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Abstract

Deformable 3D Reconstruction provides two different methods for facing
the challenging task of a non-rigid 3D reconstruction. This is realized by
two separate pipelines, allowing either a template-based or a model-based
reconstruction. By running all computational costly tasks on the GPU,
Deformable 3D Reconstruction is capable of performing a non-rigid 3D
reconstruction in almost real time. Besides the implementation of the actual
system, an extensive framework has been evolved, being easy extendable
to various kinds of custom 3D reconstruction variants. The actual basis of
Deformable 3D Reconstruction is KinectFusion, which already defines a
complete pipeline for performing a static 3D reconstruction. KinectFusion
provides sophisticated as well as commonly used practices related to the
field of 3D reconstruction, which in fact is exploited by Deformable 3D
Reconstruction. The required input data for running both new pipelines
may be simply generated by using a single consumer RGB-D camera. While
such a device produces only poor depth data, the underlying methods of the
presented system are able to generate high quality output in form of meshes.
Summarized, Deformable 3D Reconstruction enables the reconstruction of
deforming objects in a fast and also qualitative way.
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Kurzfassung

Deformable 3D Reconstruction bietet zwei verschiedene Methoden zur Be-
handlung der herausfordernden Aufgabe einer nicht-rigiden 3D Rekonstruk-
tion. Realisiert wird das durch zwei voneinander unabhängigen Pipelines,
welche entweder eine template-basierende oder eine model-basierende
Rekonstruktion ermöglichen. Da alle rechenintensiven Aufgaben auf der
GPU behandelt werden, ist Deformable 3D Reconstruction imstande, eine
nicht-rigide 3D Rekonstruktion annähernd in Echtzeit zu bewältigen. Neben
der Implementierung des eigentlichen Systems, ist ein aufwändiges Frame-
work entstanden, das leicht zur Verwendung für verschiedenen Arten von
3D Rekonstruktionen herangezogen werden kann. Die eigentliche Basis von
Deformable 3D Reconstruction ist KinectFusion, welche bereits eine kom-
plette Pipeline für eine statische 3D Rekonstruktion definiert. KinectFusion
bietet durchdachte und geläufige Praktiken im Bereich der 3D Rekonstruk-
tion, dessen sich Deformable 3D Reconstruction bedient. Die von den zwei
neuen Pipelines benötigten Input-Daten können einfach mit einer üblichen
RGB-D Kamera generiert werden. Während diese Geräte nur ungenaue
Tiefendaten erzeugen, entstehen durch die zugrundeliegenden Methoden
des zu präsentierenden Systems hochqualitative Ergebnisse in Form von
Meshes. Zusammengefasst ermöglicht Deformable 3D Reconstruction die
Rekonstruktion von deformierenden Objekten auf eine schnelle und qualita-
tive Art und Weise.
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1 Introduction

Putting something on record has always been of great interest for the
humanity - beginning with cave paintings, up to the point of photography
and now doing the mapping into the virtual world. In the last decades the
projection into this world was mostly done in 2D only, but since the relevant
technology has been evolving rapidly in recent years, real 3D capturing has
become possible too. While the processing of this data has already been
explored very well for static and rigid bodies or scenes in previous work,
today’s research is mostly focused on moving and deforming bodies.

The challenge of doing a 3D reconstruction is in the nature of things.
While a 2D image can be easily acquired by taking a single snapshot,
the reconstruction of a 3D object requires much more than that. Following
questions may arise when dealing with this non trivial task: How can an
object be captured from all sides and angles, acquiring all necessary data
for a complete reconstruction? How can be determined which part belongs
to which snapshot? Does the object move during the recording or does it
even change its structure in the meantime? The primary goal of this thesis
is to answer these questions by finding solutions based on already made
efforts.

An object or scene may be recorded either by using one or multiple cameras.
Working with multiple cameras, a recorded object is captured from different
sides and angles at the same time. When the cameras are positioned to cover
all parts of that object, its complete surface information is available with
one shot of every single frame. While this appears to be an ideal situation,
some preconditions have to be fulfilled first. To obtain significant results,
the challenging task of synchronizing multiple cameras and their extrinsic
calibrations has to be solved beforehand. Additionally, such a setup is not
portable and therefore restricts the recording to a specific place. In contrast,
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1 Introduction

a single non aligned camera can be easily moved and installed without
having the restriction to any special location. In this case, of course, only
the information of the camera’s currently viewpoint is available. Summa-
rized, both methods have its advantages and disadvantages, but taking
additionally the cost factor into account for acquiring multiple cameras, the
single camera method becomes very attractive. All in all, this single camera
method seems to be more appropriate for this thesis and has therefore been
chosen.

Before being able to perform a 3D reconstruction, the underlying input
data has to be available. This raw data is in the form of an usual image,
but contains depth values instead of color related information. In the past,
it was a big deal to get such data, but this has become an easy task now.
The needed recording devices which directly output that type of data, in
the following referred to as “depth image”, reached the consumer level.
Such a device provides its captured data in a defined frequency and is
mostly equipped to supply color information too. A color image is usually
defined by three channels, consisting of a red, green and blue component
(abbreviated RGB in the following). The combination of such an RGB image
and a depth image is called “RGB-D image”. In fact, this data represents
the world frame wise only, where each snapshot belongs to one single
viewpoint. Before achieving a single result in a meaningful form, several
steps have to be processed first.

Generally, for getting a depth image into the 3D virtual world there has
to be some knowledge about the internal properties of the used device,
also known as “intrinsics”. By having either rough data provided by its
manufacturer or exact data by doing a calibration of the device by oneself, a
depth image can be projected into a 3D representation. The output of such
a projection is in the form of an organized point cloud. The basic layout of
the data does not change with this transformation and stays in the shape of
a regular 2D grid. Therefore the information of the neighborhood is not lost
and may be a handy property for a later processing.

Though the previous mentioned projection is only the first basic step towards
a 3D reconstruction, a method is needed for merging these single frames
together. Usually this is done by comparing consecutive frames with each
other. One important part of the concatenation deals with the issue of
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aligning the point clouds onto each other. This is needed because of an
occurring movement of the camera, which is required for capturing an object
from various points of views. Basically it makes no difference whether
the camera is moving or the recorded object, as long as the complete
observed frustum does change accordingly. Additionally to the aligning, the
points need to be merged somehow. Otherwise the number of points would
increase drastically and would make a further processing unacceptable in
the sense of calculation effort. As a side-effect, the merging can also be
interpreted as a smoothing process where near points are joined together
to become a single point, for example by averaging their positions. After
running this pipeline for a while, an extensive point cloud may grow up.
Though this representation is not very useful for the end use, the data needs
to be transformed into a different shape. A commonly structure used for
such data is called “mesh”, which consists of multiple triangles connected
somehow to each other forming a joined surface. Using this representation,
3D data can be easily displayed, manipulated and also stored.

The process described above produces a mesh as output, which only works
properly for static and rigid bodies or scenes. To capture deforming bodies,
additional operations need to be involved. In this thesis two different meth-
ods are going to be covered to tackle the non-rigid 3D reconstruction issue:
The first method tries to perform a continuous static 3D reconstruction
at the beginning, by ignoring some possible arising deformation at first.
At some specific time the actual reconstruction stops and the deformation
related part starts doing its job. This consists of a combination of estimating
and integrating any occurring deformation. The other method, the more
complicated one, tries to handle the deformation right from the beginning,
while the actual reconstruction happens simultaneously.

By comparing both methods which each other, it has to be noticed that
the first one has more requirements on the recorded scene, by having the
demand of a rigid body in the first stage. In contrast, the other one does not
rely on that and is able to extend the body information up until the end
of the recording. Therefore it has to take care of more degrees of freedom,
resulting in being not that stable like the first one. After now having given
just a short summary, a detailed insight into both methods will be given in
Chapter 3.
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1 Introduction

For getting an overview of already made investigations in the field of rigid
and non-rigid 3D reconstruction, Chapter 2 will cover some previously
made achievements concerning 3D reconstruction.
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2 Related Work

The ultimate goal when doing a rigid as well as a non-rigid 3D reconstruc-
tion is to get this done in real time. By opening the doors for applications in
the fields of Augmented Reality (AR) and Virtual Reality (VR), many new
possibilities for interacting with the real world arise.

One milestone in the online reconstruction of static scenes has been achieved
with the invention of KinectFusion, proposed by Izadi et al. (2011) and
Newcombe et al. (2011). KinectFusion is a method for bringing real world
objects into the 3D virtual world by using a single recording device only.
For the implementation they used a Microsoft Kinect, which was originally
developed for video gaming and was actually invented to interact with their
also in-house developed XBox gaming console. Even though the camera
itself does provide only poor input data, in form of RGB-D images, they
obtained impressive reconstruction results, even in real time (see Figure 2.1).
This was achieved by making use of massive parallelism and especially by
sourcing the calculation intensive tasks out onto the graphical processing
unit (GPU). One such calculation deals with aligning the current input onto
the model, which is solved by a fast variant of the Iterative Closest Point
(ICP) algorithm (Besl and McKay, 1992). The other computational intensive
calculation involves the handling of the data structure used for its internal
model. Especially this structure needs to offer a fast way for integrating
and fusing the input data into the model and also for exporting it the other
way around. Actually they made use of a voxel grid, which represents
its properties in an equidistant fashion and yields a fixed size. By using
this representation in combination with weighted signed distance functions
(SDF), introduced by Curless and Levoy (1996), a cumulative integration is
easily achieved. Because the area of the surface is of main interest, voxels,
which are positioned farther away, are truncated (abbreviated TSDF in the
following). While this representation may behave very speed efficient, the
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need of much memory is the resulting disadvantage. Basically this may
not be a big deal, but by having the requirement for a fast access to the
data, there is no other way of storing it directly into the memory of the
GPU. Therefore the resolution of this model is restricted by the amount of
the available video memory. Probably one of the most advanced solutions
to circumvent this problem deals with mapping the fixed sized voxel grid
onto a dynamically allocated data structure using a hash function (Nießner
et al., 2013). This greatly improves the efficiency of the memory usage by
compressing the space with a spatial hashing technique.

Figure 2.1: KinectFusion - Input Data and Static Reconstruction (Newcombe et al., 2011)
(Image taken from Newcombe et al. (2011).)

A complete different way and probably even a more natural way is to deal
directly with the form of the acquired input data, using a point-based repre-
sentation for the data model. Keller et al. (2013) showed a similar pipeline,
but compared to KinectFusion, they used an unstructured set of points for
the model’s representation. So, by having a dynamically growing model,
a fixed amount of memory is not needed anymore. While the fusion of
the points is based on the same approach presented by Curless and Levoy
(1996), the need of the implicit surface representation is avoided. Addi-
tionally they present a method for dealing with dynamics in the scene, in
which such regions are detected and furthermore ignored for the integration.
By acquiring outliers at the ICP stage, the dynamic regions of the input
are estimated. This information further influences the integration of the
input data into the point-based model. By having a confidence value stored
additionally to every single point, wrongly added points, which belong
to a dynamic region, are removed also in the second-guess, although they
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have already been integrated. Compared to the dynamics segmentation,
proposed by Izadi et al. (2011), the point-based method does not need an
initial scan to distinguish between static and dynamic regions. Another
difference is found in the creation of the synthetic map, which is needed for
representing the current model, used in the ICP task. While KinectFusion
has to render its implicit surface representation by using raycasting, Keller
et al. (2013) apply a simple surface-splatting technique on its point-based
representation in order to generate such a map.

While the previous methods are only able to reconstruct static scenes,
Zollhöfer et al. (2014) introduced a system which combines rigid recon-
struction with deformation handling, running in two different stages. This
so-called “template-based” solution acquires its geometry in the first phase,
and tracks and applies possible occurring deformation on the geometry in
the second phase. The latter is shown in form of a deformation sequence
in Figure 2.2. For acquiring the input data in form of RGB-D images, a
self developed real-time capable stereo setup, consisting of a color (RGB)
and an infrared (IR) camera, is introduced. The template is created with
the help of an extended version of KinectFusion (Nießner et al., 2013). The
resulting triangle mesh is processed to offer a multiple resolution hierarchy,
which serves to handle the deformation in the second phase. This non-rigid
part deals with minimizing an energy function, containing a data and a
regularization term. The first term is responsible for fitting the surface,
whereas geometry as well as color properties are covered. The second one is
needed to achieve smooth deformations and is applied by using a method
known as as-rigid-as-possible (ARAP) (Sorkine and Alexa, 2007). A final
step to track some outstanding detail deformations is processed by solving
a linear least square system.

