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Abstract

In 1973 the first art gallery problem was formulated by Viktor Klee (How
many guards are needed to guard an art gallery?). Since then many visibility
problems in the context of polygons have been studied in the literature. One of
these is the two guards problem, first formulated and discussed by Christian
Icking and Rolf Klein in 1992. In this thesis an adapted version of this problem
is studied: Given a starting vertex of a polygon, how far can two guards walk
on the clockwise respectively counterclockwise boundary of the polygon while
maintaining mutual visibility?

To solve this maximal walk problem, existing concepts are adapted and
extended. The results are used to develop an algorithm that not only solves
the maximal walk problem but is formulated in more general terms so that it
can be used for similar problems as well. This is demonstrated by formulating
and solving an example problem.
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1 Introduction

In this introductory chapter the motivation for this work is described and an
outline over the rest of the thesis is provided.

1.1 Motivation

The first art gallery problem - with the art gallery represented by a polygon -
was formulated in 1973 by Viktor Klee (see for example [11]):

How many guards does it take to completely guard an art gallery with n vertices?

Since then this problem as well as plenty variations have been studied in the
literature. One of these variations was created and discussed by Christian
Icking and Rolf Klein in 1992 (see [9]), the two guards problem:

Given a polygon P , a starting vertex s and a target vertex t, can two guards walking
along the boundary of the polygon in clockwise respectively counterclockwise direction
from s to t coordinate their walks such that they always maintain mutual visibility
inside of P?

Icking and Klein presented solutions for the two guards problem in their
paper, and various other authors have since then shown improved algorithms
as well as formulated slight variations of this problem. One of these variations
considers only walks where the guards always move forward to their target
vertex t, they always move from one vertex to the next (without “stops” along
the edges) and the two guards are not allowed to move simultaneously.

These kind of walks are called discrete straight walks and correspond to hamilto-
nian triangulations (see [10]). Hamiltonian triangulations of polygons have the
special property that at least one edge of each triangle lies on the boundary
of the polygon (thus their dual graphs are simple paths). In the context of
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1 Introduction

triangulation axes of polygons (see [1]) those kind of triangulations lead to
favorable properties of the corresponding triangulation axis.

This thesis started with the idea to use discrete straight walks to prune triangula-
tion axes by computing walks for parts of the triangulated polygon. The basic
plan was to use a starting vertex s and get as far as possible with a discrete
straight walk of two guards - in short to compute a maximal discrete straight
walk from a starting point s. Soon it turned out that the scope of the thesis
was filled with this problem alone and it had become a work on yet another
art gallery problem.

1.2 Goal

Essentially this thesis is about a single problem: computing maximal walks
from a starting point in a polygon. More formally:

Definition 1 (Maximal Walks Problem). Let P be a simple polygon and let s be a
vertex of P . Compute all maximal discrete straight walks from s.

Note that the Maximal Walks Problem asks for all maximal walks - indeed it
turns out that there is in general no unique maximal discrete walk from s,
there may be multiple maximal discrete straight walks.

The goal of this thesis is to characterize maximal walkability with respect to a
starting vertex s, and to provide an efficient algorithm to solve the Maximal
Walks Problem.

1.3 Outline

Chapter 2 introduces common notations, definitions and concepts that are
used throughout this thesis.

In Chapter 3 previous work on walks and in particular discrete straight walks
will be reviewed. This provides the basis for the new work developed in the
remaining chapters.

2



1 Introduction

Chapter 4 adapts concepts that are used in existing work to characterize
(discrete straight) walkable polygons to the setting of maximal walkability. It
is shown that these adapted concepts can be used to characterize maximal
discrete straight walks from a starting vertex.

Chapter 5 takes a detour from the maximal walks setting and develops an
abstract constraint processing algorithm that is later used to solve the maximal
walks problem.

In Chapter 6 tools are developed to ensure mutual visibility of the walk target
vertices within the original polygon.

Finally, in Chapter 7, all the developed tools are combined into an algorithm
that solves the maximal walks problem.

In Chapter 8 the constraint processing algorithm is applied to another problem
(the maximal same colors walk problem) to show its generic nature and to
provide insights into its workings by walking through some examples.

The concluding Chapter 9 summarizes the achievements of this thesis. In
addition possible improvements as well as ideas for further research are
presented.
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2 Preliminaries

This chapter contains conventions and basic definitions that are used through-
out this thesis. The notations and concepts introduced here are essential tools
to describe and study visibility properties of polygons such as walkability.

For brevity we will from now on assume the following (unless stated other-
wise):

• A polygon is always a simple polygon.
• P is a polygon.
• s and t with s 6= t are vertices of P , referred to as start and target vertex.

Definition 2 (Convex and reflex vertices). Let p a vertex of P and α the interior
angle of p. p is called convex if α < π, and re f lex if α > π.

Note that degenerate polygons with vertices that have an interior angle equal
to π are not discussed in this thesis.

Definition 3 (Preceding and succeeding vertices). Let p a vertex of P . We define
Succcw(p) and Predcw(p) to be the vertices of P that succeed and precede p on the
boundary of P in clockwise direction, respectively. Succccw(p) and Predccw(p) are
defined analogously in counterclockwise direction.

A very useful tool in determining visibility properties of polygons are ray
shots along the edges of reflex vertices:

Definition 4 (Ray shots (as defined in [9])). For every reflex vertex p of P we
define Forwcw(p) and Backwcw(p) as follows:

• Forwcw(p) is the first intersection of the forward ray starting from p in direction
−−−−−−→
Predcw(p)p with the boundary of P .

4



2 Preliminaries

p

Predcw(p)

Succcw(p)
Forwcw(p)

Backwcw(p)

(a) Clockwise

p

Predccw(p)

Succccw(p)
Forwccw(p)

Backwccw(p)

(b) Counterclockwise

Figure 1: Backward and forward ray shots

• Backwcw(p) is the first intersection of the backward ray starting from p in
direction

−−−−−−−→
Succcw(p)p with the boundary of P .

Forwccw(p) and Backwccw(p) are defined analogously in counterclockwise direction.
See Figure 1 for examples.

Sometimes it is necessary to indicate the polygon where the ray shooting is performed.
This is done by putting the polygon in the superscript, e.g.: BackwPcw(p).

A concept closely tied to walkability is the mutual visibility of the boundary
chains from s to t in clockwise and counterclockwise direction:

Definition 5 (LR-visibility (see e.g. [3])). Let L and R be the clockwise and
counterclockwise boundary chains of P from s to t, respectively. If every point of L is
visible from some point of R and vice versa, then P is LR-visible with respect to s
and t. P is called LR-visible if it is LR-visible with respect to some vertices s and t.

Definition 6 (Ordering of vertices on the polygon boundary). Let p and q be
two vertices of P . The relation <cw with respect to P and s is defined as follows:

p <cw q⇔ p is encountered prior to q when scanning the boundary of P from s in
clockwise direction. Note that the scan does not wrap around s.

The relation <ccw is defined analogously.

Theorem 1 (Characterization of LR-visibility (see [9])). P is LR-visible with
respect to s and t if and only if the following conditions are satisfied:
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2 Preliminaries

p

t

s

Backwcw(p)

(a) Violates condition 1(i)

p

t

s
Forwcw(p)

(b) Violates condition 1(ii)

Figure 2: Backward and forward shots violating the conditions for LR-
visibility from Theorem 1

1. L visible from R: There is no reflex vertex p ∈ L such that

(i) p 6= s and p <cw Backwcw(p) ∈ L \ {t}, or
(ii) p 6= t and p >cw Forwcw(p) ∈ L \ {s}.

2. R visible from L: There is no reflex vertex q ∈ R such that

(i) q 6= s and q <ccw Backwccw(q) ∈ R \ {t}, or
(ii) q 6= t and q >ccw Forwccw(q) ∈ R \ {s}.

See Figure 2 for polygons violating the conditions of the characterization of
LR-visibility.

If the condition 1(i) is violated by some vertex p, i.e. p <cw Backwcw(p) ∈ L,
then the vertex following p on L in clockwise direction can’t be seen by any
point on R. Similarly a vertex p with p >cw Forwcw(p) ∈ L violating condition
1(ii) implies that the vertex preceding p on L in clockwise direction can’t be
seen by any point on R.

The following concepts (wedges, semi-wedges and deadlocks) are essential
obstacles to the walkability of polygons. In fact they are crucial to characterize
walkable polygons.

6



2 Preliminaries

Definition 7 (Wedge, semi-wedge (see [9] and [10])). Let p and q be reflex
vertices of P . p and q form a left wedge if

1. a) p, q ∈ L, and
b) p <cw q, and
c) Backwcw(p), Forwcw(q) ∈ R, and
d) Forwcw(q) <ccw Backwcw(p),

or analogously a right wedge
2. a) p, q ∈ R, and

b) p <ccw q, and
c) Backwccw(p), Forwccw(q) ∈ L, and
d) Forwccw(q) <cw Backwccw(p).

p and q form a left semi-wedge if the wedge condition 1d is replaced by the following:

• Forwcw(q) <ccw Backwcw(p), or
• Forwcw(q) ≥ccw Backwcw(p), but there is no vertex q of P such that

Backwcw(p) ≤ccw q ≤ccw Forw(q).

This can be done analogously for condition 2d.

See Figure 3 for examples of both kinds of wedges.

Note that for wedges it is necessary that the shooting rays intersect inside of
P . For semi-wedges this is not necessary but sufficient, thus each wedge is
also a semi-wedge.

Definition 8 (Deadlocks (see [9])). Let L and R be the clockwise and counterclock-
wise boundary chains of P from s to t, respectively. Let p ∈ L and q ∈ R be two
reflex vertices with p, q /∈ {s, t}. p and q form a forward deadlock if the following
properties are satisfied:

1. q >ccw Forwcw(p) ∈ R and
2. p >cw Forwccw(q) ∈ L

p and q form a backward deadlock if the following properties are satisfied:

1. q <ccw Backwcw(p) ∈ R
2. p <cw Backwccw(q) ∈ L

7
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s

t

p

q

Backwcw(p)

Forwcw(q)

(a) p and q form a wedge

s

t

p

q

Backwcw(p)

Forwcw(q)

(b) p and q form a semi-wedge

Figure 3: Wedge examples

s

t

p q

Forwcw(p)
Forwccw(q)

(a) p and q form a forward deadlock

s

t

p q

Backwcw(p)
Backwccw(q)

(b) p and q form a backward deadlock

Figure 4: Deadlock examples
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2 Preliminaries

See Figure 4 for examples of both kinds of deadlocks.

Now all notions necessary to discuss walkability of polygons are introduced.
LR-visibility, wedges and deadlocks are essential tools to characterize walka-
bility. Notice how deadlocks consist of vertex pairs with one vertex from each
boundary chain L and R, whereas wedges consist of vertex pairs with both
vertices from the same boundary chain.

9



3 Foundations - Existing Work and
Basic Properties

The purpose of this chapter is to review existing work related to maximal
walks. The discussion is mainly about properties and characterizations of
walkability of polygons with respect to given start and end vertices.

3.1 Discrete Straight Walks

Discrete straight walkability was introduced in [2] and defined as follows:

Definition 9 (Discrete straight walkability with two guards). P is discretely
straight walkable with two guards with respect to two vertices s and t if two
guards a and b can traverse the boundary of P in the following way:

• Both guards start at vertex s.
• Guards a and b move along the polygon boundary in clockwise and counter-

clockwise direction, respectively.
• The two guards are always mutually visible, i.e. the segment ab is completely

contained in P .
• Only one guard is moving at a time. A movement gets a guard from one vertex

p to the vertex following p in the guard’s moving direction.
• At the end both guards have reached the vertex t.

P is discretely straight walkable with two guards if there are two vertices s and
t, such that P is discretely straight walkable with two guards with respect to s and t.

In this work only discrete straight walks are discussed, so for ease of notation and
understanding we will always write walks for discrete straight walks and walkable
for discretly straight walkable with two guards (unless stated otherwise).

10



3 Foundations - Existing Work and Basic Properties

3
5

6
11

10

9 8

7

4

2

1
s

t

Figure 5: Walk example

Example 1 (Example walk). Figure 5 shows an example of a walk in a polygon
from a starting vertex s to a target vertex t. The walk instructions for the two
guards are represented by the numbers on the edges, i.e. in step k the edge
with the number k is walked by the guard associated with the corresponding
boundary chain from s to t.

