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Abstract

Magnetic Resonance Imaging (MRI) is one of the leading non-invasive medical
imaging techniques to image healthy and pathological anatomy and physiological
processes of the body and is primarily known for its excellent soft tissue contrast.
Contrary to other high resolution imaging techniques, MRI is based on strong mag-
netic and electric fields and does not require ionizing radiation. Image acquisition,
however, is often limited by long acquisition times resulting from the need to repeat
the measurement several times to encode multiple k-space data points. In addition to
lengthy acquisition times, limited MR hardware performance as well as physical and
physiological effects further restrict the MR sequence parameters, which results in
lower signal to noise ratio and increased sensitivity to motion or magnetic susceptibil-
ity effects. This thesis is dedicated to the development and practical implementation
of tailored large tip-angle radio frequency (RF) pulses and slice selective gradient
shapes with increased excitation accuracy, lower power requirement and reduced
pulse duration. The presented optimal control based RF pulse design methods are
formulated for the joint design of RF and slice selective gradient shape for different
large tip-angle applications. The focus of this work is on simultaneous multislice
(SMS) applications to push acceleration of existing 2D MRI acquisition strategies. The
extension to constrained RF pulse optimization allows exploitation of various MR
hardware limits and yields accurate low power RF pulses and slice selective gradient
shapes with short pulse durations. The optimized waveforms proved to outperform
existing RF pulses and can be used to reduce the minimal echo spacing and echo time.
Numerous simulation and experimental examples based on phantom and in-vivo
measurements demonstrate the increased excitation accuracy and the reduction of
both RF power and RF duration.

Keywords: RF pulse design, slice-selective, simultaneous multislice, refocusing, phys-
ical constraints, optimal control
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Kurzfassung

Die Magnetresonanztomographie (MRT) ist eines der führenden nicht-invasiven
bildgebenden Verfahren zur Abbildung gesunder und pathologischer Gewebstypen
und physiologischer Prozesse des Körpers und ist vor allem für seinen hervor-
ragenden Weichteilkontrast bekannt. Im Gegensatz zu anderen hochauflösenden
bildgebenden Verfahren basiert die MRT auf starken magnetischen und elektrischen
Feldern und benötigt keine schädliche ionisierende Strahlung oder Röntgenstrahlung.
Die Bildaufnahme ist jedoch oft durch lange Aufnahmezeiten begrenzt, die sich aus
der Notwendigkeit ergeben, die Messung mehrmals zu wiederholen, um mehrere
k-space Datenpunkte zu kodieren. Zusätzlich zu den langen Messzeiten, begrenzen
die limitierte MR-Hardware und physische und physiologische Beschränkungen
die MRT Sequenzparameter, was zu einem geringeren Signal-Rausch-Verhältnis
und einer höheren Empfindlichkeit für Bewegungseffekte führt. Diese Arbeit wid-
met sich der Entwicklung und praktischen Umsetzung maßgeschneiderter Hochfre-
quenzpulse und schichtselektiver Gradientenformen mit erhöhter Anregungsge-
nauigkeit, geringem Leistungsbedarf und reduzierter Pulsdauer. Die vorgestellten
HF-Impulsentwurfsmethoden basieren auf Methoden der Optimalsteuerung und sind
für den gemeinsamen Entwurf von HF Puls und schichtselektiven Gradientenform
formuliert. Der Schwerpunkt dieser Arbeit liegt auf der simultanen Mehrschich-
tanwendungen zur weiteren Beschleunigung von 2D-MRT-Aufnahmestrategien. Die
Erweiterung der Designmethode auf die eingeschränkte Optimierung ermöglicht die
Ausnutzung verschiedener MR-Hardware-Grenzen, was zu einer geringen Pulsleis-
tung oder minimalen Dauer von HF-Impulsen und schichtselektiver Gradientenfor-
men führt. Die optimierten Wellenformen übertreffen vorhandene HF-Impulse und
können dazu verwendet werden, das minimalen Echo-Spacing zu reduzieren und
die kürzeste erreichbare Echozeit zu nutzen. Zahlreiche Simulations- und Experimen-
talbeispiele auf Basis von Phantom- und In-vivo-Messungen zeigen die Erhöhung
der Anregungsgenauigkeit, die Reduzierung der HF-Leistung und die Reduktion der
minimalen HF-Dauer.

Schlüsselwörter: Magnetresonanztomographie, HF-Impulsdesign, schichtselektiv,
Simultane Multischicht-Anregung, Refokussierung, optimale Steuerung
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1 Introduction

Most NMR and MR applications need RF pulses to alter magnetization and to create
NMR signals, which makes them an essential element in MRI. RF pulses are either
used without a slice selective gradient shape for spatial non-selective applications or
simultaneously with a slice selective gradient for slice selective excitation, inversion
or refocusing and are an essential element of MRI sequences. Contrary to the static
main field, RF and slice selective gradient fields are not applied continuously, but
in distinct blocks or periods of MRI sequences with a time varying waveform. Yet,
achieving well defined spatially selective slice profiles at high field strengths while
fulfilling hardware and safety constraints is a challenging task. Consequently, differ-
ent design approaches were proposed for RF pulse design using different kind of
approximations on the Bloch equations for various applications. These assumptions,
for instance neglected relaxation terms or the small tip angle approximation, result
in analytical expressions with easy solutions and therefore find widespread use.
However, the accuracy of conventional RF pulses is limited by the impact of the
underlying approximations. An alternative design approach is the minimization of
a suitable functional that represents a comprehensive description of the intended
RF pulse application. Different optimization methods have been proposed to solve
the design task including simulated annealing, evolutionary approaches or optimal
control. These design methods often lead to more accurate excitation patterns and
allow to consider various other effects, for instance spatially varying slice selective
gradients or transmit coil sensitivities. However, the use of numerical optimization
techniques are often limited by the computational effort. The main research question
that forms the basis of this thesis consists in how numerical optimization can be
used to jointly design RF pulse and slice selective gradient shapes for large flip angle
applications. Besides single slice selective excitation, the focus of this work lies on
SMS applications. Different RF pulse design methods and models based on OC are
discussed. These include unconstrained and constrained optimization with fixed and
variable pulse duration [1]–[3]. The proposed optimization methods significantly
reduce the pulse duration with minimal RF power compared to state of the art
RF pulse design methods [4]. Additionally to low RF power and pulse duration
requirements, the optimized results fulfil specific hardware and safety limitations.
The system limitations can be defined before the optimization and include RF, slice
selective gradient and slew rate amplitude and RF power constraints and constraints

1



1 Introduction

on the slice profile accuracy. The optimized RF pulses are experimentally validated
and the applicability of the proposed design methods is proved.

The structure of this thesis is as follows. Chapter 2 revises the physical principles
of NMR and MR necessary to understand the specifications regarding the RF pulse
design process and its substantial consequences. It contains a brief derivation of the
Bloch equations and description of MRI strategies for signal generation. Further, it
discusses why the Bloch equations can be solved analytically only for special cases.
The general simulation and solution of the Bloch equations is covered by Chapter 3.
Different numerical and analytical Bloch integration methods, including rotation
matrices for piecewise constant fields, small tip angle approximation and analytical
eigenvalue approach are discussed and introduced. Chapter 4 summarizes specific
aspects on the practical MR sequence implementation and hardware limitations. The
focus of this chapter lies in the practical validation of the optimized RF pulse and slice
selective gradient waveforms and the impact of hardware limits and imperfections.
The design of RF pulses is covered by Chapter 5. This chapter discusses the most
prominent RF pulse design methods for single non- and slice selective and SMS
selective excitation and refocusing. The main results of the three main publications
of this thesis [1]–[3] are summarized at the end of Chapter 5 and are listed in the
Appendix. The final discussion and outlook for further applications on the design of
parallel transmission and the inclusion of gradient imperfections in the optimization
are given in Chapters 6 and 7.

2



2 Physical principles of magnetic
resonance

Contents

2.1 Nuclear spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Equation of motion and bulk magnetization . . . . . . . . . . . . 6

2.3 RF excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Bloch equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Nuclear magnetic resonance (NMR) or more general, magnetic resonance (MR)
is based on the quantum mechanical interaction of atomic nuclei with a nonzero
nuclear magnetic moment and an external magnetic field B0 [5]–[8]. Besides NMR
applications in the field of material research or chemical analysis, the NMR effect
can further be used to perform magnetic resonance imaging (MRI) to acquire non-
invasive images with excellent soft-tissue contrast. The quantum mechanical effects of
individual spins can be summarized for a sample with a large number of spins by a
classical description of the macroscopic bulk magnetization [7], [8] whose interactions
with the external magnetic field can be modeled by the classical phenomenological
Bloch equations [9]. Although this macroscopic description does not include nuclear
spin-spin interactions such as j-, dipole-, or quadrupole-coupling, it is sufficient to
model the most effects for the intended clinical in vivo MRI applications to image
the hydrogen proton. Therefore, the quantum mechanical content in this section is
reduced to an absolute minimum. For a quantum mechanical description of NMR
the reader is refered to [8], [10] and for an analysis of different MRI myths caused by
an incorrect interpretation of quantum mechanics to [11].

In the following section, the emphasis will be on the classical description of the mag-
netization regarding the effects of an external field on non-zero spins. Furthermore,
all discussion is limited to hydrogen protons.

3



2 Physical principles of magnetic resonance

2.1 Nuclear spin

The observations of Zeeman [12], Stern and Gerlach [13], Uhlenbeck and Goudsmith
[14] and Dirac [15] led to the introduction of the electron spin and the observation,
that the quantum mechanical states of atoms in a constant external magnetic field
split into discrete energy levels. Figure 2.1 shows such a schematic energy splitting
of the proton in an external magnetic field. The energy difference E∆ is generally
defined by the Zeeman Hamiltonian

Ĥz = −γh̄B0 Îz, (2.1)

using the quantum mechanical spin operator Îz, the reduced Planck constant h̄ =
1.0545718 · 10−34 J s [16], the gyromagnetic ratio γ in rad s−1 T−1 and the main field
B0 in T. For the hydrogen proton with a nuclear spin I = 1/2 the magnetic spin
quantum number

ms = −I, (−I + 1), (−I + 2), ..., I (2.2)

results in ms = ±1/2. The two energy levels of the eigenstates can be found using
the Schrödinger equation

Ĥz|I, ms >= E|I, ms >, (2.3)

with the energy E and eigenfunction of the proton |I, ms >. Using Eq. 2.1 and 2.2 the
energy difference E∆ or transition between the two states can be computed with

E∆ = 1/2γh̄B0 − (−1/2γh̄B0) = h̄ω0, (2.4)

describing the static interaction with the external magnetic field B0.

This expression directly leads to the Lamor equation

ω0 = −γB0, (2.5)

with the nuclei dependent proportionality factor or gyromagnetic ratio γ given by

γ =
gpµn

h̄
, (2.6)

with the experimentally determined proton Landé-factor gp = 5.58 [17] and the
nuclear magnetic moment µn. The nuclear magnetic moment is defined as

µn =
eh̄

2mp
, (2.7)

4



2 Physical principles of magnetic resonance

with the magnitude of the particle charge e = 1.60 × 10−19 C and the proton
mass mp = 1.67 × 10−27 kg, see [8]. For protons, γ is 2.6731 × 108 rad s−1 T−1 or
γ/2π = 42.58 MHz/T [8]. The proton’s energy difference E∆ for the two stable
energy levels then mainly depends on the field strength, see Eq. 2.1. For a static field
of B0 = 3 T this energy difference is E∆ = 8.457 × 10−26 J.

The population ratio of the atoms occupying the two different states is described by
the Boltzmann distribution

E[N1]

E[N2]
= e

E∆
kT , (2.8)

using the reduced Boltzmann constant k = 1.381 × 10−23 J K−1, the temperature T
in K and the energy difference E∆ to predict the different spin populations E[N1]
and E[N2]. From that, one can calculate the macroscopic net magnetization that is
proportional to the occupancy difference

E[N1 − N2] = N
e

E∆
kT − 1

e
E∆
kT + 1

≈ N
E∆

2kT
, (2.9)

with N being the total number of spins [18]. At a field strength of 3 T and at room
temperature T = 293.15 K the occupation difference is approximately 10 ppm.

