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Kurzfassung

Die Energiewende schreitet voran und das intelligente Energiemanagementsystem "SEMS"
verteilt mit seinen ausgeklügelten Algorithmen Energie effizient in privaten Energiehaus-
halten. Neben der teureren Variante des Smarthome-Systems mit Alu-Gehäuse und Touch-
Display gibt es auch eine kleinere und billigere Variante für eine Hutschienenmontage. Für
den Nachfolger, der eine leistungsschwächere Elektronik beinhaltet, musste das gesamte
Konzept zur Erstellung neuer Linux-Systeme überarbeitet werden. Der Schwerpunkt liegt
dabei auf hoher Sicherheit und Updatebarkeit vor Ort beim Kunden.

Die Arbeit fokussiert nicht auf die Smart Home Anwendung selbst, sondern auf das
dafür benötigte Linux-System. Ausfälle durch fehlerhafte Update-Prozesse sind nicht tole-
rierbar. Der Bootloader (U-Boot) und der Linux-Kernel in Verbindung mit seinem Datei-
system wurden soweit verändert, so dass die genannten Anforderungen erfüllt wurden. Die
Hardwareauswahl erfolgte bereits zuvor. Das Build-System Yocto eignet sich sehr gut, um
die gesamte Systemerstellung automatisiert und nachvollziehbar zu halten und die Anwen-
dung von Sicherheitsupdates einfach zu machen. Die Verteilung der Updates wurde über
eine Cloud-Infrastruktur ermöglicht, die verschiedene Szenarien bei der Update-Verteilung
zulässt. Die erste Charge der Massenproduktion der neuen Energiemanagervariante wurde
zum Teil in der Arbeit mit behandelt.
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Abstract

The energy transition is a vital part of nowadays energy supply. The intelligent energy
management system "SEMS" distributes energy with its sophisticated algorithms in do-
mestic energy households. Besides the already established product variant, which is very
expensive due to its aluminum housing and touch display, a new and cheaper generation
of the smart home device had to be created for the market. The new version features
low cost hardware and housing for mounting on top hat rails. A new concept for creating
Linux system for a safe and secure way to update the system in-field at the customers’
sites had to be accomplished.

The focus lies not on the running smart home application but on the Linux system
needed for it. The used bootloader (U-Boot) and the Linux kernel together with its root
file system (rootfs) had to be modified in a way to achieve the desired goals. Hardware
selection was done prior to this work. Yocto, a building system for embedded devices, was
used to be able to compile everything from the source in a reproduce-able way. Security is
an important factor when dealing with embedded systems and Yocto makes it easy to apply
security patches. The distribution of the updates was done with a cloud infrastructure
which allows different scenarios for deploying updates. Partly, aspects of the first batch
of mass production are covered in this thesis as well.
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Chapter 1

Introduction

1.1 Motivation
In 2013, first products for so-called demand side management were available on the
photovoltaics (PV) market. But none of the offered solutions were really easy to use
(for the end customer as well as for the installer) and the system architecture offered no
real flexibilities. Every household is very different from one another and the often fixed
number of sensor inputs and controlling outputs of such devices limited the scenarios where
they could be implemented. Demand side management is an enabler of the ongoing energy
transformation.

Because of that a small group of people decided to build their own smart home solu-
tion focusing on energy management for domestic homes and small businesses. Due to the
multi-vendor ecosystem in a typical household, one focus was to integrate devices from
other vendors. The way to go was to keep as much intelligence at other devices as possible
because of the vendors’ expertise. For instance, a vendor for heating systems knows best
how to design a controlling algorithm. Besides that, simplicity for all users was a major
goal.

Soon it was clear that security was also a vital part of the new smart home application.
Most vendors on the PV market hardly concerned themselves with security. The SEM
(see figure 1.1) was developed as a high end, high price product equipped with Wireless-
LAN, Ethernet and Z-Wave, a low power home automation standard mostly present in
the United States.

This was only the first step on the hardware road map. The next step had been
planned since the beginning: a cheaper version (of the SEM) having no fancy aluminum
housing or touch display. For this second device, a new system needed to be built which
hosts the same smart home appliance its bigger brother does.

1



Figure 1.1: The SEM - a marketing photo.
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1.2 Goal
Prior to this work, a basic hardware selection for the display-less version of the smart
home controller was already made. The goal was to create a suitable Linux system im-
age for deployment on the chosen hardware. The resulting unbranded product was called
"Compact Unbranded" which is shown in figure 1.2.

Figure 1.2: The "Compact Unbranded", a
blank for various brands. After electric and
housing assembly but before provisioning

Compared to its bigger brother, the housing of the Compact Unbranded is very sim-
ple and will not be described further in this thesis. However, the integration of the two
buttons and three RGB light-emitting diode (LED)s is covered.

The created hardware is based on a SoM called "CHIP Pro" which is extended with a
custom base board and one expansion board. Besides supporting the complete hardware,
a way to update the complete system image in-field in a crash-safe way needs to be found.
Of course, security is a major part when dealing with embedded systems.

The next step is the final system image bundled together with the boot loader and the
smart home application itself. This image is needed for flashing the first batch of hardware
and will be used in future batches too if there are no changes to the initial software. Dur-
ing production, a hardware test needs to be performed to ensure high quality standards.
This testing process should be as fast and as automated as possible.

One additional output of the system creation process is the toolchain needed for com-
piling the smart home application for the target system. The creation of this application
is not within the scope of this thesis.

Figure 1.3 shows one possible product with its applied branding. Various products

3



Figure 1.3: The SEMcompact - a marketing
photo.

from various brands can be created based on the "Compact Unbranded".

Besides the update process on the target system, the distribution of its updates needed
to be considered as well for the complete solution. This closes the gap between the update
creation and their application in-field at customers’ sites.

1.3 Arrangement
After the introduction containing motivation and goal for this thesis, the state of the art
for this field of science is discussed together with its related work. Additionally, back-
ground information for a better understanding of the driving forces of the concept and
the implementation related to it is presented. This covers update processes, embedded
systems running Linux and smart home application characteristics.

The concept chapter discusses the exact requirements identified, the hardware target
related considerations, tools already present and how they can be used. Further on, the
customization of the Linux system and the bootloader are discussed together with the boot
process itself. The partitioning of the NAND memory is described before moving on to the
update process and update distribution. The chapter is closed with security considerations.

Based on the concept, the implementation chapter focuses on the actual changes made
to the build system, starting with the general usage of Yocto and moving on to the new
and changed recipes and layers of the building process. Those changes and additions are
separated into the bootloader, the kernel and its rootfs. Extended by the auxiliary scripts
needed for and used by the on-top running application.

Testing and results are presented in two different styles. First, the testing process for
creating the systems for the first prototypes is described. In contrast to that, testing a
complete production batch with automation is explained. The result section is organized
in the same way.
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This thesis closes with a conclusion and an outlook in its context.

1.4 State of the Art
Linux running on ARM systems is very common today [yBpLfW10]. Updating them in
a secure way too. But back when the work on the first hardware started, there were no
publications available on update crash-safe considerations for embedded systems. Similar
update processes were present on the mobile platforms like Android and iOS. But those
were commercial products.

Security threats are well known and can be categorized in many ways [RHM+12]. De-
pending on the product design, different possible attack scenarios may be applicable due
to chosen interfaces to the outside world. Various smart home systems already exist but
the interoperability is a big issue [PME+09]. Various standards and protocols are in place
but most time they are not compatible to each other.

Technologies like "Boot to Qt" exist to reduce the system overhead [Sle13]. Often
feature-rich software and tools are not needed to be installed on embedded systems. Nor-
mally, no one ever logs into a shell to retrieve information or performs actions. Therefore,
reducing all shipped tools, programs and libraries to a minimum is a good idea. But it
limits the flexibility a lot.

Architectural concepts to bring cloud services and smart home applications closer to-
gether exist [YWJ+10]. This specific work proposes a cloud architecture based on smart
home. Smart home is a technology which is based on its predecessors the PC and the
Internet. While first smart home application software was often installed on local PCs,
another approach is to take the software and services not to other dedicated devices locally
but to the cloud [YH11].

In the context of the market situation, for which the application running on the target
system is designed, demand side load management concepts exist and are used for being
able to integrate many decentralized energy producers (like PV systems) to the public
grid [WHD+11]. The old approach of controlling the power production is not suitable
anymore. Therefore, the demand side must be controllable up to some point. This is an
enabler of the energy transition. Another system related to the resulting product based
on the target system is one that uses Zigbee, a wireless sensor network, which is similar
to Z-Wave [HL10].
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Chapter 2

Related Work

In the context of the project described in the motivation section on page 1 there were a
few related works by various people at Graz University of Technology.
First a comparison of various communication standards was done by Florian Hofer [Hof14].
The work contains an analysis of different aspects when it comes to selecting a proper wire-
less standard for domestic home applications.

For the first custom hardware built, Christian Mentin describes the challenges of cre-
ating a ready-to-sell hardware [Men16]. This was the first milestone in the previously
mentioned project for running the own home control application on custom hardware.
Another device developed for the very same project is an intelligent edge device used for
domestic water heating. This work was done by Thomas Fuchs [Fuc17, Fuc18]. Both
of those also take electromagnetic interference (EMI) and electromagnetic compatibil-
ity (EMC) into account.

When moving on from the hardware to the software running on it, especially on ARM
platforms, a work about the Linux kernel which deals with similar challenges was done
[yBpLfW10]. The main focus was also on providing a system for further applications.
It also takes real-time performance into account. Various trade-offs between architecture
and requirements were discussed while developing an embedded system with a graphical
user interface (GUI) in a separate paper [LNNJ12]. Similar work when considering GUIs
was done with a focus on the very same framework as used for the top level application
in this work [JCZ12].

Several papers were published in the context of smart home and home control systems
[WWSL09, NHC13, GDLZ11, WSES13]. Since the term smart home is difficult to define
due to its huge scope for interpretation, those works differ widely. The first paper focuses
on various connected devices at home with the possibility of remote control from anywhere
thanks to the Internet. The application running on top of the target system is similar in
many ways, but it focuses heavily on energy distribution. The second paper focuses on
the Internet Protocol (IP) communications within smart homes. Various workloads have
to be handled in smart homes. Some of them can be shifted to cloud computing. The
next work discusses exactly these possibilities. The last paper takes a smart phone into
account when running a smart home application.
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Chapter 3

Background

This chapter describes various areas which impacts the hardware target, its resulting prod-
ucts and their update. The most important area is the renewable energy market and many
smart home products are associated with it. The first section discusses different categories
of such products and how they are characterized. Demand side management is one of the
major topics when dealing with energy distribution. Therefore, the next section describes
it in detail.

Besides market driven aspects, various purely technical ones like the security in Internet
of Things (IoT) and domestic homes are very important for the system. Establishing trust
in a distributed environment with the help of PKIs and different scenarios how to get
access to devices are two central parts as well. Combined with the update processes, this
is described later on in this chapter.

3.1 Smart Home Systems
The term "smart home" is difficult to define. It gathers a lot of different approaches for
automating devices and processes at home. The marking strategies of various companies
amplified the diversity of the meaning.

Some refer to a "smart home" as a quite simple and not very intelligent wall mounted
control working together with motorized heating radiator valves. Others define a "smart
home" as a system for smart energy distribution at home. Basically, there are devices
talking to each other and some intelligence is embedded somewhere at home or even in
the cloud.

Some differentiations are shown in the next sub sections. However, smart home systems
are the enabler for demand side management at least for domestic homes, depending on
how the term "smart home" is defined. On figure 3.1, an overview of the mentioned
previous types is shown. The term demand side management it described in section 3.2.
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3.1.1 Fully Cloud Based

As described in the previous section, smart home systems can be very different and this
also applies to this sub section. There is a variety of systems which are only working with
a connection to some cloud service. On the left side of figure 3.1, such systems are shown
in a very simplified way. Often a local gateway is installed at the local (IP based) network.
It connects to a remote cloud service. On-site they link together different devices. Rule
based automation actions are triggered at the cloud system based on measurements not
only limited to the devices installed on site. Users can control their devices often via a web
portal or a mobile phone app. Other similar cloud-based systems also consist of only one
single hardware device. Such a device is for instance a wireless local area network (WLAN)
enabled smart power outlet. It connects via WLAN to the cloud service and can then be
controlled like described previously. Both presented cases of cloud based smart home
systems share one common problem: When the link between the local installed appliance
and the cloud service is lost (for instance due to troubles with the Internet connection)
then the automation stalls. Depending on the devices locally installed, they also suffer
from those up-link connection losses.

Figure 3.1: Three different types of basic smart home concepts. The line width indicates
the dependency of the connection to always be available for operation.

3.1.2 Central Home Controller

Another category of smart home systems are those with a single central controller. Often
devices (sensors and actors) are directly wired to a central location with the controller.
All or at least most intelligence resides at that controller, meaning that a failure or outage
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of it stalls the automation. In such scenarios a device connected to the single controller is
useless when the connection to the central unit is lost, so this link is very important as well.

The connection to the Internet and various cloud services are auxiliary and not vital
for most operations at the site. So the link to the Internet is only drawn with a fine line
as shown in the middle column in figure 3.1. Central controllers can be a single hardware
appliance as well as a modular (hardware) systems. Devices can be connected end-to-end
or via a bus system, but they are not limited to wired connectivity at all.

3.1.3 (Fully) Decentralized

Decentralized smart home systems are not very different from centralized ones. The most
significant distinction is that much more intelligence is moved from the central controller
to the edge devices. Most devices can operate on their own without the need for a constant
connection to the central controller. Also, multi controller scenarios are more likely than
with the central controller concept explained before. The last column in figure 3.1 hardly
contains any strong links. The controller still has an important role by keeping everything
running together but its operation is more related to configuration and data aggregation
related to itself and the connected devices. Those edge device’s intelligence can still be
executed on controllers in case of very simple devices. In that case a strong link still is
needed between both parties. The Smart Energy Management System (SEMS) is most
similar to that type of system.

3.2 Demand Side Management
A demand side management system (DSMS) can be described as a system with control-
ling algorithms designed for minimizing energy costs. They can do this by increasing and
decreasing (mainly electrical) loads based on a given power budget on the house line or a
price associated when buying or selling electrical energy. Other metrics for controlling are
possible but not very common nowadays at domestic homes. All ideas of how to control
consumers are based on the pricing in the end. This is true (for example) for the power
grid of Austria or Germany where the availability for the energy supply is very high and
power outages are seldom.

The basic idea of DMS! (DMS!) is to automatically achieve the lowest energy costs
possible by using flexibilities in an energy household. Common flexibilities available today
are for instance hot-water tanks or a pool with its pool pump. Hot-water tanks offer a
great flexibility because of their large energy storage capacity. It does not matter when
the water is heated up as long as there is always hot-water when it is needed. In the case
of the pool pump a minimum runtime on a daily basis must be ensured to maintain water
quality. But besides that, in general it does not really matter when the pump is turned
on or off. But the conditions of various households are always different and so the amount
of flexibility varies widely.

To illustrate such a DSMS operation on a daily basis figures 3.2 and 3.3 both show
the PVs production, the directly used energy and the house line status over time. The
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time span is one single day and is labeled on the x-axis. The values are averaged on a
fifteen minute basis. Red colored areas represents energy bought from the energy supplier
which is delivered on the connection to the public grid. The height represents the power.
A reference value is plotted on the top left corner. Green areas are the opposite to the
red ones. They indicate the energy delivered to the public grid - the sold energy. The
blue areas show the energy which was produced and directly used at home. When this
self usage is very high the overall system performs usually very well. Those blue areas
combined with the green onces represent the energy production from the PV.

In the household on figure 3.2 all the energy produced is directly and completely used
at first, no green areas are visible. But starting at about midday the usage drops. This
means that the self consumption was excellent at first but then there was not enough po-
tential to consume the rest of the available surplus energy. This could have many reasons,
for instance when there is no one using hot-water during vacation or the storage capacity
is not very high to name two possible causes.