The dashed lines illustrate the walk by showing the “stopping points” of the
guards between the walk instructions. Note that the triangulation created
by these lines makes it possible to almost uniquely reconstruct the walk
instructions. Ambiguity can only arise at s and t. When s is a vertex of only
one triangle, then either guard can be the one that started first. Ambiguity at
t can arise analogously.

There is a connection between the walkability of a polygon and the structure
of its triangulation axis (as defined in [1]). To discuss this, we first recap this
paper’s definition about types of triangles in a triangulation.

Definition 10 (Types of triangles in a triangulation (adapted from [1])). Let T
be a triangulation of P . Let t ∈ T be a triangle. t is called an ear triangle if 2 of its

11



3 Foundations - Existing Work and Basic Properties

ear

link

branch

Figure 6: Triangulation with ear, link and branch triangles.

edges are from P ’s boundary, a link triangle if 1 of its edges is from P ’s boundary
and a branch triangle if none of its edges are from P ’s boundary.

See Figure 6 for an illustration of the various triangle types.

To keep a triangulation axis structurally simple it is desirable to keep the
number of branching triangles low. The next theorem shows a relationship
between branching triangles and walkability.

Theorem 2. P has a triangulation without branching triangles if and only if P is
walkable.

Proof.

⇒: Let P be a polygon with at least 4 vertices (other cases are trivial). Let T
be a triangulation of P without branching triangles. Then T has exactly two
ear triangles E1 and E2. We now construct a walk using T. Let s and t be the
ear vertices of E1 and E2 respectively. Both guards a and b start at s, a moves
in clockwise direction and b in counterclockwise direction. The two guards
move according to the triangulation. At first both guards walk to the next
vertices of the starting ear triangle in their respective direction (one after the
other), maintaining visibility because they are still on the ear triangle. Until
they reach the other ear triangle E2, the guards will always be on vertices of
link triangles. That means there will always be one guard who can move to
the next vertex in his direction along the edge of a link triangle that is part of
the boundary of P . This move maintains the guards’ visibility because they
are always on vertices of the same triangle. The guards continue in this way

12



3 Foundations - Existing Work and Basic Properties

(a) Hamiltonian triangulation (b) Non-Hamiltonian triangula-
tion

Figure 7: Examples for Hamiltonian and non-Hamiltonian triangulations

until they reach the ear triangle E2 where they simply move on to t (one after
the other), again maintaining visibility because they are on the same triangle.

⇐: Given a walk of two guards a and b we can construct a triangulation T
without branch triangles in the following way. After each movement we add
the edge ab to T (ab is completely contained in P because a is visible from
b). The first inner edge we add to the triangulation completes the starting
ear triangle E1. Until a and b reach the vertices of the ending ear triangle E2
each new edge completes a new link triangle because only one guard moved.
Thus no branch triangles are created and T is a triangulation without branch
triangles.

Walkability of P turns out to be equivalent to P having a Hamiltonian trian-
gulation as has been shown in [2].

Definition 11 (Hamiltonian triangulation). A Hamiltonian triangulation of P
is a triangulation whose dual graph contains a hamiltonian path.

See Figure 7 for examples of Hamiltonian and non-Hamiltonian triangula-
tions.

Note that if a triangulation of a polygon is Hamiltonian, this means that its
dual graph is a path.

Theorem 3 ([2]). P is walkable if and only if P has a hamiltonian triangulation.

13



3 Foundations - Existing Work and Basic Properties

Using the concepts of LR-visibility, semi-wedges and forward and backward
deadlocks it is possible to characterize walkable polygons as shown in [10]
building on work from [9]:

Theorem 4 (Walkability of polygons). P is walkable with respect to two vertices s
and t if and only if the following conditions are met:

• P is LR-visible with respect to s and t.
• P has no forward or backward deadlocks with respect to s and t.
• P has no semi-wedges on the boundary chains L \ {t} and R \ {t}.

3.2 Previous Results

Several works on walkability have been published, in this section we give a
brief overview of their results.

It started in 1992 with the paper The Two Guards Problem [9] by Icking and
Klein where walks were introduced. They presented solutions for the straight
walk and counter-walk problem (one guard starts from s and one from t) with
a running time of O(n log n). Note that straight walks differ from discrete
straight walks in allowing the guards to stop on edges in between vertices.
Further Icking and Klein showed how to solve the general walk problem
(guards are allowed to backtrack) in time O(n log n + k), where k is the size
of the output which can be Θ(n2).

In 1996 Heffernan [8] improved on the work by Icking and Klein and provided
O(n) time solutions for the straight walk and counter walk problem, as well
as for the decision version of the general walk problem. He did so by reducing
the number of ray shooting queries and using shortest path trees to answer
them.

Discrete straight walks were introduced in 1996 by Arkin, Held, Mitchell
and Skiena [2], focusing on the triangulation corresponding to a discrete
straight walk. They introduced the term Hamiltonian triangulation for such
triangulations and gave an algorithm to decide whether a polygon has a vertex
pair that admits a discrete straight walk with a running time linear in the size
of its visibility graph.

14



3 Foundations - Existing Work and Basic Properties

In 1998 Tseng, Heffernan and Lee [14] explored the natural generalization of
finding all pairs (s, t) such that a polygon has a (straight) walk or (straight)
counter-walk. O(n log n) solutions are given to compute all (straight) walkable
pairs, and O(n log n + m) solutions to compute all (straight) counter-walkable
pairs (m is O(n2)).

In 1999 Narasimhan [10] presented O(n) algorithms to test a vertex pair for
discrete straight walkability and to compute a discrete straight walk in case
of existence. Also, an algorithm to compute all vertex pairs allowing discrete
straight walks in O(n log n) time is given.

Finally, in 2001 Bhattacharya, Mukhopadhyay and Narasimhan [4] presented
optimal, linear-time algorithms to compute all vertex pairs that allow walks,
straight walks or discrete straight walks.

15



4 Characterizing Maximal Walks

Even if a polygon is not walkable with respect to s and t, two guards can
still start their walk from s and try to reach as far as possible. Eventually
they will get stuck at two vertices: neither of the guards can move to the
next vertex while maintaining visibility with the other guard. In this section
a characterization of those maximally reachable vertex pairs is developed,
relying on new extensions of the concepts LR-visibility, deadlocks and (semi)-
wedges only referencing a start vertex (in contrast to a start and target vertex
pair).

4.1 Induced Polygons

Definition 12 (Induced polygon). Let p and q be two vertices of P such that
s <cw p <cw q and pq ⊂ P . Let L be the clockwise boundary chain of P from s to p
and R be the counterclockwise boundary chain of P from s to q. Let Q be the polygon
with the boundary consisting of L, pq and R. We call Q the polygon induced by p
and q with respect to s.

In the following we are interested in the walkability of induced polygons.
Note that a walk of an induced polygon Q corresponds to a triangulation
T who’s dual is a path, and that T is a triangulation of a part of P . If the
triangulation T in P can not be extended by adding another diagonal of P ,
we say that the pair (l, r) is a maximal walkable pair of P with respect to s.

The new edge pq of an induced polygon Q can prevent walkability of Q. In
particular, as shown in the following lemma, Q can have semi-wedges that
were not present in P .

16



4 Characterizing Maximal Walks

Lemma 1 (Semi-wedges in induced polygons). Let Q be the polygon induced by
two vertices l and r of P (l <cw r) with respect to s, such that the boundary chains
from s to l in clockwise, and from s to r in counterclockwise direction do not contain
any semi-wedges. Then Q may have a semi-wedge but no wedge on its boundary
chain.

Proof. Assume that p and q (p <cw q) form a wedge on the clockwise boundary
chain of Q from s to l. Then pBackwcw(p) and qForwcw(q) intersect inside Q
and thus also inside P . Therefore p and q also form a wedge on the boundary
of P , a contradiction.

To refer to these special semi-wedges more concisely we introduce a name for
them:

Definition 13 (Induced semi-wedges). Let p and q be two vertices of P , p <cw q,
such that p and q don’t form a semi-wedge on the boundary of P . Let further l and r
be two vertices of P, l <cw r, such that p <ccw r (q <cw l) and let Q be the polygon
induced by l and r. If p and q form a semi-wedge on the boundary of Q then we call
(p, q) an induced semi-wedge.

See Figure 8 for an example of a semi-wedge on the boundary of Q but not
on the boundary of P . The reason for the occurrence of this semi-wedge is
that the vertex preventing the semi-wedge in P is missing in Q.

4.2 LR-Visibility With Respect to s

In this section the concept of LR-visibility is adapted for the purposes of
maximal walks. Instead of referencing a start vertex s and a target vertex t,
LR-visibility will be defined with respect to s and two vertices l and r, the
respective target points of the clockwise and counterclockwise guards.

Before introducing this adapted version of LR-visibility and studying its
properties, we briefly study the original version.
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q

p

Forwcw(q)

Backwcw(p)

s

r

l

Figure 8: p and q form a semi-wedge in the polygon induced by l and r with
respect to s, but not in the original polygon.

Lemma 2 (Connectedness of LR-visible vertices). Let u, v and w be three vertices
of P , u <cw v <cw w. If P is LR-visible with respect to (s and u) and LR-visible
with respect to (s and w), then P is LR-visible with respect to s and v.

See Figure 9 for an illustration of this situation.

Proof. For x ∈ {u, v, w} let Lx be the clockwise boundary chain of P from s to
x and Rx be the counterclockwise boundary chain of P from s to x.

Since P is LR-visible with respect to s and u, we know that Ru is visible from
Lu. Rv ⊂ Ru, therefore Rv is visible from Lu. And Lu ⊂ Lv gives us that Rv is
visible from Lv.

Similarly we get that Lv is visible from Rv, thus P is LR-visible with respect
to s and v.

Definition 14. We say that a pair (l, r) of vertices of P is LR-visible with respect to
s, if the following properties hold:
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s

u

v

w

Figure 9: Illustration for Lemma 2 on the connectedness of LR-visibility

• l <cw r
• The chains in clockwise direction from s to l and in counter-clockwise direction

from s to r are LR-visible.

Lemma 3 (Order on LR-visibility). Let (l, r) and (l̃, r̃) be two different vertex-pairs
of P that are LR-visible with respect to s. If l ≤cw l̃ ≤cw r ≤cw r̃ (note that at least
one of those inequalities is strict), then the longer chains from s to l̃ and s to r are also
LR-visible with respect to s, i.e. (l̃, r) is LR-visible with respect to s.

See Figure 10 for an illustration of this situation.

Proof. Let L and L̃ be the clockwise boundary chains of P from s to l and l̃
respectively, let R and R̃ be the analoguously defined counterclockwise chains.

Every point on L̃ is visible from R̃. Since R̃ ⊆ R⇒ every point on L̃ is visible
from R. Every point on R is visible from L. Since L ⊆ L̃⇒ every point on R is
visible from L̃. Thus (l̃, r) is LR-visible with respect to s.

The vertices lmax and rmax from the following definition indicate how far the
guards starting from s can maintain LR-visibility on the polygon defined by
their walks towards each other. If P is not LR-visible with respect to s, then
there is a maximal vertex pair that is visible with respect to s. Otherwise, if
there is a vertex t such that P is LR-visible with respect to s and t, then there
is (due to Lemma 2) a single interval of vertices such that P is LR-visible with
respect to s and every vertex in this intervall.
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s

l

l̃
r

r̃

Figure 10: Illustration for Lemma 3 on the ordering of LR-visibility

Definition 15. We define lmax and rmax as vertices of P corresponding to maximal
LR-visibility of P . Two cases need to be distinguished, with (lmax, rmax) fulfilling
different properties:

1. P is not LR-visible with respect to s:

• (lmax, rmax) are LR-visible with respect to s.
• If l and r are two vertices of P with l <cw r such that (l, r) are LR-visible

with respect to s, then l ≤cw lmax and r ≤ccw rmax.

2. P is LR-visible with respect to s:

• P is LR-visible with respect to s and t for every vertex t such that
rmax ≤cw t ≤cw lmax.

• If t is a vertex of P such that P is LR-visible with respect to s and t then
rmax ≤cw t ≤cw lmax.

Note that (lmax, rmax) is well-defined because of Lemma 2 and Lemma 3.

The following lemmas provide necessary and sufficient conditions for lmax
and rmax. For illustrations see Figure 11.