Energy

0

no field external field

m=-1/2

m=1/2E1

E2

ΔE=E2-E1

Figure 2.1: Schematic Zeeman splitting of the proton energy levels in an external field. The Energy
difference E∆ depends mainly on the external field, see Eq. 2.4.

Due to its high natural abundance in biological tissue and its large gyromagnetic
ratio, hydrogen protons are the nuclei primarily used for in vivo MRI. Nevertheless,
other nuclei with a non-zero spin, for instance 13C, 19P or 31P, also have a nuclear
magnetic moment µn that can be used to generate NMR signals. The nuclear magnetic
moment µn can be related to the angular momentum Ĵ (the hats above the symbol
indicate that they are quantum mechanical operators, refer to Chapter 7 of [10])

µn = γ Ĵ, (2.10)

5



2 Physical principles of magnetic resonance

with Ĵ = ( Ĵx, Ĵy, Ĵz)T in the Cartesian coordinates. For a quantum mechanical descrip-
tion of the spin precession refer to Chapter 10 of [10].

The placement of a spin in an external magnetic field B results in a torque N =
(Nx, Ny, Nz)T, given by the cross product of the magnetic spin moment µn and the
external field B

N = µn × B. (2.11)

For a non-zero net torque this implies that the angular momentum Ĵ changes accord-
ing to

dĴ
dt

= N, (2.12)

establishing the fundamentals of the equation of motion. For a more rigorous deriva-
tion of the magnetic moment and net force, referred to Chapter 2 of [8] and Chapters
2 and 5 of [10].

2.2 Equation of motion and bulk magnetization

Combining Eq. 2.10 and Eq. 2.11 allows rewriting of Eq. 2.12 to get the fundamental
equation of motion:

dµn

dt
= γµn × B. (2.13)

This differential equation describes the macroscopic movement of the spin moment
in an external field B and relates the resulting motion to the gyromagnetic ratio γ
[8]. For a static and time invariant external field, for instance B = (0, 0, B0)

T, Eq. 2.13

reduces to the important Lamor equation, see also Eq. 2.5, with ω0 describing the
precessional frequency of the spin system, better known as Lamor or precession
frequency [8], [10]. The negative sign of Eq. 2.5 results from the main field B0 pointing
along the positive z-axis.

Pure water has a proton concentration of 110.4 mol L−1 [19], thus resulting in an
extremely large number of protons for typical NMR or MRI sample sizes. This
holds for most biological tissues, for instance grey matter of the brain has a proton
concentration of approximately 70 % of pure water [19]. For such a large number of
individual protons, the macroscopic bulk magnetization M can be defined as the sum
of all nuclear spins µn in the observed sample

M =
1
V ∑

protonsinV
µn. (2.14)

6



2 Physical principles of magnetic resonance

dx

dy

dz

M0

B0

Figure 2.2: Random spin orientation and schematic build up of the makroscoptic bulk magnetization
in an external field B0.

with the volume V. In the absence of an external field, the direction of the individual
spins is purely random due to random thermal motion [8], [10], thus resulting in no
observable bulk magnetization M = (0, 0, 0)T. However, immediately after applying
a strong external magnetic field, a precession around the external magnetic field is
triggered. The random spin orientation (spherical) is slightly skewed towards the field
direction due to relaxation [11] and a macroscopic observable bulk magnetization
accumulates. The macroscopic bulk magnetization M now describes the macroscopic
behaviour in the external field and enables the use of classical descriptions rather
than requiring quantum mechanics. Figure 2.2 shows the schematic build up of the
classical bulk magnetization M0 parallel to an external field.

Further, the assumption of non-interacting spins (for coupled spins, refer to Chapter 6

of [10]) and the previously defined bulk magnetization (Eq. 2.14) allow substitution of
the magnetic moment µn in the equation of motion (Eq. 2.13) leading to a predecessor
of the Bloch equations without relaxation effects

dM(t)
dt

= γM(t)× B(t),

M(0) = M0,
(2.15)

with the initial magnetization

M0 = [M0
x, M0

y, M0
z ]

T. (2.16)

Now, the change of magnetization M over time can be formulated as a result of the
external magnetic field B on the magnetization M. The magnitude of the macroscopic
bulk magnetization M0 scales for a hydrogen proton in the equilibrium (t→ inf)

M0 '
γ2h̄2B0

4kTsample
ρ0, (2.17)

7



2 Physical principles of magnetic resonance

with the magnitude of the applied field B0, Boltzmann’s constant k, reduced Plank’s
constant h̄, the sample temperature Tsample in K, the proton density ρ0 and the protons
gyromagnetic ratio γ according to [8].

This implies that in general, a stronger constant magnetic field results in a larger
bulk magnetization and thus, a larger MR signal. However, increasing the main
field strength causes several other effects which counteract this increase to some
extent, for instance elevated B0 field inhomogeneities and an increased dielectric
effect. Furthermore, larger relaxation times and power deposition in combination with
peripheral nerve stimulation, limit the optimal field strength for in vivo MR. Therefore,
most clinical MR scanners nowadays still use 1.5 to 3 T [20], while human in vivo MR
research is done up to 10.5 T [21]. The constant improvement of MR hardware and
the use of sophisticated MR techniques, recently resulted in the regulatory approval
of 7 T systems to be used for clinical routine applications [22]. For more information
on the impact of the hardware the reader is referred to Chapter 4.

The equation of motion Eq. 2.15 is defined with respect to a stationary coordinate
system, better known in NMR as the laboratory frame of reference [8]. Typically, the
constant main magnetic field (B0) is much larger than the radio frequency (RF) and
gradient fields essential for MR signal generation and spatial MRI encoding. This
results in a clouding of the much smaller non-static field interactions by the constant
Lamor precession, see Figure 2.3 and requires a high temporal and spatial resolution
for an accurate description of the magnetization. Furthermore, the bandwidth of RF
and slice selective gradient waveforms are much lower than the Lamor frequency,
see Section 4.3. This would result in an unjustifiably computational effort and the
static field interaction is therefore typically removed by a coordinate transformation
similar to a frequency demodulation in signal processing. The transformation of the
Cartesian coordinates (x, y, z) to the rotating frame of reference (x′, y′, z′) with ω
by

x′ = x cos(ωt)− y sin(ωt),
y′ = x sin(ωt) + y cos(ωt),
z′ = z.

(2.18)

In the following, the prime character is used to define variables in the rotating
frame of reference. The use of a rotating frame of reference rotating with the Lamor
frequency allows for an easier handling of the equations (see Section 2.3) and a better
understanding of the non-static field interactions [8], [10], [23]. Figure 5.1 summarizes
the differences between the laboratory frame of reference and the rotating frame of
reference. Instead of modulation of the RF pulse with the Lamor frequency ω0, the
rotation of the coordinate system with ω0 results in a stationary and on-resonant
B1 field for the rectangular envelope, while the magnitude varies to achieve a SINC

8



2 Physical principles of magnetic resonance

envelope. The use of the rotating frame of reference simplifies the modelling of RF
excitation and signal encoding.

2.3 RF excitation

The equilibrium bulk magnetization M, see Eq. 2.14, does not result in a measurable
MR signal [8], [10], [23]. To induce a NMR signal in nearby receiver coils, time varying
RF fields B1(t), for instance perpendicular to the much larger but constant field B0
[8], are applied by setting

B(t, r) = [B1,x(t), B1,y(t), B0 + Gs(t) · r]T, (2.19)

with the slice selective gradient for each axis

Gs(t) = [Gs,x(t), Gs,y(t), Gs,z(t)]T, (2.20)

at spatial position r = (x, y, z)T being assumed to be zero for the discussion of pure
RF excitation. RF fields close to or at the Lamor frequency tip the magnetization away
from the initial state M0, see Eq. 2.16. After the RF field is turned off, the transversal
components of the tipped magnetization precess around the B0 field with the Lamor
frequency Mxy(t) = (Mx(t), My(t))T and result in an electromagnetic induction in
the receiver coil [8], [10], see Figure 2.3 The time course of the magnetization M can
be modeled with Eq. 2.15.

While the general solution is hard to solve, see Section 3, the use of a left-circular
polarized RF field

B+
1 (t) = B1

(
cos ωt
− sin ωt

)
, (2.21)

with B1 being the RF magnitude, ω the frequency and t the time vector allows finding
of easy analytical solutions [8]. The further use of a rotating frame of reference [8],
[24] rotating with the frequency ω instead of the laboratory frame of reference, results
in a stationary RF field

B+
1 (t)′ =

(
B1
0

)
. (2.22)

9



2 Physical principles of magnetic resonance

The combination of B+
1 (t)′ of Eq. 2.22 and Eq. 2.15, with a constant main field B0

according to [8], results in

(
dM(t)

dt

)′
= γM(t)′ ×

 B1
0

B0 −ω/γ

 = γM(t)′ × Be f f , (2.23)

with Be f f being the effective magnetic field and ω the frequency of the RF field. This
results in a counter clockwise precession around the axis of Be f f , see Figure 2.3. For
the on-resonant case (ω = ω0) the B1 field is synchronized to tip the spin around the
x′-axis and Eq. 2.23 is reduced to the cornerstone equation of motion

(
dM(t)

dt

)′
= γM(t)′ ×

B1
0
0

 . (2.24)

Using Eq. 2.24 the overall rotation of the bulk magnetization can be described by the
flip angle φ

φ = γ
∫ T

t=0
B1(t)dt, (2.25)

where T is the pulse duration and B1(t) is the time dependent RF modulation
envelope. For this easy example with an constant RF field B1, the flip angle φ can be
further analytically described by

φ = γB1T. (2.26)

However, it should be noted that Eq. 2.25 and 2.26 are valid only for the on-resonance
condition. A more comprehensive discussion of all factors influencing the flip angle
and its measurment in MRI is given in [25].

So far, all considerations are mainly based on geometrical solutions resulting from the
equation of motion (Eq. 2.15). An alternative solution to the RF excitation (Eq. 2.24)
based on rotation matrices is described in Section 3. At this point it is important
to state again, that the simplified macroscopic view of the underlying quantum
mechanical spin properties is justified only for a large sample of non-interacting spins.
For the quantum mechanical modelling of spins in external magnetic fields refer to
[10].
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Figure 2.3: Schematic deflection of magnetization by a circular polarized RF field B1 in the laboratory
frame (a) + (b) and rotating frame of reference (d). After turning off B1, M precesses in the
xy plane and induces a signal in the receive coil (c). Modified from [26].

2.4 Relaxation

Besides the interaction with external magnetic fields, there occur further spin inter-
actions with each other and also with the surrounding. Since the exact quantum
mechanical mechanisms, which are responsible for these effects, are beyond the
scope of this work, only the phenomenological observation of relaxation effects is
described here. For an extensive quantum mechanical explanation refer to [8], [10],
[27], [28]. After tilting the bulk magnetization vector M by a RF pulse, it returns
back to its equilibrium state M = (0, 0, M0)

T after sufficient time. The macroscopic
effects behind this behaviour were modeled by Felix Bloch [9] as longitudinal (T1) and
transversal relaxation (T2) describing the time constants of a first order exponential
kinetics.

The longitudinal relaxation time T1 is defined as the proportionality factor that con-
nects the recovery rate of the longitudinal magnetization (dMz/dt) and the difference
M0 −Mz 

dMz(t)
dt

=
1
T1

[M0 −Mz(t)],

Mz(0) = Mz
0.

(2.27)
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Figure 2.4: Simulated recovery of the longitudinal (Mz) and transversal (Mxy) magnetization based on
T1 and T2 relaxation for white matter at 3 T (T1 = 1084 ms, T2 = 69 ms, [29]).

