields as well.

First, an overview is given to give a better understanding of different types of attacks
and how they can be classified in Section 4.1. Continuing with Section 4.2 the basic idea
of the principles and parasitic effects of CMOS, the most used technology for microchips,
is given. Moreover, Section 4.3 gets into more detail on how this knowledge on CMOS can
be used to elaborate data dependent power consumptions described by power models.

Power models are essential for attacks utilising the specific power consumption of a
device as exploited in a simple power analysis attack in Section 4.4 or a differential power
analysis attack as elaborated in Section 4.5.

Furthermore, ways to mitigate these attacks are given in Section 4.6, focusing on the two
most common methods known as hiding and masking. Finally, in Section 4.7 proposed and
published ways to perform side-channel attacks on lattice-based signatures are discussed,
as well as proposed countermeasures to mitigate these attacks.

4.1 Overview

In general, with cryptanalysis reviewing the algorithm and the mathematical model a
cryptographic scheme is based on, side-channel attacks (SCA) specifically target the im-
plementation of a cryptographic scheme. This implementation can range from a physical
device running a single cryptographic primitive to an application on a web server perform-
ing a cryptographic protocol. While SCA exists in many contexts, the scope of this thesis
lies primarily on SCA on cryptographic microchips.

The goal of an SCA is to gain knowledge of internal information of the algorithm in
use, like states, conditional branches, internal errors, cryptographic secret keys or even to
alter the control flow of the algorithm to make the device reveal internal information.

There is a broad range of methods to perform such an attack, each with a varying
amount of cost, tools, time and expertise involved. There are different ways to distinguish
between various kinds of attacks. A basic separation is to first categorise into passive-
and active attacks and then further distinguish in terms of invasiveness ranging from non-
invasive-, over semi-invasive- to invasive attacks. This and the following descriptions given
in this chapter are based on Mangard et al. [28].

17
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Active Attacks

To classify as an active attack, the device needs to be tempered with in some way. One
way to perform an active attack is to run the device outside of its specification. This can
be achieved by, e.g., changing the environment and operating it above the maximum tem-
perature it was designed for or operating it above or below the specified voltage. Another
way of performing an active attack is to temper with single input pins of the device.

Passive Attacks

While the active attack requires manipulation of the device under attack, the passive
attack aims at exposing confidential internal information. This is achieved by observing
the emitted physical properties of the device under normal operation, i.e., fully or at least
mainly within the specification. For example, this can be done by, but is not limited to,
measuring the power consumption, the emitted electromagnetic interference (EMI), sound
or the execution time.

Non-Invasive Attacks

Non-invasive attacks only use the available inputs on the device and do not require to
open up the package of the microchips or adjusting parameters of the environment. These
properties drive down the cost of non-invasive attacks, increasing the risk for practical
attacks. To perform the attack, the device gets known, sometimes specially crafted, data to
process. An external measurement device is then used to obtain data on the appliance, like
power consumption, execution time or EMI. Examples of passive non-invasive attacks are
timing attacks as described by Kocher [23] and Dhem et al. [13], and simple- or differential
power analysis attacks as described by Kocher et al. [24]. It should be noted that this
kind of attack does not alter the device permanently, making it difficult to detect if the
appliance has been tampered with in the past or at runtime.

Active non-invasive attacks include changes in the environment that interfere with the
normal operation of the device, but do not require depackaging of the chip. This type of
attack includes changes in the environmental temperature [20], introducing clock glitches
and changes in the supplied power to induce wrong calculations [7, 5]. Because this requires
changes to some domain parameters, it is easier detectable than the passive non-invasive
attack, e.g., by using temperature sensors to detect drastic changes in temperature.

Semi-Invasive Attacks

In contrast to non-invasive attacks, semi-invasive attacks include depackaging of the chip
down to the passivation layer using mechanical or chemical means. The semi-invasive
attack separates itself from the invasive attack by not making electrical contact with the
surface of the chip. The depackaging is done to make the chip better accessible for probes or
fault inducers. This makes semi-invasive attacks more expensive than non-invasive attacks,
and also increases the effort and required know-how for depacking a chip and positioning
the probes or tools at the correct location.

In case of a passive semi-invasive attack, the content of the memory is obtained by
means other than using a specially crafted readout circuit or probing existing read-out
circuits already existing on the chip. As an example, Samyde et al. [48] demonstrated
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Figure 4.1: Structure of a CMOS inverter logic cell including the pull-up-, pull-
down network and the parasitic capacitive load.

how to read the content of memory cells by using lasers without changing the information
stored in the cell.

Active semi-invasive attacks on the other hand aim at inducing faults in the device.
The depackaging of the chip makes it easier to use X-rays, electromagnetic fields or light
to target the chip. In case of light, when photons hit the p- or n-channel area, it induces
free carriers, reducing the resistance of the channel and thus making it possible to cause
bit-flips in specific parts of the chip as demonstrated by Skorobogatov and Anderson [54].

Invasive Attacks

Invasive attacks represent the most powerful group of attacks in terms of effectiveness
but are also the most expensive. They require depackaging the chip, costly tools and a
considerable amount of knowledge of the underlying circuit.

In addition to the depackaging, as performed at the semi-invasive attack, the passiva-
tion layer also gets removed to allow a probing station to be connected to the microchip.
To perform a passive invasive attack, the probing station is then used to log the data trans-
mitted over a bus or at specific pins. This also allows for alterations of the transmitted
data using the probing station or lasers, resulting in an effective active attack.

Although the costly nature of this type of attack reduces its practical threat, it is
something that should be considered for high-risk applications. A countermeasure based
on exploiting imperfections of capacitors in the fabrication process has been proposed by
Wan et al. [59].

4.2 CMOS

The most commonly used process technology modern microchips are based on is com-
plementary metal-oxide-semiconductor (CMOS), which also represents the most common
way to implement logic cells. In CMOS each logic cell contains a pull-up and a pull-
down network as seen in Figure 4.1 for an inverter. To give a basic explanation of the
functionality: The pull-up network implements the logic for the output to be a logic 1,
whereas the pull-down network covers the complementary cases for the output to be a
logic 0.
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Due to this structure, the output of CMOS always results in a logic one or zero. Based
on Mangard et al. [28] the power consumption of CMOS circuit can be traced back to two
main groups, as explained below.

4.2.1 Static Power Consumption

The significance of the static power consumption varies with the structure size of the used
process technology. For smaller structure sizes this type of leakage tends to contribute
more to the overall power consumption. With CMOS only one of the pull-up or pull-
down networks is active at the same time. However, there is still a small parasitic leakage
between the supply voltage and the ground connection. This leakage causes the static power
consumption and is independent of the processed data. The static power consumption can
be calculated based on the leakage Current Ileak and the supply voltage VDD of the logic
circuit:

Pstat = Ileak · VDD (4.1)

4.2.2 Dynamic Power Consumption

The dynamic power consumption is typically higher than the static power consumption.
It is caused by switching of the CMOS and depends on the data processed. While the
internal switching of a cell is also affected, it contributes only a small part compared to
changes in output bits. Therefore, only changes in output signals are considered in the
following. Each output bit of a cell can either change to the opposite- or stay at its current
value, resulting in a total of four possible transitions. In case the bit does not flip, the
cell only consumes static power, whereas a change in its value causes static and dynamic
power consumption. Depending on the exact process used each transition may consume a
different amount of power. The cause for dynamic power consumption is twofold:

Charging Current

The output as seen in Figure 4.1 is connected to another part of the chip. This can be
modelled as a parasitic capacitance. Every time the output changes its value, either the
pull-down or the pull-up network has to charge this output capacitance, causing a parasitic
current.

Given a clock frequency f , the output capacitance CL, the supply voltage VDD and an
activity factor α, the power consumption causing the charging current is given as:

Pcharge = α · f · CL · V 2
DD (4.2)

The activity factor α denotes the average number of switches between the two output
states. A value of α = 1 notes that the output switches with every clock cycle. It should
be noted that while the frequency f and the capacitance CL only contribute in a linear
way, the supply voltage has a quadratic impact on the power consumption caused by the
charging current of output capacitances. Therefore, reducing the voltage VDD as far as
possible is a good way to reduce the dynamic charging power consumption.

Short Circuit Current

A change in the input of a CMOS circuit, that also changes the output will affect both
the pull-down and the pull-up network. Both the pull-down and the pull-up network will
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change in a way that a short-circuit exists between the supply voltage and the ground for
a short period of time. The maximum current during this transition is denoted as Ipeak.
This results in a peak in power consumption during the transition of the output signal. A
commonly used approximation for the power consumption of this event is given as:

Psc = α · f · VDD · Ipeak · tsc (4.3)

With α being the switching activity of the cell compared to the clock frequency f and VDD
being the supply voltage used.

4.3 Power Models

Power analysis attacks often require assumptions on the power consumed by the device
and the data that has been processed. Such assumptions are referred to as power models.
Power models can be arbitrarily sophisticated, depending on the amount of information
available on the device under attack. However, in general, an attacker does not know the
details of the implementation, resulting in simple power models like Hamming-distance or
Hamming-weight which offer broader applicability.

With Hamming distance and Hamming weight being the most generic power models,
more specific power models implementing specific characteristics of the device can be cre-
ated. For instance, single bits can be weighted differently (e.g., in the Hamming distance
or Hamming weight power model), or assumptions for a larger part of the chip can be
made [28].

4.3.1 Hamming Weight

The Hamming weight (HW) power model assumes the power consumption to be propor-
tional to the number of logical ones in the processed data. Given bn, a binary vector b of
length n:

HW(bn) =

n−1∑
i=0

bi, bi ∈ {0, 1} (4.4)

The position of the ones and zeros has no effect on the outcome of the Hamming
weight. This model does not attribute to past values on a bus or register and is therefore
mainly used in situations where the attacker has no or only very limited information about
previously stored data. Due to the dynamic power consumption in CMOS (Section 4.2.2),
transitions in the circuit lead to a change in the power consumption. Based on these
properties the Hamming weight model is not very well suited for CMOS.

4.3.2 Hamming Distance

With the Hamming weight model based on a specific state of a variable and its related
power consumption, the Hamming distance (HD) model emphasis on the transition between
states. More precisely it counts the number of bits changing their value from one state to
another. For this matter, the direction of the transition is not accounted for. It should
be noted that in actual CMOS hardware the power consumption depends on the direction
because pull-down and pull-up networks have different power characteristics. Furthermore,
the Hamming distance model does neither account for parasitic capacitances nor the static
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power consumption. Therefore, a transition from a logic zero to a logic one contributes
the same way to the overall power consumption as a transition from one to zero.

With two states A and B, represented as binary strings of the same length, and ⊕ being
a logical XOR, the Hamming distance of the transition between the two can be seen as the
Hamming weight of the XOR of the two states:

HD(A,B) = HW(A⊕B) (4.5)

The Hamming distance model is well suited for parts of the device with a high number
of capacitive loads or long data lines, like a bus, which is connected to many components.
Registers are driven by a clock and therefore only change their value once per clock cycle,
making them suited for the Hamming distance power model as well. In contrast to parts
like buses and registers, the output of combinational logic cells glitches between its possible
values, making it unsuited for the Hamming distance model [28].

To take a closer look at the Hamming weight and the Hamming Distance model, based
on Mangard et al. [28], three cases of transitions between a state A to a state B are
compared:

Primary state equal and constant

Given a number of transitions from state A to B, the Hamming-weight model equals the
Hamming-distance model, if A always has the same value with all its bits set the same
logical value. Therefore, with ⊕ indicating a binary exclusive-or operation, it holds that
HD(A,B) = HW(A ⊕ B) = HW(B). As power analysis tries to correlate the power
consumption to the processed data, it is indifferent if it is directly or inversely proportional
to the processed data, hence it makes no difference if state A consists of logic ones or zeros.

Primary state constant

In this case, the bits of state A are constant and thus the same for each transition from A to
B. However, while the overall value of A is the same before each transition, the value itself
consists of a mix of logical ones and zeros and is not known to the attacker. Therefore, the
Hamming weight model is different from the Hamming distance model in this case, making
it a poor choice for this kind of transitions. However, it is possible to base the model on a
single bit making both models equivalent in terms of power analysis attacks. Furthermore,
it should be noted that the accuracy of the Hamming weight power model increases the
more bits of state A share the same value.

