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Abstract

Today’s vehicles are increasingly connected and equipped with a growing number
of electronic control units (ECUs). Unfortunately, this trend does not only provide
benefits for both customers and vehicle manufacturers, but also introduces new,
security-related concerns. As recent attacks on vehicle’s security have shown, it is
required to fix these security issues in a timely manner. Therefore, a framework for
secure communication between vehicles and infrastructure is crucial.

In this thesis, we design and analyse a framework for secure communication between
vehicles and infrastructure. Our proposed solution is designed for the use in the auto-
motive industry where scalability and cost-effectiveness is required. To demonstrate
the features of our framework, we discuss and implement concepts for deploying
Over-the-Air updates and gathering telemetry data remotely. We then elaborate on
the outcome of a security review and penetration test. Finally, we present the results
of functional tests.

Keywords: ECU, OTA update, firmware, remote telemetry data, automotive security,
connected car

iii



Kurzfassung

Moderne Fahrzeuge sind mit einer wachsenden Anzahl an elektronischen Steuergeräten
(ECUs) ausgestattet und verfügen zunehmend über eine Verbindung zum Internet.
Diese Entwicklungen bergen nicht nur Vorteile für Kunden und Fahrzeughersteller,
sondern werfen auch neue, sicherheitsbezogene Fragen auf. Angriffe auf die Kommu-
nikationssysteme von Fahrzeugen und deren mögliche Auswirkungen zeigen, dass
Sicherheitslücken möglichst schnell behoben werden müssen. Ein Konzept für sichere
Kommunikation zwischen Fahrzeugen und Infrastruktur ist dafür Voraussetzung.

In dieser Arbeit wird ein Konzept für die sichere Kommunikation zwischen Fahrzeu-
gen und Infrastruktur entworfen und analysiert. Das Konzept ist speziell für den
Einsatz in der Automobilbranche, wo Skalierbarkeit und Kosteneffizienz hohe Pri-
orität haben, ausgelegt. Um die Einsetzbarkeit dieses Konzepts zu demonstrieren
werden Anwendungen für die sichere Übertragung neuer Software und für sichere
Ferndiagnose über das Internet entwickelt. Anschließend werden die Ergebnisse einer
Sicherheitsanalyse, eines Penetrationstests und der funktionalen Tests diskutiert.
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1 Introduction

1.1 Motivation

The introduction of electronic components in the automotive industry is a high
driver for innovation in this area. Modern vehicles are equipped with an increasing
amount of Electronic Control Units (ECUs), which bring comfort, entertainment and,
most importantly, safety to vehicles. Well known safety systems such as anti-lock
braking (ABS), airbag or electronic stability control (ESC) rely on ECUs. Thus, correct
functionality of these control units is crucial to passenger safety.

Nowadays, the software of a luxury car is highly complex with more than 100 million
lines of code [37]. With the industry moving towards connected and self-driving cars,
these numbers are steadily increasing. Although vehicle software is heavily reliable,
it’s not immune to software related bugs. According to a report from Stout Risius
Ross [53], in the year 2015, 15% of 51 million recalls where software related. However,
programming errors are not the only reason for software-related recalls.

In 2015 the United States Environmental Protection Agency (EPA) found that the
German automaker Volkswagen (VW) intentionally manipulated cars’ emissions. VW
programmed diesel engine control units in such a way, that US limits on nitrogen
oxides (NOx) emissions were only adhered to during laboratory testing. VW stated
that about 11 million cars worldwide were equipped with this so-called defeat
device [43]. This global scandal is now known as Dieselgate and led to a recall of
about 500,000 cars in the US and caused serious financial concerns for VW [7].

Whereas computers and smartphones are capable of Over-the-Air (OTA) updates,
most vehicles lack such a feature. OTA updates allow for the addition of new features
and general improvements of vehicles already in the field. Updating software remotely
is a convenience for both the customer and the manufacturer: The customer does
not have to care about workshop appointments, and the manufacturer can lessen its
organisational software update efforts. Moreover, OTA updates can drastically reduce
software-related recall costs.

This thesis aims to give insight into current research towards vehicle communication
security. We analyse security-related failures from different manufacturers by looking
at recent attacks on connected cars. To develop a secure OTA update architecture,

1



1 Introduction

we analyse threats to a vehicle’s communication infrastructure and define mitigation
strategies. Based on these findings we design and develop a reference architecture for
OTA updates and remote telemetry data gathering features. We evaluate the design
by penetration testing the implementation.

1.2 Relevance of Cyber Security

Security is an integral part of modern communication infrastructure. However, nowa-
days almost no day passes without a critical security-related bug making the news.
Especially the rise of the malware called WannaCry, that affected a broad range
of Microsoft Windows versions, and its fast spread throughout the globe showed
how critical and vulnerable today’s systems and infrastructure are. The malware
attack caused whole companies to shut down their business until all computers were
cleaned and back up and running [9].

Another recent example of a massive attack on a critical internet infrastructure is the
Distributed Denial of Service (DDoS) attack carried out by the Mirai botnet. The attack
targeted the company Dyn and caused downtimes of popular websites including The
Guardian, Netflix, Twitter, and Reddit. Mirai was mainly composed of IoT devices
and casts a poor light on the security of such devices. This is especially relevant as
vehicles are also considered to be part of the IoT ecosystem [3].

Whereas Microsoft reacted very quickly and pushed updates to all affected products,
most IoT devices compromised by the Mirai bot remained unpatched. In today’s
thoroughly connected world it is, however, unacceptable to abandon device support
and expose vulnerable devices to further attacks.

In conclusion, the above-mentioned attacks on today’s infrastructure highlight the
necessity for secure devices and fast updates. To further foster the need for secure
updates, especially in the automotive industry, the following section presents real-
world attacks on vehicles and their impact on vehicle and passenger safety.

2



1 Introduction

1.3 Examples of Practical Attacks

1.3.1 Chevrolet Volt and OnStar

In 2015, security researcher Samy Kamkar [30] inspected a Chevrolet Volt for se-
curity vulnerabilities. The vehicle was equipped with a telematics module called
OnStar. OnStar is developed by General Motors and offers various services such as
unlocking doors, managing vehicle settings, Turn-by-Turn Navigation, or emergency
response and vehicle anti-theft features. However, the security of the device and
its communication with the vehicle owner’s smartphone application were flawed
and allowed for a Man-in-the-Middle attack. Specifically, the vulnerability Kamkar
exploited was that the OnStar smartphone application failed to validate public key
certificates correctly.

To demonstrate the vulnerability, Kamkar built a low-priced device, called OwnStar,
which has to be planted near the target vehicle. When the owner connects to the
vehicle, the connection is intercepted by the OwnStar device. OwnStar then acts as
a proxy between the application and the vehicle and allows for eavesdropping on
network traffic. This allowed Kamkar to extract user credentials from the application
and lead to a full compromise of the vehicles OnStar system. Besides unlocking doors
and flashing lights, Kamkar was also able to read the vehicle owner’s emails and
track the vehicle’s location.

Later it was discovered that General Motors had already been aware of the problems
concerning their OnStar system. Five years before Kamkar’s attack, Koscher et al. [32]
and Checkoway et al. [10] reported multiple vulnerabilities to General Motors but
did not publicly disclose their findings. Since no update mechanism for the OnStar
system was in place, General Motors did not act on the information given by the
researchers, leaving 1.2 million vehicles open for attacks.

1.3.2 Jeep Cherokee 2014 and Uconnect

In contrast to the attack described in Section 1.3.1, where an attacker has to be in
proximity to the target vehicle, Miller et al. [34] managed to compromise a car via
cellular network.

A major goal of Miller et al. was to take full control of the vehicle. After analysing the
architectures and attack surfaces of a wide range of vehicles, the researchers found
the Jeep Cherokee 2014 to be the most vulnerable. Chrysler, the manufacturer of the
Jeep Cherokee 2014, failed to separate the entertainment communication systems
from the powertrain communication systems.

3
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Similar to General Motor’s OnStar, the Jeep Cherokee uses a system called Chrysler
Uconnect. Uconnect handles infotainment, Wi-Fi, Bluetooth and cellular communica-
tion. It is also responsible for navigation and information retrieval, such as weather
or traffic information. Due to its variety of features, such a system is highly complex
and, thereby, has a broad attack surface. Hence, the researchers chose the Uconnect
system as their main target.

Uconnect has the ability to update itself. For updating the Uconnect software, the
update files are stored on a USB stick which is then plugged into the Uconnect USB
port. After initiating the update process, the update files are checked for their validity
and, if valid, the Uconnect system restarts and boots into update mode. In this mode,
however, update files are not verified again. Due to this fact, an attacker is now
able to modify update files and trick the system into installing a malicious software
update. This flaw in the update process was the main entry point for Miller et al. and
gave them full access to the Uconnect system. From there, the researchers started to
explore and inspect other systems for possible bugs and misconfigurations.

Besides the aforementioned vulnerability, which requires physical access, the re-
searchers managed to exploit the car via Wi-Fi. Multiple open ports, with one of them
offering a remote procedure call (RPC) interface, where exposed via the wireless LAN
interface. This allowed for easy command injection.

Although the Uconnect was fully compromised, it was not possible to directly write
messages to the CAN bus. However, in order to gain full control over the vehicle,
it is inevitable to write and read CAN messages. Miller et al. exploited another
design flaw within the Open Multimedia Applications Platform (OMAP) chip which
allowed them to rewrite the OMAP chip firmware with their own, modified firmware.
This lead to the complete control over the vehicle, including brakes, throttle, and
steering.

It should be noted, that the vulnerabilities described in this section were exploitable
not only via Wi-Fi network but also via cellular communication. These attacks show
that the manufacturer failed to implement even the most basic security mechanisms
such as authentication or correct validation of software updates.

1.3.3 Tesla Model S

Tesla is known for their research on autonomous driving and connected cars in
general. Tesla also provides a smartphone application and multiple in-car internet
applications such as navigation or web browsing. A team of researchers [40] analysed
a Tesla Model S, found several vulnerabilities, and exploited them to gain full access
to the vehicle.

4
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By setting up a rouge Wi-Fi access point, the Model S was tricked into automatically
connecting to this fake access-point, allowing the researchers to inspect the web
browser. It turned out that Tesla used an outdated web browser framework with
known exploitable vulnerabilities. The successful exploitation of the web browser
lead to a shell on the Model S entertainment system, revealing that the system was
running Linux. The shell, however, was restricted and further steps were necessary.

By inspecting the Linux operating system, the researchers found that Tesla also used
outdated versions of the Linux kernel, also with multiple known vulnerabilities and
with almost no exploitation prevention techniques in place. The researchers used
publicly available exploits to elevate their privileges to root. With full control over
the embedded device, it was possible to write messages to the CAN bus and control
safety-critical features such as ESP or ABS.

As all Tesla cars are already equipped with remote update features, most vulnerabili-
ties were mitigated within ten days after the researchers reported the security flaws
to the Model S manufacturer.

This research conducted by Nie et al. highlights the necessity for up-to-date software
and the ability to update software components over-the-air. It should be noted that
Tesla’s response and the time needed to fix the reported vulnerabilities were very
commendable.

1.3.4 BMW 320d Touring and ConnectedCar

On behalf of the Allgemeiner Deutscher Automobil-Club (ADAC), Spaar [52] con-
ducted a research with the goal to get insight into what kind of data is transmitted
to the manufacturers. Surprisingly, although the researcher focused on privacy con-
cerns, he exposed multiple critical security flaws in BMW’s ConnectedCar service.
ConnectedCar is similar to services from other manufacturers and provides various
remote management features via a smartphone app.

The researcher inspected the firmware of the module responsible for ConnectedCar
services and exfiltrated multiple static encryption keys. Since these keys are identical
for all BMW vehicles equipped with ConnectedCar, it was easy to encrypt and decrypt
messages for other cars. Furthermore, BMW made use of the outdated and insecure
encryption algorithm Data Encryption Standard (DES) and did not use transport
encryption while communicating with the ConnectedCar cloud service.

Equipped with a laptop, Spaar managed to act as a ConnectedCar backend server by
faking a cellular base station, and tricked multiple cars into unlocking doors.

5



1 Introduction

BMW made several major mistakes in their ConnectedCar system. Static and identical
keys stored in insecure storage, and usage of a known-to-be-broken encryption
algorithm had serious impacts on the security of the ConnectedCar system.

1.3.5 Nissan Leaf and NissanConnect

The Nissan Leaf is one of the most sold electric cars on the market and comes with
the NissanConnect system. In order to use NissanConnect, a subscription is required,
and customers have to install the NissanConnect application on their smartphone.

The smartphone application allows customers to check the state of the battery, the
remaining time until the battery is fully charged, or gives an estimate of the driving
range and further suggests whether to switch the climate control system on or off.

All Nissan Leaf cars with an active NissanConnect subscription are connected to a
cloud service provided by Nissan. The cloud service exposes an API which receives
requests from the app and forwards them to the car. Listing 1.1 illustrates such an
API request.

GET https ://[ redacted ].com/orchestration_1111/gdc/

BatteryStatusRecordsRequest.php?RegionCode=NE&lg=no-NO&

DCMID=&VIN=SJNFAAZE0U60XXXXX&tz=Europe/Paris&TimeFrom

=2014 -09 -27 T09 :15:21

Listing 1.1: A request to get the status of the climate control to the NissanConnect API [24].

When inspecting the request one can see, that the only unique identifier in the
API request is the Vehicle Identification Number (VIN). Thus, no authentication
mechanism is used to restrict access to the car owner only. According to Troy, the
VIN of Nissan Leafs only differ in the last five digits and therefore allow for easy
brute forcing [24]. A possible attack could be to deplete the batteries by switching
on the climate control system, effectively rendering the car unusable until the owner
recharges the batteries.

Although this attack is not as serious as the attacks described in Section 1.3.2 it
shows, again, how often vehicle manufacturers fail to implement basic security
mechanisms.

1.3.6 Conclusion and Analysis of Practical Attacks

Mistakes made by several manufacturers were missing or faulty certificate or update
package validation. We can see from the above-mentioned attacks that it is crucial for
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cryptographic implementations to correctly validate these certificates. Additionally,
without proper update package verification, an attacker can effortlessly modify
updates and trick systems into running malicious software. In general, the selection
of cryptographic schemes is crucial for a system’s security and usage of known-to-be-
broken encryption algorithms is reckless.

