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Abstract

The present thesis covers results concerning three different topics in number theory.

In the first part we present new results on the number of representations of positive

rational numbers as sums of unit fractions. In particular we improve the best known

upper bounds on the number of positive integer solutions (a1, a2, a3) of the Erdős-Straus

equation 4
n = 1

a1
+ 1

a2
+ 1

a3
, for given n ∈ N. Furthermore, we improve upper bounds on

the number of representations of general positive rational numbers as a sum of k unit

fractions. For given m ∈ N we prove lower bounds on the number of representations of
m
n as a sum of three unit fractions for n in different subsets of the positive integers.

The second part covers two problems of Romanov type. Here we prove that the lower

density of integers of the forms p + 22k + m! and p + 22k + 2q is positive, where k,m

are non-negative integers and p, q are primes. Furthermore, we show that also the lower

density of odd integers not of these forms is positive.

Finally we deal with sequences with Property P. These sequences of positive integers

are characterized by the property, that no element of the sequence divides the sum of

two larger ones. We improve a construction by Erdős and Sárközy and give an example

of a sequence S with Property P whose counting function S(x) is in a sense large for all

x > 0.
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Kurzfassung

Die vorliegende Arbeit enthält Resultate aus drei verschiedenen Teilbereichen der Zahlen-

theorie. Im ersten Teil präsentieren wir neue Resultate zur Anzahl der Darstellungen von

positiven rationalen Zahlen als Summe von Stammbrüchen. Insbesondere verbessern wir

die derzeit besten bekannten oberen Schranken für die Anzahl der Lösungen der Erdős-

Straus Gleichung 4
n = 1

a1
+ 1

a2
+ 1

a3
in natürlichen Zahlen (a1, a2, a3), wobei n ∈ N

gegeben ist. Darüber hinaus verbessern wir obere Schranken für die Anzahl der Darstel-

lungen allgemeiner positiver rationaler Zahlen als Summe von k Stammbrüchen. Für

eine gegebene Zahl m ∈ N beweisen wir untere Schranken für die Anzahl der Darstel-

lungen von rationalen Zahlen der Form m
n als Summe von drei Stammbrüchen, wobei n

jeweils in verschiedenen Teilmengen der natürlichen Zahlen liegt.

Der zweite Teil umfasst Probleme vom Romanov Typ. Wir beweisen, dass die untere

Dichte von natürlichen Zahlen der Formen p + 22k + m! und p + 22k + 2q positiv ist,

wobei k und m natürliche Zahlen und p und q Primzahlen sind. Außerdem beweisen

wir, dass auch die untere Dichte jener ungeraden natürlichen Zahlen, die nicht von der

entsprechenden Form sind, positiv ist.

Im dritten Teil beschäftigen wir uns mit Folgen mit Property P. Diese Folgen natürli-

cher Zahlen werden durch die Eigenschaft charakterisiert, dass kein Element der Folge

die Summe zweier größerer Elemente teilt. Wir verbessern eine Konstruktion von Erdős

und Sárközy und geben ein Beispiel einer Folge S mit Property P an, deren Zählfunktion

S(x) in gewisser Weise groß für alle x > 0 ist.
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1. Introduction

This thesis contains results on three different problems in number theory: sums of unit

fractions in Chapter 2, Romanov type problems in Chapter 3 and sequences with Prop-

erty P in Chapter 4. All these chapters consist of a scientific paper on the corresponding

subject.

The overview of previous results concerning these problems, which we give in this

introduction, does not aim at completeness. In fact we rather focus on those results

which have a connection to the topics discussed in the following chapters. Furthermore,

we briefly point out the main ideas that we will apply later.

1.1. Unit fractions

We call positive rational numbers with a representation of the form 1
n , n ∈ N, i.e. a

representation where the numerator is 1, a unit fraction. Our main focus is on rep-

resentations of positive rational numbers as sums of k unit fractions. This leads to

Diophantine equations of the form

m

n
=

k∑
i=1

1

ai
, (1.1)

where m,n and ai, 1 ≤ i ≤ k, are positive integers.

There are a lot of questions connected to equation (1.1). Given m,n ∈ N, we could

for example ask whether for some k ∈ N a solution in (a1, . . . , ak) exists. While this

question may be trivially answered in a positive way via the representation m
n =

∑m
i=1

1
n ,

the answer if we additionally require the ai to be pairwise distinct is less obvious. Indeed

by results of Fibonacci (for an English translation of the corresponding parts of his

work see for example [17]) and Sylvester [72] we know that the answer also with this

additional requirement is positive for positive rational numbers less than 11. Their work

connects solutions of equation (1.1) with algorithmic aspects. They observe that a greedy

1The method suggested by Fibonacci and Sylvester to find such solutions may be extended to work for
general positive rational numbers (see [71, p. 201: Theorem 2]).
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approach in the sense of iteratively subtracting the largest unit fraction 1
ai

, such that the

remainder m
n − 1

a1
− · · · − 1

ai
is non-negative, produces a representation of the required

form after finitely many steps (i.e. after a finite number of subtractions the remainder

will be 0).

An important thread of recent research concerns the number of solutions of equa-

tion (1.1). Here we adopt the notation from [9] and define fk(m,n) to denote the

number of these solutions with a1 ≤ a2 ≤ . . . ≤ ak, where we consider m,n and k to

be fixed. For k = 3 and m = 4 this leads to a famous conjecture by Erdős and Straus

(see e.g. the English summary of [28]), stating that for any positive integer n ≥ 2 there

exists at least one solution of the equation

4

n
=

1

a1
+

1

a2
+

1

a3
(1.2)

in positive integers a1, a2 and a3. This conjecture is still open. A well known partial

result (see [62, p. 287f.]) is that any exceptional integer n is 1 mod 24, and more precisely

in one of the residue classes

1, 121, 169, 289, 361, 529 mod 840.

Furthermore, upper bounds on the number of solutions of equation (1.2) are known. The

following is a Corollary to [9, Theorem 2].

Theorem 1.1 (Browning, Elsholtz (2011)). For any ε > 0, we have

f3(4, n)�ε n
2/3+ε.

For prime denominators this was improved to the following bound in [25, Proposition

1.7].

Theorem 1.2 (Elsholtz, Tao (2013)). For any prime p and any ε > 0, we have

f3(4, p)�ε p
3/5+ε.

Browning and Elsholtz [9, Theorem 3] also proved the following upper bounds on

representations as sums of k unit fractions for general positive rational numbers m
n and

k > 3.
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Theorem 1.3 (Browning, Elsholtz (2011)). For any ε > 0, we have

f4(m,n)�ε n
ε

(( n
m

)5/3
+
n4/3

m2/3

)
,

and for k ≥ 5

fk(m,n)�ε (kn)ε

(
k4/3n2

m

)5/3·2k−5

.

Finally we conclude this small survey of known results by mentioning one more special

case of equation (1.1) that received some attention also recently. This concerns the

number of representations of 1 as a sum of k unit fractions. The best known upper

bound is again due to Browning and Elsholtz [9, Theorem 4].

Theorem 1.4 (Browning, Elsholtz (2011)). Let ε > 0, then there exists k(ε) such that

for k ≥ k(ε)

fk(1, 1) < c
(5/12+ε)2k−1

0 ,

where c0 = 1.264 . . .2.

Quite recently Konyagin [51] proved the following double exponential lower bound,

even for the subclass of representations of 1 as a sum of k distinct unit fractions.

Theorem 1.5 (Konyagin (2014)). As k → ∞, the number of representations of 1 as a

sum of k distinct unit fractions is bounded from below by

exp

(
exp

((
(log 2)(log 3)

3
+ o(1)

)
k

log k

))
.

In Chapter 2 we improve some of these results. First we apply methods developed by

Elsholtz and Tao [25] to prove that the bound in Theorem 1.2 does not only hold for

prime denominators, but for arbitrary ones.

In the case of prime denominators n = p two types of solutions of equation (1.2) can

occur: those where exactly two of the denominators of the unit fractions are divisible by

p and those where this is the case for exactly one of the denominators, i.e.

4

p
=

1

pt1
+

1

pt2
+

1

t3
, gcd(p, t3) = 1,

or
4

p
=

1

pt1
+

1

t2
+

1

t3
, gcd(p, t2t3) = 1.

2For a proper definition of the constant c0 see Definition 2.1 below.
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Elsholtz and Tao found suitable parametrizations for both types of solutions. They

get their upper bound by showing that the number of choices for the corresponding

parameters is not too large.

For general denominators n in (1.2) more than two types of solutions can occur. In

Chapter 2 we will work with patterns (n1, n2, n3) of solutions, which refer to solutions

of the type
4

n
=

1

n1t1
+

1

n2t2
+

1

n3t3
,

where ni|n and gcd
(
ti,

n
ni

)
= 1 for i ∈ {1, 2, 3}. We use the concept of relative greatest

common divisors to find a parametrization that works for any of these patterns. Since

the number of patterns is not too large, also in this case it will suffice to prove upper

bounds for the number of choices for the parameters.

As was already the case for the results of Browning and Elsholtz and those of Elsholtz

and Tao, the proof of this upper bound is very constructive. This is why the bound

for the number of solutions we establish, closely corresponds to an upper bound for the

running time of an algorithm which enumerates all these solutions.

Next we improve the upper bound in Theorem 1.3 for representations as sums of k

unit fractions for k > 3. To do so we apply a lifting method developed by Browning and

Elsholtz [9]. The improvement stems from additionally considering a parametrization

for the solutions of equations of the form

4

n
=

1

n1t1
+

1

n2t2
+

1

n3t3
+

1

n4t4
.

Also in this case we get this parametrization from the relative greatest common divisors

of the integers t1, t2, t3 and t4. The better upper bound we derive for sums of k unit

fractions in the general case also leads to an improvement of the bound in Theorem 1.4

for the special case of representations of 1 in this form (see Corollary 2.6 in Chapter 2

below).

The Erdős-Straus conjecture shows that already for the number of representations of

a positive rational number m
n as a sum of three unit fractions, good lower bounds for all

denominators n can be hard to achieve. In Chapter 2 we prove certain lower bounds for

the number of representations of rational numbers of the form m
n as a sum of three unit

fractions, where the denominator n is either in an infinite subset of the positive integers

or the primes, or in a subset of density one within the positive integers. One of the

results we will prove in this direction (see Remark 2.18 in Chapter 2) is the existence of

infinitely many primes p ≡ 1 mod 4 such that f3(4, p)� exp
(

(0.1444 + o(1)) log p
log log p

)
.
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1.2. Romanov’s theorem

A famous problem in number theory concerns the set of odd integers which are sums of

primes and powers of 2. A conjecture of de Polignac [65] stated that any odd integer

is the sum of a prime and a power of 2. In a correction concerning this conjecture he

mentions a letter of Euler [37] to Goldbach, in which Euler states that 959 is not the sum

of a prime and a power of 2. The smallest counter example to de Polignac’s conjecture

is 127 which in contrast to 959 is a prime.

In view of the existence of prime as well as non-prime counter examples it seems

reasonable to take a big step back and ask whether it is even true, that the set of

positive integers with a representation as the sum of a prime and a power of 2 has

positive lower density. This question was answered in the positive by Romanov [66, Satz

II]:

Theorem 1.6 (Romanov (1934)). Given an integer a ≥ 2, there exists a constant

βa > 0, depending only on a, such that the lower density of integers which are sums of

a prime and a power of a is at least βa.

Here we define the lower density of a subset A of the positive integers by

lim inf
x→∞

A(x)

x
,

where A(x) :=
∑

a≤x
a∈A

1, as usual, denotes the counting function of A. By exchanging

the limit inferior with the limit superior, we get what we call the upper density of A. If

lower- and upper density coincide we simply speak of the density of the set A.

More recently some effort was put into determining lower bounds on the constant β2

in Theorem 1.6 (see for example [13, 43, 44, 64]). The current record is held by Elsholtz

and Schlage-Puchta [24], who proved that β2 ≥ 0.107648.

In Chapter 3 we deal with a variant of this problem. We will consider the representa-

tion of integers as the sum of a prime, an iterated power of 2 and either a factorial or a

prime power of 2. A general question behind Theorem 1.6 and the research in Chapter 3

is the following one. Given a set A ⊆ N with A(x) ∼ cA log x for some positive constant

cA depending on A . Is it true, that the sum-set

P +A := {p+ a : p ∈ P, a ∈ A}

has positive lower density in N? In view of the prime number theorem there are enough

combinations of primes and elements from the set A such that the answer to this question

15



could be ‘yes’.

When proving results of this type, following the method employed by Romanov [66]

in his proof of Theorem 1.6 could lead to success. We summarize the basic ideas behind

his method in the following.

For a given set A ⊂ N with A(x) ∼ cA log x we want to prove that the sum-set P +A

has positive lower density. For any ε > 0 and sufficiently large x there are at least

(cA − ε)x sums of a prime and an element of A less than x. Hence, informally speaking,

this can only go wrong if we have lots of representations as a sum of a prime and an

element of A for a small set of integers and only few for the rest.

The study of the lower density of the set P +A is therefore linked to the study of the

corresponding representations function

r(n) := |{(p, a) : p ∈ P, a ∈ A,n = p+ a}| ,

and the associated indicator function

1P+A(n) =

1, if r(n) > 0,

0, otherwise.

An application of the Cauchy-Schwarz inequality immediately yields

∑
n≤x

1P+A(n) ≥

(∑
n≤x r(n)

)2∑
n≤x r(n)2

. (1.3)

Next we derive a lower bound of the form cx for the sum on the left hand side in (1.3),

where c is some positive constant. This reduces to finding a lower bound of order x for∑
n≤x r(n) and an upper bound of the same order for

∑
n≤x r(n)2.

The lower bound for
∑

n≤x r(n) is typically easier to find. For sums of primes and

powers of 2 it suffices for example to bound the representations function r(n) from below

by the number of representations where any of the two summands is bounded from above

by x
2 .

Bounding the sum
∑

n≤x r(n)2 is usually the harder task. The squared values r(n)2 of

the representation function can be interpreted as the number of pairs of representations

of n as the sum of a prime and an element from A, i.e.

r(n)2 = |{(p1, p2, a1, a2) : p1, p2 ∈ P, a1, a2 ∈ A, p1 + a1 = p2 + a2 = n}| . (1.4)

16



From this we see that if we consider a1 and a2 to be fixed summing over r(n)2 means

counting pairs of primes with a fixed difference. Classical results from sieve theory are

used to bound the number of these prime pairs.

In Chapter 3 we will apply Romanov’s method to two variants of the original problem.

We will consider sums of primes, iterated powers of 2, i.e. integers of the form 22k , and

either a factorial m! or a power of 2 with a prime exponent.

In view of the prime number theorem and by counting iterated powers of two and

factorials less than x, in both cases we get a lower bound of order

x

log x
· log log x · log x

log log x
� x

for the number of choices for the three summands, if we restrict any of them to be at

most x
3 . Hence it could be that the sets of integers which are of the corresponding two

forms have positive lower density. This can only be true, if for the sets

A1 =
{
n ∈ N : n = 22k +m!, k,m ∈ N0

}
,

A2 =
{
n ∈ N : n = 22k + 2q, k ∈ N, q ∈ P

}
,

we have that A1(x) � log x and A2(x) � log x. While for A2 this lower bound follows

essentially from the uniqueness of the binary representation of a positive integer, proving

A1 � log x requires more work. In particular we need to make sure that a positive integer

n does not have too many representations in the form n = 22k + m!, k,m ∈ N0. This

follows from Theorems 3.7 and 3.8 in Chapter 3 where we determine all solutions of the

equation 2x1 + y1! = 2x2 + y2! in non-negative integers x1, x2, y1 and y2.

The idea for considering these variants of Romanov’s problem also was that Romanov’s

method depends to some degree on the periodic behavior of 2k modulo odd integers. By

replacing 2k with iterated powers of two we destroy some of this regularity. In particular

our results show that the general ideas behind Romanov’s method also work for sums of

primes and sets of integers exhibiting less periodic behavior than the set of powers of a

fixed integer does.

Coming back to sums of primes and powers of 2, just knowing Theorem 1.6 it could

still be that essentially almost all odd integers are of this form. This would imply that

the density of sums of primes and powers of 2 is 1
2 . A well known result which was

established independently by Erdős [29] and van der Corput [14] proves this wrong.

Theorem 1.7 (Erdős (1950), van der Corput (1950)). The lower density of odd integers

not of the form p+ 2k, p ∈ P, k ∈ N, is positive.
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For this purpose Erdős [29] invented the method of covering congruences to construct

a full arithmetic progression of integers which have no representation as the sum of a

prime and a power of 2. A covering congruence is a set of residue classes (ai mod mi)
l
i=1

such that

N0 ⊂
l⋃

i=1

{ai + jmi : j ≥ 0}.

The following observation is at the heart of Erdős’ argument: Suppose that we have

a system of covering congruences such that for 1 ≤ i ≤ l we can find distinct primes

p1, . . . , pl where pi divides 2mi − 1 (by Zsigmondy’s Theorem [76] this is in particular

possible if all moduli are at least 2, pairwise distinct and different from 6). Take the

intersection of the arithmetic progressions 2ai mod pi, 1 ≤ i ≤ l, and suppose that the

integer n is in this intersection. Then by construction, the difference of n and any power

of 2 will always be divisible by one of the primes pi, 1 ≤ i ≤ l.
Erdős gave an example of a system of congruences satisfying the above restrictions

which with the previous argument is enough to prove Theorem 1.7. Furthermore, Erdős’

system can be extended to rule out integers of the form pi + 2k, 1 ≤ i ≤ l, so that we

retrieve a full arithmetic progression of integers not of the form p+ 2k.

In Chapter 3 we use similar arguments to prove that the lower density of odd integers

which have no representation of the forms p+22k +m! and p+22k +2q, for k,m ∈ N0 and

p, q ∈ P, is positive. Indeed, the lower densities are larger than 1
4 and 1

6 , i.e. much larger

than is known in the original problem for integers not of the form p+ 2k (Habsieger and

Roblot [43] prove a lower bound of 0.00905 in this case).

1.3. Sequences with Property P

The last part, i.e. Chapter 4, is about a special kind of sequences of positive integers.

In particular we worked on sequences with Property P, which were introduced by Erdős

and Sárközy in [34]. The following definition captures the concept of those sequences.

Definition 1.8 (Sequences with Property P). Let (ai)i∈N be an increasing sequence

of positive integers, then (ai)i∈N has Property P, if ai does not divide aj + ak, for all

i < j ≤ k.

Erdős and Sárközy [34] were primarily interested in questions concerning the density of

infinite sequences with Property P. They proved that the density of any infinite sequence

with Property P exists and that it is the same for all these sequences.
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Theorem 1.9 (Erdős and Sárközy (1970)). Any infinite sequence with Property P has

density 0.

Theorem 1.9 is interesting, since it was a priori not clear, whether the density of a

sequence with Property P always exists. In particular this should be compared with

results on primitive sequences which were a starting point for the investigation of se-

quences with Property P (an overview of classical results concerning primitive sequences

may be found in the book of Halberstam and Roth [45, Chapter V]).

Definition 1.10 (Primitive sequence). The sequence (ai)i∈N is called a primitive se-

quence, if ai does not divide aj for i 6= j.

Questions concerning the density of primitive sequences are well studied. As pointed

out in [45, p. 244: Theorem 1] the upper density of a primitive sequence is bounded

from above by 1
2 . This is simply due to the fact that the greatest odd divisors of the

elements in a primitive sequence need to be pairwise distinct. Besicovitch [7] proved that

the upper density of a primitive sequence can be arbitrarily close to this upper bound

in the following sense.

Theorem 1.11 (Besicovitch (1935)). For a given 0 < ε < 1
4 there exists a primitive

sequence whose upper density is larger than 1
2 − ε.

The following result by Erdős [26] on the other hand determines the lower density of

any primitive sequence.

Theorem 1.12 (Erdős (1935)). Every primitive sequence has lower density 0.

Theorems 1.11 and 1.12 show that, in contrast to sequences with Property P, for

primitive sequences the density does not necessarily exist. In particular, for a primitive

sequence A the sequence
(
A(n)
n

)
n∈N

can be highly oscillating. Nonetheless, if the density

of a primitive sequence exists, it has to be 0.

We note that in the case when any two elements of a sequence with Property P are

coprime we know more. Improving a result of Schoen [70], Baier [3] proved the following.

