
Roman Purgstaller, BSc

Dynamic N-Gram Based Feature
Selection for Text Classification

MASTER’S THESIS

to achieve the university degree of
Master of Science

Master’s degree programme: Software Development and Business
Management

submitted to

Graz University of Technology

Institute of Interactive Systems and Data Science
Head: Univ.-Prof. Dr. Stefanie Lindstaedt

Supervisor: Dipl.-Ing. Roman Kern

Graz, August 2018

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

iii

Abstract

Feature selection has become an important focus in machine learning. Es-
pecially in the area of text classification, using n-gram language models
will lead to high dimensional datasets. In this thesis we propose a new
method of dimensionality reduction. Starting with a small subset of features,
an iterative forward selection method is performed to extend our feature
space. The main idea is, to interpret the results from a trained classifier
in order to determine feature importance. Our experimental results over
various classification algorithms show that with this approach it is possible
to improve prediction performance over other state of the art dimension
reduction methods, while providing a more cost-effective feature space.

v

Contents

Abstract v

1 Introduction 1

2 Related Literature and Theoretical Focus 3
2.1 Feature Extraction . 3

2.1.1 Tokenization . 3

2.1.2 Stop Word Removal . 4

2.1.3 Bag-of-Words . 5

2.1.4 N-Gram Tokenization 5

2.1.5 Skip-Gram Tokenization 5

2.2 Issues in Feature Engineering 6

2.2.1 Signal and Noise . 6

2.2.2 Overfitting . 7

2.2.3 Data Sparsity . 7

2.3 Feature Weighting . 8

2.4 Feature Selection . 9

2.4.1 Filter Methods . 10

2.4.2 Wrapper Methods . 11

2.5 Text Classification . 12

2.5.1 The Text Classification Task 13

2.5.2 The Bias-Variance Tradeoff 13

2.6 Naive Bayes Text Classification 14

2.6.1 Properties of Naive Bayes 15

2.6.2 The Multinomial Naive Bayes 15

2.6.3 The Bernoulli Model . 17

2.7 Decision Tree Learning . 17

2.7.1 Tree Algorithms . 18

2.7.2 Feature Importance . 20

vii

Contents

2.7.3 Ensemble Methods and Random Forest Classifiers . . 21

2.8 Support Vector Machines . 22

2.8.1 Feature Importance . 23

2.9 Evaluation of Text Classification 23

2.9.1 Binary and Multi-class Evaluation 24

3 Algorithm 25
3.1 N-Gram Based Feature Selection 25

3.2 Variations . 26

3.2.1 Alter the Selection Criterion 26

3.3 Implementation Details . 28

3.3.1 Machine Learning Tools 28

3.3.2 Feature Extraction . 28

3.3.3 Data Transformation . 28

4 Empirical Evaluation 31
4.1 Data Sets . 31

4.1.1 The 20 Newsgroups Dataset 31

4.1.2 The Reuters Dataset . 32

4.2 Document Data Preparation . 33

4.3 Evaluation Metrics . 33

4.4 Binary and Multiclass Classification 33

4.5 Hyper Parameter Tuning . 34

5 Experimental Results 35
5.1 Hyper Parameter Tuning . 35

5.1.1 Term Weighting with Naive Bayes Classification 35

5.1.2 Term Weighting with Support Vector Classification . . 36

5.1.3 Term Weighting with Decision Tree Classifiers 43

5.1.4 Term Weighting with Information Gain and χ2 43

5.2 Comparison of Individual Results 47

5.2.1 Experimental Methods 47

5.3 Runtime Evaluation . 53

6 Discussion 63

7 Future Work 65

viii

Contents

8 Conclusion 67

Bibliography 83

ix

List of Figures

5.1 Bernoulli Naive Bayes Grid Search with Cross Validation. . . 37

5.2 Multinomial Naive Bayes Grid Search with Cross Validation. 38

5.3 Multinomial Naive Bayes Grid Search with Cross Validation
and altered selection criterion. 39

5.4 Support Vector Classification feature weighting using the
20 newsgroup dataset. Grid search on penalty parameter
C = 2−5, 2−3, ..., 213 . 41

5.5 Support Vector Classification feature weighting. Grid search
on penalty parameter C = 2−5, 2−3, ..., 213 for feature weight-
ing as well as classification. 42

5.6 Selecting a percentage of features according to the highest
score using the chi2 formula. 45

5.7 F1 Scores selecting a percentage of features according to the
highest score using information gain. 46

5.8 Impact on classification performance depending on the num-
ber of selected features using the 20newsgroups dataset . . . 54

5.9 Impact on classification performance depending on the num-
ber of selected features using the 20newsgroups dataset . . . 55

5.10 Impact on classification performance depending on the num-
ber of selected features using the Reuters dataset 56

5.11 Impact on classification performance depending on the num-
ber of selected features using the Reuters dataset 57

5.12 Impact on classification performance depending on the num-
ber of selected features using the Reuters dataset 59

5.13 Impact on classification performance depending on the num-
ber of selected features using the Reuters dataset 60

5.14 Impact on classification performance depending on the num-
ber of selected features using the Reuters dataset 61

xi

List of Figures

5.15 Impact on classification performance depending on the num-
ber of selected features using the Reuters dataset 62

.1 Classification performance . 71

.2 Classification performance . 72

.3 Classification performance . 73

.4 Classification performance . 74

.5 Classification performance . 75

.6 Classification performance . 76

.7 Classification performance . 77

.8 Classification performance . 78

.9 Classification performance . 79

.10 classification latency . 80

.11 classification latency . 81

xii

Todo list

xiii

1 Introduction

The focus of this thesis is to analyse the effects of feature selection for text
classification. This area of research is already well studied. For example,
Forman, 2003 applied various metrics, like χ2 or Information Gain, which
we will also cover in our work. In general, the aim of feature selection is
not only to improve classification effectiveness and computational efficiency,
but also to create machine learning models which are clearer and therefore
easier to interpret. Especially when categorizing text data, feature selection
has great potential. Consider for example the google n-gram corpus (Franz
and Brants, 2006), which contains over one trillion words of running texts
and over 13 million unique words, even when discarding words with a term
frequency lower than 200.

One important characteristic of text classification is the high dimensionality
of the feature space. Additionally, an important and extensively analysed
concept in natural language processing tasks is the use of n-gram language
models. Word n-grams are sets of co-occuring words within a given window,
where the number of of words within a n-gram is determined by n.

In contrast to word tokenization, using n-gram language modeling will
increase the size of the feature space even further. Especially when choosing
a high value for n, the resulting feature space will blow up very fast. For
this reason, feature selection is essential to limit the feature space as well as
avoid overfitting.

A straight-forward approach for representing text is the bag-of-words ap-
proach, where each feature corresponds to a single word. In this paper we
study the effect of using n-grams. In particular, we describe an algorithm
which performs a discriminant analysis, choosing n-gram features dynami-
cally. The identification of discriminant features is achieved using an iterative
forward selection approach. The importance of features is determined using

1

1 Introduction

various types of ranking criteria. This is an often chosen approach (see for
example I. Guyon and Elisseeff, 2003 or Yang and Pedersen, 1997), showing
promising results.

We assume that, if a specific unigram is considered important, a bigram
containing this unigram might also be meaningful for a specific class. This
technique for discovering association rules between features is called apriori
principle (Agrawal, Srikant, et al., 1994). For example, the sentence ”Risk
free: earn easy money with bitcoin investments” includes several phrases
indicating spam. Considering the word ”money” important for the class
spam, The phrases ”easy money” and ”earn easy money” might also be
equally or even more important. This information is then used for select-
ing features dynamically. Starting with unigrams, we consider a n-gram
potentially important if a lower order n-gram exists in the corpus which is
contained in the higher order n-gram and and this lower order n-gram is
already selected by the ranking criterion.

Using this approach, we expect to identify specific meaningful phrases,
while reducing the size of the feature space significantly, leading to a
smaller, more expressive model.

Another interesting aspect we will cover in this thesis is using skip-gram
tokenization. Considering the example above, this technique makes it pos-
sible to cover phrases like ”earn money”, ”money bitcoin” or even (after
removing punctuation) ”risk free money”.

In the course of this thesis we will focus on two main questions:

1. Is it possible to compete with state of the art feature selection methods,
while providing a reasonable small feature space?

2. What are good ranking criterions for this approach?

After covering the theoretical focus in chapter 2, we introduce the imple-
mented algorithm in chapter 3. We will then outline the chosen datasets
(chapter 4.1) as well as evaluation metrics (chapter 4). In chapter 3.3 we
will focus on implementation details. Subsequently, we will present the
experimental results in chapter 5. Finally, in the discussion section (chapter
6) we will review the results of our work and provide a future perspective
as well as possible extensions.

2

2 Related Literature and
Theoretical Focus

2.1 Feature Extraction

Text classifiers often don’t use a characteristic representation of a language.
Raw data such as documents consisting of a sequence of characters cannot
be fed to a learning algorithm directly. Machine learning algorithms need
a different form of input, often incoherent to humans, in order to make it
possible to compute satisfying results.

Usually the input for a machine learning algorithm is represented as a vector
of weighted features. We define a feature as a string within a document.
Furthermore, the process of turning a corpus into numerical feature vectors
is called vectorization. Each feature in a document is assigned a weight.
More formally, a document d is represented by a vector ~x = (x1, ..., xM).

In this chapter we focus on how text is processed in order to create feature
sets suitable for machine learning algorithms.

2.1.1 Tokenization

Tokenization is the task of chopping a sequence of characters up into
pieces, called tokens, optionally throwing away certain characters, such as
punctuation. Tokenization is needed to convert text into features.

An important issue in tokenization is finding the correct tokens to use. One
tokenization approach is to split on whitespaces and throw punctuation char-
acters away. Another possible strategy is splitting on all non-alphanumeric

3

2 Related Literature and Theoretical Focus

characters. Manning and Schütze, 1999 provides a survey on tokenization,
pointing out that such strategies could lead to problems. For instance, some
punctuation marks such as in etc should remain as part of the word. Another
problem which could arise in this context are single apostrophes or hyphens.
Imagine phrases like I’m right or my friend’s. Splitting on non-alphanumeric
characters would create create tokens like I m right and my friend s. There is
no easy way for a tokenizer to differentiate in such cases. Jiang and Zhai,
2007 performed an interesting study on tokenization, defining heuristics for
the English language on how to deal with the above mentioned cases. The
heuristics included replacing non-functional characters with spaces (such
as: ! ”, #, %, $), but leaving hyphens in the text. The results suggested that
such strategies would improve the performance significantly. The downside
of those heuristics is that they are very language specific. Especially when
considering the above mentioned cases on hyphens or single aprostophes.

2.1.2 Stop Word Removal

One important goal of feature engineering is finding the most significant
words or phrases in documents. The intuition that the most frequent words
appearing in a document are the most significant is true for many use
cases, such as language detection. However, in this thesis, we focus on
classification based on the subject matter of documents, limiting ourselfs
to the english language. The most frequent words in the english language
will most certainly be words with low significance such as “the” or “and”.
One common strategy to eliminate certain features containing low value
is the use of stop lists. A stop list contains words which are filtered out
before the tokenization process. However, stop word removal might lead
to problems when significant phrases (such as “The Who”), or homonyms
(“can” the verb vs. “can” the noun) are removed. As with addressing certain
problems in tokenization, this approach is very language specific and certain
techniques such as tf-idf term weighting might provide better results.

4

2.1 Feature Extraction

2.1.3 Bag-of-Words

Bag-of-words is an often used representation in text classification in which
each feature corresponds to a single token. This method counts the occur-
rences of tokens in a document. The result is a vector in the space of features,
which corresponds to tokens found in the text.

2.1.4 N-Gram Tokenization

Bag-of-word models are a simple and often very effective approach. How-
ever, important details about the original document, such as Phrases, word
order, context and sentences, is lost. Alternatively, adding multi-word ex-
pressions can be helpful identifying certain multi-word expressions, such as
“United Kingdom” or “white house”.

N-grams are basically sequences of n consecutive words from a given text.
For example, considering the following sentence: “My favourite treat is
cheesecake”, would create the following n-grams:

• unigrams (n=1): My, favourite, treat, is, cheesecake
• bigrams (n=2): My favourite, favourite treat, treat is, is cheesecake
• trigrams (n=3): My favourite treat, favourite treat is, treat is cheesecake

N-gram models are an important concept in natural language processing,
carrying more information than its components and are often crucual in text
classification. They are used in a wide area of application such as sentence
completion, data compression, text classification or speech recognition (for
example Cavnar, Trenkle, et al., 1994; Fürnkranz, 1998).

