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Abstract 

Unoperated cataract is the main cause for blindness as well as a major cause for mod-

erate to serve vision impairment, but it can be healed with a cataract surgery. If the cat-

aract is combined with an astigmatism, it is necessary for the surgeon to know the cen-

ter of the eye and the orientation of the astigmatism at any moment of the surgery, to 

achieve a good vision restoration. At the current state, the surgeon has to use a special 

marking tool to mark the astigmatism axis with ink directly on the eye. The initial mark-

ing accuracy of this process strongly depends on the experience of the surgeon and 

the marks can get blurred or disappear during the surgery, which will cause a de-

creased vision restoration quality. 

 

To overcome this problem, we present an eye tracking approach specially designed for 

cataract surgeries. By tracking the center of the eye as well as the astigmatism axis 

during the complete surgery, the surgeon can have access to this information at any 

point of the surgery via a camera stream which is used to perform the surgery. Addition-

ally, this information cannot disappear or can get blurred over time due to blood vessels 

that burst or applied water flushes. Therefore this approach is intended to deliver more 

accurate position and orientation information in the artificial lens placement step. 

 

In the first part of this thesis, we present an appearance-based tracking approach for 

cataract surgeries, that is real-time capable. It is based on template tracking with a robust 

image feature based homography estimation for doing the template update. Additionally, 

the robustness is increased by applying an adaptive image blending method when up-

dating the templates. In addition to the template tracker, a tracking by detection approach 

is presented. As a detector, the aggregated channel features (ACF) detector is used. 

The detection results are subsequently refined to figure out the center of the pupil of the 

detected eye. This is done by applying a polar transform to the detected eye and finding 

the border between iris and lens. Finally, both methods are evaluated with respect to 

their runtime and accuracy. The template tracker can perform with more than 30 frames 

per second and has a mean distance error of 1.059% which is below the maximally al-

lowed error of 1.27%. The ACF detector itself can achieve more than 210 frames per 

seconds and has a mean distance error of 2.405% whereas the refinement can perform 

with 2 frames per second and a mean distance error of 1.769%. 

 

Keywords: eye tracking, cataract surgery, template tracking, homography estimation, 

ACF detector, tracking by detection 
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Kurzfassung 

Die häufigste Ursache für Blindheit ist grauer Star. Dieser kann jedoch mit einer grauen 

Star Operation entgegen gewirkt werden. Soll im Zuge der Operation nicht nur der graue 

Star, sondern auch ein Astigmatismus geheilt werden, muss der Chirurg während der 

gesamten Operation den Mittelpunkt des Auges, sowie die Ausrichtung des Astigmatis-

mus kennen. Hierfür wird mit einem speziellen Markierwerkzeug und einer Art Filzstift 

die Astigmatismus-Achse direkt am Auge markiert. Die Markiergenauigkeit ist dabei sehr 

stark von der Erfahrung des Chirurgen abhängig. Ein weiteres Problem, welches wäh-

rend der Operation auftreten kann ist, dass die Markierungen verschwimmen oder gänz-

lich verschwinden können. Dies wiederum kann zu einer Verschlechterung des Operati-

onsergebnisses führen. 

Um diese Problematik zu bewältigen, wird in dieser Arbeit ein Eye Tracking Ansatz vor-

gestellt, der speziell für graue Star Operationen entwickelt wurde. Dabei werden der Mit-

telpunkt des Auges, sowie die Ausrichtung des Astigmatismus über einen zur Verfügung 

gestellten Kamerastream über die gesamte Operationsdauer getrackt. Der Vorteil dieses 

Ansatzes ist es, dass die tracking Information im Laufe der Operation nicht verschwim-

men oder ganz verschwinden kann. Zusätzlich hat der Chirurg jederzeit Zugriff auf diese 

Informationen, wodurch eine genauere Platzierung der eingeführten künstlichen Linse 

ermöglicht wird. 

Im ersten Teil der Arbeit wird ein echtzeitfähiger Eye Tracker für grauer Star Operationen 

vorgestellt, welcher auf Template Tracking basiert. Das Template Update erfolgt dabei 

über eine robuste Homographie Schätzung und einen adaptiven Bildverschmelzungsan-

satz. Im zweiten Teil der Arbeit wird ein Tracking by Detection Ansatz vorgestellt, welcher 

auf dem Aggregated Channel Features (ACF) Detektor basiert. Anschließend wird das 

Detektionsergebnis schrittweise verbessert, um den Mittelpunkt des Auges robuster zu 

detektieren. Hierfür wird das detektierte Auge polartransformiert und anschließend wird 

der Übergang zwischen Iris und Linse gefunden. Abschließend werden der Tracker und 

der Detektor einer Laufzeit- und Genauigkeitsanalyse unterzogen. Der Tracker erreicht 

eine Laufzeit von über 30 Bildern pro Sekunde und eine durchschnittliche Abweichung 

vom Sollwert von 1,059%, welcher unter dem vorgegebenen Wert von 1,27% liegt. Der 

ACF Detektor erreicht eine Laufzeit von 210 Bildern pro Sekunden und eine durchschnitt-

liche Abweichung vom Sollwert von 2,405%. Die Detektionsverfeinerung erreicht eine 

Laufzeit von 2 Bildern pro Sekunde und eine durchschnittliche Abweichung von 1,769%. 

Schlagwörter: Eye Tracking, Grauer Star Operation, Template Tracking, Homographie 

Schätzung, ACF Detektor, Tracking by Detection 
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1 Introduction 

Globally, of the 7.33 billion people alive (as of 2015), an estimate of 252.6 million people 

live with vision impairment. 36 million people of these were blind and 216.6 million had 

moderate to severe visual impairment [9]. According to the World Health Organization 

(WHO), unoperated cataract is with 35% the main cause for blindness and with 25% a 

major cause for moderate to severe vision impairment [78]. This leads to the fact that 

approximately 66.75 million people live with vision impairment caused by unoperated 

cataract. 

For a better understanding of the following text, Figure 1.1 should give an overview of 

the main parts of the human eye and where they are located. The clear front surface of 

the eye is called cornea and is primarily used to focus light. The pupil is controlling the 

amount of light reaching the back of the eye by automatically adjusting the size. It can 

be compared with the aperture control of a camera. Directly behind the pupil, the crys-

talline lens is located. It is used to further focus light so the eye can automatically focus 

on near and approaching objects. The focused light hits the retina which acts as a light-

sensitive sensor and converts optical images into electronic signals. The optic nerve 

transmits these signals to the part of the brain that controls our sense of sight. This part 

of the brain is called virtual cortex [61]. 

 

 

Figure 1.1 Main parts of the human eye [79] 

 

A cataract is a clouding of the lens inside the eye (Figure 1.2) and it causes vision loss, 

which cannot be corrected with glasses, contact lenses or corneal refractive (refractive 

errors are for example nearsightedness, farsightedness or astigmatism) surgery. The 

lens of the eye is primarily made of water and protein. The protein is arranged in such a 

way, that it keeps the lens clear and let’s light pass through. As we age, the protein can 
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clump together and make the lens cloudy. Generally, a cataract starts out small and has 

only little impacts on one’s vision. Over time, the cataract can grow which makes seeing 

harder. It may be noticed as a little blur, like looking through a cloudy piece of glass [5, 

69, 79]. Figure 1.3 gives a comparison on how a person with regular vision (Figure 1.3 

(a)) and a person with cataract (Figure 1.3 (a)) sees the same scene. 

 

 
(a) 

 
(b) 

Figure 1.2 Comparison of a normal lens (a) and a cloudy lens (b) caused by a cataract (adapted 
from [80]) 

 

 

 
(a) 

 

 
(b) 

Figure 1.3 Comparison of two scenes viewed by a person with normal vision (a) and a person 

with cataract (b) [5, 79] 
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After a cataract is properly diagnosed, the next step is to restore one's vision with a 

cataract surgery. Due to [80] cataract surgeries are one of the most commonly performed 

operations worldwide and are considered as an extremely safe and effective surgical 

procedure. The procedure itself consists of four main steps and is typically performed on 

an outpatient basis and no overnight stay is required [69]. In the first step, an approxi-

mately 3mm small incision is made at the corneal margin (Figure 1.4 (a)). Afterward, a 

phacoemulsification probe is inserted which breaks the cataract into microscopic frag-

ments with ultrasound. The fragments can be aspirated with the help of the tooltip (Figure 

1.4 (b)). After the natural lens is completely removed, an artificial foldable intraocular 

lens (IOL) can be inserted through the incision (Figure 1.4 (c)). Once the artificial lens is 

in the eye, it unfolds and can be placed in the right position by the surgeon (Figure 1.4 

(d)). The small incision heals naturally without the need for a suture [81]. The IOL will not 

only lead to a clear vision, they can furthermore correct nearsightedness, farsightedness 

and modern IOLs can correct astigmatism as well. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1.4 Four main steps of a cataract surgery ((a) incision, (b) lens removal, (c) lens implan-
tation, (d) result) (adapted from [81]) 

 

Astigmatism is usually caused by an irregular shape of the cornea. Instead of a symmet-

rically round shape, one meridian is significantly more curved than the meridian perpen-

dicular to it [32]. To correct astigmatism during a cataract surgery a toric IOL is used. 
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Toric IOLs have different powers in different meridians of the lens to correct the asym-

metric power of the eye. Compared to a regular cataract surgery, a cataract surgery with 

astigmatism correction is essentially the same but still has some important differences. 

Prior to the surgery, measurements are done to figure out the correct power and orien-

tation of the implant. Toric IOLs have special markers on the lens to help the surgeon to 

see the orientation of the astigmatism correction on the lens. Once the lens is implanted 

to the eye, the surgeon can rotate the lens so that the correction axis is properly aligned 

with the astigmatism axis. The usage of toric IOLs do not increase the risk of a compli-

cation, but a misaligned toric IOL can cause blurred vision which cannot easily be cor-

rected with eyeglasses or contact lenses [33]. To overcome this problem and help the 

surgeon to correctly align the correction axis of the lens with the astigmatism axis a 

tracking approach is presented, which tracks the position and the axis of the eye during 

the whole surgery. 

 

1.1 Problem Statement 

In cataract surgery, the refractive requirements are steadily increasing. Not only by the 

patients but also by the surgeons. Besides nearsightedness and farsightedness, also 

astigmatism should be recovered after the surgery. To get close to this objective a variety 

of different lenses is available on the market. Before the surgeon can start with the sur-

gery, he needs to figure out the center of the eye and the rotation of the astigmatism. 

This information is needed subsequently in the last step of the surgery, where the sur-

geon needs to place the lens in the eye in a very precise way. A rotation or decentration 

of the implanted lens can lead to deterioration of one’s vision.  

 

 
(a) (b) 

Figure 1.5 Astigmatism axis marking with a bubble marker ((a) marking with a bubble marker, 

(b) the red rings show the marks on the eye) [22] 

 

At the current state, the surgeon has to use a special marking tool to mark the astigma-

tism axis [37]. An example of such a tool is given in Figure 1.5 (a). In this specific case, 

a bubble marker with a special gentian violet ink is used. The initial marking accuracy of 
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this process strongly depends on the experience of the surgeon. Additionally, we can 

see, the marks are quite blurry (Figure 1.5 (b)) and this can get worse during the surgery, 

as blood vessels can burst or water flushes are applied. Less accurate marking will di-

rectly lead to less accurate lens positions, which will decrease the overall quality of the 

vision restoration. 

To overcome this problem, we present an eye tracking approach for cataract surgeries. 

Again, at the beginning of the surgery, which will be the start of the tracking process, the 

center of the eye, as well as the astigmatism axis needs to be accurately marked by the 

surgeon. But this is a much simpler task now, as it can be done on an image and not 

directly on the real eye. Additionally, this procedure can easily be repeated several times 

until the surgeon is satisfied with his marking results. 

 

 
(a) (b) (c) 

Figure 1.6 Surgeon performing a cataract surgery ((a) surgeon who performs a cataract surgery 

with a camera and “head-mounted” display, (b) camera stream observed by the surgeon, (c) 
camera stream with proposed visualization for eye center and astigmatism axis) (adapted from 

[56]) 

 

During the surgery, the surgeon does not directly look at the patient's eye, instead, he 

uses a device with a camera (which observes the eye) and a “head-mounted” display 

(which shows the camera stream) (Figure 1.6 (a)). Figure 1.6 (b) shows the camera 

stream which is observed by the surgeon via the “head-mounted” display. By tracking 

the center of the eye as well as the axis of the astigmatism during the complete surgery, 

the surgeon can have access to this information at any point of the surgery. 

Nevertheless, it will be most likely need in the last steps of the surgery, where the toric 

IOL is implanted in the eye. Additionally, this tracking information can be directly visual-

ized to the camera stream which is observed via the “head-mounted” display (Figure 1.6 

(c)). This information cannot disappear or can get blurred over time due to blood vessels 

that burst or applied water flushes, as it can happen when the regular marking technique 

is used. Therefore this approach is intended to deliver more accurate position and orien-

tations information in the toric IOL placement step. 
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As one can imagine, the proposed tracker has to deal with very challenging datasets 

which can include the following problems: 

 

 The camera which is observing the surgery can be moved in x- and y-direction 

 The scale can change due to zooming 

 Under and overexposure is possible 

 Reflections are possible 

 The eye can move in 3D space 

 The eye will undergo a non-rigid deformation during the surgery 

 The lens will undergo an appearance change during the surgery (cloudy lens, 

broken cataract in the lens, no lens, artificial lens) 

 Blood vessels can burst 

 The eye can be covered by the surgeon, surgical tools, water flushes or blood 

 

Figure 1.7 gives a visual overview of the challenges the eye tracker has to deal with. It 

shows the positions change of the capturing device as well as the movement of the eye. 

Row (a) shows the appearance change of the lens during the surgery. (a.1) shows the 

cloudy lens, (a.2) the lens after the cataract was broken up and (a.3) the eye after the 

lens was removed. In (a.4) the new artificial lens is already implanted. Row (b) shows 

how water and blood can change the appearance of the eye. In addition to that, 

reflections which are caused by blood and water are demonstrated. Finally, row (c) gives 

an overview of challenges that are caused by surgical devices. 

