TU

Grazm
Graz University of Technology

MASTER THESIS

CHANGEPOINT DETECTION
IN SMARTPHONE USAGE

conducted at the
Signal Processing and Speech Communications Laboratory
Graz University of Technology, Austria

in co-operation with
meemo-tec OG
Graz, Austria

by

Johanna Rock, 01130333

Supervisors:
Assoc.Prof. Dipl.-Ing. Dr. mont. Franz Pernkopf
Dipl.-Ing. BSc Christian Knoll

Graz, May 22, 2018

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the
declared sources/resources, and that I have explicitly marked all material which has been quoted
either literally or by content from the used sources.

date (signature)

Changepoint Detection in Smartphone Usage

Acknowledgments

First and foremost, I would like to thank the three founders of the company meemo-tec OG,
Dipl.-Ing. Ralph Gruber, Dipl.-Ing. Christian Pendl and Manfred Weiss, for giving me the
chance to work on such an interesting topic, for their helpfulness in every matter and for letting
me be a part of their wonderful team. I gratefully thank Assoc.Prof. Dipl.-Ing. Dr. mont. Franz
Pernkopf and Dipl.-Ing. BSc Christian Knoll for their guidance, their patience and their fast
and valuable support throughout this thesis. Finally, I would like to thank Gabriel Schanner, for
showing interest in my work, for listening to my presentation test runs and especially for helping

me out whenever I needed him.

May 22, 2018 — il -

Changepoint Detection in Smartphone Usage

Abstract (English)

Psychiatric health care relies heavily on self assessments and -monitoring. The treatment’s
success of patients with bipolar disorder depends on an early detection of depressive and manic
states. Objective behavioral measurements, representing relevant aspects of the mental illness,
can be collected by smartphone applications.

This thesis investigates the application of changepoint detection algorithms to smartphone
usage data, in order to recognize bipolar state changes. We pursue the goal to autonomously
learn the user behavior, and detect changes therein, without requiring any manual configurations,
user inputs or learning targets. This enables the application of the approach to new, unseen
data.

We introduce a change detection process consisting of data collection and -processing, feature
selection and -extraction, changepoint detection and evaluation. Expert knowledge is used to
select disease relevant measurements, while unsupervised feature selection methods are used to
further narrow the subset down to user relevant features. The changepoint detection algorithms
ChangeFinder and Bayesian Online Changepoint Detection are implemented and evaluated ac-
cording to the objectives of this thesis.

Results are presented on the basis of three datasets. Hypothetical data is used to evaluate
the algorithmic performance according to different use cases, such as outliers and changepoints
of various causes and amplitudes. We show the detection of incisive events in smartphone data
of ordinary users, among them a ligament rupture and a changing relationship status. Usage
data of bipolar patients, which originates from an ongoing clinical study, is used to demonstrate
the detection of bipolar state changes. We conclude, that the Bayesian Online Changepoint
Detection algorithm is better suited for our objectives. It incorporates prior knowledge about
the domain. Thus it gives us the possibility to further improve the results and configure the
algorithm to find certain types of changes, such as changes between bipolar states. No manual
parameter selection is required and the performance on our data is promising. However, further
evaluation on bipolar usage data is required.

Keywords: Changepoint Detection, Bayesian Changepoint Detection, Smartphone Usage Data,
Bipolar Disorder, Mental Disease Monitoring, Time Series Analysis, Multivariate Time Series,
Unsupervised Learning

May 22, 2018 -V -

Changepoint Detection in Smartphone Usage

Abstract (German)

Psychiatrische Gesundheitsversorgung ist stark auf Selbsteinschatzung und -beobachtung angewiesen.
Der Behandlungserfolg von Patienten mit bipolarer Stérung hangt von einer frithzeitigen Erken-
nung von depressiven und manischen Phasen ab. Objektive Verhaltensmessungen, welche rele-
vante Aspekte der psychischen Erkrankung widerspiegeln, konnen via Smartphone Applikationen
gesammelt werden.

Diese Diplomarbeit untersucht die Anwendung von Algorithmen zur Verdnderungsdetektion
(Changepoint Detection) anhand von Smartphone Nutzerdaten, um Phasendnderungen der bipo-
laren Storung zu erkennen. Das Benutzerverhalten, sowie dessen Anderungen, sollen automa-
tisch gelernt werden, ohne die Zuhilfenahme von manuellen Konfigurationen, Benutzereingaben
oder Lernzielen (Targets). Dies ermdglicht den Einsatz des Verfahrens fiir neue, ungesehene
Daten.

Wir stellen einen Verdnderungsdetektions-Prozess (Change Detection Process) vor, welcher
aus Datensammlung und -verarbeitung, Feature-Auswahl und -Extrahierung, Verénderungsde-
tektion und Evaluierung besteht. Expertenwissen wird verwendet um krankheitsrelevante Mess-
werte auszuwéahlen, wobei uniiberwachte Methoden der Feature-Auswahl dazu verwendet wer-
den, das Ergebnis weiter auf benutzerrelevante Features einzuschrénken. Die Verdnderungsdetektions-
Algorithmen ChangeFinder und Bayesian Online Changepoint Detection werden implementiert
und anhand der Zielsetzungen evaluiert.

Ergebnisse werden anhand von drei Datensétzen présentiert. Hypothetische Daten werden
verwendet, um die algorithmische Leistung anhand von verschiedenen Anwendungsfallen zu be-
werten. Darunter sind statistische Ausreifer und Anderungspunkte aufgrund von verschiedenen
Ursachen und Ausschlagsgrofien. Wir zeigen die Erkennung von einschneidenden Ereignissen in
Smartphone Daten von gewohnlichen Personen, darunter ein Banderriss und eine Veranderung
des Beziehungsstatus. Nutzerdaten von bipolaren Patienten, welche von einer laufenden klin-
ischen Studie kommen, werden verwendet, um Veradnderungen zwischen bipolaren Phasen zu
erkennen. Wir kommen zu dem Schluss, dass der Bayesian Online Changepoint Detection Al-
gorithmus besser fiir unsere Zielvorgabe geeignet ist. Er lasst Vorwissen iiber die Doméne ein-
flieBen. Dies gibt uns die Moglichkeit, die Ergebnisse weiter zu verbessern und den Algorithmus
fiir das Finden spezieller Anderungstypen, wie Anderungen in bipolaren Phasen, zu konfiguri-
eren. Keine manuelle Parameterauswahl ist notwendig und die Ergebnisse sind vielversprechend.
Allerdings sind weitere Auswertungen mit bipolaren Nutzerdaten notwendig.

Schliisselworter: Verdnderungsdetektion, Bayes-Veranderungsdetektion, Smartphone Nutzer-
daten, Bipolare Storung, Uberwachung von psychischen Erkrankungen, Zeitreihenanalyse, Mul-
tivariate Zeitreihen, Unbeaufsichtigtes Lernen

May 22, 2018 — vii -

Changepoint Detection in Smartphone Usage

1

Contents

Introduction 13
1.1 Outline of this Thesis 14
Background 15
2.1 Bipolar Disorder e 15
2.2 Smartphone Data 16
2.2.1 Application Level Data Access in Android OS 17
2.2.2 Application Level Data Access iniOS 17

2.3 Reflection of Smartphone Data to Bipolar States 18
2.4 Changepoint Detection 19
2.5 Benefits of Automated Changepoint Detection for Bipolar State Changes 19
2.6 Clinical Study e 20
2.7 Terms e e e 21
Change Detection Process 23
3.1 Data Recording and Processing 24
3.1.1 Raw Data Structure 24
3.1.2 Preprocessing on the Smartphone 25
3.1.3 Processing within the Change Detection Process 27

3.2 Feature Selection e 28
3.2.1 Feature Selection Through Expert Knowledge 29
3.2.2 Feature Selection Through Feature Similarity 32
3.2.3 Feature Selection Through Squared Correlation 34
3.2.4 Discussion e e e 37

3.3 Feature Extraction 37
3.3.1 Principal Component Analysis 38

3.4 Changepoint Detection L 38
3.4.1 Change Finder 39
3.4.2 Bayesian Online Changepoint Detection 42
3.4.3 Model Selection and Data Characteristics 47

3.5 Evaluation e 50
3.0.1 F-score e 51
Results 55
4.1 Synthetic Data L 55
4.1.1 Univariate Data e 99
4.1.2 Bivariate Data Lo 62
4.1.3 Discussion oL Lo e e 73

4.2 General Changepoint Detection in User Behavior 73
4.2.1 Holiday e 74
422 AppRelease. 76
4.2.3 Relationship 79
4.2.4 Ligament Rupture 79

4.3 Detection of State Changes in Bipolar Disorder 83
4.3.1 Successful Detection of a Manic State Change 84
4.3.2 Undetected Depressive State Change 85

4.4 DISCUSSIONo e e 87

May 22, 2018 - ix -

5 Conclusion
5.1 Outlook

Changepoint Detection in Smartphone Usage

Introduction

Bipolar disorder is a psychological illness, where patients cycle through three different states,
namely depression, mania and the normal state. During these states the patients experience
extreme variations in thinking, behavior and mood. The state characteristics are mostly in
contrast to each other during depressive- and manic phases, while they often have moderate
levels during the normal state. For instance, the mood and energy level of a person tend to
decrease during a depressive phase while they are most likely increased during a manic phase
and usually have a moderate amplitude during a normal phase of the bipolar disorder. An
early detection of behavioral changes is crucial for the patient’s health, because the treatment
has to be adapted according to his or her current mental state. The earlier the treatment is
administered to the patient’s state, the more effective it is. If patients overlook early warning
sings, they often end up visiting the doctor very late which might lead to severe measures
and extended hospitalization. In order to avoid such situations it is very important to train
bipolar affected people in closely observing their behavior and identifying early warning signs.
This results in significant training effort, which is hard to finance and strongly depends on the
patient’s compliance and discipline. It often is impractical and in some cases might even be
impossible to achieve. Especially for people with bipolar disorder it can be very challenging
to objectively perceive their behavior, because awareness and capacity of detailed remembering
might be affected by their current mental state [1].

In order to assist bipolar affected people with registering state changes, this thesis aims to
investigate the applicability and performance of an automatic changepoint detection to smart-
phone usage data. The goal is to implement and evaluate a change detection process, that
detects state changes in the bipolar disorder. The approach could then be used to detect early
warning signs of state changes and react to them, such that countermeasures can be proposed
in a timely manner.

The start-up meemo-tec develops a mobile application for Android, which is called the Bip-
Up. It automatically tracks smartphone usage data and provides the user with an overview of
his or her recorded activities. The available data contains the categories physical activity, with
activities such as walking or cycling, visited locations, such as home or work, and application
statistics, such as phone calls or messaging. No user interaction is required and purely objective
data is used to capture the user’s behavior. Additionally the mood can be entered, such that
the user can observe correlations between his or her attitude and lifestyle. The application can
be used by ordinary people, but it is developed particularly for people with bipolar disorder.
The changepoint detection implemented within the context of this thesis, uses smartphone data,
that is collected using the Bip-Up.

There are already various applications for mood tracking and digital diaries, among others
the eMoods Bipolar Mood Tracker. They mostly rely on self reporting by the users though, and
don’t provide an objective way to track user behavior.

The Monarca Project [1] investigated smartphone based recognition of states and state changes
in bipolar disorder. They identified the three aspects social interaction, physical motion and
travel patterns to be most relevant for the mental disorder and use the four sensing modalities
speech, voice, acceleration and location to represent these aspects. The research group introduces
a system to detect states, and state changes. The state recognition is performed using a naive

May 22, 2018 — 13 -

1 Introduction

Bayes classifier in a supervised manner. The state change recognition is performed using a one-
class classification, where the ”default” state is learned and data points falling outside of this
model are interpreted as changes, which requires a manual threshold selection.

Note, that because of the data diversity between users, a supervised learning approach would
require a learning phase of states per user, including clinical visits, in order to obtain targets.
This is not realistic in a real world scenario. In the case of state change recognition no targets
are required, but in the proposed approach the threshold is selected manually, which again is
not realistic in a real word scenario with unseen user data.

The change detection process implemented in the context of this thesis, does not rely on
supervised learning and labeled targets in any way. The targets used within this thesis are
exclusively required for evaluation purposes but do not influence algorithmic parameters. The
goal is, to find approaches which work autonomously, requiring as little manual configuration as
possible. Also, we pursue the objective to minimize the detection lag, so the time between the
real change and its detection, in order to optimize reaction times to state changes.

1.1 OQOutline of this Thesis

Chapter 2 contains background information about the bipolar disorder, smartphone data and
the reflection of measured smartphone data to bipolar state characteristics. The principle of
changepoint detection and its associated terms are introduced, and the benefits of an automated
detection of bipolar state changes are discussed. This chapter also contains a short overview of
the clinical study, which gives us access to smartphone usage data of bipolar patients collected
using the Bip-Up.

Chapter 3 presents each step contained in the Change Detection Process. It introduces how
data is collected and processed in order to receive plausible features. Using feature selection
and -extraction, a relevant feature subset is selected or new features are created respectively.
Two implemented changepoint detection algorithms, the ChangeFinder and the Bayesian Online
Changepoint Detection, are introduced and evaluated.

Results with three different datasets are presented in chapter 4. Hypothetical data is used to
compare the performance of the implemented algorithms and their variations. The applicability
to real world data is shown by detecting incisive events in general usage data and by applying
the algorithms to study data of bipolar affected people.

Chapter 5 gives concluding remarks, including a comparison of the implemented algorithms
and proposed future improvements.

- 14 - May 22, 2018

Changepoint Detection in Smartphone Usage

Background

This chapter contains important background information, that is associated with this thesis.
General facts about the bipolar disorder (2.1) as well as an overview of smartphone sensors, and
the data that can be captured by using them (2.2), are provided. We discuss, how smartphone
usage data reflects to relevant aspects of bipolar states (2.3). Next, the goal of changepoint
detection in general (2.4) as well as the benefits of an automated change detection in bipolar
states (2.5) are discussed. Finally, we describe the clinical study (2.6), from which we obtain
the datasets of bipolar patients and we state terms (2.7), which are throughout this thesis.

2.1 Bipolar Disorder

Bipolar disorder, formerly called manic depression or manic-depressive illness, is a serious mental
disorder that causes extreme variations in thinking, mood, and behavior. Bipolar affected people
experience periods of depression and mania. While most patients cycle through both periods
regularly, some people experience more depressive than manic episodes and the other way round.
In between those periods people experience short or long time spans without any symptoms or
with unstable moods. The characteristics of depression and mania include severe mood shifts
and changes in thinking, energy- and activity-levels, sleep patterns and behavior.
Symptoms of depressive mood episodes often include:

persistently low mood, pessimism

feeling of worthlessness, helplessness, guilt

low self-esteem

low energy

loss of interest in hobbies

increased need of sleep, problems sleeping

change of appetite with weight loss or gain

difficulty concentrating, remembering and decision-making
thought of suicide

Symptoms of manic mood episodes often include:

long periods of joy, excitement, or euphoria
overconfidence

disconnected, racing thoughts and way of speaking
increased energy

little need for sleep

impulsive, high-risk, pleasure-seeking behavior

People with bipolar disorder often have problems in school, keeping employments and sustain-
ing relationships. Unwise and risky business decisions as well as impulsive actions increasingly
leads to financial and social drawbacks among bipolar patients. In very serious, untreated cases
affected people might even attempt suicide.

May 22, 2018 — 15 —

2 Background

The bipolar disorder can be categorized in several types according to the severity of the
symptoms and the period course [2].

Bipolar | describes a variant where the patient suffers from mayor depression and manic periods,
which last at least one week.

Bipolar Il shows very similar patterns as Bipolar I, but the characteristics are more moderate.
Especially the manic phases lack the more severe characteristics, these episodes are then
called hypomania.

Rapid-Cycling is a supplemental diagnosis to bipolar disorder, it states that the patient experi-
ences very frequent period changes such that he or she has four or more episodes of major
depression, mania or hypomania within a year.

Bipolar disorder is considered a chronic illness that can not be cured, but in most cases it
can be controlled with the right treatment. The early detection of period changes is considered
crucial in order to adapt the treatment as fast as possible to the current patient’s condition.
Typically, a combination of medicine, such as mood stabilizer and antidepressant, as well as
therapy and lifestyle changes are used for treatment. Also solid social support is considered an
important factor influencing the patients health.

Period durations and recurrence rates vary between each bipolar affected person. Episodes
can last from weeks to several months, where depressive states generally last longer with an
average of 5.2 months while manic and hypomanic states average to a duration of 3.5 months
[3]. Statistical factors are similar throughout different diagnostic types, such as additional
occurrence of prominent psychotic features. Recurrence rates of depression and mania average
to about one episode a year, which makes an average of two episodes per year in total.

According to [4] around 1% of the population is affected by bipolar disorder, while estimates
vary from 0.5% to 2%. These discrepancies are due to the perceptive nature of the illness and
the patient’s desire to conceal past episodes.

2.2 Smartphone Data

Smartphones have a high potential of aggregating data that is associated with the user behavior.
The devices are widely accepted by society; today most people use them extensively for everyday
tasks and keep them at their side the majority of time. This enables the device to register its
user’s actions and behavior, not only while the user is actively interacting with the smartphone,
but also while the device is in standby mode by recording and analyzing in the background, as
long as it is kept in close range. Device sensors, that observe a broad variety of environmental
signals, are a prerequisite. Each smartphone model may include different sensor models. The
types and qualities of sensors integrated in smartphones depend mostly on the hardware man-
ufacturers, although the operating system requires a minimal set of sensors in order to support
the hardware.

The access to this data from within the application level is regulated by the operating system.
While some operating systems allow almost full access to the data (like Android OS), others
limit the amount of data accessible to third party applications more strictly, which is the case
for iOS.

The following list gives an overview of commonly used physical sensor types integrated in
smartphones.

The accelerometer is a motion sensor, that measures the acceleration of the device fall, i.e. the
orientation and speed along three axis

- 16 - May 22, 2018

2.2 Smartphone Data

The gyroscope perceives the objects orientation by measuring the rotational velocity along
three axes.

The magnetometer measures magnetic fields and thus provides information about the objects
orientation according to cardinal directions.

GPS uses satellite signals to calculate the objects position in the world.
The barometer measures atmospheric pressure.

The proximity sensor uses an infrared LED and IR light detector to measure the distance to
the closest object facing its front.

The ambient light sensor measures the brightness of the surrounding light.
The thermometer measures the temperature in- and outside the device.
The humidity sensor measures the humidity.

