
Maximilian Toller, BSc

Parameter-Free Collective Anomaly
Detection in Sequential Data

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Dipl.-Ing Dr.techn. Roman Kern

Institute of Interactive Systems and Data Science
Head: Univ.-Prof. Dipl.-Inf. Dr. Stefanie Lindstaedt

Graz, July 2018



This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template


Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

iii





Abstract

Anomaly detection is an essential research topic in data science. Detecting
anomalies that occur collectively in a sequence is useful for many applica-
tions such as intrusion or fault detection. This thesis presents a parameter-
free solution for detecting collective anomalies in sequential data based
on stationarity and volatility estimation (STAVE). The STAVE algorithm
extracts subsequences of a full sequence with a sliding window and clusters
them according to a stationarity and volatility distance function. Collective
anomalies are then detected by extracting the longest connected sequence
within the smallest cluster. In a practical evaluation, STAVE achieved results
comparable to commonly used parametric alternatives, while retaining low
computational complexity and requiring no input other than the sequence
to be investigated.

v





Contents

Abstract v

1 Introduction 1

2 Background 7
2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Anomaly Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Probabilistic Methods . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Entropy-Based Anomaly Detection . . . . . . . . . . . . 10

2.3.2 Markov Chain-based Anomaly Detection . . . . . . . . 12

2.3.3 Drawbacks of PST and Probabilistic Methods . . . . . 13

2.4 Discords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Symbolic Aggregate Approximation . . . . . . . . . . . 15

2.4.2 Heuristically Ordered Time Series using SAX . . . . . 16

2.4.3 Drawbacks of HOT SAX and Discords . . . . . . . . . 17

2.5 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . 19

2.5.1 Recurrent Neural Networks . . . . . . . . . . . . . . . . 21

3 Preliminary Work 23
3.1 Season Shapelets . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Regions of Interest . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Backward similarity . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Methods 29
4.1 Stationarity and Correlation . . . . . . . . . . . . . . . . . . . . 29

4.2 Modeling Sequence Behavior . . . . . . . . . . . . . . . . . . . 30

4.2.1 Seasonal Sequences . . . . . . . . . . . . . . . . . . . . 30

4.2.2 Noisy Sequences . . . . . . . . . . . . . . . . . . . . . . 32

4.2.3 Random Walk Sequences . . . . . . . . . . . . . . . . . 33

vii



Contents

4.3 Practical Implementation . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Estimating Stationarity . . . . . . . . . . . . . . . . . . . 35

4.3.2 Estimating Volatility . . . . . . . . . . . . . . . . . . . . 36

4.4 Collective Anomaly Detection with STAVE . . . . . . . . . . . 38

5 Evaluation 43
5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.2 Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.3 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Conclusion 55

Bibliography 67

viii



List of Figures

1.1 A data sequence with a collective anomaly between time 150

and 200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 A noisy time series with point anomalies and one collective
anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 A noisy data sequence with a collective anomaly from obser-
vation 140 to 169 . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 An exemplar data sequence where SAX with l = 3 or 4 is a
bad choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 A sequence where Euclidean distance can be misleading . . . 19

2.4 A model of a perceptron. x is the input, w the weights. These
are multiplied, summed up and then fed into the activation
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 A recurrent neural network. Edges may go forward (black),
backward (green), within layers (red) or stay at the same node
(blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 A seasonal sequence (top) and the corresponding shapelet
(bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 A sequence (black) and the current region of interest (red) . . 25

3.3 A sequence with an anomaly (top) and the backwards dis-
tance function (bottom). . . . . . . . . . . . . . . . . . . . . . . 27

4.1 A sequence of monthly sunspots (black) was approximated
by a sinusoidal sequence (magenta). . . . . . . . . . . . . . . . 31

4.2 A sequence (black) with added ergodic white Gaussian noise
(blue) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 An exemplar random walk data sequence . . . . . . . . . . . . 34

4.4 A raw data sequence of monthly air passengers t (left) and
the interpolation T (right). . . . . . . . . . . . . . . . . . . . . . 37

ix



List of Figures

4.5 A random walk sequence with an anomaly (left) and the
corresponding STAVE distance(right) . . . . . . . . . . . . . . 40

5.1 Histogram of sequence lengths found in the test data . . . . . 46

5.2 Histogram of anomaly lengths found in the test data . . . . . 47

5.3 Histogram of the anomaly length ratios m
n . . . . . . . . . . . 48

5.4 MCC scores per test case. Algorithms from Top to Bottom:
ENTROPY, DISCORDS, HOT SAX, STAVE4, STAVE√n, ADFVE4,
ADFVE√n,STAVAR4, STAVAR√n,ADFVAR4, ADFVAR√n . . . 50

5.5 Mean STAVE MCC scores by window length . . . . . . . . . . 51

x



1 Introduction

In present days, an abundance of data is produced every day on the Web.
A subgroup of this data is called sequential data, which describes ordered
sequences of data. Sequential data is only required to have an ordered
data sequence and the data does not need to follow any other particular
structure. This data type is produced by a number of applications, ranging
from econometrics over network traffic to user-action sequences. These many
potential origins for sequential data give it an impact on several different
areas of present society. By analyzing it, one can gain insights which are
useful in various scenarios. For example, if a financial trader analyzes a
stock market index and consequently realizes that it is likely to drop in the
next days, he will be able to use this knowledge to his advantage. Another
example for the benefits of sequential data analysis comes from medicine. If
a heartbeat monitor regularly gives off a false alarm, one might be able to
explain this behavior by devising a model for the monitor’s output.

The above examples outline a central task of data science: Gaining a better
understanding of why data behaves in a particular way. There are several
ways to achieve this, but a good approach is devising mathematical models.
The reason for this is that mathematical models are reasonable, predictable
and reproducible. They can be used in mathematical proofs and can also
allow a user to predict the future behavior of a data sequence. There are
numerous different types of models, and they can be applied in countless
scenarios [5] [8]. They can even be used to describe random or highly erratic
data as long as the behavior is at least partially predictable.

When constructing models for sequential data, it is important to assure
that they can truly describe what they are meant to describe. Therefore,
models need to be evaluated after they were constructed. This is typically
achieved by fitting a model’s parameters to one dataset, and then testing it

1



1 Introduction

on a different dataset [2] [5]. Other evaluation steps can examine a model’s
scope or investigate assumptions about causality within a model.

Generally, when applying a fitted mathematical model to its designated
sequential data, it is likely that the data will largely, but not completely
match the model’s predictions. This is only natural, since mathematical
models are a simplification of data. Constructing a model so that it perfectly
matches a dataset will usually lead to overfitting [5]. This would limit the
model’s scope to only the data it was constructed for, making it otherwise
useless. Consequently, small deviations between model and data are tolera-
ble, while great differences would question the model’s validity. In such a
case, devising a different model becomes necessary.

However, there are also phenomena which cannot be properly describe with
conventional models. These occurrences are referred to as anomalies. We
define anomalies as observations that are so different from the remaining
data, that attempting to describe them with the original model causes the
model to lose its validity on the remaining data 1. This interpretation is
different from classical anomaly definitions, such as:

• An observation that appears to deviate markedly from other members
of the sample in which it occurs. [9]

• An observation (or subset of observations) which appears to be incon-
sistent with the remainder of that set of data [3]

• Patterns in data that do not conform to a well defined notion of normal
behavior [7]

• An observation, which deviates so much from other observations as to
arouse suspicions that it was generated by a different mechanism [11]

An exemplar data sequence with an anomaly is depicted in figure 1.1. There,
a periodically oscillating signal with an anomaly between time 150 and
200 can be seen. Such anomalies pose problems for many sequential data
applications, since they are difficult to explain and fitting a model on them
makes it useless on normal data. Typically, anomalies are caused by an
external interference on an otherwise closed system. For example, let us
assume that a CO2-measuring device is placed in a room to monitor air
quality. The values it measures will depend on various influences, such

1We use this definition, since it conforms best with the approach presented in Chapter 4

2



as the number of people in the room, whether windows are opened or if
any plants are in the room. Such situations could be considered as normal.
However, if a person strongly exhales directly into the CO2-measuring
device, it would measure an abnormally high value. This would then be
an anomaly and it would be impossible to explain with a model which
describes normal CO2-related activity in this room.

Investigating anomalies in a system can be a very beneficial activity. If one
can devise a method for automatically detecting them, they can be separated
from the normal data. Such an anomaly detection method would have
multiple practical applications. For example, let us imagine a web server
that offers a chat service to its clients. If this server is suddenly targeted
by a distributed denial-of-service attack, it will receive an abnormally high
amount of web traffic, which prevents it from responding to normal clients.
In such a case, detecting and separating normal from abnormal web traffic
would allow the server to continue to provide its service in spite of the
attack.

Time

V
2

0 50 100 150 200 250 300

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Figure 1.1: A data sequence with a collective anomaly between time 150 and 200

3



1 Introduction

There are different types of anomalies in sequential data. Due to their vague
definition, anomalies can occur in countless different forms, as long as they
behave clearly different from the remaining data. Further, several distinct
types of anomalies can even occur within a single data sequence [7]. This
makes general anomaly detection challenging. Therefore, instead of trying
to detect all possible types of anomalies at once, it might be easier to detect
one particular anomaly type that is prevalent in various applications. One
such type is the collective anomaly [7], which is defined as a collection
of related data points that are anomalous. In the case of temporal data,
collective anomalies are connected subsequences of one full data sequence
that behave differently than the rest. One exemplar collective anomaly can
be seen in above in Figure 1.1. In real temporal data, collective anomalies
are usually caused by an external influence which affects the data over a
certain time period. All of the examples for anomalies given above describe
collective anomalies in temporal data sequences.

The problem of detecting collective anomalies in temporal data has received
some attention in anomaly detection literature, although it is still less
explored than other anomaly types [7]. The techniques which are used to
detect them differ from those which are used for other types. What most
of them have in common is that they work with sequential data collections.
There, it is assumed that a collection contains many normal sequence, and
few anomalous sequences. While this is an interesting setting, it requires a
collection of sequences to be implemented in practice.