Lemma 4. Let p be a reflex vertex of P satisfying p >cw Forwcw(p). Then the
following holds:
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s

p

q

Backwcw(p)

Backwccw(q)

(a) Constraints for clockwise backward
shot

s

p q

Forwcw(p)

Forwccw(q)

(b) Constraints for clockwise forward
shot

Figure 11: Illustrations for LR-visibility constraints

(i) lmax ≤cw p.
(ii) If rmax <ccw p then lmax <cw Predcw(p).

Analogous properties hold for rmax.

Proof. Let p >cw Forwcw(p) and p̃ = Predcw(p).

Ad (i): If lmax >cw p, then there must be a vertex r ≥cw lmax such that the
polygon induced by lmax and r is LR-visible with respect to s. But because
of p <cw lmax and p <cw Forwcw(p) a necessary condition for LR-visibility is
violated, a contradiction. Therefore we have lmax ≤cw p. Note that lmax = p is
possible as long as rmax ≥ccw p.

Ad (ii): Let rmax <ccw p. Then p̃ is not visible from the counterclockwise
boundary chain of P from s to rmax and therefore lmax <cw p̃.

Lemma 5. Let p be a reflex vertex of P satisfying p <cw Backwcw(p). Then the
following holds:

(i) lmax ≤cw Backwcw(p).
(ii) If rmax <ccw Backwcw(p) then lmax ≤cw p.

Analogous properties hold for rmax.
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Proof. Let p <cw Backwcw(p) and p̃ = Succcw(p).

Ad (i): If lmax >cw Backwcw(p) holds, then there must be a vertex r ≥cw lmax
such that the polygon induced by lmax and r is LR-visible with respect to s. But
because of Backwcw(p) <cw lmax and p <cw Backwcw(p), a necessary condition
of LR-visibility is violated, a contradiction. Thus lmax ≤cw Backwcw(p).

Ad (ii): Let rmax <ccw Backwcw(p). Then p̃ is not visible from the counterclock-
wise boundary chain of P from s to rmax, therefore lmax ≤cw p.

Lemma 6. Let l and r be two vertices satisfying the conditions in Lemma 4 and
Lemma 5 for lmax and rmax, respectively. Then the following properties hold:

1. If l <cw r, let Q be the polygon induced by l and r. If lr ⊂ P then Q is
LR-visible with respect to (s and l) and (s and r), i.e. the boundary chains from
s to l and from s to r in clockwise respectively counterclockwise direction are
mutually visible in Q.

2. If r ≤cw l then P is LR-visible with respect to s and t for every vertex t
satisfying r ≤cw t ≤cw l.

Proof. Ad 1: Assume that there exists a vertex p of Q with s <cw p <cw

l such that p <cw BackwQcw(p) ≤cw r. If BackwQcw(p) = BackwPcw(p) then
BackwPcw(p) ≤cw l ⇒ (s, l) and (s, r) are not LR-visible in P , a contradiction.
So let BackwQcw(p) 6= BackwPcw(p). Then BackwQcw(p) ∈ lr \ {l, r}. So l <cw

BackwPcw(p) <cw r and with Lemma 5 we get lmax ≤cw p, a contradiction to
s <cw p <cw l.

Now let’s assume that there exists a vertex p of Q with s <cw p <cw l such
that p >cw ForwQcw(p) ≥cw s. Similar to before, if ForwQcw(p) = ForwPcw(p)⇒
(s, l) and (s, r) are not LR-visible in P , a contradiction. So let ForwQcw(p) 6=
ForwPcw(p). Then l <cw ForwPcw(p) <cw r. Since pForwQcw(p) ⊃ pForwPcw(p)
we have that Forwcw(p) lies inside of Q. Therefore the boundary chain of P
from l to r in clockwise direction intersects with lr, a contradiction to lr ⊂ P .

Ad 2: Let r ≤cw l, t a vertex of P such that r ≤cw t ≤cw l and p a reflex vertex
on L. To show that P is LR-visible with respect to s and t we have to show
that the conditions of Theorem 1 are satisfied. First we consider the two edge
cases:
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• t = r: If p <cw Backwcw(p) ∈ L \ {t}, then Lemma 5 gives us l ≤cw
Backwcw(p). But then l ≤cw r and thus l = r = t = Backwcw(p), a
contradiction. If p 6= t and p >cw Forwcw(p) ∈ L, then Lemma 4 gives
us l ≤cw p. But then l = r = p = t, a contradiction.

• t = l: If p <cw Backwcw(p) ∈ L \ {t}, then Lemma 5 gives us l ≤cw
Backwcw(p). But then t = l = Backwcw(p), a contradiction. If p 6= t
and p >cw Forwcw(p) ∈ L, then Lemma 4 gives us l ≤cw p. But then
t = l = p, a contradiction.

The analog cases for reflex vertices on R work similarly. Therefore P is LR-
visible with respect to (s and r) and (s and l). Now we consider r <cw t <cw l.
Using Lemma 2 we get LR-visibility of P with respect to s and t for this case
as well.

4.3 Semi-Wedges With Respect to s

Similarly to LR-visibility, the definition of (semi-)wedges references a start
vertex s and a target vertex t. Again, for the purposes of maximal walks, the
definition needs to be adapted to only reference s, as there may not be a
common target vertex t for both guards.

Since our maximal walks are with respect to discrete walkability, it is not
necessary to distinguish between wedges and semi-wedges. So from now on
only the more general term semi-wedge will be used. After the definition of
semi-wedges is adapted, their properties are studied.

Definition 16 (Semi-wedge (adapted from [9] and [10])). Let P be a polygon, p
and q reflex vertices of P . p and q form a clockwise semi-wedge with respect to s if

1. p <cw q, and
2. Backwcw(p) >cw q, and
3. Forwcw(q) >cw q, and
4. one of the following:

a) Forwcw(q) >cw Backwcw(p), or
b) Forwcw(q) ≤cw Backwcw(p), but there is no vertex q of P such that

Forw(q) ≤cw q ≤cw Backwcw(p).
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s

p

q

Backwcw(p)

Forwcw(q)

(a) p and q form a wedge

s
p

q

Backwcw(p)

Forwcw(q)

(b) p and q form a semi-wedge

Figure 12: Semi-wedges with respect to a starting vertex s

Counterclockwise semi-wedges with respect to s are defined analogously.

See Figure 12 for examples of semi-wedges with respect to a start vertex s.

Definition 17 ((Non-)redundant semi-wedges). A semi-wedge (p, q) with respect
to s is called redundant, if there is another semi-wedge ( p̃, q̃) 6= (p, q) with respect
to s with p ≤cw p̃ < q̃ ≤cw q, i.e. it contains another semi-wedge. A semi-wedge that
is not redundant is called non-redundant.

Clearly a guard can not get past a semi-wedge, so for maximal walkability
only the first semi-wedge encountered by a scan from s in a guard’s moving
direction matters. These semi-wedges are called minimal:

Definition 18 (Minimal semi-wedges). A clockwise semi-wedge (p, q) is minimal
with respect to s, if for any other clockwise semi-wedge ( p̃, q̃) one of the following
holds:

q <cw q̃ , or
q̃ = q and p >cw p̃

The minimal counterclockwise semi-wedge is defined analogously.
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Note that this definition selects the minimal non-redundant semi-wedge out
of potentially many minimal semi-wedges having the same second vertex q.

In [14] an algorithm is presented that computes all non-redundant semi-
wedges (semi-wedges that do not fully contain another semi-wedge) of a
polygon. The ideas of this algorithm are adapted to compute the minimal
semi-wedges from a starting vertex.

Algorithm 1 (Finding minimal semi-wedges. Adapted from [14]). We describe
the algorithm to find the minimal clockwise semi-wedge. Finding the minimal
counterclockwise semi-wedge works analogously.

The idea of the algorithm is to scan the boundary of P in clockwise direction
starting from s. During the scan, each reflex vertex with Backwcw(p) (and
thus a possible member of the minimal clockwise semi-wedge) is remembered
in a list. When the hit point of its backward shot is encountered during the
scan, it is removed from the list again. For each reflex vertex it is also checked
whether it forms a semi-wedge with any of the reflex vertices in the list. If it
does, the minimal clockwise semi-wedge is reported.

The pseudo code is shown in Algorithm Listing 1.

Theorem 5 (Correctness of Algorithm 1). Algorithm 1 finds the minimal clockwise
semi-wedge in P with respect to s.

Proof. Let ( p̃, q̃) be the minimal clockwise semi-wedge in P with respect
to s, p̃ <cw q̃. If the list marked contains p̃ at the time the algorithm pro-
cesses the vertex q̃, then the algorithm will report ( p̃, q̃). Because p̃ <cw q̃
and Backwcw( p̃) >cw p̃ (since Backwcw( p̃) >cw q̃) we know that p̃ has been
added to marked. And because Backwcw( p̃) >cw q̃, we know that p̃ has not
been removed from marked. Also, since ( p̃, q̃) is minimal, we know that the
algorithm has not reported another semi-wedge before and actually reaches
this state. Thus the algorithm correctly reports ( p̃, q̃).

If P has no clockwise semi-wedge, then the algorithm does not report a
semi-wedge, therefore the algorithm is correct.

Theorem 6 (Running time of Algorithm 1). Let P have n vertices. Algorithm 1
can be implemented with a running time of O(n log n).
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Algorithm Listing 1 Compute the minimal semi-wedge
The function next() gives the next relevant point on the boundary of P in
clockwise direction. If p is a reflex vertex, then p and Backwcw(p) are relevant
points.

1: marked← empty list
2: start← next()
3: q← start
4: repeat
5: if q is a reflex vertex and Backwcw(q) >cw q then
6: Add q to marked
7: else if q is a reflex vertex and forms a semi-wedge with a vertex p in

marked then
8: Find the maximal p in marked that forms a semi-wedge with q.
9: Report (p, q) and abort.

10: else if q = Backwcw(p) for some vertex p in marked then
11: Remove p from marked.
12: end if
13: q← next()
14: until q = start . P does not have a semi-wedge
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Proof. Preprocessing to compute all necessary ray shots from reflex vertices in
P can be done in O(n log n) time as shown in [6].

There are at most n vertices inserted into and removed from the list marked,
so we can maintain marked as a sorted list in O(n log n) time (e.g. with red-
black trees). The sorting of the reflex vertices in marked is with respect to the
clockwise order of the clockwise backward shots of those vertices.

Checking if a reflex vertex q forms a clockwise semi-wedge with a vertex p in
marked can be done in O(log n) time using binary search in marked.

So every step of the loop can be done in O(log n) time, therefore the overall
running time is O(n log n).

The vertices lmax and rmax in the following definition indicate how far two
guards can walk from a starting vertex s without encountering a semi-wedge
(clockwise or counterclockwise).

Definition 19. We define lmax and rmax to be vertices of P corresponding to maximal
semi-wedge free boundary chains with respect to s. Two cases need to be distingueshed,
with (lmax, rmax) fulfilling different properties:

1. P has at least two disjunct semi-wedges with respect to s:

• lmax <cw rmax, lmaxrmax ⊂ P and the polygon induced by lmax and rmax
is free of semi-wedges with respect to s except induced semi-wedges on the
clockwise respectively counterclockwise boundary chains from s to lmax
and rmax.
• If l and r are two vertices of P with l <cw r, lr ⊂ P and the clockwise

respectively counterclockwise boundary chains from s to l and r are free of
semi-wedges with respect to s except induced semi-wedges, then l ≤cw lmax
and r ≤ccw rmax.

2. P has at most a single non-redundant semi-wedge with respect to s (if there is
a single semi-wedge, then a walk target can be placed within this semi-wedge):

• rmax ≤cw lmax and for every vertex rmax ≤cw t ≤cw lmax the clockwise
respectively counterclockwise boundary chains from s to Predcw(t) and
Predccw(t) are free of semi-wedges.
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• If t is a vertex of P such that the clockwise respectively counterclockwise
boundary chains from s to Predcw(t) and Predccw(t) are free of semi-
wedges, then rmax ≤cw t ≤cw lmax.

The following lemmas provide necessary and sufficient conditions for lmax
and rmax.

Lemma 7 (Avoidance of semi-wedges). Let (p, q) be a clockwise semi-wedge with
respect to s. Then the following holds:

1. lmax ≤cw q.
2. If rmax <ccw q then lmax <cw q.

Analogous properties hold for rmax with respect to counterclockwise semi-wedges.

Proof. Ad 1: Assume lmax >cw q and r ≤ min<ccw{lmax, rmax}. Then (p, q) is a
clockwise semi-wedge on L, a contradiction.