The pedometer is dedicated to count the number of steps that the user has taken.

Most smartphone operating systems provide data from software sensors, in order to provide
additional and more accurate information that complements the data measured directly by
physical sensors. Orientation data might be available to applications, which is a combination of
the accelerometer, gyroscope and magnetometer. Most mobile operating systems also use more
complex data processing in order to supply applications with basic detection providers, such as
physical activity event discovery.

Furthermore, mobile devices are capable of collecting huge amounts of data concerning the
usage of applications. The smartphone operating system traces every interaction between user
and phone. Thus it has information about when and how long applications are used, what
actions the user performs, what messages the user writes, as well as audio and video material.

The operating system limits the access from third party applications to prevent data abuse
and it grants permissions depending on the scope and user preferences. These regularizations
differ for each operating system.

2.2.1 Application Level Data Access in Android OS

Android OS offers a relatively wide range of sensor data and usage information to third party
applications. Some physical sensors are categorized to have non-sensitive data and thus don’t
need explicit access permissions from the user, these include the accelerometer, the proximity-
and the ambient light sensor. Sensors and usage data containing more privacy relevant data
require so called dangerous permissions, which have to be granted by the user in form of a system
dialog at runtime. Location, microphone, phone, activity recognition and SMS are among those
dangerous permission groups [5]. Additionally the Android OS provides access to application
statistics, which includes events for each user- or background interaction with any application
on the phone. In order to receive these usage events the application has to be granted a special
permission which has to be activated in the system settings themselves.

2.2.2 Application Level Data Access in i0S

In iOS access to most of the physical sensors and privacy relevant information behaves similarly
to the Android equivalent. Non-sensitive data does not require any permission while a list of
more privacy relevant information needs explicit permissions granted by the user [6]. In contrast
to Android OS there is no possibility to receive system wide usage events from other applications
in iOS.

May 22, 2018 - 17 -

2 Background

2.3 Reflection of Smartphone Data to Bipolar States

User behavior and lifestyle is reflected by a wide range of data accessible by mobile applica-
tions. Physical activity can be approximated by using activity recognition events, provided
by the smartphone operating system. Location services provide raw data that can be used to
model behavioral patterns, such as daily routines and a rough estimate of the user’s occupa-
tion. Combined with user input, such as location labeling, this information gets even more
valuable. Application statistics grant extensive knowledge about user interactions with applica-
tions. When it is combined with information about application groups, this data represents the
involvement in certain activities, such as listening to music, social interaction or shopping.

Physical activity corresponds to the energy level and urge to action of a person. A depressed
person is likely to stay very close to his or her home, avoid unnecessary physical strain and
refrain from actively participating in physical exercises. A person in a manic episode, however,
would most likely feel restless and full of energy; he or she would therefore keep moving around
and exercise more.

Location data represents daily routines and occupations. A depressed person is likely to
sleep longer, stay at home for the majority of time and maybe even stay home from work.
Characteristics of manic episodes on the other hand would be to have less need for sleep, move
around a lot, visit new places, go out in the evenings and spend only a fraction of the time at
home.

Application usage data can represent a multitude of behavioral factors, depending on applica-
tion groups. A depressed person might not like to listen to music, because there is no interest in
it. A manic person might listen to music excessively though, because every song seems great and
is experienced with joy. Most depressive people don’t participate much in shopping, and would
not spend much time in shopping associated applications. People in manic episodes however
are known to overly participate in shopping activities and make risky financial decisions. One
aspect captured very well by mobile application usage data is social activity. Not only SMS and
phone calls are used to communicate with other people, but also a variety of social media and
messenger applications. Tracking the time a user spends with phone calls, messages and other
digital social interactions allows for a relatively good representation of the overall investment in
communication can be made. Social activity is known to be a key characteristic of depressive
and manic periods. While a depressive person is likely to avoid social contact and not respond
to communication attempts in a timely manner, people in a manic period will most likely behave
contrary. A manic person might seek extensive social interaction, with familiar people as well
as with new acquaintances, and have a high talkativeness.

All this combined information gives a fair coverage of relevant characteristics for bipolar
disorder.

The monarca project [1],[7] investigated the relevance of wearable and smartphone-based
sensor data to the symptoms of bipolar disorder and how this data can be used in order to
detect states and state changes. Social interaction, physical motion and travel patterns count
to the most relevant behavioral aspects according to their medical personnel. In particular they
investigated phone call patterns, voice analysis, location- and mobility-patterns and physical
motion parameters, all on a daily basis. They used speaker-turn and voice analysis to detect
emotions, which are strongly influenced by the mental state. In order to perform speaker-turn
analysis the audio material, recorded during phone calls, is examined in matters of speaker
turns (where the person in observation is talking), speaker short terms (where the person in
observation is talking, but only using short reaction phrases, such as ”"okay” or "right”) and
non-speaking segments (which are either pauses or turns of the counterpart). Functionals like
duration average, duration standard deviation and the count of these properties, as well as the
number of speaker turns per minute and percent of speaking time from the total conversation
are used as features. For the voice analysis the audio material is split into same-sized fragments
and analyzed in matters of low level descriptors, such as rms (root-mean-square) frame energy

- 18 - May 22, 2018

2.4 Changepoint Detection

and harmonic-to-noise ratio - both giving information about how clearly, loudly and energetic a
person is talking. Functionals are then applied to these frame-wise low-level descriptors and used
as features. GPS data is used to represent location and mobility patterns, while acceleration
data is used to reflect the amount, forcefulness and speed of motion. They also found out, that
it can be useful to split the day into frames and analyze the individual features within such a
time frame instead of a daily basis, because the user behavior may only shift along time and not
change altogether. They used the above features, fused by weights, to learn a default model of
the user’s behavior. The naive bayes classifier was used to identify a variation from the default
model and therefore detect state changes.

2.4 Changepoint Detection

Changepoints are time steps within a data sequence, which indicate the delimitation from one
generative process to the next. The sequence of measurements over time between two change-
points is called a segment, it contains data produced by the same underlying model. The
behavior, described by the parameters of the underlying model, can change over time due to
external events or internal systematic changes. Changepoint Detection ! is occupied with finding
abrupt changes, the changepoints, in a data sequence, but ignoring trends which slowly change
the data.

While the off-line changepoint detection can be seen as a segmentation algorithm, that tries
to find the best division of the whole data sequence into a fixed or variable amount of segments,
the on-line variant tries to identify any changepoint in time. Therefore on-line algorithms take
only past, already seen data points into account and aim to identify a change as fast as possible
after its occurrence. Here, not only the accuracy of changepoint detection is of importance,
but also the number of time steps that passed until the change is detected, which we call the
detection lag. Often the accuracy of detected changes and the detection lag are in a trade-off
relation. Therefore, the off-line changepoint detection represents a variation which favors the
accuracy over the lag by completely neglecting the lag.

Changepoint detection is used in a broad variety of application areas such as medical con-
dition monitoring, climate change detection, speech-, image- and human activity analysis. In
medical condition monitoring it can be used for automated real-time observation of physiological
parameters such as heart rate, electroencephalogram (EEG), and electrocardiogram (ECG) in
order to investigate issues such as sleep problems or epilepsy. Here the time series consists of
real valued measurements. Image analysis uses the digital encoding of an image at each time
step [8].

2.5 Benefits of Automated Changepoint Detection for Bipolar State
Changes

The mental state is currently identified by a clinical rating scales, that are mainly based on self
reports. These questionnaires are subjective and they highly depend on the patient’s perception
of their own behavior. Especially for people with bipolar disorder it can be very hard to answer
questions about their behavioral changes truthfully, because awareness and capacity of detailed
remembering might be affected by their current mental state.

It is crucial for the patient’s health to detect state changes and their warning signs in an early
stage, because the pharmacotherapy has to be adapted to the current situation. The earlier
the treatment is administered to the patient’s state the more effective it is. If patients overlook

! In this thesis also referred to as Change Detection

May 22, 2018 - 19 -

2 Background

early warning sings, they often end up visiting the doctor very late which might lead to severe
measures and extended hospitalization. In order to avoid such situations it is very important to
train bipolar affected people in closely observing their behavior and identifying early warning
signs. This requires significant training effort, which is hard to finance and strongly depends on
the patient’s compliance and discipline. It often is impractical and in some cases might even be
impossible to achieve [1].

Autonomous and objective behavior records would benefit patients and doctors in order to
better identify early warning sings and current mental states. An automated change detection
of bipolar states would further help patients to observe their behavior and might signal the
necessity to initiate further steps, such as a visit to the doctor. It could by no account replace
the care of a doctor, but rather support the patient with self-monitoring and identifying critical
changes in his or her state. This allows for fast reaction by the patient and subsequently a
fast treatment by the doctor, which is a crucial factor to the effectiveness of the treatment the
patient receives.

2.6 Clinical Study

A clinical study regarding bipolar affective disorder and the aid of smartphone data is currently
conducted by the Special Outpatient Clinic of the Department of Psychiatry and Psychothera-
peutic Medicine (Spezialambulanz der Universitétsklinik fiir Psychiatrie und Psychotherapeutis-
cher Medizin). This study aims to evaluate the data acquisition via the smartphone application
Bip-Up regarding sleep-, physical activity- and communication durations as well as the mood.
On the other hand it focuses on the evaluation whether the in-software identified behavioral pat-
terns, based on the collected data, sufficiently reflect to the mood and allow for early warning
signs of depression and (hypo) manic phases. The acceptance of the application and compliance
by the patients is also investigated, in order to evaluate whether the application is applicable
for the analyzed patient group. The acquired data of this study is used for data analysis and
evaluating the changepoint detection within the context of this thesis.

The study is planned to comprise 24 bipolar affected participants in the patient group and
24 people without any psychological illnesses in the control group. A duration of six months
per participant is sought, while in total the study is scheduled to last two years. Participants
are instructed to use their smartphones as usual. The application acquires data automatically
without requiring any user interaction except for the mood, which is prompted to enter in
constant intervals (such as two times a day).

In total four medical visits are scheduled. In the beginning of each participant’s attendance,
the application is installed on his or her smartphone and the Clinical Global Impression (CGI)
is evaluated. The following medical visits are scheduled after one month, after two months and
after six months. The data is then transmitted from the participant’s smartphone to a local
database. At every visit a structured clinical interview is performed by the medical personnel.
Also, the participants fill in validated questionnaires about physical activity and daily routines
in the last months, and their current psychological condition. This allows for labeling the data
to bipolar states and serves as ground truth.

Participants are chosen according to the following prerequisites:

1. Age between 18 and 70 years
2. Knowledge about handling smartphones
3. Patient groups with diagnosed bipolar affected disorder

4. Control groups without psychological illnesses

- 20 - May 22, 2018

2.7 Terms

2.7 Terms
Following key terms and definitions will be used throughout this thesis.

Time series A time series is a sequence of observations with a constant time interval between
measurements. It is denoted by X1 = {x; : i = 1,...,t}, where ¢ is the time and every x;
is a d-dimensional real valued vector.

Changepoint A changepoint is a time index, which partitions a time series into two segments
where each segment results from a different underlying stochastic process.

Stationarity In a stationary time series statistical properties, such as mean and variance, are
constant over time. Many statistical procedures used for time series analysis require sta-
tionarity, that requires pre-processing of stationary real world data.

Seasonality Seasonal trends in time series are variations in the data according to patterns in
regular intervals, such as weekly, monthly or quarterly.

Skewness Skewness is an asymmetry measure of a probability distribution of a random variable
about its mean.

Kurtosis The kurtosis describes the form of a probability distribution regarding the thickness
of its tail.

Jumping mean A changepoint through jumping mean is a change due to an abrupt shift of the
model mean.

Jumping variance A changepoint through jumping variance is a change due to an abrupt shift
in variance.

Offline algorithms Offline algorithms consider a finite time series and deal with the segmenta-
tion of the entire sequence into a predefined or best-fitting amount of segments.

Online algorithms Online algorithms are concerned with the real time identification of change
points at the current time step. The algorithms only consider past, already seen data
points and are evaluated each time step in order to find the next change point as soon as
it occurs.

Detection lag The detection lag terms the amount of time steps passing between the actual
changepoint and the time step in which the change is detected.

Hazard function The hazard function describes the instantaneous rate of occurrence of the
event (e.g. a changepoint). In other words it is the rate of an event occurring in a specific
time step when it did not occur before that time step.

May 22, 2018 - 21 -

Changepoint Detection in Smartphone Usage

Change Detection Process

The change detection process implemented within the scope of this thesis consists of multiple
sequential steps as shown in Figure 3.1. In this chapter we introduce each of these steps and
discuss the mechanisms as well as the actual implementations in detail.

In the first step (Section 3.1), the data has to be recorded on the smartphone, using the pro-
vided operating system APIs. This raw data, collected by the mobile application, is processed
such that time spans and events are created from all available sensor inputs. The preprocessed
data is saved to the local database and sent to a server which makes the data accessible to the
actual change detection process. There the data is again imported and processed, such that a
variety of features are constructed from the available sensor data. The feature selection step
(Section 3.2) selects the most essential features: according to either one of the implemented fea-
ture selection algorithms or expert knowledge. Instead or in addition, features can be extracted
(Section 3.3) such that the size of the resulting feature set is reduced, but it covers most of
the feature space. The actual changepoint detection (Section 3.4) is based upon the selected
and extracted features from the previous step. Two different state of the art change detection
algorithms were implemented and evaluated, including several variations with respect to feature
representation and weighting. Finally, the results are evaluated (Section 3.5) with respect to
our data, in order to compare the effectiveness and suitability of feature sets and algorithms.

We chose Android OS as medium because it provides advantages over iOS with respect to
the amount of data made available to mobile applications. The data collection on the mobile
devices was not part of this thesis and is described only for completeness’s sake. The actual
implementation of the change detection process comprises all steps onward the import of the
preprocessed data and was accomplished in the python programming language.

Only a very limited amount of labeled data was available during the development process.
This data comes from self-monitoring in form of dairy based notes from regular participants and
some very limited notes and assessments of bipolar affected people through medical personnel
on the other hand. This lack of labeled data and the great variety of user data between different
people, does not admit a supervised approach for the change detection. Instead, we only use
the labeled data for evaluating the change detection at development time. The algorithm is
developed to work on unseen data from unknown users, and does not require any prior data
labeling or learning phase.

May 22, 2018 - 23 -

3 Change Detection Process

Data recording Smartphone
(Section 3.1.1) Raw data
Processing
(Section 3.1.2) Time Spans,
Events
Processing Change Detection Application
(Section 3.1.3) Features

Feature Selection
(Section 3.2) Selected Features

Feature Extraction
(Section 3.3) Selected,
Extracted Features
LChangepoint Detection
(Section 3.4) Changepoints,
Detection lags

Evaluation
(Section 3.5)

Figure 3.1: Overview of the change detection process.

3.1 Data Recording and Processing

In this section we describe the first steps, required for the change detection process. First, the
structure of raw data on Android phones is introduced. Then we describe the data processing
within the mobile application as well as the change detection process.

Data recorded by mobile devices, that represents the user behavior, exhibits great diversity
between different users. While one person may extensively use certain means of communication,
such as phone calls or social media applications, another person might use totally different
communication media, such as SMS or messenger applications, or even communicate through
the mobile device very limited in the first place. This makes it very hard to compare data
between users, which also limits data to learn from, both, in general or related to a certain
state. Also the user behavior can strongly vary from one day to the next, as the time spent with
certain activities or at certain locations does only depend indirectly and in complex patterns on
the particular measurements of past days. For example a person might have spent a lot of time
at work the last days and does not go to work at all the next day, which is a perfectly normal
behavior.

3.1.1 Raw Data Structure

In order to capture all available data needed to best reflect the user behavior, a variety of raw
data is recorded by the Android application.

The physical activity is received through the ActivityRecognitionClient, which allows to request
activity updates. Once subscribed to receive such events, a handler is called whenever a

- 24 - May 22, 2018

3.1 Data Recording and Processing

new activity is detected. The provider wakes up the phone according to the detection
interval or specific events received through different sensors, and reads short bursts of
sensor data. It is then analyzed by the provider in order to determine if the user is currently
on foot (with distinction of walking and running), in a vehicle, on a bicycle, still or tilting.
The result, consisting of the detected activity and a confidence indication, is notified to
the application handler. The confidence value represents the likelihood of the given type
and can have values between zero and one hundred, where larger values represent a higher
likelihood of the given type. Physical activities are not mutually exclusive and thus the
confidence of all activities summed up does not have to be smaller than 100. Some types
have a hierarchical relation, so ON_FOOT could have a very high confidence of 100 and
at the same time WALKING could also have a quite high confidence, such as 95. Physical
activities require the ACTIVITY_RECOGNITION permission. [9]

Application usage statistics are received through the UsageStatsManager. The application can
request a list of application usage events that occurred within a certain time window.
The application requests, for instance, a list of all events that happened within the last
fifteen minutes. Such an event contains details about the respective application, such as
the Android Activity and package identifier, as well as the user interaction type, such as
MOVE_TO_FOREGROUND, MOVE_TO_BACKGROUND or USER_INTERACTION. In
order to use these services the PACKAGE_USAGE_STATS permission is required. [10]

Location data is received via the FusedLocationProviderClient. Location updates are requested
using the requestLocation Updates method, where the interval of active- and passive location
sensing can be configured. The active location sensing rate defines the minimal required
update interval, received through active measurements, while the passive sensing rate
defines the maximal required update interval, when the actual sensing is initiated through
other applications. The device location consists of longitude, latitude, altitude, speed and
accuracy, and it is notified to the handler whenever a location update within the configured
interval takes place. The accuracy states the radius in meters around the given coordinates,
in which the device is located with a probability of 68%. The accuracy estimate only
considers the horizontal accuracy and is not concerned with altitude or speed confidence
estimates. The use of location services requires the ACCESS_COARSE_LOCATION or
ACCESS_FINE_LOCATION permission, depending on the desired accuracy. [11], [12]

3.1.2 Preprocessing on the Smartphone

The outcome of the preprocessing step on the smartphone are time spans and events, that
represent the raw data received by the operating system sensor managers.

Physical activity events contain the estimated type and a confidence indication. Whenever the
physical activity handler is called with a new detection entry, the application decides about
the plausibility of the new activity by means of the confidence indication and constructs
time spans for activity types. A received entry is stored in the database if the confidence
is large enough and the type is different from the previous one. If such a new, plausible
activity type is detected, the last physical activity time span is marked as completed.

