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Abstract

In this thesis we consider triangles in the colored Euclidean plane. We call a
triangle monochromatic if all its vertices have the same color. First we study,
how many colors are needed, such that for every triangle we can color the
Euclidean plane in such a way, that there does not exist a monochromatic ro-
tated copy of the triangle or a monochromatic translated copy of the triangle.
Furthermore we show that for every triangle every coloring of the Euclidean
plane in finitly many colors contains a monochromatic triangle, which is sim-
ilar to the given triangle. Then we study the problem, for which triangles
there exists a 6-coloring, such that the triangle is nonmonochromatic in this
6-coloring. Later we show, that for every triangle, there exists a 2-coloring
of the rational plane, such that the triangle is nonmonochromatic. Finally
we give a 5-coloring of a strip with height 1, such that there do not exist two
points with distance 1, which have the same color.

Kurzzusammenfassung

In dieser Arbeit betrachten wir Dreiecke in der gefärbten Euklidischen Ebene.
Wir sagen, ein Dreieck ist monochromatisch, wenn alle Eckpunkte die gleiche
Farbe haben. Zuerst untersuchen wir, mit wie vielen Farben wir die Ebene
färben müssen, sodass das Dreieck keine monochromatische Kopie hat, die
nur durch Translation beziehungsweise nur durch Rotation entstanden ist.
Dann beweisen wir, dass es für jedes Dreieck in jeder endliche Färbung
der Euklidischen Ebene ein monochromatisches Dreieck gibt, das ähnlich
zum gegebenen Dreieck ist. Wir geben dann an, für welche Dreiecke es 6-
Färbungen gibt, sodass diese Dreiecke nonmonochromatisch sind. Dann be-
trachten wir Dreiecke in der rationalen Ebene und beweisen, dass es für jedes
Dreieck eine 2-Färbung der rationalen Ebene gibt, sodass das Dreieck non-
monochromatisch ist. Abschließend zeigen wir eine 5-Färbung eines Streifens
mit Breite 1, mit der Eigenschaft, dass es keine zwei Punkte mit der gleichen
Farbe gibt, die Abstand 1 haben.
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1 Introduction

We study the following question.

Problem 1. [10]
What is the smallest number c, so that for any triangle T , there exists a

coloring of the Euclidean plane with c colors, such that it is not possible, that
all vertices of T have the same color if we embed it in the colored plane?

The following problem is very similar to the one above, but is more specific
in the sense, that the number of colors depends on the triangle.

Problem 2. Given a triangle T . What is the smallest number c, so that
we can color the Euclidean plane with c(T ) colors, such that it is not possi-
ble, that all vertices of T have the same color if we embed it in the colored
Euclidean plane?

Problem 1 is a problem in Euclidean Ramsey theory. Euclidean Ramsey
theory was introduced by Erdős and others in a set of papers [5, 6, 7] in
1973. As its name suggests, Euclidean Ramsey theory combines ideas from
geometry and combinatorics, but also set theory and measure theory are
important.

An important problem in Euclidean Ramsey theory and the motivation
for Problem 1 is the so called chromatic number of the Euclidean plane.

1.1 Chromatic number of the plane

In this chapter we mean with plane the Euclidean plane if no specific norm
is mentioned.

Problem 3 (Chromatic number of the plane). How many colors are at least
needed, such that there exists a coloring of the Euclidean plane, so that no
two points with distance 1 have the same color?

This number is the so called chromatic number of the plane and is denoted
by χ(E2). Here E2 can also be seen as an infinite graph, where the set of
vertice is the set of all points of the plane and two vertices are joined by an
edge, if they are distance 1 apart.

This problem can also be generalised, in the sense, that we take the
Euclidean space of dimension d instead of the plane. This number is χ(Ed).
Another variant is, if we only consider colorings, where all sets of points with
the same color are Lebesgue measurable. We denote this number as χm(Ed)
or χm(G) if we only look at the chromatic number of a graph G in such a
coloring.
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The chromatic number of the plane was introduced by Edward Nelson in
1950.

Even five years earlier Hugo Hadwiger had worked on a similar problem
and had shown that every coloring of the Euclidean plane with five closed
congruent sets contains a pair of points with distance 1. Therefore the prob-
lem of the chromatic number of the plane is also called Nelson-Hadwiger
problem.

For the chromatic number of the plane lower and upper bounds are known.
These bounds have not been improved since the problem was first mentioned.

Theorem 1. [14] The chromatic number of the plane is at least 4.

A

B

C

D

D′

B′

C ′

Figure 1: Moser spindle: a unit-distance graph with chromatic number 4

Proof. We look at the unit distance graph in Figure 1, the so called Moser
spindle. We try to color the Moser spindle with 3 colors, say red, green and
blue. Without loss of generality, let A be green. Then B, B′, C and C ′ have
to be red or blue, but B and C cannot have the same color, therefore let B
be red and C be blue. Furthermore we color B′ red and C ′ blue, because B′

and C ′ cannot have the same color. Then D is green, but D′ has a green
neighbor D, a red neighbor B′ and a blue neighbor C ′, so we cannot 3-color
the Moser spindle. This means that the Moser spindle has chromatic number
4 and therefore the chromatic number of the plane is at least 4.

There are some other examples of unit distance graphs with chromatic
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Figure 2: 7-coloring of the plane with regular hexagons with diameter 1− ε,
such that no points with distance 1 have the same color

number 4. It has been proved by O’Donnel, that there exist unit distance
graphs with chromatic number 4 and girth k for an arbitrary integer k [18].

Theorem 2. [12] The chromatic number of the plane is at most 7.

Proof. Let ε > 0 be small. We study the coloring in Figure 2. The hexagons
in Figure 2 have diameter 1− ε. Therefore, the distance between two points
in the same hexagon is less than 1. The line segments AG, BH, CI, DJ , EK
and FL are the shortest line segments between the hexagon ABCDEF and
other hexagons with the same color, in our case color 1. Due to rotational
symmetry we have

AG = BH = CI = DJ = EK = FL. (1)
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For the distance AG we have

AG
2

=

(√
3

4
(1− ε)

)2

+

((
1

2
+

3

4

)
(1− ε)

)2

(2)

= (1− ε)2
(

3

16
+

25

16

)
(3)

= (1− ε)27

4
(4)

So we get

⇔ AG = (1− ε)
√

7

2
> 1 (5)

Since AG > 1, the distance between two points with the same color in
different hexagons is more than 1. Therefore there are no two points in
Figure 2 with the same color, which have distance 1.

Erdős and de Bruijn [3] proved, that there exists a finite unit distance
graph, whose chromatic number is the chromatic number of the plane. This
means if the chromatic number of the plane is 7, then there exists also a finite
unit distance graph which has chromatic number 7. Pritikin [16] showed, that
all unit distance graphs with at most 6197 vertices are 6-colorable. So the
number 6 is only an upper bound for the chromatic number of graphs with
6197 vertices. In his proof, Pritikin used a coloring of the plane with 7 colors,
such that the area of one of these seven colors, say color c is very small and
the vertices can be embeded in the colored plane, such that no vertex lies in
the area with color c.

Townsend [19] proved, that for map colorings, we need at least 6 colors,
such that no two points with distance 1 have the same color. We will see a
definition for map colorings in Section 3.

In 1981 Falconer [8] showed, that χm(En) ≥ n+3. So for n = 2 this gives
us χm(E2) ≥ 5.

In recent years, it was studied if the chromatic number of the plane de-
pends on the axioms we use. Payne [15] constructed some unit distance
graphs G where χm(G) 6= χ(G).

Recently de Grey [4] found a unit-distance graph with chromatic num-
ber 5. This gives us χ(E2) ≥ 5.

Before we look at some known results for Problem 1, we need some defi-
nitions.
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1.2 Definitions

Definition 3. A coloring is a partitioning of the Euclidean space, such that
every point of the space has one color. An r-coloring is a coloring with r
colors.

Definition 4.

• Two finite point sets X and Y are congruent if |X| = |Y | and Y can
be covered by rotation and translation of X.

• A finite point set X is monochromatic if every point of X has the same
color.

• A finite point set X exists monochromatically in a coloring if there
exists a congruent copy of X which is monochromatic.

• A finite point set X is nonmonochromatic in a coloring if it does not
exist monochromatically.

In this following chapters we will study point sets of size 3 in the plane,
which we can see as vertices of a triangle.

1.3 Notation

Graham introduced the following notation for problems in Euclidean Ramsey
theory [9].

Definition 5. Let d be the dimension of the Euclidean space and let r be a
positive integer. Let X be a finite point set and Cong(X) the family of all
congruent copies of X. We write Ed r−→ Cong(X) if X exists monochromat-
ically in all r-colorings of Ed.

If it is obvious that we are looking for congruent copies of X, we can write
Ed r−→ X.

Definition 6. Let A and B be any two distinct points in the Euclidean plane.
We write AB for the line segment between A and B and we write AB for
the length of the line segment AB.
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EF

hA
hB

Figure 3: Normed triangle with notation

1.4 Normed triangle

Let T be a triangle with vertices A, B and C. Without loss of generality we
can assume that AB is the longest side of T .

Definition 7. Let us denote the heights of a given triangle as in Figure 3. We
call a triangle a normed triangle, if the longest side is AB and has length 1,
and BC ≤ AC holds. That means, that hC is the shortest height of the
triangle.

Theorem 8. If a triangle T with side lengths a, b and c does not exist
monochromatically in an r-coloring F , then there exists an r-coloring, so that
the triangle Ta with side lengths 1, b

a
and c

a
does not exist monochromatically.

Proof. We construct an r-coloring Fa, so that Ta does not exist monochro-
matically. Consider the Euclidean plane as a vectorspace R2 with origin O.
Every point P is colored in Fa in the same color as Q is colored in F , where−→
OQ = a

−→
OP .

If Ta exists monochromatically in Fa, then there is a monochromatic
triangle congruent to Ta with vertices D, E and F . Let X, Y and Z be
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points which satisfy

a
−−→
OD =

−−→
OX,

a
−−→
OE =

−−→
OY ,

a
−→
OF =

−→
OZ.

Then X, Y and Z have the same color in the coloring F . Without loss

of generality let |
−−→
DE| = 1. Then

|
−−→
XY | = |

−−→
OX–

−−→
OY |

= |a
−−→
OE–a

−−→
OD|

= a|
−−→
OE–

−−→
OD|

= a|
−−→
DE| = a

holds. In the same way we get |
−→
Y Z| = b and |

−−→
XZ| = c. So we have in F a

monochromatic triangle congruent to T which is a contradiction. Therefore
Ta does not exist monochromatically in Fa.

So we only have to study normed triangles, because Theorem 8 implies if
a triangle T with longest side length 1 is nonmonochromatic in a c-coloring
F , then there exists a c-coloring F ′ such that every triangle T ′ with the same
angles as T is nonmonochromatic in F ′.

1.5 Triangles in the colored Euclidean plane

Problem 1 is interesting, because it seems to be easier than the chromatic
number of the plane and we hope, if we know the solution for Problem 1,
that we can get better bounds for the chromatic number of the plane.

The chromatic number of the plane is at most 7, which means that in
Problem 1 the number of colors is also at most 7. On the other side, we can
not use the lower bound of the chromatic number of the plane for Problem 1.
There has been a lot of work done for triangles in 2-colorings of the plane.

Due to Theorem 8, we can assume that a given triangle is a normed
triangle.

Theorem 9. [5] The equilateral triangle T with sides of length 1 is nonmon-

monochromatic in a coloring with parallel strips of width
√
3
2

.