Ad 2: Assume rmax <ccw q. If lmax ≥cw q then (p, q) is again a clockwise
semi-wedge on L.

From Lemma 7 it is easy to see, that avoiding the minimal clockwise semi-
wedge with respect to s avoids all clockwise semi-wedges with respect to
s:

Corollary 1. Let (p, q) be the minimal clockwise semi-wedge with respect to s, and
let ( p̃, q̃) be any other clockwise semi-wedge with respect to s. Then

lmax ≤cw q⇒ lmax ≤cw q̃, and
lmax <cw q⇒ lmax <cw q̃

Lemma 8. Let l and r be two vertices of P that satisfy the conditions of Lemma 7 for
lmax and rmax, respectively. Then the following properties hold:

1. If l <cw r, letQ be the polygon induced by l and r. If lr ⊂ P , then the clockwise
boundary chain of Q from s to l and the counterclockwise boundary chain of Q
from s to r do not contain any semi-wedges except induced semi-wedges.

2. If r ≤cw l, then for every vertex t of P with r ≤cw t ≤cw l the clockwise
boundary chain of P from s to Predcw(t), and the counterclockwise boundary
chain of P from s to Predccw(t) both do not contain semi-wedges.
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Proof. Ad 1: Let lr ⊂ P . Assume that the boundary chain of Q from s to l
contains a semi-wedge (p, q) that is not an induced semi-wedge, so s <cw
p <cw q <cw l. We claim that (p, q) is a semi-wedge of P as well. There are
two cases to consider: (p, q) can be either a semi-wedge (BackwQcw(p) <cw

ForwQcw(q)) or a “proper” wedge (BackwQcw(p) ≥cw ForwQcw(q)).

Let (p, q) be a wedge of Q: BackwQcw(p) <cw ForwQcw(q). We need to show that
all properties of the definition of a wedge can be extended from Q to P :

(a) p <cw q: This trivially holds in P as well.
(b) BackwPcw(p) >cw q: If BackwQcw(p) = BackwPcw(p) we are obviously done,

so let BackwQcw(p) 6= BackwPcw(p). Then we need to have BackwQcw(p) ∈
lr ⇒ BackwPcw(p) >cw l >cw q.

(c) ForwPcw(q) >cw q: If ForwQcw(q) = ForwPcw(q) we are done again, so
let ForwQcw(q) 6= ForwPcw(q). Then we need to have ForwQcw(q) ∈ lr ⇒
ForwPcw(q) >cw l >cw q.

(d) BackwPcw <cw ForwPcw(q): p <cw q and BackwQcw(p) <cw ForwQcw(q) , so

the ray shots must intersect inside of Q: pBackwQcw(p) ∩ qForwQcw(q) =
{v}, with v somewhere inside of Q. Since Q ⊂ P , the ray shots of Q
must be part of the ray shots of P : pBackwQcw(p) ⊆ pBackwPcw(p) and
qForwQcw(q) ⊆ qForwQcw(q). Therefore v must be inside of P and thus
BackwPcw(p) <cw ForwPcw(q).

So (p, q) is a wedge of P , a contradiction to lmax <cw q from Lemma 7.

Now let BackwQcw(p) ≥cw ForwQcw(q). Since (p, q) is a semi-wedge of Q there
exists no vertex u ∈ Q such that ForwQcw(q) ≤cw u ≤cw BackwQcw(p). Again we
show that all necessary properties of (p, q) can be extended from Q to P such
that (p, q) is a semi-wedge of P :

(a) p <cw q: Obvious.
(b) BackwPcw(p) >cw q: Identical to the wedge-case above.
(c) ForwPcw(q) >cw q: Also identical to the wedge-case above.
(d) ForwQcw(q) and BackwQcw(p) lie on the same edge e. If e is also an edge

of P ⇒ (p, q) is a wedge of P and we are done. So suppose that e is not
an edge of P ⇒ e = lr. If ForwPcw(q) >cw BackwPcw(p), then (p, q) is a
wedge in P and we are done again. So ForwPcw(q) ≤cw BackwPcw(p). If
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@u ∈ P : ForwPcw(q) ≤cw u ≤cw BackwPcw(p), then (p, q) is a semi-wedge
in P and we are done. So assume there is such a vertex u ∈ P . But then
(p, q) is an induced semi-wedge of Q, contradicting our assumption.

So (p, q) is a semi-wedge of P as well. But like above in the case of the wedge,
this contradicts Lemma 7 (lmax <cw q), concluding the proof.

Ad 2: Assume that the clockwise boundary chain of P from s to Predcw(t)
contains a semi-wedge (p, q). Then Lemma 7 demands that l ≤cw q. But this
gives q <cw t ≤cw l ≤cw q, a contradiction. The case for the counterclockwise
boundary chain can be proven analogously.

4.4 Backward Deadlocks With Respect to s

For our purposes of maximal walks we need to get rid of the reference to
t (and consequently of references to L and R) in the definition of backward
deadlocks. To achieve this we slightly alter the definition from above:

Definition 20 (Backward deadlocks with respect to a start vertex). Two vertices
p and q of P with p <cw q form a backward deadlock with respect to s if the following
conditions are fulfilled:

1. Backwcw(p) >cw p
2. Backwccw(q) >ccw q
3. Backwcw(p) >ccw q
4. Backwccw(q) >cw p

Lemma 9 (Order on backward deadlocks). Let (p, q) and ( p̃, q̃) be two backward
deadlocks in P with respect to s. If p <cw p̃ and q̃ <ccw q, then p and q̃ form a
backward deadlock with respect to s.

See Figure 13 for an example.

Proof. To show that p and q̃ form a backward deadlock with respect to s, we
have to show that the following properties are satisfied:

(i) Backwcw(p) >cw p
(ii) Backwccw(q̃) >ccw q̃
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Backwccw(q)

Figure 13: p and q̃ form a backward deadlock with respect to s.

(iii) Backwcw(p) >ccw q̃
(iv) Backwccw(q̃) >cw p

Ad (i): Since p and q form a backward deadlock with respect to s, we have
Backwcw(p) >cw p.
Ad (ii): p̃ and q̃ form a backward deadlock with respect to s, so we have
Backwccw(q̃) >ccw q̃.
Ad (iii): p and q form a backward deadlock with respect to s, so we have
Backwcw(p) >ccw q. With q >ccw q̃ we get Backwcw(p) >ccw q̃.
Ad (iv): p̃ and q̃ form a backward deadlock with respect to s, so we have
Backwccw(q̃) >cw p̃. With p̃ >cw p we get Backwccw(q̃) >cw p.

As an important consequence of this lemma there is always a unique minimal
backward deadlock with respect to s (given that backward deadlocks with
respect to s exist). Later it will be shown that for maximal walkability only
this unique minimal backward deadlock needs to be considered.

Corollary 2 (Minimal backward deadlock). If there exists a backward deadlock
with respect to s, then there exists a minimal backward deadlock ( p̂, q̂) with respect
to s, i.e.: if p and q form a backward deadlock with respect to s then p̂ ≤cw p and
q̂ ≤ccw q.
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Proof. Suppose P has no such minimal backward deadlock with respect to s.
Let

B = (p1, q1), . . . , (pk, qk)

be the set of all backward deadlocks of P with respect to s (note that k ≥ 2,
the other cases are trivial). Let

pl = min
<cw
{pi | i = 1, . . . , k}

qr = min
<ccw
{qi | i = 1, . . . , k}

Thus (pl , ql) is the first backward deadlock with respect to s from s in clock-
wise direction and (pr, qr) correspondingly the first backward deadlock with
respect to s from s in counterclockwise direction. Note that (pl , ql) 6= (pr, qr),
otherwise our assumption would be violated (we would have a minimal back-
ward deadlock with respect to s). However, according to Lemma 9 pl and qr
also form a backward deadlock with respect to s. Since (pl , qr) /∈ B, this is a
contradiction.

Algorithm 2 (Find the minimal backward deadlock with respect to s). The
boundary of P is scanned from s simultaneously in clockwise and counter-
clockwise direction using vertices p and q on the respective boundary chains. p
and q take turns in being advanced on reflex vertices towards each other, each
one being advanced until it’s backward shot is placed between the current
vertices of p and q, e.g. p <cw Backwcw(p) <cw q.

The detailed algorithm is presented in Algorithm Listing 2.

Theorem 7 (Correctness of Algorithm 2). If there is a backward deadlock with
respect to s, then Algorithm 2 finds the minimal backward deadlock with respect to s.
If there is no backward deadlock with respect to s, then the algorithm reports nothing.

Proof. Let ( p̃, q̃) be the minimal backward deadlock with respect to s. Since
the algorithm only returns when it finds a backward deadlock with respect to
s or when p = q, there must be some stage where either

(i) p = p̃ and q <ccw q̃, or
(ii) q = q̃ and p <cw p̃.
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Algorithm Listing 2 Computing the minimal backward deadlock
At first we introduce two helper functions:

1: function next candidate cw(start, q)
2: p← start
3: while Backwcw(p) ≤ccw q or Backwcw(p) ≤cw p do
4: if p = q then
5: return p
6: else
7: p← next reflex vertex of P in clockwise direction after p
8: end if
9: end while

10: return p
11: end function
12: function next candidate ccw(start, p)
13: q← start
14: while Backwccw(q) ≤cw p or Backwccw(q) ≤ccw q do
15: if q = p then
16: return q
17: else
18: q← next reflex vertex of P in counterclockwise direction after q
19: end if
20: end while
21: return q
22: end function
Now we can formulate the algorithm:

1: p← s
2: q← s
3: repeat
4: p← next candidate cw(p, q)
5: if (p, q) backward deadlock with respect to s then
6: return (p, q)
7: else if p 6= q then
8: q← next candidate ccw(q, p)
9: if (p, q) backward deadlock with respect to s then

10: return (p, q)
11: end if
12: end if
13: until p = q . There is no backward deadlock with respect to s
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Assume (i) holds (the case (ii) is analogous). Then we have Backwcw(p) >ccw q
and Backwcw(p) >cw p. So the algorithm searches with next candidate ccw(q, p)
for an appropriate q̂ with Backwccw(q̂) >cw p and Backwccw(q̂) >ccw q̂. Since
( p̃, q̃) is the minimal backward deadlock with respect to s, the algorithm picks
q̃ as the first appropriate q̂ in counterclockwise direction. Thus the algorithm
sets q to q̃ and has successfully detected the minimal backward deadlock with
respect to s.

If no backward deadlock with respect to s exists then the algorithm obviously
does not report any backward deadlock (before a vertex pair (p, q) is reported
it is always checked whether (p, q) actually forms a backward deadlock with
respect to s).

Finally we need to establish that the algorithm always terminates. If a back-
ward deadlock with respect to s exists, then it is reported and the algorithm
terminates. So assume there is no backward deadlock with respect to s. The
functions next candidate cw and next candidate ccw always push p and q
further towards each other in clockwise respectively counterclockwise direc-
tion. Thus eventually we get p = q and the termination condition of the loop
is satisfied, resulting in the termination of the algorithm.

Theorem 8 (Running time of Algorithm 2). Let P be a polygon with n vertices.
Then the running time of Algorithm 2 is O(n) if the backward ray shots of reflex
vertices are precomputed.

Proof. In the algorithm each reflex vertex of P is visited once in constant time,
leading to O(n) overall running time.

The vertices lmax and rmax in the following definition indicate how far two
guards can walk without encountering a backward deadlock.

Definition 21. We define lmax and rmax to be vertices of P satisfying the following
properties:

1. P has at least one backward deadlock:

• lmax <cw rmax, lmaxrmax ⊂ P and the polygon Q induced by lmax and
rmax with respect to s does not contain any backward deadlock.
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• Let l and r be two vertices of P with l <cw r, and let Q be the polygon
induced by l and r. If lr ⊂ P and Q does not contain any backward
deadlock with respect to s, then l ≤cw lmax and r ≤ccw rmax.

2. P has no backward deadlock:
lmax = rmax = s, i.e. for any vertex t 6= s it holds that P has no backward
deadlocks with respect to s and t.

The following lemmas give necessary and sufficient conditions for lmax and
rmax.

Lemma 10 (Avoidance of backward deadlocks). If p and q form a backward
deadlock with respect to s, then the following holds:

1. lmax ≤cw p.
2. rmax ≤ccw q.

Proof. Ad 1: Succcw(p) is not visible from any point u with s ≤ccw u ≤ccw q.

Ad 2: Succccw(q) is not visible from any point u with s ≤cw u ≤cw p.