Independent uniformly distributed transition

In this case, the bits of state A are random for each transition A to B, following a uniform
distribution. The properties of A clearly make the Hamming weight model unsuited for
this type of transition, as HW(B) is different from the Hamming distance HD(A⊕B) with
A being a random and independent state from B.

4.4 Simple Power Analysis

A simple power analysis (SPA) typically involves a small number of power traces, that
were captured during the operation of the device and the attacker tries to interpret them
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directly [24]. This is useful in scenarios in which the attacker has only a limited number
of occasions to measure the power consumption of the device, either because the target is
only using it a limited time, but also in cases in which the device locks up after a certain
number of tries. In situations like these, there might be only a single trace to recover the
embedded key, indicating the difficulty of this attack in certain settings. Based on Mangard
et al. [28] this section discusses two ways of performing an SPA attack.

4.4.1 Attack by Visual Inspection

An attack based on visual inspection of the traces is the most basic form of an SPA
attack. Integrated circuits usually consist of multiple components working together. The
algorithm executed on the device makes use of several of these components. Especially
in case of software run on microcontrollers, the executed instructions show a distinctive
pattern in the power consumption, caused by arithmetic instructions, logic instructions,
branching or data transfer instructions. Additionally, microcontrollers are designed for
general purpose applications and therefore less tightly integrated in regard to the active
components in parallel.

However, this attack requires detailed knowledge of the algorithm. After normalisation
of the measured power traces, this knowledge can be used to label the segments of the
executed algorithm in the trace. In a badly designed implementation, the labels not only
show the executed instructions but also give information on the key, because the instruc-
tions used are directly related to the key. A primary example for this would be a branching
based on a small part of the key being zero during a multiplication.

4.4.2 Template Attacks

Template attacks represent a more advanced form of SCA attacks. The assumption for
this attack is that the data processed by the device influences the power consumption.
Essentially, the power consumption of the device is characterised using a multivariate
normal distribution and described by a pair of its mean m and its covariance matrix C.
The pair consisting of (m,C) is referred to as a template, denoted as h.

A template attack consists of a template building- and a template matching phase.
The template building should be run on a device as similar as possible to the device under
attack but allowing for arbitrary data and keys. Afterwards, the obtained data can be
used for the template matching phase to recover the key on the target device.

Template Building

The template building phase aims at characterising the device by measuring the power
consumption t for all combinations of data inputs di and keys kj . It should be noted
that the number of combinations of the key and data only cover the possibilities necessary
for the affected operation and not the entire key-space. The template can be built for
a single- or a sequence of instructions. The power traces referring to the same data are
then consolidated to estimate the mean m and the covariance matrix C resulting in the
templates hdi,kj = (m,C)di,kj for each tuple of data value and key. In contrast to the
mean, the size of the covariance matrix is increasing quadratically with the number of
points in the trace. Therefore, it is necessary to limit the power traces to a set of points
with a power consumption showing a high data dependency.
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Depending on the algorithm and properties of the device, different strategies can be
used to build templates:

One way, as already hinted, is based on points in the algorithm that directly rely on
pairs consisting of data value and key (di, kj). The power consumption is proportional to
the values of the tuple.

Alternatively, the templates can also be created for intermediate values based on some
function f(di, kj). The function f can be any part of the algorithm that incorporates the
data value and the key and maps it to a known output.

In some cases, it may be necessary to make use of knowledge about the power model
describing the device to reduce the number of templates drastically. For instance, for a
device leaking the Hamming weight at a specific operation, the number of templates for
an 8-bit value can be reduced from 256 to nine by grouping templates causing the same
Hamming weight.

Template Matching

Once the template building is completed, the data can be processed and matched against
the power trace(s) of the device under attack. The templates hdi,kj are then used with the
power trace t to calculate the probability p of them matching each other:

p(t;h = (m,C)di,kj ) =
exp

(
−1

2 · (t−m)′ ·C−1 · (t−m)
)√

(2 · π)T · det(C)
(4.6)

This results in a probability for each of the templates matching the trace. The template
with the highest probability, based on the maximum-likelihood decision rule, is then the
most likely to fit the trace:

p(t, hdi,kj ) > p(t, hdi,kl)∀l 6= j (4.7)

In practice, however, as seen in Equation 4.6, it is necessary to invert the covariance
matrix C, which may not always be mathematically possible due to the measured power
traces the matrix is based on. In such cases, the matrix can be substituted by the identity
matrix of the same size. This effectively just ignores the covariance between the points of
the trace. The resulting template is then called a reduced template.

To more efficiently compute the likelihood the logarithm can be used to simplify the
Equation 4.6:

ln p(t;h = (m,C)) = −1

2
(ln((2 · π)T · det(C)) + (t−m)′ ·C−1 · (t−m)) (4.8)

The maximum likelihood then becomes

| ln p(t, hdi,kj )| < | ln p(t, hdi,kl)|∀l 6= j (4.9)

4.5 Differential Power Analysis

The differential power analysis (DPA) [24] is one of the most universally applicable power
analysis attacks because it does not require detailed knowledge of the internals of the
device under attack. Furthermore, this kind of attack is hardly affected by noise generated
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by other areas of the device. For an attack, it is basically sufficient to know the used
cryptographic algorithm the device is executing. Compared to the simple power analysis,
the DPA requires more power traces to succeed, making it usually a requirement to get
into possession of the attacked device. The attack itself focusses on the relative power
consumption at a specific moment in time, as it assumes the power consumption to depend
on the processed data. Therefore, it is critical to properly align the traces to be able to
perform the attack at all. A DPA attack can generally be split into five steps [28]:

First, it is essential to identify the intermediate results of the algorithm that are going
to be the target of the attack. This intermediate value f(d, k) has to depend on some part
of the key k as well as a known, non-constant value d that can be altered by the attacker,
like a message to be signed or a ciphertext.

Second, the power consumption of the device needs to be measured while performing
its operation on the intermediate value. The attacker needs to save the intermediate value
d used in the respective run and store it in connection with the measured power trace t.
Each power trace has a length T . The known values d are stored in the vector d.

Next, a vector k of length K containing all possible value of the key k is created. The
value k is not the full key, but only a much smaller part. The vector is then used, together
with the known vector d to compute the output of the function f(d, k) for all possible keys
in k. The result is a matrix with the number of elements in k times the elements in d.
Because the matrix is built from the data that has been used and all possible key values,
the DPA aims to find the column that has actually been processed by the device. This
step is referred to as building a hypothetical intermediate value.

Afterwards, each of the hypothetical intermediate values is mapped to a hypothetical
power consumption. The power consumption is calculated by applying a suitable power
model, like the Hamming distance model, on the intermediate values generated in the pre-
vious step. It is essential to apply a power model that best describes the attacked device
for the DPA to work properly.

Finally, the hypothetical power consumption is mapped to each position of the actual
power traces. This is then compared using statistical methods to determine which of
the hypothetical intermediate values fits best to the observed power traces. One way to
determine the likeliness of the hypothetical model being represented in the power traces
is the correlation coefficient. The matrix H is representing the hypothetical power model
and T consists of the measured and aligned power traces with hi and tj being column
vectors of length D of the respective matrices with i ∈ {1, 2, ...,K} and j ∈ {1, 2, ..., T}.
The variables h̄i and t̄j represent the mean values of the respective vectors hi and tj . The
correlation coefficient ri,j for each power trace and hypothetical power model can then be
calculated with:

R = ri,j =

∑D
d=1((hd,i − h̄i) · (td,j − t̄j))√∑D

d=1(hd,i − h̄i)2 ·
∑D

d=1(td,j − t̄j)2
(4.10)

If there’s a correlation between the power hypothesis and the power traces, the location
of the highest values in the matrix R indicate the secret key used by the cryptographic
device.
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4.6 Countermeasures

The ability to extract the full or at least parts of the secret key embedded in a cryptographic
device raises the need to counteract these attacks and protect the secret asset or at least
raise the difficulty to perform the attacks to a certain level. This can be achieved by using
hiding, masking or even a combination of both [28]. It should be noted that in practice
it is not always possible to classify a countermeasure into a specific category because a
combination of different techniques may be used and slightly different definitions for the
terms exist.

4.6.1 Hiding

Hiding is a countermeasure against power analysis attacks that tries to make the power
consumption independent of the processed intermediate data values and the performed
operation on the data. This can be achieved by either making the device consuming
a random or the same amount of power in each clock cycle throughout its operations.
However, both these properties cannot be entirely fulfilled in practice. Methods of hiding
the power consumption focus on either the time dimension or the amplitude dimension
and can be implemented in software or hardware.

Time Dimension

One requirement for a side-channel attack like the differential power analysis (Section 4.5)
is to align the traces properly such that the same operation is executed at the same time
over all traces. This property can be exploited to protect the implementation. Hiding the
point in time an operation has been executed significantly increases the number of traces
needed for a successful attack.

To hide the operation in the time dimension either the order in which the necessary
operations are executed is shuffled or dummy operations are inserted randomly.

To protect an implementation by randomly inserting dummy operations, they have to
be placed before, during and after executing the cryptographic primitive. The number
of operations inserted overall has to be equal, to prevent the attacker from gaining any
information on the number of totally inserted dummies. The split between the locations
must be determined using random numbers. By varying the number of operations at
each location, an attacker cannot align the traces easily as needed for a DPA. However,
the downside to this approach is that while the number of distributed dummy operations
determines the security gained with this method, more dummy operations slow down the
algorithm. In practice, a trade-off between the number of operations and overall speed has
to be found.

Another way of hiding the executed operations is to shuffle the order in which the
operations of the cryptographic algorithm are executed. The applicability is highly de-
pendant on the algorithm itself, as it is not possible for all operations. Operations like
entry-wise table lookups, or matrix multiplications are examples of operations that can
be shuffled easily. In general, shuffling has a smaller overhead in performance than the
insertion of random operations (which effectively slows down the implementation) but is
not as universally applicable.



CHAPTER 4. SIDE-CHANNEL ATTACKS 27

Amplitude Dimension

The alternative to hiding in the time dimension is hiding in the amplitude dimension. This
countermeasure aims at equalising the signal-to-noise ratio (SNR) of the cryptographic
operations by either increasing the noise or by reducing the leakage of the signal. Both
methods aim at reducing the SNR to 0, i.e., the signal is indistinguishable from noise,
though this is not entirely possible in practice.

To increase the noise of the signal, the simplest way is to perform operations in par-
allel, thus increasing the effective width of the data path and also the noise introduced.
Dedicated noise generators represent an alternative to this. They add random switching
activity to the device and thus increase the noise. A downside of this is the increased
overall power consumption introduced by the switching of the noise generator.

Another option is to reduce the signal of the cryptographic operations. However, the
DPA requires the attacker to capture a large amount of traces, thus making even small
differences in the traces exploitable. The most common way to effectively reduce the signal
is to employ a dedicated logic style. Because the total power consumption is based on the
sum of the consumed power of the cells, if each logic cell consumes the same amount of
power for any given input the overall power is constant as well. On the hardware level,
this can be achieved by using dual-rail logic, precharge logic or a combination of both.

4.6.2 Masking

Masking is another way of protecting an algorithm against power analysis attacks. In con-
trast to hiding, masking does not aim at deceiving about the power consumption connected
to a certain operation or processed value. Instead, it aims at breaking the connection be-
tween the intermediate value and the processed data. This also means that the power
consumption will still depend on the processed data, but the processed data will not allow
drawing conclusions on the intermediate value.

In case of a DPA (Section 4.5), given an operation f(d, k), the goal is to find the key k by
using the power consumption of f and the known value d. To break this link using masking
a random maskm is generated and applied to either d or k before performing the operation.
As a result, because the mask m is not known to the attacker, the operation computing
f() works on an unknown d or a randomised k, thus not meeting the requirements for a
DPA.

Masking itself can be done by boolean or arithmetic means. For the former, the in-
termediate value of the computation is XORed with the mask. In case of the known
intermediate, this leads to a concealed intermediate dm = d ⊕ m. This type of mask-
ing can be applied easily with only a minimal performance impact. However, to use this
method, the performed operation has to be linear in regard to the XOR operator, i.e.
f(d⊕m) = f(d)⊕ f(m).

Arithmetic masking acts as an alternative and may be applicable in different scenar-
ios. To perform arithmetic masking, the masked value is combined with the intermediate
value through an arithmetic operation like addition or multiplication, often with the val-
ues defined over a ring. In regard to multiplicative masks their weakness is towards the
intermediate value being 0, therefore not concealed by any multiplicative operation.