In this thesis, collective anomalies are investigated in a different scenario.
The given data consists of only a single data sequence which may or may
not contain one or several collective anomalies. This particular setup is very
interesting since it requires only very little data. Additionally this setup is
theoretically more challenging than databases yet still seems to frequently
be trivial for humans. For example, when looking at Figure 1.2, several
anomalies are immediately evident. While the main part of the noisy se-
quence moves unpredictably inside a restricted range, a few data points are
far outside of this range. These points are point anomalies, since they only
affect a single observation. The other anomaly with is also clearly visible is
the linear behavior between approximately time 300 and 400. This is a collec-
tive anomaly, since the anomalous observations are connected over time. All
of these anomalies can be easily identified by looking at them. However, for

4



Time

V
2

0 100 200 300 400 500 600

−
50

0
50

10
0

Figure 1.2: A noisy time series with point anomalies and one collective anomaly

a computer, this is not an easy problem. Mathematically detecting collective
anomalies is challenging since one cannot rely on the fact that anomalies
”look” different from the remaining data. When only presented with a nu-
meric data sequence without visualization, detecting collective anomalies
becomes much harder. Humans will be slower at spotting anomalies in raw
numerical data than at ’seeing’ them in a data visualization.

With only a single given data sequence, the difficulty of detecting collective
anomalies largely depends on what one knows about the data in advance.
If, for example, it is known that the data originates from a climate database,
one can expect the data to have seasonal influences. Such influences can
then be used to facilitate the collective anomaly detection. With seasonal
influences, one can deduce a contextual model describing where the data
should be at a given point in time. If there are collective deviations from
the model, then these are likely collective anomalies. However, in this thesis
we will assume than there is no prior knowledge about the data. Of course,
this rules out the use of approaches such as the seasonal method that

5



1 Introduction

was just described. The motivation for complicating the problem in such
a way is clear: If nothing is known about the data, and one is still able to
reliably solve the detection problem, then this solution will be beneficial for
countless different practical applications. Instead, solving collective anomaly
detection with prior contextual assumptions about the behavior of the data
would restrict the solution to data that truly behaves as assumed.

Additionally, since nothing is known about the data in advance, one can also
not expect that such information is given to the solution before it can solve
the problem. This means that an algorithm, which should solve collective
anomaly detection without prior knowledge about the data at hand, may
not depend on parameters which are specified by a human. Otherwise, the
task of acquiring appropriate knowledge about the data is simply handed
to the user and this excludes a fully automated solution to our problem.
Consequently, the solution may only have one input: the data in which it
should detect collective anomalies. Further, it will be assumed that this data
always contains a single, continuous anomaly.

The solution we devised is based on modeling sequence properties. These
properties are computed from the entire sequence, and from all subse-
quences. The distance between the properties of the full sequence and the
subsequences is then used to split the subsequences in two clusters. From
the smaller cluster, the longest connected subsequence is extracted, which
corresponds to a collective anomaly according to the previously modeled
sequence properties.

So, to summarize, the problem which is addressed in this thesis is parameter-
free collective anomaly detection a single data sequence without any knowl-
edge about the data’s origin. A reliable solution for this problem will be
beneficial for many practical applications such as the examples given above.
In the following chapters we will discuss which related solutions have al-
ready been proposed by literature, how anomaly detection can be achieved
in a parameter-free way, how the new method proposed in this thesis
compares against related methods, and what this implies for future work.

6



2 Background

In the data science literature, there are several publications which address
anomaly detection in sequential data. In this chapter, we draw borders be-
tween different types of anomalies which are investigated in literature. Then,
we discuss the solutions proposed by these publications and the techniques
upon which they are based. Generally, the related publications are split
into two categories: Probabilistic solutions and discord-based solutions. The
former use the frequency of observations to detect anomalous behavior,
while the latter use similarity measures.

2.1 Terminology

The term anomaly is not always used in computer science literature to
describe anomalous data behavior. Another frequently-used term is outlier.
According to Aggarwal [1], these two terms are synonymous and can be
used interchangeably. However, most publications which are cited in this
thesis and mention outlier detection refer to point anomalies/outliers. This
is one particular anomaly type, which is discussed below. Therefore, in this
thesis abnormal behavior of sequential data will be referred to as anomaly.

2.2 Anomaly Types

As indicated above, there are countless different types of anomalies which
can occur in sequential data. In this section, the types which are most promi-
nently investigated in literature are presented. In a survey by Chandola [7]

7



2 Background

which contrasts different approaches to anomaly detection, anomalies are
divided into three distinct categories:

Point Anomalies are individual abnormal points in a data sequence. They
are the simplest and most common anomaly type, according to Chandola.
Here, simple refers to how difficult it is to detect, remove or ignore them.
Commonly, point anomalies take abnormally high or low values, making
them clearly visually distinguishable from the remaining data. A practical
example would be a temperature sensor, which usually measures daily
temperatures between -50°C and 60°C, yet during one single measurement it
malfunctions and measures 840°C, which is far too high. Point anomalies can
be problematic for non-robust algorithms, such as simple linear regression
or moving-averages.

Contextual Anomalies are also individual abnormal points in a data se-
quence. Unlike point anomalies, contextual anomalies do usually not take
abnormally high or low values. Instead, they are only abnormal within
a given context. For example, if the above mentioned temperature sensor
would measure -10°C, then this alone is not an anomalous event. If, how-
ever, it is known that this measurement was made in summer, then this
additional context makes the measured value abnormal. Detecting contex-
tual anomalies is more challenging than identifying point anomalies, since
the context of the measurement has to be known. This either requires an
expert who individually identifies contextual anomalies, or a sophisticated
model which puts a data sequence into context. Consequently, the success
of contextual anomaly detection depends on a specification of a context or
at least contextual attributes.

Collective Anomalies are related anomalous points which occur in groups.
For sequential data, this means that they occur consecutively after each
other. The individual observations can be abnormal by themselves, yet this
is not required. They can be collective groups of point anomalies, groups
of contextual anomalies, both or neither. A collective anomaly is abnormal
because the mutual occurrence of its observations cannot be explained with

8



2.3 Probabilistic Methods

a model describing the remaining observations. An example would be a
skipped heartbeat measured by an electrocardiograph. The value of each
observation made during the skipped heart is normal by itself and therefore
no point anomaly. Further, they are also no contextual anomalies, since in
the nearby observations no heartbeat was occurring. Yet when one sees
the individual observations as a connected unit, it becomes evident that a
interval between the last and the next heartbeat was too long. Exploring
and potentially detecting collective anomalies has been subject of a few
publications. These will be discussed in the following sections.

2.3 Probabilistic Methods

In a nutshell, probabilistic methods for collective anomaly detection are
based on the assumption that one is less likely to observe anomalies than
normal data. Consequently, one should more likely see regular observations
than anomalous data instances. Based on this fact, information theory
measures such as entropy can be used to distinguish between normal and
anomalous.

Let
t = t1, t2, ..., tn

be a sequence of real-valued observations and

c = c1, c2, ..., cm = tk, tk+1, ..., tk+m−1

a subsequence of t. Then the entropy H(t) is the unpredictability of sequence
t. Formally, this can be defined as

H(t) = −
n

∑
i=1

P(ti) log2 P(ti), (2.1)

where P(ti) is the empirical probability of observing ti. This probability is
commonly estimated with

P(ti) =
F (t−1(ti))

n
,

9



2 Background

where F (t−1(ti)) is the number of observations in t which are equal to ti.

If the entropy of a sequence is low, this suggests that sequence ti behaves
predictably. Conversely, if H(t) is high, then t is hard to predict precisely,
which implies that it is difficult to describe by a model. Therefore, anomalous
behavior increases the entropy of a sequence, and this can be used for
collective anomaly detection. If removing c from t reduces the entropy, then
c is less normal than the remaining observations. Hence, entropy based-
anomaly detection assumes that c is anomalous if

H(t \ c) < H(t). (2.2)

2.3.1 Entropy-Based Anomaly Detection

From Equation 2.2, the first brute-force solution for collective anomaly detec-
tion can be derived. m is the maximum length of the collective anomaly.

Algorithm 1 Brute-Force Entropy
Require: t, m

minH ← H(t)
cmin ← {}
for i← 1...n− 1 do

for j← i + 1...min(n, i + m− 1) do
c← {ti, ..., tj}
if H(t \ c) < minH then

minH ← H(t \ c)
cmin ← c

end if
end for

end for
return cmin

The idea behind Algorithm 1 is simple: Remove every possible connected
subsequence of t once, and check how the entropy changed. The sub-
sequence which decreased the entropy the most is then the collective
anomaly.

10



2.3 Probabilistic Methods

While this approach is simple, it also has considerable deficits. m must
exactly match the length of the collective anomaly, since otherwise the
entropy of the collective anomaly could be further increased by appending
it to normal observations. For example, given a sequence

t′ = 0, 0, 0, 0, 0, 0, 39, 33, 29, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

it is clear that the collective anomaly in t′ is t′7, t′8, t′9 = 39, 33, 29. With the
correct anomaly length m = 3, Algorithm 1 would indeed return c′ =
t′7, t′8, t′9. However, if m is not known in advance and guesses that m = 5,
then Algorithm 1 would return c′ = t′5, t′6, t′7, t′8, t′9, since the entropy of this
sequence is even higher.

Another more subtle problem of Algorithm 1 is that collective anomalies do
not have to take unexpected values, they are only required to be collectively
anomalous. An example for such a case is depicted in Figure 2.1. Collective

Time

S
er

ie
s 

1

0 50 100 150 200 250 300

0
50

10
0

15
0

20
0

Figure 2.1: A noisy data sequence with a collective anomaly from observation 140 to 169

anomalies of this type are difficult to detect with entropy based methods,
since they may seem to be more regular than the remaining data.

11



2 Background

2.3.2 Markov Chain-based Anomaly Detection

In literature, more sophisticated methods than Algorithm 1 can be found.
One such approach is based on first order Markov chains , which are
stochastic processes with a memory of one observation. The term stochastic
describes a probabilistic process that is influenced by past events and present
probabilities. Since a model which only considers dependencies between
two consecutive observations cannot be sufficient for collective anomaly
detection, n-Markov chains can be used instead 1.

Many real-world data sequence from various domains exhibit a behavior
called short memory, which can be mathematically expressed as

P(tn|tn−k...tn−1) ≈ P(tn|tn−L...tn−1)∀k > L. (2.3)

In essence, this means that the conditional probability of an observation
may depend on a varying number of previous observations. So, if one
assumes the data at hand exhibits short memory, then using one constant
n-Markov chain is insufficient. Therefore, Ron et al.[22] proposed a variable-
order Markov chain. They also presented an appropriate representations of
this model: The Probabilistic Suffix Tree (PST). This is a tree, where each
edge represents a (discrete) symbol from the symbol alphabet G, and every
internal node has one edge for each possible symbol that could follow
it. The nodes also store the next symbol probability γ, with ∑|G|i=1 γi = 1.
The probability that a probabilistic suffix tree creates a sequence t0 can be
expressed as

PS(t0) =
|G|

∏
i=1

γi−1(t0
i ) (2.4)

which simply is the product of the edge probabilities that progress down S
and produce t0.