 

(a) 

    

(b) 

    

(c) 

    

Figure 1.7 challenges of the eye tracker ((general) different position of the camera and the eye, 
scale change, reflections,(a) appearance change of the lens during the surgery, (b) influence of 

water flushes and blood, (c) influence of surgery tools) 
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Based on the findings of [37], for manual marking a mean postoperative toric misalign-

ment error of 3.5° can be reached, and this should be decreased by the presented ap-

proach. Additionally, a distance error of less than 0.15mm should be reached. Based on 

the findings of [30], the mean white-to-white corneal diameter for adults is 11.8mm. 

Therefore the 0.15mm lead to a distance error of 1.27%. Last but not least, the surgeon 

needs access to this information at any point of the surgery. Therefore the provided eye 

tracker needs to be real-time capable. 

 

1.2 Motivation 

Object tracking is a very common problem in computer vision. It can be defined as tracing 

the progress of objects as they move around in the scene. Furthermore, some trackers 

can provide additional information about orientation, area or shape of an object [2, 47, 

52, 53, 74]. In general, object tracking is a very challenging problem as it has to deal with 

several difficulties like abrupt object motion, changing the appearance of the fore- and 

the background, non-rigid object structures, occlusion, noise in the image and camera 

motion. To simplify tracking tasks, constraints to the motion or the appearance of an 

object can be set. For example, one can assume a uniform velocity or acceleration with-

out any abrupt changes. In addition to that prior knowledge, the number, the size and 

the shape of the object can be used to simplify the problem [47, 74]. Nevertheless, object 

tracking has a very broad range of applications such as automated surveillance, traffic 

monitoring, vehicle navigation, human-computer interaction or assistance in medical sur-

geries [2, 26, 53, 74]. 

Furthermore, there have been a lot of investigations into general eye tracking systems 

as the eyes and their movements play an important role in expressing a person’s desires, 

needs, cognitive processes and emotional states. The importance of eye movement with 

regards to the perception of and attention to the world is confirmed. It is the method 

through which the information is gathered, which is necessary to identify the character-

istics of the visual world. In addition to that, the eyes can be considered as relatively 

stable compared to other facial features. Therefore general eye tracking plays an im-

portant role in creating human-computer interfaces, attentive user interfaces and under-

standing human affective states. In addition to that, eye movements are the least affected 

by disabilities and can, therefore, be used for assistive technologies. The unique geo-

metric, photometric and motion characteristics of an eye can be used for face detection, 

face recognition and understanding facial expressions. [1, 28]. 

Although eye tracking, in general, is widely researched it is still not completely robust for 

a wide range of applications. In this thesis, we present an appearance-based tracking 

approach with a real-time capability. This approach is specially designed for tracking 
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eyes under harsh environments. It is based on template tracking with a robust image 

feature based homography estimation for doing the template update. Additionally, the 

robustness is increased by applying an adaptive image blending method when updating 

the templates. In addition to the template tracker, a tracking by detection approach is 

presented. As a detector, the aggregated channel features (ACF) detector from Piotr 

Dollar’s Matlab toolbox is used [18]. The detection results are subsequently refined to 

figure out the center of the pupil of the detected eye. This is done by applying a polar 

transform to the detected eye and finding the border between iris and lens. 

 

1.3 Overview 

This thesis is structured as follows: In section 2 an overview of general object trackers is 

given. In addition to that, different tracking approaches for general eye trackers are ex-

plained. In chapter 3, the theoretical foundations for this thesis are given. It starts with 

an insight to template matching and goes on with an explanation of the detector which is 

used in chapter 5. Additionally, transformations of 2D and 3D space are explained. 

Namely, the projective geometry of 2D space and the epipolar geometry. Other than that, 

the random sample consensus (RANSAC) algorithm as well as Laplacian image pyra-

mids as discussed. In chapter 4, the template based tracking approach is presented. The 

initialization, as well as the different steps which are needed to perform the template 

tracking, are explained. Finally, the tracker is validated regarding runtime and accuracy 

performance. Chapter 5 explains the tracking by detection approach with its detection 

refinement which improves the center detection of the eye. As well as the template based 

tracker, the detection tracker gets validated regarding runtime and accuracy perfor-

mance. Finally, in chapter 6 a detailed conclusion of the performance of the two pre-

sented tracking approaches as well as an outlook to future work is given. 
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2 Related Work 

The next two sections (2.1 General Object Tracking and 2.2 General Eye Tracking) give 

an overview of techniques which are used in various tracking applications. 

 

2.1 General Object Tracking 

General object tracking can be defined as tracing the progress of objects or object fea-

tures as they move around in the scene. In other words, object tracking can be described 

as generating the trajectory of an object over time, by locating its position in every frame 

of a video. Object trackers may also provide the complete region in the image that is 

occupied by the tracked object at every time instant. In general, object tracking is a very 

challenging problem, as it has to deal with difficulties like abrupt object motion, changing 

the appearance of the fore- and the background, non-rigid object structures, occlusion, 

noise in the image and camera motion, to name a few. By using some prior knowledge, 

some of these problems can be simplified. Based on the findings of [74], general object 

tracking can be divided into three main categories: point tracking, kernel tracking and 

silhouette tracking (Figure 2.1). In addition to that, representative work for each category 

is shown in Table 2.1. 

 

 

Figure 2.1 Classification of general object tracking methods based on [74] 

 

The selected object representation can limit the type of motion or deformation an object 

can undergo. If an object is represented as a point, only a translational model can be 
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applied. When a geometric shape representation, like a rectangle or an ellipse, for the 

object representation is used, parametric motion models like affine or projective trans-

formations are appropriate. For non-rigid objects, silhouette or contour is the most de-

scriptive representation and both parametric and nonparametric models can be used to 

specify their motion. 

 

Classification Demonstrative Work 

Point Tracking 

Deterministic Methods 

 Feature Point Correspondence in the Presence of Occlusion 

(MGE Tracker) [58] 

 Resolving Motion Correspondence for Densely Moving Points 

(GOA Tracker) [71] 

Statistical Methods 

 Estimation of Object Motion Parameters from Noisy Images 

(Kalman Filter) [10] 

 Tracking and Data Association (JPDAF) 

 Maximum Likelihood Method for Probabilistic Multihypothesis 

Tracking (PMHT) [66] 

Kernel Tracking 

Template and Density 

Based Appearance Models 

 Kernel-Based Object Tracking (Mean-Shift) [17] 

 Good Features to Track (KLT) [62] 

 Object Tracking With Bayesian Estimation of Dynamic Layer 

Representation (Layering) [68] 

Multi-View Appearance 

Models 

 EigenTracking: Robust Matching and Tracking of Articulated 

Objects Using a View-Based Representation (Eigentracking) [8] 

 Support Vector Tracking (SVT) [3] 

Silhouette Tracking 

Contour Evolution 

 Condensation - Conditional Density Propagation for Visual 

Tracking (State Space Models) [36] 

 Morphing Active Contours (Variational Methods) [7] 

 Region-Based Strategies for Active Contour Models (Heuristic 

Methods) [57] 

Matching Shapes 

 Tracking Non-Rigid Objects in Complex Scenes (Hausdorff) 

[35] 

 Temporal Spatio-Velocity Transform and its Application to 

Tracking and Interaction (Hough Transform) [60] 

 Object Reacquisition Using Invariant Appearance Model (His-

togram) [39] 

Table 2.1 Representative work of general object tracking methods based on [74] 

Following a brief introduction to the main tracking categories will be given: 
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Point Tracking 

In the point tracking approach, detected objects are represented by points. The associ-

ation of points is based on the previous object state which can include object position 

and motion. For this approach, an external mechanism to detect the object in every frame 

is necessary. Figure 2.2 (a) shows an example of object correspondences [74]. 

 

Kernel Tracking 

Kernel tracking refers to object shape and appearance, whereby the kernel, which rep-

resents the object, is, in general, a primitive object region, like a rectangle or an ellipse. 

Objects are tracked by computing the motion of the kernel in consecutive frames (Figure 

2.2 (b)). This motion is usually a parametric transformation such as translation, rotation 

or affine transformation [74]. 

 

Silhouette Tracking 

Some interesting objects for tracking (e.g. hands, heads, shoulders, …) cannot be well 

described by simple geometric shapes. Silhouette tracking methods use the information 

encoded inside the object region and tracking is performed by estimating the object re-

gion in each frame. Therefore they provide an accurate shape description for more com-

plex objects. Given the objects models, silhouettes are tracked by either shape matching 

or contour evolution (Figure 2.2 (c)) [74]. 

 

 

Figure 2.2 Different tracking approaches ((a) multipoint correspondences, (b) parametric trans-
formation of a rectangular patch, (c) contour evolution) (adapted from [74]) 

 

As point tracking is not advanced enough and the eye can easily be described by a 

simple primitive object, kernel tracking is the most promising approach for our eye 

tracking approach. Therefore this approach will be discussed further in the following sec-

tion. 
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2.1.1 Kernel Tracking 

In kernel tracking approaches, the motion of the object is typically computed in the form 

of a parametric motion like translation, rotation or affine transformation. The object is 

represented by primitive object regions like a rectangle or an ellipse. Kernel tracking 

algorithms differ in terms of the used appearance representation, the number of tracked 

objects and the method for estimating the object motion. Based on the used appearance 

representation two subcategories can be defined, namely, template and density-based 

appearance models and multi-view appearance models. 

 

Template and Density-Based Appearance Models 

The most common approach in this category is template matching. Template matching 

is a brute force method, wherein an image 𝐼 the object template 𝑂 is searched. The 

object template is defined via the previous frame. The position of the template in the 

current frame is computed by a similarity measure (e.g. cross correlation). The template 

usually is formed by image intensity, color features or image gradients. Due to the brute 

force search, template matching can be quite cost intensive. To reduce the computa-

tional costs the search window for the object can be reduced to the surrounding of its 

previous position [52, 74]. 

In [17] they use a weighted histogram computed from a circular region to represent the 

object. Instead of a brute force method for locating the object, a mean shift procedure is 

used (further details on the mean shift algorithm can be found in [14, 16]). The 

appearance similarity is iteratively maximized by the mean shift tracker, by comparing 

the histograms of the object 𝑄 and the hypothesized object location 𝑃. As a similarity 

measure, the Bhattacharyya distance is used. At each iteration, the similarity is increased 

and this process is repeated, until convergence is reached. In practice, this takes about 

4 iterations. 

An online template update was first introduced by [38]. The generative model for the 

appearance is modeled as a mixture of three components. The stable appearance com-

ponent which is learned with a relative long time-course, a two-frame transient compo-

nent and a noise process. The stable component identifies the most reliable appearance 

for motion, that is, the region of the object whose appearance does not quickly change 

over time. Quickly changing pixels are identified by the transient component and outliers 

that arise due to noise are handled by the noise process. 

 



2.2. General Eye Tracking  13 

 

Multi-View Appearance Models 

In the previous tracking method, the model representation is gathered online from the 

most recent observation. One issue is, that the object may appear different from different 

views. This means, if the object view changes during tracking, the appearance model 

may not be valid anymore. To overcome this problem, the object can be offline learned 

from different views and afterward used for tracking [74]. 

In [8] they present a view based approach for tracking rigid and articulated objects which 

rely on eigenspace techniques. For computing the affine transformation from the current 

image of the object to the image reconstructed, eigenvectors are used. By using a robust 

formulation of subspace matching they showed, that they can track objects over a long 

time, in which the object can undergo affine image motion and changes of view. 

In [3] they propose a support vector tracker (SVT), which fuses an optic-flow-based 

tracker with a support vector machine (SVM) classifier. SVM is a general classification 

scheme, which finds the best separation between two classes. For SVT, the positive 

class consists of images of the object to be tracked, while the negative class consists of 

all things that should not be tracked. To estimate the position of the object, the SVM 

classification score is optimized.  

 

2.2 General Eye Tracking 

As the eyes and their movements play an important role in expressing a person’s desires, 

needs, cognitive processes and emotional states a lot of investigations have been done 

to create human-computer interfaces, attentive user interfaces and understanding hu-

man affective states. As described in [1, 28] general eye tracking can be further divided 

into shape based, feature-based and appearance based tracking approaches. In addition 

to that, there are tracking approaches with active infrared illumination. 

 

2.2.1 Shape-Based Tracking 

One very common approach in eye tracking is to find the location of the iris or pupil based 

on their circular shape. Also, the exterior shape of the eye (e.g. the eyelids) can be used 

to improve the tracking results [1]. As said before, many eye trackers only detect and 

track either the iris or pupil. Depending on the viewing angle, iris and pupil appear as an 

ellipse and therefore simple elliptical shape models can be used for eye tracking. Such 

simple methods are not capable to deal with the variations of eye features like eyelids, 

eye corners and eyebrows. Therefore more complex shape models can be used which 

allow a more detailed modeling of the eye shape [28]. 
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In [41] they present a longest line detection (LLD) algorithm to obtain the center of the 

pupil. The algorithm assumes, that the pupil is of arbitrary circular shape. Then the long-

est vertical and horizontal line of the pupil is found and the center of the longest vertical 

or horizontal line represents the center of the pupil. The accuracy of the algorithm is 

influenced by the pupil's shape. 

A straightforward way for eye detection which relies on a circular Hough transform is 

proposed in [40]. The facial image is cropped to the required face region and afterward, 

a threshold is applied to the gradient magnitude of the cropped face image. As the iris is 

nearly circular, the Hough transform is used to detect the iris based on the gradient mag-

nitudes. As many assumptions have been made for this work, it is not suitable for most 

real-world applications. 

An approach which relies on more complex shapes is proposed by [75]. The deformable 

eye template consists of a circle for the iris and two parabolas for the eyelids. The eye 

template is fitted to the image by minimizing an energy function which is given as a com-

bination of terms due to valley, edge, peak, image and internal potentials. For this algo-

rithm good initialization is necessary and it has difficulties when the iris is partially hidden 

by the boundaries of the eye. 