Figure 3.2: An energy household plotted over one day with too little capacity for that day
(screen shot taken from a SEM).

Now when comparing the day above explained to the one as shown on figure 3.3 one
important difference can be recognized immediately: Almost no green areas are visible.
This household is different in multiple ways. First the PV system is differently mounted.
Both charts show days with maximum production for the season. But the power distribu-
tion is not the same. In the first household the PV is mounted east and west and in the
second one it is oriented south. Next, the second household has enough capacity to use
all energy produced during the day. So, this system is running at an optimum: At night,
hardly any energy is consumed from the public grid and during the days, hardly any is
supplied to it. The self consumption is at a maximum. Optimizing this and reducing the
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nightly load as much as possible is the task of a DSMS like SEMS within prosumers 1 and
their PV systems.

Figure 3.3: An energy household plotted over one day with optimal usage of the produced
energy (screen shot taken from a SEM).

Two factors can be derived from such data. One is the self consumption rate (SCR)
and the second one is the degree of autonomy (DOA). Both takes various energies over
a certain period of time into account. The SCR can be defined as shown in equation
3.1. If no energy for a given time span is supplied to the public grid while something
is produced, the resulting rate is at a maximum, which is 100%. In the opposite case if
all produced energy is delivered to the public grid the rate is at a minimum of 0%. The
directly used energy (Edirectly_used) is all the energy which is produced (Eproduced) and
not sold (Esupply).

SCR = Edirectly_used

Eproduced
= Eproduced − Esupply

Eproduced
(3.1)

The DOA represents the amount of energy which was used in total compared to the
energy produced. This relationship is shown in equation 3.2. The basis for the factor which
is expressed in percent is the total amount of used energy in a household. It peaks if all
energy needed was produced at the very same energy household. The minimum is reached
if all energy needed has to be bought from the public grid. The used energy (Eused) can
be expressed by adding the produced (Eproduced) to the bought energy (Ebought).

DOA = Eproduced

Eused
= Eproduced

Eproduced + Ebought
(3.2)

1A prosumer is a person who consumes and produces a product, in this case electrical energy.
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Both equations do not contain any information about stored energy in battery sys-
tems. The longer the time spans for the calculations, the less important the influence of
the stored energy. Battery systems are usually designed to store energy needed during
one night [LVS15]. So when calculating the SCR or DOA for one day the impact is high
in comparison to one month. When a battery systems State-of-Charge (SoC) was zero at
the start of a time span and was 100% at the end, the stored energy would be taken into
account as directly used. Since normally a battery system does not supply any energy to
the public grid, in general this would be correct even if the energy has not been really used
at the end of the time span. It would be fine in context of the SCR. When considering
the DOA the stored energy could be taken into account as a reduction of the used energy
which leads to a higher DOA, even over 100%. But since battery systems are only shifting
energy over an amount of time this usually can be completely ignored for the calculations.

When dealing with power grids with a lesser general availability of the energy supply
compared to Central Europe, then load management is an even more important term.
Here the controlling algorithms are the enabler for a stable power grid to achieve higher
availability for a single energy household or a whole region, especially when considering
electric cars charging stations which are getting more and more every year.

3.3 Public Key Infrastructure
The PKIs are commonly used in today’s technologies. The presence of a working PKI in
the background is often not recognized by users if there are no verification errors. Two
examples of PKI usages are secure web pages and Apps on mobile platforms. In both
scenarios the user of an end device can trust a website or an App for being from a trusted
source. The following subsection explains those use cases in more detail.

Basically, a PKI is a system for managing digital certificates. This includes procedures,
roles and policies to be able to manage and use a PKI. Certificates are usually signed by
other ("higher") ones which results in a hierarchy of certificates. On top of such a system
is the root certificate which is self-signed. Commonly root certificates are known and
trusted. All certificates which are signed by the associated private key are then trusted
as well. Multiple layers of certificates signing one another result in so-called certificate
chains. If something is signed by a leaf certificate’s key, the complete chain of certificates
must be provided to be able to determine if the chain and the final signature are valid.

If the provided signatures are correct it still depends on a client if it trusts the root
certificate which backs the complete chain of trust. Depending on the use case where
the PKI is used, the question of trusting various root certificates can be easy or rather
complex as explained in the next subsection. When dealing with embedded systems there
is often only one root certificate which can be trusted. Often software which is delivered
via an update system or other important information needs to be verified and there is only
one source providing those things. Therefore, often only one Certification Authority (CA)
with its associated root certificate is used. Generally, at least one intermediate layer for
security reasons often exists which issues all certificates for doing the actual signing work
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of various things like software. If the private key of a root certificate leaks, the only real
possibility to react is to distrust the complete CA. This is a real problem when only one
CA exists and the entire security depends on it. So, protecting the root key at all costs is
essential. Therefore, intermediate certificates are used, because revoking them is possible
if for instance a system got hacked which had a copy of the private key.

3.3.1 Example Usages for PKIs

There are two use cases of PKIs which nearly everyone uses every day. One is secure
web browsing and the second is installing and using various Apps on mobile platforms.
Normally users of clients (a web browser or a mobile operating system (OS)) are only
notified if a signature verification fails or the root certificate is untrusted. Depending on
the client’s policies the user can ignore the error and continue.

In context of secure web browsing, various trusted root certificates are used to deter-
mine if a certificate offered by a web server can be trusted or not. If the root certificate
is trusted and all signatures are correct, the browser accepts the connection or otherwise
reports an error. It works similar for the Apps on mobile platforms. Usually the mobile
device does not allow installations of Apps which are not properly signed by an issued
certificate from the central App-CA. Developer options sometimes allow to by-pass this
security policy.

The main difference between both use cases is the number of trusted CAs. While using
web browsers a big number of CAs is present which all are issuing certificates to various
parties. All of those associated root certificates need to be trusted by the browser. A
standard set of root certificates is usually maintained by the web browsers developer or
maintainers. They have guidelines whether a CA is trusted or not. This is due to the fact
that hardly any users of web browsers know the impact of trusting or distrusting CAs. To
summarize that, there are a lot of CAs issuing certificates which are trusted or not due
to some policies instated by the developers, the backing businesses or maintainers. Since
there is more than one web browser vendor, this process of selecting trusted CAs needs to
be done by all of them which might lead to different trusted CAs within common browsers.

When dealing with a big mobile OS where there is exactly one organization issuing
certificates the number of trusted CA is mostly one. If there are multiple CAs within a
single organization the management of trusted parties is also quite simple. The vendor of
the mobile platform issues certificates to various developers which then can sign their Apps
in order to be able to publish them. When everything is signed and published correctly
other users can install the Apps and since they are signed by a trusted party the mobile
device will allow it and the user can use them. Besides this software signing on mobile
platforms, similar signing takes place on desktop and server OSes. The packet manager
or installer can only install properly signed software by default.

3.3.2 Issuing Certificates

A CA can issue certificates. This happens by signing a Certificate Signing Request (CSR)
with the signer’s private key. The CSR is derived from the private key and some meta
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data like the common name is added. After adding some meta data from the CA itself
to the CSR the signing can take place and the certificate can be derived. This way the
signing authority does not know the private key. The CA itself saves some data as well
like the serial number for itself for tracking purposes. The top level CA is self-signed. In-
termediate CAs are signed by the root certificate’s key or other intermediate ones. While
signing various flags can be set in the certificate. This includes usages for the key. This
way leaf certificates cannot be used as a CA. A leaf certificate is normally used for web
servers or code signing and represents the end of a certificate chain.

Besides the usage information, a start and end date for the certificates are set. So, the
time in which certificates are valid is limited. Besides the expiration date, certificates also
can be revoked. See subsection 3.3.3 for that.

3.3.3 Certificate Revocation

Certificates are issued as described before and they also can be revoked by the issuing
CA if needed. This happens for instance when a private key leaks. In such cases the CA
revokes the associated certificate and publishes the information in its certificate revocation
list (CRL). The clients have to check the CRL too to determine if the certificate is still
valid regardless of is expiration date. In the certificate the location of the CRL is included.
When using a web browser this additional check can be easily performed since the system
is usually connected to the Internet when surfing the web. But for embedded systems
which are not always connected to the Internet this task is not trivial or sometimes even
impossible. For instance when signed software resides on a USB media which could be
plugged-in during start-up for side-loading purposes, the revocation information might be
not accessible at all.

An alternative to CRLs is Online Certificate Status Protocol (OCSP). It’s on a re-
quest/response basis like Hypertext Transfer Protocol (HTTP). Compared to CRLs less
data is transported during a request and parsing the data is easier which makes the clients
less complex. The answering party for OCSP is usually called OCSP responder and knowns
based on the requests which host used a certificate at what time.

3.4 Security of Embedded Devices
Attacks can be divided in various ways [RHM+12]. This work puts them into three
categories. Those include attacks via executing malicious code which is distributed without
direct system access. Next are attacks over the network which exploit some weakness by
buffer overflows or other flaws. Lastly, an attacker could have direct physical access which
allows them to modify the hardware directly to get access. Figure 3.4 visually describes
those three categories.

3.4.1 Foreign Code Execution

Without direct system access another way can be found to get the target system to do
something in the attack’s favor. This is usually injecting a malicious piece of code or
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Figure 3.4: Different attack schemes on em-
bedded systems.

software on some remote location in perspective of the target. A possible way might be
to get access to the update infrastructure and mess with the updates.

Execution of the foreign software can be prevented even in the case of a hacked update
system by signing the updates directly after building. This way the target system can
check the integrity of the provided software. Basically, this means that as long the update
is not corrupted before signing any manipulation can be detected. As a result, the build
process before signing the update must be secured as well.

The management of the used PKI is critical to ensure security. A concept for issuing
and using certificates and their associated keys needs to be created to avoid flaws in the
signing chains. This is described in more detail at subsections 3.3 and 4.8.3. But one
thing need to be added here: The target system also needs information about revoked
certificates to be able to detect signatures from keys which were stolen and therefore
revoked by the CA. So only determining the correctness of the signature for signed soft-
ware is not enough, the chain and its revocation information need to be considered as well.

A very interesting topic for protecting a device should be named in association with
not having any direct access to a system is social engineering. With the help of an user
an action in favor of the attacker can be triggered. Besides that information could also be
retrieved.

3.4.2 Exploit

When dealing with systems connected to a network or the Internet exploits can be used
to get access to a device. In the worst case even root access can be gained, which is unre-
stricted access. Often those terms are used when talking about servers and securing them.
It is very similar with embedded systems. A distinction should be made at this point
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for the network access capabilities. First, there is access through the transport protocols
UDP and TCP which might be allowed by some firewall rules if any firewall is present
at all. So, the attacker in this case is at least more than one hop away from a network
routing perspective. Second, there is being in the same network as the target system.
Attacks over other protocols can be applied. Exploits are not limited to network access.
They also might be used at other but local interfaces. More about that in the next section.

The first type of access with transport protocols can also occur when being in the
same network. So, in the local network (Ethernet or WLAN) the threat is bigger because
more is possible. This includes not having a dedicated firewall or intrusion detection sys-
tem (IDS)/intrusion prevention system (IPS) between the target and the attacker. Often
the term first hop security is used in this context.

Constantly applying security patches when vulnerabilities are discovered is an impor-
tant measure to protect the system. When designing a product, the time span of support
is very essential for security.

3.4.3 Direct System Access

When dealing with the threat of direct system access a distinction can be made between
access which does not require the breaking of any seals on the device like USB ports and
full access to all internals of the target. Normally a product is secured pretty well when
focusing on those external interfaces because anyone like customers buying the product
could have access to them. Also, it is often easy to protect the system in this case due to
the fact that only wanted interfaces are accessible from outside.

But inside the housing the situation gets far more complicated. Since inside the device
there are a lot of needed internal interfaces i.e. for connecting up various hardware com-
ponents, protecting them can be a very hard task. Interfaces needed for initial flashing or
simple an embedded memory card could be exposed on the PCB which often easily can
be accessed when the housing is removed partly or in full.

When having access to the bootloader inside the device, it is possible to boot from
another medium depending on the interface support of the hardware and the bootloader’s
capabilities (or configuration). At least if there are no measures taken against it. With
another system booted or some configuration files changed it is possible to get root ac-
cess to the device and do nearly anything an attacker wants. Also getting some sensitive
information like credentials is a big threat. This includes the device’s identity or saved
passwords for cloud services and similar local services. Therefore, much asymmetric cryp-
tographic should be used to reduce the possible damage when a system breach is not too
hard for an attacker with unlimited physical access.

One possibility to avoid this is encrypting and/or sealing the device. With mechanisms
like High Assurance Boot (HAB) it is possible to boot only a bootloader and a Linux ker-
nel which are correctly signed. The signature is checked against a certificate burned on the
processors internal one-time programmable non-volatile memory (OTP NVM). If sensi-
tive information on the device must be protected at all cost a full system encryption must
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be considered. This type of technique is generally known as secure boot in association
with a Trusted Platform Module (TPM) as it is present on modern PCs.

When accessing the rootfs there is also the risk of finding possible exploits in association
with network access which could not be detected before without direct access. So to
summarize this section, there is very much work associated with protecting a device against
direct access to its internals. Also, the hardware must provide various security features
like HAB or something similar to be able to properly protect the system.

3.5 Updates on Mobile Platforms
Mobile phones with their various platforms are in some manners very similar to embed-
ded system development. Thus, when designing an update process for custom systems,
it is a good idea to look at mobile platforms. A distinction between system update and
application update can also be made on mobile platforms. Apps are usually updated in-
dependently from each other and from the system. Developers do not have to care about
update installation and distribution much here.

Apps are signed by the developers when building them with a key whose corresponding
certificate is signed by the platform’s central CA. Manifests provide information about
compatibility and capabilities. App developers are not concerned with system updates at
all. These have to be taken care of by the various device manufacturers. Depending on
the platform, the update processes can be examined or not.

By contrast, in this work everything has to be done by one party due to the full stack
nature of the product and its software. The update process, both system and application,
have to be crash safe. Otherwise, after failed updates the product might not work at all
and it would lead to a support case which can be very expensive.
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Chapter 4

Concept

Previously to this work most of the hardware design for the target system was done and
therefore hardware related requirements are present. This chapter starts with describing
the requirements. The tools already provided and selected close the first part of this
chapter. Further on, the concept of the work to be done to achieve the goal is presented
in detail.

4.1 Requirements for the Target System
The Linux kernel was provided for the SoM. Driver selection, changes and modifications
had to be done for the custom hardware itself where the SoM is only a part of it. The
kernel and rootfs must support crash safe updating of the system (kernel and rootfs) as
well as the application running on top of it.

The concepts created here for doing so should be applicable to other target systems
as well. So, a general solution must be achieved. The update process itself must be as
convenient as possible for the end user. Initial flashing of the finished products as well as
provisioning them while manufacturing must be as simple as possible and should require
as little additional hardware as possible.

The security of the system is vital so applying security patches to the used software
in the rootfs or the kernel must be easy. Another aspect is to keep the system always
running so mechanisms must be in place to detect hangs of any kind to avoid downtime
as well as possible.

To insure low hardware costs, the new rootfs should be as small as possible. Unified
access to hardware devices from the application running on top is a big advantage but it
is no hard requirement. Application development for the target system should be pain
free for developers creating it.
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CPU 1GHz Allwinner R8 ARMv7 Cortex-A8
RAM 256MB DDR3
Storage 512MB SLC NAND
Connectivity WiFi B/G/N & BT4.2
Certification full

Table 4.1: Specification of the CHIP Pro (an excerpt).

4.2 Hardware Target
The target device is based on a SoM called "CHIP Pro". It is shown in figure 4.1. With its
initial price of 16$ regardless of the quantity it is an outstanding SoM when comparing the
price to the specifications. In addition to its built-in communications a custom UI for the
housing and a Z-Wave module was needed. Therefore, electronics consisting of multiple
PCBs was needed.