Figure 2.2: Real-time Non-rigid Reconstruction using an RGB-D Camera - Deformation
Sequence (Zollhöfer et al., 2014) (Image taken from Zollhöfer et al. (2014).)
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Though previous work has shown how to handle deformation, it still re-
lies on having a still standing object at its first stage. Unfortunately this
requirement cannot be fulfilled in all situations and therefore the first step
has to be avoided somehow. A pioneering work, which tries to overcome
this problem, has been proposed by Newcombe, Fox, and Seitz (2015). Their
work presents a solution for performing a template-less non-rigid recon-
struction running in real time. For achieving this, their initial question was
“How can we generalise KinectFusion to reconstruct and track dynamic,
non-rigid scenes in real-time?”. Their key idea for solving this problem is the
separation of the rigid part and the occurring deformation. By estimating
a volumetric flow field, representing the transition between a rigid model
and the current state of the scene, the actual integration of KinectFusion
can be simply adopted. This results in having a procedure of undoing the
deformation before the actual integration into the model is performed and
afterwards warping the rigid model to represent the currently modeled
deformed frame. This enables continuous integration and deformation of
the data, as shown by the illustrated results in Figure 2.3. By supposing
smoothly deformation on the surface and having the goal to run in real
time, they use only a sparse set of estimated transformations. This warp
information is represented by a hierarchical deformation graph (Sumner,
Schmid, and Pauly, 2007). For getting a dense volumetric warp function out
of it, interpolation has to be involved. A single transformation is defined
using both, translation and rotation information, which leads to 6 degrees
of freedom (DOF). By using that accurate description, Newcombe, Fox, and
Seitz (2015) promise to achieve much better tracking and reconstructing
results. As already proposed by Zollhöfer et al. (2014), the estimation of the
warp field is performed by minimizing an energy function, consisting of a
data and regularization term.

Figure 2.3: DynamicFusion - Continuous Integration and Deformation (Newcombe, Fox,
and Seitz, 2015) (Image taken from Newcombe, Fox, and Seitz (2015).)
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Shortly after the previously mentioned work was released, Innmann et al.
(2016) presented a similar solution targeting the same issue. In fact, this
approach enables continuous integration and deformation of the data too
(see Figure 2.4). In contrast to the method of Newcombe, Fox, and Seitz
(2015) where only the depth data is considered, this approach makes use
of the color input as well. While Zollhöfer et al. (2014) have already used
RGB values for fitting the data in their energy function, the following
method promises to be much more stable. By estimating also Scale Invariant
Feature Transform (SIFT) (Lowe, 1999; Lowe, 2004) correspondences in
addition to the commonly used geometric based correspondences, they
promise to get a far better handling of drift and fast motion. Even though
these color related features are estimated in a sparse manner, they get
captured on all input images and are used as global anchor points. A second
key contribution to the reconstruction pipeline was made by Innmann et
al. (2016), by introducing a dense volumetric representation of the warp
field. This omits the usually needed interpolation for acquiring the interim
values. However, those additions need some extra calculation effort, though
the approach promises to stay an online solution, by exploiting their fast
hierarchical optimization strategy.

Figure 2.4: VolumeDeform - Continuous Integration and Deformation (Innmann et al.,
2016) (Image taken from Innmann et al. (2016).)

While Innmann et al. (2016) have already used sparse features from the
color images, Guo et al. (2017) go one step further by taking care of the
intrinsic appearance, in the following referred to as “albedo”. By recovering
this additional information, next to the geometry related data, a more
complete static model can be described by using both for the integration.
It is mentioned that the use of intrinsic appearance is an important cue
for the correspondence estimation and improves the inter-frame motion
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detection too. This is because the appearance of a body never changes
over time. For representing the warp field a graph-based solution is used,
which Newcombe, Fox, and Seitz (2015) have already proposed for their
work. The used energy function, which needs to be minimized, consists of
four terms. While the first two are defined as data terms, involving the depth
and shading properties, the other two are responsible for the regularization
part. In addition to the improvements in the motion estimation, the use
of the albedo opens the doors for new applications such as relighting and
appearance editing.

A totally different approach is shown by Slavcheva et al. (2017) for facing
the non-rigid reconstruction problem. While the previously mentioned
works rely on finding correspondences for its estimation, this approach
totally avoids this error prone task. Like nearly all other solutions storing its
geometry related data in a volumetric TSDF grid, the proposal of Slavcheva
et al. (2017) does this too but is making much more use of it. The proposed
solution totally omits the intermediate steps of generating a mesh out of the
model or its view dependent rendered map. For estimating the non-rigid
deformation, a pair of two SDF grids have to be compared with each other.
The first one contains the accumulated model, while the other one is just
produced out of the current input depth image. The result of this procedure
is in the form of a dense vector field, yielding the same size as both input
grids. In contrast to the work of Newcombe, Fox, and Seitz (2015) and
Innmann et al. (2016) where a transformation is defined by 6 DOFs, the
vector field is obviously aware of 3 DOFs only. The global camera pose is
estimated by using the SDF-2-SDF registration energy (Slavcheva et al., 2016)
which registers a pair of voxel grids. This means no correspondences have
to be acquired again, because the usually applied ICP algorithm is avoided.
The used energy function for estimating the actual non-rigid transformation
consists of a data term and two regularization terms. The first one of
the regularization terms is taking care of a damped variant of the killing
condition, while the other one is maintaining the level set property.

While having discussed only single camera solutions so far, it is time to
present some interesting multi view approaches. Collet et al. (2015) propose
a multimodal reconstruction system which combines RGB, IR and silhouette
information to achieve high quality meshes in real time. The base of their
complex setup is a greenscreen stage surrounded by 106 cameras. The to be
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generated depth images are fused together using a multimodal multi-view
stereo algorithm to produce a single point cloud as result. By performing
a self extended version of the poisson surface reconstruction (Kazhdan,
Bolitho, and Hoppe, 2006), a high resolution mesh is extracted. To be able to
provide the resulting content in a streamable and compressed fashion, mesh
tracking needs to be performed. This is done by first estimating keyframes
which are selected to present the actual content. The in-between frames have
to be derived from these keyframes by using their appropriate non-rigid
deformation field. For achieving this, the non linear registration algorithm
proposed by Li et al. (2009) is applied. Though they mention that any similar
algorithm may be adapted, like for example the already discussed method
of Zollhöfer et al. (2014). The actual used algorithm needed for estimating
these deformation fields minimizes an energy function, containing a data
term for fitting the surface and two regularization terms observing the rigid-
ity and smoothness. The last two are based on the rules of the embedded
deformation graph (Sumner, Schmid, and Pauly, 2007).

Dou et al. (2016) show another approach of using a multiple camera setup.
In there work on the non-rigid reconstruction problem, they combine the
power of integrating the data into TSDF grids with the usage of multiple
cameras from different viewpoints. For circumvent the problem of requiring
much memory for those grids, they use an approach proposed by J. Chen,
Bautembach, and Izadi (2013), to transform the regular grid into a hierarchi-
cal structure. Similar to the work of (Collet et al., 2015), where key frames
are used as anchor points, this work selects some specific TSDF grids for
holding the actual content. This means, as soon as there is a big change
in the scene (e.g.: topology change), the currently processed TSDF grid
will be exchanged by an empty one and the integration starts from scratch
again. To demonstrate the ability for handling complex scene changes, some
results are shown in Figure 2.5. Compared to the work of Collet et al. (2015)
a simpler setup is used, by avoiding the need of a greenscreen stage and
minimizing the number of used cameras. By the need of 24 cameras, pro-
viding RGB and IR data, a stereo algorithm has to be applied for acquiring
the actual depth data. As already found in some previously mentioned
approaches, the deformation is also handled by a graph (Sumner, Schmid,
and Pauly, 2007). Their used energy function consists of five terms, where,
aside from the data and regularization properties, a visual hull and corre-
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spondences term can be found.

Figure 2.5: Fusion4D - Complex Scene Changes (Dou et al., 2016) (Image taken from Dou
et al. (2016).)

An impressive application of how the communication may look like in the
future has been demonstrated by Orts-Escolano et al. (2016). Taking the
method of Dou et al. (2016) for the reconstruction part, combining it with
audio support and bringing the content in a streamable form, a complete
scene may be virtually cloned to any location in the world. Because the
reconstruction is the computationally most expensive part of their pipeline,
Orts-Escolano et al. (2016) applied the framework proposed by Dou et al.
(2016) onto a dual GPU pipeline to be able to process even room-sized
dynamic scenes in real time. By equipping all communication partners with
an AR or VR headset, a new experience of telepresence was achieved.

Although having discussed some interesting approaches related to 3D
reconstruction in dynamic scenes, much more efforts have already been
made in the field of computer graphics and vision. To get a deeper insight
into this topic, Zollhöfer et al. (2018) discuss an impressive list of related
work in their survey. Additionally it gives a nice overview of all needed
steps to dive into the world of the non-rigid 3D reconstruction.
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The basis used for the new approach is a reconstruction system called
KinectFusion, proposed by Izadi et al. (2011) and Newcombe et al. (2011).
As already discussed in Chapter 2, it describes a complete pipeline for doing
a 3D reconstruction on rigid objects or scenes. By providing a sequence
of depth images, the system is capable of producing a high quality mesh
as output. Many parts of its pipeline can be used for the new proposal,
therefore starting with KinectFusion is essential. By having access to an
open-source implementation of KinectFusion, provided by the Point Cloud
Library (PCL) (Rusu and Cousins, 2011), its slightly modified realization
will be mainly taken into account. Therefore some small details may deviate
from the original KinectFusion system. Though the places where such
variations of the used methods have been uniquely noticed, will be marked
and furthermore discussed.

After a detailed description of the KinectFusion system in Section 3.1, the
actual work, named “Deformable 3D Reconstruction”, will be proposed. It
consists of two different methods for tracking the non-rigid reconstruction
problem. The first one tries to tackle the problem by using a template-based
approach in form of two consecutive stages, running two different pipelines
for getting the job done (see Section 3.2). In contrast to that, the second
one targets the issue by using only one stage and therefore requires only
one pipeline to perform a non-rigid 3D reconstruction. This second system
is also known as a “model-based” solution, by introducing an additional
model for representing the current deformation state and will be discussed
in Section 3.3. Because the modifications made on KinectFusion affect both
new to be proposed pipelines, these will be discussed only once, on their
first occurrence in Section 3.2.
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3.1 KinectFusion

The whole pipeline of KinectFusion is shown in Figure 3.1. Blocks, visualized
with squared corners, represent essential processing units, whereas the
rounded ones show optional tasks. One cycle of the pipeline processes and
integrates one image frame of the recording. The transition to a following
iteration is marked with a dashed lined arrow. All visualized steps will be
explained in detail below.
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Figure 3.1: Pipeline - KinectFusion

3.1.1 Preprocess Depth Image

The first task of KinectFusion deals with the preparation of the input data
(see Figure 3.2). This is done by processing a depth image, which is also
referred to as “depth map” in the following. It has a fixed resolution,
defined by width and height and is structured as an equidistant 2D grid
(see Figure 3.3). Every point is accessible by two indices, defined by the row
i and the column j and represents a depth value. In contrast to RGB images,
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Figure 3.2: Pipeline - KinectFusion - Preprocess Depth Image

in which all points have valid color values, depth images may contain some
invalid data. For example, this happens when the sensor of the camera is not
able to capture the depth in some areas. For illustration, Figure 3.4 shows
an example of a depth image, visualizing the surface of a sphere, in form of
depth values. In fact, this is a synthetically generated depth image, where
all values are correct. In contrast to that, depth images acquired from real
camera sensors contain usually noisy and also invalid data.

X

Y

i, j

Figure 3.3: Structure of Depth Image, Vertex and Normal Map

The actual processing step applies a bilateral filter (Tomasi and Manduchi,
1998) on the depth image. Commonly this filtering type is used for RGB
images, but it is also applicable for depth images, which consist of only
one channel. By treating the input as an integral image, the neighbors are
known. This is an important information, required for the calculation of the
underlying algorithm in the filter. Its output, in form of a modified depth
image, will be used in one of the following tasks for estimating the camera
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Figure 3.4: Depth Image Showing a Sphere (Resolution = 16x12)

pose. In fact, the only reason for this preprocessing step is to stabilize the
camera estimation.

3.1.2 Create Vertex and Normal Maps
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Figure 3.5: Pipeline - KinectFusion - Create Vertex and Normal Maps

Now (see Figure 3.5), the manipulated input data is ready for being projected
into the 3D space. The outcome of this operation is in form of an organized
point cloud. This type of point cloud is structured like a map, containing a
3D point in every index pair i and j. Consequently this type of data structure
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3.1 KinectFusion

is called “vertex map”. While having the same structure and resolution as
the input data (see Figure 3.3), it contains three values instead of only one,
stored in each position.