 

2.2.2 Feature-Based Tracking 

In feature-based eye tracking methods, the characteristics of the human eyes are ex-

plored to figure out distinctive features. Limbus, pupil and corneal reflections are com-

mon features which are used for eye detection [28]. 

In [65] they first identify the face in the image with a skin color model. After the face is 

detected, they search for the pupils by looking for two dark regions which satisfy certain 

anthropometric constraints and lie within a certain area of the face. For a given situation, 

the dark regions can be located by applying a fixed threshold to the grayscale image. 

Depending on the person itself and different lighting conditions, this threshold can vary. 

To overcome this problem they developed an iterative thresholding algorithm. After the 

pupils are found, they can be tracked in the following frames by finding the darkest pixels 

in a small search window around the current location. 

Corneal reflections are virtual images of light sources that illuminate the eye and are 

created by the front surface of the cornea, which acts as a convex mirror. The pupil 

center and the corneal reflections can be used to estimate the gaze. In [27] a general 

mathematical model is presented which allows estimating the gaze based on the center 

of the pupil and one or more corneal reflections. 

In [73] an approach is presented, which eliminates the influences caused by glasses and 

other accessories. In the proposed scheme, the gray difference between the face, pupils 
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and corneal reflections are used to detect the eyes. The intensity of the pupil is usually 

much lower than the intensity of the reflections and therefore the eye region can then be 

detected as the intersection of the low-gray region and the high-gray region. At the same 

time reflections which are caused by glasses of accessories are removed according to 

their size, geometric structure and other relevant features.  

 

2.2.3 Appearance-Based Tracking 

Besides the shape, also the appearance is an important descriptor for the eye. These 

methods are also known as image template or holistic methods. Appearance-based 

methods detect and track eyes directly on the photometric appearance. These methods 

are independent of the actual object and are in general capable of tracking other objects 

than eyes too. Appearance-based methods are carried out in a spatial or transformed 

domain and try to overcome issues due to illumination changes. In practice, however, 

such techniques are only tolerant to some moderate illumination changes [28]. 

In [54] they generalize the eigenface approach of [70] to view-based and modular eigen-

spaces for detection and recognition. This view-based formulation allows recognition un-

der varying head orientations and the modular description not only allows eye detection, 

furthermore other important facial features like the nose and the mouth can be detected. 

The eigenspaces for the different facial features are called eigeneyes, eigennoses and 

eigenmouths. 

The eigeneye approach of [54] is extended in [34]. The initial localization of the eye is 

done in the eigeneye space. This initial position is refined with a Hough transform based 

on the edge information. Afterward, a homogeneity measure is used to eliminate invalid 

hypothesis. Finally, a robust method is used to select the best circle among all possible 

circles. 

 

2.2.4 Tracking With Active Infrared Illumination 

Methods which rely on an active light source for detecting the eye are called active light 

approaches, otherwise, they are called passive light approaches. Active light methods 

are very common for indoor eye tracking systems and most of them use near-infrared 

light sources to illuminate the eye. If the light source is located close to the optical axis 

of the camera the pupil appears very bright as most of the light is reflected by the retina. 

This effect is similar to the red eye effect which can appear in photography when using 

a flash [1, 28]. 
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In [45] they did investigations on how the magnitude of the bright pupil response change 

with different individuals. There they figured out, that the brightness can change dramat-

ically although they exposed the image to the same amount of ambient light and the 

viewing angle stayed the same. Based on that findings, thresholds can be set manually 

and will work for a lot of scenarios. But to get more robust tracking results, the threshold 

for bright pupil detection needs to be adaptive. 

 

2.3 Conclusion 

The literature research has shown, that template tracking looks very promising for the 

eye tracking approach. Templates are formed by using simple geometric shapes and it 

carries both, spatial and appearance information. As we assume challenging lighting 

conditions as well as significant object appearance changes, it is necessary to dynami-

cally adapt the tracking template. The general eye tracking research showed, that the 

center of the eye can be detected by the circular shape of the iris. Using additional 

shapes like the eyelid is not possible, as they are not visible during the surgery. Using 

an active IR light source could help to robustly detect the center of the pupil, but with the 

current surgical device, this is not possible. 
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3 Background 

This chapter provides an overview of the theoretical background and methodologies 

which are used in this thesis. Chapter 3.1 gives an insight into template matching and 

chapter 3.2 explains the aggregated channel features (ACF) detector which is used in 

the tracking by detection approach. In chapter 3.3 the projective geometry of 2D space 

and the epipolar geometry is explained. The random sample consensus (RANSAC) al-

gorithm is explained in chapter 3.4. Finally, in chapter 3.5 the Laplacian image pyramid 

is explained. 

 

3.1 Template Matching 

Template matching is a low-level technique in computer vision and is commonly used for 

pattern recognition tasks. It allows identifying parts of an image that matches the given 

image pattern [55]. In other words, template matching is an approach which allows find-

ing areas of an image which are similar (match) to a template image. To perform template 

matching, three primary components are necessary. The template, the search image 

and a similarity measure. Related to [11] anything fashioned, shaped, or designed to 

serve as a model from which something is to be made can be seen as a template. Com-

paring in respect of similarity is the technical understanding for matching. 

The simplest approach for template matching is, to use a sliding window to find the given 

template in the image. Figure 6.1 illustrates this simple approach, where the template is 

assumed with similar scale and pose in the search image. 

 

 

Figure 3.1 Sliding-window template matching approach 
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This simple template matching approach can be made more robust, by using a full search 

algorithm, which additionally considers 360° rotation and different scales by using a pyr-

amid approach. Unfortunately, this is a very time-consuming process with large compu-

tational costs. Therefore, there is a need for fast and robust template matching ap-

proaches which do not rely on such an exhaustive search but deliver results of similar 

accuracy [31]. 

A template may additionally show some extrinsic, as well as intrinsic variability. The sim-

plest extrinsic variability is a corruption by noise. Additionally, it can vary due to different 

illumination or different viewpoints from where the object is observed. A non-rigid defor-

mation of the template can be seen as intrinsic variability. This non-rigid deformation can 

be for example intrinsic variability through physical objects (e.g. different writing styles of 

the letter ‘a’) or temporal evolution of an object (e.g. variation of the mouth while talking). 

Figure 3.2 shows extrinsic as well as intrinsic variability of three different template clas-

ses, ‘letter’, ‘face’ and ‘mouth’. Corruption by noise, variability due to different viewpoints, 

object intrinsic variability as well as temporal variability is visualized there. To allow good 

template matching, robust similarity measures are necessary. 

 

 

Figure 3.2 Extrinsic and intrinsic template variability for ‘letter’, ‘face’ and ‘mouth’ (adapted from 
[11, 46]) 
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3.1.1 Similarity Measures 

As already discussed before, templates can show some variability. To allow a robust 

template matching, robust similarity measures are necessary. A very simple way to com-

pute the similarity between a template and an image region is to describe both as a 

vector (𝒙,𝒚) of pixel values and use a distance metric as similarity measure [11, 31]. 

Quite typical is the use of the sum of squared distance defined by equation 3.1 as well 

as the Euclidean distance or so called 𝐿2 − 𝑛𝑜𝑟𝑚 which is defined by equation 3.2. 

 

𝑑(𝒙,𝒚) = ∑(𝑥𝑖 − 𝑦𝑖)
2

𝑁

𝑖=1

 3.1 

 

𝑑𝐿2(𝒙,𝒚) = ‖𝒙− 𝒚‖2 = √∑(𝑥𝑖 − 𝑦𝑖)
2

𝑁

𝑖=1

 3.2 

 

As a measure of match for a given distance function 𝑑(𝒙,𝒚) the similarity measure 𝑠(𝒙,𝒚) 

(equation 3.3) can be used. A perfect match results into 𝑑(𝒙,𝒚) = 1 and goes to 0 for 

increasing mismatches. 

 

𝑠(𝒙,𝒚) =
1

1 + 𝑑(𝒙,𝒚)
 3.3 

 

In addition to that, the normalized cross-correlation (NCC) is often adapted for similarity 

measures due to its better robustness to illumination changes and is therefore by far the 

most widely used similarity measure [59, 64]. In general, the normalized cross-correlation 

for two images 𝑰 and 𝑻 is defined by equation 3.4 where 𝐼 ̅and �̅� are the mean intensity 

values of the corresponding images 𝑰 and 𝑻. Correlation values are obtained in the range 

of [−1,1], where positive values indicate a higher similarity [31, 43]. 

 

𝑁𝐶𝐶(𝑰,𝑻) =
∑ (𝑰(𝑥,𝑦) − 𝐼)̅𝑥,𝑦 (𝑻(𝑥,𝑦) − �̅�)

√∑ (𝑰(𝑥, 𝑦) − 𝐼)̅2
𝑥,𝑦 ∙ ∑ (𝑻(𝑥, 𝑦) − �̅�)2

𝑥,𝑦

 
3.4 
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3.2 ACF Detector 

ACF stands for aggregated channel features and its detection framework is mostly de-

scribed in [19]. Additional information can be found through [20, 21, 44]. The ACF detec-

tor is the successor of the integral channel features (ICF) detector which was introduced 

by [21]. The ICF detector computes multiple registered images channels by using linear 

and non-linear transformations of the input image. Afterward, features are extracted from 

each channel using sums over rectangular regions. Such features are referred as integral 

channel features. Boosting is used to train and combine decision trees over these fea-

tures to distinguish between objects and background. The boosting algorithm of their 

choice is AdaBoost [25]. Finally, a multiscale sliding window approach with non-maximal 

suppression (NMS) is used to detect the object. They did a performance validation of 

various channels (histogram of oriented gradients, color (greyscale, RGB, HSV and LUV) 

and gradient magnitude) alone and in conjunction and showed that a combination of 

histogram of oriented gradients, LUV and gradient magnitude gives the best results. 

Additionally, they tested further boosting algorithms (RealBoost and LogiBoost) and they 

figured out, that the choice of the boosting algorithm plays almost no role in the perfor-

mance. 

The ACF detector is quite similar to the ICF detector. Both detectors use the same chan-

nel features as well as boosted classifiers. The key difference between the two frame-

works is the feature generation. ICF uses sums over rectangular channel regions, while 

ACF uses pixel lookups in aggregated channels as features. Based on [19] the frame-

work of the ACF detector is conceptually straightforward and an overview of the frame-

work is given in Figure 3.3.  

 

 

Figure 3.3 Overview of the aggregated channel feature detection framework [19] 

 

From a given input image 𝐼 several channels 𝐶 = Ω(𝐼) are computed. The channels are 

namely: normalized gradient magnitude (1 channel), histogram of oriented gradients (6 

channels) and LUV color channels (3 channels). Prior the 10 channels are computed 𝐼 

is smoothed with a Gaussian filter. The channels 𝐶 are divided into 4 × 4 blocks and 

every block of pixels is summed up. Finally, the resulting lower resolution channels are 
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again smoothed with a Gaussian filter. Features are single pixel lookups in the aggre-

gated channels. Given a ℎ × 𝑤 detection window, there are ℎ/4 ∙ 𝑤/4 ∙ 10 candidate fea-

tures. Boosting with multiple rounds of bootstrapping is used to train and combine 2048 

depth-2 decision trees over these features to distinguish objects from the background. 

As a boosting algorithm, again, AdaBoost is used. Finally, an efficient multiscale sliding-

window approach is applied to do the object detection. 

A Matlab toolbox [18] is provided which is easy to use. To train the detector we only need 

to provide a directory which contains the object images, plus an additional directory 

which contains the object annotations (a text file which holds the bounding box infor-

mation of the object in the corresponding image). 

 

3.3 Geometry in 2D and 3D space 

The next chapters will give an overview of geometries of 2D and 3D space. Namely 

projective geometries in 2D space and the epipolar geometry which is a projective ge-

ometry between two views. Before these geometries are further discussed, a brief intro-

duction to geometric primitives is given. Most of the formulations are based on [29] and 

also additional information to the discussed topics of this chapter can be found there. 

 

3.3.1 Geometric Primitives 

A point in the plane can be represented by a pair of coordinates (𝑥,𝑦) in ℝ2. Considering 

ℝ2 as a vector space, the coordinate pair (𝑥,𝑦) is vector. A line in the plane is given by 

the equation 𝑎𝑥 + 𝑏𝑦+ 𝑐 = 0, where different values for 𝑎, 𝑏 and 𝑐 will give different lines. 

Thus, a line can now be represented by the vector (𝑎,𝑏, 𝑐)𝑇. The vectors (𝑎, 𝑏, 𝑐)𝑇 and 

𝑘(𝑎, 𝑏, 𝑐)𝑇 represent the same line, for any non-zero 𝑘. An equivalence class of vectors 

under this equivalence relationship is known as homogenous vector. A point 𝒙 = (𝑥, 𝑦)𝑇 

lies on the line 𝒍 = (𝑎,𝑏, 𝑐)𝑇 if and only if 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0. This can be written as an inner 

product of vectors where the point 𝒙 is represented as a 3-vector with an additional 1 as 

the third coordinate. The set of vectors (𝑘𝑥,𝑘𝑦,𝑘)𝑇 for varying values of 𝑘, all represent 

the same point (𝑥,𝑦)𝑇. Thus, just as with lines, points are represented as homogenous 

vectors. Therefore the point in form 𝒙 = (𝑥1, 𝑥2,𝑥3)
𝑇 represents the point (𝑥1/𝑥3, 𝑥2/𝑥3)

𝑇 

in ℝ2. As already mentioned before, the point 𝒙 lies on the line 𝒍 if and only if 𝒙𝑇𝒍= 0. 

Given two lines 𝒍 and 𝒍′ the point of intersection is given by 𝒙 = 𝒍× 𝒍′ where × defines 

the vector or cross product. Finally, the line through two given points 𝒙 and 𝒙′ is defined 

by 𝒍 = 𝒙 × 𝒙′. 

