
Rene Berger, BSc

TUG Searchchatbot

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Priv.-Doz. Dipl.-Ing. Dr.techn. Martin Ebner

Co-Advisor

Dipl.-Ing. Markus Ebner

Institute of Interactive Systems and Data Science
Head: Univ.-Prof. Dipl.-Ing. Dr. Stefanie Lindstaedt

Graz, May 2018

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen
als solche kenntlich gemacht habe. Das in tugrazonline hochgeladene
Textdokument ist mit der vorliegenden Dissertation identisch.

Datum Unterschrift

iii

Abstract

Technologies changed in recent decades very often. In the past, the classic
offline desktop application was the most popular one, current web and
mobile applications have a large influence on the software market. For
that reason, the way how to use a Graphical User Interface (GUI) changed
heavily. The concepts of guiding a user through the application is widely
spread, but one approach which is getting more and more popular is the
chatbot. The functionality of a chatbot can be very simple by only accepting
defined commands, however there are smart bots with artificial intelligence
to satisfy the expectations of the user.

In this thesis a chatbot for the Graz University of Technology (TU) is
designed and developed, which includes all the functionality of the Graz
University of Technology search mobile application, furthermore the search
result will be improved in comparison to the existing implementation.
Moreover, artificial intelligence will be included to recognize certain patterns
and provide better results during user interaction. The main goal of this
application is to provide a text-based communication concept, that the user
easily receives the desired content without using a common graphical user
interface.

The procedure of the development of the chatbot application is described,
starting with analyzing the state of the art technologies, which can be
used on client and server side, the specific implementation, the chosen
architecture and finally the evaluation of the user experience.

v

Kurzfassung

Technologien haben sich in den letzten Jahrzehnten immer wieder geändert.
Waren es früher offline Desktop Programme, so sind es nun Web- und
Mobile-Applikationen, welche große Präsenz am Softwaremarkt erlangen.
Damit verbunden ergeben sich auch neue Bedien- und Interaktionskonzepte.
Neben der klassischen Benutzeroberfläche, welche nur per Klick bedient
werden kann, ergeben sich weitere Möglichkeiten um dem Anwender die
gewünschte Information aufzubereiten. Ein solches Konzept, dass immer
mehr an Bedeutung gewinnt, ist der Chatbot. Angefangen von simplen
Varianten, welche definierte Befehle entgegennehmen, bis hin zu Bots mit
ausgereifter künstlicher Intelligenz, sind dem Entwickler keine Grenzen
gesetzt.

Im Zuge dieser Arbeit wird ein Chatbot entwickelt, welcher die Funktion-
alität der Technischen Universität Graz (TUG) Search Mobile-App imple-
mentiert und zudem die Suchergebnisse verfeinert um der/dem Anwen-
der/in die bestmögliche Benutzer/innen-Erfahrung zu bieten. Des Weiteren
wird der Chatbot mit künstlicher Intelligenz ausgestattet, um im Laufe der
Zeit Muster von Suchanfragen besser erkennen und somit genauere Ergeb-
nisse liefern zu können. Das Hauptziel dieser Applikation ist es der/dem
Anwender/in eine textbasierte Kommunikationsform zu ermöglichen und
dieser/diesem zielgerichteter und schneller gewünschte Inhalte bereit zu
stellen.

In dieser Arbeit wird die Vorgehensweise für die Entwicklung der App-
likation beschrieben, beginnend mit der Evaluierung der zu verwendenden
client- und serverseitigen Technologien, die konkrete Implementierung,
die gewählte Architektur und das Design bis hin zur Auswertung der
Benutzer/innen-Erfahrung.

vii

Contents

Abstract v

Kurzfassung vi

1 Introduction 1
1.1 Motivation . 1

1.2 Problem . 1

1.3 Objective . 2

2 Chatbot 3
2.1 What is it? . 3

2.2 Why do people use it? . 5

2.3 Types . 8

2.3.1 Form of communication 8

2.3.2 Knowledge Domain . 9

2.4 Goals . 10

2.4.1 Task based . 10

2.4.2 Conversation based . 11

2.4.3 Information based . 11

2.5 Use cases . 12

2.5.1 Entertainment . 12

2.5.2 Customer Service and FAQ 12

2.5.3 Conversational commerce 13

2.5.4 Health . 13

2.5.5 Artificial intelligence . 14

2.6 Business versus consumer bot 15

2.7 Conversational Interface . 16

2.7.1 Onboarding . 17

2.7.2 Dialog strategies . 18

ix

Contents

2.7.3 Error handling . 19

3 TU Graz Searchchatbot 21
3.1 Definition of the task . 21

3.2 Architecture . 23

3.3 Evaluation of NLU Tools . 27

3.4 Client . 30

3.4.1 Evaluation of Front-end Frameworks 30

3.4.2 Design . 40

3.4.3 Implementation . 44

3.5 Back-end . 50

3.5.1 Evaluation of Node.js Frameworks 50

3.5.2 Implementation . 56

4 Discussion 71
4.1 Feedback . 71

4.2 Evaluation and Improvements 77

5 Summary and outlook 79

Bibliography 81

x

Contents

API Application Programming Interface
AWS Amazon Web Services
CLI Command-line interface
CSS Cascading Style Sheet
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
NLU Natural Language Understanding
NPM Node Package Manager
PHP PHP: Hypertext Preprocessor
REST Representational State Transfer
SDK Software Development Kit
TU Technische Universität/University of Technology
TUG Technische Universität Graz/Graz University of Technology
XML Extensible Markup Language

Table 1: Acronyms

xi

List of Tables

1 Acronyms . xi

2.1 Chat statistics in 2016 [Munford, 2016] 5

2.2 Categories of motivation for chatbot use (N = 146). Note:
16% of the responses were coded as addressing two or more
themes. [Brandtzaeg and Følstad, 2017] 7

2.3 Comparison personal versus team bot 9

2.5 Comparison domain specific versus non domain specific bot . 10

3.1 Comparison of front-end frameworks 38

3.2 Pefixes for dialogflow . 60

3.3 Back-end endpoints . 61

xiii

List of Figures

2.1 Giphy slack chatbot . 6

2.2 Chatbot types . 8

2.3 Mitsuku chatbot . 11

2.4 Turing test [WikipediaCommons] 15

2.5 Types of bot interactions . 17

3.1 Communication between Client and Server 24

3.2 Communication between Server and NLU platform 24

3.3 Server response to the client . 25

3.4 Final architecture . 27

3.5 Downloads of front-end frameworks in the last six months. . 31

3.6 Performance test of front-end frameworks 33

3.7 Redux state management . 36

3.8 Example of a store . 37

3.9 Mockup of the chat interface 40

3.10 Styleguide . 42

3.11 Chatbot interface . 43

3.12 Architecture of Angular . 44

3.13 Application components . 46

3.14 Data protection modal . 47

3.15 Message flow . 48

3.16 Message overlay component with filter 48

3.17 Downloads of Node.js frameworks in the last six months. . . 51

3.18 Dialogflow intent training phrases 58

3.19 Dialogflow example entity . 58

3.20 TU Graz mobile search . 61

3.21 Message flow . 63

3.22 Dialogflow intent via event . 65

3.23 TUSearchProxy Class . 66

xv

List of Figures

3.24 TU Graz content page . 68

4.1 Result of ”How satisfied where you with the Searchchatbot?” 72

4.2 Result of ”Which search concept would you generally prefer
in the future?” . 73

4.3 Result of ”Do you think that the application / the Searchchat-
bot should persist in the long term?” 74

4.4 Result of ”In your opinion, the bot worked best in search
category ...” . 75

xvi

Listings

3.1 TU Graz search proxy XML result 25

3.2 React JSX example . 34

3.3 Angular template example . 34

3.4 Vue template example . 35

3.5 React template example . 35

3.6 Hapi hello world example . 54

3.7 Express hello world example 54

3.8 Hapi parameter validation, [Brett, 2016] 55

3.9 Express body-parser example 55

3.10 Dialogflow response . 59

3.11 Object of type MessageQuery 62

3.12 Object of type Message . 63

3.13 Object of type Card . 63

3.14 Dialogflow SDK . 64

3.15 Sending an event via the dialogflow SDK 66

3.16 TU site search result . 67

3.17 Parsing an TU Graz content page 68

xvii

1 Introduction

1.1 Motivation

The communication with a computer based system has many advantages,
namely, the user is able to directly ask for the desired information. In a
common graphical user interface based design concept, it is necessary to
navigate through the application, going through multiple steps to achieve
the same result. A communication based concept guides the user more or
less until the desired content is provided. This approach is more target-
oriented and natural then going through an application by using the GUI.
Combined with artificial intelligence, a chatbot is a smart next generation
interface alternative to present information.

1.2 Problem

The current feature set of the TU Graz search mobile app serves as a base
which content should be delivered. After analyzing the mobile application,
it turned out that the search results often are not satisfactory. Moreover,
the developed search-bot should be easy to use and provide a concept in
which the user knows immediately how to communicate with the system.
Additionally, the various search topics should be presented and handled in
an understandable way.

1

1 Introduction

1.3 Objective

The main goal of creating the TU Graz Searchchatbot is to provide a text-
based dialog system to enhance the user experience in comparison to a
classic desktop or mobile application.

To reach that goal certain parts of the system were developed, taking into
account that the application had to be able to communicate with the TU
Graz search proxy to fetch the desired information. Furthermore there
had to be an interface layer, communicating with an artificial intelligence
platform, and a front-end application which interacts with the user. Finally,
the user should be able to retrieve all defined information already available
through the TU Graz search mobile application.

2

2 Chatbot

2.1 What is it?

A chatbot is an interface to a service, which interacts with the user. There
are three types of bot implementations, the simple scripted have behaviours
that are determined by rules; smart bots, with artificial intelligence, and
finally, combined solutions. They can live in a major chat product, like Slack
or Facebook Messenger, or have their own interface. In the last years bots
became more popular and they are heavily used all over the internet in
various industries, not only in business to consumer area, but also business
to business bots are on the rise.[Shevat, 2017]

The definition chatbot often comes with misconceptions. The most typical
is that the bot communicates with a user in the exact same way a human
would do. In fact, this is not the purpose of a common chatbot, it may be the
aim for the future, but it is simply not possible to achieve it now with the
technology currently available. This would lead to unrealistic expectations
and frustration. Nevertheless, it is undoubtedly some kind of revolution in
the software industry, the same way mobile or web application were when
they appeared. It is important to keep in mind that, as mentioned before,
the bot is not the service itself, but the interface to an underlying service.
Therefore, a chat bot is simply a new way to provide a service through an
text-based conversational interface.

In the strict sense the first chatbot was back in the days ELIZA[Weizenbaum,
1978], built by Joseph Weizenbaum in 1966. It was the first bot which made it
possible to communicate with a computer in natural language. It could run
several scripts and every single script emulated a different dialog partner.
The most successful one was the emulation of a physiotherapist which used
a thesaurus. The key success of this bot was that it took, regarding to the

3

2 Chatbot

most important term within a sentence of the questioner, one hypernym and
built a phrase to that topic. So the bot has no understanding about the topic
it was a simple lookup of topics. If the person said ”I have a problem with
my father,” the bot took father as the most important term, and determined
family as hypernym. So the answer was ”Tell me more about your family.”
Some users did not realize that they spoke with a bot although this was not
the intention of the bot as mentioned above. Joseph Weizenbaum was very
surprised by that result, and also today this effect of acting like a human is
called the ELIZA-effect. Of course, as already described, this only worked
in this context. A real life implementation does not focus on talking like a
human would do.[Luka Bradeško, 2012]

To understand why chatbots are popular it has to be noted that the soft-
ware industry is continually changing, and after the initial success of the
web, mobile became more important and many software providers started
implementing native mobile applications. This led to the market becoming
saturated and it was hard to compete, as users did not want to constantly
go through the process of install and uninstall different applications. One
kind of application that successfully stood out was messengers in all various
types. Table 2.1. shows the usage of chat applications in 2016. Users spend
most of the time, while using applications on their phone, with messengers.
Therefore, the software industry saw a chance in exposing their services
in this heavily used applications. In fact this was the start of the success
of chatbots. So there is an evolution of interfaces from web over mobile to
conversational. Some industries today even rely on the bot first approach, so
every branch of business should be aware of the importance of this new way
of user experience.[Shevat, 2017][Freitas and Bhintade, 2017][Klopfenstein
et al., 2017]

4

2.2 Why do people use it?

Network Origin Monthly active users
WhatsApp US 1 billion
Facebook Messenger US 900 millions
Viber Israel 784 million
WeChat China 762 million
Line Japan 560 million
Instagram US 500 millions
Kik Canada 275 millions
Snapchat US 220 million (est.)
Hike India 100 millions
Palringo UK 40 millions

Table 2.1: Chat statistics in 2016 [Munford, 2016]

2.2 Why do people use it?

As already mentioned, messenger applications are heavily used and indus-
tries want to expose their services via chatbots. Microsoft CEO Nadella said
once ”Bots are the new apps” [Cava, 2016]. Furthermore, he exemplified a
vision how the communication between chatbots and humans can be in the
future.