Another failure was missing authentication to network services and APIs. If an
important service is reachable via network, it should utilise authentication to prohibit
access to unauthorised peers. Using publicly available information, e.g., the VIN,
to authenticate peers is missing the point of authentication. An attacker may try
to brute force VINs or, since most vehicles have the VIN printed on a sticker on
the windshield, just read it from there. It should be noted that relying on flawed
authentication may be worse than using no authentication at all, since it gives the
impression of being secure when in fact it is not.

One manufacturer ran outdated software on its central communication and enter-
tainment unit. Utilising software with known security flaws and publicly available
exploits is a costly mistake and makes it easy for attackers to compromise the vehi-
cle’s security. An even more severe mistake is running an outdated operating system
with no exploit mitigation in place. Modern up-to-date operating systems provide
advanced defense mechanisms such as Non-executable stack (NX) [15] or Address
Space Layout Randomization (ASLR) [54].

It is also advised against having multiple networked services exposed, i.e., open ports,
to the entire world via cellular communication. This allows an attacker to remotely
scan for software vulnerabilities and exploit them.

A full compromise of a vehicle is only possible if an attacker finds a way to write
messages to powertrain or safety-critical bus systems. Physically separating entertain-
ment and safety-critical bus systems may be one solution that would make it highly
unlikely to get full control over a vehicle.

Table 1.1 lists design flaws and proposed mitigation techniques.

1.4 Related Work

1.4.1 Uptane

Uptane1 [31] is a software update framework designed and developed by US-based
universities, vehicle manufacturers and government regulators. Vehicle updates

1https://uptane.github.io
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Design flaw Mitigation

Missing or faulty certificate
validation

Ensure proper validation of certificates

Missing or faulty update
package verification

Ensure proper verification of update pack-
ages

Missing or faulty authenti-
cation mechanism

Ensure proper use and implementation of
authentication mechanisms

Using outdated software Use latest available software and check for
known security bugs

Missing operating system
defense mechanisms

Enable exploit mitigation techniques
shipped with modern operating systems

Static keys Distribute individual keys for all endpoints

Broken
encryption schemes Use state-of-the-art encryption schemes

Insecure storage Use secure storage with tamper protection

Exposed network services Keep exposed network services to a mini-
mum

Interconnected safety-
critical and entertainment
bus systems

Physical separation of safety-critical and
entertainment bus systems

Table 1.1: Faults and misconfigurations in connected car implementations and proposed mitigations.
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greatly differ from PC update solutions: a) a vehicle has many different types of
ECUs with different software versions or even different architectures and b) vehicle
failure issues caused by an attacker are rarely managed. The Uptane framework was
designed and developed with these aspects in mind and enhances already existing
update designs by adding signed metadata.

Additionally, a comprehensive and broad threat model tailored to ECUs was devel-
oped. According to the authors and their threat model, an ECU should be immune to
the attacks listed in Table 1.2.

Attack Description

Eavesdrop attack Gain information by reading unencrypted
packets transmitted over networks

Drop-request attack Hinder an ECU from receiving updates by
blocking network traffic

Freeze attack Hinder an ECU from updating to newer
versions by always sending the same up-
date

Partial bundle installation attack Block updates from one or multiple ECUs
by blocking network traffic, causing differ-
ent installed software versions

Rollback attack Install outdated software on an ECU

Endless data attack Cause an ECU to run out of storage by
sending data indefinitely

Mixed-bundles attack Cause one or multiple ECUs to install dif-
ferent incompatible software versions and
thereby hinder them to interoperate

Mix-and-match attack Similar to the Mixed-bundles attack except
that an attacker has gained access to private
signing keys and can create its own update
bundles

Arbitrary software attack Update an ECU with an attacker developed
software

Table 1.2: Attacks an ECU should be immune to [31].
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1.4.2 EVITA

Secure in-vehicular communication is crucial to the success of connected cars. To
ensure passenger safety, it is necessary to implement security features already at
sensor level. All internal bus systems have to be secured against attacks in such a way
that an attacker can not cause safety-critical systems to malfunction.

E-safety Vehicle Intrusion proTected Applications (EVITA) [20] was an EU project
running from 2008 until 2011. EVITA aimed to secure in-vehicular communication.
To secure on-board networks, EVITA had the following requirements:

• Security: Secure in-vehicular communication by protecting all electronic compo-
nents and the network they are connected to.

• Real-time: Handle up to several thousand cryptographically secure messages
per second.

• Cost-effective: Keep costs low by creating hardware tailored to its specific
purpose.

Based on these requirements the project partners developed a framework for secure
on-board communication consisting of hardware and software components. For secure
storage of confidential data, e.g., keys and certificates, and for secure cryptographic
operations, hardware security modules (HSMs) were developed. As one requirement
of EVITA was to keep costs low, EVITA specifies three different classes of HSM
modules. For high-performance Vehicle-to-Infrastructure communication the Full
HSM was proposed. The medium HSM is for securing in-vehicular communication,
whereas the Light HSM is used for securing sensors and actuators. For interacting
and controlling the HSMs software and protocols were designed and implemented.
The proposed solutions were verified using model-based verification tools. The final
results and interface specifications have been made available to the public [20]. Figure
1.1 depicts an example of the EVITA HSM deployment architecture.

1.4.3 ARROWHEAD

ARROWHEAD2 was an EU-funded research project with focus on smart production.
The project’s goal was to improve interoperability between devices used in smart
production environments, especially devices used in maintenance and service tasks.

The outcome was a highly modular framework. Basic building blocks and core
components with specified interfaces for component and building block interaction
were defined. The framework was not designed with special industries in mind and,

2http://www.arrowhead.eu
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Figure 1.1: HSM deployment architecture designed and developed in EVITA [20].

therefore, enables devices from different industries to interact with each other. For
example, energy production devices can communicate with home automation, process
automation, and process monitoring devices. The information exchange between
devices resulted in energy saving, efficiency improvement and cost reduction [11].

AVL3 participated in the ARROWHEAD project. AVL’s main objective was to bring
secure connections to AVL products. ARROWHEAD project partners and AVL de-
veloped a central communication component called Mediator. Figure 1.2 depicts the
layout of this central communication component.

The mediator was specifically designed for AVL’s testing and measurement devices.
However, since the ARROWHEAD framework applies to a wide range of applications
and industries, it layd a good foundation for the concept developed within this
thesis.

1.5 Connection to AVL

AVL List GmbH is an Austrian company with focus on research, design, and develop-
ment of fuel-efficient, eco-friendly powertrains. AVL also develops test systems and
advanced simulation technologies for testing and simulating powertrains. Addition-
ally, AVL has considerable experience in developing safety-critical systems, especially
in the automotive domain.

With the industry moving towards connected cars AVL has interest in acquiring
know-how in this area, especially in the area of the rapidly growing cyber secu-

3http://www.avl.com
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Figure 1.2: The mediator device with communication interfaces and basic building blocks developed
within the ARROWHEAD project [11].

rity market. The challenges which arise with permanent connections to modern
telecommunication infrastructures offer new business fields and chances for AVL.

In 2016 a cyber security department was founded and integrated into the safety
department. To keep the role of a leading developer and researcher, AVL plans to
expand its effort in the cyber security domain.

1.6 Thesis Outline

In the introduction we elaborated on the motivation behind this thesis. By illustrating
previous, practical attacks the need for cyber security was further highlighted. The
second chapter aims to explain basic elements of information security and vehicle
infrastructure. In the third chapter we focus on security analysis and threat modeling.
We elaborate on assets, attacker models, and design and analyse a framework for
secure communication between vehicles and infrastructure. In Chapter 4 we build
on the results of the security analysis and secure our framework against potential
threats. Further, we use the secure communication framework for developing OTA
update and remote telemetry data gathering features. Chapter 5 covers the implemen-
tation of a prototype. In Chapter 6 we evaluate the security and functionality of our
implementation. In Chapter 7 we conclude and propose future research directions.
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2.1 Basic Principles of Cryptography

Cryptography allows for modifying data in such a way that an adversary can not
deduce any useful information from the encrypted data. Encryption is the process of
transforming a plaintext into ciphertext. Decryption is the inversion of the encryption
process and produces plaintext from a given ciphertext.

Any cryptographic system must have at least one of the following properties:

• Confidentiality: Confidentiality was the main purpose for developing crypto-
graphic systems. By fulfilling this property data is hidden from an eavesdropper
and only the recipient with correct decryption instructions can extract valid and
meaningful information.

• Authentication: Cryptographic systems with this property ensure that no one
can impersonate, or send a message in the name of any other party. Authentica-
tion identifies a sender. Additionally, it proofs to the recipient that the message
originated from the participant who claims to have sent the message.

• Integrity: Integrity ensures that encrypted data can not be tampered with
without the receiver noticing it.

• Non-Repudiation: With non-repudiation a cryptographic system ensures link-
ability between an identity and a message. As soon as one sends data in a
cryptographically secure manner he cannot deny the authenticity of the data he
sent.

2.1.1 Symmetric Cryptography

In symmetric systems, exactly one key is used for encryption and decryption. A
problem in symmetric systems is that the secret key has to be known by all participat-
ing parties before messages can be exchanged in a meaningful way. The security of
symmetric encryption schemes is based on the confidentiality of the secret key. As
soon as an adversary is in possession of the secret key he can encrypt and decrypt
messages.
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When people started to use symmetric cryptographic schemes (e.g. CAESAR, VI-
GENERE) a courier delivered the secret information necessary to decrypt ciphertexts
to participating parties. However, the courier was subject to attacks and the key
exchange dilemma remained unsolved until the introduction of asymmetric cryptog-
raphy.

Well-known state-of-the-art symmetric encryption standards are the Advanced En-
cryption Standard (AES) and Triple Data Encryption Standard (Triple-DES). AES and
Triple-DES are recommended by the National Institue of Standards and Technology
(NIST) [1], [6].

2.1.2 Asymmetric Cryptography

In contrast to symmetric schemes, asymmetric schemes utilise multiple keys to achieve
the properties mentioned in Section 2.1. Usually a key pair, consisting of a private
and a public key, is generated. In order to keep the scheme secure the private key has
to remain secret.

For example, if Alice wants to send an encrypted message to Bob, she encrypts the
message with the public key of Bob. After Bob received the message, he uses his
private key to decipher Alice’s message.

Symmetric encryption schemes usually outperform asymmetric encryption with
respect to speed. To combine the advantages of both cryptographical systems, so-
called hybrid encryption is used. Hybrid encryption utilises an asymmetric encryption
scheme to encrypt the secret key for a symmetric encryption scheme. Symmetric
encryption is then used for further communication.

Recommended asymmetric encryption schemes are, for example, RSA and Diffie-
Hellman [17].

2.1.3 Digital Signatures

Digital signatures are used to ensure integrity and authenticity of messages and are
built on asymmetric cryptographical systems. The same properties as in Section 2.1.2
apply.

If Alice wants to sign a message, she calculates the signature with her private key
and appends it to the message. Bob then uses Alice’s public key to verify the integrity
of the message and that Alice was indeed the sender of the message.
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Recommended digital signatures are, for example, Digital Signature Algorithm (DSA)
and Elliptic Curve-DSA (ECDSA) [29].

2.2 Transport Layer Security

Transport Layer Security (TLS) is the successor of Secure Sockets Layer (SSL) and is a
cryptographical protocol which allows for secure communication between two parties.
TLS provides data integrity, authentication and confidentiality and is widely used
by a variety of applications, including web browsing and email. The TLS protocol
operates on top of the TCP protocol.

During connection build-up, TLS uses a handshake protocol which allows the partici-
pating parties to agree on an authentication mechanism. Cryptographic primitives
for traffic encryption are also selected in this phase.

Due to its widespread use, TLS was subject to multiple attacks in the past. Most
notable attacks are POODLE [35], Lucky 13 [21] and BEAST [18]. Therefore, it is
essential to TLS’ security to use the latest TLS version with state-of-the-art crypto-
graphic primitives and authentication mechanisms. The current version is TLS 1.2;
TLS 1.3 is currently in the working draft state [16], [44].

2.3 Cryptographic Message Syntax (CMS)

Cryptographic Message Syntax (CMS), standardised in RFC 5652, is used for signing,
encrypting and authenticating data. CMS can work on any data and allows, for
example, to wrap unencrypted data into an encrypted envelop. This envelop can then
be signed and authenticated and wrapped into another envelop. The envelop nesting
level is not limited. Besides payload data, CMS also stores meta information such as
used algorithms, serial numbers, or version information. This meta information is
needed for correct handling of the payload data contained in a CMS message [22].

2.4 Message Queue Telemetry Transport

Message Queue Telemetry Transport (MQTT) is a protocol specifically designed for
environments where network bandwidth is costly or only limited processing power
and memory resources are available. When using the MQTT protocol only a small
overhead for transport is added to the data. These properties render this protocol
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ideal for the use in constrained environments like the Internet of Things [4]. In
contrast to the commonly used client-server design principle, MQTT follows the
publish-subscribe paradigm.

2.4.1 The Publish-Subscribe Pattern in MQTT

The publish-subscribe pattern is a principle for delivering messages where the sending
client does not directly send messages to a receiving client. Instead, the sender
publishes a message under a certain topic. Clients express interest in messages by
subscribing to one or more topics. Only messages published to the subscribed topics
are received by the clients. A client in the means of the publish-subscribe pattern
can take the role of a publisher, a subscriber, or both. Besides the publisher and the
subscriber, a third component is involved - the broker. The broker is known to all
participating clients and is responsible for filtering and delivering messages. The
publish-subscribe pattern has various advantages over the traditional client-server
principle:

• Time: peers do not have to be online at the same time
• Space: peers do not have to know each other
• Synchronization: peers do not block each other while publishing/receiving
• Scalability: broker can be parallelized

2.4.2 Topics

Topics are strings following a specific level structure where each level is seperated
by a slash (’/’). Topics are used by the MQTT broker for message filtering. For
example, a humidity sensor, located in the kitchen, publishes humidity values to the
home/kitchen/humidity topic. Another sensor responsible for opening and closing
of windows may be interested in the humidity value in the kitchen and, therefore,
subscribes to the corresponding topic. When a message gets published, the broker
decides, based on the topic, to which clients the message gets delivered.