Lemma 11. Let l and r be two vertices of P that satisfy the conditions of Lemma 10
for lmax and rmax, respectively. If l <cw r, then the polygon Q induced by l and r
with respect to s contains no backward deadlocks.

Proof. Let ( p̃, q̃) be the minimal backward deadlock of P with respect to s.
Since l and r satisfy the conditions of Lemma 10, we have l ≤cw p̃ and r ≤ccw q̃.
Assume that Q contains a backward deadlock with respect to s formed by
two vertices p and q. Then the following holds in Q:

• p <cw BackwQcw(p)
• q <ccw BackwQccw(q)
• q <ccw BackwQcw(p)
• p <cw BackwQccw(q)

We show that all of these properties can be extended to P . To simplify the
discussion we distinguish the following cases with respect to the relative
position of p and q to l and r.
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1. p ≤cw l and q ≤ccw r
Note that (p, q) 6= (l, r), since ray shots can’t hit the incident edge lr.

a) p <cw BackwQcw(p)⇒ p <cw BackwPcw(p):
If BackwQcw(p) = BackwPcw(p) we are done, so let BackwQcw(p) 6=
BackwPcw(p). Assume p ≥cw BackwPcw(p). There is some k such that
BachwPcw(p) ∈ vkvk+1, vk+1 ≤cw l. Let −→r be the ray used for the
clockwise ray shots from p (the rays for the ray shots in P and Q
are identical). Then −→r ∩ vkvk+1 = BackwPcw(p) in Q as well. But
−→r first hits lr in Q, so now the ray is outside of Q. The hit at
BackwPcw(p) must be from the inside of Q, so −→r must intersect
another edge e of Q before. But this edge would also be present in
P , a contradiction to the value of BackwPcw(p).

b) q <ccw BackwQccw(q) ⇒ q <ccw BackwPccw(q): Symmetrical to the
property before.

c) q <ccw BackwQcw(p)⇒ q <ccw BackwPcw(p):
Analogous to the property 1a

d) p <cw BackwQccw(q) ⇒ p <cw BackwPccw(q): Symmetrical to the
property before.

2. p <cw q ≤cw l

a) p <cw BackwQcw(p)⇒ p <cw BackwPcw(p):
If BackwQcw(p) = BackwPcw(p) we are done, so let BackwQcw(p) 6=
BackwPcw(p). Then BackwQcw(p) ∈ lr⇒ l ≤cw BackwPcw(p), so p <cw

BackwPcw(p).
b) q <ccw BackwQccw(q)⇒ q <ccw BackwPccw(q):

If BackwQccw(q) = BackwPccw(q) we are done, so let BackwQccw(q) 6=
BackwPccw(q). Then BackwQccw(q) ∈ lr and therefore BackwQccw(q) ≤ccw

l. So q >ccw BackwQccw(q), a contradiction to our assumption.
c) q <ccw BackwQcw(p)⇒ q <ccw BackwPcw(p):

If BackwQcw(p) = BackwPcw(p) we are done, so let BackwQcw(p) 6=
BackwPcw(p). Then BackwQcw(p) ∈ lr. So l ≤cw BackwQcw(p) and
therefore q <cw BackwQcw(p), contradicting our assumption.

d) p <cw BackwQccw(q)⇒ p <cw BackwPccw(q):
If BackwQccw(q) = BackwPccw(q) we are done, so let BackwQccw(q) 6=
BackwPccw(q). Then BackwQccw(q) ∈ lr. So l ≤cw BackwPccw(q) and
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thus p <cw BackwPccw(q).

3. r ≤cw p <cw q. This case is symmetrical to the previous one.

So p and q form a backward deadlock of P with p <cw p̃ or q <ccw q̃, a
contradiction to ( p̃, q̃) being the minimal backward deadlock of P .

Note that we do not need p <cw p̃ and q <ccw q̃ because of Corollary 2.

4.5 Forward Deadlocks With Respect to s

Like for backward deadlocks, it is necessary to get rid of the reference to t
in the definition of forward deadlocks. So here is the adapted definition of
forward deadlocks:

Definition 22 (Forward deadlocks with respect to a start vertex). Two vertices
p and q of a polygon P with p <cw q form a forward deadlock with respect to s if the
following conditions are fulfilled:

1. Forwccw(q) <cw p
2. Forwcw(p) <ccw q

As shown above there is always a minimal backward deadlock which is
convenient in the maximal walks setting. For forward deadlocks the situation
is less fortunate: it is shown next that there is always a unique maximal
forward deadlock, but in general there is not a unique minimal forward
deadlock. In fact, the number of minimal forward deadlocks can be linear in
relation to the number of vertices of P .

Theorem 9 (Maximal forward deadlock). Let (p, q) and ( p̃, q̃) be two forward
deadlocks with respect to s. If p <cw p̃ and q̃ <ccw q then ( p̃, q) is a forward deadlock
with respect to s.

Proof. To show that ( p̃, q) is a forward deadlock, the following properties have
to be shown:

(i) Forwccw(q) <cw p̃.
(ii) Forwcw( p̃) <ccw q.
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Forwccw(q̃)
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Forwcw(p)
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Figure 14: Counterexample used in proof of Theorem 10 with q̃ <ccw
Forwcw(p)

Ad (i): Forwccw(q) <cw p <cw p̃, therefore Forwccw(q) <cw p̃.
Ad (ii): Forwcw( p̃) <ccw q̃ <ccw q, therefore Forwcw( p̃) <ccw q.

Definition 23 (Minimal forward deadlock). A forward deadlock (p, q) with
respect to s is minimal if there is no other forward deadlock ( p̃, q̃) 6= (p, q) with
respect to s such that p̃ ≤cw p and q̃ ≤ccw q.

Theorem 10 (There is no unique minimal forward deadlock). Let (p, q) and
( p̃, q̃) be two forward deadlocks with respect to s. Let further be p <cw p̃ and q̃ <ccw q.
Then (p, q̃) is not necessarily a forward deadlock with respect to s.

Proof. If p <cw Forwccw(q̃) or q̃ <ccw Forwcw(p) then (p, q̃) is not a forward
deadlock with respect to s. See Figure 14 for an example.

Theorem 11 (Number of minimal forward deadlocks). If P has n vertices, there
can be O(n) minimal forward deadlocks with respect to s.

Proof. See Figure 15 for a construction with O(n) minimal forward deadlocks
with respect to s.

To characterize maximal walks, all minimal forward deadlocks need to be
known. The following algorithm computes all minimal forward deadlocks.
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Figure 15: The minimal forward deadlocks with respect to s are
(p1, q1), . . . , (p6, q6). This gives n

4 − 1 = O(n) minimal forward
deadlocks.

Algorithm 3 (All minimal forward deadlocks). The algorithm performs a
counterclockwise scan of the boundary of P starting from s. When the hit
point of a clockwise forward shot is encountered, its originating reflex vertex
is inserted into a list F that is sorted with respect to <cw. When a reflex vertex
is encountered, it is checked whether it forms a forward deadlock with any
vertex in F. If it does, the minimal such vertex (with respect to <cw) is selected
and the corresponding forward deadlock reported. Vertices from F that form
a part of a reported forward deadlock need to be marked to avoid reporting
of non-minimal forward deadlocks (no deadlock with a marked vertex is
reported). Finally, during the scan the list F needs to be updated to remove all
reflex vertices that have been passed.

See Algorithm Listing 3 for the detailed algorithm.

Theorem 12 (Correctness of Algorithm 3). Algorithm 3 reports all minimal
forward deadlocks of P with respect to s.

Proof. Claim 1: If (p, q) is reported then (p, q) is a minimal forward deadlock
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Algorithm Listing 3 Compute all minimal forward deadlocks
F is a list sorted with respect to <cw, next(p) is a function that returns the next
relevant point on the boundary of P after p in counterclockwise direction.
Relevant points are:

• Reflex vertices of P ,
• Forwcw(p) if p is a reflex vertex of P and
• s.

Now we can formulate the algorithm:
1: F ← empty list
2: a← next(s)
3: while a 6= s do
4: if a = Forwcw(p) ∧ p <cw a then
5: Add p to F.
6: else if a is a reflex vertex q then
7: Binary search in F for the smallest vertex p̃ with respect to <cw

such that Forwccw(q) <cw p̃.
8: if There is such a p̃ and p̃ is unmarked then
9: Report the forward deadlock ( p̃, q).

10: Mark p̃.
11: end if
12: end if
13: a← next(a)
14: Delete all vertices p from F with p ≤ccw a
15: end while
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with respect to s.
Proof of Claim 1: Since F contains p we know that Forwcw(p) <ccw q
and Forwccw(q) <cw p. We also know that p <cw q, thus (p, q) is a
forward deadlock with respect to s.
Assumption: ( p̃, q̃) is a forward deadlock with respect to s, satisfying
p̃ <cw p and q̃ ≤ccw q.
When (p, q) is reported F contains p̃ because Forwcw( p̃) <ccw q̃ ≤ccw
q. Since p̃ <cw p holds, the algorithm would report ( p̃, q), or if p̃ is
marked it would not report anything, a contradiction.
Assumption: ( p̃, q̃) is a forward deadlock with respect to s, satisfying
p̃ = p and q̃ <ccw q.
( p̃, q̃) has already been reported and therefore p̃ = p is already
marked. Thus (p, q) can’t be reported, a contradiction.
This means that (p, q) is a minimal forward deadlock with respect
to s. Claim 1

Claim 2: If (p, q) is a minimal forward deadlock with respect to s then the
algorithm reports it.
Proof of Claim 2: Let (p, q) be a minimal forward deadlock with re-
spect to s. This means that q is a reflex vertex and Forwcw(p) <ccw q.
Therefore F contains p when the algorithm processes q. Since p is the
smallest vertex in F with respect to <cw satisfying Forwccw(q) <cw p
and p is unmarked (because (p, q) is minimal), the algorithm reports
(p, q). Claim 2

Theorem 13 (Running time of Algorithm 3). Let P be a polygon with n vertices.
Then Algorithm 3 has running time O(n log n).

Proof. First note that the sorted list F can be maintained in O(n log n) time
overall. Also, the binary search step is done at most O(n) times, resulting in
O(n log n) time overall. For each reflex vertex there is at most one forward
deadlock reported by the algorithm, i.e. reporting takes O(n) time. Thus the
running time for Algorithm 3 is O(n log n).

The vertices lmax and rmax in the following definition indicate how far two
guards can walk from s without encountering a forward deadlock.
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Definition 24. We define lmax and rmax to be vertices of P satisfying the following
properties:

1. lmax <cw rmax:

• lmaxrmax ⊂ P and the polygon Q induced by lmax and rmax does not
contain any forward deadlock with respect to s.
• Let l and r be two vertices of P with lr ⊂ P , l <cw r, l ≥cw lmax,

r ≥ccw rmax and let Q be the polygon induced by l and r. If Q does
not contain any forward deadlocks with respect to s, then l = lmax and
r = rmax.

2. rmax ≤cw lmax:

• For every vertex t of P with rmax ≤cw t ≤cw lmax, there are no forward
deadlocks in P with respect to s and t.
• Let l and r be two vertices of P with l ≥cw lmax, r ≥ccw rmax such that

for every vertex t of P with r ≤cw t ≤cw l, there are no forward deadlocks
in P with respect to s and t. Then l = lmax and r = rmax.

Note that in constrast to preceding definitions of lmax and rmax (for LR-
visibility, semi-wedges and backward deadlocks), the values for lmax and
rmax with respect to forward deadlocks are not unique.

The following lemmas give necessary and sufficient conditions for lmax and
rmax.

Lemma 12 (Avoidance of a single forward deadlock). Let (p, q) be a forward
deadlock with respect to s. Then at least one of the following holds:

(i) lmax ≤cw p
(ii) rmax ≤ccw q

Proof. Our goal is to get a polygon Q induced by two vertices l and r of
P such that Q is free of the forward deadlock (p, q). Recall that (p, q) is a
forward deadlock of Q with respect to s if:

1. p <cw q
2. s <cw Forwccw(q) <cw p
3. q <cw Forwcw(p) <cw s
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Thus at least one of these conditions has to be violated to avoid having the
forward deadlock (p, q) in Q. The first condition can’t be changed, therefore
only the two others remain. The only way to violate the chain of inequalities
s <cw Forwccw(q) <cw p is to get rid of either p or q, thus setting lmax <cw p (or
rmax <ccw q). The remaining condition can be handled analogously. However,
in the context of walkability, lmax and rmax represent walk targets for the
guards. Thus lmax = p (or rmax = q) is actually allowed, since the walk target
is not relevant for forward deadlocks: the two guards can’t walk beyond p
and q, but the clockwise guard can walk beyond p while the counterclockwise
guard stays below q. If the clockwise guard reaches q, then it may be possible
that the counterclockwise guard can also reach q, thus q is a possible walk
target (considering only the forward deadlock (p, q)).