Theorem 1.13 (Baier (2004)). Let A be a sequence with Property P consisting of pair-

wise coprime integers. Then for any given ε > 0, there are infinitely many x ∈ N such

that

A(x) < (3 + ε)
x2/3

log x
.

In Chapter 4 we deal with the question of how large the counting function of a sequence

with Property P can be, which may be studied from different points of view, two of them

being:
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1. Find a sequence with Property P whose counting function A(xν) is large for an

infinite sequence (xν)ν∈N tending to infinity.

2. Find a sequence with Property P whose counting function A(x) is large for all x.

The question looked at from the first of these points of view was answered in the following

way by Erdős and Sárközy [34]. They proved that for any increasing function f(x), there

exists a sequence A with Property P such that A(xν) > xν
f(xν) , for a sequence (xν)ν∈N

tending to infinity. In view of Theorem 1.9 this is optimal.

Apart from this, Erdős and Sárközy [34] also provide an example of a sequence A

with Property P whose counting function A(x) is large for all x. They observe, that it

is possible to choose A to be the sequence of squares of the primes in the residue class

3 mod 4. The reason why this works is rather simple. It is a well known fact (see for

example [47, Theorem 82]) that −1 is a quadratic non-residue modulo any prime in the

residue class 3 mod 4. This means that there is no 0 ≤ x < p such that x2 ≡ −1 mod p

for those primes.

Now suppose that there exist primes p1 < p2 ≤ p3, all of them in the residue class

3 mod 4, such that p2
1 divides p2

2 + p2
3. This would in particular imply that

p2
2 ≡ −p2

3 mod p1.

Since gcd(p1, p3) = 1, p−1
3 exists modulo p1 and we have (p2p

−1
3 )2 ≡ −1 mod p1, a

contradiction to the fact that −1 is a quadratic non-residue modulo p1. This shows that

the set of squares of primes p ≡ 3 mod 4 indeed gives rise to a sequence A with Property

P. By the prime number theorem for arithmetic progressions the counting function of

this sequence asymptotically behaves like A(x) ∼
√
x

log x .

In Chapter 4 we improve on this construction by applying the following ideas:

1. Use multiple sets with Property P: We construct infinitely many sets Si ⊆ N,

each with Property P. The basic idea is to choose Si to be the set of squares of integers

with exactly i distinct prime factors p ≡ 3 mod 4 and no other ones. Given three integers

n1, n2, n3 ∈ Si with n1 < n2 ≤ n3, the fact that any of these integers has the exact same

number of prime divisors ensures the existence of a prime p1 ≡ 3 mod 4 which divides n1

but does not divide n2. If the sum n2 +n3 would be divisible by n1 it would in particular

be divisible by p1. Hence the reason why the sets Si have Property P is similar to the

reason why the Erdős-Sárközy sequence works.
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2. Use indicator factors: We want to consider the set

S :=
∞⋃
i=1

Si.

The problem is, that even though all the sets Si constructed in the previous step have

Property P, their union does not necessarily have this property, as ai could divide the

sum aj + ak if ai, aj and ak are in different sets Si, Sj and Sk. To fix this we equip

every set Si with a unique indicator factor. More specifically for any set Si there will be

exactly one prime qi which appears with an even exponent larger than 2 in the prime

factorization of all s ∈ Si. This will imply that ai can not divide aj + ak, with ai, aj and

ak from different sets Si, Sj and Sk.

3. The counting function S(x): Finally, we need to determine a lower bound on the

counting function S(x). For different x different sets Si will yield the main contribution

to S(x). To see which sets Si we need to consider, we need to know how many distinct

prime factors p ≡ 3 mod 4 we can expect for an arbitrary positive integer less than x.

Results like those in [73, p. 434: eq. (3.38)] show that we should expect most integers

n ≤ x having their number of prime factors of the form p ≡ 3 mod 4 in an interval of

size O(
√

log log x) centered at log log x
2 .
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2. Unit Fractions

This chapter contains an article, which is joint work with Christian Elsholtz. Apart

from minor changes, mostly in typesetting, the article below is identical with the

version on the arXiv [23].

The number of solutions of the Erdős-Straus Equation and

sums of k unit fractions

Christian Elsholtz and Stefan Planitzer

Abstract. We prove new upper bounds for the number of representations of an

arbitrary rational number as a sum of three unit fractions. In particular, for fixed m

there are at most Oε(n3/5+ε) solutions of m
n = 1

a1
+ 1

a2
+ 1

a3
. This improves upon a

result of Browning and Elsholtz (2011) and extends a result of Elsholtz and Tao (2013)

who proved this when m = 4 and n is a prime. Moreover, there exists an algorithm

finding all solutions in expected running time Oε
(
nε
(
n3

m2

)1/5
)

, for any ε > 0. We also

improve a bound on the maximum number of representations of a rational number as a

sum of k unit fractions. Furthermore, we also improve lower bounds. In particular we

prove that for given m ∈ N in every reduced residue class e mod f there exist infinitely

many primes p such that the number of solutions of the equation m
p = 1

a1
+ 1

a2
+ 1

a3
is

�f,m exp
((

5 log 2
12 lcm(m,f) + of,m(1)

)
log p

log log p

)
. Previously the best known lower bound of

this type was of order (log p)0.549.
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2.1. Introduction

We consider the problem of finding upper bounds for the number of solutions in positive

integers a1, a2 and a3 of equations of the form

m

n
=

1

a1
+

1

a2
+

1

a3
(2.1)

where m,n ∈ N are fixed. In the case when m = 4 we call equation (2.1) Erdős-Straus

equation. The Erdős-Straus conjecture states that this equation has at least one solution

for any n > 1 (see [25] and [42, D11] for classical results concerning the Erdős-Straus

equation and several related problems, as well as [41] for a survey of the work of Erdős

on egyptian fractions). Also the more general equation

m

n
=

k∑
i=1

1

ai
, (2.2)

for m,n ∈ N fixed and a1, . . . , ak ∈ N received some attention. Browning and Elsholtz [9]

found upper bounds for the number of solutions of (2.2). For the special case m = n = 1

they were able to improve a result of Sándor [69] and proved that there are at most

c
(5/24+ε)2k

0 representations of 1 as a sum of k unit fractions, for any ε > 0 and sufficiently

large k. Here c0 is as in the following Definition (for a proof of the value of c0 given in

Definition 2.1 see [38]).

Definition 2.1. We define the constant c0 as

c0 = lim
n→∞

u2−n
n = 1.264 . . . ,

where (un)n∈N is the sequence of positive integers defined by u1 = 1 and un+1 = un(un+

1).

On the other hand Konyagin [51] proved a lower bound of order

exp

(
exp

((
(log 2)(log 3)

3
+ o(1)

)
k

log k

))
for the number of these representations with distinct denominators. While the Erdős-

Straus conjecture is about representing certain rational numbers as a sum of just three

unit fractions, Martin [57] worked on representations of positive rationals as sums of

many unit fractions. In particular he proved that every positive rational number r has

a representation of the form r =
∑

s∈S
1
s , where the set S contains a positive proportion
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of the integers less than any sufficiently large real number x.

Chen et.al. [12] dealt with representations of 1 as a sum of k distinct unit fractions

where the denominators satisfy certain restrictions (like all of them being odd). Several

results on representations of rational numbers as a sum of unit fractions with restrictions

on the denominators can be found in the work of Graham [39–41]. Elsholtz [20] proved

a lower bound of similar order as the one of Konyagin for the number of representations

of 1 as a sum of k distinct unit fractions with odd denominators.

For sums of k unit fractions we adopt the notation of [9] and define fk(m,n) to be the

number of solutions (a1, a2, . . . , ak) ∈ Nk of equation (2.2) with a1 ≤ a2 ≤ . . . ≤ ak, i.e.

fk(m,n) =

∣∣∣∣{(a1, a2, . . . , ak) ∈ Nk :
m

n
=

1

a1
+

1

a2
+ · · ·+ 1

ak
, a1 ≤ a2 . . . ≤ ak

}∣∣∣∣ .
Concerning equation (2.1) with m = 4 the results of Elsholtz and Tao [25] show that

the number of solutions f3(4, n) is related to some divisor questions and is on average a

power of log n (at least when n is prime). It even seems possible that for fixed m ∈ N and

any ε > 0 the number of representations of m
n as a sum of k unit fractions is bounded by

Ok,ε(nε). More details on this are informally and heuristically discussed in Section 2.3.

For general m and n the best known upper bound on the number of solutions of (2.1)

is due to Browning and Elsholtz [9, Theorem 2] who proved an upper bound of order

Oε(nε
(
n
m

)2/3
). In the case of the Erdős-Straus equation with n = p prime Elsholtz and

Tao [25, Proposition 1.7] have improved this bound to Oε(p3/5+ε). It is known that this

type of question is easier to study, when the denominator is prime.

Our main result will be the following theorem which provides an upper bound on the

number of solutions of equation (2.1).

Theorem 2.2. For any m,n ∈ N and any ε > 0 there are at most Oε
(
nε
(
n3

m2

)1/5
)

solutions of the equation
m

n
=

1

a1
+

1

a2
+

1

a3

in positive integers a1, a2 and a3.

Note that this improves upon the bound of Browning and Elsholtz in the range m�
n1/4. As a corollary we get that the Elsholtz-Tao bound for the number of solutions of

the Erdős-Straus equation is true for arbitrary denominators n ∈ N.

Corollary 2.3. The Erdős-Straus equation

4

n
=

1

a1
+

1

a2
+

1

a3
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has at most Oε(n3/5+ε) solutions in positive integers a1, a2 and a3.

We also prove the following algorithmic version of Theorem 2.2 with a matching upper

bound for the expected running time1.

Corollary 2.4. There exists an algorithm with an expected running time of order

Oε
(
nε
(
n3

m2

)1/5
)
,

for any ε > 0, which lists all representations of the rational number m
n as a sum of three

unit fractions. Furthermore, all representations of m
n as a sum of k > 3 unit fractions

may be found in expected time Oε,k
(
n2k−3(8/5+ε)−1

)
, for any ε > 0.

For sums of k unit fractions we will prove the following result.

Theorem 2.5. We have

f4(m,n)�ε n
ε

(
n4/3

m2/3
+
n28/17

m8/5

)

and for any k ≥ 5

fk(m,n)�ε (kn)ε

(
k4/3n2

m

)28/17·2k−5

.

Keeping in mind that 28
17 = 1.64705 . . ., Theorem 2.5 may be compared with the

following bounds from [9, Theorem 3]:

f4(m,n)�ε n
ε

(
n4/3

m2/3
+
( n
m

)5/3
)
,

fk(m,n)�ε (kn)ε

(
k4/3n2

m

)5/3·2k−5

, for k ≥ 5.

A well studied special case of Theorem 2.5 concerns representations of 1 as a sum of

k unit fractions. Browning and Elsholtz [9] mention several related problems which are

studied in the literature and can be improved using better upper bounds on fk(m,n).

We summarize these results in the following corollary.

Corollary 2.6. 1. For any ε > 0 we have that

fk(1, 1)�ε k
7/51·2k−1+ε.

1For a definition of expected running time see the proof of this corollary at the end of Section 2.5.
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2. Let c0 be as in Definition 2.1. Then for ε > 0 and k ≥ k(ε), we have

fk(1, 1) < c
(7/17+ε)2k−1

0 .

3. For ε > 0 and k ≥ k(ε) the number S(k) of positive integer solutions of the equation

1 =
k∑
i=1

1

ai
+

1∏k
i=1 ai

is bounded from above by c
(7/17+ε)2k

0 .

Proof. The first assertion is an immediate consequence of Theorem 2.5. For the proof

of the second statement we refer the reader to the proof of Theorem 4 in [9]. The only

change necessary is plugging in the bound from Theorem 2.5 instead of [9, Theorem 3]

for the last 5 lines of the proof which amounts to just exchanging one exponent. The

last statement follows from the first one and the observation that S(k) ≤ fk+1(1, 1).

We note that the number of solutions of the equation 1 =
∑k

1=1
1
ai

+ 1∏k
i=1 ai

has

applications to problems considered in [8].

Finally we deal with lower bounds. In [25, Theorem 1.8] it is shown that we have

f3(4, n) ≥ exp

(
(log 3 + o(1))

log n

log logn

)
for infinitely many n ∈ N and that

f3(4, n) ≥ exp

((
log 3

2
+ o(1)

)
log log n

)
for all integers n in a subset of the positive integers with density 1. The following

theorem gives an improvement of these bounds which also give a limitation on improving

the upper bounds for the number of solution of the Erdős-Straus equation and in the

general case. For comparison we note that log 3 = 1.09861 . . ., log 3
2 = 0.54930 . . . and

log 6 = 1.79175 . . ..

Theorem 2.7. For given m ∈ N there are infinitely many n ∈ N such that

f3(m,n) ≥ exp

(
(log 6 + om(1))

log n

log logn

)
.

Furthermore, for given m ∈ N, there exists a subset M1 of the positive integers, which
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has density one, such that for any n ∈M1

f3(m,n) ≥ exp ((log 3 + om(1)) log log n) · log logn

� (log n)log 3+om(1).

For the special case m = 4 and for integers n in a set M2 ⊂ N with density one, the last

bound may be improved to

f3(4, n) ≥ exp ((log 6 + o(1)) log log n) .

Remark 2.8. Previous proofs of lower bounds of similar type as the ones in Theo-

rem 2.7 constructed solutions from factorizations of n. We get our improvement from

additionally taking into account factorizations of a lot of shifts of n. Hence our proof

also shows that there are many values a1 admitting many pairs (a2, a3). Here, depending

on which of the three lower bounds in Theorem 2.7 we consider, ‘many’ may either mean

exp
(

(C + om(1)) logn
log logn

)
or exp

(
(C̃ + om(1)) log log n

)
, for suitable positive constants

C and C̃ .

We may ask if a lower bound on f3(m,n) of the first type in Theorem 2.7 does

not only hold for infinitely many positive integers n but also for infinitely many prime

denominators p. In [25] there was no lower bound of this type, but it was proved that

f3(4, p) � (log p)0.549 for almost all primes. We note that this result implies, using

Dirichlet’s theorem on primes, the following corollary.

Corollary 2.9. For every reduced residue class e mod f , i.e. gcd(e, f) = 1, there are

infinitely many primes p such that f3(4, p)� (log p)0.549, and p ≡ e mod f .

Here we improve this corollary considerably.

Theorem 2.10. For every m ∈ N and every reduced residue class e mod f there are

infinitely many primes p ≡ e mod f such that

f3(m, p)�f,m exp

((
5 log 2

12 lcm(m, f)
+ of,m(1)

)
log p

log log p

)
.

Here of,m(1) denotes a quantity depending on f and m which goes to zero as p tends to

infinity.
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2.2. Notation

As usual N denotes the set of positive integers and P the set of primes in N. We

denote the greatest common divisor and the least common multiple of n elements ai ∈ N
by gcd(a1, a2, . . . , an) and lcm(a1, a2, . . . , an) or (a1, a2, . . . , an) and [a1, a2, . . . , an] for

short. For integers d, n ∈ N we write d|n if d divides n. We use the symbols O, o, �
and � within the contexts of the well known Landau and Vinogradov notations where

dependence of the implied constant on certain variables is indicated by a subscript. For

any prime p ∈ P we define the function νp : N → N ∪ {0} to be the p-adic valuation,

i.e. νp(n) = a if and only if pa is the highest power of p dividing n. By τ(n) and ω(n),

as usual, we denote the number of divisors and the number of distinct prime divisors

of n. By τ(n,m), we denote the number of divisors of n coprime to m and τ(n, k,m),

ω(n, k,m) denote the number of divisors (resp. distinct prime divisors) of n in the

residue class k mod m, where (k,m) = 1. Finally, for two coprime integers a and b we

denote by orda(b) the least positive integer l, such that bl ≡ 1 mod a.

2.3. Heuristics on fk(m,n)

We now informally discuss why f3(m,n) = Oε(nε) can be expected. In fact, as far as

we are aware, this was first observed by Roger Heath-Brown (private communication

with the first author in 1994). Let us first recall (see e.g. [71, p. 201: Theorem 3])

that a fraction m
n with gcd(m,n) = 1 is a sum of two unit fractions 1

a1
+ 1

a2
if and

only if there exist two distinct, positive and coprime divisors d1 and d2 of n such that

d1 + d2 ≡ 0 mod m. We may deduce an upper bound of Oε(nε) for the number of

representations of m
n as a sum of two unit fractions. Indeed from

m

n
=

1

a1
+

1

a2
, (2.3)

by setting d = (a1, a2) and a′i = ai
d for i ∈ {1, 2}, we see that

ma′1a
′
2d = n(a′1 + a′2).

This implies that a′1, a
′
2 are divisors of n, d divides n(a′1 + a′2) < 2n2 and any solution

(a1, a2) of (2.3) uniquely corresponds to a triple (a′1, a
′
2, d). The number

∑
a′1,a

′
2|n
τ(n(a′1+

a′2)) of such triples is bounded by Oε(nε) (see Lemma 2.12 below).
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Studying m
n = 1

a1
+ 1

a2
+ 1

a3
with a1 ≤ a2 ≤ a3 one observes that

1

a1
<
m

n
≤ 3

a1

from which n
m < a1 ≤ 3n

m follows. In view of

m

n
− 1

a1
=
ma1 − n
na1

=
1

a2
+

1

a3
(2.4)

there are at mostO
(
n
m

)
choices for a1, and for given a1 there are at most d(na1) = Oε(nε)

divisors of na1. This shows that f3(m,n) = Oε
(
n1+ε

m

)
is a trivial upper bound. The real

question is for how many values of a1 there can be at least one solution. For increasing

a1, even if na1 contains many divisors, the congruence d1 + d2 ≡ 0 mod ma1 − n should

become, on average, more difficult to satisfy if ma1−n� nε. Therefore, we expect that

the number of a1 contributing at least one solution is Oε(nε), so that f3(m,n) = Oε(n2ε).

Moreover, equation (2.4) implies that for any given a1, the number of solutions is about

d̃(m,n, a1). Here d̃(m,n, a1) counts the number of pairs of coprime divisors d1, d2 of

na1, with d1 + d2 ≡ 0 mod ma1 − n. Therefore, f3(m,n) should be approximately∑
a1
d̃(m,n, a1).

Similarly a completely trivial upper bound on f4(m,n) is as follows. With a1 ≤ a2 ≤
a3 ≤ a4 it follows that n

m < a1 ≤ 4n
m and hence

ma1 − n
na1

=
m

n
− 1

a1
=

1

a2
+

1

a3
+

1

a4
≤ 3

a2
.

From those bounds we easily deduce that a2 ≤ 12n2

m . With

m

n
− 1

a1
− 1

a2
=
ma1a2 − na2 − na1

na1a2
=

1

a3
+

1

a4
,

with similar arguments as above, we deduce that f4(m,n) = Oε
(
n3+ε

m2

)
. For fixed m

the fact that our bound on f4(m,n) in Theorem 2.5 above is better than O(n2) shows

that, for most pairs (a1, a2) and moreover, for most choices of a2 ∈
[
n
m ,

12n2

m

]
there is no

solution of m
n = 1

a1
+ 1

a2
+ 1

a3
+ 1

a4
. Here again, as soon as ma1a2 − na2 − na1 � nε one

should not expect to have two divisors d1, d2 of na1a2 such that d1+d2 ≡ 0 mod ma1a2−
na2 − na1. From this reasoning, also fk(m,n) = Oε,k(nε), for k ≥ 4 seems to us a

reasonable expectation.

The papers [9] and [25] studied parametric solutions of the diophantine equation (2.1).

The reason why the result in [25] is superior in the case of n being a prime is that
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here a full parametric solution (e.g. [67]) is much easier to work with. However, in

this manuscript we develop parametric solutions of (2.1) and (2.2) from scratch. Some

simplified version of this has been used in [19] and [25, Section 11], but there the focus

was to generate solutions with many parameters. Here we need to do kind of the opposite,

namely to show that every solution comes from a number of parametric families.

The method we introduce should theoretically work for any diophantine equation as

it expresses a k-tuple of integers in a standard form. In practice it might work favorably

if there is some inhomogeneous part as in

n = a1a2a3 − a1 − a2.

For prime values of n in equation (2.1) there are several discussions of parametric solu-

tions in the literature, e.g. by Rosati [67] and Aigner [1], see also Mordell’s book [62,

Chapter 30]. For composite values n there is no satisfactory treatment in the literature,

and Section 2.5 below may be the most detailed study to date.