Proof. We take parallel halfopen strips of height
√
3
2

as in Figure 4. Since the
height of the T is the same as the height of the halfopen strips, all vertices
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Figure 4: 2-coloring with halfopen strips for equilateral triangles

cannot lie in the same stip. It is impossible that all vertices are in different
strips with the same color because 3

√
3
2
> 1. If two vertices are in the same

strip, then the line segment between those vertices is also in the same strip
due to convexity of the strips. But the height of the T is exactly the height
of the strips, so the third vertex cannot be in a strip with the same color as
the other two vertices.

It was conjectured, that such a coloring with strips and some freedom
on the boundaries would be the only coloring with two colors, such that
the equilateral triangle is nonmonochromatic in this coloring. In 2006 four
czech students disproved this conjecture [13]. The counterexample is a so
called zebra-like coloring, where the boundary between the colors consists of
continuous curves with some properties instead of straight lines.

So there exist 2-colorings, for which equilateral triangles are nonmonochro-
matic, but there are also triangles which exist monochromatically in every
2-coloring.

Theorem 10. [5] The triangle with angles 30◦, 60◦ and 90◦ exists monochro-
matically in every 2-colored Euclidean plane.

Proof. We color the plane red and blue. We look at Figure 5. If we 2-color
the vertices of the equilateral triangle with side length d, then two vertices
have the same color. So we can say, that in every 2-coloring of the plane,
there exist two points with the same color and distance d apart, for every
positive d. Therefore we can assume that A and D have the same color,
without loss of generality say red. If one of the points B, C, E and F is red,
then we have a red triangle with angles 30◦, 60◦ and 90◦. Otherwise, if B,
C, E and F are blue, then we have a blue triangle with angles 30◦, 60◦ and
90◦.

So we have in Problem 1 the lower bound 3. In fact, there are more
examples of triangles, that exist monochromatically in every 2-coloring. For
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B C

D

EF

A

Figure 5: Regular hexagon with red colored points A and D, used in the
proof of Theorem 10

example, Leslie Shader [17] proved, that every triangle with a 90◦ angle exists
monochromatically in every 2-coloring. We will see another example of such
a triangle also in a later chapter. There is a nice theorem which helps finding
such triangles.

Theorem 11. [7] Let T be a triangle with sides of lengths a, b and c Let Ta
be an equilateral triangle with sides of length a, Tb be an equilateral triangle
with sides of length b and Tc be an equilateral triangle with sides of length c.
T exists monochromatically in a 2-coloring if and only if one of Ta, Tb and
Tc exists monochromatically.

Proof. We look at Figure 6. The triangles ABD, HBC, EDC, EFH, DFG
and AHG are congruent triangles with sides of length a, b and c. These
triangles are also congruent to T . The triangles ABH, EFD, BCD, FGH,
ADG and CEH are equilateral triangles. We assume that the two colors are
red and blue.

First we assume ABH is a red triangle. We want to show that T exists
monochromatically. So if one of the triangles ABD, HBC, EDC, EFH,
DFG and AHG is monochromatic, we are done. We color the points so
that we avoid such a monochromatic triangle as long as possible. There-
fore we color C, D and G blue, because of the triangles HBC, ABD and
AHG. Then E and F are red, because of the triangles EDC and DFG. But
now the triangle EFH is red, so if ABH is monochromatic then T exists
monochromatically.

We can prove this for the other equilateral triangles in the same way.
Now to the other direction, where T exists monochromatically.

Without loss of generality assume that A, B and D is a red triangle. We
assume that ABH, EFD, BCD, FGH, ADG and CEH are not monochro-
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Figure 6: Illustration for the proof of Theorem 11

matic. So C, H and G are blue, because of the triangles HBC, ABD and
AHG. Furthermore, E and F are red, because of the triangles CHE and
GHF . So we have a red triangle EFD, which is a contradiction to our
assumption.

In [7] this theorem was used to find other triangles, that exist monochro-
matically in every 2-coloring of the Euclidean plane. It is conjectured, that
every triangle aside from the equilateral triangle exists monochromatically
in every 2-coloring of the plane.

Since 3 is the lower bound for Problem 1, it is also interesting, which tri-
angles are nonmonmonochromatic in a 3-coloring of the plane. Graham and
Tressler found some triangles, that are nonmonmonochromatic in a 3-coloring
of the plane [11]. They showed, that the normed triangle with sidelengths 1

2
,

1
2

and 1 is nonmonmonochromatic in a 3-coloring of the plane with regular
hexagons. Furthermore, they also mentioned, that some triangles are non-
monmonochromatic in a 3-coloring with halfopen strips. It is also conjectured
by them, that 3 is the solution for Problem 1.
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2 Variants

In this chapter we look at variants of Problem 1. First we like to know, if
we restrict the movement of the triangle, how much colors are needed, so
that the triangle does not exist monochromaticaly. That way we get lower
bounds for Problem 1.

Later in this chapter we look, what happens if we examine the class of
similar triangles. Two triangles are similar if their angles are the same. The
family of congruent triangles is a subfamily of the family of similar triangles
and therefore we get an upper bound for the original problem.

2.1 Translation

Let T be a triangle and let Trans(T ) be the family of triangles which we
get by translation of T . We show, that for any triangle T1, there exists a
2-coloring of the Euclidean plane, such that every translated copy of T1 is
not monochromatic.

Theorem 12. For all triangles T E2 6 2−→ Trans(T ) holds.

Proof. Let l be a line that is parallel to side BC of the fixed triangle T .
We project B and C onto l and call the resulting points Bl and Cl. The
distance between Bl and Cl is c. We color the plane with half open strips of

l

C

B

A

B′

C ′

A′

Cl

Bl

B′l

C ′l

Figure 7: 2-coloring for translation

width c which are normal to l like in Figure 7. Furthermore if we project B′

and C ′ of T ′ ∈ Trans(T ) onto l then the distance between these two points
is again c, because with translation B′C ′ and l are parallel for all triangles
T ′ ∈ Trans(T ). Therefore the points B′ and C ′ of T ′ ∈ Trans(T ) lie in
different colored, adjacent strips in this coloring.
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2.2 Rotation

Let T be a triangle and let RotP (T ) be the family of copies of T , which are
rotated around a fixed point P . If P is not the circumcenter, then there are
at least two vertices of the triangle, which are not on the same circle. We
can color these two circles with two differnt colors as in Figure 8 and then
every triangle T ′ ∈ RotP (T ) is nonmonochromatic.

A

B

CP

Figure 8: 2-coloring for rotation, if P is not the circumcenter

Theorem 13. Let P be a fixed point. There exists a triangle T with

E2 2−→ RotP (T ).

Proof. Let ABCDEFG be a regular 7-gon with circumcenter P . We want
to show that one of the triangles of RotP (ABD) is monochromatic in every
2-coloring of the vertices. We try to color the 7-gon in such a way, that
we avoid such a monochromatic trianlge whenever it is possible. By the
pidgeonhole principle there are at least two vertices which are neighbours
and have the same color. Without loss of generality we say A and B are red
and then, because we want to avoid monochromatic triangles in RotP (ABD),
D is blue, as shown in Figure 9(a).

Then we have two cases:
Case 1: C is red. Then we can see in Figure 9(b), that E and G have to

be blue.
But then we have the monochromatic triangle DEG which is in

RotP (ABD). This case also shows, that if there a are three or more consec-
utive vertices with the same color, then we have a monochromatic triangle
which is in RotP (ABD).

Case 2: C is blue. If G is red, then we have the three consecutive vertices
with the same color and we are done. So G is blue (Figure 10(a)).
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G

(a) Colored regular 7-gon

A B

C

D

E

F

G

(b) Colored 7-gon with monochromatic
triangle DEG

Figure 9: Illustration of the proof of Theorem 13 for Case 1

A B

C

D

E

F

G

(a) Colored 7-gon where C and G are
blue

A B

C

D

E

F

G

(b) Colored 7-gon with monochro-
matic triangle EFA

Figure 10: Illustration for the proof of Theorem 13 for Case 2.
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Due to the triangles CDF and DEG, F and E are red as shown in
Figure 10(b). Now we have a monochromatic triangle EFA which is in
RotP (ABD).

So we have found a triangle T with E2 2−→ RotP (T ).

Theorem 14. For all triangles T E2 6 3−→ RotP (T ) holds.

Proof. If P is not the circumcenter this is true due to the remark at the
beginning of Section 2.2. We will prove that we can color a circle in such
a way, that every two points with angular distance d < π, do not have the
same color, for d constant.

Figure 11: 3-coloring of a circle

We partition the circle into halfopen arcs A1, . . . , Ak with angular distance
d and into one arc R, with angular distance smaller than d. Without loss of
generality we can say A1 is next to R and the clockwise order of the arcs is
R,A1, A2, . . . , An. Let R,A2, A4, . . . , A2k wit 2k < n be in color class X, let
A1, A3, . . . , A2k−1 with 2k−1 < n be in color class Y and let An be color class
Z like in Figure 11. Two points with angular distance a are in differents arcs
of the partition. Either they are in adjacent arcs, which are different colored
or one point is in A1 and the other is in An which have different colors. So
d does not exist monochromaticaly with this colorung.

2.3 Similar triangles

Two triangles T1 and T2 are similar if we can obtain T2 by translation, ro-
tation, scaling or a combination of these transformations of T1. Let T be
a triangle and Sim(T ) the family of triangles similar to T . If two triangles
are congruent, they are also similar. In this chapter we study, how many
colors we need, such that every triangle in Sim(T ) is nonmonochromatic.
This looks like Problem 1, with the difference, that we allow scaling.
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Theorem 15. For all triangles T and for all finite r ∈ N, E2 r−→ Sim(T )
holds.

Before we proof this theorem, we need some definitions.

Definition 16. Let T be a triangle with side lengths a, b and c. We look at a
triangle Tn with side lengths na, nb and nc. Let A0, B0 and C0 be the vertices
of Tn and An = B0, Bn = C0 and Cn = A0. Further partition the side A0An

into n line segments with the same length by putting points Ai on A0An such
that AiAi+1 = a and do the same for the lines B0Bn and C0Cn. Now add all
lines AiBn−i, BiCn−i and CiCn−i and add a vertex at each intersection. We
call such a graph a triangle grid of T with base n or triangle grid for short.

We call a triangle grid of T partial r-chromatic if in every r-coloring
of the vertices of the triangle grid there is always a monochromatic triangle
similar to T .

nr is the smallest number, such that any triangle grid with base nr is
partial r-monochromatic.

Figure 12(a) and Figure 12(b) are triangle grids.

Lemma 17. nr is finite for all positive integers r.

Lemma 17 implies Theorem 15.

A0 = Cn A1 B0 = An

C1

C0 = Bn

B1

T

(a) Colored triangle grid with base 2

A0 = Cn A1 A2

C3

C2

T

A3

C1 B3

B2

C0 = Bn

B1

B0 = An

(b) Triangle grid with base 4

Figure 12: Triangle grid examples

Before we prove Lemma 17, we look at 2-coloring of the triangle grid
shown in Figure 12(a) with base 2, where A0, A1 and A2 = An are red. If
one of the points B1, C0 and C1 is red, then we have a monochromatic triangle
similar to T . Otherwise, if none of the points B1, C0 and C1 is red, then the
original triangle grid without the line segments incident to Ai, 0 ≤ i ≤ 2,
and the vertices Ai, 0 ≤ i ≤ 2, is again a triangle grid with base n− 1 (in
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our case one) and is colored with r − 1 colors, in our case one color. So we
get again a monochromatic triangle similar to T .