2.4.3 Quality of Service

MQTT offers three levels of Quality of Service (QoS). The QoS level defines how
messages are delivered to clients. Table 2.1 shows available QoS levels.
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QoS level Description Properties

0 at most once

• no guarantee that the message is delivered
• messages are not acknowledged
• messages may be lost
• fastest transfer mode
• should only be used when message loss is

acceptable

1 at least once

• guarantee that messages are received by the
client

• duplicate messages may be received
• should be used when receiving duplicate mes-

sages is acceptable

2 exactly once

• guarantee that messages are received exactly
once

• slowest transfer mode

Table 2.1: Available QoS levels in MQTT.

2.4.4 Security

Only authenticated clients should be allowed to subscribe and/or publish to MQTT
topics and the content of messages must retain private. For this purpose, the MQTT
protocol allows for traffic encryption and authentication mechanisms.

One method to authenticate a client is a username and password authentication
mechanism. However, if MQTT traffic is not encrypted, username and password
are sent in plaintext and are therefore subject to eavesdropping. Another method to
authenticate clients is to utilise authentication features offered by the TLS protocol,
e.g., client authentication. When using TLS, the content of published and received
messages also remains private.
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2.5 Vehicle Infrastructure

2.5.1 Electronic Control Unit

An Electronic Control Unit (ECU) is an embedded system and is responsible for
controlling and governing in-vehicle systems. Such systems are, for example, the
engine, the anti-lock braking system (ABS) or entertainment systems. Most ECUs
follow the input-process-output (IPO) model. An ECU receives values from sensors
distributed in the car. These values are then compared to calculated or previously
defined setpoints. If the comparison results in a difference between the set point
and the actual value, the ECU activates attached actuators to influence a physical
process.

The size and complexity of an ECU varies and depends on its application. Although
all ECUs are shipped pre-programmed, most of them can be updated by rewriting
the ECU’s internal flash memory. As reprogramming ECUs is prone to errors, only
authorised personal is allowed to update an ECU. Faulty control units can lead to
misbehaviour and, further, to serious injuries or fatal crashes.

2.5.2 Protocols

Controller Area Network (CAN)

CAN is a serial bus developed by Bosch and is standardised in ISO 11898 [26]. The
bus system originated from the need by the automotive industry to reduce complex
cable harness. Due to resilience to electrical interference and error recovering features,
CAN is nowadays prevalent and used by multiple industries.

In contrast to other protocols such as USB, CAN is not a point-to-point protocol. Data
transmitted over a CAN network is available to all participating nodes in the network.
Nodes can decide on whether they are interested in the data. Data sent on a CAN bus
are sent in messages with speeds up to 1 Mbit/sec. A message consists of 0 to 8 bytes
of data. Each message is associated with an identifier. The identifier has a length of
11 bit in the Standard CAN and 29 bit in the Extended CAN. The CAN standard
prohibits duplicate address identifiers on active messages originating from different
source nodes. Identifiers are used for message filtering and message prioritisation.

18



2 Preliminaries

ISO 15765-2 Transport Protocol (ISO-TP)

The ISO 15765-2 Transport Protocol [28] allows for sending messages exceeding the
maximum CAN payload size of 8 bytes. An ISO-TP message consists of up to 4095

bytes of data. When transmitting data using the ISO-TP protocol, so-called ISO-TP
frames are sent. These ISO-TP frames contain Protocol Information Bytes (PCI) to
allow the recipient proper reassembly of ISO-TP messages. ISO 15765-2 specifies four
different frame types, listed in Table 2.2.

The following two addressing schemes are supported by the ISO-TP protocol:

1. Extended Addressing: Used when CAN identifiers of nodes in the network are
not unique. The addressing information is stored in a PCI byte of the ISO-TP
frame.

2. Normal Addressing: Used when CAN identifiers of nodes in the network are
unique. As no additional addressing information is necessary, the payload size
increases by 1 byte when compared to Extended Addressing.

Depending on whether Extended Addressing or Normal Addressing is used, the
maximum payload size of an ISO-TP frame is 6 and 7 bytes, respectively.

Frame Type Description

Single Frame (SF) Used when payload fits into a single ISO-
TP frame.

First Frame (FF) Used when payload size exceeds the max-
imum payload size of an ISO-TP frame.
The message gets split into multiple frames,
namely one First Frame and multiple Con-
secutive Frames.

Consecutive Frame (CF) Consecutive Frames contain remaining pay-
load bytes of a multi-frame ISO-TP mes-
sage.

Flow Control Frame (FC) A Flow Control Frame is sent by the recip-
ient of the ISO-TP message to inform the
sender of protocol specific settings such as
time between two Consecutive Frames. The
FC frame gets sent after the reception of a
First Frame.

Table 2.2: The four different types of ISOTP frames.
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Unified Diagnostic Services (UDS)

Unified Diagnostic Services (UDS) is a widely adopted protocol for diagnostics and
maintenance of Control Units. UDS is specified in ISO 14229 [27] and is mainly used
by the automotive industry. The payload size is not specified and is bounded by the
underlying transport protocol. An UDS message is comprised of a Service-ID (SID),
and service specific parameter and data bytes. A device which implements the UDS
standard has to support a variety of commands. Table 2.3 lists some of the available
commands.

Service Service ID Description

Diagnostic Session Control 0x10 Different modes of operation are
defined in the UDS standard. A
Diagnostic Session Control mes-
sage allows to change the op-
erating mode. Modes of oper-
ation mainly differ in the ac-
cess rights. For example, the Pro-
gramming Mode allows to up-
load and write data to the ECU’s
memory whereas the Default
Session is not privileged to write
memory.

Security Access 0x27 When switching from low privi-
lege modes to higher privileged
ones it is necessary to request
higher access rights. For this pur-
pose, the Security Access is used.

Read DTC Information 0x19 Used for reading fault memory
entries.

Table 2.3: Basic UDS commands.

2.5.3 Database CAN (DBC) files

Most ECUs communicate via the on-board CAN network. In order to describe how
information is encoded in CAN messages, different file formats where specified. The
most used format in the automotive industry is the proprietary Database CAN (DBC)
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format, which was specified by the company Vector1. Vector offers multiple tools and
libraries to view and modify DBC files. The DBC format specification, however, is
not publicly available. Nevertheless, open source implementations capable of reading
and converting DBC files exist2,3.

A CAN message contains one or more signals. Each signal corresponds to exactly
one ECU provided value. The general syntax for signals following the DBC format is
shown in Listing 2.1. Listing 2.2 shows a sample DBC entry of a single signal, in this
case, the current vehicle speed, measured in km/h.

<object > <name > : <start bit >|<length >@<endiannes ><

signedness > (<factor >,<offset >) <range > "<unit >" <nodes >

Listing 2.1: Syntax of a signal following the DBC format.

SG_ HVCUVehSpd : 11|16@0+ (0.05625 ,0) [0|299.98] "km/h" EMS

Listing 2.2: Current vehicle speed signal following the DBC format.

1https://vector.com
2https://github.com/julietkilo/CANBabel
3https://github.com/Polyconseil/libcanardbc
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Security engineering is ideally incorporated into early phases of the system design
process. An important part of security engineering is threat modeling. Threat model-
ing helps to identify potential weaknesses and security flaws in a system’s design.
Moreover, threat modeling prevents significant system changes in later development
phases.

The first step when conducting a security analysis is to define a basic model of the
system. This is followed by identifying assets. Assets are targets of an attacker and
essentially the reason why threats exist in the first place. After assets are specified it is
necessary to define an attacker model that stipulates the capabilities and limitations
of an attacker. Finally, the system can be analysed for possible threats, and mitigations
can be proposed.

In this chapter, we define our system’s components, assets, and attacker model. We
elaborate on threat modeling in general and, in particular, explain the Microsoft
STRIDE threat modeling methodology in detail. We then apply Microsoft STRIDE to
our system, discuss identified threats and propose mitigations.

3.1 System Components

As mentioned in Chapter 1, the goal of this thesis is to develop a framework for secure
communication between vehicles and backend infrastructure. It should be possible
to deploy OTA updates to vehicles and initiate remote telemetry data gathering via
the backend. It is noteworthy that the ARROWHEAD project had similar goals, but
laid focus on measurement devices. We, however, build on ARROWHEAD’s basic
structure and adapt it to fit our needs. Our system is comprised of the components
depicted in Figure 3.1.

1. Vehicle: The vehicle is the component where updates should be deployed to.
In addition, it should be possible to gather vehicle telemetry data remotely.
Such data could include current velocity, brake fluid pressure, or current motor
engine speed.
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Vehicle Backend

Concentrator

Data Data

Figure 3.1: System components.

2. Concentrator: The concentrator is the backbone and central component of the
system. All messages exchanged between backend and vehicle pass through the
concentrator. This component handles and ensures successful message delivery.

3. Backend: The backend is the main component for user interaction and informa-
tion visualisation. Deployment of updates and remote telemetry data gathering
processes are initiated via this component. The backend stores, processes and
displays all kinds of vehicle statistics, such as current ECU firmware versions,
and provides fleet management functionalities.

3.2 Assets

An asset is a resource of value for both the asset owner and the attacker. Muckin et
al. [38] divided assets into the following two categories:

1. Physical: Physical assets are data or devices of special interest to attackers. A
database containing private information of a company’s customers, private keys
or certificates are types of physical assets. Physical assets are sometimes referred
to as security assets.

2. Abstract: Abstract assets are objectives that are essential to a company’s mis-
sion. Attackers who attack abstract assets influence a company’s reputation.
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For example, a company that acts as a service provider has to guarantee its
customers that their service is available and operating correctly. An attacker,
however, may try to bring down the service and thereby cause a negative impact
on the company’s reputation.

Hereafter, we define assets relevant for this thesis and categorise them according
to [38]. Table 3.1 lists these assets.

Physical Assets

A highly valuable asset is data transmitted via wireless communication interfaces.
Such data can contain firmware updates for ECUs, configuration parameters, DBC
files specifying CAN message layout, or telemetry data. Successful attacks on the
system or one of its components may result in extraction of confidential data. Whereas
extraction of ECU or CAN related data affects the intellectual property, compromisa-
tion of telemetry data negatively impacts a drivers’ privacy.

Besides the payload of transmitted packets, connection metadata is also a valuable
asset to protect. Connection metadata may leak connection endpoints and requested
resources. This information may be used for the generation of usage profiles.

Another important asset is the cryptographic key material stored on the vehicle.
Successful extraction of private key certificates or symmetric encryption key material
renders a secure communication concept useless. If an attacker is in possession of
cryptographic keys, he is able to decrypt and encrypt data, impersonate vehicles, and
send fake data to the backend.

Abstract Assets

The availability of systems is crucial for proper update deployment and remote
telemetry data gathering. Whereas unstable systems can cause data loss, unavailable
systems render all services useless. Since malfunctioning or misbehaving systems
indirectly influence a company’s reputation, system availability is a valuable asset.

3.3 Attacker Model

Attacker models specify capabilities of an attacker. Attackers’ capabilities differ in,
e.g., available resources, know-how, or time. Attackers are also often limited in the
access to the device or service under test. In the following paragraphs, we elaborate
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Asset Category Affected attributes

ECU firmware Physical Intellectual property
ECU configuration parameters Physical Intellectual property
DBC files Physical Intellectual property
Telemetry data Physical Privacy
Connection metadata Physical Intellectual property, Privacy
Cryptographic key material Physical Full system compromise
System availability Abstract Reputation

Table 3.1: Assets and affected attributes.

on various attacker models, as proposed by Spaan [51]. Based on these attacker
models we specify the attacker model relevant for this thesis.

• Resources: Specifies what resources are available to attackers. This ranges
from a simple personal computer with neglectable computation power to well-
equipped laboratories, specialised tools, and software.

• Know-how: Describes how skilled attackers are. This ranges from simple attacks
with available tools to highly sophisticated attacks with self-developed exploits.

• Time: Time is an important factor when attacking a system and is influenced
by an attacker’s motivation. For example, unskilled attackers stop attacking a
system when tools and exploits do not lead to an immediate success.

3.3.1 Script Kiddies

Script Kiddies do not have a deep understanding of systems and lack both resources
and knowledge to search for vulnerabilities and exploit them. Therefore, script kiddies
use publicly available tools like Metasploit1 to attack systems. These tools come
pre-loaded with exploits for publicly known vulnerabilities.

Since Script Kiddies use existing tools and do not develop their own, the time invested
into one specific target is low. If a tool does not lead to a successful attack in a short
time frame a new target is selected. Attacks are carried out due to boredom or aimed
to increase reputation amongst their friends or groups [46]. However, although Script
Kiddies lack knowledge and resources, they can seriously harm a system.

1https://www.metasploit.com/
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3.3.2 Black Hat Hacker

Black Hat hackers are highly skilled individuals with a deep understanding of system
internals and extensive knowledge in the field of cyber security.

Resources available to Black Hat Hackers vary and range from a standard laptop to
sophisticated infrastructure, including laboratories with expensive electrical equip-
ment and high-performance servers. Black hat hackers are capable of finding and
exploiting vulnerabilities on their own and devote a significant amount of time to
this process [51].

Their motivation is to increase reputation in the hacking scene or destructive behavior
against companies, groups or individuals. Moreover, unpatched vulnerabilities, so-
called 0-day exploits or 0-days, can earn an immense amount of money when sold to
0-day acquisition companies or on the black market [47]. However, some black hats
attack systems out of sheer fun (i.e. ’because they can’).

3.3.3 White Hat Hacker

In contrast to black hat hackers, white hat hackers are considered to be ’good’ hackers,
without malicious intent. Their skill set and available resources are comparable to
black hat hackers. When white hat hackers discover vulnerabilities, they report them
to affected manufacturers and software vendors. White hat hackers can be hired
to penetrate a system’s security and, thereby, expose unknown vulnerabilities [51].
These hackers-for-hire are also sometimes referred to as penetration testers.

White hat hackers attack systems to increase reputation in the hacking scene or
out of personal interest. Since more and more companies offer money for reported
vulnerabilities, so-called bug bounty programs, money also plays a role in white hat
hackers’ motivation.

