

Christoph Leitner, BSc

Eye Tracking In Cataract Surgeries

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree program: Telematik

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Horst Bischof

Dipl.-Ing. Dr.techn. Matthias Rüther

Graz, August 2018

iii

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly indicated all material which has

been quoted either literally or by content from the sources used. The text document up-

loaded to TUGRAZonline is identical to the present master‘s thesis.

Date

Signature

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere

als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen

wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in

TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Masterarbeit iden-

tisch

Datum

Unterschrift

v

Abstract

Unoperated cataract is the main cause for blindness as well as a major cause for mod-

erate to serve vision impairment, but it can be healed with a cataract surgery. If the cat-

aract is combined with an astigmatism, it is necessary for the surgeon to know the cen-

ter of the eye and the orientation of the astigmatism at any moment of the surgery, to

achieve a good vision restoration. At the current state, the surgeon has to use a special

marking tool to mark the astigmatism axis with ink directly on the eye. The initial mark-

ing accuracy of this process strongly depends on the experience of the surgeon and

the marks can get blurred or disappear during the surgery, which will cause a de-

creased vision restoration quality.

To overcome this problem, we present an eye tracking approach specially designed for

cataract surgeries. By tracking the center of the eye as well as the astigmatism axis

during the complete surgery, the surgeon can have access to this information at any

point of the surgery via a camera stream which is used to perform the surgery. Addition-

ally, this information cannot disappear or can get blurred over time due to blood vessels

that burst or applied water flushes. Therefore this approach is intended to deliver more

accurate position and orientation information in the artificial lens placement step.

In the first part of this thesis, we present an appearance-based tracking approach for

cataract surgeries, that is real-time capable. It is based on template tracking with a robust

image feature based homography estimation for doing the template update. Additionally,

the robustness is increased by applying an adaptive image blending method when up-

dating the templates. In addition to the template tracker, a tracking by detection approach

is presented. As a detector, the aggregated channel features (ACF) detector is used.

The detection results are subsequently refined to figure out the center of the pupil of the

detected eye. This is done by applying a polar transform to the detected eye and finding

the border between iris and lens. Finally, both methods are evaluated with respect to

their runtime and accuracy. The template tracker can perform with more than 30 frames

per second and has a mean distance error of 1.059% which is below the maximally al-

lowed error of 1.27%. The ACF detector itself can achieve more than 210 frames per

seconds and has a mean distance error of 2.405% whereas the refinement can perform

with 2 frames per second and a mean distance error of 1.769%.

Keywords: eye tracking, cataract surgery, template tracking, homography estimation,

ACF detector, tracking by detection

vii

Kurzfassung

Die häufigste Ursache für Blindheit ist grauer Star. Dieser kann jedoch mit einer grauen

Star Operation entgegen gewirkt werden. Soll im Zuge der Operation nicht nur der graue

Star, sondern auch ein Astigmatismus geheilt werden, muss der Chirurg während der

gesamten Operation den Mittelpunkt des Auges, sowie die Ausrichtung des Astigmatis-

mus kennen. Hierfür wird mit einem speziellen Markierwerkzeug und einer Art Filzstift

die Astigmatismus-Achse direkt am Auge markiert. Die Markiergenauigkeit ist dabei sehr

stark von der Erfahrung des Chirurgen abhängig. Ein weiteres Problem, welches wäh-

rend der Operation auftreten kann ist, dass die Markierungen verschwimmen oder gänz-

lich verschwinden können. Dies wiederum kann zu einer Verschlechterung des Operati-

onsergebnisses führen.

Um diese Problematik zu bewältigen, wird in dieser Arbeit ein Eye Tracking Ansatz vor-

gestellt, der speziell für graue Star Operationen entwickelt wurde. Dabei werden der Mit-

telpunkt des Auges, sowie die Ausrichtung des Astigmatismus über einen zur Verfügung

gestellten Kamerastream über die gesamte Operationsdauer getrackt. Der Vorteil dieses

Ansatzes ist es, dass die tracking Information im Laufe der Operation nicht verschwim-

men oder ganz verschwinden kann. Zusätzlich hat der Chirurg jederzeit Zugriff auf diese

Informationen, wodurch eine genauere Platzierung der eingeführten künstlichen Linse

ermöglicht wird.

Im ersten Teil der Arbeit wird ein echtzeitfähiger Eye Tracker für grauer Star Operationen

vorgestellt, welcher auf Template Tracking basiert. Das Template Update erfolgt dabei

über eine robuste Homographie Schätzung und einen adaptiven Bildverschmelzungsan-

satz. Im zweiten Teil der Arbeit wird ein Tracking by Detection Ansatz vorgestellt, welcher

auf dem Aggregated Channel Features (ACF) Detektor basiert. Anschließend wird das

Detektionsergebnis schrittweise verbessert, um den Mittelpunkt des Auges robuster zu

detektieren. Hierfür wird das detektierte Auge polartransformiert und anschließend wird

der Übergang zwischen Iris und Linse gefunden. Abschließend werden der Tracker und

der Detektor einer Laufzeit- und Genauigkeitsanalyse unterzogen. Der Tracker erreicht

eine Laufzeit von über 30 Bildern pro Sekunde und eine durchschnittliche Abweichung

vom Sollwert von 1,059%, welcher unter dem vorgegebenen Wert von 1,27% liegt. Der

ACF Detektor erreicht eine Laufzeit von 210 Bildern pro Sekunden und eine durchschnitt-

liche Abweichung vom Sollwert von 2,405%. Die Detektionsverfeinerung erreicht eine

Laufzeit von 2 Bildern pro Sekunde und eine durchschnittliche Abweichung von 1,769%.

Schlagwörter: Eye Tracking, Grauer Star Operation, Template Tracking, Homographie

Schätzung, ACF Detektor, Tracking by Detection

ix

Acknowledgments

First of all, I would like to thank my supervisors Prof. Dr. Horst Bischof and Dr. Matthias

Rüther who gave me the opportunity to work on this interesting project. Their guidance,

professional support and valuable feedback helped me to finish this thesis.

In addition, I would like to thank my lab colleague Felix Kühnel for the helpful advice he

gave and the discussions we had.

Furthermore, I would like to thank my dear friend and former roommate Fabian Oblinger

for the interesting and fruitful discussions, his advice, his support and the great time we

had during our complete Bachelor and Master studies.

Last but not least I would like to thank my family and girlfriend for their love, mental

support and encouragements that helped me during my Bachelor and Master studies.

xi

Contents

1 Introduction ...1

1.1 Problem Statement ...4

1.2 Motivation..7

1.3 Overview ...8

2 Related Work ...9

2.1 General Object Tracking...9

2.1.1 Kernel Tracking ..12

2.2 General Eye Tracking ...13

2.2.1 Shape-Based Tracking ...13

2.2.2 Feature-Based Tracking ...14

2.2.3 Appearance-Based Tracking..15

2.2.4 Tracking With Active Infrared Illumination15

2.3 Conclusion ..16

3 Background ...17

3.1 Template Matching ...17

3.1.1 Similarity Measures ..19

3.2 ACF Detector ..20

3.3 Geometry in 2D and 3D space ...21

3.3.1 Geometric Primitives ..21

3.3.2 Projective Geometry in 2D ...22

3.3.3 Epipolar Geometry..27

3.4 RANSAC ...29

3.5 Laplacian Image Pyramid ...30

4 Template Based Tracking ..33

4.1 Tracker Initialization ..33

4.2 Template Tracking ..34

4.2.1 Feature Extraction ..36

4.2.2 Feature Matching..37

4.2.3 Homography Estimation ...37

4.2.4 Template Blending..39

4.2.5 Fallback ..40

4.2.6 Flowchart of the Template Tracking Approach41

4.3 Experiments & Results ...43

4.3.1 Runtime Performance Validation ...43

4.3.2 Accuracy Validation ..44

4.4 Conclusion ..50

5 Tracking by Detection...51

5.1 Approach / Implementation...51

5.1.1 Refinement of the Detector Results ...51

5.1.2 Flowchart of the Detection Approach ...56

5.2 Experiments & Results ...57

5.2.1 General Performance Validation ..57

5.2.2 Runtime Performance Validation ...59

5.2.3 False Positive Detection Validation..60

5.2.4 Refinement Accuracy Validation ..62

5.3 Conclusion ..64

6 Conclusion and Future Work...67

Bibliography ...71

xiii

List of Figures

Figure 1.1 Main parts of the human eye [79] ... 1

Figure 1.2 Comparison of a normal lens (a) and a cloudy lens (b) caused by a cataract

(adapted from [80]) ... 2

Figure 1.3 Comparison of two scenes viewed by a person with normal vision (a) and a

person with cataract (b) [5, 79] ... 2

Figure 1.4 Four main steps of a cataract surgery ((a) incision, (b) lens removal, (c) lens

implantation, (d) result) (adapted from [81])... 3

Figure 1.5 Astigmatism axis marking with a bubble marker ((a) marking with a bubble

marker, (b) the red rings show the marks on the eye) [22] .. 4

Figure 1.6 Surgeon performing a cataract surgery ((a) surgeon who performs a cataract

surgery with a camera and “head-mounted” display, (b) camera stream observed by the

surgeon, (c) camera stream with proposed visualization for eye center and astigmatism

axis) (adapted from [56]) .. 5

Figure 1.7 challenges of the eye tracker ((general) different position of the camera and

the eye, scale change, reflections,(a) appearance change of the lens during the surgery,

(b) influence of water flushes and blood, (c) influence of surgery tools) 6

Figure 2.1 Classification of general object tracking methods based on [74] 9

Figure 2.2 Different tracking approaches ((a) multipoint correspondences, (b) parametric

transformation of a rectangular patch, (c) contour evolution) (adapted from [74]) 11

Figure 3.1 Sliding-window template matching approach ... 17

Figure 3.2 Extrinsic and intrinsic template variability for ‘letter’, ‘face’ and ‘mouth’

(adapted from [11, 46]) ... 18

Figure 3.3 Overview of the aggregated channel feature detection framework [19] 20

Figure 3.4 Distortion arising from affine transformation ((a) rotation by 𝑅𝜃, (b)

deformation 𝑅 − ϕ𝑫𝑅𝜙) [29]... 25

Figure 3.5 Projective transformations in 2D space (adapted from [29, 67]) 26

Figure 3.6 Epipolar geometry – point correspondence geometry (adapted from [29]) . 27

Figure 3.7 The RANSAC robust estimation algorithm [29] .. 29

Figure 3.8 Gaussian Image pyramid creation [15] ... 30

Figure 3.9 Creation of the Laplacian pyramid from expanded Gaussian pyramid images

[42] .. 31

Figure 4.1 Template tracker initialization. ((a) template marked in the original image, (b)

extracted tracking template with fixed size and centered eye) 33

Figure 4.2 Tracking template extraction. Transformation of the image region to the

template frame with the projective transformation 𝐻𝐴 ... 34

Figure 4.3 Template tracking. Temporal projective transformation 𝐻𝐴_𝑡𝑒𝑚𝑝 between the

image frame and the template frame ... 36

Figure 4.4 Template frame feature extraction. The patches (with the green dot as center)

are circularly arranged along the iris, as the iris will stay the same for the complete

surgery. ... 36

Figure 4.5 Template Tracking. Transformation pipeline from the previous template frame

to the temporal template frame to the image frame ... 38

Figure 4.6 Template Tracking. Final projective transformation 𝐻𝐴 to get the new template

frame for next tracking step .. 38

Figure 4.7 Template blending evolution. Appearance change of the tracking template

through the surgery... 40

Figure 4.8 Flowchart of the complete template tracking approach................................ 42

Figure 4.9 Eye tracker visualization (active track, tracking template, statistical

information) ... 44

Figure 4.10 Orientation validation of the template tracker ((a) entrance of tool at frame

842, (b) different zoom level at frame 1137, (c) different zoom level at frame 1787, (d)

bigger tool movement at frame 2917) .. 45

Figure 4.11 Reasons for fallbacks in template tracking ((a) Test 2, (b) Test 4, (c) Test 5,

(d)-(f) Test 6) ... 47

Figure 4.12 Distance between the center of the pupil of the tracker and the ground truth

images where a good track was found... 49

Figure 5.1 Detection results from the ACF detector. Center of bounding box is not

necessarily the center of the eye.. 52

Figure 5.2 Polar transformation of the detected eye.. 52

Figure 5.3 Polar transformation of the detected eye with reflections from a water flush

 .. 53

Figure 5.4 Highlight mask which holds bright and dark spots to improve iris-lens border

detection ... 53

Figure 5.5 Polar transformation of two different eye templates in RGB, gray, H, S and V

color space.. 54

Figure 5.6 Gradient images after applying horizontal Sobel filter (per color channel: first

row: gradient image, second row: large gradients, third row: large gradients within a small

stripe) .. 54

Figure 5.7 Combined gradient images (a) and final gradient image after applying addition

morphological operations to the combined gradient image (b) 54

Figure 5.8 Back transformed edges of the polar transformed image to the Cartesian

image ((a) plain edges, (b) edges overlaid to the gray image) 55

xv

Figure 5.9 Final center detection of the pupil of the eye detector (red: best fitting ellipse,

yellow: second best fitting ellipse, pink: third best fitting ellipse, blue: mean center of best

three ellipses, green: ground truth center of the eye, cyan: center of the bounding box)

 .. 55

Figure 5.10 Flowchart of the complete eye detection and refinement approach 56

Figure 5.11 Overlap of the ground truth and the detected bounding box as validation

metrics... 57

Figure 5.12 Relation between distance/score and overlap/score of the detection results

for full resolution (a,b) and 1/5 resolution (c,d) .. 58

Figure 5.13 Examples of removed/modified eyes to test false positive detection rate . 60

Figure 5.14 Examples of removed/modified eyes next to real eye images to test false

positive detection rate... 61

Figure 5.15 Distance distribution between the refinement result to the ground truth center

of the pupil .. 64

Figure 6.1 Accuracy comparison of the eye tracker and the eye detector ((a) distribution

of distance to ground truth, (b) xy-distance to ground truth).. 68

xvii

List of Tables

Table 2.1 Representative work of general object tracking methods based on [74] 10

Table 3.1 Projective transformations in 2D space (adapted from [29]) 26

Table 4.1 Hardware used for the runtime performance experiment of the template tracker

 .. 44

Table 4.2 Runtime performance validation for different modes of the template tracker

(mode 1 and mode 2 are thought as debug modes, mode 3 is the production mode) . 44

Table 4.3 Percentage of good and bad tracks of the template tracker 46

Table 4.4 Distance from the center of the pupil of the tracker and the ground truth images

 .. 48

Table 4.5 Distance between the center of the pupil of the tracker and the ground truth

images where a good track was found... 49

Table 5.1 Statistical results regarding the general performance of the eye detector.... 59

Table 5.2 Hardware used for the runtime performance experiment of the detection

approach ... 60

Table 5.3 Runtime performance validation of the detection approach 60

Table 5.4 Eye detector false positive detection rate .. 61

Table 5.5 Detection rates of the eye detector .. 62

Table 5.6 Distance between the center of the detected bounding box to the ground truth

center of the pupil ... 63

Table 5.7 Distance between the refinement result to the ground truth center of the pupil

 .. 63

1

1 Introduction

Globally, of the 7.33 billion people alive (as of 2015), an estimate of 252.6 million people

live with vision impairment. 36 million people of these were blind and 216.6 million had

moderate to severe visual impairment [9]. According to the World Health Organization

(WHO), unoperated cataract is with 35% the main cause for blindness and with 25% a

major cause for moderate to severe vision impairment [78]. This leads to the fact that

approximately 66.75 million people live with vision impairment caused by unoperated

cataract.

For a better understanding of the following text, Figure 1.1 should give an overview of

the main parts of the human eye and where they are located. The clear front surface of

the eye is called cornea and is primarily used to focus light. The pupil is controlling the

amount of light reaching the back of the eye by automatically adjusting the size. It can

be compared with the aperture control of a camera. Directly behind the pupil, the crys-

talline lens is located. It is used to further focus light so the eye can automatically focus

on near and approaching objects. The focused light hits the retina which acts as a light-

sensitive sensor and converts optical images into electronic signals. The optic nerve

transmits these signals to the part of the brain that controls our sense of sight. This part

of the brain is called virtual cortex [61].

Figure 1.1 Main parts of the human eye [79]

A cataract is a clouding of the lens inside the eye (Figure 1.2) and it causes vision loss,

which cannot be corrected with glasses, contact lenses or corneal refractive (refractive

errors are for example nearsightedness, farsightedness or astigmatism) surgery. The

lens of the eye is primarily made of water and protein. The protein is arranged in such a

way, that it keeps the lens clear and let’s light pass through. As we age, the protein can

2 1. Introduction

clump together and make the lens cloudy. Generally, a cataract starts out small and has

only little impacts on one’s vision. Over time, the cataract can grow which makes seeing

harder. It may be noticed as a little blur, like looking through a cloudy piece of glass [5,

69, 79]. Figure 1.3 gives a comparison on how a person with regular vision (Figure 1.3

(a)) and a person with cataract (Figure 1.3 (a)) sees the same scene.