In the context of asymmetric cryptographic schemes, masking schemes are commonly
referred to as blinding, involving additive as well as multiplicative operations. In some
cases, the blinding schemes do not require to be unmasked explicitly because the mathe-
matical characteristics are exploited that inherently cancel the mask towards the end.
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4.7 Side-Channel Attacks on Lattices

This section gives an overview of published theoretical and practical side-channel attacks
on lattice-based schemes and mitigation techniques, some of which can also be applied to
the BLISS signature scheme. However, attacks on a software implementation might not
be directly transferable to an implementation on reconfigurable hardware.

4.7.1 Gaussian Sampling

Attacks have been proposed that target the Gaussian sampler used in the signature creation
to recover the secret key. The attack proposed by Espitau et al. [17] pursues a branch
tracing attack. A first proof-of-concept cache-attack on the sampler of BLISS was shown
by Bruinderink et al. [9]. Later Pessl et al. [37] proposed an improved cache-attack in a
more realistic setting on the sampler of BLISS-B.

Branch Tracing Attack

A weak point of the BLISS signature scheme is the Gaussian sampling of the noise vec-
tors y1 and y2. The noise vectors are used to compute the output of the signatures
zi = yi + (−1)bsic with i ∈ {1, 2}. Therefore, knowing the noise vector paired with an
invertible vector c allows to directly compute the secret key involved in creating the signa-
ture. The sparse vector c is invertible in about 95% of the cases. To obtain the information
on the involved noise vectors, Espitau et al. [17] utilise the time variability of the sampler
as proposed by Pöppelmann et al. [39]. This sampler follows an iterative approach and
requires a variable number of iterations. The variation in time can then be used to infer
information on the generated values. In case of the strongSwan implementation, a branch
tracing technique can be applied, making it possible to determine the number of iterations
involved.

Cache-Attack

An attack on the related scheme BLISS-B was proposed by Pessl et al. [37]. The lattice-
based signature scheme is an improved version of BLISS and was proposed by Ducas [14].
BLISS-B uses a slightly modified key-generation and signing algorithm. Besides removing
the constants C and Nk, described in Section 3.2, the sparse multiplication has been
modified to minimise the Euclidean norm of ||Sc||, i.e., the vector c has been replaced by
a ternary vector c′ ≡ c mod 2. Additionally, during the key-generation keys are no longer
rejected. However, signatures generated with BLISS or BLISS-B are interoperable. The
keys, on the other hand, are only forward compatible, i.e., keys generated to be used with
BLISS-B should not be used with BLISS.

The attack on BLISS-B targets the implementation of the algorithm in the strongSwan
VPN solution. Despite the fact that the strongSwan implementation is not incorporating
any countermeasures against side-channel attacks, with only a few real-world applications
implementing an algorithm of the BLISS signature family this represents a realistic sce-
nario.

The attack is based on an asynchronous cache-attack recovering the unknown noise-
vector yi, as also seen on line 2 of Algorithm 3.2 and use it to acquire the secret key
S = (s1, s2). The information on yi is then used to build a system of linear equa-
tions. It should also be noted that the multiplication is performed between the derived
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and undisclosed vector c′ instead of its original counterpart c. Additionally, in case the
elements were shuffled they would need to be reordered before setting up an equation
zi = yi + (−1)b < s, c′i > for each recovered element of yi. Due to the unknown signedness
of c′ this set of equations cannot simply be solved by Gaussian elimination.

Therefore, the second step involves solving the set of equations acquired during the
cache-attack. By solving the equations over bits instead of over integers, the location of
all nonzero elements can be predicted with a certain probability. However, the system of
equations based on the noise vector yi may contain a certain number of errors, due to
the accuracy of the used side-channel attack. This can be solved using a Learning Parity
with Noise algorithm [38]. Applying this method results in the location of dδ1ne recovered
elements of the key s1 being {±1}.

In some cases, depending on the parameter set of the BLISS-B algorithm in use, the
key also contains coefficients with {±2}. To recover the location of these elements a
heuristic can be applied which is either using an Integer Programming solver or a Maximum
Likelihood estimate, depending on the particular parameter set used.

In the last step, the magnitude of the coefficients is used in conjunction with the public
key to construct a Shortest Vector Problem and retrieve the signedness of the elements.
As shown in Algorithm 3.1 the public key is computed with aq = (2g + 1)/f = s2/s1 in
Rq. This can be rewritten as s1 ·aq = s2. As demonstrated in Section 2.3, this can then be
used to construct a matrix-vector product s1 · aq = s2. Rows in Aq affected by |s| = 0 can
then be eliminated. Discarding these rows leads to a reduced matrix A?

q with dimensions
dδ1ne × n. The dimension can then be reduced further by discarding some of the upper
coefficients, making it easier to find the shortest vector. The secret-key is recovered by
solving this SVP using the BKZ lattice-reduction algorithm. While previously only the
magnitude of the elements of the key has been known, i.e., the key element |si| = {0, 1, 2},
this step ensures the recovery of the signedness of the non-zero elements [37].

With the described attack it is possible to recover the secret-key with only 325 signa-
tures.

4.7.2 Rejection Sampling

As described in Section 3.2.2, the BLISS signature algorithm performs a rejection sampling
towards the end of the signing procedure. This step depends heavily on the squared norm
||Sc||2 and the scalar product < z,Sc >, both involving the secret key S and the publicly
known sparse vector c. As shown by Espitau et al. [17] the scalar product could be used
in conjunction with z2 to create a linear system and recover the secret key. However, due
to the signature compression performed, which essentially drops the lower-order bits of z2,
resulting in z†2, this is not possible.

Retrieving information on the norm ||Sc|| can be used to create an algebraic system,
that can be solved using a more generalised version of the Howgrave-Graham-Szydlo [19]
algorithm. While most of the attack on this part runs in polynomial time, it also requires
factorisation of the norm. Therefore, this is only feasible for a certain number of easy to
factorise numbers [17].

4.7.3 Sparse Multiplication

An additional target discussed by Espitau et al. [17] is the sparse multiplication. The sparse
multiplication involves the secret key as well as the known sparse binary vector c with a
Hamming weight of exactly κ. To save memory and speed up the multiplication the sparse
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vector c is usually not stored itself, but instead only the indices of the elements being 1
are stored. Although the polynomial multiplication can be performed by using the NTT,
the structure of the sparse vector c allows for an efficient multiplication by performing
successive additions. First, the internal order in which the elements of the sparse vector
are accessed has to be determined, because the order of the c indices can be random, as
long as the correct elements affected by c are used.

In a second step, the result is suggested as the target of the attack because it gets
updated κ-times. However, the issue with attacking the result is that its value is depending
on the previous iteration. Using this observation and trying to solve it using as Markov
process does only lead to mediocre results.

Better results can be obtained by distinguishing between the result being larger or equal
to zero and being smaller than zero, based on many leading zeros or ones respectively. After
distinguishing these cases, the elements of the secret key can be recovered the same way as
solving an Integer Linear Programming problem [17]. This setting is supposed to perform
better in situations with higher noise levels than viewing it as a Markov process.

4.7.4 Number Theoretic Transform

Primas et al. [43] published an attack on the Number Theoretic Transform (NTT). Due
to the attack targeting the NTT, it affects most of the efficient and available lattice-
based schemes using this transformation to speed up parts of their computation. The
described attack is demonstrated on a software implementation of a Ring Learning with
Errors encryption scheme, implemented on an ARM Cortex-M4F microcontroller. Due to
its simple modular operations, the NTT presents a good target for a side-channel attack.
Furthermore, the NTT can be drawn as a butterfly network, that gets applied repeatedly
to the input data. Therefore, in case of a microcontroller, the same parts of the chip get
repeatedly activated, leading to loop-invariant leakages.

In this attack, the inverse-NTT during the decryption process is targeted. The attack
only needs one trace to recover the key with high probability using templates. In case of a
masked computation, this attack is still applicable, because it requires only one trace and
therefore allows to attack each share individually, recombine them and recover the secret
key. Countermeasures based on polynomial blinding only show limited protection as well.

In the first step, the EM side-channel is used to profile the operations. This is then
continued with a template matching to determine a probability vector for all possible inputs
of the operation and each computed butterfly. The operations in the butterfly-network
consist of modular multiplications as well as subtractions and additions.

Secondly, the results of the template matching phase are combined and used with the
Belief Propagation (BP) algorithm proposed by Pearl [34]. BP is a method to estimate
the marginalised probability distribution using the factorisation of a joint probability dis-
tribution. To apply the BP on the NTT, it is required to construct a factor-graph. A
factor-graph consists of variables nodes and factor nodes. Each input and output of a
butterfly is treated as a variable node in the graph. The factor nodes are labelled based
on the operation in the butterfly network, therefore either as multiplication, addition or
subtraction. It is possible to add further leakage points, like memory operations, to the
graph and extend the model if necessary.

The BP is applied until convergence is reached, however applying it to the full graph
does not lead to good results. Therefore, it is split into several subgraphs before applying
the BP algorithm on the smaller parts to yield better results.
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In the last step, the secret key is recovered. Unfortunately splitting the factor graph
during the second step and applying the BP only on parts of the graph prevents determining
the key using only linear algebra. However, linear equations can be created based on the
intermediates of the graph and used to reduce the rank of the lattice-based on the public
key of the scheme. Finally, the key is recovered using lattice reduction, utilising the linear
equations recovered from the factor graph and combining it with the public key. By
combining the two components, the rank of the lattice can be drastically reduced, making
it feasible to solve [43].

While possibly making it necessary to select different intermediates in step 2, polyno-
mial blinding as a countermeasure does not offer a significant amount of protection for this
attack. Due to a higher amount of parallelism in a hardware implementation, it should be
noted that this attack may not be directly applicable there.

4.7.5 Countermeasures

With several side-channel attacks on lattice-based schemes, countermeasures to protect
the implementations of the algorithm become even more important. Saarinen [47] showed
methods to protect against side-channel attacks at the two steps most prone to attacks
for the BLISS-B signature scheme, a further development of the BLISS signature scheme.
This section goes into detail with ways of protecting the polynomial multiplication and a
proposed protection mechanism for Gaussian sampling during the signing process [47].

Polynomial Blinding

This countermeasure is supposed to make operations involving the secret key during the
polynomial multiplication more randomised and hence, less prone to timing, power or
emission based side-channel attacks.

BLISS-B operates on a ring Rq = Zq[x]/(xn + 1) and ideal lattices. Similar to BLISS
a polynomial multiplication is performed involving the secret key. One way to protect this
operation is to multiply each of the two polynomials f ,g ∈ Rq with a random constant
a, b ∈ Zq. Performing the multiplication then leads to the result h:

h = af · bg
f · g = (ab)−1h

(4.11)

This method is applicable to the NTT domain and the regular domain. However, in
case of anti-cyclic multiplications in the NTT domain, the involved roots of unity have to
be adapted, as stated in [47].

An alternative way of blinding that can be combined with the previous method involves
the circular shifting of the two polynomials based on the work of Lee et al. [25] and Zheng
et al. [60]. A polynomial f can be represented as

∑n−1
i=0 fix

i. This representation allows
for easy shifting by an integer j leading to:

xjf =

n−1∑
i=0

fix
i+j =

n−1∑
i=0

fi−jx
i (4.12)

Both methods can be combined to a single function Blind(v, s, c) which first performs
multiplicative blinding with the parameter c, followed by the circular shift of the polyno-
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mial by s. The function reversing the blinding is denoted as Blind’(v,−s, c−1), basically
reversing the shift and multiplying with the inverse constant.

To implement this combined countermeasure for the multiplication f ·g both polynomi-
als need to be blinded separately with the constants a, b ∈ Zq and the shift values r, s ∈ Zn,
then multiplied and finally the blinding needs to be reversed to retrieve the product of the
operation:

f ′ = Blind(f , r, a)

g′ = Blind(g, s, b)

h′ = f ′ · g′

f · g = Blind’(h′,−(r + s), (ab)−1)

(4.13)

To reduce the computation needed during the operation the constants for the mul-
tiplicative blinding can be chosen from the roots of unity. In this case, the blinding
countermeasure introduces 36 bits of entropy [47].