Figure 4.1: The heart of the target system: The CHIP Pro SoM.

Table 4.1 summarizes the most significant specifications for the CHIP pro. As stated
in the last row, the module itself is fully certified. The single-level cell (SLC) NAND is an
endurance non-volatile memory.

As mentioned before, the complete electronic assembly consists of multiple custom
made PCBs and various components on it. A block diagram of the most basic compo-
nents is explained later in section 4.4.1 on page 22.

Figure 4.2 shows the three custom boards side by side in a non-connected state. The left
one is the expansion board with the exposed UI and the ZM5304, a Z-Wave module con-
nected via universal asynchronous receiver-transmitter (UART) and one general-purpose
input/output (GPIO) as reset line for resetting the module if needed. The UI consists
of one USB On-The-Go (OTG) connector, two buttons with different heights and three
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RGB-LEDs. The higher button is used for normal interactions with the user, the lower
one is only for rebooting or hard-resetting the complete electronics.

Figure 4.2: The three custom boards used: Communications and UI, base board and the
CPU carrier board already assembled with the SoM.

The center PCB is the base board with one USB-A connector, the RTC with its big
capacitor, the USB control and the power supply terminals. The last PCB is called the
CPU board. It only holds the CHIP Pro, a debug header and a hardware identification.

In the last step of manufacturing the parts are soldered together. The complete as-
sembly is shown in figure 4.3.

Figure 4.3: The complete electronic assembly
for the Compact Unbranded.

4.3 Provided Tools And Software
As mentioned in section 4.1 there was already a Linux system for the CHIP Pro. More
precise, all driver work was done for the Linux kernel and a rootfs based on Buildroot
was available. In addition, all tools for bringing the system on the CHIP Pro were of
course provided by the manufacturer. Buildroot was not very practical due to the need to
manually integrate the needed software for the rootfs. Luckily, within the Yocto project,
a so called meta layer was present for the used SoM. The layer is called meta-chip. Yocto
as a build system was more suitable due to the recipe and layer structure for maintaining
software and scripts for multiple hardware targets. Yocto is used very often nowadays by
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various manufactures of various modules. See the next section for more information about
that.

4.3.1 Building the System

The YP is an open source collaboration project that helps developers create custom Linux-
based systems for embedded products, regardless of the hardware architecture [Pro18b]. The
YP is a huge umbrella project housing the build engine OpenEmbedded with its meta data
for embedded Linux and a reference distribution called Poky. Figure 4.4 summarizes that.
With its abstractions Yocto is the perfect framework to develop a system with the desired
properties for the use on different hardware targets.

Figure 4.4: Base components in the YP [Pro18a].

The meta data consists of layers which have recipes and various configurations. Usu-
ally the layers’ names start with "meta-" like "meta-sems" or "meta-qt5". New layers are
required for handling on the one hand all common and hardware-independent, update-
related recipes and on the other hand all recipes and configurations used for modifying
and extending existing recipes for being able to run on the target hardware.

The layer for the common recipes will be call "meta-sems" and the second one specific
for the hardware "meat-sems-chippro".

4.3.2 Toolchain for Application Development

The application running on top of the Linux system is based on Qt5 and its build process
is managed by cmake. A software development kit (SDK) containing all tools and files
needed for cross compiling the application must be provided by the build system used to
build the bootloader, the kernel and the system itself.

The meta-qt5 layer contains all recipes and configuration not only for building the
libraries for the target system with Yocto but also provides the target meta-toolchain-qt5
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which builds the wanted SDK. Only one modification must be done for including also all
needed cmake tools in the SDK.

4.3.3 Kernel Patches

One goal is to easily apply security patches to the kernel in the case of revealed security
risks. The kernel itself does not need many modifications, so integrating security patches
later on should not be a problem at all. It is even easier when the vendor of the SoM
include them into a Yocto layer.

4.4 Customizing Linux for the Hardware Target
This section summarizes the changes needed to be made to achieve the desired goals for
the target hardware. As stated in the previous sections, for the CHIP Pro, our SoM, most
work was already done regarding kernel and device drivers support. Still some work had
to be done to support our update process and the hardware devices on the custom boards.

4.4.1 Kernel Drivers

The first step is to select the needed kernel drivers for the hardware by configuring the
kernel. Figure 4.5 demonstrates an overview of the hardware blocks which needed to be
considered. Those blocks are located on the three boards: CPU, Base and Extension. On
the CPU board there is the CHIP Pro, its own power management IC (PMIC) and the
hardware ID, which is not shown here. This ID is just for assembled or not assembled pull
down resistors for reading in the used custom hardware revision. The PMIC (a AXP209)
is located on the CHIP pro but because of the so called PEK signal and its importance it
is drawn separately. The AXP209 is connected besides other signals via an I2C bus. The
status of the PEK signal is read from a register using I2C. The system is rebooted on
short presses. On long presses the AXP209 shuts down immediately.

The base board hosts the control circuit for en- and disabling the USB interfaces and
the RTC with its crystal and large capacitor. The RTC is connected via another I2C
bus. Controlling the USB ports is done only by two GPIOs. This board also connects
the CPU board with the extension board. Last but not least the extension board carriers
the ZM5304, the used Z-Wave module and the UI with the USB OTG connector. The
ZM5304 only needs a serial interface with one GPIO, no special driver is needed from a
kernels perspective besides the standard serial driver. The UI has nine LED channels and
two buttons in total. One is directly connected to the SoM and the other to the PMIC to
be able to perform a hard reset if the system becomes unresponsive.

For all devices described above there were already drivers available. So, most work
for the kernel here was to choose the correct position for the kernel modules: built-in or
loadable from the rootfs. Mapping where the kernel finds which device is done by the
device-tree. The only modification of a kernel driver is for the sun-xi watchdog on the
CPU. This is needed so that the kernel does not stop it while initializing the device drivers
during booting. The bootloader starts it to detect boot problems and if the driver shuts

22



down the watchdog it might get missed and the system does not get unstuck after possible
hangs during boot.

Figure 4.5: Block diagram for the given target hardware. The top
labels indicating on which PCB the components are placed on.

4.4.2 Device-Tree

The device-tree is a description of the hardware where the kernel or the bootloader are
running on. This is needed in embedded systems running the Linux kernel and associated
bootloaders like U-Boot and barebox to get the information needed to run.

Those information contains sizes of the memories, CPU configurations, where to find
devices, which drivers to load and so on. On classic PCs this information is provided
by the Basic Input/Output System (BIOS). Before the device-tree was introduced this
information was directly compiled into the Linux kernel in the well known board.c files.
Also the initialization sequence was coded there. The big advantage of the device-tree
systems is now that the same kernel can be used with different boards without the need
for recompilation due to changed devices. This is achieved by providing the compiled
device-tree to the kernel by the bootloader during boot. It is also possible to change the
device-tree while the bootloader is active to dynamically decide about the use of various
devices.

The device-tree file(s) must be written correctly to support all devices as shown in 4.5
and described in section 4.4. The device-tree system offers includes so that the description
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of the hardware can be divided into different files. A simplified and general visualization of
this is shown in figure 4.6: How many layers and includes a specific system or architecture
has, various widely. For instance the CPU family could be NXPs i.MX6 CPU and various
vendors offering SoMs include the base CPU dtsi-file in their own dtsi-files which then are
used by their reference boards dts-files or by there customers for their boards. For large
CPU families like the i.MX6 there are a lot of dtsi-files for the different variants of the
CPU available on the market.

Figure 4.6: Simple representation of how device-tree includes work.
Higher blocks (.dtsi-files) are used by bottom board blocks (.dts-
files).

4.5 Boot Process
Booting a Linux system is not a challenge besides hardware related work. If all driver work
is done there are normally no troubles firing up the hardware because of the previous work
already done by the hardware manufactures. Would they not do this initial hardware in-
tegration for the Linux kernel for their products they sell, hardly any customers would
buy them. Since the target is a custom hardware beside the SoM some driver related work
needed to be done as described in the previous section.

To comply with the requirements, the boot process must be altered in a way that it
supports a reliable and crash-safe method for updating both the system with its kernel
and the application. Since the application update does only have to do with the rootfs to
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provide services and scripts to perform the update, it does not affect the boot process itself.

Therefore, this section focuses only on the system update and all related tasks to per-
form to be able to achieve our goals. Independent from the components a general rule is
that everything which is updated or written in the process needs to be redundant. Other-
wise when the system goes down unexpectedly, the system might not be boot-able again
and this possibly would mean that the system has to be replaced. Such support cases
must be avoidable regardless of what the end user might have done.

Figure 4.7: Dual boot system for safe system
updates - a logical schema.

Figure 4.7 shows in a simplified way what needs to be redundant. The bootloader itself
is hardly updateable generally. To be able to still update, it a secondary bootloader which
is redundant as well would be required. For the target system the "u-boot" bootloader
was already provided. It has to decide which kernel it has to load. Such information can
be saved in its environment. Since it must be writeable to tell the bootloader after an
update that is should now use the other system, the environment must be redundant.

To safely prepare the new system during an update it must not interfere with the
currently running system at all. So, both the kernel and the rootfs must be redundant like
the bootloader environment. This way the update process can always be interrupted, and
the old system still would normally boot up. After the new system is completely prepared,
the running system tells the bootloader via its environment that it should try the new
system next time. After this step the last action to take is to reboot the system.

The following subsections explain the boot steps in more detail.

4.5.1 Bootloader

Our used bootloader (U-Boot) already has support for handling multiple environments.
It has to be activated in the configuration needed for compilation. This also applies to
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the tools for reading and writing the environment from a running Linux system. With
this support enabled the environment is safe against sudden power losses. Recovering a
possible damaged environment still must be handled.

4.5.1.1 Handling Redundant Systems and their Update

The bootloader has two tasks to perform every boot. One is the check if both environ-
ments are valid because one might have already crashed and in the case of performing an
update, a second unexpected reset can also crash the only healthy environment, which
leads to unknown behavior. The second task is to select the correct system to boot up.

In the left part of figure 4.8, there is a flow chart for loading the correct environment
and restoring a possible damaged one. In the case that both environments are fine, no
writing action is performed at all. This is the green path in the flow chart. If one of them
is damaged, it is restored with the contents of the loaded, healthy one, which is shown as
blue paths.

Figure 4.8: Environment loading/checking and system selection flow chart.
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The red path indicates that both environments could not be read. This should never
happen with the measures taken as already explained in this subsection. Still, it is possible
that there are hardware faults associated with the used NAND memory. But this is very
unlikely due to the fact that this environment is only written when performing an update.
But still there is one case in which both environments are not readable and this is during
the first ever boot up of the bootloader after initial flashing. In that case, the default
environment is loaded, which is compiled into to bootloader binary.

Which system (first or second) the bootloader should try to start was determined by
the previously running system. It only updates this information during updates. In addi-
tion to that the bootloader itself must keep track of what it has done on previous boots
to be able to detect errors during boot and perform a fallback at the next start-up.

A summary of the selection process is drawn in figure 4.8 on the right side. After
reading the variables they are analyzed in the following ways: If the last tried system is
the same as the last system which was correctly booted, there was no problem with an
update. If the last tried one is also the same as the next to use, no update is currently in
process. This is shown in the chart as green path.

During an update (when correctly booted before) the use_next variable is updated
by the running Linux system and this is detected by U-Boot - shown as blue path. The
tried_last variable is now updated by U-Boot and the information must be preserved and
therefore a write of the environment happens.

In the case that after an update the kernel or the complete system failed to boot
anyhow it is detected by mismatching tried_last and booted_last_correct variables. The
red path is executed and the use_next is restored as a fallback action. Like before the
system to use changed and it has to be written together with the new tried_last value
to the NAND memory for keeping the information until the next power-up and further on.

The selection process has one weakness: After an update when the system would be
booted correctly but the start is interrupted somehow (i.e. power outage), a fallback ac-
tion is always triggered. The complete update has to be started again. This is no problem
at all because the system always will boot into a working system. This can only be done
this way due to the lack of the reset cause of the system while executing the bootloader.
In other architectures the information why the system was reset is provided and with that
a power failure or watchdog reset can be distinguished. Based on that information the
fallback action can be postponed and the new system can be tried again without the need
for rerunning the complete system update.

At last it should be stated that the bootloader does not know anything about the rootfs.
It only prepares the device-tree and starts the selected kernel based on the described flow.
It is the kernel’s responsibility to find the roofs and mount it.
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4.5.1.2 Resulting Layout of the NAND Memory

Based on figures 4.7 and 4.8 and the explanations associated with them, the resulting
layout of the NAND memory is shown in figure 4.9.

Figure 4.9: Principle used NAND layout. For details see table 5.1

The chosen layout is located directly used on the NAND. The bootloader and its
redundant environments can only be located there. For flexibility, the remaining space is
used for all kernels and rootfs images dynamically. It is formatted with Unsorted Block
Images (UBI), which handles wear-leveling and volume management. On top of UBI one
single volume is used, which is UBIFS formatted. The used bootloader can create UBI
and its volume and can read from it during boot. The exact contents of the so-called
image store are described in section 4.5.4 later on.

4.5.2 Kernel Startup

The kernel start-up is very straight-forward regarding the redundant systems present on
the persistent memory. A normal device-tree enabled boot is performed. The device-tree
is preloaded like the kernel prior to kernel execution. Besides the kernel, the bootloader
must also be device-tree-enabled to perform this boot style.

Because of the presence of the UBIFS, which does not directly contain the rootfs, the
kernel cannot directly mount it with its default implementations. Therefore, a common
technique is used: the initramfs. It is a minimal Linux system very tiny in size which
is loaded as the initial rootfs. It is simply configured in the kernel configuration. The
initramfs can be preloaded like the device-tree prior to booting the kernel or it can be
embedded in the kernel image itself.

Since the kernel size does not really matter when stored in the UBIFS it was embedded
to make the updating process of the whole system easier. Otherwise, the initramfs must
be updated parallel to the kernel and the rootfs as well, which would increase complexity
of the boot and update processes.

Some boot arguments are given by the bootloader but those are not very special.
The image store itself is given as the rootfs, so the initramfs does not need to mount
it separately during start-up. Figure 4.10 shows both the kernel being stored inside the
image store and the principle partitioning of one of these images into the kernel itself and
the embedded initramfs.
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Figure 4.10: Kernel image contents: The kernel, saved at the UBIFS formatted image
store has its own embedded initramfs.

4.5.3 Initramfs

In a normal Linux kernel boot process, the bootloader tells the kernel via the boot ar-
guments where to find its rootfs. It can be on a NAND or NOR storage, a hard disk
drive (HDD), a SD memory card or even on the network as a network file system (NFS)
drive. In all these cases, the kernel can handle mounting the rootfs directly. Since the
mount cannot be handled by these built-in routines with the chosen location, an initramfs
has to be used, whose main goal is to find and mount the rootfs, then it carries on with
the normal kernel boot procedure.

The initramfs is basically a tiny Linux rootfs with an init-script or a program and all
files needed for executing it. Those typically are the various commands and the libraries
used in such scripts. In addition, a minimal shell during development is helpful. The tasks
of the used script are the following:

1. Prepare for mounting the rootfs.

2. Derive the filename for the rootfs based on the kernel name.

3. Mount the rootfs, which is a single squashfs formatted file located in the image store,
as shown in figure 4.11.

4. Tell the kernel to swap the initramfs with the real rootfs and call the init of the finial
file system.

It is a simple sequence of commands, which need to be executed to perform these tasks.
The squashfs is a read-only file system which has high compression capabilities. See the
next section for a more detailed explanation of it. The initramfs itself is a compressed
cpio-archive, which is provided for the kernel build in a pre-built format.