(a)

(b)

Figure 1.2 Comparison of a normal lens (a) and a cloudy lens (b) caused by a cataract (adapted
from [80])

(a)

(b)

Figure 1.3 Comparison of two scenes viewed by a person with normal vision (a) and a person

with cataract (b) [5, 79]

1.1. Problem Statement 3

After a cataract is properly diagnosed, the next step is to restore one's vision with a

cataract surgery. Due to [80] cataract surgeries are one of the most commonly performed

operations worldwide and are considered as an extremely safe and effective surgical

procedure. The procedure itself consists of four main steps and is typically performed on

an outpatient basis and no overnight stay is required [69]. In the first step, an approxi-

mately 3mm small incision is made at the corneal margin (Figure 1.4 (a)). Afterward, a

phacoemulsification probe is inserted which breaks the cataract into microscopic frag-

ments with ultrasound. The fragments can be aspirated with the help of the tooltip (Figure

1.4 (b)). After the natural lens is completely removed, an artificial foldable intraocular

lens (IOL) can be inserted through the incision (Figure 1.4 (c)). Once the artificial lens is

in the eye, it unfolds and can be placed in the right position by the surgeon (Figure 1.4

(d)). The small incision heals naturally without the need for a suture [81]. The IOL will not

only lead to a clear vision, they can furthermore correct nearsightedness, farsightedness

and modern IOLs can correct astigmatism as well.

(a)

(b)

(c)

(d)

Figure 1.4 Four main steps of a cataract surgery ((a) incision, (b) lens removal, (c) lens implan-
tation, (d) result) (adapted from [81])

Astigmatism is usually caused by an irregular shape of the cornea. Instead of a symmet-

rically round shape, one meridian is significantly more curved than the meridian perpen-

dicular to it [32]. To correct astigmatism during a cataract surgery a toric IOL is used.

4 1. Introduction

Toric IOLs have different powers in different meridians of the lens to correct the asym-

metric power of the eye. Compared to a regular cataract surgery, a cataract surgery with

astigmatism correction is essentially the same but still has some important differences.

Prior to the surgery, measurements are done to figure out the correct power and orien-

tation of the implant. Toric IOLs have special markers on the lens to help the surgeon to

see the orientation of the astigmatism correction on the lens. Once the lens is implanted

to the eye, the surgeon can rotate the lens so that the correction axis is properly aligned

with the astigmatism axis. The usage of toric IOLs do not increase the risk of a compli-

cation, but a misaligned toric IOL can cause blurred vision which cannot easily be cor-

rected with eyeglasses or contact lenses [33]. To overcome this problem and help the

surgeon to correctly align the correction axis of the lens with the astigmatism axis a

tracking approach is presented, which tracks the position and the axis of the eye during

the whole surgery.

1.1 Problem Statement

In cataract surgery, the refractive requirements are steadily increasing. Not only by the

patients but also by the surgeons. Besides nearsightedness and farsightedness, also

astigmatism should be recovered after the surgery. To get close to this objective a variety

of different lenses is available on the market. Before the surgeon can start with the sur-

gery, he needs to figure out the center of the eye and the rotation of the astigmatism.

This information is needed subsequently in the last step of the surgery, where the sur-

geon needs to place the lens in the eye in a very precise way. A rotation or decentration

of the implanted lens can lead to deterioration of one’s vision.

(a) (b)

Figure 1.5 Astigmatism axis marking with a bubble marker ((a) marking with a bubble marker,

(b) the red rings show the marks on the eye) [22]

At the current state, the surgeon has to use a special marking tool to mark the astigma-

tism axis [37]. An example of such a tool is given in Figure 1.5 (a). In this specific case,

a bubble marker with a special gentian violet ink is used. The initial marking accuracy of

1.1. Problem Statement 5

this process strongly depends on the experience of the surgeon. Additionally, we can

see, the marks are quite blurry (Figure 1.5 (b)) and this can get worse during the surgery,

as blood vessels can burst or water flushes are applied. Less accurate marking will di-

rectly lead to less accurate lens positions, which will decrease the overall quality of the

vision restoration.

To overcome this problem, we present an eye tracking approach for cataract surgeries.

Again, at the beginning of the surgery, which will be the start of the tracking process, the

center of the eye, as well as the astigmatism axis needs to be accurately marked by the

surgeon. But this is a much simpler task now, as it can be done on an image and not

directly on the real eye. Additionally, this procedure can easily be repeated several times

until the surgeon is satisfied with his marking results.

(a) (b) (c)

Figure 1.6 Surgeon performing a cataract surgery ((a) surgeon who performs a cataract surgery

with a camera and “head-mounted” display, (b) camera stream observed by the surgeon, (c)
camera stream with proposed visualization for eye center and astigmatism axis) (adapted from

[56])

During the surgery, the surgeon does not directly look at the patient's eye, instead, he

uses a device with a camera (which observes the eye) and a “head-mounted” display

(which shows the camera stream) (Figure 1.6 (a)). Figure 1.6 (b) shows the camera

stream which is observed by the surgeon via the “head-mounted” display. By tracking

the center of the eye as well as the axis of the astigmatism during the complete surgery,

the surgeon can have access to this information at any point of the surgery.

Nevertheless, it will be most likely need in the last steps of the surgery, where the toric

IOL is implanted in the eye. Additionally, this tracking information can be directly visual-

ized to the camera stream which is observed via the “head-mounted” display (Figure 1.6

(c)). This information cannot disappear or can get blurred over time due to blood vessels

that burst or applied water flushes, as it can happen when the regular marking technique

is used. Therefore this approach is intended to deliver more accurate position and orien-

tations information in the toric IOL placement step.

6 1. Introduction

As one can imagine, the proposed tracker has to deal with very challenging datasets

which can include the following problems:

 The camera which is observing the surgery can be moved in x- and y-direction

 The scale can change due to zooming

 Under and overexposure is possible

 Reflections are possible

 The eye can move in 3D space

 The eye will undergo a non-rigid deformation during the surgery

 The lens will undergo an appearance change during the surgery (cloudy lens,

broken cataract in the lens, no lens, artificial lens)

 Blood vessels can burst

 The eye can be covered by the surgeon, surgical tools, water flushes or blood

Figure 1.7 gives a visual overview of the challenges the eye tracker has to deal with. It

shows the positions change of the capturing device as well as the movement of the eye.

Row (a) shows the appearance change of the lens during the surgery. (a.1) shows the

cloudy lens, (a.2) the lens after the cataract was broken up and (a.3) the eye after the

lens was removed. In (a.4) the new artificial lens is already implanted. Row (b) shows

how water and blood can change the appearance of the eye. In addition to that,

reflections which are caused by blood and water are demonstrated. Finally, row (c) gives

an overview of challenges that are caused by surgical devices.

(a)

(b)

(c)

Figure 1.7 challenges of the eye tracker ((general) different position of the camera and the eye,
scale change, reflections,(a) appearance change of the lens during the surgery, (b) influence of

water flushes and blood, (c) influence of surgery tools)

1.2. Motivation 7

Based on the findings of [37], for manual marking a mean postoperative toric misalign-

ment error of 3.5° can be reached, and this should be decreased by the presented ap-

proach. Additionally, a distance error of less than 0.15mm should be reached. Based on

the findings of [30], the mean white-to-white corneal diameter for adults is 11.8mm.

Therefore the 0.15mm lead to a distance error of 1.27%. Last but not least, the surgeon

needs access to this information at any point of the surgery. Therefore the provided eye

tracker needs to be real-time capable.

1.2 Motivation

Object tracking is a very common problem in computer vision. It can be defined as tracing

the progress of objects as they move around in the scene. Furthermore, some trackers

can provide additional information about orientation, area or shape of an object [2, 47,

52, 53, 74]. In general, object tracking is a very challenging problem as it has to deal with

several difficulties like abrupt object motion, changing the appearance of the fore- and

the background, non-rigid object structures, occlusion, noise in the image and camera

motion. To simplify tracking tasks, constraints to the motion or the appearance of an

object can be set. For example, one can assume a uniform velocity or acceleration with-

out any abrupt changes. In addition to that prior knowledge, the number, the size and

the shape of the object can be used to simplify the problem [47, 74]. Nevertheless, object

tracking has a very broad range of applications such as automated surveillance, traffic

monitoring, vehicle navigation, human-computer interaction or assistance in medical sur-

geries [2, 26, 53, 74].

Furthermore, there have been a lot of investigations into general eye tracking systems

as the eyes and their movements play an important role in expressing a person’s desires,

needs, cognitive processes and emotional states. The importance of eye movement with

regards to the perception of and attention to the world is confirmed. It is the method

through which the information is gathered, which is necessary to identify the character-

istics of the visual world. In addition to that, the eyes can be considered as relatively

stable compared to other facial features. Therefore general eye tracking plays an im-

portant role in creating human-computer interfaces, attentive user interfaces and under-

standing human affective states. In addition to that, eye movements are the least affected

by disabilities and can, therefore, be used for assistive technologies. The unique geo-

metric, photometric and motion characteristics of an eye can be used for face detection,

face recognition and understanding facial expressions. [1, 28].

Although eye tracking, in general, is widely researched it is still not completely robust for

a wide range of applications. In this thesis, we present an appearance-based tracking

approach with a real-time capability. This approach is specially designed for tracking

8 1. Introduction

eyes under harsh environments. It is based on template tracking with a robust image

feature based homography estimation for doing the template update. Additionally, the

robustness is increased by applying an adaptive image blending method when updating

the templates. In addition to the template tracker, a tracking by detection approach is

presented. As a detector, the aggregated channel features (ACF) detector from Piotr

Dollar’s Matlab toolbox is used [18]. The detection results are subsequently refined to

figure out the center of the pupil of the detected eye. This is done by applying a polar

transform to the detected eye and finding the border between iris and lens.

1.3 Overview

This thesis is structured as follows: In section 2 an overview of general object trackers is

given. In addition to that, different tracking approaches for general eye trackers are ex-

plained. In chapter 3, the theoretical foundations for this thesis are given. It starts with

an insight to template matching and goes on with an explanation of the detector which is

used in chapter 5. Additionally, transformations of 2D and 3D space are explained.

Namely, the projective geometry of 2D space and the epipolar geometry. Other than that,

the random sample consensus (RANSAC) algorithm as well as Laplacian image pyra-

mids as discussed. In chapter 4, the template based tracking approach is presented. The

initialization, as well as the different steps which are needed to perform the template

tracking, are explained. Finally, the tracker is validated regarding runtime and accuracy

performance. Chapter 5 explains the tracking by detection approach with its detection

refinement which improves the center detection of the eye. As well as the template based

tracker, the detection tracker gets validated regarding runtime and accuracy perfor-

mance. Finally, in chapter 6 a detailed conclusion of the performance of the two pre-

sented tracking approaches as well as an outlook to future work is given.

9

2 Related Work

The next two sections (2.1 General Object Tracking and 2.2 General Eye Tracking) give

an overview of techniques which are used in various tracking applications.

2.1 General Object Tracking

General object tracking can be defined as tracing the progress of objects or object fea-

tures as they move around in the scene. In other words, object tracking can be described

as generating the trajectory of an object over time, by locating its position in every frame

of a video. Object trackers may also provide the complete region in the image that is

occupied by the tracked object at every time instant. In general, object tracking is a very

challenging problem, as it has to deal with difficulties like abrupt object motion, changing

the appearance of the fore- and the background, non-rigid object structures, occlusion,

noise in the image and camera motion, to name a few. By using some prior knowledge,

some of these problems can be simplified. Based on the findings of [74], general object

tracking can be divided into three main categories: point tracking, kernel tracking and

silhouette tracking (Figure 2.1). In addition to that, representative work for each category

is shown in Table 2.1.

Figure 2.1 Classification of general object tracking methods based on [74]

The selected object representation can limit the type of motion or deformation an object

can undergo. If an object is represented as a point, only a translational model can be

10 2. Related Work

applied. When a geometric shape representation, like a rectangle or an ellipse, for the

object representation is used, parametric motion models like affine or projective trans-

formations are appropriate. For non-rigid objects, silhouette or contour is the most de-

scriptive representation and both parametric and nonparametric models can be used to

specify their motion.

Classification Demonstrative Work

Point Tracking

Deterministic Methods

 Feature Point Correspondence in the Presence of Occlusion

(MGE Tracker) [58]

 Resolving Motion Correspondence for Densely Moving Points

(GOA Tracker) [71]

Statistical Methods

 Estimation of Object Motion Parameters from Noisy Images

(Kalman Filter) [10]

 Tracking and Data Association (JPDAF)

 Maximum Likelihood Method for Probabilistic Multihypothesis

Tracking (PMHT) [66]

Kernel Tracking

Template and Density

Based Appearance Models

 Kernel-Based Object Tracking (Mean-Shift) [17]

 Good Features to Track (KLT) [62]

 Object Tracking With Bayesian Estimation of Dynamic Layer

Representation (Layering) [68]

Multi-View Appearance

Models

 EigenTracking: Robust Matching and Tracking of Articulated

Objects Using a View-Based Representation (Eigentracking) [8]

 Support Vector Tracking (SVT) [3]

Silhouette Tracking

Contour Evolution

 Condensation - Conditional Density Propagation for Visual

Tracking (State Space Models) [36]

 Morphing Active Contours (Variational Methods) [7]

 Region-Based Strategies for Active Contour Models (Heuristic

Methods) [57]

Matching Shapes

 Tracking Non-Rigid Objects in Complex Scenes (Hausdorff)

[35]

 Temporal Spatio-Velocity Transform and its Application to

Tracking and Interaction (Hough Transform) [60]

 Object Reacquisition Using Invariant Appearance Model (His-

togram) [39]

Table 2.1 Representative work of general object tracking methods based on [74]

Following a brief introduction to the main tracking categories will be given:

2.1. General Object Tracking 11

Point Tracking

In the point tracking approach, detected objects are represented by points. The associ-

ation of points is based on the previous object state which can include object position

and motion. For this approach, an external mechanism to detect the object in every frame

is necessary. Figure 2.2 (a) shows an example of object correspondences [74].

Kernel Tracking

Kernel tracking refers to object shape and appearance, whereby the kernel, which rep-

resents the object, is, in general, a primitive object region, like a rectangle or an ellipse.

Objects are tracked by computing the motion of the kernel in consecutive frames (Figure

2.2 (b)). This motion is usually a parametric transformation such as translation, rotation

or affine transformation [74].

Silhouette Tracking

Some interesting objects for tracking (e.g. hands, heads, shoulders, …) cannot be well

described by simple geometric shapes. Silhouette tracking methods use the information

encoded inside the object region and tracking is performed by estimating the object re-

gion in each frame. Therefore they provide an accurate shape description for more com-

plex objects. Given the objects models, silhouettes are tracked by either shape matching

or contour evolution (Figure 2.2 (c)) [74].

Figure 2.2 Different tracking approaches ((a) multipoint correspondences, (b) parametric trans-
formation of a rectangular patch, (c) contour evolution) (adapted from [74])

As point tracking is not advanced enough and the eye can easily be described by a

simple primitive object, kernel tracking is the most promising approach for our eye

tracking approach. Therefore this approach will be discussed further in the following sec-

tion.

12 2. Related Work

2.1.1 Kernel Tracking

In kernel tracking approaches, the motion of the object is typically computed in the form

of a parametric motion like translation, rotation or affine transformation. The object is

represented by primitive object regions like a rectangle or an ellipse. Kernel tracking

algorithms differ in terms of the used appearance representation, the number of tracked

objects and the method for estimating the object motion. Based on the used appearance

representation two subcategories can be defined, namely, template and density-based

appearance models and multi-view appearance models.

Template and Density-Based Appearance Models

The most common approach in this category is template matching. Template matching

is a brute force method, wherein an image 𝐼 the object template 𝑂 is searched. The

object template is defined via the previous frame. The position of the template in the

current frame is computed by a similarity measure (e.g. cross correlation). The template

usually is formed by image intensity, color features or image gradients. Due to the brute

force search, template matching can be quite cost intensive. To reduce the computa-

tional costs the search window for the object can be reduced to the surrounding of its

previous position [52, 74].

In [17] they use a weighted histogram computed from a circular region to represent the

object. Instead of a brute force method for locating the object, a mean shift procedure is

used (further details on the mean shift algorithm can be found in [14, 16]). The

appearance similarity is iteratively maximized by the mean shift tracker, by comparing

the histograms of the object 𝑄 and the hypothesized object location 𝑃. As a similarity

measure, the Bhattacharyya distance is used. At each iteration, the similarity is increased

and this process is repeated, until convergence is reached. In practice, this takes about

4 iterations.