This differential equation can be solved analytically yielding

Mz(t) = M0
z e−t/T1 + M0(1− e−t/T1), (2.28)

with the initial condition M0
z which describes the exponential recovery of the longitu-

dinal magnetization. Please note that the solution assumes that the external field B0
is along the z-axis.

The transversal relaxation time T2 on the other hand is defined as the proportionality
factor that connects the decay of the transversal magnetization (dMxy/dt)′ with the
initial condition M0

xy 
(

dMxy(t)
dt

)′
= − 1

T2
Mxy(t)′,

Mxy(0)′ = M0
xy,

(2.29)

Eq. 2.29 has the following analytical solution in the rotating frame of reference

M′xy(t) = M0
xy e−t/T2 . (2.30)

Relaxation times depend on proton surroundings and the main field [29]. In soft
tissues at 3 T typical relaxation times range from T1 = 100− 2000 ms (excluding
cerebro spinal fluid) and T2 = 28− 300 ms with a large spread in absolute numbers
[30]. Figure 2.4 shows the time course of a pure mono-exponential T1 and T2 relax-
ation after a 90 ◦ tip. There is an additional decay of the transversal magnetization
due to static field inhomogeneities. This additional dephasing can be characterized
by the time constant T′2 with the assumption of a Lorentzian distribution of the
inhomogeneities, see [8]. This results in the effective transversal relaxation time T?

2
given by

1
T?

2
=

1
T2

+
1
T′2

. (2.31)
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Contrary to the irreversible T2 decay, the T′2 decay can be recovered by forming a spin-
echo. However, for specific applications, for instance functional imaging of the brain,
the T?

2 decay founds the basis of signal differences [31]. In typical biological tissues
relaxation times follow T?

2 < T2 < T1, however it was previously experimentally
shown that for extremly low temperatures this relation may change and T2 actually
becomes larger than T1 [32]–[34].

2.5 Bloch equations

The inclusion of the longitudinal and transversal relaxation (Eq. 2.27 and Eq. 2.29)
into the equation of motion (Eq. 2.15) leads to the famous Bloch equations

dM(t)
dt

= γM(t)× B(t) +
1
T1

 0
0

M0 −Mz(t)

− 1
T2

Mx(t)
My(t)

0

 ,

M(0) = M0,

(2.32)

describing the macroscopic change of magnetization in an external magnetic field for
a given initial magnetization M0 [9]. The Bloch equations (Eq. 2.32) are a system of
coupled linear differential equations and can be rewritten using a system matrix A
acting on the magnetization M and a vector b

dM(t, r)
dt

= A(B(t, r))M(t, r) + b(t), t > 0,

M(0) = M0,
(2.33)

summarizing the cross product of the magnetization M and the external magnetic
field B for each spatial position r = (x, y, z)T and the relaxation effects for a given
initial magnetization M0, see Eq. 2.16. Using the time varying external field B(t), see
Eq. 2.19, the system matrix A and the vector b result in

A =

 − 1
T2

γ[B0 + Gs(t) · r] −γB1,y(t)
−γ[B0 + Gs(t) · r] − 1

T2
γB1,x(t)

γB1,y(t) −γB1,x(t) − 1
T1

 , (2.34)

b =

 0
0

M0(r)
T1

 . (2.35)
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It should be noted that Eq. 2.33 is defined to act the system matrix on the magnetiza-
tion AM instead of MA.

There is no analytic solution for the full Bloch equations for a spatially and time
varying magnetic field B(t, r). Only for special cases, including neglected relaxation
effects, left-circular polarized and constant RF field (Section 2.3), or for a zero B1 field,
straight forward analytical solutions exist.

For a static and uniform magnetic field B0 with no active RF components, for instance
B = (0, 0, B0)

T, the Bloch equations reduce to
dM(t, z)

dt
=

 −
1
T2

γB0 0
−γB0 − 1

T2
0

0 0 − 1
T1

M(t, z) +

 0
0

M0
T1

 ,

M(0) = M0.

(2.36)

with the Lamor frequency ω0 = −γB0 according to Eq. 2.5. This allows an elegant
analytical solution of pure relaxation, see Section 2.4, by decoupling the relaxation
effects T1 and T2

Mx(t) = e−t/T2(M0
x cos ω0t + M0

y sin ω0t),

My(t) = e−t/T2(M0
y cos ω0t−M0

x sin ω0t),

Mz(t) = M0
ze−t/T1 + M0(1− e−t/T1),

(2.37)

with the initial magnetization M0, see Eq. 2.16. Now, the Bloch equations are de-
coupled and longitudinal and transversal components can be handled separately.
Together with the complex magnetization

Mxy(t) = Mx(t) + iMy(t) (2.38)

that defines the measurable NMR signal, the transversal solution is given by

Mxy(t) = M0
xye−iω0te−t/T2 (2.39)

in the stationary field. The solution in the rotating frame of reference is given in
Section 2.4, Eq. 2.30.

Non-interacting spins in a perfectly homogeneous proton sample and magnetic field
B0 possess one distinct Lamor frequency ω0, see Eq. 2.5. However, realistic MR
systems do not create perfectly homogeneous magnetic fields. Especially MR systems
with a large bore have B0 field variations in the order of a few ppm in the specified
field of view [35]. Besides inhomogeneities created by non-perfect coils, there are
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additional field inhomogeneities arising from atomic or molecular spin interactions
and variations due to magnetic susceptibility [36]–[38]. Contrary to a static resonance
shift, or chemical shift, local field inhomogeneities create an additional de-phasing of
the transversal magnetization that can be summarized by T′2 assuming a Lorentzian
lineshape by setting T′2 = 1/(γ∆B0) with the field inhomogeneity ∆B0 across the
voxel [8], [31].

Static field inhomogeneities reduce the transversal relaxation time T2 according to
Eq. 2.31 which results in a faster de-phasing of the magnetization. Contrary to the
inevitably lost T2 dephasing, the static T′2 dephasing can be recovered with refocusing
pulses in a spin echo setting.

The Lamor frequency can be intentionally changed by field gradients to perform
spatial encoding. Such field gradients depend on the spatial position, for instance
along the z-axis, and are created by orthogonal gradient coils [39]–[41]. Gradients
can be controlled independently for the three Cartesian components x, y and z.
This enables selection of two or three dimensional objects with single or parallel
transmission [42]–[49]. It is important to mention here, that all field gradients are
added to the z component of B, see Eq. 2.19, and thus only change the resonance
frequency at a specific location r = (x, y, z)T

B(t, r) = [0, 0, B0 + Gs,x(t)x + Gs,y(t)y + Gs,z(t)z]T. (2.40)

Besides RF encoding, the gradient coils are further used for encoding of the acquisition
k-space and to establish the k-space acquisition trajectory [8], [23], [50]–[52].

So far, the discussion has been restricted to situations in which there was no ar-
bitrary time dependent RF pulse involved. Using a time varying RF field B1(t) =
[B1,x(t), B1,y(t)]T perpendicular to the external magnetic field B0 and a spatially
dependent slice selective gradient results in the full Bloch equations

dM(t, z)
dt

=

 − 1
T2

γ[B0 + Gs(t) · r] −γB1,y(t)
−γ[B0 + Gs(t) · r] − 1

T2
γB1,x(t)

γB1,y(t) −γB1,x(t) − 1
T1

M(t, z) +

 0
0

M0
T1

 ,

M(0) = M0.
(2.41)

Now, the linear differential equations are coupled and cannot be solved analytically to
find the RF or slice selective gradient shape [1]–[3], [53]. Besides numerical approaches,
approximative steady state solutions for very short or very long RF applications exist
[8]. However for the general case, the Bloch equations have to be discretized and
solved numerically.
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This section presents different strategies to solve the Bloch equations introduced in
Section 2.5 and gives a brief overview of the most basic physical concepts behind
them.

The Bloch equations, see Eq. 2.32, are a system of coupled bilinear differential
equations for which in general it is impossible to find closed form solutions [53]–[55].
Analytical solutions therefore exist only under special assumptions, for instance no
external B1 field [56], a constant B1 field [57], steady-state solutions or weak RF
fields [8], [53]. Since solving the Bloch equations with arbitrary time varying external
fields is important for simulations and the design of slice selective MR experiments,
the Bloch equations are therefore typically solved numerically [55]. For this, both,
the time and B fields are discretized and the magnetization is computed iteratively
for each time-point solving an initial value problem by numerical integration [58].
Numerical integration can be done in different ways, for instance using implicite or
explicite single step methods like a higher order Runge-Kutta or multi-step methods
[59]. Alternatively, the Bloch integration can be approximated by means of rotation
matrices and an exponential scaling to incorporate relaxation effects [60]–[63]. It
should be noted, that for neglected relaxation terms, a series of piecewise constant
fields can be exactly solved numerically by rotation matrices. The effects of gradients,
RF pulses and relaxation with respect to MR echo generation can be further simulated
using extended phase graphs [64].
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3.1 Neglected relaxation

The Bloch equations without relaxation effects are defined by a crossproduct of the
magnetization M and the external field B, see Eq. 2.15. In matrix vector notation the
Bloch equations with neglected relaxation effects in the rotating frame are given by

dM(t, r)
dt

=

 0 γ[Gs(t) · r] −γB1,y(t)
−γ[Gs(t) · r] 0 γB1,x(t)

γB1,y(t) −γB1,x(t) 0

M(t, r),

M(0) = M0,

(3.1)

with the main field B0, the time dependent complex RF pulse components B1,x(t) and
B1,y(t), the time dependent and spatial varying slice selective gradient Gs(t) · r for
the spatial location r = (x, y, z)T and the gyromagnetic ratio γ. Eq. 3.1 can be solved
by further assumption of the small tip angle approximation or by means of rotation
matrices for piecewise constant external fields.

3.1.1 Small tip angle approximation

The approximative solution of sinφ ≈ φ for small angles φ allows the assumption
that a small tip of the magnetization has only a minor effect on the z component of
the magnetization M(t) [23], [43]. This means that Mz(t) is approximately equal to
the bulk magnetization M0 and that it does not change over time [18]

dMz(t)
dt

= 0. (3.2)

Using the complex notation of the transverse magnetization Mxy, see Eq. 2.38, the
Bloch equations reduce to a single differential equation

dMxy(t, r)
dt

= −iγ[Gs(t) · r]Mxy(t, r) + iγB1(t)M0
z(r), (3.3)

with B1(t) = B1,x(t) + iB1,y(t) and the time constant longitudinal magnetization
Mz(t, r) = M0(r). Using the initial condition Mxy(0, r) = 0 the general solution of
Eq. 3.3 at the end of the RF pulse T is given by

Mxy(T, r) = iM0(r)
∫ T

0
γB1(t)e−iγr·

∫ s
t Gs(s)dsdt. (3.4)
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with time dependent RF and slice selective gradient fields. The excitation k-space
formulation [43] with k(t) being the spatial frequency variable

k(t) = −γ
∫ T

t
Gs(s)ds. (3.5)

allows further reduction of Eq. 3.4 to

Mxy(T, r) = iM0(r)
∫ T

0
γB1(t)eir·k(t)dt, (3.6)

that can be solved with the Fourier transform. For a more extensive discussion refer to
[43]. This further implies that for small flip angles the RF shape of the can be designed
with the Fourier transform for a prescribed desired slice profile, see Section 5.