This is the basic idea to proof Lemma 17. But how can we prove, that we
always have a triangle grid, where the A′i ∈ {Aj|0 ≤ j ≤ n} with A′i+1 − A′i
is constant for 0 ≤ i ≤ k, for good choices of k, have the same color.

The answer to this is to use Van der Waerdens theorem.

Theorem 18. [20, van der Waerdens theorem] An r-coloring of the numbers
from 1 to N is a partition of the numbers from 1 to N into r sets.

Let N = W (r, l) be the smallest number such that in every r-coloring of
the numbers from 1 to N into r sets, there exists a monochromatic arithmetic
progression of length l. If r and l are finite, then W (r, l) is finte.

Proof. We will pove Lemma 17 by induction.
Induction base: r = 1
We choose a triangle grid with base 1, which is partial monochromatic in

every 1-coloring.
Claim: nr is finite.
We prove, that nr+1 is finite, if nr is finite. Consider a triangle grid of T

with base N = W (nr + 1, r+ 1). The distance from A0 to Ai is ia for all i ∈
{1, ..., N}. Now we color i with the color the point Ai has and get a coloring of
the numbers from 1 to N with r+1 colors. With Van der Waerdens theorem
we know that there is an arithmetic series {k, k+d, ..., k+nr d} ⊂ {1, ..., N}
such that all Aj with j ∈ S have the same color. Let us look at the triangle
subgrid with points Ak, ..., Ak+nr d. These points have the same color, say
color r + 1. If there is another point in the triangle subgrid with color r + 1
we have a monochromatic triangle similar to T .

Otherwise if there is no other point in the subgrid, then the triangle
subgrid without the points Ak, ..., Ak+nr d is colored in r colors. But the
triangle subgrid without the points Ak, ..., Ak+nr d is an r-colored triangle
grid of d T with base nr. Therefore there is a monochromatic triangle similar
to T in this triangle grid of d T with base nr.

This means nr+1 ≤ W (nr +1, r+1) is finite. So nr is finite for all positive
integers r.

Theorem 15 is in fact a special case of a theorem of Gallai.

Theorem 19. [5, 18] Let n and k be arbitrary positive integers and let A be
a finite point set. In every k-coloring of En there exists a similar copy of A.

In Theorem 15 we have n = 2 and |A| = 3.
In this chapter we have seen, that if we only allow translation or rotation

of the original triangle, then we can solve Problem 1. On the other hand, if
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we are also allowed to scale our triangle in Problem 1, then in the r-colored
plane with r ∈ N, there is always a monochromatic homophetic copy of our
original triangle.
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3 Map like colourings of the plane

In this chapter we look at different 6-colourings of the Euclidean plane and
try to find triangles, which are nonmonochromatic in such a 6-colouring.

Definition 20. A multigraph is a graph, for which we allow multiple edges
between two vertices.

We call a multigraph, that is drawn in the plane without intersection of
its edges, plane.

A multigraph is connected, if for any two vertices there is a path connect-
ing these vertices.

An edge x of a connected multigraph G is called bridge, if G − x is not
connected.

A map is a plane connected multigraph without bridges. A map divides
the plane into regions.

Two regions are adjacent if they share at least one edge.
A map coloring is a coloring of all regions, such that two regions with the

same color do not share an edge.
A map like coloring is a coloring of all regions, edges and vertices, such

that every edge between two regions with the same color has the same color
as these regions and every point, whose adjacent edges have the same color,
has the same color as the edges.

Since map colorings do not include zebra colorings, we need the definition
of map like colorings.

We can visualize sets of triangles, because we only have to look at normed
triangles.

Figure 13: Visualization of the choices of C.
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For normed triangles the longest side AB has length 1 and BC ≤ AC. So
the possible choices for C are in the area between M , B and C ′ in Figure 13.
We will indicate choices for C in this figure and try to cover as much of this
shaded area in Figure 13.

3.1 Zebra colouring

We call a coloring a zebra coloring if we color the plane with strips. In our
case, the strips will be halfopen. Furthermore, we study cases, where all
strips have the same height.

Given a normed triangle T . First we observe, that the height of the strips
has to be at most hC . Otherwise T could be placed in one strip and obviously
would be monochromatic. Since the strips are halfopen, the height can be
exactly hC . That means, that the vertices off the triangle lie in at least two
different strips. For 6 colors the distance between two points in two different
strips with the same color is greater than 5hC , because there are five strips
between two strips with the same color. So if two points have the same color
and have distance at most 5hC , then these two points lie in the same strip.
So we want hC to be small enough, so that a given triangle cannot lie in one
strip, but large enough, so that the third vertex of the triangle is not in the
next strip, with the same color.

Theorem 21. All normed triangles with hC ≥ 1
5

are nonmonochromatic in
a zebra coloring with 6 colors, where all strips have height hC.

A

B

C

hC

Figure 14: Zebra coloring with 6 colors with halfopen strips of height hC

Proof. Let T be a normed triangle with hC ≥ 1
5
. With the above arguments

we know, that the vertices do not lie in one strip. On the other hand AB =
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Figure 15: Possible choices for C for a nonmonochromatic triangle by Theo-
rem 21

1 = 51
5
≤ 5hC and since AB is the longest side of T , it is not possible, that

two points of the triangle lie in two different strips with the same color.

Theorem 21 says, that we have a 6-coloring for every normed triangle
with hC ≥ 1

5
. So we have a coloring for every point C in the shaded area

Z1Z
′
1C
′ in Figure 15, such that the triangle ABC is nonmonochromatic.

As we can see in Figure 14, there is room for improvement, because C
seems to be in another strip too, if we try to place B in a different strip with
the same color as the strip with A.

Theorem 22. All normed triangles with AC ≤ 5hC are nonmonochromatic
in a zebra coloring with 6 colors, where all strips have height hC.

Proof. Let T be a normed triangle. As seen before, A, B and C cannot lie
in the same strip. Assume that T is monochromatic. Then A and C are in
the same strip, since AC ≤ 5hC . But, since BC ≤ AC ≤ 5hC holds,
B and C lie in the same strip. So A, B and C have to be in the same strip,
which is a contradiction.

This is clearly a better result than Theorem 21, but how can we visualize
this result in our figure? The answer is Pythagoras theorem. Let s = AD as
shown in Figure 16. We know

s2 + hC
2 = AC

2 ≤ (5hC)2 (6)

⇔ s2 ≤ 24hC
2 ⇔ s

2
√

6
≤ hC . (7)
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A B

C

Ds = AD

Figure 16: Triangle with AC = 5hC

(a) Possible choices for C for a
nonmonochromatic triangle by The-
orem 22

(b) New possible choices for C for a
nonmonochromatic triangle by Theo-
rem 22

Figure 17: Visualisation of the possible choices for C after Theorem 23
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X

Y

Z

E

Figure 18: All vertices in different strips in Theorem 23

In Figure 17(a), if C is in the shaded area Z2Z
′
1C
′, then it is nonmonochro-

matic in the zebracoloring with strips of height hC . We can see in Fig-
ure 17(b), that we get all points in the shaded area Z2Z

′
1Z1 as new possible

choices for C.
The next idea is to take the largest height hA of a triangle T , so that if B

and C lie in the same strip, than A is also in the same strip. Unfortunately
that only works for triangle in which every angle is at most 90◦.

Theorem 23. Every normed triangle, in which every angle is at most 90◦

and hA ≤ 5hC is nonmonochromatic in a zebra coloring with 6 colors, where
all strips have height hC.

Proof. Let T be a normed triangle. Since all strips have height hC , A, B and
C cannot be in the same strip. Assume B and C are in the same strip. Let
D be a point on BC, so that AD = hA. Since all angles of the triangle are
at most 90◦, D is between B and C. So D is in the same strip as B and C.
But the distance between two strips with the same color is 5hC ≥ AD, so A
cannot lie in a strip with the same color. The same follows, if A and B or A
and C lie in the same strip, because hA is the largest height of the triangle.
So we only have to show that A, B and C cannot lie in three different strip
with the same color.

We look at Figure 18 and only care about the grey strips. The triangle
XY Z is congruent to our given triangle ABC. E is the point on Y Z between
Y Z such that XE is a height of the triangle XY Z. If all vertices of XY Z
are in different strips with the same color, then there is one vertex in a strip
between the strips, which contain the other two vertices. In Figure 18 this is
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Z. The distance between the strip containing X and the strip containing E
is greater than 5hC , but the distance XE is at most 5hC , because

XE ≤ AD = hA ≤ 5hC (8)

So this is impossible.

Note that this proof doesn’t work if there is an angle greater than 90◦,
because then D is not necessarily between B and C.

To visualize the triangles of Theorem 23, we have to calculate some further
properties. We know by calculating the area in two different ways that

1

2
BChA =

1

2
ABhC =

hC
2

(9)

With Theorem 23 we get

1

2
BChA ≤

1

2
BC5hC (10)

⇒ hC
2
≤ 1

2
BC5hC (11)

⇒ 1

5
≤ BC (12)

So we also know for a normed triangle T , if BC ≥ 1
5

and all angles of T
are at most 90◦, then we have a 6-coloring in which T is nonmonochromatic.

In Figure 19(a) all possible choices for C, for which we know a 6-coloring,
such that the triangle ABC is nonmonochromatic, are in the shaded area.
All points C, for which the triangle ABC is nonmonochromatic in a 6-zebra
coloring by Theorem 23, are in the shaded area in Figure 19(b).

The new possible choices we get for C with Theorem 23 are the points
in the area Z3Z

′
3Z
′
1 in Figure 19(c). The resulting additional area is pretty

small, in fact, we have to look at a figure, that is 80 times bigger than our
usual figure, to see the difference.

3.2 Colourings with rectangles

In this chapter we color the plane with rectangles. The diagonals of the
rectangles are at most 1. If there is a diagonal longer than 1, than a normed
triangle can lie in one rectangle.

We color the plane like in Figure 20. We color the boundary of a square,
so that the lowest side excluding its rightmost endpoint and the leftmost side
excluding its topmost endpoint have the same color as the square. For ex-
ample, we look at the square P1P2P3P4. The sides P1P2 and P1P4 (excluding
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(a) Possible choices for C for a non-
monochromatic triangle after Theo-
rem 23

(b) Possible choices for C for a
nonmonochromatic triangle by Theo-
rem 23

(c) New possible choices for C for a nonmonochromatic triangle after
Theorem 23

Figure 19: Visualisation of the possible choices for C after Theorem 23
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4 5 6 4

1 2 3 1

1 23

2

5

3 1

6

6 4 5 6 4

3

2

5

P1 P2

P3P4

R1 R2

Figure 20: 6-coloring with squares

endpoints) and the point P1 are colored with color 1, but P4 and side P3P4

are colored with color 4.
The length of a side of a square in this coloring is

√
2
2

, because the diagonal
of every square is 1. That means that

R1R2 = 2

√
2

2
=
√

2 > 1. (13)

Furthermore R1P1 = R2P2 holds in this coloring. With Pythagoras theorem
we get

R1P1
2

=

(√
2

2

)2

+

(
1

2

√
2

2

)2

=
5

8
.

So R1P1 =
√
10
4

and therefore the shortest distance between two points in

different squares with the same color is greater than
√
10
4

.

Theorem 24. All normed triangles with AC ≤
√
10
4

are nonmonochromatic
in a 6-coloring like in Figure 20.