An online template update was first introduced by [38]. The generative model for the

appearance is modeled as a mixture of three components. The stable appearance com-

ponent which is learned with a relative long time-course, a two-frame transient compo-

nent and a noise process. The stable component identifies the most reliable appearance

for motion, that is, the region of the object whose appearance does not quickly change

over time. Quickly changing pixels are identified by the transient component and outliers

that arise due to noise are handled by the noise process.

2.2. General Eye Tracking 13

Multi-View Appearance Models

In the previous tracking method, the model representation is gathered online from the

most recent observation. One issue is, that the object may appear different from different

views. This means, if the object view changes during tracking, the appearance model

may not be valid anymore. To overcome this problem, the object can be offline learned

from different views and afterward used for tracking [74].

In [8] they present a view based approach for tracking rigid and articulated objects which

rely on eigenspace techniques. For computing the affine transformation from the current

image of the object to the image reconstructed, eigenvectors are used. By using a robust

formulation of subspace matching they showed, that they can track objects over a long

time, in which the object can undergo affine image motion and changes of view.

In [3] they propose a support vector tracker (SVT), which fuses an optic-flow-based

tracker with a support vector machine (SVM) classifier. SVM is a general classification

scheme, which finds the best separation between two classes. For SVT, the positive

class consists of images of the object to be tracked, while the negative class consists of

all things that should not be tracked. To estimate the position of the object, the SVM

classification score is optimized.

2.2 General Eye Tracking

As the eyes and their movements play an important role in expressing a person’s desires,

needs, cognitive processes and emotional states a lot of investigations have been done

to create human-computer interfaces, attentive user interfaces and understanding hu-

man affective states. As described in [1, 28] general eye tracking can be further divided

into shape based, feature-based and appearance based tracking approaches. In addition

to that, there are tracking approaches with active infrared illumination.

2.2.1 Shape-Based Tracking

One very common approach in eye tracking is to find the location of the iris or pupil based

on their circular shape. Also, the exterior shape of the eye (e.g. the eyelids) can be used

to improve the tracking results [1]. As said before, many eye trackers only detect and

track either the iris or pupil. Depending on the viewing angle, iris and pupil appear as an

ellipse and therefore simple elliptical shape models can be used for eye tracking. Such

simple methods are not capable to deal with the variations of eye features like eyelids,

eye corners and eyebrows. Therefore more complex shape models can be used which

allow a more detailed modeling of the eye shape [28].

14 2. Related Work

In [41] they present a longest line detection (LLD) algorithm to obtain the center of the

pupil. The algorithm assumes, that the pupil is of arbitrary circular shape. Then the long-

est vertical and horizontal line of the pupil is found and the center of the longest vertical

or horizontal line represents the center of the pupil. The accuracy of the algorithm is

influenced by the pupil's shape.

A straightforward way for eye detection which relies on a circular Hough transform is

proposed in [40]. The facial image is cropped to the required face region and afterward,

a threshold is applied to the gradient magnitude of the cropped face image. As the iris is

nearly circular, the Hough transform is used to detect the iris based on the gradient mag-

nitudes. As many assumptions have been made for this work, it is not suitable for most

real-world applications.

An approach which relies on more complex shapes is proposed by [75]. The deformable

eye template consists of a circle for the iris and two parabolas for the eyelids. The eye

template is fitted to the image by minimizing an energy function which is given as a com-

bination of terms due to valley, edge, peak, image and internal potentials. For this algo-

rithm good initialization is necessary and it has difficulties when the iris is partially hidden

by the boundaries of the eye.

2.2.2 Feature-Based Tracking

In feature-based eye tracking methods, the characteristics of the human eyes are ex-

plored to figure out distinctive features. Limbus, pupil and corneal reflections are com-

mon features which are used for eye detection [28].

In [65] they first identify the face in the image with a skin color model. After the face is

detected, they search for the pupils by looking for two dark regions which satisfy certain

anthropometric constraints and lie within a certain area of the face. For a given situation,

the dark regions can be located by applying a fixed threshold to the grayscale image.

Depending on the person itself and different lighting conditions, this threshold can vary.

To overcome this problem they developed an iterative thresholding algorithm. After the

pupils are found, they can be tracked in the following frames by finding the darkest pixels

in a small search window around the current location.

Corneal reflections are virtual images of light sources that illuminate the eye and are

created by the front surface of the cornea, which acts as a convex mirror. The pupil

center and the corneal reflections can be used to estimate the gaze. In [27] a general

mathematical model is presented which allows estimating the gaze based on the center

of the pupil and one or more corneal reflections.

In [73] an approach is presented, which eliminates the influences caused by glasses and

other accessories. In the proposed scheme, the gray difference between the face, pupils

2.2. General Eye Tracking 15

and corneal reflections are used to detect the eyes. The intensity of the pupil is usually

much lower than the intensity of the reflections and therefore the eye region can then be

detected as the intersection of the low-gray region and the high-gray region. At the same

time reflections which are caused by glasses of accessories are removed according to

their size, geometric structure and other relevant features.

2.2.3 Appearance-Based Tracking

Besides the shape, also the appearance is an important descriptor for the eye. These

methods are also known as image template or holistic methods. Appearance-based

methods detect and track eyes directly on the photometric appearance. These methods

are independent of the actual object and are in general capable of tracking other objects

than eyes too. Appearance-based methods are carried out in a spatial or transformed

domain and try to overcome issues due to illumination changes. In practice, however,

such techniques are only tolerant to some moderate illumination changes [28].

In [54] they generalize the eigenface approach of [70] to view-based and modular eigen-

spaces for detection and recognition. This view-based formulation allows recognition un-

der varying head orientations and the modular description not only allows eye detection,

furthermore other important facial features like the nose and the mouth can be detected.

The eigenspaces for the different facial features are called eigeneyes, eigennoses and

eigenmouths.

The eigeneye approach of [54] is extended in [34]. The initial localization of the eye is

done in the eigeneye space. This initial position is refined with a Hough transform based

on the edge information. Afterward, a homogeneity measure is used to eliminate invalid

hypothesis. Finally, a robust method is used to select the best circle among all possible

circles.

2.2.4 Tracking With Active Infrared Illumination

Methods which rely on an active light source for detecting the eye are called active light

approaches, otherwise, they are called passive light approaches. Active light methods

are very common for indoor eye tracking systems and most of them use near-infrared

light sources to illuminate the eye. If the light source is located close to the optical axis

of the camera the pupil appears very bright as most of the light is reflected by the retina.

This effect is similar to the red eye effect which can appear in photography when using

a flash [1, 28].

16 2. Related Work

In [45] they did investigations on how the magnitude of the bright pupil response change

with different individuals. There they figured out, that the brightness can change dramat-

ically although they exposed the image to the same amount of ambient light and the

viewing angle stayed the same. Based on that findings, thresholds can be set manually

and will work for a lot of scenarios. But to get more robust tracking results, the threshold

for bright pupil detection needs to be adaptive.

2.3 Conclusion

The literature research has shown, that template tracking looks very promising for the

eye tracking approach. Templates are formed by using simple geometric shapes and it

carries both, spatial and appearance information. As we assume challenging lighting

conditions as well as significant object appearance changes, it is necessary to dynami-

cally adapt the tracking template. The general eye tracking research showed, that the

center of the eye can be detected by the circular shape of the iris. Using additional

shapes like the eyelid is not possible, as they are not visible during the surgery. Using

an active IR light source could help to robustly detect the center of the pupil, but with the

current surgical device, this is not possible.

17

3 Background

This chapter provides an overview of the theoretical background and methodologies

which are used in this thesis. Chapter 3.1 gives an insight into template matching and

chapter 3.2 explains the aggregated channel features (ACF) detector which is used in

the tracking by detection approach. In chapter 3.3 the projective geometry of 2D space

and the epipolar geometry is explained. The random sample consensus (RANSAC) al-

gorithm is explained in chapter 3.4. Finally, in chapter 3.5 the Laplacian image pyramid

is explained.

3.1 Template Matching

Template matching is a low-level technique in computer vision and is commonly used for

pattern recognition tasks. It allows identifying parts of an image that matches the given

image pattern [55]. In other words, template matching is an approach which allows find-

ing areas of an image which are similar (match) to a template image. To perform template

matching, three primary components are necessary. The template, the search image

and a similarity measure. Related to [11] anything fashioned, shaped, or designed to

serve as a model from which something is to be made can be seen as a template. Com-

paring in respect of similarity is the technical understanding for matching.

The simplest approach for template matching is, to use a sliding window to find the given

template in the image. Figure 6.1 illustrates this simple approach, where the template is

assumed with similar scale and pose in the search image.

Figure 3.1 Sliding-window template matching approach

18 3. Background

This simple template matching approach can be made more robust, by using a full search

algorithm, which additionally considers 360° rotation and different scales by using a pyr-

amid approach. Unfortunately, this is a very time-consuming process with large compu-

tational costs. Therefore, there is a need for fast and robust template matching ap-

proaches which do not rely on such an exhaustive search but deliver results of similar

accuracy [31].

A template may additionally show some extrinsic, as well as intrinsic variability. The sim-

plest extrinsic variability is a corruption by noise. Additionally, it can vary due to different

illumination or different viewpoints from where the object is observed. A non-rigid defor-

mation of the template can be seen as intrinsic variability. This non-rigid deformation can

be for example intrinsic variability through physical objects (e.g. different writing styles of

the letter ‘a’) or temporal evolution of an object (e.g. variation of the mouth while talking).

Figure 3.2 shows extrinsic as well as intrinsic variability of three different template clas-

ses, ‘letter’, ‘face’ and ‘mouth’. Corruption by noise, variability due to different viewpoints,

object intrinsic variability as well as temporal variability is visualized there. To allow good

template matching, robust similarity measures are necessary.

Figure 3.2 Extrinsic and intrinsic template variability for ‘letter’, ‘face’ and ‘mouth’ (adapted from
[11, 46])

3.1. Template Matching 19

3.1.1 Similarity Measures

As already discussed before, templates can show some variability. To allow a robust

template matching, robust similarity measures are necessary. A very simple way to com-

pute the similarity between a template and an image region is to describe both as a

vector (𝒙,𝒚) of pixel values and use a distance metric as similarity measure [11, 31].

Quite typical is the use of the sum of squared distance defined by equation 3.1 as well

as the Euclidean distance or so called 𝐿2 − 𝑛𝑜𝑟𝑚 which is defined by equation 3.2.

𝑑(𝒙,𝒚) = ∑(𝑥𝑖 − 𝑦𝑖)
2

𝑁

𝑖=1

 3.1

𝑑𝐿2(𝒙,𝒚) = ‖𝒙− 𝒚‖2 = √∑(𝑥𝑖 − 𝑦𝑖)
2

𝑁

𝑖=1

 3.2

As a measure of match for a given distance function 𝑑(𝒙,𝒚) the similarity measure 𝑠(𝒙,𝒚)

(equation 3.3) can be used. A perfect match results into 𝑑(𝒙,𝒚) = 1 and goes to 0 for

increasing mismatches.

𝑠(𝒙,𝒚) =
1

1 + 𝑑(𝒙,𝒚)
 3.3

In addition to that, the normalized cross-correlation (NCC) is often adapted for similarity

measures due to its better robustness to illumination changes and is therefore by far the

most widely used similarity measure [59, 64]. In general, the normalized cross-correlation

for two images 𝑰 and 𝑻 is defined by equation 3.4 where 𝐼 ̅and �̅� are the mean intensity

values of the corresponding images 𝑰 and 𝑻. Correlation values are obtained in the range

of [−1,1], where positive values indicate a higher similarity [31, 43].

𝑁𝐶𝐶(𝑰,𝑻) =
∑ (𝑰(𝑥,𝑦) − 𝐼)̅𝑥,𝑦 (𝑻(𝑥,𝑦) − �̅�)

√∑ (𝑰(𝑥, 𝑦) − 𝐼)̅2
𝑥,𝑦 ∙ ∑ (𝑻(𝑥, 𝑦) − �̅�)2

𝑥,𝑦

3.4

20 3. Background

3.2 ACF Detector

ACF stands for aggregated channel features and its detection framework is mostly de-

scribed in [19]. Additional information can be found through [20, 21, 44]. The ACF detec-

tor is the successor of the integral channel features (ICF) detector which was introduced

by [21]. The ICF detector computes multiple registered images channels by using linear

and non-linear transformations of the input image. Afterward, features are extracted from

each channel using sums over rectangular regions. Such features are referred as integral

channel features. Boosting is used to train and combine decision trees over these fea-

tures to distinguish between objects and background. The boosting algorithm of their

choice is AdaBoost [25]. Finally, a multiscale sliding window approach with non-maximal

suppression (NMS) is used to detect the object. They did a performance validation of

various channels (histogram of oriented gradients, color (greyscale, RGB, HSV and LUV)

and gradient magnitude) alone and in conjunction and showed that a combination of

histogram of oriented gradients, LUV and gradient magnitude gives the best results.

Additionally, they tested further boosting algorithms (RealBoost and LogiBoost) and they

figured out, that the choice of the boosting algorithm plays almost no role in the perfor-

mance.

The ACF detector is quite similar to the ICF detector. Both detectors use the same chan-

nel features as well as boosted classifiers. The key difference between the two frame-

works is the feature generation. ICF uses sums over rectangular channel regions, while

ACF uses pixel lookups in aggregated channels as features. Based on [19] the frame-

work of the ACF detector is conceptually straightforward and an overview of the frame-

work is given in Figure 3.3.

Figure 3.3 Overview of the aggregated channel feature detection framework [19]

From a given input image 𝐼 several channels 𝐶 = Ω(𝐼) are computed. The channels are

namely: normalized gradient magnitude (1 channel), histogram of oriented gradients (6

channels) and LUV color channels (3 channels). Prior the 10 channels are computed 𝐼

is smoothed with a Gaussian filter. The channels 𝐶 are divided into 4 × 4 blocks and

every block of pixels is summed up. Finally, the resulting lower resolution channels are

3.3. Geometry in 2D and 3D space 21

again smoothed with a Gaussian filter. Features are single pixel lookups in the aggre-

gated channels. Given a ℎ × 𝑤 detection window, there are ℎ/4 ∙ 𝑤/4 ∙ 10 candidate fea-

tures. Boosting with multiple rounds of bootstrapping is used to train and combine 2048

depth-2 decision trees over these features to distinguish objects from the background.

As a boosting algorithm, again, AdaBoost is used. Finally, an efficient multiscale sliding-

window approach is applied to do the object detection.

A Matlab toolbox [18] is provided which is easy to use. To train the detector we only need

to provide a directory which contains the object images, plus an additional directory

which contains the object annotations (a text file which holds the bounding box infor-

mation of the object in the corresponding image).

3.3 Geometry in 2D and 3D space

The next chapters will give an overview of geometries of 2D and 3D space. Namely

projective geometries in 2D space and the epipolar geometry which is a projective ge-

ometry between two views. Before these geometries are further discussed, a brief intro-

duction to geometric primitives is given. Most of the formulations are based on [29] and

also additional information to the discussed topics of this chapter can be found there.

3.3.1 Geometric Primitives

A point in the plane can be represented by a pair of coordinates (𝑥,𝑦) in ℝ2. Considering

ℝ2 as a vector space, the coordinate pair (𝑥,𝑦) is vector. A line in the plane is given by

the equation 𝑎𝑥 + 𝑏𝑦+ 𝑐 = 0, where different values for 𝑎, 𝑏 and 𝑐 will give different lines.

Thus, a line can now be represented by the vector (𝑎,𝑏, 𝑐)𝑇. The vectors (𝑎, 𝑏, 𝑐)𝑇 and

𝑘(𝑎, 𝑏, 𝑐)𝑇 represent the same line, for any non-zero 𝑘. An equivalence class of vectors

under this equivalence relationship is known as homogenous vector. A point 𝒙 = (𝑥, 𝑦)𝑇

lies on the line 𝒍 = (𝑎,𝑏, 𝑐)𝑇 if and only if 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0. This can be written as an inner

product of vectors where the point 𝒙 is represented as a 3-vector with an additional 1 as

the third coordinate. The set of vectors (𝑘𝑥,𝑘𝑦,𝑘)𝑇 for varying values of 𝑘, all represent

the same point (𝑥,𝑦)𝑇. Thus, just as with lines, points are represented as homogenous

vectors. Therefore the point in form 𝒙 = (𝑥1, 𝑥2,𝑥3)
𝑇 represents the point (𝑥1/𝑥3, 𝑥2/𝑥3)

𝑇

in ℝ2. As already mentioned before, the point 𝒙 lies on the line 𝒍 if and only if 𝒙𝑇𝒍= 0.