”People-to-people conversations, people-to-digital assistants, people-
to-bots and even digital assistants-to-bots. That’s the world
you’re going to get to see in the years to come” [Cava, 2016]

But why are the chatbots accepted by people and why does so many use
them? In a study of [Brandtzaeg and Følstad, 2017] in 2017 this question was
analysed. The goal was to find out what is the main motivation of people
for using chatbots. In table 2.2 the categories extracted from the answers of
the participants are listed.

The majority of the participants use as expected chatbots in terms of pro-
ductivity. The reason why productivity increases when using a chatbot is
mostly because of the ease of use, the speed, and of course the convenience.
It saves time to ask directly what information a person wants to have, in-
stead of browsing a webpage or use a search engine. For example waiting

5

2 Chatbot

Figure 2.1: Giphy slack chatbot

on the phone to get an answer from someone is not a problem when using
a chatbot. People also integrate chatbots in their daily life to execute tasks
which can be automated.

Another reason is that people are entertained by chatbots. In general they
like to ask questions and get entertaining answers back, get funny tips or
receive rich media via chatbots. The giphy chatbot for slack is an example
for that use case. Also, social and relational purposes were mentioned as
a motivation. When people are bored and they have no one to talk to, a
chatbot is an alternative for them, although everyone knows that the dialog
partner is not real. Finally, the novelty of chatbots is also a reason for people
to use them. Summarizing, it is interesting for people to try to figure out
how smart they are. At the beginning, often people do not know how a
certain kind of chatbot can improve their daily life, so they test them because
its new, and if they get in touch with an useful bot, they integrate it in their
routines, either for professional or private reasons. [Shevat, 2017]

6

2.2 Why do people use it?

Category Description Frequency
Productivity The comment concerns the conve-

nience of using chatbots (whether they
are easy or fast to use). Participants
typically report using them to obtain
assistance or information.

100

Entertainment The comment concerns the entertain-
ment value of using chatbots (whether
they are fun to use). Some report that
they use chatbots when bored to kill
time.

29

Social/relational The comment concerns the use of chat-
bots for social or relational purposes.
Typically, chatbots are seen as a per-
sonal, human means of interaction
that may have social value. Some also
use chatbots to strengthen social inter-
actions with other people.

18

Novelty/ Curiosity The comment concerns the use of chat-
bots out of curiosity 15 or because they
are a novelty. Often, the stated aim is
to investigate chatbots’ capabilities.

15

Other The comment concerns motivations
that do not fit in the 12 above cate-
gories and are not sufficiently frequent
to justify a separate category.

12

Table 2.2: Categories of motivation for chatbot use (N = 146). Note: 16% of the responses
were coded as addressing two or more themes. [Brandtzaeg and Følstad, 2017]

7

2 Chatbot

Figure 2.2: Chatbot types

2.3 Types

As shown in figure 2.2, there are several types of chatbots. Basically they
are a combination of three subtypes, they can be personal or impersonal
in combination with the goal and the domain knowledge. Following the
characteristics of this kind of bots are described.

2.3.1 Form of communication

Personal

A personal bot has a single user approach. The main goal of this type is to
satisfy the needs of an user on an one on one basis. It can be seen as some
kind of a personal assistant. An example for this kind of bot would be a
shopping assistant chatbot for Zalando1 or H&M2. So the bot communicates
with a single user over a single context.[Shevat, 2017]

1http://www.zalando.at, accessed 19.04.2018

2http://www.hm.at, accessed 19.04.2018

8

2.3 Types

Team

A team bot, by contrast with the single bot, has a multiple user approach.
The implementation of this type is more complex because it has to handle
multiple user inputs for example in a shared channel and has to switch
between conversations. This bot has to know the current context of every
conversation inside of a channel. Set up meetings is a typical application
area for this kind of bot.[Shevat, 2017]

User basis Characteristics Example

Personal one on one single context,
personal assistant Zalando

Team one to many multiple context,
used in shared channels Slack

Table 2.3: Comparison personal versus team bot

2.3.2 Knowledge Domain

Domain specific

A domain specific bot is typically implemented for a single service or prod-
uct and the user associates this bot with it. As mentioned above, the H&M
personal shopping bot fits in this category. It handles only shopping related
actions and it represents the brand H&M. An advantage of domain specific
bots is that it can specialize for one topic. It can also be designed with
high customization, so the development does not need to take into account
standardising the bot.[Nimavat and Champaneria, 2017]

Non domain specific

Non domain specific bots are sometimes referred to as super bots. Unlike
the domain specific ones, they expose multiple services. A very well known

9

2 Chatbot

super bot is Amazon’s Alexa3, which handles a huge amount of services.
The advantage of these type of bots is that the user only needs to interact
to a single interface instead of having to find one for every topic. There
is no need to learn how a bot for a specific service works, everything is
standardised. The disadvantage for the industry is that there is less control
about how your service is exposed. The super bot is responsible for handling
the user experience.[Nimavat and Champaneria, 2017]

Services Characteristics Example

Specific single service specialised,
represents a brand or product H&M

Non specfic multiple services
standardised,
less control of services
handled by the bot

Alexa

Table 2.5: Comparison domain specific versus non domain specific bot

2.4 Goals

2.4.1 Task based

This kind of bot is implemented to execute a certain task. The flow of this
conversation is predefined in most cases with the goal to finish the job. An
example for that is a shopping bot. It is intelligent in a way to ask and
understand the purpose of the user, for example, the shopping bot would
ask for the type of clothes the user wants to buy and refines the questions
until it is clear what the user wants to buy.[Nimavat and Champaneria,
2017]

10

2.4 Goals

Figure 2.3: Mitsuku chatbot

2.4.2 Conversation based

These bots are trying to communicate with the user in the more natural way.
There is no certain task or action that they want to execute, the conversation
itself is the goal. To achieve that, it is necessary to understand the users input
very well and, because of that its heavily based on artificial intelligence.
Mitsuku and Siri are examples of this kind of approach.[Nimavat and
Champaneria, 2017]

2.4.3 Information based

Information based bots provide content for specific topics. The conversation
flow should be short and should deliver the content immediately. An exam-
ple for this kind is a Frequently Asked Questions (FAQ) bot. It could, for

3https://developer.amazon.com/de/alexa, accessed 24.04.2018

11

2 Chatbot

instance, parse a frequently asked questions page of a website and provide
the content as a message.[Nimavat and Champaneria, 2017]

2.5 Use cases

This section presents several common use cases of chatbots. The most
important one in terms of monetization is the conversational commerce.
It has a big potential and industries make use of it to offer their products
through chatbots. Every major e-commerce platform already launched a
chatbot.[Shevat, 2017]

2.5.1 Entertainment

The purpose of this bot is to entertain the user in some way. There are
different strategies to reach that, but the goal for the bot is to try to turn
the conversation into entertainment. A very popular fun and entertainment
bot is Swelly4. It provides instant community feedback about two possible
options. It is available as native Android and iOS application. Celebrities
use bots to stay in contact with their fans and entertain them for community
engagement and raise their popularity, which could also be seen as a brand
bot. Katy perry, for example, launched a messenger chatbot which won
awards on some bot platforms like chatbottle5.

2.5.2 Customer Service and FAQ

This is the most common use case. The intention of the companies is to use
the bots for the first level customer support. The TU Graz Searchchatbot,
covered in this thesis, fits in this category. Common tasks or questions
should be handled via the bot. The TU Graz Searchchatbot provides many
information about the university life. Big companies, with a lot of costumer

4https://www.swell.wtf/, accessed 19.04.2018

5https://chatbottle.co/, accessed 19.04.2018

12

2.5 Use cases

queries, are presented with the financial decision of comparing the costs of
developing a first level support bot with the monthly salary of a humans.

2.5.3 Conversational commerce

Conversational commerce is an exciting topic in general. It focuses on
simplifying the traditional commerce. Ordering a product via a simple
conversation is much more comfortable then searching in a web platform.
Conversational commerce is growing quickly, specially the voice bots. Every
mobile operating system has its own voice assistant: Apple provides Siri,
Google developed Google Assistant and Microsoft has Cortana. Amazon
launched Alexa which is also a personal assistant voice bot. It creates new
opportunities for business, as the customer is able to use the conversational
interface while preforming other activities. The user is not interrupted and
has only to invest a minimum of time and attention during communication
with a commerce service. A bot outside of this category is the chatbot of
LEGO.

2.5.4 Health

Chatbots also arrived in the health-care sector. The influence is not as
relevant as in other sectors. The intention of this kind of bot is to support its
users with health related information. There is one well known bot called
Super Izzy, which is about reproductive health. In this topic where there are
often misconceptions and different non-scientifically based opinions, people
are often also not comfortable with asking questions. Therefore, the bot
aims to help its users by clarify information and by, for example, providing
information about contraception, such as the birth control pill and what to
do if the person forgot to take it.

13

2 Chatbot

2.5.5 Artificial intelligence

Artificial intelligence is an interesting topic in combination with chatbots.
Many bots are using it to improve the conversation and through that to
enhance the user experience. There are some artificial intelligence tools,
such as dialogflow6 or wit7, which will be evaluated in chapter 3.3. Those
solutions aim to provide an easier way to integrate this feature into a
chatbot. The most promising bot in this category is Mitsuku8 developed by
Steve Worswick. This bot won three times the Loebner-prize9, in which it
has to face a Turing test. A competition specially for artificial intelligence.
This test was introduced by Alan Turing in 1950 and it was designed to
determine whether or not machines are able to think in way equivalent or
indistinguishable from humans.[Luka Bradeško, 2012]

This test works as shown in figure 2.4. One person engages conversation with
two different partner, one is a bot the other one is a human. If the questioner
result is not able to distinguish which of the dialog partners is a bot and
who is a human, the touring test is considered successful. So far, no bot did
pass the touring test but Mitsuku reached a score of 90%. In the beginning of
the nineties the dialog was about five minutes for a chosen topic. Currently,
the dialog lasts twenty-five minutes and every topic is allowed. This shows
the incredible progression of artificial intelligence. There are also other tests
to measure the capability of the artificial intelligence. Two very well known
tests are the Lovelace and the Metzinger tests. The first proofs not only the
dialog flow, but it also measures the creativity of a bot. The latter expects
that the bot takes part in a discussion using his own arguments, as well as
cause them in the follow up conversation.

There has been criticism about bots only trying to pass the touring test
because it has no importance for the industry.

6https://dialogflow.com/, accessed 19.04.2018

7https://wit.ai/, accessed 19.04.2018

8https://www.pandorabots.com/mitsuku/, accessed 19.04.2018

9http://www.aisb.org.uk/events/loebner-prize, accessed 24.04.2018

14

2.6 Business versus consumer bot

Figure 2.4: Turing test [Bilby, 2008]

2.6 Business versus consumer bot

The described types of chatbots in the section 2.3 can be applied for different
realities, for both business to business and business to consumer bots. In
general, those bots have different objectives. A business bot focuses on
getting things done, so the conversation should be short and tasks should
be dispatched very easily. An example for that is a slack bot for the project
management software JIRA10. This bot informs you about your JIRA11

tickets by just mentioning an issue in a channel where the bot is invited.