4.5.4 Image Store

The major part of the NAND storage is used as one single UBI volume formatted with
UBIFS. It houses various images, which are single files formatted in a way that fits their
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purpose. Besides these single file images, one directory used by the bootloader is present
containing the device-tree needed for the kernel boot. One file system containing all im-
ages has the advantage that all images can vary in size over time without any problems if
the total space needed is not too large. This could not be achieved with partition on the
NAND directly. A fixed layout would be present over the entire lifetime of the hardware.
The reserved space for the images could be too little or too large. One other way possible
is to use multiple volumes in UBI but this increases the complexity when updating the
images.

Figure 4.11: Image store contents.

In figure 4.11, all image files are displayed. Those images are

1. First kernel (active or used for updating)

2. Second kernel (active or used for updating)

3. The configuration container "conf" formatted with ext4

4. First application container (squashfs)

5. Second application container (squashfs)

6. A rootfs belonging to the first present kernel

7. Another rootfs belonging to the second kernel

8. Data storage for the application (ext4)

All the needed redundancy shown in figure 4.7 is present here. All the bootloader-
related storage spaces are directly on the NAND (with exception of the device-tree), ev-
erything else in the image store. Loading the kernel is the responsibility of the bootloader,
finding and mounting the rootfs is those of the kernel.

The free space is very important for updating. The new system file is downloaded and
extracted before removing the old rootfs container. Because of this, the application data
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is also fixed at one size to predict the available space during system updates.

Squashfs is mainly used for embedded devices with only a few megabytes of persistent
memory like wireless routers. Since the rootfs should be crash-safe, making it read-only
is vital to achieve this. Due to this possibility and squashfs featuring various compression
methods it was chosen for the target system not only for the rootfs but also for the appli-
cation containers. The resulting size when using squashfs is only a third when compared
to ext4.

4.6 Image Management in Linux
All images menioned in the section above are managed by the running OS. The Linux
system itself mounts the "conf" container automatically. This contains provisioning data
including the hardware’s serial number, among other things. Dispatching which applica-
tion to launch is handled in a system service script. The application data is opened by
the application. The complete image store is mounted in Linux at /mnt/images.

During application and system updates, the inactive containers inside the image store
are replaced. Since everything updateable is redundant, it is safe to so.

4.6.1 Root Filesystem

The rootfs is read-only to avoid unwanted changes during runtime. Squashfs is used for
this. Its characteristics are explained in section 4.5.4. Further on nothing can be saved
there, a few modifications to the configuration files still must be done like updating the
WLAN credentials, the serial number while provisioning or the access point name when the
application is in setup mode. To satisfy the need of updating some files normally placed
inside the rootfs, the "config" container is used. Every writeable system file is stored there
and referenced by a symbolic link from the read-only rootfs.

Another possibility to still make the rootfs writeable is using overlay file systems like
routers do. Since the hardware target only needs a few update specific pre-known files the
previous solution fits better.

4.6.2 Configuration Container

The "config" container is mounted at /config and is used for write-able system files, provi-
sioning data as well as important application configuration files. For maximum reliability
ext4 is chosen as file system. During mounting, the journal and caching can be configured
in a way that interrupted writes are detected immediately during mounting and the recov-
ery is easy and fast. In addition, it is mounted with the "sync" option to avoid any write
buffers delaying flushing the data to the disk. This way the application or system services
can rely on the data being on disk when the write calls are returning. The journaling does
some extra write load but the trade-off for fast recovery is acceptable.
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4.6.3 Application

The application running on top of the system is stored very similarly at the image store,
also being squashfs and redundant because the requirements and advantages are the same.
The assigned mount points are /mnt/app1 /mnt/app2. The selection of which application
to use is done by a script being part of the rootfs and started by a system service. The
application start and updating process is out of scope of this work.

4.6.4 Application Data

The data spaces which can be used by the application are located in two places. One is
inside the previously described configuration container at a specific path (/config/user-
config) mainly used for configuration. The second place is at the mount point /persistent,
where the application data container is mounted by the application itself. This separa-
tion is for distinguishing between important configuration and less important sensor data,
persistent logs, and crash dumps.

4.6.4.1 Temporary Storage

As stated in section 4.5.4, there is free space on the image store for updating purposes. The
system image is directly downloaded to the image store due to its large size, which is too
large for keeping it in random access memory (RAM) especially when unpacking it. The
chosen directory for this is beneath the image stores mount point at /mnt/images/tmp.

4.7 Updating the System
The task of updating the system is split in parts for the bootloader, the OS with its rootfs
and the application running on top of it. Fetching, verifying and preparing is the responsi-
bility of the application. Relocating the images to the correct paths while performing the
update and telling the bootloader about the changes is the task of the system. Dispatching
at boot time and starting the correct kernel is performed by the bootloader as described
in section Handling Redundant Systems and their Update on page 26.

The interface between the application and the system therefore are some fixed locations
for the update files and some service names for starting the update processes. The kernel
exchanges information with the bootloader via the bootloaders redundant environment.
After a successful update, the application must trigger reporting the state after start-up
to complete the update.

4.7.1 Responsibilities for the Application

The application triggers the system update process by any means, directly by an operating
user, or time controlled. A visual overview of the tasks to be performed by the application
is found on the right side of figure 4.12. Downloading, extracting, and verifying the image
is done after starting the update if there is any available. Before starting the system
service associated with system updates, the kernel as well as the rootfs-container needed
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to be placed in specific places so that the system’s script called by the service can find it.

Besides triggering and performing the update after successfully booting the system
and starting the application, another service must be started. This time it lets the system
write back to the bootloader environment that the startup succeed.

4.7.2 Services and Scripts Provided by the System

The system update routine, a series of commands in a bash script, gathers further in-
formation needed before performing the update. This includes determining the currently
used system image file name and also the location of the inactive kernel. The filename
is read from the losetup command with tells the script about currently mapped image
files. The NAND partition to use is queried from the bootloader environment. With this
information, the old system image can be removed, and the new kernel flashed onto the
correct place. After an integrity check, the new system to use is set in the bootloader
environment and it is saved back to the corresponding NAND partitions. In the end, a
reboot is performed. Figure 4.12 summarizes the described flow in the column "Linux
Update".

The second system routine needed to be provided by the system is for determining if a
system update was correctly performed. As by the previous routing a systemd-service is
used for triggering the "Linux BootUp Check". The procedure is shown in the same figure
as before. The application only triggers the check by starting the service. All tasks here
are performed by the script backing the service. Basically, the environment is read and
a simple comparison of two variables is performed. If there is a mismatch an update was
performed and by setting the correct variable the bootloader knows at the next startup
that the update was successful and therefore does not perform a fall-back to the old system.

With the systemd-services used to perform the update related tasks this unified inter-
faces are reusable on other systems as well.

4.8 Update Distribution
Up until this point, the concept chapter focused on the target system itself with its chal-
lenges and tasks. Besides that, the gap between the created system images and the start
of the update routine on the running systems needed to be filled: This section focuses
on update delivery from the build server to a few or all systems in-field. The concept
of delivering updates can be applied to the application running on top of the considered
system images as well. Since the bootloader is not updateable by design, the delivered
over-the-air updates for the systems consist of the kernel and the rootfs.

In the first subsection, requirements for the software delivery are gathered. Derived
from that, the update service itself is described. When dealing with updates, their au-
thenticity must be guaranteed, therefore one subsection deals with the used PKI. This
section closes with a closer look at identity management.
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Figure 4.12: Tasks regarding a system update performed by Linux and its application
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4.8.1 Requirements for the Software Distribution

The basic requirement for the update system is to take created updates and forwards them
to the targeted systems. So, the idea is to define a format which updates must comply
to, and the update service then can distributes them. This means the content is strictly
separated from its delivery (path).

The service must provide a way to publish updates automatically by other services
as well as manual publishing by authorized users. Also, the update distribution must be
controllable. Lastly, the update must be fetchable by the target systems. Since nearly all
system deployed in-field will not have a public IP address which would be reachable, the
systems must fetch the updates themselves.

Update publishing and distribution control are internal tasks. No external stakehold-
ers need to be considered for these tasks. To enable the possibility to define test groups
as well as a group for early adopters some kind of deployment group management must
be in place. As stated before, the updates must arrive on all systems in-field. The load of
many systems fetching updates must be manageable.

Due to the long time spans, in which products are in stock at some warehouses, the up-
date service must provide a long time support for its offered services. Otherwise, shipped
products might not be updateable after several years. This applies to machine to machine
interfaces like application programming interface (API)s in general.

The defined update formats with their meta data must be useable for the system up-
dates as well as application updates. The version numbering should have a format to
enable clients to detect the need to install all updates or only a few to avoid unnecessary
(intermediate) updates.

Due to the requirement for targeted deployments, an identity management of some
kind must be implemented. The update service must be able to distinguish between sev-
eral clients. Those identities must be known by the service as well as the target system
itself. This enforces the need for provisioning the products for (but not only for) the
update service.

4.8.2 Update Service

The update service needs to be reachable by any party over the Internet. A web portal
with an associated Representational State Transfer (REST) API for machine to machine
communication achieves the desired goals. All manual operations are carried out on the
web portal while services and clients access the API. Therefore, various ways of authenti-
cation are needed. The various tasks of publishing and distributing control can be carried
out by different roles. Such roles might be development, testing department or product
management. Together with the previously described deployment groups, this is visual-
ized in figure 4.13. In the middle column, the basic life cycle of an update is shown. On
the right side, different roles acting at different stages are associated with them. Example
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targets on the left side represent clients who are fetching updates and their meta data.

Figure 4.13: Principle life cycle for an update from creation until full roll-out.

Development usually builds and publishes the updates according to the development
process in state. Most of the time, the building and publishing is fully automated and done
by build servers. After an update is published in the update service, it needs further tests
in isolated environments. The example in figure 4.13 defines three steps for testing and/or
preview update delivery. Different systems can be targeted by the various groups. Three
groups exist in the example: A, B and C. While test device 1 is enrolled in all groups,
device number 2 only in B and C and the last test device in C. During the testing phase,
the testing stuff deploys an update to the groups according to a test schedule or policies. If
it is tested enough and considered ready for general (public) release to all registered clients
(target systems at all customers), the last step in the chain is performed by the product
management: the general roll-out. Usually it ends here. In some rare cases, if there is a
major bug, an update can be permanently revoked. Then it is not available to any client
any more. Such a revocation could happen at earlier stages as well. An alternative is to
undo the general roll-out (or deployment on a group) stage. Systems in-field still have the
update installed but other clients can be prevented from getting a faulty update.
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Deployment groups are the enabler of various scenarios. Simple test groups can be
organized as well as larger groups of customers. Any number of clients can be added to a
group. Updates are deployed on a group. A client can get the meta data of all updates
available to it. This includes all updates generally available as well as the updates de-
ployed in all groups it participates.

Since various update types are available for the same target hardware, some differen-
tiation has to take place. Besides the version numbering, the update’s meta data contains
a hardware identifier which represents the type of update and the systems which it is
designed for (i.e. the used toolchain). All the clients, deployment groups, the association
between them, and the available updates with the applied deployments are grouped to-
gether in a project. So, the top-level element of the update service is the project. Inside
the project, clients, update and deployment groups are added, and relationships between
them are defined.

Following subsections explain the roles and authentication in more detail. The update
service’s purpose is to distribute updates. It does not care about the validity or authen-
ticity of them. This is done by signing the update by the build process and verifying the
signatures after downloading updates on the target systems. Subsection 4.8.3 describes
the used PKI in detail to be able to verify and validate updates.

For the requirement of a long time stable interface for the clients, the API updates
must be available as different versions. This way old (less feature-rich) versions are still
available when products with long-time outdated software try to access the update service.
So, the clients can simple update their software and use newer versions of the API with it
later on.

4.8.2.1 Roles

As shown in figure 4.13, multiple roles exist when taking a closer look at the update life
cycle from the perspective of the update service. In the principle overview, only three
roles are shown. In reality, all actions might be performed by only one person or bigger
groups of people, depending on the size and organization of a business. On which basis
decisions are made to perform various actions, is out of scope in this work.

In addition to the roles humans represent, services and clients also define different
ones, such as the role of the build server publishing the updates, because update building
and publishing often is fully automated. Another role is the one of the target system
or client, which accesses the service for fetching new updates. The clients might also be
differentiated furthermore according to their assignments to deployment groups. For this
work, the focus is clearly on the client side and the update distributions. By design, there
is no distinguishing on the web portal for different roles.
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4.8.2.2 Authentication

The types of authentication can be divided in two categories. Those on the web portal
and those on the APIs. Within the web portal a single type was chosen. The OAuth 2
standard allows external authentication providers, and a claim system for authorization
can be used. Since there is no further distinguishing on the web portal regarding user
roles, the claims are not used. Each user able to access the web portal (which is in fact
determined by one special claim) can perform all actions the portal supports. This also
includes the management of API keys, which are used for authentication when using the
management functions not via the portal but via a dedicated API. This offers the possi-
bility for automating management. For instance, the build server can publish an update
or even deploy it on the first test group.

Besides the management portal and API, the interface for the products in-field is
needed. It is also an API, but this time with another authentication. The clients identify
themselves by their provisioned serial number and access key. When requesting informa-
tion or updates, also the project name is needed since the clients are registered within a
project. The type of authentication was chosen due to its simplicity and therefore easier
integration when compared to OAuth 2 or similar mechanisms.

4.8.3 Update-PKI

The update service itself is responsible for storing updates including their meta data, orga-
nizing groups and deployments and also delivering updates, as described in section 4.8.2.
Since it defines an interface how meta data and the update itself must be structured,
it does not care about the content or authenticity. But the update services clients (the
product’s software) must verify the update. It is only allowed to accept updates from
trusted sources for security reasons. A signing infrastructure, a PKI, is used to be able
to establish trust. A trusted root certificate is installed on all devices and updates are
only accepted if they are signed with a private key associated to a certificate directly or
indirectly signed by the root CA. Besides updates, other special side-loaded software can
be signed. This enables for instance an USB stick with a provisioning or test software to
be executed instead of the main application.

To illustrate the structure of the used PKI figure 4.14 gives an overview. The trusted
root certificate is in the top left corner. Beneath, there is the intermediate CA which is
signed by the root CA. The intermediate issues the next layer of certificates with their
keys for normal signing operations. All certificates carry a common name (CN) which
is listed in the corresponding field. The purpose of the intermediate CA is to sign the
certificates actual in use for doing the software signing work. This extra layer would not
be needed at all, but it is there for security reasons. Over time, several working keys are
needed for different entities who sign software. This is generally good for reducing the
impact of a compromised key to a minimum. If a build server is hacked and its private
key gets stolen, the corresponding certificate must be revoked and with it all signatures
ever made using it. Every update and other software need to be rebuilt and signed with a
new key. With multiple keys only a little part of the PKI are compromised, meaning not
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all signatures have to be remade.

Figure 4.14: Basic structure of the used PKI for software (update) signing.

Even more important is the protection of the root and intermediate CA since all sub
trees are revoked as well if a CA is revoked by a top level one. Since the leakage of the
root CAs private key is fatal and the complete CA is then useless and cannot even be
revoked, so protecting it is a top priority. Therefore, the root CAs private key and as-
sociated issuing data is stored only off-line on two memory cards. Normally, the storage
media are only needed if the intermediate CA needs to be revoked and replaced by a new
one. Both cards are encrypted and located on different sites for maximum security.

The intermediate CA can be revoked and therefore does not need such high security
measures. But to minimize the risk of leaking the private key and maintain convenience
for using the CA, it is stored on a dedicated laptop which has not been connected to
any network since the creation of the root CA and never will be. This way this special
system just needs to be booted and a new certificate can be issued. Its internal storage is
redundant to avoid failure within the storage devices. With those measures the complete
PKI should be well protected. In the case of leaking a leaf (a working) key the intermediate
CA needs to revoke the corresponding certificate and the new CRL needs to be published
on the correct locations as announced by the all issued certificate’s meta data.
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4.8.4 Embedded Identity Management

As stated before in section Requirements for the Software Distribution on page 35, all
systems must be provisioned in order to have distinct identities for the update service.
Otherwise it would not be able to distinguish between clients and therefore it would not
be possible to deploy software on only a little targeted group of devices. During manufac-
turing, the products must be provisioned with the correct update system setup (Uniform
Resource Locator (URL) and project ID) as well as its credentials which are the serial
number and a generated random secret.