For calculating a 3D point V out of a depth value d, besides the information
of the currently processed indices pair i, j, also the intrinsic of the camera
has to be known. This characteristic can be described by four values fx, fy,
cx and cy. The actual calculation is done by multiplying every depth value
by a projection matrix (see Equation 3.1). Missing depth values, encoded
in the form of zero values, result in invalid 3D points. For not loosing the
organized shape property of the point cloud, also these values are kept
stored in the resulting vertex map. Depth values, which exceed a predefined
threshold, in especially which are too far away from the camera, are marked
as invalid points, instead of being projected. Additionally to the positions,
also the normals are calculated in this task. They are stored in the same
structure as the point-related data, forming a so-called “normal map”. In
contrast to the work of Izadi et al. (2011) and Newcombe et al. (2011), where
the normals are estimated by calculating a cross product involving the
i + 1 and j + 1 neighbors, the estimation of the normals is done by using
the covariance matrix, as found in the implementation of PCL. This leads
to a smoother normal field, but may let the normals show in the wrong
directions in some areas.

V =

vx
vy
vz

 =


1
fx

0 0
0 1

fy
0

0 0 0

 ·
i− cx

j− cy
1

 · d (3.1)

As another preparatory step for the camera pose estimation (see Sec-
tion 3.1.4), the vertex and normal maps have to be created in three different
sizes, referred to as “vertex and normal map pyramid” in the following.
Therefore, besides the already acquired map pair, two additionally pairs
have to be produced. This is done by first scaling down the previously
bilaterally filtered depth map by applying the factor two. By averaging and
joining the values of the depth map, defining patches in the size of 2x2,
a half sized depth map is created. By also dividing each single intrinsic
value by the factor two, a valid, half sized vertex map can be produced
through out the previously mentioned projection. By repeating these steps

17



3 Method

once more, in sum, two additional vertex maps are created. Finally, their
related normal maps are calculated, as already done for the original sized
vertex map.

3.1.3 Transform Maps into Global Coordinate System (1)
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Figure 3.6: Pipeline - KinectFusion - Transform Maps into Global Coordinate System (1)

At this step, the vertices are transformed into the global coordinate system
(CS) (see Figure 3.6). This is done by a multiplication and following addition
on the previously calculated content of the vertex maps, using the rotation
and translation components of the camera matrix (see Equation 3.2). Initially,
this matrix is defined to represent a user defined position and viewing angle,
which will be important for the next tasks. The general objective of this step
is to put the vertex maps into a common 3D space, independently of the
current position and angle of the camera. The structure of the vertex maps
remains the same and furthermore the indices of the points are not changed
during this transformation. In contrast to the vertices, the normals are only
multiplied with the rotation matrix. This is because they are vectors instead
of positions (see Equation 3.3). Both calculation types are performed on
vertex and normal maps of all three available sizes.

Vg =

vxg
vyg
vzg

 = R ·

vx
vy
vz

+ t (3.2)

Ng =

nxg
nyg
nzg

 = R ·

nx
ny
nz

 (3.3)
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3.1.4 Estimate Camera Pose
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Figure 3.7: Pipeline - KinectFusion - Estimate Camera Pose

Now the Iterative Closest Point (ICP) algorithm (Besl and McKay, 1992)
takes place - used for acquiring the camera pose, by aligning the current
maps onto the previous ones (see Figure 3.7). If it is the first iteration of the
pipeline, there will be no previous maps available and therefore this step
will be skipped in this case.

By only being interested in integrate new data, processed in the following
section, the movement of the camera is a matter of moment. If the result
of this task, in form of a camera matrix, is too similar compared to the
previous one, the current iteration is aborted at this step and the whole
pipeline starts from the beginning. This additional check is also an extension
to the original KinectFusion method, in which such a test is not mentioned
at all.

As shown in Figure 3.8, the aligning of the vertex and normal maps is
divided into four different subtasks. To get a more stable and faster result,
the ICP is performed by using a vertex and normal map pyramid. This is the
reason for the creation of the differently sized map pairs, performed in the
previous sections. Starting with the smallest map pair, each size is processed
multiple times, more precisely, four, five and ten times, to converge to
a meaningful result. In total, this leads to 19 iterations. As obvious, the
transition to the next iteration is visualized by a dashed lined arrow.
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Figure 3.8: Pipeline - KinectFusion - Estimate Camera Pose - Subtasks

Search Correspondences

The correspondences are determined by performing a projective data asso-
ciation (Rusinkiewicz and Levoy, 2001). In its first step, the points of the
globally aligned previous vertex and normal maps are transformed into
the current coordinate system. After that, these points are projected into
the image plane. The resulting i and j indices already define the correspon-
dences to the current map pair. In fact, this procedure is exactly the inverse
calculation as done in the Sections 3.1.2 and 3.1.3. Vertices, which have nei-
ther a valid position, nor a related normal information in the corresponding
normal map, are already ignored at this stage. Therefore those points will
not obtain a correspondence. In contrast to those, all remaining vertices
acquire a correspondence, never the less of their resulting quality.

Filter Correspondences

For getting rid of bad correspondences, also called outliers, point pairs
which have a too high deviation in the quantities of vertex position and nor-
mal angle, are removed. This is estimated by calculating two specific values
d1 and d2, as shown in Equations 3.4 and 3.5. The calculation of the normal
deviation differs compared to the original KinectFusion method, shown in
Equation 3.6. By applying these calculations on every found correspondence
pair, their euclidean distances and angle differences are specified. If one of
those values exceed a defined threshold ei, the appropriate correspondence
will be removed (see Equation 3.7).

d1 = ‖Vg −Vg,prev‖2 (3.4)
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d2 = ‖Ng × Ng,prev‖2 (3.5)

d3 = abs(Ng · Ng,prev) (3.6)

di
!
< ei (3.7)

Calculate Transformation

The used distance metric for the performed optimization is called “Point-
To-Plane” (Y. Chen and Medioni, 1991). As the name already implies, its
goal is to minimize the sum of all distances, ranging from a point to a plane,
between the found correspondences (see Equation 3.8). The result is in form
of a rotation matrix RICP and a translation vector tICP, forming a single
transformation matrix. Though this matrix describes only the transformation
between the current and the previous map. Therefore its rotation and
translation components are accumulated onto the global camera matrix,
finally evolving into the new camera pose.

E1 = min(
n

∑
i=1
‖(RICP ·Vi + tICP −Vg,corr(i),prev)

T · Ng,corr(i),prev‖2) (3.8)

Transform Maps into Global Coordinate System

By having now a new transformation matrix available, acquired in the
previous step, the vertex and normal maps are updated to represent the
new state. This is done by transforming the current vertex and normal maps
from the current coordinate system into the global one, by applying the
updated rotation matrix and translation vector. The maps are now ready for
the next iteration.

3.1.5 Integrate Depth into Model

By using the updated camera matrix and its intrinsics, the raw depth image
is going to be integrated into the used storage model (see Figure 3.9). This
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Figure 3.9: Pipeline - KinectFusion - Integrate Depth into Model

model is described by Truncated Signed Distance Functions (TSDF) (Curless
and Levoy, 1996; Izadi et al., 2011). It is defined as a cubic, equidistant voxel
grid holding two specific values on every voxel (see Figure 3.10). Any value
pair can be accessed by three indices i, j and k. The first value is the actual
TSDF value and represents the distance to the surface. It is normalized in
the interval of −1 and 1, in which the value of 0 represents the surface. By
definition, the maximum negative value −1 describes empty space (air),
whereas the positive maximum value 1 represents a still unexplored area.
Besides that, the second value defines the weight for determining the quality
of the first value. The dimension of the voxel grid is defined by the quantity
of length and a dimensionless resolution, having the same value in all its
three dimensions (e.g.: 3 m3 and 5123 voxels, respectively). Because the
voxels are equally spaced, the fixed distance between each of them can
be easily computed, by dividing the length through the dimension. This
cell size is needed to convert the indices into the global voxel position
(see Equation 3.9). Because of integrating the data into the voxel’s center,
the addition of 0.5 has to be taken care of. Figure 3.11 shows a voxel grid
including its centers, represented by spheres. Besides the definition of the
cube’s properties, also the camera pose is of main interest during the data
integration.

Vg =

 i
j
k

+ 0.5

 · cell size (3.9)
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Figure 3.10: Cubic Voxel Grid

To gain a better understanding of how a TSDF volume may look like, refer to
Figure 3.12. The illustrated model contains a flat surface, which is visualized
by its TSDF values, but without their corresponding weights. The whole
voxels have been colored, although the position of its representing value
is located in the voxel’s center. The surface, marked by the color blue, is
either orientated in the positive or negative X-Direction. Because of using
the same color for the negative as well as positive maximum values, −1
and 1 respectively, the front and the back cannot be distinguished anymore,
from each other.

To integrate the depth data, every voxel is considered on its own. This
means that the iteration is performed over all voxels, but without having
knowledge about the actual geometry. As illustrated in Figure 3.13, only
voxels which are occluded by the projected points of the to be integrated
depth image are updated. Furthermore it has to be noted, that the visualized
image is oriented exactly as like the camera, by also having the same center
in their common plane. Now, the goal is to integrate the depth image into
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Figure 3.11: Cubic Voxel Grid Showing its Centroids (Resolution = 103)

the TSDF model, by a projection as shown in the illustration. The used
coordinate system for the storage model is the global coordinate system.
Therefore by using the voxel’s three indices i, j and k, the global position
can be easily determined (see Equation 3.9). With the knowledge of the
current camera matrix, the voxel is being transformed into the current
coordinate system. Using the intrinsics of the camera, the projection into
the image plane is performed. This is exactly the opposite calculation as
done in Sections 3.1.2 and 3.1.3. The result of the projection consists of two
values, which are rounded to become integer values, forming two indices i
and j, for accessing the actual depth out of the depth map. If these indices
do not exceed the range of the image, its appropriate depth value can be
accessed and used for further processing. In the other case, either if one
of these indices is negative or higher than the resolution of the image, the
integration of the voxel is aborted. Also if there is no depth value available,
the integration is skipped too. Otherwise the value of the Signed Distance
Function (SDF) is going to be calculated (see Equation 3.10), by using the
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Figure 3.12: Cubic Voxel Grid Containing a Flat Surface (Resolution = 103)

appropriate value of the depth image. Based on the resulting SDF value sd f ,
a decision will be made, if the to be integrated data is of interest. This is the
case if the processed depth is near enough to the surface and is estimated
by comparing the SDF value with a maximum allowed distance dtrunc. If the
SDF value is lower than the negative dtrunc constant, then the integration
is stopped at this place (see Equation 3.11). This means, voxels located
behind the surface and being farther away than dtrunc, will not be updated.
Otherwise, the TSDF value tsd f is calculated, by firstly normalizing the SDF
value and secondly forcing it into the range of −1 and 1. The normalization
is processed by dividing the value by the constant dtrunc (see Equation 3.12).
After that, the average TSDF value tds faverage and its associated weight w
are calculated, as shown in Equations 3.13 and 3.14. Obviously, the weights
are simply incremented by 1, as long as the maximum value wmax has not
been reached. Finally, both values are stored at the certain position of the

25



3 Method

currently processed voxel. By doing this procedure for every single voxel, a
huge number of iterations have to be performed.
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Figure 3.13: Integrate Depth Image into Voxel Grid (Resolution = 103)

sd f = ‖t−Vg‖ − d (3.10)

sd f
!
≥ −dtrunc (3.11)

tsd f = min(max(
sd f

dtrunc
,−1), 1) (3.12)

tsd faverage =
tsd fprev · wprev + tsd f · w

wprev + w
(3.13)

w = min(wprev + 1, wmax) (3.14)

For getting a better overview of the even mentioned depth integration, all
required steps are summarized in Listing 3.1.

26



3.1 KinectFusion

1 f o r i , j , k in TSDF model
2 Vg ← c a l c u l a t e g loba l p o s i t i o n
3 V ← transform to current coordinate system
4 i , j ← p r o j e c t i n t o image plane
5 i f i , j in depth image
6 d ← acquire depth value
7 i f d i s va l id
8 sd f ← c a l c u l a t e SDF value
9 i f sd f i s g r e a t e r or equal than −dtrunc

10 tsd faverage ← c a l c u l a t e average TSDF value
11 w ← increment weight
12 save tsd faverage and w a t voxel i , j , k

Listing 3.1: Integrate Depth into Model

3.1.6 Integrate Color into Model
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Figure 3.14: Pipeline - KinectFusion - Integrate Color into Model

The optional integration of the color image may follow the depth integra-
tion directly (see Figure 3.14). This form of integration is not defined by
KinectFusion, therefore the proposed method is taken from the KinectFu-
sion based implementation of PCL. While not being a requirement of the
3D reconstruction pipeline, the color is an important perception cue of the
human beings.