A consumer bot has a different conversation style. It can be more personal,
off topic or just entertaining. This does not mean that there is not a goal
that should still be achieved be, but the objective of this kind of bot is
often assuring that the user stay in touch with the brand, or gets the most
up-to-date information about a certain topic, so it can be chatty as well. In
other words, they are not as task orientated as business bots.

There are two major platforms which emerged as a perfect world for chat-
bots. The best and widely used messenger platform which is perfect for the
business to customer approach is the Facebook Messenger12. It is available

10https://slack.atlassian.io/, accessed 19.04.2018

11https://de.atlassian.com/software/jira, accessed 19.04.2018

12https://de-de.messenger.com/, accessed 19.04.2018

15

2 Chatbot

for mobile and for desktop devices and it provides an application program-
ming interface for bot interaction. It is a perfect way to get in touch with
possible consumers. On the other side, there is Slack13. It is the most known
business messenger for business use cases, and it is also available for mobile
and desktop. It is very common to integrate business bots for tasks like time
tracking or project management support.

There are also other messengers which are worth mentioning, like Kik14,
or legacy systems like e-mail or SMS. Specially e-mail is a highly used
communication option, and it is also possible to integrate the usage of chat-
bots. There are several provider who are specialised on supporting email
chatbots. The disadvantage of a legacy platforms like e-mail is, that the set
of functionalities is limited in comparison to a modern messenger, which is
providing an application programming interface. IMAP and POP3 have only
a very basic feature set like sending and receiving e-mails, so it is harder to
build a bot with a satisfactory conversational interface.[Shevat, 2017]

2.7 Conversational Interface

The conversational interface is the core part of a chatbot. In the past, a
user had to adapt to a graphical interface when using an application. User
experience designers thought about how to design a program so that it can
be used intuitively. However, the user had to learn which button has to
be clicked for a certain action. With the conversational interface it is the
opposite approach. The user knows how to use messaging applications, it
is a very natural way to communicate. The interface should be designed
in a way that it is as natural as possible, so that the user does not need
to change his behaviour by using a messaging application. To ensure this,
it is important to analyse the onboarding stage, as well as the possible
strategies that can be use for dialog flow and how to handle errors.[Shevat,
2017][Crangle, 1997]

13https://slack.com/intl/de, accessed 19.04.2018

14https://www.kik.com/, accessed 19.04.2018

16

2.7 Conversational Interface

Figure 2.5: Types of bot interactions [Crangle, 1997]

In general it can be said that a bot, in terms of a conversation interface, is
able to contribute to a conversation with four types of interactions. Namely,
they are the graphical display, which will be discussed in this theses, audio
responses, verbal prompts, and visual responses such as actions or anima-
tions as figure 2.5.[Crangle, 1997]

2.7.1 Onboarding

A central part of creating a conversational interface is the onboarding. In this
period, the most important goal is to assure that the user knows, without
hesitation or effort, what the bot is able to do or what the user can ask.
The user should be engaged and informed after reading the onboarding
message so that there is no confusion what the purpose of the bot is. In this
phase, the user should be informed on how to interact with the bot. This is
fundamental for a successful conversation, because at this time, specially
if the user talks for the first time to the bot, the full attention of the user is

17

2 Chatbot

Figure 2.6: Task based conversational interface

available. If the bot has the possibility to to be configured, it should also be
done in a very early stage, so the user has a clear idea of its benefit. After a
successful onboarding, the user should be incited to interact, that the user
gathers experience and gets an idea of the advantages of interacting with
the bot. It seems evidently that the user has an idea of what can be said and
how to interact but in fact it is very hard to achieve that especially in the
prototype stage. [Shevat, 2017][Crangle, 1997]

2.7.2 Dialog strategies

The way the dialog flows has to be defined in the process of building a
bot. This can be done with two different approaches. The first one is the
task based strategy. It is very directed to execute a single task. This kind of
conversation design is very common for business bots. So the intention of
this approach is that the conversation is very short and goal driven. Figure
2.6 shows an example of a task based dialog. The intention is to get a phone
number. The chat starts with the onboarding, the goal is the phone number
of a person. This can be reached directly if the name of the person is unique
or with another intermediate stage if the input has to be concretised.

18

2.7 Conversational Interface

The second dialog strategy is the topic based. This conversation design is
not as directed and goal driven as the task based approach. It is roughly
circular, and not focusing on a task that has been executed. Bots with this
strategy are often used in terms of entertainment. An example would be the
game of thrones bot15, which knows everything about the series. It should
keep the user informed with the topic and related news.

2.7.3 Error handling

The error handling is very important for a conversation with a chatbot. At
any time during a dialog, there can be some conversational divergence. It
can happen for various reasons, from a simple mishappening to the user
testing how the chatbot reacts. It is the responsibility of the bot to to keep
the chat ongoing, and the user engaged. There should be always a fallback
for misleading questions. For example:

User: ”asdf asdf”
Bot: ”Sorry I do not know what you mean. Can I help you with
something else?”

There is a clear statement of the bot that it can not answer the current
question. There can be, certainly, other errors during a dialog flow for
example off topic questions, but still there has to be always a way to keep
the dialog ongoing. Restarting the conversation should be the last option.

15https://www.facebook.com/G0TB0T/, accessed 19.04.2018

19

3 TU Graz Searchchatbot

3.1 Definition of the task

The work preformed during this thesis had the aim to develop a search
chatbot for the TU Graz website. Basically, it should cover the features of
the already existing TU Graz search mobile application. Furthermore, the
chatbot has to be integrated with the current website and should not only
exists within a messenger application, like Facebook messenger, Slack, or
others. For these reasons, a standalone client messenger had to be developed.
It had to be taken into account that the design of this client should be similar
to current messaging applications, so that there is no confusion how to use
it. The client had to be responsive and easy to use also on a mobile device.
For evaluation purposes, the chatbot had to be published as a part of
digitallabs1.

For prioritising the requirements, it was used the MoSCoW method [Sta-
pleton, 2002], which is popular for using meaningful words as labels. They
allow to have a clear picture of the objectives of a given project, as presented
below:

• M - MUST have this - Represents a requirement that is essential for the
project to be considered successful.

• S - SHOULD have this if at all possible - An item of high priority and
that if at all possible should be in the included in the solution.

• C- COULD have this if it does not affect anything else - A requirement that
is desireable to get, but that is not fundamental and must be included
only if the time allows it.

1https://digitallabs.tugraz.at/landingpage/index.html, accessed 19.04.2018

21

3 TU Graz Searchchatbot

• W - WON’T have this but would like in the future - Something that is out
of the current scope, but should be considered for a future iteration or
release.

Following the range of functions are prioritised with the MoSCoW method:

Must have

• A full responsive standalone web application chat interface
• Receive the following relevant contact information about a person

which is in some working relation to TU Graz:

– Phone number
– E-mail address
– Website
– Address

• Receive information about a course at TU Graz

– Examination date
– General course details

• Receive information about a room at TU Graz

– Address

• Receive information about a book at TU Graz library

– The availability of the book

• Receive information about an organization at TU Graz

– Phone number
– E-mail address
– Webite
– Address

• Text based chatbot experience
• Meet the TU Graz design and corporate design guidelines

Should have

• Improve search results in comparison to the TU Graz search mobile
app

• Provide rich media content like Google Maps for an address response

22

3.2 Architecture

Could have

• An external artificial intelligence platform to support intent recognition
with high precision.

• Support machine learning
• A general site search of the TU Graz content pages

Won’t have

• Because of the need of a standalone version there is not integration in
a standard messenger as already mentioned.

• Voice recognition

3.2 Architecture

The chatbot application is a full stack standalone web solution. Due to the
requirements gathered, it was not possible to use an existing messenger
platform. Therefore, a separate client had to be developed. In that case it had
to be a single page application to prevent page loads while using the chat
interface. This client communicates with a back-end, which talks to the TU
Graz search proxy for receiving TU Graz related information. The bot will
integrate a third party Natural Language Understanding (NLU) platform
to support artificial intelligence, following NLU, and machine learning. To
support that the back-end is some kind of a middleware, which interacts
not only with the TU Graz search proxy, it has also to communicate with a
NLU platform.

As a result of this the application consists of four main parts which are:

• Single Page Application Client
• Back-end/Middleware
• TU Graz search proxy
• Third party NLU platform for artificial intelligence support

The following example should help clarifying the outline how the TU Graz
Searchchatbot was implemented. Assuming that a user wants to know the
phone number of a person e.g. Martin Ebner, working at the TU Graz, the
flow would be as follows:

23

3 TU Graz Searchchatbot

Figure 3.1: Communication between Client and Server

Figure 3.2: Communication between Server and NLU platform

The user starts the chatbot client by visiting the webpage and receives a
session id. After that, the user sends a message ”Please give me the email
address of Martin Ebner”. The single page application client passes the session
id and the message to the back-end as shown in figure 3.1.

For evaluating the intent of the user, the message has to be passed to the
third party NLU tool. This platform parses the message based on the intent
and extracts data, such as the context and some important variables for
the given search. In that case, the context is to get contact information and
the necessary parameters for the TU Graz search proxy are Martin Ebner
and the contact type, which is phone number in that case as shown in
figure 3.2. This information is returned to the back-end in an easy to use
JSON-Object.

After receiving this data the search with the TU Graz search proxy is
performed. For this example the query is:

http://search-proxy.tugraz.at/search/onebox/Search.php?
query=martin%20ebner&ws=prs

The search proxy responds with a list of the found persons in a XML data
format as shown in listing 3.1. The next step is to parse the XML response

24

3.2 Architecture

Figure 3.3: Server response to the client

to extract the desired information, which is the e-mail of Martin Ebner.
The field name with the requested data is p email PA, so there should also
be a mapping between the context and the field names of the XML result.
After parsing the extracted information gets back to the client and the bot
responds with a message as shown in figure 3.3.

1 <MODULE_RESULT >

2 <Title >17</Title >

3 <Field name="personID" >99E141532528D1D7 </Field >

4 <Field name="orgUnitID" >24849</Field >

5 <Field name="name">Doctoral School Informatik </Field >

6 <Field name="userDefname">Doctoral School </Field >

7 <Field name="contactName">Doctoral School Informatik </Field >

8 <Field name="p_contact_name_PA">Lehr - und Lerntechnologien </

Field >

9 <Field name="p_extadr_PA" >1.Obergeschoss </Field >

10 <Field name="p_street_PA">Mü nzgrabenstrasse 35A, 1. Obergeschoss

</Field >

11 <Field name="p_locality_PA">Graz </Field >

12 <Field name="p_pcode_PA" >8010</Field >

13 <Field name="p_tel_office_PA" >+43 (316) 873 - 8540 </Field >

14 <Field name="p_email_PA">martin.ebner@tugraz.at </Field >

15 <Field name="p_tel_mobile_PA" >+43 (0) 664 / 60 873 8540 </Field >

16 <Field name="p_webLink_PA">www.martinebner.at </Field >

17 <Field name="p_detail_infoBlock_webLink">

25

3 TU Graz Searchchatbot

18 https:// online.tugraz.at/tug_online/visitenkarte.show_vcard?

pPersonenGruppe =3& pPersonenId =99 E141532528D1D7

19 </Field >

20 <Field name="street">Rechbauerstraße 12</Field >

21 <Field name="locality">Graz </Field >

22 <Field name="href">

23 http:// portal.tugraz.at/portal/page/portal/TU_Graz/

Studium_Lehre/Studien/Doktoratsstudien/Informatik_DS

24 </Field >

25 <Field name="CAMPUSonlineURL">

26 https:// online.tugraz.at/tug_online/wborg.display?pOrgNr =24849

27 </Field >

28 <Field name="personName">Martin Ebner </Field >

29 <Field name="title">Priv.-Doz. Dipl.-Ing. Dr.techn.</Field >

30 <Field name="role">Mitglied mit Lehrbefugnis </Field >

31 <Field name="visit_hour">nach Vereinbarung </Field >

32 <Field name="tel_mobile" >+43 (0) 664 / 60 873 8540 </Field >

33 <Field name="tel_office" >+43 (316) 873 - 8540 </Field >

34 <Field name="fax_person" >+43 (0) 316 / 873 - 7699 </Field >

35 <Field name="email_person">martin.ebner@tugraz.at </Field >

36 <Field name="webLink_person">www.martinebner.at </Field >

37 <Field name="infoBlock_webLink">

38 https:// online.tugraz.at/tug_online/visitenkarte.show_vcard?

pPersonenGruppe =3& pPersonenId =99 E141532528D1D7

39 </Field >

40 <Field name="infoBlock_pic">

41 https:// online.tugraz.at/tug_online/visitenkarte.showImage?

pPersonenGruppe =3& pPersonenId =99 E141532528D1D7

42 </Field >

43 <Field name="personBibtexCount" >681</Field >

44 <Field name="WEB SERVICE">PRS </Field >

45 <Field name="wb_result_cnt" >17/141 </Field >

46 <Field name="count_all_results" >141</Field >

47 </MODULE_RESULT >

Listing 3.1: TU Graz search proxy XML result

After the basic conceptional phase the technology has to be chosen. Several
NLU tools do not support a PHP SDK, so the client has to be a single page
Javascript application. Due to that and the relevant support of Node.js2

SDKś in combination with NLU Tools, this is a perfect match. The front-end

2https://nodejs.org/en/, accessed 24.04.2018

26

3.3 Evaluation of NLU Tools

Figure 3.4: Final architecture

and back-end share the same programming language, which is a benefit for
maintainability because there is no need to learn another language. Based
on that decision figure 3.4 shows the final architecture.