During the mentioned provisioning phase a provisioner must generate the secret and
then store it with the configuration on the product itself as well as on the update service.
This way the service has a list of all provisioned systems for managing the deployment
groups and being able to authenticate the clients.

If the target system is hacked in any way the identity might get stolen but then the
attacker only can request information and updates as the victim could have, but not more
thanks to the per serial number (identity) generated secret.

4.9 Securing the System
To protect the hardware target with its running system and application, a few measures
must be taken in order to make the system secure. The scope of the system configuration
is to protect against mostly network related attacks. Verifying signatures during updates
is not a concern for the rootfs but for the running main application on top. A few basic
measures are explained at the next subsections. Besides them, constant security updates
are required because of the huge number of various software components used at the sys-
tem. Triggering updates in general is the responsibility of the top level application as
described in section 4.7.

Therefore, this section does not cover secure software delivery. Due to the enormous
effort to protect a system against direct internal hardware attacks, hardly any measures
are taken to protect the system by that means. Risks exposed by such access depend
on how the application stores sensitive information. Other systems might get exploited
more easily due to the knowledge an attacker could gain by directly accessing the systems.
Besides that, only one system is compromised in such a case. This poses no very high
threat for all (other) systems.

4.9.1 SSH-Access

For developing software and third level support issues a Secure Shell (SSH) access to the
system is a big asset. While developing applications, direct system access is important
and very common. Because drawing a line between development and pure productive
systems is very hard, it is nearly impossible in a market where every installation varies a
lot. Some tests only can be performed in-field or even on customer sites. Besides that,
some rare support cases need very deep inspection of the system. As a result, the SSH
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root access needed for such actions is unified for all systems regardless of their purpose
regarding development. It is vital to protect this access by all means. Systems could be
easily hijacked with open or weak SSH access protection.

As a main counter measure against break-in attacks at SSH only public key authenti-
cation is enabled, meaning that the attacker would need the private key and its password
to be granted access to the systems. The private key must be well protected and must not
ever be unprotectedly saved, transmitted or accessed. Also, the systems where develop-
ment and third level support work is done need good protection too. Therefore, policies
must be enforced.

Besides support and development SSH offers another possibility. This is a secure
connection for a text-based console for the application. Since the application offers such
a console, it needs protection too. There is nothing better than to use SSH here. Besides
using SSH public keys for authentication, a password could be used for convenience, but
only if it is not set to a default password. This would be like no password is set at all.
The SSH service can be configured in a way that the password authentication is white
listed for one specific user only. And the access to the application console is granted after
a password is set.

4.9.2 Read-Only File Systems

One way to protect systems against changes is making them read-only. It gets a lot harder
for an attacker who got access to the system by exploiting some weakness if he or she can-
not modify anything or hardly something. At the next reboot every change would be lost.
While some write access is needed for correct system operation, the number of writeable
files is very limited.

So besides making the system very robust against power losses using it read-only im-
proves the security too. To make permanent changes at the system, the complete system
image needs to be made writeable in order to do serious damage. The boot routines need
to be manipulated to do this. This requires very sophisticated skills and experience with
the target system due to mechanisms like the watchdog and its kernel configuration op-
tions. Shortly, it is not impossible, but not easy either.

A measure to detect system manipulation would be to sign off any changes to the
file system and also save signatures for the deployed system and kernel images. The few
writeable files cannot do much damage since they lead only to some failures of selected
services.

4.9.3 Dedicated User for Applications

Applications should never run with root privileges because they could have weaknesses
which can be exploited. Besides the read-only system, there are some files which could be
manipulated like the system’s identity (the serial number). Access to some configuration
files of the on top running main application could be read and security relevant informa-
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tion extracted.

Using a dedicated user with little privileges is the common way to deal with this
situation. All services especially networked enabled ones must run with their own user.
Since this is the default case in most common Linux services when using Yocto the work
of creating own users is mostly automated. Only for our main application this needs to
be done separately.

4.9.4 Disabling Unused Devices and Services

One security risk when dealing with provided distributions from hardware manufactures
is that a lot of unwanted services might be enabled by default which often are network
enabled and therefore could be exploited. To minimize the risk here every software is
disselected by default an only needed software packages are white listed. Yocto supports
this process by the use of custom targets and package groups. Only a validation of the
running services when the final system or rootfs is built has to be done.

4.9.5 Firewall

When taking all measures as explained in the previous sections a firewall still could be
used to increase the security of the system even more. However, this does not have a
huge impact and a lot of adjustments have to be performed by the application. The back-
ground for this is that the system’s rootfs does not really know anything about the on top
running networking requirements. Several tasks like discovering other network enabled de-
vices or providing various interfaces to other networking devices are hardly known before
when building or updating the system. The standard default blacklisting and opening se-
lected ports is not working here very well, even when all unneeded ports are already closed.

The biggest impact of a firewall could be the defense from unknown or incorrect network
behavior in general. This entails for instance retrying various passwords for application
authentication. But still the application must alert the system about suspicious events.
A service called fail2ban could be used for this purpose. It sources its needed information
from log files.

The target hardware mainly is designed for installations in domestic homes. So direct
access from devices across the Internet is not possible per default. A port forward must
be configured at the gateway or a public IP address must be assigned to the hardware
to make access besides from the local network possible. Both require networking skills.
Therefore, the network access is very limited by default.

4.10 Ensuring Always-On
One goal for the new system is to ensure that it is always on-line. Different things can
happen which lead to a stall at the boot process or during normal operation. This includes

1. hangs due to an error after one system update try,
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2. unexpected hardware failures and

3. stalls in the application.

A common technique to discover stalls and recover from them is the use of a watchdog
device. Basically, something has to be written to the watchdog on a regular basis or it
resets the whole hardware. Since different programs and procedures are running on the
same hardware until the application is executed, a full chain or responsibility for keeping
the watchdog happy must be created. The scheme for the target hardware is shown in
figure 4.15.

Figure 4.15: Watchdog chain of responsibility.

During hardware initialization, the bootloader starts the watchdog and kicks it one
time. The boot procedure continues by selecting the correct system, loading and starting
to execute it. When loading the watchdog driver in the Linux kernel, the watchdog is not
disabled. When the initramfs’ script is executed, one single kick is performed. The same
applies for one single startup script in the rootfs. Both kicks are needed because of the
very low possible timeout of only 16s on the target hardware.

When the application is started, it kicks the watchdog on a regular basis. At this
point, the system is considered as booted correctly. Simultaneously, the write-back of the
successful start is written to the bootloader environment, see section Updating the Sys-
tem on page 32 for more details. On other CPU platforms with a much higher watchdog
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timeout, there are no intermediate kicks during the boot needed. Just the start of the
bootloader and the next kick would be performed directly by the application.

If there are internal unrecoverable errors detected in parts of the application itself, it
also stops kicking the watchdog. This way the system never should stall for longer than a
few seconds.
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Chapter 5

Implementation

This chapter at first describes how the build system with its input is used. All tasks
needed for building the new target system with its atomic update capabilities are defined
as recipes in specific so-called layers. After that, the focus is on the work needed for the
system update within the bootloader, kernel and rootfs in distinct sections. Last but not
least, the tools provided for application development are described.

5.1 Build System - Yocto
For the C.H.I.P, another product from the same vendor (Next Thing Co.) as the used
SoM CHIP Pro, a complete build solution was done. Both are very similar. Due to a
community effort, the CHIP Pro was already integrated into the meta-chip Yocto layer.
Next Thing Co. offered a build solution using Buildroot.

The basis for the used setup was the Yocto enabled build solution with the recipes
and definitions for the CHIP Pro. In addition to the already existing layers, meta-qt5
was added to the build system. To get all recipes and configurations for all hardware
independently grouped together, the layer meta-sems was created. A second layer for all
hardware related modifications and additions due to the developed custom boards was
also added.

The following subsections describe these layers in a more detailed way.

5.1.1 Existing Layers

Figure 5.1 gives an overview of all layers used. On top are the most basic layers used in
Yocto. Poky is the name of the reference distribution shipped. BitBake, a generic task
executer, is used for resolving all dependencies between layers and their recipes, perform-
ing source fetching, analyzing recipes and performing the build itself.

Based on these layers, the hardware related layer meta-chip is the next according to its
priority. Since the repository CHIP-SDK, which is not a direct part of the layer structure,
its presence is vital for creating and flashing the SoM. It is also installed by the script
responsible for the initial setup of the whole build system. Therefore it also found a place
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Figure 5.1: Uses layers within the build system.

in figure 5.1 next to the meta-chip layer due to its strong association.

The last preexisting layer is the one for the QT framework, called meta-qt5. Hardly
any changes had to be made in more important layers to overwrite the recipe’s definitions
of it. Such changes were related to the outline of the build to include or exclude several
QT components.

5.1.2 New Layers Introduced

As stated in the previous section, new layers had to be introduced. Since one goal is
the reusability of the hardware-independent update routines, an own layer for this was
created. So, everything which is not related to the specific hardware target is placed here.
Since a lot of those recipes consist of bash scripts or service definitions, this data is directly
stored within them most of the time. Common recipe alterations are placed here too. See
sections 5.1.3 and 5.1.4 for more details.

To perform kernel driver selection, embed the initramfs or configure the image recipe
responsible for which software is installed on the target, the layer meta-sems-chippro was
used. It mainly consists of modifications of existing layers. New recipes are limited to
hardware related or product specific services or identifications. These include for instance
the service for polling the reset button state from the PMIC or the SSH host keys.

1 # We have a conf and c l a s s e s d i r e c to ry , add to BBPATH
BBPATH .= " : ${LAYERDIR}"

3

# We have r e c i p e s −∗ d i r e c t o r i e s , add to BBFILES
5 BBFILES += " ${LAYERDIR}/ r e c i p e s −∗/∗/∗.bb \

${LAYERDIR}/ r e c i p e s −∗/∗/∗. bbappend "
7
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BBFILE_COLLECTIONS += " meta−sems−chippro "
9 BBFILE_PATTERN_meta−sems−chippro = "^ ${LAYERDIR}/"

BBFILE_PRIORITY_meta−sems−chippro = "51"

Listing 5.1: The layer configuration file for the meta-sems-chippro layer.

Listing 5.1 shows an example layer configuration which is the minimum a layer needs.
Besides setting the path which is common to most layers, the recipes shipped with the
layers have to be explicitly referenced here. In this case, line 5 includes all recipes (*.bb
files) and all appends to existing recipes (*.bbappend) stored at directories starting with
"recipes-" and being in a directory below them. The last noteable statement is the last one.
It defines the priority of the layer. This layer is the most important one which overrules all
others. The meta-sems layer has priority 50 which makes it the second most important.

5.1.3 Recipe Creation

The majority of new recipes contains various bash scripts and systemd service files. One
example is displayed in listing 5.2. All recipes have a few lines in common. For instance,
the used license or a description. In the example, the compatible architecturs is set to
“all”, meaning there is no restriction for which target architecture it can be used.

A very common variable is called SRC_URI. It specifies the location for the source
needed for building or deploying whatever the recipes describe. Most times, this is a
download URL or relative path to files which are directly shipped with the recipes. This
is the case for the shown recipes. The bash scripts and service files do not need to be
compiled.

Since nothing special had to be done besides directly installing the files, the core el-
ement in the shown recipe is the "do_install" function starting at line 19. It is executed
when BitBake reaches the "install" phase. Were there something to prepare, the function’s
name would be "do_prepare". A simple sequence of install commands is executed which
copies files with the correct permission to the rootfs or more specific to the package which
is later on installed at the rootfs.

The last two functions starting at lines 32 and 36 are more special cases. Since the
"bootupcheck.sh" is slightly different on two different hardware targets but mostly very
common, it makes sense to keep the files together at one place. Depending on the selected
machine in the central "local.conf" configuration file, one of these functions might get se-
lected. In both cases they append a command to the common do_install routine. This is
achieved by the special syntax as seen in line 32 or 36. "chippro" is the machine name for
our target hardware and "levion-phytec-v2" would be another machine.

A machine in the Yocto context is a target system for that the kernel, bootloader and
device-tree name are designed.
DESCRIPTION = "SEMS update s c r i p t s "

2 LICENSE = "CLOSED"
PACKAGE_ARCH = " a l l "

4
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SRC_URI = " \
6 f i l e : // s ta r t −system−update . sh \

f i l e : // s ta r t −update . sh \
8 f i l e : // bootupcheck−chippro . sh \

f i l e : // bootupcheck−phytec . sh \
10 f i l e : // sems−system−update . s e r v i c e \

f i l e : // sems−update . s e r v i c e \
12 "

14 FILES_${PN} += "/ system−s c r i p t s / \
/ l i b / systemd/ system "

16

S = " ${WORKDIR}"
18

d o _ i n s t a l l ( ) {
20 i n s t a l l −d ${D}/ system−s c r i p t s

i n s t a l l −m 755 ${S}/ s ta r t −system−update . sh ${D}/ system−s c r i p t s /
22 i n s t a l l −m 755 ${S}/ s ta r t −update . sh ${D}/ system−s c r i p t s /

24

i n s t a l l −d ${D}/ l i b
26 i n s t a l l −d ${D}/ l i b / systemd

i n s t a l l −d ${D}/ l i b / systemd/ system
28 i n s t a l l −m 644 ${S}/sems−system−update . s e r v i c e ${D}/ l i b / systemd/ system /

i n s t a l l −m 644 ${S}/sems−update . s e r v i c e ${D}/ l i b / systemd/ system /
30 }

32 do_instal l_append_levion−phytec−v2 ( ) {
i n s t a l l −m 755 ${S}/ bootupcheck−phytec . sh ${D}/ system−s c r i p t s / bootupcheck .

sh
34 }

36 do_instal l_append_chippro ( ) {
i n s t a l l −m 755 ${S}/ bootupcheck−chippro . sh ${D}/ system−s c r i p t s / bootupcheck

. sh
38 }

Listing 5.2: The new recipe file update-scripts_0.9.bb included in meta-sems.

5.1.4 Recipe Alteration

Altering a recipe or a configuration file is a very common task when working with Yocto.
Often a single "define" for compiling has to be passed to the build process of a specific
recipe or simply a name of a variable for a recipe itself is overwritten. Another often used
case is shown in listing 5.3 besides other interesting overwrites and additions.

Lines 3 to 8 define an extra file source for the initial recipe for the Linux kernel used
with the target machine. Three files need to be sourced from this recipe instead of the orig-
inal one. This includes the kernel configuration "defconfig" as well as the prebuilt initramfs
and the patch for altering the device-tree file. With the FILESEXTRAPATHS_prepend
variable set the defconfig for example is used before any of the same name in recipes from
layers with lower priority. With this technique, most files easily can be shadowed and
replaced with the wanted ones.
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Line 10 sets the Linux kernel version used for building to 4.4.66. To get the correct
system name for the kernels identification and also the resulting system image name, line
15 is used. This is vital to the update process because the initramfs derives the name
from the kernel to find its rootfs stored in the squashfs image file. See section Initramfs
on page 29.

The script building the updates for the update system also needs the kernel’s name,
as configured previously, so the build configuration has to be copied to the deployment
directory after build. Since this does not interfere with the existing deploy task, the de-
fined function which appends one single copy command can be found at the lines 17 to
21. To enable USB OTG support, the corresponding variable to loading kernel modules
by default is used as displayed in line 24.

The rest of the file is just a reminder how to build the initramfs as a comment. Instead
of previously building the initramfs manually and adding it to the recipe, a separate recipe
which builds the minimal image needed could be created. But for simplicity reasons, this
was not done during this work.