Split Shuffled Sampling

Similar to BLISS, BLISS-B samples random vectors, following a discrete Gaussian distri-
bution for creating the signature. However, if the random vector of length n is known the
secret key can be recovered, as demonstrated in Section 4.7.1. With Dn

Z(µ, σ2) denoting
n elements of a discrete Gaussian distribution with a mean of µ and a variance σ2, the
process of sampling a vector yi from the distribution can be noted as yi = Dn

Z(0, σ2)
If implemented without any thoughts on side-channel attacks, the sequentially sampled

values leak through their power consumption. However, to tackle this problem, Saarinen
[47] proposed a shuffling mechanism, originally published by Roy et al. [46], paired with a
split sampling of the random values. The latter utilises the additive property of variances of
discrete Gaussian distributions. Given any two discrete Gaussian distributions Dn

Z(µ1, σ
2
1),

Dn
Z(µ2, σ

2
2) their sum equals a Gaussian distribution the following way:

Dn
Z(µ1, σ

2
1) +Dn

Z(µ2, σ
2
2) = Dn

Z(µ1 + µ2, σ
2
1 + σ22) (4.14)

This property can be applied to the sampling of the random vector such that the
iterative addition of the sampled m random vectors of the distribution Dn

Z(0, ( 1√
m
σ)2)

equals a one-time sampling over Dn
Z(µ, σ2). Different ways of splitting the sampling are

possible as long as the additivity is complied with.
With this idea in mind, the performance is reduced by a factor of up to m, because

the sampling has to be performed several times. However, due to many implementations
using table-approaches for the discrete Gaussian sampling, smaller tables with fewer entries
may be used. Additionally, because the implementation is better protected against SCA
attacks, faster algorithms that would otherwise leak more information can be used [47].

Nevertheless, as analysed by Pessl [36] this countermeasure is not fully protecting the
sampler itself. Even so, the number of samples needed to overcome this countermeasure is
increased. Splitting the sampling with m = 2 makes it already a lot harder to attack the
sampler [36].



Chapter 5

Side Channel Evaluation

In this section, a power side-channel analysis of the adapted hardware implementation of
the BLISS signature scheme by Pöppelmann et al. [40] is presented. In Section 5.1 the
hardware used for the evaluation and its feature are described. This is then followed by
an overview of the hardware implementation used for the practical part, a description of
the contribution to the source-code and also a short summary of initial issues that had to
be overcome in Section 5.2. Section 5.3 describes the protocol used for the communication
in the measurement setup between a PC and the hardware implementation acting as a
co-processor.

The setup to acquire side channel information is then explained in detail in Section 5.4.
Next, the attack is evaluated in Section 5.5, including the selection of the value of interest,
but also explaining the processing of the captured data and finally going into detail with
the results.

5.1 Measurement Platform

To run and attack the VHDL implementation of the BLISS signature algorithm on hard-
ware, the SAKURA-G (Side-channel AttacK User Reference Architecture) board was
used. The board features two Xilinx Spartan-6 FPGA cores, with the larger one (Xilinx
Spartan-6 XC6SLX75-2CSG484C) running the BLISS signature algorithm. The smaller,
less capable, chip (Xilinx Spartan-6 XC6SLX9-2CSG225C) acts as a communication inter-
face or controller between the signature core and a USB interface connected to a desktop
computer.

The BLISS implementation by Pöppelmann et al. [40] targets the Xilinx Spartan-6
FPGA family, which makes the SAKURA-G a perfect fit for running the analysis. Besides
having a compatible FPGA onboard, it also features a 26 pin GPIO header accessible by
the FPGA and also an amplified measurement point to be used for the attack.

5.1.1 Clock

On the SAKURA-G board, the two FPGAs are connected to dedicated oscillators with a
frequency of 48 MHz. Additionally, a 60 MHz clock is available through the USB interface
chip [57].

To simplify the communication between the controller and the main FPGA, the former
provides a clock for both devices. The LBUS interface connecting both FPGAs (Sec-
tion 5.3) specifies a wire to transmit the clock signal of the bus. The main FPGA uses

33
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Figure 5.1: On-board DIP switches to set the clock frequency of the controller
and the main FPGA.

this LBUS clock as clock source for all its operations. The clock CLK for the LBUS can
be configured by setting the DIP switch SW10 as shown in Figure 5.1. The clock can be
altered between 1.5 MHz, 3 MHz, 6 MHz, 12 MHz and 24 MHz. However, it should be
noted that the setting for 24 MHz makes the implementation prone to transmission errors
on the LBUS. Internally the controller uses its 48 MHz clock and a clock divider based on
the setting of the DIP switch to generate the clock signal.

The selected clock frequency throughout this thesis is 12 MHz.

5.2 High-Level Architecture

This section takes a closer look at the structure and implementation of the BLISS signature
algorithm on the SAKURA-G board. First, a brief summary of how to run the signature
scheme on actual hardware is given in Section 5.2.1. This includes a brief discussion of
several issues that came with the implementation and a summary of the contribution to
the hardware implementation. Furthermore, a top-level overview of the signing algorithm
in hardware is shown in Section 5.2.2.

5.2.1 Porting the Implementation to SAKURA-G

As a first step, it is necessary to get the BLISS implementation developed in VHDL by
Pöppelmann et al. [39, 40] to run on the FPGA. Albeit the project has been implemented
and configured for the Xilinx Spartan-6 FPGA family, it is not ready for the SAKURA-G
board out-of-the-box. Initially, the design consists of a signer, a verifier, three external
dual-port RAM modules and some additional logic, all residing in a test bench to be used
for evaluation purposes. The main test bench performs several sign-verification cycles
testing the basic functionality of the design. Additional test benches check parts of the
design or run the BLISS signature algorithm with different parameter sets.

Reference Implementations Issues

Two issues needed to be addressed before evaluating the side-channel characteristics of the
design. The first one involved the communication with the used Keccak implementation
mid-range core by Bertoni et al. [6]. Upon feeding message blocks to the Keccak module,
the signal to make Keccak absorb the message needs to be a logic 1 for a specified number
of clock cycles. However, this was initially not the case, neither for feeding the message µ,
nor for feeding the vector u as indicated in 3.2. This error led to a missing transformation
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resulting in a different initial state of Keccak. Due to the modules being reused for signing
and verifying, thus making the same error on both sides, the signer and verifier were
compatible with each other, but not to the adapted BLISS reference implementation [16].

Secondly, the rejection sampling did not work if the number of cores used for the
sparse multiplication was set to small values. In case of a rejection, several modules
are reset and made ready to restart the signing process based on the same, internally
cached, message. However, due to some modules not being appropriately reset, two effects
occurred: First, some signatures were initially rejected and then immediately afterwards
accepted without being recalculated. This prevented a proper distribution of the resulting
signatures. Second, the implementation would come to a hold, because certain modules
were reset and waiting for an input while others were waiting on signals from the former.

Contribution to VHDL implementation

Starting with the signer, verifier and BRAMs as the initial building blocks, the project
has been made compatible with the SAKURA-G FPGA board. The LBUS protocol and
interface, as described in Section 5.3, have been adapted and extended for the BLISS im-
plementation.

The issues described in Section 5.2.1 have been fixed, making the design compatible
with any number of cores configurable for the sparse multiplication. Furthermore, this
made the signatures created by the FPGA implementation compatible with the reference
software-implementation from Ducas and Lepoint [16]. For this, the software implementa-
tion has been adapted to use Keccak as its hash function instead of SHA-512. Testbenches
were added that write signatures computed in the simulation to files compatible with the
reference implementation as well.

5.2.2 Top-Level Module

A top-level view of the hardware implementation can be seen in Figure 5.2. The top
module consists of six main blocks. The added LBUS host interface handles the LBUS
communication with the second FPGA and subsequently the desktop PC that interprets
the received commands. Furthermore, the BLISS signer and the BLISS verifier modules are
located here. The signatures are stored in the three dual-port block RAMs (BRAMs) Z1,
Z2 and C. One port is shared between the LBUS interface (to read and write its contents
over the bus) and the BLISS verifier (to read and verify the signature), the BLISS signer
entity has full control over the second port. Some additional logic situated at the top level
to control the access to the shared port of the BRAM to ensure it is used exclusively by
either the LBUS host interface or the BLISS Verifier.

5.3 Local BUS Interface

The SAKURA-G FPGA board comes with a demo showcasing the communication between
the two FPGAs on the board [56]. In this example code, the smaller FPGA offers a USB
interface to receive and send data to a desktop PC and also a Local BUS (LBUS) interface
to forward data to the coprocessor. This approach offered a solid basis and thus hasn’t
been altered.
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Figure 5.2: High level structure of the FPGA implementation with the LBUS
interface and the sign, verify and RAM blocks.

Aiming to make the BLISS implementation available as a coprocessor to a Desktop PC,
the code for the Xilinx Spartan-6 XC6SLX75 has been replaced by the BLISS signature
hardware implementation with an additional LBUS interface. Because of the example im-
plementation for the main FPGA being developed in Verilog for a different cryptographic
primitive, the implementation of the LBUS on the BLISS coprocessor required some ad-
justments to be fully functional. With BLISS being implemented in VHDL, the LBUS
protocol was rewritten in VHDL and extended with commands and word sizes more suit-
able for the BLISS signature algorithm.

As seen in Table 5.1, the implementation relies on an external clock generated by the
controller FPGA to drive the chip and the LBUS. The smaller FPGA is also capable of
resetting the BLISS coprocessor by setting the rstn pin to a logic 0.

Of the remaining nine signals, aemp and aful are not used. If the device is in the
process of creating a signature, the rdy line is pulled to a logic 0.

The triple consisting of wd, we and ful are used to for sending data to the device.
While ful is used to show that the coprocessor is ready to receive data, wd and we are used
in conjunction with the control FPGA to signal that the data on the bus is in fact valid.

Similarly, the rd, re and emp data lines are used for reading data from the main
FPGA. The signature device uses the rd lines to expose the requested data to the bus and
notifies the controller using the emp signal. In return, the controller is then using re for
confirmation that the data has been read successfully.
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Name Direction Size (bits) Description

rstn in 1 Reset pin, active low
clk in 1 External clock

rdy out 1 Logic 0 = Device is busy
Logic 1 = Device is ready for commands

wd in 8 Write data - the data written to the device

we in 1
Write enable
Logic 0 = wd is invalid
Logic 1 = wd is valid

ful out 1 Logic 0 = wd is ready to write
Logic 1 = wd is not ready to write

aful out 1 Not used
rd out 8 Read data - the data read from the device

re in 1
Read enable
Logic 0 = rd has not been read
Logic 1 = rd has been read

emp out 1 Logic 0 = rd holds valid data
Logic 1 = rd holds invalid data

aemp out 1 Not used

Table 5.1: Configuration and functionality of the pins dedicated to the LBUS.
The direction refers to the point of view of the main FPGA running the BLISS
signature algorithm.

5.3.1 Communication Wrapper

For the measurements to take place, it is necessary for the PC to communicate with the
signing FPGA. Because the controller FPGA is connected over USB and needs to receive
the commands to be sent over the LBUS, a wrapper is required that can be addressed
easily. This wrapper is a DLL that allows sending data to and receiving data from the
BLISS signing FPGA. It offers wrapper functions for setting the key, starting the signing
process for a given message and reading contents of the BRAMs to name a few. Internally
it creates the necessary LBUS byte stream, that is sent to the controller FPGA over the
USB interface.

Additionally, the data from the replies is also extracted from the byte stream and
returned to the callee.

5.3.2 Commands

Using the LBUS protocol described in Section 5.3, data can be written to or read from
defined addresses on the BLISS signature device. The available addresses are documented
in Table 5.2. The first nibble is used to split the address space into separate groups.
It should be noted that BRAM-Z1 and BRAM-Z2 are only readable whereas BRAM-C is also
writeable. This is due to the measurement setup described in Section 5.4 that doesn’t aim
for verifying an externally generated signature. Moreover, the setup allows for a mode only
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performing the sparse multiplication, justifying the need to make the BRAM-C externally
writeable.

The write data command consists of five bytes and the read command of three bytes.
In both cases, they are sent over the wd bus. The first byte is either 0x00 to read or 0x01
to write. For reading as well as writing the next two bytes indicate the affected address
in the big-endian format. In case a write command is transmitted, two more bytes in the
big-endian format are appended containing the data to be written. An illustration of an
LBUS read and write can be seen in Figure 5.3.