Given two lines 𝒍 and 𝒍′ the point of intersection is given by 𝒙 = 𝒍× 𝒍′ where × defines

the vector or cross product. Finally, the line through two given points 𝒙 and 𝒙′ is defined

by 𝒍 = 𝒙 × 𝒙′.

In 3-space, a point is represented as a 4-vector in homogeneous coordinates. The ho-

mogenous vector 𝑿 = (𝑋1, 𝑋2, 𝑋3, 𝑋4)
𝑇 with 𝑋4 ≠ 0 represents the point (𝑋1/𝑋4,𝑋2/𝑋4, 𝑋3/

22 3. Background

𝑋4)
𝑇 = (𝑋, 𝑌,𝑍)𝑇 of ℝ3 with inhomogeneous coordinates. A plane in 3-space can be writ-

ten as 𝜋1𝑋 + 𝜋2𝑌 + 𝜋3𝑍+ 𝜋4 = 0 or as 𝜋1𝑋1 + 𝜋2𝑋2 + 𝜋3𝑋3 + 𝜋4𝑋4 = 0 in a homogenous

way. More concise, a plane in 3-space can be written as 𝜋𝑇𝑿 = 0, which expresses, that

the point 𝑿 is on the plane 𝜋. A plane is uniquely defined by the join of three points

(equation 3.5), or the join of a line and a point, in general position (points and lines are

not collinear). Three distinct planes intersect in a unique point (equation 3.6) and two

distinct planes interest in a unique line.

[

𝑿1
𝑇

𝑿2
𝑇

𝑿3
𝑇

]𝜋 = 0 3.5

[

𝜋1
𝑇

𝜋2
𝑇

𝜋3
𝑇

]𝑿 = 0 3.6

3.3.2 Projective Geometry in 2D

Projective geometry is the study of properties that are invariant under a group of trans-

formations [29]. Therefore 2D projective geometry is the study of properties of the pro-

jective plane 𝑃2 which are invariant under a group of transformation called projectivities.

Projectivities are further known as collineation, projective transformation or homography.

A projectivity is an invertible mapping 𝒉 from points in P2 to points in P2 that maps lines

to lines. Therefore three points 𝒙1, 𝒙2 and 𝒙3 lie on the same line only if 𝒉(𝒙1), 𝒉(𝒙2) and

𝒉(𝒙3) do. P2 → P2 is a projectivity if and only if there exists a non-singular 3 × 3 matrix

𝑯 such that for any point in P2 represented by a vector 𝒙 equation 3.7 is true.

𝒉(𝒙) = 𝒙′ = 𝑯𝒙 3.7

The matrix 𝑯 consist of nine elements with eight independent ratios. Therefore the pro-

jective transformation has eight degrees of freedom. As already mentioned projective

geometry consists of a group of transformations which are defined through a hierarchy.

We will introduce these transformations hierarchy starting from the most specialized one

until the projective transformation is reached.

3.3. Geometry in 2D and 3D space 23

Isometry Transformations

Isometries are the simplest form of projective geometry and preserve Euclidian distance.

An isometry is represented as represented in equation 3.8 where 𝜀 = ±1.

(
𝑥′
𝑦′
1

) = [
𝜀 𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃) 𝑡𝑥
𝜀 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 𝑡𝑦

0 0 1

](
𝑥
𝑦
1
) 3.8

If 𝜀 = 1 the isometry is orientation preserving and is therefore a Euclidian transformation.

If 𝜀 = −1 the isometry reverse the orientation. A planar Euclidian transformation can be

written in block form (equation 3.9) where 𝑹 is a 2 ×2 rotation matrix and 𝒕 is a translation

2-vector.

𝒙′ = [
𝑹 𝒕
0𝑇 1

] 𝒙 3.9

Special cases of the isometry are pure rotation (𝒕 = 0) and pure translation (𝑹 = 𝑰). A

planer Euclidian transformation has three degrees of freedom, where one is used for the

rotation and two for the translation. The transformation can be computed from two point

correspondences. The invariants of the isometry transformation are length (distance be-

tween two points), angle (angle between two lines) and area.

Similarity Transformations

A similarity transformation is an isometry transformation extended by an isotropic scaling

𝑠. In the case of a Euclidian transformation extended with a scaling 𝑠, the matrix repre-

sentation of the similarity transformation is shown by equation 3.10. The more concise

block form is presented in equation 3.11.

(
𝑥′
𝑦′
1

) = [
𝑠 𝑐𝑜𝑠(𝜃) −𝑠 𝑠𝑖𝑛(𝜃) 𝑡𝑥
𝑠 𝑠𝑖𝑛(𝜃) 𝑠 𝑐𝑜𝑠(𝜃) 𝑡𝑦

0 0 1

](
𝑥
𝑦
1
) 3.10

𝒙′ = [
𝑠𝑹 𝒕
0𝑇 1

] 𝒙 3.11

The similarity transform is further known as equi-form transformation as it preserves

‘shape’. The planar similarity form has four degrees of freedom. The three known from

24 3. Background

the isometry transform (length, angle, area) plus one for the scale. Two point correspond-

ences are enough to compute a similarity transform. The invariants are the angle be-

tween lines, the ratio of length as well as the ratio of areas.

Affine Transformations

An affine transformation, also known as affinity, is a non-singular linear transform which

is followed by a translation. Its matrix representation is shown in equation 3.12 and its

block form in equation 3.13 where 𝑨 represents a 2 × 2 non-singular matrix.

(
𝑥′
𝑦′
1

) = [
𝑎11 𝑎12 𝑡𝑥
𝑎21 𝑎22 𝑡𝑦
0 0 1

](
𝑥
𝑦
1
) 3.12

𝒙′ = [
𝑨 𝒕
0𝑇 1

] 𝒙 3.13

The planar affine transformation has six degrees of freedom according to its six matrix

elements. Three point correspondences are necessary to compute an affine transfor-

mation. For a better understanding of the geometric effect of the matrix 𝑨, it can be split

into a rotation and a non-isotropic scaling. A single value decomposition (SVD) can be

used to decompose 𝑨 (equation 3.14), where 𝑅(𝜃) and 𝑅(𝜙) are rotations by 𝜃 and 𝜙

and 𝑫 is a diagonal matrix (equation 3.15) consisting of the scaling parameters 𝜆1 and

𝜆2. A schematic example of the arising distortions caused by the affine transformation is

shown in Figure 3.4.

𝑨 = 𝑼𝑫𝑽𝑇 = (𝑼𝑽𝑇)(𝑽𝑫𝑽𝑇) = 𝑅(𝜃)(𝑅(−ϕ)𝑫𝑅(𝜙)) 3.14

𝑫 = [
𝜆1 0
0 𝜆2

] 3.15

The invariants of an affinity transform are parallel lines, the ratio of lengths of parallel

lines and the ratio of areas. Depending on whether 𝑑𝑒𝑡(𝑨) is positive or negative the

affinity transformation is orientation preserving or orientation reversing. Since 𝑑𝑒𝑡(𝑨) =

𝜆1𝜆2 this property only depends on the sign of the scaling factors.

3.3. Geometry in 2D and 3D space 25

(a)

(b)

Figure 3.4 Distortion arising from affine transformation ((a) rotation by 𝑅(𝜃) , (b) deformation

𝑅(−ϕ)𝑫𝑅(𝜙)) [29]

Projective Transformations

A projective transformation is a general non-singular linear transformation of homogene-

ous coordinates. It can be seen as a generalization of an affine transformation. Its matrix

form is shown in equation 3.16 and its block form in equation 3.17 with vector 𝒗 =

(𝑣1, 𝑣2)
𝑇.

(
𝑥1′

𝑥2′

𝑥3′

) = [

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

](
𝑥1

𝑥2

𝑥3

) 3.16

𝒙′ = 𝑯𝒑𝒙= [
𝑨 𝒕
𝒗𝑇 𝑣

] 𝒙 3.17

The matrix has eight independent ratios amongst the nine elements. Therefore the pro-

jective transformation has eight degrees of freedom, with two degrees for scaling, two

for rotation, two for translation and two for the line at infinity. To compute a projective

transformation four point correspondences are necessary. The only remaining invariant

is the cross ratio of four collinear points. Compared to affine transformations, it is not

possible to distinguish between orientation preserving and orientation reversing

projectivities.

26 3. Background

Summary of Projective Transformations in 2D

Figure 3.5 and Table 3.1 summarize the projective transformations in 2D space. Figure

3.5 visualizes the appearing distortions and Table 3.1 gives a summary of matrix repre-

sentation, the degrees of freedom, the invariants and how many point correspondences

are necessary to compute the desired transformation.

Figure 3.5 Projective transformations in 2D space (adapted from [29, 67])

Group Matrix DOF Points Invariants

isometry [
𝜀 𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃) 𝑡𝑥
𝜀 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 𝑡𝑦

0 0 1

] 3 2 length, angle and area

Similarity [
𝑠 𝑐𝑜𝑠(𝜃) −𝑠 𝑠𝑖𝑛(𝜃) 𝑡𝑥
𝑠 𝑠𝑖𝑛(𝜃) 𝑠 𝑐𝑜𝑠(𝜃) 𝑡𝑦

0 0 1

] 4 2
angle, ratio of lengths and

areas

Affine [
𝑎11 𝑎12 𝑡𝑥
𝑎21 𝑎22 𝑡𝑦
0 0 1

] 6 3

parallel lines, ratio of

lengths of parallel lines

and ratio of areas

projective [

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

] 8 4
cross ratio of four collinear

points

Table 3.1 Projective transformations in 2D space (adapted from [29])

3.3. Geometry in 2D and 3D space 27

3.3.3 Epipolar Geometry

The epipolar geometry is the geometry of a two camera system and describes the rela-

tionship between two image planes and a 3D world point 𝑿 [4, 24, 29]. It only depends

on internal camera parameters and the relative pose of the cameras. A camera model is

used to describe the relation between 3D world coordinates and coordinates on the 2D

image plane. By introducing the world point 𝑿 as a homogeneous 4-vector 𝑿 =

(𝑋,𝑌,𝑍, 1)𝑇, the image point 𝒙 as a homogenous 3-vector 𝒙 = (𝑥,𝑦,1)𝑇 and the camera

projection matrix 𝑃 as a homogenous 3 × 4 matrix the mapping from world to image co-

ordinates can be written as 𝒙 = 𝑃𝑿.

Figure 3.6 Epipolar geometry – point correspondence geometry (adapted from [29])

The 3D world point 𝑿 is observed by two cameras with their optical centers 𝑪 and 𝑪′. 𝒙

is the image of 𝑿 in the first camera and 𝒙′ is the image of 𝑿 in the second camera. As

we can see in Figure 3.6 the image points 𝒙 and 𝒙′, the world point 𝑿, as well as the

optical centers 𝑪 and 𝑪′ are coplanar. This means, all points lie on the same plane, which

is called the epipolar plane 𝜋. This property is most significant for the search of corre-

sponding points. The points 𝒆 and 𝒆′ are the intersections of the base line (line connect-

ing the camera centres 𝑪 and 𝑪′) and the image planes and are called epipoles of the

two cameras. In other words, the epipole is the image of the camera center of one view

28 3. Background

in the other view. The epipolar line is the intersection of one epipolar plane 𝜋 with the

image plane and all epipolar lines intersect in the epipole. Therefore a point 𝒙 in image

one, back projected to a ray in space is an epipolar line 𝒍′ in image two. The 3D point 𝑿

must lie on this ray and therefore the image of 𝑿 must lie on the epipolar line 𝒍′. In terms

of correspondence finding, the corresponding point to 𝒙, namely 𝒙′, has to lie on the line

𝒍′.

The mathematical representation of the epipolar geometry is the fundamental matrix 𝐹.

It maps a point 𝒙 in one image to a line 𝒍′ in the other image (equation 3.18)

𝒙 ↦ 𝒍′ 3.18

With a camera matrix 𝑃 and a point 𝒙 in the image, it is possible to determine a set of

points in space which map to this point. In other words, we can do a back projection of

an image point to a ray in 3D space. This ray can be formed by two know points and a

line which connects them (equation 3.19). These two points are the camera center 𝑪 and

the point 𝑃+𝒙. 𝑃+ = 𝑃𝑇(𝑃𝑃𝑇)−1 is the pseudo inverse of 𝑃 for which 𝑃𝑃+ = 𝐼 holds.

𝑿(𝜆) = 𝑃+𝒙+ 𝜆𝑪 3.19

The camera center 𝑪 and the point 𝑃+𝒙 are imaged by the second camera 𝑃′ at 𝑃′𝑪 and

𝑃′𝑃+𝒙. The epipolar line 𝒍′ in the second image is the line connecting these two points

(equation 3.20). The point 𝑃′𝑪 is the epipole 𝒆′ of the second camera. The fundamental

matrix 𝐹 can be computed as shown in equation 3.21.

𝒍′ = (𝑃′𝑪)× (𝑃′𝑃+𝒙) = 𝒆′ × (𝑃′𝑃+)𝒙 = 𝐹𝒙 3.20

𝐹 = 𝒆′ × (𝑃′𝑃+) 3.21

For any two corresponding points in the two images, the fundamental matrix 𝐹 holds the

condition shown in equation 3.22. To compute the fundamental matrix, at least seven

point pairs are necessary, but the easier way is to use eight point pairs. The algorithms

for computing the fundamental matrix 𝐹 are discussed in [29].

𝒙′𝑇𝐹𝒙 = 0 3.22

Equation 3.23 shows the computations for the epipolar lines as well as the computation

for the epipoles.

3.4. RANSAC 29

𝒍′ = 𝐹𝒙 𝒍 = 𝐹𝑇𝒙′
3.23

𝐹𝒆 = 0 𝐹𝑇𝒆′ = 0

3.4 RANSAC

RANSAC stands for random sample consensus and was introduced by [23]. It is an iter-

ative method to estimate the parameters of a mathematical model from an observed

dataset including inliers and outliers. It is a non-deterministic algorithm that produces a

robust estimation with a certain probability. This probability can be increased by allowing

more iterations. Given a dataset that includes inliers and outliers, RANSAC uses a voting

scheme to find the optimal result. The assumption hereby is, that noisy samples will not

vote consistently for any single model and there are enough samples that agree to a

good model. The algorithm basically consists of two steps, which are iteratively repeated.

1. The algorithm first selects a random sample set from the input data that is

minimally required to estimate the desired model. With this minimal subsample

dataset the model is estimated.

2. Secondly, the algorithm determines the number of inlier samples when the model

from step 1 is applied. Any sample that lies within a defined error threshold is

defined as inlier, any other sample is defined as an outlier.

This random selection is repeated until a termination condition is reached. The complete

RANSAC algorithm is visualized in Figure 3.7.

Figure 3.7 The RANSAC robust estimation algorithm [29]

30 3. Background

3.5 Laplacian Image Pyramid

An image pyramid is a multi-scale image representation technique which is commonly

used in multiresolution image analysis and image compositing. For example, we want to

search for an object in a scene, but do not know the actual size of the object. In this case,

we will need to create a set of images with different resolution and search for the object

in all images. As these images, when kept in a stack, look like a pyramid, they are called

image pyramid [48].

Laplacian Image pyramids were introduced by [12] and are based on Gaussian pyra-

mids. In a Gaussian pyramid, the original image 𝐼0 is filtered with an Gaussian filter and

subsampled to obtain the image 𝐼1. 𝐼1 is the so called “reduced” version of 𝐼0. In a similar

way, we form 𝐼2 as a reduced version of 𝐼1, and so on. Figure 3.8 illustrates the creation

of a Gaussian pyramid with five levels.

Figure 3.8 Gaussian Image pyramid creation [15]

The Laplacian pyramid now is very similar to the Gaussian pyramid. The difference is,

that the Laplacian pyramid is a sequence of error images 𝐿0, 𝐿1 ,… ,𝐿𝑁, where each image

is the difference between two levels of the Gaussian pyramid. For 0 ≤ 𝑙 < 𝑁, each image

for the pyramid is achieved by equation 3.24. As there is no image for 𝐼𝑁+1 to create 𝐿𝑁,

3.5. Laplacian Image Pyramid 31

we define 𝐿𝑁 = 𝐼𝑁. 𝐸𝑋𝑃𝐴𝑁𝐷 applied to an image 𝐼𝑙 of the Gaussian pyramid will yield to

an image 𝐼𝑙,1 which is of the same size as 𝐼𝑙−1.

𝐿𝑙 = 𝐼𝑙 − 𝐸𝑋𝑃𝐴𝑁𝐷(𝐼𝑙+1) = 𝐼𝑙 − 𝐼𝑙+1,1 3.24

Figure 3.9 gives an overview of how the Laplacian pyramid is generated. The Gaussian

images of the middle row are obtained by expanding the image of the Gaussian pyramid.

Each level of the Laplacian pyramid is the difference between the corresponding and the

next higher level of the Gaussian pyramid.