2.1.5 Skip-Gram Tokenization

Skip-grams (D. Guthrie et al., 2006) are a technique to overcome data
sparsity. Additionally to the created n-grams, k-skip-n-grams are formed by
“skipping” tokens and allowing adjacent sequences of words. For example,
applying skip-grams to a trigram model using the sentence “I hit the tennis

5

2 Related Literature and Theoretical Focus

ball” skipping the token “tennis” will also create the feature “hit the ball”,
which might be an equally important feature.
Formally, k-skip-n-grams for a sentence w1...wm are defined as follows:

{wi1 , wi2 , ..., win |
n

∑
j=1

ij − ij−1 < k} (2.1)

Where k is defined as the skip distance to construct the n-gram.

It is worth mentioning that skip-grams will generate many useless n-gram
features and will blow up the feature space, especially when choosing a
high value for n. D. Guthrie et al., 2006 demonstrates in their research that
skip-grams can accurately model context while keeping misinformation to
a minimum. The results furthermore suggest that skip-grams are especially
useful when the test corpus is similar to the training corpus.

2.2 Issues in Feature Engineering

The encoding and selection of features for a learning algorithm is essential
and can have an enormous impact on the resulting language model. In
this section we discuss possible problems which could arise in the creating
feature sets.

2.2.1 Signal and Noise

In general, signal refers to the underlying pattern we want to learn from data.
In the context of text classification the main goal is to detect meaningful
words and phrases from text. Noise refers to irrelevant information or
randomness in a dataset. For text classification, there is no clear definition
for the concept of noise. One obvious definition could be any form of
text different from the intended, including spelling errors, errors from
speech recognition or handwriting recognition. J Ross Quinlan, 1986 lists
faulty measurement, ill-defined threshholds (e.g., when is a person “tall”?)
and subjective interpretation (e.g., what criteria are used when describing

6

2.2 Issues in Feature Engineering

a person as “athletic”?) as sources for noisy data. In general, a feature
becomes a noise feature when it increases the classification error (Manning,
Raghavan, Schütze, et al., 2008). This usually happens when rare terms with
no information about a class appear especially in one class in the training
data. A similar problem to noise is missing values. The impact on noise
highly depends on the chosen feature representation. A simple bag of words
representation might handle missing values better than a phrase-based
representation. However, noise can have significant impact on classification
performance (David Dolan Lewis, 1992; J Ross Quinlan, 1986).

2.2.2 Overfitting

A supervised learning model is usually trained in order to generalize to
situations which didn’t occur in the training data. A model is overfitted if it
models the training data too well but fails to generalize to new examples.

On the other hand, it is possible that a training corpus is to simple to produce
a representative model. In this case the model is underfitted. Underfitted
models thend to have a high bias and low variance, while overfitted models
usually have a high variance.

To balance the size of the training data is a well known problem in machine
learning which is referred to as bias-variance tradeoff or bias-variance
dilemma (Geman, Bienenstock, and Doursat, 1992). We will discuss this
topic in more detail in section 2.5.2.

There are numerous ways to prevent overfitting such as cross-validation fea-
ture selection (section 2.4). Furthermore, many machine learning algorithms
include techniques to constrain the complexity of the model. For example,
decision trees (section 2.7) address overfitting by pruning the tree after the
learning phase.

2.2.3 Data Sparsity

Allison, D. Guthrie, and L. Guthrie, 2006 define data sparsity as the phe-
nomenon of not observing enough data in a corpus in order to model

7

2 Related Literature and Theoretical Focus

language accurately. Language is a system of rare events, various and
complex, such that true observations cannot be made. Natural language
processing typically gathers information from a corpus to create a probabil-
ity distribution. In many cases, meaningful but unobserved features would
be assigned zero probability because of insufficient data.

An often proposed approach to address data sparsity is using smoothing
techniques. Smoothing takes some probability “mass” away from sequences
seen before, in order to be assigned to sequences which have not been seen.
Another very interesting approach to tackle the data sparsity problem is the
use of skip-gram modelling (see section 2.1.5).

2.3 Feature Weighting

One very simple method of weighting features is to simply assign a boolean
value to each term in the document indicating whether the term occurs in
the document. This weighting strategy is called the Binary Independence
Model (Robertson and K. S. Jones, 1976). “Independence” indicates that
there are no associations recognized between terms, which is not correct for
text classification. This assumption is also found in the Naive Bayes model
which we will discuss in detail in section 2.6. As pointed out by Manning,
Raghavan, Schütze, et al., 2008, one problem of binary assessments is that
they do not capture any nuances. The relevance of a term in a document
is an absolute decision. Other approaches are based on the following idea:
terms which occur more often should receive a higher score. Therefore we
could use the number of occurrences of a word as a weighting schema also
known as the term frequency denoted by t ft,d for a term t in a document
d.

Another popular term weighting method is the t f − id f term weighting
(Sparck Jones, 1972), where t f − id f means term-frequency times inverse
document-frequency. The measure is defined as follows:

t f − id f (t, d) = t f (t, d) ∗ id f (t) (2.2)

8

2.4 Feature Selection

The id f is computed as

id f (t) = log
1 + nd

1 + d f (d, t)
+ 1 (2.3)

where nd is the total number of documents and d f (d, t) is the number of
documents containing term t.

2.4 Feature Selection

The fundamental idea of feature selection is to construct feature subsets that
are useful for building a machine learning model while excluding irrelevant
features (I. Guyon and Elisseeff, 2003). Especially in text classification, fea-
ture selection is an often studied problem (for instance: Yang and Pedersen,
1997; Joachims, 1998; Koller and Sahami, 1997) due to the high dimensional-
ity of the feature space. The phenomen that, with a high number of features
or dimensions we need more and more data to generalize accurately is
called the curse of dimensionality and is well known in machine learning.

We define feature selection, often also refered as dimension reduction or
feature subset selection, as the process of selecting a subset of d features
from the original set of D features, where d < D.

In general, feature selection is performed for numerous reasons:

• Reduced training times
• Increase prediction accuracy
• Better generalization
• Interpretability: Feature selection reduces the complexity of a model

and makes it easier to interpret

9

2 Related Literature and Theoretical Focus

2.4.1 Filter Methods

Filter methods apply some statistical measure to assign a score to each
feature. The resulting scores are then sorted and only the k− best features
are subsequently used for classification.

This is a widely used approach for feature subset selection in text clas-
sification. For example Yang and Pedersen, 1997 and Forman, 2003 give
an extensive overview on various ranking criteria used in text classifica-
tion. The methods are very effective in computation time, since only the
computation and sorting of n scores is required. Additionally, methods
are robust against overfitting by considerably reducing variance (Friedman,
Hastie, and Tibshirani, 2001). The main disadvantage is that relationships
and dependencies between features are ignored. Filter methods are mainly
used as a preprocessing step, independent of the choice of the classification
algorithm.

In this thesis we consider two popular filter methods, namely χ2 (Section
2.4.1) as well as information gain (Section 2.4.1).

χ2 Measure

The χ2 test measures the independence of two events A and B. In our case A
and B are the occurrence of a term and a document. The equation is defined
as follows:

χ2 =
n

∑
i=1

(Oi − Ei)
2

Ei
(2.4)

Oi is defined as the observed frequency of a term in a document, while Ei
is the expected number of occurrences, assuming the feature occurence is
independent of the class value.

10

2.4 Feature Selection

Information Gain

One important concept in information theory is information gain (IG). It
measures the amount of information, one random variable contains about
another random variable.

Entropy measures the information content of a random variable. More
precisely, entropy measures is a measure of unpredictability or impurity.
For a discrete random variable X with alphabet χ and a probability mass
function p(x), we define the entropy as:

H(X) = − ∑
x∈χ

p(x)log2p(x) (2.5)

Furthermore, the conditional entropy for a joint probability mass function
p(x, y) and two random variables X and Y is defined as:

H(X|Y) = − ∑
x∈χ

∑
y∈γ

p(x, y)log2p(x, y) (2.6)

Finally, we define the information gain as:

IG(Y|X) = H(Y)− H(Y|X) (2.7)

In machine learning information gain is often used for feature selection.
IG reduces the uncertainty of a random variable Y by subtracting the
knowledge we gain, once X is known.

2.4.2 Wrapper Methods

Wrapper methods (Kohavi and John, 1997) search for an optimal subset
of features by searching through the space of feature subsets. Each subset
is tried with the learning algorithm. The combination yielding the best
performance is selected.

In particular, forward and backward selection are used for wrapper meth-
ods. In forward selection, each unselected feature is added to the feature

11

2 Related Literature and Theoretical Focus

subset. The feature with the highest increase in performance is choosen.
The algorithm terminates when there is no more increase in performance.
Backward selection methods start with the whole feature set and try to
remove features. As with forward selection, this step is repeated until no
performance improvement is observed.

Since wrapper methods are computationally very expensive, studies often
use low dimensional feature sets (e.g. Kohavi and John, 1997; I. Guyon,
Weston, et al., 2002). However, these studies often find that wrapper methods
perform best (Forman, 2003).

Recursive Feature Elimination

The recursive feature elimination (RFE) method (I. Guyon, Weston, et al.,
2002) is the process of repeatedly removing unimportant features. At first, a
classifier is trained to determine the importance of each feature. The least
important feature is then pruned from the feature set. This procedure is
repeated, until the desired number of features is reached. In order to increase
performance, it is also possible to remove more then one feature at each
iteration. Although RFE was introduced using Support Vector machines, it
has also been used with different classification algorithms (See for example
Granitto et al., 2006).

2.5 Text Classification

Text classification is the task of assigning predefined classes to new docu-
ments. Furthermore, we define a classification task where a given object is
assigned to one of two classes as binary or binomial classification or simply
two-class classification.

Classification is a field which has many applications. For instance, it can be
used to assign images into classes, the detection of spam e-mails or speech
recognition.

12

2.5 Text Classification

In this study we focus on the task of classifying documents which is referred
to machine learning-based text classification. The corpus is usually divided
into training data and test data including the labels for each document,
where labeling is the process of assigning one class to each document.
Using supervised learning, the decision criterion of the classifier is learned
automatically from the training data.

In the next section we describe the text classification problem more formally.
In section 2.5.2 we deal with the bias-variance tradeoff, also known as bias-
variance dilemma. Subsequently, we focus on classification algorithms which
are used for our experiments. We begin with the Naive Bayes in section 2.6,
a simple, yet very efficient and often used classification algorithm. Section
2.7 covers Decision Tree Learning. Support Vector machines are discussed
in section 2.8.

2.5.1 The Text Classification Task

We define the text classification problem as the task of assigning a doc-
ument di from the entire document space D to a class c from a fixed set
of classes C = {c1, c2, ..., cn}. A document may be assigned assigned to
multiple classes, wich is often referred to as any-of problem or ranking clas-
sification (Manning, Raghavan, Schütze, et al., 2008; Ikonomakis, Kotsiantis,
and Tampakas, 2005). In this thesis we focus on one-of problems where a
document is a member of exactly one class.

2.5.2 The Bias-Variance Tradeoff

One important concept in machine learning is the bias-variance tradeoff.
The bias defines the error from wrong assumptions the learning algorithm
makes resulting from the lack of domain knowledge. Therefore, a high
bias result in underfitting. For instance, linear models like Naive Bayes
have a high bias for non-linear problems. On the other hand, a non-linear
method such as the k-nearest neighbor tend to have a low bias (Manning,
Raghavan, Schütze, et al., 2008). Variance, on the other hand, measures the

13

2 Related Literature and Theoretical Focus

inconsistency of a model. Machine learning models with high variance are
typically accurate on average, but inconsistent.

The bias-variance tradeoff was introduced by Geman, Bienenstock, and
Doursat, 1992. He argues that there is often a trade-off between the bias
and variance to the estimation error. Variance is typically reduced by using
smoothing which will on the other hand increse the bias. It is then a matter
of weighting the assets of bias and variance to a specific application.