Proof. Let T be a normed triangle. A, B and C are not in the same square
since the diagonals have length 1, but the endpoints of each diagonal are
colored in distinct colors. If A is in a different square than C it cannot be in
a square with the same color as the one C is in, because the shortest distance
between two points in different squares with the same color is greater than√

10
4

, but AC ≤
√
10
4

. Since BC ≤ AC ≤
√
10
4

, because T is a normed triangle,
B and C cannot be in different squares, if B and C have the same color.
Therefore it is impossible, that A, B and C have the same color.
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This result is fine, but we can get a better result if we modify our coloring.

R1

1 2

b R2

3

b

1

4 a 6 4

P1 P2

1

b
2

5

Figure 21: 6-coloring with rectangles, which diagonals have length 1

Instead of using squares we use rectangles with diagonals of length 1. For
the first modification we choose our rectangles so that

R1R2 = R1P1 = R2P2, (14)

where R1, R2, P1 and P2 are chosen like in Figure 21. Now we calculate
the lengths of the sides a and b of each rectangle. Since the diagonals have
length 1, we know a2 + b2 = 1 and therefore a2 = 1− b2. The other condition
is

2b = R1R2 = R1P1 =

√
a2 +

(
b

2

)2

. (15)
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So we can calculate a and b.

4b2 = a2 +
b2

4
= 1− b2 +

b2

4

5b2 − b2

4
=

19b2

4
= 1

b =
2√
19

a =

√
15√
19

Theorem 25. All normed triangles with AC ≤
√
15√
19

are nonmonochromatic

in a 6-coloring with rectangles with a =
√
15√
19

and b = 2√
19

as shown in Fig-
ure 21.

The proof for this theorem is essentially the same as the proof for The-
orem 24, just with the values of the 6-coloring with rectangles as shown in
Figure 21 instead of the values of the 6-coloring with squares, which we can
see in Figure 20. The 6-coloring in Figure 21 also has the intended properties
as we have calculated which meet our conditions as we have calculated.

In Figure 22(a), we have for all points C, which lie in the shaded area, a
6-coloring, such that the triangle ABC is nonmonochromatic. Theorem 25
covers the shaded area in Figure 22(b). The shaded area in Figure 22(c)
shows the new possible choices for C.

With this theorem we get again an upper bound for AC. Can we also find
a lower bound for BC? We can use a similar coloring to the one in Figure 20,
but instead of squares we use again rectangles. The points R1, R2, P1 and
P2 are chosen like in Figure 21. These rectangles with sides of lengths a and
b should have the following properties:

• R1R2 = 2b ≤ 1⇒ b ≤ 1
2

• a2 + b2 = 1⇒ a ≤
√
3
2

We need the first condition, because then it is impossible that two points
are in two different rectangles with the same color in the same row and
have distance at most 1. The second property says that the diagonals of a
rectangle are at most 1, so no normed triangle can lie in one rectangle.

We look at Figure 23. The circle with center P1 and points Q1 and Q2

and radius 1 intersects the rectangle with color 1 only inside the rectangle
R = SQ2R1Q1. Therefore, if the normed triangle T is monochromatic, then
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(a) All possible choices for C for
a nonmonochromatic triangle after
Theorem 25

(b) Possible choices for C for a
nonmonochromatic triangle by The-
orem 25

(c) New possible choices for C for a nonmonochromatic triangle by The-
orem 25

Figure 22: Visualisation of the possible choices for C after Theorem 23

C has to be in R. As we can see in Figure 23, if BC ≥ Q1Q2 holds, then B
and C can only be in the rectangle R if B is Q1 and C is Q2 or if B is Q2 and
C is Q1. But the points Q1 and Q2 have different colors. On the other hand
if A, B and C are in three different rectangles, then two of these rectangles
have to be in the same row, because 3a = 3

√
3

2
> 1. The distance of two

points with the same color in different rectangles in the same row is greater
than 1, because of our choice to color the boundaries of the rectangles. So T
is nonmonochromatic if Q1Q2 ≤ BC.

Theorem 26. All normed triangles T with BC ≥ 1
2

√
7− 3

√
5 are non-

monochromatic in a 6-coloring with rectangles with a =
√
3
4

and b = 1
2
.
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R1

4

1 2

5 6

P1

1

Q1

Q2

R

S

Figure 23: Lower bound for BC

Proof. We have already proved before, that a normed triangle T is non-
monochromatic if Q1Q2 ≤ BC. To calculate Q1Q2, we embed our coloring
in a Cartesian coordinate system. We assume P1 = (0, 0) and P1P2 is on
the x-axis of the Cartesian coordinate system. Then Q1 and Q2 lie on the
circle x2 + y2 = 1. Furthermore the x-coordinate of Q2 is −1

4
and the y-

coordinate of Q1 is −
√
3
2

. Q1 and Q2 are solutions of x2 + y2 = 1 and we get

Q1 = (−1
2
,−
√
3
2

) and Q2 = (−1
4
,−
√
15
4

).

Q1Q2
2

=

(
−1

2
−
(
−1

4

))2

+

(
−
√

3

2
−

(
−
√

15

4

))2

=
1

16
+

3

16
(2−

√
5)2

=
1

16
(1 + 3(9− 4

√
5)) =

1

4
(7− 3

√
5)

Q1Q2 =
1

2

√
7− 3

√
5
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Note that 1
2

√
7− 3

√
5 ≈ 0.270 > 1

5
. This means that this bound is worse

than the bound, we have for triangles, where all angles are at most 90◦. Thus
this bound does not contribute to our possible choices.

3.3 Colourings with pentagons

In this chapter we will use pentagons to color the plane. So all regions have
the shape of a pentagon.

R1 R2

R3

R4

R5

Q1

Q2

1 2 R′5

R′1

3

R′4

R′3

R′2

1

P2

4 5 6 4

3 1 2

P1

6

2

Figure 24: 6-coloring of the plane with pentagons

We look at the coloring in Figure 24. We color the boundary of the
pentagon P1 = R1R2R3R4R5 in the following way,

• The sides R1R2 and R1R5 and the vertex R1 are colored with the color
of the pentagon P1. In Figure 24 the color is 1.

• The side R2R3 and the vertex R2 have the same color as the pentagon,
that shares the side R2R3 with the pentagon P1. In Figure 24 the color
is 2.

• The side R3R4 and the vertex R3 have the same color as the pentagon,
that shares the side R3R4 with the pentagon P1. In Figure 24 the color
is 4.

• The side R4R5 and the vertices R4 and R5 have the same color as the
pentagon, that shares the side R4R5 with the pentagon P1. In Figure 24
the color is 6.

We color all pentagons, which we are congruent to P1 by translation, this
way. For example we get the coloring of the pentagon R′1R

′
2R
′
3R
′
4R
′
5, but we
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do not get a coloring for the boundary of the pentagon P2 = R4R3Q2P2Q1,
because we cannot get P2 by translation of P1. The sides R4R3, R3Q2 and
Q1P2 and all of its vertices are already colored by the coloring defined for
P1. In Figure 24 R4R3, R3Q2, R3 and Q2 have color 4, Q2 has color 5, P2

has color 1 and P2Q1 and Q1 have color 3. So we only have to choose colors
for the sides Q1R4 and Q2P2. We color Q1R4 with the same color as the
pentagon, which shares the side Q1R4 with P2. In Figure 24 the color of
Q1R4 is 6. We color the side Q2P2 with the color of P2.

Furthermore, we require, that the pentagons have the following proper-
ties.

• R1R3 = R1R4 = R2R5 = R2R4 = 1

• P1P2 = R2R′1 = 2R1R2

• R1R2 = R3R5 < 1

If a pentagon has the first property and is colored as mentioned above,
then a monochromatic normed triangle, cannot be in this pentagon, because
R1 has a different color than R3 and R4 and R2 has a different color than R4

and R5. So no monochromatic pair of points in this pentagon have distance 1.
With the second property, we try to maximize AC of a normed triangle.

R1 R2

R3

R4

R5

a = R1R2

b = R2R3

Q

h = R5Q
P1

Figure 25: Notation for a pentagon to calculate AG

In Figure 25 we want to calculate R1P1, because this is also the small-
est distance between two differnet pentagons with the same color. Due to
Pythagoras theorem, we get

R1R3 = 1 = a2 + b2 ⇒ a2 = 1− b2 (16)
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and

R1R4 = 1 =
(a

2

)2
+ (b+ h)2 (17)

=
1− b2

4
+ b2 + 2bh+ h2 ↔ (18)

0 = 3b2 + 8bh+ 4h2 − 3 (19)

↔ h =
−8b+

√
64b2 − 4 · 4(3h2 − 3

8
=
−2b+

√
b2 + 3

2
(20)

We only have nonnegative solutions for b, since we cannot have negative
length. When we look at the area A of the pentagon ABCDE, we can
calculate it in two different ways.

A =
a

2
(2b+ h) (21)

A =
1

2
ab+

1

2

a

2
b+

1

2
AGDC (22)

=
1

2
ab+

1

2

a

2
b+

1

2
AG

√
a2

4
+ h2 (23)

(24)

With this observation and the property R1P1 = 2a, we get a third equa-
tion.

a

2
(2b+ h) =

1

2
ab+

1

2

a

2
b+

1

2
AG

√
a2

4
+ h2 (25)

=
1

2
ab+

1

2

a

2
b+

1

2
2a

√
1− b2

4
+ h2 (26)

⇔ b+ 2h

4
=

√
1− b2

4
+ h2 (27)

⇔ b2 + 4bh+ 4h2

16
=

1− b2

4
h2 (28)

⇔ 0 = 5b2 + 4bh− 12h2 − 4 (29)
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We have h =
−8b+
√

64b2−4·4(3h2−3
8

= −2b+
√
b2+3

2
so we get

0 = 5b2 + 4b
−2b+

√
b2 + 3

2
− 12

(
−2b+

√
b2 + 3

2

)2

− 4 (30)

= 5b2 − 4b2 + 2b
√
b2 + 3− 3(4b2 + b2 + 3− 4b

√
b2 + 3)− 4 (31)

= −14b2 + 14b
√
b2 + 3− 13 (32)

⇔14b
√
b2 + 3 = 14b2 + 13 (33)

⇒196b2(b2 + 3) = 196b4 + 364b2 + 169 (34)

⇔224b2 = 169 (35)

⇔b =
13

4
√

14
(36)

So we get

a2 = 1− b2 ⇒ a =

√
1− 169

224
=

√
55

224
(37)

AG = 2a = 2

√
55

224
=

√
55

56
≈ 0.991 (38)

h =
−2b+

√
b2 + 3

2
=
−2 13

4
√
14

+
√

55
224

+ 3

2
(39)

=
−26 +

√
727

8
√

14
(40)

So we have proved the following theorem.

Theorem 27. All normed triangles with AC ≤
√

55
56

are nonmonochromatic

in the coloring used in Figure 24 with a =
√

55
224

, b = 13
4
√
14

and h = −26+
√
727

8
√
14

,

where a, b and c denote the same sides as in Figure 25.

As we can see in Figure 26(a), this leaves only a small area P1BZ
′
3P2,

for which choices of C we do not have a coloring, such that ABC is non-
monochromatic in this coloring. It also seems, that it is much easier to
maximize AC than minimizing BC. The shaded area in Figure 26(b) shows
all possible choices for C, for which the triangle ABC is nonmonochromatic
by Theorem 27. Furthermore we get the shaded area in Figure 26(c) as new
possible choices for C.
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(a) All possible choices for C for
a nonmonochromatic triangle after
Theorem 27

(b) Possible choices for C for a
nonmonochromatic triangle by The-
orem 27

(c) New possible choices for C for a nonmonochromatic triangle by The-
orem 27

Figure 26: Visualisation of the possible choices for C after Theorem 27
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3.4 Colourings with hexagons

In this subchapter we color the plane with hexagons. If the diagonal of a
hexagon is longer than 1, then AB can be in one hexagon, which we want to
avoid. Since 4-colorings are also 6-colorings, we look at first at the following
4-coloring.