Figure 3.9 Creation of the Laplacian pyramid from expanded Gaussian pyramid images [42]

32 3. Background

33

4 Template Based Tracking

In this chapter, we present an appearance-based tracking approach that is real-time ca-

pable. This approach is specially designed for tracking eyes under harsh environments.

Thereby we assume x and y movements of the capture device, scale changes due to

zooming, illumination changes, 3D motion of the eye, reflections caused by water or

blood, appearance change of the lens caused by the lens removal and the artificial lens

implantation, coverage of the eye by the surgeon or surgical instruments and non-rigid

deformation of the eye caused by the surgical procedure itself. As mentioned in [31] the

tracking update becomes more difficult for dynamic scenes, therefore the tracking tem-

plate gets dynamically adapted to these changes. The fundamental concepts for this

tracker are based on [31] and are namely robust homography estimation and adaptive

image blending for the template update.

4.1 Tracker Initialization

At the beginning of the surgery (first frame of the surgery sequence), the tracking tem-

plate needs to be manually initialized. As the tracker was only tested with recorded data

with no information about the astigmatism axis, this is done with one click into the center

of the eye and another on the border of the iris. When the proposed tracker is used during

surgeries with the real surgical device, this initialization routine needs a slightly different

interface which needs to be optimized for the surgeon needs. Figure 4.1 (a) shows how

the template is marked in the original image and Figure 4.1 (b) shows the extracted

tracking template which is a rectangle with a fixed size in which the eye is centered.

(a)

(b)

Figure 4.1 Template tracker initialization. ((a) template marked in the original image, (b) ex-

tracted tracking template with fixed size and centered eye)

34 4. Template Based Tracking

The tracking template is obtained by transforming the marked image region from the

image coordinate frame 𝐼 (ImageFrame) to the predefined and rectified template coordi-

nate frame 𝑇 (TemplateFrame) by applying a projective transformation 𝐻𝐴. As already

discussed in the chapter Projective Transformations, four point correspondences are

necessary to compute a projective transformation. Therefore, we compute the projective

transformation 𝐻𝐴 with the help of the four corner points of the ImageFrame 𝐼 (𝒙𝑖
𝐼) and

the four corner points of the TemplateFrame 𝑇 (𝒙𝑖
𝑇) (equation 4.1). The computation itself

is done with the help of the open source computer vision library OpenCV [49] and its

function 𝑔𝑒𝑡𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 [50].

𝒙𝑇 = 𝑯𝒑𝒙
𝐼 4.1

Afterward, the received projective transformation is applied to the ImageFrame to receive

the TemplateFrame (𝑤𝑎𝑟𝑝𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 [50] from OpenCV is used). When the perspec-

tive transformation is done, a bilinear interpolation is applied. Bilinear interpolation deliv-

ers smoother results as nearest neighbor interpolations, but is still faster as bicubic in-

terpolation. The template extraction is illustrated in Figure 4.2. For a better understand-

ing, a stick figure is used instead of the round eye.

Figure 4.2 Tracking template extraction. Transformation of the image region to the template
frame with the projective transformation 𝐻𝐴

4.2 Template Tracking

As already stated, our requirement is to robustly estimate the motion between two con-

secutive frames. This is done by a robust image feature based homography estimation

4.2. Template Tracking 35

in the template coordinate frame 𝑇. The computed transformation then allows a compu-

tation of the recent mapping from the image to the template frame. Not only the tracking

object can move from one frame to another, but also the camera system itself can move

in 𝑥 and 𝑦 direction and the magnification can change as well. For better tracking results

this movement has to be compensated. The surgery device can provide information

about its current position, magnification and the pixels per millimeter ratio for

𝑚𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 1. This information can be used to compute the relative movement be-

tween the current frame and the start frame. The pixels per millimeter ratio is used to

converter die relative movement from mm to pixels (equation 4.2).

𝑥 = 𝑝𝑖𝑥𝑒𝑙𝑠_𝑝𝑒𝑟_𝑚𝑚∗ (𝑥_𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑚𝑚 − 𝑥_𝑠𝑡𝑎𝑟𝑡𝑚𝑚)

𝑦 = 𝑝𝑖𝑥𝑒𝑙𝑠_𝑝𝑒𝑟_𝑚𝑚∗ (𝑦_𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑚𝑚 − 𝑦_𝑠𝑡𝑎𝑟𝑡𝑚𝑚)

𝑚 = 𝑚𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑐𝑢𝑟𝑟𝑒𝑛𝑡/𝑚𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑟𝑡

4.2

The relative movement can now be used to compute the transformation between the

current and the start frame. The computation of the transformation matrix 𝑇 is shown in

equation 4.4. In this equation, 𝑤 stands for the image width and ℎ for the image height

in pixesls.

𝑇 =

[

 𝑚 0

𝑤 ∗ (1 − 𝑚)

2
+ 𝑚 ∗ (−𝑥)

0 𝑚
ℎ ∗ (1 − 𝑚)

2
+ 𝑚 ∗ 𝑦

0 0 1]

 4.3

To get the new image frame with the compensated camera motion, first the inverse of

the last transformation 𝑇𝑙𝑎𝑠𝑡
−1 and subsequent the current transformation 𝑇𝑛𝑜𝑤 has to be

applied to the old image frame (equation 4.4)

𝐼𝑚𝑎𝑔𝑒𝐹𝑟𝑎𝑚𝑒 = 𝑇𝑛𝑜𝑤 ∗ 𝑇𝑙𝑎𝑠𝑡
−1 ∗ 𝑜𝑙𝑑𝐼𝑚𝑎𝑔𝑒𝐹𝑟𝑎𝑚𝑒 4.4

Again, the four corner points of the image frame with the compensated camera motion,

as well as the four corner points of the template frame are used to compute a temporal

projective transformation 𝐻𝐴_𝑡𝑒𝑚𝑝 (𝑔𝑒𝑡𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 [50] from OpenCV). This

temporal projective transformation 𝐻𝐴_𝑡𝑒𝑚𝑝 can now be applied to the ImageFrame to get

the temporal TemplateFrame (𝑤𝑎𝑟𝑝𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 [50] from OpenCV) (Figure 4.3).

36 4. Template Based Tracking

Figure 4.3 Template tracking. Temporal projective transformation 𝐻𝐴_𝑡𝑒𝑚𝑝 between the image

frame and the template frame

4.2.1 Feature Extraction

We now extract features from the previous template frame. As our aim is a robust and

real-time capable eye tracker we decided to use image patches as features. We extract

small and overlapping image patches along the iris, as this is the part of the eye which

will stay stable over the complete surgery. The pupil will change over time as the cataract

gets removed and an artificial lens is implanted and the sclera (white of the eye) can

change due to bursting blood vessels. Figure 4.4 gives an overview of the feature ex-

traction for an exemplary template. The violet squares are used to illustrate exemplarily

the overlapping image patches and the green dots visualize the center of all image

patches.

Figure 4.4 Template frame feature extraction. The patches (with the green dot as center) are
circularly arranged along the iris, as the iris will stay the same for the complete surgery.

4.2. Template Tracking 37

4.2.2 Feature Matching

After the features are extracted from the previous template frame, they need to be found

in the current temporal template frame. For matching each feature with the temporal

template frame we use the normalized cross-correlation (NCC) as a similarity measure.

We rely on the normalized cross-correlation as it is not only a simple but also an effective

method for measuring the similarity between two image regions. In addition to that, it is

insensitive to linear brightness and contrast variations [76]. As the computation of the

normalized cross-correlation can get very time consuming when applied to the whole

image for every single image patch, we define a region of interest around the old feature

center. This can be done due to our assumption that patches can only move in a small

surrounding of their old location. Every match which exceeds a specific correlation

threshold is considered as correct and saved as inlier.

4.2.3 Homography Estimation

With the feature matches which were found with the help of the normalized cross

correlation, a homography can be estimated. To improve the quality and robustness of

the homography we use a two-step approach. In the first step, we try to refine the feature

matches by removing outliers. This is done with the help of the epipolar geometry and

their mathematical representation, the fundamental matrix 𝐹. In other words, the funda-

mental matrix 𝐹 is used as a method for pre-filtering outliers. As discussed in chapter

3.3.3, the epipolar geometry describes the relationship between two image planes and

a 3D world point. We can use this concept here as our input stream is a sequence of

images of a 3D object with not too much motion in between. For computing the funda-

mental matrix 𝐹 at least eight point pairs (𝑥𝑖 ↔ 𝑥′
𝑖) are necessary. Any point pair which

cannot fulfill equation 4.5 is considered as an outlier. Point pairs which can fulfill this

equation are considered as inliers. For the computation of the fundamental matrix

OpenCV with its function 𝑓𝑖𝑛𝑑𝐹𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙𝑀𝑎𝑡 [51] is used. As a computation method

for the fundamental matrix, the RANSAC algorithm is used. Additionally, this function

directly delivers the inlier point set for the found fundamental matrix.

𝑥𝑖
′𝑇𝐹𝑥𝑖 = 0 4.5

With the refined inlier set which was found with the help of the fundamental matrix, the

affine transformation 𝐻𝐵 between the previous template frame and the temporal template

frame can be computed. For the computation of the affine transformation, at least three

point pairs are necessary. As three point pairs are quite less to robustly estimate the

38 4. Template Based Tracking

correct affine transformation, at least 40 point pairs have to be found to continue. The

estimation of the affine transformation 𝐻𝐵 is done in a robust way and relies on RANSAC.

To get the new image frame from the template frame equation 4.6 can be used. The

transformation pipeline from the previous template frame to the temporal template frame

to the new image frame is illustrated in Figure 4.5.

𝐼𝑚𝑎𝑔𝑒𝐹𝑟𝑎𝑚𝑒 = 𝐻𝑎_𝑡𝑒𝑚𝑝
−1 ∗ 𝐻𝐵 ∗ 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝐹𝑟𝑎𝑚𝑒 4.6

Figure 4.5 Template Tracking. Transformation pipeline from the previous template frame to the
temporal template frame to the image frame

Finally the new projective transformation 𝐻𝐴 between the image frame and the prede-

fined and rectified template coordinate frame 𝑇 can be computed (Figure 4.6) and a new

template frame for the next tracking step can be extracted. Again this is done by using

the four corner points of the image frame and four corner points of fixed template frame

and the help of OpenCV (𝑔𝑒𝑡𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 and 𝑤𝑎𝑟𝑝𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 [50])

Figure 4.6 Template Tracking. Final projective transformation 𝐻𝐴 to get the new template frame

for next tracking step

4.2. Template Tracking 39

4.2.4 Template Blending

As mentioned before, in our approach we use an adaptive image blending method for

updating our templates. From an initial template, we adapt variations of each pixel incre-

mentally over time. This blending approach allows handling illumination changes, object

appearance variation or object pose changes while retaining the object structures [31,

38]. We use a weighting function that consists of a difference weight 𝑤𝑑, a quality weight

𝑤𝑞 and a constant temporal weight 𝑤𝑡. The resulting pixel wise weighting function 𝑊 is

given in equation 4.7.

𝑊(𝑥, 𝑦) = 𝑤𝑑(𝑥,𝑦) ∗ 𝑤𝑞(𝑥,𝑦) ∗ 𝑤𝑡(𝑥,𝑦) 4.7

The difference weight 𝑤𝑑 is defined by the smoothed and normalized absolute difference

between the previous and the current template frame. By doing that, we get high weights

for regions where the object undergoes changes and small weights for regions that stay

the same. This will smooth out structures that do not belong to the tracked object but will

also blur regions where surgical devices are used or reflections appear. To overcome

this issue the quality weight 𝑤𝑞 is introduced. This weight takes care, that only good

matches get updated. In the first test, we only used inliers from the template matching to

create this weighting mask. By doing that, surgical devices get not updated into the track-

ing template, but it can also happen that parts of the iris stop updating as no good match

was found in the previously performed template matching process. Therefore, we defined

higher weights for the inlier matches and smaller weights for the outlier matches. Doing

so will allow surgical devices to adapt to the template frame, but also helps in recovering

to the regular eye after the device was removed from the eye again. The constant tem-

poral weight is given by a scalar 𝑡 for the existing template frame and (1 − 𝑡) for the new

observation. New observations can incorporated to the tracking template very fast by

using a small value for 𝑡 or can be slightly considered by using a larger value. In our

testing, we figured out that for our approach best results are achieved, when the temporal

weight 𝑡 is defined quite high (0.8). This means, in our tracking approach, new observa-

tions are incorporated quite slow to the tracking template. The flexible image blending

approach presented in [77] is extended to a multi resolution flexible blending approach

and is used as a blending mechanism in this thesis. As proposed in [13] a Laplacian

pyramid is used as a multi resolution method for image blending, where 𝐿𝑡𝑖
 stands for

the 𝑖𝑡ℎ Laplacian pyramid level of the template 𝑇𝑡. The final multi resolution template

blending is given in equation 4.8. Figure 4.7 shows the appearance change of the track-

ing template over a surgery based on the used blending approach.

40 4. Template Based Tracking

𝑇𝑡 = ∑
𝑊𝑡𝑖

(𝑥,𝑦) ∗ 𝐿𝑡𝑖
(𝑥, 𝑦) + 𝑊𝑡−1𝑖

(𝑥, 𝑦) ∗ 𝐿𝑡−1𝑖
(𝑥, 𝑦)

𝑊𝑡𝑖
(𝑥, 𝑦) + 𝑊𝑡−1𝑖

(𝑥, 𝑦)

𝑁

𝑖=1

 4.8

Figure 4.7 Template blending evolution. Appearance change of the tracking template through
the surgery

4.2.5 Fallback

When occlusions or big appearance changes caused by the surgeon, surgical devices,

water or blood occur during the surgery, it can happen that not enough good feature

matches can be found to compute a correct homography. In this case, a so-called

fallback is initiated. Here we try to find the complete template in the input image in a

defined search window based on the previous position of the last found template. As a

similarity measure, again the normalized cross-correlation is used. If no good match is

found, the search window is increased with the next fallback. This procedure is repeated

until the search window reaches a predefined maximum size. When the maximum size

of the search window is reached, the template gets still searched with the next fallback,

but the window size is not increased anymore. If the correlation value exceeds a specific

threshold a good match is found and the successive fallback number, as well as the

search window size, are reset to its initial values. Additionally, a correction transformation

(equation 4.9) can be computed. This correction transformation defines the offset be-

tween the previous and the new position of the template. To compute the corrected im-

age frame equation 4.10 can be used.

𝑇𝑐𝑜𝑟𝑟 = (
1 0 𝑥𝑐𝑜𝑟

0 1 𝑦𝑐𝑜𝑟𝑟

0 0 1

) 4.9

𝐼𝑚𝑎𝑔𝑒𝐹𝑟𝑎𝑚𝑒 = 𝐻𝐴
−1 ∗ 𝑇𝑐𝑜𝑟𝑟 ∗ 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝐹𝑟𝑎𝑚𝑒 4.10

4.2. Template Tracking 41

In addition to figuring out the new position of the template in the image, we do a stepwise

recovery of the initial template with our multi-resolution blending approach. This is done

to get rid of accidentally inserted surgical tools or reflections.

In the experiment section we show, that it can happen, that the proposed fallback solution

cannot find the template in the search window. To improve the fallback procedure, it is

necessary to figure out if the eye is still in the search window and to provide an alternative

method to reinitialize the tracker. Therefore we present an eye detection approach in

chapter 5.

4.2.6 Flowchart of the Template Tracking Approach

Figure 4.7 summarizes the complete tracking approach in a flowchart.

42 4. Template Based Tracking

Figure 4.8 Flowchart of the complete template tracking approach

4.3. Experiments & Results 43

4.3 Experiments & Results

To evaluate the performance of the proposed template tracking approach different ex-

periments were performed. In the first experiment, the runtime of the tracker and in the

second experiment the position accuracy was validated.

The tracker was tested on images with an input resolution of 1920x1080 pixels and the

extracted and rectified templates have a resolution of 180x180 pixels. The extracted fea-

tures from the template have a size of 30x30 pixels and an overlap of 65% which leads

to approximately 136 extracted features per template. To define feature matches as inli-

ers, a correlation threshold of 0.75 has to be exceeded and at least 40 inliers have to be

found to perform the homography estimation. Otherwise, the fallback routine is activated.

4.3.1 Runtime Performance Validation

The runtime performance validation was done on a benchmark dataset consisting of

3000 frames. The first input frame is used to initialize the tracker and therefore the track-

ing itself was only executed on 2999 frames. The runtime for the complete computation

was measured and with this value, the runtime per frame and the frame rate was derived.

The evaluation was done with three different modes of the tracker and on three different

workstations. The hardware of the three workstations is listed in Table 4.1.