3.1.2 Rotation in the magnetization domain

An on-resonant and constant RF pulse with a nominal flip angle φ and a pulse
duration T = τ, see Section 2.3 and Eq. 2.26, results in a rotation of the magnetization.
A rotation of a vector can be expressed by simple rotation matrices

Rx(φ) =

1 0 0
0 cos φ sin φ
0 − sin φ cos φ

 ,

Ry(φ) =

cos φ 0 − sin φ
0 1 0

sin φ 0 cos φ

 ,

Rz(φ) =

 cos φ sin φ 0
− sin φ cos φ 0

0 0 1

 ,

(3.7)

describing the rotation around the x-, y- or z-axis with an angle φ. An equidistant
discretization of the pulse duration interval [0, T] results in piecewise constant
external fields B that can be solved in each time step analogous to rectangular block
pulses. The temporal discretization is defined as

0 = t0 < ... < tN−1 = T. (3.8)
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with the equidistant temporal step size τ = tm+1 − tm and N being the number or
time steps. The impact on the magnetization for a pure rotation with a flip angle φ
around the x-axis can be easily computed with

Mm+1 = Rx(φ)Mm(t). (3.9)

The effect of a complex RF pulse in the xy plane with a flip angle φ and a phase angle
θ can be described by a cascade of three spin rotations [53], [60], [62]

Mm+1 = Rz(θ)Rx(φ)Rz(−θ)Mm(t). (3.10)

This can be generalized for the inclusion of local field differences and the rotation
around an arbitrary axis. For this purpose, the magnetization is transformed to the
new coordinate system followed by the rotation and a transformation back to the
original coordinate system

Mm+1 = Rz(θ)Ry(φy)Rx(φx)Ry(−φy)Rz(−θ)Mm(t), (3.11)

with the effective flip angle

φx = −τ
√
(∆ω)2 + (φ/τ)2,

φy = tan−1 ∆ωτ/φ,
(3.12)

using the desired flip angle φ, the duration τ and the local frequency offset

∆ω(x, y, z, t) = 2πγ[B0 − B(x, y, z, t)]. (3.13)

Alternatively, the field contributions B for one time step can be summarized and
expressed by a single rotation matrix R. The rotation by an angle φ about any arbitrary
unit vector n = (nx, ny, nz)T is represented by

R(φ) =

(
cosφ + n2

x(1− cosφ) nxny(1− cosφ)− nzsinφ nxnz(1− cosφ) + nysinφ
nynx(1− cosφ) + nzsinφ cosφ + n2

y(1− cosφ) nynz(1− cosφ) + nxsinφ

nznx(1− cosφ)− nysinφ nzny(1− cosφ) + nxsinφ cosφ + n2
z(1− cosφ)

)
(3.14)

where n2
x + n2

y + n2
z = 1 has to be satisfied [65]. For each time point m the angle φm

and the vector nm are defined by

φm = −γτ
√
|B1,m|2 + Gm · r

nm =
γτ

|φm|
(B1,x,m, B1,y,m, Gm · r)T,

(3.15)
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Figure 3.1: Graphical depiction of a SINC based RF waveform with continous (left) and discretized
and piecewise constant (right) representation.

with the time step τ and the piecewise constant RF and gradient amplitudes B1,m and
Gm at spatial position r.

To simulate a series of piecewise constant B fields, for instance discrete RF and slice
selective gradient waveforms, a consecutive application of rotation matrices can be
used. The temporal evolution of the magnetization is then a series of rotation matrices
acting on the initial magnetization M0, see Eq. 2.16,

M(T) = RNRN−1...R1M0. (3.16)

The assumption of piecewise constant fields is a good approximation of how RF and
slice selective gradient waveforms are implemented on MR scanners, see Section 4

and [66]. This results in a series of block functions as visualized in Figure 3.1.

In contrast to computing the effective external field for each time point, a sequential
application of instant RF rotations and gradient precession yields a straightforward
solution. This is also known as hard pulse approximation. Pure precession as an effect
of spatially selective gradients can be modeled with rotation matrices as well. The
phase angle θGs of the slice selective gradient Gs(t), see Eq. 2.20, can be computed
with

θGs(r) = γr
t+τ∫
t

Gs(τ)dτ, (3.17)

and plugged into the rotation matrix around the z-axis. The effect of the rectangular
external fields is then split into gradient rotation around the z-axis and RF rotation
around an axis in the xy-plane. The full cascade is now given by

Mm+1 = Rz(θGs)Rz(θ)Ry(φy)Rx(φx)Ry(−φy)Rz(−θ)Mm(t). (3.18)

If there are more than one gradient dimensions active, Eq. 3.17, has to be computed for
each axis, see Eq. 2.40. Field inhomogeneities can be treated accordingly. The concept
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of orthogonal rotation matrices for a three dimensional rotation in the magnetization
domain can be equivalently described by rotations in other domains.

3.1.3 Rotation in the spin domain

In contrast to a rotation of an orthonormal magnetization vector (SO3), the same
rotation can be described by a unitary rotation (SU2) in the spin domain [66], [67].
Equivalent to a rotation of a 3x1 vector M by a 3x3 rotation matrix R

Mm+1 = RMm (3.19)

there exists a unitary rotation of a spinor Ψ = (α, β)T

Ψm+1 = QΨm (3.20)

with the complex Cayley-Klein parameters α, β and the unitary rotation matrix Q.
The spin domain description of Q is connected with the Pauli spin matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (3.21)

to axis and magnitude of the corresponding rotation. The rotation by an angle φ
about a vector n = (nx, ny, nz)T is represented by

Q =

(
cosφ/2− inzsinφ/2 −i(nx − iny)sinφ/2
−i(nx + iny)sinφ/2 cosφ/2 + inzsinφ/2

)
=

(
α −β?

β α?

)
,

(3.22)

with the complex valued Cayley-Klein parameters

α = cos(φ/2)− inz sin(φ/2),
β = −i(nx + iny) sin(φ/2),

(3.23)

satisfying the constraint αα? + ββ? = 1.

The Cayley-Klein parameters for each time step m are am and bm and can be computed
by

am = cos(φm/2)− inz,m sin(φm/2),
bm = −i(nx,m + iny,m) sin(φm/2).

(3.24)
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with the unitary rotation matrix

Qm =

(
am −b?m
bm a?m

)
(3.25)

by means of Cayley-Klein parameters. The total rotation is then given by

Q = QNQN−1...Q1. (3.26)

The redundancy in Eq 3.25 allows to replace the matrix product in Eq. 3.26 by a
matrix vector product (

αm
βm

)
= Qm

(
αm−1
βm−1

)
(3.27)

to compute the accumulated rotation for each time step with the general initial
spinor Ψ0. The initial Ψ0 can be found assuming no rotation φ = 0 and an initial
magnetization along the z-axis n = (0, 0, 1)T resulting in

Ψ0 =

(
a0
b0

)
=

(
1
0

)
. (3.28)

The Pauli matrices can be further used to compute the magnetization components for
a given spinor Ψ with

Mx = Ψ?σxΨ, My = Ψ?σyΨ, Mz = Ψ?σzΨ. (3.29)

Alternatively, this can be done for the transversal magnetization defining

Mxy = Ψ?(σx + iσy)Ψ. (3.30)

The final Cayley-Klein parameters α and β can be then used to describe the overall
impact on an arbitrary initial magnetization in the axial representation byMxy(+)

M?
xy(+)

Mz(+)

 =

 (α?)2 −β2 2α?β
−(β?)2 α2 2αβ?

−(αβ)? −(αβ) αα? − ββ?

Mxy(−)
M?

xy(−)
Mz(−)

 , (3.31)

with Mxy being the transversal magnetization and M?
xy being the complex conjugate

transversal magnetization before (−) and after (+) the rotation. Besides mathematical
simplifications (only 1 constraint in SU2 compared to 6 constraints in SO3) [23] the
rotation in the spin domain allows an elegant description of important RF cases
such as excitation, inversion and refocusing by means of α and β. For instance, the
refocusing profile for an initial magnetization M = (0, M0, 0)T can be described
by Mxy = iM0[(α

?)2 + β2] (without crushers) or Mxy = iM0β2 (assuming perfect
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Figure 3.2: Block RF pulses (Row 1: π/8 and Row 2: π/2 with the Fourier transform (FFT) and spin
domain (SD) solution using rotation matrices. For neglected relaxation the solution of the
SD rotation matrices is numerical exact.

crushers). See Chapter 5.1 and Table 5.1 for more parameter relations and [23], [66]
for a more rigorous derivation.

Figure 3.2 compares the results of the Fourier transform with the results of the
rotation matrices in the spin domain for two rectangular RF pulses (π/8 and π/2).
While both results of the low flip angle pulse are valid, the Fourier relation fails for
larger tip angles where the magnetization clearly changes. Then, an error between
the Fourier transform approximation and the Bloch equations occurs. Nevertheless,
the RF design up to roughly 60 ◦ works surprisingly good.

3.2 Including relaxation

The fully time dependent Bloch equations (Eq. 2.41) including relaxation effects
are a coupled system of linear differential equations with non-constant coefficients.
Again, an analytical solution only exists for special cases, see Section 2.5 and [8],
[10]. Assuming piecewise constant RF and gradient fields, the Bloch equations, see
Eq. 2.41, reduce to a coupled system of linear differential equations with constant
coefficients at each temporal point. For such differential systems exact analytical and
approximative numerical solutions can be found.
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The Bloch equations in the rotating frame are given by Eq. 2.33. For piecewise
constant external fields the Bloch equations are now a set of differential equations
with constant coefficients in each time point. If the system matrix A further becomes
a diagonalizable matrix, a calculation of the analytical solution in each time step τ
would result in

M(t) = (Mm−1 + A−1
m b)eAmt − A−1

m b, (3.32)

with Mm−1 being the solution of the previous time step or the initial condition M0

and Am being the piecewise constant system matrices for the uniformly discretized
time interval [68], [69]. There are numerous ways to calculate the matrix exponential
eAmt, refer to [70]. However, if A is not diagonalizable, the matrix exponential can
not be computed analytically. To overcome this hurdle, the piecewise constant Bloch
equations can be solved using a case analysis to find an exact analytical solution by
computing the eigenvalues and eigenvectors for each time step. Different cases arise
from the calculation of the eigenvalues using Cardano’s formula. The homogeneous
solutions are solved analytically for the different cases adding the constant, and in
all cases the same, particular solution yielding the full solution of the differential
equations. This analytical approach results in an exact solution of the Bloch equations
for piecewise constant B fields. For more details the reader is refer to [68].

Another approach to solve ordinary differential equations is to compute a numerical
solution. Besides potential numerical stability problems, the use of numerical single
and multi-step methods is associated with numerical errors. The ordinary Bloch
equations dM/dt = f (t, M) can be solved with a direct application of the backward
Euler method to update the magnetization for each discrete time point τ with an
approximated integration of the differential equations by the rectangle method. In
combination with the Bloch equations however, the backward Euler was shown to be
not energy conserving thus resulting in loss of magnetization over time. Therefore it
should not be used for simulation purposes [68].

A higher order approximation of the integration can be achieved by a combination of
implicit and explicit Euler schemes which results in the Crank-Nicolson method. Its
approximation is based on the trapezoidal rule and has a second order convergence in
time. Compared to backward Euler, the Crank-Nicolson method is energy conserving
and can be used for an efficient numerical Bloch simulation. In the context of high
off-resonance terms it should be noted that this method leads to numerical phase
errors of the transversal magnetization [68], [71]. A higher order numerical solution
can be computed using different Runge-Kutta integration methods that reduce the
numerical error, but lead to significantly higher computation times.