3.3 Evaluation of NLU Tools

To support a flawless dialog flow, the intent of a message should be detected
with a high precision. Therefore some external tools and platforms exists
which will be described in this section. Following the best-known natural
language understanding tools are listed.

dialogfow.ai

Url: http://www.dialogflow.ai
f Price: Free standard edition and a premium edition as pay as you

go service
Interface: HTTP REST API

Dialogflow3, former api.ai, was launched in 2010 and acquired by Google in

3https://dialogflow.com/

27

3 TU Graz Searchchatbot

2016. It parses the query and determines the most suitable intent based on
the information stored in the intent. The API returns a JSON object with the
calculated data. Dialogflow supports a software development kit for nearly
every programming language. The intent determination works with high
precision. After the fusion with Google it became possible to integrate the
bot agent with actions on Google, so that applications for Google Assistant
can be developed. There are predefined intents like small talk, weather, and
other common dialog topics. Another available feature is the possibility of
using machine learning.

wit.ai

Url: https://wit.ai
Price: Free including for commercial use
Interface: HTTP REST API

Wit.ai was launched in 2013 and acquired by Facebook in 2015. It supports
entities, intents, actions, and context and uses natural language processing.
A key feature of wit is the support of fifty languages. For that reason, if a
bot is to developed with the requirement of supporting several different
languages, this platform may be the best option. Additionally, it supports
software development kits for several programming languages.

recast.ai

Url https://recast.ai
Price Free for personal use. Individual pricing for business solutions
Interface HTTP REST API

Recast.ai was launched in 2016. It supports software development kits for
several programming languages. It uses conversational natural language
processing. With an easy to use bot builder, it is also possible for people
with no programming background to create and set up a bot. In comparison
to wit and dialogflow, there is a smaller supporter community, although
there is the possibility to share bot templates. It also supports a wide variety
amount of languages, but the feature set available to them is not the same
for all of them. The intent recognition is not as developed when compared

28

3.3 Evaluation of NLU Tools

to other NLU platforms.

IBM Watson conversational service

Url https://www.ibm.com/watson/services/conversation/
Price Pay as you go
Interface HTTP REST API

IBM Watson conversation service was launched 2016 and it is the most
promising NLU tool so far. It is built on a neural network and consists of
three components. Those components are entities, intents, and dialogs. In
comparison to other tools, watson supports a smaller set of SDK’s. Fur-
thermore, the language support is only for English and Japanese. Another
downside is that there is no possibility to use it for free.

Microsoft LUIS

Url http://www.luis.ai
Price Pay as you go
Interface HTTP REST API

Microsoft’s language understanding intelligent service was launched in
2015. It uses entities and intent and returns an easy to use JSON with all
necessary data. It is a tool designed for business solutions and it follows a
domain specific approach, other than wit or dialogflow. A benefit of LUIS is
the possible combination with Cortana. Similarly to IBM’s Watson there is
no possibility to use it for free.

Amazon Lex

Url https://aws.amazon.com/lex/
Price Pay as you go
Interface HTTP REST API

Amazon Lex was launched in 2016 and it is also a very promising platform.
Currently, Lex is limited to English, which is a disadvantage to the other

29

3 TU Graz Searchchatbot

platforms. It supports advanced deep learning functionalities, natural lan-
guage processing and automatic speech recognition. Another feature is the
easy integration to other services on the AWS platform. Also with amazon
lex there is no possibility to use it for free.

In general, those platforms can be divided into business and consumer tools.
Dialogflow, wit, and recast are free to use and meet basically all requirements
for this thesis, although Lex, Luis, and Watson conversational service are
also very interesting and promising but they have the disadvantage of their
pricing model and have a business solutions background. Dialogflow has a
rich feature set and it is the platform which is tested over eight years now
and delivers very good results. With Google there is a big player on board
and an ongoing development process is ensured. Also the integration into
the google ecosystem is very interesting. Based on that dialogflow is the
NLU tool used for the TU Graz Searchchatbot.

3.4 Client

In this section the evaluation of the currently most commonly used front-end
frameworks is discussed. After the evaluation and the decision a proper de-
sign for the TU Graz Searchchatbot according to the requirements is created.
Finally, there is a walk-through of the implementation of the application.

3.4.1 Evaluation of Front-end Frameworks

General comparison

Javascript frameworks are very popular. In the past, server side rendered
applications were best practice and Javascript was only used for animations
or trivial logic parts of a website. Although, there were frameworks generally
used like Ember, or Backbone, it was with the appearance of Angular and
React that the community started paying more attention to single page
applications. With the Javacscript Frameworks, business logic from the server

30

3.4 Client

Figure 3.5: Downloads of front-end frameworks in the last six months. [Source: npmtrends4]

moved to the browser and Javascript became more and more important.
At the moment there are three frameworks which have a communities that
stand out for their size, with two of them being actively supported by
two of the major players of the industry: Angular which is led by Google,
React led by Facebook and Vue.js. Figure 3.5 shows the downloads via the
Javascript package manager npm, that were registered in the last six months.
Those three frameworks are candidates for the TU Graz Searchchatbot,
although referring to the download statistics React is the clear winner. Every
framework has its benefit, and they have different basic approaches.

Even though they use it in slightly differently, all the three frameworks,
React, Angular, and Vue share the component based approach. Apart from
those, Angular also provides modules, which are wrappers for components.
The same could be achieved with container components in React, but to be
precise they are a in a certain extent different in their behaviour. Container
components wraps functionality of a specific feature and includes other
components corresponding to it. Additionally, Angular separates the logic
more than the other two frameworks. There are also services, which handle
all the business logic, meaning only the representational logic should be
in the components. There is a similar pattern to that in React and Vue, but
there still are no different classes for that.[Kunz, 2016]

4http://www.npmtrends.com/react-vs-vue-vs-@angular/core, accessed 19.04.2018

31

3 TU Graz Searchchatbot

It is important to mention that there is also a different usage of Javascript
for Angular and the other two frameworks. Angular is based on Typescript
which brings type safety to Javascript, and it enjoys great popularity. Vue
and React are based on plain Javascript, but there are also side project which
supports a Typescript version of them. React is in comparison to Vue and
Angular not really a framework, it is more a library which can be extended to
a framework with third party libraries. This is also the biggest downside of
React, there is no self-contained tool-set to provide full framework features.
So there is always a dependency to other libraries.[Banks and Porcello,
2016]

The biggest advantage of React is its rendering performance as figure 3.6
shows. It has without any doubt the fastest rendering technique. On the
other hand, Angular convinces with a wide variety of tools, beginning with
its own command line interface to nearly everything a developer may need
when developing an application. Hence, it is marginally slower in terms
of rendering, but both easy to use and stable. In comparison to AngularJS,
the former version of Angular, the framework already made a step forward
concerning the rendering speed. Even if there is a very complex page to
render, there will not be a problem for the framework to deal with that.
Vue is somewhere in between React and Angular. On one hand, it is super
lightweight, but it is not a library like React, as it has all basic framework
tools on board like a router, state management, and even a command
line interface. Angular and Vue also support CSS modules out of the box,
which is very convenient for development. This means that the styling of a
component can be scoped, and will not effect other components. The natural
consequence of this, is that during development there is no necessity to to
take into account the naming of CSS classes and how it will affect other
parts of the application. This not only increases the speed of development,
but also improves maintainability and decreases the complexity for someone
new needing to use the code base. React does not support that out of the
box, but it is possible to configure it through the use of Webpack5. Webpack
is an open-source module bundler, a powerful tool when working with
Javascript frameworks. It loads modules bundles it and handles everything
in between. All three frameworks use are using Webpack so there is no
difference on that.

5https://webpack.js.org/, accessed 19.04.2018

32

3.4 Client

(a) Duration in milliseconds +/- standard
deviation (Slowdown = Duration /
Fastest)

(b) Memory allocation in MBs +/- stan-
dard deviation

Figure 3.6: Performance test of front-end frameworks [Source: Krause6]

33

3 TU Graz Searchchatbot

Templating and Syntax

When comparing Angular, React, and Vue, they also a differ regarding the
way of dealing with HTML. In React there is no real HTML, it is called
JSX. Even if it looks the same it is Javascript. It is just another way to
write a React.createElement declaration. The JSX-compiler transforms the
JSX code back to React.createElement and executes the call. So it is much
more comfortable for the developer than writing native Javascript for a view
representation. [Horton and Vice, 2016]

JSX needs getting used to if a developer reads a code line like that in listing
3.2 and it is not HTML. There are self closing divs and tags, for example,
which are not supported by HTML. This means there is a also difference in
they way it is coded. JSX is placed inside of a React component, to be exact,
inside of the render function or all functions which return JSX. There is no
separation of concern in terms of Javascript and HTML.

1 const element = <h1>Hello , world!</h1 >;

Listing 3.2: React JSX example

Angular has a different approach on that. There is the possibility to have
HTML and Typescript code in the same file but, according to the style guide
of Angular for more complex views, a separate HTML file should be created.
Conditional logic can be included in the HTML templates, with the so called
structural or attribute directives. An example for that is the following code
snippet in listing 3.3.

1 <div *ngIf="show">Angular template </div >

Listing 3.3: Angular template example

The structural directive *ngIf is used for conditional rendering. In that case
the div with the text Angular template is only rendered in the DOM if the
variable show is evaluated to true. There are other structural directives such

6http://www.stefankrause.net/js-frameworks-benchmark6/webdriver-ts-
results/table.html, accessed 19.04.2018

34

3.4 Client

as *ngFor, which loops trough an array. If a developer wants to do the same
in React, has to use, for example, the Javascript built-in function map over
an array. As there is no inner framework support for that, it has to be done
in native Javascript. Vue also has some kind of structural directives, if a
developer wants to use conditional logic in a template it looks as in listing
3.4, for completeness the same for React has to be done like in listing 3.5.

1 Vue template

Listing 3.4: Vue template example

1 <div >

2 { show && React template }

3 </div >

Listing 3.5: React template example

In Vue, the template, the Javascript code and even the CSS code are placed
in the same file, which are referred to as single file components, but it is still
possible to split it in separate files. Angular and Vue have a official style
guide, which is very detailed and a huge benefit for developers. Since React
is a library, there is no official style guide available, and if more developers
work on the same project, there is a chance of inconsistency in code style
besides that there is no official best practice.

State management

All candidates supports a state management system. Initially it was devel-
oped by Dan Abramov for React, and called Redux, it is considered as the
best pattern. for this approach. There is a light weight alternative, which
is called MobX but still Redux is the most used pattern. For Vue there is
Vuex and for Angular there is ngrx. Both of them are based on the Redux
implementation. The motivation of a state management is described as
follows:

”As the requirements for JavaScript single-page applications have
become increasingly complicated, our code must manage more

35

3 TU Graz Searchchatbot

Figure 3.7: Redux state management [Eschweiler, 2017]

state than ever before. This state can include server responses
and cached data, as well as locally created data that has not
yet been persisted to the server. UI state is also increasing in
complexity, as we need to manage active routes, selected tabs,
spinners, pagination controls, and so on.” [Redux, 2018]

Figure 3.7 shows the basic concept of how Redux works. It consists of
simply three parts: The actions, the reducers, and the store. There can be a
additional middleware, but in general those are the core parts.