The PST was used in several following publications for the classification of
sequences. If one combines the PST with a similarity measure, it can be used

1An n-Markov Chain has a memory of n observations.

12



2.3 Probabilistic Methods

for detecting anomalous sequences. This was first done by Sun et al. [24],
who used the similarity measure SIMN which is defined as

SIMN(t0, S) =
1
m
(log PS(t0

1) +
m

∑
i=2

PS(t0
i |t0

1...t0
i−1)) (2.5)

where t0 is the query sequence. An advantage of this measure is that it also
considers the length of a sequence, unlike many other similarity measures.
In a following experimental study, Sun et al. showed that their method
is fast and well-suited for deciding if a query sequence is abnormal with
respect to a sequence database. Additionally, they addressed the problem of
detecting the top-n anomalous sequences in a database.

2.3.3 Drawbacks of PST and Probabilistic Methods

To transfer the method of Sun et al. to the setting of this thesis, where
only a single sequence without a database is known and a anomalous
subsequence is searched, several adjustments are required. Firstly, a database
must be generated. This can be achieved by generating P(t), the set of all
subsequences of t. Secondly, only the top-n anomalous sequence problem
they addressed is viable in our setting, since no query sequence is available.
Finally, the real-valued data has to be discretized, or at least rounded to a
few significant digits, to keep the number of branches in the PST reasonably
small 2.

These required adjustments cause additional problems. On the one hand,
discretization is can be problematic, since much information may be lost
during the process and the associated discrete intervals have set to appropri-
ate values. On the other hand, P(t) is not equivalent to a sequence database.
This is, in fact, a general problem of relating sequence database research to
research on a single sequence. In a database, all sequences have an explicitly
defined beginning and end, whereas subsequences extracted from a source
sequence do not. Of course, a subsequence can be seen as an individual

2To represent a PST with real-valued sequences, every node would require one edge for
every possible real-valued observation that could follow it, which is infeasible in a practical
context.

13



2 Background

sequence with a start and an end, yet these two important points are chosen
by a user or an algorithm and not already determined in advance. This
is a great difference from P(t) to a database. The subsequences in P(t)
should not be seen as individual instances, since all the information they
contain comes from the original sequence. They may overlap, or can be
subsequences of each other.

Attempts to circumvent this problem by generating a database in a different
way than using P(t), such as splitting t into equal-length subsequences, will
not resolve the difficulties. With only a single given data sequence, there
simply is no more information available than this one original sequence.
Consequently, to successfully detect collective anomalies in a single sequence
t, it must by itself contain enough information so that one can distinguish
between normal and anomalous behavior. This means that the length m of
the collective anomaly c has to be short compared to the sequence length n,
which means

m� n. (2.6)

2.4 Discords

Since probabilistic anomaly detection methods suffer from the deficits men-
tioned in Section 2.3, researchers have come up with a more practical
approach. This approach is based on discords. Let S(c, d) be a similarity
measure and d̂ a subsequence of t with length m. If a sequence t is split into
n
m subsequences T = T1, ..., T n

m
with length m, then d̂ is a discord if

d̂ = arg min
d

(S(Td, arg max
e

(S(Td, Te))) (2.7)

This means that a discord d̂ is the sequence in T whose nearest neighbor is
the least similar. Using discords for collective anomaly detection is simple.
The discord is assumed to be equivalent to the collective anomaly. A brute
force solution suggest by Keogh et al. [14] for finding discords, and thus also
for finding collective anomalies, can be seen in Algorithm 2. This solution

14



2.4 Discords

Algorithm 2 Brute-Force Discords
Require: T, m

minsim ← ∞
locationmin ← NaN
for d← 1...n−m + 1 do

maxsim ← 0
for e← 1...n−m + 1 do

if S(Td, Te) > maxsim then
maxsim ← S(Td, Te)

end if
end for
if maxsim < minsim then

minsim ← maxsim
locationmin ← d

end if
end for
return [minsim, locationmin]

will reliably identify the discord of a sequence t as long as m is given.
However, it is also a slow algorithm with a worst-case complexity of O(n2),
which is why Keogh et al. also presented a method for speeding it up. This
acceleration is based on a symbolization of the sequence.

2.4.1 Symbolic Aggregate Approximation

A commonly used discretization technique for sequential data is Symbolic
Aggregate Approximation (SAX), which was suggested by Lin et al. [16].
It consists of two steps: Piecewise aggregate approximation and symbol-
ization. The idea of the first step is to reduce the dimensionality of t to a
w-dimensional space with w < n. This can be achieved by replacing neigh-
boring observations, called ”frames”, by their means. Mathematically, this
can be expressed as

t̄i =
w
n

n
w i

∑
j= n

w (i−1)+1
tj, (2.8)

15



2 Background

where t̄ = t̄1, ..., t̄w is the piecewise aggreate approximation of t. In essence,
this means that, unlike splitting t into n

m subsequences T of length m as in
the probabilistic approaches, t is summarized in w observations t̄ of length
1.

After the dimension reduction, t̄ is symbolized . Based on the assump-
tion that a normalized 3 sequence tN follows a known distribution [15],
breakpoints β = β1, ..., βl−1 for the l symbols can be chosen is such a way
that every symbol has an equal probability. This can be achieved with a
statistical table for the Gaussian distribution. The breakpoints β are then
used to discretize the real-values of tN to a symbolized sequence St.

2.4.2 Heuristically Ordered Time Series using SAX

We introduced SAX in the above section to speed up Algorithm 2. In essence,
what makes this algorithm slow are the two for loops, both of which have
a run-time of O(n). At this point it is important to observe that in fact no
full iteration over d and e is necessary. As soon as a value was found that
is larger than the current maxsim, the loop can be aborted. So, if the equal
length subsequences T were ordered in an ideal way, then Algorithm 2

would be significantly faster with O(n) run-time.

Keogh et al. [14] solved this with ”Heuristically Ordered Time series 4

using Symbolic Aggregate Approximation” (HOT SAX). They extract subse-
quences of t with a sliding window, and then symbolize these subsequences
with SAX. Next, these symbols are organized in a occurrence map and a
prefix tree, which are used to identify which symbols occurs how frequently
and where it appears. Both of these structures can be computed in O(n)
space and time. The discord d̂ can then be identified in O(n) time by only
iterating over all symbol sequences which occur once. If the algorithm has
not found the discord in the set of all symbol sequences which occur exactly
once, then the remaining sequences are iterated in random order.

3A sequence t can be normalized to tN with tN
i = ti−µt

σt
, where µt is the mean and σt

the standard deviation of t
4A time series is a real-valued time-discrete temporal sequence

16



2.4 Discords

2.4.3 Drawbacks of HOT SAX and Discords

The effectiveness of HOT SAX was demonstrated in several practical experi-
ments with data from various different domains. To provide concrete values
for the parameters introduced above, which were the alphabet size l and the
word length w, Keogh et al. provide two practical observations. While they
admit that w strongly depends on the dataset, they also claim that, for l, a
value of either 3 or 4 is best ”for virtually any task on any dataset” [14].

This is not true and easily refuted. Let D be a multimodal 5 distribution
with 5 or more distinct modes. Any data sequence from this distribution
with sufficiently many observations cannot be properly represented by three
or four symbols. An exemplar data sequence where SAX with l = 3 or 4
does not work is depicted in Figure 2.2. Consequently, using SAX adds
two parameters which require tuning to the collective anomaly detection
problem. Another critical parameter required by discord-based methods is
the length of the anomaly, as otherwise one could not divide a sequence
into subsequences and search for the least similar.

Further, detecting discords fully depends on the selected similarity or dis-
tance measure. Many solutions in literature use Euclidean distance, which
is defined as

δ(x, y) =

√
n

∑
i=1

(xi − yi)2. (2.9)

While this measure is suitable for many different problems, it only depends
on the geometric distance between x and y. This can cause undesirable
side effects, such as an over-interpretation of y-shifts. An example for this
can be seen in Figure 2.3. Consequently, other anomaly detection methods
that fully rely on Euclidean distances for measuring similarity, such as
Matrix Profile-based discord detection [27], are not ideal for highly variant 6

or non-stationary 7data. In spite of their disadvantages, discords have a
distinct advantage over probabilistic methods. Detecting anomalies requires

5A multimodel distribution is the sum of several Gaussian distributions with distinct µ
and σ.

6Variance is the second statistical moment and defined as var(x) = 1
n ∑n

i=1(x̄− x)2

7Stationary processes are defined in Chapter 4.

17



2 Background

Time

d

0 500 1000 1500 2000 2500 3000
85

90
95

Time

Se
rie

s 
1

0 50 100 150

1.
0

1.
5

2.
0

2.
5

3.
0

Time

Se
rie

s 
1

0 500 1000 1500

1.
0

1.
5

2.
0

2.
5

3.
0

Time

Se
rie

s 
1

0 50 100 150

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Time

Se
rie

s 
1

0 500 1000 1500

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Time

Se
rie

s 
1

0 50 100 150

1
2

3
4

5
6

Time

Se
rie

s 
1

0 500 1000 1500

1
2

3
4

5
6

Figure 2.2: An exemplar data sequence where SAX with l = 3 or 4 is a bad choice. The top
plot shows the original multimodal data sequence with a collective anomaly
in the middle. The second row depicts SAX with l = 3 and w = 150, 1500,
where no anomaly can be seen. The third row shows SAX with l = 4 and
w = 150, 1500, where only half of the anomaly is visible. Finally, the bottom
row shows SAX with a better parametrization l = 6 and w = 150, 1500, where
the entire anomaly is visible.

a method for distinguishing between normal and abnormal observations,
and very frequently this is accomplished with a threshold. Such a threshold

18



2.5 Artificial Neural Networks

A
B

C

Figure 2.3: A sequence where Euclidean distance can be misleading. Subsequences A and
B have a higher Euclidean similarity than A and C, since they are geometrically
closer. Intuitively, A and C should be more similar to each other than either to B

is a hard decision boundary and needs to be tuned to the data. Discord-based
detection does not need such a threshold, since the entire detection approach
is based on the assumption that the least similar subsequence is anomalous.
In essence, this implies the additional assumption that an anomaly is present
in the data. This assumption can obviously be disadvantageous in some
practical settings. However, in this thesis we will also assume that the
observed data always contains an anomaly.