2.4. Patterns and relative greatest common divisors

Consider a solution (a1, a2, . . . , ak) ∈ Nk with a1 ≤ a2 ≤ . . . ≤ ak of equation (2.2) and

set ni = (ai, n), ai = niti for i ∈ {1, 2, . . . , k}. We can thus rewrite equation (2.2) as

m

n
=

k∑
i=1

1

niti
. (2.5)

Later, when working on upper bounds for the number of solutions of equation (2.5) for

k ∈ {3, 4}, we will fix a choice of (n1, n2, . . . , nk) ∈ Nk. For given m,n ∈ N we call such

a choice the pattern of a solution of this equation. Note that for solutions corresponding

to a given pattern (n1, n2, . . . , nk) we have that
(
n
ni
, ti

)
= 1 for all i ∈ {1, 2, . . . , k}. As

ni|n the number of distinct patterns is Ok(nε) only.

Also, when dealing with equations of type (2.5) for k ∈ {3, 4} we will make heavy use

of the concept of relative greatest common divisors as described by Elsholtz in [18] (for

some ad hoc definition see also [19]). Relative greatest common divisors are a useful tool

when studying divisibility relations among the ti in (2.5).

Let I = {1, 2, . . . , k} be the index set. Then we define the relative greatest common

divisors of the positive integers t1, t2, . . . , tk recursively as follows:

xI = gcd(t1, t2, . . . , tk)
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and for any {i1, i2, . . . i|J |} = J ⊆ I, J 6= ∅ we set

xJ =
gcd(ti1 , ti2 , . . . , ti|J|)∏

J ′⊆I
J(J ′

xJ ′
.

For k ∈ {3, 4} we will later identify the elements xJ with J ⊆ I with the elements

xi, xij and xijk where {i, j, k} = {1, 2, 3} in the case when k = 3 and with the elements

xi, xij , xijk and xijkl with {i, j, k, l} = {1, 2, 3, 4} when k = 4. With the relative greatest

common divisors defined as above we have that

ti =
∏
J⊆I
i∈J

xJ .

A further very useful property of relative greatest common divisors is that (xJ , xK) = 1

if J * K and K * J . We prove this property as the following lemma (see also [18, p.

2]).

Lemma 2.11. Let t1, t2, . . . , tk ∈ N, J,K ⊆ {1, 2, . . . , k}, J,K 6= ∅ and define the

corresponding relative greatest common divisors xJ and xK as above. If J * K and

K * J then (xJ , xK) = 1.

Proof. By assumption J * K and K * J and thus we have that J ( J ∪ K and

K ( J ∪K. We suppose that d = (xJ , xK) > 1 and choose an arbitrary prime divisor

p|d. Set L = J ∪ K, J = {j1, j2, . . . , j|J |}, K = {k1, k2, . . . , k|K|}, L = {l1, l2, . . . , l|L|}
and write

xJ =
(tj1 , tj2 , . . . , tj|J|)∏J ′⊆I

J(J ′
L*J ′

xJ ′

 · xL ·(∏J ′⊆I
L(J ′

xJ ′

) ,

xK =
(tk1 , tk2 , . . . , tk|K|)∏K′⊆I

K(K′
L*K′

xK′

 · xL ·(∏K′⊆I
L(K′

xK′

) .
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With xL =
(tl1 ,tl2 ,...,tl|L| )∏

L′⊆I
L(L′

xL′
this simplifies to

xJ =
(tj1 , tj2 , . . . , tj|J|)∏J ′⊆I

J(J ′
L*J ′

xJ ′

 · (tl1 , tl2 , . . . , tl|L|)
, xK =

(tk1 , tk2 , . . . , tk|K|)∏K′⊆I
K(K′
L*K′

xK′

 · (tl1 , tl2 , . . . , tl|L|)
. (2.6)

Let pα be the highest power of p dividing the greatest common divisor of the terms

(tj1 , tj2 , . . . , tj|J|) and (tk1 , tk1 , . . . , tk|K|).

Thus pα is also the highest power of p such that

pα|((tj1 , tj2 , . . . , tj|J|), (tk1 , tk1 , . . . , tk|K|)) = (tl1 , tl2 , . . . , tl|L|).

By definition of the greatest common divisor, without loss of generality we may suppose

that νp((tj1 , tj2 , . . . , tj|J|)) = α. From equation (2.6) we finally see that νp(xJ) = 0, a

contradiction to p|d.

Relative greatest common divisors may be nicely visualized via Venn diagrams (es-

pecially when k ≤ 3). We identify a positive integers with the multiset of its prime

divisors, i.e. each prime p dividing n occurs with multiplicity νp(n) in the multiset.

Given the Venn diagram of the multisets corresponding to the integers t1, . . . , tk, each

area of intersection in the diagram uniquely corresponds to a relative greatest common

divisor xJ , J ⊆ {1, . . . , k}. Figure 2.1 shows the situation for relative greatest common

divisors of three positive integers t1, t2 and t3.

As mentioned in the beginning of this section relative greatest common divisors were

systematically described in [18]. Nonetheless concepts of a similar type date back at least

as far as Dedekind [15] who called the relative greatest common divisors of the integers

t1, . . . , tk the cores (Kerne) of the system (t1, . . . , tk). Dedekind described the construc-

tion of these cores explicitly for systems with three and four elements and developed

some theory to describe the cores of systems with more than four elements.

Decompositions similar to relative greatest common divisors also occur when we look

for generalizations of the formula

[t1, t2] =
t1t2

(t1, t2)
, (2.7)
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t1

t2t3

90

126616

x1

x2x3 x23

x12x13

x123

{5}

{}{2, 2, 11} {7}

{3, 3}{}
{2}

Figure 2.1.: A visualization of relative greatest common divisors using Venn diagrams.
On the left hand side one sees the general case of three positive integers
t1, t2 and t3 and on the right hand side the situation when t1 = 90, t2 = 126
and t3 = 616. Empty sets correspond to empty products and we set the
corresponding relative greatest common divisor to 1.

where [t1, t2] denotes the least common multiple of the integers t1 and t2. A general-

ization of formula (2.7) to least common multiples and greatest common divisors of k

integers t1, . . . , tk was found by V.-A. Lebesgue [54, p. 350], who proved that

[t1, t2, . . . , tk] =

∏
1≤i≤k
i odd

Gi∏
1≤j≤k
j even

Gj
,

where the variables Gi denote the product of the greatest common divisors of all choices

of subsets of i integers in the set {t1, t2, . . . , tk}.

2.5. Sums of three unit fractions

In this section we deal with equation (2.5) for k = 3, i.e. with equations of the form

m

n
=

1

n1t1
+

1

n2t2
+

1

n3t3
, (2.8)

where n1t1 ≤ n2t2 ≤ n3t3, ni|n and
(
n
ni
, ti
)

= 1 for i ∈ {1, 2, 3}. In the following we use

the concept of relative greatest common divisors introduced in the previous section to

get a suitable parametrisation of the solutions of (2.8) corresponding to a fixed pattern

(n1, n2, n3) ∈ N3.

Writing the variables ti in terms of relative greatest common divisors, equation (2.8)

takes the form

m

n
=

1

n1x1x12x13x123
+

1

n2x2x12x23x123
+

1

n3x3x13x23x123
(2.9)
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and multiplying out yields

mx1x2x3x12x13x23x123 =
n

n1
x2x3x23 +

n

n2
x1x3x13 +

n

n3
x1x2x12. (2.10)

A first thing we observe is that we have xi = 1 for all i ∈ {1, 2, 3}. This follows from

Lemma 2.11 and equation (2.10) together with the fact that xi| nni is possible only if

xi = 1 by definition of ni. We thus can work with the following simplified version of

equation (2.10)

mx12x13x23x123 =
n

n1
x23 +

n

n2
x13 +

n

n3
x12. (2.11)

Next we introduce the parameters dij which are defined as dij =
(
n
ni
, nnj

)
. Again we

have that (xij , dij) = 1 by definition of the ni and we note that for given m,n and a

fixed pattern (n1, n2, n3) also the parameters dij are fixed.

In what follows we apply methods developed by Elsholtz and Tao [25, Sections 2

and 3]. The strategy is to derive a system of equations from (2.11) and to make use

of divisor relations therein. With the observation of coprimality of dij and xij , and

using divisibility relations implied by equation (2.11) we may define the following three

positive integers

w =
n

n1d13
x23 + n

n3d13
x12

x13
, y =

n
n1d12

x23 + n
n2d12

x13

x12
and z =

n
n2d23

x13 + n
n3d23

x12

x23
.

Later we make use of the product of w and z which is given by

wz =
n

n1d13

n

n2d23
+

x12

x13x23

(
n2

n1n3d13d23
x23 +

n2

n2n3d13d23
x13 +

n2

n2
3d13d23

x12

)
=

n

n1d13

n

n2d23
+

nx12

n3d13d23x13x23

(
n

n1
x23 +

n

n2
x13 +

n

n3
x12

)
=

n

n1d13

n

n2d23
+

nm

n3d13d23
x2

12x123,

where we used equation (2.11) to get the last equality. We collect the equations just

derived in the following list

mx12x13x23x123 =
n

n1
x23 +

n

n2
x13 +

n

n3
x12 (2.12)

yx12 =
n

n1d12
x23 +

n

n2d12
x13 (2.13)

zx23 =
n

n2d23
x13 +

n

n3d23
x12 (2.14)

mx13x23x123 = d12y +
n

n3
(2.15)
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mx12x13x123 = d23z +
n

n1
(2.16)

wz =
n

n1d13

n

n2d23
+

nm

n3d13d23
x2

12x123. (2.17)

For proving Theorem 2.2 the classical divisor bound will play a crucial role. We will use

it in the following form (see [47, Theorem 315]).

Lemma 2.12 (Divisor bound). Let d(n) : N → N be the divisor function, i.e. d(n) =∑
d|n 1. Then for every ε > 0, we have

d(n)�ε n
ε.

We now have all the tools we need to prove Theorem 2.2.

Proof of Theorem 2.2. Consider a solution of equation (2.8) for a fixed pattern (n1, n2,

n3). By assumption we have n1t1 ≤ n2t2 ≤ n3t3 and using the parametrization of the ti

we introduced in equation (2.9) this implies

x13 ≤
n2

n1
x23 and x12 ≤

n3

n2
x13.

Using these inequalities in equations (2.13) and (2.14) yields

yx12 ≤ 2
n

n1d12
x23 and zx23 ≤ 2

n

n2d23
x13.

Dividing by x23 and x13 respectively and multiplying the last two inequalities we arrive

at
yx12

x23

zx23

x13
≤ 4

n2

n1n2d12d23
.

We now intend to obtain a lower bound for n1n2d12d23. Let n =
∏
p∈P p

νp(n) be the

prime factorization of n. Then n1 =
∏
p∈P p

νp(n1) and n2 =
∏
p∈P p

νp(n2) where 0 ≤
νp(n1), νp(n2) ≤ νp(n) for all p ∈ P. Since

d12 =

(
n

n1
,
n

n2

)
=
∏
p∈P

pνp(n)−max(νp(n1),νp(n2))

we have

n1n2d12 =
∏
p∈P

pνp(n1)+νp(n2)+νp(n)−max(νp(n1),νp(n2))
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≥
∏
p∈P

pνp(n1)+νp(n2)+νp(n)−νp(n1)−νp(n2) = n.

This shows that n1n2d12d23 ≥ n and thus

yx12

x23

zx23

x13
� n.

By assumption we have that n1t1 is the smallest denominator in equation (2.8). This

implies that
m

n
≤ 3

n1t1
and thus t1 ≤

3n

mn1
� n

m
.

The bound in Theorem 2.2 can finally be derived from the following inequality

y · z · x12x13 · (x12x123)2 =
yx12

x23

zx23

x13
(x12x13x123)2 � n3

m2
. (2.18)

This implies that at least one of the factors y, z, x12x13 and x12x123 is bounded by

O
((

n3

m2

)1/5
)
.

If this is the case for y then by Lemma 2.12 and equation (2.15) we have at most

Oε(nε) choices for the parameters x13, x23 and x123 for every choice of y. The parameter

x12 is then uniquely determined by (2.12).

Similarly, if z is the bounded parameter use Lemma 2.12 and equation (2.16) to see

that there are at most Oε(nε) choices for the parameters x12, x13 and x123 for every

choice of z. Again the remaining parameter x23 is uniquely determined by (2.12).

Suppose that x12x13 �
(
n3

m2

)1/5
. By Lemma 2.12 for every fixed choice of x12x13 we

may choose the factors x12 and x13 in at most Oε(nε) ways. For each of those choices

Lemma 2.12 and equation (2.14) imply that there are at most Oε(nε) choices for the

parameter x23. As before the remaining parameter x123 is then fixed by (2.12).

Finally we need to consider the case when x12x123 is the bounded factor. As in the

previous case for any fixed choice of x12x123 we have at most Oε(nε) choices for the

factors x12 and x123. Since equation (2.8) has no solutions for m > 3n we have that

m � n and using equation (2.17) we see that for any fixed choice of x12 and x123 we

have at most Oε(nε) choices for the parameters w and z. With z, x12 and x123 fixed, x13

is uniquely determined by (2.16). The last parameter x23 is again uniquely determined

by (2.12).

In any case we have a bounded number of applications of the divisor bound from
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Lemma 2.12, say it was applied at most l times to integers of size at most O(nc), for

a fixed constant c 2. Setting ε̃ = clε we hence have at most Oε̃
(
nε̃
(
n3

m2

)1/5)
choices for

the parameters x12, x13, x23 and x123 which uniquely determine a solution of (2.8) if n1,

n2 and n3 are fixed. Note that this bound is independent of the concrete choice of the

parameters ni and again by Lemma 2.12 we have at most Oε(n3ε) choices for the pattern

(n1, n2, n3). Theorem 2.2 now follows by redefining the choice of ε.

Finally we prove Corollary 2.4.

Proof of Corollary 2.4. The proof of Theorem 2.2 suggests an algorithm for computing

all decompositions of a rational number m
n as a sum of three unit fractions. The running

time of this algorithm depends on the quality of algorithms used for integer factorization.

In [56] a probabilistic algorithm is analyzed which finds all prime factors of a given

integer in expected running time exp((1 + o(1))
√

log n log logn) for n → ∞, which is

clearly Oε(nε). Lenstra and Pomerance [56, Section 12] point out, that here the term

probabilistic means that the algorithm is allowed to call a random number generator

which outputs 0 or 1 each with probability 1
2 . The term expected running time refers to

averaging over the output of the random number generator only and not over the input

n. Hence the expected running time is also valid for each individual n.

As a consequence, using an algorithm of this type, all decompositions of m
n as a sum

of three unit fractions can be found by carrying out the following steps. Factorize the

integer n and compute all possible patterns (n1, n2, n3). For any of these Oε(nε) patterns

it follows from the calculations in the proof of Theorem 2.2, that the implied constant

in inequality (2.18) may be chosen as C :=
(

36
n2

1d23

)
. For all choices of integers y, z,

x12x13 and x12x123 ∈
[
1, C1/5

(
n3

m2

)1/5]
we determine the integers x12, x13, x23 and x123 via

factoring x12x13, x12x123 and a small number of integers mentioned in formulae (2.12)-

(2.17). All in all this leads to an algorithm of expected running time Oε
(
nε
(
n3

m2

)1/5)
.

As for representations of the form

m

n
=

k∑
i=1

1

ai
(2.19)

with k > 3 we enumerate all possible choices for the denominators ai, 1 ≤ i ≤ k − 3,

and apply our algorithm for finding representations as sum of three unit fractions to

2It is easy to see that the largest denominator n3t3 in equation (2.8) is bounded by O(n4) (see also the
proof of Corollary 2.4 below). The same bound hence applies to all the parameters xi, xij and x123,
{i, j, k} = {1, 2, 3}. Since all integers we need to factor are either products of two of these relative
greatest common divisors, or appear on one side of the equations (2.12) – (2.17), together with the
fact that m ≤ 3n, this implies the existence of the constant c.
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determine all choices for the remaining three denominators, i.e. we solve

m

n
−
k−3∑
i=1

1

ai
=

1

ak−2
+

1

ak−1
+

1

ak
. (2.20)

We suppose the denominators ai in equation (2.19) are given in increasing order and

prove upper bounds for the size of ai, 1 ≤ i ≤ k. In particular we use an induction

argument to show that ai ≤ αin
2i−1

where the finite sequence (αi)1≤i≤k is recursively

defined by α1 = k and αi = (k − i + 1)
∏
j<i αj for 2 ≤ i ≤ k. For i = 1 this bound

follows easily from the following inequality

m

n
=

1

a1
+ · · ·+ 1

ak
≤ k

a1

which leads to a1 ≤ kn
m ≤ kn. If we suppose the bound holds for ai, with a similar

argument we get

m

n
− 1

a1
− · · · − 1

ai
=

1

ai+1
+ · · ·+ 1

ak
≤ (k − i)

ai+1
.

The last inequality together with the induction hypothesis for j < i+ 1 implies

ai+1 ≤ (k − i)
n
∏
j<i+1 aj

m
∏
j<i+1 aj − n

∑
j<i+1

∏
l<i+1
l 6=j

al
≤ (k − i)n

∏
j<i+1

aj ≤ αi+1n
2i .

By definition αi is a polynomial in k of degree 2i with leading coefficient 1. Furthermore,

the denominator of the rational number on the left hand side of equation (2.20) is of

size at most n
∏k−3
i=1 ai �k n

2k−3
. By the aforementioned result we can compute all

decompositions as a sum of three unit fractions of this number in time Oε,k(n2k−3(3/5+ε)).

We have to compute these representations for at most
∏k−3
i=1 ai �k n2k−3−1 rational

numbers which leads to an upper bound of

Oε,k
(
n2k−3(8/5+ε)−1

)
for the running time.

Remark 2.13. The procedure for computing representations as a sum of k unit fractions

as described in the proof of Corollary 2.4 could lead to a speedup for calculations similar to

those in [2]. In the calculations above the size of the numerator of the rational number

on the left hand side of equation (2.20), which we denote by m′

n′ , was not taken into
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account. We note that also the proof of the upper bound for f3(m,n) by Browning and

Elsholtz [9, Theorem 2] may be similarly turned into an algorithm of expected running

time Oε
(
nε
(
n
m

)2/3)
. In practice one would check dynamically if m′ � (n′)1/4 before

computing the representations as a sum of three unit fractions of m′

n′ . If this is the case,

the algorithm described in the first part of the proof of Corollary 2.4 should be applied,

if m′ � (n′)1/4 the method of [9] should be used.

2.6. Sums of k unit fractions

In this section we will prove Theorem 2.5. Browning and Elsholtz used an induction

argument on their bound for the quantity f3(m,n) to get bounds for fk(m,n) for k ≥ 4.

Using their arguments directly on our result from Theorem 2.2 would lead to worse

upper bounds than those of Browning and Elsholtz. The reason is that our bound for

f3(m,n) is weaker than the one in [9] when m is large.

As in [9, Section 4] the proof of Theorem 2.5 will be based on the observation that

from equation (2.5) it follows that

fk(m,n) ≤
∑

n
m
<n1t1≤ knm

fk−1(mn1t1 − n, n1t1n),

which, after introducing the parameter u = mn1t1 − n, becomes

fk(m,n) ≤
∑

0<u≤(k−1)n
m|u+n

fk−1

(
u,
n(u+ n)

m

)
. (2.21)

The improvement in Theorem 2.5 stems from extending the method of Browning and

Elsholtz by applying the following new idea. In the case of k = 4 we do not consider the

sum on the right hand side of (2.21) as a whole but we split the sum into two parts. In

the first part we collect the values of u where 0 < u ≤ nδ for some 0 < δ < 1 which will

be chosen later. This sum will be small since it contains few summands.

The second part will consist of all summands where u > nδ. This corresponds to

n1t1 >
n+nδ

m which will force n2t2 and n3t3 to be small.

The following Lemma 2.14 is [9, Theorem 2].

Lemma 2.14 (Browning, Elsholtz (2011)). For any ε > 0, we have

f3(m,n)�ε n
ε
( n
m

)2/3
.
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In the proof of Theorem 2.5 below we make use of Lemma 2.14 rather than Theo-

rem 2.2. Furthermore, we will use a lifting procedure which was first used by Browning

and Elsholtz [9, Section 4] to lift upper bounds of the form

f5(m,n)�ε n
ε

(
n2

m

)c
(2.22)

to upper bounds for fk(m,n) for k > 5. For possible future use we write this procedure

up in the following lemma and work through the original proof by Browning and Elsholtz

with an arbitrary exponent c > 1 in (2.22).