Alternatively, the full Bloch equations can be approximated by an alternating series of
rotation matrices followed by exponential scaling to model relaxation effects according
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to [53], [60], [62], [72]. The relaxation effects are typically incorporated by a diagonal
matrix with exponential dampening factors resulting in

Rrelax(T1, T2) =

e−τ/T2 0 0
0 e−τ/T2 0
0 0 1− e−τ/T1

 , (3.33)

describing the pure relaxation due to T1 and T2 for the duration τ. Together with the
rotation matrices, introduced in Section 3.1, the evolution of the magnetization vector
for a short time period τ with constant external fields can be described by

Mm+1 = Rrelax(T1, T2)R(B)Mm. (3.34)

A more extensive derivation of the different matrices is given in [53]. It should be
noted, that in contrast to the above introduced model that splits relaxation and
rotation, relaxations happens simultaneously with the rotation on the magnetization.
Therefore, the use of separate rotation matrices is always associated with a splitting
error. This error can be reduced by finer temporal discretistion or a more sophisticated
splitting scheme, for instance a symmetric or higher order splitting compared to the
asymmetric splitting scheme presented in [53], [60], [62]. The analysis of different
numerical and analytical Bloch solvers was investigated in [68].
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Although there is a wide range of NMR and MRI applications such as material
research [73]–[75], pre-clinical animal [76]–[80] or in vivo human imaging [81]–[84],
the fundamental hardware systems are very similar. A typical MR setting consists of a
very strong static magnetic field, shim coils to increase the spatial field homogeneity,
field gradient coils (optional for NMR) to perform spatial encoding, transmit/receive
RF coils and transmit/receive electronics [41].

Despite similar principles, a huge range of system relevant parameters require highly
specialized MR hardware [41], [85]. For instance, the field strength of the main magnet
ranges from 0 T [86] up to 10.5 T (in vivo MRI [21]), 45 T (DC NMR) or even 100 T
(pulsed NMR) [87]–[89]). Further, different bore diameters range from several mm
(NMR) up to 700 mm (in vivo MRI) for closed-bore systems or alternatively short-bore
or open-bore scanners [90], [91] impact the homogeneity and system performance.
Typical hardware parameters for each of the three MR modalities are summarized
in Table 4.1 [41]. In the following section, the focus is placed on human in vivo MR
systems whose system specifications are mainly limited by the larger volume and
field of view required to image whole body parts [41]. Specifically, the experimental
results shown in Section 5 are designed for 3 T human MR systems with the hardware
specifications listed in Table 4.2. The RF pulse design methods presented in Section 5,
can be easily adapted for other hardware specifications by changing the specific
hardware constraints to the desired system properties.

In addition to the hardware constraints listed in Tables 4.1 and 4.2 there are further
and less obvious hardware limitations that impact digitally sampled RF and gradient
waveforms. The digital waveforms have to be converted to analogue signals and be
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Table 4.1: Characteristics of the magnet, gradients, and RF coils in commercial systems, adapted and
modified from [41].

NMR MRI MRI
animal human

B0 in T 4.7− 23.5 4.7− 45 1.5− 10.5
ω0 in MHz 200− 1900 200–900 63.8–450
Gmax in mT m−1 25000 1000 25− 300
RF coil diameter in mm 1.3− 20 10− 60 100− 700
RF amplifier power in kW 1 4 0.5− 35
minimal RF duration in µs 1 5− 10 10− 50

Table 4.2: Hardware specifications of two 3 T human in vivo Siemens Magnetom MR scanners used
for the experimental implemetations presented in [1]–[3] and in the Appendix.

Skyra-XQ Prisma-XR

B0 in T 2.89 2.89
Gmax in mT m−1 43 80
Ġmax in mT m−1 s−1 200 200
bore diameter in mm 700 600
RF amplifier power (BC) in kW 29.7 16.2

amplified resulting in non-piecewise constant waveforms. More information on RF
and slice selective gradient amplifier imperfections is discussed in Section 4.3.

4.1 Experimental design

This chapter describes some typical experiments for the excitation and refocusing
of the magnetization in MRI. For the practical assessment of designed RF pulses
the interaction with the involved hardware components are of great importance and
should be also considered. Proton signals proportional to the net magnetization
and the relaxation times can be acquired after tilting the net magnetization from
its equilibrium state by an RF pulse close to the Lamor frequency. The precession
of the tilted magnetization around the main magnetic field emits a measurable RF
pulse with the Lamor frequency. Based on first insights by Bloch [9], Purcell [92]
and Bloembergen [93] with continous wave NMR experiments this phenomenom
was investigated in Hahn’s experiment with pulsed NMR techniques [94] resulting
in the first FID sequence. For MR imaging, we are additionally interested in the
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spatial origin of the NMR signal, which requires a spatial encoding. This encoding
can be separated into slice selection and an additional in-plane encoding [8], [23],
[50], [51].

In general, tipping the magnetization out of equilibrium results in an electromagnetic
induction of a signal in the receiver coil. Receiver coils have to be placed perpendicular
to the main magnetic field along the z-axis and the induced signal is recorded as the
sum of the transversal magnetization of all spins in the range of the receiver coil. The
easiest MR sequence is therefore the generation of a FID. After the excitation RF pulse
is turned off, the induced time-domain signal is digitalized and a Fourier transform
can be applied to compute the NMR spectrum. Assuming an ideal RF receiver with
no noise and uniform receive sensitivity, the received and with the Lamor frequency
ω0 demodulated signal and neglected relaxation terms is given by

s(t) =
∫∫∫

Mxy(r, 0)e−θ(r,t)dr, (4.1)

with θ(r, t) = −
∫ t

0 ∆ω(r, t′)dt′ being the accumulated phase of the intended or
unwanted inhomogeneous B0 field. The spatial location is summarized by r =
(x, y, z)T. For the non-selective case where no gradient is present, the static field is
assumed to be homogeneous, thus resulting in no spatial phase differences. In reality,
the FID signal decays with T?

2 since field inhomogeneities increase the dephasing of
the transversal magnetization [31]. The static field inhomogeneities summarized by
T′2 can be corrected by a second RF pulse applied to form a SE [94].

Spatial selection is achieved by a combination of frequency selective RF pulses and
slice selective gradient shapes. This has the advantage, that only spins in a certain
slice or multi-dimensional object are tipped and therefore contribute to the overall
signal, while other spins remain unchanged due to spatial off resonance. This enables
sequential multiplexing of the slice selective acquisition to increase temporal efficiency
and to design sequential multi-slice sequences. This should however not be confused
with the SMS approach [95]. The frequency selectivity or bandwidth of RF pulses is
used in combination with spatially dependent slice selective gradients to map the
frequency to distinct spatial positions by a variation of the magnetic field and the
Lamor frequency, see Eq. 2.5. This relation can be easily described by

Gs =
2π∆ f
γ∆z

, (4.2)

to find the required amplitude of a constant slice selective gradient Gs in mT m−1 to
map the bandwidth ∆ f to the spatial thickness ∆z. The design of the slice selective
gradient therefore would ideally result in rectangular waveforms. Besides the maximal
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Figure 4.1: Schematic RF and slice selective gradient shapes with ramp-up and ramp-down periods
(Tr) together with amplitude contraints B1,max and Gs (left) and the relation of the ideal
spatial extension of the slice selective gradient amplitude Gs.

gradient strength Gs,max the slew rate of the slice selective gradient Ġs = ∆Gs/τ limits
the minimal achievable rise time Tr, see Tables 4.2, 4.1. The additional ramp up and
ramp down segments result in trapezoidal gradient shapes and extend the minimal
echo time (TE). Figure 4.1 visualizes a typical trapezoidal slice selective gradient and
the scaling of the frequency selectivity. It should be noted, that a scaling of the slice
selective gradient may violate the slew rate constraint and the rise time may have to
be increased. Figure 4.1 assumes that there is a linear slice selective gradient over the
whole spatial domain. In reality the linearity is violated which results in a mismatch
of the spatial encoding during RF application in the context of off-isocenter or SMS
imaging and in k-space encoding [39].

The spatial in-plane encoding is typically done after the RF pulse application and
can be assumed to be independent of the RF excitation. Similar to slice selection,
spatially dependent gradients change the phase of the spins as a function of their
location with respect to the isocenter. This phase difference efficiently encodes a
multidimensional dataset which can be transformed back to the spatial domain by
using the Fourier transform according to the k-space formalism. There are numerous
different strategies to acquire k-space data [52], [96], [97] realized by MRI sequences.
These MRI sequences can be adapted for different sequence parameters, including TE
and TR, THK, k-space and image matrix size, or read-out bandwidth and typically
consist of a sequence kernel that is repeated with different spatial encoding. Figure 4.2
shows a schematic sequence diagram of the two most basic MR sequence kernels
to acquire a simple GRE and SE images. Based on the fundamental ideas of GRE
and SE there are numerous multi-shot sequence variants to increase the acquisition
efficiency, for instance FLASH [98], SSFP [99] or TSE/RARE [100]. Additionally there
are single shot techniques such as EPI [101], [102] or HASTE [103] to acquire the
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Figure 4.3: Schematic block diagram of the MR experiment.

whole k-space and intermediate techniques, for instance segmented EPI [104] or TSE
and GRE combinations such as GRASE [105] to acquire large k-space parts. For a
more comprehensive discussion the reader is refer to [23].

4.2 Pulse sequence programming

To perform MR experiments, different hardware parts have to be controlled in a highly
synchronized and exact manner over a large range of signal frequencies and signal
intensities. Commercial MR systems therefore have pre-compiled MR sequences based
on C or C++ source code that can be set and modified via a graphical user interface.
The sequence parameters are translated to create time courses or waveforms for the
different MR hardware parts and are checked for validity prior to the experiment.
These discrete waveforms are converted and amplified by electronic circuits and
connected to the transmit/receive RF and gradient coils respectively. A schematic
overview of MR experiments is depicted in Figure 4.3 showing the interaction of
the sequence waveforms, MR hardware, signal acquisition and reconstruction to
visualize the acquired MR data. Besides software checks that may be circumvented by
exploitive programming, there are further experimental checks during runtime (SAR
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and gradient watchdog) to prevent a possible violation of safety or hardware limits.
The most common and relevant ones are listed in Table 4.3 for two MR systems.

MR vendors give researchers the opportunity to set up and test their own source code
which in general allows design of custom sequences and acquisition of preliminary
data, or to check simulations with different timings using custom RF pulse or slice
selective gradient shapes. The sequence programming environments and available
source codes differ a lot between the different vendors and although most vendors
argue that they offer an open source software environment, in practice their source
code is only available after signing specific research agreements which limits the
ability for rapid prototyping. Even with access to the source codes, the complexity of
the code and the sensitive software environments in combination with very limited
documentation and debugging capabilities often results in large time delays. Recently,
an open source framework for the development and execution of MR pulse sequences
(https://pulseq.github.io/) was proposed to overcome these hurdles. This tool
reads an open source file format and allows interpretation of MR sequences created
in MATLAB (The MathWorks, Inc., Natick, Massachusetts, United States) with the
open source MRI simulation (JEMRIS, http://www.jemris.org/, [58]).

The later presented numerically designed RF and slice selective gradient shapes are
experimentally validated with GRE and SE MR sequences on two 3 T MR scanners
(Magnetom Skyra-XQ and Magnetom Prisma-XR, Siemens Healthcare, Erlangen,
Germany). For this purpose, the C++ source codes (software versions IDEA VD13A
and VE11C) were modified to read external RF pulses and slice selective gradient
shapes and the encoding was changed to measure the slice selection direction. The
following paragraph therefore focuses only on the vendor and scanner specific
limitations.

4.3 RF pulse and slice selective gradient limitations

The layout of the RF and selective gradient shapes is relatively simple and excellently
fit to the assumption of piecewise constant B-fields, see Section 5. The discrete
waveforms, including RF and gradient shapes, are evaluated and matched to a
common time grid defined by the minimal raster time (10 µs for the used MR system,
see Table 4.3). For single transmit systems, the RF pulse shape can be defined by a
sequence of complex piecewise constant blocks with a distinct magnitude and phase.
Figure 4.4 shows an optimal SMS RF pulse and slice selective gradient shape [3]
normalized to additionally fulfill the software constraints shown in Table 4.3.

32

https://pulseq.github.io/
http://www.jemris.org/


4 MR hardware and practical aspects

0

0.5

1
|R

F
| 
in

 a
.u

.

0

1

2

3

a
n
g
le

(R
F

) 
in

 r
a
d

time in ms

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.5

1

g
ra

d
ie

n
t 
in

 a
.u

.

Figure 4.4: Optimal SMS RF pulse (Row 1 shows the magnitude and Row 2 the phase) and slice
selective gradient shape used for the experimental validation in [3].