2.6 Naive Bayes Text Classification

The naive Bayes classifier is a very popular supervised learning method
which is also often used in text classification tasks. An increasing number of
studies (for instance David D Lewis and Ringuette, 1994; Koller and Sahami,
1997) have been published on this classification algorithm. The Bayesian
approach for classifying a new instance is to assign the class with the
highest probability. The most likely class is computed using the maximum
a posteriori probability estimate:

cmap = arg max
c∈C

P̂(c|d) = arg max
c∈C

P̂(c) ∏
1≤k≤nd

P̂(tk|c) (2.8)

P̂ indicates that we don’t know the true values for parameters P(c) and
P(tk|c), but only the estimates from the training set.
Equation 2.8 multiplies many probabilities which could easily result in a
floating point underflow. To avoid this problem, it is more common to add
logarithms of probabilities instead of multiplying probabilities. Therefore,
in most implementations of NB, the computation is done like this:

cmap = arg max
c∈C

[logP̂(c) + ∑
1≤k≤nd

log P̂(tk|c)] (2.9)

The conditional parameter log P̂(tk|c) indicates how good the term tk is
for c. The prior log P̂(c) is the relative frequency of c (Manning, Raghavan,
Schütze, et al., 2008).

14

2.6 Naive Bayes Text Classification

2.6.1 Properties of Naive Bayes

One important aspect of the Naive Bayes (NB) classifier is the independence
assumption, which states that the word probabilities for one text position
are independent of the words that occur in other positions (Mitchell, 1997).
Taking a closer look on text classification tasks and language in general, this
is clearly not correct. Despite this limitation the NB classifier has proven to
be very successful in many domains, including text classification problems
(Domingos and Michael J Pazzani, 1996; David D Lewis, 1998; McCallum,
Nigam, et al., 1998).

Domingos and M. Pazzani, 1997 argues the reason that NB often performs
well in text classification tasks is that the probability estimation is often of
low quality and estimates diverge significantly from the highest score but
the “winning” class, which is also often the correct class in NB has a much
larger probability than the other classes. Hence, despite the fact that the
estimates are bad naive bayes often performs very well.

Another strength of NB is efficiency. The training phase as well as predictions
can be accomplished with one pass over the data. This is obviously optimal
because we have to look at the data at least once (Manning, Raghavan,
Schütze, et al., 2008).

2.6.2 The Multinomial Naive Bayes

One learning method we use in the evaluation phase is the multinomial
NB. The multinomial model simply counts the occurrences of words in
the document representing the data as count vectors. The distribution is
parametrized by vectors θy = {θy1, ..., θyn} for each class. The parameter θy
is estimated by a smoothed version of the maximum likelihood estimator:

θ̂yi =
Nyi + α

Ny + αn
(2.10)

where Nyi is the number of occurrences for feature i that appears in a docu-
ment d of class y in the training set and Ny is the total count of all features
for class y. α describes the smoothing parameter. One transformation to the

15

2 Related Literature and Theoretical Focus

count vectors is tf-idf term weighting, as described in section 2.3, which is
also known to work well in practice (Buitinck et al., 2013).

As with language modeling, using the maximum likelihood estimation
creates the problem of zero estimates leading to sparse data. One approach
to overcome this problem is smoothing. Smoothing is a technique to adjust
the maximum likelihood estimator. Probability is taken away from some
occurrences and redistributed to other words. Smoothing is a well studied
area of research (see for instance Song and Croft, 1999; J. T. Goodman,
2001). Chen and J. Goodman, 1996 provided a detailed study on smoothing
techniques for language modeling. However, in this study we limit the
smoothing techniques to lidstone smoothing (Lidstone, 1920; Johnson, 1932;
Jeffreys, 1948) and Laplace smoothing (Manning, Raghavan, Schütze, et al.,
2008). Setting α = 1 is known as Laplace or additive smoothing and setting
α < 1 is refered to as Lidstone smoothing.

Laplace smoothing eliminates the problem of zero probabilities, however,
Chen and J. Goodman, 1996 pointed out that phrases which didn’t occur
in the training corpus such as burnish the and burnish thou will be assigned
the same probability, although the latter is far more likely. In fact, Gale and
Church, 1994 performed a study on the add-one smoothing with the expres-
sive title “What’s Wrong with Adding One?”. They argue that adding-one
performs even worse than MLE and that estimators such as the Good-
Turing estimate (Good, 1953) should be preferred. Nevertheless additive
smoothing is an often used technique for the NB classifier as well as lan-
guage modelling. Often Laplace smoothing is used, despite the fact that
other smoothing techniques have shown better results (Manning, Raghavan,
Schütze, et al., 2008; Chen and J. Goodman, 1996). As already mentioned
above there are severial variants of NB classifier, but it has been shown
for text categorization problems, the multinomial model is most often the
best choice (Eyheramendy, David D Lewis, and Madigan, 2003; McCallum,
Nigam, et al., 1998).

16

2.7 Decision Tree Learning

2.6.3 The Bernoulli Model

An alternative model to the Multinomial Naive Bayes is the Bernoulli
model which generates binary valued feature vectors, either 1 indicating
the presence of a term in the document or 0 indicating the absance.

The decision rule for Bernoulli naive Bayes is defined as:

P(xi|y) = P(i|y)xi + (1− P(i|y))(1− xi) (2.11)

where P is the conditional probability of class y containing term xi.

By ignoring the number of occurences, the Bernoulli model typically makes
mistakes when classifying long documents whereas it has to be proven to be
more stable on short documents (Buitinck et al., 2013; Manning, Raghavan,
Schütze, et al., 2008). However, high variance in document length might
cause problems because it is simply more likely for a word to appear in a
longer document (McCallum, Nigam, et al., 1998).

2.7 Decision Tree Learning

Decision tree learning is a method for approximating discrete-valued target
functions. The learned function is represented by a decision tree. A decision
tree is a tree-like graph or model where features are represented by attribute-
value pairs. Each (non-leaf) node specifies a test of some attribute of the
instance, each branch corresponds to a possible value of the attribute (the
outcome of the test) and each leaf note corresponds to a class label. Learned
trees can also be represented as sets of if-then rules. The classification
process starts at the root node of the tree, testing all attributes specified by
this node and moving down to the corresponding tree branch. This process
is repeated until a class label is found (Mitchell, 1997)

One advantage of decision trees is, that it consists of a white box model.
This means, in contrast to a black box model like a neural network, each
decision can be explaind using boolean logic. In terms of performance, the

17

2 Related Literature and Theoretical Focus

prediction time is logarithmic in the number of data points (i.e. the depth of
the tree).

However, Decision trees tend to overfit. Mechanisms such as pruning or
limiting the tree size in advance are often used to avoid this issue.

The focus on the remainder of this section lies on discussing different tree
creation algorithms as well as

2.7.1 Tree Algorithms

The Iterative Dichotomiser 3

The basic idea behind the ID3 (short for Iterative Dichotomiser 3) (J. Ross
Quinlan, 1986) is building the tree iteratively by choosing the best attribute.
Trees are grown to their maximum size. This process is is a greedy algorithm,
not including any backtracking to reconsider earlier choices. The selection
criterion for the ID3 algorithm is called information gain, measuring how
well a given attribute separates the training examples according to their tar-
get classification. Before we define information gain, we first need to define
another quality measure, defining the purity of of an arbitrary collection of
examples, which is called entropy. The entropy of a collection of examples S
is defined as follows:

Entropy(S) = ∑
y
−pylog2py (2.12)

where py is the proportion of S belonging to class y. The information gain,
measuring the effectiveness of an attribute is defined as:

Gain(S, A) = Entropy(S)− ∑
v∈Values(A)

|Sv|
|S| Entropy(Sv) (2.13)

where Values(A) is the set of all possible values for attribute A and Sv is the
subset of S for for which attribute A has value v (i.e. Sv = {s ∈ S|A(s) =
v}) (Mitchell, 1997). The ID3 algorithm has some practical issues, such as
overfitting resulting from the fact that it grows each branch of the tree

18

2.7 Decision Tree Learning

perfectly fitting the training data. One common technique to overcome this
problem is post-pruning of the decision tree (Mitchell, 1997). J. Ross Quinlan,
1987 describes other methods to deal with overfitting. For example, reduced-
error pruning replaces each node with the best possible leaf (i.e. the most
popular class). The change is kept if the new tree would give an equal or
fewer number of errors. Another method is called cost-complexity pruning.
This strategy generates a series of trees T0...Tm where T0 is the original tree
and TM is just the root. The subtree minimizing the error rate is chosen for
removal. The best tree is chosen by generalized accuracy by a training set or
cross-validation. However, there are a large variety of extensions to the basic
ID3 algorithm. In the next two sections (sections 2.7.1 and 2.7.1) we discuss
two very popular algorithms derived from the basic ID3 algorithm.

The initial definition of ID3 only uses discrete valued attributes. This restric-
tion can be removed so that continuous-valued decision attributes can be
used in learning the tree. This is done by dynamically creating a threshold
c and a new boolean attribute Ac for a continuous-valued attribute A. Ac
is true if A < c and otherwise false. The threshold is picked in a way that
produces the greatest information gain. This is accomplished by sorting the
examples according to the attributes and then identifying adjacent examples
that differ in their target classification. A set of candidate thresholds lying
midway between the corresponding values of A can then be generated.
Fayyad, 1992 shows that the value of c that maximizes the information gain
must lie in such a boundary. Extensions to this approach, splitting attributes
into multiple intervals have been discussed by Fayyad and Irani, 1993. An-
other strategy is defining features by thresholding linear combinations of
several continuous-valued attributes (Utgoff, 1991; Murphy and Michael J.
Pazzani, 1994).

The C4.5 and C5.0 Algorithm

The C4.5 algorithm (J Ross Quinlan, 2014) is the successor to ID3. The
algorithm can be summarized by the following steps:

1. Build the decision tree from the training set, allow overfitting to occur.
2. Convert the learned tree into an equivalent set of if-then rules by

creating one rule for each path from the root node to a leaf node.

19

2 Related Literature and Theoretical Focus

3. Prune each rule by removing preconditions that result in improving
its estimated accuracy.

4. Sort the rules by their estimated accuracy in which they should be
applied.

Rules are always be pruned in a way that the removal doesn’t worsen the
estimated accuracy. It is common to estimate the rule accuracy by using a
data set disjoint from the training data. Another strategy, used by C4.5, is the
evaluation of the training data itself by using a pessimistic estimate. For this
purpose the rule accuracy over the training examples is calculated followed
by the standard deviation in this estimated accuracy assuming a binomial
distribution. The lower-bound estimate is then taken as the measure of rule
performance.

The C5.0 is Quinlan’s latest version of the algorithm. While using less
memory then the C4.5, it improves accuracy. (Buitinck et al., 2013; R. Pandya
and J. Pandya, 2015)

The CART Algorithm

CART (short for Classification and Regression Trees) is very similar to the
C4.5 algorithm. The algorithm was first introduced by Olshen, Stone, et al.,
1984. It differs in that it supports numerical target variables (regression) and
does not compute rule sets. Instead, CART constructs binary trees based on
an exhaustive search of all possibilities. Choosing the decision criteria for
splitting the tree has a high impact on accuracy.

2.7.2 Feature Importance

Decision trees are built top-down from a root, partitioning the data into
subsets. This is done by choosing a decision critierion for splitting nodes.
Common strategies include the gini index (Gini, 1912) and information gain
(equation 2.12).

20

2.7 Decision Tree Learning

Like entropy, the gini impurity is a measure of impurity. It is defined as:

G = 1−
C

∑
c=1

p2
c (2.14)

where pc is the probability of a class.

The feature importance for each node is defined as the total decrease in
node impurity. This measure is also often refered to as gini importance
(Breiman et al., 2005). It can be computed using the following equation:

Nt/N ∗ (G− NtR/Nt ∗ GR − NtL/Nt ∗ GL) (2.15)

where N is the total number of samples, Nt is the the number of samples at
the current node and NtR and NtL are the left and right children.

Decision trees can often create very complex structures which will result
in overfitting. Techniques such as pruning or limiting the depth of a tree
are used to avoid this issue. However, when using decision trees for feature
selection, expressive trees might be more desireable to obtain as much
information as possible.

2.7.3 Ensemble Methods and Random Forest Classifiers

Ensemble methods combine several machine learning models into one
predictive model to produce better results. The aim of this technique is to
decrease the variance or bias of a single model.