Lemma 2.15 (Browning, Elsholtz (2011)). Suppose that there exists c > 1 such that

f5(m,n)�ε n
ε

(
n2

m

)c
.

Then for any k ≥ 5 we have

fk(m,n)�ε (kn)ε

(
k4/3n2

m

)c2k−5

.

Proof. We will inductively show that for k ≥ 5 there exists Θk depending on k such that

we have

fk(m,n)�ε (kn)ε
(
kΘkn2

m

)c2k−5

(2.23)

and we note that this is certainly true for k = 5 by assumption. The proof works in

three steps.

1. Establish an upper bound where the implied constant is allowed to depend on k.

For k ≥ 5 we want to have a bound of the form

fk(m,n)�k,ε n
ε

(
n2

m

)c2k−5

(2.24)

where the implied constant is allowed to depend on k. An upper bound of this type may

easily be achieved via (2.21). Indeed this bound holds true for k = 5 by assumption and

assuming its existence for fk(m,n) we find for fk+1(m,n)

fk+1(m,n)�
∑

0<u≤kn
m|u+n

fk

(
u,
n(u+ n)

m

)
�k,ε n

ε

(
n2

m

)c2k−4 ∞∑
u=1

1

uc2k−5
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�k,ε n
ε

(
n2

m

)c2k−4

,

where we used that c > 1.

2. Use inequality (2.21) and split the sum into two parts.

For the upper bound where the implied constant is independent of k we again suppose

it to be true for fk(m,n) with k ≥ 5 and inductively prove it to hold for fk+1(m,n).

Using inequalities (2.21) and (2.23) we get

fk+1(m,n)�
∑

0<u≤kn
m|u+n

fk

(
u,
n(u+ n)

m

)

�
∑

0<u≤(L−1)n
m|u+n

fk

(
u,
n(u+ n)

m

)
+

∑
(L−1)n<u≤kn

m|u+n

fk

(
u,
n(u+ n)

m

)

� (kn)εkΘkc2
k−5

(
n2

m

)c2k−4

× ∑
0<u≤(L−1)n

1

uc2k−5L
c2k−4

+
∑

(L−1)n<u≤kn

1

uc2k−5 (k + 1)c2
k−4

 .

Since c2k−5 > 1 the infinite sums over 1

uc2k−5 converge. For the first sum we use that the

sum is bounded by a constant for the second sum we use the following more accurate

bound ∑
(L−1)n<u≤kn

1

uc2k−5 ≤
∞∑
u=L

1

uc2k−5 �
∫ ∞
L

1

uc2k−5 du� L1−c2k−5
.

Together with the fact that (a+ b)α ≥ aα + bα for a, b > 0 and α > 1 this shows that

fk+1(m,n)

�ε ((k + 1)n)ε(k + 1)Θkc2
k−5

(
n2

m

)c2k−4 (
Lc2

k−4
+

(
k + 1

L1/2−(c2k−4)−1

)c2k−4
)

�ε ((k + 1)n)ε(k + 1)Θkc2
k−5

(
n2

m

)c2k−4 (
L+

k + 1

L1/2−(c2k−4)−1

)c2k−4

.

3. Optimizing for L and determining an upper bound for Θk.

By the bound we derived in step 1 we may suppose that k ≥ max{ log( 2
3

(cε)−1)

log 2 +
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4, (1+
√

5
2 )1/ε − 1}. With L = (k + 1)2/3 we get

fk+1(m,n)

�ε ((k + 1)n)ε(k + 1)Θkc2
k−5

(
n2

m

)c2k−4

(k + 1)
2/3·c2k−4

(
1 + L(c2k−4)−1

)c2k−4

�ε (k + 1)ε(1+c2k−3)nε(k + 1)c2
k−4(Θk/2+2/3)

(
n2

m

)c2k−4

.

With Θk+1 = Θk
2 + 2

3 and an appropriate choice of ε this implies

fk+1 �ε ((k + 1)n)ε
(

(k + 1)Θk+1n2

m

)c2(k+1)−5

Since for Θ5 ≤ 4
3 the sequence recursively defined by Θk+1 = Θk

2 + 2
3 monotonically

increases towards its limit 4
3 we eventually get for any k ≥ 5:

fk(m,n)�ε (kn)ε

(
k4/3n2

m

)c2k−5

.

Proof of Theorem 2.5. In the following δ < 1 is a fixed constant to be chosen at the

end of the proof. We start with proving bounds on f4(m,n) and we write f4(m,n) =

f
(1)
4 (m,n) + f

(2)
4 (m,n). Here f

(1)
4 (m,n) counts those solutions of equation (2.5) with

n1t1 ≤ n+nδ

m and f
(2)
4 (m,n) those with n1t1 >

n+nδ

m . From (2.21) we have that

f4(m,n) = f
(1)
4 (m,n) + f

(2)
4 (m,n) ≤

∑
0<u≤nδ
m|u+n

f3

(
u,
n(u+ n)

m

)
+ f

(2)
4 (m,n)

= S1 + f
(2)
4 (m,n).

We use the following estimate (uniform in a ∈ Z)

∑
n≤x

n≡a mod q

n−Θ =
x1−Θ

(1−Θ)q
+OΘ(1). (2.25)

43



To bound the sum S1 we use (2.25) and Lemma 2.14 to get

S1 �ε n
ε

(
n2

m

) 2
3 ∑

0<u≤nδ
m|u+n

1

u
2
3

�ε n
ε

(
n2

m

) 2
3

(
n
δ
3

m
+ 1

)
. (2.26)

Next we prove that

f
(2)
4 (m,n)�ε n

εn
(12−4δ)/5

m8/5
.

Since there are at most Oε(nε) distinct patterns (n1, n2, n3, n4) it suffices to prove this

bound for all solutions counted by f
(2)
4 (m,n) corresponding to a fixed pattern. To get

an upper bound for the contribution of f
(2)
4 (m,n) we thus suppose that (n1, n2, n3, n4)

is fixed and note that the fact that 4n
m ≥ n1t1 >

n+nδ

m implies the following upper bound

for n2t2:
3

n2t2
≥ mn1t1 − n

nn1t1
≥ mnδ

4n2
.

Therefore, we have

n2t2 �
n2−δ

m
. (2.27)

We use again relative greatest common divisors and write a representation of m
n as a

sum of four unit fractions as

m

n
=

1

n1x1x12x13x14x123x124x134x1234
+

1

n2x2x12x23x24x123x124x234x1234

+
1

n3x3x13x23x34x123x134x234x1234
+

1

n4x4x14x24x34x124x134x234x1234
.

It is again easy to see that x1 = x2 = x3 = x4 = 1 and multiplying out the last equation

yields

mx12x13x14x23x24x34x123x124x134x234x1234

=
n

n1
x23x24x34x234 +

n

n2
x13x14x34x134 +

n

n3
x12x14x24x124 +

n

n4
x12x13x23x123.

(2.28)

From equation (2.28) we see that the quantity

z34 =
n
n3
x12x14x24x124 + n

n4
x12x13x23x123

x34
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is an integer and we use

z34x34 =
n

n3
x12x14x24x124 +

n

n4
x12x13x23x123. (2.29)

By (2.27) and 4n
m ≥ n1t1 >

n+nδ

m we have

(t1t2)4 = (x12x13x14x123x124x134x1234)4(x12x23x24x123x124x234x1234)4 � n12−4δ

m8
,

(2.30)

and we write

(x12x13x14x123x124x134x1234)4(x12x23x24x123x124x234x1234)4 =

(x12x13x14x23x24x123x124x1234)(x12x13x23x24x123x124x134x234x1234)×
(x12x14x23x24x123x124x134x234x1234)(x12x13x14x24x123x124x134x234x1234)×
(x4

12x13x14x23x
4
123x

4
124x134x234x

4
1234).

(2.31)

We show that each of the five factors in brackets on the right hand side of the last

equation corresponds to at most Oε(nε) solutions of (2.28), where ε is an arbitrarily

small positive number. First we note that all factors are of polynomial size in n and by

Lemma 2.12, given one of these factors, we have Oε(nε) choices for all the xij , xijk and

x1234 appearing as sub-factors.

Given positive integer constants C0, C1, C2 and C3 of size polynomial in n, we count

the number of integer solutions (A,B) of the equation

C0AB = C1A+ C2B + C3. (2.32)

Rewriting this equation in the form

(C0A− C2)(C0B − C1) = C0C3 + C1C2

we see that the number of solutions (A,B) is bounded by Oε(nε). For the second to

the fifth factor on the right hand side of (2.31) exactly two parameters are missing to

uniquely determine a solution of (2.28). All of these factors miss the parameter x34.

The second one additionally misses x14, the third one x13, the fourth one x23 and the

last one x24. In all of these cases equation (2.28) provides an instance of (2.32) where

the variables A and B correspond to the two missing parameters (the term containing

both missing parameters on the right hand side of (2.28) may be shifted to the left hand

side).
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In the first factor on the right hand side of (2.31) three parameters are missing. From

equation (2.29) we see that we have at most Oε(nε) choices for the parameter x34. To

see the same bound for the parameters x134 and x234 we use again that equations of type

(2.32) can be factorized.

Since by (2.30) at least one of the factors on the right hand side of (2.31) is of order

O
(
n

(12−4δ)/5

m8/5

)
we have that

f
(2)
4 (m,n)�ε n

εn
(12−4δ)/5

m8/5
. (2.33)

Again we note that in the considerations above the divisor bound from Lemma 2.12 was

applied a bounded number of times and the bound in (2.33) follows upon redefining the

choice of ε. Choosing δ = 16
17 in (2.26) and (2.33) we get

f4(m,n)� nε

(
n4/3

m2/3
+
n28/17

m8/5

)
. (2.34)

To bound f5(m,n) we again use (2.21) and (2.25) and get

f5(m,n)� nε
∑

0<u≤4n
m|u+n

((
n2

m

)4/3
1

u2/3
+

(
n2

m

)28/17
1

u8/5

)
� nε

(
n2

m

)28/17

. (2.35)

Setting c = 28
17 in Lemma 2.15 yields the bound in Theorem 2.5.

2.7. Lower bounds

Proof of Theorem 2.7. To prove the first bound we are going to extend an idea used in

the proof of [9, Theorem 1]. As before we use highly composite denominators n ∈ N,

but here we show that there are many values a1 with many corresponding pairs (a2, a3)

giving a solution of
m

n
=

1

a1
+

1

a2
+

1

a3
.

To prove our lower bound for f3(m,n) we consider the set

N =

{
mn′ : n′ =

r∏
i=1

pi

}
,
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where pi is the i-th prime. In choosing the denominators n ∈ N we reduce the problem

to finding many solutions of the equation

1

n′
=

1

a1
+

1

a2
+

1

a3
.

We set a1 = n′ + d, where d is any divisor of n′, and are left with

1

n′
− 1

n′ + d
=

1

n′
(
n′

d + 1
) =

1

a2
+

1

a3
.

For two divisors d1 and d2 of n′ with (d1, d2) = 1 we have

1

n′
(
n′

d + 1
) =

1

n′
(
n′/d+1

)
d1

(d1 + d2)

+
1

n′
(
n′/d+1

)
d2

(d1 + d2)

. (2.36)

We note that for two pairs of divisors d1, d2 and d′1, d
′
2 with (d1, d2) = 1 and (d′1, d

′
2) = 1

it follows that

n′
(
n′

d + 1
)

d1
(d1 + d2) =

n′
(
n′

d + 1
)

d′1
(d′1 + d′2)⇔ d1

d2
=
d′1
d′2
.

Since d1 and d2 as well as d′1 and d′2 are coprime we get d1 = d′1 and d2 = d′2. This

implies that each pair (d1, d2) with d1 < d2 gives a unique solution of equation (2.36).

Furthermore, for any choice of d, d1, d2 it follows that

n′ + d <
n′
(
n′

d + 1
)

d2
(d1 + d2),

which altogether implies that by counting all possible choices for d, d1, d2 we get a lower

bound for twice the value of f3(1, n′).

Choosing n′ as in the construction of the set N , we have 2ω(n′) choices for the divisor

d and using the binomial theorem there are

ω(n′)∑
i=0

(
ω(n′)

i

) ω(n′)−i∑
j=0

(
ω(n′)− i

j

)
=

ω(n′)∑
i=0

(
ω(n′)

i

)
2ω(n′)−i = 3ω(n′)

choices for the divisors d1 and d2. As a consequence of the prime number theorem it is

known that ω(n′) ∼ logn′

log logn′ and hence, for n ∈ N

f3(m,n) = f3(1, n′) ≥ 1

2
2ω(n′)3ω(n′) ≥ exp

(
(log 6 + o(1))

log n′

log log n′

)
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≥ exp

(
(log 6 + om(1))

log n

log log n

)
.

For the second bound we modify the idea used in the proof of [25, Theorem 1.8]. For

fixed m ∈ N, as a consequence of the Turán-Kubilius inequality (see e.g. [73, p. 434])

we get that the set

M1 =
⋂
k≤m

(k,m)=1

{
n ∈ N : ω(n, k,m) =

(
1

ϕ(m)
+ o(1)

)
log logn

}

is a set with density one, i.e. limx→∞
{n∈M1:n≤x}

x = 1.

For any n ∈ M1 we write m
n = m′

n′ with (m′, n′) = 1 and note that ω(n, k,m) =

ω(n′, k,m) for all k with (k,m) = 1. By construction of the set M1 and since n′ is

coprime to m′, we find
(

1
ϕ(m) + o(1)

)
log logn prime divisors p of n′ in the residue class

−n′ mod m′. For any of these prime divisors we have

m′

n′
− 1

n′+p
m′

=
p

n′ n
′+p
m′

=
1

n′
n′/p+1
m′

where
n′/p+1
m′ is an integer. Again, by construction of the set M1, for the number of

prime factors of n′ we have

ω(n′) ≥ ω(n)− ω(m) = (1 + om(1)) log log n.

For two coprime divisors d1 and d2 of n′ we construct decompositions of 1

n′
n′/p+1

m′

as a

sum of two unit fractions as in (2.36). As above we see that for any prime divisor p of

n′ in the residue class −n′ mod m′ there are at least 3ω(n′) such decompositions and all

of them are distinct.

Altogether this implies that for any n ∈M1

f(m,n) ≥
(

1

ϕ(m)
+ o(1)

)
3ω(n′) · log log n ≥

(
1

ϕ(m)
+ o(1)

)
3ω(n/m) · log logn

≥ exp((log 3 + om(1)) log log n) · log logn.

Finally, we prove the improved lower bound on f3(4, n). To do so, we set

M2 =

 ⋂
i∈{1,3}

{n ∈ N :
τ(n, 4)

4
≤ τ(n, i, 4)}

∩
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∩ {n ∈ N : ω(n) = (1 + o(1)) log log n} ∩ {n ∈ N : τ(n) ≥ (log n)log 2+o(1)}.

The first two sets with i = 1 and i = 3 in the intersection in the definition of M2

have density 1 by [46, Theorem 5]. For the third and the fourth set this is true by the

Turán-Kubilius inequality (again see e.g. [73, p. 434]). Hence the set M2 has density 1

and we investigate what happens for n in a certain residue class modulo 4.

If n ≡ 0 mod 4, then 4
n = 1

n/4 and for any divisor d of n
4 we have

1
n
4

− 1
n
4 + d

=
1

n
4

(
n
4d + 1

) .
Since ω

(
n
4

)
≥ ω(n) − 1, with the same arguments as above, we conclude that the

number of representations of 1
n/4(n/(4d)+1) as a sum of two unit fractions is at least of

order 3ω(n/4) = 3(1+o(1)) log logn. From τ(n) =
∏
p|n(νp(n) + 1) we easily deduce that

τ
(
n
4

)
≥ 1

3τ(n). Altogether we thus get

f3(4, n) ≥ 1

3
τ
(n

4

)
3ω(n/4) ≥ exp((log 6 + o(1)) log log n).

If n ≡ 2 mod 4, then n
2 is odd and the same is true for all τ

(
n
2

)
= 1

2τ(n) divisors of n
2 .

We have 4
n = 2

n/2 and for any divisor d of n
2

2
n
2

− 1
n/2+d

2

=
1

n
2

(
n/2d+1

2

) .
As above we get

f3(4, n) ≥ τ
(n

2

)
3ω(n)−1 ≥ exp((log 6 + o(1)) log log n).

Finally, if n ≡ r mod 4 for r ∈ {1, 3}, we have τ(n, 4) = τ(n) and by construction

of the set M2, we have more than τ(n)
4 divisors d of n in the residue class −r mod 4.

Again, for any of these divisors we have

4

n
− 1

n+d
4

=
1

n
(
n/d+1

4

) .
Applying the arguments used previously one more time, we find

f3(4, n) ≥ τ(n)

4
3ω(n) ≥ exp((log 6 + o(1)) log log n)
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also in this case.

Remark 2.16. The difference in the constants in the exponential functions of the lower

bounds on f(m,n) and f(4, n) for sets of integers with density one in Theorem 2.7 is

basically due to cancellation effects when dealing with general m. In particular we deal

with m
n = m′

n′ , where (m′, n′) = 1, and we would need to have good control of the number

of divisors of n′ in the residue class −n′ mod m′ to get the log 6 exponent also in the

general case. However, if we do not ask about a lower bound holding for a set of density

one within the positive integers, but for a set of integers of density one within the set S
of positive integers coprime to a given m ∈ N, we may achieve the log 6 exponent. To

do so we replace the set M1 with

M′1 =

 ⋂
1≤i≤m
(i,m)=1

{n ∈ N : τ(n, i,m) =
τ(n)

ϕ(m)
(1 + om(1))}

∩
∩ {n ∈ N : ω(n) = (1 + o(1)) log log n} ∩ {n ∈ N : τ(n) ≥ (log n)log 2+o(1)} ∩ S.

Now we may use results from [46, Theorem 5] as well as Turán-Kubilius like previously

and get that M′1 has density one in S. Instead of constructing the first denominator via

shifts in prime factors of n we may use arbitrary divisors of n in this case, which leads

to the improvement mentioned above.

Proof of Theorem 2.10. We consider solutions corresponding to the pattern (1, p, p). In

equation (2.1) we suppose that a1 is the denominator with (a1, p) = 1 and we write

a1 = t1, a2 = pt2 and a3 = pt3. We use the parametrization via relative greatest common

divisors of the ti and applying Lemma 2.11 it is easy to see, that x1 = x2 = x3 = 1 in

this case. Hence we are looking for infinitely many primes p ≡ e mod f such that for

given m ∈ N the equation

m

p
=

1

x12x13x123
+

1

px12x23x123
+

1

px13x23x123
(2.37)

has many solutions. Multiplying equation (2.37) by the common denominator we get

mx12x13x23x123 = px23 + x13 + x12.
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Setting x12 + x13 = kx23, M = lcm(m, f) and x12 = M
m we deduce that

M

(
kx23 −

M

m

)
x123 = p+ k.

The residue class (f−e) ≡ −e mod f splits into the residue classes (f−e)+if mod M , for

0 ≤ i ≤ m
(m,f)−1. Note, that gcd

(
f, m

(m,f)

)
= 1 hence the integers i·f for 0 ≤ i ≤ m

(m,f)−1

are a full system of residues modulo m
(m,f) . In particular there exists a 0 ≤ j ≤ m

(m,f) − 1

such that (f − e) + jf ≡ 1 mod m
(m,f) . We set k = (f − e) + jf and with (e, f) = 1 we

altogether see that (M,k) = 1.

Now let Q =
∏r
i=1 qi where qi is the i-th prime with qi ≡ −M

m mod k and qi > M .

Note that gcd(M,Q) = 1.

With r =
⌊ log t
ϕ(k)C log log t

⌋
we find that Q is of order t1/C+of,m(1). We now use Linnik’s

theorem on primes in arithmetic progressions. As the modulus is very smooth3 we can

use an exponent of C = 12
5 + o(1), due to Chang [11, Corollary 11]. Hence we may find

a prime p of order MCt1+of,m(1) with

p ≡ −k mod QM.

This congruence implies that p+k is divisible by the primes q1, . . . , qr and together with

k = (f − e) + jf , we deduce that p ≡ e mod f and p+ k ≡ 0 mod M .