Conventional RF pulses are typically computed at runtime by evaluation of analytical
functions, for instance Hamming filtered SINC or Gauss functions, see Section 5, for
a desired pulse duration, number of sample points and RF bandwidth.

The discrete RF pulse shapes are scaled at runtime depending on the normalized RF
pulse amplitude integral ARF, pulse duration T, desired flip angle φ and temporal
discretization to compensate coil loading effects. The amplitude integral ARF is
defined as

ARF =

√√√√( N

∑
m=1

rm cos θm

)2

+

(
N

∑
m=1

rm sin θm

)2

, (4.3)

where N is the number of sample points, rm is the normalized RF pulse magnitude and
θm is the phase of each time point m. It should be noted that the Eq. 4.3 is independent
of the temporal discretization. The temporal settings are defined together with the
desired flip angle by the MR sequence.

The actual RF pulse waveform is amplified at runtime with respect to a reference scan
performed at the beginning of each MR experiments. This reference scan calibrates
the RF transmitter to achieve a 180 ◦ flip angle with a rectangular RF pulse with a
duration of T = 1 ms. This calibration step compensates field fluctuations caused by
coil loading which depends on the coil, but also on the geometry and material of the
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used phantom or body part [106], [107]. Therefore, numerically designed RF pulses
are normalized to 1 and scaled with the experimentally determined reference scan.
Special care has to be taken to define consistent discretisation, flip angle and pulse
duration in the MR sequence.

For real valued RF pulses the scaling is straight forward and can be done analogous
to conventional RF pulses via the RF pulse amplitude integral given in Eq. 4.3. For
phase modulated RF pulses, however, for instance SMS pulses with an even number
of symmetric slices, the amplitude integral computation, see Eq. 4.3 would become
close to zero. This is a result of RF symmetry and would result in a wrong and far
too large transmit voltage factor, hence producing a wrong field in coil. This can be
compensated by relating B1,max directly to the reference scan by a manual calculation
of the amplitude integral

ARF,V =
Nφ

360TγB1,max
, (4.4)

with the number of discrete samples N, the flip angle φ in ◦, the pulse duration T, the
gyromagnetic ration γ and the maximal B1 magnitude B1,max. Based on the linearity
assumptions of the RF amplifier and the reference scan performed in the calibration
step before MR data acquisition.

Arbitrary RF pulse shapes (normalized magnitude and phase vector) can be imported
to MR sequences in different ways. The most straight forward and safest with respect
to reproducibility and validity is a direct numerical import into the sequence source
code. This comes with the hurdle that a change of the RF pulse requires a sequence
compilation, a lengthy and error-prone step. Higher flexibility can be achieved by
storing the RF pulses in external RF pulse containers or supply them in exchangeable
external text or binary files that allows to change RF pulses independently to the MR
sequence. It should be kept in mind that for Siemens systems RF pulse containers and
their shapes are loaded and set up during the booting of the MR scanner. Changing an
existing RF pulse during runtime therefore does not change the RF pulse and requires
a scanner reboot. The most flexible form for rapid prototyping is the inclusion of
external files containing the RF and slice selective gradient vectors. These files can be
automatically created with an appropriate header containing additional information
such as the amplitude integral, number of sample points or on the timing.

In order to align the RF pulse with other sequence objects, for instance the slice
selective gradient or additional phase objects to perform RF spoiling or off-resonant
frequency shifts, the start and end-time of the RF pulses have to match the gradient
raster time of the MR system (for Siemens: 10 µs). The minimal raster time of RF
pulses of 25 ns however is much smaller, which would allow to use much finer
resolved RF pulses. The piecewise constant normalized slice selective gradient shape
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can be included to the source code analogous to the RF pulse. Figure 4.5 exemplary

0

0.5

1

A
D

C

0

200

400

|R
F

| 
in

 V

0

2

4

R
F

 p
h
a
s
e
 i
n
 r

a
d

-20

0

20

G
x
 i
n
 m

T
/m

-20

0

20

G
y
 i
n
 m

T
/m

time in ms

0 5 10 15 20 25 30 35 40

-20

0

20

G
z
 i
n
 m

T
/m

Figure 4.5: Modified SE sequence with the phase encoding in slice direction to directly encode and
measure the refocused slices. The diagram shows one k-space line and the optimizedSMS
refocusing pulse shown in [3].

shows a modified SMS SE sequence with spoiler gradients before the excitation
and crusher gradients before and right after refocusing with a time optimal MB3
RF refocusing pulse, for details see [3]. For displaying purposes only one of the
128 encoding lines is shown. The whole sequence duration is roughly 15.5 s with
a readout bandwidth of 130 Hz per pixel and a matrix of 128 × 128 for a FOV of
300 × 300. It should be noted that the RF pulse is scaled to a virtual reference voltage
of 340 V. The actual value in the experiment depends on the used coil and the coil
loading.

In contrast to the RF pulse, the normalized slice selective gradient waveform can be
directly scaled using the maximal gradient strength. Special care should be given
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not to violate the minimal raster time and the maximal amplitude and slew rate
constraints of the slice selective gradient amplifier. These parameters are evaluated
before and during the actual MR scan, thus presenting a potential pitfall. The used
RF pulse and slice selective gradient shapes have a strong influence on the sequence
timing and the validity of the sequence. Therefore, validity should be checked to
prevent hardware errors that may result in scanner reboots. There are different
limitations that are specific for the software and hardware version and these influence
the RF pulse design. Table 4.3 summarizes the most important software and hardware
limitations for Siemens IDEA VD13A/VE11C and the Siemens Skyra-XQ 3 T MR
scanner used later on. The change of the read-out gradient from the phase encoding

Table 4.3: Overview of the important software and hardware (Skyra-XQ) constraints for MR sequence
programming. Ns denotes the maximal number of discrete sample points, rm the normalized
RF magnitude, θm the RF phase, Gs,m the normalized slice selective gradient amplitude, τRF
the RF raster time and τGs the gradient raster time.

software constraints hardware constraints

Ns 8192 min τRF 25 ns
rm 0− 1 min τGs 10 µs
θm 0− 2π min RF hold duration 8 µs
Gs,m −1− 1 min Gs rise time 5.55 µs mT−1 m−1

max Gs 24 mT m−1 max Gs 43 mT m−1

max Ġs 180.18 T m−1 s−1 max Ġs 200 T m−1 s−1

min τRF 25 ns max RF power 29.7 kW
min τGs 10 µs max RF bandwidth 800 kHz

to the slice direction allows measurement and visualization of the excited slices [3].
The result is a phase encoding along the slice direction, thus obtaining the spatial
dependent signal.

Besides obvious imperfections such as B0 and B1 variations or non-linear gradients
across the field of view [23], [25], [108], the time varying RF and slice selective
gradient shapes may further deviate from the theoretical waveforms. The slope of
the RF and slice selective gradient shapes are implemented as piecewise constant
functions, see Section 4.2, which cannot be exactly realized by the amplifiers and
coils due to an inherent low pass characteristics. Furthermore, the RF and gradient
amplification have different frequency content and power which makes them not
directly comparable. For an extensive review the reader is referred to [109] for RF
and [39] for gradient amplification.

The discrete RF signals are converted into analogue signals and modulate the ampli-
fied RF-transmitter signal in order to create RF fields in the µT range. For human in
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vivo MR systems the RF power lies in the range of 0.5− 35 kW [109]. RF amplifier
imperfections may alter the discrete pulse amplitude and phase slopes, thus resulting
in potential slice profile degradation and alterations. Most of these RF amplifier
non-linearities can be corrected by a pre-distortion of the RF shape [110]. The use of
highly modulated complex RF pulses however can result in unwanted slice profile
artifacts, whereas real valued RF pulses create less artifacts [111]. In general, the
effective RF bandwidth outperforms the bandwidth achievable by the gradient system
and alterations on the RF shape should be minimal [3].

The gradient system on the other hand typically has much more restricted bandwidth
limitations in the range of several tenths of kHz thus potentially impacting rapidly
varying slice selective gradient slopes. These limitations results from the need for
higher currents to produce the gradient waveforms [112] and eddy current effects
[113], [114]. The overall alterations can be measured and modeled by the gradient im-
pulse response function (GIRF) [115]–[117]. It should be further kept in mind that the
gradient bandwidth is highly vendor specific and time varying gradient forms result
in different alterations on different systems [3], [111], [115]. The actually produced
slice selective gradient waveform Gs,GIRF(t) can be computed by a convolution

Gs,GIRF(t) = Gs(t) ∗ GIRF(t), (4.5)

of the ideal slice selective gradient shape Gs(t) and the measured or modelled
GIRF. The impact of the GIRF is comparable to a low-pass effect with a runtime
delay resulting in a smoothed and time shifted slice selective gradient shape which
alters the slice profile accuracy. However, knowledge of the GIRF allows iterative
correction of the RF pulse [118] for non-ideal gradient distortions. The GIRF can be
also incorporated directly in the OC pulse design [119], see Section 7. This allows to
use the OC based constrained joint design of RF and slice selective shape for systems
with a limiting gradient amplifier bandwidth [119].
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RF pulses and gradients are key factors and essential for most MR experiments. RF
pulse design summarizes how to compute waveforms for the RF and gradient system
that change the magnetization from a given initial state to a desired state with respect
to different parameters, including profile accuracy, amplitude restrictions and safety
constraints. This work mainly focusses on one dimensional slice selective RF pulses
for single transmit to excite or refocus one dimensional slice profiles.

This section discusses different approaches to design RF pulse and slice selective gra-
dient shapes for single- and SMS applications. For simplicity reasons, the following
sections use the rotating frame of reference. This implies, that for experimental appli-
cation, the RF pulses have to be modulated with the Lamor frequency with respect
to the main field, see Eq. 2.5. Figure 5.1 shows this relationship for a rectangular RF
pulse.

The focus of this thesis lies on the design of RF and slice selective gradient waveforms
via optimal control theory, it’s application to SMS imaging and the experimental
validation. The first part of this section introduces and compares different RF pulse
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Figure 5.1: RF pulse in the rotating frame of reference (Row 1) and in the laboratory frame of reference.
Please note, that the magnitude remains unchanged.

design methods that were used to initialize and benchmark the optimized results
presented in [1]–[3] and the Appendix. The main results of these works are introduced
and summarized at the end of this section.

5.1 RF pulse categories

The most basic RF pulses can be summarized in four main categories: excitation,
inversion, saturation and refocusing [23]. The description and visualization of RF
pulse categories is straight forward and can be formulated in the magnetization [120]
or spin domain [66]. Although the spin domain description with the Cayley-Klein
parameters appears to be more complicated, elegant transformations exist to assess
the main RF classes and transform their result to the other domain respectively [66].
These relations and transformations are summarized in Table 5.1. It should be noted,
that the perfectly crushed refocusing scenario, where the FID of refocusing pulse
is assumed to be perfectly de-phased, can be easily described in the spin domain
by setting α to zero such that it does not contribute to the transverse magnetization.
The later described optimal control (OC) approaches use the magnetization domain
formulation for excitation [1] and the spin domain formulation for perfectly crushed
refocusing [2], [3], see also the Appendix. Figure 5.2 gives a graphical overview of
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Table 5.1: Response of the Magnetization to commonly used RF Pulse Types in Terms of the Cayley-
Klein Parameters, adopted from [23]

Initial Condition
Pulse Type (Mx, My, Mz)T Final state

Excitation or saturation (0, 0, M0)
T Mx = 2M0Re(αβ?)

My = 2M0 Im(αβ?)
Mt = 2αβ?