Also note that trying to place the walk target t below the forward deadlock
(either t <cw p or t <ccw q) does not change anything, since this would imply
either lmax ≤cw p or rmax ≤ccw q - cases we already considered above.

Lemma 13 (Avoidance of all minimal forward deadlocks). Let (p1, q1), . . . , (pk, qk)
be all minimal forward deadlocks with respect to s. We assume without loss of gener-
ality that p1 <cw p2 <cw . . . <cw pk (this implies q1 >ccw q2 >ccw . . . >ccw qk). To
avoid all these forward deadlocks one of the following has to hold:

• lmax ≤cw p1
• lmax ≤cw p2 and rmax ≤ccw q1

...
• lmax ≤cw pk and rmax ≤ccw qk−1
• rmax ≤ccw qk

Proof. Using Lemma 12 it is easy to see that all minimal forward deadlocks
(and thus all forward deadlocks) are avoided if any of these conditions holds.
For example lmax ≤cw pi avoids the forward deadlocks (pi, qi), . . . , (pk, qk) and
rmax ≤ccw qi−1 avoids the forward deadlocks (p1, q1), . . . , (pi−1, qi−1). The edge
cases can also be verified easily.

Lemma 14. Let D = {(p1, q1), . . . , (pk, qk)} be all minimal forward deadlocks of P
with respect to s. We assume without loss of generality that p1 <cw p2 <cw . . . <cw
pk. Let i ∈ {2, . . . , k− 1} and l and r be two vertices of P such that l ≤cw pi and
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r ≤ccw qi−1 (the special cases l ≤cw p1 and r ≤ccw qk are similar) and lr ⊂ P . Then
the polygon Q induced by l and r contains no forward deadlocks with respect to s.

Proof. Assume that two vertices p and q form a forward deadlock with respect
to s in Q. Then the following properties hold in Q:

1. p <cw q
2. ForwQccw(q) <cw p
3. ForwQcw(p) <ccw q

We show that these properties can be extended to P :

1. p <cw q: Trivial.
2. ForwPccw(q) <cw p: If ForwPccw(q) = ForwQccw(q) then we are done, so

let ForwPccw(q) 6= ForwQccw(q). Then ForwQccw(q) ∈ lr \ {r}, therefore
p >cw r and ForwPccw(q) <cw r. Combining the last two inequalities we
get ForwPccw(q) <cw p.

3. ForwPcw(p) >cw q: If ForwQcw(p) = ForwPcw(p) then we are done, so let
ForwQcw(p) 6= ForwPcw(p). Then ForwQcw(p) ∈ lr \ {l}, therefore q <cw
l and ForwPcw(p) >cw l. Combining the last two inequalities we get
ForwPccw(p) >cw q.

So all properties needed for a forward deadlock with respect to s can be
extended from Q to P and (p, q) forms indeed a forward deadlock with
respect to s in P . We now proceed to show that this leads to a contradiction.

If p <cw l and q <cw l (the case for p <ccw r and q <ccw r works analogously),
then (p, q) form a forward deadlock of P that has not been avoided by l and
r, a contradiction. So we can assume that p <cw l and q <ccw r. Therefore
there exists an i such that p <cw pi and q <ccw qi−1 (note that (p, q) /∈ D).
If q ≤ccw qi ⇒ (pi, qi) is not minimal, a contradiction to our assumption
that D contains all minimal forward deadlocks. Similarly, if p ≤cw pi−1 ⇒
(pi−1, qi−1) is not minimal, a contradiction. Thus we have pi−1 <cw p <cw pi
and qi <ccw q <ccw qi−1, so (p, q) is a minimal forward deadlock of P , but
(p, q) /∈ D, a contradiction.

In conclusion, Q does not contain a forward deadlock with respect to s.
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Note that the vertex pair (lmax, rmax) is not uniquely defined for forward
deadlocks (as opposed to the previous sections on LR-visibility, semi-wedges
and backward deadlocks). There can actually be O(n) many such vertex
pairs.

4.6 Summary

In this chapter the concepts of LR-visibility, semi-wedges, backward deadlocks
and forward deadlocks were adapted to drop the reference to a fixed target
vertex t. Now only the start vertex s is fixed. This allows the formulation
of conditions for maximal walkability starting from s in terms of these con-
cepts. Later (in Chapter 7) these conditions will be used to compute maximal
walkable vertex pairs.

The next chapters take a detour from the maximal walks setting, developing
tools that are needed later to compute maximal walkable vertex pairs.
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This chapter takes a detour from the polygon setting into a more abstract
setting: processing simple conditional constraints on two variables. An algo-
rithm is developed to efficiently process such constraints. In Chapter 7 the
conditions for maximal walkability will be transformed into constraints usable
by the constraint processing algorithm to solve the maximal walks problem.

We start by formally describing our constraint satisfaction problem:

Let l and r be two integer variables, both bounded below by 0 and above by
individual limits, i.e. l ≤ a and r ≤ b, a, b ∈ N. Let C = CL ∪ CR be a set of
constraints on l and r. A constraint c ∈ CL has the form

l ≤ xi ⇒ r ≤ yi

and a constraint c ∈ CR has the form

r ≤ xj ⇒ l ≤ yj

where xi, yi, xj, yj ∈N.

See Figure 16 for an illustration of the setting, showing one constraint in CL.

Given the limits a and b as well as the set of constraints C, what are the
maximal values for l and r satisfying the limits and the constraints in C? More
formally, we want to compute the following:

max{(l̃, r̃) | l̃ ≤ a ∧ r̃ ≤ b ∧ ∀c ∈ C : c is fulfilled}

Here we use the following partial ordering on N×N. Let (l1, r1), (l2, r2) ∈
N×N, then:

(l1, r1) ≤ (l2, r2)⇔ l1 ≤ l2 ∧ r1 ≤ r2
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Figure 16: The variables l and r are bounded below by 0 and above by a
and b, respectively. xi and yi represent a constraint from CL, so if
l ≤ xi ⇒ r ≤ yi.

To facilitate the following discussion, we introduce some notation. For a
constraint c ∈ CL of the form l ≤ xi ⇒ r ≤ yi we denote yi as cr

max (the
maximal value allowed for r) and xi as cl

act (the maximal value for l when the
constraint is active). Analoguously we use cl

max and cr
act for c ∈ CR. We say

that a constraint c is activated at cr
act (cl

act).

5.1 Fulfilling Constraints

Given limits a and b for l and r, respectively, we can start to fulfill constraints
from the top down. Let us assume for now that there is no constraint activated
above a or b (this limitation will be removed later).

Let us denote the current maximal values by l and r, and use lold and rold to
keep previous values of l and r. Now there may be constraints active on l
(r) that are not fulfilled by r (l). To fulfill the constraints active on l, all these
constraints are processed and the value of r is updated accordingly. We do this
by looking at each l̃ ∈ {l, l + 1, . . . , lold} and process the constraints activated
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at r̃. Now that all constraints active on l are fulfilled we can analogously fulfill
the constraints active on r. By comparing lold, the value of l before processing
the constraints active on r, with l, we can determine whether this procedure
needs to be iterated. If l = lold, then there is no constraint c active on r with
cl

max < l. Since for all constraints c active at l the inequality r ≤ cr
max holds, it

follows that all constraints are fulfilled and the algorithm can report (l, r) and
stop. If l < lold we need to iterate, since there may be a constraint c activated
on a value l̃ ∈ {l ≤ l̃ < lold} with cr

max < r.

The described algorithm is listed in Algorithm Listing 4. Correctness follows
from the discussion above. Running time is O(max{n, m}), where n = a + b
and m = |C|.

If there are constraints with cl
act > a or cr

act > b, then these constraints can be
processed before entering the main loop.

Algorithm Listing 4 Fulfill constraints
Input: Limits a and b, the set of constraints C.

1: (l, r)← (a, b)
2: (lold, rold)← (l, r)
3: repeat
4: for l̃ ∈ {l, . . . , lold} do
5: for c ∈ {c ∈ CL | cl

act = l̃} do
6: r = min{r, cr

max}
7: end for
8: end for
9: lold ← l

10: for r̃ ∈ {r, . . . , rold} do
11: for c ∈ {c ∈ CR | cr

act = r̃} do
12: l = min{l, cl

max}
13: end for
14: end for
15: rold ← r
16: until lold = l
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Figure 17: Multiple upper limit pairs, each upper limit pair is assumed to be
maximal.

5.2 Multiple Starting Pairs and Feasible Pairs

In this section we extend our algorithm to handle multiple upper limit pairs
and to report only feasible pairs (note that for our maximal walkability
algorithm, feasible will mean visible within the polygon, but the discussion in
this section is more generic, thus the broader term). We assume that there are
k upper limit pairs (a1, b1), . . . , (ak, bk) ordered by increasing ai values (this
implies that the ri values are decreasing, otherwise not all starting pairs would
be maximal - see Figure 17). Deciding on feasibility of a pair is delegated
to a max f easible function that computes, for a given value l and an upper
limit r, the highest value r̃ such that (l, r̃) is feasible, or reports that no such r̃
exists. The multiple upper limit pairs are handled simultaneously, such that
the running time is still linear in the number of processed values, constraints
and calls to max f easible.

Theorem 14. Algorithm Listing 5 is correct, i.e. all maximal pairs are reported and
all reported pairs are maximal.
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5 Conditional Constraints

Algorithm Listing 5 Fulfill constraints with multiple upper limit pairs and
infeasible pairs.
Input: Limits (a1, b1), . . . , (ak, bk), the set of constraints C.

1: rrep ← −1
2: l ← ak + 1
3: r ← b1
4: while rrep < r ∧ l > 0 do
5: l ← l − 1
6: (l, r)← fulfill constraints(l, r, C)
7: ai ← min{aλ ≥ l}
8: rcand = min{bi, r}
9: r f eas ← max f easible(l, rcand)

10: rproc = min{r̃ | @c ∈ CR active on r̃ : lc
max < l}

11: if r f eas 6= null ∧ r f eas ≥ rproc ∧ r f eas > rrep then
12: rrep ← r f eas
13: report(l, rrep)
14: end if
15: end while
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5 Conditional Constraints

Proof. First, note that the value of r is only changed by calling the algorithm
f ul f ill constraints (see Algorithm Listing 4). The first call is with (ak, b1)
and subsequent calls with (l, r), where l is monotonically decreasing. Thus
fulfill constraints(l, r) = fulfill constraints(l, b1).

Let us look at one iteration of the while loop under the assumption that the
algorithm worked correctly so far, i.e. all maximal pairs (l̃, r̃) with l̃ ≥ l have
been reported and no other pairs. Let lold be the value of l before the iteration.

(l, r) = fulfill constraints(lold − 1, b1)

So (l, r) = fulfill constraints(l′, b1) for all l̃ with l ≤ l′ < lold and there is no
pair (l̃, r̃) with l < l̃ < lold that fulfills all constraints.

ai = min{aλ ≥ l}
rcand = min{bi, r}

Thus there can be no maximal pair (l, r̃) with r̃ > rcand.

rproc = min{r̃ | @c ∈ CR : cr
act ≥ r̃ ∧ cl

max < l}
r f eas = max feasible(l, rcand)

If r f eas = null, then there can be no maximal pair (l, r̃) for r̃ ≤ rcand as there is
no such feasible r̃.

So now assume that r f eas 6= null. Thus there is no maximal pair (l, r̃) with
rcand ≥ r̃ > r f eas (would not be feasible).

If r f eas < rproc, then there is a constraint c ∈ CR with cr
act > r f eas and cl

max < l,
so (l, r f eas) is violating constraints.

If r f eas ≤ rrep, then there is a maximal pair (l̃, r̃) already reported in a previous
iteration with l̃ > l and r̃ = rrep, so (l, r f eas) is not maximal.

So now let r f eas 6= null, r f eas ≥ rproc and r f eas > rrep. Then (l, r f eas) is maximal,
since we showed that there is no feasible constraint-fulfilling pair (l̃, r̃) with
l < l̃ < lold or (l̃ = l and r̃ > r f eas).