Application usage events are used to create time spans of actively used applications. Whenever
the event list is retrieved, a timespan is created for every MOVE_TO_FOREGROUND
and its corresponding MOVE_TO_BACKGROUND event. The time span entry consists
of start time, end time, Android Activity and package name.

Location events are used to create time spans representing the user’s residence. Further, using
user input for labeling long lasting locations, they are linked to each other according to

May 22, 2018 — 25 -

3 Change Detection Process

their purpose of residence, such as Home, Work, Sports or Shopping. Whenever a new
location event is received, it is linked to an already existing location time span or it is
interpreted as a new point on the user’s movement path. This is decided by comparing
the old location point, including its accuracy radius, with the new location point and its
accuracy radius. If the distance between the accuracy circles is longer than a predefined
threshold, for instance fifty meters, the point is considered as a new one and the previous
time span is marked as completed. If two successive location events are close according to
the criteria described above, a new time span is created. The current center is given by
the location point with the smallest accuracy radius, i.e, the most precise location point
of a certain time span. The start- and end times of the time span are the time of the first-
and last received location points for that time span respectively. Only time spans lasting
longer than a predefined threshold, such as five minutes, are kept. See Figure 3.2 for a
visual demonstration of location time span calculations. These procedures are required,
because coordinates in the received location events vary considerably, even if the device
remains at the exact same physical location.

Location points are clustered once every day and considered location time spans from the
last seven days. Hereby, the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [13] clustering algorithm is applied, it provides clustering results with a vari-
able number of clusters. Every resulting cluster center is then compared to already existing
cluster centers from previous runs. If the distance is less than a predefined threshold, it is
considered the same cluster and is linked to the cluster label; if the label exists, it is given
by the user. Novel clusters are only considered, if the sum of all associated time spans
exceeds a threshold, for instance ten hours. The user is prompted to label only unlabeled
and relevant clusters the next time he or she resides there.

Sleep time is estimated by using a combination of the above information according to sev-
eral rules. The calculation of sleep time spans assumes: the labeled home location, a
STILL physical activity, no user interaction and additional time constraints. All la-
beled home location time spans that intersect with STILL physical activity time spans
serve as initial estimates. Then, all recorded user interactions, represented through the
USER_INTERACTION application usage event, are used to further split the initial sleep
time estimate. Additionally, some timely constraints, such as a minimal sleep time of two
hours and a time frame between midday of two succeeding days, are applied. Finally, the
longest remaining sleep time span is used.

These timely constraints and the labeled home location constraint restrict the target au-
dience, for which the sleep time estimate can work properly, but are necessary in order to
increase the estimate quality for typical cases.

The mood is the only user input, that is not automatically measured or estimated on the basis
of other information. It is prompted from the user at predefined times, such as twice a
day, one time in the morning and another time in the evening. The mood is represented
by a number between minus three and plus three, where minus three corresponds to a very
low mood (depressed) and plus three is a very elevated mood (manic).

- 26 — May 22, 2018

3.1 Data Recording and Processing

T
>

Q)
=
=
=
[=3]
=
=

(T52 ~

| &0
— -
- o
N n,_v:,'i} y

-

latitude

Figure 3.2: Visual demonstration of location time span calculations. T'S; are the time spans, P; are location
points and the circles around each location point indicate the accuracy of the measurement.
Circles with a smaller radius indicate a more precise location.

3.1.3 Processing within the Change Detection Process

In the Processing step of the Change Detection Process the input from the smartphone is
transformed into features that can be used by the algorithms. A feature contains the duration
that the user spent with a certain activity during a certain time frame within a day. Typical
time frames are: morning, afternoon or whole day. See Figure 3.3 for an example of feature
construction according to input data. In this case the two walking time spans are used to
construct a single feature with the interpretation: ”Duration of walking in the morning”.

8:23; WALKING;5 min

8:47-WALKING:12 min MORNING;WALKING;17 min

Figure 3.3: Exemplary feature construction.

Additionally, data refinement is applied to the data set in order to remove implausible data
samples. First, elements with only zero values are removed. These were potentially caused by
an application blackout, such as an empty battery. Second, a duration that exceeds a threshold
might also be implausible and is removed for certain activity types. For instance it would be
implausible to have a walking activity in the whole day time frame, that lasts longer than 22
hours. On the other hand it would be plausible to have a home location in the whole day time
frame that exceeds 22 hours. Third, normalization is performed for the dataset, so that all
features are scaled between zero and one.

Feature Construction in the Change Detection Application

In the Change Detection Application each data category is represented through a data model and
its data is loaded into the respective repository as soon as it is accessed by the application. The
base class of all repositories contains methods to initiate data structures for holding time series
data including their date membership as well as the database session and some abstract methods
for accessing data with a common interface. The two repository types, for time span data
and for event data, extend that base repository and implement the data access methods. Both

May 22, 2018 - 27 -~

3 Change Detection Process

repositories return two lists, the values and their corresponding dates. With the get_data method
the data can be limited, filtered and combined by functionals with the following parameters:

day_time filters the data according to the given time of day. The following partitions are
available:

all day : 00:00:00 - 23:59:59
morning : 06:00:00 - 8:59:59
before noon : 09:00:00 - 11:59:59
noon : 12:00:00 - 13:59:59
afternoon : 14:00:00 - 17:59:59
evening : 18:00:00 - 23:59:59
night : 00:00:00 - 05:59:59

arithm_func defines the function that is applied to the duration of each time span per selected
day_time. Typically this could be the sum, average, median or standard deviation.

time_span limits the time frame considered for the query.

mtype defines the measurement type, or feature type, used for the query, it depends on the
actual model type. For the physical activity repository, and the physical activity model,
this would be vehicle, cycling, on_foot, still, unknown, tilting, walking or running.

filter_func filters the data according to its date. The function takes a date as input and returns
a boolean whether to include the datum.

Each extended feature repository implements the process_data method, which queries the data
directly from the database by using the corresponding data model. Models are implemented
with the same hierarchy as repositories. The feature model is the base and defines only common
properties, such as an ID and owner information used to identify to whom the data belongs. The
TimeSpan model extends from this base model and implements all methods used for time span
handling and the partitioning of data according to day_time filtering. So it contains methods to
conveniently work with start- and end times, get the duration within a certain day_time partition
or get dates belonging to a time span. The concrete models, such as the location-, activity- or
app-stats- models are only concerned with defining specific properties, such as latitude and
longitude, and dealing with the measurement type memberships, such as home or work.

Loading helpers implement methods for convenient data loading by specifying feature types
(= measurement types), a time window of interest and some properties, such as continuousness
versus validity of data, which are important for certain data analysis methods or algorithms.

3.2 Feature Selection

This section contains an overview of feature selection as well as detailed information about
selected methods, that were also implemented during this thesis. We discuss feature selection
through expert knowledge (Section 3.2.1) and two unsupervised mechanisms, the feature selection
through similarity (Section 3.2.2) and squared correlation (Section 3.2.3).

Feature selection is concerned with selecting a relevant subset of the original features. The
resulting feature set is intended to contain all features important for the machine learning task,
while rejecting redundant or irrelevant features. Feature selection is used to reduce the input
dimension and thereby optimize the training time, make it easier to interpret the outcomes and
enhance generalization by reducing over-fitting. Many algorithms are sensitive to the use of

- 28 - May 22, 2018

3.2 Feature Selection

redundant features, because they lead to a bias in the learned model. Also, irrelevant features
can result in learning a pattern that might have developed by coincidence; this is particularly
relevant for datasets with a small amount of data.

Feature Selection algorithms typically include a technique for searching new feature subsets,
and an evaluation measure that scores these subsets. In the supervised case the evaluation
is done by using target class labels. In the unsupervised case, where no labeled targets are
available, an objective function is maximized, and represents the performance according to some
criterion. Most unsupervised feature selection methods can be classified into two categories. The
first category consists of methods that attempt to maximize clustering performance according
to some index. The second category contains methods that consider feature dependency and
relevance, while various dependence measures are used [14].

3.2.1 Feature Selection Through Expert Knowledge

Manual feature selection is reasonable, when sufficient expert knowledge about the domain is
available. Experts select, rank or weight individual features according to their relevance for
the considered problem. Additionally, it can be used in combination with automatic feature
selection, where first the expert selects relevant features and then an algorithm selects a subset
of these features in an automated manner.

Social interaction, physical motion and travel patterns are assessed to be the most relevant
categories in the case of bipolar state changes. See Section 2.3 for more detailed information on
how smartphone data reflects on bipolar states and what the researchers of the monarca project
[1] identified to be the most relevant data.

For our implementation, only pre-selected (according to expert knowledge) measurements are
observed in order to minimize memory requirements and save battery life. The measurements
are processed to a multitude of features as described in Section 3.1.3. In the subsequent step
the final features are selected by automated feature selection mechanisms and are used by the
change detection algorithm. This automated feature selection helps to reduce the redundancy
of relevant features and adjust to the user specific relevance of them.

Figure 3.4 shows the Phone, Messaging and Social Media features of two distinct test subjects.
Note, how different the measured data of the two users is.

See Figure 3.5 for a visual display of the correlation between various features of the same
subject, that are generally assumed to be relevant.

May 22, 2018 - 29 -

3 Change Detection Process

—— Phone
—— Messaging
2h 46m —— Social Media

2h 13m

1h 40m

Total duration per day

1h 6m

33m 20s

Om 0s

(a) Subject 1

—— Phone
~——— Messaging
—— Social Media

2h 13m A

1h 40m o

1h 6m

Total duration per day

33m 20s - ‘

| J I l
liu‘l.“ J,Ml‘ ‘ l MM ‘mel .A\:“ ,‘lh Ml m‘ UM ‘1

w e e ~ N~ ® ® @ @& 9 9 o o o = o & & @™ ® <
2 2 = =2 48

8§ ~ 4 ¢ 4 S € 4 R 4 g £ g ¢ - 0§ & & 6 o F
N N % R 2 8 =

(b) Subject 2

Figure 3.4: Comparison of Phone, Messaging and Social Media usage data from two different subjects.

- 30 — May 22, 2018

3.2 Feature Selection

Vehicle

Cycling

On foot

still

Walking

Running

Phone

Messaging

Social Media

Other applications

Phone out

Any location

Untagged location

Sports

Friends & Family

Other location

Sleep

Mood

Vehicle

Cycling

On foot

Walking

Running

Phone

Messaging

Social Media
Other applications
Phone out

Any location
Untagged location
Work

Home

Sports

Friends & Family
Other location

Figure 3.5: Visual display of the correlation between various features. Red coloring indicates a high positive
correlation, blue coloring indicates a high negative correlation and white means, that the data is
uncorrelated.

May 22, 2018 - 31

3 Change Detection Process

3.2.2 Feature Selection Through Feature Similarity

The authors of [14] propose an algorithm, which is based on measuring similarity between
features and removing redundancy within them. This is especially suitable for high-dimensional
datasets with many samples, because of its computational efficiency. Further, its generic nature
makes it applicable for a wide range of real world data sets. The method partitions the original
features into clusters of similar features and selects one feature for each cluster. Feature similarity
is measured by the maximum information compression index [14] (described below). Both, the
clustering algorithm and the similarity measure, pursue the goal of minimizing the information
loss while minimizing the redundancy in the selected feature subset.

Similarity Measures

The correlation coefficient measures the similarity between two one-dimensional random vari-
ables = and y, it is given by:

cov(x, y)

var(x)var(y)’

plx,y) = (3.1)

where var(x) is the variance of the random variable & and cov(x,y) is the covariance between
the two variables and y. If and y are linearly dependent, then p(x,y) = +1, if they are
uncorrelated, then p(x,y) = 0. Therefore 1 — |p(x, y)| can be used as a similarity measure with
0 <1-—|p(x,y)| < 1. This measure is symmetric, and invariant to scaling and translations of
the random variables.

The maximal information compression index A2(x,y) is introduced in [14], which is equivalent
to the smallest eigenvalue of the covariance matrix of the univariate random variables x and y.
It is calculated by:

var(x) + var(y) (var () + var(y))
2 - \/ 4

—var(x)var(y) + cov(x,y)?. (3.2)

)\2($7 y) =

The value of \g is the eigenvalue of the second principal component of the feature pair (x,y).
See Section 3.3.1 for more information about Principal Component Analysis and the interpre-
tation of the principal components. The following properties for Ay hold:

1. 0 < \a(x,y) < 0.5(var(x) +var(y))

2. Xo(z,y) = 0 iff x and y are linearly dependent
3. Ma(x,y) = A2y,) (symmetric)

4. Sensitive to scaling

5. Invariant to translation

Feature Selection Algorithm

The feature selection method consists of the following steps: First, the original features are
clustered into a number of similar subsets. This is done using the k-nearest neighbors (k-NN)
principle and a similarity measure (e.g. A2). The distances d(f;, f;) are calculated for every
feature pair. We denote R; = {d(f;, fj) : i # j} as the ordered set of distances from f; to its
neighbors. The distance to the k" nearest neighbor for each feature f; is denoted as Tf , it is the
Eth entry of R;. The distance to the k' nearest neighbor measures, how dense the cluster of k
features around f; is. The minimal distance to the k" nearest neighbor, which is the minimal

- 32 - May 22, 2018

3.2 Feature Selection

rf, is denoted as rf’ . The feature corresponding to this minimal distance is f;. We "select” f/
and remove all k£ nearest neighbors of the selected feature.

These steps are repeated; in every iteration the cluster size k is decremented by one. Only,
if the minimal distance 7' is smaller than the initial minimal distance e (of the first iteration),
the feature is selected and its k nearest neighbors are removed. Otherwise k is further reduced.
The cluster size k is initialized with some value less than the number of dimensions d of the
original feature set O.

See Algorithm 3.1 for a step by step description in pseudocode of the feature selection algo-

rithm and Listing 3.2 for implementation details.

1 Choose initial value of k<d—1
2 R=0

3 €= 00

4 Tk = 0o

5

6 if k> cardinality (R) — 1:

7 k= cardinality (R) — 1

8 if k=1:

9 stop

10 For each feature f; in R:

11 compute rf

12 Find feature f/ for which rf is minimal
13 if rk > e

14 k=k—1

15 go to line 6

16 "select” f]

17 remove k nearest features of f/
18 if e=o0:

19 e=rk

20 go to line 6

Algorithm 3.1: Algorithm 7 Unsupervised feature selection using feature similarity”.

1 def calculate_knn_distances(data, i, k, dissimilarity_fun):
2 feature = data[:, 1]

3 distances = []

4 for j in range(data.shape[1l]):

5 ifil= g

6 distance = dissimilarity_fun (feature, data[:, j])

7 distances .append ((j, distance))

8 distances = sorted (distances , key=lambda tup: tup[1l])

9 knn = []

10 for i in range(k):

11 knn.append (distances [1][0])

12 return distances[k — 1][1], knn

13

14

15 def feature_selection_using_feature_similarity (data, feature_names,

dissimilarity_fun):
16 # Initialize
17 # Choose some k <= D-1
18 k = max(1l, math.ceil (data.shape[1l] / 3))
19 r = data.copy()

20 feature_names = feature_names.copy ()

21 e = sys.maxsize

22

23 # Stop and return selected features when k =— 0

24 while k > 0:

25 # Find feature with min r_ik (minimal information loss when removing k—NNs)

26 knn_distances = []

27 for i in range(r.shape[1l]):

28 r_ik , knn_indices = calculate_knn_distances(r, i, k,
dissimilarity_-fun=dissimilarity_fun)

29 knn_distances.append ((i, r_-ik, knn_indices))

30 sorted-dist_list = sorted(knn_distances, key=lambda tup: tup[1l])

31

32 romin = sorted_dist_list [0][1]

33 min_r_knn_indices = sorted_dist_list [0][2]

34

35 # set e in first iteration

May 22, 2018 - 33 -

3 Change Detection Process

36 if e =— sys.maxsize:

37 e = r_min

38

39 if romin > e:

40 k—=1

41 # Attention:

42 # In paper k = 1:

43 # break

44 # —> 1l—-nn clustering would never be performed

45 # —> but then two equal features would not be reduced
46 if k= 0:

47 break

48 continue

49

50 # Remove k nearest neighbors of feature with min r_ik
51 min_r_knn_indices = sorted(min_r_knn_indices, reverse=True)
52 for i in min_r_knn_indices:

53 r = np.delete(r, i, 1)

54 feature_names = np.delete(feature_names, i)

55

56 # Correct k if it is larger than D-1

57 if k > r.shape[l]—1:

58 k = r.shape[l]—1

59

60 return r, feature_names

Listing 38.2: Implementation of the feature selection algorithm using feature similarity.

3.2.3 Feature Selection Through Squared Correlation

Another way to select features [15] uses the squared correlation coefficient. The proposed algo-
rithm selects and ranks features by successively selecting new features into the feature subset
S™. In each iteration m one of the remaining (not yet selected) features is added. This feature
is chosen using the squared correlation coefficient, such that it most contributes to the repre-
sentation of the remaining features. This means, that after each iteration of the algorithm, the
new feature subset S contains the most representative features. Note, that the order in which
features are added to S™ indicate the ranking of the feature importance.

The squared correlation coefficient between two random variables & and y with N realizations
is given by:

selm. 1) — Ty)? (N za)?
@9 = Gy ~ 5V, 25N 2 (3.3)

In order to find the most significant feature, the squared-correlation coeflicient is calculated
for every feature pair sc(f;, f;). Let ¢ be a n x n matrix of all squared correlation coeflicients,
with

cij=sc(fi, fj) 1,5 =1,...,n. (3.4)

The capability of a feature f; to represent all other n features f; is given by:

n

_ 1
Cj = E Z Ci,j (35)
i=1

The feature sq, that best represents all the others is then selected as s1 = fj,, where

li = argmax{c;}. (3.6)
1<j<n

- 34 - May 22, 2018

3.2 Feature Selection

In each step m, a new feature s,, is selected and added to the subset of the previous step
S™~1 such that the new subset S™ is the most representative compared with any other subsets
formed by adding a candidate feature to S™~'. Thus, in the first step m = 1, the first selected
and most significant feature s1 explains the variation in the overall features with the highest
percentage. In each successive step m = 2,...,n each candidate feature u; € S — Sm=1 (each
feature, that is not yet selected) is transformed into its orthogonal representation using the
orthogonalized selected features in §™~!, while the first associated orthogonal feature is chosen
as q1 = s1. The transformation of the candidate features u; € § — 8™ ! is performed by:

T T
u; q1 U; qm—1
qi g1 9n—19m—1

The m'™ most significant feature s,, is then calculated in the same manner as in the first

iteration, but the squared-correlation coefficient is now computed between f; and q](-m).