2.5 Artificial Neural Networks

In many areas of computer science, the current state of the art research
includes the application of machine learning techniques. A very commonly
used supervised technique is the construction and training of an Artificial
Neural Network (ANN). ANNs can be seen as networks with an input layer,
an output layer, and arbitrarily many ”hidden”-layers in between. A simple
variant of an ANN is the perceptron. It is a single artificial neuron, which
receives one or multiple inputs, and then activates if this input triggers its
activation function. An example is depicted in Figure 2.4

19



2 Background

Figure 2.4: A model of a perceptron. x is the input, w the weights. These are multiplied,
summed up and then fed into the activation function.

Formally, a perceptron can be described as

o = f (xw + b) (2.10)

where x is the input vector, w the vector of weights, b the bias and f
the activation function. To allow a perceptron to learn by training it, one
presents it several inputs and then changes the weights w according to the
correctness of the output. With a learning rate a and the expected output φ,
the weights of a perceptron can be updated with

wi = wi + a(φ− o)xi. (2.11)

In essence, a perceptron learns to draw a line between input that should
make it activate and input that should not. It is a linear separator (or binary
classifier). Of course, such a simple model has limitations. Perceptrons can
only solve classification problems which are linearly separable. A famous
example were this does not work is XOR-problem. Hence, ANNs need more
layers to solve non-linearly separable problems.

Layers in between the in- and output layers are called hidden layers. With
multi-layered ANNs, detection/classification works the same way as with
perceptrons. However, to implement learning in such a setting, one needs
to refine the perceptron learning algorithm. The hidden-layer before the
output layer is trained in the same way as a perceptron. Then, the weight
changes are propagated back through the network until all weights were

20



2.5 Artificial Neural Networks

Algorithm 3 Back Propagation
Require: j

for all k do
wk,j = wk,j + a f ′(∑λ

i=1 xi)(φ− o)xk
end for

updated. If wk,j is the weight from the kth node in the previous layer to the
kth node in the current layer, then the algorithm for this can be written as

In essence, this is Equation 2.11 propagated back through the network. This
algorithm is repeated for all neurons in all hidden layers, and iterated for
all training samples until the weights converge 8.

2.5.1 Recurrent Neural Networks

In the ANN architecture introduced above, all information from the input
propagates forward through the network until the output layer is reached.
Such a feed-forward architecture is not the only way how an ANN can
be constructed. A recurrent neural network (RNN) is a network where
backward connections between hidden layers are allowed. An example can
be seen in Figure 2.5

A distinct advantage of RNNs is their ability to memorize previous inputs.
This allows them to understand ordering, which is essential when working
with sequences. Malhotra et al. [17] used RNNs with added long short-term
memory cells to implement collective anomaly detection in sequential data.
They trained the network by first showing it normal sequences, and then
using its learned knowledge to predict how anomalous sequences should
develop if they would not contain an anomaly. The deviations between
predicted and actual values where then returned as anomalous.

Of course, such an approach requires tuning of several parameters, such as
initial network weights or the deviation threshold. Yet one distinct advantage
of this approach is that the length of the anomaly does not have to be

8Convergence is reached when the changes between iterations are smaller than a
predefined threshold.

21



2 Background

Figure 2.5: A recurrent neural network. Edges may go forward (black), backward (green),
within layers (red) or stay at the same node (blue).

specified in advance. Further, no window size for the predictor has to be
specified.

A disadvantage of the method proposed by Malhotra et al. is that its perfor-
mance was not extensively evaluated against other methods. Instead, this
work can be seen as proof-of-concept for ANN-based anomaly detection in
data sequences.

In general, deep learning 9 is likely a promising approach to collective
anomaly detection. There are many other tasks in data science were the
state of the art was improved by ANNs, in particular with additional long
short-term memory cells [26]. However, in this thesis, we will not use
deep learning. Currently, there is an extensive hype for deep learning in
data science. Yet it has also been criticized for weaknesses, such as being
data-hungry, failing to distinguish causation from correlation 10, and not
being able for transfer learned facts into other settings [18]. Instead, we
will explore an approach based on unsupervised learning in the following
chapter.

9Machine learning using neural networks with multiple layers
10This weakness is not specific to deep learning. Many other approaches to machine

learning face this problem as well.

22



3 Preliminary Work

Prior to this thesis, several different methods were devised, investigated or
attempted. In this chapter, less successful approaches to collective anomaly
detection are discussed. They are presented in chronological order according
to the date on which they were devised. We also note that this chapter uses
terms that are only defined in following chapters.

3.1 Season Shapelets

In a preliminary master project, an approach for detecting multiple collective
anomalies in seasonal time series was developed. This setting is different
from that of this thesis, where seasonality is not required and all sequences
contain exactly one collective anomaly. However, parts of the approach were
adapted and reused in this thesis. The main idea was to construct a shapelet,
which is a sequence that represents a ”typical” season. Computing the
distance between each season and the shapelet could then indicate which
seasons are normal and which abnormal. These distances were further
clustered with two means to clearly divide the subsequences according to
their normality. An exemplar seasonal sequence and an appropriate shapelet
can be seen in Figure 3.1.

An advantage of shapelets is that they are very intuitive, yet applying
them in practice can be challenging. Firstly, constructing an appropriate
shapelet is not trivial and can be particularly difficult if the data used for
deducing it contains an anomaly, since the anomaly will likely influence the
shapelet’s construction. Secondly, it is problematic to place the shapelet at
the correct position, if the data is not stationary. Finally, shapelets require

23



3 Preliminary Work

Time

V
al

ue

0 50 100 150 200 250 300

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

Index

V
al

ue

0 10 20 30 40 50

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Figure 3.1: A seasonal sequence (top) and the corresponding shapelet (bottom)

recurrent motifs in the input data, and this makes it difficult to use them on
non-periodic data.

This method inspired the clustering of subsequence-properties with two
means in the final method of this thesis.

3.2 Regions of Interest

Since shapelets are susceptible to non-stationarity, it might be advantageous
to devise an algorithm that works with non-stationary sequences. The sec-
ond major idea that was investigated was based on regions of interest. This

24



3.2 Regions of Interest

primitive originally comes from computer vision, where it is a rectangu-
lar area in an image. To transfer regions of interest to sequential data, a
restricted sliding window was used. This window was not only limited to a
specified number of observations (x-limit), but also to a specific observation
value range (y-limit). It could move in x- and y-direction, and values outside
of the specified region were considered as missing values. As the window
progressed, every region of interest would be stored, and later used for
mining anomalous windows with a different algorithm. An example can be
seen in Figure 3.2.

Time

V
al

ue

0 500 1000 1500 2000

0
10

20
30

40

Figure 3.2: A sequence (black) and the current region of interest (red)

One main problem with this approach was that many steps were undefined.
While a 1-dimensional window has a clear direction in which it moves
over the sequence, a 2-dimensional window requires additional decisions
on when to move in the value space. It is not trivial to move the window
along the data without following a moving average, which would make
the 2-dimensional window meaningless. Additionally, simply moving the
window to every possible location would not only produce many regions

25



3 Preliminary Work

with all values missing, which could be easily discarded. It would also
produce many regions with only very few non-missing observations, which
are difficult to handle. A further disadvantage is the large number of missing
values this approach generates. However, the main reason why this idea
was abandoned was that it overcomplicates the entire task. While sequences
are often depicted in a 2-dimensional plots, it is not necessary to investigate
them with 2 degrees of freedom, since they can only move forward in time.
Further, this approach has several parameters, such as height and width of
the window, which made it unsuited for the task of this thesis.

3.3 Backward similarity

The third main alternative idea for detecting collective anomalies was based
on backwards similarity. The intuition behind the idea was to compare
every observation with a number of previous observations and compute
the Euclidean distance. This was repeated for a number of backward-lags,
which were then summarized by taking the mean of all lags. The resulting
distance function was then searched for collective statistical outliers o, which
were determined with o ≤ δ ∨ o ≥ δ, where δ is a predefined threshold.

Unlike the other methods in this chapter, backwards similarity seemed
promising in preliminary tests. It was considered as main solution candidate
until the approach presented in Chapter 4 was devised. An advantage
of backwards similarity was that it was more simple than shapelets or
regions of interest, and that it transfers periodicity anomalies to statistical
outliers. However, choosing the threshold δ was critical to the success of
the method. The initial idea was to use the standard three-sigma rule [20],
but preliminary testing showed that this is not the best choice for all data.
Therefore, instead of a using a threshold, backwards similarity was also
tested with clustering similar to the shapelet-based approach (and similar
to the final method of this thesis).

Since backwards similarity showed no clear theoretic flaws, it was also
included in the evaluation in Chapter 5.

26



3.3 Backward similarity

Time

V
al

ue

0 500 1000 1500 2000

0
10

20
30

40

Time

z

0 500 1000 1500 2000

0.
0

0.
5

1.
0

1.
5

Figure 3.3: A sequence with an anomaly (top) and the backwards distance function
(bottom).

27





4 Methods

From the previous chapters, we have learned that parameter-free collective
anomaly detection is an interesting and challenging problem. In this chapter,
we will make several key assumptions and observations, which we will use
to create a new method for detecting collective anomalies. Additionally, all
related concepts are explained and assigned to a reasonable position, which
allows the reader to reconstruct the methods used in this thesis.

4.1 Stationarity and Correlation

Let t = t1, ..., tn be a sequence of observations. If the statistical properties of
t do not change over time, then t is considered to be stationary. A strictly
(or strongly) stationary process is a sequence whose joint probability is
independent of any lag, which means

P(t1, ..., tk) = P(t1+τ, ..., tk+τ) (4.1)

where τ is an arbitrary lag. Strict stationarity implies that the mean and vari-
ance do not change over time. Obviously, not all sequences are strictly sta-
tionary. Another commonly encountered property is wide-sense (or weakly)
stationarity. A wide-sense stationary process has a time-independent mean
and an autocorrelation that only depends on lag τ. The autocorrelation can
be computed with

At(τ) =
n

∑
i=1

titi−τ (4.2)

where τ is the lag at which the sequence is compared with itself. This means
that one shifts sequence in time and compares if high and low values occur

29



4 Methods

in nearby positions. Usually, the autocorrelation A is further normalized by
its maximum value, which can also be found at τ = 0

At(τ) =
At(τ)

At(0)
(4.3)

4.2 Modeling Sequence Behavior

We previously already defined anomalies as behavior that cannot be mean-
ingfully described by a model that describes the remaining data. Since there
are countless different structures, patterns or motives than can occur in data
sequences, it is difficult to develop a model that can describe all normal data
sequences and is still valuable in a practical application. Therefore, we will
consider three different theoretic types of sequence behavior. These types
will then form the basis for detecting collective anomalies.