1

2

3

4

3

3

4

2

1 Q

P

R

1

2

Figure 27: 4-coloring with regular hexagons of diameter 1

We take the coloring in Figure 27, where the diagonal of the hexagon
is 1. The numbers denote the color and the sides below, the vertex below
and the leftmost vertex of the hexagon have the same color as the hexagon.
It is obvious, that this coloring can be extended to a coloring of the plane.
In Figure 27 the dashed lines are not colored. Furthermore, P has color 4,
R has color 2, because R is on a side, which is below the hexagon colored
with 2 and Q does not have a color because it is the rightmost vertex of the
hexagon.

Theorem 28. All normed triangles with AC ≤
√
3
2

are nonmonochromatic
in a 4-coloring like in Figure 27.

Proof. In the Figure 27 we can see that on the boundary of a hexagon,
there are not two points with distance 1, that have the same color. So it is
impossible, that the triangle is in one hexagon, if it is monochromatic. That
means one vertex of the triangle is in a different hexagon than the other two
vertices. The distance between two points in two different hexagons with
the same color is more than

√
3
2

. If A is in a different hexagon than C, then
A and C cannot lie in hexagons with the same color, because the distance
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between two points in two different hexagons with the same color is more
than AC. The same result follows, if B and C lie in different hexagons,
because BC ≤ AC.

We again can improve our result with some modifications.

2
3

1

1

4
6

5

2

5

4
6

5
4

P1

P4

P3

P2

Figure 28: 6-coloring with hexagons, where all diagonals have length 1 and
opposing sides are parallel

We take the 6-coloring in Figure 28. The diagonals between two opposing
vertices have length 1 and all vertices of the hexagon lie on a circle with radius
1
2
. Furthermore opposing sides are parallel. We color the two lowest vertices

of a hexagon and the three sides, which are incident to these vertices, with
the same color as the hexagon. For example in Figure 28 the vertex P4 and
side P3P4 have color 3, but P3 has color 1.

We want to maximize the smallest one of the lengths P1P2, P2P3 and
P1P4, because these lengths are also the best possible lower bounds for the
distance of two points in different hexagons with the same color.

We name the points of our hexagon as in Figure 29. The lengths a, ha,
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EH DH

FH

AH BH

CH

a

c

a

c

hc

H

ha

G g

f

Figure 29: Notation of hexagon

c, hc, g and f are defined as

a = AHBH = DHEH (41)

ha = AHEH = BHDH (42)

c = CHDH = AHFH (43)

hc = AHCH = DHFH (44)

f = AHH (45)

g = CHG (46)

and

AHDH = BHEH = CHFH = 1 (47)

Since all vertices of the hexagon lie on a circle, the equilateralAHBHDHEH

has a circumcircle, so

∠AHBHDH + ∠AHEHDH = 180◦ (48)

∠BHDHEH + ∠BHAHEH = 180◦ (49)

The sides AHBH and DHEH are parallel, so AHBHDHEH is a rectangle.
With the same arguments, we get, that ∠AHCHDH = 90◦. So we get the
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following equalities.

a2 + ha
2 = 1 (50)

c2 + hc
2 = 1 (51)

(a+ g)2 + f 2 = hc
2 (52)

(a+ 2g)2 + (ha − 2f)2 = 1 (53)

g2 + (ha − f)2 = c2 (54)

ha = P2P3 (55)

2hc = P1P2 (56)

(2a+ g)2 + (ha − f)2 = P1P4
2

(57)

We can choose P1P2 = P2P3 = P1P4 and get

ha = 2hc (58)

h2a = (2a+ g)2 + (ha − f)2 (59)

⇔ 2haf = (2a+ g)2 + f 2 = 4a2 + 4ag + g2 + f 2 (60)

We eliminate c and hc from our equation system and get new equations

(a+ g)2 + f 2 = hc
2 =

ha
2

4
(61)

g2 + (ha − f)2 = c2 = 1− hc2 = 1− ha
2

4
(62)

⇔ g2 + ha
2 − 2haf + f 2 = 1− ha

2

4
(63)

Now we replace 2haf in Equation (63) by using the Equations (60) and
(50).

1− ha
2

4
= 1− 1− a2

4
(64)

= g2 + ha
2 − 2haf + f 2 (65)

= g2 + 1− a2 − (4a2 + 4ag + g2 + f 2) + f 2 (66)

= 1− 5a2 − 4ag (67)

⇔ 4ag =
1− 21a2

4
(68)

⇔ g =
1− 21a2

16a
(69)
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Furthermore we get a result for f 2 depending only on the variable a in
Equation (61) by using the Equations (69) and (50).

1− a2

4
=
ha

2

4
= (a+ g)2 + f 2 =

(
a+

1− 21a2

16a

)
+ f 2 (70)

⇔ f 2 =
1− a2

4
−
(

1− 5a2

16a

)2

(71)

=
−1 + 74a2 − 89a4

256a2
(72)

Now we take the square of both sides of Equation (60) and replace ha
2,

g and f 2 by the result we got in (50), (69) and (72).

(2haf)2 = ((2a+ g)2 + f 2)2 (73)

⇔ 4ha
2f 2 =

((
2a+

1− 21a2

16a

)2

+
−1 + 74a2 − 89a4

256a2

)2

(74)

=

((
1 + 11a2

16a

)2

+
−1 + 74a2 − 89a4

256a2

)
(75)

=

(
96a2 + 32a4

256a2

)2

(76)

=
(a2 + 3)2

64
(77)

⇔ (a2 + 3)2

64
= 4ha

2f 2 = 4(1− a2)−1 + 74a2 − 89a4

256a2
(78)

=
−1 + 75a2 − 163a4 + 89a6

64a2
(79)

⇔ 0 = 88a6 − 169a4 + 66a2 − 1 (80)

If we substitute a2 with x we get an equation of degree 3. Since we cannot
guess a solution, we take the numerical solutions of the equation. We get the
solutions

x1 ≈ 0.015784⇒ a ≈ 0.125635 (81)

x2 ≈ 0.519893⇒ a ≈ 0.721036 (82)

x3 ≈ 1.384777⇒ a ≈ 1.176766 (83)

(84)
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(a) All possible choices for C for
a nonmonochromatic triangle after
Theorem 29

(b) Possible choices for C for a
nonmonochromatic triangle by The-
orem 29

Figure 30: Visualisation of the possible choices for C after Theorem 29

Since we want to maximize ha =
√

(1− a2), we choose the solution with the
smallest value. So we get

a ≈ 0.125635 (85)

ha ≈ 0.992077 (86)

c ≈ 0.868301 (87)

hc ≈ 0.496038 (88)

f ≈ 0.189992 (89)

g ≈ 0.332575 (90)

Note that this values were calculated by computer, without using the above
value for x1.

Theorem 29. All normed triangles T with AC ≤ 0.992076 are nonmonochro-
matic in the hexagoncoloring in Figure 28, with the lengths as calculated
above.

So we get a slightly better result than in Theorem 27.
So we have for every C in the shaded area MH1H2Z

′
3C
′ in Figure 30(a)

a 6-coloring, such that the triangle ABC is monochromatic. In Figure 30(b)
we see all possible choices for C, such that by Theorem 29 the triangle ABC
is nonmonochromatic. We also see that the area of new possible choices is

small, because by Theorem 27 we get AC <
√

55
56
≈ 0.991, which is nearly

0.992076, which is the upper bound for AC by Theorem 29.
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Figure 31: Triangles in zebra colorings with different number of colors:
blue: 3 colors, green: 4, red: 5, yellow: 6

There has been hardly any research about nonmonochromatic triangles in
6-colorings before. So the only results, that were known, come from results,
where less color were used like that the equilateral triangle is nonmonochro-
matic in a 2-coloring. Some results about nonmonochromatic triangles in the
3-colored plane can be found in [11].

We have proved that for every normed triangle T with (AC ≤ 0.992076)
or (BC ≥ 1

5
) or (AC ≤ 5hC), there exists a 6-coloring, such that T is

nonmonochromatic in this 6-coloring.
Since we could not show, that for all triangles T there exists a 6-coloring,

such that T is nonmonochromatic in this 6-coloring, the upper bound for
Problem 1 is still at 7. It also seems, if we restrict Problem 1 to maplike
colorings, that the answer of Problem 1 is the chromatic number of the
Euclidean plane for maplike colorings.

3.5 Using theorems with less colors

In the previous chapters we have looked for triangles, which are nonmonochro-
matic in a 6-coloring. Now we consider the following question: Can we gen-
eralise one of the previous theorems, that we can use it for less colors? It
is easy to see, that we can have zebracolorings with less than 6 colors and
get similar results. So we can modify Theorem 22 and Theorem 23 and get
Figure 31.

In Figure 31 the blue shaded area shows the possible choices for the third
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Figure 32: Nonmonochromatic triangles in colorings with different number
of colors: blue: 3 colors, green: 4, red: 5, yellow: 6

vertex C of a normed triangle T , such that there exists a 3-coloring, so that
T is nonmonochromatic. The green shaded area shows the possible choices
in 4-colorings, the red shaded area shows the same for 5-colorings and the
yellow shaded area the possible choices in a 6-coloring. We see, that the new
area gets smaller, the more colors we have.

We have proved another result for less than 6 colors in Theorem 28.
With this theorem we get a better bound for 4 colors. In Figure 32 we
can see the areas, for which triangle we have a coloring, that the triangle is
nonmonochromatic. We use the same color coding as in Figure 31.
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4 Rational Colorings

We know that Rn with the Euclidean norm is an Euclidean space En. So we
can see E2 as R2 using Cartesian coordinates.

In this chapter we study colorings, where all vertices of a given triangle
have rational valued coordinates. In other words we study colorings of Q2

instead of R2. We call Q2 the rational plane.
We will answer the question, if there exist for every triangle in Q2 a c-

coloring of Q2, such that the triangle does not exist monochromatically in
this coloring. Furthermore, we will determine the smallest possible value for
c.

We cannot use Theorem 8, which says, that we can use normed triangles
in En, for this problem, if the longest side has irrational length l. Let P be

a point in the rational plane. Then
−−→
OPl = 1

l

−→
OP , but Pl is not a point in the

rational plane. So we cannot assume that the longest side of the triangle has
length 1.

In 1973 Woodall showed the following theorem [21].

Theorem 30 (Woodall). The chromatic number of Q2 is 2. In other words
χ(Q2) = 2.

The first question is, which distances occur between two points of the
rational plane. If the given triangle has a side with length l1 and there are
not two points in the rational plane with distance l1, then the triangle is
nonmonochromatic in a 1-coloring of the rational plane.

Lemma 31. The distance between any two points in Q2 is of the form
√

n
m

where n,m ∈ N.