Cij = Sc(thj)ai =]-a 7n7.] = 17 sy =M — 1 (38)

The m! most significant feature is then chosen by s, = f1,,, where [, is calculated according
to Equation 3.6. The associated orthogonal vector is chosen as q,, = ql(::). This process
is repeated until the selected subset can explain the variation in the overall features with a
sufficiently high percentage TH. The performance is measured by the error reduction ratio
(ERR). The k" ERR states how much of the overall reconstruction error can be reduced by

including s, to the selected features S¥~1. It is given by:

1 & _I¢ (far)?
ERR(k) = = :
(k) n;sc Ti)]z; .fo_] (quk)

(3.9)

The sum of error reduction ratio (SERR) in step m states the percentage of reconstruction
error, that can be reduced by selecting the subset S™.

SERR(m E:ERR (3.10)

See Algorithm 3.3 for a step by step description in pseudocode and see Listing 3.4 for imple-
mentation details.

m=1
For every feature pair (f, fj):
Calculate the squared—correlation coefficient c¢; ;= sc(fi, f;)
For every feature f;:
Calculate the mean squared—correlation coefficient Ej:%Z?:1Ci,j
Calculate I; = argmax{¢;}
1<j<n
Choose first significant feature s1 = f,
Determine orthogonalized first significant feature q; = s;
9 For every selected feature si € Sy
10 Calculate ERR(k) =1y _Gla)®
n —3=1 (T f;)(a} ax)
11 Calculate SERR(m)= Y ", ERR(k)
12 If SERR(m)>TH:
13 stop
14 m=m-+1
15 Determine candidate features So =8 —Sm_1
16 For each candidate feature o in Sa:

U W N =

o 3

May 22, 2018 - 35 -

3 Change Detection Process

18
19
20
21
22

23
24

T T
3 @5 g1 G Gm—1
Ortogonalize a; b <.m):a-_ J L= g dm=t
& 7Y I e ? al _qm 1 Im

For every candidate— and original feature pair (f;,q;):

Calculate the squared—correlation coefficient c¢;; = sc(fi,q;)
For every candidate feature:

Calculate the mean squared—correlation coefficient Ej:%Z?:lci,j
Calculate I, = argmax{c;}

1<5<n

Choose most significant candidate feature sm, = fi,,
Go to line 9

Algorithm 3.2: Algorithm ”Feature Subset Selection and Ranking for Data Dimensionality Reduction”.

© W N U e W N

24

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

def err(data, s.m, q):
n = data.shape[1]
m = s_.m.shape[1]

err_k = np.zeros(n)
err = np.zeros (m)
for k in range (m)
for j in range(n):
err_k[j] = math.pow(data[:, j].transpose().dot(q[:, k]), 2) / (data[:,
j].transpose().dot(data[:, j]) * q[:, k].transpose().dot(q[:, k]))
err [k] = sum(err_k)/n
return sum(err)

def squared_correlation (x, y):
sc = math.pow(x.transpose().dot(y), 2) / (x.transpose().dot(x) =x
y.transpose () .dot(y))
if math.isnan(sc):
sc =0
return sc

def orthogonalize(alpha_j, q):
q-j = alpha_j.copy ()
for q-i in q.T:
q-j —= (alpha_j.transpose().dot(q-i)/q-i.transpose().dot(q-i)) * q-i
return q.j

def feature_selection_using_squared_correlation (data, feature_names, threshold
= 0.9):
feature_names = feature_names.copy ()
num-_cols = data.shape[1]
C = np.zeros ((num_cols, num_cols))
C_hat = np.zeros(num-cols)
q = np.zeros ((len(data), 1))
s.m = np.zeros ((len(data), 1))
alpha = data.copy ()

for i in range(num-cols):
for j in range(num_cols):

Cli,j] = squared_correlation(data[:, 1], data[:, j])
C_hat[i] = np.average(C[i,:])
11 =np.argmax(C_hat)
s.m[:,0] = data[:, 11]
q[:,0] = data[:, 11]
alpha = np.delete (alpha, 11, 1)
selected_feature_names = [feature_names|[11]]
feature_.names = np.delete (feature_.names, 11)
m=1

while err(data, s.m, q) < threshold:
num-_alpha = alpha.shape[1]
C = np.zeros ((num-_cols, num_alpha))
C_hat = np.zeros(num_alpha)
for j in range(numc-alpha):
q-j = orthogonalize (alpha_j=alpha[:,j], a=q)
for i in range(num_cols):
Cli,j] = squared_correlation(data[:, i], q-j)

36 —

May 22, 2018

3.3 Feature Extraction

59 C_hat[j] = np.average(C[:,j])

60 11 = np.argmax(C_hat)

61 m += 1

62 s.m = np.column_stack ((s.m, alpha[:,11]))

63 q = np.column_stack ((q, orthogonalize (alpha_j=alpha[:,11], q=q)))
64 alpha = np.delete (alpha, 11, 1)

65

66 selected_feature_names.append(feature_names[11])
67 feature_.names = np.delete(feature_names, 11)

68

69 return s.m, selected_feature_names

Listing 3.4: Implementation of the feature selection algorithm wusing squared-correlation
coefficients.

3.2.4 Discussion

It is advisable to combine different feature selection mechanisms, in order to obtain good features
for smartphone usage data. We used expert knowledge to find a rather extensive set of features,
or measurement signals, that represent all aspects of interest. The mobile application only
collects relevant data, so that memory requirements are kept at a minimum and battery life
is optimized. In the case of smartphone usage data, we cannot exclusively rely on expert
knowledge to select meaningful features, because every user has a very distinctive behavior. We
need feature selection mechanisms, that select relevant features for each user individually on the
basis of previously unseen data. Therefore, we apply one of the automatic mechanisms on top
of the pre-selected features.

The two introduced algorithms from Sections 3.2.2 and 3.2.3 both require a rather large set
of original features in order to yield a good choice of selected features. The algorithm based on
the maximum information compression index (3.2.2) is simple and easy to interpret. The initial
cluster size k is selected manually; it indirectly specifies how many features are selected and how
many are removed. Note, that there is no measurement of how well the subset represents the
original features; the stopping criterion depends on the error threshold which, in turn, depends
on the initial value of k. If, for instance, all original features are relevant, this algorithm would
still remove some of them.

The algorithm based on the squared correlation coefficient (3.2.3) selects features, until the
selected subset exceeds a pre-selected percentage of accountability for the original features. If,
for instance, all features were relevant, this algorithm might select all of them. However, on the
considered data this algorithm does not perform particularly well.

The feature selection through feature similarity (3.2.2) seems to be a valid choice for our data,
although it requires a large set of original features in order to perform well.

In the results in Chapter 4 manual feature selection is performed, because it leads to better
results. Features are picked by hand, according to prior knowledge about the targets and a visual
analysis of the data signal. Automated feature selection is still essential for the application on
unseen data.

3.3 Feature Extraction

This section contains a short overview of feature extraction in general and the method Principal
Component Analysis.

Feature extraction is, in contrast to feature selection, exclusively concerned with dimension-
ality reduction by creating new features. The original features are extracted and combined into
another feature set, such that the resulting set contains less features but the loss of information

May 22, 2018 - 37 -

3 Change Detection Process

is minimal. In this case, it is hard to interpret the newly obtained features, because they do not
correspond to original features but are instead a combination of all of them.

3.3.1 Principal Component Analysis

Principal Component Analysis (PCA) is one of the most well known feature extraction techniques
in statistical data analysis and machine learning [16]. It converts a set of possibly correlated
values into a set of linearly independent values, which are called the principal components. The
number of principal components is determined by the minimum of the number of features or the
number of samples minus one. Principal components are ranked according to their importance
to represent the data. The first principal component accounts for as much of the variability
in the data as possible, and each succeeding component accounts for as much of the remaining
variability as possible. See Figure 3.6 for a visual representation of the PCA. The resulting
features are calculated by projecting the original data to the principal components. PCA is
mainly used to perform dimensionality reduction, which can be done by selecting the k < n first
principal components obtained by a f X s data set, where s is the number of samples, f is the
number of features and n = min(f,s —1).

A

) PC1

PC2@ o

»
>

Figure 3.6: Visual representation of PCA.

3.4 Changepoint Detection

This section is concerned with changepoint detection algorithms. First, we address algorithm in-
dependent issues. Second, we summarize the two changepoint detection algorithms ChangeFinder
(Section 3.4.1) and Bayesian Online Changepoint Detection (Section 3.4.2). Each algorithm is
first introduced in a theoretical manner, as reported by their authors, and further explained
according to their implementation for this thesis. Third, we discuss different statistical models,
and their characteristics, for learning the observed data (Section 3.4.3). Our smartphone usage
data is analyzed according to these characteristics and we introduce some more decision criteria
for choosing a suitable model.

Both implemented algorithms, the ChangeFinder (CF) and the Bayesian Online Changepoint
Detection (BOCPD), learn the signal distribution of the current segment and try to infer the
change likelihood at a past or current time step. Independent of the used algorithm the problem
of changepoint detection in multivariate smartphone data can be approached using different
methods of feature fusion. In total there are around 175 features available consisting of eight
activity types, six usage statistic types, nine location types, mood and sleep, each within one of
the seven day slices, such as all day or in the morning. The input data contains any number of
features, selected through feature selection mechanisms described in Section 3.2, per day, which

- 38 - May 22, 2018

3.4 Changepoint Detection

makes the data a univariate (one feature) or multivariate (multiple features) time series. In
order to represent the user behavior well, there is obviously more than one feature needed. This
raises the question of whether to use one model representing all features at once or multiple
models representing each of the features individually.

In the case of one model learning a multivariate signal there would be one change detection
algorithm, which processes one feature vector per day. The multivariate variation not only
considers the distribution of each feature, but additionally captures the relation between features.
So, for instance, if two features are normally distributed according to some parameters and at
some point the correlation between them changes, but the parameters of each distribution stay
the same, a multivariate model could detect a change whereas two univariate models for each
feature could not. In order to learn a multivariate model more data samples are required than
when learning two separate univariate models, because of the additional complexity it contains.

In the case of multiple univariate models learning the underlying distribution of each feature,
the change likelihood of each feature is combined in some way in order to determine the overall
change likelihood and decide whether a changepoint occurred. The results of the individual
change detections per feature can be combined using a logical AND or a logical OR operation by
means of detected changes (true or false valued), or more meaningful by a weighted combination
of the individual change likelihoods. The assignment of weights is again another optimization
problem. Within this thesis considered strategies for choosing weights include equal weighting
of all features, weights depending on expert knowledge or according to data availability.

Depending on the used model distribution there is a certain preliminary lead time required in
order to give an estimate about the underlying process that generated the observed signal. Each
detector takes lead_t, the lead time, as a parameter. Before the lead time elapses, the model
parameters are updated but no change can be detected. As soon as the lead time is expired, the
algorithms start with the changepoint detection and update the models in every step. As soon
as a changepoint is detected the model parameters are reset and the lead time countdown starts
again, in order to learn a new, unbiased model of the underlying process of the new segment.

The OnlineSimulator class is used in the change detection phase to reproduce the knowledge
scenario at the current time step, thus the to the algorithm currently available data. It takes
a detector object, the data set and optionally the dates for plotting purposes. The detector
contains the actual algorithm. Methods to update the available data and to extract the detected
changepoints are accessible via an interface. The OnlineSimulator iterates through the data
signal and calls the appropriate detector methods to simulate the data signal at each time step.
Additionally it tracks detector properties which are updated at every time step, they are used
to display the results after the run has finished. The ChangeDetector is used as a base class
for all implemented change detection algorithms. It holds common variables, such as detected
changepoints and the time steps in which the changepoints were detected, which gives the
detection lag. The abstract method next(z) is called at every time step to provide the current
input datum to the algorithm and perform the detection calculations. Check_for_change_point()
is called at every time step to do the actual verification whether a changepoint occurred and
plot(data, dates) is used to plot detector specific properties in the end.

3.4.1 Change Finder

An algorithm, that reduces the problem of changepoint detection to outlier detection is intro-
duced in [17], where the authors describe a framework that is used to address both problems
in the same manner. It is a real-time method for detecting significant changepoints, which at
the same time filters single outliers. This is achieved by applying a two-stage algorithm, called
ChangeFinder.

It first calculates outlier scores based on the deviation of the new observation to the learned
model. Then it averages these outlier indicators over a fix-sized window. The first sage is

May 22, 2018 -39 -

3 Change Detection Process

repeated with the averaged scores as a basis, such that a change score is the result. The
framework is designed to fit one model in each stage to the current signal value and its averaged
outlier score respectively. This is a cost efficient approach compared with similar concepts that
try to find the most probable changepoint at each time step by best fitting each adjacent segment
to a stochastic process.

Reset model parameters 7, and 7, H Changepoint found at time ¢ }
yes
no
s(t)>TH
START
¥ N Calculate R-averaged change score
Observe new data point x; s(t) = + L mse(ur)
v 0
Evaluate probability density p(x;| X 1) Calculate change score
; : se(ye) = —log q(yely™*~")
Update model parameters 7, t
! Update model parameters 7,
Calculate outlier score t
So(t) = —log p(a| X 11-1) Evaluate probability density q(y:|y'*~1)

Calculate T-averaged outlier scores

t—1
Ve =7 Xis_7 5o(T1)

Figure 8.7: Flow chart of the ChangeFinder algorithm.

See Figure 3.7 for a stepwise representation of ChangeFinder. In the first stage the outlier
score is calculated. At each time step the conditional probability density function of x; given
X1 = 2y, ...,z 1, denoted as p(x;|X1*71), is evaluated. It gives the probability density
of the currently observed data vector to be generated by the underlying process, estimated
using the already seen data sequence. The stochastic process is learned incrementally at each
time step by updating the process of the last step by the currently observed data point. There
are many ways to learn this process (e.g. with a model based on the normal distribution),
the suitability highly depends on the data though. The conditional probability density for the
currently observed data point is used to calculate a loss score, which expresses the prediction
loss for @, relative to the learned probability density function p(x;| X1*=1). A logarithmic loss
function can be used to calculate this score; it is defined as

so(xy) = —log play| X H71). (3.11)

A higher loss score indicates that the observed data point is an outlier with a higher probability.

The sequence of outlier scores from the first stage is the basis for the second one. We slide a

- 40 - May 22, 2018

3.4 Changepoint Detection

window with a constant size T over the outlier scores and construct the T-averaged score as

ytZ; D solm), (3.12)

where s,(x;) is the loss score calculated according to 3.11. For all scores s,(z;) with i < T
default values are assumed to calculate the T-averaged score. The process of averaging over a
window of ourlier scores is needed to smooth out single outliers and keep only bursts of outliers.
When a changepoint occurs, the averaged outlier score will start to increase and further rise
up within the next time steps. The duration of an elevated averaged outlier score depends on
the window size chosen for the averaging process. When an isolated outlier occurs the averaged
score will rise slightly, but then decrease again at the next time step.

The resulting sequence of T-averaged outlier scores is then used in the second stage to learn
the underlying probability density function. The R-averaged score at time t is then calculated
using a loss function (e.g. 3.11) and the learned model 7, of the averaged outlier score as

s(t) =5 Zt: Se(Yi)- (3.13)
R

A higher score s(t) indicates that a changepoint occurred with a higher probability. The
two moving average processes are used to remove isolated outliers. When the moving average
window size R is small, changepoints and outliers are detected immediately after they occur,
but it is hard to distinguish between a single outlier and a changepoint. In the case where R is
large, the detection lag for changepoints increases, but outliers are filtered successfully and only
significant changepoints are identified.

Implementation Details

The ChangeFinder implementation uses the detector base class and therefore implements the
common methods next(z) and check_for_change_point(). An SDAR model [17], which is based on
an autoregressive model, is used to learn the T-averaged score y;. Initialization parameters can
be used to configure the SDAR model, such as the influence of more recent and older samples
for the probability density function, or window sizes for the moving average calculations. When
a new value is observed, the mext(z) method is called, which contains the score calculations.
First a white Gaussian noise is added to the data signal in order to prevent numerical problems,
which might occur for all-zero slices in the data sequence.

The outlier score is calculated using a model based on the StudentT distribution. The as-
sumption that data in the time series linearly depends on previously observed values is not
necessarily valid for smartphone usage data. The StudentT distribution resembles the normal
distribution when sufficient data is available, though it performs relatively well even with only a
small amount of available observations and is capable of updating its parameters without stor-
ing all past data vectors. See Section 3.4.3 for a more detailed discussion about the suitability
of models and distributions. The change score is calculated using a SDAR model, because in
this case there certainly exists an autoregressive property of the time series. This is because
of the averaging step over the window from the first stage of the algorithm, which results in a
dependency of the value in time step ¢ on the values in the time steps ¢t — r to t — 1, where r is
the window size.

The outlier- and change scores are calculated according to the algorithm, while window sizes
for the averaging steps can be configured. When the scores are used to identify changepoints,
the lead time is used to prevent premature detections. A changepoint is detected if s(t) exceeds

May 22, 2018 - 41 -

3 Change Detection Process

a configured threshold. The changepoint times are then saved and the models are reset in order
to prevent a biased start for the next segment in the time series.

3.4.2 Bayesian Online Changepoint Detection

Another changepoint detection algorithm [18] performs exact inference of the most recent change-
point using a Bayesian approach. It is a message-passing algorithm, that is concerned with
estimating the run length, or the time since the last changepoint.

The data within each segment is assumed to be i.i.d. (independent and identically distributed)
from some probability distribution P(x|n,), while also the distribution parameters 7,,p =
1,...,m between different segments are presumed to be i.i.d. The a priori probability for a
changepoint, that is based on expert knowledge, is denoted as Psp(7). The length of the
current run, or segment, at time ¢ is denoted as ;. The set of observations associated with this
run is Xt(r). The length of the current run is zero, whenever a changepoint occurs; Xt(T) can
consequently be empty.

To find the posterior distribution

P(’I“t, Xl:t)

P(Tt\Xlzt) = 7P(X1¢t))

(3.14)

the joint distribution over the run length r; and the observed data sequence X ! are examined
in a recursive form.