2

FILESEXTRAPATHS_prepend := " ${THISDIR}/${PN} : "
4

SRC_URI_chippro_append = " f i l e ://0001 − dtb . patch \
6 f i l e : // d e f c o n f i g \

f i l e : // i n i t r a m f s . cp io \
8 "

10 LINUX_VERSION = " 4 . 4 . 6 6 "

12 # c o n f i g u r e the cur rent system v e r s i o n here
# note : the squash f s image name i s a l s o der ived from t h i s

14 # example : SEM−MK90 w i l l r e s u l t in "4.4 .66 −SEM−MK90" with uname −r and
system−v90 . img

CONFIG_LOCALVERSION_OVERWRITE = "SEM−MK11"
16

do_deploy_append ( ) {
18

# copy ke r ne l c o n f i g to deployment d i r
20 cp ${B}/ . c o n f i g ${DEPLOYDIR}/ kerne l −d e f c o n f i g

}
22

# needed f o r usb otg
24 KERNEL_MODULE_AUTOLOAD += " sunxi "

26 # pack i n i t r a m f s (when standing at i t s root d i r ) :
# $ f i n d . | cp io −o −H newc > . . / i n i t r a m f s . cp io

28 # dont f o r g e t that you need two d e v i c e s under /dev
# mknod −m 622 conso l e c 5 1

30 # mknod −m 622 tty0 c 4 0
# those need root p r i v e l i g e s to c r e a t e and they are not c r ea ted when

unpacking
32 # the cp io a r ch ive as non root
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Listing 5.3: The recipe altering the preexisting kernel recipe: linux-chip_git.bbappend.

Besides altering an existing recipe or one bbappend-file, those files can be blacklisted
or masked. The variable is called BBMASK and has to be specified in a layer configuration
file like the one shown in listing 5.1. This often makes it easy to skip a single bbappend-file
in another layer, which would mess up things.

5.1.5 Further Configurations and Files

Beside the layers with their configuration and recipes, there are other important files:
the machine configurations. As an example listing, 5.4 defines the target machine. This
includes the used bootloader, kernel selection, tune options for the CPU architecture or
the setup for the serial console.

Most noteable in this file are the EXTRA_IMAGEDEPENDS and
KERNEL_MODULE_AUTOLOAD variables. Those where extended for correct build
dependencies and enabling USB OTG as a client console support.
#@TYPE: Machine

2 #@NAME: C.H. I .P . PRO board
#@DESCRIPTION: Machine c o n f i g u r a t i o n f o r C.H. I .P . PRO board

4

MACHINE_EXTRA_RRECOMMENDS = " kerne l −modules kerne l −d e v i c e t r e e "
6

EXTRA_IMAGEDEPENDS += "u−boot \
8 sems−con f i g −d e f a u l t \

sem−compact−app \
10 "

12 DEFAULTTUNE ?= " cortexa8t −neon "
in c lude conf /machine/ inc lude /tune−cortexa8 . inc

14

IMAGE_FSTYPES += " tar "
16

# ; ttyG0 would be USB OTG
18 SERIAL_CONSOLE = "115200 ; ttyS0 "

20 PREFERRED_PROVIDER_virtual/ k e r ne l ?= " l inux −chip "
PREFERRED_PROVIDER_u−boot ?= "u−boot−chip "

22

KERNEL_IMAGETYPE = " zImage "
24 KERNEL_DEVICETREE = " ntc−gr8−crumb . dtb "

26 SPL_BINARY = " s p l / sunxi−s p l . bin "
UBOOT_BINARY = "u−boot−dtb . bin "

28 UBOOT_MACHINE = " ch ippro_de fcon f i g "

30 MACHINE_FEATURES = " usbgadget usbhost w i f i "

32 KERNEL_MODULE_AUTOLOAD += " \
l i b compos i t e \

34 usb_f_ecm \
usb_f_eem \
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36 usb_f_rndis \
sun4i−l r a d c \

38 g _ s e r i a l \
"

40 # ethe rne t AND s e r i a l over usb gadget would be g_cdc in s t ead o f g _ s e r i a l

42 # Inc lude w i f i modules and firmware

44 MACHINE_EXTRA_RRECOMMENDS += " kerne l −module −8723ds r t l 8 7 2 3 d s r t l 8723bs −bt
axp209 "

Listing 5.4: The hardware targets machine configuration file.

5.1.6 Priorities for all Recipes, Layers and Configurations

One of the most important aspect to keep in mind is the layer priority. Various configura-
tion files are selected from layers with higher priorities when found multiple times. Also,
layer priority defines in which order the recipes with their appends are handled. The used
priorities are shown in listing 5.5. Basically, this explains figure 5.1 in more detail. As
shown at the paths, there are more layers embedded in poky and meta-openembedded.

The priority is set in the layer configuration file. Apart from the two new layers listed
last, all priorities are the default ones. Since the meta-sems layer defines more common
system recipes, it is not as important as the target specific layer (in the case of our target
meta-sems-chip).

l a y e r path p r i o r i t y
2 ==========================================================================

meta sourc e s /poky/meta 5
4 meta−poky sourc e s /poky/meta−poky 5

meta−yocto−bsp sourc e s /poky/meta−yocto−bsp 5
6 meta−chip sourc e s /meta−chip 6

meta−oe sourc e s /meta−openembedded/meta−oe 6
8 meta−networking sourc e s /meta−openembedded/meta−networking 5

meta−python sourc e s /meta−openembedded/meta−python 7
10 meta−webserver sour c e s /meta−openembedded/meta−webserver 6

meta−qt5 sourc e s /meta−qt5 7
12 meta−sems sourc e s /meta−sems 50

meta−sems−chippro sourc e s /meta−sems−chippro 51

Listing 5.5: Output of the bitbake-layers show-layers command: All layers with their
priorities.

5.2 Bootloader
The used bootloader is called U-Boot or "Das U-Boot" and is very common in embedded
systems. Most hardware is brought up by this one or barebox, another popular bootloader.
A few modifications had to be made to support the boot and update process as described
in the concept chapter.
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Since the device-tree is used both by the bootloader and the kernel and the impact of
the modifications are higher for the kernel, it is described in the following section (5.3 on
53).

5.2.1 Customization

Most requirements are already met by the default U-Boot configuration used for the SoM.
The first thing to do was to enable the redundant environment in the NAND partition.
This was done by several patches which also include early driving the LEDs to indicate a
working bootloader after power-up. The watchdog driver had to be added to the source
because it was not included.

The default watchdog operation in U-Boot was not the desired one: Depending on
whether it was a warm or a cold start, it behaved differently. This could be resolved with
patches. Yocto made it easy to integrate patches, as shown in the very trivial bbappend-
file at listing 5.6.

1

FILESEXTRAPATHS_prepend := " ${THISDIR}/${PN} : "
3

SRC_URI_append := " f i l e ://0001 − redundant_env . patch \
5 f i l e ://0002 − ch ippro_conf ig . patch \

f i l e ://0003 − watchdog . patch \
7 f i l e ://0004 − led−dr ive . patch \

f i l e ://0005 − watchdog−d i sab l e −kick−when−p o l l i n g −s e r i a l .
patch \

9 f i l e ://0006 − watchdog−warm−s ta r t −i s s u e . patch \
f i l e ://0007 −wdt . patch \

11 "

Listing 5.6: The very simple u-boot-chip_git.bbappend file used for modifying the
bootloader to comply with the requirements.

Besides configuring the bootloader build for redundant environments, also the build
for the tool used at Linux for data exchange had to be made aware of both environments.
The tool is called u-boot-fw-utils. This was only a minor task achieved by changing its
build configuration.

5.2.2 Configuration

Based on section Resulting Layout of the NAND Memory on page 28, the resulting NAND
layout is shown in detail in listing 5.1. The Secondary Program Loader (SPL) is needed
to be able to load U-Boot. The program code in the CPUs read-only memory (ROM)
is executed at power-up, which loads and starts the SPL, which then loads and starts
U-Boot.
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# name size offset purpose
0 spl 0x00400000 (4MB) 0x00000000 (0MB) 1st stage bootloader
1 spl-backup 0x00400000 (4MB) 0x00400000 (4MB) 1st stage bootloader (backup)
2 uboot 0x00400000 (4MB) 0x00800000 (8MB) 2nd stage bootloader
3 env 0x00400000 (4MB) 0x00c00000 (12MB) u-boot environment
4 env-backup 0x00400000 (4MB) 0x01000000 (16MB) u-boot environment (backup)
5 UBI 0x1ec00000 (492MB) 0x01400000 (20MB) image store (kernels, rootfs, . . . )

Table 5.1: Resulting NAND layout used. The bootloader as shown in figure 4.9 consists
of multiple parts.

5.3 Kernel
The kernel modifications can be divided into driver selection and build configuration,
driver and hardware usage based on device-tree and the initramfs for mounting the rootfs.
The kernel itself is not aware of the update process. The userspace applications and tools
handle the update process and the bootloader performs the selection of the kernel to use
and thus the rootfs associated with it.

5.3.1 Customization

All drivers needed for the hardware target where already present. To keep the kernel foot-
print small, only the necessary drivers, or more precisely, kernel modules where selected.
To reduce the size even more, some modules are not directly built into the kernel but are
loadable from the rootfs. Only drivers needed for booting and mounting the rootfs must
be built-in.

Like at the bootloader, the watchdog driver had to be modified as well. When the kernel
initializes the driver, it stops the watchdog which would lead to possible undetected hangs.
The watchdog has to detect such hangs. Besides that, the kernel configuration option
CONFIG_WATCHDOG_NOWAYOUT was activated to avoid turning off the watchdog
in application crashes when those have the watchdog device opened.

5.3.2 Initramfs

As mentioned before the initramfs is vital to the boot process since the rootfs cannot be
mounted directly with the kernels built-it routines. It is built into the kernel directly in-
stead of being loaded like the device-tree by the bootloader. The device-tree is only needed
once since it should not be updateable. Embedding is done in the kernel configuration.

The initramfs consists of a minimal rootfs containing only a few commands and tools
to be able to mount the related real rootfs. The core part is the "init"-script as shown in
listing 5.7:

It is a simple bash script with a linear control flow starting with setting the PATH
environment variable to find the commands shipped with the initramfs and a message. A
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few essential special kernel file systems must then be mounted as shown from line 9 to 16.
For debugging purposes each command has an echo command before it.

Line 19 opens the UBIFS formatted image store. In the next step the rather com-
plex line extracts the system version from the kernel’s name as reported by uname and
completes the path to the rootfs image located inside the previously mounted image store
with it. With this, the rootfs gets directly mounted at /sysroot. When this is done, the
watchdog is triggered once due to its short timeout. The switch_root command at last is
executed which performs the switch to the real rootfs.

1 #!/ bin / sh

3 export PATH=/bin : / usr / bin : / usr / sb in : / sb in

5 echo
echo "### Startup ###"

7 echo

9 echo " Creat ing block d e v i c e s "
mount −t devtmpfs none /dev

11

echo " Mounting / proc f i l e s y s t e m "
13 mount −t proc / proc / proc

15 echo " Mounting s y s f s "
mount −t s y s f s none / sys

17

echo " Mounting image s to rage "
19 mount −t u b i f s −o noatime , nodirat ime , sync ubi0 : root /mnt/ images

21 echo " Mounting root f i l e s y s t e m image "
mount −o loop , ro /mnt/ images /system−v$ (uname −r | sed −n ’ s /^.∗−SEM−MK//p ’ ) .

img / s y s r o o t
23

echo " Tr igger watchdog "
25 echo "123" > /dev/watchdog

exec switch_root / s y s r o o t / sb in / i n i t

Listing 5.7: The main part of the initramfs: the "init"-script responsible for finding and
mounting the real rootfs and starting the so called init-process there.

5.3.3 Device-Tree

Most of the configuration for the used hardware and its drivers is done in the device-tree.
The listings 5.8 and 5.9 are two example sections of the dts-file.

The first example shows how the RTC is defined. At first, line 3 references a previously
defined I2C bus referenced by the label i2c1. The following three lines reference a block
to the pin definitions used with the bus. "okay" means that the bus is enabled.
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The embedded block defines the RTC itself on the bus i2c1, starting with a label, a
descriptor and the bus address. The reference to the use-able driver is stated at line 8.
Line 9 is a parameter for the used driver followed by the bus address again.

1

&i2c1 {
3 p i n c t r l −names = " d e f a u l t " ;

p i n c t r l −0 = <&i2c1_pins_a >;
5 s t a t u s = " okay " ;

7 pcf85063 : rtc@51 {
compatible = " nxp , pcf85063 " ;

9 quartz_load = " 1 2 . 5 pF " ;
reg = <0x51 >;

11 } ;
} ;

Listing 5.8: The device-tree file used: definition for the RTC connected via I2C.

The second example is more complex since a NAND device is not as simple as a RTC
to configure. For the sake of simplicity, not all lines are explained, only the most important
ones. The new definition for the NAND starts at line 7, which resides inside the block for
the used interface. Some hardware related parameters can be found in lines 8 to 13.

Embedded in this block for each NAND partition, a block is used to describe the
various sections on the memory. They are all structured as followed:

1. The name for the partition as label, followed by the address it starts with, separated
by ’@’.

2. The used name which is the same as the previously used label for the block.

3. A descriptor for the start and the size of the partition.

1

&nfc {
3 p i n c t r l −names = " d e f a u l t " ;

p i n c t r l −0 = <&nand_pins_a &nand_cs0_pins_a &nand_rb0_pins_a >;
5 s t a t u s = " okay " ;

7 nand@0 {
#address−c e l l s = <2>;

9 #s i z e −c e l l s = <2>;
reg = <0>;

11 a l lw inner , rb = <0>;
nand−ecc−mode = "hw " ;

13 nand−on−f l a s h −bbt ;

15 spl@0 {
l a b e l = "SPL " ;

17 reg = / b i t s / 64 <0x0 0x400000 >;
} ;

19

sp l −backup@400000 {
21 l a b e l = "SPL . backup " ;
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reg = / b i t s / 64 <0x400000 0x400000 >;
23 } ;

25 u−boot@800000 {
l a b e l = "U−Boot " ;

27 reg = / b i t s / 64 <0x800000 0x400000 >;
} ;

29

env@c00000 {
31 l a b e l = " env " ;

reg = / b i t s / 64 <0xc00000 0x400000 >;
33 } ;

35 env−backup@1000000 {
l a b e l = " env . backup " ;

37 reg = / b i t s / 64 <0x1000000 0x400000 >;
} ;

39

rootfs@1400000 {
41 l a b e l = " r o o t f s " ;

reg = / b i t s / 64 <0x1400000 0 x1ec00000 >;
43 } ;

} ;
45 } ;

Listing 5.9: The device-tree file used: definition for the NAND device.

5.3.4 Building and Bundling

The initramfs is pre-built and not created by the build system directly. It is provided to
the kernel during the preparation stage before compiling. The kernel, its configuration
and the device-tree are copied to the deployment directory at the deploy stage. The tools
provided in the CHIP-SDK are used to post-process those files together with the rootfs to
get the needed files for directly flashing onto the hardware.

5.4 Root Filesystem
The rootfs’ contents are defined by the image recipe, which basically is a list of all recipes
needed to be built and installed. Listing 5.10 gives an overview of all used recipes be-
sides the minimal rootfs selected by chip-hwup-image.bb. Since not all the work could be
done by recipe definitions, some post-processing tasks needed to be done manually. The
do_rootfs_postprocess is a command sequence which defines the work needed to be done.
The function’s contents in the listing are only a subset of all tasks needed to be done and
should only be a representative. The variable ROOTFS_POSTPROCESS_COMMAND
at the end of the recipe declares the previously explained functions for execution when
finishing the image building process.