3.3.4 Tuning Scene

In general, tuners can be separated into two groups: 1) Tuners who reverse engineer
the inner workings of vehicles, develop new configurations and software, and 2)
Tuners who use available tools and configurations. These two groups significantly
differ in knowledge, skills, and available resources. The motivation of both groups is
driven by common goals: To increase engine performance, unlock premium features,
or increase fuel efficiency. The first group also aims to increase their reputation by
being the first to offer tuning features for new vehicles [51].
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The market for customised vehicles is rapidly growing. Therefore, tuners try to earn
money by selling their knowledge and tools to garages and individuals.

3.3.5 Thieves

Similar to tuners, thieves can be divided into two groups: 1) Highly skilled groups
and individuals, often well organised and 2) Amateurs. The first group is comparable
to black hat hackers by means of resources and know-how. They use their knowledge
to build devices for defeating anti-theft features. The latter group is comparable to
script kiddies: They lack a deep understanding of vehicle security and utilise available
tools and exploits for breaking into vehicles to steal them [51].

Both groups share the same motivation: Earning money. The first group earns money
selling equipment for breaking into cars and circumvent anti-theft technologies. These
hard- and software components are bought and used by the latter group for stealing
vehicles. The vehicles are then sold as a whole or torn apart in order to sell individual
parts.

3.3.6 Competitors

A significant amount of time of the vehicle development process is consumed by
adjusting and enhancing a vehicle’s driving behavior and environmental properties,
e.g., engine performance, steering behavior, or fuel consumption. These settings and
know-how are highly valuable and must be protected from a manufacturers point of
view. Competitors, however, may try to extract know-how and intellectual property
and apply this gained knowledge to their vehicles and products [51].

Competitors have strong knowledge in vehicle development and vehicle security.
Moreover, competitors have access to specialised tools and laboratories. Their motiva-
tion is to extract know-how and integrate findings into their vehicles and ecosystem.

3.3.7 Attacker Model Characteristics Summary

By analysing different adversaries, we have seen that they differ in available resources,
know-how, time, and motivation. Whereas unskilled attackers do not impose severe
risks, highly skilled and motivated adversaries can seriously harm a vehicle’s security.
Table 3.2 gives an overview of different attacker model characteristics.
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Attacker Resources Know-how Time Motivation

Script-Kiddies + + + Reputation, Fun,
Boredom

Black Hats +/++ ++/+++ ++ Reputation, Money,
Fun, Hatred

White Hats +/++ +++ ++ Reputation, Personal
interest, Fun, Money

Tuners +/++ +/++ +++ Reputation, Money,
Fun

Thieves +/+++ +/++ +/+++ Money

Competitors +++ +++ +++ Extract intellectual
property

Table 3.2: Characteristics of attacker models relevant for this thesis [51].

3.3.8 Attacker Model for this Thesis

One attacker property that was not discussed previously is physical access to the
device under test. Hence, we add a physical access characteristic to our attacker
model. This characteristic specifies whether an adversary has physical access to a
device or not. The following enumeration lists our attacker’s capabilities:

• Resources: Resources available to our adversary are comparable to black hat
hackers and competitors. Sophisticated laboratories, tools, and software are
available.

• Know-how: Our attacker is highly skilled with strong knowledge in the field of
cyber security. In addition, our adversary has a deep understanding of vehicle
infrastructure and internals.

• Time: The attacker is bounded by a time frame of a maximum of one year.
• Motivation: Our adversary combines all aforementioned motivations.
• Access: The attacker does not have physical access to the vehicle. All attacks

have to be carried out via wireless or in-vehicle communication interfaces.

3.4 Threat Modeling

Threat modeling is a thoroughly researched topic and still an active field of re-
search [13], [39], [49], [50], [55]. A widely known and accepted threat modeling
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methodology is Microsoft STRIDE. Microsoft STRIDE was an integral part of the
security analysis conducted in this thesis.

3.4.1 Microsoft STRIDE

STRIDE (Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Ser-
vice, Elevation of Privilege) was developed by Microsoft and is a model for classifying
threats into six categories. Table 3.3 lists these threat categories.

Threat Description Example attack

Spoofing Accessing data or a
system by imperson-
ating another user or
system.

ARP spoofing

Tampering Modifying data or a
system without being
authorised to do so.

Man-in-the-Middle
attack

Repudiation Denying that a cer-
tain action was per-
formed.

Logfile manipulation

Information Disclosure Leaking private infor-
mation to third par-
ties.

Man-in-the-Middle
attack

Denial of Service Rendering a service
unusable.

Exploiting a bug to
cause application
crashes

Elevation of Privilege Elevating access
rights to perform
privileged actions

Exploiting a bug to
gain higher access
rights

Table 3.3: STRIDE threat categories and example attacks.

One way to extract and categorise potential threats according to STRIDE is to use data
flow diagrams (DFDs). A DFD models a system’s components and how data traverses
through a system and between the system’s components [2]. Once a DFD is defined,
threats can be extracted by inspecting the components and processes involved in a
specific data flow.
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To ease the process of applying the STRIDE threat modeling methodology, Microsoft
provides the freely available Microsoft Threat Modeling Tool2. This tool allows to
model systems by drawing DFDs and ships with templates for standard components,
e.g., databases or web services. In addition, the Microsoft Threat Modeling Tool also
provides features for defining custom and complex components. However, one major
feature of the Microsoft Threat Modeling Tool is the generation of a comprehensive
list of threats and possible mitigation strategies based on a DFD. The DFD of our
system, modeled with Microsoft’s threat modeling tool, is depicted in Figure 3.2.

Figure 3.2: DFD of the system’s components modeled with the Microsoft Threat Modeling Tool.

3.4.2 Threats and Mitigations

Microsoft’s Threat Modeling Tool identified 26 potential threats. Listing all 26 threats
and the discussion thereof would go beyond the constraints of this thesis. We therefore
focus on the discussion of threat categories in the context of our system and propose
mitigation strategies. A complete list of threats can be found in the Appendix.

Spoofing

An attacker may spoof one or more system components and, thereby, may be able to
mount a Man-in-the-Middle attack. Such an attack, if carried out successfully, results
in a complete breach of the system’s security guarantees.

To counteract spoofing attacks, we incorporate strong authentication mechanisms
into all components. Before payload data is transmitted, vehicles, the backend, and
the concentrator have to authenticate themselves and proof their identity to the
communication partner.

2https://www.microsoft.com/en-us/sdl/adopt/threatmodeling.aspx
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Denial of Service

For example, if an attacker intercepts traffic and does not forward it to the correct
entity, an attacker effectively interrupts the data flow between entities and causes the
system to fail, i.e., Denial of Service. A Denial of Service attack can also be mounted
by changing the data in transit and causing system components to malfunction or
crash.

Mitigating Denial of Service attacks caused by communication interruption or any
other form of hindering entities to communicate with each other, for example by
overloading the concentrator with connection attempts, are out of scope for this
thesis. However, an attacker should not be able to cause Denial of Service by injecting
incorrect or malicious data. Therefore, our system must provide strong authentication
mechanisms. All participating parties have to authenticate themselves, and all data
has to be signed. A component receiving signed data has to validate the signature
before considering data as trusted.

Elevation of Privilege

Elevation of Privilege attacks can be achieved by impersonating a participating entity.
For example, an attacker may be able to impersonate the concentrator and send data
to vehicles or the backend and, thereby, elevate its privileges. Another important
attack often used for elevating privileges is remote code execution. If an attacker
manages to control the program flow of programs running on one of the system
components, the attacker may be able to elevate its privileges by executing code that
normally should not be executed.

To eliminate Elevation of Privilege attacks, our system must ensure that only authen-
ticated network participants can communicate with each other. This can be achieved
by implementing strong authentication mechanisms. Additionally, all components
must apply the principle of least privileges. For counteracting remote code execution
attacks, all components must incorporate modern exploit mitigation and hardening
techniques.

Repudiation

Without proper logging, vehicles, the concentrator, or the backend could claim that
they did not receive data from other entities. This is especially interesting in the case
of transmitting updates to vehicles where a vehicle could claim that it did not receive
any update packages from the backend.
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To mitigate Repudiation threats, our system must provide logging and sophisticated
digital signature mechanisms.

Information Disclosure

An attacker may be able to inspect data flowing across communication channels and
may access confidential and private information. By inspecting private information, an
attacker could harm a vehicle owner’s privacy by, for example, extracting the vehicle’s
position. Furthermore, through data leakage, an attacker also gains information about
system internals that may lead to further attacks on the system.

Information Disclosure attacks are mitigated by incorporating strong encryption
mechanisms into all system components. All data must be encrypted before leaving a
device or trust boundary. We, therefore, must ensure that all entities use secure and
widely-accepted encryption algorithms.

Tampering

Tampering causes participating entities to operate on wrong data and is a root cause
of successful exploitations of all kinds of systems. For example, an attacker could
modify data in such a way that the backend is tricked into believing that the firmware
version of a vehicle is up-to-date, even though this is not the case. This would
result in vehicles never receiving firmware updates. Furthermore, unauthenticated
modification of data may lead to Denial of Service or Elevation of Privilege attacks.

In order to reduce Tampering threats, we must ensure that all data transmitted is
authenticated. Moreover, all system components must validate data and incorporate
plausibility checks before operating on data.

3.4.3 Results

Spoofing, Denial of Service and Elevation of Privilege are the categories with most
threats identified. These three categories count for 18 of 26 threats. Repudiation counts
for 4 threats whereas Information Disclosure and Tampering count for 2 threats each.
Tampering and Information Disclosure threats can be mitigated by incorporating
authenticated encryption. To allay Spoofing threats, all participating parties have to
authenticate themselves. Extensive Logging on the vehicle, the concentrator, and the
backend counteracts repudiation threats. By utilising authentication and authenticated
encryption, some of the Denial of Service threats are mitigated. However, defending
against Denial of Service attacks on critical communication infrastructure, especially

32



3 Security Analysis

large-scale attacks, is an active field of research and not a trivial task. Due to the
sheer amount of resources required for effective large-scale Denial of Service attack
mitigation, these kind of attacks are out of scope for this thesis. Table 3.4 lists the
number of threats identified.

Category # # Out of scope # Mitigated

Spoofing 6 0 6

Tampering 2 0 2

Repudiation 4 0 4

Information Disclosure 2 0 2

Denial of Service 6 6 0

Elevation of Privilege 6 0 6

26 6 20

Table 3.4: Threats categorised according to STRIDE.
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The concept developed within this thesis builds upon the framework developed in the
ARROWHEAD project (see Section 1.4.3). Within the ARROWHEAD project, AVL’s
development focused on testing and measurement devices and, thus, does not fit
our needs. As vehicles and measurement devices differ in nature, we incorporated
significant changes into the ARROWHEAD framework.

In the following sections we propose a concept that allows for secure communication
and data exchange between vehicles and infrastructure. We then elaborate on how
this concept benefits the two primary use cases, OTA update and remote telemetry
data gathering.

4.1 Components

The system is comprised of three components: 1) a vehicle that houses ECUs and the
device responsible for handling communication with the concentrator, 2) the backend,
where the system is controlled from, and 3) the concentrator that acts as a mediator
between vehicles and the backend.

4.1.1 Concentrator

The concentrator is the central component of our communication concept. It is respon-
sible for the routing of all messages exchanged between vehicles and the backend.
As the number of vehicles communicating with the backend via the concentrator is
going to grow in the future, the concentrator will be under heavy load when many
messages are exchanged concurrently. Therefore, it should easily be possible to adapt
and scale the concentrator component based on network traffic and concentrator
load. Additionally, the concentrator should provide mechanisms for redundancy
and fail-over in the case of technical problems. This ensures high availability and
reliability.

To further lower the load on the concentrator, the interaction between vehicles and
backend should be kept to a minimum. Moreover, to also keep the amount of
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transmitted data to a minimum, the protocol used by the concentrator should have
only small communication overhead. The concentrator should also be resilient against
communication failures and guarantee successful message delivery to all peers. The
message delivery guarantee also has to hold when not all peers are online at the same
time. For example, the communication device incorporated into a vehicle may not
be able to establish a connection to the concentrator when the vehicle is parked in a
garage, or the vehicle is operated in areas with bad cell reception.

All data exchanged between vehicles and backend moves through the concentrator.
This renders the concentrator an attractive target for attackers. An attacker that gains
access to the concentrator or manages to tamper with data would have severe impacts
on the system’s security. In fact, this would result in a complete breach of incorporated
security mechanisms. Vehicles must be able to communicate with the concentrator
and the backend securely. Furthermore, before a message can be transmitted via the
concentrator, all peers must authenticate themselves. Thus, the concentrator must
provide mechanisms for authentication, encryption, and authorisation.

Ideally, the protocol used by the concentrator was designed with the aforementioned
properties and requirements in mind. A protocol fulfilling our requirements is the
MQTT protocol. MQTT provides features for authorisation and authentication. Ad-
ditionally, MQTT was specifically designed for the use in the field of IoT where
low-bandwidth capabilities and resilience against network failures are often a require-
ment. The QoS levels defined by MQTT allow for fine-grained settings on message
delivery. To summarise, the MQTT protocol perfectly fits our needs.

4.1.2 AVL Device - SecureSmartHub

The device that handles communication between concentrator and vehicle, further
AVL Device, should be capable of talking the MQTT protocol. Additionally, the
AVL Device has to handle authentication, authorisation and encryption/decryption
properly. It is, therefore, necessary to provide adequate hardware for processing
complex cryptographic operations.

To communicate with other devices built into a vehicle, e.g., ECUs, the AVL Device
must provide the corresponding interfaces. Modern cars come with a variety of bus
systems. The AVL Device must, therefore, also be able to handle different bus systems
and talk the protocols used on these bus systems.

Since AVL devices are integrated into vehicles where attackers have direct access to,
we highly recommend to not only secure the communication between vehicle and
backend but also to harden the AVL Device itself. For example, one could think of
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using secure hardware elements for storing cryptographic key material and executing
cryptographic calculations, or adding Secure Boot or Trusted Boot features.

4.1.3 Backend

Whereas the AVL Device is accessible from the vehicle owners, the backend is located
within the company responsible for the management of AVL Devices. The backend
is the component where vehicles are managed, and all information is stored. To
allow for easy administration, the backend should provide a user interface. Via
this user interface, the backend operator can manage and trigger OTA updates or
initiate remote telemetry data gathering. Moreover, all data gathered during telemetry
reading or ECU updating is to be visualised for further inspection and troubleshooting.
The backend is also responsible for the management of cryptographic key material
and should provide interfaces for the handling thereof.