Also it is clear from the discussion above that no pair (l̃, r̃) is reported that
is not maximal with l ≤ l̃ < lold. Thus we can conclude that the algorithm
finishes an iteration correctly if all iterations before were done correctly.
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5 Conditional Constraints

Since any maximal pair (l̃, r̃) must have l̃ ≤ ak and r̃ ≤ b1, the initialization
before entering the while loop is correct as well. So the algorithm reports all
maximal pairs and only maximal pairs.

Finally, we observe that the algorithm always terminates, since l is decreased
in every iteration and thus eventually the condition l > 0 is violated.

Theorem 15. Let n = ak + b1 andO(g(n)) the running time of a call to max f easible.
If there are O(n) constraints, then the running time of the algorithm in Algorithm
Listing 5 is O(n + ng(n)).

Proof. The function f ull f ill constraints (Algorithm Listing 4) can be imple-
mented such that the resulting pair of the last call is remembered. This way
each constraint is handled only once (if a call results in (l, r), then the follow-
ing call will be with (l̃, r̃) 6= (l, r) where l̃ ≤ l and r̃ ≤ r). So if there are O(n)
constraints, then this takes O(n) time.

Computing rproc can also be implemented in O(n) time. The last value of
rproc is remembered, and we scan down from this last value as long as all
active constraints are fulfilled by l. As soon as a violated active constraint
is encountered, we stop and remember this constraint: This is where the
next rproc computation starts. So only the last (violated) constraint is checked
multiple times, but only once in each of the at most n iterations. So for O(n)
constraints we get a running time of O(n).

If feasibility checks are done at cost O(g(n)), they contribute O(ng(n)) to the
running time since there is only one feasibility check per iteration. Thus the
complete running time is O(n + ng(n)).

5.3 Summary

In this chapter an algorithm was developed to solve a constraint satisfaction
problem for simple conditional constraints that also handles multiple starting
pairs and (in)feasible pairs efficiently. Later this algorithm will be used to
solve the maximal walks problem.

52



6 Maximal Visibility

A maximal walkable vertex pair (l, r) of P must also be visible inside of P .
That is, the part of P from l to r (the non-walked part) must not obstruct the
view between the clockwise chain from s to l and the counterclockwise chain
from s to r. In this section an algorithm is developed to decide for a vertex
pair if it is visible, and if not, to compute a maximal visible vertex pair below
the original one. This algorithm will later be used in max f easible calls from
the constraint processing algorithm.

Formally, given two vertices l, r ∈ P , we want to compute

rmax = max
<ccw
{r̃ ∈ P | r̃ ≤ccw r ∧ lr̃ ⊂ P}

Note that rmax = r if and only if l and r are mutually visible. We use ray
shots and the hourglass data structure (developed in [7] for shortest path
computations between two vertices of a polygon) to compute rmax.

Also note that the treatment of the problem of computing maximal visible
vertex pairs in this section is self-contained and does not take into account
properties of maximal walks (in particular the illustrating figures are not
concerned with walkability).

Let g(l, r) = v0v1 . . . vkvk+1 be the shortest path from l to r in P , where v0 = l
and vk+1 = r. Let T (B) be the clockwise (counterclockwise) boundary chain
from l to r on ∂P (illustrated in Figure 18).

As it will turn out below, for all relevant shortest paths it suffices to compute
the first vertex on the shortest path after the starting vertex. This reduces the
time needed to compute the necessary information from linear to logarithmic
time.
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6 Maximal Visibility
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s

Figure 18: Top and bottom chains. The top chain (T) is drawn in dotted style,
the bottom chain (B) in dashed style.

Suppose vi ∈ B for all i (illustrated in Figure 19). Then g(l, r) is a convex
polyline. The only vertices of B visible from l are between l and v1. Since v1 is
visible from l we have that (l, v1) is maximal visible if v1 ≥ccw s, otherwise no
v with lv ⊂ P and s ≤ccw v ≤ccw r exists.

Suppose vj ∈ T and v0, v1, . . . , vj−1 ∈ B with j > 1 (illustrated in Figure 20). vj

is the end of the convex chain v0v1 . . . vj, so a ray ρ from v1 in direction −−→v0v1
is above this chain, and ρ intersects T before vj. So no vertex on B beyond v1
can be seen from l. Thus, like in the previous case, (l, v1) is maximal visible if
v1 ≥ccw s, otherwise no v with lv ⊂ P and s ≤ccw v ≤ccw r exists.

Now suppose v1 ∈ T (illustrated in Figure 21). Let ρ be the ray starting from
v1 in direction −−→v0v1. This ray intersects B, let ρ ∩ ∂P = b. Clearly, no vertex on
B after b is visible from l. Let w be the vertex on B before b (b is not a vertex).
Let g(l, w) be the shortest path from l to w in P , g(l, w) = w0w1 . . . wmwm+1
with w0 = l and wm+1 = w. Since lb ⊂ P , we have that wi ∈ B for all i. Thus
(l, w1) is maximal visible (using the same reasoning ase above) if w1 ≥ccw s,
otherwise no w with lw ⊂ P and s ≤ccw w ≤ccw r exists.

The complete algorithm to compute maximal visible vertex pairs is presented
in Algorithm Listing 6. Its correctness follows from the discussion above.
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Figure 19: The shortest path lies completely on B, creating a convex polyline
from l to r. No vertex on B beyond v1 is visible from l. Thus v1 is
maximal if s ≤ccw v1.
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Figure 20: The first vertices of the shortest path from l to r lie on B. No vertex
beyond the ray ρ is visible from l. Thus v1 is maximal if s ≤ccw v1.
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Figure 21: The first vertex after l on the shortest path from l to r lies on T.
Any maximal visible vertex from l must lie in counterclockwise
direction before b, the intersection of the ray ρ with ∂P . The first
candidate is w, using the same steps as above, the shortest path
from l to w reveals the maximal visible vertex w1.
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6 Maximal Visibility

Algorithm Listing 6 Compute maximal visible vertex pair.

1: compute hourglass for (l, r)
2: v← first vertex after l on shortest path to r
3: if s <cw v <cw l then
4: Report that no visible vertex pair exists.
5: else if s ≤ccw v ≤ccw r then
6: Report (l, v).
7: else
8: ρ← ray from v in direction

−→
lv

9: b← ρ ∩ ∂P
10: w← vertex in ccw direction before b
11: compute hourglass for (v, b)
12: x ← first vertex after l on shortest path to w
13: if s ≤ccw x ≤ccw r then
14: Report (l, x).
15: else
16: Report that no visible vertex pair exists.
17: end if
18: end if
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6 Maximal Visibility

The running time is dominated by 2 hourglass computations (and querying
them to retrieve the second vertex of shortest paths) and one ray shooting
query. Ray shooting queries in a simple polygon can be answered in O(log n)
time (see [5]). Computing hourglasses can also be done in O(log n) time (see
[7]). In [7] shortest path queries using (already computed) hourglasses are
answered in additional O(k) time, where k is the length of the shortest path.
For our purposes, the reporting step can be adapted to stop after the second
vertex (the first after the starting vertex). This leads to constant additional time,
thus overall O(log n) time is needed for the computation of hourglasses and
shortest path vertices. Therefore also the complete algorithm takes O(log n)
time.

To summarize, we have the following theorem:

Theorem 16. For a polygon with n vertices, Algorithm Listing 6 correctly computes
a maximal visible vertex pair in O(log n) time.
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7 Putting Everything Together

All that is left to do is to tie all the pieces together. The lemmas developed in
Chapter 4 provide absolute and conditional constraints to use in the constraint
processing algorithm from Chapter 5, and the algorithm to compute maximal
visible vertex pairs from Chapter 6 is used to provide the correct feasible
vertex pairs. An extension of the constraint processing algorithm to avoid new
semi-wedges in the induced subpolygon will finally provide a solution to the
maximal walks problem.

First of all, to be able to use the constraint processing algorithm from Chapter 5,
the maximal walks problem must be translated into the terms of the constraint
processing algorithm. In the constraint processing algorithm, the two variables
l and r have as domains the integer intervals from 0 to a and from 0 to b,
respectively. The walk targets of the guards are the vertices of the polygon,
so they get labelled from 0 (the start vertex s) to n (the start vertex s may
be reached again if one guard walks around the whole polygon), once in
clockwise direction for the guard walking in clockwise direction, and once
in counterclockwise direction for the other guard. We denote the clockwise
mapping by τL and the counterclockwise mapping by τR, with τ−1

L and τ−1
R

being the inverse mappings. The relations <cw and <ccw can now be simply
translated to the natural ordering on the intervals from 0 to n.

7.1 Absolute Constraints for Maximal Walks

The characterization of maximal walks by LR-visibility, semi-wedges and
deadlocks, provides the following absolute constraints on l (constraints on r
are analogous):

• For each reflex vertex p with p >cw Forwcw(p): l ≤cw p.
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7 Putting Everything Together

• For each reflex vertex p with p <cw Backwcw(p): l ≤cw Backwcw(p).
• If (p, q) is the minimal clockwise semi-wedge, then l ≤cw q.
• If (p, q) is the minimal backward deadlock, then l ≤cw p.

Note that the first two constraints come from LR-visibility.

These constraints can be combined into a single absolute constraint of the
form l ≤cw x, which in turn can be turned into a conditional constraint:

r ≤ccw s⇒ l ≤cw x

Absolute constraints on r can be handled analogously.

7.2 Conditional Constraints for Maximal Walks

The conditional constraints for maximal walks can be used directly. The
characterization by LR-visibility, semi-wedges and deadlocks provides the
following conditional constraints on l (constraints on r are analogous):

• Let p be a reflex vertex with p >cw Forwcw(p). If r <ccw p, then l <cw
Predcw(p).
• Let p be a reflex vertex with p <cw Backwcw(p). If r <ccw Backwcw(p),

then l ≤cw p.
• Let (p, q) be the minimal clockwise semi-wedge. If r <ccw q, then l <cw q.

Note that the first two conditional constraints come from LR-visibility.

7.3 Starting Pairs

The multiple starting pairs for the constraint processing algorithm are pro-
vided by the minimal forward deadlocks. If (p1, q1), . . . , (pk, qk) are the min-
imal forward deadlocks with respect to s, then the starting vertex pairs are
(p1, s), (p2, q1) . . . (pk, qk−1), (s, qk) (see Lemma 13).
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7 Putting Everything Together

7.4 Induced Semi-Wedges

As Lemma 1 states, a subpolygon Q of P may have a semi-wedge that is not
a semi-wedge of P . These semi-wedges prevent walkability of Q because we
are only allowed to walk in a discrete way.

Let us look more closely at such an induced semi-wedge (p, q) with s <cw
p <cw q <cw l. Then l <cw Backwcw(p) <cw r, but recalling one condi-
tion for LR-visibility from Lemma 5 we know that if p < Backwcw(p) and
r <ccw Backwcw(p), then we must have l ≤cw p. This means that l <cw q and
thus there can be no induced semi-wedge (p, q) if LR-visibility conditions
are fulfilled. Analogous arguments hold for counterclockwise semi-wedges,
thus the problem of induced semi-wedges disappears in the presence of
LR-visibility.

7.5 Maximal Walks Problem Solution

We now describe the complete solution to the maximal walks problem.

As a first preprocessing step all forward and backward ray shots are com-
puted for all reflex vertices (note that a clockwise forward ray shot equals a
counterclockwise backward ray shot). As shown in [5] a single ray shooting
query can be performed in O(log n), thus this preprocessing can be done in
O(n log n) time.

Using the ray shots and the mappings τL and τR from polygon vertices to
integers, all absolute and conditional constraints for maximal walks, as well
as the starting vertex pairs to avoid all forward deadlocks, can be transformed
to inputs for the constraint processing algorithm from Chapter 5.

To answer maximal visibility queries as max feasible calls from the constraint
processing algorithm, the polygon needs to be preprocessed to answer shortest
path queries as shown in [7]. This again takes O(n log n) time.

Finally, the results from the constraint processing algorithm are transformed
back into the maximal walks domain by τ−1

L and τ−1
R to get the maximal
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7 Putting Everything Together

walkable vertex pairs of P . This completes our solution for the maximal walks
problem.

Since the constraint processing algorithm with O(n) constraints and a running
time of O(log n) for a single feasibility query takes O(n log n) time, we get
the following main result:

Theorem 17. The maximal walks problem can be solved in O(n log n) time.