Two very common techniques to achieve this goal are called bagging and
boosting. Bagging is used to reduce the variance by creating several subsets
of the training data randomly. Each subset data is then used to train a
classifier. The predictions from the different models in the ensemble are
averaged to create a more stable learner. While bagging builds each model
independently, boosting builds a new learner sequentially, taking the success
of the previous model into account.

21

2 Related Literature and Theoretical Focus

Random forests are an extension over bagging. A Random forests creates
a set of decision trees by selecting subsets of the training data as well as
subsets of features randomly. The best split for each tree is therefore picked
among a random subset of features. While this results in an increasing bias,
the variance also decreases, which usually results in a better model overall
(Buitinck et al., 2013).

The feature importance for random forests is computed for each tree as
described in section 2.7.2 and then averaged over all trees in the ensemble.

2.8 Support Vector Machines

Support vector machines (SVMs) (Boser, I. M. Guyon, and Vapnik, 1992;
Vapnik, 1995) were introduced as a supervised learning model used for
classification, regression and outliers detection. SVMs try to find a decision
plane (or boundary) drawn in the middle of the void between data points
and therefore maximizing the margin between data points in different
classes. In general, SVMs can solve linear and nonlinear problems. In this
study we experiment only with a linear kernel function. Other kernel
functions are more complex to weight, since they are transformed in another
dimensional space. The possibility to use nonlinear kernel functions is
discussed in section 6.

Given training data of n points as pairs (~xi, yi). In case of linear separable
training data, the hyperplane is written as

~w ·~x− b = 0 (2.16)

where ~w is the normal vector to the hyperplane and b is a bias. Assuming
training data which is not linear separable, linear SVM solves the following
optimization problem:

min
w

1
2

wTw + C
n

∑
i=1

ξ(w; xi, yi) (2.17)

where ξ(w; xi, yi) is the loss function and C is a penalty parameter. The
two common loss functions are referred to as L1-SVM, which is defined

22

2.9 Evaluation of Text Classification

as max(1− yi, wTxi, 0), and the L2-SVM, written as max(1− yiwTxi, 0)2. It
is possible to include a bias term b by augmenting the vector w and each
instance xi with an additional dimension: wT ← [wT, b], xT

i ← [xT
i , B], where

B is a constant value (Fan et al., 2008).

For binary classification, a data point ~x is predicted as positive if ~wT~x > 0
and negative otherwise. For multi-class classification, we applied the one-
vs-the-rest strategy (Hsu, Chang, Lin, et al., 2003) in the evaluation phase.

SVMs in general are very effective in high dimensional space and work
well with sparse document vectors which is characteristic for text classifica-
tion. For instance, Joachims, 1998 applied SVMs to text classification and
discovered that SVM outperforms all other classification methods.

2.8.1 Feature Importance

A linear SVM creates a hyperplane that uses support vectors to maximise
the distance between classes. The coefficients of the classifier represent the
vector coordinates which are orthogonal to the hyperplane. The direction of
the coefficients indicates the predicted class. The absolute size of coefficients
in relation to each other can be used to determine the importance of features.
Those values represent the feature weights.

The feature weights for selecting features are the weights given by equation
2.17. In the evaluation phase a L1-regularized SVM is used for feature
ranking. This Setting will result in very sparse weight matrices and is often
used to identify important features (Fan et al., 2008). For that reason, we
expect that this setup will perform best when selecting a very small number
of features.

2.9 Evaluation of Text Classification

One objective when using a text classification algorithm is the minimization
of classification error on the test data. However, measuring accuracy is
often considered a bad approach, especially for skewed datasets. A skewed

23

2 Related Literature and Theoretical Focus

dataset is a dataset where one class is over-represented. A classification task
might seem to perform well by simply never predicting small classes (i.e.
the percentage of documents in the class is very low), and still receive a
high accuracy. There are multiple ways to deal with skewed datasets. For
example, stratified sampling creates training and test data where classes are
well balanced.

For model evaluation other measures than accuracy are better suited, namely
precision (equation 2.18), recall (equation 2.19) and the F1 measure (equa-
tion 2.20). Precision tells us the fraction of retrieved documents which are
relevant, while recall is the fraction of relevant documents that are retrieved.
More formally:

precision =
tp

tp + f n
(2.18)

recall =
tp

tp + f p
(2.19)

where tp (true positives) is the number of documents correctly assigned as
positive by the classification model, f n (f alse negative) is the number of
incorrectly assigned negative results and f p (f alse positive) is the number
of incorrectly assigned positive results. The F1 measure (introduced by Van
Rijsbergen, 1979) is the weighted average of precision (p) and recall (r). It is
computed as:

F1 =
2pr

r + p
(2.20)

2.9.1 Binary and Multi-class Evaluation

Some metrics, such as F1 score are defined for binary classification. However,
it is possible to extend those metrics for multi-class classification. In our
study we use a macro-average F1 score, which calculates the mean of all
binary metrics, weighting all classes equally. The macro-average is well
suited for our purpose since we know that the text corpus used for multi-
class classification is partitioned roughly evenly (see section 4.1.1) over all
classes. Other measures, such as micro-average or weighted F1 score are
preferred if classes are uneven in size.

24

3 Algorithm

In this chapter, we present the dynamic n-gram based feature selection
algorithm for supervised learning problems. First, we will discuss how
the basic forward selection method works and how it is implemented.
Afterwards we will discuss different parameter settings for performance
tuning.

3.1 N-Gram Based Feature Selection

The main goal of this study is to select features dynamically, considering
the importance of features given an estimator that assigns feature weights.
We refer to the subset of features, which are considered important by the
external estimator, as support.

Based on the ranking criterion, an iterative forward selection method is
applied for feature subset selection: First, we start with a subset of the
feature space, consisting of all unigrams. The algorithm then performs the
following steps for each n in our n-gram range, starting with n = 2:

1. The external estimator is trained on the feature subset in order to
obtain the importance of each feature.

2. The estimators support is used to extend our feature space by higher
order n-grams (e.g. bigrams for n = 2). A n-gram is added to the
feature space if any support feature is a subset of the n-gram.

We define a n-gram as a subset of a higher order n-gram if the n-gram is
contained in the higher order n-gram, i.e. the n-gram is a subset of the higher
order n-gram. Vice versa, a higher order n-gram might be a superset of a

25

3 Algorithm

n-gram. (e.g. “ coffee” is a subset of “drinks coffee”). Based on this definition
we define the selection criterion as:

∃x ∈ support : x ⊂ f eature (3.1)

Algorithm 1 provides a representation in the form of pseudocode for the
described feature selection method.

In the following sections we will evaluate the performance of the proposed
algorithm, given various ranking criteria, using different input parameters.
We will focus on the following corner points:

1. How can we determine the importance of features
2. What is a good ranking criterion for our feature selection algorithm.
3. How is hyper parameter tuning influencing our results
4. Can our algorithm compete with state of the art feature selection

methods

3.2 Variations

In our study we experimented with different variations of the presented
algorithm. In the following two sections we introduce some modifications
of the presented algorithm and how we expect the results to change.

3.2.1 Alter the Selection Criterion

We can alter the selection criterion from our algorithm, defined in equation
3.1, such that it is necessary that both sub-features must be contained in
the current support in order to be selected. More formally we define the
alternative selection criterion as:

∃x, y ∈ support : (x, y) = f eature (3.2)

26

3.2 Variations

Algorithm 1 n-gram based feature selection
Require: X: Training examples - the document-term matrix, y: Class labels

(i.e.the target vector relative to X)
1: function fit(X,y)
2: n← The upper bound of the n-gram range
3: estimator← The scoring estimator that provides the feature importance
4: num components← The percentage of features to select during each iteration.
5: n grams← Contains a list of extracted n-grams for each n
6: prune zero score← if true, features with score zero are pruned at each iteration
7:
8: selection← n grams[1]
9: X trans f ormed← transformed version of X, containing all unigrams

10: estimator. f it(X trans f ormed, y)
11: if prune zero score then
12: Remove features from current selection with score eqal to zero
13:
14: for i = 2 to n do
15: support← estimator.get support()
16: current selection← array()
17: for f eature in n grams[n] do
18: if ∃x ∈ support : x ⊂ f eature then
19: current selection← current selection ∪ f eature
20: selection← selection ∪ current selection
21: X trans f ormed← transformed version of X,
22: containing all features from current support
23: estimator. f it(X trans f ormed, y)

27

3 Algorithm

This alteration will result in a much smaller feature space. Moreover, it is
even possible that no feature will be selected at all for the next iteration.
One possibility is to combine this method with skip-grams (see 2.1.5). We
will discuss the results of this approach in chapter 5

3.3 Implementation Details

3.3.1 Machine Learning Tools

The proposed algorithm is implemented using the programming language
python. Furthermore, data mining and data analysis frameworks are used
for evaluation. Next to various essential python libraries, mainly numpy
and Scipy (Stéfan van der Walt and Varoquaux, 2011), we would like to
mention some frameworks in particular. Classification algorithms are based
on the scikit-learn machine learning library (Pedregosa et al., 2011). We also
used NLTK (Loper and Bird, 2002) for various preprocessing tasks such as
sentence tokenizing. Graphics are created using matplotlib (Hunter, 2007).

3.3.2 Feature Extraction

Scikit-learn already offers an iterface for extracting and transforming the
20newsgroups. The Reuters-21578 dataset on the other hand, was down-
loaded directly from the UCI machine learning repository and transformed
manually.

3.3.3 Data Transformation

Next to a document-term matrix and a target vector, n-Gram based feature
selection requires the information, which features to select for each iteration
(i.e. the subsets for all feature) from the current support. To store this
information a m ∗ m matrix is used, where m is the number of features.
Since we expect this matrix to be sparse, the data structure we use is a

28

3.3 Implementation Details

sparse matrix. Although for constructing, a linked list sparse matrix is used
(E. Jones, Oliphant, Peterson, et al., 2001–). The process of constructing
this matrix is executed before the actual feature selection and completely
encapsulated. Hence, there is no context between feature selection and text
data. This approach has multiple advantages. First of all, the memory cost
is very low. The whole model can therefore be easily saved, refitted and
copied, which especially comes in handy when using Grid Search and Cross
Validation. Considering time complexity, since sparse matrices are only
saving the indices of non zero values, accessing a particular feature from
the feature space can be done in O(1). Additionally, by encapsulating this
step, our feature selection method is not limited to text classification tasks,
but can also be used on any data with similar characteristics.

29

4 Empirical Evaluation

In this chapter we provide the results from testing different input parameter
settings for the proposed feature selection algorithm as well as for the
classification algorithm used for evaluating feature selection performance.
The main goal is to find good values for k, the percentage of features
selected from our algorithm in each iteration. Furthermore we will look at
the different variations introduced in section 3.2.

4.1 Data Sets

4.1.1 The 20 Newsgroups Dataset

The 20 newsgroups dataset (collectecd by Lang, 1995) consists of approxi-
mately 20000 newsgroups post on 20 topics. It can be directly downloaded
using the python library scikit-learn (Stéfan van der Walt and Varoquaux,
2011). The classes are partitioned roughly even. We removed headers and
footers from the samples in the preprocessing phase.

One interesting characteristics of this dataset is, that some classes are closely
related to each other (e.g. rec.autos and rec.motorcycles) while others are
highly unrelated (e.g. sci.crypt and soc.religion.christian). Considering only
a subset of those classes might have a not to be underestimated impact on
evaluation results. For this dataset, multi-class classification is used. One
subset of the whole corpus used in the evaluation section is limited to 4

classes:

• alt.atheism
• comp.graphics

31

4 Empirical Evaluation

• talk.religion.misc
• sci.space

The dataset consists altogether of 2034 documents and roughly 26500 differ-
ent tokens.

In another set of experiments we used the following set of classes:

• alt.atheism
• comp.graphics
• comp.os.ms-windows.misc
• comp.sys.ibm.pc.hardware
• comp.sys.mac.hardware
• comp.windows.x
• misc.forsale
• rec.autos
• rec.motorcycles
• rec.sport.baseball
• rec.sport.hockey

We also use the full 20 newsgroups dataset to compare the results from our
experiments. In addition, we perform experiments on a preprocessed version
of the 20 newsgroups dataset (Cardoso-Cachopo, 2007). The preprocessed
version also uses stopwords, words with less than 3 characters are removed
and the whole dataset is stemmed. There are also additional adjustments
like substituting tabs and newlines by spaces. Furthermore, only letters are
kept, punctuation, numbers etc. are turned into spaces. For this dataset, we
applied t f − id f term weighting (see section 2.3).