Proof. Let A = (a1
c1
, a2
c2

) and B = ( b1
d1
, b2
d2

) points in Q2 with
a1, c1, a2, c2, b1, d1, b2, d2 ∈ N. Then

|AB| =

√(
b1
d1
− a1
c1

)2

+

(
b2
d2
− a2
c2

)2

(91)

=

√(
b1c1 − a1d1

c1d1

)2

+

(
b2c2 − a2d2

c2d2

)2

(92)

=

√(
(b1c1 − a1d1)2(c2d2)2 + (b2c2 − a2d2)2(c1d1)2

(c1d1c2d2)2

)
(93)

=

√
n

m
(94)
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where

m = (b1c1 − a1d1)2(c2d2)2 + (b2c2 − a2d2)2(c1d1)2 ∈ N
n = (c1d1c2d2)

2 ∈ N.

This means that we only need to consider triangles where all sides have
length of the form

√
n
m

.

Theorem 32. Let m and n be odd integers. Then there exists a 2-coloring
of the rational plane, such that the distance between two points with the same
color is not

√
n
m

.

Proof. Let (r1, r2), (q1, q2) ∈ Q2.
Furthermore denote r1− q1 = w

x
and r2− q2 = y

z
, where w, x, y and z are

integers and w and x are coprime and y and z are coprime. If the distance
between (r1, r2) and (q1, q2) is

√
n
m

, then we get

(r1 − q1)2 + (r2 − q2)2 =
(w
x

)2
+
(y
z

)2
=

n

m
(95)

⇔ m(w2z2 + x2y2) = nx2z2 (96)

We examine the multiplicity of 2 of both sides. If x or z is even, we get

v2(m(w2z2 + x2y2)) ≤ max(2v2(x), 2v2(z)) + 1 (97)

< max(4v2(x), 4v2(z)) (98)

≤ 4(v2(x) + v2(z)) = v2(nx
2z2) (99)

So neither x nor z can be even, if they fullfill Equation (96). So if the
denominator of r1 − q1 or r2 − q2 is even, then the distance between (r1, r2)
and (q1, q2) is not 1. That means, that the right hand side of Equation (96)
is odd.

If w and y are both odd or w and y are both even, then the left hand
side of Equation (96) is even, but since the right hand side is odd, there is
no tupel which is a solution of Equation 96. So we want to color Q2 with
two colors, so that two points (r1, r2) and (q1, q2) have the same color only if
the numerators of r1 − q1 and r2 − q2 are both even or both odd.

We partition Q2 into sets Si, i ∈ N, where (r1, r2) and (q1, q2) are in the
same set, if the denominators of r1− q1 and r2− q2 are both odd. If we take
two points (r1, r2) and (q1, q2) of Q2, which are in different sets, then the
distance getween these two points is not

√
n
m

, because then either r1 − q1 or
r2 − q2 has an even denominator.
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We have to prove, that every point is in exactly one of these set. Assume
that one point (r1, r2) is in sets Sj and Sk. Let (q1, q2) be a point in Sj and
(s1, s2) be a point in Sk. Then we know

r1 − q1 =
a1
b1
, r2 − q2 =

c1
d1

(100)

r1 − s1 =
a2
b2
, r2 − s2 =

c2
d2

(101)

q1 − s1 = (r1 − s1)− (r1 − q1) =
a2
b2
− a1
b1

=
a2b1 − a1b2

b1b2
(102)

q2 − s2 = (r2 − s2)− (r2 − q2) =
c2
d2
− c1
d1

=
c2d1 − c1d2

d1d2
(103)

Since b1, b2, d1 and d2 are odd, b1b2 and d1d2 are odd too. So (q1, q2) and
(s1, s2) are in the same set, therefore the sets Sj and Sk are the same set.
This means, that every point (r1, r2) cannot be in two different sets. Every
point (r1, r2) is also in one set Si, because

r1 − r1 = 0 =
0

1
(104)

r2 − r2 = 0 =
0

1
(105)

and the denominators are both odd.
Let oi be odd integers and ei be even integers for i ∈ N. Let u and v be

integers. All points of the type
(

u
o2
, v
o4

)
are in the same set. Let us call this

set S1. We look at the two points (r1, r2) =
(

o1
o2
, o3
o4

)
and (q1, q2) =

(
o5
o6
, o7
o8

)
.

Then

r1 − q1 =
o1
o2
− o5
o6

=
o1o6 − o2o5

o2o6
(106)

r2 − q2 =
o3
o4
− o7
o8

=
o3o8 − o4o7

o4o8
(107)

so the numerator of r1 − q1 and the numerator of r2 − q2 are even, which
means that (r1, r2) and (q1, q2) do not lie distance

√
n
m

apart. Therefore we

color all points of the type
(

o1
o2
, o3
o4

)
blue.

If we take a point (q3, q4) =
(

e1
o5
, e2
o6

)
, then we get

r1 − q3 =
o1
o2
− e1
o5

=
o1o5 − o2e1

o1o5
(108)

r2 − q4 =
o3
o4
− e2
o6

=
o3o6 − o4e2

o4o6
(109)
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therefore the distance between (r1, r2) and (q3, q4) is never exactly
√

n
m

, since
the nominator of r1 − q3 and the nominator of r2 − q4 are even. So we color

all points
(

o1
o2
, o3
o4

)
blue.

The uncolored points in S1 are of the type
(

e1
o1
, o2
o3

)
or
(

o4
o5
, e2
o6

)
. It follows

after repeating the same computations as before, that there are not two
points, which are distance 1 apart, that have these coordinates. So we can

color all points
(

e1
o1
, o2
o3

)
or
(

o4
o5
, e2
o6

)
red.

Let O be the point (0, 0). We take a point P = (p1, p2) of the set Sk with

k 6= 1. Let TP be the resulting set of the translation of Sk by the vector −
−→
OP .

Let P2 = (p3, p4) be another point of Sk. Then the corresponding point in
TP is (p3 − p1, p4 − p2). By the definition of Sk the denominators of p3 − p1
and p4 − p2 are odd. So TP is a subset of S1 and since we can 2-color S1,
we can 2-color TP . Since the distance between two points does not change if
we translate these points by the same vector, we can 2-color Sk by coloring
Pk = (p5, p6) with the same color as we color (p5 − p1, p6 − p2), where p5, p6
are arbitrary rational numbers.

By doing this for all sets Si, we get a 2-coloring for the rational plane,
such that no pair of points has distance exactly

√
n
m

.

Since the coloring does not depend on n or m, we have proven, that there
is a 2-coloring such that the distance between two points with the same color
is not

√
n
m

, for every odd n and m.
The missing cases are, when n or m are even. First we study the case,

that n = 2n1, where n1 is an odd integer.

Theorem 33. There is a 2-coloring of the rational plane, such that, there is

no pair of points with distance
√

2n
m

, where n and m are odd integers, that

have the same color.

Proof. Let R = (r1, r2) and Q = (q1, q2) be two points in the rational

plane. Let the distance between these two points be
√

2n
m

. Furthermore

let r1 − q1 = w
x

and r2 − q2 = y
z
, where w, x, y and z are integers, w and x

are coprime and y and z are coprime. Then

(r1 − q1)2 + (r2 − q2)2 =
2n

m
(110)

⇔
(w
x

)2
+
(y
z

)2
=

2n

m
(111)

⇔ m((wz)2 + (xy)2) = 2n(xz)2 (112)
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As in the proof of Theorem 32, we get that x and z have to be odd, if
(w, x, y, z) is a solution of this equation.

If w and y are even, then m((wz)2+(xy)2) is divisible by 4, while 2n(xz)2

is not divisible by 4, since x and z are odd.
If w is even and y is odd, or w is odd and y is even, then m((wz)2+(xy)2)

is not divisible by 2, while 2n(xz)2 is. Therefore, in all solutions of the
Equation (112) w, x, y and z are odd. So the distance between R and Q is

not
√

2n
m

if the nominator of r1 − q1 or the nominator of r2 − q2 is even.

As in the proof of Theorem 32, we partition Q2 into sets Si, i ∈ N, where
(r1, r2) and (q1, q2) are in the same set, if the denominators of r1 − q1 and
r2 − q2 are both odd. If we take two points (r1, r2) and (q1, q2) of Q2, which

are in different sets, then the distance getween these two points is not
√

2n
m

,

because then either r1 − q1 or r2 − q2 has an even denominator.
Let o and oi be odd integers and e and ei be even integers for i ∈ N. Let

x,y and yi be integers for i ∈ N. All points of the type
(

x
o1
, y
o2

)
are in the

same set of the partition. Let us call this set S1. We color all points
(

e
o1
, y
o2

)
blue and color all points

(
o
o1
, y
o2

)
red. Let B1 =

(
e1
o1
, y1
o2

)
and B2 =

(
e2
o3
, y
o4

)
be blue points. The nominator of

e1
o1
− e2
o3

=
e1o3 − e2o1

o1o3
(113)

is even, so the distance between B1 and B2 is not
√

2n
m

.

Let C1 =
(

o1
o2
, y1
o3

)
and C2 =

(
o4
o5
, y
o6

)
be red points. The nominator of

o1
o2
− o4
o5

=
o1o5 − o2o4

o2o5
(114)

is even, so the distance between C1 and C2 is not
√

2n
m

.

As in the proof of Theorem 32 we take for every set Si, i > 1, a point Pi

of some Si and translate the set by the vector −
−−→
OPi and get the set Ti. Ti

is a subset of Si. So we can 2-color Ti and since the distance between two
points in Si is the same as the distance between these two translated points
in Ti, we get a 2-coloring for Si. We do this for all i > 1 ∈ N and get a
2-coloring of the rational plane, sucht that the distance between two points

with the same color is not
√

2n
m

.

In the next step we prove a lemma similar to Lemma 8.
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Lemma 34. Let p and q be a positiv rational numbers. If the rational plane
has a 2-coloring F , such that the distance between two points with the same
color is not

√
q, then there exists a 2-coloring Fp, such that the distance

between two points with the same color is not p
√
q.

Proof. Let A and B be points in Q2, such that AB =
√
q. We define Ap as

the point such that
−−→
OAp = p

−→
OA and Bp as the point such that

−−→
OBp = p

−−→
OB.

Ap and Bp are points in Q2 since p is a rational number. Furthermore, we
color Ap with the same color as A and B with the same color as B. We
do this for every point in the rational plane and get a 2-coloring Fp. The
distance between Ap and Bp is

ApBp = |
−−−→
ApBp| (115)

= |
−−→
OBp −

−−→
OAp| (116)

= |p
−−→
OB − p

−→
OA| (117)

= p|
−→
AB| = p

√
q (118)

Since the distance between two points with the same color in the 2-coloring F
is not

√
q, the the distance between two points with the same color in the

2-coloring Fp is not p
√
q.

With this we can prove the following theorem.

Theorem 35. For every positive real number d, there exists a 2-coloring of
the rational plane, such that the distance between two points with the same
color is not d.

Proof. If d 6=
√

n
m

, then the distance between any two points in the rational
plane is not d.

If d =
√

n
m

, where n and m are odd, then we use Theorem 32.

If d =
√

2kn
m

, where k is a positive integer and n and m are positive

odd integers, we have two cases. If k = 2k1, then d =
√

22k1n
m

= 2k1
√

n
m

.

By Theorem 32 we know there exists a 2-coloring, such that the distance
between two points with the same color is not

√
n
m

and by using Lemma 34

with p = 2k1 and q = n
m

we know there exists a 2-coloring, such that the
distance between two points with the same color is not 2k1

√
n
m

.

If k = 2k1 + 1, then d =
√

2(2k1+1)n
m

= 2k1

√
2n
m

. By Theorem 33 we know

there exists a 2-coloring, such that the distance between two points with the

same color is not
√

2n
m

and by using Lemma 34 with p = 2k1 and q = 2n
m
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we know there exists a 2-coloring, such that the distance between two points

with the same color is not 2k1

√
2n
m

.