P(ry, X1 =Y P(ry,rq, X'
Tt—1

= ZP(Tt,wt’ff’t_l,Xl:til)P(Tt—th:til) (315)

Tt—1

= 3" P(rlree1) P(alrer, X)) P(ri—y, X171,

Tt—1

The distribution P(x¢|ri—1, Xt(i)l) only depends on the set of observations associated to the
current run Xt(i)l. This means that a recursive message-passing algorithm can be used to
calculate the joint distribution over the current run length and the observed data, which is
based on the calculations of the prior over the current run length r; given the run length in the

last time step 7;,—1 and the predictive distribution over the newly-observed data point, given the
data since the last changepoint P(a:t|Xt(i)1).

The conditional prior on the changepoint P(r|r;_1) describes the structure of the algorithm.
It can only have two outcomes, either the run length continues to grow and r, = r,_1 + 1 or a
changepoint occurs and the run is truncated, which means the run length r; is zero.

H(Tt_1+1) ifT‘t:O
P(Tt‘Tt_l) =q1- H(T’t_l + 1) ifry=ri14+1 (316)
0 otherwise

The probability mass of either case is defined through the hazard function H (7). It describes
the probability, that a changepoint occurs at time 7, considering the application background. It

- 42 - May 22, 2018

3.4 Changepoint Detection

is given by:

Pap(T)

HT) = = Pl

(3.17)

The predictive probability P(a:t]nt(r)), gives the probability, that the observed data point
belongs to the learned model of the current segment.

The growth probability gives the probability, that a run length in the last time step r;_1 is
incremented and the segment is ongoing.

P(ry =11 + 1, X)) = P(ry_y, X P(zyn™) (1 — H(1)). (3.18)

The change probability gives the probability, that the segment is truncated and the run length
drops to zero.

Pry = 0, X)) = 37 P(ri_y, X0 Pl |n”) H (1). (3.19)

Tt—1

The run length with the maximal likelihood is used to detect new changepoints. It is given
by:

r® = arg max P(ry X 1), (3.20)
rel:re

with
| P(ry, X1

P(ry| X") = X) (3.21)

X, PO, X

In every time step the message-passing algorithm first evaluates the predictive probabilities
P(iBt|7]§r)) of the newly-observed data point given the learned model parameters for each past
time step. Then the hazard function (3.17) is evaluated for all potential run lengths, 7 =1, ..., t.
The algorithm then calculates the growth probabilities (3.18) by scaling the probabilities of each
possible run length from the last time step by the predictive probabilities and the conditional
changepoint prior. In order to calculate the change probability (3.19), the probabilities of each
possible run length from the last time step are scaled by the predictive probabilities and the
conditional changepoint prior, which is H(7) in this case. These probabilities are then summed
up and give the probability, that the run length drops to zero and a changepoint occurs. In
the next step the most likely run length (3.20) at the current time step is evaluated. It is the
run length hypothesis with the maximal probability mass. A new changepoint is detected, if
the run length with the maximal probability does not trace back to the last changepoint. The
model parameters for the current time step 17?") are updated if the segment continues and they
are reset if a new changepoint occurs.

See Algorithm 3.5 for step by step calculations in form of pseudo code and see Figure 3.8 for
an illustration of a changepoint model described in terms of run lengths. Figure 3.8(a) shows a
univariate data sequence, which can be divided into three segments. The changepoints c; at time
t = 7 and co at time t = 12 occur due to a mean-shift in the data. The changepoints separate the
data sequence into segments with lengths s; = 6, ss = 5 and an uncompleted segment with an
undetermined length s4 > 4. Figure 3.8(b) shows the actual run length r; as a function of time.
The run length is increased by one in every time step where the current segment continues, and
it drops to zero as soon as a changepoint occurs. Figure 3.8(c) illustrates the message-passing

May 22, 2018 — 43 -~

3 Change Detection Process

algorithm. It shows the path on which the algorithm propagates the run length probability mass
recursively between time steps. Solid lines indicate the case where no changepoint occurs and
the probability mass is passed "upward” from the last time step. Dotted lines indicate the case
where a changepoint occurs, the current run is truncated, and the probability mass is passed
"down” to a run length of zero. Each circle represents a run length hypothesis, containing
probability mass. At each time step the most likely run length is determined and used to detect
new changepoints.

For initialization two different cases are considered. When a changepoint occurs immediately
before the first observation, all the probability mass for the initial run length is placed at zero,
thus P(rg = 0) = 1. This is used for applications where the last changepoint is known and the
observation sequence then starts exactly at the beginning of the new segment. In the other case,
where the observation sequence is most likely a recent subset of the segment, the prior over the
initial run length is approximated by the normalized survival function

P(ro=71) = 25(7), (3.22)

where Z is an appropriate normalizing constant, and S(7) is the survival function.

S =3 Pap(t) (3.23)

Initialize
P(ro) =8(r) or Plro=0)=1
ngm = Mprior
Observe New Sample x¢
Evaluate Predictive Probability
") = P(ain;”)
Evaluate Hazard Function
hy = H(l : t)
Calculate Growth Probabilities
Plre=ri1 41, X5) = P(re_y, X311 = hy)
Calculate Change Probabilities
Pre=0,X") =%, P(re—1, X1u—1)m\ bt
Calculate Evidence
P(X1) = 5, Plr, X**)
Determine Run/Length Distribution
P(rt‘Xlzt) — P(T‘t,let)/P(let)
Determine Maximal Run Length Likelihood
P = argmazrei.r, P(re| X 1)
Update Sufficient Statistics
if changepoint occurred
e

else

i = update(n”, @¢)

Return to line 4

© 0 N0 s W N

I T e T e e T
= O © 0 N0 U A W N = O

= Mprior

M
¥

NN
s @

Algorithm 3.3: Overview of steps needed to perform the bayesian online changepoint detection.

The conditional prior on the changepoint P(r¢|r;—1) makes the algorithm efficient, because
the probability mass function is non-zero in only two cases. Either the run length of the previous
time step is increased by one, or it drops down to zero. In each time step all possible run length
likelihoods of the previous time step and their model parameters are needed. The space- and
time-complexity per time step are linear in the number of data points.

- 44 - May 22, 2018

3.4 Changepoint Detection

s1 =06 S9 =5 s3> 4
Ar N
| |
L 1 1
1 1
ig 4 4 [1 e
g [) ° [1 é [)
-+)
20 ° 1 1
n | 1 1
fg 1 1
%3 4 1 1
1
° 1
T [[1
°
4 I ° 1
1 1
]]]]]] []]]] L]]] »
T T T T T T T T T T T T T T T »
7 12 time ¢
(a) Data sequence separated by changepoints.
L}
~ '
< \
+. Al
20 \]
] ' v
2 ‘I '
1 “
=) ' \
=i ' \
—] v
1 1
' !
i} \
] l]]]] y]]]] y]] | »
I I I 1 1 1 v 1 T T T v T T T N
1 7 12 time ¢
(b) Run length.
A
-+ Q Q Q Q Q Q Q Q Q Q O
o YAV AV AV EAVAVEAVAVAVE
-T- O O O O O O O O O O O O
ﬁ AV YAV AVAVaEYayaAvaAva
bo -T- O O Ou Ou Ou Oun Oun Ou Ou Oun Oun Ou ®)
e} [} " (1Y W W [[l [w [[[
2 —— O @) ‘I ‘I 1 ‘I " e (L} ‘I " ‘I " ‘I " ‘I " ‘I " ‘I " ‘I " ‘I " O
d N AN A A A A A M M M M
g y ‘\ ‘\l ‘\l ‘\l ‘\l ‘\l ‘\l ‘\l ‘\I ‘\I ‘\I ‘\I
s+ ol o Bl o SYW o Rt Yo S P o Y o P e kP o R Yo S P o R o P o rY o Yo
= \ \ Ay Ay \ \ Ay Ay \ \ Ay Ay \ \
" w w w w w w w w w w w
-T- O Oy O wO WO w0 w0 @ W@ w0 WG w0 WG w0 w0 WD
\ NS e e e e Ye Ye Ve Y Ye Ye Vs
O O O O O O O O O O O O O O O
1 7 12 time t

(c) Trellis of run length estimate.

Figure 3.8: Changepoint model expressed in terms of run lengths.

Implementation Details

The Bayesian Online Changepoint Detection implementation uses the detector base class and
therefore implements the common methods next(z) and check_for_changepoint(). Initialization
parameters are used to configure the hazard- and survival functions, a survival normalizing
constant, the model used to estimate the observation likelihoods and the lead time. The prior
over the initial run length is chosen to be the normalized survival function, as in equation 3.22.
This is necessary, because the first datum is assumed to be recorded sometime within a segment

rather than at the very beginning. Depending on the parameter ¢_lead_active a countdown for
the lead time is initialized.

When a new value is observed, the nezt(z) method is called, which checks the lead time, if

May 22, 2018 ~ 45

3 Change Detection Process

applicable, and performs the calculations. The wrapper for the likelihood observation models
are able to handle initial updates from data received during the lead time as well as updates
during the actual changepoint evaluation, where they keep model parameters for every time
step. The implementation in python is shown in Listing 3.6.

1 # based on:

2 # http://hips.seas.harvard.edu/content/bayesian—online—changepoint—detection
3 # and https://github.com/hildensia/bayesian_changepoint_detection

4 def next(self, x):

5 self. _update_base_residuals (x)

6

7 # Update model while in the lead time countdown

8 if self.t_lead_countdown > 0:

9 self.observation_likelihood .update_theta(x, initial=True)

10 self.t_lead_countdown —= 1

11 return

12

13 if self.t_lead_countdown == O0:

14 self .Ts.append(self.signal_size —1—self.t_lead0)

15 self.t_lead_countdown ——= 1

16

17 self .t +=1

18

19 R = np.zeros ((self.t + 2, self.t + 2))

20 R[0:self.t+1,0:self.t+1] = self.R

21 self R =R

22

23 # Evaluate the predictive distribution for the new datum

24 # under each of the parameters.

25 predprobs = self.observation_likelihood .pdf(x)

26

27 # Evaluate the hazard function for this interval

28 H = self.hazard_func(r=np.array(range(self.t_lead0+1,self.t_leadO+self.t+2)))
29

30 # Evaluate the growth probabilities:

31 # Shift the probabilities down and to the right ,

32 # scaled by the hazard function and the predictive probabilities.

33 self R[1:self.t+2, self.t+1] = self .R[0:self.t+1, self.t] % predprobs x (1-H)
34

35 # Evaluate the changepoint probabilities:

36 # Accumulate the mass back down at r = 0.

37 self . R[0, self.t+1] = np.sum(self.R[0:self.t+1, self.t] % predprobs = H)
38

39 # Renormalize the run length probabilities for improved numerical

40 # stability .

41 # Run Length Distribution = Runlength Probabilities / Evidence

42 self .R[:, self.t+1] = self .R[:, self.t+1] / np.sum(self.R[:, self.t+1])
43

44 # Update the parameter sets for each possible run length.

45 self.observation_likelihood .update_theta(x, False)

46

47 # Evaluate the maximal run length likelihood for the current time t

48 self .maxes.append(self .R[:, self.t+1].argmax())

Listing 3.6: Implementation of the Bayesian Online Changepoint Detection Algorithm.

The method check_for_changepoint() uses the maxes list, which contains the indices of the run
length with the maximal likelihood per time step. Using the current time step ¢ and the run
length with the currently maximal likelihood, the time step of the last changepoint is calculated.
If a new changepoint was detected, the time step in which it occurred and additionally the time
step of detection are preserved. The distribution models and the lead time are then reset. So
after the lead time has elapsed, there exists a clear model, learned from only the data after the
last changepoint.

Hazard function

The hazard function defines the prior knowledge over the changepoint frequency in the domain.If
no prior knowledge is available, one could choose a constant. This assumes, that the occurrence

- 46 - May 22, 2018

3.4 Changepoint Detection

of a changepoint at a certain time step ¢ does not depend on ¢ and is given by:

H(r) = 1/) (3.24)

Alternatively, a more suitable hazard function can be used if prior knowledge exists. In the
case of bipolar state changes, we choose Pyp = N (u = 120,0 = 45). This models, that around
68% of bipolar affected people experience a state change after 75 to 165 days of their previous
state [3]. The hazard function is given by the density function divided by the survivor function.
For numerical stability, this is calculated by exponentiating the difference of the logarithmic
density and the logarithmic survivor likelihood. In the case of the assumed normal distribution,
it can be calculated as follows in python:

1 def normal_hazard (mu, si, r):
2 return exp(norm.logpdf(r, loc=mu, scale=si) — norm.logsf(r, loc=mu, scale=si))

Listing 8.7: Implementation of the normally distributed hazard function.

Feature Fusion Versions In order to deal with the numerous features relevant for the multi-
variate smartphone data, there are two versions regarding feature fusion, as already described in
Section 3.4. Both versions were implemented: the BOCPD with a multivariate model, and the
BOCPD with multiple univariate models that are combined using weights. To accomplish this,
the BayesDetector was extended to activate / deactivate the lead time and supply functions to
reset certain properties and retrieve run length likelihoods. For the multivariate version one de-
tector is instantiated and supplied with a multivariate distribution model. This detector is then
directly used by the OnlineSimulator to simulate the data sequence and call the appropriate
methods for every time step.

In case of the weighted version, a wrapper was implemented. It receives hazard- and survival
functions, distribution models, normalizing constants for the survival functions, weights and a
lead time. All parameters except the lead time are arrays of the same size, which is again the
same size as the input vector z in the next(xz) step. The wrapper then creates a BayesDetector
for each feature, with the parameter elements respectively. Here univariate distribution models
are used, where each feature might use its particular distribution model. For hazard- and
survival functions the same distribution with same parameters is used for all features, because
it represents the changepoint frequency and is independent of the distribution of individual
features. The same lead time is used for all concrete detectors, where it is deactivated and
instead handled in the wrapper. When the next(z) method is called, the concrete detectors
are iterated and their appropriate methods are called, so that the wrapper in the end holds
the run length likelihoods for the current time step ¢ and weights them according to the weights
parameter. The resulting fused run length likelihoods are then used to determine the most likely
run length and further the last changepoint in the same manner as the BayesDetector.

3.4.3 Model Selection and Data Characteristics

The models that are used to describe the underlying stochastic process of the time series data
are crucial for the performance of the change detection algorithm. First, one can distinguish
between two types of models, the independent models which don’t take the chronological course
of the time series into account and time series models, or regression models, which are based
on the linear dependency of data points on previously observed data. The suitability of these
models strongly depends on the data, but is also influenced by the algorithms that use them.

May 22, 2018 — 47 -~

3 Change Detection Process

Time Series Model

A time series model is conceptually a linear regression of the value at time step ¢ against prior
values of the series X1?~1. Commonly used time series models are the autoregressive (AR)
models and the moving average (MA) models as well as combinations of both. Within the
context of this thesis only the autoregressive model was investigated regarding its suitability
due to its popularity in time series literature. The autoregressive model for univariate data is
defined by

k
Ty =0+ Z GiTi—; + €, (3.25)
=1

where k is the order of the model, ¢; is the model parameter for the predecessor at distance
i, is the process mean weighted by (1 — Y% | ¢;) and € is white noise [19].

In order to determine the suitability of the AR model for the smartphone usage time series,
the auto regression properties of the data were analyzed using visual methods. Figure 3.9 shows
autoregressive visualizations of the Walking feature. Figure 3.9(a) shows the measurement
difference of that feature from one day to the next, where the x-axis contains the value at time
step t and the y-axis represents the data value at time step ¢ + 1. Figure 3.9(b) shows the
correlation of data values to previously observed data with a fixed distance (lag). This visual
representation indicates, if there are linear dependencies and if applicable, suitable orders for
a auto regressive model. In smartphone usage data most of the features don’t seem to behave
according to an AR model.

yit+1)
o o © =
IS El @ o

autocorrelation

o
]

' T I FEP SN £ N TP 1T
& I T
0.0 02 o 08 10 6 é 1.0 1‘5 iU 2‘5 3.0
lag
(a) Data plot with lag = 1. (b) Autocorrelation.

Figure 3.9: Autoregressive analysis of physical activity feature Walking.

Models for Time-Independent Samples

Independent models fit some assumed distribution to the relevant data, weighting every data
point equally, independent of its distance to the current time step. There are various distribu-
tions available [20], differing among others in

— 48 - May 22, 2018

3.4 Changepoint Detection

1. Continuity

[\V]

. Symmetry

w

. Upper- / lower limits
4. Frequency of outliers

In order to choose a distribution, the smartphone data was analyzed regarding these char-
acteristics. In our case the data is continuous with upper and lower limits, the only exception
is the mood, which is a discrete value between minus three and plus three. Features with the
time frame whole day for instance can reach duration values between zero seconds and twenty-
four hours. The data representing activity durations is mostly clustered around a central value,
where positive and negative derivations are approximately equally likely. This characteristic
highly depends on the user him- or herself though. A user might, for instance, not use social
media applications very often so the mayor cluster of usage durations per day would be at or
slightly above zero, the lower limit. When the user now and then uses this application group,
the distribution would gain a skewness toward the positive. The frequency of extreme values in
our smartphone usage data is rather high, which results in a high kurtosis (or positive excess
kurtosis, which is related to the normal distribution).

The normal distribution is one of the most commonly used continuous distributions in proba-
bility theory. It is often used to model unknown distributions of random variables in the natural
and social sciences. It is popular because of its broad applicability; the central limit theorem
states, that the sum of realizations of random variables tends toward a normal distribution, even
if the original variables are not normally distributed. The normal distribution is described by
only two parameters, the mean and the standard deviation. This makes model fitting to the
normal distribution easier and more efficient than with most other distributions. The normal
distribution is characterized by a strong tendency for data to take on a central value while pos-
itive and negative derivations are equally likely, so it is symmetric. The frequency of deviations
falls off rapidly as we move further away from the central value, so it has a flat tail modeling
few extreme values.

Hence, the smarphone data does not fit the normal distribution particularly well. Alterna-
tively, one can use the logistic distribution or the Cauchy distribution, which are both symmetric
but have a higher kurtosis than the normal distribution. This means, that these distributions
have a heavy tail. The Cauchy distribution has a scale parameter to determine how heavy the
tail of the distribution is.

The Student’s t-distribution or t-distribution is another symmetric and bell-shaped distribu-
tion, that has heavy tails. It is especially useful when a normal distribution is assumed and
there is only a small sample size available, while mean and standard deviation are unknown.
The t-distribution resembles the normal distribution when sufficient data is available, though it
performs relatively well even with only a small amount of available observations and is capable
of updating its parameters without storing all past data vectors.