4.1.2 The Reuters Dataset

We downloaded the Reuters-21578 dataset from the UCI machine learning
repository (Lichman, 2013). The extracted data consists of 6463 documents
and about 25800 different tokens. In contrast to the 20 Newsgroups dataset,
we use binary classification, distinguishing between the topic acquisition and
all other categories.

32

4.2 Document Data Preparation

4.2 Document Data Preparation

The raw training data we use for evaluation is already vectorized and
weighted before it can be used for a classification task. For feature weighting
we test the term frequency (TF) in combination with the inverse document
frequency (IDF). Additionally, we experiment with skip-gram vectorization,
different term-removal thresholds as well as a stop word list for the English
language (Buitinck et al., 2013). We tested different ranking criteria with
various hyper parameter settings and then tested the performance with
various classification tasks.

4.3 Evaluation Metrics

After applying our feature selection method, the resulting subset is evaluated
using various classification algorithms. To evaluate the performance of
feature selection methods we will use the measures precision, recall, F1,
and accuracy. For multiclass classification we use macro averaged precision,
recall and F1 measure, since the 20newsgroups dataset is evenly partitioned
(See section 4.1.1).

4.4 Binary and Multiclass Classification

For classification tasks like the naive bayes classifier or linear SVM, the
model coefficients are used to predict feature importance. For binary classi-
fication, each feature is given a weight, representing the importance for each
feature. However, in multiclass classification, the coefficients are are given
in the form of a n ∗ k matrix, where k is the number of features and n is
the number of classes. In this case, feature coefficients are simply summed
up.

33

4 Empirical Evaluation

4.5 Hyper Parameter Tuning

For hyper parameter tuning we use an exhaustive Grid-search on specific
input parameters, testing every possible combination of parameter values.
In addition, we use randomized search for some classification algorithms to
determine good input parameter values (Buitinck et al., 2013).

V-fold cross validation is performed on the dataset, dividing the dataset
in v equaly sized subsets. One subset is tested using a classifier trained on
the remaining v− 1 subsets. The overall performance is the average of all
computed folds. This is a common practice to avoid overfitting (Buitinck
et al., 2013; Hsu, Chang, Lin, et al., 2003). For grid search and random search
we use a 3-fold cross validation for model evaluation.

34

5 Experimental Results

5.1 Hyper Parameter Tuning

5.1.1 Term Weighting with Naive Bayes Classification

We analyse the effect of smoothing the classifier using a Grid-search with
cross validation. Using our feature selection algorithm, we start a n-gram
range of one to three. Smoothing is only used on the classification algorithm.
Using smoothing on the ranking criterion has no effect, since the order of
the features doesn’t change.

In our first set of experiments we use the Bernoulli NB classifier for feature
weighting as well as for classification. We used the 20newsgroups dataset
as well as a trigram vectorization. This setup performs very poorly, but can
be improved slightly when altering the selection criterion as discussed in
section 3.2.1, as can be seen in figure 5.1.

The best results for Bernoulli feature weighting is achieved using the altered
selection criterion. Using this setup, performance reaches its peak when
selecting about 30% of all features for each iteration. However, for k > 0.3,
the model is apparently overfitted, but can be stabilized by choosing a small
value for α.

The same input setting for term weighting as well as for classification with
a multinomial NB performs better overall, as can be seen in figure 5.2.

Interestingly, when choosing a high value for k, in contrary to the Bernoulli
Naive Bayes, the multinomial Naive Bayes works better with Laplace smooth-
ing. We can observe a similar pattern when using 2-skip-3-gram vectoriza-

35

5 Experimental Results

Term frequency vectorization 2-skip-3-gram vectorization
k acc recall precision F1 acc recall precision F1

10% 0.771 0.750 0.774 0.750 0.776 0.754 0.780 0.754

20% 0.801 0.777 0.811 0.776 0.798 0.769 0.814 0.766

30% 0.824 0.808 0.825 0.808 0.813 0.787 0.821 0.786

40% 0.829 0.812 0.825 0.813 0.820 0.798 0.824 0.796

50% 0.825 0.802 0.824 0.805 0.819 0.792 0.815 0.792

60% 0.826 0.802 0.829 0.805 0.832 0.810 0.830 0.813

70% 0.830 0.812 0.830 0.813 0.832 0.811 0.831 0.813

80% 0.831 0.811 0.828 0.814 0.832 0.814 0.828 0.816

90% 0.828 0.812 0.823 0.814 0.807 0.794 0.799 0.793

100% 0.829 0.815 0.822 0.816 0.776 0.771 0.775 0.766

Table 5.1: Performance of Multinomial Naive Bayes term weighting with varying vector-
izing methods using the 20newsgroups corpus. Multinomial Naive Bayes with
Laplace smoothing was used for classification.

tion. However, as we can see in table 5.1 using skip-gram vectorization with
the multinomial NB does not improve performance.

Extending the 20newsgroups dataset to 10 categories will reduce the models
performance slightly. Table 5.2 shows the performance of both datasets.

Using binary classification with the Reuters dataset will result in a very sim-
ilar pattern. While Laplace smoothing provides the best performance overall
in this setting, choosing a small value for alpha will lower performance up
to 40% (figures).

In conclusion, while a Bernoulli model performs very poor for term weight-
ing as well as for classification, multinomial Naive Bayes works well with
Laplace smoothing, although we were not able to severely improve results
using various input parameters.

5.1.2 Term Weighting with Support Vector Classification

Using support vector classification for feature ranking, we examined the
influence of different regularization functions as well as the penalty param-

36

5.1 Hyper Parameter Tuning

Figure 5.1: Bernoulli Naive Bayes feature weighting using Grid Search with Cross Valida-
tion and macro averaged F-scoring. The 20newsgroups dataset is 2-skip-3-grams
vectorized. k is the percentage of selected features in each iteration and alpha
the additive smoothing parameter.

37

5 Experimental Results

Figure 5.2: Multinomial Naive Bayes feature weighting using Grid Search with Cross
Validation and macro averaged F-scoring. The used dataset was 20newsgroups,
trigram vectorized. k is the percentage of selected features in each iteration and
alpha the additive smoothing parameter.

38

5.1 Hyper Parameter Tuning

Figure 5.3: 2-Skip 3-Gram Multinomial Naive Bayes Grid Search with Cross Validation and
altered selection criterion using a macro averaged F-measure. The 20newsgroups
dataset is 2-skip-3-grams vectorized. k is the percentage of selected features in
each iteration and alpha the additive smoothing parameter.

39

5 Experimental Results

20NG, 4 categories 20NG, 10 categories
k acc recall precision F1 acc recall precision F1

10% 0.771 0.750 0.774 0.750 0.679 0.683 0.724 0.656

20% 0.801 0.777 0.811 0.776 0.698 0.701 0.748 0.676

30% 0.824 0.808 0.825 0.808 0.708 0.711 0.758 0.690

40% 0.829 0.812 0.825 0.813 0.708 0.712 0.760 0.693

50% 0.825 0.802 0.824 0.805 0.710 0.713 0.763 0.697

60% 0.826 0.802 0.829 0.805 0.711 0.714 0.762 0.701

70% 0.830 0.812 0.830 0.813 0.713 0.716 0.767 0.704

80% 0.831 0.811 0.828 0.814 0.716 0.719 0.769 0.706

90% 0.828 0.812 0.823 0.814 0.721 0.723 0.768 0.707

100% 0.829 0.815 0.822 0.816 0.723 0.725 0.767 0.708

Table 5.2: Performance of Multinomial Naive Bayes term weighting for two subsets of the
20newsgroups dataset. Multinomial Naive Bayes with Laplace smoothing was
used for classification.

eter C. Fan et al., 2008 argues that L1-regularization is often used to identify
important features. Therefore, for feature selection, we use L1-regularized
L2-loss Support Vector classification (SVC). Initial experiments show that for
classification a L2-regularized L2-loss SVC works best. In order to identify
good values for the penalty parameter C of the proposed ranking method
we conduct a grid search with cross validation on C = 2−5, 2−3, ..., 213. A
similar setting was also used by Fan et al., 2008 in order to identify good
values for C. Considering the results shown in figure 5.4, setting C to ap-
proximately 0.5 seems like a good choice, especially when choosing a small
value for k.

We also analyse the impact the impact on the penalty parameter C on the
classification algorithm. In this experiment, we execute a Grid search using
a SVC for feature weighting as well as classification. For instance, figure 5.5
shows the result of the experiment using the Reuters datasets. For both, the
20newsgroups dataset as well as the Reuters data, for feature weighting as
well as classification, a very small value for C is preferable.

Overall, The results of both experiments indicate that a hyperplane with a
large margin is more robust and therefore preferable over correctly separat-
ing as many instances as possible.

40

5.1 Hyper Parameter Tuning

Figure 5.4: Support Vector Classification feature weighting. Grid search on penalty parame-
ter C = 2−5, 2−3, ..., 213

41

5 Experimental Results

Figure 5.5: Support Vector Classification feature weighting using the Reuters dataset. A
Grid search is performed on penalty parameter C = 2−5, 2−3, ..., 213 for feature
weighting as well as classification.

42

5.1 Hyper Parameter Tuning

Gini Impurity Information Gain
split acc recall precision F1 acc recall precision F1

2 0.772 0.763 0.763 0.761 0.772 0.762 0.763 0.760

5 0.776 0.767 0.766 0.765 0.766 0.757 0.757 0.755

10 0.777 0.767 0.767 0.765 0.771 0.762 0.762 0.759

20 0.772 0.762 0.762 0.760 0.772 0.763 0.764 0.761

Table 5.3: Performance of feature selection using Decision tree term weighting with gini im-
purity and information gain as splitting criteria. k is set to 30%. For classification
a Multinomial naive bayes classifier was used. The 20newsgroups dataset was
used for classfication. Split refers to the minimum number of samples required
to split an internal node.

5.1.3 Term Weighting with Decision Tree Classifiers

We evaluate various parameter settings for a decision tree classifier using
an optimized version of the CART algorithm 2.7.1. As already discussed
in section 2.7.2, in the feature selection phase we prefer a rather expressive
decision tree, hence avoiding pruning strategies or limiting the maximum
depth of the tree.

In a first set of experiments we evaluate the inpact of information gain and
the gini impurity as ranking criterions as well as different settings for the
minimum number of samples required for splitting a node. The results for
the 20newsgroups dataset are shown in tables 5.3 and 5.4. Both settings
use decision trees for term weighting, but with different classifiers. While
decision tree classification performs moderate, naive bayes classification
provides better results overall. Interestingly, using binary classification with
the Reuters dataset, decision tree classification performs better, while naive
bayes classification provides average results (tables 5.5, 5.6).

5.1.4 Term Weighting with Information Gain and χ2

In another set of experiments we use Information Gain as well as the
χ2 formula for term weighting with our feature selection algorithm and
compared the results by simply selecting the same percentage of features
according to the highest score.

43

5 Experimental Results

Gini Impurity Information Gain
split acc recall precision F1 acc recall precision F1

2 0.617 0.593 0.601 0.592 0.619 0.593 0.599 0.592

5 0.611 0.592 0.602 0.591 0.605 0.580 0.588 0.578

10 0.608 0.587 0.594 0.585 0.604 0.581 0.591 0.580

20 0.616 0.596 0.607 0.595 0.615 0.591 0.598 0.588

Table 5.4: Performance of feature selection using Decision tree term weighting with gini
impurity and information gain as splitting criteria. k is set to 30%. For classifica-
tion a decision tree classifier was used. The 20newsgroups dataset was used for
classfication. Split refers to the minimum number of samples required to split an
internal node.

Gini Impurity Information Gain
split acc recall precision F1 acc recall precision F1

2 0.737 0.830 0.653 0.649 0.731 0.827 0.651 0.644

5 0.738 0.830 0.654 0.650 0.735 0.831 0.653 0.647

10 0.741 0.834 0.655 0.653 0.734 0.831 0.653 0.647

20 0.737 0.831 0.654 0.650 0.730 0.828 0.651 0.643

Table 5.5: Performance of feature selection using Decision tree term weighting with gini
impurity and information gain as splitting criteria. k is set to 30%. For classifi-
cation a multinomial naive bayes classifier was used. The Reuters dataset was
used for classification. Split refers to the minimum number of samples required
to split an internal node.