Given the fact that the backend plays such an important role within our concept it is
a high-risk component and an attractive target for hacking attempts. Therefore, the
security of this component is crucial to the overall system’s security.

From a technical point of view, the backend also has to be able to communicate
with the concentrator via the MQTT protocol. Due to the massive load the backend
will encounter it should be designed with scalability in mind. Additionally, since
cryptographic key material and certificates are highly confidential, the backend must
provide features for securely storing such data. Backend security was further analysed
and discussed by Celina [8].

4.2 Secure Communication

End-to-end and confidential data transmission is achieved by layering three mech-
anisms. The first layer ensures the protection of payload data by encoding it into a
CMS packet. To prevent connection meta data leakage, e.g., leaking topics a vehicle
publishes or subscribes to, we incorporate a second layer: TLS. TLS ensures that
vehicle-to-concentrator and backend-to-concentrator communication is encrypted and
no confidential information is revealed. As a third layer, we incorporate fine-grained
topic-specific permissions on the concentrator. These permissions are checked once
a vehicle tries to subscribe or publish to a topic. The three layers of defense are
explained in detail hereafter.
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4.2.1 Layer 1: Payload Encryption and Key Encapsulation

The following paragraph elaborates on the process of sending a packet from a vehicle
to the backend. For the reverse process, the keys have to be swapped accordingly.

When sending operational data to the backend, the AVL Device first has to generate
an ephemeral key ek. This key ek is used for encrypting the payload according to
the Advanced Encryption Standard (AES). As AES mode of operation we use the
Galois/Counter Mode (AES-GCM) [19]. AES-GCM is a widely-adopted, authenti-
cated encryption algorithm that guarantees both data integrity and confidentiality.
Moreover, AES-GCM is very efficient and native hardware support for encryption
and decryption operations is available in virtually all modern processors.

To wrap the symmetric key ek, an ephemeral wrapping key wek has to be derived. We
therefor use the Elliptic Curve One-Pass MQV (ECMQV) algorithm [5]. ECMQV is
based on the Diffie-Hellman [17] key exchange scheme and allows for authenticated
key agreement. The wrapping key wek is derived from the AVL Device-specific private
key ask and the backend’s public bpk. The key wek is then used to wrap the key ek
according to the CMS key encapsulation mechanism (CMS KEM) [42]. To wrap the
wrapping key wek for transport, we use the CMS Authenticated-Enveloped-Data

content type [23].

To conclude, a CMS packet is comprised of 1) the encrypted payload, 2) the wrapped
AES-GCM key, and 3) the ECMQV wrapping key. This CMS packet is sent to the
concentrator according to the MQTT protocol. To retrieve the encrypted data, the
recipient, i.e., the backend, has to execute the operations in reverse. First, the AES-
GCM key ek is unwrapped by using the wrapping key ewk and the backend’s private
key bsk. The key ek is then used for decryption of the encrypted payload.

4.2.2 Layer 2: TLS

The use of TLS in conjunction with MQTT was discussed by Lesjak et al. [33]. In the
following paragraph, we shortly present their findings and highlight the advantages
of TLS in an MQTT scenario.

If messages are sent/received to/from the concentrator without utilising transport
encryption, it is possible for an adversary to derive confidential information, e.g., the
MQTT topic. Although an attacker can not read the payload of the MQTT message,
this still imposes a security risk. This threat can be mitigated by utilising TLS for
communication encryption. TLS does not only allow for traffic encryption and server
authentication but also provides the functionality for authenticating clients against a
server using X.509 certificates [12]. Using X.509 certificates in our system bears the
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advantage that AVL Devices and the backend can authenticate themselves against
the concentrator without the need for dedicated authentication mechanisms. TLS
client authentication also reduces the attack surface of the concentrator by rejecting
unauthenticated connection requests.

As proposed by Lesiak et al. we also use TLS 1.2. TLS 1.2 is the latest available
version released in 2008 and mitigates the BEAST attack. However, TLS 1.3 is already
in development, and one should think about upgrading to this version once it is
released.

4.2.3 Layer 3: Concentrator Topic Permissions

As a third layer of defense, we apply fine-grained MQTT topic permissions. This
ensures that only vehicles with proper access rights are allowed to subscribe or publish
to specific topics. For example, it cannot be possible for vehicles from manufacturer
A to subscribe or publish to topics from manufacturer B and vice versa. Although
unauthorised recipients would not be able to decrypt packets not meant for them,
it is possible to derive potentially confidential information, such as the number of
vehicles a manufacturer operates. Additionally, this mechanism enhances the overall
system security.

Since we already employ certificates for secure communication, it does make sense
to also use them for incorporating topic permissions. We, therefore, utilise the
Common Name (CN) field in X.509 certificates. The CN field specifies the topic this certifi-
cate is valid for and, thus, the topics a vehicle has permissions to. In the case that a ve-
hicle has to have access to more than one topic, we use the Subject Alternative Name

(SAN) extension for specifying additional topics. Certificates and topic permissions
are checked for validity on the concentrator. The concentrator must reject publish/-
subscribe attempts to topics that are not defined in the certificate provided by the
AVL Device.

4.2.4 Cryptographic Algorithms and Security Parameters

For Authenticated Encryption we use AES-GCM with a key size of 256 bits. The
Elliptic Curve Digital Signature Algorithm [29] is used for the creation of digital
signatures. ECMQV, more specifically One-Pass MQV, C(1e, 2s, ECC MQV), is used
for authenticated key transport. For both elliptic curve algorithms, the secp512r1

elliptic curve is used. We use the Secure Hashing Algorithm 2 with a key size of 512

bits (SHA-512) [14] where applicable. Since TLS is not standardised for SHA-512, we
use SHA 2 with a key size of 384 bits (SHA-384). This results in the TLS cipher suite
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string TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 [45]. Table 4.1 summarises used
algorithms and key sizes.

Algorithm Key size Application

AES-GCM 256 Authenticated Encryption
ECDSA 521 Digital Signatures
ECMQV 521 Authenticated Key Exchange
SHA-2 384 Hashing (TLS)
SHA-2 512 Hashing (Non-TLS)

Table 4.1: Cryptographic Algorithms and Security Parameters.

4.3 OTA Update

In general, an ECU is shipped with software already pre-installed. As discussed in
previous sections, however, it may be necessary to update this software. Therefore,
update files and ECU-specific updating tools are required. Whereas the ECU vendor
provides the updating tools, ECU updates are usually developed by the vehicle
manufacturer.

Nowadays, when updates for an ECU are available, the vehicle manufacturer has
to call all vehicles containing the ECU in question into a workshop. The vehicle
mechanic then updates each ECU manually. This is costly and time-consuming. In
the following paragraphs, we propose a scheme for deploying updates Over-the-Air
for updating ECUs without the need for workshops and workshop personnel.

4.3.1 Package

Once update files are ready for deployment, they are packed into an update archive.
As proposed by Karthik et al. [31] we also make use of a meta-information file. This
meta-information file is packed amongst the update files into the update archive.
The metafile contains information about update files and the update procedure.
For example, to validate the integrity of update files, checksums are calculated and
stored within the meta-information on update package creation. The integrity of
update files can then be checked by the AVL device by calculating the checksums
and comparing them against the checksums contained within the meta-information
file. It is also possible that update files are depended on each other. Therefore, an
order parameter, defining the order of how updates should be applied, is stored in
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the meta-information file. However, the information stored in the meta-information
file is vendor dependent and may be adjusted to fit the vendor’s needs.

4.3.2 Procedure

When the vehicle initiates the update procedure, it first subscribes to the Update Response

topic. It is crucial that the vehicle subscribes to the topic before the update request
message is published. If this is not the case, messages may get lost between the pub-
lishing of the update request message and the subscription to the update response
topic. As soon as the vehicle subscribed to the update response topic, the vehicle
publishes an update request message to the Update Request topic. This message is
received and processed by the backend. The backend checks for available updates,
generates a meta-information file and creates an update archive. This update archive
is then published by the backend to the Update Response topic. The vehicle receives
the update archive, extracts it, and parses the meta-information file.

Depending on whether updates are available, the AVL Device behaves differently. In
the case that no updates are available, the update procedure stops and no further
action is taken. In the case that updates are available, the update handler validates the
update files and starts the ECU flashing process. After all update files were processed,
the update handler gathers the log files generated during the update process and
packs them into an update report archive. This report archive gets published to the
Update Report topic. The backend receives the update report archive, extracts it and
stores the log files in a database. The backend operator is then able to inspect the log
files. Figure 4.1 depicts the update procedure.

It should be noted that we do not take any safety measures into account. Deploying
ECU updates without considering safety could result in an ECU update attempt
while the vehicle is being operated. This may lead to vehicle misbehavior and fatal
crashes.
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Figure 4.1: The update request, deployment and install sequence.
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4.4 Remote Telemetry Data Gathering

Gathering telemetry data is an integral part of the vehicle development process.
Engineers inspect collected data and, based on this data, adapt vehicle configuration
parameters to improve vehicle performance. Vehicle mechanics also record and
examine telemetry data for vehicle diagnostic and to locate errors. However, nowadays
engineers or vehicle mechanics have to have physical access to vehicles that should
be inspected. This is impractical and costly. In the following paragraphs, we propose
a scheme for remote telemetry data gathering.

4.4.1 Package

Before a remote telemetry data gathering procedure can be initiated, the backend
operator has to define the parameters and signals that should be gathered. These
parameters and signals are stored in a file and packed amongst a meta-information file
into an archive. Similar to the OTA update use case, the meta-information file specifies
various parameters, e.g., the duration of the telemetry data gathering process.

4.4.2 Procedure

Initially, when a vehicle is started, the vehicle component subscribes to the
Telemetry Request topic. When the backend operator initiates remote telemetry data
gathering the backend publishes an archive containing the meta-information file
and parameter description file to the Telemetry Request topic. On reception of the
archive by the vehicle component, the archive is extracted. The archive contents are
then parsed and the telemetry data gathering process is initiated.

While telemetry data is gathered, the vehicle component continuously publishes
gathered data in a pre-defined format to the Telemetry Response topic. The format in
which telemetry data is stored has to be defined by the backend operator beforehand.
On reception of telemetry data packages by the backend, the data is parsed, stored
in a database, and visualised on the backend’s user interface. Figure 4.2 depicts the
telemetry data procedure.
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Figure 4.2: The telemetry data gathering sequence.
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In this chapter, we present the implementation of our concept. First, we focus on
the framework. The framework is the foundation for secure communication between
vehicles and infrastructure. We discuss used standards and technologies and show
which role they take in our implementation. To demonstrate how our framework
can be utilised, we present the implementation of the OTA and remote telemetry
data gathering use cases. The ECU flashing and remote telemetry data gathering
procedures are discussed in detail.

5.1 Framework

As described in Chapter 4, we use a meta-information file for storing use case-specific
information. This meta-information file is then packed among use case-specific files
into an archive. The archive is packed and encrypted according to the CMS standard
and then deployed to the vehicle or infrastructure using the MQTT protocol. All tasks
are managed and delegated to handlers by a single application, the controller. The
software components of our framework are depicted in Figure 5.1 and discussed in
detail hereafter.

Python

Controller
LoggerZIP Handler

XML Handler

MQTT Handler

Java

CMS Handler

C/C++/Java/Python

Use case-specific application

Figure 5.1: The framework’s software components.
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5.1.1 XML Handler

The format of the meta-information file follows the Extendable Markup Language
(XML) format1. XML is a textual data format and often used for the definition of
data structures. The fact that XML is a text-based format allows for high compression
ratios when compressed by archiving applications such as gzip2 or 7-Zip3. This is
especially useful for the deployment of archives where cell reception is bad, and
network connections only have low bandwidth. An additional advantage of the XML
file format is that it is widely supported. XML parsing tools and libraries are available
for almost every programming language.

For the XML Handler we use the Python programming language. The Python stan-
dard library already contains an XML parsing module, namely
xml.etree.ElementTree4. This module provides an easy-to-use application program-
ming interface (API) for the creation and parsing of XML documents.

5.1.2 ZIP Handler

For packing multiple files into a single file, archiving or packing applications are
used. These applications take multiple files as input, compress them, and pack them
into a container file. A requirement for such applications is that files packed into an
archive file are restorable without affecting their integrity. This property is called
lossless. A widely used archive file format supporting the creation of lossless archive
files is ZIP. Figure 5.2 depicts the packing and unpacking process of multiple files
into a single ZIP container file.

Pack and 
Compress

archive.zip

meta.xml
update.bin
update.sig

Unpack and 
Decompress

meta.xml
update.bin
update.sig

Figure 5.2: Packing/unpacking multiple files into/from a single ZIP container.

1https://www.w3.org/TR/xml/
2https://www.gnu.org/software/gzip/
3https://www.7-zip.org/
4https://docs.python.org/3/library/xml.etree.elementtree.html

45

https://www.w3.org/TR/xml/
https://www.gnu.org/software/gzip/
https://www.7-zip.org/
https://docs.python.org/3/library/xml.etree.elementtree.html


5 Implementation

Due to the widespread use of the ZIP file format, many tools and libraries for the
handling thereof are available. We also use Python for the implementation of the ZIP
handler. Python ships with the zipfile5 module and fully supports the creation and
extraction of ZIP files.

5.1.3 CMS Handler

The creation and parsing of CMS packets was implemented in JAVA using the
BouncyCastle6 library. BouncyCastle is open-source and provides APIs for handling
CMS packets and certificates. Whereas X.509 certificates store public keys, the PKCS
12 format [36] is used for storing private keys. Key derivation, parsing of X.509 public
key certificates and PKCS 12 private key certificates, and encryption/decryption of
CMS packets, as discussed in Section 4.2.1, is also handled by the CMS application.

For interacting with the CMS application, an intuitive command-line interface is
provided. Table 5.1 lists the available command-line switches for interacting with
the CMS application. Listing 5.1 and Listing 5.2 show the command for packing and
unpacking a CMS packet.