The store is the single source of truth in an application. In this application,
for example, all messages of the user and the bot will be stored there. To
save data to the store, an unidirectional flow has to be passed. First an action
has to be dispatched, in that case an action could be storeMessage.

The reducers are listening to action types and if a reducer subscribed to
an action storeMessage the reducer function for that action is called. Those
are pure functions and this is the only way to manipulate the store. So
after the reducer function executes it returns a new state object. A store is
basically an object, where the properties are states. After a reducer executes

36

3.4 Client

Figure 3.8: Example of a store

its function, a state object is stored to the store, in other words the property
message in that case gets updated.

Figure 3.8 illustrates how a store looks like. It shows the store with the
states of the reducers so called sub-slices. So there is the messageReducer, the
appReducer, and the voiceReducer. The action storeMessage, triggers a function
of the messageReducer and manipulates the state of this sub-slice. After this
update the store informs every component, which are connected to the store,
about an update and the ui will update. This is the unidirectional flow of
a state management system. Vuex and ngrx are working in the same way
but are slightly customized for their frameworks. For every middleware for
Redux there is a similar one for the other two. Redux Sagas are Effects for
ngrx, for example. There is no downside on the other implementation in
comparison to the initial Redux.

37

3 TU Graz Searchchatbot

Decision

Angular React Vue
Publisher Google Facebook Vue Technology
Programming
Language

Typescript Javascript Javascript

Componend
based

Yes Yes Yes

State manage-
ment

ngrx Redux Vuex

CLI angular-cli - vue-cli
Integrated
router

angular/router Only external Vue-router

CSS modules Yes Has to be config-
ured manually

Yes

Separate HTM-
L/JS

Yes No Yes

Official
styleguide

Yes No Yes

Table 3.1: Comparison of front-end frameworks

Conclusions

To summarize the analysis, table 3.1 shows the differences of the evalu-
ated frameworks. For TU Graz Searchchatbot Angular was chosen because
it is the most stable and best maintainable framework. It has an official
styleguide, which makes it pretty easy to hand the code over to another
developer. Every developer who knows Angular, has immediately an idea
of the application because of the given structure. Even if the developer is
not familiar with the framework after reading the core concept and the
styleguide, it should be straight forward. The supported ngrx state manage-
ment solution is, as already mentioned, the same as Redux so there is no
downside on that.

38

3.4 Client

Angular is based on Typescript, so the whole framework was developed in
Typescript. This means that there will be no obstacles with the availability of
types also for third party libraries. If a developer wants to use React or Vue
with Typescript, there is still the problem of the types support of third party
libraries. The importance of Typescript can be explained by the fact that type
safety reduces the opportunity of errors, as if the Typescript-Compiler fails
the developer can be sure there is a problem that needs to be addressed. This
means that the developer has increased stability in the code produced.

The tooling with Angular, is better when compared to React. With angular-
cli the developer can spin up an application in a few seconds. It is worth
mentioning that also Vue has a great Command Line Interface (CLI) solution.
With React the developer has to invest more time on the setting up process.
Although, there are existing projects like create-react-app it is not the same,
because its not owned by React itself and its not a CLI solution. Whenever
there is an update of React the publisher of create-react-app has to adapt it
otherwise it may not work anymore. Due to that having tooling like that
integrated into the framework is the better approach.[Filipova, 2016]

Another fact, which is a benefit for Angular is that Google is the owner
of this framework, Vue was published by Evan You. Although, there is an
increasing Vue community, with Google there is a big player on board. Also
the former version of Angular, AngularJS is still supported with updates by
Google. In terms of support this is a huge advantage.

39

3 TU Graz Searchchatbot

Figure 3.9: Mockup of the chat interface

3.4.2 Design

Based on the requirements, a message interface had to be designed. It should
also fit into the corporate identity of the already existing TU Graz website,
which means its colour schema should rely on it. In terms of user experience,
people should immediately know what the TU Graz Searchchatbot is able
to do. In consequence of that, a sidebar with examples was considered to
achieve it, since this interface is not restricted in comparison to a standard
messenger application. Furthermore, a simple standard chat stream with
an input possibility was also designed. Figure 3.9 shows a mockup, built
for getting a solid concept before the implementation stage, on how the
interface would look like. The interface had to be fully responsive, so it can
be easily used in mobile devices. To provide a more complete experience
to the users, the messages types shown were analysed. The aim was to
understand if there would be the need to style them different styling. The
following message types were considered:

• Simple text message
• Message with google maps integration
• Message with a call to action button
• Message with a user image

40

3.4 Client

Another challenge in a conversational design is how to deal with multiple
results. For example, if the user asks for a person and there can be several
persons with the same name. If the result exceeds the amount of three, it
can not be displayed as a message anymore. Due to that, a modal with the
search results should appear with the possibility to show all results and to
filter them. In terms of data protection and the use of a third party NLU
platform the user has to confirm that he is aware of that. As a result of this
there has to be an initial screen which blocks the application until the user
confirms.

After considering all use cases a styleguide for the TU Graz Searchchatbot
had to be made. A style guide is a guideline for all design elements of
an application. This includes the colour schema as well as elements like
buttons, modals, or a navigation. Also the typography is part of it, in case of
the TU Graz Searchchatbot it is not that important since there are no content
pages. The font which was used for this application is Roboto. This font is
part of the google fonts library and was published under apache-license7,
which means it is free to use.

In general a style guide specification has to be done before the development
starts because every functional component should rely on the designed
element to avoid inconsistencies. Figure 3.10 shows the style guide for the TU
Graz Searchchatbot. The primary colour represents the brand colour and it
is used for active buttons, links and headlines. The secondary colour is used
for other elements like the message boxes, borders, or additional elements.
Light and dark are based on the secondary colour to have gradations of it.

7https://www.apache.org/licenses/LICENSE-2.0, accessed 25.04.2018

41

3 TU Graz Searchchatbot

Figure 3.10: Styleguide

42

3.4 Client

(a) Chatbot interface design
(b) Chatbot interface design with naviga-

tion

Figure 3.11: Chatbot interface

After combining all elements of the styleguide the design in figure 3.11 was
created. The intention for that design was to keep the simplicity, so it is
pretty close to a standard messenger application. The initial bot message
points out, that there is a sidebar with basic search examples. Figure 3.11(b)
shows the sidebar with trained examples for the bot. It should be a help
for the user, to learn how to use the chatbot. If a user clicks an example the
sidebar closes and the example text is inserted in the message stream. Right
after the user experience was defined and the design phase was finished the
implementation could be done.

43

3 TU Graz Searchchatbot

Figure 3.12: Architecture of Angular [Source: Angular8]

3.4.3 Implementation

The javascript framework for the TU Graz Searchchatbot is Angular as
discussed in the section 3.4.1. In terms of tooling Angular-cli9 is used and
with it also webpack10. Webpack is a module bundler, which bundles the
CSS and Javascript files, generates chunks for lazy loading, supports hot
module replacment, provides a development server, and many more. The
initial setup of the project is done via the cli with the command ng new. The
webpack setup, the folder structure and the root module of the application
are created after executing this command. In case of this application the
webpack configuration has to be modified. If a developer uses angular-cli, it
is not possible to modify the webpack configuration except if it is ejected.
After ejecting the configuration the necessary settings for the proxy could be
made. The disadvantage of ejecting a webpack config is, that the developer
can not use the ng commands anymore.[Vepsäläinen, 2016]

Angular consists of modules, components, services, pipes, and directives.

8https://angular.io/guide/architecture, accessed 19.04.2018

9https://cli.angular.io/, accessed 19.04.2018

10https://webpack.js.org/, accessed 19.04.2018

44

3.4 Client

Figure 3.12 shows the basic architecture concept of the framework. For this
application there will be two modules, the already created app module
which is the root module, and a shared module. The shared module will
be integrated into the app module. It contains all shared components and
pipes. All other parts will be done in components which are belonging to
the app module. For the interaction with the application interface, ngrx
together with ngrx effects will be used. There will be some other third party
modules, but they are not in responsibility of the creator of this thesis. The
project structure looks as follows:

• App module

– basic overlay component
– header bar component
– message container component

∗ message box
∗ message simple card
∗ message card
∗ message maps
∗ message overlay
∗ message container service

– message input component
– sidebar component

• Shared module

– loader component
– pagination pipe
– transform to link pipe

• Store

– actions
– effects
– reducers

Every component has its own responsibility and is injected into its module.
Store is only a folder to structure responsibilities, the store module itself is
imported from the already mentioned ngrx package. Section3.4.1 explains
how the redux pattern works. The message container component has sub-
components. Those are responsible for the message boxes in the styleguide,

45

3 TU Graz Searchchatbot

Figure 3.13: Application components

being an example of that the the message box with google maps integration.
Every type of a message box is handled with a separate component. Figure
3.13 illustrates the dependency between the application components and
the user interface.

The application works in the following way: After the start up the app
module is loaded, this is the entry point of the application. Within this
module a root component has to be defined via the bootstrap property. In
nearly every case this is the app component. The app component has to lock
the application until the user confirms the data protection information. For
this purpose, a modal is shown and internally the application is blocked
until the confirm application flag is set to true. This flag is stored within the
ngrx data store. Figure 3.14 shows the initial modal. Simultaneously, the
app.component triggers the first bot message Hello! How can I help you? If
you don’t know what you can ask click on the button on the top left-hand corner.
Additionally, an API call is sent to receive a valid session.

If the user confirms the data protection information, messages can be sent

46

3.4 Client

Figure 3.14: Data protection modal

via the message input component. When a message is submitted, three
different actions are dispatched. First, the message the user entered is stored
via the StoreMessage action, the second is a Bot is typing message and
it is stored via the action StoreMessageIsWriting and lastly the message
is sent to the API via the action SendMessage. The actions StoreMessage
and StoreMessageIsWriting are updating an array in the data store; to be
more exact, the reducer slice messages which is an array of type messages.
Figure 3.15 shows the described procedure. Analysing it, it can be seen
that the message reducer gets updated, after dispatching an action with a
corresponding payload. Following actions can be dispatched in terms of the
message reducer:

• StoreMessage - stores the message of a user
• StoreIsWritingMessage - stores the Bot is typing message
• UpdateMessage - updates a message
• DeleteMessage - deletes a message
• SendMessage - sends the entered message to the api

The Bot is typing message is stored in the message reducer as long as the API
has not responded. After the response arrives, this message gets updated

47

3 TU Graz Searchchatbot

Figure 3.15: Message flow

Figure 3.16: Message overlay component with filter

48

3.4 Client

with the new message text. The updating process is triggered by the ngrx
effects middleware. The application shows the entered and stored messages
in the following with following procedure: Entering and sending the mes-
sage is the active part inside of the message input component, the passive
part is done by the message container, it displays the message array. This
component is connected to the data store and whenever there is an update
in the message reducer, the new data are shown. In essence, it loops over
the message array and every entry a message box component will be then
rendered. Inside of the message box component, its type is evaluated, in
the case it is a simple text message, so it can be shown. If it is of another
type, it works the same way, for all the other message box types, with the
only difference that the specific type component is rendered, as mentioned
before.

As can be seen with more granularity in the section 3.5, the message model
has a property for multiple results and also an indicator for maximum
results. If the multiple results array length is bigger then the allowed maxi-
mum, then the message overlay component is rendered. Within this overlay
the user has the opportunity to filter the given results via the message
overlay pipe. A pipe is special component in Angular which enables a
transformation of a given variable, in that case the message array. It filters
the message array and returns a new array with the expected values. Figure
3.16 illustrates the message overlay component.

The google maps integration in the message maps component is done via
static maps11. There is also the possibility to lazy load the image, because
if the message map component is part of list in the overlay it would be to
much traffic to load the map for example for fifty entries. Therefore the lazy
loading property is implemented in this component.