Gini Impurity Information Gain
split acc recall precision F1 acc recall precision F1

2 0.929 0.823 0.842 0.832 0.927 0.812 0.838 0.824

5 0.928 0.819 0.840 0.829 0.930 0.819 0.847 0.832

10 0.925 0.812 0.835 0.822 0.929 0.825 0.842 0.833

20 0.928 0.821 0.840 0.830 0.929 0.825 0.843 0.834

Table 5.6: Performance of feature selection using Decision tree term weighting with gini
impurity and information gain as splitting criteria. k is set to 30%. For classi-
fication a decision tree classifier was used. The Reuters dataset was used for
classification. Split refers to the minimum number of samples required to split
an internal node.

44

5.1 Hyper Parameter Tuning

Figure 5.6: Selecting a percentage of features according to the highest score using the chi2

formula. The used dataset is the Reuters news corpus.

The results for both selection criteria are similar. Overall, the multinomial
NB outperforms SVC and Random Forest classification. The classification
performance doesn’t improve when choosing a higher value for k. (See for
instance, figures 5.6 and 5.7).

45

5 Experimental Results

Figure 5.7: F1 Scores selecting a percentage of features according to the highest score using
information gain. The used dataset is the Reuters news corpus.

46

5.2 Comparison of Individual Results

5.2 Comparison of Individual Results

5.2.1 Experimental Methods

After experimentation with different hyper parameter settings, our aim is
the comparision of individual result using the insights we gained from
hyper parameter tuning. We compare not only different variations of the
proposed feature selection algorithm, but also current state-of-the-art feature
selection algorithms. For this purpose we studied a variety of vectorization
methods, feature selection algorithms and classifiers.

As datasets, we use the 20 newsgroup as well as the Reuters corpus, as
presented in section 4.1.1 and section 4.1.2.

For feature selection we chose the following weighting methods for our
feature selection algorithm:

• Multinomial NB.
• Linear L1-regularized L2-loss SVC, setting the penalty parameter C to

0.03125.
• Random Forest Classification using the gini impurity
• χ2

The results from the previous section indicate that using information gain
for term weigthing is very similar to χ2 term weighting. Hence, in this
section we consider only χ2 for term weighting.

For comparision, we used the following feature selection algorithms:

• χ2 feature selection
• Recursive Feature Elimination using the same SVC as above.
• Feature selecting based on feature weights using logistic regression.

Finally, we evaluated the performance on the feature selection methods
above using a variety of classifiers, as listed below:

• Multinomial and Bernoulli NB
• Random forest classifier
• Linear L2-regularized L2-loss SVC

47

5 Experimental Results

• Logistic regression

The hyper parameters are partially set, using the results from the previous
section. Additionally, we dynamically chose the best input parameters for
the proposed classification algorithms, using either grid search or random-
ized search depending on the size of the parameter space.

For the 20newsgroups dataset and trigrams, we achieved the best results
using Logistic Regression for feature selection in combination with a multi-
nomial NB classifier. In general, multinomial NB outperformed all other
classification methods for this setting. Using the proposed dynamic selection
approch, we achieved the best results with a RFC as weighting method. We
were also able to achieve good results using SVC for term weighting. The
altered selection criterion, introduced in section 3.2.1 works best using SVC.
Although we were not able to improve classification results considerably,
we achieved a much lower prediction latency. Table 5.10 shows the 20 best
results in terms of the F1 Score for this setting.

The results for the full 20newsgroups dataset are very similar. Dynamic
n-gram based feature selection works best when choosing a random forest
classifier for term weighting (see table 5.8).

We applied the same experiments for the preprocessed version of the 20news-
groups dataset from Cardoso-Cachopo, 2007. Overall, the results are consid-
erably better using this dataset. In contrary to the other analysed datasets,
χ2 and NB term weigthing performs slightly better than RFC. The results of
the experiment are shown in table 5.9.

Using the Reuters dataset, we achieved the best classification results using
SVC. As with the 20newsgroups dataset, Logistic Regression also works very
well for classification. In terms of feature selection, N-gram based feature
selection using a random forest classifier for term weigthing performs best
overall.

48

5.2 Comparison of Individual Results

Feature selection Classifier F1 score accuracy features
Log. Reg. NB 1

0.782561 0.786401 76152

- NB 0.770966 0.777531 373168

Dyn. n-gram - RFC2 NB 0.767238 0.771619 76325

Log. Reg. Log. Reg. 0.741831 0.750924 76152

Dyn. n-gram - SVC 3 NB 0.741618 0.741316 13292

Dyn. n-gram - SVC NB 0.741519 0.744272 50104

RFE - SVC4 NB 0.732922 0.741316 111950

- Log. Reg. 0.730248 0.740576 373168

Dyn. n-gram - NB Log. Reg. 0.730228 0.741316 51385

Dyn. n-gram - RFC Log. Reg. 0.729956 0.738359 76325

Dyn. n-gram - χ2 NB 0.729680 0.751663 79224

χ2 NB 0.724561 0.748707 111950

χ2 Log. Reg. 0.720919 0.736881 111950

Dyn. n-gram - NB NB 0.720588 0.743533 51385

Dyn. n-gram - χ2 Log. Reg. 0.711534 0.726534 79224

RFE - SVC Log. Reg. 0.700547 0.711013 111950

Dyn. n-gram - RFC SVC 0.696227 0.701404 76325

Log. Reg. SVC 0.685725 0.691796 76152

- SVC 0.680514 0.685144 373168

Dyn. n-gram - SVC Log. Reg. 0.679555 0.685883 50104

Table 5.7: The best classification results in terms of the F1 score using a subset of the 20

newsgroups dataset. The features column shows the number of features selected
by the feature selection algorithm.

1For this set of experiments, the Multinomial NB is used
2N-gram based feature selection with using Random Forest Classification for term

weighting
3N-gram based feature selection using the altered selection criterion
4Rekursive Feature Elimination with SVC Term weighting
5For this set of experiments, the Multinomial NB is used
6N-gram based feature selection with using Random Forest Classification for term

weighting
7Rekursive Feature Elimination with SVC Term weighting
8N-gram based feature selection using the altered selection criterion
9For this set of experiments, the Multinomial NB is used

10N-gram based feature selection with using Random Forest Classification for term

49

5 Experimental Results

Feature selection Classifier F1 score accuracy features
Log. Reg. Log. Reg. 0.648463 0.646840 374983

- NB 0.643686 0.661445 1971375

Dyn. n-gram - NB 5 Log. Reg. 0.643241 0.642326 300019

- Log. Reg. 0.643193 0.642061 1971375

Dyn. n-gram - RFC6 Log. Reg. 0.642345 0.641264 418025

Dyn. n-gram - χ2 Log. Reg. 0.639186 0.642459 437363

χ2 Log. Reg. 0.636894 0.639671 591412

Dyn. n-gram - RFC NB 0.635910 0.653346 418025

Log. Reg. NB 0.634737 0.654142 374983

Dyn. n-gram - NB NB 0.631816 0.649894 300019

Log. Reg. SVC 0.631117 0.632634 374983

Dyn. n-gram - RFC SVC 0.629034 0.628917 418025

- SVC 0.622626 0.624270 1971375

Dyn. n-gram - χ2 NB 0.618491 0.644981 437363

RFE - SVC7 Log. Reg. 0.618286 0.617631 591413

Dyn. n-gram - NB SVC 0.617102 0.617499 300019

Dyn. n-gram - SVC NB 0.615484 0.625863 272908

Dyn. n-gram - SVC Log. Reg. 0.613662 0.611259 272908

χ2 NB 0.609816 0.634626 591412

Dyn. n-gram - SVC8 Log. Reg. 0.609032 0.607807 65133

Table 5.8: The best classification results in terms of the F1 score using the full 20 newsgroups
dataset. The features column shows the number of features selected by the feature
selection algorithm.

50

5.2 Comparison of Individual Results

Feature selection Classifier F1 score accuracy features
Dyn. n-gram - χ2 SVC 0.854810 0.856270 423705

Dyn. n-gram - NB9 SVC 0.854696 0.855871 458304

χ2 SVC 0.854154 0.855739 612854

Log. Reg. SVC 0.853119 0.854277 442126

- SVC 0.853093 0.854676 2042849

Dyn. n-gram - RFC10 SVC 0.847313 0.848698 448432

- NB 0.840164 0.842588 2042849

Dyn. n-gram - χ2 NB 0.839029 0.841259 423705

Log. Reg. NB 0.837775 0.840462 442126

χ2 NB 0.836918 0.839400 612854

Dyn. n-gram - NB NB 0.835274 0.837938 458304

Dyn. n-gram - RFC NB 0.828884 0.832359 448432

RFE SVC11 SVC 0.773804 0.775638 612855

RFE SVC NB 0.769421 0.774442 612855

- Log. Reg. 0.761076 0.777630 2042849

Log. Reg. Log. Reg. 0.757224 0.774309 442126

χ2 Log. Reg. 0.757102 0.774044 612854

Dyn. n-gram - NB Log. Reg. 0.755979 0.772981 458304

Dyn. n-gram - χ2 Log. Reg. 0.753748 0.770988 423705

Dyn. n-gram - SVC SVC 0.738068 0.740170 238880

Table 5.9: The best classification results in terms of the F1 score using a preprocessed
version of the full 20 newsgroups dataset. The dataset is preprocessed using
stemming and removing all characters but letters. The dataset is tf-idf vectorized
with trigrams. The features column shows the number of features selected by the
feature selection algorithm.

51

5 Experimental Results

Feature selection Classifier F1 score accuracy features
Dyn. n-gram - RFC SVC 0.952895 0.954131 159040

- SVC 0.952193 0.953503 740029

Log. Reg. SVC 0.951784 0.953189 132732

RFE - SVC SVC 0.948790 0.950047 222009

Dyn. n-gram - χ2 SVC 0.947334 0.950361 222009

χ2 SVC 0.947036 0.950047 222008

Dyn. n-gram - SVC SVC 0.945531 0.946591 89399

Dyn. n-gram - RFC Log. Reg. 0.945334 0.948476 159040

Dyn. n-gram - NB SVC 0.945186 0.948790 80835

Log. Reg. Log. Reg. 0.945113 0.948476 132732

- Log. Reg. 0.944665 0.948162 740029

RFE - SVC Log. Reg. 0.943039 0.946277 222009

Log. Reg. NB 0.942874 0.943764 132732

Dyn. n-gram - NB Log. Reg. 0.940695 0.945335 80835

Dyn. n-gram - χ2 Log. Reg. 0.940397 0.945020 222009

χ2 Log. Reg. 0.940397 0.945020 222008

Dyn. n-gram - SVC12 Linear SVC 0.938770 0.940308 16931

Dyn. n-gram - SVC Log. Reg. 0.938669 0.942821 89399

Dyn. n-gram - SVC13 Log. Reg. 0.936822 0.940936 16931

Dyn. n-gram - RFC NB 0.934470 0.939994 159040

Table 5.10: The best classification results in terms of the F1 score using the reuters dataset.
The features column shows the number of features selected by the feature
selection algorithm.

In another set of experiments we compare how the number of selected
features impacts the classification results. We compare three feature selection
methods:

• Dynamic n-gram based feature selection with random forest classifica-
tion for term weighting
• χ2 Feature selection

weighting
11Rekursive Feature Elimination with SVC Term weighting
12N-gram based feature selection using the altered selection criterion
13N-gram based feature selection using the altered selection criterion

52

5.3 Runtime Evaluation

• Recursive feature elimination using support vector classification for
term weighting.

In 5.8, 5.10 and 5.11 we show the results using the 20newsgroups and the
Reuters dataset respectively. Especially when looking at the results for the
Reuters dataset, using dynamic n-gram based feature selection will perform
best when selecting a very small amount of features. χ2 feature selection,
on the other hand, performs better using a higher percentage of selected
features. Especially, when using the Reuters dataset, dynamic n-gram based
feature selection reaches its peak using a very small percentage of features.

5.3 Runtime Evaluation

In this chapter we analyse the training and prediction time on various
feature selection methods using different input settings. The main goal is to
illustrate the impact of feature selection on the computational performance,
especially the prediction time of classification algorithms.

For the experiments in this chapter we used the 20newsgroups dataset with
trigram vectorization.