4.2.1 Seasonal Sequences

In the context of sequential data, the term seasonality refers to regular pat-
terns which repeat over time. If sequence t contains a pattern that appears
regularly every s observations, then t is seasonal with season length s. A
typical example for seasonal behavior are monthly temperature measure-
ments. Every summer, the temperatures rise, and every winter they fall.
Mathematically, there are several ways to represent seasonality. One repre-
sentation is based on the trigonometric sine-function and can be written
as

ys
i = a sin(

2π

s
ti + b) (4.4)

where a is the amplitude, season length s the period, and b the phase
offset. An example can be seen in Figure 4.1 In econometrics, the data
sequences are often decomposed in trend, seasonal, cyclical and irregular
components [4] [10]. This can be written as

ys = T + S + C + R. (4.5)

30



4.2 Modeling Sequence Behavior

Time

su
ns

po
ts

1750 1800 1850 1900 1950

0
50

10
0

15
0

20
0

25
0

Figure 4.1: A sequence of monthly sunspots (black) was approximated by a sinusoidal
sequence (magenta).

While this model can be used to describe many data sequences, it is also dif-
ficult to tune and requires several parameters, such as a function describing
the trend or the season length. Therefore, we will prefer the less accurate
yet simpler sinusoidal model for describing seasonality in the context of
anomaly detection.

An interesting property of seasonal data is that its correlation with itself is
also seasonal. Since a seasonal sequence t is periodic, its autocorrelation At
will be periodic as well if t is wide-sense stationary. This can be useful for
anomaly detection, as At often is easier to analyze than t itself. However,
if one solely relies on seasonal models, it is difficult to succeed without
knowing the season length, which is another parameter that requires tuning.
Yet even without this knowledge, two observations can be made about
seasonal sequences:

• If ys has no trend or similar component, it is usually stationary.
• ys has a constant, periodic behavior.

31



4 Methods

4.2.2 Noisy Sequences

Another phenomenon that can be frequently observed in sequential data
is noise. Noisy sequences contain random deviations from an expected
’smooth’ behavior. An example can be seen in Figure 4.2. There are various

Time

0 100 200 300 400 500 600

Figure 4.2: A sequence (black) with added ergodic white Gaussian noise (blue)

different types of noise. Here, we will assume that noise is additive white
Gaussian noise. Let N (µ, σ2) be the Gaussian (normal) distribution and
R ∼ N be a sequence of independent and identically distributed random
numbers drawn from N . A sequence t that is under the influence of additive
white Gaussian noise can then be expressed as

yR
i = ti + Ri. (4.6)

Noisy sequences are less predictable than smooth sequences, which is why
many non-robust algorithms perform poorly on them.

Additive white Gaussian noise, and in a wider-sense every independent and
identically distributed process, is an ergodic process. This means that its

32



4.2 Modeling Sequence Behavior

statistical properties can be deduced from a sufficiently long subsequence,
which can be written as

lim
n→∞

1
n

n

∑
i=1

Ri = µR. (4.7)

Ergodic processes are strictly stationary, and are very long-term predictable,
although they can seem erratic and fluctuating when one observes only
individual values. Markov Chains, as introduced in Chapter 2, are also
ergodic. However, a noisy sequence yR does not have to be ergodic, since
the white Gaussian noise R is only added to the original sequence t. If t is
not stationary, then yR will not be stationary either.

Distinguishing noisy from smooth sequences, or even measuring the amount
of noise in a sequence, is not trivial. Cellucci et al. [6] have explored these
tasks for stationary processes, and Hu et al. [12] addressed non-stationary
processes. Yet in general, two key observations can be made about noisy
sequences:

• R is stationary, and yR is stationary if t is stationary.
• The individual observations of yR fluctuate and are highly erratic.

4.2.3 Random Walk Sequences

While additive white Gaussian noise is a random stationary sequence, not
all purely random sequences are stationary. If noise is not added to an
existing signal, but rather accumulated over time, one obtains a fluctuating
process that is not stationary. Let ω ∼ N (0, σ2) be a random variable that is
accumulated n times. Then

yω = yω
1 , yω

2 , ..., yω
n = ω1, ω1 + ω2, ...,

n

∑
i=1

ωi (4.8)

is a Gaussian random walk. An exemplar sequence is depicted in Figure 4.3.
In practice, sequences similar to random walks can be frequently found in
exchange rates on the market [25].

33



4 Methods

0 50 100 150 200 250 300

Index

Figure 4.3: An exemplar random walk data sequence

Random walks are nonstationary since they have a unit root. Let X be a first
order autoregressive process of the form

Xi = aXi−1 + εi, (4.9)

where a is an arbitrary factor and ε the sequence of errors. If one introduces
the backshift operator BXi = Xi−1, then Equation 4.9 can be rewritten as

(1− aB)Xi = εi. (4.10)

If we assume that all errors ε = 0 and that the sequence X is not zero, we
obtain the characteristic equation

1− aζ = 0 (4.11)

by replacing the backshift operator with the unknown root 1 ζ of the
associated polynomial. Consequently, ζ = 1

a . If |a| < 1, then X is stationary,
and if |a| > 1, then X is nonstationary and diverges. For a random walk yω,

1The roots of a polynomial p(x, f ) = xp + a0xp−1 + ... + a f are the zeros of p, which
means p(x′, f ) = 0

34



4.3 Practical Implementation

|a| = 1, which means that yω is not stationary, but will also not explosively
grow towards infinity.

Using the roots of a sequence’s characteristic equation can be an excel-
lent indicator for assessing stationarity. However, in a practical setting,
sequences are not generated by perfectly autoregressive or cumulative pro-
cesses, which limits their practical applicability. Still, as with the previous
sequence models, we can make two observations about random walk-like
sequences:

• yω is not stationary.
• yω is not regular and hard to predict.

4.3 Practical Implementation

In the previous section, we have made several observations about different
sequential data models regarding their stationarity and regularity. Since
the goal of this thesis is to devise a practical collective anomaly detection
method, purely theoretic considerations such as unit roots are not helpful.
However, the observations we made about the different sequential data
models are not useless. We observed different degrees of stationarity and
volatility, which measures the irregularity of a sequence. In this section, we
will use these differences to devise measures for discriminating between the
associated models.

4.3.1 Estimating Stationarity

When discussing seasonal sequences, we observed that the autocorrelation
At of a sequence t is seasonal with the same period as t, if t is station-
ary. We also observed that wide-sense stationarity implies that At is time-
independent. Further, one should also note that a z-normalized sequence
z = t−µt

σt
also has a z-normalized autocorrelation. From this, we can deduce:

If t is stationary, then Az will be ’almost’ stationary with mean µAz = 0.
If one now considers that Az(0) = 1, we arrive at the following insight:
If t is stationary, Az will quickly produce value Az(τ0) ≤ 0 [13].

35



4 Methods

This brings us to a simple algorithm for estimating stationarity:

Algorithm 4 Stationarity Estimation: Γ(t)
Require: t

n← length(t)
z← (t− µt)/σt z-normalization
α← Az(τ = 1, ..., n) autocorrelation
ξ ← α−1 ≤ 0 find first zero interception
return 1−min(ξ)/n

Algorithm 4 z-normalizes the data, computes the autocorrelation function,
finds the first value less than or equal to zero and returns its index divided
by the number of observations. The returned value ranges in [0, 1], where
values close to 0 indicate low stationarity and values close to 1 indicate
high stationarity. It is important to note that there is no threshold beyond
which sequences are considered stationary or nonstationary, since such a
threshold cannot be objectively determined for arbitrary data. As we will
see later, classifying sequences as either ’stationary’ or ’nonstationary’ with
a decision boundary is not even required for anomaly detection. Instead, we
will use the ’amount’ of stationarity to compute distances between ’more
stationary’ and ’less stationary’ segments.

Of course, there exist other methods for determining the stationarity of a
sequence such as the Augmented Dickey–Fuller test. However, this method
and similar stationarity test are usually computationally expensive. There-
fore, Algorithm 4, which has a computational complexity of O(n log n)will
be preferred in the this thesis.

4.3.2 Estimating Volatility

From the above observations about the regularity of sequences, the use-
fulness of a measure for the amount of noise, smoothness and similar
characteristics becomes evident. For this, we will introduce the concept of
sequence volatility. Let T(i) be a continuous, piece-wise linear function that

36



4.3 Practical Implementation

passes through all points of t = t1, ..., tn and is linear in between. T can be
obtained with a linear interpolation ψ of t

T(k) = ψ(k) = ti +
tj − ti

j− i
(k− i), (4.12)

where indices i < k and j > k mark the location of the two closest observa-
tions in t.

T is what is usually depicted when a data sequence is plotted. An example
for this can be seen in Figure 4.4.

Time

1950 1952 1954 1956 1958 1960

Time

1950 1952 1954 1956 1958 1960

Figure 4.4: A raw data sequence of monthly air passengers t (left) and the interpolation T
(right).

Furthermore, letM =M1, ...,Mν be all solutions for

T′(i) = 0∧ T′′(i) 6= 0

where T′ and T′′ are the first and second derivative of T respectively. Con-
sequently, M contains the locations of all minima and maxima of T. The
sequence volatility vt is then given by

vt =
ν

n− 1
(4.13)

Intuitively, sequence volatility can be seen as the percentage of observations
in a sequence where the direction changes from ”up” to ”down” or vice

37



4 Methods

Algorithm 5 Volatility Estimation: Λ(t)
Require: t

n← length(t)
d← ∆1(t) take discrete difference
d(d−1 > 0)← 1 label all inclines with 1
d(d−1 < 0)← −1 label all declines with -1
η ← d(d−1 6= 0) remove saddle points
η ← ∆1(η) find incline/decline changes
return length(η−1 6= 0)/n

versa. Measuring the volatility of a sequence can be achieved with Algo-
rithm 5. ∆1 is the discrete difference of a sequence at lag 1. This means that
for an exemplar sequence t̀ = 1, 3, 4, 2, the discrete difference at lag 1 would
be

∆1(t̀) = (3− 1), (4− 3), (2− 4) = 2, 1,−2

The sequence volatility in this case would be vt̀ =
1
3 . This makes sense since

in a sequence of length 4, the ”up” or ”down” direction can at the most
change 3 times, and changes only once.