Inversion (0, 0, M0)
T Mz = M0(1− 2|β|2)

Refocus (M0, 0, 0)T Mt = M0((α
?)2 + β2)

Refocus (perfect crusher) (M0, 0, 0)T Mt = M0β2

φ
B1

B0

y'

x'

z

M0

M φB1
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y'

x'

z
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M

B1

B0

y'
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z
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M(�2)

M(�1)�

excitation inversion refocusing

Figure 5.2: Most common RF pulse categories (excitation, inversion and refocusing) and their desired
trajectory of the isocenter magnetization.

three RF pulse categories. For simplicity reasons, this is shown only for one perfectly
on-resonant spin in the isocenter.

The concept of one dimensional slice selective RF pulse design can be easily extended
to multiple dimensions, see [23], for instance to design RF pulses that excite, refocus
or saturate two or three dimensional shapes [42]–[49]. Analogous, this idea can be
further extended to compute spatially spectral RF pulses [121]–[123]. A relatively
simple and direct extension to the basic pulse categories introduced above are com-
posite RF pulses [23], [38], [110], a series of non-selective RF pulses with or without
varying phase that are commonly used in NMR applications, for instance broadband
excitation [124], WALTZ-16 [125] decoupling, or saturation at distinct frequencies
[38], [126]. Moreover, special RF classes developed over time, such as velocity com-
pensating excitation [127], velocity selective excitation [128] or myocardial tagging
(SPAMM [129] and CSPAMM [130]) by an application of alternating non-selective RF
blocks and slice selective gradient blips. This alternating application scheme and the
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corresponding replicating excitation pattern form the fundamentals of the PINS [131]
method developed for SMS imaging. A completely different RF pulse category are
adiabatic RF pulses [23], [38], [110]. Their main advantage is an inherent B1 robustness
with the hurdle of large RF power requirements. Since adiabatic pulses are not the
main focus of this work, the reader is referred to [23], [110] for additional information
on this topic. Besides the RF pulse type, parallel transmit (pTx) [132]–[135] allows
the use of independent RF channels to directly address B1 and local SAR issues
[136]–[139].

RF pulses alter the magnetization from a given initial magnetization as close as
possible to a desired magnetization (for instance from M0 = (0, 0, M0)

T to Mdes =
(0, M0, 0)T for an ideal 90 ◦ excitation RF pulse). This process can be defined in
the frequency or spatial domain for non-selective and slice selective applications
respectively. Conventional RF pulse design based on analytical RF waveforms typically
enables choice of only a limited number of parameters, for instance the pulse duration
T, nominal time bandwidth product (TBWP), slice thickness (THK) defined on the
full width at half maximum (FWHM), or maximal error deviations (e1 and e2). The
TBWP of SINC based pulses can be approximated

TBWP = T∆ f (5.1)

with the pulse duration T and the bandwidth of the main lobe ∆ f . Alternatively, the
TBWP is directly given by the number of zero crossings [23].

RF pulse design based on optimization methods further allows assessment and
predefinition of more parameters. For instance, the spatial domain can be treated
point-wise in space to define a desired magnetization for all spatial points. Figure 5.3
summarizes four different design approaches for rectangular, SINC, SLR and opti-
mization based RF pulse design. Additionally to these state constraints, optimization
based methods typically allow to further define limitations on the RF pulse and slice
selective gradient shape, for instance the maximal amplitudes or time derivatives
[2], [3]. It should be noted, that most RF pulse methods typically assume a constant
slice selective gradient while OC based methods, presented in Section 5.6, enable
simultaneous design of the RF and slice selective gradient.

5.2 Spatial non-selective RF pulses

Even in the most basic NMR experiment, the creation of a FID signal without a spatial
varying gradient, RF pulses typically can not be analytically designed. There are
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Figure 5.3: Parametrized and pointwise discription of the desired magnetzation in slice selection
direction for a rectangular (a), SINC (b), SLR (c) and optimization (d) based RF pulse
design method.

two problems which prevent an analytical solution, a coupling of the transversal
and longitudinal component and inherent relaxation effects. However, neglecting
the relaxation terms decouples the Bloch equations. The additional assumptions
of a perfectly homogeneous B0 field and an absent slice selective gradient, allows
for a geometric description of the rotating magnetization vector, see Section 2.3.
To visualize the off-resonance behaviour of spatial non-selective RF pulses, the
assumption of a constant slice selective gradient amplitude maps the spatial variable
z to the corresponding frequency f (z). The frequency can be computed as

f (z) =
γ

2π
Gsz, (5.2)

with the gyromagnetic ratio γ/(2π) of the used nuclei in MHz T−1, the time constant
amplitude of the slice selective gradient Gs in mT m−1 and the spatial position z
in m. It should be noted, that this relies on the assumption of a spin ensemble
with a uniform frequency distribution, according to Eq. 5.2. In the following section
only rectangular pulses are discussed. For a more extensive comparision of non-
selective RF pulses, including composite pulses, adiabatic pulses (for instance half-,
full-passage or BIR pulses) or optimized block pulses, the interested reader is referred
to [140].
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Rectangular RF pulses are fully described by the B1 amplitude, the Lamor frequency
and the pulse duration T resulting in the flip angle, see Eq. 2.26 and Section 2.3.
A simple example can be found using the gyromagnetic ratio of hydrogen protons
γ = 2.6731 × 108 rad s−1 T−1, a pulse duration T = 1 ms and a desired flip angle of
π/2 to compute the required B1 amplitude according to

B1 =
φ

γT
= 5.876µT. (5.3)

In order to minimize relaxation effects and the minimal achievable echo time, the RF
pulse duration should be typically as short as possible.

Although an infinitely high and short rectangular RF pulse would be desirable, the RF
power amplifier constraints limit the achievable maximal field strength and therefore
limit the minimal RF duration. See Section 4 for the description of how the B1 field is
connected to the voltage of the RF amplifier.

Two rectangular RF pulses (π/8 and π/2) are shown together with a two-sided FFT
and Bloch simulations in Row 1 of Figure 3.2. It can be seen, that for this small
tip angle RF pulse both simulations result in comparable slice profiles. However,
it should be noted that although there is no clear visual difference between these
results, they are not numerically identical. Using the small tip angle approximation,
rectangular RF pulses result in SINC-shaped excitation profiles whose full half width
maximum and zero crossings are defined by the pulse duration and the FWHM can
be approximated by 1.21/T [23]. For the shown π/8 pulse this results in a FWHM
of 10.37 kHz which fits nicely to the simulations given in Figure 3.2. The frequency
selectivity of non-selective pulses is mainly determined by the pulse duration, the
main parameter for the desired magnetization, see Figure 5.3, and the RF waveform.
The prominent side-lobes of rectangular pulses can be suppressed using Gaussian
pulses, see Section 5.3 with the drawback of lower frequency selectivity.

Increasing the flip angle to π/2 for the same maximal B1 amplitude (B1,max = 12.5
µT) requires to increase the pulse duration T = 0.47 ms to be 4 times longer. The
π/2 RF pulse and the corresponding forward FFT simulations are shown in Row 2

of Figure 3.2. Now, the small tip angle approximation is violated and a significant
difference between FFT and Bloch simulations is the result. Compared to the π/8
example, the longer pulse duration additionally leads to a more selective excitation
profile. The small tip angle approximation results in a FWHM of 1.3 kHz, while
the Bloch simulation shows a merely smaller FWHM of roughly 1.1 kHz. Although
rectangular RF pulses could be also used for slice selective applications, their poor
slice profile limits the practical value for slice selective applications. Nevertheless,
they are commonly used for spatial non-selective NMR and MRI applications.
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5.3 Spatial selective RF pulses

To achieve a spatially selective RF pulse, a slice selective gradient is applied simulta-
neously with the RF field.

All spins in the object of interest are acquired simultaneously during signal acquisition
and a de-phasing across the slice selection direction would results in a reduced FID
signal. Therefore, the phase across the slice is an important parameter to characterize
slice profiles. Slice selective RF pulses for conventional GRE or SE imaging preferably
tilt the magnetization uniformly across the slice selection axis. However, specialized
applications such as peak power reduction [141], [142] may benefit from a de-phased
slice profile. Using the complex description of the magnetization the phase θ can be
computed with

θ(z) = tan−1 Im(Mxy(z))
Re(Mxy(z))

, (5.4)

for the spatial position z. In the context of slice selective RF pulses, the use of a
slice selective gradient inherently results in a de-phasing of the magnetization in the
transversal plane. For linear-phase RF pulses, for instance SINC (Section 5.3), Gauss
(Section 5.3) or SLR (Section 5.3) based RF pulses, the accumulated phase dispersion
can be corrected with a re-phasing gradient. The required gradient area depends on
the isodelay [23] of the RF pulse. For symmetric pulses the isodelay is typically half
the RF duration, for SLR or optimized RF pulses the iso-delay may further depend
on the flip angle. Besides linear-phase RF pulses, the SLR design method allows
computation of maximal-phase with a larger iso-delay or minimal-phase pulses with
a smaller iso-delay [43]. Although these pulses typically suffer from a worse slice
profile, their phase properties allow for a direct use in saturation or in the context
of minimal TE since less refocusing area is required. Figure 5.4 summarizes a linear-
phase SLR pulse without (Column 1) and with (Column 4) a matched slice selective
re-phasing gradient. Column 2 shows a maximal-phase SLR pulse, intended for the
use of saturation with an even higher de-phasing, compared to Column 1. Column
3 shows a minimal-phase SLR pulse where a reduced refocusing area is required,
thus enables reduction of the TE. The minimal- or maximal-phase pulses should not
be confused with non-linear-phase pulses such as quadratic [142] or quasi random
phase RF pulses. In contrast to the residual linear-phase, a non-linear-phase cannot
be corrected by a slice selective gradient. However, the use of two consecutive RF
pulses with the same non-linear-phase results in a phase cancellation and allows the
use of non-linear pulses, for instance in double refocused diffusion or matched spin
echo sequences [143], [144].
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Figure 5.4: Overview of slice selective SLR based RF pulses with constant slice selective gradient
shapes and the Bloch simulations. Column 1 shows the linear de-phasing that is corrected
in Column 4 with a slice selective re-phasing gradient. Column 2 shows a maximal-phase
RF pulse for saturation and Column 3 shows a minimal RF pulse with decreased gradient
refocusing lobe for minimal TE purposes.

SINC pulses

The Fourier transform of a rectangular function in one domain results in an infinite
SINC-function in the transformed domain. Assuming the small tip angle approxima-
tion, SINC-shaped RF pulses therefore excite rectangular slice profiles. The RF pulse
shape B1(t) can be easily defined using the SINC function:

B1(t) =

{
sin πt

πt if t 6= 0,
1 if t = 0,

(5.5)

using t = −TBWP: τ :TBWP to compute a B1(t) with the intended frequency
selectivity based on the TBWP and the discretization step τ. However, there are
two problems associated with the use of SINC pulses. First, the aforementioned
assumption only holds for small flip angles. Second, the SINC function is defined for
an infinite temporal duration which is not feasible due to limited TE and RF amplifier
requirements. Since the RF area defines the flip angle in the iso-center, the limited
B1 amplitude results in longer RF durations. This results in an inherent trade-off
between frequency selectivity and pulse duration.
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The selectivity of a SINC pulse is defined by the dimensionless TBWP, see Eq. 5.1.
Together with a limited B1,max, the choice of the TBWP is a crucial decision that
strikes a balance between RF pulse duration and slice profile fidelity. Similar to
rectangular block pulses, see Section 5.2, there are useful approximations to define
the bandwidth or slice profile thickness with respect to the FWHM of SINC based
RF pulses [23] . As an example, Figure 5.5 shows a SINC based RF pulse with
3 zero crossings, that correspond to TBWP = 3. The pulse duration is scaled to
T = 2.644 ms to perform a 90 ◦ excitation with B1,max = 12.5 µT, see Eq. 2.25 For
a time-constant slice selective gradient, the slice thickness THK can be chosen by
scaling the amplitude of the slice selective gradient. According to Eq. 4.2 a THK of 5
mm results in Gs = 10.461 mT m−1, which is confirmed by the Bloch simulations in
Figure 5.5. Jump discontinuities at the beginning and end of the RF pulse result in
clearly visible and severe ripples in both the slice profile and the out-of-slice profile.
This effect is similar to leakage in digital signal processing and can be reduced by
filtering the RF waveform with proper window functions such as Hamming or Hann
windows. Column 2 of Figure 5.5 summarizes the effect of an Hamming window
(shown dotted) on the SINC based RF pulses shown in Column 1. It can be clearly
seen, that the unwanted ripples are reduced with the drawback of a simultaneous
reduction of the slice profile transition steepness or TBWP. This is strongly connected
to digital signal processing and results in a trade-off between frequency selectivity and
leakage suppression. Nevertheless, and mainly due to their simplicity and analytical
description, windowed SINC functions are still the most used RF pulse shapes for
small flip angles in slice selective MR experiments.