1

IMAGE_INSTALL += " \
3 u−boot−fw−u t i l s \
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uboot−s c r i p t s \
5 update−s c r i p t s \

e 2 f s p r o g s \
7 opens s l \

openvpn \
9 nano \

ntpdate \
11 s q l i t e 3 \

htop \
13 qtbase \

qtbase−t o o l s \
15 qtbase−p lug in s \

q t s c r i p t \
17 qtquick1 \

qtquick1−p lug in s \
19 qtxmlpatterns \

q t d e c l a r a t i v e \
21 q t d e c l a r a t i v e −qmlplugins \

q t s e r i a l p o r t \
23 qtwebsockets \

sems−app l i c a t i on −e s s e n t i a l s \
25 sems−maintainer−s c r i p t s \

sems−openvpn \
27 sems−system−misc e l l aneous \

sems−wpa−supp l i c an t \
29 sems−openssh−i d e n t i t y −chipprov1 \

sems−i d e n t i t y \
31 sems−conso l e \

sems−system−migrat ion \
33 sems−a c c e s s p o i n t \

ca−c e r t i f i c a t e s \
35 bash \

bash−complet ion \
37 tzdata \

tzdata−europe \
39 openssh \

i2c −t o o l s \
41 power−button \

rsync \
43 netcat−openbsd \

hostapd \
45 tcpdump \

avahi−u t i l s \
47 pam−plugin−exec \

sem−compact−data s to r e \
49 mtd−u t i l s \

mtd−u t i l s −u b i f s \
51 mtd−u t i l s −misc \

"
53

do_root f s_postprocess ( ) {
55

## we have to remove the normally provided wpa_supplicant . conf f i l e
57 ## but we need the r e s t o f the wpa−supp l i c an t package

rm ${IMAGE_ROOTFS}/ etc / wpa_supplicant . conf
59 ln −s / c o n f i g / wpa_supplicant . conf ${IMAGE_ROOTFS}/ etc / wpa_supplicant . conf
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61 ## same with r e s o l v . conf
rm ${IMAGE_ROOTFS}/ etc / r e s o l v . conf

63 ln −s /tmp/ r e s o l v . conf ${IMAGE_ROOTFS}/ etc / r e s o l v . conf

65 # remove l i n k and make mount po int f o r ramdisk
rm ${IMAGE_ROOTFS}/ var /tmp

67 mkdir ${IMAGE_ROOTFS}/ var /tmp

69 # add sems user (EXTRA_USERS_PARAMS i s executed l a t e r , because sed could
never ove rwr i t e the PW)

echo " sems : x : 6 5 5 3 3 : " >> ${IMAGE_ROOTFS}/ etc /group
71 echo " sems : x : 6 5 5 3 3 : 6 5 5 3 3 :SEM Console User : / home/sems / :/ var /run/ app l i c a t i on

−conso l e " >> ${IMAGE_ROOTFS}/ etc /passwd
echo " sems : ! : 1 7 4 2 2 : 0 : 9 9 9 9 9 : 7 : : : " >> ${IMAGE_ROOTFS}/ etc /shadow

73 }

75 ROOTFS_POSTPROCESS_COMMAND += " do_root f s_postprocess ; "

Listing 5.10: The image recipe append file includes all software deployed on the target
rootfs (chip-hwup-image.bbappend).

5.4.1 Software and Libraries Shipped

The rootfs contains various software packages and libraries mainly already provided by an
existing recipe in the used layers. An example would be the selected ones in listing 5.10
between line 3 and 23 or 34 and 51. Those are various tools for U-Boot, time synchroniza-
tion, file system management, secure connections or even maintenance and development.
The Qt5 framework is divided in several packages which are therefore selected separately
in the image recipe.

All the selected recipes starting with "sems-" are newly introduced ones from the meta-
sems layer. Those were created and contain mainly bash scripts, identities and services.
Important services and helpers are discussed in subsection 5.4.3.

5.4.2 Root File System Preparation

The resulting rootfs needed is a single file used for deployment which basically is just a
squashfs container. This means that it is a complete file system in a read-only mode with
a high compression factor. Since there is no need for a writeable system, a lot of overhead
is avoided that way and compression can be done very easily with the non-changeable
contents.

The YOCTO build process, which is responsible for assembling the rootfs with the
contents of the selected packages, can be configured with different options how to output
the result. Multiple structural forms are simultaneously possible. Very common formats
are a tar archive or a SD memory card image. The used way is not that common for
packing the rootfs for deployment in the target system’s case. It is a tar archive which
later on is post-processed.
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After finishing the build with BitBake, post-processing tools are needed to prepare
the resulting software for the update system or initial flashing. The vendor from the SoM
provided such tools. The only tasks needed to be performed were removing the boot folder
from the rootfs, pack the rest to the squashfs container and create suite-able packages.

There are two packages needed. One is for the update system itself which are the
container and the corresponding kernel together in an archive. The second is for flashing
the hardware itself. But here the structural format was already defined by the provided
post-processing tools. Basically, the same container as before is placed together with the
previously extracted boot folder in a new file system which normally serves as the rootfs.
This file system is exactly the same image store as described previously in subsection 4.5.4
on page 29. So, other containers are also deployed there as shown on figure 4.11.

5.4.3 Services and Helper Routines

All processes regarding the system and application updates are initiated by the running
application. Since systemd is (among other things) used for service management, all vital
update processes are started through it. This includes the service for the application itself
which is auto-started at boot time and two further services for the updates itself. Those
are triggered by the application and systemd provides the interface for that.

The update services are mostly hardware independent. From an application perspec-
tive there is no difference at all. However, under the hood, the correct commands needed
to be executed to comply with the bootloader environment interface used at the hardware
target.

The following subsection describes the provided services and tools in more detail.

5.4.3.1 Application

As stated before, the application is started automatically at boot. The correct order of all
auto-started services at boot is important so that the system is in the correct state when
starting the application to comply with its start-up dependencies. For instance, migration
scripts after system updates must be finished before the application starts. The systemd
service for the application simply starts the so-called start. dispatcher which is responsible
for selecting the correct application. Due to crash safe updating, the application is redun-
dant just like the system itself. After dispatching, the init file for the selected application
is executed.

1 [ Unit ]
Des c r ip t i on=Smarthome Software Stacks

3 Requires=s y s l o g . s e r v i c e
After=s y s l o g . s e r v i c e

5

[ S e r v i c e ]
7 EnvironmentFile=/etc / p r o f i l e . sems

WorkingDirectory=/tmp
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9 ExecStart=/system−s c r i p t s / s ta r t −d i spa t che r . sh
PIDFile=/var /run/sems−sys temcontro l . pid

11 Type=simple
Restart=always

13 #TimeoutStopSec=5s

15 [ I n s t a l l ]
WantedBy=multi−user . t a r g e t

Listing 5.11: The service definition sems.service for the application.

Listing 5.11 shows the applications service definition. The hard requirement before
starting the service are listed in the unit section just after name and description at line 3
and 4. It is the system’s logging service called syslog which is de facto the standard on
Linux systems. One specialty of the application is that it is written with Qt5. Therefore,
a few variables in the execution environment must be set prior to running as shown on
line 7. Further on the path to the file called at service start with some basic service
related settings is defined. The last line is only needed when the service can be activated
and deactivated, but this is not possible in our read-only system and therefore will not
be needed at all. Still, it is nice to have it there when porting the application to other
non-embedded systems.

5.4.3.2 Application Update

The interface for using the system update consists of a systemd service to start and a fixed
file location for placing the update file. In the case of the application, the new one must
be present on a known path. Listing 5.12 shows the quite simple service definitions. It
is a manually started service, which simply executes the update script for the application
which is described, later on. Most definitions are the same as for the normal application
service.

[ Unit ]
2 Desc r ip t i on=Smarthome Software Update

Requires=s y s l o g . s e r v i c e
4 After=s y s l o g . s e r v i c e

6 [ S e r v i c e ]
EnvironmentFile=/etc / p r o f i l e . sems

8 WorkingDirectory=/
ExecStart=/system−s c r i p t s / s ta r t −update . sh

10 PIDFile=/var /run/sems−update . pid
Type=simple

12 Restart=no

Listing 5.12: The service definition sems-update.service for application updates.

The core script for the application update is shown at listing 5.13. The first lines up
to 11 are some basic definitions and default values for saving the detection states of the
old and new update format. Before the application was packed as squasfs the files were
directly swapped out inside a writeable ext4 container. For better readability, the legacy
paths between line 65 and 66 are left out here.
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The first task is to detect the unused application number. This is done after a safety
check starting at line 15. Next is the detection of the update format. In the old variant,
it was a folder which could not be mounted like the squashfs container. This check is
performed from line 32 to 43. A similar detection is done for the update to be replaced.
Normally, a squashfs to squashfs update is performed by simply deleting the old update
and moving the new one to the old one’s location. The commands performing this task
are listed at line 70 to 75.

#!/ bin / sh
2

4 USE=$ ( cat / c o n f i g / apptouse )
FALLBACK=$ ( cat / c o n f i g / apptous e f a l l back )

6

NOTIFY=/tmp/ u p d a t e s a d l y f a i l e d f i l e
8 UPDATE_CONTAINER=/tmp/newapp . img

10 USE_SQUASHFS="no "
OLD_IS_SQUASHFS="no "

12

rm $NOTIFY &> /dev/ n u l l
14

i f [ $USE −ne "1 " ] && [ $USE −ne "2 " ]
16 then

CURRENT=$FALLBACK
18 e l s e

CURRENT=$USE
20 f i

22 i f [ $CURRENT −eq "1 " ]
then

24 START="2"
e l s e

26 START="1"
f i

28

DEST_EXT4="/mnt/app$START"
30 DEST_SQUASHFS="/mnt/ images /app${START} . img "

32 # f i r s t check f o r app conta ine r
i f [ −f $UPDATE_CONTAINER ]

34 then

36 # t e s t mount new conta ine r
TEMP=$ (mktemp −d)

38 mount $UPDATE_CONTAINER $TEMP
[ [ $? −ne 0 ] ] && echo " e r r o r could not mount new app conta ine r " > $NOTIFY

&& echo " update−e r r o r " && e x i t
40

umount $TEMP
42 rmdir $TEMP

USE_SQUASHFS="yes "
44

e l s e
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46 # e l s e go on with o ld s t y l e
i f [ ! −d /tmp/ updatebins ]

48 then
echo " update d i r not e x i s t i n g " > $NOTIFY

50 e x i t 1
f i

52 f i

54

f i l e $DEST_SQUASHFS | grep Squashfs > /dev/ n u l l
56 i f [ $? −eq 0 ]

then
58 OLD_IS_SQUASHFS="yes "

f i
60

#umount conta ine r which i s not used ( to be sure )
62 umount $DEST_SQUASHFS 2> /dev/ n u l l

64 i f [ $OLD_IS_SQUASHFS = " no " ]
then

66 e l s e
i f [ $USE_SQUASHFS = " yes " ]

68 then # squash f s to squash f s
# remove o ld

70 rm ${DEST_SQUASHFS}

72 # r e l o c a t e new
mv $UPDATE_CONTAINER ${DEST_SQUASHFS}

74 [ [ $? −ne 0 ] ] && echo " e r r o r moving app conta ine r " > $NOTIFY && echo "
update−e r r o r " && e x i t

76 e l s e # t h i s case i s not supposed to happen ( squash f s −> ext4 )
echo " e r r o r : downgrade from squash f s not supported " > $NOTIFY

78 e x i t

80 f i
f i

82

sync
84 echo $START > / c o n f i g / apptouse

sync
86 echo $START > / c o n f i g / apptous e f a l l back

sync
88

sy s t emct l stop sems . s e r v i c e
90 sy s t emct l s t a r t sems . s e r v i c e

Listing 5.13: The core script for the application update (short version without legacy
paths).

Regardless of the update formats, the application to be used for the next start-up is
written back to the configuration folder, so the start dispatcher selects the correct one in
future application starts.
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5.4.3.3 System Update

The system update process interface is very similar to the one described in the previous
section. For the more complex system update the rootfs container and the kernel image
files must both be moved to specific locations prior to starting the update via systemd.
The definition for the service is shown in listing 5.14. Only the executed script at service
start is different and as before shown in addition.

1 [ Unit ]
Des c r ip t i on=Smarthome Software Update

3 Requires=s y s l o g . s e r v i c e
After=s y s l o g . s e r v i c e

5

[ S e r v i c e ]
7 EnvironmentFile=/etc / p r o f i l e . sems

WorkingDirectory=/
9 ExecStart=/system−s c r i p t s / s ta r t −system−update . sh

PIDFile=/var /run/sems−system−update . pid
11 Type=simple

Restart=no

Listing 5.14: The service definition sems-system-update.service for system updates.

The core part of the complete system update process is displayed at listing 5.15. It
is a bash script performing all essentials tasks. The basic operations are determining
which kernel name will be the next, removing unused rootfs images from the image store
and relocate the new system. Lastly, the information to boot the other system is written
to the bootloader environment. All operations are written to a log file as declared at line 5.

The locations for the new kernel and the new system are specified in lines 3 and (im-
plicitly) in line 48. The path for the new kernel is determined by reading the current
system number from the bootloader environment starting at line 10 and ending at 28.
Next, the current system number is read from the currently mounted rootfs container at
line 31 and all systems but the running one are removed from the persistent memory (the
image store). Finally, both images are moved at line 48 and 52.

#!/ bin / sh
2

KERNEL_LOCATION=/tmp/ newkernel
4

LOGFILE=/var / log / sysupdate . l og
6

[ ! −e $KERNEL_LOCATION ] && echo " e r r o r : $KERNEL_LOCATION ( k e r n e l ) not
e x i s t i n g " >> $LOGFILE && e x i t 1

8

echo " Loading environment v a r i a b l e s "
10 USE_NEXT=$ ( fw_printenv −n use_next )

RET=$?
12 USE_NEXT_NEW=$USE_NEXT

14 i f [ $RET −ne 0 ]
then
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16 echo " Cannot read environment " >> $LOGFILE
e x i t 2

18 f i

20 #g e t t i n g k e rn e l name
i f [ $USE_NEXT −ne 1 ]

22 then
USE_NEXT_NEW=1

24 KERNEL_NAME=/mnt/ images / boot /zImage1
e l s e

26 USE_NEXT_NEW=2
KERNEL_NAME=/mnt/ images / boot /zImage2

28 f i

30 #prepar ing system
CURRENT_SYS=$ ( l o s e tup −a | grep " system−v " | grep "/mnt" | cut −d" " −f 3 |

grep −o ’ [ ^ / ] ∗ $ ’ )
32 SYSTEMS=$ ( l s −1 /mnt/ images / | grep system−v )

34 echo " s ea r ch ing f o r o b s o l e t e system images " >> $LOGFILE

36 f o r SYS in $SYSTEMS
do

38 i f [ $SYS = $CURRENT_SYS ]
then

40 echo "$SYS i s the running system " >> $LOGFILE
e l s e

42 echo "$SYS i s not the running system , d e l e t i n g " >> $LOGFILE
rm "/mnt/ images /${SYS}"

44 f i
done

46

echo " r e l o c a t i n g new system image " >> $LOGFILE
48 mv /mnt/ images /tmp/system−v∗ /mnt/ images /

[ $? −ne 0 ] && echo " e r r o r moving new system image " >> $LOGFILE && e x i t 3
50

echo " copy k e r n e l " >> $LOGFILE
52 cp $KERNEL_LOCATION $KERNEL_NAME

[ $? −ne 0 ] && echo " e r r o r copying new k e r n e l " >> $LOGFILE && e x i t 4
54

echo " prepar ing and sav ing " >> $LOGFILE
56

fw_setenv use_next $USE_NEXT_NEW
58 RET=$?

i f [ $RET −ne 0 ]
60 then

echo " e r r o r wr i t i ng environment . Update ready but u−boot maybe don ’ t get
i t " >> $LOGFILE

62 f i

64 echo " every th ing l ooks f i n e " >> $LOGFILE
reboot

66 e x i t 0

Listing 5.15: The core script for the system update.

When everything worked fine up to this point, the bootloader is informed by writing
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its environment and on success, the system is finally rebooted to finish the system update.
Those operations are between line 57 and 65.