In 3-space, a point is represented as a 4-vector in homogeneous coordinates. The ho-

mogenous vector 𝑿 = (𝑋1, 𝑋2, 𝑋3, 𝑋4)
𝑇 with 𝑋4 ≠ 0 represents the point (𝑋1/𝑋4,𝑋2/𝑋4, 𝑋3/
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𝑋4)
𝑇 = (𝑋, 𝑌,𝑍)𝑇 of ℝ3 with inhomogeneous coordinates. A plane in 3-space can be writ-

ten as 𝜋1𝑋 + 𝜋2𝑌 + 𝜋3𝑍+ 𝜋4 = 0 or as 𝜋1𝑋1 + 𝜋2𝑋2 + 𝜋3𝑋3 + 𝜋4𝑋4 = 0 in a homogenous 

way. More concise, a plane in 3-space can be written as 𝜋𝑇𝑿 = 0, which expresses, that 

the point 𝑿 is on the plane 𝜋. A plane is uniquely defined by the join of three points 

(equation 3.5), or the join of a line and a point, in general position (points and lines are 

not collinear). Three distinct planes intersect in a unique point (equation 3.6) and two 

distinct planes interest in a unique line. 

 

[

𝑿1
𝑇

𝑿2
𝑇

𝑿3
𝑇

]𝜋 = 0 3.5 

 

[

𝜋1
𝑇

𝜋2
𝑇

𝜋3
𝑇

]𝑿 = 0 3.6 

 

3.3.2 Projective Geometry in 2D 

Projective geometry is the study of properties that are invariant under a group of trans-

formations [29]. Therefore 2D projective geometry is the study of properties of the pro-

jective plane 𝑃2 which are invariant under a group of transformation called projectivities. 

Projectivities are further known as collineation, projective transformation or homography. 

A projectivity is an invertible mapping 𝒉 from points in P2 to points in P2 that maps lines 

to lines. Therefore three points 𝒙1, 𝒙2 and 𝒙3 lie on the same line only if 𝒉(𝒙1), 𝒉(𝒙2) and 

𝒉(𝒙3) do. P2 → P2 is a projectivity if and only if there exists a non-singular 3 × 3 matrix 

𝑯 such that for any point in P2 represented by a vector 𝒙 equation 3.7 is true. 

 

𝒉(𝒙) = 𝒙′ = 𝑯𝒙 3.7 

 

The matrix 𝑯 consist of nine elements with eight independent ratios. Therefore the pro-

jective transformation has eight degrees of freedom. As already mentioned projective 

geometry consists of a group of transformations which are defined through a hierarchy. 

We will introduce these transformations hierarchy starting from the most specialized one 

until the projective transformation is reached. 
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Isometry Transformations 

Isometries are the simplest form of projective geometry and preserve Euclidian distance. 

An isometry is represented as represented in equation 3.8 where 𝜀 = ±1. 

 

(
𝑥′
𝑦′
1

) = [
𝜀 𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃) 𝑡𝑥
𝜀 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 𝑡𝑦

0 0 1

](
𝑥
𝑦
1
) 3.8 

 

If 𝜀 = 1 the isometry is orientation preserving and is therefore a Euclidian transformation. 

If 𝜀 = −1 the isometry reverse the orientation. A planar Euclidian transformation can be 

written in block form (equation 3.9) where 𝑹 is a 2 ×2 rotation matrix and 𝒕 is a translation 

2-vector. 

 

𝒙′ = [
𝑹 𝒕
0𝑇 1

] 𝒙 3.9 

 

Special cases of the isometry are pure rotation (𝒕 = 0) and pure translation (𝑹 = 𝑰). A 

planer Euclidian transformation has three degrees of freedom, where one is used for the 

rotation and two for the translation. The transformation can be computed from two point 

correspondences. The invariants of the isometry transformation are length (distance be-

tween two points), angle (angle between two lines) and area. 

 

Similarity Transformations 

A similarity transformation is an isometry transformation extended by an isotropic scaling 

𝑠. In the case of a Euclidian transformation extended with a scaling 𝑠, the matrix repre-

sentation of the similarity transformation is shown by equation 3.10. The more concise 

block form is presented in equation 3.11. 

 

(
𝑥′
𝑦′
1

) = [
𝑠 𝑐𝑜𝑠(𝜃) −𝑠 𝑠𝑖𝑛(𝜃) 𝑡𝑥
𝑠 𝑠𝑖𝑛(𝜃) 𝑠 𝑐𝑜𝑠(𝜃) 𝑡𝑦

0 0 1

](
𝑥
𝑦
1
) 3.10 

 

𝒙′ = [
𝑠𝑹 𝒕
0𝑇 1

] 𝒙 3.11 

 

The similarity transform is further known as equi-form transformation as it preserves 

‘shape’. The planar similarity form has four degrees of freedom. The three known from 
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the isometry transform (length, angle, area) plus one for the scale. Two point correspond-

ences are enough to compute a similarity transform. The invariants are the angle be-

tween lines, the ratio of length as well as the ratio of areas. 

 

Affine Transformations 

An affine transformation, also known as affinity, is a non-singular linear transform which 

is followed by a translation. Its matrix representation is shown in equation 3.12 and its 

block form in equation 3.13 where 𝑨 represents a 2 × 2 non-singular matrix. 

 

(
𝑥′
𝑦′
1

) = [
𝑎11 𝑎12 𝑡𝑥
𝑎21 𝑎22 𝑡𝑦
0 0 1

](
𝑥
𝑦
1
) 3.12 

 

𝒙′ = [
𝑨 𝒕
0𝑇 1

] 𝒙 3.13 

 

The planar affine transformation has six degrees of freedom according to its six matrix 

elements. Three point correspondences are necessary to compute an affine transfor-

mation. For a better understanding of the geometric effect of the matrix 𝑨, it can be split 

into a rotation and a non-isotropic scaling. A single value decomposition (SVD) can be 

used to decompose 𝑨 (equation 3.14), where 𝑅(𝜃) and 𝑅(𝜙) are rotations by 𝜃 and 𝜙 

and 𝑫 is a diagonal matrix (equation 3.15) consisting of the scaling parameters 𝜆1 and 

𝜆2. A schematic example of the arising distortions caused by the affine transformation is 

shown in Figure 3.4. 

 

𝑨 = 𝑼𝑫𝑽𝑇 = (𝑼𝑽𝑇)(𝑽𝑫𝑽𝑇) = 𝑅(𝜃)(𝑅(−ϕ)𝑫𝑅(𝜙)) 3.14 

 

𝑫 = [
𝜆1 0
0 𝜆2

] 3.15 

 

The invariants of an affinity transform are parallel lines, the ratio of lengths of parallel 

lines and the ratio of areas. Depending on whether 𝑑𝑒𝑡(𝑨) is positive or negative the 

affinity transformation is orientation preserving or orientation reversing. Since 𝑑𝑒𝑡(𝑨) =

𝜆1𝜆2 this property only depends on the sign of the scaling factors. 
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(a) 

 
(b) 

Figure 3.4 Distortion arising from affine transformation ((a) rotation by 𝑅(𝜃) , (b) deformation 

𝑅(−ϕ)𝑫𝑅(𝜙) ) [29] 

 

Projective Transformations 

A projective transformation is a general non-singular linear transformation of homogene-

ous coordinates. It can be seen as a generalization of an affine transformation. Its matrix 

form is shown in equation 3.16 and its block form in equation 3.17 with vector 𝒗 =

(𝑣1, 𝑣2)
𝑇.  

 

(
𝑥1′

𝑥2′

𝑥3′

) = [

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

](
𝑥1

𝑥2

𝑥3

) 3.16 

 

𝒙′ = 𝑯𝒑𝒙= [
𝑨 𝒕
𝒗𝑇 𝑣

] 𝒙 3.17 

 

The matrix has eight independent ratios amongst the nine elements. Therefore the pro-

jective transformation has eight degrees of freedom, with two degrees for scaling, two 

for rotation, two for translation and two for the line at infinity. To compute a projective 

transformation four point correspondences are necessary. The only remaining invariant 

is the cross ratio of four collinear points. Compared to affine transformations, it is not 

possible to distinguish between orientation preserving and orientation reversing 

projectivities. 
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Summary of Projective Transformations in 2D 

Figure 3.5 and Table 3.1 summarize the projective transformations in 2D space. Figure 

3.5 visualizes the appearing distortions and Table 3.1 gives a summary of matrix repre-

sentation, the degrees of freedom, the invariants and how many point correspondences 

are necessary to compute the desired transformation. 

 

 

Figure 3.5 Projective transformations in 2D space (adapted from [29, 67]) 

 

Group Matrix DOF Points Invariants 

isometry [
𝜀 𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃) 𝑡𝑥
𝜀 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 𝑡𝑦

0 0 1

] 3 2 length, angle and area 

Similarity [
𝑠 𝑐𝑜𝑠(𝜃) −𝑠 𝑠𝑖𝑛(𝜃) 𝑡𝑥
𝑠 𝑠𝑖𝑛(𝜃) 𝑠 𝑐𝑜𝑠(𝜃) 𝑡𝑦

0 0 1

] 4 2 
angle, ratio of lengths and 

areas 

Affine [
𝑎11 𝑎12 𝑡𝑥
𝑎21 𝑎22 𝑡𝑦
0 0 1

] 6 3 

parallel lines, ratio of 

lengths of parallel lines 

and ratio of areas 

projective [

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

] 8 4 
cross ratio of four collinear 

points 

Table 3.1 Projective transformations in 2D space (adapted from [29]) 
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3.3.3 Epipolar Geometry 

The epipolar geometry is the geometry of a two camera system and describes the rela-

tionship between two image planes and a 3D world point 𝑿 [4, 24, 29]. It only depends 

on internal camera parameters and the relative pose of the cameras. A camera model is 

used to describe the relation between 3D world coordinates and coordinates on the 2D 

image plane. By introducing the world point 𝑿 as a homogeneous 4-vector 𝑿 =

(𝑋,𝑌,𝑍, 1)𝑇, the image point 𝒙 as a homogenous 3-vector 𝒙 = (𝑥,𝑦,1)𝑇 and the camera 

projection matrix 𝑃 as a homogenous 3 × 4 matrix the mapping from world to image co-

ordinates can be written as 𝒙 = 𝑃𝑿. 

 

 

Figure 3.6 Epipolar geometry – point correspondence geometry (adapted from [29]) 

 

The 3D world point 𝑿 is observed by two cameras with their optical centers 𝑪 and 𝑪′. 𝒙 

is the image of 𝑿 in the first camera and 𝒙′ is the image of 𝑿 in the second camera. As 

we can see in Figure 3.6 the image points 𝒙 and 𝒙′, the world point 𝑿, as well as the 

optical centers 𝑪 and 𝑪′ are coplanar. This means, all points lie on the same plane, which 

is called the epipolar plane 𝜋. This property is most significant for the search of corre-

sponding points. The points 𝒆 and 𝒆′ are the intersections of the base line (line connect-

ing the camera centres 𝑪 and 𝑪′) and the image planes and are called epipoles of the 

two cameras. In other words, the epipole is the image of the camera center of one view 
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in the other view. The epipolar line is the intersection of one epipolar plane 𝜋 with the 

image plane and all epipolar lines intersect in the epipole. Therefore a point 𝒙 in image 

one, back projected to a ray in space is an epipolar line 𝒍′ in image two. The 3D point 𝑿 

must lie on this ray and therefore the image of 𝑿 must lie on the epipolar line 𝒍′. In terms 

of correspondence finding, the corresponding point to 𝒙, namely 𝒙′, has to lie on the line 

𝒍′. 

The mathematical representation of the epipolar geometry is the fundamental matrix 𝐹. 

It maps a point 𝒙 in one image to a line 𝒍′ in the other image (equation 3.18) 

 

𝒙 ↦ 𝒍′ 3.18 

 

With a camera matrix 𝑃 and a point 𝒙 in the image, it is possible to determine a set of 

points in space which map to this point. In other words, we can do a back projection of 

an image point to a ray in 3D space. This ray can be formed by two know points and a 

line which connects them (equation 3.19). These two points are the camera center 𝑪 and 

the point 𝑃+𝒙. 𝑃+ = 𝑃𝑇(𝑃𝑃𝑇)−1 is the pseudo inverse of 𝑃 for which 𝑃𝑃+ = 𝐼 holds. 

 

𝑿(𝜆) = 𝑃+𝒙+ 𝜆𝑪 3.19 

 

The camera center 𝑪 and the point 𝑃+𝒙 are imaged by the second camera 𝑃′ at 𝑃′𝑪 and 

𝑃′𝑃+𝒙. The epipolar line 𝒍′ in the second image is the line connecting these two points 

(equation 3.20). The point 𝑃′𝑪 is the epipole 𝒆′ of the second camera. The fundamental 

matrix 𝐹 can be computed as shown in equation 3.21. 

 

𝒍′ = (𝑃′𝑪)× (𝑃′𝑃+𝒙) = 𝒆′ × (𝑃′𝑃+)𝒙 = 𝐹𝒙 3.20 

 

𝐹 = 𝒆′ × (𝑃′𝑃+) 3.21 

 

For any two corresponding points in the two images, the fundamental matrix 𝐹 holds the 

condition shown in equation 3.22. To compute the fundamental matrix, at least seven 

point pairs are necessary, but the easier way is to use eight point pairs. The algorithms 

for computing the fundamental matrix 𝐹 are discussed in [29]. 

 

𝒙′𝑇𝐹𝒙 = 0 3.22 

 

Equation 3.23 shows the computations for the epipolar lines as well as the computation 

for the epipoles. 
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𝒍′ = 𝐹𝒙 𝒍 = 𝐹𝑇𝒙′ 
3.23 

𝐹𝒆 = 0 𝐹𝑇𝒆′ = 0 

 

3.4 RANSAC 

RANSAC stands for random sample consensus and was introduced by [23]. It is an iter-

ative method to estimate the parameters of a mathematical model from an observed 

dataset including inliers and outliers. It is a non-deterministic algorithm that produces a 

robust estimation with a certain probability. This probability can be increased by allowing 

more iterations. Given a dataset that includes inliers and outliers, RANSAC uses a voting 

scheme to find the optimal result. The assumption hereby is, that noisy samples will not 

vote consistently for any single model and there are enough samples that agree to a 

good model. The algorithm basically consists of two steps, which are iteratively repeated.  