The size of the actually available address space available for 0x1 to 0x5 and 0x8 depends
on the size of n of the BLISS parameter set. The message memory is configured for a word
size of 64 bits. With the LBUS only being able to transmit 16 bits at once, it is necessary
to write to 4 subsequent addresses before the word gets committed internally. Also, for
setting the message, it is necessary to send 0x1 to the address 0xC..2 to signal the end of
the transmitted message.

As indicated in Table 5.2 addresses starting with 0xC act as command or status registers.
Most notably are 0xC..3 to start signing the message that has previously been transmitted,
0xC..4 to reset all submodules to their initial state and 0xC..6 to verify the signature that
is located in the BRAM-Z1, BRAM-Z2 and BRAM-C. The signature located in the respective
BRAMs is generated by the signing module, but this functionality could be extended easily
to signatures written externally to the addresses 0x1, 0x2 and 0x3.

Address Read/Write Function

0x1... R z1 stored in BRAM-Z1
0x2... R z2† stored in BRAM-Z2
0x3... R/W c stored in BRAM-C
0x4... W Secret key s1

0x5... W Secret key s2

0x6... W Message µ RAM.
0x7... R Returns defined pattern over LBUS for testing
0x8... W Set matching public key for the secret key S

0xC... R/W Control Register
0xC..0 R Status of signature generation (0 = not ready, 1 = ready)
0xC..2 W Message µ finished
0xC..3 W Start signing
0xC..4 W Reset device
0xC..5 W Setting mode to sign/verify
0xC..6 W Verify signature of BRAM-{Z1,Z2,C} content

Table 5.2: Overview of the readable/writeable addresses available on the BLISS
signature device over the LBUS.
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Figure 5.3: Waveform of a write (top) and a read (bottom) operation using
the LBUS protocol. In the write example the ful signal has been omitted as it’s
constant due to signature device only taking one cycle to process the information
in this example.

5.4 Measurement Setup

A general overview of the measurement setup is given in this section. An illustration of
the setup can also be seen in Figure 5.4. Fundamentally, the setup involves a desktop
PC, the SAKURA-G board as well as a multichannel oscilloscope. For the oscilloscope,
a Picoscope 6404C was used, offering four channels with a combined sampling rate of 5
GS/s. In this setup, each channel can sample with 1.25 GS/s. On the PC a Matlab instance
controls the measurement procedure and later also the storing and pre-processing of the
acquired traces. The wrapper described in Section 5.3.1 is loaded by Matlab and used to
send commands to the device and receive the results afterwards. The FPGA is initialised
with a pre-generated signing key using the wrapper. The plaintexts are pseudorandom
messages following a discrete uniform distribution and generated by Matlab. For each
measurement a new message is sent to the device, the signing key remains the same during
all measurements. The FPGA controller then forwards the messages over the LBUS to the
BLISS signature FPGA.

As seen in Figure 5.4, the oscilloscope is connected to the SAKURA-G board over
three probes on three channels. The leftmost connection to the board in the illustration is
connected to an AD8000 amplifier as seen in Figure 5.5. This amplifier boosts the voltage
drop of the supply voltage over the resistor R12 with an impedance of 1Ω. The measured
output of the amplifier is inversely proportional to the power consumption of the FPGA
itself. The probe is connected to the measurement point J3.

Two more channels are connected to the GPIO pin header and act as trigger signals.
One connector is used as a trigger for the oscilloscope and to signal the start and the end
of the entire sparse multiplication. The other one is used to indicate the κ subsequent
additions during the computation of a single coefficient during the sparse multiplication.
The traces measured by the oscilloscope are then fed back to Matlab for storage and further
processing.

Due to the BLISS signature algorithm performing a rejection sampling, the oscilloscope
cannot be used in single-shot mode, as the first trace might not correspond to the power
consumption connected to the signature output. Furthermore, the number of rejections
is not known in advance. To circumvent this the oscilloscope was configured in sequence-
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mode with a sufficiently large number of repetitions, that is most likely not exceeded. The
measurement is then aborted after receiving the signature from the FPGA and the last
element of the buffer used as the power trace linked to the signature output.

For the evaluation, sets of 10,000 traces were captured in different configurations of the
implementation. Depending on factors like the number of cores configured for the sparse
multiplication or the usage of only the module performing the sparse multiplication, the
time needed for capturing the data ranges from about 3 to 12 hours.
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Figure 5.4: Setup for the automated measurement of the BLISS signature hard-
ware implementation.
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5.5 Attack Description

This section describes the side-channel attack on the implementation of the BLISS signa-
ture algorithm on an FPGA. First, the selection of the intermediate value for the power
analysis attack is discussed in Section 5.5.1.

For the practical attack, the implementation has been restricted to perform a sparse
multiplication only, configured to one core for s1, with the computations involving s2
deactivated. The attack then targets only the secret key s1, to simplify the setting. The
indices of the sparse vector c are generated by Matlab before performing the measurement
and written to the BRAM-C over the LBUS. In this scenario, the sparse multiplication
performed by the chip is precisely the same as the one used during the actual signing
process, but without the noise introduced by the computation of the squared norm and
scalar product which are computed in parallel on the FPGA.

The used set of parameters is BLISS-I from Table 3.1, most importantly using n = 512
as the size of the secret key, and κ = 23 as the Hamming weight of the sparse vector c.

5.5.1 Intermediate Value Selection

Based on the overview of possible weak spots given in Section 4.7, the sparse multiplication
has been selected as the target of the SCA-attack. The sparse multiplication poses as an
ideal target, as it directly involves the secret key. Furthermore, this operation is widely
used in efficient lattice-based primitives and findings from this attack are likely to apply
to other algorithms as well.

As discussed in Section 3.5.2, the FPGA design computes one output coefficient per
core at once over κ clock cycles by adding or subtracting one element of the secret key si
per cycle. Figure 5.6 shows 100 overlayed power traces of the sparse multiplication without
any pre-processing. The purple line indicates the start and end of κ+ 1 cycles.

With the attacked step of the BLISS algorithm known, the leveraged intermediate value
needs to be further narrowed down for a successful attack. Espitau et al. [17] propose to
attack the intermediate result of the sum of the secret key elements. However, preliminary
tests showed only very limited leakage from this operation, because for storing the result
only a single 7-bit register is used in the hardware implementation. Additionally, predicting
the i-th partial sum requires guessing i key coefficients. Due to the sparse multiplication
always using different elements of the secret key, anything after the first element cannot
be predicted efficiently.

More leakage was obtainable from accesses to the secret value itself. Each core involved
in the sparse multiplication holds a full copy of the secret key si. This is necessary due
to the implementation of the sparse multiplication as described in Section 3.5.2 and each
core computing a different output coefficient requiring access to a different element of the
secret key si. Due to the secret key being stored in a block RAM the leakage has shown
to be more prominent. Also, there is no need to include assumptions on the likeliness of
transitions as it would be necessary for attacks involving the result register. This results in
choosing the loading of the elements of the secret key si during the sparse multiplication
as the target for the SCA attack.

5.5.2 Pre-processing

Before attacking the device, a certain degree of pre-processing has to be done to optimise
the captured data. Each trace consists of the computations of multiple output coefficients,
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Figure 5.6: Power consumption of the computation of the first output coefficient.
The off-center purple trace shows a trigger signal indicating κ + 1 cycles, with
κ = 23, during the multiplication.

each with κ additions and κ loads of secret key elements. For the further analysis, the goal
is to extract information from each of the additions, independent of their location in the
trace. This requires a certain amount of pre-processing to attribute for changes over time.

First of all, the aforementioned second trigger signal indicates the interval of κ + 1
additions and is used to split the traces into equally sized chunks. These chunks contain
the power information of the κ additions that lead to one coefficient of the output, the
result of the multiplication. The number of multiplication intervals available in each trace
is determined by the parameter n and the number of cores available in the design, due
to the cores processing the multiplications in parallel. It should also be noted that each
addition takes one clock-cycle. Therefore the computation of one output coefficient takes
23 clock cycles, making a further separation into the addition operations merely a matter
of parting the interval in κ+ 1 fragments.

Next, each chunk is adjusted such that the mean over its values equals zero. This
counteracts offsets in the power consumption observed when doing many measurements
repeatedly over a more prolonged timespan.

The traces were captured using a sampling rate of 1.25 GS/s. With the signing FPGA
only running at 12 MHz, the traces contain a lot of high-frequency noise. Therefore, a low
pass filter, as seen in Figure 5.7a, is applied with a passband frequency equal to the clock
frequency (12 MHz) and twice that for the cut-off frequency (24 MHz). The pre-processing
results in multiplication blocks without high-frequency noise, normalised to a mean of zero
in each block as seen in Figure 5.7b

5.5.3 Visual Inspection and Power Model

After pre-processing the traces, the data can be checked for power leakage caused by
the secret key. The signature contains the indices of the sparse vector c, which is used
during the sparse multiplication to determine the involved elements of the secret key s1 of
Algorithm 3.2.



CHAPTER 5. SIDE CHANNEL EVALUATION 43

0 5 10 15 20 25 30 35

Frequency (MHz)

-70

-60

-50

-40

-30

-20

-10

0

M
a
g

n
it

u
d

e
 (

d
B

)

Magnitude Response (dB)

(a) The applied filter
0 5 10 15 20 25

Clock Cycles

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

R
e
la

ti
v
e
 P

o
w

e
r 

co
n
su

m
p

ti
o
n
, 
fi
lt

e
re

d
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Figure 5.7: Filter used to preprocess the traces. Exemplary filtered traces like
are shown on the right.

For a first analysis, a known secret key S is used. The 256th out of the 512 output
coefficients is analysed by linking the power trace to the element of the sparse vector. This
pair is then grouped based on the value of the secret key element involved in the first ad-
dition of the 256th output coefficient. These output coefficients will also be referred to as
multiplication blocks when discussing the traces or operations to calculate the output coef-
ficient. Determining the involved elements of the key is done by using a slightly modified
version of Algorithm 3.4, returning only the secret key indices involved in the computation.
A coefficient in the middle has been chosen, because as seen in Algorithm 3.4 the index
of the output coefficient determines if the secret key element is inverted or not. With
later coefficients the number of inverted elements increases. On the halfway, the number
of flipped and non-flipped key elements is about the same for a sufficiently large number
of signatures.
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Figure 5.8: Mean value of the traces when grouped together based on the the
value of the first involved secret key element. The purple line indicates the trigger
signal marking the start and end of a single sparse multiplication.



CHAPTER 5. SIDE CHANNEL EVALUATION 44

First, the traces are grouped based on the first secret key element and a mean trace
based on each category is calculated. For attacks on s1 the traces are then grouped into
-1,0 and 1, the three possible values of each secret key coefficient. The result of this step
for the targeted multiplication, as indicated by the purple trace, can be seen in Figure 5.8.
At the beginning of the trace some data dependency, as indicated by the distance between
the three means, can be observed. This power leakage vanishes over the following cycles,
due to the grouping not being correct for the subsequent additions.

With this first indication on the power leakage of the involved key elements, further
tests are performed.

DPA on Same Output Coefficient, Same Addition

After this first visual inspection, the traces are checked for leakage using methods from
differential power analysis (DPA) described in Section 4.5. For the first analysis, the same
output coefficients and addition index are used throughout the traces, so no alignment of
the traces is needed. However, it is not possible to use a straight-forward DPA because
every key coefficient can be involved and it would be necessary to account for all keys.
Instead, at first 99 random keys are generated to be used for analysis. Additionally, the
analysis is performed with 99 keys derived from the correct secret key by inverting a
random number of key elements. These derived keys are similar to correct one in terms
of the location of their non-zero key elements, but cannot be used to create a signature
that verifies under the same public key. Next, for each signature, the sparse vector c is
used to compute all involved secret key elements of the multiplication of the 256th output
coefficient. This results in a matrix with a size of 100 keys times 23 additions times 10000
traces. In other words, it holds the involved key value for each addition during the 256th
multiplication for each captured trace and acts as the basis for the power model. As seen
in Figure 5.8, the power consumption of elements being -1 is higher than for 1, higher
than for 0. Therefore, a power model based on the Hamming weight with a key element 0
translating to 0, 1 to 1 and -1 to 2 is derived from the matrix as mentioned above for the
continued evaluation.
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Figure 5.9: Result of the DPA when using random, fake keys and applying the
power model to the same multiplication block and the same addition with index
13 in each trace.

The power model for one specified single addition is then evaluated using the correlation
coefficient as given in Equation (4.10) with the captured traces during the 256th multipli-
cation. The result for the correct and 99 random keys can be seen in Figure 5.9. As seen in
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Figure 5.10: Result of the DPA when applying the power model to the same
multiplication block and the same addition with index 13 in each trace.