The handling of the color is very similar as compared to the depth. Analog to
the TSDF volume, an additional volume for storing the color, is introduced.
This volume has the same properties, but instead of using a TSDF value
and a weight per voxel, an RGB vector is considered. The integration is also
processed, by iterating over the volume’s voxels and projecting them into the
image plane of the current coordinate system. But instead of calculating the
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SDF value, the euclidean distance is estimated, for defining the integration
criteria. If this distance does not exceed the already introduced threshold
dtrunc, the RGB components, defined as a vector of three short typed values,
will be integrated. The average RGB vector rgbaverage is calculated as shown
in Equation 3.15. Obviously, this is pretty much the same formula as used for
the calculation of the TSDF’s average value (see Equation 3.13). But instead
of incrementing associated weights in every integration, the weighting is
done by involving a constant value wconst only. This way, the to be integrated
color has always the same importance. As the TSDF value is defined by a
specific range, going from −1 to 1, the three color values are valid between
the range of 0 and 255 (see Equation 3.16).

rgbaverage =
rgbprev · wconst + rgb

wconst + 1
(3.15)

rgbaverage = min(max(rgbaverage, 0), 255) (3.16)

3.1.7 Generate Mesh
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Figure 3.15: Pipeline - KinectFusion - Generate Mesh

At this stage a triangle mesh may be constructed (see Figure 3.15). The
creation of a mesh is not needed for the pipeline, but in most cases the
preferred representation of the result. If this task is planned to be executed,
then it may be performed either in a defined interval or at the end only
once. This is because of being an calculation intensive task and furthermore
of avoiding the generation of much data. A common approach for getting
such a mesh is to use the Marching Cubes algorithm (Lorensen and Cline,
1987). This is also true for this pipeline, by being the chosen method for
this task. The output of the applied algorithm is in from of a triangle mesh
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3.1 KinectFusion

and by being directly acquired from the TSDF model, placed in the global
coordinate system.

If the color integration is activated in the pipeline, then also the colors need
to be applied onto the mesh. This is simply done by searching for every
vertex of the previously created mesh, the corresponding color value in
the 3D color volume. Because of being in the same coordinate system, this
involves only a calculation of the voxel index, based on the global vertex
position (see Equation 3.9). Finally by using this index, the color of the voxel
can be fetched from the color volume. By doing this for every single vertex,
the complete color information is applied onto the mesh.

3.1.8 Generate Vertex and Normal Maps
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Figure 3.16: Pipeline - KinectFusion - Generate Vertex and Normal Maps

The second to last step of the pipeline deals with generating synthetic vertex
and normal maps (see Figure 3.16). This is done by raycasting the implicit
surface information out of the currently saved TSDF model (Parker et al.,
1998). By emitting rays, for every index pair of the to be generated vertex
map onto the model, the appropriate global position can be calculated and
stored. Actually, the ray stops when it enters the transition between negative
and positive TSDF values, means when the surface is hit. This is done for
each i, j index pair of the resulting map. By taking the neighbors of the
estimated position into account, the surface can be predicted and from that
the normal information is derived. This results in getting the vertex and
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also the normal map, positioned in the global coordinate system, already in
one shot. While both maps are created in the original size only, their two
minimized versions have to be created too. The procedure for acquiring this
vertex and normal map pyramid is the same as described in Section 3.1.2.
But instead of averaging the scalar values, the now available 3D points and
vectors have to be used.

The generated maps are stored in the previous map containers for the use in
the next iteration. In the first iteration of the pipeline, this step is omitted and
the current maps are simply adapted for being used as the previous maps
in the next run. By using, in this case, the vertex and normal maps acquired
from the bilaterally filtered input, instead of extracting the information out
of an under-determined model, a better result is to be expected.

3.1.9 Transform Maps into Global Coordinate System (2)
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Figure 3.17: Pipeline - KinectFusion - Transform Maps into Global Coordinate System (2)

The previous step produces the maps already in the global coordinate sys-
tem, but as shown in Figure 3.17, a transformation may follow. Actually this
is not required, in the way how the raycasting is performed. By extracting
the information directly out of the TSDF model, the resulting points are
already positioned in the global coordinate system. Though the proposed
pipeline illustrates an abstract approach, in which other methods for the
generation of the maps could be applied. In fact, this is the case in the
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3.2 Deformable 3D Reconstruction - Template-Based

next section, where the maps are obtained by a different method and a
transformation has to follow.

3.2 Deformable 3D Reconstruction -
Template-Based

The first variant for facing the non-rigid reconstruction problem runs in
two different stages. In the first stage, it is assumed that no deformation
happens and the input data is used for a static 3D reconstruction. Then, at
some specific frame F = Fstart − 1, the depth integration is stopped. Finally
the observation of any deformation is going to be honored in the following
iterations, marking the second stage. This template-based approach is similar
to the work of Zollhöfer et al. (2014), in which a static reconstruction is also
performed first. Therefore this involves two different pipelines, having a
defined timestamp when they are going to be switched. Before the specific
time has been reached, the KinectFusion pipeline is run as already shown in
Section 3.1 and illustrated in Figure 3.1. After that, a triangle mesh is created.
This mesh is used in the following as the container, replacing the TSDF
volume, for representing the current state. Then the actual, newly proposed
pipeline comes in place, performing the tasks as shown in Figure 3.18. Its
key functionality consists of a combination of observing and integrating
any occurring deformations. These transformations, in form of translations,
are integrated into the mesh directly. Therefore no additional storage model
is needed. Because of having a fixed set of vertices defined in the mesh,
the template-based method does not have to deal with the uncertainty of
making the decision if a point is newly occurring or has only been moved.
This makes that method very stable.

The exchanged path of the new pipeline is colored orange, while the start
and the end, colored blue, stay the same. Though their methods have to be
slightly modified to fulfill the newly needed behavior. These modifications
of the already available blocks and the newly introduced path will be
discussed below. Because of no need to change anything in the first three
tasks, they are going to be skipped in the description below.
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Figure 3.18: Pipeline - Deformable 3D Reconstruction - Template-Based

3.2.1 Estimate Camera Pose
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Figure 3.19: Pipeline - Deformable 3D Reconstruction - Template-Based - Estimate Camera
Pose

The first step which needs to be modified for the use in the new approach
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3.2 Deformable 3D Reconstruction - Template-Based

deals with the estimation of the camera pose (see Figure 3.19). Because of
being only interested into a single body instead of capturing a complete
scene, the content of the vertex and normal map pyramid is pre-filtered,
using a bounding box. Its size is equal to that of the TSDF volume, to
contain only the relevant data of the model’s frustum, after the filtering.
This modification affects the ICP algorithm only and enables the movement
of the body itself, by not having any static data in the background anymore,
for example. Therefore the system does not distinguish between a camera
or a body movement.

The other change compared to the step mentioned in Section 3.1.4 is related
to the possible skipping of the data integration, when the resulting camera
matrix is too similar to the previous one. Obviously, a body may also deform,
regardless, whether the camera is moving or not. Without this change, a
possible deformation would not be observed in this case, by skipping the
following tasks.

3.2.2 Generate Vertex and Normal Maps (1)
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Figure 3.20: Pipeline - Deformable 3D Reconstruction - Template-Based - Generate Vertex
and Normal Maps (1)

The generation of the vertex and normal maps marks the beginning of the
orange colored, exchanged path (see Figure 3.20). This task treads only with
the previous maps, representing the TSDF model. Therefore the output of
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this step is stored in the previous maps container. Theoretically this step is
not needed at this point, but it may improve the quality of the translation
estimation. The idea behind that step is to get the previous vertex and
normal maps rendered in the updated current camera pose. Therefore the
content of the maps will become more accurate and the handling of them
becomes easier too, because of having to take care of only one camera pose
anymore.

In contrast to the original KinectFusion system, the vertex map is now
generated by doing a rasterization instead of doing a raycasting. Because
of having now a different form of input data, the generation has to be
performed in an alternate way. While the raycasting in KinectFusion is done
directly out of the TSDF model, now a triangle mesh is used as the source
representation for that task. Obviously, at this point a triangle mesh has to
be available already.

The following applied rasterization procedure is based on the work of
Scratchapixel (2018). For getting a rasterized map out of a mesh, every
single face needs to be processed. First, the faces, in form of triangles have
to be transformed into the current coordinate system and projected into the
image plane. They are now in the same plane as the target vertex map and
the triangles are ready to be virtually drawn onto the map. This is done
by iterating over all triangles and also all destination indices of the to be
created vertex map, performed in a cascaded fashion. For the detection, if
a to be drawn vertex is inside the currently processed triangle, the edge
function (Pineda, 1988) is used. This is done by estimating the relative
position of the vertex to all three edges of the triangle. If the vertex is in all
three cases either on the right side or on the edge itself located, then the
vertex is definitely in the triangle. While this works on usual front faces,
back faces will not get treated properly by this test. Therefore, in this case,
the ordering of the vertex indices, defined by the triangles are changed
beforehand. The detection of a back face is done by checking the normal
direction of the triangle beforehand. If an index pair of the target map
has multiple candidates for inclusion, then their positions are going to be
compared. In fact, the one with the lowest Z-Value is chosen. For improving
the speed of the rasterization, all triangles are only processed in the area
of their precalculated bounding box, instead of processing all points in the
target map. For acquiring the interpolated Z-Value at the target position,
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3.2 Deformable 3D Reconstruction - Template-Based

the barycentric coordinates are needed. They are calculated using the results
of the edge function. At the end, the three inverted Z-Values of the triangle
are used to get the correct interpolated resulting value with the help of their
current barycentric coordinates.

Having the goal to get the lowest Z-Value on every single target index
pair, the previous described algorithm has to be processed sequentially.
This results in gaining a long run for the rasterization process, especially
because of expecting a big triangle mesh as input. Therefore the idea is to
produce multiple temporarily vertex maps in parallel, by dividing the mesh
into parts. Because of having no knowledge about the neighborhood, the
segmenting is simple done by rendering every n-th triangle using an own
thread. The result of this parallel approach is in form of multiple vertex
maps, containing no reasonable values when considered on their own. But
by merging them together, taking always the lowest Z-Value on every index
pair, a valid representation of the mesh is produced in form of a single
vertex map. While this procedure requires more memory, it improves the
speed drastically without loosing quality.

Finally, the normals are calculated the same way as described in Section 3.1.2.
Though additionally, the orientations of the normals are checked for showing
in the right Z-Direction. This means, all normals having a negative Z-Value,
are turned by negating all three components of the vectors. The creation
of the vertex and normal map pyramid is also performed identically to the
procedure in the raycasting task (see Section 3.1.8).

3.2.3 Transform Maps into Global Coordinate System (1)
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Figure 3.21: Pipeline - Deformable 3D Reconstruction - Template-Based - Transform Maps
into Global Coordinate System (1)
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Now the previously acquired maps and the maps derived from the current
input are transformed into the global coordinate system (see Figure 3.21).
Therefore the only difference between both maps may be a possible occur-
ring deformation, which will be determined in the next step.

3.2.4 Estimate Translations
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Figure 3.22: Pipeline - Deformable 3D Reconstruction - Template-Based - Estimate Transla-
tions

Now the most interesting part of the new approach starts to happen, by
dealing with the estimation of possible arising translations (see Figure 3.22).
To keep track of deformations, there has to be some logic for detecting it.
The idea is to use something similar to ICP, but getting one transformation
for every single point, instead of only one common global one. Therefore
the image is split into multiple small patches, based on the neighborhood.
These patches are used for estimating the actual transformation. By using
the property of the vertex and normal maps to contain an organized point
cloud, the neighbors of every point are already known. The smallest possible
size of a patch results by taking one neighbor in all directions of a vertex and
normal map pair (see Figure 3.23). Obviously, the resulting patch contains
of nine points in this case. Generally, by using Equation 3.17, the number of
involved points can be calculated.

Number of points = (Number of neighbors · 2 + 1)2 (3.17)

To get a more robust result, the number of used points may be increased.
For example, by defining the patch to take five neighbors, would result in
121 points. Though, for a better demonstration of the to be shown approach,
always a patch size of nine points will be used in the following. Obviously,
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Figure 3.23: Patch (Number of Neighbors = 1)

the number of the to be created patches is equal to the number of points
contained in the vertex and normal maps. The forming of the patches is
performed on the previous map pair. Their to be found correspondences
will form the opposite point pattern of the current maps. This means the
transformations are estimated from the previous onto the current maps. For
making things easier, faster and to save memory, only the translations will
be acquired, instead of dealing with costly transformation matrices.