Command-line switch Description

-e, --encrypt Use encryption mode
-d, --decrypt Use decryption mode
-i <arg>, --input <arg> Path to input file
-o <arg>, --output <arg> Path to output file
-c <arg>, --certs <arg> Path to recipients certificates folder (encryp-

tion mode only)
-s <arg>, --sender <arg> Path to sender private key certificate file

(encryption mode only)
-r <arg>, --recipient <arg> Path to recipient private key certificate file

(decryption mode only)

Table 5.1: Command-line switches for interacting with the CMS application.

java -jar cms.jar -e -i archive.zip -o archive.zip.enc -c .\cert -s

MQTT_Admin.p12

Listing 5.1: Command for creating an encrypted CMS packet.

5https://docs.python.org/2/library/zipfile.html
6https://www.bouncycastle.org
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java -jar cms.jar -d -i archive.zip.enc -o archive.zip -c .\cert -r

MQTT_Client.p12

Listing 5.2: Command for decrypting and unpacking an encrypted CMS packet.

5.1.4 MQTT Handler

The CMS packet is transmitted to the recipient via the MQTT protocol. Many open-
source, e.g., Mosquitto7, wolfMQTT8, and commercial, e.g., HiveMQ9,MQTTRoute10, li-
braries supporting the MQTT protocol, are available. However, for our implementa-
tion, we used the Eclipse Paho MQTT libraries11. Eclipse Paho is open-source and
available for many platforms and programming languages such as Java, Go, and
Python. Our MQTT handler was implemented in Python.

The Eclipse Paho libraries abstract the low-level implementation details of the MQTT
protocol and provide a clean interface for subscribing and publishing to MQTT topics.
In our implementation, the first step was to create an MQTT client object. Our concept
developed in Chapter 4 requires that all MQTT traffic should be encrypted and
clients should be authenticated using TLS client authentication. Therefore, the TLS
security parameters, including client certificate and supported cipher suite, were set
accordingly using the tls_set method on the client object. The library also allows
for specifying callback functions that are executed when a message was successfully
published or received. Callback functions were defined by setting the on_publish

and on_message properties of the previously instantiated client object.

After security parameters and publish/subscribe callback functions were set connec-
tions to the MQTT broker can be established. Listing 5.3 shows the code for creating
a client object, setting the required TLS parameters, connecting to the MQTT message
broker, and publishing a message to the MERCEDES/WDB9061551N47734/updatelog

topic.

7https://mosquitto.org/
8https://www.wolfssl.com/products/wolfmqtt/
9https://www.hivemq.com/t/

10https://www.bevywise.com/mqtt-broker/
11https://www.eclipse.org/paho
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import paho.mqtt.client as mqtt

def on_message_callback():

pass

def on_publish_callback():

pass

client = mqtt.Client()

client.tls_set(ca_certs = ’./AVL.crt’, certfile = ’./MQTT_Client.p12’,

keyfile = ’./MQTT_Client.p12’, ciphers = ’ECDHE-ECDSA-AES256-GCM-

SHA384’)

client.on_publish = on_publish_callback

client.on_message = on_message_callback

client.connect(’127.0.0.1’, ’8885’)

client.publish(’MERCEDES/WDB9061551N47734/updatelog’, payload = ’This is

an example message.’, qos = 2)

client.loop_forever()

Listing 5.3: Steps required to securely connect to the MQTT broker, running on 127.0.0.1:8885, and
publish a message.

5.1.5 Controller

To combine the above-mentioned software components into a single application, a
controller was implemented. The controller was written in Python and connects all
handlers. The controller is responsible for delegating tasks to the appropriate handler
and ensures proper error handling. The use case-specific application is also invoked
and monitored by the controller. All errors and executed tasks are logged by a logging
module and transmitted to the backend.
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5.2 OTA Update

5.2.1 ECU Flashing Application

For this thesis, we focus on the ECU flashing procedure of a Hybrid Vehicle Control
Unit (HVCU) that is used in a vehicle of the Chinese manufacturer JAC. ECU
flashing is vendor depended, and the procedure is usually kept secret by the ECU
manufacturers. However, for this thesis, we had access to the flashing procedure
required to flash this specific ECU. This ECU requires to be flashed via the UDS
protocol which further depends on the ISO-TP communication protocol.

We implemented the ECU flashing tool for the Linux operating system. The Linux
kernel provides a kernel module for the ISO-TP protocol. This module abstracts
low-level package handling according to the ISO-TP standard. Atop of the ISO-TP
kernel module, we implemented the UDS protocol specific commands required for
flashing the ECU. Accessing the kernel module-provided APIs requires a systems
programming language. The programming language of choice for the ECU flashing
application was, therefore, C++. Figure 5.3 depicts the architecture of the ECU flashing
application.

Flashing Application

ISO-TP Wrapper

UDS Protocol

UDS Wrapper

Operating System

CAN Driver

ISO-TP Module
Hardware

CAN Interface

Figure 5.3: Architecture of the ECU flashing application.
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UDS Flashing Procedure

The first step when flashing the ECU is to start an Extended Diagnostic Session.
The Extended Diagnostic Session allows for disabling the non-diagnostic commu-
nication. Then, the ECU is instructed to enter a Programming Session. This is necces-
sary as rewriting the ECU’s software is only possible when a Programming Session

is active. However, to enter the high-privileged programming mode, the ECU flash-
ing application is required to authorise itself via a challenge-response authorisation
protocol.

The authorisation challenge is requested from the ECU by issuing a Request Seed

command. The ECU responds with a challenge value. This challenge value is used by
the ECU flashing application to calculate the correct response value. The calculated
response value is then sent to ECU via the Transfer Key command. The challenge-
response algorithm is vendor dependent and confidential. For this thesis, we had
access to the ECU’s challenge-response algorithm.

To write data to the ECU, the ECU flashing application first issues the
Write Data By Identifier command with the ID of the flashing application as
parameter. This command is used for writing the ID to the ECUs internal memory
and is required for documentation purposes.

Before the ECU can be programmed, the ECU’s memory has to be erased. For this
purpose, an ECU internal function, responsible for erasing the internal memory,
gets executed via the Routine Control command. When this routine is completed,
the ECU needs to be prepared for the software download. This is done by issuing
the Request Download command. After this step is completed, the ECU flashing
application transmits the software via the Transfer Data command. When all data is
transferred to the ECU, the Request Transfer Exit command is issued, signaling
the ECU that the flashing application is done transmitting data.

To check the integrity of written data blocks an ECU internal function, responsible
for calculating a Cyclic Redundancy Check (CRC) over the written blocks, is called,
also via the Routine Control command. The CRC algorithm [41] is a widely used
method for calculating checksums and detecting accidental data changes. Finally, the
ECU Reset command is issued. This resets the ECU and the new software is loaded
on startup. Figure 5.4 depicts the flashing procedure.
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Stop Diagnostic Communication

Enter Programming Session

Write ID

Erase Memory

Prepare Data Download

Transmit Data

Exit Data Download

Reset ECU

Consistency Check

Enter Extended Diagnostic Session

Figure 5.4: ECU flashing procedure. The blocks highlighted in green do not require authorisation; the
blocks highlighted in red require authorisation.

5.2.2 MQTT Topic Structure

For update request, update package deployment and update log file reporting we
use the skeleton shown in Listing 5.4. The VMID is a placeholder for the name of the
vehicle manufacturer, e.g., MERCEDES, BMW, VW, whereas the VIN is replaced by
the VIN of the vehicle that is requesting update information. The mode placeholder
can be updaterequests, updateresponse or updatelog.

<VMID>/<VIN>/<mode>

Listing 5.4: MQTT Topic Structure Skeleton.

The following listings show examples of MQTT topics for the different modes.

MERCEDES/WDB9061551N47734/updaterequests

Listing 5.5: Update Request Topic Structure Example.

MERCEDES/WDB9061551N47734/updateresponse

Listing 5.6: Update Response Topic Structure.

MERCEDES/WDB9061551N47734/updatelog

Listing 5.7: Update Report Topic Structure.
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5.2.3 Package Structure

The compressed update zip file contains all necessary information to validate and
flash update files to corresponding ECUs. An example directory tree of an ECU
update package is shown below.

update.zip

update0.s19

update0.sig

update1.s19

update1.sig

meta.xml

The update*.s19 files follow the Intel HEX file format specification [25] and are parsed,
interpreted and flashed by the ECU flashing tool. The Intel HEX format specifies how
binary information can be encoded into ASCII characters and stored in simple text
files. Besides the update*.s19 files, update*.sig files are provided. These files store a
signature calculated over the respective update file and are used for verifying the
origin and correctness of update files. This provides an additional layer of defense.

The meta.xml file stores information about all update and signature files. By reading
and interpreting the meta.xml file the flashing tool can match update files with the
corresponding signature files.

5.2.4 XML File Structures

The XML structure for an update request is shown in Listing 5.8. The timestamp node
stores a UNIX timestamp that is parsed by the backend and sent back to the vehicle in
an update response messages. This timestamp is used for sanity checks. The device

nodes give information on the ECUs installed in the vehicle. To identify the ECU, the
device id attribute is provided. The element version contains the current firmware
version of the ECU.

<update_request>

<timestamp>UNIXTIMESTAMP</timestamp>

<devices>

<device id="...">version</device>

<device id="...">version</device>

</devices>

</update_request>

Listing 5.8: Skeleton of an XML file for an update request message.
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Depending on whether updates are available, the backend packs different meta-
information files into the update response archive. We discuss the two possible cases,
1) Updates available or 2) No updates available, hereafter.

Update(s) available

Listing 5.9 gives an example of how an update response file looks like in the case that
updates are available. The request_timestamp node contains the timestamp from a
previously sent update request. The update process allows for deploying updates
for multiple devices with a single update package. For each update file, a file

node is present. An update file entry is comprised of multiple elements specifying
the filename, the file format, its size, the device id this update file is valid for and
a signature file. Additionally, the file order attribute allows defining the update
installation order. This is useful when updates depend on each other.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<update_response>

<request_timestamp>UNIXTIMESTAMP</request_timestamp>

<files>

<file order="0">

<name>update0.s19</name>

<format>s19</format>

<size unit="KB">100</size>

<signature file="update0.sig" />

<device>device-ID</device>

</file>

<file order="1">

<name>update1.s19</name>

<format>s19</format>

<size unit="KB">1000</size>

<signature file="update1.sig" />

<device>device-ID</device>

</file>

</files>

</update_response>

Listing 5.9: Example of an XML file from an update response message in the case that updates are
available.
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No update(s) available

In the case that no updates are available, the XML file does not contain any file

nodes. The controller interprets such an XML file as ’No updates available’. List-
ing 5.10 shows a response when no updates are available.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<update_response>

<request_timestamp>UNIXTIMESTAMP</request_timestamp>

</update_response>

Listing 5.10: Example of an XML file from an update response message in the case that no updates are
available.

5.3 Remote Telemetry Data Gathering

5.3.1 Telemetry Data Gathering Application

Opposed to ECU flashing, which requires the ECU flashing tool and the ECU to
interact with each other, telemetry data gathering is a completely passive process.
Every message that is sent on the CAN bus can be read by all CAN nodes without
other nodes noticing. In these CAN messages various signals such as current engine
rpm or vehicle velocity are encoded. This encoding is kept secret by car manufacturers.
For this thesis, we had access to the CAN message signal encoding of the ECU that
was also used for ECU flashing, an HVCU from the Chinese manufacturer JAC.

The telemetry data gathering application needs access to low-level system functions
and hardware interfaces. Therefore, the application was implemented in C++, also
for the Linux operating system. Figure 5.5 depicts the application’s architecture.
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Data Gathering Appl.

CAN Wrapper

Gather
Task

Transmit
Task

Hardware

CAN Interface

Operating System

CAN Driver

Figure 5.5: Architecture of the telemetry data gathering application.

Telemetry Data Gathering Procedure

The .dbc file, describing the CAN message layout, is parsed by the telemetry data
gathering application. If the file is valid, the application initialises the CAN socket
and applies CAN message filters such that only messages defined in the .dbc file are
received. Then, two separate tasks are started. The first task reads messages from the
CAN bus and extracts the values from the signals specified in the .dbc file. These
values are stored in a buffering container. The second task runs periodically and takes
the values from the buffering container, formats them in such a way that they can be
interpreted by the backend, and passes the data to the framework. The framework
then transmits the data to the backend. Telemetry data gathering is stopped when a
pre-defined time, specified in the meta-information, elapsed.

5.3.2 MQTT Topic Structure

The MQTT topic skeleton for telemetry is based on the ECU update topic skeleton,
shown in Listing 5.4. The difference, however, are the modes available. For the teleme-
try data gathering procedure we define two different topics, the telemetryrequest

topic and the telemetryresponse topic. As soon as a vehicle is started, the vehicle
component subscribes to the telemetryrequest topic and awaits a message from
the backend. The backend deploys a telemetry package to the vehicle as soon as the
backend operator wants to gather telemetry data. While the telemetry data gather-
ing process is running, collected data is continuously published to the backend at
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pre-defined intervals. In our implementation, we found an interval of one second
suitable. This allows for almost real-time data gathering. The topic for publishing
gathered telemetry data is telemetryresponse.

The following listings show MQTT topics for telemetry data gathering request and
response.

MERCEDES/WDB9061551N47734/telemetryrequest

Listing 5.11: Telemetry Request Topic Structure Example.

MERCEDES/WDB9061551N47734/telemetryresponse

Listing 5.12: Telemetry Response Topic Structure.

5.3.3 Package Structure

Similar to the update process, a telemetry package is comprised of multiple files. The
content of a telemetry archive looks like the following:

telemetry.zip

vehspeed.dbc

enginerpm.dbc

...

combined.dbc

meta.xml

The *.dbc files contain all information necessary to extract signals from the CAN bus
the backend operator is interested in. For example, the operator may be interested
in the vehicle’s speed, the engine RPM, or both. The DBC file format is a text-based
format. Thus, high compression ratios are achieved when creating an ECU telemetry
archive. An example of a DBC file used to extract vehicle speed, the status of the
handbrake (pulled/released) and the position of the acceleration pedal (position in
%) is shown in Listing 5.13.