Figure 5.9a the correct key, marked in red, shows a significantly higher correlation than the
random keys at the 13th sample. Furthermore, as seen in Figure 5.9b, starting at about
50 traces the correlation of the correct key can be clearly distinguished from the random
keys. Finally, Figure 5.9c shows the maximum correlation for each addition during the
multiplication. The correlation is about 0.25 to 0.38 depending on the addition involved.

The results of the analysis using the derived keys can be seen in Figure 5.10. Fig-
ure 5.10a displays the correlation of the power model of the 13th addition with the measured
power consumption of the multiplication. This also shows a significantly higher correlation
at about the 13th sample, giving a good indication of the power leakage. However, the cor-
relation is similarly high for fake keys, because the locations of the key elements being zero
are identical even for similar keys. As seen in Figure 5.10b, starting at about 800 traces
the correlation of the correct key can be clearly distinguished from the fake keys. Finally,
Figure 5.10c shows the maximum correlation for each addition during the multiplication.
The correlation is about 0.25 to 0.35 depending on the addition involved. This also fits
the other two graphs, showing a similarly high correlation.

The DPA shows a data dependency between the operations at the same point in time
along the power trace. However, a single trace captures the sequential computation of
many output coefficients, depending on the number of cores configured in the design. To
ensure that more information can be extracted from a single trace, it needs to be shown
that the power leakage is time-invariant, i.e. that each addition and multiplication block
leak the involved secret key the same way, independently of their location in the trace.

When doing a visual inspection of the traces, a slight offset can be observed when
inspecting the full trace. Therefore each trace is normalised by subtracting the mean of all
traces at any given point from each trace. Any further descriptions evaluated combinations
in this section are based on these normalised traces. Due to derived keys requiring more
traces to be distinguished from the correct key than the random keys, the derived keys are
used for the subsequent tests.

DPA on Varying Output Coefficient, Same Addition

For this evaluation, the same method is applied as before, but instead of using the same
multiplication index for each trace, a random index is used and a power model is built.
Basically, this overlays multiplication blocks from different locations along the time axis to
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Figure 5.11: Result of the DPA when applying the power model to different
multiplication blocks but the same addition with index 13 in each block.

ensure the model being time-invariant. Additionally, the effectiveness of the attack can be
increased drastically because instead of getting information on the secret key only once per
trace, the number of recoverable leakage points is multiplied by the number of sequentially
computed coefficients.

The result can be seen in Figure 5.11. With Figure 5.11a showing a similarly high
correlation as for the fixed multiplication blocks, Figure 5.11b indicates that in this scenario
only about 400 traces are needed to distinguish the correct- from the fake key. However, it
should be pointed out that besides the use of different output coefficients, the traces were
also made mean-free improving the results of the correlation. Figure 5.11c also shows a
comparable correlation at the location of the additions.
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Figure 5.12: Result of the DPA when applying the power model to the same
multiplication block but different additions in each trace.

Another improvement can be made by also utilising information on the additions in-
dependently of their position during the multiplication, i.e., the element of the secret key
loaded in the first round leaks information the same way as the item does for the last ad-
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dition of the same multiplication block. To verify this, a random addition index is selected
from the same multiplication block of each trace. Again the involved secret key element
for each of the fake keys and the single correct key are determined and used to create a
power model for this scenario.

The result can be seen in Figure 5.12. Due to the power-model correlated with only
one addition, the appearance in Figure 5.12a looks different than in the previous examples
and covers only a single clock cycle. However, the peak in correlation with about 0.4 is
similar to the previous scenarios. Moreover, the number of needed traces to distinguish the
fake keys from the correct key at about 450, as seen in Figure 5.13b, shows a comparable
result as well.

This shows that the power leakage of additions at different positions of the same output
coefficient can be combined and show a similar correlation to the previous experiments.
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Figure 5.13: Result of the DPA when applying the power model to different
multiplication blocks but different additions in each trace.

A final configuration needs to be performed to check all combinations. For this scenario,
for each trace, a random output coefficient is used. Moreover, this is combined with a
random addition and aims at showing that the power information of any addition of any
multiplication block can be combined with any likewise random addition from any other
trace.

The result for this can be seen in Figure 5.13. Like in the previous example Figure 5.13a
only shows the interval of a single addition horizontally. The displayed correlation is
similarly high as in the previous examples. However, with about 800 needed traces, as
seen in Figure 5.13b, to clearly distinguish fake keys from the correct key in terms of their
correlation it is slightly worse than the results above.

Finally, this shows that from a single trace, leakage can be obtained from any addition
of any output coefficient. This means that with a configured n = 512 and κ = 23, each
power trace gives 11776 leakage points in total for a configuration using only one sparse
core for the multiplication. Alternatively, this can be seen as for a given trace, κ leakages
can be obtained for each secret key element. However, this is also dependant on the number



CHAPTER 5. SIDE CHANNEL EVALUATION 48

of cores used for the multiplication. If more than one unit is used, the number of leakage
points is divided by the number of cores, due to the operations being processed in parallel.

Although a power leakage is visible in all of the presented scenarios, a DPA cannot be
used to recover the secret key, because all key coefficients are involved in the operation.

5.5.4 Clustering-based Attack Evaluation

The differential power analysis shows a data dependent power leakage of the traces. To
recover the secret key elements, a clustering based attack is now presented. The number
of traces needed to perform the attack is also evaluated.

As a first step, the traces are compressed based on the results of the DPA with the
randomly selected multiplication and addition as described in Section 5.5.3. The results
of the DPA shows the location of the highest correlation of each addition, as seen in
Figure 5.13a. Therefore, the compression picks a single measurement sample for each
addition of each multiplication to simplify the processing. The compressed traces can then
be used to recover the secret key and evaluate the number of needed traces.

For a first inspection of the clustering-based attack, a total of 10000 traces is used.
Similarly to the DPA performed previously, a variation of Algorithm 3.4 is used to deter-
mine the involved secret key elements and is applied to the compressed power traces to
assign them to the correct indices. This information is then linked to the samples of the
compressed power traces and grouped based on the index of the secret key element. Next,
the mean value for each index of the secret key is computed. The result is a vector with
a single value for each secret key element. The mean value of each secret key element can
be seen in the histogram in Figure 5.14. The graph shows the grouped distribution of the
mean value determined for each of the n coefficients of the secret key. The colour of the
bin indicates the related value of a known secret key. Therefore, the distribution as seen
in Figure 5.14 is well suited to classify the traces based on their nearest cluster. However,
it should be noted that each cluster in Figure 5.14 is normalised to 1.
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Figure 5.14: Distribution of the mean values of the traces with their colour
demonstrating the respective key value in the secret key.

The attack on the implementation works by combining the findings of the DPA with
the distributions from Figure 5.14 and information on the used BLISS parameter-set. As
described in Section 3.2.1, the number of non-zero key elements in s1 is given by dδ1ne.
First, the means for each index of the secret-key are sorted by their value. Based on the
DPA, higher values correspond to a 0, lower values to a 1 and the lowest to -1. Therefore,
the highest dδ1ne indices can then be classified as the zeros of the secret key. The remaining
n− dδ1ne elements are ±1. However, all values below a certain threshold can be classified
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as −1, the values above as +1. Due to the low number of elements and their appearance in
the right order, all possible n−dδ1ne thresholds can be tested. The resulting key candidates
can then be verified against the public key.

To verify the effectiveness of the attack, an evaluation process is performed to check
how many traces are needed to correctly distinguish a certain percentage of key elements.
Therefore, an increasing number of random compressed power traces is used. On the one
hand, a classification based on their exact value and on the other hand a classification
between zero or not zero is performed. As before, the values are grouped according to
their secret key index and then reduced to a mean value for each index.

With the used parameter-set this results in 154 key elements being ±1 and 358 elements
being 0. With the histogram in mind, the 358 indices with the highest mean value are
selected to determine the key elements being zero. The exact split between 1 and −1 is
unknown, i.e., all elements -1 are smaller than the +1. Therefore, it is tested if the order
in which the secret key elements appear is correct. This is then repeated multiple times
with different sets and an increasing number of traces to determine the accuracy of the
method.

The same process is repeated but with the goal to only distinguish between key elements
being zero and not zero to lower the number of required traces. As this only reveals the
locations of the zeros and the magnitude of the key elements, the sign of the non-zero key
elements needs to be recovered. The recovery is performed by using the method by Pessl
et al. [37] described in Section 4.7.1. It allows a key recovery if only the magnitude of each
key element is known. Both classifications are then checked by comparing the result to the
known secret key.

The results can be seen in Figure 5.15. It shows the number of traces needed to dis-
tinguish between +1, −1 and 0. This classification needs about 36 traces. However, a
95% accuracy can already be achieved with half of that. As expected the number of traces
to distinguish key elements being zero from those being non-zero is visibly lower. The
classification in only two groups only requires ten traces which can be further lowered to
about seven traces for 95% accuracy.
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Figure 5.15: Probability of successful classification of all zeros, and of all zeros
as well as the signedness of the elements with a magnitude of 1.
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As an improvement, the number of required traces can be even further reduced by low-
ering the needed accuracy of the classification. The clustering-based attack uses a certain
number of highest indices sorted by their linked mean value. As observed in Figure 5.16a
starting at three traces, all key elements with a magnitude of 1 are within the 200 lowest
positions by doing this classification. The method proposed by Pessl et al. [37] can be
adopted for such a scenario. For the attack, it is sufficient to verify a set of indices which
contain all ±1 elements. This set can be a superset of the ±1 indices, i.e. larger than
dδ1ne. However, using a larger set increases the difficulty of the SVP to be solved. This
is further elaborated in Figure 5.16b. The plot shows the probability depending on the
number of traces for a successful classification if the requirement is to determine a superset
with a size of 155-200 elements containing all of the 154 elements being ±1.
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Figure 5.16: Index of the classified ones depending on the number of traces on
the left and a comparison of required traces such that all ones are within the first
155-200 most likely positions.

By selecting 175 elements, only four traces are necessary for an almost certain classi-
fication. However, by using this method additional processing is required, which takes a
few hours for a set size of 175 and several hours to a few days for 180 elements, indicating
that the time required for solving the resulting SVP increases drastically. Therefore, this
technique can be used to decrease the number of required traces at the cost of additional
computations during the key recovery. It should be kept in mind, that it is only feasible
up to a certain point and a trade-off has to be made as reducing the number of required
traces to three or halving them to two, decreases the success rate and more importantly
increases the computational effort to a multitude.



Chapter 6

Countermeasure Evaluation

In this section, the previously attacked unprotected implementation of the sparse multipli-
cation is analysed and potential countermeasures are discussed. One of the countermea-
sures, namely masking, is then implemented and the protected hardware implementation
evaluated. The result of the evaluation then shows the effectiveness of the countermeasure.

In Section 6.1, properties of polynomial blinding, shuffling of coefficients and masking
are explained and their advantages and disadvantages are discussed. Next, the implemen-
tation of the proposed masking scheme in hardware is presented and also the necessary
changes to the existing hardware design are reviewed in Section 6.2. Furthermore, it goes
into detail with the costs linked to the protected implementation in terms of additional
circuitry required and also potential time penalties that come with the countermeasure.
Finally, in Section 6.3 the same attack consisting of a differential power analysis and a tem-
plate attack as performed on the unprotected implementation is executed on the protected
implementation, the effectiveness of the countermeasure is discussed and also comparisons
between the attacks are made.

6.1 Applicable Countermeasures

The evaluation of side-channel leakage as described in Chapter 5 demonstrated a significant
leakage of the unprotected computation of the sparse multiplication. This raises the need
for means to prevent the operation from leaking secret information through a power side-
channel. Therefore, this section will discuss ways to protect the hardware implementation
and their implications on the design.

6.1.1 Polynomial Blinding

As proposed by Saarinen [47] and already described in Section 4.7.5, polynomial blind-
ing represents an applicable countermeasure to protect the sparse multiplication sic with
i ∈ {1, 2}. The presented mechanism aims at protecting the successor of the BLISS sig-
nature algorithm BLISS-B [14]. Due to the vast similarities between both schemes, the
attacked operation works the same way in both algorithms and can be used for BLISS as
well.