Independent of the distribution’s form, it is advisable to use distributions that allow a piece-
wise update of their parameters. Another aspect to the distribution choice is the amount of
data required to successfully represent the stochastic process. The more complex the model, the
more data is required to learn the process. A more complex model might be able to represent
the data better than a simpler one, but if there is not enough data to properly fit the model, it
might perform worse in comparison to the simple model.

We can either use multiple univariate models that are combined, or one multivariate model.
An advantage of the multivariate model is, that additionally to the individual distributions
of the features it models the relationship between them. A weighted model consisting of two
features could not detect a situation where the features change their relation to each other
while a multivariate model could. For the weighted case expert knowledge is required in order

May 22, 2018 — 49 -

3 Change Detection Process

to properly choose the importance of the individual components. The models themselves are
simpler and might yield better results for less learning data.

Within the context of this thesis, models based on the t-distribution, multivariate t-distribution,
mizture of t-distributions, multivariate normal distribution, mizture of Gaussians, multivariate
mizture of Gaussians were applied to learn smartphone usage data and visually analyzed [21],
[22], [23].

See Figure 3.10 for exemplary visual analysis of the distributional fit of univariate smartphone
usage data to some of the most relevant distributions.

(a) Location Home. (b) App Usage Messaging.

(c) App Usage Phone. (d) Physical Activity Walking.

Figure 8.10: Various distributions to model smartphone usage data.

3.5 Evaluation

This section is concerned with the evaluation of the algorithmic performance. First, we explain
how the evaluation of the different datasets is performed and then we give an introduction to
the F-score calculations, in principal and how it can be applied to changepoint detection.

In order to evaluate the different algorithms with distinct distributions and various configu-
rations, a consistent scheme of quality estimation is required. The fact, that only very limited
and incomplete data for changepoint targets is available, makes the evaluation process difficult.
In order to verify the correct implementation and get a first insight of the performance of the
two algorithms, some synthetic data is generated. The performance is measured by means of
the F1 score, which is a well known and widely used measure of accuracy in statistical analysis

- 50 — May 22, 2018

3.5 Evaluation

of binary classification. See Section 3.5.1 for a detailed description of the F-score and how it can
be applied to evaluate the accuracy of detected changepoints while also considering the detection
lag.

In order to evaluate the performance of different distribution models and feature selection
mechanisms it is necessary to apply the algorithms to real smartphone usage data. For this
purpose the recorded usage data of multiple people was examined, including self-recorded targets
in form of a coarse diary. So the subjects themselves provided records of extraordinary events
and changes in their lifestyle. In this case, the evaluation was done manually by executing the
change detection on the data and tracing back the detected changepoints to actual events that
are listed in the participant’s notes.

Actual data from bipolar affected people is acquired through the study, which is described
in Section 2.6. Because the study is still ongoing and at the time of this thesis there are only
few participants with relatively short time series of recorded smartphone usage data, there is
only very limited data available to evaluate the actual use case of the change detection process.
The available data is used in the same manner as the smartphone usage data, that originated
by the group of ordinary participants. In this case the targets result from the interviews and
questionnaires made by the clinical personnel during the medical visits of the study, as described
in Section 2.6. They are used for the detection evaluation by means of a manual review and
individual discussion.

3.5.1 F-score

The F-score is widely used as a measure of accuracy in statistical analysis of binary classification.
It expresses the relation between precision and recall. Precision p describes the amount of
selected elements that are relevant, which is calculated by the number of correct positive results
(true positives) divided by the number of all by the classifier as positive categorized results (true
positives + false positives). Recall r represents the amount of relevant items that are selected,
which is calculated by the number of correct positive results (true positives) divided by the
number of all truly positive, or relevant, samples(true positives + false negatives). See Figures
3.11 and 3.12 for a visual representation of the precision and recall calculations.
The general formula for the F-score is:

pr
Fy=(01+p8%) 75+ 3.26
=) (3.26)
where 3 is a positive real value, which emphasis either precision or recall. A S < 1 weights
recall lower than precision, such as the Fy5 measure, and a 8 > 1 weights recall higher than
precision, such as the F» measure. The Fj score is the traditional or balanced F-score, which is
the harmonic mean of precision and recall. It is given by:

pr
p+r

F =2 (3.27)

Perfect precision and recall result in an Fj score of 1 and a value of 0 means that every element
was classified the wrong way.

May 22, 2018 ~ 5l -

3 Change Detection Process

relevant elements

true negatives

false negatives
tn

o "

true positives

tp
()
()

selected eleme/nts

Figure 3.11: True positives tp, false positives fp, true negatives tn, false negatives fn.

Recall =
Precision =
(a) Precision: How many selected (b) Recall: How many relevant
items are relevant? items are selected?

Figure 3.12: Precision and Recall.

Application of the F; score to Changepoints

The F} score can be applied to evaluate the performance of detected changepoints in various
ways. First, one can only consider the time step of the detected changepoint and ignore the
detection lag for the evaluation process. Then there is the assignment of detected changepoints
to real changepoints, which influences the calculation of the true positives, false negatives, false
positives and true negatives. So a detected changepoint could for example be accepted as true
positive only when it was detected on the very same day as the original changepoint, or it could
be accepted if it was within a window around the real changepoint. Also, there could be a score,
indicating how close the detected changepoint was to the real one. The same considerations
could be made for the detection lag, which would introduce either two acceptance windows or
two scores describing how close the detected changepoint is to the real one and how long it took
to detect this change.

We chose to calculate the true positives tp and further the true negatives tn = m — tp using

tp=> (1—ay)'e +a;*, (3.28)
=1

- 52 - May 22, 2018

3.5 Evaluation

where n is the number of real changepoints and m is the number of detected changepoints.
The weight for the detection lag is denoted as «ay,, the weight for the changepoint is 1 — ay,. We
use lop as the indicator function for changepoints, where 1op = 1 if the changepoint is within
the window and 1op = 0 otherwise. We denote 1, as the indicator function for detection lags,
where 17, = 1 if the lag is within the lag-window and 17 = 0 otherwise.

In our case an accurate detection as well as a short detection lag are relevant, event though
the accuracy of the detection is considered more important. We chose equal window lengths
for the changepoint and the detection lag. The detected changepoint and the time of detection
must be within a window around the real changepoint, in order to be counted as correct. When
the changepoint is detected correctly but the lag is too large, only (1 — ayz) is added to the true
positives (tp) and «y, is added to the true negatives (tn).

May 22, 2018 - 53 —

Changepoint Detection in Smartphone Usage

Results

In this chapter the two algorithms ChangeFinder (CF), as described in Section 3.4.1, and
Bayesian Online Changepoint Detection (BOCPD), as described in Section 3.4.2, are evalu-
ated and discussed. General algorithmic performance is examined in Section 4.1 by using syn-
thetic data. Various cases, such as mean-shifts, variance-shifts and outliers, are investigated
with univariate- and bivariate data. Each case is evaluated using the F} score, as described in
Section 3.5.1, and its visualization is discussed individually.

The results and applicability to real world data is studied in Sections General change detection
in user behavior (4.2) and Detection of state changes in Bipolar Disorder (4.3). Here the data
originates from the Bip-Up, it is acquired and preprocessed as described in Section 3.1. The
feature selection was performed manually, by picking appropriate features by hand.

4.1 Synthetic Data

In this section the data is drawn from normal distributions; the parameters are indicated in the
particular cases.

4.1.1 Univariate Data

The univariate data signal ' is drawn from one of the following models

p1(z) ~N(p=0.6,0 =0.02)
pa(z) ~ N(u=0.1,0 = 0.02)
p3(x) ~ N(u=0.3,0 = 0.02)
pa(z) ~ N (= 0.35,0 = 0.02)

5(z) ~ N(p=0.35,0 = 0.15)

The time series is segmented by two mean-shifts at time steps C'P; = 50 and C'P» = 100. For
the BOCPD a constant hazard function (see Section 3.4.2) was used as prior and the student-T
distribution as observation model. For the ChangeFinder the student-T distribution was used
as observation model and the SDAR model (r = 0.02 and & = 5) was used for learning the
Outlier Score with window sizes of T =5 and R = 5.

Mean-Shift

The data in the first segment is drawn from p;, the data in the second segment is drawn from
po and the data in the third segment is again drawn from p;.

Figure 4.1 shows a visualization of the Bayesian Online Changepoint Detection (BOCPD)
algorithm and its key values. The top diagram shows the data signal in blue, while the detected
changepoints are indicated by a red dashed line. The diagram in the middle visualizes the run

May 22, 2018 ~ 55 —

4 Results

length likelihood P(r;| X ') (see Section 3.4.2) per time step. Darker coloring implies a higher
likelihood and lighter coloring means a lower likelihood. Thus, dark diagonal lines imply a
probable path for the run length development, and therefore a potential continuous segment.
A gradient within one time step along the y-axis, that reaches from dark to light, indicates an
outlier or changepoint. The bottom diagram shows the run length with the maximal likelihood
in every time step. During the lead time, the run length is not tracked and thus it remains at
zero. After the algorithm starts its calculations, the run length grows until the next changepoint
is detected, where it then drops back down to the most probable run length for the current time
step.

Data signal

]

Run Length likelihood

Most likely run length

Figure 4.1: Bayesian Online Changepoint Detection (BOCPD); Fiscore = 1.0

Figure 4.2 shows a visualization of the ChangeFinder (CF) algorithm and its key values.
The top diagram shows the data signal in blue, while the detected changepoints are indicated
by a red dashed line. The next diagram contains the OQutlier Score, calculated according to
equation 3.11, using a studentT model. The third diagram shows y;, the T-averaged Outlier
Score, which is calculated according to equation 3.12 with a window size T' = 5. The next
diagram shows the Change Score, which is again calculated according to equation 3.11 by using
the Outlier Score and the model learned from it. The bottom diagram visualizes the R-averaged
Change Score, which is calculated according to equation 3.13 with a window size of R = 5. Here
the ChangeFinder detector is configured with a threshold = 4, and SDAR model parameters
r=0.02 and k£ = 5.

~ 56 — May 22, 2018

4.1 Synthetic Data

|
|

Outlier Score

Averaged Outlier Score

Change Score

Averaged Change Score

Figure 4.2: ChangeFinder (CF); Fiscore = 1.0

Strong Mean-Shift with Qutliers

The data is drawn from p; in the first segment, from po in the second one and again from p; in
the third segment. An outlier, which is a single extreme value, occurs at time step t, = 25.

Figure 4.3 shows, that the BOCPD algorithm immediately reacts to changepoints and outliers
that differ strongly from the learned model. Here the algorithm is already very certain about
a change at the time step of its occurrence. This results in a very low detection lag (lag = 0),
which is optimal. In case of outliers this is a problem though, because in the first step an outlier
does not differ from a changepoint and thus every outlier with such a high deviation from the
model is interpreted as a changepoint.

In Figure 4.4 one can see, that the ChangeFinder (CF) algorithm generally handles single
outliers very well, even if they have extreme values. Due to the averaging process, single samples
don’t carry weight. For the same reason the detection lag is higher, even if the change is
very thoroughgoing. So there is a trade-off relation between the detection lag and the outlier
resistance, which can be configured using the window size R of the averaging step.

May 22, 2018 ~ 57 —

4 Results

o7
o ANV W
os

H

204

2

05

o
0z
o1

B = = @ = oo = i
0

o

H]

g

£ 100

5

X

Zw

s

2

2w

g

<

S w

2

20

Most likely run length

Time

Figure 4.3: Detection of strong mean-shifts with outliers; Fiscore = 0.8

07
06 AN~ NN
Fos
2
S04
o3
5
8o2
01
3 % & £ % 150 120 130
W
g
530
S
&
2
52
S0
3
3
5 % @ % % %0 0 0
e
e
A
3¢
5 4
o
< 2
)
g0
3
g
<
S % o £ % 150 120 o
2
e
g
S
v
S0
2
25
o
3
] % o £ % 150 170 0
e
Se
&
&
o4
H
2
O
5
I
)
8o
3
2
G % & £ % 150 120 0
Time

Figure 4.4: Detection of strong mean-shifts with outliers; CF; Fiscore = 1.0

May 22, 2018

4.1 Synthetic Data

Weak Mean-Shift with Outliers

The data is drawn from p; in the first segment, from ps in the second one and again from p; in
the third segment. Note, that in this case the mean of p3 is closer to the one of p; than in the
case above. An outlier occurs at time step t, = 25.

Figure 4.5 shows, how the BOCPD algorithm reacts to outliers and changepoints with a
moderate deviation of the learned model. One can see how uncertainty arises when an outlier
occurs at time step ¢ = 25. In the run length likelihood diagram a darker diagonal line evolves
and slowly fades away again around time step ¢ = 40. This happens, because the outlier did not
differ enough from the learned model in order to immediately trigger a change detection and
with every subsequent non-outlier sample the likelihood of a change further decreases again. At
time step ¢ = 50 another extreme value occurs and the uncertainty about the run length rises.
In subsequent time steps further extreme values occur according to the learned model. With
each time step the likelihood of a change at time step ¢ = 50 increases until it outperforms the
likelihood of a connected segment since time step ¢ = 0, and a change is detected after a lag of
3 time steps.

In Figure 4.6 we can see, how the CF algorithm handles moderate changes. It handles outliers
very well and correctly detects moderate changepoints. Here the detection lag is further increased
in comparison to the above case with strong mean-shifts.

]
i%

Run Length likelihood

Most likely run length

Figure 4.5: Detection of weak mean-shifts with outliers; BOCPD; Fiscore = 1.0

May 22, 2018 - 59 —

4 Results

Outlier Score

Averaged Outlier Score

Change Score

Averaged Change Score

Time

Figure 4.6: Detection of weak mean-shifts with outliers; CF; Fiscore = 1.0

Variance-Shift

The data is drawn from p4 in the first segment, from ps in the second one and again from p4 in
the third segment.

Figures 4.7 and 4.8 show that both, the BOCPD and the CF algorithms, don’t handle variance
shifts well. Uncertainty arises but the correct changepoints are not found.

- 60 — May 22, 2018

4.1 Synthetic Data

Data signal

Run Length likelihood

Most likely run length

Figure 4.7: Variance-shifts; BOCPD; Fyscore = 0.0

Outlier Score

Averaged Outlier Score
)

Change Score

Averaged Change Score

20 40 60 80 160 120 140

20 40 60 80 160 120 130

20 a0 60 80 100 120 140

20 0 60 80 100 120 140

20 0 60 80 160 120 140
Time

Figure 4.8: Variance-shifts; CF; Fiscore = 0.0

May 22, 2018

~ 61 —

4 Results

4.1.2 Bivariate Data

The bivariate data signal X is generated by drawing samples from two of the following models
p1(z) ~ N(p=0.6,0 =0.02)
p2(z) ~ N(p=0.1,0 = 0.02)
p3(x) ~ N (= 0.3,0 =0.02)

Unless indicated otherwise, a constant hazard function (see Section 3.4.2) was used as prior
for the BOCPD and the multivariate student-T distribution as observation model. For the
ChangeFinder the multivariate student-T distribution was used as observation model and the
SDAR model (r = 0.02 and k = 5) was used for learning the Outlier Score with window sizes of
T=5and R=5.

Mean-Shift with Outliers

The data of both features is drawn from p; in the first segment, from ps in the second one
and again from p; in the third segment. The mean-shifts occur at time steps C'P; = 50 and
CP, = 100 and an outlier occurs at tp = 25. This gives us sample sizes of s = 50 per segment.

Figure 4.9 shows the BOCPD with multiple univariate features, that are combined using
weights. We can see, that this algorithm detects changes very well in the given data with a
small detection lag of lag = 0 (optimal). It is also sensitive to outliers, which we can see at time
step ¢t = 25, where a single extreme value is detected as change in the first time step after its
occurrence.

Figure 4.10 shows the BOCPD with one multivariate model. This algorithm is less sensitive
to outliers, but it is also less sensitive to changepoints. This leads to higher detection lags of
lagy = 20 and lags = 25. Note, that the accuracy in both cases is very high.

Figure 4.11 shows the CF algorithm, which does not detect any of the two changes. We can
see the Change Score in the bottom diagram, which indicates the first changepoint, but does
not trigger a changepoint detection.

Both BOCPD algorithms, with weighted features and with one multivariate model, detect
the changes correctly. The weighted version has a zero-lag, but it also detects an outlier as a
changepoint. The multivariate version does not detect the outlier, but has higher lags for the
changepoints. The CF algorithm on the other hand does not detect any change, but we can see
an indication for the first changepoint in the Change Score.

- 62 - May 22, 2018

4.1 Synthetic Data

Data signal

Run Length likelihood

o 20 a0 60 80 100 120 140

Most likely run length

80
Time

Figure 4.9: Mean-shifts with outliers; BOCPD (weighted univariate features); s = 50; Fiscore = 0.8

Data signal

Run Length likelihood

20

o 20 a0 60 80 100 120 140

Most likely run length

80
Time

Figure 4.10: Mean-shifts with outliers; BOCPD (multivariate); s = 50; Fiscore = 0.7

May 22, 2018 - 63 —

4 Results

Data signal

Outlier Score
.

Averaged Outlier Score
Ld

Change Score

Averaged Change Score

Figure 4.11: Mean-shifts with outliers; CF; s = 50; Fiscore = 0.0

Mean-Shift with Qutliers and a Higher Sample Size of s = 200

As above, the data of both features is drawn from p; in the first segment, from ps in the second
one and again from p; in the third segment. The mean-shifts in the first feature occur at time
steps C'P; = 200 and C'P, = 400 and an outlier occurs at to = 100. Note, that in this case the
segments have sample sizes of s = 200.

Figure 4.12 shows the weighted BOCPD. As in the case with segment sizes of s = 50, this
algorithm detects the changepoints correctly with a minimal lag, but it also detects the outlier
as a changepoint.

In Figure 4.13 we can see, that the multivariate BOCPD gets more sensitive to changepoints
with larger sample sizes per segment, as the detection lag decreases.

Figure 4.14 shows, that the CF algorithm performs very well with higher sample sizes. It still
handles outliers very well, while changepoints are detected successfully.

Both BOCPD algorithms get more sensitive to changepoints and outliers, when the segments
last longer. This can have positive effects (in the case of changepoints and detection lags) and
negative effects (in the case of outliers). The CF algorithm on the other hand clearly profits from
larger sample sizes and, in this case, performs very well in terms of changepoints and outliers.