Let l ∈ N0 and S be a subset of size l ordk
(
− M

m

)
+ 1 of the prime factors of Q. Hence

x23 =
∏
q∈S q+

M
m

k is an integer and we set x123 = p+k
M

∏
q∈S q

. We observe that any of these

choices leads to a different solution of (2.37). To see this we look at the denominator

a2 = px12x23x123 of the second fraction on the right hand side of this equation. Suppose

that two sets S and S′ would lead to the same denominator a2. With x12 = M
m this

would imply the existence of x23 6= x′23 such that

p
M

m
x23

p+ k

M(kx23 − M
m )

= p
M

m
x′23

p+ k

M(kx′23 − M
m )

from which we derive that

x23

x′23

=
kx23 − M

m

kx′23 − M
m

=

∏
q∈S q∏
q′∈S′ q

′ .

If q ∈ S would divide x23 then q would also divide M
m , which is impossible by construction

3We note that more recently instead of the term smooth numbers also the term friable numbers is used
for integers without large prime factors.
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of Q. We hence have that
∏
q∈S q∏
q′∈S′ q

′ = 1 and thus S = S′.

To count the number of solutions we get with the above construction, we make use of

a formula which can be found in [6, Theorem 1], for example, and which states

∑
i≥0

(
n

iu

)
=

1

u

u−1∑
j=0

(1 + ξju)n, (2.38)

where ξu = exp
(

2πi
u

)
. Note that for the term corresponding to j = 0 in the sum on the

right hand side of (2.38) we get 2n while for all other j we have |1 + ξju| < 2. Hence we

deduce ∑
i≥0

(
n

iu

)
=

2n

u
(1 + ou(1)).

The number of choices of the parameter x23 is

∑
i≥0

(
r

i ordk
(
−M
m

)
+ 1

)
=
∑
i≥0

r

i ordk
(
−M
m

)
+ 1

(
r − 1

i ordk
(
−M
m

)) ≥∑
i≥0

(
r − 1

i ordk
(
−M
m

))

=
2r−1

ordk
(
−M
m

)(1 + of,m(1)).

Plugging in r =
⌊ log t
ϕ(k)C log log t

⌋
and using that p ≤MCt1+of,m(1) we get a lower bound of

f3(m, p)�f,m exp

((
log 2

Cϕ(k)
+ of,m(1)

)
log t

log log t

)
�f,m exp

((
5 log 2

12 lcm(m, f)
+ of,m(1)

)
log p

log log p

)
.

(2.39)

Remark 2.17. The best known exponent for Linnik’s Theorem takes care of the worst

case modulus and is 5 by work of Xylouris [75]. Chang’s result [11, Corollary 11] considers

smooth moduli (as in our situation) and allows for the better exponent 12
5 +o(1). Harman

investigated, in connection with constructing Carmichael numbers, what happens if one

is allowed to avoid a small set of exceptional moduli. In this situation he improved

the exponent to 1
0.4736 (see [49, Theorem 1.2] and [48] for some more explanation). As

in our situation we choose the modulus MQ, and hence can avoid ”bad” factors, it

seems possible that Theorem 2.10 can also be proved with a factor of 0.4736 instead of
5
12 = 0.4166 . . . in the exponent of the lower bound on f3(m, p).

Remark 2.18. If we consider the case m = 4, f = 4 and e ∈ {1, 3} in Theorem 2.10,
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we can explicitly compute k in the first line of (2.39). We simply have k = 3 if e = 1

and k = 1 if e = 3 hence we arrive at the lower bounds

f3(4, p)� exp

(
(0.1444 + o(1))

log p

log log p

)
if e = 1 and

f3(4, p)� exp

(
(0.2888 + o(1))

log p

log log p

)
if e = 3.
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3. Romanov type problems

This chapter contains an article, which is joint work with Christian Elsholtz and

Florian Luca, and which is going to appear in The Ramanujan Journal. Apart from

minor changes, mostly in typesetting, the article below is identical with the published

version [21].

Romanov type problems

Christian Elsholtz, Florian Luca and Stefan Planitzer

Abstract. Romanov proved that the proportion of positive integers which can be

represented as a sum of a prime and a power of 2 is positive. We establish similar results

for integers of the form n = p+ 22k +m! and n = p+ 22k + 2q where m, k ∈ N and p, q

are primes. In the opposite direction Erdős constructed a full arithmetic progression of

odd integers none of which is the sum of a prime and a power of two. While we also

exhibit in both cases full arithmetic progressions which do not contain any integers of

the two forms, respectively, we prove a much better result for the proportion of integers

not of these forms:

1. The proportion of positive integers not of the form p+ 22k +m! is larger than 3
4 .

2. The proportion of positive integers not of the form p+ 22k + 2q is at least 2
3 .

3.1. Introduction

An old result of Romanov [66] states that a positive proportion of the positive integers

can be written in the form p + gk, where p is a prime and g ≥ 2 is a positive integer.

As there are about x
log x primes p ≤ x and

⌊ log x
log g

⌋
powers gk ≤ x this result implicitly
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gives some information about the number r(n) of representations of n = p + gk. There

are not too many integers n ≤ x with a very large number of representations and on

average r(n) is bounded. The most prominent special case of Romanov’s result is the one

concerning sums of primes and powers of 2. Euler [37] observed in a letter to Goldbach

that 959 can not be written as the sum of a prime and a power of two. Euler’s letter

was also mentioned by de Polignac [65] and provides a counter example to a conjecture

of de Polignac himself, stating that any odd positive integer is the sum of a prime and

a power of 2. In 1950 Erdős [29] and van der Corput [14] independently proved that

also the lower density of odd integers not of the form p+ 2k is positive. Here and in the

following the lower density of a set A ⊂ N is defined to be

lim inf
x→∞

|{a ∈ A : a ≤ x}|
x

.

Replacing lim inf with lim sup leads to what we call upper density and if lower and upper

density coincide we speak of the density of the set A.

Concerning Romanov’s theorem one may ask how this result can be generalized. One

way would be by replacing the sequence of powers of g with another sequence (an)n≥1.

Generalizing a result of Lee [55] who replaced the powers of g by the Fibonacci sequence,

Ballot and Luca [4] proved an analogue of Romanov’s theorem for the case when (an)n≥1

is a linearly recurrent sequence with certain additional properties. For certain quadratic

recurrences (an)n≥1 this was done by Dubickas [16].

We would expect that for many sets A ⊂ N, with |A∩ [1, x]| ≥ c log x for some positive

constant c, one can write a positive proportion of integers n ≤ x as n = p+ a, p prime

and a ∈ A. In this paper we study sets A with |A ∩ [1, x]| ∼ cA log x but of a quite

different nature compared to previous ones. In particular, we study

A1 = {22k +m! : k,m ∈ N0},
A2 = {22k + 2q : k ∈ N0, q prime}.

Using the machinery of Romanov [66] we prove the following two theorems.

Theorem 3.1. The lower density of integers of the form p+ 22k +m! for k,m ∈ N0 and

p prime is positive.

Theorem 3.2. The lower density of integers of the form p + 22k + 2q for k ∈ N0 and

p, q prime is positive.

Concerning integers not of the form p+ 22k +m! we consider two different questions.

56



The first one is finding a large set, in the sense of lower density, of odd positive integers

not of this form.

The second question is if there is a full arithmetic progression of odd positive integers

not of the form p+22k+m!. The positive answer to this question is given in Theorem 3.4.

Note that the density of the set constructed in the proof of Theorem 3.4 is considerably

less than the density of the set used in the proof of Theorem 3.3.

Theorem 3.3. The lower density of odd positive integers not of the form p+ 22k +m!

for k,m ∈ N0 and p prime is at least 615850829669273873
2459565876494606882 >

1
4 . The lower density of all

positive integers without a representation of the form p+22k +m! is therefore larger than
3
4 .

Theorem 3.4. There exists a full arithmetic progression of odd positive integers not of

the form p+ 22k +m! for k,m ∈ N0 and p prime.

Finally we prove analogous results for integers not of the form p+ 22k + 2q.

Theorem 3.5. There exists a subset of the odd positive integers not of the form p +

22k +2q, for k ∈ N and p, q prime, with lower density 1
6 . The lower density of all positive

integers without a representation of the form p+ 22k + 2q is therefore larger than 2
3 .

Furthermore, there exists a full arithmetic progression of odd positive integers not of

the form p+ 22k + 2q.

Concerning the last result, we recall that Erdős conjectured that the lower density of

the set of positive odd integers not of the form p+ 2k + 2m is positive for k,m ∈ N0, p

prime (see for example [42, Section A19]).

For the proofs of Theorem 3.1 and Theorem 3.2 we apply the method of Romanov [66].

This means that we start with the Cauchy-Schwarz inequality in the form ∑
n≤x

ri(n)>0

1


∑
n≤x

ri(n)2

 ≥
∑
n≤x

ri(n)

2

(3.1)

for i ∈ {1, 2}, where r1(n) denotes the number of representations of n in the form

p+22k +m! and r2(n) counts the number of representations of n in the form p+22k +2q.

Note that the first sum on the left hand side of equation (3.1) equals the number of

integers less than x having a representation of the required form. It thus suffices to

check that ∑
n≤x

ri(n)� x and
∑
n≤x

ri(n)2 � x
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for both i = 1, 2 in order to get positive lower density for the sets of those integers. The

estimates
∑

n≤x r1(n)� x and
∑

n≤x r1(n)2 � x are proved in Section 3.3, Lemma 3.11

and Lemma 3.12, respectively. The analogous results for r2(n) are proved in Section 3.4,

Lemma 3.13 and Lemma 3.14, respectively. Theorem 3.3 and Theorem 3.4 are proved

at the end of Section 3.3 and Theorem 3.5 at the end of Section 3.4.

3.2. Notation

Let N, as usual, denote the set of positive integers, N0 the set of non-negative integers

and let P denote the set of primes. The variables p and q will always denote prime

numbers. For any prime p ∈ P and any positive integer n ∈ N let νp(n) denote the p-

adic valuation of n, i.e. νp(n) = k where pk is the highest power of p dividing n. For an

integer n, P (n) denotes its largest prime factor. For any set S ⊂ N let S(x) = |S∩ [1, x]|
denote the counting function of S. As usual ϕ denotes Euler’s totient function and µ

the Möbius function. Furthermore, for an odd positive integer n we denote by t(n) the

order of 2 mod n. We use the symbols �, �, O and o within the context of the well

known Vinogradov and Landau notation.

3.3. Integers of the form p+ 22k +m!

Before proving Lemma 3.11 and Lemma 3.12 we establish and collect several results

needed in due course. The following is a classical result due to Legendre (see for example

Theorem 2.6.1 and Theorem 2.6.4 in [61]).

Lemma 3.6 (Legendre’s formula). For any prime p ∈ P and any positive integer n ∈ N
we have that

νp(n!) =

∞∑
k=1

⌊
n

pk

⌋
.

Furthermore, if σp(n) denotes the sum of base p digits of n, then

νp(n!) =
n− σp(n)

p− 1
.

Theorem 3.7. The equation 2x1 + y1! = 2x2 + y2! has only four non-negative integer

solutions (x1, y1, x2, y2) with x1 > x2 where either x2 ≤ 52 or y2 ≤ 8. These solutions

are

(x1, y1, x2, y2) ∈ {(1, 0, 0, 2), (1, 1, 0, 2), (3, 2, 2, 3), (7, 4, 5, 5)}.
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Proof. Suppose that x2 ≤ 52 and note that y1 = 0 either implies that y2 ∈ {0, 1}
if x2 > 0, which leads to a solution where x1 = x2, which is excluded, or implies

that x2 = 0, whence x1 = 1 and y2 = 2. Hence, the only solution where y1 = 0 is

(x1, y1, x2, y2) = (1, 0, 0, 2). From now on we may suppose that y1 ≥ 1. In this case,

from Lemma 3.6, we get that ν2(y1!) ≥ y1

2 −1. This yields y1

2 −1 ≤ x2 and thus y1 ≤ 106.

Since

2x2 − y1! = 2x1 − y2!,

we have ν2(2x2−y1!) = ν2(2x1−y2!). Certainly |2x2−y1!| ≤ 252 +106! which implies that

ν2(2x2 − y1!) ≤ log(252+106!)
log 2 < 816. If x1 ≥ 816 and y2 ≥ 822, then ν2(2x1 − y2!) ≥ 816,

a contradiction. The cases where either x1 ≤ 815 or y2 ≤ 821 can be checked by a

computer search which leads to the solutions

(x1, y1, x2, y2) ∈ {(1, 0, 0, 2), (1, 1, 0, 2), (3, 2, 2, 3), (7, 4, 5, 5)}.

Now suppose that y2 ≤ 8 and consider

0 < 2x1 − 2x2 = y2!− y1!,

which implies that y1 ≤ y2 ≤ 8. In particular, |y2!− y1!| ≤ 2 · 8! and thus

ν2(y2!− y1!) ≤ log(2 · 8!)

log 2
< 17.

Since ν2(2x1 − 2x2) = x2 we have that x2 < 17 which is included in the case x2 ≤ 52

treated above.

Theorem 3.8. If we exclude solutions arising from interchanging (x1, y1) and (x2, y2),

the equation 2x1 + y1! = 2x2 + y2! has only four non-negative integer solutions (x1, y1,

x2, y2) with (x1, y1) 6= (x2, y2) and (y1, y2) 6∈ {(1, 0), (0, 1)} if x1 = x2. These are the

solutions presented in Theorem 3.7.

Proof. We compare the 2-adic and 3-adic valuation of both sides of equivalent forms of

the equation 2x1 + y1! = 2x2 + y2! to get information about the size of the parameters

x1, x2, y1 and y2.

If x1 = x2 we have that y1! = y2! and hence either y1 = y2 or (y1, y2) ∈ {(1, 0), (0, 1)}
which leads to the excluded trivial solutions. Therefore, w.l.o.g., we may suppose that

x1 > x2 and write

2x2(2x1−x2 − 1) = y1!((y1 + 1) · · · y2 − 1). (3.2)
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Next we compute the 2-adic valuation of both sides of the last equality. For the left–

hand side we simply have ν2(2x2(2x1−x2 − 1)) = x2 while for the right–hand side we use

that the factor ((y1 + 1) · · · y2 − 1) is odd as soon as y2 ≥ y1 + 2 which yields

ν2(y1!((y1 + 1) · · · y2 − 1)) =

ν2(y1!), if y2 ≥ y1 + 2

ν2(y1!) + ν2(y1), if y2 = y1 + 1.

From this, Lemma 3.6 and the fact that 1 ≤ σ2(y1) ≤ log y1

log 2 +1 (note that as in the proof

of Theorem 3.7, y1 ∈ {0, 1} leads to a single non trivial solution listed there), we get the

following two inequalities:

x2 = ν2(2x2(2x1−x2 − 1)) = ν2(y1!((y1 + 1) · · · y2 − 1)) ≤ ν2(y1!) + ν2(y1)

< y1 +
log y1

log 2
(3.3)

x2 = ν2(2x2(2x1−x2 − 1)) = ν2(y1!((y1 + 1) · · · y2 − 1)) ≥ ν2(y1!)

≥ y1 −
(

log y1

log 2
+ 1

)
. (3.4)

By Theorem 3.7, we may suppose that x2 ≥ 5 without loosing solutions. In this case

the last inequality implies y1 ≤ 2x2.

Next we look at

2x1 = 2x2 + y2!− y1!.

Since 2x2 ≤ 2x1−1 = 2x1

2 we have that y2! > 2x1

2 , whence we get

yy2
2 ≥ y2! >

2x1

2
,

and thus

y2 log y2 > (x1 − 1) log 2 and y2 >
(x1 − 1) log 2

log y2
.

To get the last inequality we used that by Theorem 3.7 we may suppose that y2 ≥ 9

whence log y2 > 0. Now x2 ≥ 5 implies that x1 ≥ 6. If we would have that y2 ≤ x1 the

last inequality would imply that

y2 >
log 2

2

(
x1

log y2

)
>

1

4

(
x1

log x1

)
. (3.5)

In order to prove (3.5) it therefore suffices to prove that y2 ≤ x1 for x1 ≥ 6. In order
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to do so we consider the equation

2x1 = y1!((y1 + 1) · · · y2 − 1) + 2x2

from which we readily deduce that y1! < 2x1 . This together with 2x1 = y2! − y1! + 2x2

implies that

y2! < 2 · 2x1 .

This implies that y2 ≤ x1, since otherwise (x1 + 1)! ≤ 2x1+1 which is true for x1 ≤ 2

only. By Theorem 3.7 again, we may suppose that y2 ≥ 9. In this case, applying Lemma

3.6, we obtain

ν3(y2!) ≥
⌊y2

3

⌋
+
⌊y2

9

⌋
≥ y2

3
>

1

12

(
x1

log x1

)
, (3.6)

where the last inequality follows by (3.5). Now we compute the 3-adic valuation of both

sides of equation (3.2). By inequality (3.3) and Lemma 3.6 for the right–hand side, we

get

k = ν3(y1!((y1 + 1) · · · y2 − 1)) ≥ ν3(y1!) =
y1 − σ3(y1)

2
≥ y1

2
− log y1

log 3
− 1

≥ x2

2
− log(y1)

(
1

2 log 2
+

1

log 3

)
− 1.

Since for the left–hand side of (3.2) we have 3k|2x1−x2 − 1, we deduce that ϕ(3k) =

2 ·3k−1|x1−x2. Here we used that 2 is a primitive root modulo any power of 3. This is a

direct consequence of Jacobi’s observation [50, p. XXXV] that a primitive root modulo

p2 is also a primitive root modulo any higher power of p. Using the above bound for k

and the fact that y1 ≤ 2x2, we get

x1 ≥ x2 + 2 · 3k−1 ≥ x2 +
2

9
3
x2/2−log(y1)(1/2 log 2+1/log 3) ≥ x2 +

2 · 3x2/2

36x2
2

≥ 3x2/2

18x2
2

. (3.7)

Next we find an upper bound for x1 in terms of x2. Consider the equation

2x1 − y2! = 2x2 − y1!.

Equation (3.5) yields that y2 >
1
4

x1
log x1

> 1
4

√
x1. Thus, by Lemma 3.6, ν2(y2!) >

√
x1

8 − 1

and hence ν2(2x1 − y2!) ≥
√
x1

8 − 1.
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On the other hand, |2x2−y1!| ≤ 2x2 +y1! ≤ 2x2 +(2x2)2x2 ≤ 2 ·(2x2)2x2 . Now ν2(2x2−
y1!) is certainly bounded from above by the highest power of 2 less than 2 · (2x2)2x2 :

2a ≤ 2 · (2x2)2x2 ⇔ a ≤ 2x2 log(2x2)

log 2
+ 1.

We therefore have that ν2(2x2 −y1!) ≤ 4x2 log(2x2) + 1 and putting everything together,

we get: √
x1

8
− 1 ≤ ν2(2x1 − y2!) = ν2(2x2 − y1!) ≤ 4x2 log(2x2) + 1,

which implies that x1 ≤ (32x2 log(2x2) + 16)2. Combining this with (3.7), we finally

arrive at

3
x2/2 ≤ 18x2

2(32x2 log(2x2) + 16)2.

This inequality is valid only for x2 ≤ 52 and the solutions satisfying this restriction are

given in Theorem 3.7.

Lemma 3.9. Let m1,m2,m3,m4 ∈ N such that m1 > m2, m3 > m4 and

m1!−m2! = m3!−m4!. (3.8)

Then (m1,m2) = (m3,m4) or m1 = m3 and (m2,m4) ∈ {(0, 1), (1, 0)}.

Proof. We start with the case where either m1 = m2 + 1 or m3 = m4 + 1 and w.l.o.g

suppose that m1 = m2 + 1. If furthermore, m2 ≤ m4, we get from equation (3.8)

m2!m2 = m4!((m4 + 1) · · ·m3 − 1) ≥ m2!m4,

which leads to m2 ≥ m4 and thus m2 = m4 which implies m1 = m3. On the other hand,

if m1 = m2 + 1 and m2 > m4 equation (3.8) implies that

m2(m4 + 1) · · ·m2 = (m4 + 1) · · ·m3 − 1, (3.9)

and therefore m4 + 1|1 if m3 > m4 + 1 and m4 + 1|m4 otherwise, whence m4 = 0 in

both cases. Now m3 = 1 implies that (m1,m2) = (1, 0) and we are done. Otherwise, if

m3 6= 1, then the right–hand side of (3.9) is odd. In order for the left–hand side to be

odd we need m2 = 1, which implies that m1 = m3.