Every cross component interaction is done via the ngrx data store, the same
happens for user interface actions like opening or closing the sidebar. For
the purpose of completeness, a list of the application and layout reducers
with their corresponding actions is provided.

11https://developers.google.com/maps/documentation/static-maps/, accessed
19.04.2018

49

3 TU Graz Searchchatbot

• appReducer

– ReceiveSession - getting the session from the API
– SaveSession - saving the session in the data store

• layoutReducer

– OpenSidebar - setting the state value to true
– CloseSidebar - setting the state value to false

To get a version for production, the implemented code has to be bundled.
To do so, in the command line npm run build had to be executed. After
executing that command, a productive version is built under the dist folder.
For the digitallabs version, there is another build command. The reason for
that is to support another base url and a different Google API key for the
static maps integration. To build a productive version for digitallabs the
command npm run build:digilabs has to be executed.

3.5 Back-end

This section covers the evaluation process of the Node.js framework for
the developed application. Therefore, two widely used frameworks are
compared and evaluated. After that the architecture of the back-end is
illustrated, as well as the underlying implementation.

3.5.1 Evaluation of Node.js Frameworks

General comparison

With the rise of the importance of Javascript Node.js frameworks are widely
used and they are a serious alternative to PHP frameworks like Symfony or
Laravel. In this field, there are several frameworks but there is one which
stands out in the way is accepted by the community. This Node.js framework
is called Express.JS, or simply Express, and was published in 2010. In figure

12http://www.npmtrends.com/sails-vs-express-vs-hapi-vs-koa, accessed 19.04.2018

50

3.5 Back-end

Figure 3.17: Downloads of Node.js frameworks in the last six months. [Source:
npmtrends12]

3.17 the current download numbers can be seen, and the most popular in
the previous six months is also Express. There are some other good Node.js
frameworks, but one very interesting alternative to Express is hapi13. Hapi
was built to mitigate issues faced while using Express. Due to that fact,
those two frameworks will be compared in this section.

Before comparing Express and hapi lets take a quick look what Node.js is in
general. Node.js is a server-side javascript platform on the base of Google
Chrome V8 engine. It is a huge advantage for Javascript developers to
realize full stack application because there is no context switch needed. The
following section describes the basic concept of Node.js.[Hezbullah Shah,
2017]

The idea of using Javascript on server-side might seem odd for develop-
ers who are not familiar with that approach, but there are advantages in
comparison to pure server-side programming languages like PHP, Ruby or
Java. Node is fast and it is developed by a full-time team in Google, which
constantly improving its performance with each release of Chrome. Node is
based on V8, therefore it exists a strong relation between Chrome and Node.
The biggest difference between Node and other server-side technologies is
that it is based on a single-thread approach and the asynchronous coding

13https://hapijs.com/, accessed 25.04.2018

51

3 TU Graz Searchchatbot

style which is a common concept in Javascript on the client side. Other
than that Node.js has many other advantages, which are as follows: [Brett,
2016]

• No need for multi-threading, which is always a challenge in applica-
tion development

• No context switching between client and server side. Possibility of
code sharing between server and browser

• Node is bundled with npm currently one of the best package managers.
It manages all Javascript application dependencies on server and client
side.

[Brett, 2016]

There is to say that there are also alternative package manager out there.
Yarn is the most known one which is a widely used as well. With an un-
derstanding of what Node.js is and what it does in general the mentioned
frameworks can be compared. In essence, Express and hapi have completely
different approaches. Express is a lightweight and flexible framework and
has a low learning curve, whereas hapi is the opposite, providing a rich
feature set. The definition of Express is as follows.

”Express.js is a web framework based on the core Node.js http
module and Connect components. Those components are called
middleware. They are the cornerstone of the framework’s phi-
losophy, which is configuration over convention.” [Mardan, 2014]

The definition of hapi already indicates the enterprise approach with a lot
of functionality.

”hapi.js (commonly referred to as hapi) stands for HTTP API. It
is a rich framework for building applications and services. It was
originally designed for the rapid development of RESTful API
services using JavaScript, but has since grown to be a full web
application framework with out-of-the-box features for templat-
ing, input validation, authentication, caching, and more recently,

52

3.5 Back-end

support for real-time applications with web socket support.”
[Brett, 2016]

Due to the contribution to the large and active community of Express, there
are a lot of third party libraries available. For that reason, Express can be
extended in a way it fulfils the needs of the project. As an example, if an
application needs authentication, the integration with a third party library
is needed. By contrast, Hapi already provides authentication, which then
only needs to be configured. In general, hapi is more configuration centric
to reduce code and hence the learning curve is steep.

Splitting an application into several parts is not done very easily in Express.
If a larger team is working on the project there is the change that the appli-
cation will break, because there is no clear indication on how to properly
decouple code. Hapi has a plugin system for that, so there is a very clear
way to split responsibilities. Another fact worth mentioning is, that hapi has
a test coverage of a hundred percent, and it is stress tested under a realistic
production atmosphere. It was built by the team of Walmart, which has
the particular case of needing be stable on the popular black friday sale, so
security and stability have a high priority when developing the framework,
as the economic interest if the company can not be jeopardized.

Generating an API

By developing an API the routes have to be defined. Hapi and Express
have a different approach on how to implement them. Listing 3.6 shows
how a hello world route can be implemented with Hapi. The same example
is done with Express in listing 3.7. With this simple example it is already
possible to observe the differences between both frameworks. Hapi provides
a server.route function, which takes a single configuration object. With
Express, the HTTP verb get already indicates the method to be used.

53

3 TU Graz Searchchatbot

1 server.route({

2 method: ’GET’,

3 path: ’/’,

4 handler: function (request , reply) {

5 return reply(’Hello World\n’);

6 }

7 });

Listing 3.6: Hapi hello world example

1 app.get(’/’, function(request , response){

2 request.send(’Hello World’);

3 });

Listing 3.7: Express hello world example

Hapi, as already mentioned, is a framework which has a lot of features out
of the box. If there is the need to read the body of an incoming message,
which is a common use case, then it can be done in Hapi without any
additional work. The same task can not be done in Express without an
external library, in that case the body-parser14. Furthermore, the validation
is part of the Hapi environment, it is called Joi. Listing 3.8 shows an example
with a parameter validation.

14https://www.npmjs.org/package/body-parser, accessed 19.04.2018

54

3.5 Back-end

1 server.route({

2 method: ’GET’,

3 path: ’/hello /{name}’,

4 config: {

5 description: ’Return an object with hello message ’,

6 validate: { params: { name: Joi.string ().min (3).required ()

} },

7 pre: [],

8 handler: function (request , reply) {

9 const name = request.params.name;

10 return reply({ message: ‘Hello ${name}‘ });

11 },

12 cache: { expiresIn: 3600000 }

13 }

14 });

Listing 3.8: Hapi parameter validation, [Brett, 2016]

Listing 3.9 shows an example how to use the body-parser in Express to
provide the same functionality as hapi.

1 const bodyParser = require(’body -parser ’);

2 ...

3 const app = express ();

4 ...

5 app.use(bodyParser.json());

6 app.use(bodyParser.urlencoded ({ extended: true }));

7 ...

8 app.post(’/hello’, function(request , response){

9 request.send(’Hello’ + request.body.name);

10 });

Listing 3.9: Express body-parser example

Decision

After evaluation Express and Hapi a decision could be made. One one hand
Hapi is the more powerful and convenient framework, but on the other
Express attracts attention for its simplicity and minimalist approach. For

55

3 TU Graz Searchchatbot

complex enterprise applications, Hapi is the better framework. For this
thesis, however, Express is used, given the there will be only two endpoints
to communicate with the client. Hapi’s feature set would be a bloat of
functionality and it is not used for this application.

3.5.2 Implementation

Since there is a strong connection between the Node.js back-end, which
acts as a middleware, and the NLU platform dialogflow.ai. To ensure a
solid base of work, the setup had to be analysed before the start of the
implementations. The structure of the TU Graz Searchchatbot dialogflow
project is the base for the back-end implementation.

Setup of dialogflow

There are three main components in dialogflow to build a chatbot. Those
are:

• Intents
• Context
• Entities

It is important to understand what they are and what their role is. Referring
to the documentation

”An intent represents a mapping between what a user says and
what action should be taken by your software.” [dialogflow,
2018]

This means that for every search topic there has to be an intent. For every
intent sample, sentences have to be added so dialogflow recognizes the
desired intent correctly. For this application intents for the following search
topics have to be added:

• Contact information - about a person
• Course information - about a course

56

3.5 Back-end

• Library information - about books
• Organization information - about an organization
• Room information - about a room
• Site search - triggers a site search of the TU Graz website

An intent has the possibility to set an input and output context. A context is
a special object witch stores information. For example, if there are follow
up questions, data which was already in this context can be accessed, to be
more precise, via the context object values can be passed between intents.
For the intent content information the context looks as follows:

• Input context: none
• Output context: ctx contact information

The input context is none in that case because it is an entry point of a
chat. The output context is prefixed with ctx and defines the shared object
for the contact information flow. Next training phrases had to be added
which can be seen in figure 3.18. Certain text parts of every training phrase
are highlighted. This indicates the corresponding parameters. A parameter
belongs to an entity, the main component of dialogflow. For the training
phrase Do you have contact information about Martin Ebner? there are two
parameters with different entities which are:

• contact type: contact information
• any: Martin Ebner

Since there is no proper name recognition for german names in dialogflow,
this parameter is of entity any, which means this could be any name. The
parameter contact type has a custom entity which is also called @contact type.
Figure 3.19 illustrates how an entity looks like. There is a list of references
values like p tel office PA and their corresponding synonyms, in that case
phone number, phone, number. The reference value matches the field name of
the XML result in 3.1. Finally, an action which has to be performed for this
intent has to be defined, for this example it is act get contact info is set.

Now, an example query can be made. If a user asks for Do you have contact
information about Martin Ebner? the dialogflow API responds with the JSON
in listing 3.10.

57

3 TU Graz Searchchatbot

Figure 3.18: Dialogflow intent training phrases

Figure 3.19: Dialogflow example entity

58

3.5 Back-end

1 {

2 "id": "11256efc -1fa6 -4ef9 -aef0 -3 d6b03f2e610",

3 "timestamp": "2018 -04 -11 T14 :42:02.968Z",

4 "lang": "en",

5 "result": {

6 "source": "agent",

7 "resolvedQuery": "Do you have contact information about

Martin Ebner?",

8 "action": "act_get_contact_info",

9 "actionIncomplete": false ,

10 "parameters": {

11 "any": "Martin Ebner",

12 "contact_type": "p_detail_infoBlock_webLink"

13 },

14 "contexts": [

15 {

16 "name": "ctx_contact_information",

17 "parameters": {

18 "contact_type": "p_detail_infoBlock_webLink",

19 "contact_type.original": "contact information",

20 "any.original": "Martin Ebner",

21 "any": "Martin Ebner"

22 },

23 "lifespan": 5

24 }

25],

26 "metadata": {

27 "intentId": "c35628dc -974f-4659 -a551 -b0ebfe4dd150",

28 "webhookUsed": "false",

29 "webhookForSlotFillingUsed": "false",

30 "intentName": "[Contact Information]"

31 },

32 "fulfillment": {},

33 "score": 1

34 },

35 "status": {

36 "code": 200,

37 "errorType": "success",

38 "webhookTimedOut": false

39 },

40 "sessionId": "99c33c40 -c101 -499c-a907 -8281 e5be1d60"

41 }

Listing 3.10: Dialogflow response

59

3 TU Graz Searchchatbot

In listing 3.10 all the discussed values can be seen. One interesting property
in the JSON response object is actionIncomplete. This property signals that
the intent is already fulfilled. For example, if the question would be Do you
have contact information? this property would be true because the parameter
@contact type is undefined and a follow up question would appear.

If a developer wants to trigger an intent programmatically, this can be done
with events. Every intent has the possibility to listen to certain events. For
example if a user asks for a phone number of person martin, than there will
be multiple results. Dialogflow does not know how many results the TU
Graz search-proxy found for this query, so the back-end has to fire an event
like evt specify contact information for that to trigger another intent.