- 64 - May 22, 2018

4.1 Synthetic Data

M [TRTRTRUUNTAEY LI T TRORRY P v \
5 aanshe (Y (e
s
504
o
02
0.0 '
b 100 200 300 a0 B ES
500
<
3
g
£ 00
g
=
£ 0
)
g
g
200 — —~
- =
< e o
2 _—
100 . . _—
; 100 200 200 a0 ED ES
200
s
£ 150
)
g
8 s
<
5
= 100
2
3
RS
g s
=
2
0
b 3 200 500 a0 B B3

Time

Figure 4.12: Mean-shifts with outliers; BOCPD (weighted univariate features); s = 200; Fiscore = 0.8

Data signal

Run Length likelihood

Most likely run length

o 100 200 300 400 500 600
500
400
200 - - -
100 _— — _—
o 100 200 300 400 500 600
200
175
150
125
100
75
50
25
0
o 100 200 300 400 500 600
Time

Figure 4.13

: Mean-shifts with outliers; BOCPD (multivariate); s = 200; Fiscore = 1.0

May 22, 2018

— 65 —

4 Results

i i
iAo AN Ao A g | b A AP AN ottt
[]

Data signal

I |
L L

o 100 200 300 00 500 600

Outlier Score

Averaged Outlier Score

Change Score

Averaged Change Score

o 100 200 300 00 500 600
Time

Figure 4.14: Mean-shifts with outliers; CF; s = 200; Fyscore = 1.0

Mean-Shift with Outliers in One Feature

The data of the first features is drawn from p; in the first segment, from py in the second one
and again from p; in the third segment, while the data of the second feature is drawn from p;
in all three segments.

In the middle diagram of Figure 4.15, we can see that the weighted BOCPD algorithm captures
the segment structure very well, but the change likelihood never outperforms the likelihood for
a continuous segment starting at time step ¢ = 0 and thus, no changepoint is detected.

Figure 4.16 shows, that also the multivariate BOCPD contains some of the segmental struc-
tures, though not as clearly as in the weighted case. Again, no changepoints are detected.

The CF algorithm, as shown in Figure 4.17, does not yield any valuable results.

All three algorithms have problems to detect changepoints, that only result from one of two
features. This case also shows the importance of feature selection, because the performance
increases when irrelevant features are removed from the dataset.

- 66 — May 22, 2018

4.1 Synthetic Data

Data signal

|

Run Length likelihood

Most likely run length

Figure 4.15: Mean-shifts with outliers in one feature; BOCPD (weighted univariate features); s = 50;
Fiscore = 0.0

Data signal

i
L

Run Length likelihood

Most likely run length

Figure 4.16: Mean-shifts with outliers in one feature; BOCPD (multivariate); s = 50; Fiscore = 0.0

May 22, 2018 - 67 —

4 Results

I e S o ISV N

Data signal

Outlier Score
Lol

Averaged Outlier Score
L

Change Score
Lo

Averaged Change Score
Lo

Figure 4.17: Mean-shifts with outliers in one feature; CF; s = 50; Fiscore = 0.0

Weak Mean-Shift with Outliers

The data of both features is drawn from p; in the first segment, from ps3 in the second one and
again from p; in the third segment. Note, that we have a smaller mean-shift in this case.

Figure 4.18 shows, that the weighted BOCPD handles weak mean-shifts very well. The
changepoints are detected with a small lag of lagy = 3 and lags = 0, while the outlier is
successfully overlooked.

In Figure 4.19 we can see, that the weighted BOCPD is less sensitive to weak mean-shifts and
does not detect any changepoints.

Figure 4.20 shows, that the CF algorithm does not produce valuable output in the given case.

~ 68 — May 22, 2018

4.1 Synthetic Data

Data signal

120

Run Length likelihood

o 20 a0 60 80 100

140

Most likely run length

80
Time

Figure 4.18: Weak Mean-shifts with outliers; BOCPD (weighted univariate features); s = 50; Fiscore = 1.0

Data signal

-
8
8
£ 100
Bl
2
= 5
E=l
g
S 60
3
<
5 a
I
20
o]
I3 20 0 60 80 100 120 140
140
g0
g2
§100
<
)
>
2w
8w
=
20
o
] 20 2 60 80 100 120 140
Time

Figure 4.19: Weak Mean-shifts with outliers; BOCPD (multivariate); s = 50; Fiscore = 0.0

May 22, 2018

4 Results

AOOSTAOA) oAy e

Data signal

|

o 20 0 60 80 100 120 140

Outlier Score
Loy

Averaged Outlier Score
D

Change Score
o

Averaged Change Score

Figure 4.20: Weak Mean-shifts with outliers; CF; s = 50; Fiscore = 0.0

BOCPD with Improved Hazard Function

The data of both features is drawn from p; in the first segment, from ps in the second one and
again from p; in the third segment.

Figures 4.21 and 4.22 show the two BOCPD approaches with an improved hazard function
(see Section 3.4.2). It assumes the changepoint occurrence to be normally distributed with
u =50 and ¢ = 10. The prior knowledge, which is applied through the hazard function, leads
to an improved outlier handling in the case of the weighted BOCPD, and to a reduction of the
detection lag in the case of the multivariate BOCPD.

- 70 - May 22, 2018

4.1 Synthetic Data

140

120

140

120

Jeubis exeq

pooy a3l pbuaT uny

B3| una Ajdi 30N

140

120

100

Time

1.0

Figure 4.21: BOCPD (weighted univariate features); normal hazard; Fiscore

140

120

140

120

100

Jeubls exeq

pooye>il pbuaT uny

6u3| una A4 10N

10

120

100

Time

Figure 4.22: BOCPD (multivariate); normal hazard; Fiscore = 0.7

- 71

May 22, 2018

4 Results

ChangeFinder with Different Window Sizes R

The data of both features is drawn from p; in the first segment, from ps in the second one and
again from p; in the third segment.

Figures 4.23 and 4.24 show the CF algorithm with different window sizes R; = 2 and Ry = 10.
We can see, that a small window size of R = 2 leads to the detection of mere outliers as
changepoints as shown in Figure 4.23. Large window sizes of R = 10 on the other hand lead to
a large detection lag as shown in Figure 4.24.

10
508
D06 s oty Mrrineb b TPy W

S o4

Qo2

00

Outlier Score

%
f

Averaged Outlier Score

Change Score

Averaged Change Score

o 100 200 300 00 500 600
Time

Figure 4.23: CF; R =2; Fyscore = 0.8

- 72 - May 22, 2018

4.2 General Changepoint Detection in User Behavior

i |
ot AN A onb Ay g | Pt
| 1
i i
| 1 | 1

| i
Mttty htrd |

e AP it

Data signal

o 100 200 300 00 500 600

Outlier Score

Averaged Outlier Score

Change Score

Averaged Change Score

o 100 200 300 00 500 600
Time

Figure 4.24: CF; R = 10; Fiscore = 0.0

4.1.3 Discussion

The analysis of the presented use cases and parameter configurations leads to the assumption,
that the ChangeFinder is particularly useful for datasets, where large segment sizes are expected.
It handles outliers very well, but has difficulties with small amounts of data. The detection lag
and the outlier resistance are in a trade-off relation, which depends on the window size R. The
threshold parameter, which ultimately decides whether a change occurred, has to be selected
manually, which would be a huge problem for unseen real world data. Thus, the ChangeFinder
algorithm is not expected to perform well on the considered data.

The Bayesian approaches perform both very well for the considered cases, even with small
samples sizes. Even subtle changes are detected, but with a higher detection lag. The weighted
BOCPD is more sensitive to changes and outliers. In all considered cases, the weighted version
performed similarly or better than the multivariate BOCPD in terms of accuracy and detection
lags. However, the multivariate BOCPD is more resistant to outliers in the given cases. The
hazard function can be used to improve the performance regarding changepoints and outliers, if
prior knowledge about the domain exists.

4.2 General Changepoint Detection in User Behavior

The data discussed in this section is acquired using the Bip-Up. It originates from people without
any psychological disorders. The aim of analysis and change detection within this data, is to
identify events and instants of time where some kind of change in the user behavior occurred.
Causes for such a behavioral change might include holidays, relocations, employer changes, the
beginning or ending of a relationship, or accidents.

In the following change detection examples the data is loaded and preprocessed in the same

May 22, 2018 - 73 -

4 Results

manner. The feature selection is performed manually. Features that are assumed to be relevant
for a given target and visually appear important, are selected. Additionally, further simple
feature selection mechanisms are performed, in order to ignore faulty sensor measurements and
features with insufficient data. Samples with all-zero- or extreme values, are removed from the
dataset. All features with a zero-variance or a zero-valued eightieth percentile are also removed.
The remaining data is then scaled to values between zero and one.

In this section the BOCPD algorithms, the weighted as well as the multivariate version, use
a constant hazard function H(7) = A, because in this scenario no prior knowledge is available.
For the same reason the BOCPD with weighted features uses equal weights for all features, so
w = % where m is the number of features.

4.2.1 Holiday

10.06.2017 - 17.06.2017 | Dog visit
29.07.2017 - 05.07.2017 | Holiday
22.08.2017 - 03.09.2017 | Dog visit
14.09.2017 - 18.09.2017 | Holiday
29.12.2017 - 31.01.2018 | Holiday

Table 4.1: Targets for data in Figures 4.25, 4.26 and 4.27.

129.72007 115.92017 123122007 1122008
i i i

Data signal

\ln

‘ “
L‘ wnﬂ*f“"h

Ui
’“ th} !!H{

l‘u I ‘” ,1 M ’

1’\“!@ ?‘l“’m'm m"ul..ﬂ A m‘ ;., w« g lu A n

Run Length likelihood

100
50 I ‘ l
ol
o 50 100 150 200 250 300

Most likely run length

o 50 100 150 200 250 300
Time

Figure 4.25: Detection of holidays; BOCPD (weighted univariate features); PCA; Features: Work, Home,
Any known location, Sleep, Walking, Running, Cycling, Vehicle, Messaging and Phone calls.

Figures 4.25, 4.26 and 4.27 show the successful detection of long-lasting holidays using the
weighted BOCPD, the multivariate BOCPD and the CF respectively. All configurations use
the same ten features: Work, Home, Any known location, Sleep, Walking, Running, Cycling,

- 74 - May 22, 2018

4.2 General Changepoint Detection in User Behavior

18.6.2017 123122017 201 | 8.2.2018
i |

\” F‘ﬂ H“ i “\ Ll I
“ﬂ .(H f ‘ "‘ J“h " l!AJ. 3““!4"'\1.!\%%

\
‘M”‘.}‘“hn phiA lh'ln ‘10 .‘I ﬂ il Im ‘HV I\ n‘l“‘ ‘

Data signal

i

il

Run Length likelihood

Most likely run length

Time

Figure 4.26: Detection of holidays; BOCPD (multivariate); PCA; Features: Work, Home, Any known loca-
tion, Sleep, Walking, Running, Cycling, Vehicle, Messaging and Phone calls.

Vehicle, Messaging and Phone calls. PCA is applied to the filtered, scaled data. The targets for
holidays, and also times where a dog was visiting the user’s home, are listed in Table 4.1. One
can see, that none of the algorithms detected all holidays and dog visits, but all of them detected
the longest holiday and some of the other dates. The BOCPD with weighted features (4.25)
detects most of the relevant dates with all the holiday beginnings and the end of the longest
one. Note, that the lead time makes is very hard, or even impossible, for the algorithm to detect
subsequent changes after a short segment, because the first five days after a changepoint are
solely used to learn model parameters and not before then the algorithm again starts to detect
changes. The multivariate BOCPD (4.26) detects a change on the very beginning, which might
originate from the dog visit beginning at the 10" of June. The last detected changepoint in
this figure has no obvious cause. The ChangeFinder (4.27) also detects the large holiday in
January as well as the dog visit in June. Additionally the holiday in August is detected. These
evaluations suggest, that the BOCPD with weighted features performs best in the given case.

May 22, 2018 - 75 -

4 Results

7110.6.2017 1482017
i

72412.2017 75.2.2018
i i

Data signal

Outlier Score

Averaged Outlier Score

Change Score

o 50 100 150 200 250 300

Averaged Change Score

o 50 100 150 200 250 300

Figure 4.27: Detection of holidays; CF; PCA; Features: Work, Home, Any known location, Sleep, Walking,
Running, Cycling, Vehicle, Messaging and Phone calls.

4.2.2 App Release

’ 28.03.2018 ‘ App Release

Table 4.2: Targets for data in Figures 4.28, 4.29 and 4.30

Figures 4.28, 4.29 and 4.30 show the detection of an application release date. It is linked to a
period of two to three weeks of intense, stressful and overly long working behavior, right before
the release date. Here the three features Work, Home, and the application usage type Other
were used in order to give focus on the relevant data. Table 4.2 contains the target date. Figures
4.28, 4.29 and 4.30 show the output of the weighted BOCPD, the multivariate BOCPD and the
CF respectively. The multivariate BOCPD does not detect any changes in the given space of
time. Both, the BOCPD with weighted features and the CF, detect a change around the release
date. While the weighted BOCPD is closer to the real date than the CF, it also has a rather
high detection lag. The BOCPD additionally detects a change 22 days before the release date,
which might originate from the beginning of the intense pre-release phase. Again, the BOCPD
with weighted features seems to perform best for this use case.

- 76 - May 22, 2018

4.2 General Changepoint Detection in User Behavior

1 532018

Data signal

Run Length likelihood

Most likely run length

Figure 4.28: Detection of an App Release date; BOCPD (weighted univariate features); Features: Work,
Home and Application type ”Other”.

Data signal

Run Length likelihood

Most likely run length

Figure 4.29: Detection of an App Release date; BOCPD (multivariate); Features: Work, Home and Appli-
cation type ”Other”.

May 22, 2018 - 77 -

4 Results

Figure 4.30: Detection of an App Release date; CF; Features:

o 7532078
508
2
So6
o4
5
Qo2
00
)) % o E) % 7o
T
]
g
G4
3
g2
S
3
) % B o B £ 7o
g
g
R4
]
55
3
32
&
e
31
g
2
10) B o 50 £ 7o
v
5
g
Vg
v
2
52
2
5
3
10) B W E) £ 70
L4
5
&
e
)
52
2
o
=
3
)
8o
3
$
< 10 20 30 40 50 60 70
Time

Work, Home and Application type ”Other”.

May 22, 2018

4.2 General Changepoint Detection in User Behavior

4.2.3 Relationship

17.09.2017 | Beginning of relationship
6.11.2017 | Breakup

Table 4.3: Targets for data in Figure 4.31

Data signal

Run Length likelihood

Most likely run length
I

100
Time

Figure 4.31: Detection of the start and end of a relationship; BOCPD (weighted univariate features); Fea-
tures: Home, Work, Any known location, Walking, Running, Cycling, Vehicle, Messaging and
Phone calls.

Figure 4.31 shows the detection of a relationship, from its beginning to the breakup. The nine
features Work, Home, Any known location, Walking, Running, Cycling, Vehicle, Messaging and
Phone calls were used. Table 4.3 contains target dates. The BOCPD with weighted features was
the only one of the evaluated algorithms to identify these dates. A changepoint was detected
one day after the target breakup date. Another changepoint was detected around one week prior
to the target date for the beginning of the relationship, while the user indicated, that already
around that time the relationship began to form.

4.2.4 Ligament Rupture

Figures 4.32 and 4.33 show the detection of a ligament rupture alongside the detection of holi-
days. The eight features Home, Work, Walking, Running, Vehicle, Messaging, Phone call and
Social Media were used. Table 4.4 contains the ligament rupture and holiday dates. Figure
4.32 shows the BOCPD with weighted features, it detects a change one day after the ligament
rupture and two changes at the beginning and the end of holidays. Figure 4.33 shows the CF

May 22, 2018 - 79 -

4 Results

21.08.2017 | Ligament rupture
10.09.2017 - 15.09.2017 | Holiday
26.10.2017 - 01.11.2017 | Holiday
27.01.2018 - 04.02.2018 | Holiday
31.03.2018 - 07.04.2018 | Holiday

Table 4.4: Targets for data in Figures 4.32 and 4.33.

Data signal

,gi

b W 5! il ‘I{}’l

Run Length likelihood

Most likely run length

Figure 4.32: Detection of a ligament rupture; BOCPD (weighted univariate features); Features: Home,
Work, Walking, Running, Vehicle, Messaging, Phone call and Social Media.

algorithm applied to the same dataset. It detects a change two days after the ligament rupture
and additionally three changes around the beginning or ending of holidays, and one change that
has no obvious cause.

- 80 - May 22, 2018

4.2 General Changepoint Detection in User Behavior

10 EREoy oy BTy EREo TR
H H H 1 H
o8
g
Sos
3
So
8
Qo
00
o 75
8 so0
3
§ 25
5 o0
o
25
3 % %0 o 250 ED 3%
e
5
g
&
32
]
O o
<
3
|3
g
g
g
<
f
o
Sa
&
0
2
g,
2
"]
0
3 % 00 5 2% 2% 350
g5
5
g
&
A
2,
g
g
z
Y,
'c
i
|3
g
£,
2
3 % %0) 250 2% 3%
Time

Figure 4.33: Detection of a ligament rupture; CF; PCA applied; Features: Home, Work, Walking, Running,
Vehicle, Messaging, Phone call and Social Media.

122.8.2017 15112017

Data signal

bt el

Run Length likelihood

Most likely run length

o 50 100 150 200 250 300
Time

Figure 4.34: Detection of a ligament rupture without feature Vehicle; BOCPD (weighted univariate features).

May 22, 2018 - 81 -

4 Results

Data signal

;——

i

A “‘.M J' NW

1" 'u. M 1 U' lt “

l l')‘ ”A)r I\U I

Lw A'n

_‘N 1o 4

dﬂ" ”&J I ‘l“ HJ’NA{‘,; m

Run Length likelihood

00
50 ‘ ‘ l I
ol
o 50 100 150 200 250 300

Most likely run length

150
Time

Figure 4.35: Detection of a ligament rupture without feature Walking; BOCPD (weighted univariate fea-
tures).

Figures 4.34, 4.35 and 4.36 contain the same dataset as before and show the BOCPD with
weighted features in every subfigure. It displays experiments with the features needed for correct
detection of the ligament rupture. Figures 4.34 and 4.35 show the outputs when the features
Vehicle and Walking are excluded respectively. Both configurations yield a changepoint at the
same instant of time as before, which is one day after the ligament rupture. When all physical
activity features are excluded from the dataset, no changepoint associated with the ligament
rupture, but instead another change with no obvious cause, is found.