5.5 Tools Provided for Application Development
Yocto provides a way to create complete toolchains for a given hardware target. The
output format is a single bash script which contains the relocateable complete SDK with
all tools needed for application development and cross compiling.

The out-of-the-box settings were quite good and only one cmake related change was
introduced with a recipe append file. When the resulting bash script is executed, it uncom-
presses and installs the contents to a chosen directory. For the use of cmake the included
environment file can be sourced prior to building any software using cmake. Nothing fur-
ther has to be done to be able to cross compile. This makes installing and using multiple
toolchains very easy.
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Chapter 6

Testing and Results

The testing and validation process can be divided in two major parts. The first covers
tests and evaluations during development like checking for correct operation of all drivers
and processes. Ensuring the correct operation of all products during mass production
represents the second part.

Like the tests the results are grouped by the very same major topics. The first part
primarily consists of evaluations of the related results which are simpler ones like pure
measurements of sizes and boot times. The following sections discuss the tests and their
results in detail.

6.1 Performed Tests
The first step regarding testing was the evaluation of the bootloader and Linux. After
that all auxiliary tools like various helper scripts and the update processes for the system
and the application were tested. Next manual tests were performed to check the hardware
itself while building the first prototypes. Those testing processes then were automated in
the best possible way to test the first batch in a mass production manner.

6.1.1 Evaluation During Development

Evaluation of the various involved components was a continuous process since most tasks
performed during development depend on one another. This is as easy as the testing of
various hardware parts, for example the RTC depends on a running Linux which itself
depends on a working bootloader.

The used bootloader and Linux kernel were already running on the hardware target
as stated in various sections of the concept and implementation chapters. This firstly
allowed the integration of the various device drivers before modifying the kernel and the
bootloader for the desired updating capabilities. While performing both tasks an interac-
tive test process took place.

With all drives running, the watchdog functionality and update processes were tested
in-depth. After fully integrating the complete software, some test cases needed to be
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defined to be able to test multiple electronics for correct operation. Since the correct
operation of the RTC, the Z-Wave module or the UI did not matter for booting Linux
such faulty hardware parts and devices easily could be missed. Also, errors while soldering
could be the root cause of some hardware malfunction.

6.1.2 Testing the First Batch

After the first prototypes were tested and the product design was validated, preparing the
mass production was on the schedule. All previously manually performed steps had to be
automated as much as possible. This subsection focuses on the tasks for the hardware
target itself and its associated test software running on it. Additionally, a second software
was needed for displaying testing instructions and information gathering, which runs on
another device. Such devices could either be an embedded system with a display attached,
a simple PC or a laptop.

The test software running on the target was built as a dedicated image which was
stored on a USB stick. This medium then was plugged in during testing before powering
up the targets. This lead to starting the software from the stick instead of the main ap-
plication. Dispatching which software to launch was done during the early start-up stage
of the main software. This early stage routine is a separate binary for achieving this.
Software on external media must be signed with the correct signing authority in order to
get it accepted and started.

After the dedicated test software is started, it validates that it is running on the cor-
rect hardware target at then starts to perform the automatic tests like testing WLAN
or the Z-Wave module. This stage is indicated by a special LED combination. During
this stage the test user which previously connected the USB stick and powered the DuT
did not have to do anything. This offers the possibility to parallelize the process. Figure
6.1 shows three DuTs with their tiny USB stick on the lower side and their power sup-
ply connected. Optionally, the test operator can already continue with the following step,
which will be explained next, before the LED state shows that the initial check has finished.

With the LEDs, the test software indicates the readiness for the connection to the
second test software running on a separate device with a display to track the results. The
connection is done via the USB OTG jack on the top side, as shown on figure 6.2. If the
automatic tests fails at this point, the overall test result is set to failed. The result is
stored and the test user is informed about it and instructed to discard the DuT. If there
are no problems, the manual tests are performed.

After the automatic stage of testing and connecting the DuT via USB, the test user
has to perform some manual tests like pushing buttons or checking the LED channels for
correct functionality. The test software with the display instructs step by step what to
do. When all tests are performed, the test result for the DuT is saved. On success, a
provisioning can be performed optionally. This means that the Compact Unbranded is
branded, gets its labels including the serial number and the related information to the
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Figure 6.1: Multiple Compact Unbranded connected to power and
plugged in USB stick with test software.

Figure 6.2: Single Compact Unbranded (top
side) while testing with connected test dis-
play.
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Name Description Size in MiB
u-boot.bin bootloader image 3.4
kernel kernel image with initramfs 6.2
system-v10.img rootfs (squashfs container) 49

Table 6.1: Resulting sizes of various major software compo-
nents.

branding and identity is stored on the device. After that the resulting product like the
SEMcompact is finished.

Basically, all actions performed for the first batch are the same as for upcoming mass
production which clearly have a quality assurance (QA) strong background. Therefore,
keeping track of all serial numbers involved while testing is one main part of the second
test software, which keeps track of all test processes.

6.2 Results
The same structure applies for this section as for the Performed Tests section. At first,
evaluation of correct operation for prototypes and some numbers associated with it are
discussed and then results and the challenges while testing the first batch in a mass
production manner is explained.

6.2.1 Prototypes

Most evaluation and testing work was done with the first two hardware prototypes. Also,
a few bugs in the schematics were discovered during this time. While being half-way with
the implementations for the bootloader and the Linux, the second-generation prototype
arrived with the correct schematics and routing which made a lot of the work easier. There
was no need for further workarounds. Since most results are very simple due to the binary
outcome when evaluating the compliance with the specification, a few further results like
boot times and images sizes are discussed in the following sub sections.

6.2.1.1 Sizes of Finished Images

Table 6.1 shows an overview of the most important components handled when flashing
the hardware target or creating updates. The resulting U-Boot image is usually less than
4mebibyte (MiB) in size as the reserved size is the same with most hardware targets in
general. The kernel’s size is very big compared to embedded systems due to the embedded
initramfs. The displayed size of the rootfs is for compressed squashfs container as shipped
at updates and saved on the image store.
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Step Indication Duration in s Total s
Power-on all LEDs white 0 0
H/W and bootloader init first LED violet 0.25 0.25
Kernel drivers loaded second LED violet 8.1 8.35
Application start third LED violet 20.9 29.25
Application loaded normal LED operation 16 45.25

Table 6.2: The resulting time spans needed for various steps in the boot process.

6.2.1.2 Boot Times

One performance indication is the time the product needs to perform a complete start
including fully starting the application running on it. Since the application itself was out
of the scope of this work, its time consumption is listed in table 6.2, but not explained in
more detail.

A few steps had to be defined to be able to determine the various time spans. Since
the LEDs represent the states of the device including the boot process and power-up, they
define a few useable points already. The hardware itself always turns on all LED channels
to show for a short amount of time that all channels are working and the device got power.
This is done in hardware and no software is running at this point. Therefore, it happens
immediately after applying power and marks the start point for the time measurements.

When U-Boot finishes with the start process and all hardware related drivers are
loaded, the LEDs are switched on and off differently. The same applies to the kernel when
all drivers are loaded. When the application is starting up it does the same. So in all
stages, when the first initialization is done, at least one LED changes its color. Regardless
of the stage, at least one LED channel glows solidly - at least during startup. When the
application has finished its startup, the LEDs are blinking and switched on or off like the
application it defines.

6.2.1.3 Hardware Limitations

Due to the low price for the Compact Unbranded there are some hardware limitations.
The hardware watchdog capabilities are very limited on the SoM: One limitation is the
very short maximum possible timeout and the other the missing reset cause on startup
which is associated in the case of a timeout. The maximum timeout of 16 seconds is
far shorter than the complete boot time including boot strapping the application at its
start. Thus, during different stages while booting, the watchdog had to be kicked. This is
explained at section Ensuring Always-On and its associated figure 4.15. In short, it was
not an unsolvable problem, but it caused extra work.

Feature-rich hardware platforms normally provide a register for the bootloader to de-
termine the reset cause. The reset cause most common is a normal start which is often
referenced as PWR or power. In the case of the hardware watchdog resetting the CPU
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Type First run Second run
RTC 41 4
Boot 5 5
Z-Wave 9 9
USB 18 18
LED 5 5
Total errors 78 41
Affected DuTs 69 30

Table 6.3: Detected errors and affected DuTs
during first batch of mass production.

or the whole SoM the watchdog as a reset cause can be read from the very same register.
With this, it is possible to differentiate between a failed update and a power failure during
the first startup after updating. Because of that a new try when booting up the freshly
installed system cannot be performed after a power failure. The complete system up-
date process including downloading and preparing the update itself must be re-performed.
Since such an update is hardly started and power outages are not common in central Eu-
rope, this is not really a problem.

6.2.2 First Batch

Compared to the manual test and evaluation performed with the prototype systems the
results for the first batch differ in their types. Testing them is mainly due to QA reasons
and therefore the results sum up the detected errors and possible causes for them. Af-
ter the first test run, the test software running on the DuT itself needed to be reworked
slightly as it produced a lot of false test results.

The device count for the batch was 445. In the first run a lot of RTC errors were
detected which lead to a second run. Table 6.3 shows the detected errors by type. Some
DuTs had multiple errors so the total faulty device count at first was 69. In addition, while
testing the first few devices the WLAN test nearly always failed. So before the mentioned
first run, the test software on the DuT was already reworked slightly.

When a DuT does not start at all, restarts frequently or unattended, it is accounted
as a boot error. When a hardware component does not work properly like the RTC or the
Z-Wave module, it is accounted at their corresponding entries in the table. If either the
test software from the USB stick does not start or a connection to the second test software
cannot be established, the errors are treaded as the same for statistical purposes. At last,
the detected malfunctions by the test operator at the LEDs are accounted separately, as
shown in the table.

Some devices suffer from multiple errors, so the total error count is higher than the
faulty DuT count. As mentioned before, there were a lot of RTC errors after the first
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run, so a manual re-evaluation was performed for these devices. As it turned out, most of
them were working properly and the test software needed to be reworked. After testing
the devices again, only four of them still had the same issue.

Additional USB errors occurred during testing which were not DuT related. The
frequent use of the very same micro-USB cables lead to fast wear-offs and the USB con-
nections often failed after some time. This issue can only be detected by the test operators.

While developing the test software a run prior to the listed first run in table 6.3 was
performed to test and evaluate the first tests automatically performed. The results were
not tracked at that time. But a lot more errors were detected there due to the fact that at
the manufacturer’s site, the manual soldering work was not performed very well. There-
fore, a lot of LED channels did not work at first. Those devices could mostly be repaired.
There were additional problems but they numbers were not very high.

As stated in the very same table, a lot of devices still are not working properly. To
be more exact 6.7% are still faulty and might not be repairable. But at the time of
writing, there was no need for that. To be even more exact, some devices were marked as
faulty by the manufacturer due to their first hardware tests. The total count of devices
ordered was 479 what leads to an error rate of 13.4%, which is quite high. Error rates
while manufacturing electronics are usually still at about 3% even with very high volumes.
When manufacturing the next batch, the common errors are known, and the manufacturer
will be able to decrease the error rate to get closer to the mentioned 3%.

72



Chapter 7

Conclusion and Outlook

For the given hardware target, all goals could be reached. Due to some hardware limita-
tions, some trade-offs had to be made. The used bootloader U-Boot and the Linux kernel
now support crash-safe updating. This includes all auxiliary tools, which were created to
achieve this. All drivers necessary were already there, so it was not difficult to integrate
them.

Almost the complete bootloader, kernel and rootfs builds are fully automated to be
able to create everything from source. Only a few manual steps must be performed for the
image generation both for initial flashing and for creating updates needed for over-the-air
delivery.

All new software components which are mainly Yocto layers and recipes can be used
with other hardware targets very easily. All patches and custom scripts are included there.
Only the hardware specific post-processing tools are specific to the target. So if another
SoM or custom hardware already has Yocto recipes, it should not be much work to achieve
the same goals as in this thesis. All recipes needed for the application and support are
mostly hardware independent and should be useable without any modification. This in-
cludes scripts, services and software like the Qt5 framework, sending debug information
or tools for formatting persistent storages during first startup.

The update service which distributes the created updates (system and application)
works very well. Multiple projects and hardware IDs are already registered there, manag-
ing 700 products of two different brands. Due to its well-defined abstraction within the
update format, it can be used without modifications in future projects.

A complete testing concept for display-less DuTs was designed and implemented in
a side track. While most tests are only depending on the hardware target itself (used
components, the UI design and so on) common parts like central serial number or test
result tracking can be reused without much modifications in other projects.

In future, there is some space for improvement like improving the Yocto meta-layer
structure. Since this was the first time working with this build system, not every mod-
ification could be done in own layers. Some configurations needed to be changed in the
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existing layers. This could be done more cleanly in future. The generation of the initramfs
could be automated as well. Currently, it is manually packed and provided to the build
process as an archive. The post-processing for creating a system update, namely the
squashfs container, could also be done with Yocto, since it is only a new output format for
the rootfs. Also, a developer image for deployment while development might be possible
more easily then, with the rootfs creation more automated. This would be a gain because
otherwise, it is very time consuming to debug some issues with the read-only file system,
and a dedicated developer image just could be writeable.

For the built products, the Compact Unbranded and its brands like the SEMcompact,
the used SoM is not available any more due to bankruptcy of the vendor during the testing
phase of this work. So, a new SoM needs to be selected and integrated. The custom hard-
ware around it was already built for exchanging the SoM. Since, as previously described,
all layers and recipes are designed for application to other hardware targets, this should
not be a big problem. It only might be some extra work if the bootloader is not U-Boot.

Not covered by the test and evaluation process are long term effects. Due to an issue
with the NAND driver for the used processor family, a few systems did fail at customer’s
sites. These needed to be started with another kernel sideloaded to be able to boot at least
one time correctly. After that, it was possible to update the systems to the newer versions
while running the faulty kernel driver. Avoiding this would mean to set up some tests,
which aim to test long time effects such as the persistent memory getting fully written on
more than one time, so the NAND has to actually erase sectors. This normally would not
happen very fast since there are 512megabyte (MB) of persistent storage available and the
application hardly writes anything on it. Therefore, several weeks or months might pass
before the first blocks need to be erased and cause such problems.
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Appendix A

List Of Abbreviations

API application programming interface

BIOS Basic Input/Output System

CA Certification Authority

CN common name

CPU central processing unit

CRL certificate revocation list

CSR Certificate Signing Request

DOA degree of autonomy

DSM demand side management

DSMS demand side management system

DuT device under test

EMC electromagnetic compatibility

EMI electromagnetic interference

EMS energy management system

GPIO general-purpose input/output

GUI graphical user interface

HAB High Assurance Boot

HDD hard disk drive

HTTP Hypertext Transfer Protocol

I2C Inter-Integrated Circuit
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IDS intrusion detection system

IoT Internet of Things

IP Internet Protocol

IPS intrusion prevention system

LED light-emitting diode

MB megabyte

MiB mebibyte

NFS network file system

OCSP Online Certificate Status Protocol

OS operating system

OTG On-The-Go

OTP NVM one-time programmable non-volatile memory

PCB printed circuit board

PKI public key infrastructure

PMIC power management IC

PV photovoltaics

QA quality assurance

RAM random access memory

REST Representational State Transfer

ROM read-only memory

rootfs root file system

RTC real-time clock

SCR self consumption rate

SDK software development kit

SEMcompact Smart Energy Manager Compact

SEM Smart Energy Manager

SEMS Smart Energy Management System

SLC single-level cell
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SoC State-of-Charge

SoM System-on-Module

SPL Secondary Program Loader

SSH Secure Shell

TPM Trusted Platform Module

UART universal asynchronous receiver-transmitter

UBIFS Unsorted Block Image File System

UBI Unsorted Block Images

UI user interface

URL Uniform Resource Locator

USB Universal Serial Bus

WLAN wireless local area network

YP Yocto Project
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