As shown in Figure 3.24, the translation estimation is split into five different
subtasks. Similar to the pyramid approach, used in the ICP task, this pipeline
is executed multiple times. But in contrast of increasing the resolutions of the
used maps in each pyramid step, the size of the patches, more precisely, the
number of used neighbors are varied. In fact, this number will be decreased
in every cycle by involving five, three and two neighbors in each iteration
respectively. This results in getting a more fine-grained translation map in
every iteration.

Search Correspondences

The used attributes for finding the best point pairs to form the correspon-
dences, are the position and the normal of the points. This means that only
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Figure 3.24: Pipeline - Deformable 3D Reconstruction - Template-Based - Estimate Transla-
tions - Subtasks

points which have a valid normal can either be acquired or considered as a
correspondence. The measure for its quality is defined by its distance and
the normal deviation, in which the combination of both should be as small
as possible. To get this value, the cross product between the normal of the
previous normal map and the difference between the positions of the current
and previous vertex maps is calculated (see Equation 3.18). This metric is
also known as “normal shooting” (Rusinkiewicz and Levoy, 2001; Y. Chen
and Medioni, 1991; Weisstein, 2018). For a better comparison, the vector is
broken down to a scalar value d4, by calculating the vector’s length.

d4 = ‖Ng,prev × (Vg −Vg,prev)‖2 (3.18)

Generally, the search of the correspondences is performed in both direc-
tions by using the previous maps as reference first and finally the current
one. Therefore the output of this stage is in form of two correspondences
maps, though only one of them will be actually used for the translation
estimation.

The search range for finding a correspondence in the other map is also
defined by a patch. The currently processed point from the previous vertex
and normal maps will be compared with all other points of the search patch
of the current map pair (see Figure 3.25). The center of the patch is defined by
the same index as used for the reference maps. By including the surrounding
neighbors, the patch is fully determined. Involving one neighbor in each
direction, as already shown previously, will result in having nine possible
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correspondences candidates (see Equation 3.17). Again this size will be used
for the illustration, but actually the number of 5 neighbors have been chosen
for this method. If a point obtains multiple correspondences, having the
same calculated distance value d4, the point with the smallest distance in
relation to the indices, is taken. For getting a better overview, the procedure
of finding the correspondences is summarized in Listing 3.2.
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Figure 3.25: Search Range between Map Pairs (Number of Neighbors = 1)

1 f o r i , j in map pair
2 f o r k , l in patch of i , j
3 d4 ← c a l c u l a t e d i s t a n c e
4 i f d4 i s minimum
5 save d4 and k , l a t i n d i c e s i , j

Listing 3.2: Search Correspondences

Filter Correspondences

As soon as the best point pairs are estimated, they are checked whether they
are good enough to be further used or not. This decision will be taken in
two steps, by using two different methods.
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The first step at the filtering stage deals with comparing the acquired cor-
respondences maps, one containing the relation from the previous to the
current maps while the other defines the other direction. If two correspon-
dences, one in each direction, contain the exactly same point pairs, then
the requirement of the first test is fulfilled and the correspondence of the
previous map pair will be preserved. Otherwise it is rejected and will not
be available for further use anymore. This type of filtering greatly improves
the quality of the correspondences and ensures that no target point will be
used multiple times as correspondence. At the end of this stage, only the
correspondence map which contains the mapping from the previous onto
the current vertex and normal maps, will remain.

The second and also last step in the filtering process is responsible for
preserving correspondences only, which fulfill some defined geometric
thresholds. To achieve this, every point pair is checked by its euclidean
distance d1 (see Equation 3.4), normal angle deviation d5 (see Equation 3.19)
and normals to camera deviations d6 and d7 (see Equations 3.20 and 3.21).
If one of these properties exceed one of the respectively beforehand de-
fined thresholds ei, then the appropriate correspondence will be rejected
(see Equation 3.7). In contrast to Equation 3.5 in Section 3.1.4, the normal
deviation is calculated the same way as in the original KinectFusion method
(see Equation 3.6), for also being aware of the direction of the normals. Fur-
thermore it can be noticed, that the real angular dimensions are calculated,
by using the arccos function.

d5 = arccos(Ng · Ng,prev) (3.19)

d6 = arccos(Ng,camera · Ng,prev) (3.20)

d7 = arccos(Ng,camera · Ng) (3.21)

The four calculated values are also used for defining the quality of a cor-
respondence, which develops into a weight wc, as shown in Equation 3.22.
The values are normed in respect to their corresponding maximum valid
threshold values ei. The weights, associated to their correspondences will
become important in the next section.

wc = 1−
d1
e1
+ d5

e5
+ d6

e6
+ d7

e7

4
(3.22)

40



3.2 Deformable 3D Reconstruction - Template-Based

Calculate Translations

So for getting a translation for any single point implies, beside its own
correspondence, also the use of up to eight additional point pairs to satisfy
the definition of a patch. Therefore the transformation estimation algorithm
can be applied to every point, where at least its own correspondence is
known. If some neighbors do not have any correspondence, then they are
simply not involved in the estimation process. This means that the content
of the patch can vary between one and nine point pairs. See Figure 3.26 for
a possible patch, used for the translation calculation. This patch example
shows, that not all valid points from the previous vertex and normal maps
have a correspondence. Therefore only four point pairs of both map pairs
are involved into the translation estimation.
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Figure 3.26: Possible Translation Patch (Number of Neighbors = 1, Number of Correspon-
dences = 4)

General Approach. For getting now a resulting translation for every point,
an algorithm proposed by Umeyama (1991) can be used. This algorithm
tries to minimize the mean squared error for a given set of point patterns,
to acquire a rotation matrix and a translation vector. Additionally it can
also handle scaling, but this is not a requirement in this case and has been
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therefore reduced from its original formula (see Equation 3.23). By getting
a rotation matrix R and a translation vector t as outcome, a translation
is easily extracted. In fact, this just involves a multiplication as shown in
Equation 3.2, by using the to be transformed point’s position, followed by a
subtraction of its unmodified position.

E2 = min(
1
n
·

n

∑
i=1
‖Vg,i,prev − (R ·Vg,corr(i) + t)‖2) (3.23)

Simple Approach. Because of having only the need for the translations, a
simpler calculation is performed, as shown in Equation 3.24. This is simply
a mean value calculation of the position differences of the found point pairs
of the appropriate patch.

tj =
1

ncorr(j)+1
· (

ncorr(j)

∑
i=1

(Vg,corr(i) −Vg,i,prev) + (Vg,corr(j) −Vg,j,prev)) (3.24)

Weights. The use of weights may greatly improve the result of an al-
gorithm and adds also more control for manipulating the actual output.
Therefore two different types of weightings are used for estimating the
translations. The first one deals with the information of the acquired corre-
spondences, while the other takes care of the geometry of the patch.

By incorporating the weights, estimated at the filtering stage, correspon-
dences with a high deviation will not dramatically influence the resulting
translation, but will be still considered. As shown in Equation 3.22, the
weight wc becomes 0 when a correspondence reaches the maximum of all
thresholds, while is set to 1, if the correspondence does perfectly fulfill all
requirements.

Next to the weights based on the correspondence information, an additional
factor is introduced to respect the relative distances of the currently used
indices within the estimation patch. This results in getting a higher impor-
tance for the points found in the center, compared to the ones located at
the border. The index values i and j are defined by the previous maps. The
weight wd,i is calculated by using the squared euclidean distance, followed

42



3.2 Deformable 3D Reconstruction - Template-Based

by a division by the squared maximum distance (see Equation 3.25). The
values ∆imax and ∆jmax are defined by the number of neighbors used for the
estimation.

wd,i = 1− ∆i2 + ∆j2

∆i2
max + ∆j2max

(3.25)

Both weights are simply combined by a multiplication, resulting in the
weight wcd,i (see Equation 3.26).

wcd,i = wc,i · wd,i (3.26)

Simple Approach with Weights. The integration of the resulting weight
wcd,i is done by extending Equation 3.24, forming the final calculation of the
translation as shown in Equation 3.27.

tj,w =
1

ncorr(j)+1
· (

ncorr(j)

∑
i=1

(Vg,corr(i)−Vg,i,prev) ·wcd,i +(Vg,corr(j)−Vg,j,prev) ·wcd,j)

(3.27)

By applying the calculation of Equation 3.27 on every patch, nearly all
translations are estimated and the deformation between both vertex maps
is basically determined. The actually used algorithm for executing the
simple approach including the handling of the weights for estimating the
translations for the whole vertex map, is shown in Listing 3.3.

1 f o r i , j in map pair
2 f o r k , l in patch of i , j
3 i f k , l has correspondence
4 tj,w ← c a l c u l a t e and append t r a n s l a t i o n
5 tj,w ← norm t r a n s l a t i o n
6 save and accumulate tj,w a t i n d i c e s i , j

Listing 3.3: Estimate Translations
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Smooth Translations

This step is important for filtering out peeks, which may result if a patch
is under-determined in form of very less correspondences. The reason for
this is, that the previous calculation of the translations does not care about
the number of used correspondences. Therefore the estimation produces
also an output, even though if only a single correspondence is defined
in a patch. Additionally to the actual averaging, this step damps also the
translations at the borders. The smoothing is done by simply calculating
the mean values of all translations and by involving the translations of
their neighbors (see Equation 3.28). This means that there is no distinction
between acquired and not acquired translations and therefore positions,
which do not have a translation acquired, will affect their neighbors in form
of damping. For calculating the resulting translation, also the weighting
factor wd,j is involved.

tj,smooth =
1

nneigh(j)+1
· (

nneigh(j)

∑
i=1

tneigh(j),i · wd,neigh(j) + tj · wd,j) (3.28)

Update Previous Maps

The resulting translation map contains the absolute difference between the
previous and the current vertex map. This pipeline is an iterative process
and therefore only the relative translations have to be calculated in every
iteration. Therefore this step accumulates the absolute translations onto the
original previous vertex map, but instead of overwriting its values, they get
stored onto a temporary map. This map will be actually used to represent
the previous vertex map in the next iteration. Additionally in this step, the
normal map is recalculated, because of changes in their related vertex map.
In fact, the result of the normal calculation is also stored in a temporary
map.
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Figure 3.27: Pipeline - Deformable 3D Reconstruction - Template-Based - Integrate Transla-
tions into Mesh

3.2.5 Integrate Translations into Mesh

The previously acquired translation map is now ready to be used for getting
integrated (see Figure 3.27). The integration into the triangle mesh is also
done by a projection, the same method as used for the TSDF model integra-
tion. But instead of having an equidistant voxel grid, the mesh consists of
scattered vertices. Therefore the iteration has to be performed over these
vertices. As usual, they are transformed into the current coordinate system
and projected into the image plane. In contrast to the TSDF model integra-
tion, where the depth image is used for accessing the projected position,
now the vertex map is used for this. So, if there exists a valid vertex in the
vertex map, using the indices i and j, a distance metric between the vertex
and the currently processed vertex of the mesh will be calculated. This is
done by calculating their difference, followed by applying the euclidean
norm. Otherwise, the position of the to be integrated translation cannot be
determined and therefore the integration for this voxel is canceled. Also if
the distance exceeds a given threshold value dmax, the integration for this
vertex will be aborted too. This threshold is similar to its counterpart dtrunc,
found in the TSDF model integration, but may have a different value. In
the other case, the not yet rounded indices, represented as floating point
numbers, are used to acquire a bilinearly interpolated translation tb,j. Gen-
erally, this interpolation promises to acquire a more accurate translation on
the required position, instead of simply accessing it by using the rounded
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indices. Afterwards, the translation is scaled with the reciprocal distance,
normed to the defined maximum distance dmax (see Equation 3.29). Finally,
the result tj is directly accumulated onto the position of the processed mesh
vertex.

tj = tb,j · (1−
‖Vj −Vg,prev‖2

dmax
) (3.29)

Figure 3.28 presents an example how an accumulation of translations on a
triangle may look like. One triangle, picked out of the initially created mesh,
more precisely at frame Fstart − 1, is shown on the left hand side. A possible
path of the triangle, resulting in running two iterations of the pipeline and
therefore integrating the translations also twice, can be seen by following
the black colored arrows. The absolute translations are indicated in the form
of dashed lines, connected with the respectively vertices of frame Fstart − 1
and Fstart + 1.

F = Fstart − 1

F = Fstart

F = Fstart + 1

X

Y

Z

Figure 3.28: Possible Accumulation of Translations on a Triangle
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Figure 3.29: Pipeline - Deformable 3D Reconstruction - Template-Based - Integrate Color
into Mesh

3.2.6 Integrate Color into Mesh

By having now the deformed mesh available, the optional integration of the
color may happen (see Figure 3.29). The only difference, compared to the
integration into the 3D color volume, as described in Section 3.1.6, is, that
the integration loops over scattered vertices instead of equidistant aligned
voxels. Therefore there is no need to calculate the global vertex position, by
having the appropriate vertex positions already. Because of handling the
color after the integration of the translations, the resulting indices of the
projection can be directly used for accessing the RGB values of the color
image.