Recall that the described countermeasure is based on multiple operations. It is neces-
sary to sample additional constants a, b, multiply the constants with both multiplication
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terms s, c, compute the product of the multiplication and perform another multiplication:

h = as · bc
s · c = (ab)−1h

(6.1)

Additionally, a circular shifting of the polynomial has to be performed with the amount of
shifted positions determined at runtime. However, this section only discusses the blinding
by multiplication, because shifting is only a simplified version of shuffling, which will be
discussed later.

The multiplication with the random constants affects both the secret key si and the
sparse vector c. Their sparsity remains, i.e., most of the coefficients are still 0. Due to
the multiplication with the random constant, the non-zero elements of c are no longer
equal to one. Therefore, the current multiplication algorithm, consisting of κ sequential
additions of determined secret key elements, has to be altered increasing the complexity.
However, alternatively to the regular domain, the multiplication can be performed in the
NTT domain, requiring additional pre-processing, but yielding faster multiplications [47].

This type of countermeasure is not very well suited for the hardware implementation,
due to the described properties, the introduction of three additional multiplications, the
increase in runtime and the additional circuitry required. Additionally, as described by
Espitau et al. [17] attacking the blinded multiplication is still feasible because the unblinded
sparse vector c is publicly known and the range of possible parameters for the involved
shifting and the random multiplicative constant is small. It should also be noted that
the blinding involves one constant for each polynomial, not for each coefficient. A further
downside of this approach is that elements that are zero in the first place, i.e., most elements
of the secret key, stay zero after the multiplication. The attack proposed in Section 5.5.4
only needs to distinguish between values being zero and non-zero. Thus, it will likely still
work with the countermeasure in place.

6.1.2 Shuffling

In the unprotected implementation, the sparse index vector c directly determines the order
in which the secret key elements are processed during the sparse multiplication. This
information is utilised for the attack to map and evaluate the power leakage of the elements
of the sparse multiplication to their respective secret key indices. The sparse multiplication
represents an operation that allows for a countermeasure based on hiding and reducing the
leakage by hiding in the time dimension as described in Section 4.6.1.

First, it is possible to randomise the order in which the output coefficients are computed;
this can be done because no data dependency between the output coefficients exists. Due
to n = 512 and only one core performing the multiplication, this would allow for 512!
possible permutations of the output coefficients.

Furthermore, each multiplication consists of κ additions over the quotient ring
Z2q[x]/(xn + 1), which is performed by additions over Z due to the involved secret key
elements being small [15]. Such additions are of course commutative, i.e., the order of
the coefficients does not influence the result. As an example, the computation of a single
output coefficient z1,i under an arbitrary sparse vector c with a Hamming-weight of 4 can
be written as:

z1,i = s7 + s8 + s9 + s10 = s9 + s8 + s10 + s7 (6.2)
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Shuffling could, therefore, reorder the processing of the n output coefficients as well as
the sequence of κ additions, resulting in n! · κ! possible combinations.

For a DPA attack, based on Mangard et al. [28], shuffling the operations does increase
the number of needed traces significantly, especially given the size of n = 512. However,
first-order DPA attacks might still be possible.

6.1.3 Masking

A third way of protecting the sparse multiplication involves splitting the secret key si,
which is defined over a quotient ring. The basic idea of masking is to split the secret key
into separate shares and then perform the sparse multiplication with both shares separately.
Finally, the shares are recombined to retrieve the correct value for the output coefficient.

The idea of sharing the polynomial multiplication based on its properties has been
proposed similarly in Section 6.1.1 but involved a multiplicative sharing of the secret key
si as well as the sparse vector c. This approach has two downsides. First, the sharing
of c requires the sparse multiplication to be performed using multiplications instead of
additions. Second, elements being zero are zero after applying the multiplicative masking.

In contrast to the multiplicative masking, the idea is to perform an additive masking
solving both problems mentioned before. The elements of the secret key si are defined over
Z2q. However, sharing over Z2q requires modular arithmetic and thus has higher resource
requirements. Instead, due to the elements of the result of sic being small, the sharing can
be done over Zk with k = 2d. The variable d needs to be chosen such that any possible
output coefficient resulting from the κ additions can be represented. The splitting of the
secret key is then done by sampling a uniformly random vector r from the discrete uniform
distribution Uk.

r ∼ Uk (6.3)

This sampled vector r is then used as one share s′i of the split secret key. The second part
s′′i is then calculated by subtracting the first share from the secret key si:

si = s′i + s′′i

s′i = r

s′′i = si − r

(6.4)

To compute the product sic, the unchanged sparse multiplication is performed sepa-
rately on both shares s′i and s′′i to get the result v′i and v′′i . To retrieve the result of the
multiplication the sum of v′i and v′′i is computed:

v′i = s′ic

v′′i = s′′i c

vi = v′i + v′′i

(6.5)

This result can then be further used as part of the signature creation. Based on this
modification, Line 6f. of Algorithm 3.2 transforms to:

zi = yi + (−1)bvi

= yi + (−1)b(v′i + v′′i )

= yi + (−1)b(s′ic + s′′i c)

= yi + (−1)b(s′i + s′′i )c

= yi + (−1)bsic

(6.6)
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This results in unmasking the shares directly after the sparse multiplication. However,
each output coefficient depends on κ different secret key elements, making the DPA harder
if not infeasible.

6.2 Masked Sparse Multiplication in Hardware

The existing hardware implementation is now extended by the masking scheme described
above. First of all, a random number generator is required to sample the random vector r.
The design already utilises three instances of the Trivium stream cipher [11] as part of the
sampling process in the Gaussian sampler [39]. The used Trivium implementation outputs
a single bit in each clock cycle. While for a minimalistic design the existing instances of the
samplers could be reused for the generation of the masks, for evaluation purposes additional
instances were added. The number of supplementarily generated Trivium instances is
configurable and allows for evaluation regarding size and speed.

The size of the mask was based on the result register. This register is used to save the
output coefficients of the sic multiplication. As δ2 = 0, the sum of the output coefficients
is between −(2κ+ 1) and +(2κ+ 1), i.e., ±47. Therefore the width of the result register
and also the mask is fixed to d = 7 bits. Originally, due to the key-sizes of si, the width
of the memory of the secret key has only been 2 bits for s1 and 3 bits for s2. To enable
the masking, the width of the secret key memory was increased to the same width of 7
bits. One mask polynomial is created for each of the secret keys s1 and s2. However, if
more than one multiplication core is configured, the same mask is applied to the same
key elements on different cores. This keeps the necessary entropy at a steady level. More
cores lead to a wider datapath introducing more noise which increases the difficulty of the
attack [28].

For efficiency reasons, the number of cores has essentially been doubled. In this config-
uration, two cores can be seen as a pair and are tasked with computing the same output
coefficient based on each of their shares in parallel. Initially, the secret key storage of one
multiplication core is initialised with the secret key, while the other is completely set to
zero.

In addition to the module that generates the randomised masks, the finite state machine
as seen in Figure 6.1 has been updated as well. The newly added states, marked in red,
performs the masking of the secret key. To do so, the module initially sits in the Idle
state. Upon receiving the signal to start, it transitions to the Mask state, where it resides
until the Trivium instances generate the necessary 14 random bits needed to mask both
s1 and s2. Depending on the number of Trivium instances configured this takes between 1
and 14 clock-cycles, due to each Trivium instance generating a single random bit per cycle.

Once the necessary number of random bits for the random vector r is generated the
module switches to the Mask_Update state. At this point, the random bit vector is sub-
tracted from the key share of one of the multiplication cores, while it is added to the other.
This procedure represents the actual masking of the secret key, with the key being stored
in the difference of the two shares. This process is reiterated for each of the n elements of
the secret key si, before transitioning to the Mask_Done state that starts the process of the
sparse multiplication.

In Figure 6.1 the sparse multiplication is indicated by the three states in the grey
box. Each output coefficient is computed by a series of transitions between the Compute,
Wait_Cycle and Output states. This implements the operation to calculate sic as described
in Section 3.5.2. Each of the states might take more than one cycle. The Compute state
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iterates over all κ indices of the vector c, the Wait_Cycle waits for the cores to finish their
operation and the Output state clocks out the result of the calculation one after the other.

However, the operation performed in the Output state has been modified slightly. Due
to each result containing the product of the sparse multiplication based on only one of the
shares, both parts are added on-the-fly revealing the correct outcome of the computation.
After calculating the last coefficient, the module transitions to the Finish state before
going back, waiting for a new input during the Idle state.

It should also be noted that for any consecutive iterations the BRAMs storing the
secret key are not reset to their initial state, but instead, the newly generated masks are
merely added to the existing content. Thus the masks are continuously updated ensuring
that each secret key coefficient is only used κ-times with the same mask.

Idle Mask

Mask Update

Mask Done Compute

Wait Cycle

Finish

Output

Figure 6.1: Finite state machine including the masking scheme as proposed in
Section 6.1.3. The states in the grey area compute the n output coefficients.

6.2.1 Cost

With the structure and functionality of the masking side-channel protection discussed,
this section goes into detail with the cost of the countermeasure. An overview is given in
Table 6.1. The unprotected implementation is compared to the protected implementation,
each with different configurations concerning the number of cores configured for the sparse
multiplication. In case of the protected implementation comparisons are made regarding
the number of additionally used Trivium instances, generating the random masks.

The unprotected implementations have been configured to 1, 4 and 8 cores. The single
core variant represents the configuration with the lowest requirement in size but is also the
one with the lowest throughput due to a low level of parallelism. On the other end of the
spectrum is the implementation utilising 8 cores, which is the recommended configuration
by Pöppelmann et al. [39] and is a compromise between throughput and demanded area
on the FPGA. The implementation using four cores is situated in between.

For the protected implementation a minimalistic configuration is shown with one core
for the multiplication and one Trivium instance. However, here the configuration using
only one sparse core refers to the module fulfilling the functionality of one core. Due to
the implemented masking scheme, a single output coefficient is internally computed by two
cores in parallel. As an alternative to a protected single core implementation, a protected
variant using four cores is listed. Both configurations are listed in their slow, but small
form using only one Trivium instance and a very high-speed alternative utilising 14 Trivium
instances.

A comparison in terms of required area for the implementation shows that the number
of digital signal processors (DSP) and the number of Block RAMs (BRAM ) do not change
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at all. The number of lookup-tables (LUT ) varies between 10,581 for the unprotected
single core variant and 13,873 for the protected implementations with four cores. Based on
Table 6.1 this translated to about 125-150 LUTs per instance. Similarly, a high number of
Trivium instances increases the number of Flip-Flops (FF ) noticeably as well with about
250 to 290 FFs per Trivium.

On the one hand, the overall size increases due to the generation of the mask but also
due to the increase in the size of the datapath to 7 bits for each of the stored key elements.

Due to the rejection sampling, the signature generation is not constant time. There-
fore, several metrics have been chosen to indicate the performance of the implementation.
They were measured using 1000 signatures for each configuration. The number of cycles
covers the moment the signing core received the start signal until it signals the end of the
signing process and is reported by the implementation, therefore excluding the protocol
overhead involved. Furthermore, the standard deviation has been calculated to give a bet-
ter indication of the spread of the results. Also, the minimum and the maximum number
of measured cycles is given. Given that 1000 signature have been analysed and based on
the repetition rate of 1.6 as seen in Table 3.1, the minimum number of cycles most likely
corresponds to signatures that were not rejected and mark the minimum time required.

A comparison shows that the protected implementation takes about 10% longer if
enough randomness is instantly available during the masking of the keys. This overhead is
due to the masking still requiring to iterate over all key elements and storing the masked
values back to the memory. If only one Trivium instance is used, signatures take noticeably
longer because of the additional wait times introduced during the sampling of the random
mask.

Unprotected Protected

# Sparse Cores 1 4 8 1 1 4 4
# Trivium - - - 1 14 1 14

LUT 10,581 10,705 10,982 11,086 12,716 11,905 13,873
FF 10,220 10,322 10,517 10,571 13,876 10,875 14,644
DSP 8 8 8 8 8 8 8
BRAM 9,5 9,5 9,5 9,5 9,5 9,5 9,5

avg. cycles /sig 33250 14537 12749 46547 36404 27554 17525
σ 21372 9572 9763 29538 23072 17117 10941
min cycles 20046 8530 6610 28228 22098 16710 10578
max cycles 220624 101650 109049 338849 265554 200510 116356

Table 6.1: Size and performance comparison of implementations of the BLISS
signature scheme with different number of multiplication cores and Trivium in-
stances.
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6.3 Attack on Masked Sparse Multiplication

In this section, the attack described in Section 5.5 that was executed successfully on the
unprotected implementation is applied to the protected sparse multiplication. For this eval-
uation 10,000 power traces have been captured using the setup described in Section 5.4.
As with the unprotected implementation, the BLISS signer has been configured only to
perform the sparse multiplications based on the data generated in Matlab and to only use
a single core for the sparse multiplication resulting in 512 multiplications in each trace.
The computation involving the secret key s2 has been entirely disabled to further reduce
the noise introduced by other components. However, due to the splitting of the secret key
into two parts, two cores run at the same time. This setup is ideal for an adversary as it
limits the noise from other components. Thus, it allows for a worst-case evaluation and a
proper analysis of the countermeasure.