 

1. The algorithm first selects a random sample set from the input data that is 

minimally required to estimate the desired model. With this minimal subsample 

dataset the model is estimated. 

2. Secondly, the algorithm determines the number of inlier samples when the model 

from step 1 is applied. Any sample that lies within a defined error threshold is 

defined as inlier, any other sample is defined as an outlier. 

 

This random selection is repeated until a termination condition is reached. The complete 

RANSAC algorithm is visualized in Figure 3.7. 

 

 

Figure 3.7 The RANSAC robust estimation algorithm [29] 
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3.5 Laplacian Image Pyramid 

An image pyramid is a multi-scale image representation technique which is commonly 

used in multiresolution image analysis and image compositing. For example, we want to 

search for an object in a scene, but do not know the actual size of the object. In this case, 

we will need to create a set of images with different resolution and search for the object 

in all images. As these images, when kept in a stack, look like a pyramid, they are called 

image pyramid [48]. 

Laplacian Image pyramids were introduced by [12] and are based on Gaussian pyra-

mids. In a Gaussian pyramid, the original image 𝐼0 is filtered with an Gaussian filter and 

subsampled to obtain the image 𝐼1. 𝐼1 is the so called “reduced” version of 𝐼0. In a similar 

way, we form 𝐼2 as a reduced version of 𝐼1, and so on. Figure 3.8 illustrates the creation 

of a Gaussian pyramid with five levels. 

 

 

Figure 3.8 Gaussian Image pyramid creation [15] 

 

The Laplacian pyramid now is very similar to the Gaussian pyramid. The difference is, 

that the Laplacian pyramid is a sequence of error images 𝐿0, 𝐿1 ,… ,𝐿𝑁, where each image 

is the difference between two levels of the Gaussian pyramid. For 0 ≤ 𝑙 < 𝑁, each image 

for the pyramid is achieved by equation 3.24. As there is no image for 𝐼𝑁+1 to create 𝐿𝑁, 
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we define 𝐿𝑁 = 𝐼𝑁. 𝐸𝑋𝑃𝐴𝑁𝐷 applied to an image 𝐼𝑙 of the Gaussian pyramid will yield to 

an image 𝐼𝑙,1 which is of the same size as 𝐼𝑙−1.  

 

𝐿𝑙 = 𝐼𝑙 − 𝐸𝑋𝑃𝐴𝑁𝐷(𝐼𝑙+1) = 𝐼𝑙 − 𝐼𝑙+1,1 3.24 

 

Figure 3.9 gives an overview of how the Laplacian pyramid is generated. The Gaussian 

images of the middle row are obtained by expanding the image of the Gaussian pyramid. 

Each level of the Laplacian pyramid is the difference between the corresponding and the 

next higher level of the Gaussian pyramid. 

 

 

Figure 3.9 Creation of the Laplacian pyramid from expanded Gaussian pyramid images  [42] 
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4 Template Based Tracking 

In this chapter, we present an appearance-based tracking approach that is real-time ca-

pable. This approach is specially designed for tracking eyes under harsh environments. 

Thereby we assume x and y movements of the capture device, scale changes due to 

zooming, illumination changes, 3D motion of the eye, reflections caused by water or 

blood, appearance change of the lens caused by the lens removal and the artificial lens 

implantation, coverage of the eye by the surgeon or surgical instruments and non-rigid 

deformation of the eye caused by the surgical procedure itself. As mentioned in [31] the 

tracking update becomes more difficult for dynamic scenes, therefore the tracking tem-

plate gets dynamically adapted to these changes. The fundamental concepts for this 

tracker are based on [31] and are namely robust homography estimation and adaptive 

image blending for the template update. 

 

4.1 Tracker Initialization 

At the beginning of the surgery (first frame of the surgery sequence), the tracking tem-

plate needs to be manually initialized. As the tracker was only tested with recorded data 

with no information about the astigmatism axis, this is done with one click into the center 

of the eye and another on the border of the iris. When the proposed tracker is used during 

surgeries with the real surgical device, this initialization routine needs a slightly different 

interface which needs to be optimized for the surgeon needs. Figure 4.1 (a) shows how 

the template is marked in the original image and Figure 4.1 (b) shows the extracted 

tracking template which is a rectangle with a fixed size in which the eye is centered. 

 

 
(a) 

 
(b) 

Figure 4.1 Template tracker initialization. ((a) template marked in the original image, (b) ex-

tracted tracking template with fixed size and centered eye) 
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The tracking template is obtained by transforming the marked image region from the 

image coordinate frame 𝐼 (ImageFrame) to the predefined and rectified template coordi-

nate frame 𝑇 (TemplateFrame) by applying a projective transformation 𝐻𝐴. As already 

discussed in the chapter Projective Transformations, four point correspondences are 

necessary to compute a projective transformation. Therefore, we compute the projective 

transformation 𝐻𝐴 with the help of the four corner points of the ImageFrame 𝐼 (𝒙𝑖
𝐼) and 

the four corner points of the TemplateFrame 𝑇 (𝒙𝑖
𝑇) (equation 4.1). The computation itself 

is done with the help of the open source computer vision library OpenCV [49] and its 

function 𝑔𝑒𝑡𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 [50]. 

 

𝒙𝑇 = 𝑯𝒑𝒙
𝐼 4.1 

 

Afterward, the received projective transformation is applied to the ImageFrame to receive 

the TemplateFrame (𝑤𝑎𝑟𝑝𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 [50] from OpenCV is used). When the perspec-

tive transformation is done, a bilinear interpolation is applied. Bilinear interpolation deliv-

ers smoother results as nearest neighbor interpolations, but is still faster as bicubic in-

terpolation. The template extraction is illustrated in Figure 4.2. For a better understand-

ing, a stick figure is used instead of the round eye. 

 

 

Figure 4.2 Tracking template extraction. Transformation of the image region to the template 
frame with the projective transformation 𝐻𝐴 

 

4.2 Template Tracking 

As already stated, our requirement is to robustly estimate the motion between two con-

secutive frames. This is done by a robust image feature based homography estimation 



4.2. Template Tracking  35 

 

in the template coordinate frame 𝑇. The computed transformation then allows a compu-

tation of the recent mapping from the image to the template frame. Not only the tracking 

object can move from one frame to another, but also the camera system itself can move 

in 𝑥 and 𝑦 direction and the magnification can change as well. For better tracking results 

this movement has to be compensated. The surgery device can provide information 

about its current position, magnification and the pixels per millimeter ratio for 

𝑚𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 1. This information can be used to compute the relative movement be-

tween the current frame and the start frame. The pixels per millimeter ratio is used to 

converter die relative movement from mm to pixels (equation 4.2). 

 

𝑥 = 𝑝𝑖𝑥𝑒𝑙𝑠_𝑝𝑒𝑟_𝑚𝑚∗ (𝑥_𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑚𝑚 − 𝑥_𝑠𝑡𝑎𝑟𝑡𝑚𝑚)  

𝑦 = 𝑝𝑖𝑥𝑒𝑙𝑠_𝑝𝑒𝑟_𝑚𝑚∗ (𝑦_𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑚𝑚 − 𝑦_𝑠𝑡𝑎𝑟𝑡𝑚𝑚)  

𝑚 = 𝑚𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑐𝑢𝑟𝑟𝑒𝑛𝑡/𝑚𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑟𝑡 

4.2 

 

The relative movement can now be used to compute the transformation between the 

current and the start frame. The computation of the transformation matrix 𝑇 is shown in 

equation 4.4. In this equation, 𝑤 stands for the image width and ℎ for the image height 

in pixesls. 

 

𝑇 =

[
 
 
 
 𝑚 0

𝑤 ∗ (1 − 𝑚)

2
+ 𝑚 ∗ (−𝑥)

0 𝑚
ℎ ∗ (1 − 𝑚)

2
+ 𝑚 ∗ 𝑦

0 0 1 ]
 
 
 
 

 4.3 

 

To get the new image frame with the compensated camera motion, first the inverse of 

the last transformation 𝑇𝑙𝑎𝑠𝑡
−1  and subsequent the current transformation 𝑇𝑛𝑜𝑤 has to be 

applied to the old image frame (equation 4.4) 

 

𝐼𝑚𝑎𝑔𝑒𝐹𝑟𝑎𝑚𝑒 = 𝑇𝑛𝑜𝑤 ∗ 𝑇𝑙𝑎𝑠𝑡
−1 ∗ 𝑜𝑙𝑑𝐼𝑚𝑎𝑔𝑒𝐹𝑟𝑎𝑚𝑒 4.4 

 

Again, the four corner points of the image frame with the compensated camera motion, 

as well as the four corner points of the template frame are used to compute a temporal 

projective transformation 𝐻𝐴_𝑡𝑒𝑚𝑝 (𝑔𝑒𝑡𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 [50] from OpenCV). This 

temporal projective transformation 𝐻𝐴_𝑡𝑒𝑚𝑝 can now be applied to the ImageFrame to get 

the temporal TemplateFrame (𝑤𝑎𝑟𝑝𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 [50] from OpenCV) (Figure 4.3). 
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Figure 4.3 Template tracking. Temporal projective transformation 𝐻𝐴_𝑡𝑒𝑚𝑝  between the image 

frame and the template frame 

 

4.2.1 Feature Extraction 

We now extract features from the previous template frame. As our aim is a robust and 

real-time capable eye tracker we decided to use image patches as features. We extract 

small and overlapping image patches along the iris, as this is the part of the eye which 

will stay stable over the complete surgery. The pupil will change over time as the cataract 

gets removed and an artificial lens is implanted and the sclera (white of the eye) can 

change due to bursting blood vessels. Figure 4.4 gives an overview of the feature ex-

traction for an exemplary template. The violet squares are used to illustrate exemplarily 

the overlapping image patches and the green dots visualize the center of all image 

patches. 

 

 

Figure 4.4 Template frame feature extraction. The patches (with the green dot as center) are 
circularly arranged along the iris, as the iris will stay the same for the complete surgery. 
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4.2.2 Feature Matching 

After the features are extracted from the previous template frame, they need to be found 

in the current temporal template frame. For matching each feature with the temporal 

template frame we use the normalized cross-correlation (NCC) as a similarity measure. 

We rely on the normalized cross-correlation as it is not only a simple but also an effective 

method for measuring the similarity between two image regions. In addition to that, it is 

insensitive to linear brightness and contrast variations [76]. As the computation of the 

normalized cross-correlation can get very time consuming when applied to the whole 

image for every single image patch, we define a region of interest around the old feature 

center. This can be done due to our assumption that patches can only move in a small 

surrounding of their old location. Every match which exceeds a specific correlation 

threshold is considered as correct and saved as inlier. 

 

4.2.3 Homography Estimation 

With the feature matches which were found with the help of the normalized cross 

correlation, a homography can be estimated. To improve the quality and robustness of 

the homography we use a two-step approach. In the first step, we try to refine the feature 

matches by removing outliers. This is done with the help of the epipolar geometry and 

their mathematical representation, the fundamental matrix 𝐹. In other words, the funda-

mental matrix 𝐹 is used as a method for pre-filtering outliers. As discussed in chapter 

3.3.3, the epipolar geometry describes the relationship between two image planes and 

a 3D world point. We can use this concept here as our input stream is a sequence of 

images of a 3D object with not too much motion in between. For computing the funda-

mental matrix 𝐹 at least eight point pairs (𝑥𝑖 ↔ 𝑥′
𝑖) are necessary. Any point pair which 

cannot fulfill equation 4.5 is considered as an outlier. Point pairs which can fulfill this 

equation are considered as inliers. For the computation of the fundamental matrix 

OpenCV with its function 𝑓𝑖𝑛𝑑𝐹𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙𝑀𝑎𝑡 [51] is used. As a computation method 

for the fundamental matrix, the RANSAC algorithm is used. Additionally, this function 

directly delivers the inlier point set for the found fundamental matrix. 

 

𝑥𝑖
′𝑇𝐹𝑥𝑖 = 0 4.5 

 

With the refined inlier set which was found with the help of the fundamental matrix, the 

affine transformation 𝐻𝐵 between the previous template frame and the temporal template 

frame can be computed. For the computation of the affine transformation, at least three 

point pairs are necessary. As three point pairs are quite less to robustly estimate the 
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correct affine transformation, at least 40 point pairs have to be found to continue. The 

estimation of the affine transformation 𝐻𝐵 is done in a robust way and relies on RANSAC. 

To get the new image frame from the template frame equation 4.6 can be used. The 

transformation pipeline from the previous template frame to the temporal template frame 

to the new image frame is illustrated in Figure 4.5. 

 

𝐼𝑚𝑎𝑔𝑒𝐹𝑟𝑎𝑚𝑒 = 𝐻𝑎_𝑡𝑒𝑚𝑝
−1 ∗ 𝐻𝐵 ∗ 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝐹𝑟𝑎𝑚𝑒 4.6 

 

 

Figure 4.5 Template Tracking. Transformation pipeline from the previous template frame to the 
temporal template frame to the image frame 

Finally the new projective transformation 𝐻𝐴 between the image frame and the prede-

fined and rectified template coordinate frame 𝑇 can be computed (Figure 4.6) and a new 

template frame for the next tracking step can be extracted. Again this is done by using 

the four corner points of the image frame and four corner points of fixed template frame 

and the help of OpenCV (𝑔𝑒𝑡𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 and 𝑤𝑎𝑟𝑝𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 [50]) 

 

 

Figure 4.6 Template Tracking. Final projective transformation 𝐻𝐴 to get the new template frame 

for next tracking step 
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4.2.4 Template Blending 

As mentioned before, in our approach we use an adaptive image blending method for 

updating our templates. From an initial template, we adapt variations of each pixel incre-

mentally over time. This blending approach allows handling illumination changes, object 

appearance variation or object pose changes while retaining the object structures [31, 

38]. We use a weighting function that consists of a difference weight 𝑤𝑑, a quality weight 

𝑤𝑞 and a constant temporal weight 𝑤𝑡. The resulting pixel wise weighting function 𝑊 is 

given in equation 4.7. 