3.2.7 Generate Vertex and Normal Maps (2)

Now, yet another generation of the maps is taking place, to render the
currently deformed mesh (see Figure 3.30). This task is equivalent to the
already mentioned step for the generation of the maps (see Section 3.2.2),
but now the generation is not only because of quality reasons. It is required
to update the vertex and normal maps to represent the newly integrated
data of the mesh, for the usage in the next iteration.
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Figure 3.30: Pipeline - Deformable 3D Reconstruction - Template-Based - Generate Vertex
and Normal Maps (2)

3.2.8 Transform Maps into Global Coordinate System (2)
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Figure 3.31: Pipeline - Deformable 3D Reconstruction - Template-Based - Transform Maps
into Global Coordinate System (2)

At the end, the rasterized maps are transformed into the global coordinate
system, using the current camera pose (see Figure 3.31).

3.3 Deformable 3D Reconstruction - Model-Based

In contrast to the previous pipeline, the more dynamic and also more
complex variant is shown in Figure 3.32. Obviously, there are many steps
needed to handle the deformation additionally to the actual reconstruction.
In this variant, the basic idea is to insert a translation layer, which transforms
the points before its integration and also before its output generation, but
in this case in the reverse direction. This idea is taken from the work
of Newcombe, Fox, and Seitz (2015), in which a similar procedure has been
shown. To get such a functionality, an additional storage model is needed
to save the deformations. In contrast to the template-based method, the
deformation can be tracked already from the beginning, in especially at the
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second frame F = 2. Therefore the pipeline behaves only identical to the
KinectFusion system in the first iteration. The reason for this is, that there
is no deformation information available at the first run. This means, that
nearly all new steps are skipped in the first iteration. The only outlier is the
creation of the triangle mesh, because the mesh is already needed in the
second iteration.
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Figure 3.32: Pipeline - Deformable 3D Reconstruction - Model-Based

As already illustrated in the previous pipeline graphic, the exchanged
path of the original KinectFusion system is colored orange. This second
variant for handling the deformation can be interpreted as an extension to
the template-based variant, mentioned in the previous section. In fact, all
modifications made to the tasks of KinectFusion, apply also to this pipeline.
Therefore, only the remaining new steps, related to the introduction of the
translations model, will be discussed below.
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3.3.1 Integrate Translations into Model
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Figure 3.33: Pipeline - Deformable 3D Reconstruction - Model-Based - Integrate Translations
into Model

The first new step in the second variant of the new approach integrates the
translations into the translations model, instead of applying them directly
onto the mesh, as done in the template-based method. (see Figure 3.33).
For this, also a similar technique as for the integration into the TSDF
model is used. The translations model has the same structure as the TSDF
model, by also being defined as a fixed cubic voxel grid. The difference
is that it is responsible for the storage of the deformation information, in
contrast of holding static body information. The deformation is specified by
a translation vector, holding three floating point values.

To insert the translations, every single voxel has to be covered. If a voxel
has not yet acquired a corresponding value, held by the currently processed
indices in the TSDF model, the voxel would be already skipped at the
beginning, because then there is nothing to deform. Otherwise the voxel
index is used to calculate its global position Vg, the same way as done
in the integration into the TSDF model. Then this resulting position is
accumulated onto the translation, stored on the currently processed voxel
(see Equation 3.30). After that, the position Vg,translated is transformed into
the current coordinate system and projected into the image plane, as usual.
As already done in the template-based variant, now the previous vertex
map is used for acquiring the current position. By calculating the euclidean
norm of the difference between that position and the already translated
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3.3 Deformable 3D Reconstruction - Model-Based

global voxel position, the distance can be determined. If this value exceeds
a constant threshold dmax, then the integration would be stopped at this
point for this voxel. Because of being somehow associated with the TSDF
model, by using its weights for example, this distance needs be set to the
same value as the maximum truncated distance dtrunc. In contrast to the
template-based method, in which this distance may be different. Otherwise,
the to be integrated translation can be calculated. As already described
for the template-based variant in the previous section, the to be integrated
translation tb,j is acquired by a bilinearly interpolation. Further on, the
interpolated vector is linearly scaled, using the corresponding weight of
the TSDF model. The translation is multiplied with the reciprocal weight,
normed to a defined maximum weight (see Equation 3.31). This scaling is
done as long as the weight has not reached the maximum weight. The idea
behind that is to settle down the TSDF volume, before the integration of
the translations is performed in the whole extent. By linearly scaling the
translation vector, the deformation is already integrated from the beginning,
though will not get that big importance initially. Alternatively the integration
may be started as soon as some fixed defined weight has been reached on
the appropriate voxel. But in fact, not all weights of the to be integrated
area will have the same weight and therefore would not start accepting the
translations at the very same time. This would result in getting an irregular
deformed surface. These both arguments are the reason for applying the
additional scaling. Finally, the result of this calculation tj is accumulated
onto the translation of the current voxel.

Vg,translated = Vg + tmodel (3.30)

tj = tb,j ·min(
wj

wmax
, 1) (3.31)

As already illustrated of how the accumulation of the translations is applied
on a triangle (see Figure 3.28), Figure 3.34 shows the pendant for the use
in the model-based variant. In contrast to the former method, the voxels
are not translated actually. The position, especially the three indices of a
voxel, stay obviously the same. But in fact, the global vertex positions are
translated for simulating the voxels new virtual positions. Therefore, in this
variant, there is always the need to add the translation to the global vertex
position, when doing any kind of operation. As the translation integration
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of this method does start right from the beginning, a voxel may get an
translation information already at the second run of the pipeline. This is
illustrated in the figure, by showing a translation from frame F = 1 to F = 2.
As the translations model holds a single vector on each voxel, only the
resulting translation of the two accumulations are kept and the intermediate
translation is lost. This summed movement is visualized with a dashed line.

F = 1

F = 2

F = 3

X

Y

Z

Figure 3.34: Possible Accumulation of Translations on a Voxel

3.3.2 Integrate Depth into Model

In this step, the raw depth image is integrated into the TSDF model (see
Figure 3.35). This is done similar as it is achieved in the original KinectFusion
system. The first difference is that every voxel from the TSDF model is
transformed with its corresponding translation before its integration. This
vector is found in the translations model and is applied to the global voxel
position Vg, derived from the indices of the voxel. This affects the projection
into the image plane, in especially in form of their resulting indices, used for
accessing the to be integrated depth value. The second and last difference
is, that the integration is only done as long as the maximum weight wmax of
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Figure 3.35: Pipeline - Deformable 3D Reconstruction - Model-Based - Integrate Depth into
Model

the currently processed voxel has not been reached. The following steps are
processed the same way as done in the KinectFusion method.

3.3.3 Integrate Color into Model
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Figure 3.36: Pipeline - Deformable 3D Reconstruction - Model-Based - Integrate Color into
Model

As like in the pipeline described in Section 3.1, the optional color integration
may follow the depth integration (see Figure 3.36). This task is also only
slightly modified, compared to the already mentioned integration into the
color volume (see Section 3.1.6). For handling the translations, the global
voxel positions Vg have to be translated, before the coordinate system
transformation and the following projection is performed. This is done in
the same way as for the integration of the depth, described in Section 3.3.2.
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Figure 3.37: Pipeline - Deformable 3D Reconstruction - Model-Based - Generate Mesh

3.3.4 Generate Mesh

At this step, the current model has to be transformed into a different
representation in order to be used for a later generation of the vertex map
(see Figure 3.37). In the original KinectFusion approach, the creation of a
mesh is not needed and a vertex and normal map is directly acquired from
the TSDF model. But as argued by Innmann et al. (2016), a direct raycasting
is not easy possible, when the deformation is stored in the forward direction.
This is also true for the translations model. Therefore the current storage
model is transformed into a triangle mesh for the use in a later rasterization.
The creation of the mesh is done the same way, as described in Section 3.1.7.
In fact, this mesh represents the canonical state only, without having any
deformation yet applied.

3.3.5 Apply Translations onto Mesh

Finally, the previously generated mesh is updated to represent the deforma-
tion state of the currently stored translations model (see Figure 3.38). The
previously produced mesh represents the canonical state of the model, with-
out containing any translation information. To apply that information, every
single vertex in the triangle mesh has to be transformed with its related
translation, stored in the translations model. Even though, the mesh and the
translations model are using the same coordinate system, the finding of the
corresponding translations has to involve some calculations, especially in
form of an interpolation. For getting a proper translation from a discretized
model for any vertex in a continuous mesh, the first task is to find the eight
indices, which enclose that currently processed vertex. With that informa-
tion, an accurate resulting translation vector can be calculated, by using the
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Figure 3.38: Pipeline - Deformable 3D Reconstruction - Model-Based - Apply Translations
onto Mesh

resulting eight translation vectors, associated with the found indices. The
calculation itself is done by running three times a trilinear interpolation,
one for each dimension. The result of this calculation is simply accumulated
onto the position of the currently processed vertex.
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By designing and implementing the previously presented approach, a com-
plete framework has been evolved. Besides its main functionality, it offers a
well set of classes from containing a simple data structure up to including
some high-level methods. Therefore it provides everything what is needed
to develop a 3D reconstruction method. For this, it is a system, which can
be easily adapted and extended, to fit any particular needs. The framework
has been realized by using C++ as programming language. By exploiting
its nature design, many object-oriented methods have been used, to create
a logical and clean application. Besides the main functionality, the calcu-
lation intensive tasks have been implemented in the CUDA programming
language. In fact, this interface enables the usage of the massive parallelism
capabilities of a GPU.

4.1 Toolkits

Following toolkits have been used for the implementation:

• OpenCV 3.1
• Eigen 3

• PCL 1.8
• CUDA 7.5
• Qt5
• Various camera driver e.g.: libfreenect, OpenNI2 or librealsense2

Besides the required toolkits, the compiler has to support the C++11 stan-
dard. This standard extends the core functionality of C++ with some modern
features. One of these new features, extensively used in the implementation,
deals with threading. The class std::thread provides an easy to use container
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for making use of parallel processing, in this case, obviously on the CPU. In
Section 4.4 some of its applied use cases will be shown. Another adapted
feature of C++11 involves the implementation of callbacks. The combination
of the class std::function and the function std::bind provides an easy and clean
interface for encapsulating any method, to be used as a callback function.
This greatly simplifies the communication between objects.

For defining the building process of the framework, qmake has been used,
which is delivered by Qt. In the developed building scripts, some optional
switches have been integrated, to be able to enable or disable components,
depending on the requirements. For example, this is especially useful when
only one type of camera is planned to be used for the recording, which in
fact would yield the application to one single driver. By disabling all others,
using these switches, only the required driver has to be installed on the
computer.

4.2 KinectFusion

As already noted in Chapter 3, KinectFusion is used as the basis for the
new approach. The used implementation of the KinectFusion system has
been acquired from the PCL. For easier understanding, testing and also
modifying this part of that external toolkit, the source code has been copied
into the workspace and activated for the development.

One of the most interesting part of KinectFusion’s implementation deals
with the storage model. As described by KinectFusion and implemented in
the PCL, the storage of the TSDF model is completely realized using the
memory of the GPU. In the implementation, the model’s fixed size is set
to 512 for each dimension, resulting in 5123 points. Generally, when having
to store the content of one voxel of the model, consisting of one floating
point value for representing the TSDF value and one integer value for the
definition of the weight, an amount of 32 bits + 16 bits = 48 bits memory
would be needed. Taking the resolution into account, the complete TSDF
model would require 768 MB of video memory. Though the implementation
of PCL, based on the definition of KinectFusion, encodes both values using
short as data type. This decreases the consumption of memory to 16 bits +
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16 bits = 32 bits per point and therefore minimizes the total requirement
amount to 512 MB.

The main class of the KinectFusion implementation is called KinfuTracker.
It offers some high level methods for controlling the pipeline, as shown in
Figure 3.1. Basically by defining the initial camera position and filling the
pipeline with a depth image in every iteration, the system is able to do its
job in form of a 3D reconstruction. For this, nearly all of its essential steps
are implemented in CUDA. One exception is a numeric solver, used for
estimating the camera pose in the Iterative Closest Point (ICP) step. But this
task is not very expensive in the sense of calculation effort and therefore
falls not much into account. All in all, by fulfilling some conditions, the
pipeline is able to run in real time.