7.6 Summary

In this chapter all the building blocks were combined to solve the maximal
walks problem with a running time of O(n log n).

This concludes the core part of this thesis, the next chapter will demonstrate
the generic nature of the constraint processing algorithm by solving another
problem (the maximal same colors walk problem), and illustrate the workings
of the algorithm for better understanding.
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8 Other Uses of the Constraint
Processing Algorithm

In this chapter it is demonstrated that the developed constraint processing
algorithm can not only be used to solve the maximal walk problem. In Sec-
tion 8.1 a new problem (the “maximal same colors walk problem”) is defined
and solved using the constraint processing algorithm in Section 8.2. The fol-
lowing Section 8.3 presents example instances of this problem and walks
through the constraint processing algorithm solving these examples.

8.1 The Maximal Same Colors Walk Problem

In the context of the maximal same colors walk problem, there will again be
two guards (the term guard may not be entirely appropriate for this problem,
but keeping familiar terms should make it easier for the reader) walking along
the two boundary chains of a polygon P , starting from the same vertex s. Each
vertex is assigned a color and both guards need to pass vertices of the same
colors (the attentive reader might see conditional constraints) and are blocked
by vertices of a poisonous color (this looks suspiciously like an opportunity
for absolute constraints). Of course the goal is to send the two guards as far
as possible along their respective boundary chains.

So here is the formal definition of the maximal same colors walk problem:

Definition 25 (Maximal same colors walk problem (MSCW)). Let P be a
polygon, s ∈ P a starting vertex. Let further be C = {c1, . . . , ck} a set of colors and
define a function c that assigns a color to each vertex of P :

∀v ∈ P : c(v) ∈ C
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8 Other Uses of the Constraint Processing Algorithm

Let cp ∈ C be a poisonous color.

The rules for a same colors walk are the following:

• Both guards A and B start at s.
• A and B walk along the clockwise and counterclockwise boundary chains of P ,

respectively.
• Only one guard moves at a time, moving from one vertex to the next in its

direction.
• Let CA and CB be the set of colors of the vertices on A’s walk and B’s walk,

respectively. Then CA = CB must hold.
• A vertex v with c(v) = cp (the poisonous color) can not be passed by any

guard.

The maximal same colors walk problem is to find the maximal same colors walk.

8.2 Solving MSCW

We can use the event processing algorithm developed in the previous chapters
to solve MSCW.

The poisonous vertices (those vertices v with c(v) = cp, the poisonous color)
provide absolute constraints. Let

a = min
<cw
{v ∈ P | c(v) = cp}

b = min
<ccw
{v ∈ P | c(v) = cp}

Then l <cw a and r <ccw b (note that we use l and r as in the previous
chapters).

For each color c ∈ C \ {cp} we get conditional constraints. Let

xc = min
<cw
{v ∈ P | c(v) = c}

yc = min
<ccw
{v ∈ P | c(v) = c}
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8 Other Uses of the Constraint Processing Algorithm

Thus, we get the conditional constraint

if l <cw xc then r <ccw yc,

and analogously
if r <ccw yc then l <cw xc.

The rest of the work is done by the constraint processing algorithm. Note that
mutual visibility of l and r was not requested, so we can use the constraint
processing algorithm without calls for feasibility checks. Also the absolute
constraints provide a unique starting vertex pair, so the simple constraint
fulfillment algorithm suffices.

To take advantage of the full capability of the constraint processing algorithm
we could alter MSCW in the following way:

• A same colors walk must have lr ⊂ P
• For each walk the poisonous color cp can be chosen from a set of

poisonous colors G ⊆ C.
• Vertices v with c(v) ∈ G are excluded from the same colors restriction.

Now we get different absolute constraints for each choice of cp, thus we have
multiple starting vertex pairs. So now with the added visibility requirement
and multiple starting vertex pairs we can take full advantage of the constraint
processing algorithm.

8.3 Examples

In the following examples we will use the terms color and symbol interchange-
able, as it is easier to use symbols than colors.

Example 2 (Constraint processing algorithm walk-through convex). As a
first example we walk through the algorithm as it processes the constraints
given by the convex example polygon in Figure 22a. The poisonous colors
are represented by the symbolsA, *and�, the non-poisonous colors by the
symbols F, �, N, �, � and X. The constraints and the starting pairs with
respect to the start vertex s, as well as the mapping from vertices to integers,
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8 Other Uses of the Constraint Processing Algorithm

are shown in Figure 22b. Note that the symbol Xdoes not contribute to the
constraints, as it is the symbol of the start vertex s. The conditional constraints
in this case are bidirectional, since they are symmetric for the maximal same
colors walk problem.

In Figure 23 all values of the constraint processing algorithm at the end of all
relevant iterations are visualized. The value for r f eas is not shown, since the
example polygon is convex, thus r f eas is always equal to rcand. The constraints
processed by the call to f ul f ill constraints are shown in green, the resulting
pair (l, r) is shown in blue (the old values of (l, r) are indicated by a dashed
blue line segment). The current values for (ai, bi) are shown in orange, the
values for rcand, rproc and (once it has become relevant) rrep are shown on a
separate scale on the right hand side.

Figure 23a shows the first iteration, f ul f ill constraints is called with (a3, b1)
and the conditional constraints for � and F become active, resulting in
(l, r) = (7, 8). (ai, bi) = (a3, b3) = (9, 2), so rcand = 2 (= r f eas). But rproc = 8,
thus no maximal pair is reported. In the second iteration (see Figure 23b) l
is pushed down by one, (ai, bi) becomes (a2, b2) and rcand = 6, but rproc = 8
is still higher and nothing is reported. The next relevant iteration is shown
in Figure 23c. f ul f ill constraints is called with (l, r) = (4, 8), activating the
constraints for N and �, resulting in (l, r) = (1, 6). (ai, bi) = (a1, b1) = (3, 11),
thus rcand = r = 6. rproc goes down to 4 (staying above the only remaining
constraint, the one for�). Now the conditions for reporting are satisfied, and
(l, rcand) = (1, 6) is reported. For the next iteration in Figure 23d we now also
have a value for rrep = 6. The final constraint (for�) is activated by l moving
down to 0, resulting in (l, r) = (0, 3). But now rrep > rcand, thus no pair is
reported and also the looping condition is false and the algorithm ends.

Example 3 (Constraint processing algorithm walk-through non-convex). In
this example we walk through the algorithm processing the constraints of
a non-convex polygon. The polygon and the corresponding constraints are
shown in Figure 24. The poisonous colours are represented by the symbols
A and *, the non-poisonous colors by the symbols � and X. The conditional
constraints, starting vertex pairs and the mapping from vertices to integers
are visualized in Figure 24b.
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Figure 22: Maximal same colors walk example with a convex polygon (Exam-
ple 2)
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Figure 24: Maximal same colors walk example with a non-convex polygon
(Example 3)

In Figure 25 the most interesting iterations of the algorithm are illustrated
(analogous to Example 2 and Figure 23). Since the polygon is non-convex
this time, visibility computations are necessary to ensure mutual visibility
of the reported pairs. In the first iteration (see Figure 25a) rcand = 3, but
for l = 5 there is no vertex between s and v12 (the vertex corresponding to
rcand) that is visible from v5 (the vertex corresponding to l), and thus no pair
is reported. Note that already rproc = 0, since there are no more inactive
conditional constraints. Thus only l will be decreased further, while r = 5 will
stay until the algorithm is finished. In the second iteration (see Figure 25b)
l is decreased to 4, and now r f eas = 2 since v4v13 ⊂ P , so (4, 2) is reported.
The next iteration (see Figure 25c) is similar, l is decreased again to 3, and
r f eas = 3. Since 2 = rrep < r f eas = 3 the maximal pair (3, 3) is reported. All
other vertices below v3 can’t see beyond v13, thus no more pairs are reported
and the algorithm ends.
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Figure 25: Walkthrough of Example 3
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8.4 Summary

In this chapter the developed algorithm was put into action. To illustrate
the general nature of the constraint processing algorithm, a new problem
was formulated (the maximal same colors walk problem) and the algorithm’s
workings demonstrated on two example polygons.

This concludes the main work of this thesis. In the next chapter the whole
thesis will be briefly reviewed and an outlook into possible future work will
be provided.
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In this final chapter the achievements of this thesis are reviewed and a short
outlook to possible future work is done.

9.1 Review

The main goal of this thesis was to solve the maximal walks problem. This has
been achieved by developing a general constraint processing algorithm that
can be used to solve the maximal walks problem in O(n log n) time. To take
advantage of this event processing algorithm, the geometric requirements have
to be translated into absolute and conditional constraints. This is achieved by
adapting and extending existing concepts from the theory about walkability
of simple polygons (LR-visibility, semi-wedges and deadlocks).

Throughout the whole thesis the natural notion of maximality is used. As the
next theorem shows, our algorithm solves the maximal walks problem for
other notions of maximality as well. The only necessary requirement is the
following: Let W be a walk for two guards, ending in p and q for the clockwise
and counterclockwise guards, respectively. Then a walk W̃ is larger than W, if
the guards reach p and q, respectiveley, and (at least) one of them also reaches
a vertex beyond p or q.

Theorem 18. Let
M = {(p1, q1), . . . (pm, qm)}

be all maximal walkable vertex pairs as reported by our algorithm. Then for any notion
of maximality (conforming to the remark above), all maximal walkable vertex pairs
are included in M.
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Proof. Suppose for some notion of maximality a maximal walkable vertex pair
(p, q) is not included in M. (p, q) is walkable, so there is a walkable vertex pair
( p̃, q̃) ∈ M such that p ≤cw p̃ and q ≤ccw q̃. At least one of these inequalities is
strict. But then a walk reaching ( p̃, q̃) is larger than a walk reaching (p, q), a
contradiction to (p, q) being a maximal walkable vertex pair.

Example measures for maximality would be to maximize the number of
vertices passed by a single guard or the sum of vertices passed by both
guards.

9.2 Outlook

The final running time of the complete algorithm is O(n log n), which should
be good enough for most applications. As many walkability problems have
been solved in linear time (such as reporting all walkable start and target
pairs of a polygon - see [4]), it may be possible to improve the running time
further.

Another interesting topic are generalizations of two guard walkability. One
approach would be to extend the guards’ abilities to overcome the obstacles
posed by semi-wedges and deadlocks. Imagine for example that multiple
guards walk along the boundary chains. When e.g. a semi-wedge occurs, one
guard can stop at the “start” vertex of the semi-wedge, while another guard
continues along the boundary chain, now being visible from the first guard
(but not from the guards on the other boundary chain). Note that each such
separation of guards on one boundary chain introduces a branch triangle in
the triangulation associated with the walk.

See Figure 26 for an example walk with multiple guards from s to t that
passes a wedge. Two guards start at s in clockwise direction, one guard in
counterclockwise direction. At p1 one of the clockwise guards stops while the
other one continues his walk. So the guard at p1 maintains visibility with both
other guards. When the first guard reaches p4 the wedge is passed and the
second guard joins by walking inside the polygon from p1 to p4.
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Figure 26: Walk with multiple guards

Multiple questions arise for this problem, e.g.: What is the minimum number
of guards such that the polygon is walkable for them? If the number of guards
is fixed, how far can they get from a starting vertex?

A different kind of generalization has been proposed by Tan in [12]. Here
three guards are used to walk the polygon. Two guards walk on the boundary
chains as in the two guard problem, while the third guard walks inside the
polygon while maintaining visibility with the two other guards. In the paper
algorithms are presented that decide whether such a walk from a starting
vertex s to a target vertex t exists and construct an optimal walk in case of
existence. As for the two guards problem it would be interesting to explore
maximal walks with respect to a starting point in case of non-walkability.

Another way to generalize is to change the notion of visibility from having the
straight line segment between the guards within the polygon to something
else, for example to allow circular arcs instead of straight line segments, or
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to allow the shortest path between the two guards to have one or more links
instead of zero (similar to [13]).

A possible application of maximal walkability brings us back to the introduc-
tion where it is mentioned that the motivation for this work was to prune
triangulation axes. In this setting there may be multiple parts of the triangu-
lation that could be pruned by using walks. This means that maximal walks
need to be computed for multiple starting vertices. It may be possible to use
knowledge of maximal walks from one starting vertex to construct maximal
walks from another starting vertex to reduce the overall running time. This
would parallel the work to report all walkable pairs of a polygon to report all
maximal walks from multiple or all start vertices. It is however not even clear
that the output size of such a problem stays linear.
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