To ensure consistency within the dialogflow project the prefixes in table 3.2
are used for the corresponding types.

Type Prefix
Action act
Event evt
Context ctx

Table 3.2: Pefixes for dialogflow

Node.js back-end

The Node.js back-end was implemented, with Express. The reason is that
it acts more like a middleware and there are only two endpoints for the
communication with the client. Nevertheless, there will be business logic in
terms of communication with the dialogflow API and the TU Graz search-
proxy. The two endpoints are listed in table 3.3.

The back-end should also improve the quality of the search results in
comparison to the TU Graz mobile search application. The mobile search
application only represents the result of the search-proxy, so there is no
business logic in terms of improving the search results. While this is not
a big problem in a mobile application it is for a conversational interface.

60

3.5 Back-end

(a) Result with last name (b) Result with first name and last name

Figure 3.20: TU Graz mobile search

Endpoint Method Parameters Description
getSession GET none Returns the cur-

rent session of the
user

communication/send POST object of type
queryMessage

Returns an object
of type message

Table 3.3: Back-end endpoints

61

3 TU Graz Searchchatbot

Figure 3.20 shows the problem. If a user searches for ebner it responds with
six results. If the user specify the name more exactly with first and last
name the application responds with 142 results. The back-end solution will
target and solve that issue by doing an additional filtering of the TU Graz
search-proxy result.

To ensure the possibility of modular extensibility, a proper folder structure
had to be chosen. The idea is to have a main entry point where all future
routes can be added. The routes are modularized in terms of their responsi-
bility. In this case the only main route is communication. Under the folder
communication there is again a main entry point which handles all actions.
According to that the project folder structure looks as follows:

• index.js: root module to plugin routes
• routes: all routes should be placed here

– communication: includes all routes corresponding to communication
∗ actions: all actions such as queries are placed here
∗ models: all object types are placed here
∗ course
∗ library
∗ organizations
∗ person
∗ room
∗ site-search

To provide a proper communication between the client and the back-end
object types are defined. Since Typescript is used in the front-end, this types
can be specified there as well. Following the types are listed.

1 {

2 session: string ,

3 message: string

4 }

Listing 3.11: Object of type MessageQuery

62

3.5 Back-end

Figure 3.21: Message flow

1 {

2 additionalText: string ,

3 cards: Card[],

4 isAdress: boolean ,

5 isCard: boolean ,

6 link: string

7 multipleResults: array

8 text: string

9 }

Listing 3.12: Object of type Message

1 {

2 buttonText: string ,

3 description: string ,

4 headline: string ,

5 image: string ,

6 link: string ,

7 options: {

8 showButton: boolean ,

9 showDescription: boolean ,

10 showImage: boolean ,

11 }

12 }

Listing 3.13: Object of type Card

There are two different flows which can appear during a chat with a user.

63

3 TU Graz Searchchatbot

On one hand, there can be a message which is fulfilled after one iteration,
on the other hand there can be follow up questions. Figure 3.21 shows the
different flows in detail. To better understand the base logic behind these
flows, the whole back-end process will be described below in detail.

First of all, the node server Express has to be started. There two different
starting scripts were to accomplish that with npm start for the development
mode and npm prod for the production version. There is a difference of
the used modules for this two running modes. During the development
the server should restart on every code change, saving the time to this
manually. This is done by nodemon15 a node module which watches files
in the development directory, and restarts the server automatically. While
this is helpful for development, it is not needed in the production version.
However, the server should restart in case of an error, hence minimising any
possible downtime and not compromising the server availability. For that
reason, the node module forever16 was used, which ensures that the server
runs continuously.

After setting up the basics the SDK for dialogflow had to be integrated. This
is a straight forward process, in which the SDK had to be initialized with
an API-key and it was then ready for use.

If a user sends a message with the content Do you have contact information?
the in table 3.3 described endpoint /communication/send is triggered. This
is the entry point for all message queries. The first thing which is done here,
is that the message is forwarded directly to dialogflow which can be seen in
listing 3.14.

1 const request = app.textRequest(req.body.message , {

2 sessionId: req.body.sessionId

3 });

Listing 3.14: Dialogflow SDK

Dialogflow responds either with a valid response or an error. Consider-
ing the response is valid, the two cases in figure 3.21 were handled. If

15https://github.com/remy/nodemon, accessed 19.04.2018

16https://github.com/foreverjs/forever, accessed 19.04.2018

64

3.5 Back-end

Figure 3.22: Dialogflow intent via event

actionIncomplete is true, another textRequest had to be sent otherwise the
action would be evaluated. As discussed above, every intent results in an
action, this action is now evaluated. For this example, the action would be
act get contact info a function call for querying contact information. This
is done via a class called TUSearchProxy, illustrated in figure 3.23. The
XML response has to be parsed according the contact type of the response
of dialogflow. If there is a unique or less than six results, the final response
is sent to the client. If this is not the case, then another event is fired. This
event is called evt specify contact information and triggers an intent in the
dialogflow project. Listing 3.15 gives an example how to trigger an event
via the dialogflow SDK and figure 3.22 shows the corresponding intent.

65

3 TU Graz Searchchatbot

Figure 3.23: TUSearchProxy Class

1 function sendEvent(id, event) {

2

3 const request = app.eventRequest(event , {

4 sessionId: id

5 });

6

7 request.end();

8 }

Listing 3.15: Sending an event via the dialogflow SDK

This kind of a loop will appear as long as the conditions described above are
the same. After specifying the query and getting an unique result, the mes-
sage is returned to the client. This works the same for all other action types
except the action type act get study info. To retrieve information about the
study, the search proxy can not be used. Therefore, the site search of the TU
Graz website has to be triggered with http://search.tugraz.at/search?q=term&
output=xml&sitesearch=www.tugraz.at/en/studying-and-teaching&
ulang=en. The site search responds with an XML consisting of found sub-
pages of the website corresponding to the search term as listing 3.16 shows.
In this example the search term is life long learning.

66

3.5 Back-end

1 ...

2 <RES SN="1" EN="7">

3 <M>7</M>

4 <FI/>

5 <XT/>

6 <R N="1">

7 <U>

8 https://www.tugraz.at/en/studying -and -teaching/degree -and -

certificate -programmes/continuing -education/life -long -

learning/

9 </U>

10 <UE >

11 https://www.tugraz.at/en/studying -and -teaching/degree -and -

certificate -programmes/continuing -education/life -long -

learning/

12 </UE>

13 <T>Life Long Learning - TU Graz </T>

14 <RK >9</RK >

15 <CRAWLDATE >10. Apr. 2018 </ CRAWLDATE >

16 <ENT_SOURCE >T5 -J7PFKQMLX9SBC </ ENT_SOURCE >

17 <FS NAME="date" VALUE="2018 -04 -10"/>

18 <S>

19 ... Life Long Learning Contact.

Life Long Learning Mandellstraße 13/II 8010 Graz

Phone: +43 316 873 4932 lifelong.learning

noSpam@tugraz.at Map. ...

20 </S>

21 <LANG >en </LANG >

22 <HAS >

23 <L/>

24 <C SZ="127k" CID="PlwTzTR_RnEJ" ENC="UTF -8"/>

25 </HAS >

26 </R>

27 ...

28 </RES >

29 ...

Listing 3.16: TU site search result

The XML result has to be parsed and the URL of the first result is taken,
which is https://www.tugraz.at/en/studying-and-teaching/degree-and-certificate-
programmes/continuing-education/life-long-learning/, accessed 19.04.2018. To get
the desired information, this webpage has to be rendered. To accomplish

67

3 TU Graz Searchchatbot

Figure 3.24: TU Graz content page

that request17 was used. With this library the HTML of the website can be
accessed. To parse the website cheerio18 was integrated. Cheerio implements
a subset of jQuery19 and makes the parsing of the body pretty easy. Listing
3.17 illustrates how this procedure is done.

1 request(requestUrl , (err , resp , body) => {

2 $ = cheerio.load(body);

3 let content = $(SELECTOR).text();

4 let fallbackContent = $(‘${SELECTOR_FALLBACK} div:first -

child ‘).text();

5

6

7

8 resolve ({ message: message.getMessage (), event: event.

getEvent () });

9 });

Listing 3.17: Parsing an TU Graz content page

For parsing the content there are two selectors defined, a standard and
17https://github.com/request/request, accessed 19.04.2018

18https://github.com/cheeriojs/cheerio, accessed 19.04.2018

19http://jquery.com, accessed 19.04.2018

68

3.5 Back-end

fallback selector. Generally, every content page has the same HTML structure
of the TU Graz website. Due to that, selectors can be hardcoded. Figure 3.24

illustrates the parsed sections. The extracted text is than transformed to a
message and returned to the client.

In summary, there are actions which refer to the TU Graz search proxy and
the study information action which is retrieved via the TU website itself.
The latter is stable in a long term, because of a hard dependency to CSS
classes, but it can be easily adjusted. Further actions can be added easily in
the main entry point as discussed.

69

4 Discussion

In this chapter the feedback about the Searchchatbot is discussed. In ref-
erence to it, there will be an analysis of the current situation and possible
improvements will be discussed. Since this is a prototype, the feedback
is very important to improve things in an early stage and to better make
decisions for the future.

4.1 Feedback

To be able to make a statement about the TU Graz Searchchatbot a feedback
form was integrated. Since this bot is in the prototype phase the acceptance
of it was questioned. The questions asked were the following:

• How satisfied where you with the Searchchatbot?
• Which search concept would you generally prefer in the future?
• Do you think that the application / the Searchchatbot persist in the

long term?
• In your opinion, the bot worked best in search category ...
• What did you like about the Searchchatbot?
• What did you not like about the Searchchatbot?
• Do you have any further comments or suggestions for us?

The considered time period was from end of September 2017 to end of
February 2018 and twelve people participated in the survey. It has to be
considered that in this period some changes regarding the results of the TU
Graz search-proxy appeared, which were not adapted in the Searchchatbot
implementation. Following, the questions are discussed in detail. It has to

71

4 Discussion

be mentioned that the amount of participants is to less to have a meaningful
knowledge. For the next feedback iteration there should be a longer feedback
phase to gather information, however trends concerning the Searchchatbot
can be recognized.

How satisfied where you with the Searchchatbot?

Figure 4.1: Result of ”How satisfied where you with the Searchchatbot?”

The rating scale includes the values very satisfied to dissatisfied. A fourth of
the people are satisfied, nearly the half kind of and the others were not. So if
66% of the people are in some way satisfied with the bot, which is basically
good signal for a prototype. Figure 4.1 represents the result in detail.

72

4.1 Feedback

Which search concept would you generally prefer in the future?

Figure 4.2: Result of ”Which search concept would you generally prefer in the future?”

As figure 4.2 shows, half of the users would prefer the standard search field,
almost the other half is interested in the bot concept. Also concerning this
question, a basic interest is recognizable. It has also to be taken into account
that people are not used to chatbots in terms of searching. It may need some
time of analysis and optimization to convince people.

Do you think that the application / the Searchchatbot should persist in
the long term?

More than a half of the participants thinks that the Searchchatbot should
persists as an additional solution as figure 4.3 shows. Again since this is a
prototype this is a promising result for the future.

73

4 Discussion

Figure 4.3: Result of ”Do you think that the application / the Searchchatbot should persist
in the long term?”

In your opinion, the bot worked best in search category ...

As seen in figure 4.4, exactly the half of the participants are in the opinion
that the search results where not exactly enough. In a next step this should
be solved by serving more or better interfaces to the bot. At the moment
only the TU Graz search-proxy is used for fetching data. Providing an API
for that with the option of interacting with more meta data would result in
a much better response.

What did you like about the Searchchatbot?

Since this is an open question, following is displayed a sample of the an-
swers.

”I like the application Searchchatbot, it is very innovative and

74

4.1 Feedback

Figure 4.4: Result of ”In your opinion, the bot worked best in search category ...”

invites to a quick search of contact information. I would like to
have it with voice recognition and also mobile. It would be nice
to connect it with Siri so that a phone number could dialed or a
room search could be triggered with Google Maps.”

”I like that it is giving direct links to the relevant pages in e.g.
the library system or TUGRAZonline but also directly displaying
parts of the asked information. When asking for part of a name
with many results it was giving me the answer: I have x results
matching your search. Do you want to see all?”