4.3 Deformable 3D Reconstruction

Analog to the reference implementation, a main class, named KinfuCustom
has been created. It is a superset of KinfuTracker, therefore the new class
supports everything what KinfuTracker does, but with the extend of the new
approach. KinfuCustom offers an interface for both new pipelines, shown
in Figures 3.18 and 3.32. In fact, it supports also the KinectFusion pipeline
(see Figure 3.1), but by offering a slightly different behavior due to some
modifications made in its tasks. As already noted in the previous chapter,
some methods of KinectFusion had to be modified. But instead of directly
changing the code, the methods have been newly implemented to adapt the
reference implementation as little as possible. At the end of the development,
there is only a minor difference left between the forked code and the original
implementation of PCL. One of this changes affects the TSDF model. Its
size has been reduced from 5123 to 2563, because of the additional memory
consumption of the new translation model. By having the requirement of
being in the same resolution as its counterpart, the TSDF model, and for
storing three floating point values per voxel, the capabilities of a typical
GPU would be exceeded. More precisely, this would result in the amount of
512 MB + 3 · 512 MB = 2 GB for storing both models, in total. Additionally
the parameters of the bilateral filter have been adjusted, for performing a
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less intensive filtering. Whilst its output of the KinectFusion pipeline is only
used for the alignment of the vertex maps, it is now also needed for the
translation estimation process, where a less modified input is preferred.

4.4 Structure

The implementation is divided into the following six logical categories:

• Core
• Devices
• Gui
• Kinfu
• Loader
• Tasks

4.4.1 Core

As the name already implies, the core category contains all basic classes.

One of the core functionality deals with data structures. The most important
ones are related to the data of images, point clouds and meshes. For the first
type, a class named Image (see Figure 4.1) is responsible for managing color
and depth images. Besides holding the data, the class offers also methods
for loading, saving and manipulating an image. The data itself is stored in
form of an object, instanced out of the cv::Mat class, defined in the OpenCV
toolkit. Analog to the Image class, a class named Mesh takes care of all
geometry related data, especially in form of point clouds and meshes. For
storing its underlying data, represented by 3D points, a structure called
Vertex has been introduced. It uses the class Eigen::Matrix, defined in the
Eigen toolkit, for managing its content. The Mesh class actually holds a list
of objects instanced out of the Vertex structure. Additional there is a class
called Camera which is responsible for the mapping of the real world onto
the virtual one and the other way around. Similar to the Image class, it uses
mainly the cv::Mat class for storing its relevant content.
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Eigen::Matrix

cv::Mat Vertex cv::Mat

Image Mesh Camera

Figure 4.1: Class Diagram - Data Structures

For serializing the content of the Image and Camera classes, native OpenCV
methods are used. OpenCV offers functions for directly writing and reading
the data of the cv::Mat class into a file, using a graphics format. These
functions are called cv::imwrite and cv::imread. Based on the given filename,
especially focusing on the extension, the appropriate format is chosen by the
underlying logic. The first candidate to be used as the graphics file format
was the Portable Network Graphics (PNG) (Duce et al., 2003) format, because
it is well-known and has therefore great support. It is able to store an image
containing three channels, each having a depth of 8 bits and also one channel
describing a depth of 16 bits. The second, more exotic representation, is
needed for storing depth images, besides the usual form of RGB images.
Another requirement on the chosen format is to encapsulate the data in a
lossless manner, for having the best possible quality in the recording stage.
This is also fulfilled by the definition of the PNG format. The show-stopper
for actually not using it was its calculation intensive compression. In spite
of the implementation of a saving queue (see Section 4.4.2), the system was
not able to store two images, the RGB and the depth one, simultaneously
in a frequency of 30 Hz during the recording. Therefore this format was
not acceptable for this use case and another file format called Portable Any
Map (PNM) (Netpbm, 2013) has been considered. It fulfills both previous
mentioned requirements and furthermore uses no compression, which in
fact means no calculation effort. Its specialized formats Portable Pixel Map
(PPM) (Netpbm, 2016b) and Portable Gray Map (PGM) (Netpbm, 2016a) are
used for storing the RGB and the depth images respectively. For handling the
storage of all attributes in the Camera class, which involves multiple variables
in different types, the OpenCV class named FileStorage has been applied.
Again, based on the given extension in the method calls, the appropriate
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format is selected by the routines in underlying implementation. By having
in this case no real requests to the format, the simple description language,
YAML Ain’t Markup Language (Ben-Kiki, Evans, and Net, 2009) has been
chosen, to serialize the data. In contrast to the image and camera related
classes, the Mesh class uses self-developed methods for reading and writing
its data. For this, the chosen structure is defined by the PLY Polygon File
Format (Turk, 1994). It has been implemented to support the loading and
saving of the files in form of ASCII text and also binary form.

Another important part of the core functionality deals with the interaction
between the framework and third-party toolkits, such as OpenCV and PCL.
For this, the classes OpenCVUtils and PCLUtils encapsulate selected methods
and algorithms to offer an easy and comfortable access to the respectively
toolkit.

4.4.2 Devices

The implementation supports different input devices, in form of interact-
ing with different drivers. The handling of each specific device driver is
implemented in a separate class. By having some functionality in common,
the classes are derived by a base class called Device. The main task of the
specific classes is to communicate with their related device drivers. Each
device runs in an own thread, serving the recorded data with the help of
callbacks. These callbacks are used to forward the data to the GUI related
parts, for providing the data for visualization. In case of a running record-
ing, the captured frames are simply stored to the previously defined target
directory. The saving is done with the help of a queue, which is polled in a
defined time interval, using multiple threads for doing the actual storing.
This multithreaded approach tries to decrease the impact of the recording
overhead by balancing the load. Additionally every specific device class
has the possibility, by overwriting a method in the sense of object-oriented
programming, to perform a customized postprocessing on the to be stored
image.

So, by having to support different devices, offering various approaches for
communicating with their internals, a common interface has to be available.
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This problem can be solved with the help of a design pattern called Adapter,
proposed by Gamma et al. (1995). The idea behind this scheme is to define
a unified interface for accessing different already available implementations.
By using the methods defined in the base class Device, any specific device
may be accessed in the same manner. Any request to the generic Device class
is forwarded to the specific device dependent implementation involving
one of the classes FreenectDevice, OpenNIDevice or RealSenseDevice.

For handling all connected devices, a class called DeviceManager (see Fig-
ure 4.2) exists. It stores all created devices and forwards the calls to the
desired targets.

std::thread

Device

FreenectDevice OpenNIDevice RealSenseDevice

DeviceManager

Figure 4.2: Class Diagram - DeviceManager

Because of administrating the state of all available devices, the DeviceManager
class has to be instanced only once. Therefore it is implemented to follow
the rules of the creational pattern named Singleton (Gamma et al., 1995). By
forbidding a manual creation of an object out of the class, this logic has to
be handled internally. By calling its static method getInstance, which is the
interface for its usual access, an instance of DeviceManager is returned. If
there is non available, means no object has been created yet, its construction
gets triggered indirectly.
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4.4.3 Gui

The graphical user interface (GUI) is the main entry point for the user. The
MainWindow class (see Figure 4.3) acts as a controller and in dependency of
the user’s choice the program flow is determined. To keep things segmented,
this is the only category where Qt related code can be found. Next to
the general implementation of the GUI, this category includes also two
specialized widgets for handling the visualization of the to be displayed
data, named ImageWidget and MeshWidget. The MeshWidget class is derived
from ImageWidget and is therefore a superset of it.

DeviceManager AnyLoader KinfuReconstruction

MainWindow

ImageWidget MeshWidget

Figure 4.3: Class Diagram - MainWindow

For the communication between its instantiated classes callbacks are used.
Mainly this involves transferring data of the already proposed classes Cam-
era, Image and Mesh.

4.4.4 Kinfu

This is the place for all pipeline related developments. As already noted in
Section 4.3, the class KinfuCustom (see Figure 4.4) offers a high level access to
all necessary methods. This methods can be nearly mapped to the described
tasks in the pipeline shown in the Figures 3.18 and 3.32. The structure of
the class is based on the equivalent KinectFusion implementation found
in the PCL’s class KinfuTracker. Besides that class, all additional CUDA
related code is placed in this category too. This code is simply in the
form of independent functions, extending the CUDA routines found in the
KinectFusion implementation of PCL.
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KinfuCustom

uploadDepthMap()
estimateCameraPose()
estimateTranslations()
integrateTsdfVolume()

integrateTranslationsMesh()
integrateTranslationsVolume()
updateMapsPreviousCopy()

updateMapsPreviousRaycast()
updateMapsPreviousRasterize()

createMesh()
warpMesh()

downloadMesh()
getCameraPose()

...

Figure 4.4: Class - KinfuCustom

Obviously the class KinfuCustom encapsulates a lot of functionality, while
offering only some simple methods for controlling its internal activities. This
conforms to the structural design pattern Facade, introduced by Gamma
et al. (1995). Basically the given requests are forwarded to some specific
methods or functions of the internally handled references. Therefore Kinfu-
Custom may be interpreted as a black box from the outside, while offering
access to a complex subsystem.

4.4.5 Loader

For the visualization of varying data (video) a templated class AnyLoader
is available (see Figure 4.5). This class is able to operate with data of the
Image and Mesh classes. Basically it supports any class which implements
a method called load. After setting a target frequency, defined in frames
per second, a beforehand specified callback will be regularly called in the
desired interval, while providing the requested data. This process runs in
an own thread for enabling a parallel execution. The actual control logic, for
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example for starting or stopping the playback is implemented in the class
Loader, which is actually the parent of AnyLoader.

std::thread

Loader

AnyLoader

Figure 4.5: Class Diagram - AnyLoader

4.4.6 Tasks

The created application can be considered as a construction kit for exper-
imenting with different approaches of 3D reconstruction. Therefore any
additional task can be added easily. The base class for such a task is called
DepthReconstruction, which provides already some required underlying rou-
tines. It runs in an own thread and by deriving it, a specific reconstruction
type can be implemented. In fact, such a class is KinfuReconstruction (see
Figure 4.6), which controls the reconstruction pipeline by calling methods of
the KinfuCustom class. Its results, mainly in the form of the class Mesh, are
forwarded by also using callbacks. In dependency of the defined parameters
in the GUI, the task executes either the pipeline of KinectFusion or one of
the other two available pipelines previously proposed.

std::thread

DepthReconstruction

KinfuReconstruction KinfuCustom

Figure 4.6: Class Diagram - KinfuReconstruction
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5 Results

For demonstrating the proposed methods including their implementations,
the focus is placed on single bodies. The first device which is considered to
do the recording task and to produce the required input data, is named Xbox
360 Kinect. This device has been published by Microsoft and was originally
developed for video games. It has become very popular and therefore is
easily accessible to the consumers. But by having not the capabilities of
capturing the depth under the distance of about half a meter, the resolutions
of the integrated cameras will not be exploited when used for smaller bodies.
The consequence of this would be to loose important depth information,
when there is a small distance to the recorded object. Therefore a different
device has to be chosen which fulfills this requirement. Intel has introduced
a near field camera, called RealSense SR300, which is able to capture depth
information for distances starting at 0.2 m. While supporting the same
depth resolution as the Kinect of 640x480, it also grabs color images in a
higher resolution than its counterpart, in the amount of 1920x1080 points.
Therefore this device will be used for the recording.

For testing the already presented approach, facial expressions are chosen.
This is realized by centering the head into the recording frustum of the
camera and by statically positioning the recording device. At the beginning,
the head is in a forward facing position. Then the head turns to the right, to
the left and finally back to its initial position. Except of the back and the top,
the head is now fully captured. Then the actual deformation process starts,
testing the support of the non-rigid processing pipeline. This is done by
starting with smiling, going back into the initial state and finally followed
by another movement of the mouth.

Starting with the recording data used as input for the proposed pipelines,
some important frames are shown in Figure 5.1. The visualization of the
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raw depth maps is illustrated by gray nuances. In general, the darker the
color, the smaller the distance to the camera. Derived from that, the face
is obviously the nearest part of the captured body. Points where the depth
cannot be estimated, for instance by being to far away from the camera, are
colored black. While the first row of the figure shows the movement of the
head, the second and third rows illustrate the facial expressions.

Figure 5.1: Facial Expressions - Depth Image

Figure 5.2 shows the results of the projection of the depth images. The
illustrated vertex maps are already bilaterally filtered and clipped to the
bounding box of the concerned volume. This is the reason for the absence
of the torso. Additionally the maps are already transformed into the global
coordinate system. All frames are rendered using the same camera pose to
demonstrate the alignment of the ICP algorithm. The displayed points are
connected with its neighbors forming a quad, in order to achieve a better
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visualization. Also the normals can be indirectly observed by focusing on
the shading. The shown timestamps are equal to those of the previously
presented depth images. As obvious, the vertex maps only contain the
current recording information, like the depth images. This can best be
observed by looking at the images shown at the top in the middle and on
the right side of the figure, where the half of the head is missing.