 

𝑊(𝑥, 𝑦) = 𝑤𝑑(𝑥,𝑦) ∗ 𝑤𝑞(𝑥,𝑦) ∗ 𝑤𝑡(𝑥,𝑦) 4.7 

 

The difference weight 𝑤𝑑 is defined by the smoothed and normalized absolute difference 

between the previous and the current template frame. By doing that, we get high weights 

for regions where the object undergoes changes and small weights for regions that stay 

the same. This will smooth out structures that do not belong to the tracked object but will 

also blur regions where surgical devices are used or reflections appear. To overcome 

this issue the quality weight 𝑤𝑞 is introduced. This weight takes care, that only good 

matches get updated. In the first test, we only used inliers from the template matching to 

create this weighting mask. By doing that, surgical devices get not updated into the track-

ing template, but it can also happen that parts of the iris stop updating as no good match 

was found in the previously performed template matching process. Therefore, we defined 

higher weights for the inlier matches and smaller weights for the outlier matches. Doing 

so will allow surgical devices to adapt to the template frame, but also helps in recovering 

to the regular eye after the device was removed from the eye again. The constant tem-

poral weight is given by a scalar 𝑡 for the existing template frame and (1 − 𝑡) for the new 

observation. New observations can incorporated to the tracking template very fast by 

using a small value for 𝑡 or can be slightly considered by using a larger value. In our 

testing, we figured out that for our approach best results are achieved, when the temporal 

weight 𝑡 is defined quite high (0.8). This means, in our tracking approach, new observa-

tions are incorporated quite slow to the tracking template. The flexible image blending 

approach presented in [77] is extended to a multi resolution flexible blending approach 

and is used as a blending mechanism in this thesis. As proposed in [13] a Laplacian 

pyramid is used as a multi resolution method for image blending, where 𝐿𝑡𝑖
 stands for 

the 𝑖𝑡ℎ Laplacian pyramid level of the template 𝑇𝑡. The final multi resolution template 

blending is given in equation 4.8. Figure 4.7 shows the appearance change of the track-

ing template over a surgery based on the used blending approach. 



40  4. Template Based Tracking 

 

 

𝑇𝑡 = ∑
𝑊𝑡𝑖

(𝑥,𝑦) ∗ 𝐿𝑡𝑖
(𝑥, 𝑦) + 𝑊𝑡−1𝑖

(𝑥, 𝑦) ∗ 𝐿𝑡−1𝑖
(𝑥, 𝑦)

𝑊𝑡𝑖
(𝑥, 𝑦) + 𝑊𝑡−1𝑖

(𝑥, 𝑦)

𝑁

𝑖=1

 4.8 

 

 

Figure 4.7 Template blending evolution. Appearance change of the tracking template through 
the surgery 

 

4.2.5 Fallback 

When occlusions or big appearance changes caused by the surgeon, surgical devices, 

water or blood occur during the surgery, it can happen that not enough good feature 

matches can be found to compute a correct homography. In this case, a so-called 

fallback is initiated. Here we try to find the complete template in the input image in a 

defined search window based on the previous position of the last found template. As a 

similarity measure, again the normalized cross-correlation is used. If no good match is 

found, the search window is increased with the next fallback. This procedure is repeated 

until the search window reaches a predefined maximum size. When the maximum size 

of the search window is reached, the template gets still searched with the next fallback, 

but the window size is not increased anymore. If the correlation value exceeds a specific 

threshold a good match is found and the successive fallback number, as well as the 

search window size, are reset to its initial values. Additionally, a correction transformation 

(equation 4.9) can be computed. This correction transformation defines the offset be-

tween the previous and the new position of the template. To compute the corrected im-

age frame equation 4.10 can be used.  

 

𝑇𝑐𝑜𝑟𝑟 = (
1 0 𝑥𝑐𝑜𝑟

0 1 𝑦𝑐𝑜𝑟𝑟

0 0 1

) 4.9 

 

𝐼𝑚𝑎𝑔𝑒𝐹𝑟𝑎𝑚𝑒 = 𝐻𝐴
−1 ∗ 𝑇𝑐𝑜𝑟𝑟 ∗ 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝐹𝑟𝑎𝑚𝑒 4.10 
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In addition to figuring out the new position of the template in the image, we do a stepwise 

recovery of the initial template with our multi-resolution blending approach. This is done 

to get rid of accidentally inserted surgical tools or reflections. 

In the experiment section we show, that it can happen, that the proposed fallback solution 

cannot find the template in the search window. To improve the fallback procedure, it is 

necessary to figure out if the eye is still in the search window and to provide an alternative 

method to reinitialize the tracker. Therefore we present an eye detection approach in 

chapter 5. 

 

4.2.6 Flowchart of the Template Tracking Approach 

Figure 4.7 summarizes the complete tracking approach in a flowchart. 
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Figure 4.8 Flowchart of the complete template tracking approach 
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4.3 Experiments & Results 

To evaluate the performance of the proposed template tracking approach different ex-

periments were performed. In the first experiment, the runtime of the tracker and in the 

second experiment the position accuracy was validated. 

The tracker was tested on images with an input resolution of 1920x1080 pixels and the 

extracted and rectified templates have a resolution of 180x180 pixels. The extracted fea-

tures from the template have a size of 30x30 pixels and an overlap of 65% which leads 

to approximately 136 extracted features per template. To define feature matches as inli-

ers, a correlation threshold of 0.75 has to be exceeded and at least 40 inliers have to be 

found to perform the homography estimation. Otherwise, the fallback routine is activated. 

 

4.3.1 Runtime Performance Validation 

The runtime performance validation was done on a benchmark dataset consisting of 

3000 frames. The first input frame is used to initialize the tracker and therefore the track-

ing itself was only executed on 2999 frames. The runtime for the complete computation 

was measured and with this value, the runtime per frame and the frame rate was derived. 

The evaluation was done with three different modes of the tracker and on three different 

workstations. The hardware of the three workstations is listed in Table 4.1. 

First and second mode of the tracker are thought as debug modes. In the first mode, all 

tracking results including text files for the pose and images for templates and visual 

tracking results are stored to the hard drive. The tracking visualization is active and the 

tracking results are printed to the console. Figure 4.9 shows the active tracking visuali-

zation. It shows the current input frame, with the tracked eye. Additional the tracking 

template with additional statistical information (detected features, number of inlier fea-

tures, correlation value and number of fallbacks) is visualized. 

Mode two only prints the tracking results to the console and shows the visualization. 

Mode three is the production mode where only the necessary tracking results are written 

to the console. Our main goal for the tracker was to achieve a real-time capability. As we 

get 30 frames per second (FPS) as input frame rate and we can process more than 30 

FPS with each workstation in the production mode (Table 4.2) this goal was accom-

plished. 
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Workstation Operating System CPU RAM 

WS 1 Windows 7 
Intel Core i7-2600K 

@3.4Ghz 
8 GB 

WS 2 Windows 8 
Intel Core i7-4770 

@ 3.4GHz 
16 GB 

WS 3 Windows 10 
Intel Core i5-4690 

@ 3.5GHz 
16 GB 

Table 4.1 Hardware used for the runtime performance experiment of the template tracker 

 

 Mode 1 [FPS] Mode 2 [FPS] Mode 3 [FPS] 

WS 1 3.187 23.242 32.395 

WS 2 5.261 23.187 34.254 

WS 3 6.207 29.188 44.471 

Table 4.2 Runtime performance validation for different modes of the template tracker (mode 1 
and mode 2 are thought as debug modes, mode 3 is the production mode) 

 

 

Figure 4.9 Eye tracker visualization (active track, tracking template, statistical information) 

 

4.3.2 Accuracy Validation 

To validate the accuracy of the tracker six different surgery sequences were used con-

sisting of more than 85000 frames. All datasets include a camera and eye movement, 

appearance change of the lens due to the cataract removal and lens implantation, re-

flections caused by water and blood and occlusions caused by the surgeon or surgical 
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devices. Basically, all the challenges which were already discussed in chapter 1.1 are 

included in the tested datasets. As there was no ground truth data available the center 

of the eye was manually labeled in 322 frames by fitting an ellipse to the eye. As we have 

no medical background and there were no markers on the eye, it is really hard to mark 

the rotation of the eye within the surgery. Therefore the eye axis could not be labeled 

and furthermore, no qualitative validation of the eye axis tracking accuracy could be 

done. But we carefully watched all the sequences and checked that there were no un-

wanted or wired rotation changes. Figure 4.10 visualizes the orientation correctness for 

an example dataset over 2075 frames while a surgical device is moved inside the eye. 

Figure 4.10 (a) shows the moment when the surgical device enters the eye. Figure 4.10 

(b) and (c) show different zoom levels while the device was moved around in the eye. 

Finally, Figure 4.10 (d) shows a bigger movement of the tool. From a visual inspection 

point of view, the visualized rotation vectors (red and green vector) stay correct over the 

shown frameset. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.10 Orientation validation of the template tracker ((a) entrance of tool at frame 842, (b) 

different zoom level at frame 1137, (c) different zoom level at frame 1787, (d) bigger tool move-
ment at frame 2917) 

Table 4.3 gives an overview of how many images each dataset has, how many ground 

truth frames were extracted and how good the tracker performed on each dataset with 

respect to entered fallbacks. As we can see the tracker performs very well on the dataset 

‘Test 1’ but performs quite bad on the dataset ‘Test 5’. This variance comes from the 
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quality and difficulties in each of the datasets. The test sequence ‘Test 2’ lose the track 

after two tools are inserted and the artificial lens is moved (Figure 4.11 (a)). Test se-

quence ‘Test 4’ (Figure 4.11 (b)) as well as test sequence ‘Test 5’ (Figure 4.11 (c)) lose 

the track after a water flush is applied. Test sequence ‘Test 6’ has a lot of fallbacks 

caused by different reasons. For example, a cotton swab is used to remove some blood 

(Figure 4.11 (d)), the surgeon, as well as some surgical tools, occlude the eye (Figure 

4.11 (e)) or a water flush is applied (Figure 4.11 (f)). Occlusions, as well as big appear-

ance changes, will decrease the quality of the feature matches and as already mentioned 

before, at least 40 good feature matches are necessary to perform the homography es-

timation. This homography is necessary for the motion estimation between two frames. 

If this number of good features matches can’t be achieved, no good tracking update can 

be guaranteed and therefore the fallback procedure is called. Depending on when the 

track, for how long the track and how often the track gets lost the number of fallbacks 

can be higher or smaller. Some fallbacks are caused by big occlusions and by definition 

no track can be found and other fallbacks appear because the track was lost due to bad 

feature matches. Nonetheless, over the entire dataset, we achieve a good track rate 

58.16% and a fallback track rate of 41.84%. This means that for nearly half of the images 

no good track can be found. Therefore this part has to be improved by a more robust re-

initialization of the tracker after the track got lost. 

 

Test 

Sequence 
Frames 

Ground Truth 

Frames 
Fallbacks 

Good 

Track [%] 

Fallback 

Track [%] 

Test 1 22187 69 1373 93.812 6.188 

Test 2 12431 50 6538 47.406 52.594 

Test 3 3240 31 458 85.864 14.136 

Test 4 767 12 422 44.980 55.020 

Test 5 23264 77 15671 32.638 67.362 

Test 6 23264 83 11166 52.003 47.997 

overall 85153 322 35628 58.160 41.840 

Table 4.3 Percentage of good and bad tracks of the template tracker 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.11 Reasons for fallbacks in template tracking ((a) Test 2, (b) Test 4, (c) Test 5, (d)-(f) 

Test 6) 

 

Table 4.4 gives an overview of the accuracy performance of the tracker. Thereby the 

distance between the center of the pupil and the center of the ground truth annotated 

images were computed. As distance measure, the Euclidian distance and the signed 

distance in x- and y-direction is used. Additionally, the mean distance error, based on an 

approximate eye size of 679 pixels in % is given. In the best case, we achieve a mean 

Euclidian distance of 6.819 pixels (1.004%) and in the worst case a mean Euclidian dis-

tance of 37.395 pixels (5.507%). As we have seen in the fallback validation (Table 4.3) 

for some datasets a lot of frames have no good track, which means we have a high 

number of fallbacks. In other words, this will influence our distance validation negatively.  
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Test Se-

quence 

Min Dist. 

[px] 

Max Dist. 

[px] 

Mean 

Dist. [px] 

Mean Dist. 

[%] 

Mean Dist. 

x [px] 

Mean Dist. 

y [px] 

Test 1 0.883 31.991 6.819 1.004 -1.395 -0.922 

Test 2 0.449 79.912 17.444 2.569 -5.339 1.335 

Test 3 2.947 179.993 17.956 2.644 -9.250 -10.249 

Test 4 4.938 24.701 16.167 2.381 -10.132 -7.314 

Test 5 2.309 179.865 37.395 5.507 -10.563 -4.573 

Test 6 1.116 106.475 25.317 3.729 -1.314 -15.751 

overall 0.449 179.993 22.052 3.248 -5.257 -6.400 

Table 4.4 Distance from the center of the pupil of the tracker and the ground truth images 

 

To get a better impression on the real performance of the tracker the same validation 

was repeated for images only, where a good track was found (Table 4.5). The numerical 

results are additionally visualized in Figure 4.12. By removing the fallback images from 

the validation we see a dramatical improvement in the results. The best mean Euclidean 

distance has dropped from 6.819 pixels (1.004%) to 6.294 pixels (0.927%) and the worst 

mean Euclidean distance from 37.395 pixels (5.507%) to 8.187 pixels (1.206%). Overall 

we achieve a mean Euclidean distance of 7.192 pixels. We have an average eye size of 

approximately 679 pixels, so the Euclidian distance of 7.192 pixels leads to a very good 

distance error of 1.059%. This distance error is below 1.27% which was specified in the 

chapter Problem Statement as the maximally allowed error. By looking at the results of 

mean distance in x- and y-direction we see a slightly offset into quadrant three. This may 

be caused by a combination of a slightly wrong initialization of the tracker (compared to 

how the ground truth images ware labeled) and a slightly drift during the track. 