It remains to consider the case where m1 ≥ m2 + 2 and m3 ≥ m4 + 2 and w.l.o.g. we

suppose that m2 > m4. We look at equation (3.8) in the form
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m2!((m2 + 1) · · ·m1 − 1) = m4!((m4 + 1) · · ·m3 − 1). (3.10)

By assumption, we have that ν2(m2!) = ν2(m4!) which implies that m4 is even and

m2 = m4 + 1. We hence may rewrite equation (3.10) to get

(m4 + 1) · · ·m1 −m4 = (m4 + 1) · · ·m3.

It follows that m4 + 1|m4 which implies that m4 = 0. This leads to m2 = 1 and

m1 = m3.

Lemma 3.10. For odd positive n, let t(n) be the order of 2 mod n and t(n) = 2a(n)b(n)

such that b(n) is odd. Then the series

∑
2-n

µ2(n)=1

1

nt(b(n))

converges.

Proof. Recall that P (n) denotes the largest prime factor of n and observe that if u|v
then t(u)|t(v), thus b(u)|b(v) and further t(b(u))|t(b(v)). From this and Mertens’ formula

in the weak form ∏
p≤x

(
1 +

1

p

)
� log x,

we get

∑
2-n

µ2(n)=1

1

nt(b(n))
≤
∑
p≥3
p∈P

1

pt(b(p))

∑
2-m

µ(m)2=1
P (m)<p

1

m
=
∑
p≥3
p∈P

1

pt(b(p))

∏
q<p
q∈P

(
1 +

1

q

)

�
∑
p≥3
p∈P

log p

pt(b(p))
. (3.11)

We split the primes into two subsets P and Q and consider the contribution of these

sets separately. We set P = P1 ∪ P2 ∪ P3 ∪ P4 where

P1 := {p ∈ P : t(p) < p
1/3},

P2 := {p ∈ P : P (t(p)) < p
1/log log p, p 6∈ P1},
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P3 := {p ∈ P : P (t(p)) ∈ P1, p 6∈ P1 ∪ P2},
P4 := {p ∈ P : p ≤ p0},

for some fixed p0 to be chosen later. The set Q is then defined to be P\(P ∪ {2}). We

start by showing that

P(x)� x

(log x)3
. (3.12)

For P1, applying an idea of Erdős and Murty [33], we use that p|2k−1 where k = t(p),

whence we have that ∏
p≤x
p∈P1

p
∣∣ ∏
k≤x1/3

(2k − 1).

From this, we get

2P1(x) ≤
∏
p≤x
p∈P1

p ≤
∏

k≤x1/3

(2k − 1) ≤ 2
∑
k≤x1/3 k ≤ 2x

2/3
,

which shows that

P1(x)� x
2/3 = o

(
x

(log x)3

)
. (3.13)

To deal with the contribution of the set P2, we set

Ψ(x, y) := |{n ≤ x : P (n) ≤ y}|.

By known results on smooth numbers (in particular, a result of Canfield, Erdős and

Pomerance from [10, Corollary p. 15]), we have for y > (log x)2,

Ψ(x, y) =
x

exp((1 + o(1))u log u)
, where u =

log x

log y
, (3.14)

as both y and u tend to infinity. For p ∈ P2 we may suppose that p > x1/2 since there

are at most O(π(x1/2)) = O
(
x

1/2

log x

)
= o

(
x

(log x)3

)
primes in P2 less than

√
x. If p > x1/2

then log log p > log log x
2 for sufficiently large x and hence for x1/2 < p < x in P2 we have

P (t(p)) < p
1/log log p < x

2/log log x.

Put y := x2/log log x. Thus, p − 1 is a number which is at most x, having a divisor

t(p) > p1/3 > x1/6, whose largest prime factor is at most y. It follows that p− 1 ≤ x is a
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multiple of some number d > x1/6 with P (d) ≤ y. For a fixed d, the number of such p is

at most
⌊
x
d

⌋
≤ x

d . Summing over d, we get that

P2(x)�
∑

x
1/6<d<x
P (d)<y

x

d
= x

∫ x

x1/6

1

t
dΨ(t, y)

= x

((
Ψ(t, y)

t

) ∣∣∣t=x
t=x1/6

+

∫ x

x1/6

1

t2
Ψ(t, y)dt

)
� x

(
Ψ(x, y)

x
+

∫ x

x1/6

Ψ(t, y)

t2
dt

)
.

Putting u0 := log x
1/6

log y = 1
12 log log x, we get that u = log t

log y ≥ u0 for all t ∈ [x1/6, x], and

(1 + o(1))u0 log u0 =

(
1

12
+ o(1)

)
log log x log log log x > 4 log log x (3.15)

for large x. Using (3.14) and (3.15), we thus get that

P2(x)� x+ x log x

exp((1 + o(1))u0 log u0)
� x

(log x)3
.

Next we consider the contribution of P3. This set contains primes p such that p − 1 is

divisible by some prime q > p1/log log p but q ∈ P1. We may assume again that p > x1/2,

then q > p1/log log p > y1/4, where as before y = x2/log log x. Fixing q, the number of primes

p ≤ x such that p− 1 is a multiple of q is at most x
q . Summing up over q ∈ P1 and using

(3.13) we get that

P3(x) ≤
∑

y
1/4<q<x
q∈P1

x

q
� x

∫ x

y1/4

dP1(t)

t
= x

((P1(t)

t

) ∣∣∣x
t=y1/4

+

∫ x

y1/4

P1(t)

t2
dt

)

� x

(
1

x1/3
+

∫ x

y1/4

dt

t4/3

)
� x

y1/12
� x

(log x)3
.

Finally choose p0 such that for p > p0 we have that p1/3 log log p > (log p)3 and get

P4(x)� 1� x

(log x)3
.

We are now ready to prove that the sum on the right hand side of (3.11) converges. For

the contribution of primes p ∈ P we use the Abel summation formula as well as (3.12)
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and get

∑
p≤x
p∈P

log p

pt(b(p))
≤
∑
p≤x
p∈P

log p

p
=

∫ x

3

log t

t
dP(t)

=
P(t) log t

t

∣∣∣x
t=3
−
∫ x

3

1− log t

t2
P(t)dt

� 1 +

∫ x

3

log t

t2
t

(log t)3
dt = 1 +

∫ x

3

dt

t(log t)2
� 1.

By the definition of Q for p ∈ Q we have that q = P (t(p)) > p1/log log p which implies that

q|b(p) for large p. Furthermore, q 6∈ P1 so t(q) > q1/3 > p1/3 log log p. By the choice of the

constant p0 in the definition of P4 this implies that t(b(p)) ≥ t(q) > (log p)3. Finally

this implies that ∑
p∈Q

log p

pt(b(p))
≤
∑
n∈N

1

n(log n)2
� 1,

which finishes the proof of the lemma.

Lemma 3.11. The following estimate holds:∑
n≤x

r1(n)� x.

Proof. We certainly have that

∑
n≤x

r1(n) ≥

∑
p≤x/3

1

 ∑
22k≤x/3

1

 ∑
m!≤x/3

1

 .

By the Prime Number Theorem

∑
p≤x/3

1 ∼ x

3 log
(
x
3

) � x

log x
, (3.16)

and 22k ≤ x
3 implies that k ≤ log

(
log
(
x
3

))
−log 2

log 2 and hence

∑
22k≤x/3

1� log log x. (3.17)

We use that m! ≤ mm and that mm ≤ x
3 for m ≤ log x

2 log log x and sufficiently large x. This

implies that
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∑
m!≤x/3

1� log x

log log x
. (3.18)

The bounds in (3.16), (3.17) and (3.18) show that∑
n≤x

r1(n)� x.

Lemma 3.12. The following estimate holds:∑
n≤x

r1(n)2 � x.

Proof. We begin with the observation that the sum counts exactly the number of solu-

tions of the equation

p1 + 22k1
+m1! = p2 + 22k2

+m2!

in p1, p2, k1, k2,m1 and m2 where p1 + 22k1 +m1! ≤ x. For fixed k1, k2,m1 and m2 this

amounts to counting pairs of primes (p1, p2) such that p2 = p1 + h, where

h := 22k1
+m1!− 22k2 −m2!.

If h = 0, then we apply Theorem 3.8 to get that either (k1,m1) = (k2,m2) or k1 = k2 and

(m1,m2) ∈ {(1, 0), (0, 1)}1. The number of choices of the form (p1, p2, k1, k2,m1,m2) in

this case is

O
(

x

log x

(
log log x

log x

log log x
+ log log x

))
= O(x).

If h is odd then one of the primes p1 and p2 equals 2 and any choice of (k1, k2,m1,m2)

fixes the other prime. There are

O
(

(log log x)2

(
log x

log log x

)2
)

= o(x)

choices for (p1, p2, k1, k2,m1,m2) in this case. To deal with the remaining even h 6= 0 we

use a classical sieve bound (cf. for example [63, Theorem 7.3]). In this case, the number

1Note that x1 and x2 in the non trivial solutions in Theorem 3.8 are never both powers of 2.
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of pairs (p1, p2) of primes such that p2 = p1 + h is

O

 x

(log x)2

∏
p|h

(
1 +

1

p

) .

Summing over all choices (k1, k2,m1,m2) such that h 6= 0 is even (this range of sum-

mation is indicated by the dash in the superscript of the sum below) we hence need to

show that
x

(log x)2

∑′

(k1,k2,m1,m2)

∏
p|h

(
1 +

1

p

)
� x. (3.19)

Observing that the prime p = 2 contributes just a constant factor, this amounts to

showing that ∑′

(k1,k2,m1,m2)

∏
p|h
p>2

(
1 +

1

p

)
� (log x)2,

which we do in what follows. We now rewrite the left–hand side of the last inequality as

∑′

(k1,k2,m1,m2)

∏
p|h
p>2

(
1 +

1

p

)
=

∑′

(k1,k2,m1,m2)

∑
d|h
d odd

µ(d)2

d

=
∑′

d odd
µ(d)2=1

|{(k1, k2,m1,m2) : d|h}|
d

.

Therefore we need to study, for a given odd squarefree d, the cardinality of the set

Sd := {(k1, k2,m1,m2) : d|h, h 6= 0, 2 - h}.

We start with the subset S1,d ⊂ Sd where

S1,d := {(k1, k2,m1,m2) ∈ Sd : m1 = m2 or {m1,m2} = {0, 1}}. (3.20)

We thus first deal with ∑′

d odd
µ(d)2=1

|S1,d|
d

.

By (3.20), (m1,m2) is chosen in at most O
( log x

log log x

)
ways. As for (k1, k2), we have

22k1 ≡ 22k2 (mod d). Since d is odd this implies that 22k1−2k2 ≡ 1 (mod d). Recall that

t(d) is the order of 2 modulo d. The above congruence makes 2k1 ≡ 2k2 (mod t(d)). As
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above we write t(d) = 2a(d)b(d), where b(d) is odd and a(d) is some non-negative integer.

This implies that 2k1−k2 ≡ 1 (mod b(d)). The above cancellation again is justified since

b(d) is odd. Hence, for k2 fixed, k1 is in a fixed arithmetic progression modulo t(b(d)).

The number of such k1 with 22k1 ≤ x is of order (up to a constant) at most⌊
log log x

t(b(d))

⌋
+ 1.

Since k2 is chosen in O(log log x) ways we have

∑′

d odd
µ(d)2=1

|S1,d|
d
�
(

log x

log log x

)
log log x

(
log log x

∑
d odd
µ(d)2=1

1

dt(b(d))
+

∑
d≤x
d odd
µ(d)2=1

1

d

)

� (log x)2,

where we used Lemma 3.10 and the fact that∑
d≤x
d odd
µ(d)2=1

1

d
� log x.

From now on, we deal with Sd\S1,d. Any quadruple (k1, k2,m1,m2) in the above set

gives m1! −m2! 6= 0 and we assume that m1 > m2. We partition the numbers d in the

range of summation into two different sets A and B. We set

A :={
d ∈ N :

2 - d, µ(d)2 = 1, ∀{(k1, k2,m1,m2), (k3, k4,m3,m4)} ∈ (Sd\S1,d)
2 :

22k1
+m1!− 22k2 −m2! = 22k3

+m3!− 22k4 −m4! = h

}
,

B :={
d ∈ N :

2 - d, µ(d)2 = 1, ∃{(k1, k2,m1,m2), (k3, k4,m3,m4)} ∈ (Sd\S1,d)
2 :

22k1
+m1!− 22k2 −m2! 6= 22k3

+m3!− 22k4 −m4!

}
.

In the set A we thus collect all d for which all solutions in Sd\S1,d give the same h and

the set B contains all other d. For d ∈ A we fix k1 and k2 for solutions in Sd\S1,d and

get

m1!−m2! = h− 22k1
+ 22k2

.

The existence of some other element (k1, k2,m3,m4) ∈ Sd\S1,d with m3 > m4 would
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imply that m1!−m2! = m3!−m4! which by Lemma 3.9 leads to (m1,m2) = (m3,m4).

Hence, for d ∈ A and for (k1, k2,m1,m2) ∈ Sd\S1,d with m1 > m2, the last two coordi-

nates are uniquely determined by the first two whence for d ∈ A we have

|(Sd\S1,d)| � (log log x)2.

We thus get that

∑
d∈A

|(Sd\S1,d)|
d

� (log log x)2
∑
d≤x

1

d
� (log x)(log log x)2 = o((log x)2).

Finally, we deal with the contribution of d ∈ B. By definition we may find two quadruples

(k1, k2,m1,m2) with m1 > m2 and (k3, k4,m3,m4) with m3 > m4 both in Sd\S1,d such

that

h := 22k1
+m1!− 22k2 −m2! 6= 22k3

+m3!− 22k4 −m4! =: h′. (3.21)

Let P be the set of possible prime factors of d ∈ B which exceed log x. We shall prove

that |P| = O((log x)5). For h, h′ in (3.21) we have that they are both divisible by d and

thus d|h− h′. Every prime factor of d (in particular the ones larger than log x) divides∏′

ki,mi

(
(22k1 − 22k2

+m1!−m2!)− (22k3 − 22k4
+m3!−m4!)

)
,

where the product is taken over all mi with mi! ≤ x and all ki with 22ki ≤ x for

i = 1, 2, 3, 4. The dash indicates that the product is to be taken over the non zero

factors only. Since each factor in this product is of size O(x) any of these factors has at

most O(log x) prime factors. Furthermore, for the octuple (k1, k2, k3, k4,m1,m2,m3,m4)

we have O((log log x)4
( log x

log log x

)4
) = O((log x)4) choices and altogether we have that

|P| = O((log x)5).

Write d = udvd, where ud is divisible by primes p ≤ log x only. Hence the factor vd is

divisible only by primes in P. Then

∑
d∈B

|(Sd\S1,d)|
d

≤
( ∑

u odd
µ(u)2=1
P (u)<log x

|(Su\S1,u)|
u

)( ∑
v odd
µ(v)2=1
p|v⇒p∈P

1

v

)
,
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where we used that Sd\S1,d ⊂ Su\S1,u if u | d. For the second sum we have

∑
v odd
µ(v)2=1
p|v⇒p∈P

1

v
=
∏
p∈P

(
1 +

1

p

)
= O(1),

which follows from partial summation and the fact that P has O((log x)5) elements all

larger than log x. It thus remains to bound

∑
u odd
µ(u)2=1
P (u)<log x

|(Su\S1,u)|
u

.

For this, we fix (m1,m2) with m1 > m2 not both in {0, 1}. Then putting M1,2 =

m2!−m1!, we need to count the number of (k1, k2) such that 22k1−22k2 ≡M1,2 (mod u).

Analogously as before, for fixed k2, this puts k1 into a fixed arithmetic progression mod-

ulo t(b(u)). The number of k1 with 22k1 ≤ x in this progression is of order O
( log log x
t(b(u)) +1

)
.

Thus we have

∑
u odd
µ(u)2=1
P (u)<log x

|(Su\S1,u)|
u

�
(

log x

log log x

)2

(log log x)×

×
(

log log x
∑
u odd
µ(u)2=1
P (u)<log x

1

ut(b(u))
+

∑
u odd
µ(u)2=1
P (u)<log x

1

u

)
� (log x)2.

Here, we used Lemma 3.10 and Mertens’ formula, which yields

∑
u odd
µ(u)2=1
P (u)<log x

1

u
=

∏
3≤p≤log x

(
1 +

1

p

)
� log log x.

Proof of Theorem 3.3. Since the density of integers of the form p + 22k + m!, p ∈ P,

m, k ∈ N and m < 226 − 1 is zero, we may suppose that m ≥ 226 − 1. In this case

we have m! ≡ 0 mod 226 − 1 and for k ≥ 6 we have that 22k ≡ 1 mod 226 − 1. If

n ≡ a + 1 mod 226 − 1, where a is a residue class mod 226 − 1 with (a, 226 − 1) > 1,
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then (n − 22k −m!, 226 − 1) > 1 which leaves only finitely many choices for the prime

p = n − 22k −m!. This implies that the proportion of such n with a representation of

the form n = p+ 22k +m! is zero. We have 226 − 1− ϕ(226 − 1) choices for the residue

class a and half of the integers in these residue classes are odd which yields a density of

226 − 1− ϕ(226 − 1)

2 · (226 − 1)
=

615850829669273873

2459565876494606882
.

We note that a more refined version of the above argument was used by Habsieger

and Roblot [43, Section 3] to prove an upper bound on the proportion of odd integers

not of the form p+ 2k.

Proof of Theorem 3.4. We will show that none of the integers n satisfying the following

system of congruences is of the form p+ 22k +m! :

1 mod 2 1 mod 3 3 mod 5

2 mod 7 6 mod 11 3 mod 17

7 mod 19 9 mod 23.

By the Chinese Remainder Theorem the arithmetic progressions above intersect in a

unique arithmetic progression. Let n be an element of this progression and suppose that

n = p+ 22k +m!.

If m ≥ 3 then n = p + 22k + m! ≡ p + 22k mod 3. All primes except for 3 are in the

residue classes 1, 2 mod 3 and 22k ≡ 1 mod 3 for k ≥ 1. Thus for m ≥ 3 and k ≥ 1 we

have that n = p+ 22k +m! ≡ 1 mod 3 hence the only possible choice for p is p = 3.

Next we show that if p = 3 then m < 5. To do so we use that 22k ≡ 1 mod 5 for k ≥ 2

hence for m ≥ 5 we are left with n = 3 + 22k +m! ≡ {0, 2, 4} mod 5, a contradiction to

n ≡ 3 mod 5.

In the case that k = 0 we will show that m ≥ 3 implies m < 7. Let n = p + 2 + m!

and m ≥ 3. Then n ≡ 1 mod 3 implies that p ≡ 2 mod 3. If additionally m ≥ 7, then

n = p+ 2 +m! ≡ p+ 2 mod 7. Since n ≡ 2 mod 7, the only possible choice for p is p = 7,

which contradicts p ≡ 2 mod 3.

Using the above observations the only cases we need to consider are those of m = 0,

m = 1, m = 2, m = 3, 4 and k = 0 or p = 3 and m = 5, 6 and k = 0.

If m ∈ {0, 1} and we additionally have that p is odd, then n = p + 22k + 1 is even, a

contradiction to n ≡ 1 mod 2. It remains to deal with the case when p = 2. Then we
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have n = 2 + 22k + 1 and we get a contradiction from n ≡ 3 mod 5 which would imply

that 22k ≡ 0 mod 5.

For the case m = 2 we use that 22k ≡ 1 mod 17 for k ≥ 3. Hence for m = 2 and

k ≥ 3 we have that n = p + 22k + 2 ≡ p + 3 mod 17 which together with n ≡ 3 mod 17

leaves us with p = 17. We use that n = 17 + 22k + 2 ≡ 2 mod 3 to get a contradiction to

n ≡ 1 mod 3. Since m = 2 and k = 0 imply n = p + 4 ≡ p + 1 mod 3 the only possible

choice for p in this case is p = 3 but n = 7 6≡ 3 mod 5. If m = 2 and k = 1 then n = p+6

and n ≡ 6 mod 11 implies that p = 11. This contradicts n ≡ 1 mod 3. Last we need to

deal with m = 2 and k = 2. In this case n = p+18 ≡ p+3 mod 5 and hence n ≡ 3 mod 5

implies that p = 5. Now n = 23 does not satisfy the congruence n ≡ 1 mod 3.