- 82 - May 22, 2018

4.3 Detection of State Changes in Bipolar Disorder

Data signal

* “/ Mt' ” t“ A‘ 'ﬂ mfl’M\ {il fl u“ M{

m

Run Length likelihood

Most likely run length

Figure 4.36: Detection of a ligament rupture without any physical activity features; BOCPD (weighted uni-
variate features).

4.3 Detection of State Changes in Bipolar Disorder

The data discussed in this section is acquired using the Bip-Up in the context of a clinical study
(described in Section 2.6). The data originates from people with psychological disorders, in
particular the bipolar disorder. The aim of analysis and change detection within this datasets
is to identify bipolar disorder state changes, such as the start or end of a depressive-, manic- or
normal phase. The data is loaded and processed in the same manner as in the previous section.

The feature selection is performed manually. Features that are assumed to be relevant for a
given target and visually appear important, are selected. Additionally, further simple feature
selection mechanisms are performed, in order to ignore faulty sensor measurements and features
with insufficient data. Samples with all-zero- or extreme values, are removed from the dataset.
All features with a zero-variance or a zero-valued eightieth percentile are also removed. The
remaining data is then scaled to values between zero and one.

In this section the BOCPD with weighted features uses equal weights for all features, so
w = % where m is the number of features. The hazard function for both Bayesian approaches
is based on a normal distribution, in order to add prior knowledge about the frequency of state
changes in bipolar disorder.

So far, the study is in progress for more than eight months (of two years in total) and comprises
ten participants. However, the test phase for each participant starts in stages. Because the first
few participants were from the control group (without any psychological disorders), there is
only very limited relevant data available at this point. All bipolar patients have only datasets
for around one month. This is a very limited amount of data for the investigated algorithms,
because they require some time to learn the user behavior of the current state and according
to that, detect changes. Additionally, only datasets containing relevant state changes according
to the received targets can be used to investigate the algorithmic performance. This makes the

May 22, 2018 - 83 -

4 Results

evaluation very difficult and the results sparse. The targets for bipolar state changes originate
from the results of questionnaires and clinical assessments of the patients during one of the
doctor visits.

4.3.1 Successful Detection of a Manic State Change

08.03.2018 - 20.03.2018 | Depression
21.03.2018 - 23.03.2018 | Normal
24.03.2018 - 25.03.2018 | Mania
26.03.2018 - 04.04.2018 | Normal

Table 4.5: Targets for data in Figure 4.37.

Data signal

Run Length likelihood

length

Most likely run

Figure 4.37: Detection of a manic state; BOCPD (weighted); Features: Work, Home, Untagged locations,
Walking and On foot.

Figure 4.37 shows the detection of the beginning of a short manic phase. The data contains
all three states of the bipolar disorder, as indicated in Table 4.5. The recording started on
08.03.2018 and is available until 04.04.2018. The depressive phase starts at the very beginning
of the recording, on 08.03., and lasts until 20.03. There is a very short normal state until 24.03.,
where the patient changes to a manic state. After 25.03. the participant again was evaluated
to reside in a normal state. The weighted BOCPD found a change at 24.03., the beginning of
the manic phase. Due to the early start of the depression phase (at the first day of recording)
and the quick state changes, no other changes were detected. Here the features Work, Home,
Untagged locations, Walking and On foot were used.

- 84 - May 22, 2018

4.3 Detection of State Changes in Bipolar Disorder

4.3.2 Undetected Depressive State Change

14.03.2018 - 22.03.2018 | Depression
14.03.2018 | Positive event Other: Internship
20.03.2018 | Positive event Finance
02.04.2018 | Positive event Celebration
04.04.2018 | Negative event Conflict

Table 4.6: Targets for data in Figures 4.38, 4.39 and 4.40.

Data signal

Run Length likelihood

Most likely run length

Figure 4.38: No changepoints detected; BOCPD (weighted); Features: Untagged locations, Friends & Family,
Walking, On foot, Vehicle, Cycling, Phone, Social Media, Messaging and Other applications.

Figures 4.38, 4.39 and 4.40 show a case, where none of the three investigated algorithms
found any changes. Table 4.6 contains all relevant states as well as positive- and negative
events, according to the medical assessment. The depressive phase lasts from 14.03.2018 until
22.03.2018 and various incisive events, spread within the observation period, were noted. Note,
that also no optical recognition of changes or events are possible according to the measured
data. The variety of events and the short observation period make it very difficult to properly
learn the user behavior in the current state and detect any changes.

May 22, 2018 - 85 —

4 Results

WA

N

1" oA

T

»

O Wl
KR

Data signal

R

NN N

Vs

Run Length likelihood

Most likely run length

Figure 4.39: No changepoints detected; BOCPD (mv); Features: Untagged locations, Friends € Family,
Walking, On foot, Vehicle, Cycling, Phone, Social Media, Messaging and Other applications.

AN ANNAAD
PR RO

S

Outlier S

Averaged Outlier S

Change S

Averaged Change S
| (

Figure 4.40: No changepoints detected; CF; Features: Untagged locations, Friends € Family, Walking, On
foot, Vehicle, Cycling, Phone, Social Media, Messaging and Other applications.

~ 86 - May 22, 2018

4.4 Discussion

4.4 Discussion

The results obtained by smartphone usage data of ordinary people (Section 4.2) and bipolar
patients (Section 4.3) are promising.

As already expected, based on the results of specific use cases for synthetic data (Section 4.1),
the CF algorithm only performs well on long time series data with long segments. Also the
hyperparameter selection states a problem for the considered data. The threshold parameter
had to be chosen manually, were the optimal value differs strongly for each evaluated dataset.

The BOCPD algorithm performs quite well on the considered cases. The weighted version
finds most of the targets and usually has small to moderate detection lags. The multivariate
version of the BOCPD often seems to capture the structure of segments, but does not always
detect the changepoints correctly. For the BOCPD no selection of hyperparameters is required
in order to obtain viable results. The possibility to improve the algorithmic performance using
prior knowledge about the domain is a huge advantage. It is used to give focus on the bipolar
state changes in Section 4.3. Also the feature selection is considered to be very important; the
less irrelevant features are contained within the dataset, the better are the results. We have also
seen, that a small lead time is important to find short segments, because during the lead time
no changepoints can be detected.

The weighted BOCPD clearly appears to be the best choice for detecting changes in smart-
phone usage data. For the generic detection of changes in the user behavior a constant hazard
is appropriate, while a hazard that is based on a normal distribution, improves the results for
bipolar state changes. PCA can be applied if many relevant features are contained in the dataset,
but otherwise I would recommend using the original ones.

May 22, 2018 ~ 87 -

Changepoint Detection in Smartphone Usage

Conclusion

The aim of this thesis was to automatically detect state-changes of people with bipolar disorder
by considering smartphone usage data.

Data of the three categories physical activity, such as walking or cycling, labeled locations,
such as home or work, and application statistics, such as phone calls or messaging, is recorded
by a mobile application for Android, which is called Bip-Up. It is essentially a digital diary, that
enables users to obtain an objective overview of their daily activities. It can be used by ordinary
people, but it was particularly developed for people with bipolar disorder. In order to react to
state changes in this psychological illness, and therefore improve the treatment, it is essential
to objectively assess behavioral changes. In order to address this problem, the application of
an automatic change detection to smartphone usage data was investigated in this thesis. The
application implemented within this context imports the data from the smartphone application
and contains all further steps, required to perform an automatic changepoint detection. The data
is processed to obtain plausible features, which are then selected and extracted to only represent
relevant information within the data. The ChangeFinder and Bayesian Online Changepoint
Detection algorithms were implemented and evaluated.

In principle both investigated algorithms can be applied to smartphone usage data and are
capable of detecting certain changes within this data.

The ChangeFinder algorithm is fast and simple to implement with a clear interpretation of
each intermediate step of calculations. Here, we have a trade-off relation between the detection
lag, which is the time between the target changepoint and the detected one, and the resistance
to detecting outliers. Varying the window size allows the configuration of this trade-off, in order
to fit the algorithm to the considered application. The larger the window, the higher is the
detection lag and the less is the risk to identify outliers as changes. Note, that the detection lag
has an upper limit, i.e. the window size, because a change is only detected at the current time
step in the ChangeFinder scheme. This algorithm performs poorly on short time series as well as
data with short segments. Because of this, and especially because it requires manual parameter
selection, for the change threshold as well as some model parameters, it is not expected to
perform well on the considered data.

The Bayesian Online Changepoint Detection algorithm mostly performs better on our data,
especially for recordings with shorter segments. With a larger number of samples per segment,
the algorithm gets more sensitive to changepoints and outliers. Single extreme values can then
lead to a change detection in the current time step, so it is more prone to outliers than the
ChangeFinder. The BOCPD also detects subtle changes, but with higher lags. Because this
algorithm is capable of detecting changepoints retrospectively, as soon as the evidence predom-
inates, there is no upper limit for the detection lag. Here, prior knowledge about the domain
and the type of changes that are of interest, can be used to influence the outcome. With more
profound prior knowledge about the frequency of changepoints, the results are improved no-
ticeable. Also, it can be used to configure the algorithm to preferentially find certain types of
changes, according to a known frequency of such events. In our case, this can be used to tune
the algorithm with regard to bipolar states changes. All in all the BOCPD appears to be suited
better for our data and provides the possibility to give focus on specific changes using prior
knowledge without requiring any manual parameter selection.

May 22, 2018 - 89 —

5 Conclusion

The change detection was applied to three different datasets. Synthetic data was used to
assess the algorithmic performance according to predefined use cases, such as outlier handling
and changepoint detection in the univariate- and multivariate case. The algorithms were further
applied to real world data. First, they were applied to find changes in the user behavior of ordi-
nary people without psychological illnesses. Incisive events that implicate a change of behavior,
such as holidays, accidents or changes in the relationship status, were considered and success-
fully detected. The second dataset originates from a clinical study, that is still in progress at
the time of this writing. It evaluates the correctness of recorded data as well as the applicability
and acceptance of the Bip-Up through the target audience. The targets for dates and durations
of bipolar states are evaluated by the clinical personnel, due to questionnaires and psychological
assessments during medical visits of the patients. Due to the resent start of the study, only
a limited amount of participants with long-lasting records is available. As expected, BOCPD
works better for our data, especially the promising results in Sections 4.2 and 4.3 suggest that
the implemented approach can be used to automatically detect bipolar state changes.

5.1 QOutlook

For a more reliable application of the proposed change detection algorithm, several improvements
are presented below. First, a profound evaluation of the algorithms with an application to ex-
tensive data of bipolar users including targets is required, such that the algorithmic performance
can be estimated.

Further, the prior knowledge about the change frequency in bipolar disorder can be improved.
This could be achieved by not only considering general expert knowledge, but additionally
including the results of a user’s self-assessment as well as medical assessments relating to a
specific user. So the patient could be questioned about his or her medical history regarding the
change frequency and duration of bipolar states. Additionally, state targets per user, if obtained
by clinical personnel, could be used to further fine-tune the prior knowledge about changes for
that specific user.

Manual and semi-supervised feature selection methods can be used to improve the relevance
of the selected feature subset. A self-assessment of the user, according to his or her known
early warning signs, could be used to further select, or rank, relevant features. Further, features
could be analyzed, manually or automatically, according to state targets obtained by clinical
personnel, if available. Features are considered more valuable, for which learned distributional
parameters differ strongly when comparing samples that are close to the targets with samples
that are far from them. Note, that a feature ranking could be used for choosing the weights of
the BOCPD with multiple, univariate features.

Additionally the algorithms themselves could be improved by some simple modifications. The
BOCPD can be prevented from detecting changes in the first step, which might be due to a
single extreme observation. In order to do so, a change is detected only after the same new
changepoint was suggested by the algorithm for a certain amount of steps, for instance three
time steps. This results in a higher detection lag, though. In the case, where the change is found
slowly in a retrospective manner, and the detection lag is already higher, this is not necessary
and thus could only be applied in the case where the current detection lag would be smaller
than some predefined threshold. In this way the BOCPD would be more resistant to outliers
and only loose detection accuracy in controversial cases.

By remembering a set of previous sample values, the lead time could be shortened in some
cases. When a changepoint is detected with some detection lag, these values could be used
to learn the new model and reduce the downtime of the algorithm. This way, changepoints
partitioning shorter segments could be detected.

- 90 — May 22, 2018

Changepoint Detection in Smartphone Usage

1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Bibliography

A. Griinerbl, A. Muaremi, V. Osmani, G. Bahle, S. Ohler, G. Troster, O. Mayora, C. Haring,
and P. Lukowicz, “Smartphone-based recognition of states and state changes in bipolar
disorder patients,” IEEE Journal of Biomedical and Health Informatics, vol. 19, no. 1, pp.
140-148, 2015.

U. McCormick, B. Murray, and B. McNew, “Diagnosis and treatment of patients with
bipolar disorder: A review for advanced practice nurses,” J Am Assoc Nurse Pract., vol. 27,
no. 9, pp. 530-542, 2015.

L. Tondo, G. H. Vazquez, and R. J. Baldessarini, “Depression and mania in bipolar disor-
der,” Current neuropharmacology, vol. 15, no. 3, pp. 353-358, 2017.

Y. B. R H Belmaker, “Bipolar disorder: Mania and depression,” Discovery Medicine, vol. 4,
no. 23, pp. 239245, 2014.

G. Inc. (2018) Android developer guide. [Online]. Available: https://developer.android.
com/guide/topics/permissions/index.html

A. Inc., i0S Security, 2018. [Online]. Available: https://www.apple.com/business/docs/
i0OS_Security_Guide.pdf

A. Griinerbl, P. Oleksy, G. Bahle, C. Haring, J. Weppner, and P. Lukowicz, “Towards smart
phone based monitoring of bipolar disorder,” in mHealthSys ’12, 2012.

S. Aminikhanghahi and D. J. Cook, “A survey of methods for time series change point
detection.” Knowledge and information systems, vol. 51, no. 2, pp. 339-367, 2017.

(2018) Google apis for android. [Online]. Available: https://developers.google.com/
android /reference/com/google/android /gms/location/Detected Activity

(2018) Android developer’s reference guide. [Online]. Available: https://developer.android.
com/reference/android/app/usage/UsageEvents. Event.html

(2018) Google apis for android. [Online]. Available: https://developers.google.com/
android/reference/com/google/android/gms/location/FusedLocationProviderClient

(2018) Google apis for android. [Online]. Available: https://developers.google.com/
android /reference/com/google/android /gms/location /LocationRequest

M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm for discovering
clusters in large spatial databases with noise.” in Kdd, vol. 96, no. 34, 1996, pp. 226-231.

P. Mitra, C. A. Murthy, and S. K. Pal, “Unsupervised feature selection using feature sim-
ilarity,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 3,
pp- 301-312, March 2002.

H. L. Wei and S. A. Billings, “Feature subset selection and ranking for data dimensionality
reduction,” IEEFE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 1,
pp. 162-166, Jan 2007.

C. M. Bishop, Pattern Recognition and Machine Learning, ser. Information Science and
Statistics. Springer, 2006.

May 22, 2018 - 91 -

https://developer.android.com/guide/topics/permissions/index.html
https://developer.android.com/guide/topics/permissions/index.html
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://developers.google.com/android/reference/com/google/android/gms/location/DetectedActivity
https://developers.google.com/android/reference/com/google/android/gms/location/DetectedActivity
https://developer.android.com/reference/android/app/usage/UsageEvents.Event.html
https://developer.android.com/reference/android/app/usage/UsageEvents.Event.html
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/LocationRequest
https://developers.google.com/android/reference/com/google/android/gms/location/LocationRequest

Bibliography

[17]

J. Takeuchi and K. Yamanishi, “A unifying framework for detecting outliers and change
points from time series,” IEFE Transactions on Knowledge and Data Engineering, vol. 18,
no. 4, pp. 482-492, April 2006.

R. P. Adams and D. J. C. MacKay, “Bayesian online changepoint detection,” Cambridge,
UK, 2007.

R. Adhikari and R. K. Agrawal, An Introductory Study on Time Series Modeling and
Forecasting. LAP Lambert Academic Publishing, 2013.

A. Papoulis, Probability & Statistics, ser. Prentice-Hall international editions. Prentice
Hall, 1990. [Online]. Available: https://books.google.at/books?id=HQ3vAAAAMAAJ

R. P. Adams and D. J. MacKay, “Bayesian online changepoint detection,” http://hips.seas.
harvard.edu/content /bayesian-online-changepoint-detection, 2017.

J. Kulick, “Bayesian changepoint detection,” https://github.com/hildensia/bayesian_
changepoint_detection, 2016.

I. Lauzana, N. Figueroa, and J. Medina, “Bayesian online multivariate changepoint detec-
tion algorithm,” https://github.com/epfl-lasa/changepoint-detection, 2017.

- 92 - May 22, 2018

https://books.google.at/books?id=HQ3vAAAAMAAJ
http://hips.seas.harvard.edu/content/bayesian-online-changepoint-detection
http://hips.seas.harvard.edu/content/bayesian-online-changepoint-detection
https://github.com/hildensia/bayesian_changepoint_detection
https://github.com/hildensia/bayesian_changepoint_detection
https://github.com/epfl-lasa/changepoint-detection

	Introduction
	Outline of this Thesis

	Background
	Bipolar Disorder
	Smartphone Data
	Application Level Data Access in Android OS
	Application Level Data Access in iOS

	Reflection of Smartphone Data to Bipolar States
	Changepoint Detection
	Benefits of Automated Changepoint Detection for Bipolar State Changes
	Clinical Study
	Terms

	Change Detection Process
	Data Recording and Processing
	Raw Data Structure
	Preprocessing on the Smartphone
	Processing within the Change Detection Process

	Feature Selection
	Feature Selection Through Expert Knowledge
	Feature Selection Through Feature Similarity
	Feature Selection Through Squared Correlation
	Discussion

	Feature Extraction
	Principal Component Analysis

	Changepoint Detection
	Change Finder
	Bayesian Online Changepoint Detection
	Model Selection and Data Characteristics

	Evaluation
	F-score

	Results
	Synthetic Data
	Univariate Data
	Bivariate Data
	Discussion

	General Changepoint Detection in User Behavior
	Holiday
	App Release
	Relationship
	Ligament Rupture

	Detection of State Changes in Bipolar Disorder
	Successful Detection of a Manic State Change
	Undetected Depressive State Change

	Discussion

	Conclusion
	Outlook