The only missing case is d =
√

n
2km

, where k is a positive integer and

n and m are positive odd integers. But then d =
√

n
2km

= 1
2k

√
2kn
m

and we

already proved, that there exists a 2-coloring, such that the distance between

two points with the same color is not
√

2kn
m

. Using Lemma 34 with p = 1
2k

and q = 2kn
m

finishes this prove.

So we can prove the following theorem about triangles in the colored
rational plane.

Theorem 36. For every triangle T , there exist a 2-coloring of the rational
plane, such that T is nonmonochromatic.

Proof. Let s be the length of a side of T . Then Theorem 35 says, there exists
a 2-coloring, such that there are not two points, which lie distance s apart,
that have the same color. Therefore T is nonmonochromatic.

In this chapter we proved, that for any triangle T , there exists a 2-coloring
of the rational plane, such that T is nonmonochromatic. We showed an even
stronger result by proving, that for every positive real number d, there exists
a 2-coloring of the rational plane, such that the distance between two points
with the same color is not d. Another interesting result is, that in the coloring

described in Theorem 32 all di =
√

pi
qi

, pi, qi ∈ Q+ and pi and qi are odd for

all i, are not distances between two points with the same color. Similarily,

all distances di =
√

2pi
qi

, pi, qi ∈ Q+ and pi and qi are odd for all i, are not

distances between two points with the same color in the coloring described
in Theorem 33.
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5 Coloring strips

In this chapter we study another variant of the chromatic number of the
plane.

Problem 4. Let c ∈ N. What is the largest height h(c) of a strip (depending
on c), such that there exists a c-coloring, so that there does not exist a pair
of points of the strip with distance 1, that have the same color.

If c is at least the chromatic number of the euclidean plane, then the
strip would have infinite height. Therefore the interesting cases are, where
we have at most 6 colors.

For c = 3, Bauslaugh [2] proved that h(3) =
√
3
2

. Axenovich et al [1] got
the following lower bounds.

h(3) ≥
√

3

2
≥ 0.866 (119)

h(4) ≥ 2
√

2

3
≥ 0.94 (120)

h(5) ≥
√

15

4
≥ 0.968 (121)

h(6) ≥
√

15

2
+
√

3 ≥ 3.668 (122)
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C DA3
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B4
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B2
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C1

C4

4

A4

A1

1

C2

C3

1

EF

h′(4)

Figure 33: 4-colored strip, such that two points with the same color do not
lie distance 1 apart.

Constructions for these lower bounds are the same for 3, 4 and 5 colors
and are similar to zebra colorings. In Figure 33 we have 4 colors.
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Figure 34: 6-coloring of a strip with height
√
15
2

+
√

3, such that all points,
which have the same color, do not have distance 1.

We take rectangles of size h′(c)× 1
c−1 , where c is the number of colors and

h′(c) is the height of the strip. These rectangles are embeded into the strip
like in Figure 33. The diagonals of the rectangles have length not greater
than 1. We color the left edge with the color of the rectangle. That means
that in Figure 33 the edge A2A3 has color 2 and the edge A1A4 has color 1.
With Pythagoras theorem we get

h′(c)
2

= 1−
(

1

c− 1

)2

(123)

h′(c) =

√
c2 − 2c

c− 1
(124)

So we have a lower bound h′(c) for h(c) and for c = 3, 4, 5 this gives the
results found by Axenovich et al.

For c = 6, Axenovich et al used the construction in Figure 34, which is
similar to Pritikins [16] construction. In Figure 34, every tile of the coloring
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has width 1
2
. This means, that

A4A5 = B1B2 =
1

2
(125)

P1A5 = P2A4 = 1. (126)

The arcs R1R2 and A2A3 are on the circle with center A5 and radius 1.
The arcs A1A2 and Q1Q2 are on the circle with center A4 and radius 1. The
distances B1R2 and B2R2 are 1.

We color the leftmost edge and the the leftmost arc without its rightmost
point of a tile with the same color as the tile. Furthermore, we color the
line segments, which are parallel to the strip, with the same color as the tile
containing it.

So the line segment A1A5, the arc A1A2 and the points A1 and A2 have
color 1. The arc A2A3 and the point A2 have color 6 and the line seg-
ment A3A4 and the points A3 and A4 have color 2. The line segment B1B2

has color 1. We color the line segment A4A5 with the colors 1 and 4.
This way, two points with distance 1 and the same color cannot be in

the same tile, since the arc A1A2 has a different color than A4, the arc A2A3

has a different color than A5 and A2 has not the same color as A4 or A5.
Furthermore, R2 has not the same color as B1 or B2.

The distance between two point with the same color in two different tiles
is greater than 1, because the two tiles with the same color have distance 1.
Each point is on the boundary of one tiles and we color the boundary in such
a way, that this does not happen.

Let D be a point like in Figure 34, so that the angle ∠A5DB1 = 90◦. Now
we have to calculate the height of this strip, for which we want to calculate
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B1D first. With the help of Pythagoras theorem we get

B1R1
2

= B2R1
2 −B1B2

2
(127)

= 1−
(

1

2

)2

=
3

4
(128)

B1R1 =

√
3

2
(129)

DR1
2

= A5R1
2 − A5D

2
(130)

= 1−
(

1

4

)2

=
15

16
(131)

DR1 =

√
15

4
(132)

B1D =
1

2

(
√

3 +

√
15

2

)
(133)

By taking B1D twice we get

2B1D =
√

3 +

√
15

2
≤ h(c) (134)

which is the best currently known lower bound for h(6).
We improve the lower bound for h(5).

Theorem 37. There exists a 5-coloring of a strip with height 1, such that
there does not exist two points with the same color, that are distance 1 apart.
In other words, this means

h(5) ≥ 1 (135)

Figure 35: 5-coloring of a strip with height 1, such that all points, which
have the same color, do not have distance 1.

Proof. We look at Figure 35. The strip has heigth 1 and we denote the points
as in Figure 35. The boundary of this strip are two parallel lines lA and lB.
We construct this 5-coloring with the following steps.
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• Let A0 be a point on lA.

• Let B0 be the point on lB, such that the line segment A0B0 is orthogonal
to the lines la and lb.

• Let Ai be different points on lA, such that AiAi+1 = 1, for all i ∈ Z.

• Let Bi be different points on lB, so that BiBi+1 = 1 and AiBi = 1, for
all i ∈ Z.

• Let lR be a line between lA and lB and let lR be parallel to lA. The
distance between lA and lR is 1

2
.

• Let Li+1 and Ri−1 be the points on lR, which lie on the circle with
center Ai and radius 1, so that Ri−1 is left of Li+1.

Before we continue, we have to mention some properties of these points.
Since AiAi+1 = 1, Ai−1 and Ai+1 are also on the circle with center Ai and
radius 1.

The point Li+1 can also be seen as a translation of the point Li by the

vector
−−−−→
AiAi+1. So LiLi+1 = 1. With the same arguments we get RiRi+1 = 1.

Therefore, the points Ai−1, Li−1 and Bi−1 lie on the circle with center Li and
radius 1. Furthermore, the points Ai+1, Ri+1 and Bi+1 lie on the circle with
center Ri and radius 1.

We can now finish our construction of the coloring with these observa-
tions.

• We add all line segments RiLi+1, for all i ∈ Z.

• We add all circular arcs A2iL2i centered at L2i+1, for all i ∈ Z.

• We add all circular arcs A2i+1L2i+1 centered at A2i, for all i ∈ Z.

• We add all circular arcs A2iR2i centered at A2i+1, for all i ∈ Z.

• We add all circular arcs A2i+1R2i+1 centered at R2i, for all i ∈ Z.

• We add all circular arcs B2iL2i centered at B2i−1, for all i ∈ Z.

• We add all circular arcs B2i−1L2i−1 centered at L2i, for all i ∈ Z.

• We add all circular arcs B2iR2i centered at R2i−1, for all i ∈ Z.

• We add all circular arcs B2i−1R2i−1 centered at B2i, for all i ∈ Z.

We 5-color these tiles in the following way
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• We color all tiles A2iA2i+1L2i+1R2i with color 4, for i ∈ Z.

• We color all tiles B2i−1B2iL2iR2i−1 with color 5, for i ∈ Z.

• We color all tiles A3iR3iB3iL3i with color 1, for i ∈ Z.

• We color all tiles A3i+1R3i+1B3i+1L3i+1 with color 3, for i ∈ Z.

• We color all tiles A3i+2R3i+2B3i+2L3i+2 with color 2, for i ∈ Z.

• We color all tiles A6i+1A6i+2L6i+2R6i+1 and B6i+4B6i+5L6i+5R6i+4 with
color 1, for i ∈ Z.

• We color all tiles A6i+3A6i+4L6i+4R6i+3 and B6iB6i+1L6i+1R6i with
color 2, for i ∈ Z.

• We color all tiles A6i−1A6iL6iR6i−1 and B6i+2B6i+3L6i+3R6i+2 with
color 3, for i ∈ Z.

The boundary of all tiles are colored in the following way

• The arcs AiLi and BiLi and the point Li are colored with the same
color as the tile AiRiBiLi.

• The arc AiRi, the line segments AiAi+1 and RiLi+1 and the points Ai

and Ri are colored with the same color as the tile AiAi+1Li+1Ri.

• The arc BiRi, the line segment BiBi+1 and the point Bi are colored
with the same color as the tile BiBi+1Li+1Ri.

Now we have to prove that two points with distance 1 do not have the
same color. First we show, that two points with distance 1 and the same
color, cannot lie in the same tile.

Case 1: Two points lie in a tile A2iA2i+1L2i+1R2i or B2i−1B2iL2iR2i−1. These
two tiles are congruent. Since these tiles are are part of a Reuleaux triangle
with diameter 1, we only have to look at the boundary of these tiles. The
point A2i has not the same color as the arc A2i+1L2i+1 or the points A2i+1

and L2i+1. On the other side, the point A2i+1 has not the same color as the
arc A2iR2i or the points A2i and R2i. So we do not have two points with the
same color with distance 1 in a tile A2iA2i+1L2i+1R2i. Analogously, we do not
have two points with the same color with distance 1 in a tileB2i−1B2iL2iR2i−1.

Case 2: Two points lie in a tile A2i−1A2iL2iR2i−1 or B2iB2i+1L2i+1R2i. These
tiles are subtiles of the tiles in Case 1. The boundary is colored in the same
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way as in the tiles in Case 1. Therefore there are not two points with the
same color with distance 1 in a tile A2i−1A2iL2iR2i−1 or B2iB2i+1L2i+1R2i.

Case 3: Two points lie in a tile AiRiBiLi. Each one of these tiles can
be covered with a disk with diameter 1, where Ai and Bi are on the bound-
ary of the disk. Since Ai and Bi do not have the same color, there are not
two points with distance 1 and the same color in these tiles.

Therefore there is not a tile, in which there exist two points with dis-
tance 1 and the same color. Next we prove that there are also not two points
with distance 1 and the same color in different tiles.

Case 4: We look at tiles A2iA2i+1L2i+1R2i. If a point has color 4, then it is
in the tile A2iA2i+1L2i+1R2i, The distance between two tiles A2iA2i+1L2i+1R2i

and A2i+2A2i+3L2i+3R2i+2 is 1. This distance is only realised by the
points A2i+1 and A2i+3, but these two points have different colors. So there
do not exist two points with distance 1 and color 4.

Analogously, there do not exist two points with distance 1 and color 5.