First and second mode of the tracker are thought as debug modes. In the first mode, all

tracking results including text files for the pose and images for templates and visual

tracking results are stored to the hard drive. The tracking visualization is active and the

tracking results are printed to the console. Figure 4.9 shows the active tracking visuali-

zation. It shows the current input frame, with the tracked eye. Additional the tracking

template with additional statistical information (detected features, number of inlier fea-

tures, correlation value and number of fallbacks) is visualized.

Mode two only prints the tracking results to the console and shows the visualization.

Mode three is the production mode where only the necessary tracking results are written

to the console. Our main goal for the tracker was to achieve a real-time capability. As we

get 30 frames per second (FPS) as input frame rate and we can process more than 30

FPS with each workstation in the production mode (Table 4.2) this goal was accom-

plished.

44 4. Template Based Tracking

Workstation Operating System CPU RAM

WS 1 Windows 7
Intel Core i7-2600K

@3.4Ghz
8 GB

WS 2 Windows 8
Intel Core i7-4770

@ 3.4GHz
16 GB

WS 3 Windows 10
Intel Core i5-4690

@ 3.5GHz
16 GB

Table 4.1 Hardware used for the runtime performance experiment of the template tracker

 Mode 1 [FPS] Mode 2 [FPS] Mode 3 [FPS]

WS 1 3.187 23.242 32.395

WS 2 5.261 23.187 34.254

WS 3 6.207 29.188 44.471

Table 4.2 Runtime performance validation for different modes of the template tracker (mode 1
and mode 2 are thought as debug modes, mode 3 is the production mode)

Figure 4.9 Eye tracker visualization (active track, tracking template, statistical information)

4.3.2 Accuracy Validation

To validate the accuracy of the tracker six different surgery sequences were used con-

sisting of more than 85000 frames. All datasets include a camera and eye movement,

appearance change of the lens due to the cataract removal and lens implantation, re-

flections caused by water and blood and occlusions caused by the surgeon or surgical

4.3. Experiments & Results 45

devices. Basically, all the challenges which were already discussed in chapter 1.1 are

included in the tested datasets. As there was no ground truth data available the center

of the eye was manually labeled in 322 frames by fitting an ellipse to the eye. As we have

no medical background and there were no markers on the eye, it is really hard to mark

the rotation of the eye within the surgery. Therefore the eye axis could not be labeled

and furthermore, no qualitative validation of the eye axis tracking accuracy could be

done. But we carefully watched all the sequences and checked that there were no un-

wanted or wired rotation changes. Figure 4.10 visualizes the orientation correctness for

an example dataset over 2075 frames while a surgical device is moved inside the eye.

Figure 4.10 (a) shows the moment when the surgical device enters the eye. Figure 4.10

(b) and (c) show different zoom levels while the device was moved around in the eye.

Finally, Figure 4.10 (d) shows a bigger movement of the tool. From a visual inspection

point of view, the visualized rotation vectors (red and green vector) stay correct over the

shown frameset.

(a)

(b)

(c)

(d)

Figure 4.10 Orientation validation of the template tracker ((a) entrance of tool at frame 842, (b)

different zoom level at frame 1137, (c) different zoom level at frame 1787, (d) bigger tool move-
ment at frame 2917)

Table 4.3 gives an overview of how many images each dataset has, how many ground

truth frames were extracted and how good the tracker performed on each dataset with

respect to entered fallbacks. As we can see the tracker performs very well on the dataset

‘Test 1’ but performs quite bad on the dataset ‘Test 5’. This variance comes from the

46 4. Template Based Tracking

quality and difficulties in each of the datasets. The test sequence ‘Test 2’ lose the track

after two tools are inserted and the artificial lens is moved (Figure 4.11 (a)). Test se-

quence ‘Test 4’ (Figure 4.11 (b)) as well as test sequence ‘Test 5’ (Figure 4.11 (c)) lose

the track after a water flush is applied. Test sequence ‘Test 6’ has a lot of fallbacks

caused by different reasons. For example, a cotton swab is used to remove some blood

(Figure 4.11 (d)), the surgeon, as well as some surgical tools, occlude the eye (Figure

4.11 (e)) or a water flush is applied (Figure 4.11 (f)). Occlusions, as well as big appear-

ance changes, will decrease the quality of the feature matches and as already mentioned

before, at least 40 good feature matches are necessary to perform the homography es-

timation. This homography is necessary for the motion estimation between two frames.

If this number of good features matches can’t be achieved, no good tracking update can

be guaranteed and therefore the fallback procedure is called. Depending on when the

track, for how long the track and how often the track gets lost the number of fallbacks

can be higher or smaller. Some fallbacks are caused by big occlusions and by definition

no track can be found and other fallbacks appear because the track was lost due to bad

feature matches. Nonetheless, over the entire dataset, we achieve a good track rate

58.16% and a fallback track rate of 41.84%. This means that for nearly half of the images

no good track can be found. Therefore this part has to be improved by a more robust re-

initialization of the tracker after the track got lost.

Test

Sequence
Frames

Ground Truth

Frames
Fallbacks

Good

Track [%]

Fallback

Track [%]

Test 1 22187 69 1373 93.812 6.188

Test 2 12431 50 6538 47.406 52.594

Test 3 3240 31 458 85.864 14.136

Test 4 767 12 422 44.980 55.020

Test 5 23264 77 15671 32.638 67.362

Test 6 23264 83 11166 52.003 47.997

overall 85153 322 35628 58.160 41.840

Table 4.3 Percentage of good and bad tracks of the template tracker

4.3. Experiments & Results 47

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.11 Reasons for fallbacks in template tracking ((a) Test 2, (b) Test 4, (c) Test 5, (d)-(f)

Test 6)

Table 4.4 gives an overview of the accuracy performance of the tracker. Thereby the

distance between the center of the pupil and the center of the ground truth annotated

images were computed. As distance measure, the Euclidian distance and the signed

distance in x- and y-direction is used. Additionally, the mean distance error, based on an

approximate eye size of 679 pixels in % is given. In the best case, we achieve a mean

Euclidian distance of 6.819 pixels (1.004%) and in the worst case a mean Euclidian dis-

tance of 37.395 pixels (5.507%). As we have seen in the fallback validation (Table 4.3)

for some datasets a lot of frames have no good track, which means we have a high

number of fallbacks. In other words, this will influence our distance validation negatively.

48 4. Template Based Tracking

Test Se-

quence

Min Dist.

[px]

Max Dist.

[px]

Mean

Dist. [px]

Mean Dist.

[%]

Mean Dist.

x [px]

Mean Dist.

y [px]

Test 1 0.883 31.991 6.819 1.004 -1.395 -0.922

Test 2 0.449 79.912 17.444 2.569 -5.339 1.335

Test 3 2.947 179.993 17.956 2.644 -9.250 -10.249

Test 4 4.938 24.701 16.167 2.381 -10.132 -7.314

Test 5 2.309 179.865 37.395 5.507 -10.563 -4.573

Test 6 1.116 106.475 25.317 3.729 -1.314 -15.751

overall 0.449 179.993 22.052 3.248 -5.257 -6.400

Table 4.4 Distance from the center of the pupil of the tracker and the ground truth images

To get a better impression on the real performance of the tracker the same validation

was repeated for images only, where a good track was found (Table 4.5). The numerical

results are additionally visualized in Figure 4.12. By removing the fallback images from

the validation we see a dramatical improvement in the results. The best mean Euclidean

distance has dropped from 6.819 pixels (1.004%) to 6.294 pixels (0.927%) and the worst

mean Euclidean distance from 37.395 pixels (5.507%) to 8.187 pixels (1.206%). Overall

we achieve a mean Euclidean distance of 7.192 pixels. We have an average eye size of

approximately 679 pixels, so the Euclidian distance of 7.192 pixels leads to a very good

distance error of 1.059%. This distance error is below 1.27% which was specified in the

chapter Problem Statement as the maximally allowed error. By looking at the results of

mean distance in x- and y-direction we see a slightly offset into quadrant three. This may

be caused by a combination of a slightly wrong initialization of the tracker (compared to

how the ground truth images ware labeled) and a slightly drift during the track.

Furthermore, the ground truth labels itself can hold an error.

4.3. Experiments & Results 49

Tes Se-

quence

Min Dist.

[px]

Max Dist.

[px]

Mean

Dist. [px]

Mean Dist.

[%]

Mean Dist.

x [px]

Mean Dist.

y [px]

Test 1 0.883 31.991 6.294 0.927 -1.096 -0.739

Test 2 0.449 22.631 6.654 0.980 1.060 2.399

Test 3 2.947 17.826 8.105 1.194 -2.147 -3.010

Test 4 4.938 9.677 7.187 1.059 -1.609 5.750

Test 5 4.296 11.962 7.261 1.069 -6.396 -0.480

Test 6 3.357 15.285 8.187 1.206 -6.543 -1.499

overall 0.449 31.991 7.192 1.059 -3.090 -0.643

Table 4.5 Distance between the center of the pupil of the tracker and the ground truth images
where a good track was found

Figure 4.12 Distance between the center of the pupil of the tracker and the ground truth images

where a good track was found

50 4. Template Based Tracking

4.4 Conclusion

In this chapter, we introduced a template tracking approach which relies on image blend-

ing to update the tracking templates. By doing this it becomes robust against noise, ap-

pearance changes of the eye and small occlusion.

The tracker was only tested with recorded datasets where the initialization was done with

one click into the center of the eye and another to the border of the iris. The astigmatism

axis was always defined horizontal (0°). For future work, it is necessary to optimize this

initialization step to the surgeon needs where he not only defines the center and radius

of the eye but also the astigmatism axis. In the current approach, this axis was always

defined in the same way, as it has no influence on the performance of the tracker.

With the runtime performance test, we approved that we can achieve more than 30

frames per seconds on different workstations in the production mode, which means, we

are real-time capable. We only need to provide the tracking results to the surgical device

and the device takes care of the visualization.

The rotation accuracy of the template eye tracker could not be qualitatively validated as

no ground truth data was available. Additionally, the medical background was missing to

label the rotation axis of the eye by hand. But carefully done manual inspection showed

good rotation correctness results. For future work, it is necessary to get datasets where

the eye axis is already marked with some ink or the recorded data is labeled by a qualified

person like a surgeon or an ophthalmologist.

When computing the distance between the centers of the eye of good tracks and ground

truth images we get a mean Euclidian distance of 7.192 pixels. With an approximate eye

size of 679 pixels, this means we have a distance error of 1.059% and this error is below

the required 1.27%.

When too less good feature matches are found to perform a good homography estima-

tion the fallback procedure is activated. With the fallback validation, we figured out, that

the tracker is really robust in most scenarios but cannot find its way back when too big

changes in the appearance or too long occlusions appear. This means the current

fallback solution is not robust enough to lead the tracker back to the correct position and

continue tracking. For checking if the tracker is still tracking the eye and to make the

fallback solution more robust in chapter 5 a tracking by detection approach is presented.

51

5 Tracking by Detection

As we have seen with the template tracking approach, it is possible that the tracking can

get lost due to occlusions or too big appearance changes of the eye during the surgery.

With the fallback experiment, we showed, that the basic fallback solution which tries to

find the template in a search window with the normalized cross-correlation is not robust

enough to lead the track back to its correct position. For a robust tracking result, it is

necessary to know when the track is too far away from its expected position and to have

a fallback solution to reinitialize the tracker to the correct position. To fulfill this require-

ment we present a tracking by detection approach.

5.1 Approach / Implementation

As a detector, the aggregated channel feature detector (ACF) from Piotr Dollar’s Matlab

toolbox is used [18]. The detector itself was described in [19–21, 44] and the basic back-

ground of the detector is described in chapter 3.2. The ACF detector is a fast and effec-

tive sliding-window detector which is best suited for quasi-rigid objects. To see if the

detector can handle the non-rigid eye deformations which occurs during the surgery a

quick test was performed. This test already showed very promising results and also con-

firmed that the detector is very fast and easy to use. Therefore we decided to go forward

with this approach. The detector delivers a bounding box in which the eye is present.

The center of this bounding box is not necessarily the center of the eye. Therefore we

present a method to find the center of the eye based on the bounding box image we get

from the detector.

5.1.1 Refinement of the Detector Results

As mentioned before, the ACF detector from Piotr Dollar’s Matlab toolbox will deliver a

bounding box which holds the eye. As shown in Figure 5.1 the center of this bounding

box is not necessarily equal to the center of the eye. For this reason, the general eye

detection needs to be refined to figure out the center of the eye. As discussed in previous

chapters the lens will change over time. First the cataract is broken, afterward, it gets

removed and finally, an artificial lens is implanted. The sclera can change its appearance

due to bursting blood vessels and the border between sclera and iris sometimes has a

smooth transition. The only part of the eye which stays quite constant during the surgery

is the iris itself and the border between iris and lens. It seems quite natural to use the

border between iris and lens to figure out the center of the eye. Therefore this edge

needs to be detected. To reduce the edge detection problem to 1D space we apply a

52 5. Tracking by Detection

polar coordinate transformation to the detected and extracted bounding box with the cen-

ter of the bounding box as the coordinate origin. Figure 5.2 shows the polar transformed

detection result.

Figure 5.1 Detection results from the ACF detector. Center of bounding box is not necessarily
the center of the eye

Figure 5.2 Polar transformation of the detected eye

As we already have discussed and directly can see in Figure 5.3 there are different

causes which can lead to reflections on the eye. In this specific case, a water flush is

applied during the surgery. These reflections will lead to unwanted edges in the edge

detection and therefore they need to be detected separately and removed from the iris-

lens edge detection result. This reflections can be seen as very bright spots in the gray

image and can therefore very easily be detected via thresholding. Not only these bright

spots, also very dark spots can cause not relevant edges and need to be removed be-

forehand. To make sure we get rid of most of these bright and dark spots we create a

5.1. Approach / Implementation 53

so-called highlight mask. The initial mask which is received via thresholding is further

progressed with some morphological operations. The resulting highlight mask which

helps to get rid of the undesired edges for the iris-lens border detection is shown in Figure

5.4.

Figure 5.3 Polar transformation of the detected eye with reflections from a water flush

Figure 5.4 Highlight mask which holds bright and dark spots to improve iris -lens border detec-

tion

To figure out the border between iris and lens in a robust way for different eye appear-

ances, the edge detection is performed in different color spaces and the individual edge

detection results are combined afterward. Two different eye detections and their polar

transformations in RGB, gray, H, S and V color space are shown in Figure 5.5. As we

can see there, the color spaces gray, S and V hold good iris-lens boundary information

and are therefore further processed. In a first step, a horizontal Sobel operator is applied

to the gray, S and V image and only large gradients are extracted. In Figure 5.6 we can

see the gradient images for each color channel in the first row and the extracted large

gradients back-projected into the original color channel image in the second row. This

already gives some good edges on the border between lens and iris. In addition, we can

see, that the border seems to have the highest gradient within a small region. Therefore

we apply a second step in which we extract the highest gradients within small stripes.

The results back-projected into the original color channel images can be seen in the third

row of Figure 5.6. The detected edges of each color channel are combined separately

and some additional morphological operations are applied to get rid of some wrong de-

tected edges. Afterward, the edges of the three different color channels are combined

(Figure 5.7 (a)) and again morphological operations are applied to improve the detection

and get the final edge detection result (Figure 5.7 (b)).

54 5. Tracking by Detection

Figure 5.5 Polar transformation of two different eye templates in RGB, gray, H, S and V color
space

Figure 5.6 Gradient images after applying horizontal Sobel filter (per color channel: first row:
gradient image, second row: large gradients, third row: large gradients within a small stripe)

(a)

(b)

Figure 5.7 Combined gradient images (a) and final gradient image after applying addition mor-
phological operations to the combined gradient image (b)

5.1. Approach / Implementation 55

Now the detected edges of the polar transformed image can be back-transformed into

the Cartesian coordinate image. For a better understanding of the results, the back-

transformed image (Figure 5.8 (a)) is overlaid with the previously detected eye (Figure

5.8 (b)).

(a)

(b)

Figure 5.8 Back transformed edges of the polar transformed image to the Cartesian image ((a)
plain edges, (b) edges overlaid to the gray image)

The final step now is, to fit an ellipse to the detected points. This is done with the Matlab

implementation of [63] which is based on [6, 72]. In this approach, an ellipse is fitted to

a set of points by examining all major axis and getting the minor axis using a Hough

transformation. By restricting the minimal and maximal length of the major axis as well

as the ratio of the major and the minor axis the algorithm complexity can be reduced. For

the center of the pupil, the mean center of the best three ellipses is computed. The final

pupil center detection results can be seen in Figure 5.9. The best three fitting ellipses

are visualized in red (1st), yellow (2nd) and pink (3rd). The mean center of the ellipses is

colored blue, the ground truth center of the eye is green and the center of the bounding

box is cyan.