As with the unprotected implementation, the power traces were first preprocessed by
making the segments mean free and by removing high-frequency noise and other parasitic
effects by applying a filter resulting in traces as seen in Figure 6.2. Due to the design
performing both multiplications in parallel, the amplitude of the resulting sinusoidal power
traces is higher than for the unprotected implementation.
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Figure 6.2: Filtered power traces of the protected implementation.

Next, as a first classification, the power traces are categorised based on the value of
the key element involved in the first addition during the 256th multiplication. Moreover,
the mean value of the traces in each category is computed. However, in contrast to the
unprotected implementation, no noteworthy difference between the categories can be seen
in Figure 6.3.

6.3.1 Differential Power Analysis

At first glance, the power traces do not show any significant leakages. However, the power
model that has previously been shown to be successful in Section 5.5.3 is applied to these
traces as well, because due to the masked and split secret key the precise value is unknown.
Therefore, the correct and 99 similar keys, with same magnitude at the same locations but
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Figure 6.3: Mean value of the traces when grouped together based on the the
value of the first involved secret key element. The purple line indicates the trigger
signal marking the start and end of a single sparse multiplication.

different signs are generated. The power model is then based on the 100 keys combined
with the vector c for each trace. Each measurement point of the output coefficient with the
same index is then correlated with the power model. The results are displayed in Figure 6.4.
As can be seen, there is no significant correlation between the power traces and the power
model. Additionally, the correlation with the power model based on the correct key, as
marked in red, does not display a higher correlation than the fake keys, making the power
traces indistinguishable as seen in Figure 6.4a. This is further illustrated in Figure 6.4b
showing the highest correlation found in the computation involving an increasing number
of traces. Again, the correlation of the power model based on the correct key does not
show a higher correlation than the others even at 10,000 traces.
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(b) Distinction of keys

Figure 6.4: Result of the DPA when applying the power model to the same
multiplication block and the same addition with index 13 in each trace.

Moreover, the DPA is used to evaluate the use of a random addition of a random mul-
tiplication block for the set of available power traces as described in Section 5.5.3, with
the same pre-processing applied to the traces. The result can be seen in Figure 6.5. It
can be seen that the correct key does not separate itself from the fake keys and while the
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Figure 6.5: Result of the DPA when applying the power model to different
multiplication blocks but different additions in each trace.

correlation is very low, the distribution along the time-axis differs vastly from the attack
on the unprotected implementation. Furthermore, when comparing the correlation over
an increased number of utilised traces, as displayed in Figure 6.5b, the correct key cannot
separate itself from the fake-ones, making it indistinguishable from the other keys at up to
10,000 power traces. This represents a stark contrast to the unprotected implementation,
which showed a clear partition starting at 800 traces using the same methodology.

6.3.2 Clustering-based Attack
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Figure 6.6: Distribution of the mean values of the traces with their colour
demonstrating the respective key value in the secret key.

Using the obtained power traces a clustering-based attack is executed on the device,
as described in Section 5.5.4. In case of the unprotected implementation, this reduced
the number of required traces to a fraction of the required traces for the DPA. Therefore,
using the same process, first, the traces are compressed based on the points with the highest
correlation during the DPA. This results in a single value for each addition of the sparse
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multiplication. The values are then grouped based on the index of the involved secret key
element. This links the power consumption to the secret key index. Next, a mean value for
each secret key index is calculated. The resulting mean values are shown in the histogram
in Figure 6.6. The colour of each bin shows the actual value of the secret key element.
While the unprotected implementation, as seen in Figure 5.14, showed clearly separated
distributions for each of the three possible values, in case of the protected implementation
this transformed to a single distribution around the zero-mark.

This distribution of the secret key values of the masked implementation cannot be used
to distinguish the secret elements. Therefore, it is not possible to perform a clustering based
on locating the zeros by selecting the indices with the highest value.
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Figure 6.7: Index of the classified ones depending on the number of traces.

However, the attack on the unprotected implementation offered the possibility the
further decrease the number of required traces by classifying a larger set of traces and then
using this superset and the method by Pessl et al. [37] to determine which 154 elements of
the set are ±1. As seen in Figure 6.7 the accuracy of the classification stays at about the
same level even for several hundred traces as compared to rapidly converging towards 154
as seen with the unprotected implementation. Additionally, it can be seen that the lowest
value dips at about 485, with the majority of values being situated higher than 500 and
therefore completely unsuited for this attack.



Chapter 7

Conclusions

This section summarises the findings of this thesis and its impact on schemes similar to
BLISS. Furthermore, an outlook on possible future work is given, including ideas for further
optimisations and additional countermeasures.

In this thesis, the hardware implementation of BLISS, a lattice-based signature algo-
rithm, was analysed. The targeted implementation by Pöppelmann et al. [39] was designed
for the Spartan 6 FPGA family. Besides discussing fundamental properties of lattice-based
cryptography in general and detailing the BLISS signature algorithm, the principles of side-
channel attacks were discussed. Furthermore, existing proposals for attacks and counter-
measures of the BLISS signature scheme, or its related algorithm BLISS-B, were explained
and analysed in terms of their feasibility when applied to a hardware implementation.

After an overview of available options, the sparse multiplication has been chosen as the
point of attack as it directly incorporates the secret key used for the signature creation.
Moreover, by using the sparse multiplication as the point of attack, the described method
is not only specifically applicable to BLISS but for any scheme involving the multiplication
of a secret key and some sparse vector. After isolating the sparse multiplication as it is
used in the BLISS signature scheme, a series of power analysis attacks were performed on
the unprotected implementation.

7.1 Results

A first inspection of the traces after pre-processing and sorting them by the key element
used at a specified location showed a visible power leakage. By performing a differential
power analysis, it could not only be shown that a power leakage exists for traces at the
same point on the time axis, but also that the leakage is time-invariant. Therefore, the
presented attack can extract more information from a single power trace and can recover
the secret key more efficiently by combining the data. Using only means of a differential
power analysis, it could be shown that the correlation of the correct key guess is visibly
different from similar fake keys starting at about 800 traces, by only leveraging the same
addition of the same output coefficient in all traces. By utilising a varying output coefficient
but the same addition, this could be further reduced to about 400 traces. About the same
result of 400 traces was observable by using the same output coefficient in each trace
but varying the index of the addition. Making both components variable did not further
improve the result but showed a visible difference starting at about 800 traces. Although a
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power leakage is visible in all of the presented scenarios, a DPA cannot be used to recover
the secret key, because all key coefficients are involved in the operation.

It was then shown that a clustering-based attack could be applied as well. After a trace
compression based on the knowledge obtained during the differential power analysis, the
trace values were grouped based on the corresponding index of the secret key. The mean
for each index was calculated resulting in a single value for each index of the secret key.
The values were plotted and showed a clear separation between three clusters of secret key
values, giving a good indication of the feasibility of the attack. The clusters were then used
to determine the secret key. The identification of the value and the correct sign required
about 36 traces. With the goal to only separate the key into elements with a value of zero
and a magnitude of 1, it could be shown that only about 10 traces are needed. However,
this required additional processing using the method proposed by Pessl et al. [37]. Further
tests were made under the premise that a superset of indices contains all elements of the
key with a value of ±1, but also a certain number of false positives. Using the method
proposed by Pessl et al. [37] allowed for successful key recovery in a reasonable time if the
set stays smaller than 180 elements. Moreover, this additional step and analysis showed
that an attack on the unprotected implementation is possible with as little as four traces.

The success of the attack showed the need for an effective countermeasure. After com-
parison of countermeasures proposed in the literature, an approach based on splitting and
additive masking of the secret key has been proposed. Further details on the extension
of the hardware implementation by Pöppelmann et al. [39] were then discussed. By sep-
arating each secret key element into two shares, the link between the data and the power
consumption was removed effectively. This was achieved by generating a random number
and adding it to one share while subtracting it from the other, such that the actual secret
key is only stored in the difference between the two shares. Furthermore, the cost of this
countermeasure has been demonstrated showing that the countermeasure requires twice
the number of cores to perform the computation in the about the same time. Further-
more, using a naive approach on the masking, the signature generation gets slowed down if
not enough cached entropy is available. As a result, the unprotected four core implemen-
tation requires about 10700 LUTs and 10300 FFs, whereas the protected implementation
requires about 11000 to 13900 LUTs and about 10600 to 14600 FFs, depending on the
exact configuration used. In terms of performance, the average number of cycles increased
from about 14500 cycles for the unprotected implementation with four cores to 17500 to
27500 cycles for the protected implementation depending on the available entropy for the
masks.

The resistance to power side channel attacks has then be shown by performing the
previously successful attack on the protected implementation as well. However, with the
protected implementation neither the initial visual inspection nor the differential power
analysis nor the clustering-based attack yielded any indication of the power attack being
able to recover the secret key or parts of it with up to 10000 power traces. This holds true
even though the setup poses ideal conditions for the attack due to the sparse multiplication
running isolated from the rest of the chip.

7.2 Future Work

This section gives an outlook on several improvements that should be considered in the
future to improve the current results
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7.2.1 Shuffling

Shuffling as a countermeasure has been described in Section 6.1.2. Shuffling basically
changes the order of the computed output coefficients and also the order of the additions
to hide the computation in the time domain. While this alone does not protect against
higher-order DPA attacks, it increases the difficulty and can also be used in conjunction
with the masking scheme. Therefore, it would be of interest to test the effect of this
countermeasure on both the unmasked as well as the masked hardware implementation
and also determining the amount of additional hardware required. If used together with
the masking countermeasure this could allow for the masking scheme with reduced entropy.
Finally, depending on the effectiveness of the shuffling countermeasure this could lead to
an overall smaller implementation.

7.2.2 Performance Improvements

As mentioned in Section 6.2, the mask is applied before each sparse multiplication, such
that even the first computation is performed using the masked secret key. However, it would
also be possible to apply the masks either before the signal to perform the multiplication is
received (e.g., during the polynomial multiplication) or start the (re-)masking immediately
after the computation of the output coefficients. This could reduce the time needed down
to a point where the masking does not influence the runtime of the signature creation.

7.2.3 Reduction in Size

Section 6.2.1 compared a variety of implementations with and without the masking scheme
in place. Each of the protected implementations showed a corner-case regarding the number
of Trivium instances, with one opting for low-area and the other one for high-performance.
The Trivium instances are continuously generating one bit of randomness per cycle and
instance. By using an intermediate storage of appropriate size, it should be possible that
during the masking there is no need to wait for more randomness to become available.
This would further keep the performance at the same level while reducing the number
of required Trivium instances and therefore saving area on the chip. When optimising
for a low-area implementation, it should also be possible to get better results with larger
intermediate storage for the obtained randomness to get a significant boost in performance
with hardly any increase in area required.

7.2.4 Full Protection

The countermeasure described in this thesis only protects the sparse multiplication, which
is just one part of the signature creation involving elements worthy of protection. Therefore,
the other weak points including the rejection sampling and the Gaussian sampling should
also be protected to obtain a fully side-channel protected implementation of BLISS. Fur-
thermore, already published countermeasures like split shuffled sampling by
Saarinen [47] should be evaluated for hardware implementations.

7.2.5 Attack on NTT

The attack on the Number Theoretic Transform by Primas et al. [43] has been shown
successfully for microcontroller implementations of Ring LWE schemes. However, due to
the attack being applicable for any scheme involving the NTT, the attack is in theory
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also applicable to a hardware implementation of BLISS. Therefore, a further interesting
task would be to apply the attack by Primas et al. [43] on the BLISS signature algorithm,
especially on a hardware implementation. However, based on the higher parallelism of such
an implementation it may be necessary to perform certain changes to the attack.
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