BO_ 269 HVCU_FrP10: 8 HVCU

SG_ HVCUVehSpd : 11|16@0+ (0.05625,0) [0|299.98] "km/h" EMS

SG_ HVCUHndbrk : 41|1@0+ (1,0) [0|1] "" EMS

BO_ 267 HVCU_FrP09: 8 HVCU

SG_ HVCUAccPedlPosn : 47|8@0+ (0.5,0) [0|100] "%" EMS

Listing 5.13: Example of a DBC file for reading multiple signals.
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5.3.4 XML File Structure

The meta-information file stores information about a specific telemetry data gathering
task. An example of a meta-information file is shown in Listing 5.14.

<?xml version="1.0" encoding="UTF-8"?>

<telemetry_data>

<dbc>vehspeed.dbc</dbc>

<frequency>1000</frequency>

<duration>60000</duration>

</telemetry_data>

Listing 5.14: Example of a meta-information file for reading signals for 60 seconds with a sampling
rate of 1 second.

The dbc element specifies the file where the signals the backend operator is interested
in are defined. The frequency defines the sampling rate in milliseconds. The duration

element specifies the time how long telemetry data should be gathered, also defined
in milliseconds.

5.3.5 Telemetry Data File Format

Gathered telemetry data is stored in a file following the Comma Separated Value
(CSV) format [48]. The CSV format is text-based and mostly used for data that can
be stored in tabular form. A row in a CSV file corresponds to one data record. A
data record has at least one field. Each field in a row is separated by a comma. The
text-based format of CSV files allows for high compression ratios.

The first entry in a telemetry data CSV file is the header. The header consists of the
two fixed strings ”Date” and ”Time”, and variable fields that store the name of each
captured signal. One telemetry data entry consists of the current date, the time the
message was recorded, and the extracted values.

Listing 5.15 shows data gathered in one of our tests. In this example the capture
frequency was set to 10 milliseconds and two signals where captured, namely
HVCU_Cnt109 and HVCU_Cnt10B. These two signals count from 0 to 15. The counter is
incremented every 10 milliseconds and restarts at 0 when the counter reaches 15.
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Date;Time;HVCU_Cnt109;HVCU_Cnt10B

2017-07-27;13:37:49.260;14;14

2017-07-27;13:37:49.270;15;15

2017-07-27;13:37:49.280;0;0

2017-07-27;13:37:49.291;1;1

2017-07-27;13:37:49.301;2;2

2017-07-27;13:37:49.312;3;3

2017-07-27;13:37:49.322;4;4

2017-07-27;13:37:49.332;5;5

2017-07-27;13:37:49.343;6;6

2017-07-27;13:37:49.353;7;7

2017-07-27;13:37:49.363;8;8

2017-07-27;13:37:49.374;9;9

2017-07-27;13:37:49.384;10;10

2017-07-27;13:37:49.395;11;11

2017-07-27;13:37:49.405;12;12

2017-07-27;13:37:49.416;13;13

2017-07-27;13:37:49.427;14;14

2017-07-27;13:37:49.437;15;15

2017-07-27;13:37:49.447;0;0

Listing 5.15: Example of a gathered telemetry data stored in the CSV format.
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In this Chapter, we discuss the security review and penetration test which was
conducted by an external company. We then describe how we set-up functionality
tests and validated correct behavior. Finally, we discuss results of both security audit
and functional tests.

6.1 Hardware Setup

To verify the functionality of our software components and the correctness of ECU
flashing and telemetry data gathering, we installed our software on a custom built
hardware designed by AVL. The board features an ARM-Cortex A9 connected to
2GB of RAM, an Ethernet interface, one serial interface and two CAN interfaces.
We used Linux with a custom built kernel as the operating system. To reduce the
attack surface, we stripped the self-compiled kernel from unnecessary features. A self-
compiled kernel also allows for enabling advanced security features such as SELinux1

and additional kernel modules, e.g., ISO-TP. The hardware setup is depicted in
Figure 6.1.

We connected the AVL device via the LAN interface to a router. Internet connection
is provided via an LTE dongle that is plugged-in to the router and allows for commu-
nication with the backend. As a testing ECU we used a Hybrid Vehicle Control Unit
(HVCU) from a JAC S5 vehicle.

6.2 Security Audit and Penetration Test

Before the first information between the vehicle and backend was exchanged, we
were required to check the setup for security vulnerabilities and misconfigurations.
Therefore, a security review and penetration test was conducted by an external
company.

1https://selinuxproject.org/page/Main_Page
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Figure 6.1: The hardware setup.

In principle, there are two types of penetration tests: white-box and black-box tests.
Grey-box tests are also found in literature and are sometimes counted as a third
penetration testing methodology. When a white-box test is conducted, the tester
is provided with information about the system under test. Details about the inner
workings of a system, e.g., used encryption algorithms or source code, are available to
the tester. In contrast, when conducting a black-box test, no information is provided. A
grey-box test is sort if in-between white- and black-box tests where some information
is given.

However, the goal from a penetration tester’s perspective is to extract confidential
information or to gain unauthorised access to a system. In order to guarantee the
highest level of security for our prototype, both white-box and black-box tests were
conducted. The security review, as well as penetration tests, were carried out by an
external company, specialised in security audits and penetration testing.

Besides the security features applied to our software, which we will discuss later,
additional security measures were taken to harden the operating system running on
the AVL device. We enabled the Linux kernel packet filtering module netfilter2 and
tuned its settings to match our security requirements. That is all ports, except the port
used by OpenSSH3 for device management purposes, were closed. In other words,

2https://www.netfilter.org/
3https://www.openssh.com/
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all incoming connection requests to ports differing from the OpenSSH port were
dropped. Additionally, all outgoing connections, except MQTT connections, were
disallowed. In order to harden OpenSSH authentication, all authentication mecha-
nisms, except public-key authentication4, were turned off. As an additional layer of
defense, only clients with certain IP addresses are allowed to connect to the OpenSSH
server. Furthermore, all applications subject to low-level exploitation, e.g., the ECU
flashing tool, were compiled with state-of-the-art exploit mitigation techniques such
as position-independent executable (PIE), Non-executable stack (NX), stack canaries,
or full Relocation Read-Only (RELRO). After applying the aforementioned security
measures, the AVL device was ready for penetration testing.

The first test conducted was a black-box test. Access to the internal network was
provided to the tester but no further information, e.g., IP addresses or open ports,
was given. This simulates an attacker with physical access to a vehicle with a built-in
AVL device. Since the penetration tester did not have any information about the
device under attack, its first step was to enumerate devices on the network and look
for the AVL device. Once the AVL device was found, it was scanned for open ports.
This was followed by the tester trying to identify services running on the AVL device.
The only service responding to identification requests was recognised as SSH service.
The tester then attempted to establish an SSH connection to the AVL device. However,
since access is restricted to specific IP addresses this attempt was not successful.

A real-world attacker would try to access the device via SSH even though the IP
addresses SSH connections are restricted to are not known. Therefore, an attacker
would assign all possible IP addresses to himself and check if connection requests are
accepted. In order to simulate this attack, we removed the IP address restriction. This
allowed the penetration tester to further investigate the OpenSSH service running
on the AVL device. Due to public-key authentication, it was not possible for the
simulated attacker to gain access to the AVL device. In the case that password-based
authentication would have been enabled, the penetration tester would have tried to
brute-force the password with a prepared list of most common passwords.

The tester’s next step was trying to trick the router and AVL device into routing the
traffic through the tester’s device, i.e., Man-in-the-Middle. This attack allows for, if
successful, eavesdropping and tampering on data. Such an attack is usually made
by broadcasting forged ARP packets. This technique, known as ARP spoofing or
ARP poisoning, adds invalid ARP entries to devices’ ARP caches. The ARP spoofing
attack was successful, and traffic was routed through the tester’s device. However,
since traffic between AVL device and concentrator is encrypted, it was not possible to
extract confidential information. Moreover, as all traffic is authenticated, attempts to
trick the concentrator into accepting and relaying unauthenticated messages, failed.
The outcome of the attempted Man-in-the-Middle attack was that no information

4https://kb.iu.edu/d/aews
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leakage or unauthenticated modification of data is possible.

After the black-box test was completed, the tester conducted a security review. To-
gether with the penetration tester we reviewed our security concept and looked
for potential vulnerabilities. We verified that used algorithms were safe to use and
no flaws are publicly known. To further reduce the attack surface, router settings
where reviewed, tweaked and set to the most defensive settings. We ensured that the
firmware running on the router was up-to-date, disabled all unused services, hard-
ened the router’s authentication features, and secured administration interfaces.

To conclude, no severe vulnerabilities with regards to the assets and threats defined
in Section 3 were discovered. Thus, we were ready to transmit production data and
verify correct functionality of ECU flashing and remote telemetry data gathering.

6.3 Functionality Tests and Validation of Correctness

Conducting initial tests on an ECU already assembled into a vehicle is not encouraged
due to difficulties that could arise when an ECU flashing procedure fails. A failed
flashing attempt may cause a malfunctioning ECU and, thereby, an inoperable vehicle.
Therefore, first tests were conducted in a lab environment.

To verify correct behavior of the ECU flashing and remote telemetry data gather-
ing processes, we inspected how the ECU behaves when used with manufacturer-
provided tools. We connected a CAN reader to the ECU’s CAN interface and recorded
all CAN messages the ECU transmits. These messages acted as a verification data
set.

Both OTA Update and remote telemetry data gathering tests were first conducted
in a lab environment. After we confirmed correct functionality a setup for in-vehicle
tests was prepared. For comfortable transportation, we mounted the AVL Device and
Router alongside a motorcycle battery on a panel. Figure 6.2 depicts the in-vehicle
setup. All in-vehicle tests were conducted on AVL’s private test track.

6.3.1 ECU Flashing

The first step was to verify correct behavior of the ECU flashing toolchain. During
initial flashing experiments we encountered that the ECU does not send messages
if the firmware update failed. A failed flashing attempt can have different reasons,
e.g., writing incorrect data to the ECU’s memory, errors during data transmission,
or power failures. From there, we concluded that messages transmitted in precise
intervals serve as a primary indicator for a successful flashing attempt.
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Figure 6.2: Hardware setup for in-vehicle tests.

With a success indicator defined, we were able to execute ECU flashing tests. Due to
the complexity of the ECU flashing process in combination with OTA update package
delivery these tests were carried out over the timespan of two months. As soon as
teething troubles were eradicated and flashing attempts got stable, we verified the
correctness of the ECU update toolchain in a real vehicle. We used a JAC S5 vehicle
for our testing purposes.

As we left our lab environment, we had to look for new indicators of successful OTA
update deployment. An evident and easy-to-test indicator is to check if it is possible
to start the vehicle’s engine after flashing the ECU. To take that a step further, a confi-
dent indicator is if the vehicle can be driven around without encountering failures.
Additionally, since the test vehicle was also used for verification of functional safety
systems, it was equipped with various measurement instruments and diagnostics
devices that allowed for a more in-depth validation.

6.3.2 Telemetry Data Gathering

Similar to the ECU flashing process we first had to look for indicators confirming
successful telemetry data gathering attempts. Initial tests where conducted in a lab
environment. The data transmitted in messages in a lab setting, however, is mostly
meaningless. In the lab setting it is not possible to validate the vehicle’s speed, the
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engine rpm, or current gear. The ECU, however, transmits signals acting as a counter
on almost all CAN IDs. These counters count from 0 to 15 and are reset to 0 when
the counter reaches the value 15. Our validation of telemetry data gathering in the
lab environment relied on these counters. Compared to the ECU flashing, reading
telemetry is a purely passive process and, therefore, it is almost impossible to cause a
vehicle to malfunction. Retrieving data from the CAN bus and interpreting CAN bus
data correctly is much lower in complexity and not as a critical process as updating
an ECU’s firmware. However, as discussed in previous sections, software bugs or
failing hardware could cause invalid messages being written to the CAN bus.

To validate our implementation against the defined indicators we first validated the
ECU telemetry gathering application. For this purpose, DBC files containing various
signals, including the aforementioned counters, where defined. For each CAN ID
and message, an individual DBC file was prepared. To verify correct behavior of the
ECU telemetry reader, we started the application with different interval parameters.
Counter values were extracted every 10 ms and gradually increased every 10 ms.
For every frequency step, all messages were recorded for a timespan of five minutes.
This recording process was followed by manually verifying the counters encoded in
the messages against data captured by a third-party CAN sniffing tool. As a final
step, extracted data was sent to the backend and visualised for further inspection.
The successful validation of remote telemetry data gathering in the lab environment
allowed for testing in the JAC S5 vehicle.

We also used the JAC S5 vehicle for testing remote telemetry data gathering. The
built-in measurement and diagnostic devices came in handy in verifying the data
gathering procedure. In contrast to the tests conducted in a lab environment, where it
was only possible to verify data by checking the counter signals, we had many more
valid signals available. Therefore, new DBC files were specified. To validate our im-
plementation, data was recorded continuously and sent to the backend while driving
the JAC S5 around AVL’s test track. This allowed for almost real-time verification
of the recorded data. Data sent to the backend was verified in various ways. Easily
verifiable signals such as current vehicle velocity or engine rpm were checked against
data displayed in the tachometer. The current gear extracted from CAN messages
was checked against the gear stick position in the vehicle. Other signals were verified
by comparing them against signals captured by built-in diagnostics devices.
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6.4 Results

6.4.1 Security Audit and Penetration Test

The results of the conducted black-box test show that it is not possible to gain
unauthorised access to the AVL device. Moreover, the tester did not manage to
exfiltrate confidential information by eavesdropping on network traffic. Additionally,
all data tampering attempts failed. During the black-box test, only one minor security
issue was found. The OpenSSH service running on the AVL device was outdated,
and various vulnerabilities are publicly known, e.g., CVE-2016-8858

5 or CVE-2016-
6515

6. However, these vulnerabilities only allowed for Denial of Service attacks.
These attacks can easily be mitigated by upgrading OpenSSH to the latest available
version.

The security audit confirmed that the security concept is sound and no severe publicly
known vulnerabilities exist, neither in the utilised software nor the used protocols
and cryptographic algorithms. However, two issues arose during the review:

1. Storage of cryptographic key material and secure cryptographic operations
2. Tamper-proof system’s software.

We will address these issues and discuss possible solutions in Chapter 7.