4.4 Collective Anomaly Detection with STAVE

After introducing algorithms for stationarity and volatility estimation, it is
possible to construct a collective anomaly detection algorithm based on them.
Intuitively, the idea is to compute these properties of local subsequences,
and then compare them against the properties of the remaining sequence.
Let

s = s1, s2, ..., sn−w+1 = t1...tw, t2...tw+1, ..., tn−w+1...tn

be the set of subsequences of sequence t extracted by a sliding window of
length w. Then the Stationarity and Volatility (STAVE) distance sequence
θ can be computed with Algorithm 6. This algorithm estimates stationar-
ity and volatility of sequence t, then estimates them also for all sliding
window subsequences of t, and returns the Euclidean distance from each
subsequence to the full sequence.

38



4.4 Collective Anomaly Detection with STAVE

Algorithm 6 Stationarity and Volatility Distance: θ(t)
Require: t

Γt = Γ(t)
Λt = Λ(t)
for i = 1...n− w + 1 do

θi =
√
(Γt − Γ(si))2 + (Λt −Λ(si))2

end for
return θ

It is important to note that Γt and Λt are the STAVE estimates of t and
not of t \ si. If we assume that the window is much shorter than the total
sequence, then comparing the window against the remaining sequence, is
almost equivalent to comparing it with the entire sequence including the
window itself. Mathematically, this can be written as

Γ(t \ si) ≈ Γ(t) and Λ(t \ si) ≈ Λ(t) if w� n.

This property is important to achieve an acceptable computational complex-
ity, which is a problem in several of the methods discussed in Chapter 2.

The STAVE sequence θ is useful for collective anomaly detection, since it
separates regions with different stationarity or volatility. An example for
this is depicted in Figure 4.5.

This property of the STAVE sequence can be used to detect collective anoma-
lies. Let

Ω = Ω1, Ω2, ..., Ωn−2w+1 = θ1...θw, θ2...θw+1, ..., θn−2w+1...θn−w+1

be all subsequences extracted from θ with a sliding window with the same
length w as above. If one clusters Ω with two centroids, then the cluster
with less instances assigned to it will likely contain the entire collective
anomaly c 2.

Clustering Ω with two centroids can be achieved with the k-means Algo-
rithm 7. This algorithm assigns every sequence in Ω to one of two clusters.

2The difference in cluster sizes is an indicator of how anomalous the smaller cluster is.
If both clusters have similar sizes, then likely neither of them is anomalous. However, this
would require a hard decision boundary beyond which a cluster is either small enough or
not

39



4 Methods

0 500 1000 1500 2000 2500 3000

−
20

0
20

40
60

80

Index

V
al

ue

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Index

D
is

ta
nc

e

Figure 4.5: A random walk sequence with an anomaly (left) and the corresponding STAVE
distance(right). The location of the collective anomaly matches the peak in the
distance function.

Algorithm 7 K-Means Clustering: kmeans(Ω, K) [23]
for i← 1...k do

µk ← randomSeed()
νk ← {}

end for
while µ 6= ν do

ν← µ
for i← 1...k do

αi ← {}
end for
for i← 1...n− 2w + 1 do

j← arg min
j′
|µj′ −Ωi|

αj ← αj ∪Ωi
end for
for i← 1...k do

µi ← 1
|αi|

ΣΩ∈αi Ω
end for

end while
return µ, α

40



4.4 Collective Anomaly Detection with STAVE

As initial clusters, one can compute the mean of each window, and choose
the windows with the highest and the lowest mean. Since STAVE separates
regions by normal and anomalous STAVE properties, one cluster αN will
represent normal subsequences. The other cluster αA = αA

1 , ...αA
l will contain

all stationarity and volatility anomalies. Of course, there may be other types
of anomalies in t, yet finding all of them with a parameter-free method
remains a task for the future.

To extract collective anomalies from αA, one simply has to find the longest
connected sequence of windowed observations. This can be achieved with
Algorithm 8.

Algorithm 8 Collective Anomaly Extraction: E(αA)

χ← ∆1(α
A)

χ← append(1, (χ−1 6= 1), l)
χ← append(1, ∆1(χ))
sum← ∑ χ
return αA

sum, αA
sum+1, ..., αA

sum+max(χ)

A critical parameter of the procedure mentioned above is the window length
w, since it determines the minimum length of the anomaly. Therefore, it is set
to the smallest possible value w = 4. Windows shorter than 4 observations
would cause errors in the above algorithms. This constant window length
is also very convenient from the perspective of computational complexity.
However, it is debatable if this is truly the best choice. In the next chapter,
several different window lengths will be investigated, up to w =

√
n, which

is considered as upper boundary for Equation 2.6. Stationarity estimation
with Algorithm 4 has a complexity of O(n log n), and this is computed for
all n−w + 1 windows of length w, resulting in O(nw log w). If the window
length w is constant, than this can be reduced to O(n). An overview of the
computational complexities of all methods used in this thesis is depicted in
Table 4.1.

3In a general case, Algorithm 7 has a computational complexity of O(ndki) [23], where
n is the number of instances to be clustered, d the dimensions of the instances, k the number
of clusters, and i the number of iterations. In our setting d, k and are 2 = O(1). The number
of iterations i is also constant, since it does not depend on the input since.

41



4 Methods

Step Computational Complexity

STAVE properties of full sequence O(n log n)
STAVE properties of subsequences O(nw log w)
STAVE distance θ O(n)
K-means clustering3 O(n)
Extracting anomalies O(1)

Total

{
O(n log n) w = 4
O(n
√

n log
√

n) w =
√

n

Table 4.1: The computational complexities of all methods used for collective anomaly
detection.

To summarize, the method presented here for collective anomaly detection
consists of the following steps:

• Estimate stationarity and volatility of full sequence
• Estimate the same properties of all subsequences extracted by a sliding

window.
• Compute the distance from all subsequences’ to the full sequences’

properties, giving the STAVE sequence.
• Extract subsequences from the STAVE sequence with a sliding window.
• Cluster these subsequences with 2 centroids.
• Find the longest connected series of subsequences in the smaller

cluster.

For the two sliding windows, the same window length is used. Clustering
is achieved with the k-means algorithm.

42



5 Evaluation

In this chapter, the above mentioned methods and techniques are evaluated
in a practical setting. First, the test setup is described. Then, the results are
presented in various tables and plots. Finally, the results are discussed and
interpreted.

5.1 Setup

5.1.1 Procedure

To evaluate the algorithm proposed in Chapter 4, it is contrasted with other
comparable anomaly detection methods in an experimental study. These
methods are Entropy-based anomaly detection (ENTROPY, Algorithm 1),
the brute force discords algorithm (DISCORDS, Algorithm 2), and HOT SAX.
At first, this might seem an unfair comparison, since all of these methods
have parameters that need to be tuned. However, completely parameter-free
collective anomaly detectors are yet to be proposed by literature.

ENTROPY was not used as presented in Algorithm 1. Rather, we used an
accelerated version which only tests for subsequences of the predefined
length m. Consequently, the length of the collective anomaly was provided
to the algorithm in advance.

Similar to ENTROPY, the only parameter of DISCORDS was the length of
the discord. This value was also provided in advance. Further, the imple-
mentation of Algorithm 2 was accelerated with the runtime improvements
suggested by Zhu et al. [28].

43



5 Evaluation

For evaluating HOT SAX, several parametrizations where tested. The dis-
cord length was always set to the length of the collective anomaly in the
current test case. While this facilitated the tests for HOT SAX, it still was
necessary to achieve comparable results. The remaining parameters, PAA
size, alphabet size and normalization threshold, were tuned towards the
test set. The best performing setup was PAA size 6, alphabet size 3, and
normalization threshold 1.

The preliminary method BACKSIM was also included in the test setup. The
upper and lower window boundaries were set to the default values

√
n

and 3
√

n respectively. The outlier threshold was set to µ± 3σ according to
the standard three-sigma-rule [20]. A different outlier threshold µ± 2σ was
also tested, to investigate the validity of the three-sigma rule in this setting.
Further, instead of a threshold, k-means clustering for mining anomalies in
the backwards similarity distance function was also tested, since this does
not require a threshold.

To compare STAVE with the other two approaches, it was first tested with
window length w = 4 and w =

√
n. Afterwards, an additional test was

conducted, where the window length was varied from 4 to 68 1. The purpose
of this test was to assess the impact of the selected window length, since
the STAVE is supposed to be a parameter-free algorithm.

Further, since it was not self-evident that the STAVE measures are well-suited
for anomaly detection, they were also replaced with more conventional
measures. For stationarity, the alternative measure was the Augmented
Dickey-Fuller (ADF) test. This test has a lag-parameter, which was set to zero,
reducing the test to the non-augmented Dickey-Fuller test. The reason for
this was that the lagged version of the test has a considerably slower runtime,
making it infeasible to apply it to all sliding-window subsequences of a
long sequence. For volatility, the alternative measure was variance (VAR),
the second statistical moment. With the alternative measures and window
sizes, a total of 8 different combinations were available and evaluated on
the test data.

1The longest required window length predicted by theory should be 110 observations,
since no sequence was longer than 1102 observations. However, the results converged at
w ≈ 55

44



5.1 Setup

Finally, a method returning a uniformly random subsequence was also
included, to assure that all other methods are meaningful for detecting
collective anomalies.

An overview of all tested methods and their parameters can be seen in
Table 5.1.

Method Description Parameters/Default values

ENTROPY Algorithm 1 with only one window size Anomaly Length
DISCORDS Algorithm 2 Anomaly Length
HOT SAX Algorithm 2 with SAX and runtime optimization Anomaly Length, PAA size=6,

alphabet size=3, threshold=1

BACKSIM2σ As in Section 3.3 p = 3
√

n q =
√

n δ = µ± 2σ
BACKSIM3σ As in Section 3.3 p = 3

√
n q =

√
n δ = µ± 3σ

BACKSIMk As in Section 3.3 with Algorithm 7 p = 3
√

n q =
√

n

STAVE4 Algorithm 6 with Algorithm 4 and Algorithm 5 w = 4
STAVE√n Algorithm 6 with Algorithm 4 and Algorithm 5 w =

√
n

ADFVE4 Algorithm 6 with ADF and Algorithm 5 w = 4 lag = 0
ADFVE√n Algorithm 6 with ADF and Algorithm 5 w =

√
n lag = 0

STAVAR4 Algorithm 6 with Algorithm 4 and variance w = 4
STAVAR√n Algorithm 6 with Algorithm 4 and variance w =

√
n

ADFVAR4 Algorithm 6 with ADF and variance w = 4 lag = 0
ADFVAR√n Algorithm 6 with ADF and variance w =

√
n lag = 0

RAND Returns a random subsequence

Table 5.1: All test methods and their parameters

5.1.2 Test Data

The dataset used in the evaluation consisted of 40 test sequence, each con-
taining one distinct collective anomaly. 20 of these sequences originate from
a mixture of practical domains, ranging from medical data over financial
time series to space shuttle valve cycles. The main criterion for selecting
them was the occurrence of an anomaly, that one can clearly visually dis-
tinguish from the remaining observations. The other 20 sequences were

45



5 Evaluation

synthetic data. They were generated as mixtures of seasonality, noise, ran-
dom walks and trends, with one clear anomaly of random length injected
at a random position. Visual depictions of all test sequences can be found in
the Appendix.