Furthermore, the ground truth labels itself can hold an error. 
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Tes Se-

quence 

Min Dist. 

[px] 

Max Dist. 

[px] 

Mean 

Dist. [px] 

Mean Dist. 

[%] 

Mean Dist. 

x [px] 

Mean Dist. 

y [px] 

Test 1 0.883 31.991 6.294 0.927 -1.096 -0.739 

Test 2 0.449 22.631 6.654 0.980 1.060 2.399 

Test 3 2.947 17.826 8.105 1.194 -2.147 -3.010 

Test 4 4.938 9.677 7.187 1.059 -1.609 5.750 

Test 5 4.296 11.962 7.261 1.069 -6.396 -0.480 

Test 6 3.357 15.285 8.187 1.206 -6.543 -1.499 

overall 0.449 31.991 7.192 1.059 -3.090 -0.643 

Table 4.5 Distance between the center of the pupil of the tracker and the ground truth images 
where a good track was found 

 

 

Figure 4.12 Distance between the center of the pupil of the tracker and the ground truth images 

where a good track was found 
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4.4 Conclusion 

In this chapter, we introduced a template tracking approach which relies on image blend-

ing to update the tracking templates. By doing this it becomes robust against noise, ap-

pearance changes of the eye and small occlusion. 

The tracker was only tested with recorded datasets where the initialization was done with 

one click into the center of the eye and another to the border of the iris. The astigmatism 

axis was always defined horizontal (0°). For future work, it is necessary to optimize this 

initialization step to the surgeon needs where he not only defines the center and radius 

of the eye but also the astigmatism axis. In the current approach, this axis was always 

defined in the same way, as it has no influence on the performance of the tracker. 

With the runtime performance test, we approved that we can achieve more than 30 

frames per seconds on different workstations in the production mode, which means, we 

are real-time capable. We only need to provide the tracking results to the surgical device 

and the device takes care of the visualization. 

The rotation accuracy of the template eye tracker could not be qualitatively validated as 

no ground truth data was available. Additionally, the medical background was missing to 

label the rotation axis of the eye by hand. But carefully done manual inspection showed 

good rotation correctness results. For future work, it is necessary to get datasets where 

the eye axis is already marked with some ink or the recorded data is labeled by a qualified 

person like a surgeon or an ophthalmologist. 

When computing the distance between the centers of the eye of good tracks and ground 

truth images we get a mean Euclidian distance of 7.192 pixels. With an approximate eye 

size of 679 pixels, this means we have a distance error of 1.059% and this error is below 

the required 1.27%. 

When too less good feature matches are found to perform a good homography estima-

tion the fallback procedure is activated. With the fallback validation, we figured out, that 

the tracker is really robust in most scenarios but cannot find its way back when too big 

changes in the appearance or too long occlusions appear. This means the current 

fallback solution is not robust enough to lead the tracker back to the correct position and 

continue tracking. For checking if the tracker is still tracking the eye and to make the 

fallback solution more robust in chapter 5 a tracking by detection approach is presented. 

 



 

51 

5 Tracking by Detection 

As we have seen with the template tracking approach, it is possible that the tracking can 

get lost due to occlusions or too big appearance changes of the eye during the surgery. 

With the fallback experiment, we showed, that the basic fallback solution which tries to 

find the template in a search window with the normalized cross-correlation is not robust 

enough to lead the track back to its correct position. For a robust tracking result, it is 

necessary to know when the track is too far away from its expected position and to have 

a fallback solution to reinitialize the tracker to the correct position. To fulfill this require-

ment we present a tracking by detection approach. 

 

5.1 Approach / Implementation 

As a detector, the aggregated channel feature detector (ACF) from Piotr Dollar’s Matlab 

toolbox is used [18]. The detector itself was described in [19–21, 44] and the basic back-

ground of the detector is described in chapter 3.2. The ACF detector is a fast and effec-

tive sliding-window detector which is best suited for quasi-rigid objects. To see if the 

detector can handle the non-rigid eye deformations which occurs during the surgery a 

quick test was performed. This test already showed very promising results and also con-

firmed that the detector is very fast and easy to use. Therefore we decided to go forward 

with this approach. The detector delivers a bounding box in which the eye is present. 

The center of this bounding box is not necessarily the center of the eye. Therefore we 

present a method to find the center of the eye based on the bounding box image we get 

from the detector. 

 

5.1.1 Refinement of the Detector Results 

As mentioned before, the ACF detector from Piotr Dollar’s Matlab toolbox will deliver a 

bounding box which holds the eye. As shown in Figure 5.1 the center of this bounding 

box is not necessarily equal to the center of the eye. For this reason, the general eye 

detection needs to be refined to figure out the center of the eye. As discussed in previous 

chapters the lens will change over time. First the cataract is broken, afterward, it gets 

removed and finally, an artificial lens is implanted. The sclera can change its appearance 

due to bursting blood vessels and the border between sclera and iris sometimes has a 

smooth transition. The only part of the eye which stays quite constant during the surgery 

is the iris itself and the border between iris and lens. It seems quite natural to use the 

border between iris and lens to figure out the center of the eye. Therefore this edge 

needs to be detected. To reduce the edge detection problem to 1D space we apply a 
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polar coordinate transformation to the detected and extracted bounding box with the cen-

ter of the bounding box as the coordinate origin. Figure 5.2 shows the polar transformed 

detection result. 

 

  

  

Figure 5.1 Detection results from the ACF detector. Center of bounding box is not necessarily 
the center of the eye 

 

 

Figure 5.2 Polar transformation of the detected eye 

 

As we already have discussed and directly can see in Figure 5.3 there are different 

causes which can lead to reflections on the eye. In this specific case, a water flush is 

applied during the surgery. These reflections will lead to unwanted edges in the edge 

detection and therefore they need to be detected separately and removed from the iris-

lens edge detection result. This reflections can be seen as very bright spots in the gray 

image and can therefore very easily be detected via thresholding. Not only these bright 

spots, also very dark spots can cause not relevant edges and need to be removed be-

forehand. To make sure we get rid of most of these bright and dark spots we create a 
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so-called highlight mask. The initial mask which is received via thresholding is further 

progressed with some morphological operations. The resulting highlight mask which 

helps to get rid of the undesired edges for the iris-lens border detection is shown in Figure 

5.4. 

 

 

Figure 5.3 Polar transformation of the detected eye with reflections from a water flush 

 

 

Figure 5.4 Highlight mask which holds bright and dark spots to improve iris -lens border detec-

tion 

 

To figure out the border between iris and lens in a robust way for different eye appear-

ances, the edge detection is performed in different color spaces and the individual edge 

detection results are combined afterward. Two different eye detections and their polar 

transformations in RGB, gray, H, S and V color space are shown in Figure 5.5. As we 

can see there, the color spaces gray, S and V hold good iris-lens boundary information 

and are therefore further processed. In a first step, a horizontal Sobel operator is applied 

to the gray, S and V image and only large gradients are extracted. In Figure 5.6 we can 

see the gradient images for each color channel in the first row and the extracted large 

gradients back-projected into the original color channel image in the second row. This 

already gives some good edges on the border between lens and iris. In addition, we can 

see, that the border seems to have the highest gradient within a small region. Therefore 

we apply a second step in which we extract the highest gradients within small stripes. 

The results back-projected into the original color channel images can be seen in the third 

row of Figure 5.6. The detected edges of each color channel are combined separately 

and some additional morphological operations are applied to get rid of some wrong de-

tected edges. Afterward, the edges of the three different color channels are combined 

(Figure 5.7 (a)) and again morphological operations are applied to improve the detection 

and get the final edge detection result (Figure 5.7 (b)). 
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Figure 5.5 Polar transformation of two different eye templates in RGB, gray, H, S and V color 
space 

 

Figure 5.6 Gradient images after applying horizontal Sobel filter (per color channel: first row: 
gradient image, second row: large gradients, third row: large gradients within a small stripe) 

 

 
(a) 

 
(b) 

Figure 5.7 Combined gradient images (a) and final gradient image after applying addition mor-
phological operations to the combined gradient image (b) 
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Now the detected edges of the polar transformed image can be back-transformed into 

the Cartesian coordinate image. For a better understanding of the results, the back-

transformed image (Figure 5.8 (a)) is overlaid with the previously detected eye (Figure 

5.8 (b)). 

 

 
(a) 

 
(b) 

Figure 5.8 Back transformed edges of the polar transformed image to the Cartesian image ((a) 
plain edges, (b) edges overlaid to the gray image) 

 

The final step now is, to fit an ellipse to the detected points. This is done with the Matlab 

implementation of [63] which is based on [6, 72]. In this approach, an ellipse is fitted to 

a set of points by examining all major axis and getting the minor axis using a Hough 

transformation. By restricting the minimal and maximal length of the major axis as well 

as the ratio of the major and the minor axis the algorithm complexity can be reduced. For 

the center of the pupil, the mean center of the best three ellipses is computed. The final 

pupil center detection results can be seen in Figure 5.9. The best three fitting ellipses 

are visualized in red (1st), yellow (2nd) and pink (3rd). The mean center of the ellipses is 

colored blue, the ground truth center of the eye is green and the center of the bounding 

box is cyan. 

 

 

Figure 5.9 Final center detection of the pupil of the eye detector (red: best fitting ellipse, yellow: 

second best fitting ellipse, pink: third best fitting ellipse, blue: mean center of best three ellipses, 
green: ground truth center of the eye, cyan: center of the bounding box) 
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5.1.2 Flowchart of the Detection Approach 

In Figure 5.10 a complete flowchart of the eye detection with eye refinement approach 

is visualized. 

 

 

Figure 5.10 Flowchart of the complete eye detection and refinement approach 
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5.2 Experiments & Results 

To evaluate the performance of the proposed detection and refinement approach differ-

ent experiments were performed. In the first experiment general performance of the de-

tector, in the second experiment the runtime, in the third experiment the false positive 

detection rate and in the fourth experiment the accuracy of the refinement is validated. 

 

5.2.1 General Performance Validation 

For a first general performance validation, 720 frames with ground truth bounding boxes 

were generated whereby 187 frames were used to train the detector and the remaining 

533 frames were used to validate the detector. We made the decision to not use the 

ground truth set from the template based tracker, but to generate a new dataset to learn 

the tracker. This gives us the opportunity that at some later point, all newly generated 

ground truth frames can be used to learn the detector and compare the detection results 

to the same ground truth data set that was used for the template based tracker accuracy 

validation. 

This first general performance test was performed on the full resolution images 

(1920x1080 pixels) as well on the 1/5 resolution images (384x216 pixels). As validation 

metrics, the distance of the centers of the ground truth and detected bounding box, as 

well as the overlap of the two bounding boxes were computed. The overlap computation 

is shown in equation 5.1 whereby the area of the ground truth bounding box is noted as 

𝐴𝐺𝑇, the area of the detected bounding box as 𝐴𝐷𝑇 and the area of intersection as 𝐴𝐼. 

Additionally, this is visualized in Figure 5.11. 

 

𝑜𝑣𝑒𝑟𝑙𝑎𝑝 =
𝐴𝐼

𝐴𝐺𝑇 + 𝐴𝐷𝑇 − 𝐴𝐼
 5.1 

 

 

Figure 5.11 Overlap of the ground truth and the detected bounding box as validation metrics 
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In addition to the position of the eye, the detector additionally delivers a confidence score. 

The relations between distance and score (a, c) and overlap and score (b, d) for the full 

resolution as well as for the 1/5 resolution are shown in Figure 5.12. The associated 

statistical results are shown in Table 5.1. The mean distance for 1/5 resolution is with 

respect to the full resolution to make the results comparable. As we can see from this 

table, full resolution and 1/5 resolution perform nearly equally when it comes to detection 

rate and overlap. 1/5 resolution achieves slightly worse results regarding ground truth 

distance. When limiting our validation to detections with a score greater or equal to 75 

we get rid of a few outliers and achieve a mean Euclidian distance of 17.5 pixels with the 

full resolution detector. This correlates to a distance error of 2.578% with a mean eye 

size of 679 pixels. With 1/5 resolution we achieve a mean Euclidian distance of 21.181 

pixels which correlates to a distance error of 3.119%. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.12 Relation between distance/score and overlap/score of the detection results for full 

resolution (a,b) and 1/5 resolution (c,d) 
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 All Scores Score >=75 

 

Mean 

Dist. 

[px] 

Mean 

Dist. 

[%] 

Mean 

Over-

lap [%] 

Detec-

tion 

Rate 

[%] 

Mean 

Dist. 

[px] 

Mean 

Dist. 

[%] 

Mean 

Over-

lap [%] 

Detec-

tion 

Rate 

[%] 

Full 
Reso-
lution 

18.984 2.796 88.640 99.812 17.500 2.578 89.422 84.991 

1/5 
Reso-
lution 

23.004 3.388 89.590 99.812 21.181 3.119 90.348 88.931 

Table 5.1 Statistical results regarding the general performance of the eye detector 

 

5.2.2 Runtime Performance Validation 

As with the template based tracking approach the runtime performance validation was 

done with the same benchmark dataset consisting of 3000 frames. As there is no initial-

ization necessary the runtime can be evaluated over the entire set of 3000 frames. The 

evaluation was done with two different resolutions of the input images and on two differ-

ent workstations which are listed in Table 5.2. In the first experiment, the runtime perfor-

mance of the detector was done with the full resolution images (1920x1080 pixels) and 

in the second experiment, it was done with 1/5 of the full resolution (384x216 pixels). 