Case 5: We assume, that there exist two points with distance 1 and both
points have the same color. This color is 1, 2 or 3. Without loss of gener-
ality, we assume both points have color 1. Between every tiles of the form
A6i+1A6i+2L6i+2R6i+1 and B6i+4B6i+5L6i+5R6i+4 there is a tile of the form
A3iR3iB3iL3i with color 1.

Next we look at the distance between the tiles A6iR6iB6iL6i and
A6i+1A6i+2L6i+2R6i+1. The distance between the point A6i+1 and the
arc A6iR6i is 1 and the distance between the point R6i and the arc A6i+1R6i+1

is 1.
We show, that for every point on the arc A6i+1R6i+1 except for A6i+1,

the nearest point in tile A6iR6iB6iL6i is R6i. Let X6i+1 be a point on the
arc A6i+1R6i+1. We draw a circle with radius 1 and centerpoint X6i+1 and
a cicle with radius 1 and centerpoint A6i+1. These two circles have at most
two intersections. One intersection is at R6i. We get the other intersection
by mirroring R6i on the line A6i+1X6i+1. This point is not on the arc A6iR6i.
Since the distance between A6i and X6i+1 is greater than 1, we get, that R6i

is the nearest point to X6i+1 on the arc A6iR6i.
Since the point A6i+1 and the arc A6iR6i and the point R6i and the

arc A6i+1R6i+1 have different colors, the distance between a points with color
1 in tile A6iR6iB6iL6i and a point with color 1 in tile A6i+1A6i+2L6i+2R6i+1

is greater than 1.
The other cases follow analogously. So there are not two points with the

same color with distance 1.
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So we have proven, that for a strip of height 1, there exists a 5-coloring,
such that there do not exist two points with distance 1 and the same color.

Previously it was proven that h(5) ≥
√
15
4

holds. We improved this by
showing h(5) ≥ 1. So far only lower bounds for h(4), h(5) and h(6) have
been proven. It thus remains an open problem, to determine these values.
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6 Conclusion

In this thesis we considered the following problem:

Problem 1. What is the smallest number c, so that for any triangle T ,
there exists a coloring of the Euclidean plane with c colors, such that it is
not possible, that all vertices of T have the same color if we embed it in the
colored plane?

In Chapter 2 we considered only translation and rotation of a given tri-
angle. We showed in Theorem 12, that if we only consider translation of a
given triangle T , then there exists a 2-coloring of the Euclidean plane, so
that every translated copy of T is nonmonochromatic. In Theorem 13 we
showed, that there exists a triangle T , which has a monochromatic rotated
copy of T in every 2-coloring of the Euclidean plane. On the other side, we
showed in Theorem 14, that for every triangle T , there exists a 3-coloring of
the Euclidean plane, so that every rotated copy of T is nonmonochromatic.

Furthermore we showed, that there does not exist a c-coloring of the
Euclidean plane, such that no monochromatic triangle exists, which is similar
to our given triangle. i. e., if we consider translation, rotation and scaling.

In Chapter 3 we looked at the following problem, which is similar to
Problem 1:

Problem 2. Given a triangle T . What is the smallest number c, so that
we can color the Euclidean plane with c(T ) colors, such that it is not possi-
ble, that all vertices of T have the same color if we embed it in the colored
Euclidean plane?

In this thesis we defined a normed triangle as a triangle with side lengths
BC ≤ AC ≤ AB ≤ 1. We proved, if a normed triangle T has at least one of
the following properties,

• (AC ≤ 0.992076) by Theorem 29

• (BC ≥ 1
5

and every angle of the triangle is at most 90◦) by Theorem 23

• (AC ≤ 5hC) by Theorem 22

then there exists a 6-coloring, such that T is nonmonochromatic in this 6-
coloring. The points in the shaded area in Figure 36 have one of these
properties. It remains open, if for every triangle T , there is a 6-coloring,
such that T is nonmonochromatic in this 6-coloring. If we could prove that,
then we would get 6 as a new upper bound for Problem 1.
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Figure 36: All found possible choices for C for a nonmonochromatic triangle
in a 6-coloring

On the other side it is interesting, for which c there exists a triangle,
which exists monochromatically in every c-coloring of the Euclidean plane.
We know, that there exist triangles, which exist monochromatically in every
2-coloring of the Euclidean plane. But it is unknown, if there exists a triangle,
which exist monochromatically in every 3-coloring of the Euclidean plane.

We showed in Chapter 4, that for every triangle T , we can 2-color the
rational plane, such that T is nonmonochromatic (Theorem 36). It is inter-
esting, how many colors are needed for other countable subsets of points of
the Euclidean plane. In particular, it is interesting to know how many colors
we need to color the points with coordinates in Q[

√
3]2, because we need at

least 3 colors to avoid, that any two points with distance 1 have the same
color.

Finally in Chapter 5 we proved in Theorem 37, that in the 5-coloring of a
strip with height 1 in Figure 35, any two points with distance 1 do not have
the same color. It is an interesting open question if there exists a 5-coloring
of a strip with height greater than 1, so that any two points with distance 1
do not have the same color. In particular, it is interesting, whether the strip
can have infinite height, so that any two points with distance 1 do not have
the same color. If the height can be infinite, then the chromatic number of
the plane is 5. Otherwise if the height is finite, then the chromatic number
of the plane is at least 6. The same questions are interesting for 6-colorings.
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[5] P. Erdős, R. Graham, P. Montgomery, B. Rothschild, J. Spencer, and
E. Straus. Euclidean Ramsey theorems. i. Journal of Combinatorial
Theory, Series A, 14(3):341–363, 1973.
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Definitions

Definition 3. A coloring is a partitioning of the Euclidean space, such that
every point of the space has one color. An r-coloring is a coloring with r
colors.

Definition 4.

• Two finite point sets X and Y are congruent if |X| = |Y | and Y can
be covered by rotation and translation of X.

• A finite point set X is monochromatic if every point of X has the same
color.

• A finite point set X exists monochromatically in a coloring if there
exists a congruent copy of X which is monochromatic.

• A finite point set X is nonmonochromatic in a coloring if it does not
exist monochromatically.

Definition 5. Let d be the dimension of the Euclidean space and let r be a
positive integer. Let X be a finite point set and Cong(X) the family of all
congruent copies of X. We write Ed r−→ Cong(X) if X exists monochromat-
ically in all r-colorings of Ed.

Definition 6. Let A and B be any two distinct points in the Euclidean plane.
We write AB for the line segment between A and B and we write AB for
the length of the line segment AB.

Definition 7. Let us denote the heights of a given triangle as in Figure 3. We
call a triangle a normed triangle, if the longest side is AB and has length 1,
and BC ≤ AC holds. That means, that hC is the shortest height of the
triangle.

Definition 16. Let T be a triangle with side lengths a, b and c. We look at a
triangle Tn with side lengths na, nb and nc. Let A0, B0 and C0 be the vertices
of Tn and An = B0, Bn = C0 and Cn = A0. Further partition the side A0An

into n line segments with the same length by putting points Ai on A0An such
that AiAi+1 = a and do the same for the lines B0Bn and C0Cn. Now add all
lines AiBn−i, BiCn−i and CiCn−i and add a vertex at each intersection. We
call such a graph a triangle grid of T with base n or triangle grid for short.

We call a triangle grid of T partial r-chromatic if in every r-coloring
of the vertices of the triangle grid there is always a monochromatic triangle
similar to T .

nr is the smallest number, such that any triangle grid with base nr is
partial r-monochromatic.
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Definition 20. A multigraph is a graph, for which we allow multiple edges
between two vertices.

We call a multigraph, that is drawn in the plane without intersection of
its edges, plane.

A multigraph is connected, if for any two vertices there is a path connect-
ing these vertices.

An edge x of a connected multigraph G is called bridge, if G − x is not
connected.

A map is a plane connected multigraph without bridges. A map divides
the plane into regions.

Two regions are adjacent if they share at least one edge.
A map coloring is a coloring of all regions, such that two regions with the

same color do not share an edge.
A map like coloring is a coloring of all regions, edges and vertices, such

that every edge between two regions with the same color has the same color
as these regions and every point, whose adjacent edges have the same color,
has the same color as the edges.
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Theorems

Theorem 12. For all triangles T E2 6 2−→ Trans(T ) holds.

Theorem 13. Let P be a fixed point. There exists a triangle T with

E2 2−→ RotP (T ).

Theorem 14. For all triangles T E2 6 3−→ RotP (T ) holds.

Theorem 15. For all triangles T and for all finite r ∈ N, E2 r−→ Sim(T )
holds.

Theorem 21. All normed triangles with hC ≥ 1
5

are nonmonochromatic in
a zebra coloring with 6 colors, where all strips have height hC.

Theorem 22. All normed triangles with AC ≤ 5hC are nonmonochromatic
in a zebra coloring with 6 colors, where all strips have height hC.

Theorem 23. Every normed triangle, in which every angle is at most 90◦

and hA ≤ 5hC is nonmonochromatic in a zebra coloring with 6 colors, where
all strips have height hC.

Theorem 24. All normed triangles with AC ≤
√
10
4

are nonmonochromatic
in a 6-coloring like in Figure 20.

Theorem 25. All normed triangles with AC ≤
√
15√
19

are nonmonochromatic

in a 6-coloring with rectangles with a =
√
15√
19

and b = 2√
19

as shown in Fig-
ure 21.

Theorem 26. All normed triangles T with BC ≥ 1
2

√
7− 3

√
5 are non-

monochromatic in a 6-coloring with rectangles with a =
√
3
4

and b = 1
2
.

Theorem 27. All normed triangles with AC ≤
√

55
56

are nonmonochromatic

in the coloring used in Figure 24 with a =
√

55
224

, b = 13
4
√
14

and h = −26+
√
727

8
√
14

,

where a, b and c denote the same sides as in Figure 25.

Theorem 28. All normed triangles with AC ≤
√
3
2

are nonmonochromatic
in a 4-coloring like in Figure 27.

Theorem 29. All normed triangles T with AC ≤ 0.992076 are nonmonochro-
matic in the hexagoncoloring in Figure 28, with the lengths as calculated
above.
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Theorem 32. Let m and n be odd integers. Then there exists a 2-coloring
of the rational plane, such that the distance between two points with the same
color is not

√
n
m

.

Theorem 33. There is a 2-coloring of the rational plane, such that, there is

no pair of points with distance
√

2n
m

, where n and m are odd integers, that

have the same color.

Theorem 35. For every positive real number d, there exists a 2-coloring of
the rational plane, such that the distance between two points with the same
color is not d.

Theorem 36. For every triangle T , there exist a 2-coloring of the rational
plane, such that T is nonmonochromatic.

Theorem 37. There exists a 5-coloring of a strip with height 1, such that
there does not exist two points with the same color, that are distance 1 apart.
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Problems

Problem 1. What is the smallest number c, so that for any triangle T ,
there exists a coloring of the Euclidean plane with c colors, such that it is
not possible, that all vertices of T have the same color if we embed it in the
colored plane?

Problem 2. Given a triangle T . What is the smallest number c, so that
we can color the Euclidean plane with c(T ) colors, such that it is not possi-
ble, that all vertices of T have the same color if we embed it in the colored
Euclidean plane?

Problem 3. How many colors are at least needed, such that there exists a
coloring of the Euclidean plane, so that no two points with distance 1 have
the same color?

Problem 4. Let c ∈ N. What is the largest height h(c) of a strip (depending
on c), such that there exists a c-coloring, so that there does not exist a pair
of points of the strip with distance 1, that have the same color.
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