Figure 5.9 Final center detection of the pupil of the eye detector (red: best fitting ellipse, yellow:

second best fitting ellipse, pink: third best fitting ellipse, blue: mean center of best three ellipses,
green: ground truth center of the eye, cyan: center of the bounding box)

56 5. Tracking by Detection

5.1.2 Flowchart of the Detection Approach

In Figure 5.10 a complete flowchart of the eye detection with eye refinement approach

is visualized.

Figure 5.10 Flowchart of the complete eye detection and refinement approach

5.2. Experiments & Results 57

5.2 Experiments & Results

To evaluate the performance of the proposed detection and refinement approach differ-

ent experiments were performed. In the first experiment general performance of the de-

tector, in the second experiment the runtime, in the third experiment the false positive

detection rate and in the fourth experiment the accuracy of the refinement is validated.

5.2.1 General Performance Validation

For a first general performance validation, 720 frames with ground truth bounding boxes

were generated whereby 187 frames were used to train the detector and the remaining

533 frames were used to validate the detector. We made the decision to not use the

ground truth set from the template based tracker, but to generate a new dataset to learn

the tracker. This gives us the opportunity that at some later point, all newly generated

ground truth frames can be used to learn the detector and compare the detection results

to the same ground truth data set that was used for the template based tracker accuracy

validation.

This first general performance test was performed on the full resolution images

(1920x1080 pixels) as well on the 1/5 resolution images (384x216 pixels). As validation

metrics, the distance of the centers of the ground truth and detected bounding box, as

well as the overlap of the two bounding boxes were computed. The overlap computation

is shown in equation 5.1 whereby the area of the ground truth bounding box is noted as

𝐴𝐺𝑇, the area of the detected bounding box as 𝐴𝐷𝑇 and the area of intersection as 𝐴𝐼.

Additionally, this is visualized in Figure 5.11.

𝑜𝑣𝑒𝑟𝑙𝑎𝑝 =
𝐴𝐼

𝐴𝐺𝑇 + 𝐴𝐷𝑇 − 𝐴𝐼
 5.1

Figure 5.11 Overlap of the ground truth and the detected bounding box as validation metrics

58 5. Tracking by Detection

In addition to the position of the eye, the detector additionally delivers a confidence score.

The relations between distance and score (a, c) and overlap and score (b, d) for the full

resolution as well as for the 1/5 resolution are shown in Figure 5.12. The associated

statistical results are shown in Table 5.1. The mean distance for 1/5 resolution is with

respect to the full resolution to make the results comparable. As we can see from this

table, full resolution and 1/5 resolution perform nearly equally when it comes to detection

rate and overlap. 1/5 resolution achieves slightly worse results regarding ground truth

distance. When limiting our validation to detections with a score greater or equal to 75

we get rid of a few outliers and achieve a mean Euclidian distance of 17.5 pixels with the

full resolution detector. This correlates to a distance error of 2.578% with a mean eye

size of 679 pixels. With 1/5 resolution we achieve a mean Euclidian distance of 21.181

pixels which correlates to a distance error of 3.119%.

(a)

(b)

(c)

(d)

Figure 5.12 Relation between distance/score and overlap/score of the detection results for full

resolution (a,b) and 1/5 resolution (c,d)

5.2. Experiments & Results 59

 All Scores Score >=75

Mean

Dist.

[px]

Mean

Dist.

[%]

Mean

Over-

lap [%]

Detec-

tion

Rate

[%]

Mean

Dist.

[px]

Mean

Dist.

[%]

Mean

Over-

lap [%]

Detec-

tion

Rate

[%]

Full
Reso-
lution

18.984 2.796 88.640 99.812 17.500 2.578 89.422 84.991

1/5
Reso-
lution

23.004 3.388 89.590 99.812 21.181 3.119 90.348 88.931

Table 5.1 Statistical results regarding the general performance of the eye detector

5.2.2 Runtime Performance Validation

As with the template based tracking approach the runtime performance validation was

done with the same benchmark dataset consisting of 3000 frames. As there is no initial-

ization necessary the runtime can be evaluated over the entire set of 3000 frames. The

evaluation was done with two different resolutions of the input images and on two differ-

ent workstations which are listed in Table 5.2. In the first experiment, the runtime perfor-

mance of the detector was done with the full resolution images (1920x1080 pixels) and

in the second experiment, it was done with 1/5 of the full resolution (384x216 pixels).

The achieved frames per second are shown in Table 5.3. By decreasing the image res-

olution by 1/5 the detector can perform with more than 210 frames per second, which

means, it can perform more than 25 times faster than with the full resolution which is

quite obvious as the images are 25 times smaller. Also, the real-time capability is sur-

passed with this results. By decreasing the image resolution to 1/5, we saw that the

distance error is increased by 0.541% but simultaneously we increase the detection rate

by more than 25. Therefore this detection accuracy decrease is outperformed by the

runtime improvement and that is why the detector for the refinement step will be run on

1/5 resolution images. When the refinement is applied the runtime goes down to approx-

imately 2.5 frames per second. This is mostly related to a quite slow and not runtime

optimized Matlab implementation, which could be improved when the program is trans-

lated to C++. Additionally, the Ellipse fitting is quite slow in its current version.

60 5. Tracking by Detection

Workstation Operating System CPU RAM

WS 1 Windows 7 Intel Core i7-2600K @3.4Ghz 8 GB

WS 3 Windows 10 Intel Core i5-4690 @ 3.5GHz 16 GB

Table 5.2 Hardware used for the runtime performance experiment of the detection approach

Full Resolu-

tion [FPS]

1/5 Resolu-

tion [FPS]

Refinement

[FPS]

WS 1 7.159 210.150 2.428

WS 3 8.543 218.131 2.799

Table 5.3 Runtime performance validation of the detection approach

5.2.3 False Positive Detection Validation

For this experiment, 110 frames were created where the eye was removed or some other

object was placed over the eye. Figure 5.13 shows four examples. The purpose of this

experiment is to check if the detector detects an eye in situations where no eye is visible.

(a)

(b)

(c)

(d)

Figure 5.13 Examples of removed/modified eyes to test false positive detection rate

5.2. Experiments & Results 61

The false positive rate is computed as demonstrated in equation 5.2. 𝐹𝑃 stands for the

number of false positives, which means an eye was detected were no actual eye was.

𝑇𝑁 stands for the number of true negatives which means no eye was detected when

there was no eye. The objective is, that the false positive rate is very low. When we set

the confidence threshold to 75 as we did before, we achieve a false positive rate of

2.727% with only three false positives (Table 5.4). The three detected false positives are

similar to Figure 5.13 (d) which are considered as very hard test cases. There is no eye

available but the structure is very similar to an eye.

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 [%] =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
∗ 100 5.2

 All Scores Score >=75

False Positive (FP) 35 3

True Negative (TN) 75 107

False Positive Rate 31.818% 2.727%

Table 5.4 Eye detector false positive detection rate

In addition to that test, an additional false positive test was performed were those re-

moved/modified eye images were placed next to images with an eye (Figure 5.14). For

all test cases, the actual eye was detected correctly.

(a)

(b)

Figure 5.14 Examples of removed/modified eyes next to real eye images to test false positive

detection rate

62 5. Tracking by Detection

5.2.4 Refinement Accuracy Validation

In the final experiment, the accuracy performance of the refinement was validated.

Therefore the detector was retrained with all 720 ground truth frames. The validation was

done with the 322 ground truth frames which were already used in the template tracker

validation. By doing that, the accuracy validation results of the template tracker and the

detector can be compared. Table 5.5 gives an overview of the detection rates of the eye

detector. When no threshold is applied we achieve a detection rate of 99.689%. When

we limit the valid detections, like before, to detections with a confidence score greater or

equal to 75 we still get a very high detection rate of 96.273%. The accuracy results for

the detector itself are shown in Table 5.6 and for the refinement approach in Table 5.7.

With the applied threshold the detector itself achieves a mean Euclidian distance of

16.329 pixels which correlates to a distance error of 2.405% for a mean eye size of 679

pixels. The eye detection refinement achieves a mean Euclidian distance of 12.011 pix-

els when the threshold on the confidence score is applied. This Euclidian distance leads

to a distance error of 1.769%. This means the detection result is improved by 0.636%.

The distance distribution of the detector results is visualized in Figure 5.15. The achieved

distance error is slightly above the request distance error of 1.27% for the tracker but

this is okay, as the main purpose of the detector is to check if the tracker is still on track.

Additionally, this result is good enough to provide additional information to the tracker to

help to improve the reinitialization process when the track got lost.

Test Se-

quence

Detection Rate

All Scores [%]

Detection Rate

Score >=75 [%]

Test 1 100.000 98.551

Test 2 100.000 100.000

Test 3 100.000 90.323

Test 4 91.667 66.667

Test 5 100.000 98.701

Test 6 100.000 96.386

overall 99.689 96.273

Table 5.5 Detection rates of the eye detector

5.2. Experiments & Results 63

 All Scores Score >=75

Test

Sequ.

Mean

Dist.

[px]

Mean

Dist.

[%]

Mean

Dist. x

[px]

Mean

Dist. y

[px]

Mean

Dist.

[px]

Mean

Dist.

[%]

Mean

Dist. x

[px]

Mean

Dist. y

[px]

Test 1 19.720 2.904 -4.658 -10.528 19.214 2.830 -4.388 -9.962

Test 2 18.819 2.772 -9.830 -6.237 18.819 2.772 -9.830 -6.237

Test 3 23.598 3.475 -0.711 17.069 22.218 3.272 -1.440 16.458

Test 4 31.342 4.616 0.047 -3.686 13.652 2.011 -8.871 3.800

Test 5 11.618 1.711 -0.596 -0.545 11.217 1.652 -1.157 -0.515

Test 6 15.557 2.291 -6.314 -5.758 15.383 2.266 -6.654 -5.538

overall 17.332 2.552 -4.375 -3.332 16.329 2.405 -4.908 -3.162

Table 5.6 Distance between the center of the detected bounding box to the ground truth center

of the pupil

 All Scores Score >=75

Test

Sequ.

Mean

Dist.

[px]

Mean

Dist.

[%]

Mean

Dist. x

[px]

Mean

Dist. y

[px]

Mean

Dist.

[px]

Mean

Dist.

[%]

Mean

Dist. x

[px]

Mean

Dist. y

[px]

Test 1 9.099 1.340 0.474 -1.883 8.775 1.292 1.006 -1.668

Test 2 17.660 2.601 -7.758 1.683 17.660 2.601 -7.758 1.683

Test 3 21.867 3.220 1.518 7.113 20.107 2.961 1.885 6.314

Test 4 28.002 4.124 14.223 -13.541 9.557 1.408 1.639 -4.136

Test 5 13.498 1.988 -3.097 0.557 13.055 1.923 -3.760 0.736

Test 6 7.914 1.166 -1.239 -0.222 7.652 1.127 -1.473 0.007

overall 13.062 1.924 -1.536 0.157 12.011 1.769 -2.120 0.551

Table 5.7 Distance between the refinement result to the ground truth center of the pupil

64 5. Tracking by Detection

Figure 5.15 Distance distribution between the refinement result to the ground truth center of the

pupil

5.3 Conclusion

In this chapter, we showed that the aggregated channel feature detector (ACF) from Piotr

Dollar’s Matlab toolbox [18] can be used as an eye detector for cataract surgeries. It is

easy to learn, fast and accurate as well as robust against noise, appearance changes

and small occlusions. Additionally, we showed a detection refinement approach where a

polar transformation is applied to the detected eye to detect the border between iris and

lens. The detected edge is back-transformed into the Cartesian image and ellipses are

fitted to the detected border to figure out the center of the eye. One drawback of the

detection approach is, that the rotation of the eye cannot be figured out.

With the runtime performance validation, we showed that by reducing the input resolution

from 1920x1080 pixels to 384x216 pixels (1/5 resolution) we can achieve a detection

rate of more than 210 frames per seconds for the detector itself. This is more than 25

times faster than using the full resolution images which is quite obvious as the image is

25 times smaller.

With the general performance validation, we showed that this resolution reduction has

not much influence on the accuracy of the detector. When applying a threshold on the

5.3. Conclusion 65

detection confidence score of 75 we achieve a mean Euclidian distance of 17.5 pixels

between the center of the detected bounding box and the center of the ground truth

bounding box. This Euclidian distance correlates to a distance error of 2.578% for a

mean eye size of 679 pixels. When using only 1/5 resolution we get a mean Euclidian

distance of 21.181 pixels which is equal to a distance error of 3.119%. This means by

reducing the resolution by 1/5 we increase the distance error by 0.54% but simultane-

ously increase the detection rate by 25 times.

By doing the false positive detection rate validation we showed that the detector achieves

a false positive detection rate of 2.727%. This means it is highly unlikely that the detector

detects an eye where no eye is. The three false positive detection we had, were very

hard cases that looked very similar to an eye.

With the final refinement accuracy validation, we showed that the proposed approach

can improve the detection results. We achieve a mean Euclidian distance of 12.011 pix-

els between the detected center of the eye and the ground truth center. This Euclidian

distance correlates to a distance error of 1.769% which is an improvement of the regular

detection results by 0.636%. The big drawback of the refinement is that the current

Matlab implementation is quite slow. In the current state, we can only execute 2.428

frames per second. The regular detector, with a mean distance error of 2.405%, delivers

already good results and can be used to check if the tracker is still on track. The better,

but slower, refinement results can be used to give the tracker additional information when

the track got lost to improve the reinitialization process.

66 5. Tracking by Detection

67

6 Conclusion and Future Work

In this thesis, a very promising approach for real-time eye tracking during cataract sur-

geries is presented. In addition to the eye tracking, also an eye detection approach with

a refined eye center detection is presented.

The eye tracker which is presented in chapter 4 is specially designed for tracking eyes

under harsh environments. It is capable to deal with camera and eye motion, illumination

and appearance changes as well as non-rigid deformations of the eye. The fundamentals

of the tracker are template tracking and image blending to update the tracking template.

With our runtime validation, we showed that the tracker can perform with more than 30

frames per second which means it is real-time capable. In the accuracy performance

test, we showed that we can achieve a very good mean distance error of 1.059% (mean

Euclidian distance of 7.192 pixels on an average eye size of 679 pixels) as long as we

have a valid track. This distance error is below the requested 1.27%, but with the addi-

tional fallback validation, we saw, that for only 58.16% of our processed frames we can

achieve a good track. This means the current fallback solution is not robust enough for

all situations to lead the tracker back to the eye when it got lost because of occlusions

or too big appearance changes. Therefore an additional mechanism is necessary which

additionally checks if the track is still valid and helps to get the tracker back to its correct

tracking position. With the current datasets, it was not possible to perform a qualitative

validation of the rotation accuracy, as no marks on the eye or ground truth labels where

available. Although carefully performed visual inspection showed good rotation correct-

ness, for future work it is necessary to get correct labeled ground truth data from a qual-

ified person, like a surgeon or an ophthalmologist, to statistically verify the correct per-

formance of the tracker.

In chapter 5 a detection approach which is based on the aggregated channel feature

detector (ACF) from Piotr Dollar’s Matlab toolbox [18] is presented. The detector is easy

to learn and very fast. In addition to the detector, also a refinement to detect the center

of the eye is proposed. During the surgery, the appearance of the eye can change. The

only part which stays quite constant is the border between the iris and the lens. This

border is detected with a horizontal edge detector in the polar transformed image. The

detected edges are back-transformed into the Cartesian coordinate space and an ellipse

detection is applied. The runtime performance validation showed, that the detector can

perform with more than 210 frames per second when the incoming image resolution is

reduced by 1/5 (from 1920x1080 to 384x216). This resolution reduction can be done

without any major impact on the accuracy. The detector with the applied refinement can

only perform with a bit more than 2 frames per second which is caused by a not runtime

68 6. Conclusion and Future Work

optimized Matlab implementation. When applying a confidence threshold of 75 and exe-

cuting the detector on the same validation dataset which was used for validating the

template tracker, we achieve a detection rate of 96.273% and a mean distance error of

1.769% (mean Euclidian distance error of 12.011 pixels on an average eye size of 679

pixels). This improvement is 0.636% better compared to the results of the general detec-

tor.

(a)

(b)

Figure 6.1 Accuracy comparison of the eye tracker and the eye detector ((a) distribution of dis-
tance to ground truth, (b) xy-distance to ground truth)

 69

In Figure 6.1 (a) there is the distribution of the distance to the ground truth visualized for

the different versions of the tracker and the detector. Figure 6.1 (b) shows the distance

distribution in x- and y-direction. What we can see in these two graphs is, that the eye

tracker outperforms all other versions when a good track is found (yellow). Second, best

performance is achieved with the eye detector and the applied detection refinement

(red). Third best results are achieved with eye detector only (turquoise). Worst results

are achieved with the eye tracker only (green) which is not surprising as only 58.16% of

the processed frames had a good track.