A histogram summarizing the lengths of the test sequences is depicted in
Figure 5.1. The average sequence length was 2215 observations. The longest
sequence consisted of 11251 data points, while the shortest had 60 observa-
tions. On average, the sequences from practical domains where longer than
the synthetic sequences, with 2669 and 1762 observations respectively.

Sequence Length

F
re

qu
en

cy

0 2000 4000 6000 8000 10000 12000

0
1

2
3

4
5

6

Figure 5.1: Histogram of sequence lengths found in the test data

The lengths of the anomalies in the test sequences are summarized in
Figure 5.2. The mean anomaly length of all test cases was 143 observations.
The shortest and the longest anomaly had 9 and 950 data points respectively.
Similar to the full sequence lengths, the anomalies found in the practical
data were on average longer than the synthetically induced anomalies. The
former had a mean of 172 observations, while the latter averaged at 114
observations.

46



5.1 Setup

Anomaly Length

F
re

qu
en

cy

0 200 400 600 800 1000

0
2

4
6

8

Figure 5.2: Histogram of anomaly lengths found in the test data

A histogram of the ratio of anomaly length to full sequence lengths can be
seen in Figure 5.3. On average, the 9.9% of the data points in a sequence
were anomalous. The longest anomaly made up 40% of the full sequence,
while the shortest had a length ratio of 0.41%.

5.1.3 Measures

The detection task for which STAVE was devised is the identification an
anomalous subsequence in a longer data sequence. To test this, we com-
pared the expected anomalous observations with the identified observations.
Commonly used measures for such a task are precision and recall. Preci-
sion is defined as the partition of identified observations that are correct.
Mathematically, this is frequently expressed as

precision =
tp

tp + fp
(5.1)

where ”tp” indicates a true positive, and ”fp” a false positive. Recall is the
partition of anomalous observations that where identified, mathematically

47



5 Evaluation

Anomaly Length / Sequence Length

F
re

qu
en

cy

0
1

2
3

4
5

6

0% 2% 4% 6% 8% 10% 13% 16% 19% 22% 25% 28% 31% 34% 37% 40%

Figure 5.3: Histogram of the anomaly length ratios m
n

expressed as

recall =
tp

tp + fn
(5.2)

wherer ”fn” means false negative. While precision and recall are measure
different aspects of classifiers 2, it is desirable to combine them to have a
general representation of a classifiers performance. This can be done with
the Fι measure, which is defined as

Fι = (1 + ι2) ∗ precision ∗ recall
ι2 ∗ precision + recall

(5.3)

While the Fι measure is widely used in data science literature, it has the dis-
advantage that true negatives (tn) are discarded. This can lead to a misinter-
pretation of results, if a detection algorithm is skewed towards positive clas-
sification [21]. Therefore, the Matthews Correlation Coefficient (MCC) [19]
is included as alternative evaluation measure. It is defined as

MCC =
tp ∗ tn− fp ∗ fn√

(tp + fp)(tp + fn)(tn + fp)(tn + fn)
(5.4)

2A classifier detects the class of an object. In the context of anomaly detection, the
classes are ”normal” and ”anomalous”

48



5.2 Results

Unlike the above mentioned measures, it does not range from 0 to 1, but
instead from −1 to 1, which is similar to the Pearson Correlation Coeffi-
cient.

Since precision, recall, Fι and MCC can be computed for every individual
sequence, we use mean-precision, mean-recall, mean-Fι and mean-MCC to
summarize detection performances on various sequences.

5.2 Results

Table 5.2 shows the scores achieved by the individual variants of the Algo-
rithms discussed above. The highest precision and F0.1 scores were achieved

Precision Recall F0.1 MCC Runtime

ENTROPY 0.245 0.241 0.245 0.253 57.198s
DISCORDS 0.458 0.446 0.458 0.501 4482.697s
HOT SAX 0.500 0.500 0.500 0.503 20.614s

BACKSIM2σ 0.405 0.253 0.391 0.264 90.822s
BACKSIM3σ 0.402 0.204 0.361 0.225 90.825s
BACKSIMk 0.354 0.338 0.352 0.318 82.702s

STAVE4 0.402 0.345 0.395 0.356 25.024s
STAVE√n 0.416 0.507 0.415 0.421 29.058s
ADFVE4 0.296 0.236 0.293 0.245 298.624s
ADFVE√n 0.288 0.365 0.287 0.302 154.765s
STAVAR4 0.574 0.375 0.554 0.433 27.341s
STAVAR√n 0.370 0.453 0.368 0.376 31.231s
ADFVAR4 0.459 0.276 0.445 0.319 315.805s
ADFVAR√n 0.402 0.501 0.401 0.411 155.219s

RAND 0.104 0.337 0.104 0.133 0.004s

Table 5.2: Mean measure scores per algorithm

49



5 Evaluation

by STAVAR4. The highest recall was achieved by STAVE√n. HOT SAX had
the best MCC score and the shortest runtime 3.

The MCC scores of the algorithms per individual test case are depicted in
Figure 5.4. There were several test cases were no algorithm variant found
any true positives, such as test case 31 or test case 34. There was also a
visible positive correlation between STAVE√n and STAVE4. No test case was
fully solved (MCC= 1) by all algorithms.

0 40

0

1

Index

0 40

0

1

Index

0 40

0

1

Index

0 40

0

1

Index

0 40

0

1

Index

0 40

0

1

Index

0 40

0

1

Index

0 40

0

1

Index

0 40

0

1

Index

0 40

0

1

Index

0 40

0

1

Figure 5.4: MCC scores per test case. Algorithms from Top to Bottom: ENTROPY,
DISCORDS, HOT SAX, STAVE4, STAVE√n, ADFVE4, ADFVE√n,STAVAR4,
STAVAR√n,ADFVAR4, ADFVAR√n

Figure 5.5 shows the mean MCC achieved by STAVE tuned with various
different window lengths. The test was aborted after w = 68, since the
mean MCC converged after w ≈ 55. The average score of all tested window
lengths was 0.382, although this would very take the value at the point of
convergance MCC = 0.346 if longer windows were added. The runtime
varied from 25 seconds to 39 seconds, positively correlating with the window
length.

3RAND was not included in the runtime ranking.

50



5.3 Discussion

10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Window Length

M
ea

n 
M

C
C

Figure 5.5: Mean STAVE MCC scores by window length

5.3 Discussion

The purpose of this thesis was to develop an algorithm that can detect
collective anomalies in sequential data without any user input other than
the sequence itself. If one only looked at results in Table 5.2, one could
assume this objective was not achieved. It appears that both discord-based
approaches DISCORDS and HOT SAX were superior to STAVE, since their
overall scores were higher.

However, the 8 variations of STAVE did not require the length of the anoma-
lies in advance. This is a crucial advantage over the other algorithms. In
practical settings, anomalies cannot be expected to have a predefined length.
The performance of the STAVE variants was not clearly inferior to HOT
SAX and DISCORDS, although it was not given any prior information
about the data. Additionally, HOT SAX performed well because all of its
4 parameters were optimally tuned. It is therefore not surprising that a
likely overfitted method achieves high precision and recall on the dataset it
was tuned to. Further, the runtime of HOT SAX can be misleading. Several
similar parameterizations did not terminate in reasonable time.

51



5 Evaluation

When comparing DISCORDS with HOT SAX, it appears that DISCORDS
is the better overall choice. It has only one parameter, and when running
Algorithm 2, one can also create a matrix profile 4 in parallel with only linear
additional space. The runtime of DISCORDS was much slower, yet there
have already been several suggestions how the algorithm can be further
accelerated [28]. ENTROPY appeared to be inferior to the other algorithms.
This was likely due to entropy not truly being a measure for normality as
discussed above.

Both threshold variants of BACKSIM achieved acceptable mean precision
scores, yet recall and MCC scores were similarly bad as those of ENTROPY.
MCC likely is more relevant than the other measures, since it is the only of
the 4 measures that takes all classified observations into consideration. It
appears that BACKSIM with a threshold detects too few anomalies, and that
the threshold is of critical importance, which is disadvantageous since it
depends on the data. The clustered variant of BACKSIM appears to improve
upon these deficits, since its overall scores seem more reliable and it requires
one less parameter. However, in total BACKSIM appears to be inferior to
most other algorithms in its current implementation.

Overall, it appears that most STAVE variants were able to compete with
the parametric alternatives, which is certainly a success for parameter-
free methods. Whether STAVE is truly parameter-free is debatable. The
window length seems to influence the overall performance, yet the results
in Figure 5.5 did not exhibit great variance and appeared to be stationary.
If we considers that famous data science algorithms have in the past been
claimed to be parameter-free, such as the matrix-profile, we can conclude
that STAVE is at least ”more” parameter-free than other methods. Further,
STAVE does not use any internal empirically chosen constants during its
computation. A clear drawback of STAVE is that it cannot determine if an
anomaly is present in the data. We did not succeed in finding an answer for
this problem which does not need thresholds, constants or parameters.

When comparing STAVE4 and STAVE√n it seems as if the latter variant
performs better. Using window length 4 has a faster runtime, but adjusting
the window length to the full sequence length seems advisable. Further,

4A sequence of the distance to a subsequence’s closest neighbor as proposed by Yeh et
al. [27]

52



5.3 Discussion

STAVE struggled with test sequences which had repeating patterns that were
much longer than the window length. This was mainly due to stationarity
and volatility changing within a cycle, which then caused the clustering to
split the seasonality in two clusters instead of one. For strongly seasonal
sequences, a window length close to the number of observations in one
season is likely a good choice.