”I like the dialog.”

It is interesting that especially the design parts which are deviating from the
standard messenger are rated positive. For example the dialog with the filter
option is not available on a messenger platform. Another interesting aspect
is that the bot should also be available on mobile, since it is a responsive
version. Hence, a native mobile application would be appreciated by the
users.

75

4 Discussion

What did you not like about the Searchchatbot?

Once again, this is an open question, following are examples of answers:

”There is no added value to a standard search field. You are
limited in advance. Did not find the course Softwaretechnologie
SE.”

”I search for office and room of person x and I received the
answer ”Sorry I didn’t find information for this course”. The
question and the answer does not match. It would be better to
have a neutral answer which fits. Would also be better to have
some alternative suggestions like ”Did you mean ...”.

I would prefer using the bot if it would be integrated on the
OE-pages as a virtual assistant and not only as a standalone
version.”

”It didn’t found that much.”

”It did not quite work. Only when I tried a different way to ask
my question did it find the answer. How should I know which
sentence to use in order to get a correct answer. It also answered
”right here” when asked about s.o.’s office. There was no link.”

”Currently it feels like nothing more than a single access channel
to multiple search features of TU Graz systems. If this is all it
should be I think a global TU search feature is more reasonable.”

Basically the main problem which can be derived from the answers is again
the underlying search resource. In fact there are some problems with finding
information if the name for example of a course is not typed correctly or
the same as it is stored in the system. To improve that an API should be
provided.

Do you have any further comments or suggestions for us?

Some of the answers are displayed below:

76

4.2 Evaluation and Improvements

”Currently it happens very often if I don’t use some predeter-
mined search patterns, that the bot just does not understand.
If it is not sure it is better to ask. Did you maybe mean that? I
think one should perform multiple searches in all search areas
and try to come up with a possible solution more often rather
than just say ”I dont know”. The search you do internally should
be something like WolframAlpha does when getting a search
request but over internal data.”

”I think a search bot would be great if you plan to make it more
than just one channel to search all TU features. What would
be nice is if for instance if I have a search for a person with
too many matches it asks me back. ”Do you know any other
information about this person?” Then I could answer ”She works
in chemistry”, and this way the person can be found. In my
opinion only if such multi-round conversations are possible a
search bot makes sense instead of search field.”

”If you show contact info don’t just show name plus link but
also the ”most relevant” info directly in the chat. This saves lots
of time in 99% of the cases.”

In general, it can said that more conversational interaction with the bot is
desired. Unfortunately, most of those things are not doable at the moment
with the search proxy. Again, there is a interest of using a Searchchatbot but
it has to be optimized in terms of data resources.

4.2 Evaluation and Improvements

By analysing the results, the Searchchatbot has positive feedback signals
of acceptance. There are things to improve, which can be done by the
implementation of the Searchchatbot itself, but the most important thing
is to provide a better searching API towards the Searchchatbot back-end.
To clarify and to point out which things can be fixed with the current
implementation, a quick recapitulation follows of what dialogflow is able to
do and what is not possible at the moment.

77

4 Discussion

Dialogflow supports an existing application with natural language process-
ing, so it is able to understand intents and parses a sentence accordingly.
It kind of provides a chatbot which is simply based on a decision tree. It
supports machine learning in terms of given examples, but if a user asks a
question and the bot does not understand it, next time the bot will answer
exactly the same because there is no artificial intelligence providing changes
in that way.

Due to that its flexibility is reduced, which means that the user inputs,
especially in the first feedback iteration, has to be logged and analysed,
so the search patterns can be adapted to improve the bot usefulness to its
users. As described in section 3.5.2, names are parsed as a entity with the
type any, so there is a chance of misunderstanding. This was opted for
implementation, because at the moment there is no support for German.
To fix that there has to be a possibility to add names to improve parsing.
Double names are also critical at the moment, which can be solved with a
pattern adaption.

The biggest benefit in kind of user experience would be more interaction
with the bot. To accomplish that, more information resources need to be pro-
vided to answer questions in a better way. The TU Graz search-proxy could
continue to be used, but as a single information resource it is unsatisfactory
for that use case. Providing an API which is dedicated to that purpose
would be the best way to achieve it. Since there is a Node.js back-end in
use, the response should be an JSON object to improve the processing of
the data. This would also improve maintainability of the current system.

78

5 Summary and outlook

The aim of this thesis was to build a standalone Searchchatbot prototype for
the TU Graz which provides the search functionality of the TU Graz search
mobile application. Literature was reviewed to give an overview of chatbots
in general. Several types were discussed and the rise of the chatbots was
explained. Also a comparison of business and customer chatbot approaches
was done. The general approach of a conversational interface was analyzed
and common dialog flow patterns were considered.

Due to that fact, that it had to be a standalone solution, a user interface
had been designed and implemented. To build a stable and easy adoptable
client a modern Javascript framework was used. The most popular front-
end Javascript frameworks were discussed and evaluated and Angular was
chosen for the implementation. Furthermore a styleguide was designed to
ensure consistency.

To provide natural language understanding several platforms was compared
and evaluated. To provide this feature for the Searchchatbot the platform
dialogflow was integrated and a parsing strategy was developed. Several
intents were analyzed and custom entities were created.

To accomplish a communication layer between the messenger client and
the natural language processing platform dialogflow a back-end was im-
plemented. To unify the back-end and front-end programming language
node.js was chosen as a back-end solution. Express and Hapi, two node
frameworks, were evaluated and in terms of the underlying requirements
Express was used.

After receiving of a feedback an evaluation of the user experience was done.
The feedback process delivered revealing aspects. Positive and negative
survey results of the prototype was discussed and solutions respectively

79

5 Summary and outlook

improvements was suggested. From the knowledge of the feedback the most
important improvement would be to provide further data source API’s to
enhance the quality of the results and responds. In general there are positive
user signals to continue the work for the Searchchatbot.

Since the importance of chatbots will still rise this prototype is an interest-
ing first step to provide this kind of application for the TU Graz. Natural
language platforms are becoming smarter very fast, so also in this area there
should be adjustments and further development regarding the Searchchat-
bot. The bot has also an implemented experimental feature, namely a
possibility for voice recognition. Due to the fact that it is not very stable in
combination with dialogflow API it is deactivated at the moment but can
be activated in the future when the API improves. Alexa and co show the
importance of well defined voice interfaces, so it should also be adopted for
the Searchchatbot.

This theses showed a possibility of a searching solution in terms of a chatbot
and the possibilities how to manage that. All together it can be said that
there is an acceptance of it but there are still things to improve since this is
an prototype. One can be sure that chatbots itself will play a important role
of future application development as Nadella said ”Bots will be the new
apps”[Cava, 2016].

80

Bibliography

Banks, Alex and Eve Porcello (2016). Learning React. Functional Web De-
velopment with React and Redux. first edition. O’Reilly Media (cit. on
p. 32).

Bilby (2008). Turing Test. Accessed 19.4.2018. url: https://commons.wikipedia.
org/wiki/File:Turing_Test_version_3.png (cit. on p. 15).

Brandtzaeg, Petter Bae and Asbjørn Følstad (2017). “Why people use chat-
bots.” In: 4th International Conference on Internet Science (cit. on pp. 5,
7).

Brett, John (2016). Getting Started with hapi.js. Build well-structured, testable
applications and APIs using hapi.js. Packt Publishing Ltd. Livery Place
(cit. on pp. xvii, 52, 53, 55).

Cava, Marco della (2016). Microsoft CEO Nadella: ’Bots are the new apps’. url:
https://www.usatoday.com/story/tech/news/2016/03/30/microsof-

ceo-nadella-bots-new-apps/82431672/ (cit. on pp. 5, 80).
Crangle, Colleen E (1997). “Conversational interfaces to robots.” In: Robotica

(cit. on pp. 16–18).
dialogflow (2018). Intents. url: https://dialogflow.com/docs/intents

(cit. on p. 56).
Eschweiler, Sebastian (2017). “Learn Redux - Introduction to State Manage-

ment with React.” In: Accessed 19.4.2018 (cit. on p. 36).
Filipova, Olga (2016). Learning Vue.js 2. Learn how to build amazing and

complex reactive web applications easily with Vue.js. first edition. Packt
Publishing Ltd. (cit. on p. 39).

Freitas, Eduardo and Madan Bhintade (2017). Building Bots with Node.js.
Automate workflow and internal communication processes and provide
customer service without apps using messaging and interactive bots.
Published by Packt Publishing Ltd. (cit. on p. 4).

81

https://commons.wikipedia.org/wiki/File:Turing_Test_version_3.png
https://commons.wikipedia.org/wiki/File:Turing_Test_version_3.png
https://www.usatoday.com/story/tech/news/2016/03/30/microsof-ceo-nadella-bots-new-apps/82431672/
https://www.usatoday.com/story/tech/news/2016/03/30/microsof-ceo-nadella-bots-new-apps/82431672/
https://dialogflow.com/docs/intents

Bibliography

Hezbullah Shah, Tariq Rahim Soomro (2017). “Node.js Challenges in Im-
plementation.” In: Global Journal of Computer Science and Technology: E
Network, Web and Security (cit. on p. 51).

Horton, Adam and Ryan Vice (2016). Mastering React. Master the art of
building modern web applications using React. Packt Publishing (cit. on
p. 34).

Klopfenstein, Lorenz Cuno et al. (2017). “The Rise of Bots: A Survey of Con-
versational Interfaces,Patterns, and Paradigms.” In: the 2017 Conference
(cit. on p. 4).

Kunz, Gion (2016). Mastering Angular 2 Components. Learn to build component-
based user interfaces of the future using Angular 2. first edition. Packt
Publishing Ltd. (cit. on p. 31).

Luka Bradeško, Dunja Mladenić (2012). “A Survey of Chabot Systems
through a Loebner Prize Competition.” In: Conference Paper (cit. on pp. 4,
14).

Mardan, Azad (2014). Pro Express.js. Maser Express.js for your development.
first edition. Apress (cit. on p. 52).

Munford, Monty (2016). How chat apps are transforming the global conversation.
url: http://www.bbc.com/news/business-37153831 (cit. on p. 5).

Nimavat, Ketakee and Prof. Tushar Champaneria (2017). “Chatbots: An
overview Types, Architecture, Tools and Future Possibilities.” In: IJSRD
- International Journal for Scientific Research and Development (cit. on pp. 9–
12).

Redux (2018). Motivation. url: https://redux.js.org/introduction/
motivation (cit. on p. 36).

Shevat, Amir (2017). Designing Bots. Creating Conversational Experiences. first
edition. O’Reilly Media (cit. on pp. 3, 4, 6, 8, 9, 12, 16, 18).

Stapleton, Jennifer (2002). DSDM: Business Focused Development (Agile Soft-
ware Development Series). Pearson Addison Wesley Prof (cit. on p. 21).

Vepsäläinen, Juho (2016). SurviveJS - Webpack and React. From apprentice to
master. Leanpub (cit. on p. 44).

Weizenbaum, Joseph (1978). Die Macht der Computer und die Ohnmacht der
Vernunft. From apprentice to master. Suhrkamp Verlag (cit. on p. 3).

82

http://www.bbc.com/news/business-37153831
https://redux.js.org/introduction/motivation
https://redux.js.org/introduction/motivation

	Abstract
	Kurzfassung
	Introduction
	Motivation
	Problem
	Objective

	Chatbot
	What is it?
	Why do people use it?
	Types
	Form of communication
	Knowledge Domain

	Goals
	Task based
	Conversation based
	Information based

	Use cases
	Entertainment
	Customer Service and FAQ
	Conversational commerce
	Health
	Artificial intelligence

	Business versus consumer bot
	Conversational Interface
	Onboarding
	Dialog strategies
	Error handling

	TU Graz Searchchatbot
	Definition of the task
	Architecture
	Evaluation of NLU Tools
	Client
	Evaluation of Front-end Frameworks
	Design
	Implementation

	Back-end
	Evaluation of Node.js Frameworks
	Implementation

	Discussion
	Feedback
	Evaluation and Improvements

	Summary and outlook
	Bibliography