If m = 3 and p = 3 we have that n = 9 + 22k ≡ {8, 10, 11, 13} mod 17 contradicting

n ≡ 3 mod 17. On the other hand, if m = 3 and k = 0 then n = p + 8 ≡ p + 3 mod 5

and we get a contradiction as shown above.

For m = 4 and p = 3 we get n = 27 + 22k ≡ {9, 11, 12, 14} mod 17, a contradiction

to n ≡ 3 mod 17. If m = 4 and k = 0 it follows that n = p + 26 ≡ p + 7 mod 19 which

implies p = 19 and n = 45. This contradicts n ≡ 3 mod 5.

In the case when m = 5 and k = 0 we have that n = p+122 ≡ p+3 mod 17. Together

with n ≡ 3 mod 17 this only leaves p = 17 which contradicts n ≡ 3 mod 5.

Finally, if m = 6 and k = 0 then n = p + 722 ≡ p + 9 mod 23. Together with

n ≡ 9 mod 23 this only leaves p = 23 which yields a contradiction to n ≡ 3 mod 5.

3.4. Integers of the form p+ 22k + 2q

Lemma 3.13. The following estimate holds:∑
n≤x

r2(n)� x.

Proof. The lemma follows from

∑
n≤x

r2(n) ≥

∑
p≤x/3
p∈P

1


 ∑

22k≤x/3

1


 ∑
q≤log x/3
q∈P

1

 .
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By the Prime Number Theorem we have

∑
p≤x/3
p∈P

1� x

log x
and

∑
q≤log x/3
q∈P

1� log x

log log x
.

Together with ∑
22k≤x/3

1� log log x

this finishes the proof of the lemma.

Lemma 3.14. The following estimate holds:∑
n≤x

r2(n)2 � x.

Proof. Again r2(n)2 counts the number of solutions of the equation

p1 + 22k1
+ 2q1 = p2 + 22k2

+ 2q2

in p1, p2, k1, k2, q1 and q2 where p1 + 22k1 + 2q1 ≤ x. This means counting pairs of primes

(p1, p2) such that p2 = p1 + h, where

h := 22k1
+ 2q1 − 22k2 − 2q2 .

If h = 0 then either (k1, q1) = (k2, q2) or w.l.o.g. k1 > k2 and

22k2
(

22k1−2k2 − 1
)

= 2q1
(
2q2−q1 − 1

)
.

Since 22k1−2k2 − 1 and 2q2−q1 − 1 are odd we have that 2k2 = q1 and hence k2 = 1 and

q1 = 2. This leads to 2k1 = q2 and hence to k1 = 1 and q2 = 2 a contradiction to k1 > k2.

If h = 0 we thus have that (k1, q1) = (k2, q2) and p2 is fixed by a choice of p1, k1 and

q1. The last three parameters may be chosen in O(x) ways and we can deal with the

contribution of solutions of the equation p2 = p1 + h where h 6= 0. Since h is even we

may directly use the sieve bound from [63, Theorem 7.3] which, after summing over all

h, yields an upper bound of order

x

(log x)2

∑′

(k1,q1,k2,q2)

∏
p|h

(
1 +

1

p

)
(3.22)
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for the sum in the lemma, where the dash indicates that (k1, q1) 6= (k2, q2). Noting that

the contribution of the prime 2 is just a constant factor, we disregard it. Furthermore,

h ≤ x by definition, and a very crude upper bound for the number of prime factors of

h, in particular for those larger than log x, is given by log x
log 2 . We thus get

∑′

(k1,q1,k2,q2)

∏
p|h
p>2

(
1 +

1

p

)
�

∑′

(k1,q1,k2,q2)

(
1 +

1

log x

)log x/log 2

︸ ︷︷ ︸
≤e1/log 2

∏
p|h

2<p≤log x

(
1 +

1

p

)

�
∑′

(k1,q1,k2,q2)

∑
d|h

d odd
P (d)≤log x

µ(d)2

d

=
∑
d≤x
d odd

P (d)≤log x

µ(d)2

d

∑′

(k1,q1,k2,q2)
d|h

1. (3.23)

If we fix k1, q1 and k2, then the fact that d | h implies

2q2 ≡ 22k1
+ 2q1 − 22k2

=: l mod d,

where l is a fixed residue class mod d. This puts q2 in a fixed residue class mod t(d).

Since we are counting representations of integers n ≤ x we have q2 ≤ log x
log 2 . Hence if

t(d) > log x there are at most two choices for q2. If t(d) ≤ log x the Brun-Titchmarsh

inequality yields an upper bound of

O
(

log x/log 2

ϕ(t(d)) log (log x/t(d) log 2)

)
for the number of choices of q2. We thus get an upper bound of the following order for

(3.23)

log x log log x

( ∑
d odd

P (d)≤log x
t(d)≤log x

µ(d)2 (log x/log 2)

dϕ(t(d)) log (log x/t(d) log 2)
+

∑
d odd

P (d)≤log x
t(d)>log x

µ(d)2

d

)
. (3.24)

As earlier, by Mertens’ formula

∑
d odd

P (d)≤log x

µ(d)2

d
� log log x.

75



To deal with the first sum in (3.24) we use ϕ(m)� m
log logm (see [68, Theorem 15]) and

split the range of summation in two parts and get

∑
d odd

P (d)≤log x
t(d)≤log x

µ(d)2 (log x/log 2)

dϕ(t(d)) log (log x/t(d) log 2)
� log x

log log x

∑
d odd

P (d)≤log x
t(d)≤

√
log x

µ(d)2 log log t(d)

dt(d)

+ (log x)
3/4

∑
d odd

P (d)≤log x√
log x<t(d)≤log x

µ(d)2 log log t(d)

d
√
t(d)

.

By a result of Erdős and Turán [35,36] the sums

∑
d odd

log log t(d)

dt(d)
and

∑
d odd

log log t(d)

d
√
t(d)

converge which altogether proves an upper bound of order O((log x)2) for (3.23) and

hence an upper bound of order O(x) for (3.22).

Proof of Theorem 3.5. We prove the theorem by showing that the subset of positive

integers in the residue class 3 mod 6 having a representation of the form p+ 22k + 2q has

density 0.

If k > 0 then 22k = 42k−1
. The fact that 42 ≡ 4 mod 6 puts the term 22k into the

residue class 4 mod 6 if k > 0. Using the same fact again we get for q = 2l + 1

2q = 22l+1 = 2 · 4l ≡ 2 mod 6.

Furthermore, all primes except 2 and 3 are in the residue classes {1, 5} mod 6. Thus

if n is in none of the sets

S1 := {p+ 2 + 2q : p, q ∈ P},
S2 := {p+ 22k + 4 : p ∈ P, k ∈ N},
S3 := {2 + 22k + 2q : k ∈ N, q ∈ P},
S4 := {3 + 22k + 2q : k ∈ N, q ∈ P},

all of which have density 0, and if n has a representation of the form n = p + 22k + 2q,
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then n is in one of the residue classes

{1, 5}+ {4}+ {2} = {1, 5} mod 6.

The set

S = {n ∈ N : n ≡ 3 mod 6}\(S1 ∪ S2 ∪ S3 ∪ S4)

has density 1
6 , consists of odd integers only and none of its members is of the form

p+ 22k + 2q. This proves the first part of the Theorem.

To find a full arithmetic progression of integers not of the form p + 22k + 2q we will

add additional congruences ruling out the integers in the sets S1, S2, S3 and S4. We

claim that none of the integers n satisfying the congruences

3 mod 6 4 mod 5 4 mod 7

9 mod 13 5 mod 17 8 mod 19

20 mod 23 2 mod 29 3 mod 31

10 mod 37

is of the form p+ 22k + 2q. By the above considerations, it suffices to check that none of

the integers in the sets S1, S2, S3 and S4 is contained in this arithmetic progression.

We start with the integers in S1. Take n = p + 2 + 2q ∈ S1 and suppose that n is in

the arithmetic progression constructed above. We use that except for q ∈ {2, 3} we have

that q ≡ {1, 5, 7, 11} mod 12 and that for any l ∈ N0 we have that

212l+1 ≡ 212l+5 ≡ 2 mod 5, 212l+7 ≡ 2 mod 7, 212l+11 ≡ 7 mod 13.

If q ≡ {1, 5} mod 12 then n = p+ 2 + 2q ≡ p+ 4 mod 5. Since n ≡ 4 mod 5 this implies

that p = 5. Now 7 + 212l+1 ≡ 2 mod 7 and 7 + 212l+5 ≡ 0 mod 13, contradiction to

n ≡ 4 mod 7 and n ≡ 9 mod 13. In the case of q = 12l + 7 we get n = p+ 2 + 212l+7 ≡
p + 4 mod 7 and the only possible choice for p is p = 7. Then 9 + 212l+7 ≡ 2 mod 5,

a contradiction to n ≡ 4 mod 5. Finally if q = 12l + 11 then n = p + 2 + 212l+11 ≡
p + 9 mod 13 and from n ≡ 9 mod 13 we get p = 13. Since n = 15 + 212l+11 ≡ 3 mod 5

we again get a contradiction to n ≡ 4 mod 5. To finish off the integers in the set S1

it remains to deal with q ∈ {2, 3}. If q = 2 we have n = p + 6 ≡ p mod 6. Since

n ≡ 3 mod 6 we are left with p = 3 and n = 9 which contradicts to n ≡ 4 mod 7. If

q = 3 then n = p+ 10 and from n ≡ 10 mod 37 we need to have that p = 37 and hence

n = 47. This is impossible since it contradicts to n ≡ 4 mod 5.
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Next we deal with the integers in S2 and we use that 22k ≡ 1 mod 17 for k ≥ 3. Thus

for k ≥ 3 and n = p + 22k + 4 ∈ S2 we have that n = p + 22k + 4 ≡ p + 5 mod 17.

From n ≡ 5 mod 17 we see that the only admissible choice for p is p = 17 and hence

n = 21 + 22k . As above we use that 22k ≡ {2, 4} mod 6 and thus 21 + 22k ≡ {1, 5} mod 6

a contradiction to n ≡ 3 mod 6. We are left with k ∈ {0, 1, 2}. For k = 0 we get

n = p+ 6 which was ruled out when we dealt with the integers in S1. If k = 1 we have

n = p + 8 and from n ≡ 8 mod 19, the only possible choice for p is p = 19 and thus

n = 27. This contradicts to n ≡ 4 mod 5. Finally, if k = 2, we have n = p+ 20 and from

n ≡ 20 mod 23 we again are left with a single possible choice for p, namely p = 23. Now

n = 43, contradicting to n ≡ 4 mod 5.

For integers n in the set S3 we have n = 2 + 22k + 2q. If q = 2 we have n ≡ 22k mod 6

and again using that 22k ∈ {2, 4} mod 6 we get a contradiction to n ≡ 3 mod 6. If

q is odd, then 2q ≡ 2 mod 6. If, furthermore, k = 0 then n = 4 + 2q ≡ 0 mod 6

and if k = 1 we get n = 6 + 2q ≡ 2 mod 6. In both cases this yields a contradiction

to n ≡ 3 mod 6. For k ≥ 2 and q odd we have that 22k ≡ {16, 24, 25} mod 29 and

2q ≡ {2, 3, 8, 10, 11, 12, 14, 15, 17, 18, 19, 21, 26, 27} mod 29. For k ≥ 2 and q odd it is

thus true that 22k + 2q 6≡ 0 mod 29 and thus n = 2 + 22k + 2q ≡ 2 mod 29 yields a

contradiction in this case.

Finally for integers in the set S4 we apply a similar argument as for integers in the

set S3. For any prime q we have that 2q ≡ {1, 2, 4, 8, 16} mod 31 and for all k ∈ N0

we get 22k ≡ {2, 4, 8, 16} mod 31. Again 22k + 2q 6≡ 0 mod 31 for any prime q and any

non-negative integer k. Thus n = 3 + 22k + 2q ≡ 3 mod 31 yields a contradiction.
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4. Sequences with Property P

This chapter contains an article, which is joint work with Christian Elsholtz,

and which appeared in Monatshefte für Mathematik. Apart from a newly added

appendix and minor changes, mostly in typesetting, the article below is identical

with the published version [22].

On Erdős and Sárközy’s sequences with Property P

Christian Elsholtz and Stefan Planitzer

Abstract. A sequence A of positive integers having the property that no element

ai ∈ A divides the sum aj + ak of two larger elements is said to have ‘Property P’.

We construct an infinite set S ⊂ N having Property P with counting function S(x) �√
x√

log x(log log x)2(log log log x)2 . This improves on an example given by Erdős and Sárközy

with a lower bound on the counting function of order
√
x

log x .

4.1. Introduction

Erdős and Sárközy [34] define a monotonically increasing sequence A = {a1 < a2 < . . .}
of positive integers to have ‘Property P’ if ai - aj + ak for i < j ≤ k. They proved that

any infinite sequence of integers with Property P has density 0. Schoen [70] showed that

if an infinite sequence A has Property P and any two elements in A are coprime then the

counting function A(x) =
∑

ai<x
1 is bounded from above by A(x) < 2x2/3 for infinitely

many x ∈ N and Baier [3] improved this to A(x) < (3 + ε)x2/3(log x)−1 for infinitely

many x ∈ N and any ε > 0. Concerning finite sequences with Property P, Erdős and
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Sárközy [34] get the lower bound maxA(x) ≥
⌊
x
3

⌋
+ 1 by just taking A to be the set

A = {x, x− 1, . . . , x− bx3 c} for x ∈ N1.

Erdős and Sárközy also thought about infinite sets with Property P with a large

counting function (cf. [34, p. 98]). They observed that the set

A = {q2
i : qi the i-th prime with qi ≡ 3 mod 4}

has Property P. This uses the fact that the square of a prime p ≡ 3 mod 4 has only the

trivial representation p2 = p2 + 02 as the sum of two squares. With this set A they get

A(x) ∼
√
x

log x
.

Erdős has asked repeatedly to improve this (see e.g. [30, p. 185], [31, p. 535]) and in

particular, Erdős [31, 32] asked if one can do better than an ∼ (2n log n)2. He wanted

to know if it is possible to have an < n2. We will not quite achieve this but we go a

considerable step in this direction. First, we observe that a set of squares of integers

consisting of precisely k prime factors p ≡ 3 mod 4 also has Property P. As for any

fixed k this would only lead to a moderate improvement, our next idea is to try to

choose k increasing with x. In order to do so, we actually use a union of several sets Si

with Property P. Together, this union will have a good counting function throughout all

ranges of x. However, in order to ensure that this union of sets with Property P still has

Property P, we employ a third idea, namely to equip all members a ∈ Si with a special

indicator factor. This seems to be the first improvement going well beyond the example

given by Erdős and Sárközy since 1970. Our main result will be the following theorem.

Theorem 4.1. The set S ⊂ N constructed explicitly below has Property P and counting

function

S(x)�
√
x√

log x(log log x)2(log log log x)2
.

We achieve this improvement by not only considering squares of primes p ≡ 3 mod 4

but products of squares of such primes. More formally we set

S =

∞⋃
i=1

Si. (4.1)

1We note that the bound maxA(x) ≥
⌊
x
3

⌋
+ 1 is true only under the slightly weaker condition that

ai - aj + ak for i < j < k. In our case, working with ai - aj + ak for i < j ≤ k, by taking the largest⌊
x
3

⌋
positive integers less than x we have that maxA(x) ≥

⌊
x
3

⌋
.
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Here the sets Si are defined by

Si :=
{
n ∈ N : n = q4

i ν
2
}
, (4.2)

where ν is the product of exactly i distinct primes p ≡ 3 mod 4 and we recall that qi is

the i-th prime in the residue class 3 mod 4. The rôle of the qi is an ‘indicator’ which

uniquely identifies the set Si a given integer n ∈ S belongs to. Results from probabilistic

number theory like the Theorem of Erdős-Kac suggest that for varying x different sets

Si will yield the main contribution to the counting function S(x). In particular for given

x > 0 the main contribution comes from the sets Si with

log log
√
x

2
−
√

log log
√
x

2
≤ i ≤ log log

√
x

2
+

√
log log

√
x

2
.

The study of sequences with Property P is closely related to the study of primitive

sequences, i.e. sequences where no element divides any other and there is a rich liter-

ature on this topic (cf. [45, Chapter V]). Indeed a similar idea as the one described

above was used by Martin and Pomerance [58] to construct a large primitive set. While

Besicovitch [7] proved that there exist infinite primitive sequences with positive upper

density, Erdős [26] showed that the lower density of these sequences is always 0. In

his proof Erdős used the fact that for a primitive sequence of positive integers the sum∑∞
i=1

1
ai log ai

converges. In more recent work Banks and Martin [5] make some progress

towards a conjecture of Erdős which states that in the case of a primitive sequence

∞∑
i=1

1

ai log ai
≤
∑
p∈P

1

p log p

holds. Erdős [27] studied a variant of the Property P problem, also in its multiplicative

form.

4.2. Notation

Before we go into details concerning the proof of Theorem 4.1 we need to fix some

notation. Throughout this paper P denotes the set of primes and the letter p (with or

without index) will always denote a prime number. We write logk for the k-fold iterated

logarithm. The functions ω and Ω count, as usual, the prime divisors of a positive integer

n without respectively with multiplicity. For two functions f, g : R → R+ the binary

relation f � g (and analogously f � g) denotes that there exists a constant c > 0 such
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that for x sufficiently large f(x) ≥ cg(x) (f(x) ≤ cg(x) respectively). Dependence of the

implied constant on certain parameters is indicated by subscripts. The same convention

is used for the Landau symbol O where f = O(g) is equivalent to f � g. We write

f = o(g) if limx→∞
f(x)
g(x) = 0.

4.3. The set S has Property P

In this section we verify that any union of sets Si defined in (4.2) has Property P.

Lemma 4.2. Let n1, n2 and n3 be positive integers. If there exists a prime p ≡ 3 mod 4

with p|n1 and p - gcd(n2, n3), then

n2
1 - n2

2 + n2
3.

Proof. We prove the Lemma by contradiction. Suppose that n2
1|n2

2 +n2
3. By our assump-

tion there exists a prime p ≡ 3 mod 4 such that p|n1 and p - gcd(n2, n3). Hence, w.l.o.g.

p - n2. We have

n2
2 + n2

3 ≡ 0 mod p

and since p does not divide n2, we get that n2 is invertible mod p. Hence(
n3

n2

)2

≡ −1 mod p

a contradiction since −1 is a quadratic non-residue mod p.

Lemma 4.3. Any union of sets Si defined in (4.2) has Property P.

Proof. Suppose by contradiction that there exist ai ∈ Si, aj ∈ Sj and ak ∈ Sk with

ai < aj ≤ ak and ai|aj + ak. First suppose that either i 6= j or i 6= k. Define l ∈ {0, 2}
to be the largest exponent such that qli| gcd(ai, aj , ak) where we again recall that qi was

defined as the i-th prime in the residue class 3 mod 4. Then

ai

qli

∣∣∣∣ajqli +
ak

qli
.

By construction of the sets Si, Sj and Sk we have that qi
∣∣ai
qli

and w.l.o.g. qi -
aj
qli

. An

application of Lemma 4.2 finishes this case.

If Si = Sj = Sk then Ω(ai) = Ω(aj) = Ω(ak). If there is some prime p with p| ai
q4
i

and (p - aj
q4
i

or p - ak
q4
i
) we may again use Lemma 4.2. If no such p exists, then ai|aj and
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ai|ak trivially holds. With the restriction on the number of prime factors we get that

ai = aj = ak.

4.4. Products of k distinct primes

In order to establish a lower bound for the counting functions of the sets Si in (4.2)

we need to count square-free integers containing exactly k distinct prime factors p ≡
3 mod 4, but no others, where k ∈ N is fixed. For k ≥ 2 and πk(x) := #{n ≤ x : ω(n) =

Ω(n) = k} Landau [52] proved the following asymptotic formula:

πk(x) ∼ x(log2 x)k−1

(k − 1)! log x
.

We will need a lower bound of similar asymptotic growth as the formula above for the

quantity

πk(x; 4, 3) := #{n ≤ x : p|n⇒ p ≡ 3 mod 4, ω(n) = Ω(n) = k}.

Very recently Meng [60] used tools from analytic number theory to prove a generalization

of this result to square-free integers having k prime factors in prescribed residue classes.