Figure 5.2: Facial Expressions - Current Vertex Map

The data model where all the captured depth information is stored is shown
in Figure 5.3. It is split up into three different timestamps each of them
shown in a different row, while every row represents three different viewing
angles. As the head is not being perfectly aligned to the camera, some depth
values of its left side are known at the beginning and therefore have already
been integrated. For the right side no data is available at that moment. In
the second row can be seen that the left side of the head got extended with
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some additional data. In the third row it is visible that also the right side has
got caught up and therefore the TSDF model has acquired some new values.
Obviously at this stage the head is already fully captured. By comparing the
three shown timestamps it can be noticed that the TSDF values do not vary
very much. The main reason for this is the use of the weighted integration
(see Equation 3.13). For the visualization of the TSDF model the data range
from −0.99 to 0.99 has been chosen, whereas the color map ranges from
red to blue respectively. The resulting surface, represented by the value 0 is
shown in black color and forms the transition between the colors red and
blue. This can be spotted best on the image of the top left hand side.

Figure 5.3: Facial Expressions - Template-Based - TSDF Model

In Figure 5.4 the most important results produced by the pipelines are
shown. Like in Figure 5.3, three different timestamps from three different
angles are visualized. In the first row the results of the basic KinectFusion
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system are shown. As mentioned in Section 3.2, the template-based method
is identical to KinectFusion up to a certain point. The result before passing
this exact timestamp is shown in the first row. Starting with the second
row, the interesting results related to the proposed methods are illustrated.
As seen in the middle row, a complete mesh deformation has happened.
Especially in the area of the mouth and the cheeks, a big modification can be
noticed. In the third row the facial movement has already been faded away
and theoretically the mesh should look exactly like the canonical mesh, in
the first row.

Figure 5.4: Facial Expressions - Template-Based - Mesh

For demonstrating the real movement of the surface, a red colored demo
point is used as an indicator. Instead of usually integrating the color images
into the model, a synthetically generated image is used. It consists of a red
point drawn on a white background and is integrated only at a specific
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timestamp. In all other iterations of the pipeline, the color integration is
therefore skipped. Depending on the camera position derived of the chosen
timestamp, the resulting mesh will have the point placed anywhere on its
surface. Figure 5.5 shows the point located a bit over the left cheek. On the
illustration can be seen, how the point moves and deforms on the surface
over time.

Figure 5.5: Facial Expressions - Template-Based - Demo Point on Mesh

Because of covering now the results of the template-based method, there is
no translation model available. As a result it is not present for illustration.
Though the translations can be derived by subtracting the positions of the
already translated mesh from their canonical counterparts. The result of
this operation is shown in Figure 5.6. The difference is visualized in form of
yellow colored arrows pointing from the vertices of the canonical mesh to
the corresponding ones of the deformed mesh. By looking at the images,

72



it can be noticed that the peek in the sense of translations happens in the
first row. This finding may be compared by looking at the same area of the
previous illustration. Also as noted previously, at the end there should no
longer be any deformation, which can be generally confirmed by looking at
the results of the third row.

Figure 5.6: Facial Expressions - Template-Based - Translations on Mesh

So far only results of the template-based method have been shown. Al-
though it can be assumed that they look pretty much the same compared to
their counterparts of the model-based method, two selected frames of both
variants are shown in Figure 5.7. In this illustration the mesh is rendered
from the front, using again the demo point as an indicator. On the left hand
side the output of the template-based variant is shown, whereas on the
other side the outcome of the model-based pipeline is presented. Obviously
there cannot be spotted any real difference.
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Template-Based Model-Based

Figure 5.7: Facial Expressions - Comparison - Demo Point on Mesh

By not having seen any difference of both variants in the previous illus-
tration, the focus now is placed on their translations. Again the same
timestamps are chosen for the comparison. In the first row of Figure 5.8
a discrepancy of the translations is already apparent. While the template-
based variant starts the tracking of the deformation not before a specific
timestamp, the model-based variant handles this right from the beginning.
Therefore it observes a translation for nearly every single point, even if it is
just a small one. This can be seen by looking at the first row on the right
hand side, where the surface of whole head has acquired some translations.
In the bottom row some difference in the visualization can be observed as
well. In conclusion there are some small deviations between both models,
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but the translations in the important areas around the mouth and the cheeks
look pretty much the same.

Template-Based Model-Based

Figure 5.8: Facial Expressions - Comparison - Translations on Mesh
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6 Validation

The validation is going to be executed in the terms of quality and resources.
This process is applied to the template-based as well as to the model-based
method, by using the sample of the previous chapter.

For demonstrating the quality of the estimation of the translations and their
mapping either onto the mesh or into the model, the occurring deviation
in two timestamps is visualized in Figure 6.1. The figure contains the
same timestamps as the two last graphics of Chapter 5 (see Figures 5.7
and 5.8). The rasterized vertex maps produced at the end of both pipelines,
represent pretty exactly the mesh and the model respectively. By comparing
one of these maps with the bilaterally filtered current vertex map, taken
from the same pipeline iteration, the difference between the input and the
model can be easily determined. Because both maps are either recorded
or rendered from the exact same camera viewpoint, the difference can
be directly acquired by subtracting the positions, accessed by using the
same i, j indices. For visualizing the deviation, yellow arrows are drawn,
pointing from the points of the previous map to the ones of the current map.
Obviously, it can be seen that the maps of both variants do not really differ
in the main part of the face. Only the borders show a quiet huge deviation.
But this is expected and also desired. This effect results from the smoothing
process found in the translation estimation task (see Section 3.2.4).

Besides the quality, also the use of the resources is an important factor for
quantifying a system. Therefore both variants of the proposed approach are
compared with the implementation of KinectFusion in form of processing
time and memory usage. Because of doing all calculation intensive tasks
on the GPU and holding all its data, the load of the video memory gets
considered. The graphics adapter used in the test system is labeled NVIDIA
Quadro 1000M which serves 2 GB of video memory while having 96 CUDA
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Template-Based Model-Based

Figure 6.1: Facial Expressions - Validation - Deviation

cores. The resolution of the TSDF model, the color model and in case of the
model-based variant, also the translations model is set to 2563. The used
example contains 321 frames to be processed, while in case of the template-
based method its actual approach is active for the last 151 frames only. The
tests run with and without color integration, therefore in the first case the
color model needs to be allocated and processed too. The results obtained
by the test scenario are shown in Table 6.1. By looking at the numbers it
can be obviously seen that the template-based variant is nearly as fast as
KinectFusion while using about the double amount of memory. Comparing
those two variants with the model-based one, a doubled time consumption
and a much higher memory usage can be noticed. The color integration
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seems to affect the resources in all three cases identically by triggering
a constant offset in time and also memory manner. Basically, the main
causer for the memory usage are the fixed sized models (TSDF, color and
translations), which are created depending on the used case. Additionally
to them the storage of the mesh is also requiring many bits on the GPU, by
being defined in fixed size too. The mesh structure is specified to be able to
hold two million triangles, regardless of whether or not used. Also it has to
be noted, that KinectFusion does not require a mesh for working properly,
in contrast to the new approach. But the creation of the mesh is activated for
getting the result in the preferred representation, compared to a point cloud
for example. In fact, this optional step has an influence on the results of time
and memory consumption. The last culprit, occupying some perceptible
amount of memory in case of the new approach, is caused by the applied
rasterization technique. To be able to perform a fast rasterization, 128 vertex
maps are allocated for running the algorithm in the same amount of threads
in parallel (see Section 3.2.2).

System Color Time (s) Memory (MB)

KinectFusion No 53.2 292
Yes 56.7 379

Deformable 3D Reconstruction -
Template-Based

No 65.7 541
Yes 69.8 633

Deformable 3D Reconstruction -
Model-Based

No 124.6 797
Yes 129.6 884

Table 6.1: Facial Expressions - Validation - Resources
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7 Conclusion and Future Work

As shown by the results (see Chapter 5) the template-based method and
also the model-based method appear to work pretty well with the applied
use case. The resulting meshes do have a good quality when the object is in
the rigid state as well as in a deformed. Additionally the coloring offers a
realistic representation of the recorded object of the real world. Besides the
quality, the speed is a second satisfying property of the proposed system.
The fast reconstruction is achieved by doing nearly all calculations on the
GPU. A comparison of both methods shows, that the template-based variant
is about twice as fast as the model-based one. The first one nearly reaches
the processing time of the PCL’s KinectFusion implementation. When there
is no deformation expected until the complete object has been captured, the
template-based method may be chosen. In this case there are no additional
resources needed for saving the translations in the memory of the GPU and
therefore the free space may be used to increase the resolution of the TSDF
model.

Even though having achieved good results, there are some limitations left
to be considered, which lead to a reduction in the range of applications.
Basically, the system is only able to capture surface deformation and would
fail if a complete body deformation, for example in form of a topology
change, would happen. In principle this has three different reasons: Firstly,
the use of only one input device, obviously, offers only one angle of view and
captures the information just from one side. This means any deformation,
which happens outside of the camera’s viewing frustum, for instance taking
place at the back of an object, would lead to a missing observation. In
general, the proposed system could be extended to support multiple devices
simultaneously to avoid this problem, as already proposed by Dou et al.
(2016). But the objective of this thesis was to depend on only one device
for the recording. Secondly, the integration of the translations does take
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care only of the current viewing depth within some small degree, but the
manipulation needs to be applied onto a complete 3D mesh or model. This
happens because the integration of the translations is processed pointwise,
by doing the iteration over the vertices or voxels. This further results in
not taking care of the connectivity of the neighbors of the mesh or model
respectively. For the template-based method a possible solution would
be to use an algorithm which is known as as-rigid-as-possible surface
deformation (Sorkine and Alexa, 2007). By applying this algorithm, using
the estimated translation map for the definition of the applied keypoints
and their movement as input, unrelated connected parts of the mesh would
get moved accordingly to ensure a smooth surface also at the borders.
Definitely this would solve that issue, but having a negative side-effect
in form of a huge calculation effort. This is because of having to process
the whole mesh for this calculation. Finally, the last reason for not being
able to capture the full body deformation is that the correspondences
estimation task does not always output the correct point pairs. Therefore
the translations estimation is not able to produce correct results in this
area too. This is one reason why the color integration is still continued,
although the depth integration has been already stopped. The culprit for
the incorrect estimation of the point pairs lies in the finding of the closest
but not the most appropriate correspondences. Even though this sometimes
results in a somehow incorrect translation map, the deformed mesh will
stay more regularized as if the correspondences would be more correct. This
effect is triggered by picking closer vertices and applying less translations
on the related regions. By avoiding this big movements of the vertices, as
a consequence, big faces will occur less often. The same also applies for
the opposite case where shrinking would lead to many small faces. This
incorrect estimation yields to smoother deformations in overall. This can
be observed for instance by looking at the area around the mouth (see
Figure 5.5), when a big deformation happens (e.g.: smiling). Usually the
stretching would be much higher at this area and therefore would lead
to relatively big faces. In order to get a more realistic deformation, an
additional method for estimating the correspondences could be used. Using
in addition to the depth input, the color input to detect Scale Invariant
Feature Transform (SIFT) (Lowe, 1999; Lowe, 2004) features, as shown
by Innmann et al. (2016), the real movement of points could be observed. The
detection and the description of these features is processed frame by frame
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and furthermore used for the matching of the images. By doing this globally
for all frames, also the problem of loop-closure can be solved (Innmann
et al., 2016). Unfortunately the SIFT method is very computational costly
and therefore not easy applicable for real-time applications.

Another improvement of the model-based pipeline would be to take care of
the rotations too, additionally to the currently estimated translations. This
would result in a more exact description of the deformation model and
maybe further improve the result. The use of the rotation has been avoided
to not exploit the available video memory for the storage of the deformation
model only. While having the requirement of saving three floating point
numbers per voxel in the current system, at least three additional numbers
would be required to handle the rotation too. As described in the Section 4.2,
the use of one single number becomes very expensive when being extrapo-
lated to a complete 3D voxel grid. Besides that, the other reason for omitting
the rotations was to simplify some calculations in the sense of complexity
and processing effort. For instance, one of such calculation is the bilinear
interpolation, applied to integrate the translations into the mesh or model
(see Sections 3.2.5 and 3.3.1).

Summarized, the proposed approach provides good results when used in
its desired use case. By having the choice of the two different variants,
the advantages and disadvantages could be weight up first in the view
of the needed applied scenario. While having the big benefits in form of
quality and speed, when using the template-based method, the model-based
method supports deformation already from the beginning. After having
discussed some related work (see Chapter 2), showing other impressive
approaches and results, there is still room for improvements.
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