The achieved frames per second are shown in Table 5.3. By decreasing the image res-

olution by 1/5 the detector can perform with more than 210 frames per second, which 

means, it can perform more than 25 times faster than with the full resolution which is 

quite obvious as the images are 25 times smaller. Also, the real-time capability is sur-

passed with this results. By decreasing the image resolution to 1/5, we saw that the 

distance error is increased by 0.541% but simultaneously we increase the detection rate 

by more than 25. Therefore this detection accuracy decrease is outperformed by the 

runtime improvement and that is why the detector for the refinement step will be run on 

1/5 resolution images. When the refinement is applied the runtime goes down to approx-

imately 2.5 frames per second. This is mostly related to a quite slow and not runtime 

optimized Matlab implementation, which could be improved when the program is trans-

lated to C++. Additionally, the Ellipse fitting is quite slow in its current version. 
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Workstation Operating System CPU RAM 

WS 1 Windows 7 Intel Core i7-2600K @3.4Ghz 8 GB 

WS 3 Windows 10 Intel Core i5-4690 @ 3.5GHz 16 GB 

Table 5.2 Hardware used for the runtime performance experiment of the detection approach 

 

 
Full Resolu-

tion [FPS] 

1/5 Resolu-

tion [FPS] 

Refinement 

[FPS] 

WS 1 7.159 210.150 2.428 

WS 3 8.543 218.131 2.799 

Table 5.3 Runtime performance validation of the detection approach 

 

5.2.3 False Positive Detection Validation 

For this experiment, 110 frames were created where the eye was removed or some other 

object was placed over the eye. Figure 5.13 shows four examples. The purpose of this 

experiment is to check if the detector detects an eye in situations where no eye is visible. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.13 Examples of removed/modified eyes to test false positive detection rate 
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The false positive rate is computed as demonstrated in equation 5.2. 𝐹𝑃 stands for the 

number of false positives, which means an eye was detected were no actual eye was. 

𝑇𝑁 stands for the number of true negatives which means no eye was detected when 

there was no eye. The objective is, that the false positive rate is very low. When we set 

the confidence threshold to 75 as we did before, we achieve a false positive rate of 

2.727% with only three false positives (Table 5.4). The three detected false positives are 

similar to Figure 5.13 (d) which are considered as very hard test cases. There is no eye 

available but the structure is very similar to an eye. 

 

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 [%] =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
∗ 100 5.2 

 

 All Scores Score >=75 

False Positive (FP) 35 3 

True Negative (TN) 75 107 

False Positive Rate 31.818% 2.727% 

Table 5.4 Eye detector false positive detection rate 

 

In addition to that test, an additional false positive test was performed were those re-

moved/modified eye images were placed next to images with an eye (Figure 5.14). For 

all test cases, the actual eye was detected correctly. 

 

(a) 

 

(b) 

 

Figure 5.14 Examples of removed/modified eyes next to real eye images to test false positive 

detection rate 
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5.2.4 Refinement Accuracy Validation 

In the final experiment, the accuracy performance of the refinement was validated. 

Therefore the detector was retrained with all 720 ground truth frames. The validation was 

done with the 322 ground truth frames which were already used in the template tracker 

validation. By doing that, the accuracy validation results of the template tracker and the 

detector can be compared. Table 5.5 gives an overview of the detection rates of the eye 

detector. When no threshold is applied we achieve a detection rate of 99.689%. When 

we limit the valid detections, like before, to detections with a confidence score greater or 

equal to 75 we still get a very high detection rate of 96.273%. The accuracy results for 

the detector itself are shown in Table 5.6 and for the refinement approach in Table 5.7. 

With the applied threshold the detector itself achieves a mean Euclidian distance of 

16.329 pixels which correlates to a distance error of 2.405% for a mean eye size of 679 

pixels. The eye detection refinement achieves a mean Euclidian distance of 12.011 pix-

els when the threshold on the confidence score is applied. This Euclidian distance leads 

to a distance error of 1.769%. This means the detection result is improved by 0.636%. 

The distance distribution of the detector results is visualized in Figure 5.15. The achieved 

distance error is slightly above the request distance error of 1.27% for the tracker but 

this is okay, as the main purpose of the detector is to check if the tracker is still on track. 

Additionally, this result is good enough to provide additional information to the tracker to 

help to improve the reinitialization process when the track got lost. 

 

Test Se-

quence 

Detection Rate 

All Scores [%] 

Detection Rate 

Score >=75 [%] 

Test 1 100.000 98.551 

Test 2 100.000 100.000 

Test 3 100.000 90.323 

Test 4 91.667 66.667 

Test 5 100.000 98.701 

Test 6 100.000 96.386 

overall 99.689 96.273 

Table 5.5 Detection rates of the eye detector 
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 All Scores Score >=75 

Test 

Sequ. 

Mean 

Dist. 

[px] 

Mean 

Dist. 

[%] 

Mean 

Dist. x 

[px] 

Mean 

Dist. y 

[px] 

Mean 

Dist. 

[px] 

Mean 

Dist. 

[%] 

Mean 

Dist. x 

[px] 

Mean 

Dist. y 

[px] 

Test 1 19.720 2.904 -4.658 -10.528 19.214 2.830 -4.388 -9.962 

Test 2 18.819 2.772 -9.830 -6.237 18.819 2.772 -9.830 -6.237 

Test 3 23.598 3.475 -0.711 17.069 22.218 3.272 -1.440 16.458 

Test 4 31.342 4.616 0.047 -3.686 13.652 2.011 -8.871 3.800 

Test 5 11.618 1.711 -0.596 -0.545 11.217 1.652 -1.157 -0.515 

Test 6 15.557 2.291 -6.314 -5.758 15.383 2.266 -6.654 -5.538 

overall 17.332 2.552 -4.375 -3.332 16.329 2.405 -4.908 -3.162 

Table 5.6 Distance between the center of the detected bounding box to the ground truth center 

of the pupil 

 

 All Scores Score >=75 

Test 

Sequ. 

Mean 

Dist. 

[px] 

Mean 

Dist. 

[%] 

Mean 

Dist. x 

[px] 

Mean 

Dist. y 

[px] 

Mean 

Dist. 

[px] 

Mean 

Dist. 

[%] 

Mean 

Dist. x 

[px] 

Mean 

Dist. y 

[px] 

Test 1 9.099 1.340 0.474 -1.883 8.775 1.292 1.006 -1.668 

Test 2 17.660 2.601 -7.758 1.683 17.660 2.601 -7.758 1.683 

Test 3 21.867 3.220 1.518 7.113 20.107 2.961 1.885 6.314 

Test 4 28.002 4.124 14.223 -13.541 9.557 1.408 1.639 -4.136 

Test 5 13.498 1.988 -3.097 0.557 13.055 1.923 -3.760 0.736 

Test 6 7.914 1.166 -1.239 -0.222 7.652 1.127 -1.473 0.007 

overall 13.062 1.924 -1.536 0.157 12.011 1.769 -2.120 0.551 

Table 5.7 Distance between the refinement result to the ground truth center of the pupil 
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Figure 5.15 Distance distribution between the refinement result to the ground truth center of the 

pupil 

 

5.3 Conclusion 

In this chapter, we showed that the aggregated channel feature detector (ACF) from Piotr 

Dollar’s Matlab toolbox [18] can be used as an eye detector for cataract surgeries. It is 

easy to learn, fast and accurate as well as robust against noise, appearance changes 

and small occlusions. Additionally, we showed a detection refinement approach where a 

polar transformation is applied to the detected eye to detect the border between iris and 

lens. The detected edge is back-transformed into the Cartesian image and ellipses are 

fitted to the detected border to figure out the center of the eye. One drawback of the 

detection approach is, that the rotation of the eye cannot be figured out. 

With the runtime performance validation, we showed that by reducing the input resolution 

from 1920x1080 pixels to 384x216 pixels (1/5 resolution) we can achieve a detection 

rate of more than 210 frames per seconds for the detector itself. This is more than 25 

times faster than using the full resolution images which is quite obvious as the image is 

25 times smaller. 

With the general performance validation, we showed that this resolution reduction has 

not much influence on the accuracy of the detector. When applying a threshold on the 
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detection confidence score of 75 we achieve a mean Euclidian distance of 17.5 pixels 

between the center of the detected bounding box and the center of the ground truth 

bounding box. This Euclidian distance correlates to a distance error of 2.578% for a 

mean eye size of 679 pixels. When using only 1/5 resolution we get a mean Euclidian 

distance of 21.181 pixels which is equal to a distance error of 3.119%. This means by 

reducing the resolution by 1/5 we increase the distance error by 0.54% but simultane-

ously increase the detection rate by 25 times. 

By doing the false positive detection rate validation we showed that the detector achieves 

a false positive detection rate of 2.727%. This means it is highly unlikely that the detector 

detects an eye where no eye is. The three false positive detection we had, were very 

hard cases that looked very similar to an eye. 

With the final refinement accuracy validation, we showed that the proposed approach 

can improve the detection results. We achieve a mean Euclidian distance of 12.011 pix-

els between the detected center of the eye and the ground truth center. This Euclidian 

distance correlates to a distance error of 1.769% which is an improvement of the regular 

detection results by 0.636%. The big drawback of the refinement is that the current 

Matlab implementation is quite slow. In the current state, we can only execute 2.428 

frames per second. The regular detector, with a mean distance error of 2.405%, delivers 

already good results and can be used to check if the tracker is still on track. The better, 

but slower, refinement results can be used to give the tracker additional information when 

the track got lost to improve the reinitialization process. 
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6 Conclusion and Future Work 

In this thesis, a very promising approach for real-time eye tracking during cataract sur-

geries is presented. In addition to the eye tracking, also an eye detection approach with 

a refined eye center detection is presented. 

The eye tracker which is presented in chapter 4 is specially designed for tracking eyes 

under harsh environments. It is capable to deal with camera and eye motion, illumination 

and appearance changes as well as non-rigid deformations of the eye. The fundamentals 

of the tracker are template tracking and image blending to update the tracking template. 

With our runtime validation, we showed that the tracker can perform with more than 30 

frames per second which means it is real-time capable. In the accuracy performance 

test, we showed that we can achieve a very good mean distance error of 1.059% (mean 

Euclidian distance of 7.192 pixels on an average eye size of 679 pixels) as long as we 

have a valid track. This distance error is below the requested 1.27%, but with the addi-

tional fallback validation, we saw, that for only 58.16% of our processed frames we can 

achieve a good track. This means the current fallback solution is not robust enough for 

all situations to lead the tracker back to the eye when it got lost because of occlusions 

or too big appearance changes. Therefore an additional mechanism is necessary which 

additionally checks if the track is still valid and helps to get the tracker back to its correct 

tracking position. With the current datasets, it was not possible to perform a qualitative 

validation of the rotation accuracy, as no marks on the eye or ground truth labels where 

available. Although carefully performed visual inspection showed good rotation correct-

ness, for future work it is necessary to get correct labeled ground truth data from a qual-

ified person, like a surgeon or an ophthalmologist, to statistically verify the correct per-

formance of the tracker. 

In chapter 5 a detection approach which is based on the aggregated channel feature 

detector (ACF) from Piotr Dollar’s Matlab toolbox [18] is presented. The detector is easy 

to learn and very fast. In addition to the detector, also a refinement to detect the center 

of the eye is proposed. During the surgery, the appearance of the eye can change. The 

only part which stays quite constant is the border between the iris and the lens. This 

border is detected with a horizontal edge detector in the polar transformed image. The 

detected edges are back-transformed into the Cartesian coordinate space and an ellipse 

detection is applied. The runtime performance validation showed, that the detector can 

perform with more than 210 frames per second when the incoming image resolution is 

reduced by 1/5 (from 1920x1080 to 384x216). This resolution reduction can be done 

without any major impact on the accuracy. The detector with the applied refinement can 

only perform with a bit more than 2 frames per second which is caused by a not runtime 
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optimized Matlab implementation. When applying a confidence threshold of 75 and exe-

cuting the detector on the same validation dataset which was used for validating the 

template tracker, we achieve a detection rate of 96.273% and a mean distance error of 

1.769% (mean Euclidian distance error of 12.011 pixels on an average eye size of 679 

pixels). This improvement is 0.636% better compared to the results of the general detec-

tor. 

 

(a) 

 

(b) 

 

Figure 6.1 Accuracy comparison of the eye tracker and the eye detector ((a) distribution of dis-
tance to ground truth, (b) xy-distance to ground truth)  
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In Figure 6.1 (a) there is the distribution of the distance to the ground truth visualized for 

the different versions of the tracker and the detector. Figure 6.1 (b) shows the distance 

distribution in x- and y-direction. What we can see in these two graphs is, that the eye 

tracker outperforms all other versions when a good track is found (yellow). Second, best 

performance is achieved with the eye detector and the applied detection refinement 

(red). Third best results are achieved with eye detector only (turquoise). Worst results 

are achieved with the eye tracker only (green) which is not surprising as only 58.16% of 

the processed frames had a good track. 

The experiments showed, that the proposed template eye tracker is real-time capable 

and performs very accurate as long as a good track is found. In future works, it is nec-

essary to improve the overall performance by increasing the good detection rate and the 

robustness of the fallback solution. One solution could be to use the general eye detector 

to verify the tracker as it is very fast (≥ 210 FPS) and accurate. The detector with its 

refinement approach could be used to improve the reinitialization process of the tracker 

after the track got lost. In addition to that, it is necessary to increase the test dataset base 

to make sure the tracker, as well as the detector, are not biased. As already mentioned, 

when increasing the database it is also necessary to get ground truth data for the orien-

tation of the eye, so that the orientation accuracy can by qualitative verified. Finally, it is 

necessary to get feedback from the surgeons so the tracker and the tracker initialization 

can be tuned to their specific needs. These are the person who will work with this tracker 

on a daily basis, and therefore it is absolutely necessary, that the performance is tuned 

to their specific needs. 
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