Regarding execution runtime for dynamic n-gram based feature selection,
the time complexity is primarily dependent on the chosen feature weighting
method. We analyse the feature reduction time for the most promising
weigthing methods, according to the previous sections and compare it
with other feature selection methods used in this thesis. More precisely,
we compare the dynamic n-gram based feature selection algorithm with
recursive feature elimination, logistic regression feature selection and χ2

feature selection. For the former two, we use a linear L1-regularized L2-loss
SVC as well as RFC for term weigthing. The penalty parameter C for linear
regression and SVC is set to 0.03125, the tolerance for the stopping criteria
is set to 0.0001. The results of the experiment is shown in table 5.11. As
expected, training random forests is rather slow, since the computational
complexity of random forests using the CART algorithm for M random
trees is O(MKN2logN), where N denotes the number of samples and K the
number of features randomly drawn (Louppe, 2014). The computational

53

5 Experimental Results

Figure 5.8: Impact on classification performance, depending on the number of selected
features, using various feature selection methods. The selected 20newsgroups
dataset is vectorized using trigrams. For dynamic n-gram based feature selection,
a random forest classifier was used for term weighting. For classification, a
multinomial Naive Bayes classifer with α = 0.1 was used. RFE svc stands for
Recursive feature elminiation using a linear L1-regularized L2-loss SVC for term
weighting.

54

5.3 Runtime Evaluation

Figure 5.9: Impact on classification performance, depending on the number of selected
features, using various feature selection methods. The 20 newsgroups dataset
is preprocessed using stemming and removing all characters but letters. The
dataset is tf-idf vectorized with trigrams. For dynamic n-gram based feature
selection, a random forest classifier was used for term weighting. For clas-
sification, a linear L2-regularized L2-loss SVC was used. RFE svc stands for
Recursive feature elminiation using a linear L1-regularized L2-loss SVC for term
weighting.

55

5 Experimental Results

Figure 5.10: Impact on classification performance, depending on the number of selected
features, using various feature selection methods. We used the Reuters dataset
and performed 2-skip-3-grams vectorization. For dynamic n-gram based fea-
ture selection, a random forest classifier was used for term weighting. For
classification, a linear L1-regularized L2-loss SVC was used. RFE svc stands
for Recursive feature elminiation using a linear L1-regularized L2-loss SVC for
term weighting.

56

5.3 Runtime Evaluation

Figure 5.11: Impact on classification performance, depending on the number of selected
features, using various feature selection methods.The selected Reuters dataset
is vectorized using trigrams. For dynamic n-gram based feature selection, a
random forest classifier was used for term weighting. For classification, a
multinomial Naive Bayes classifer with laplace smoothing was used. RFE svc
stands for Recursive feature elminiation using a linear L1-regularized L2-loss
SVC for term weighting.

57

5 Experimental Results

Feature selection execution time (seconds)
Dyn. n-gram feature selection with
RFC for term weighting 57,47

Dyn. n-gram feature selection with
SVC for term weighting 15.27

Recursive feature elimination with
RFC for term weighting 520.07

Recursive feature elimination with
SVC for term weighting 238.78

Logistic Regression 300.82

χ2
2.74

Table 5.11: Execution time for feature selection algorithms on the full 20newsgroups dataset
using trigram vectorization. For term weighting a linear L1-regularized L2-loss
SVC was used with penalty parameter C set to 0.03125. The tolerance tolerance
for the stopping criteria for linear SVC and logistic regression is set to 0.0001.

complexity for support vector machines depends on the number of support
vectors and therefore also on the penalty parameter C. Bottou and Lin, 2007

argues, that with a small value for C the time complexity is at least n2. Addi-
tionally, the actual runtime is also dependend on the actual implementation
and optimization strategies. Here, recursive feature elimination removes
10% of features at each iteration. The algorithm can be improved in terms
of execution time by increasing the percentage of features to remove. This
might, however, reduce classification performance.

Another important aspect of feature selection is the reduction of training
time a classification algorithm uses. For instance, by reducing the feature
space from 1971375 to 418025 with dynamic n-gram based feature selection
and RFC for term weighting, we are able to reduce training time consider-
ably, as shown in table 5.12.

Finally, we analysed the latency at which predictions can be made. The pre-
diction latency is defined as the number of predicitons the machine learning
model can make in a given amount of time. For this purpose we bench-
marked the prediction time for various machine learning models. Figure
5.13 shows predictions in bulk while figure 5.12 shows atomic predictions
(i.e. one by one).

58

5.3 Runtime Evaluation

Training time (seconds)
Classification Reduced feature space Full feature space
NB 0.418 1.681

SVC 95.776 422.652

Log. Reg. 86.602 562.332

RFC 20.148 125.173

Table 5.12: Influence on the time needed to train various classifiers on the full trigram
vectorized 20newsgroups dataset using feature selection. For feature selection,
dynamic n-gram based feature selection with RFC for term weighting was used.

Figure 5.12: The latency for various classification algorithms doing atomic predictions (i.e.
one by one). The 20newsgroups dataset with trigram vectorization was used.

59

5 Experimental Results

Figure 5.13: The latency for various classification algorithms doing predictions in bulk. The
20newsgroups dataset with trigram vectorization was used.

60

5.3 Runtime Evaluation

Figure 5.14: The latency for various classification algorithms doing atomic predictions (i.e.
one by one). The 20newsgroups dataset with trigram vectorization was used.
For feature selection, dynamic n-gram based feature selection with RFC for
term weighting was used.

61

5 Experimental Results

Figure 5.15: The latency for various classification algorithms doing predictions in bulk.
The 20newsgroups dataset with trigram vectorization was used. For feature
selection, dynamic n-gram based feature selection with RFC for term weighting
was used.

62

6 Discussion

In general, using dynamic n-gram based feature selection to build a machine
learning model will most likely not improve the training time necessary
to build the model, since the feature selection process is rather expensive,
denpending on the chosen term weighting method. We were, however, able
to reduce prediction time while providing equal or better classification
performance.

We observed in our experiments, that feature selection works especially well
when using a very low number of features, thus resulting in a very small
feature space. Especially when using skip-grams, we were able to perform
better then other feature selection algorithms (figure 5.10).

We were able to improve classification results as well as reduce prediction
time. Especially random forest classification for term weigthing seems to be
well suited for this task. Using this input setting, we were able to compete
with other state of the art feature selection methods in our experiments.

In addition, the results for term weigthing using support vector machines
look very promising. Using the altered selection criterion, introduced in
section 3.2.1, we were able to achieve good classification performance as
well as providing a considerably smaller feature space. Especially when
using L1-regularized support vector classification, resulting in sparse feature
vectors, this approach works very well.

We achieved a significant improvement using the preprocessed, t f − id f
vectorized 20 newsgroups dataset. The fact that numbers are removed, seem
to have a high impact on the classification result. By not applying this step,
the classification algorithm will learn from noisy training data.

In general, by applying feature selection we were able to improve accuracy
for the dataset from Cardoso-Cachopo, 2007 from 0.8284 to 0.8562 for SVC

63

6 Discussion

with a linear kernel. While RFC term weigthing works best for all other
datasets, χ2 and NB achieves better classification results for this dataset.

In contrast to other feature selection algorithms, it is not possible to select
an exact number of features, since features are chosen dynamically in each
iteration. It is, however, possible to approximate the size of the feature space
by chosing the percentage of selected features for each iteration. The size
of the resulting feature space also depends on the term weighting criterion.
For instance, selecting features with high term frequency in one iteration
will most certainly select more features, which are considered potentially
important, in the next iteration than features with low term frequency, thus
resulting in a larger feature space overall.

64

7 Future Work

As already mentioned in section 2.8, we only use linear kernel functions
for our SVM. The is also be possible to experiment with nonlinear kernel
functions for feature ranking. For instance, Mangasarian and Kou, 2007 use
nonlinear SVMs for feature selection. Liu et al., 2011 extends the linear SVM
Recursive Feature Elimination (RFE) algorithm I. Guyon, Weston, et al., 2002

to a nonlinear kernel function. The same process can be applied to our
algorithm.

In general, it is possible to use the feature selection algorithm with any
external classification algorithm or any other metric, provided that the
algorithm assigns weights to features.

As already mentioned in section 3.3.3, the proposed feature selection method
is not limited to text classification tasks. Another interesting addition to our
work would be the selection process using data with similar characteris-
tics.

65

8 Conclusion

We have presented a new feature selection approach using an iterative
forward selection method based on word n-gram models. We focused
on the question if the dynamic n-gram based feature selection method
is able to compete with other state of the art feature selection methods,
while providing a smaller feature space. In our experiments, we were
able to compete with other feature selection methods, such as recursive
feature elimination or χ2 feature selection. The results also indicate that
the proposed algorithm works especially well when selecting a very small
feature space, often outperforming other feature selection methods.

In addition, our aim was to provide a smaller, less complex feature space
in order to reduce training and prediction time as well as increase clas-
sification performance. By reducing the feature space we were not able
to reduce training time to build a machine learning model. We consider-
ably reduced predicition time while providing equal or better classification
performance.

Another main focus of this thesis was the evaluation of different weighting
methods. The results from our experiments indicate that random forest clas-
sification works very well as term weigthing method. Other term weighting
methods look also very promising. For instance, support vector machines
achieved good classification performance, especially when using the altered
selection criterion, as described in section 3.2.1. We achieved the best results
with the preprocessed dataset from Cardoso-Cachopo, 2007 using χ2 and
NB term weighting. In their study they achieved an accuracy of 0.8284. By
applying our feature selection process we were able to achieve an accuracy
of 0.8562 for a SVM with linear kernel.

67

Appendix

69

Figure .1: Classification performance for different classification algorithms using the 20

newsgroups dataset with trigrams.

71

Figure .2: Classification performance for different classification algorithms using the 20

newsgroups dataset with trigrams. Dynamic n-gram based feature selection with
RFC for term weigthing was applied.

72

Figure .3: Classification performance for different classification algorithms using the 20

newsgroups dataset with trigrams. Dynamic n-gram based feature selection with
SVC for term weigthing was applied.

73

Figure .4: Classification performance for different classification algorithms using the 20

newsgroups dataset with trigrams. Dynamic n-gram based feature selection
using the chi2 measure for term weigthing was applied.

74

Figure .5: Classification performance for different classification algorithms using the reuters
dataset with trigrams.

75

Figure .6: Classification performance for different classification algorithms using the
reuteres dataset with trigrams. Dynamic n-gram based feature selection with
RFC for term weigthing was applied.

76

Figure .7: Classification performance for different classification algorithms using the reuters
dataset with trigrams. Dynamic n-gram based feature selection with SVC for
term weigthing was applied.

77

Figure .8: Classification performance for different classification algorithms using the reuters
dataset with 2-skip-3-grams.

78

Figure .9: Classification performance for different classification algorithms using the reuters
dataset with 2-skip-3-grams. Dynamic n-gram based feature selection with the
altered selection criterion and SVC for term weigthing was applied.

79

Figure .10: The latency for various classification algorithms doing predictions in bulk. The
reuters dataset with 2-skip-3-grams vectorization was used.

80

Figure .11: The latency for various classification algorithms doing predictions in bulk. The
reuters dataset with 2-skip-3-grams vectorization was used. For feature selection,
dynamic n-gram based feature selection with the altered selection criterion and
SVC for term weigthing was applied.

81

Bibliography

Agrawal, Rakesh, Ramakrishnan Srikant, et al. (1994). “Fast algorithms for
mining association rules.” In: Proc. 20th int. conf. very large data bases,
VLDB. Vol. 1215, pp. 487–499 (cit. on p. 2).

Allison, Ben, David Guthrie, and Louise Guthrie (2006). “Another look
at the data sparsity problem.” In: Text, Speech and Dialogue. Springer,
pp. 327–334 (cit. on p. 7).

Boser, Bernhard E, Isabelle M Guyon, and N. Vladimir Vapnik (1992). “A
training algorithm for optimal margin classifiers.” In: Proceedings of the
fifth annual workshop on Computational learning theory. ACM, pp. 144–152

(cit. on p. 22).
Bottou, Léon and Chih-Jen Lin (2007). “Support vector machine solvers.” In:

Large scale kernel machines 3.1, pp. 301–320 (cit. on p. 58).
Breiman, L et al. (2005). “Classification and regression trees, Wadsworth

international group, Belmont, California, USA, 1984; BP Roe et al.,
Boosted decision trees as an alternative to artificial neural networks for
particle identification.” In: Nucl. Instrum. Meth. A 543, p. 577 (cit. on
p. 21).