6.4.2 Functionality: OTA update

After ECU updates proofed to be reliable in a lab environment, real tests were
conducted in a JAC S5 vehicle. All ECU update attempts were successful, and the
vehicle was fully operable at all times. Also, the diagnostics and measurement
devices did not report any anomalies. The time taken to complete a full OTA update
procedure, from OTA update initiation to update log file publishing, was roughly
four minutes. Most of the time is spent during the actual ECU flashing process
and depends on bus bandwidth, firmware update size, and the ECU’s capabilities.
For example, connecting and updating an ECU via FlexRay7,8 (max. Bandwidth: 10

MBit/s) instead of CAN (max. Bandwidth: 1 MBit/s) could decrease the time needed
for the flashing process by a factor of ten. However, the time required for a ECU
flashing is almost constant and varies only in the range of seconds for identically
constructed vehicles. The deployment of an OTA update package, however, may vary

5https://nvd.nist.gov/vuln/detail/CVE-2016-8858
6https://nvd.nist.gov/vuln/detail/CVE-2016-6515
7https://www.iso.org/standard/59809.html
8https://www.iso.org/standard/59804.html
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and is heavily dependent on cellular network reception and bandwidth. In our case,
the time needed from OTA update initiation to complete reception of the OTA update
package was roughly 10 seconds. The AVL Device was connected via a 4G wireless
mobile broadband stick. Table 6.1 shows the mean time needed for an OTA update.

Task Time taken [s]

Update request encryption 6.4
Update request publishing 2.7
Update response reception 2.5
Update response decryption 6.9
ECU flashing 218.7
Update log encryption 7.2
Update log publishing 2.7
Overall 247.1

Table 6.1: Time taken for a complete OTA update procedure.

It is noteworthy that we did not take any safety measures into account. Before
deploying an OTA update system, it is crucial to consider safety. For example, the
AVL Device must not initiate ECU flashing while the vehicle is being operated. In
addition, one should also think about designing ECUs that are resilient to failed ECU
flashing attempts. These issues are further discussed in Section 7.2

6.4.3 Functionality: Remote Telemetry Data Gathering

The data gathered by the AVL Device was sent to the backend and verified against the
dashboard and the values reported by diagnostic and measurement devices. During
our tests, no discrepancy between actual and reported values was encountered.
Figure 6.3 illustrates the vehicle’s velocity over a timespan of 20 seconds as visualised
in the backend.
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7 Conclusion and Future Work

7.1 Conclusion

In this work, we analysed state-of-the-art vehicles for potential cyber security threats.
In particular, we looked at recent attacks on vehicles and the impact thereof with
regards to vehicle safety and security. Based on the analysis of previous attacks
we designed a basic framework for secure communication between vehicles and a
backend. To secure the framework and extract potential security pitfalls, we applied
the STRIDE threat modeling methodology. Therefore, we defined assets, elaborated on
different types of attackers, and specified a comprehensive attacker model. Based on
the findings of the threat modeling process, we incorporated state-of-the-art security
measures. Our security concept uses modern public-key and symmetric cryptographic
primitives and heavily relies on the security thereof. For an in-depth defense, we
proposed a three-layer model, with different security objectives for each layer.

To validate our secure communication framework, we designed a methodology for
deploying OTA updates to vehicles. Furthermore, as a second use-case, we proposed
a design for remotely gathering telemetry data and transmitting data at regular
intervals to a backend. Both OTA update and remote telemetry data gathering use-
cases were implemented and verified.

We evaluated our concept in two ways. First, the concept was reviewed and stress-
tested for security vulnerabilities by an external company specialised in cyber security.
Second, correct functionality of the OTA and remote telemetry data gathering was
verified. Therefor an ECU OTA update was deployed and installed on a vehicle.
Moreover, real-world telemetry data was gathered while the vehicle was operated
and visualised in the backend.

In conclusion, with modern vehicles becoming increasingly connected, it is clear that
cyber security plays an integral role. Due to the complexity of today’s software, it
is crucial to fix bugs as early as possible. However, as we have seen, developing a
framework for secure communication is not a trivial task and prone to errors.
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7.2 Future Work

The focus of this thesis was to develop a framework for secure communication be-
tween vehicles and infrastructure. Novel vehicles, however, do not only communicate
with infrastructure, but also incorporate so-called vehicle-to-vehicle communication.
From a security perspective, such systems must provide a high level of security.
Attacking vehicle-to-vehicle communication by, for example, communicating wrong
information to nearby vehicles may result in fatal crashes.

Another important research topic is secure in-vehicular communication. Currently,
bus systems are accessible to all components connected to the bus. This imposes severe
security-related implications. For example, an attacker could implant a malicious
component into the in-vehicular network and spoof other components or eavesdrop
on the bus traffic.

An additional research topic may focus on the safety perspective of OTA updates. In
our implementation, an ECU update is applied to the ECU as soon as the update is
deployed. This may result in an inoperable vehicle or fatal crash when the vehicle is
being operated. In addition, when designing and implementing OTA mechanisms,
one should think about incorporating fallback mechanisms. An inoperable vehicle
due to a failed flashing attempt would not only result in upset customers, but also in
expensive repair costs.

To summarise, the ongoing fast-paced development of vehicles unveils new exciting
research topics. The fields of connected cars and autonomous driving are increasingly
important. Therefore, more research is required for enabling safe and secure vehicles
of tomorrow.
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Threat Modeling Report

Threat Model Summary:

Not Started 0

Not Applicable 6

Needs Investigation 0

Mitigation Implemented 20

Total 26

Total Migrated 0

1. Spoofing of the Concentrator External Destination Entity   [State: Mitigation Implemented] 

[Priority: High] 

Category: Spoofing

Description: Concentrator may be spoofed by an attacker and this may lead to data being sent to 

the attacker's target instead of Concentrator. Consider using a standard authentication 

mechanism to identify the external entity.

Justification: Incorporate authentication mechanisms

2. External Entity Concentrator Potentially Denies Receiving Data   [State: Mitigation

Implemented]  [Priority: High] 

Category: Repudiation

Description: Concentrator claims that it did not receive data from a process on the other side of the 

trust boundary. Consider using logging or auditing to record the source, time, and 

summary of the received data.

Justification: Incorporate digital signatures and logging mechanisms

3. Data Flow receive Is Potentially Interrupted   [State: Not Applicable]  [Priority: Medium] 

Category: Denial Of Service

Description: An external agent interrupts data flowing across a trust boundary in either direction.

Justification: DoS is out of scope

4. Elevation by Changing the Execution Flow in Data Processor (Vehicle)   [State: Mitigation

Implemented]  [Priority: High] 



Category: Elevation Of Privilege

Description: An attacker may pass data into Data Processor (Vehicle) in order to change the flow of 

program execution within Data Processor (Vehicle) to the attacker's choosing.

Justification: Incorporate authenticated encryption and validate input

5. Data Processor (Vehicle) May be Subject to Elevation of Privilege Using Remote Code

Execution   [State: Mitigation Implemented]  [Priority: High] 

Category: Elevation Of Privilege

Description: Concentrator may be able to remotely execute code for Data Processor (Vehicle).

Justification: Incorporate authenticated encryption and validate input

6. Elevation Using Impersonation   [State: Mitigation Implemented]  [Priority: High] 

Category: Elevation Of Privilege

Description: Data Processor (Vehicle) may be able to impersonate the context of Concentrator in 

order to gain additional privilege.

Justification: Incorporate authentication mechanisms

7. Data Flow receive Is Potentially Interrupted   [State: Not Applicable]  [Priority: Low] 

Category: Denial Of Service

Description: An external agent interrupts data flowing across a trust boundary in either direction.

Justification: DoS is out of scope

8. Potential Process Crash or Stop for Data Processor (Vehicle)   [State: Not Applicable]  [Priority:

Low] 

Category: Denial Of Service

Description: Data Processor (Vehicle) crashes, halts, stops or runs slowly; in all cases violating an 

availability metric.

Justification: DoS is out of scope

9. Data Flow Sniffing   [State: Mitigation Implemented]  [Priority: High] 

Category: Information Disclosure

Description: Data flowing across receive may be sniffed by an attacker. Depending on what type of 

data an attacker can read, it may be used to attack other parts of the system or simply 

be a disclosure of information leading to compliance violations. Consider encrypting 

the data flow.

Justification: Incorporate (authenticated) encryption



10. Potential Data Repudiation by Data Processor (Vehicle)   [State: Mitigation Implemented] 

[Priority: High] 

Category: Repudiation

Description: Data Processor (Vehicle) claims that it did not receive data from a source 

outside the trust boundary. Consider using logging or auditing to record

 the source, time, and summary of the received data.

Justification: Incorporate digital signatures and logging mechanisms

11. Potential Lack of Input Validation for Data Processor (Vehicle)   [State: Mitigation

Implemented]  [Priority: High] 

Category: Tampering

Description: Data flowing across receive may be tampered with by an attacker. This may lead to a 

denial of service attack against Data Processor (Vehicle) or an elevation of privilege 

attack against Data Processor (Vehicle) or an information disclosure by Data Processor 

(Vehicle). Failure to verify that input is as expected is a root cause of a very large 

number of exploitable issues. Consider all paths and the way they handle data. Verify 

that all input is verified for correctness using an approved list input validation approach.

Justification: Incorporate authenticated encryption and validate input

12. Spoofing the Concentrator External Entity   [State: Mitigation Implemented]  [Priority: High] 

Category: Spoofing

Description: Concentrator may be spoofed by an attacker and this may lead to unauthorized access 

to Data Processor (Vehicle). Consider using a standard authentication mechanism to 

identify the external entity.

Justification: Incorporate authentication mechanisms

13. Spoofing the Data Processor (Vehicle) Process   [State: Mitigation Implemented]  [Priority:

High] 

Category: Spoofing

Description: Data Processor (Vehicle) may be spoofed by an attacker and this may lead to 

information disclosure by Concentrator. Consider using a standard authentication 

mechanism to identify the destination process.

Justification: Incorporate authentication mechanisms

14. Elevation by Changing the Execution Flow in Data Processor (Vehicle)   [State: Mitigation

Implemented]  [Priority: High] 

Category: Elevation Of Privilege



Description: An attacker may pass data into Data Processor (Vehicle) in order to change the flow of 

program execution within Data Processor (Vehicle) to the attacker's choosing.

Justification: Incorporate authenticated encryption and validate input

15. Data Processor (Vehicle) May be Subject to Elevation of Privilege Using Remote Code

Execution   [State: Mitigation Implemented]  [Priority: High] 

Category: Elevation Of Privilege

Description: Concentrator may be able to remotely execute code for Data Processor (Vehicle).

Justification: Incorporate authenticated encryption and validate input

16. Elevation Using Impersonation   [State: Mitigation Implemented]  [Priority: High] 

Category: Elevation Of Privilege

Description: Data Processor (Vehicle) may be able to impersonate the context of Concentrator in 

order to gain additional privilege.

Justification: Incorporate authentication mechanisms

17. Data Flow transmit Is Potentially Interrupted   [State: Not Applicable]  [Priority: Low] 

Category: Denial Of Service

Description: An external agent interrupts data flowing across a trust boundary in either direction.

Justification: DoS is out of scope

18. Potential Process Crash or Stop for Data Processor (Vehicle)   [State: Not Applicable] 

[Priority: Medium] 

Category: Denial Of Service

Description: Data Processor (Vehicle) crashes, halts, stops or runs slowly; in all cases violating an 

availability metric.

Justification: DoS is out of scope

19. Data Flow Sniffing   [State: Mitigation Implemented]  [Priority: High] 

Category: Information Disclosure

Description: Data flowing across transmit may be sniffed by an attacker. Depending on what type of 

data an attacker can read, it may be used to attack other parts of the system or simply 

be a disclosure of information leading to compliance violations. Consider encrypting 

the data flow.

Justification: Incorporate (authenticated) encryption

20. Potential Data Repudiation by Data Processor (Vehicle)   [State: Mitigation Implemented] 



[Priority: High] 

Category: Repudiation

Description: Data Processor (Vehicle) claims that it did not receive data from a source outside the 

trust boundary. Consider using logging or auditing to record the source, time, and 

summary of the received data.

Justification: Incorporate digital signatures and logging mechanisms

21. Potential Lack of Input Validation for Data Processor (Vehicle)   [State: Mitigation

Implemented]  [Priority: High] 

Category: Tampering

Description: Data flowing across transmit may be tampered with by an attacker. This may lead to a 

denial of service attack against Data Processor (Vehicle) or an elevation of privilege 

attack against Data Processor (Vehicle) or an information disclosure by Data Processor 

(Vehicle). Failure to verify that input is as expected is a root cause of a very large 

number of exploitable issues. Consider all paths and the way they handle data. Verify 

that all input is verified for correctness using an approved list input validation approach.

Justification: Incorporate authenticated encryption and validate input

22. Spoofing the Concentrator External Entity   [State: Mitigation Implemented]  [Priority: High] 

Category: Spoofing

Description: Concentrator may be spoofed by an attacker and this may lead to unauthorized access 

to Data Processor (Vehicle). Consider using a standard authentication mechanism to 

identify the external entity.

Justification: Incorporate authentication mechanisms

23. Spoofing the Data Processor (Vehicle) Process   [State: Mitigation Implemented]  [Priority:

High] 

Category: Spoofing

Description: Data Processor (Vehicle) may be spoofed by an attacker and this may lead to 

information disclosure by Concentrator. Consider using a standard authentication 

mechanism to identify the destination process.

Justification: Incorporate authentication mechanisms

24. Data Flow transmit Is Potentially Interrupted   [State: Not Applicable]  [Priority: Low] 

Category: Denial Of Service

Description: An external agent interrupts data flowing across a trust boundary in either direction.

Justification: DoS is out of scope



25. External Entity Concentrator Potentially Denies Receiving Data   [State: Mitigation

Implemented]  [Priority: High] 

Category: Repudiation

Description: Concentrator claims that it did not receive data from a process on the other side of the 

trust boundary. Consider using logging or auditing to record the source, time, and 

summary of the received data.

Justification: Incorporate digital signatures and logging mechanisms

26. Spoofing of the Concentrator External Destination Entity   [State: Mitigation Implemented] 

[Priority: High] 

Category: Spoofing

Description: Concentrator may be spoofed by an attacker and this may lead to data being sent to 

the attacker's target instead of Concentrator. Consider using a standard authentication 

mechanism to identify the external entity.

Justification: Incorporate authentication mechanisms
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