The following is contained as a special case in [60, Lemma 9] 2:

Lemma 4.4 (Meng (2016)). For any A > 0, uniformly for 2 ≤ k ≤ A log log x, we have

πk(x; 4, 3) =
1

2k
x

log x

(log log x)k−1

(k − 1)!
×(

1 +
k − 1

log log x
C(3, 4) +

2(k − 1)(k − 2)

(log log x)2
h′′
(

2(k − 3)

3 log log x

)
+OA

(
k2

(log log x)3

))
,

where C(3, 4) = γ +
∑

p∈P

(
log
(

1− 1
p

)
+ 2λ(p)

p

)
, γ is the Euler-Mascheroni constant,

λ(p) is the indicator function of primes in the residue class 3 mod 4 and

h(x) =
1

Γ
(
x
2 + 1

) ∏
p∈P

(
1− 1

p

)x/2(
1 +

xλ(p)

p

)
.

We will show that Lemma 4.4 with some extra work implies the following Corollary.

2We note that in comparison to the arXiv version of [60, Lemma 9], which we used in the original version
of this article, the meanwhile published version [59, Lemma 9] slightly changed. Nonetheless, the
proof of Corollary 4.5 works with the new version of Meng’s result with only minimal modifications
and we present a modified proof in an appendix to this chapter below. The presentation of the
alternative proof in the appendix is such that it may be read independently of the proof given here.
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Corollary 4.5. Uniformly for log log x
2 − 1 ≤ k ≤ log log x

2 +
√

log log x
2 we have

πk(x; 4, 3)� 1

2k
x

log x

(log2 x)k−1

(k − 1)!
.

Proof. In view of Lemma 4.4 and with k ∼ log log x
2 we see that it suffices to check that,

independent of the choice of k and for sufficiently large x, there exists a constant c > 0

such that

1 +
C(3, 4)

2
+

1

2
h′′
(

2(k − 3)

3 log log x

)
≥ c. (4.3)

Note that the left hand side of the above inequality is exactly the coefficient of the main

term 1
2k

x
log x

(log2 x)k−1

(k−1)! for k in the range given in the Corollary. The constant C(3, 4)

does not depend on k. Using Mertens’ Formula (cf. [74, p. 19: Theorem 1.12]) in the

form ∑
p∈P
p≤x

log

(
1− 1

p

)
= −γ − log log x+ o(1)

we get

C(3, 4) = γ +
∑
p∈P

(
log

(
1− 1

p

)
+

2λ(p)

p

)
= 2M(3, 4),

where M(3, 4) is the constant appearing in

∑
p∈P

λ(p)

p
=

log log x

2
+M(3, 4) +O

(
1

log x

)
,

which was studied by Languasco and Zaccagnini in [53]3. The computational results of

Languasco and Zaccagnini imply that 0.0482 < M(3, 4) < 0.0483 and hence allow for

the following lower bound for C(3, 4):

C(3, 4) = 2M(3, 4) > 0.0964. (4.4)

It remains to get a lower bound for h′′
(

2(k−3)
3 log log x

)
, where the function h is defined as in

Lemma 4.4. A straight forward calculation yields that

h′ =
∏
p∈P

(
1− 1

p

)x/2
×

3Note that our constant M(3, 4) corresponds to the constant M(4, 3) in the work of Languasco and
Zaccagnini.
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(
1 +

xλ(p)

p

) Γ
(
x
2 + 1

) (∑
p∈P

1
2 log

(
1− 1

p

)
+ λ(p)

p+xλ(p)

)
− 1

2Γ′
(
x
2 + 1

)
Γ
(
x
2 + 1

)2
and

h′′(x) = f(x)
∏
p∈P

(
1− 1

p

)x/2(
1 +

xλ(p)

p

)
,

where

f(x) =

(∑
p∈P

1
2 log

(
1− 1

p

)
+ λ(p)

p+xλ(p)

)2

Γ
(
x
2 + 1

) − Γ′′
(
x
2 + 1

)
4Γ
(
x
2 + 1

)2 −
∑

p∈P
λ(p)

(p+λ(p)x)2

Γ
(
x
2 + 1

)
−

Γ′
(
x
2 + 1

) (∑
p∈P

1
2 log

(
1− 1

p

)
+ λ(p)

p+xλ(p)

)
Γ
(
x
2 + 1

)2 +
Γ′
(
x
2 + 1

)2
2Γ
(
x
2 + 1

)3 .
Note that for x → ∞ and log log x

2 − 1 ≤ k ≤ log log x
2 +

√
log log x

2 the term 2(k−3)
3 log log x gets

arbitrarily close to 1
3 . Hence we may suppose that 99

300 ≤
2(k−3)

3 log log x ≤ 101
300 and it suffices

to find a lower bound for h′′(x) where 99
300 ≤ x ≤ 101

300 . For x in this range Mathematica

provides the following bounds on the Gamma function and its derivatives

0.9271 ≤ Γ
(x

2
+ 1
)
≤ 0.9283

−0.3104 ≤ Γ′
(x

2
+ 1
)
≤ −0.3058

1.3209 ≤ Γ′′
(x

2
+ 1
)
≤ 1.3302.

Furthermore, we have

∑
p∈P

λ(p)

(p+ x)2
<
∑
p∈P

λ(p)

p2
<
∑
p∈P
p≤104

λ(p)

p2
+
∑
n>104

1

n2
< 0.1485 +

∫ ∞
x=104

dx

x2
= 0.1486.

Later we will use that∑
p∈P

(
1

2
log

(
1− 1

p

)
+

λ(p)

p+ x

)
=
∑
p∈P

(
1

2
log

(
1− 1

p

)
+
λ(p)

p

)
− x

∑
p∈P

λ(p)

p2 + px

>
∑
p∈P

(
1

2
log

(
1− 1

p

)
+
λ(p)

p

)
− x

∑
p∈P

λ(p)

p2

= −γ
2

+M(3, 4)− x
∑
p∈P

λ(p)

p2
> −0.2905,
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and∑
p∈P

(
1

2
log

(
1− 1

p

)
+

λ(p)

p+ x

)
<
∑
p∈P

(
1

2
log

(
1− 1

p

)
+
λ(p)

p

)
= −γ

2
+M(3, 4)

< −0.2403.

Finally, using log(1 + x
p ) ≤ x

p , we get

0 ≤
∏
p∈P

(
1− 1

p

)x/2(
1 +

xλ(p)

p

)
≤ exp

x
∑
p∈P

(
1

2
log

(
1− 1

p

)
+
λ(p)

p

)
= exp

(
x
(
−γ

2
+M(3, 4)

))
< exp

(
− 99

300
· 0.2403

)
< 0.9238.

Applying the explicit bounds calculated above, for 99
300 ≤ x ≤ 101

300 we obtain:

f(x) ≥ 0.24032

0.9283
− 1.3302

4 · 0.92712
− 0.1486

0.9271
− 0.3104 · 0.2905

0.92712
+

0.30582

2 · 0.92833
> −0.5315.

This implies for sufficiently large x:

h′′
(

2(k − 3)

3 log log x

)
> −0.492.

Together with (4.4) this leads to an admissible choice of c = 0.802 in (4.3).

4.5. The counting function S(x)

Proof of Theorem 4.1. As in (4.1) we set

S =

∞⋃
i=1

Si

where the sets Si are defined as in (4.2). The set S has Property P by Lemma 4.3

and it remains to work out a lower bound for the size of the counting function S(x).

For sufficiently large x there exists a uniquely determined integer k ∈ N such that

e2e2k ≤ x < e2e2(k+1)
hence

k ≤ log2

√
x

2
< k + 1. (4.5)

It depends on the size of x, which Si makes the largest contribution. For a given x we

take several sets Sk+2, Sk+3, . . . , Sk+l, l = b
√

log2

√
x

2 c, as the number of prime factors
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p ≡ 3 mod 4 of a typical integer less than x is in[
log2 x

2
−
√

log2 x

2
,
log2 x

2
+

√
log2 x

2

]
.

Using Corollary 4.5 as well as the fact that the i-th prime in the residue class 3 mod 4

is asymptotically of size 2i log i for given 2 ≤ j ≤ l we get

Sk+j(x)�

√
x

16(k+j)4 log4(k+j)

log

(√
x

16(k+j)4 log4(k+j)

)
︸ ︷︷ ︸

F1

·

(
log2

√
x

16(k+j)4 log4(k+j)

)k+j−1

2k+j(k + j − 1)!︸ ︷︷ ︸
F2

. (4.6)

We deal with the fractions F1 and F2 on the right hand side of (4.6) separately. With

the given range of j and (4.5) we have that

F1 �
√
x

log x(log2 x)2(log3 x)2
.

It remains to deal with F2. Using the given range of k and j we have that k+j ≤ log2

√
x

and, again for sufficiently large x, for the numerator of F2 we get

logk+j−1
2

√
x

4(k + j)2 log2(k + j)
� (log(log

√
x− log 4− 2 log3

√
x− 2 log4

√
x))k+j−1

� (log(log
√
x− 5 log3

√
x))k+j−1

=

(
log2

√
x+ log

(
1− 5 log3

√
x

log
√
x

))k+j−1

�
(

log2

√
x− 10 log3

√
x

log
√
x

)k+j−1

�
(

1− 10 log3

√
x

log
√
x log2

√
x

) log2
√
x

2
+

√
log2

√
x

2
−1

logk+j−1
2

√
x

� logk+j−1
2

√
x.

Here we used that

lim
x→∞

(
1− 10 log3

√
x

log
√
x log2

√
x

) log2
√
x

2
+

√
log2

√
x

2
−1

= 1
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and that for 0 ≤ y ≤ 1
2 we certainly have that log(1 − y) ≥ −2y. To deal with the

denominator of F2 we apply Stirling’s Formula and get

(k + j − 1)!�
(
k + j − 1

e

)k+j−1√
k + j − 1�

(
log2

√
x+ 2(j − 1)

2e

)k+j−1√
log2 x

� (log2

√
x+ 2(j − 1))k+j−1

√
log2 x

2k+j−1e
log2

√
x

2
+j−2

� (log2

√
x+ 2(j − 1))k+j−1

√
log2 x

2k+j−1ej−2
√

log x
.

Altogether we get

F2 �
√

log x√
log2 x

ej−2

(
log2

√
x

log2

√
x+ 2(j − 1)

)k+j−1

�
√

log x√
log2 x

ej−2

(
log2

√
x

log2

√
x+ 2(j − 1)

) log2
√
x

2
+j−1

.

(4.7)

Since (
log2

√
x

log2

√
x+ 2(j − 1)

) log2
√
x

2

∼ 1

ej−1

it suffices to check that for any x > 0 and for our choices of j there exists a fixed constant

c > 0 such that (
1 +

2(j − 1)

log2

√
x

)1−j
≥ c. (4.8)

For j ≥ 2 we have that
(

1 + 2(j−1)
log2

√
x

)1−j
is monotonically decreasing in j and get

(
1 +

2(j − 1)

log2

√
x

)1−j
≥

1 +
2

√
log2

√
x

2

log2

√
x

−
√

log2
√
x

2

=

1 +
1√

log2

√
x

2

−
√

log2
√
x

2

≥ 1

e
.

Therefore, for j ≥ 2 the constant c in (4.8) may be chosen as c = 1
e for sufficiently large

x. Together with (4.7) this implies

F2 �
√

log x√
log2 x

.

88



Altogether for the counting function of any of the sets Si with
⌊ log2

√
x

2

⌋
+ 2 ≤ i ≤⌊ log2

√
x

2

⌋
+
⌊√ log2

√
x

2

⌋
we have

Si(x)�
√
x√

log x(log2 x)5/2(log3 x)2
.

Summing these contributions up we finally get

S(x)�
√
x√

log x(log2 x)2(log3 x)2
.
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Cartan de Lorraine of the University of Lorraine. The authors thank these institutions

for their hospitality. The authors are also grateful to the referee for suggestions on the

manuscript.

Appendix

In proving Corollary 4.5 we used a result from the 2016 arXiv version of Meng’s [60]

paper on large bias for integers with prime factors in arithmetic progressions. Mean-

while this paper was published, and the statement of the result we used was slightly

modified compared to the arXiv version. For completeness’ sake, by just modifying the

calculations and leaving most of the remaining text unchanged, we adjust our proof of

Corollary 4.5 to the following special case of [59, Lemma 9].

Lemma 4.6 (Meng (2018)). For any A > 0, uniformly for 2 ≤ k ≤ A log log x, we have

πk(x; 4, 3) =
1

2k
x

log x

(log log x)k−1

(k − 1)!
×(

1 +
k − 1

log log x
C(3, 4) +

4(k − 1)(k − 2)

(log log x)2
h̃

(
2(k − 3)

log log x

)
+OA

(
k3

(log log x)4

))
,

where C(3, 4) = γ +
∑

p∈P

(
log
(

1− 1
p

)
+ 2λ(p)

p

)
, γ is the Euler-Mascheroni constant,
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λ(p) is the indicator function of primes in the residue class 3 mod 4 and

h̃(x) =

∫ 1

0
h′′(tx)(1− t)dt,

where

h(x) =
1

Γ
(
x
2 + 1

) ∏
p∈P

(
1− 1

p

)x/2(
1 +

xλ(p)

p

)
.

proof Of Corollary 4.5. In view of Lemma 4.4 and with k ∼ log log x
2 we see that it suffices

to check that, independent of the choice of k and for sufficiently large x, there exists a

constant c > 0 such that

1 +
C(3, 4)

2
+ h̃

(
2(k − 3)

log log x

)
≥ c. (4.9)

Note that the left hand side of the above inequality is exactly the coefficient of the main

term 1
2k

x
log x

(log2 x)k−1

(k−1)! for k in the range given in the Corollary. The constant C(3, 4)

does not depend on k. Using Mertens’ Formula (cf. [74, p. 19: Theorem 1.12]) in the

form ∑
p∈P
p≤x

log

(
1− 1

p

)
= −γ − log log x+ o(1)

we get

C(3, 4) = γ +
∑
p∈P

(
log

(
1− 1

p

)
+

2λ(p)

p

)
= 2M(3, 4),

where M(3, 4) is the constant appearing in

∑
p∈P

λ(p)

p
=

log log x

2
+M(3, 4) +O

(
1

log x

)
,

which was studied by Languasco and Zaccagnini in [53]4. The computational results of

Languasco and Zaccagnini imply that 0.0482 < M(3, 4) < 0.0483 and hence allow for

the following lower bound for C(3, 4):

C(3, 4) = 2M(3, 4) > 0.0964. (4.10)

It remains to get a lower bound for h̃
(

2(k−3)
log log x

)
, where the function h̃ is defined as in

4Note that our constant M(3, 4) corresponds to the constant M(4, 3) in the work of Languasco and
Zaccagnini.
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Lemma 4.4. First we observe that for x→∞ and log log x
2 −1 ≤ k ≤ log log x

2 +
√

log log x
2 the

term 2(k−3)
log log x gets arbitrarily close to 1. Hence we may suppose that 0.999 ≤ 2(k−3)

log log x ≤
1.001 and it suffices to find a lower bound for h̃(x) where 0.999 ≤ x ≤ 1.001. One

possible choice for a lower bound in this case is certainly given by

− max
0.999≤x≤1.001

|h̃(x)|.

Since

|h̃(x)| =
∣∣∣∣∫ 1

0
h′′(tx)(1− t)dt

∣∣∣∣ ≤ ∫ 1
2

0
|h′′(tx)||(1− t)|dt+

∫ 1

1
2

|h′′(tx)||(1− t)|dt

≤ 1

2

(
max

0≤t≤ 1
2

|h′′(tx)|+ 1

2
max
1
2
≤t≤1

|h′′(tx)|
)
,

and with 0.999 ≤ x ≤ 1.001 this reduces to find upper bounds for max0≤y≤0.5005 |h′′(y)|
and max0.4995≤y≤1.001 |h′′(y)|. A straight forward calculation yields that

h′(y) =
∏
p∈P

(
1− 1

p

)y/2
×

(
1 +

yλ(p)

p

) Γ
(y

2 + 1
) (∑

p∈P
1
2 log

(
1− 1

p

)
+ λ(p)

p+yλ(p)

)
− 1

2Γ′
(y

2 + 1
)

Γ
(y

2 + 1
)2

and

h′′(y) = f(y)
∏
p∈P

(
1− 1

p

)y/2(
1 +

yλ(p)

p

)
,

where

f(y) =

(∑
p∈P

1
2 log

(
1− 1

p

)
+ λ(p)

p+yλ(p)

)2

Γ
(y

2 + 1
) − Γ′′

(y
2 + 1

)
4Γ
(y

2 + 1
)2 −

∑
p∈P

λ(p)
(p+λ(p)y)2

Γ
(y

2 + 1
)

−
Γ′
(y

2 + 1
) (∑

p∈P
1
2 log

(
1− 1

p

)
+ λ(p)

p+yλ(p)

)
Γ
(y

2 + 1
)2 +

Γ′
(y

2 + 1
)2

2Γ
(y

2 + 1
)3 .

(4.11)

Bounds for the Gamma function and its derivatives for y in the ranges indicated above

can be found in Table 4.1. Furthermore, we have
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0 ≤ y ≤ 0.5005 0.4995 ≤ y ≤ 0.1001

function lower bound upper bound lower bound upper bound∣∣Γ (y2 + 1
)∣∣ 0.9063 1 0.8856 0.9065∣∣Γ′ (y2 + 1
)∣∣ 0.2058 0.5773 0.0001 0.2065∣∣Γ′′ (y2 + 1
)∣∣ 1.1316 1.9782 0.8293 1.1327

Table 4.1.: Bounds for the Gamma function and its derivatives, computed with
Mathematica.

∑
p∈P

λ(p)

(p+ y)2
<
∑
p∈P

λ(p)

p2
<
∑
p∈P
p≤104

λ(p)

p2
+
∑
n>104

1

n2
< 0.1485 +

∫ ∞
t=104

dt

t2
= 0.1486.

Later we will use that∑
p∈P

(
1

2
log

(
1− 1

p

)
+

λ(p)

p+ y

)
=
∑
p∈P

(
1

2
log

(
1− 1

p

)
+
λ(p)

p

)
− y

∑
p∈P

λ(p)

p2 + py

>
∑
p∈P

(
1

2
log

(
1− 1

p

)
+
λ(p)

p

)
− y

∑
p∈P

λ(p)

p2

= −γ
2

+M(3, 4)− y
∑
p∈P

λ(p)

p2

>

−0.3148, if 0 ≤ y ≤ 0.5005

−0.3892, if 0.4995 ≤ y ≤ 1.001,

and∑
p∈P

(
1

2
log

(
1− 1

p

)
+

λ(p)

p+ y

)
<
∑
p∈P

(
1

2
log

(
1− 1

p

)
+
λ(p)

p

)
= −γ

2
+M(3, 4)

< −0.2403.

Finally, using log(1 + y
p ) ≤ y

p , we get

0 ≤
∏
p∈P

(
1− 1

p

)y/2(
1 +

yλ(p)

p

)
≤ exp

y
∑
p∈P

(
1

2
log

(
1− 1

p

)
+
λ(p)

p

)
= exp

(
y
(
−γ

2
+M(3, 4)

))
< exp (−y · 0.2403) <

1, if 0 ≤ y ≤ 0.5005

0.8869, if 0.4995 ≤ y ≤ 1.001.

92



Applying the explicit bounds calculated above and the triangle inequality in equa-

tion (4.11), for 0 ≤ y ≤ 0.5005 we obtain

|f(y)| ≤ 0.31482

0.9063
+

1.9782

4 · 0.90632
+

0.1486

0.9063
+

0.5773 · 0.3148

0.90632
+

0.57732

2 · 0.90633
< 1.3206,

and similarly for 0.4995 ≤ y ≤ 1.001 we have

|f(y)| ≤ 0.38922

0.8856
+

1.1327

4 · 0.88562
+

0.1486

0.8856
+

0.2065 · 0.3892

0.88562
+

0.20652

2 · 0.88563
< 0.8331.

Together with (4.10) this implies, for sufficiently large x:

1 +
C(3, 4)

2
+ h̃

(
2(k − 3)

log log x

)
> 1 +

0.0964

2
− 1

2
(1.3206 +

1

2
(0.8869 · 0.8331)) = 0.2031,

which leads to an admissible choice of c = 0.2031 in (4.9).
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