The experiments showed, that the proposed template eye tracker is real-time capable

and performs very accurate as long as a good track is found. In future works, it is nec-

essary to improve the overall performance by increasing the good detection rate and the

robustness of the fallback solution. One solution could be to use the general eye detector

to verify the tracker as it is very fast (≥ 210 FPS) and accurate. The detector with its

refinement approach could be used to improve the reinitialization process of the tracker

after the track got lost. In addition to that, it is necessary to increase the test dataset base

to make sure the tracker, as well as the detector, are not biased. As already mentioned,

when increasing the database it is also necessary to get ground truth data for the orien-

tation of the eye, so that the orientation accuracy can by qualitative verified. Finally, it is

necessary to get feedback from the surgeons so the tracker and the tracker initialization

can be tuned to their specific needs. These are the person who will work with this tracker

on a daily basis, and therefore it is absolutely necessary, that the performance is tuned

to their specific needs.

70 6. Conclusion and Future Work

71

Bibliography

[1] A. Al-Rahayfeh and M. Faezipour, “Eye Tracking and Head Movement Detection:
A State-of-Art Survey,” IEEE J. Transl. Eng. Heal. Med., vol. 1, 2013.

[2] J. J. Athanesious and P. Suresh, “Systematic Survey on Object Tracking Methods
in Video,” Int. J. Adv. Res. Comput. Eng. Technol., vol. 1, no. 8, pp. 242–247,
2012.

[3] S. Avidan, “Support Vector Tracking,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
26, no. 8, pp. 1064–1072, 2004.

[4] P. Azad, T. Gockel, and R. Dillmann, Computer Vision - Das Praxisbuch, 1st ed.
Aachen: Elektor-Verlag GmbH, 2007.

[5] G. Bailey and V. Thompson, “Cataracts,” All About Vision, 2018. [Online].
Available: http://www.allaboutvision.com/conditions/cataracts.htm. [Accessed:
26-Apr-2018].

[6] C. A. Basca, M. Talos, and R. Brad, “Randomized Hough Transform for Ellipse
Detection with Result Clustering,” EUROCON 2005 - Int. Conf. Comput. as a Tool,
vol. 2, pp. 1397–1400, 2005.

[7] M. Bertalmio, G. Sapiro, and G. Randall, “Morphing Active Contours,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 22, no. 7, pp. 733–737, 2000.

[8] M. J. Black and A. D. Jepson, “EigenTracking: Robust Matching and Tracking of
Articulated Objects Using a View-Based Representation,” Int. J. Comput. Vis., vol.
26, no. 1, pp. 63–84, 1998.

[9] R. R. A. Bourne et al., “Magnitude, Temporal Trends, and Projections of the Global
Prevalence of Blindness and Distance and Near Vision Impairment: A Systematic
Review and Meta-Analysis,” Lancet Glob. Heal., vol. 5, no. 9, pp. e888–e897,
2017.

[10] T. J. Broida and R. Chellappa, “Estimation of Object Motion Parameters from
Noisy Images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-8, no. 1, pp.
90–99, 1986.

[11] R. Brunelli, Template Matching Techniques in Computer Vision - Theory and
Practice. Chichester: John Wiley & Sons Ltd, 2009.

[12] P. J. Burt and E. H. Adelson, “The Laplacian Pyramid as a Compact Image Code,”
IEEE Trans. Commun., vol. 31, no. 4, pp. 532–540, 1983.

[13] P. J. Burt and E. H. Adelson, “A Multiresolution Spline With Application to Image
Mosaics,” ACM Trans. Graph., vol. 2, no. 4, pp. 217–236, 1983.

[14] Y. Cheng, “Mean Shift, Mode Seeking, and Clustering,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 17, no. 8, pp. 790–799, 1995.

[15] Cmglee, “Illustration of an Image Pyramid With 5 Levels,” Wikipedia. [Online].
Available: https://commons.wikimedia.org/wiki/File:Image_pyramid.svg.
[Accessed: 04-Aug-2018].

[16] D. Comaniciu and P. Meer, “Mean shift: A Robust Approach Toward Feature
Space Analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603–
619, 2002.

[17] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-Based Object Tracking,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 25, no. 5, pp. 564–577, 2003.

[18] P. Dollár, “Piotr’s Computer Vision Matlab Toolbox.” [Online]. Available:
https://pdollar.github.io/toolbox/. [Accessed: 11-May-2018].

[19] P. Dollár, R. Appel, S. Belongie, and P. Perona, “Fast Feature Pyramids for Object

72 Bibliography

Detection,” IEEE Trans. Pattern Anal. Mach. Intell., 2014.
[20] P. Dollár, S. Belongie, and P. Perona, “The Fastest Pedestrian Detector in the

West,” Br. Mach. Vis. Conf., 2010.
[21] P. Dollár, Z. Tu, P. Perona, and S. Belongie, “Integral Channel Features,” Br.

Mach. Vis. Conf., 2009.
[22] J. H. Farooqui, A. Koul, R. Dutta, and N. M. Shroff, “Management of moderate and

severe corneal astigmatism with AcrySof toric intraocular lens implantation – Our
experience,” Saudi J. Ophthalmol., vol. 29, no. 4, pp. 264–269, 2015.

[23] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A Paradigm for
Model Fitting with Applications to Image Analysis and Automated Cartography,”
Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

[24] D. A. Forsyth and J. Ponce, Computer Vision - A Modern Approach. Upper Saddle
River: Pearson Education, 2003.

[25] Y. Freund and R. E. Schapire, “A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting,” J. Comput. Syst. Sci., vol. 55, pp. 119–
139, 1997.

[26] M. Godec, P. M. Roth, and H. Bischof, “Hough-based Tracking of Non-Rigid
Objects,” IEEE Int. Conf. Comput. Vis., 2011.

[27] E. D. Guestrin and M. Eizenman, “General Theory of Remote Gaze Estimation
Using the Pupil Center and Corneal Reflections,” IEEE Trans. Biomed. Eng., vol.
53, no. 6, pp. 1124–1133, 2006.

[28] D. W. Hansen and Q. Ji, “In the Eye of the Beholder: A Survey of Models for Eyes
and Gaze,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 3, pp. 478–500,
2010.

[29] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed.
Cambridge: Cambridge University Press, 2004.

[30] H. Hashemi, M. Khabazkhoob, M. H. Emamian, M. Shariati, A. Yekta, and A.
Fotouhi, “White-to-white Corneal Diameter Distribution in an Adult Population,” J.
Curr. Ophthalmol., vol. 27, no. 1–2, pp. 21–24, 2015.

[31] M. Heber, “Tracking and Visual Quality Inspection in Harsh Environments,” Graz
University of Technology, 2013.

[32] G. Heiting, “Astigmatism,” All About Vision, 2018. [Online]. Available:
http://www.allaboutvision.com/conditions/astigmatism.htm. [Accessed: 27-Apr-
2018].

[33] G. Heiting, “Astigmatism And Cataract? A Toric IOL Can Fix Both,” All About
Vision, 2016. [Online]. Available: http://www.allaboutvision.com/conditions/toric-
iols.htm. [Accessed: 27-Apr-2018].

[34] W. Huang and R. Mariani, “Face Detection and Precise Eyes Location,” 15th Int.
Conf. Pattern Recognit., pp. 722–727, 2000.

[35] D. P. Huttenlocher, J. J. Noh, and W. J. Rucklidge, “Tracking Non-Rigid Objects
in Complex Scenes,” IEEE Int. Conf. Comput. Vis., pp. 93–101, 1993.

[36] M. Isard and A. Blake, “Condensation - Conditional Density Propagation for Visual
Tracking,” Int. J. Comput. Vis., vol. 29, no. 1, pp. 5–28, 1998.

[37] R. Jain, S. Aggarwal, and A. Dokania, “A Clinical Study to Compare the Accuracy
of Digital and Manual Marking for Toric IOL Alignment,” Int. J. Contemp. Med.
Res., vol. 4, no. 1, pp. 25–27, 2017.

[38] A. D. Jepson, D. J. Fleet, and T. F. El-Maraghi, “Robust Online Appearance
Models for Visual Tracking,” Proc. 2001 IEEE Comput. Soc. Conf. Comput. Vis.

 73

Pattern Recognit., vol. I, no. 10, p. I-415-I-422, 2001.
[39] J. Kang, I. Cohen, and G. Medioni, “Object Reacquisition Using Invariant

Appearance Model,” Proc. 17th Int. Conf. Pattern Recognit., vol. 4, pp. 759–762,
2004.

[40] W. M. W. M. K. Khairosfaizal and A. J. Nor’aini, “Eyes Detection in Facial Images
Using Circular Hough Transform,” 5th Int. Colloq. Signal Process. Its Appl., pp.
238–242, 2009.

[41] T. Kocejko, A. Bujnowski, and J. Wtorek, “Eye Mouse for Disabled,” Conf. Hum.
Syst. Interact., pp. 199–202, 2008.

[42] E. J. Leavline and S. Sutha, “Design of FIR Filters for Fast Multiscale Directional
Filter Banks,” Int. J. Sci. Technol., vol. 7, no. 5, pp. 221–234, 2014.

[43] J. P. Lewis, “Fast Normalized Cross-Correlation,” Vis. Interface, 1995.
[44] W. Nam, P. Dollár, and J. H. Han, “Local Decorrelation for Improved Pedestrian

Detection,” Neural Inf. Process. Syst., 2014.
[45] K. Nguyen, C. Wagner, D. Koons, and M. Flickner, “Differences in the Infrared

Bright Pupil Response of Human Eyes,” Proc. Symp. Eye Track. Res. Appl., pp.
133–138, 2002.

[46] C. O’Brien, “Speech Sounds Clip Art Set,” Teachers Pay Teachers, 2017. [Online].
Available: https://ecdn.teacherspayteachers.com/thumbitem/Speech-Sounds-
Mouth-Clip-Art-Set-1914282-1525373871/original-1914282-1.jpg. [Accessed: 01-
Jun-2018].

[47] S. Ojha and S. Sakhare, “Image Processing Techniques for Object Tracking in
Video Surveillance - A Survey,” Int. Conf. Pervasive Comput., 2015.

[48] OpenCV, “Image Pyramids,” 2015. [Online]. Available:
https://docs.opencv.org/3.1.0/dc/dff/tutorial_py_pyramids.html. [Accessed: 04-
Aug-2018].

[49] OpenCV, “OpenCV,” 2018. [Online]. Available: https://opencv.org/. [Accessed:
06-Aug-2018].

[50] OpenCV, “Geometric Image Transformations,” 2018. [Online]. Available:
https://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.ht
ml.

[51] OpenCV, “Camera Calibration and 3D Reconstruction,” 2018. [Online]. Available:
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_re
construction.html. [Accessed: 06-Aug-2018].

[52] H. S. Parekh, D. G. Thakore, and U. K. Jaliya, “A Survey on Object Detection and
Tracking Methods,” Int. J. Innov. Res. Comput. Vis. Commun. Eng., vol. 2, no. 2,
pp. 2970–2978, 2014.

[53] M. J. Patel and B. Bhatt, “A Comparative Study of Object Tracking Techniques,”
Int. J. Innov. Res. Sci. Eng. Technol., vol. 4, no. 3, pp. 1361–1364, 2015.

[54] A. Pentland, B. Moghaddam, and T. Starner, “View-Based and Modular
Eigenspaces for Face Recognition,” IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., pp. 84–91, 1994.

[55] N. Perveen, D. Kumar, and I. Bhardwaj, “An Overview On Template Matching
Methodologies and Its Applications,” Int. J. Res. Comput. Commun. Technol., vol.
2, no. 10, pp. 988–995, 2013.

[56] M. Richie, “Cataract Surgery with Dr. Michael Richie,” YouTube, 2013. [Online].
Available: https://www.youtube.com/watch?v=0faextOYin4&has_verified=1.
[Accessed: 07-Aug-2018].

74 Bibliography

[57] R. Ronfard, “Region-Based Strategies for Active Contour Models,” Int. J. Comput.
Vis., vol. 13, no. 2, pp. 229–251, 1994.

[58] V. Salari and I. K. Sethi, “Feature Point Correspondence in the Presence of
Occlusion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 1, pp. 87–91,
1990.

[59] J. N. Sarvaiya, S. Patnaik, and S. Bombaywala, “Image Registration by Template
Matching Using Normalized Cross-Correlation,” Int. Conf. Adv. Comput. Control.
Telecommun. Technol., pp. 819–822, 2009.

[60] K. Sato and J. K. Aggarwal, “Temporal Spatio-Velocity Transform and its
Application to Tracking and Interaction,” Comput. Vis. Image Underst., vol. 96, no.
2, pp. 100–128, 2004.

[61] L. Segre and S. Bagi, “Eye Anatomy: Parts Of The Eye,” All About Vision, 2017.
[Online]. Available: http://www.allaboutvision.com/resources/anatomy.htm.
[Accessed: 27-Apr-2018].

[62] J. Shi and C. Tomasi, “Good Features to Track,” IEEE Conf. Comput. Vis. Pattern
Recognit., pp. 593–600, 1994.

[63] M. Simonovsky, “Ellipse Detection Using 1D Hough Transform.” [Online].
Available: https://de.mathworks.com/matlabcentral/fileexchange/33970-ellipse-
detection-using-1d-hough-transform. [Accessed: 20-May-2018].

[64] L. Di Stefano, S. Mattoccia, and M. Mola, “An efficient algorithm for exhaustive
template matching based on normalized cross correlation,” Proc. 12th Int. Conf.
Image Anal. Process., pp. 322–327, 2003.

[65] R. Stiefelhagen, J. Yang, and A. Waibel, “Tracking Eyes and Monitoring Eye
Gaze,” Proc. Work. Percept. User Interfaces, pp. 98–100, 1997.

[66] R. L. Streit and T. E. Luginbuhl, “Maximum Likelihood Method for Probabilistic
Multihypothesis Tracking,” Proc. SPIE - Int. Soc. Opt. Eng., vol. 2235, pp. 394–
405, 1994.

[67] R. Szeliski, Computer Vision : Algorithms and Applications, Draft. Springer, 2010.
[68] H. Tao, H. S. Sawhney, and R. Kumar, “Object Tracking With Bayesian Estimation

of Dynamic Layer Representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
24, no. 1, pp. 75–89, 2002.

[69] V. Thompson, “Cataract Surgery,” All About Vision, 2018. [Online]. Available:
http://www.allaboutvision.com/conditions/cataract-surgery.htm. [Accessed: 26-
Apr-2018].

[70] M. Turk and A. Pentland, “Eigenfaces for Recognition.pdf,” Journal of Cognitive
Neuroscience, vol. 3, no. 1. pp. 71–86, 1991.

[71] C. J. Veenman, M. J. T. Reinders, and E. Backer, “Resolving Motion
Correspondence for Densely Moving Points,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 23, no. 1, pp. 54–72, 2001.

[72] Y. Xie and Q. Ji, “A New Efficient Ellipse Detection Method,” Proc. 16th Int. Conf.
Pattern Recognit., vol. 2, no. c, pp. 957–960, 2002.

[73] C. Yang, J. Sun, J. Liu, X. Yang, D. Wang, and W. Liu, “A Gray Difference-Based
Pre-Processing for Gaze Tracking,” IEEE 10th Int. Conf. Signal Process., pp.
1293–1296, 2010.

[74] A. Yilmaz, O. Javed, and M. Shah, “Object Tracking: A Survey,” ACM Comput.
Surv., vol. 38, no. 4, 2006.

[75] A. L. Yuille, D. S. Cohen, and P. W. Hallinan, “Feature extraction from faces using
deformable templates,” Proc. CVPR ’89 IEEE Comput. Soc. Conf. Comput. Vis.

 75

Pattern Recognit., pp. 104–109, 1989.
[76] F. Zhao, Q. Huang, and W. Gao, “Image Matching by Normalized Cross-

Correlation,” Int. Conf. Acoust. Speech Signal Process., pp. 729–732, 2006.
[77] W. Zhao, “Flexible Image Blending for Image Mosaicing with Reduced Artifacts,”

Int. J. Pattern Recognit. Artif. Intell., 2006.
[78] “Blindness and visual impairment,” World Health Organization, 2017. [Online].

Available: http://www.who.int/en/news-room/fact-sheets/detail/blindness-and-
visual-impairment. [Accessed: 26-Apr-2018].

[79] “Facts About Cataract,” The National Eye Institute, 2015. [Online]. Available:
https://nei.nih.gov/health/cataract/cataract_facts. [Accessed: 26-Apr-2018].

[80] “Cataract Surgery,” Fort Worth Eye Associates. [Online]. Available:
http://www.ranelle.com/cataract-surgery/. [Accessed: 26-Apr-2018].

[81] “Cataract Surgery Steps: Cartoon,” Super Eye Care Resources. [Online].
Available: http://www.supereyecare.com/images/Phaco.jpg. [Accessed: 27-Apr-
2018].