Using the Dickey-Fuller test for stationarity estimation appears to have more
deficits than benefits. ADFVE and ADFVAR were both inferior to STAVE
and STAVAR, regardless of the window choice. This might be due to not
using the lagged version of the test, but this was simply too computationally
expensive. We aborted the lagged ADF during testing, since it was evident
that it would not terminate in any reasonable time, having spent over an
hour on the first test sequence without result.

Variance appears to be a good alternative measure for volatility. One can
assume that it is even superior to Algorithm 5, since STAVAR4 was the
only algorithm that achieved the highest value in two different measures.
However, when comparing precision and F0.1 scores, it becomes evident that
these two highly correlate and likely contain much mutual information. This
may limit the impact of these two measures to that of a single measure.

Altogether, the results demonstrate that parameter-free collective anomaly
detection is possible without deep learning and millions of data points.
STAVE was capable of detecting anomalies in short, single data sequences
without knowing anything about them in advance. The only requirement
for detecting anomalies is that they differ in stationarity and/or volatility
from the remaining sequence, which is true for most anomalies that can be
visually identified by a human.

53





6 Conclusion

Developing a parameter-free algorithm that detects collective anomalies in
sequential data is a challenging problem. Stationarity and Volatility Estima-
tion (STAVE) can detect collective anomalies without tuning any parameters,
and is still able to compete with parametric methods. Further, STAVE was
not designed for a specific domain and can be used in various different areas.
STAVE can be seen as a proof-of-concept, demonstrating that parameter-free
collective anomaly detection without any prior knowledge about the data is
indeed possible - even if it is much easier to propose parametric solutions
that can achieve similar results. Further, STAVE can be used on a single short
data sequence, which cannot be done with contemporary deep learning
techniques.

Future work might include the development of a streaming algorithm, that
can detect anomalies in linear time and with constant space complexity.
With a few adjustments, STAVE can be redesigned to a streaming algorithm,
since it summarizes many observations with two real numbers. The newly
developed algorithms for estimating stationarity and volatility might be
used in various different applications in the future.

55





Appendix

57





Sequences - Black
Anomalies - Red

Time

V
al

ue

0 500 1000 1500 2000 2500 3000

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Time

V
al

ue
0 2000 4000 6000 8000

−
1.

0
0.

0
0.

5
1.

0
1.

5
2.

0

Time

V
al

ue

0 100 200 300 400

0.
0

0.
5

1.
0

1.
5

Time

V
al

ue

0 1000 2000 3000 4000

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Time

V
al

ue

0 1000 2000 3000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

V
al

ue

0 500 1000 1500 2000 2500 3000

−
20

0
20

40
60

80

59



Time

V
al

ue

0 100 200 300 400

−
10

−
5

0
5

10

Time

V
al

ue

0 100 200 300 400 500

−
10

−
5

0
5

10

Time

V
al

ue

0 50 100 150 200 250 300

0
20

40
60

80

Time

V
al

ue

0 200 400 600 800 1000

−
10

00
0

10
00

20
00

30
00

Time

V
al

ue

0 100 200 300 400

0
10

20
30

Time

V
al

ue

0 100 200 300 400 500

−
30

−
20

−
10

0

60



Time

V
al

ue

0 500 1000 1500 2000

0
10

20
30

40

Time
V

al
ue

0 100 200 300 400 500 600

0.
0

0.
5

1.
0

1.
5

Time

V
al

ue

0 200 400 600 800

0
1

2
3

4
5

6

Time

V
al

ue

0 10 20 30 40 50 60

−
4

−
2

0
2

4

Time

V
al

ue

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

V
al

ue

0 100 200 300 400 500 600

−
20

0
0

10
0

20
0

61



Time

V
al

ue

0 500 1000 1500

−
10

−
5

0
5

Time

V
al

ue

0 500 1000 1500 2000 2500

−
3

−
2

−
1

0
1

Time

V
al

ue

0 50 100 150 200 250 300

0.
0

0.
5

1.
0

1.
5

Time

V
al

ue

0 100 200 300 400 500 600

−
2

0
2

4
6

8
10

12

Time

V
al

ue

0 100 200 300 400 500 600

−
50

0
50

10
0

Time

V
al

ue

0 50 100 150 200 250 300

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

62



Time

V
al

ue

0 20 40 60 80 100

−
50

0
50

10
0

Time
V

al
ue

0 200 400 600 800 1000

−
0.

5
0.

0
0.

5

Time

V
al

ue

0 100 200 300 400 500 600

−
80

−
40

0
20

40

Time

V
al

ue

0 100 200 300 400 500 600

−
40

0
0

20
0

60
0

Time

V
al

ue

0 100 200 300 400 500 600

−
20

0
0

20
0

60
0

10
00

Time

V
al

ue

0 100 200 300 400 500 600

−
40

0
−

20
0

0
20

0
40

0

63



Time

V
al

ue

0 1000 2000 3000 4000

0
50

10
0

15
0

Time

V
al

ue

0 1000 2000 3000 4000

50
0

10
00

15
00

Time

V
al

ue

0 1000 2000 3000 4000

0
50

0
10

00
15

00

Time

V
al

ue

0 1000 2000 3000 4000

50
0

10
00

15
00

Time

V
al

ue

0 1000 2000 3000 4000

0
50

10
0

15
0

Time

V
al

ue

0 1000 2000 3000 4000

0
10

00
30

00
50

00

64



Time

V
al

ue

0 500 1000 1500 2000 2500

0.
0

0.
5

1.
0

1.
5

2.
0

Time

V
al

ue

0 500 1000 1500 2000 2500

0
10

00
30

00

Time

V
al

ue

0 1000 2000 3000

−
3

−
2

−
1

0
1

Time

V
al

ue

0 2000 4000 6000 8000 10000

0
10

0
20

0
30

0
40

0
50

0

65





Bibliography

[1] Aggarwal, C. C. Outlier analysis. In Data mining (2015), Springer,
pp. 237–263.

[2] Aris, R. Mathematical modelling techniques. Courier Corporation, 2012.

[3] Barnett, V., and Lewis, T. Outliers in statistical data. Wiley, 1974.

[4] Brockwell, P. J., and Davis, R. A. Time series: theory and methods. Springer
Science & Business Media, 2013.

[5] Burnham, K. P., and Anderson, D. R. Model selection and multimodel
inference: a practical information-theoretic approach. Springer Science &
Business Media, 2003.

[6] Cellucci, C., Albano, A., Rapp, P., Pittenger, R., and Josiassen, R. Detect-
ing noise in a time series. Chaos: An Interdisciplinary Journal of Nonlinear
Science 7, 3 (1997), 414–422.

[7] Chandola, V., Banerjee, A., and Kumar, V. Anomaly detection: A survey.
ACM computing surveys (CSUR) 41, 3 (2009), 15.

[8] Gershenfeld, N. A., and Gershenfeld, N. The nature of mathematical
modeling. Cambridge university press, 1999.

[9] Grubbs, F. E. Procedures for detecting outlying observations in samples.
Technometrics 11, 1 (1969), 1–21.

[10] Hamilton, J. D. Time series analysis, vol. 2. Princeton university press
Princeton, 1994.

[11] Hawkins, D. M. Identification of outliers, vol. 11. Springer, 1980.

67



Bibliography

[12] Hu, J., Gao, J., and White, K. Estimating measurement noise in a time
series by exploiting nonstationarity. Chaos, Solitons & Fractals 22, 4

(2004), 807–819.

[13] Hyndman, R. J., and Athanasopoulos, G. Forecasting: principles and
practice. OTexts, 2014.

[14] Keogh, E., Lin, J., and Fu, A. Hot sax: Efficiently finding the most
unusual time series subsequence. In Data mining, fifth IEEE international
conference on (2005), IEEE, pp. 8–pp.

[15] Larsen, R. J., Marx, M. L., et al. An introduction to mathematical statistics
and its applications, vol. 2.

[16] Lin, J., Keogh, E., Lonardi, S., and Chiu, B. A symbolic representation of
time series, with implications for streaming algorithms. In Proceedings
of the 8th ACM SIGMOD workshop on Research issues in data mining and
knowledge discovery (2003), ACM, pp. 2–11.

[17] Malhotra, P., Vig, L., Shroff, G., and Agarwal, P. Long short term
memory networks for anomaly detection in time series. In Proceedings
(2015), Presses universitaires de Louvain, p. 89.

[18] Marcus, G. Deep learning: A critical appraisal. arXiv preprint
arXiv:1801.00631 (2018).

[19] Matthews, B. W. Comparison of the predicted and observed secondary
structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-
Protein Structure 405, 2 (1975), 442–451.

[20] Nikulin, M. Three-sigma rule. http://www.encyclopediaofmath.org/
index.php?title=Three-sigma_rule&oldid=17366. Accessed:2018-7-
21.

[21] Powers, D. M. Evaluation: from precision, recall and f-measure to roc,
informedness, markedness and correlation.

[22] Ron, D., Singer, Y., and Tishby, N. Learning probabilistic automata with
variable memory length. In Proceedings of the seventh annual conference
on Computational learning theory (1994), ACM, pp. 35–46.

68

http://www.encyclopediaofmath.org/index.php?title=Three-sigma_rule&oldid=17366
http://www.encyclopediaofmath.org/index.php?title=Three-sigma_rule&oldid=17366


Bibliography

[23] Schütze, H., Manning, C. D., and Raghavan, P. Introduction to information
retrieval, vol. 39. Cambridge University Press, 2008.

[24] Sun, P., Chawla, S., and Arunasalam, B. Mining for outliers in sequential
databases. In Proceedings of the 2006 SIAM International Conference on
Data Mining (2006), SIAM, pp. 94–105.

[25] Taylor, M. P., and Peel, D. A. Nonlinear adjustment, long-run equilib-
rium and exchange rate fundamentals. Journal of international money
and finance 19, 1 (2000), 33–53.

[26] Witten, I. H., Frank, E., Hall, M. A., and Pal, C. J. Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016.

[27] Yeh, C.-C. M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H. A.,
Silva, D. F., Mueen, A., and Keogh, E. Matrix profile i: all pairs similarity
joins for time series: a unifying view that includes motifs, discords
and shapelets. In Data Mining (ICDM), 2016 IEEE 16th International
Conference on (2016), IEEE, pp. 1317–1322.

[28] Zhu, Y., Zimmerman, Z., Senobari, N. S., Yeh, C.-C. M., Funning, G.,
Mueen, A., Brisk, P., and Keogh, E. Matrix profile ii: Exploiting a
novel algorithm and gpus to break the one hundred million barrier for
time series motifs and joins. In Data Mining (ICDM), 2016 IEEE 16th
International Conference on (2016), IEEE, pp. 739–748.

69