Buitinck, Lars et al. (2013). “API design for machine learning software:
experiences from the scikit-learn project.” In: ECML PKDD Workshop:
Languages for Data Mining and Machine Learning, pp. 108–122 (cit. on
pp. 16, 17, 20, 22, 33, 34).

Cardoso-Cachopo, Ana (2007). Improving Methods for Single-label Text Catego-
rization. PdD Thesis, Instituto Superior Tecnico, Universidade Tecnica
de Lisboa (cit. on pp. 32, 48, 63, 67).

Cavnar, William B, John M Trenkle, et al. (1994). “N-gram-based text catego-
rization.” In: Ann Arbor MI 48113.2, pp. 161–175 (cit. on p. 5).

83

Bibliography

Chen, Stanley F and Joshua Goodman (1996). “An empirical study of smooth-
ing techniques for language modeling.” In: Proceedings of the 34th annual
meeting on Association for Computational Linguistics. Association for Com-
putational Linguistics, pp. 310–318 (cit. on p. 16).

Domingos, Pedro and Michael Pazzani (1997). “On the optimality of the
simple Bayesian classifier under zero-one loss.” In: Machine learning
29.2-3, pp. 103–130 (cit. on p. 15).

Domingos, Pedro and Michael J Pazzani (1996). “Beyond independence:
Conditions for the optimality of the simple Bayes classifier.” In: Proceed-
ings of the 13th International Conference on Machine Learning, pp. 105–112

(cit. on p. 15).
Eyheramendy, Susana, David D Lewis, and David Madigan (2003). “On the

naive bayes model for text categorization.” In: (cit. on p. 16).
Fan, Rong-En et al. (2008). “LIBLINEAR: A Library for Large Linear Classi-

fication.” In: Journal of Machine Learning Research 9, pp. 1871–1874 (cit. on
pp. 23, 40).

Fayyad, Usama Mohammad (1992). “On the induction of decision trees for
multiple concept learning.” In: (cit. on p. 19).

Fayyad, Usama Mohammad and B. Keki Irani (1993). “Multi-interval dis-
cretization of continuous-valued attributes for classification learning.”
In: Amherst, MA: Morgan Kaufmann, pp. 112–119 (cit. on p. 19).

Forman, George (2003). “An extensive empirical study of feature selection
metrics for text classification.” In: The Journal of machine learning research
3, pp. 1289–1305 (cit. on pp. 1, 10, 12).

Franz, Alex and Thorsten Brants (2006). All our n-gram are belong to you.
https://research.googleblog.com/2006/08/all-our-n-gram-are-

belong-to-you.html. Accessed: 2018-02-18. Linguistic Data Consortium,
2006 (cit. on p. 1).

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani (2001). The elements
of statistical learning. Vol. 1. Springer series in statistics New York (cit. on
p. 10).

Fürnkranz, Johannes (1998). “A study using n-gram features for text cate-
gorization.” In: Austrian Research Institute for Artifical Intelligence 3.1998,
pp. 1–10 (cit. on p. 5).

Gale, William A. and Kenneth W. Church (1994). “What’s wrong with
adding one.” In: Corpus-Based Research into Language. Rodolpi (cit. on
p. 16).

84

https://research.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html
https://research.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html

Bibliography

Geman, Stuart, Elie Bienenstock, and René Doursat (1992). “Neural networks
and the bias/variance dilemma.” In: Neural computation 4.1, pp. 1–58

(cit. on pp. 7, 14).
Gini, Corrado (1912). “Variabilità e mutabilità.” In: Reprinted in Memorie

di metodologica statistica (Ed. Pizetti E, Salvemini, T). Rome: Libreria Eredi
Virgilio Veschi (cit. on p. 20).

Good, Irving J (1953). “The population frequencies of species and the es-
timation of population parameters.” In: Biometrika 40.3-4, pp. 237–264

(cit. on p. 16).
Goodman, Joshua T (2001). “A bit of progress in language modeling.” In:

Computer Speech & Language 15.4, pp. 403–434 (cit. on p. 16).
Granitto, Pablo et al. (2006). “Recursive Feature Elimination with Random

Forest for PTR-MS analysis of agroindustrial products.” In: 83 (cit. on
p. 12).

Guthrie, David et al. (2006). “A closer look at skip-gram modelling.” In:
Proceedings of the 5th international Conference on Language Resources and
Evaluation (LREC-2006), pp. 1–4 (cit. on pp. 5, 6).

Guyon, Isabelle and André Elisseeff (2003). “An introduction to variable and
feature selection.” In: Journal of machine learning research 3.Mar, pp. 1157–
1182 (cit. on pp. 2, 9).

Guyon, Isabelle, Jason Weston, et al. (2002). “Gene selection for cancer
classification using support vector machines.” In: Machine learning 46.1,
pp. 389–422 (cit. on pp. 12, 65).

Hsu, Chih-Wei, Chih-Chung Chang, Chih-Jen Lin, et al. (2003). “A practical
guide to support vector classification.” In: (cit. on pp. 23, 34).

Hunter, J. D. (2007). “Matplotlib: A 2D graphics environment.” In: Computing
In Science & Engineering 9.3, pp. 90–95. doi: 10.1109/MCSE.2007.55 (cit.
on p. 28).

Ikonomakis, M, S Kotsiantis, and V Tampakas (2005). “Text classification us-
ing machine learning techniques.” In: WSEAS Transactions on Computers
4.8, pp. 966–974 (cit. on p. 13).

Jeffreys, Harold (1948). Theory of Probability. second edition. Oxford: Claren-
don Press (cit. on p. 16).

Jiang, Jing and Chengxiang Zhai (2007). “An empirical study of tokenization
strategies for biomedical information retrieval.” In: Information Retrieval
10.4-5, pp. 341–363 (cit. on p. 4).

85

https://doi.org/10.1109/MCSE.2007.55

Bibliography

Joachims, Thorsten (1998). Text categorization with support vector machines:
Learning with many relevant features. Springer (cit. on pp. 9, 23).

Johnson, W. Ernest (1932). “Probability: deductive and inductive problems.”
In: Mind 41.164, pp. 421–423 (cit. on p. 16).

Jones, Eric, Travis Oliphant, Pearu Peterson, et al. (2001–). SciPy: Open source
scientific tools for Python. http://www.scipy.org. Accessed: 2018-02-18

(cit. on p. 29).
Kohavi, Ron and George H John (1997). “Wrappers for feature subset selec-

tion.” In: Artificial intelligence 97.1-2, pp. 273–324 (cit. on pp. 11, 12).
Koller, Daphne and Mehran Sahami (1997). “Hierarchically classifying doc-

uments using very few words.” In: (cit. on pp. 9, 14).
Lang, Ken (1995). “Newsweeder: Learning to filter netnews.” In: Proceedings

of the Twelfth International Conference on Machine Learning, pp. 331–339

(cit. on p. 31).
Lewis, David D (1998). “Naive (Bayes) at forty: The independence assump-

tion in information retrieval.” In: Machine learning: ECML-98. Springer,
pp. 4–15 (cit. on p. 15).

Lewis, David D and Marc Ringuette (1994). “A comparison of two learn-
ing algorithms for text categorization.” In: Third annual symposium on
document analysis and information retrieval. Vol. 33, pp. 81–93 (cit. on p. 14).

Lewis, David Dolan (1992). “Representation and learning in information
retrieval.” PhD thesis. University of Massachusetts (cit. on p. 7).

Lichman, M. (2013). UCI Machine Learning Repository. http://archive.ics.
uci.edu/ml. Accessed: 2018-02-18 (cit. on p. 32).

Lidstone, G. James (1920). “Note on the general case of the Bayes-Laplace
formula for inductive or a posteriori probabilities.” In: Transactions of the
Faculty of Actuaries 8.182-192, p. 13 (cit. on p. 16).

Liu, Quanzhong et al. (2011). “Feature selection for support vector machines
with RBF kernel.” In: 36, pp. 99–115 (cit. on p. 65).

Loper, Edward and Steven Bird (2002). “NLTK: The Natural Language
Toolkit.” In: In Proceedings of the ACL Workshop on Effective Tools and
Methodologies for Teaching Natural Language Processing and Computational
Linguistics. Philadelphia: Association for Computational Linguistics (cit. on
p. 28).

Louppe, Gilles (2014). “Understanding random forests: From theory to
practice.” In: arXiv preprint arXiv:1407.7502 (cit. on p. 53).

86

http://www.scipy.org
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Bibliography

Mangasarian, Olvi L and Gang Kou (2007). “Feature selection for nonlinear
kernel support vector machines.” In: Data Mining Workshops, 2007. ICDM
Workshops 2007. Seventh IEEE International Conference on. IEEE, pp. 231–
236 (cit. on p. 65).

Manning, Christopher D and Hinrich Schütze (1999). Foundations of statistical
natural language processing. MIT press (cit. on p. 4).

Manning, Christopher D, Prabhakar Raghavan, Hinrich Schütze, et al. (2008).
Introduction to information retrieval. Vol. 1. Cambridge university press
Cambridge (cit. on pp. 7, 8, 13–17).

McCallum, Andrew, Kamal Nigam, et al. (1998). “A comparison of event
models for naive bayes text classification.” In: AAAI-98 workshop on
learning for text categorization. Vol. 752. Citeseer, pp. 41–48 (cit. on pp. 15–
17).

Mitchell, Tom M. (1997). Machine Learning. English. Internat., 24. [print.]
New York, NY [u.a.]: McGraw-Hill Science/Engineering/Math. isbn:
0071154671; 9780070428072; 9780071154673; 0070428077 (cit. on pp. 15,
17–19).

Murphy, Patrick M. and Michael J. Pazzani (1994). “Exploring the decision
forest: An empirical investigation of Occam’s razor in decision tree
induction.” In: Journal of Artificial Intelligence Research, pp. 257–275 (cit.
on p. 19).

Olshen, LBJFR, Charles J Stone, et al. (1984). “Classification and regression
trees.” In: Wadsworth International Group 93.99, p. 101 (cit. on p. 20).

Pandya, Rutvija and Jayati Pandya (2015). “C5. 0 algorithm to improved
decision tree with feature selection and reduced error pruning.” In:
International Journal of Computer Applications 117.16 (cit. on p. 20).

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python.” In:
Journal of Machine Learning Research 12, pp. 2825–2830 (cit. on p. 28).

Quinlan, J. Ross (1986). “Induction of decision trees.” In: Machine learning
1.1, pp. 81–106 (cit. on p. 18).

Quinlan, J Ross (1986). “The effect of noise on concept learning.” In: Machine
learning: An artificial intelligence approach 2, pp. 149–166 (cit. on pp. 6, 7).

Quinlan, J. Ross (1987). “Simplifying decision trees.” In: International journal
of man-machine studies 27.3, pp. 221–234 (cit. on p. 19).

Quinlan, J Ross (2014). C4.5: programs for machine learning. Elsevier (cit. on
p. 19).

87

Bibliography

Robertson, Stephen E and K Sparck Jones (1976). “Relevance weighting of
search terms.” In: Journal of the American Society for Information science
27.3, pp. 129–146 (cit. on p. 8).

Song, Fei and W Bruce Croft (1999). “A general language model for infor-
mation retrieval.” In: Proceedings of the eighth international conference on
Information and knowledge management. ACM, pp. 316–321 (cit. on p. 16).

Sparck Jones, Karen (1972). “A statistical interpretation of term specificity
and its application in retrieval.” In: Journal of documentation 28.1, pp. 11–
21 (cit. on p. 8).

Stéfan van der Walt, S. Chris Colbert and Gaël Varoquaux (2011). “The
NumPy array: a structure for efficient numerical computation.” In: Com-
puting in Science & Engineering 13.2, pp. 22–30 (cit. on pp. 28, 31).

Utgoff, E. Paul (1991). “Linear machine decision trees.” In: COINS Technical
Report 91-10 (cit. on p. 19).

Van Rijsbergen, Cornelis J (1979). Information Retrieval. London: Butterworths
(cit. on p. 24).

Vapnik, N. Vladimir (1995). The Nature of Statistical Learning Theory. Springer
(cit. on p. 22).

Yang, Yiming and Jan O Pedersen (1997). “A comparative study on feature
selection in text categorization.” In: ICML. Vol. 97, pp. 412–420 (cit. on
pp. 2, 9, 10).

88