Gaussian pulses

Comparable to SINC pulses, Gaussian pulses are another special case of analytical
RF pulse types that originate from the small tip angle approximation. Gaussian RF
pulses can be designed analytically by

B1(t) = B1,maxe−t2/(2σ2), (5.6)

with the time-vector t running from −T/2 to T/2 with T being the pulse duration
[23]. The variance σ2 is used to adjust the desired frequency selectivity. The Fourier
transform of a Gauss function is another Gauss function with a favourable smooth
decline of the slice profile.
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Figure 5.5: Overview of slice selective RF pulses designed with the Fourier approximation (Column
1 and 2) and SLR (Column 3 and 4). Column 2 shows a Hamming windowed version
(dotted line) of the pulse shown in Column 1 and Column 4 shows a VERSE’d version
(with prescribed gradient shape) of Column 3 respectively.

Shinnar–Le Roux algorithm

The SLR algorithm does not rely on the small tip angle approximation and can be
used for accurate large flip angle RF pulse design. It is formulated in the spin domain
with neglected relaxation terms and makes use of the hard pulse approximation, see
Section 3.1.3. Then, the rotation for each time point can separated for RF and slice
selective gradient as

Qm =

(
Cm −S?

m
Sm Cm

)(
z1/2 0

0 z−1/2

)
, (5.7)

with Cm = cos(γ|B1,m|τ/2), Sm = iei 6 B1,msin(γ|B1,m|τ/2) describing the effect of the
RF pulse and z = eiγGxτ describing the effect of the slice selective gradient G at the
spatial position x. Using Eq. 5.7, the recursion to compute the accumulated rotation,
see Eq. 3.27, becomes(

αm
βm

)
= z1/2

(
Cm −S?

m
Sm Cm

)(
1 0
0 z−1

)(
αm−1
βm−1

)
, (5.8)

47



5 RF pulse design

with the Cayley-Klein parameters αm and βm for each time step m. The definition of
two complex polynomials Am = zj/2αm and Bm = zj/2βm defines the forward SLR
transform (

Am
Bm

)
=

(
Cm −S?

mz−1

Sm Cmz−1

)(
Am−1
Bm−1

)
. (5.9)

Starting with (A0, B0)
T = (1, 0)T, see Eq. 3.28, the polynomials for the nth step An

and Bn are complex polynomials in z−1

An(z) = ∑n−1
m=0 amz−m,

Bn(z) = ∑n−1
m=0 bmz−m,

(5.10)

of order n− 1. The forward SLR transformation (Eq. 5.9) computes An(z) and Bn(z) of
an arbitrary piecewise constant RF pulse. For small tip angles the SLR transformation
can be reduced to the z-transform [66].

The idea leading to SLR based RF pulse design is to invert the forward SLR transform
and use two complex polynomials An(z) and Bn(z) to calculate the RF pulse that
creates these polynomials. The inversion of Eq. 5.9, or inverse SLR transform, is given
by (

Am−1
Bm−1

)
=

(
Cm S?

m
−Smz Cmz

)(
Am
Bm

)
=

(
Cm Am + S?

mBm
z(−Sm Am + CmBm)

)
. (5.11)

It can be proven [66] that the relation

Bm,0

Am,0
=

Sm

Cm
=

ieiθmsinφm/2
cosφm/2

, (5.12)

can be used to compute the RF waveform for each time point

B1,m =
1

γτ
φmeiθm , (5.13)

with the rotation angle φm and the RF phase θm

φm = 2tan−1 | Bm,0/Am,0 |,
θm = 6 (−iBm,0/Am,0),

(5.14)

where Am,0 and Bm,0 are the lowest order of the polynomials.

The SLR based RF pulse design consists of two main steps. After the design of
the filter polynomials Bn(z) and An(z), the inverse SLR transform computes the
corresponding RF pulse.
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To design a 90 ◦ excitation pulse, the polynomial Bn(z) should be as close as possible
to an ideal rectangular slice profile with the in-slice amplitude for φ = 90 ◦

Bd(z = eiγGxτ) = i(nx + iny)sinφ/2 = isinφ/2 = i
√

2/2 (5.15)

and the out-of-slice amplitude for φ = 0 ◦

Bd(z = eiγGxτ) = isinφ/2 = 0. (5.16)

However, rectangular functions cannot be described exactly by the Bn(z) polynomial.
The goal is to find a polynomial approximation Bn(z) close to the ideal slice profile
which can be computed with different filter design methods including the Parks-
McClellan algorithm (equi-ripple error) or by a least squares approach [66]. It can be
shown that the FIR filter design parameters d1, d2, and the two cut-off frequencies for
pass- and stop-band directly relate to slice profile accuracy, frequency selectivity and
intended RF pulse category [66]. After Bn(z) has been designed, the magnitude of
the polynomial An(z) can be computed by

|An(z)| =
√

1− Bn(z)B?
n(z) (5.17)

using the magnitude constraint |An(z)|2 + |Bn(z)|2 = 1. In order to get low RF
energy requirements [23] the phase of the polynomial An(z) is typically set to fulfil a
minimum-phase solution. Finally, the corresponding RF pulse can be computed by the
inverse SLR transform of the polynomials An(z), Bn(z). Figure 5.6 gives an overview
of the different SLR design steps and shows the two polynomials An(z), Bn(z) and
the resulting RF pulse together with the corresponding profiles. The symmetric
SLR RF pulse results in a linear de-phasing across the slice direction that can be
recovered with a slice selective refocusing gradient. Other phase patterns can be
achieved choosing a non-symmetric (minimum and maximum phase) or complex
Bn polynomial. Column 3 of Figure 5.5 shows a representative SLR excitation pulse
(φ = 90 ◦, N = 256, T = 2.894 ms, TBWP= 3, d1 = 0.01/4, d2 = 0.01/

√
(2), linear-

phase, least squares filter design method) together with a constant slice selective
gradient and the forward Bloch simulation.

Although the overall RF pulse slope is similar to the SINC based RF pulses, the
slice profile is closer to the desired rectangular shape. Efficient digital filter design
methods allows rapid design of RF pulses and makes the SLR the gold standard for
large tip angle design with constant slice selective gradient and neglected relaxation
terms [66].
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Figure 5.6: Overview of the different stages of the SLR Pulse design for a 90 ◦ excitation pulse. The Bn
polynomial is designed with a least squares approach to fit to the desired slice profile Bd.
An is computed based on Bn with a minimal phase constraint. Both polynomials result in
the complex RF pulse using the inverse SLR transform. The results of the Bloch simulations
with corrected linear phase dispersion shows the final Mx and My components.

Additional RF design methods

In addition to the above described RF design methods further methods have been
proposed. These include RF pulse design with the continous or discrete inverse
scattering transform [145], [146] or the design of adiabatic RF pulses [23], [110], [140]
together with most of the design methods listed in Section 5.1.

Alternatively, RF pulse design problems can be formulated using optimization tech-
niques such as simulated annealing [147], [148], evolutionary approaches [149], [150],
neuronal networks [151] or optimal control theory [1]–[3], [47], [49], [120], [152]–[158].
For the ease of readability the description of the proposed OC methods are given in
Section 5.6. The underlying idea is to formulate a suitable functional and minimize it
by finding the external magnetic field, for instance the RF pulse or the slice selective
gradient waveform, based on the Bloch equations measured in different norms. The
main advantage of numerical optimization methods lies in its flexible formulation that
can be extended and adapted to many different applications with problem specific
functionals, for instance parallel transmit, SMS or multidimensional modelling, as
well as B1 and B0 robustness. Due to the accurate design model, these numerical
design methods typically lead to better magnetization profiles with the hurdle of
increased computational costs, thus in general preventing on the fly design, and
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more complicated numerical design. Nevertheless, for single transmit cases RF pulses
typically can be computed off-line and stored in a pulse library on the MR scanner
to be selected in the intended MR sequence. However, GPU parallelization has been
shown to reduce the computation time dramatically from the range of hours down
to several seconds [159]. This could be highly interesting in the context of parallel
transmit where RF pulses have to be optimized for a patient specific B1 transmit
map.

5.4 Variable-rate selective excitation

So far, the design of RF pulses is based on the assumption of no (Section 5.2) or a
constant spatially variable field gradient (Section 5.3). For neglected relaxation the
relation between RF amplitude and slice selective gradient can be exploited to reduce
the overall RF power requirements. This is known as variable-rate selective excitation
VERSE [160]. The reduction of the overall RF power comes with the drawback of
increased sensitivity to of off-resonance effects increase due to a time varying slice
selective gradient shape with lower amplitudes. Later implementations extended this
idea to reduce the pulse duration and apply it to reduce the peak RF amplitude [112]
and power of SMS pulses [118]. A thoughtful derivation and further elaboration of
VERSE can be found in [23].

To reduce the RF amplitude, a rectangular RF pulse can be stretched in time (see
Section 5.2) which reduces the RF bandwidth. This change in RF bandwidth can be
compensated by the same reduction of the amplitude of the slice selective gradient,
see Eq. 5.2. This idea can be extended to a time varying RF pulse and slice selective
gradient shape with a transformation function λ(t). The VERSE transformation can
be defined [23] by

B1,VERSE(t) =
2π

γGs
B1(k)

dk
dt

, (5.18)

Gs,VERSE(t) =
2π∆ f
γ∆z

λ(t) = Gsλ(t), (5.19)

with

k(t) =
γ

2π

∫ t

0
Gs(t′)dt′ =

γGs

2π

∫ t

0
λ(t′)dt′ (5.20)

being the RF k-space trajectory [23]. The transformation in Eq. 5.18 connects λ(t) with
the slope of the RF pulse B1(t) and the constant slice selective gradient amplitude
Gs. This transformation results in a variable-rate slice selective gradient shape with a
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matched RF pulse that compensates the varying k-space velocity. For instance, when
the slice selective gradient amplitude is small, the RF amplitude has to be reduced to
compensate the slow k-space velocity.

The main question for the VERSE application is the determination of the transfor-
mation function λ(t). The tranformation function λ(t) can be defined by a manual
selection of time points where the RF amplitude should be reduced, or by an iterative
adaption until all hardware constraints on the RF and slice selective gradient am-
plitude and slew rate are fulfilled [112]. This however should not be confused with
the method described in Chaper 5.6 to jointly design RF and slice selective gradient
shape with explicit hardware constraints.

Column 4 of Figure 5.5 shows the VERSE’d Hann filtered SLR RF pulse of Section 5.3
(re-sampled with a time discretization τ = 2.36 µs, a factor of 10, to reduce the
interpolation artefacts) and λ(t) composed out of two constant blocks and half a Sine
period at the center where the RF pulse amplitude should be reduced. The area of
the slice selective gradient has been scaled such that the gradient impact remains
constant, thus leading to an almost identical slice profile before and after VERSE.

5.5 SMS RF pulse design

Conventional single slice selective MR imaging experiments acquire an integrated MR
signal originating from protons of a specific slice or slab, a process which is repeated
to acquire the entire k-space. Although TE for single- and multi-shot sequences lies in
the sub-second range, the need to fill a spatially encoded two or three dimensional k-
space in combination with relatively long T1 times typically results in long repetition
times with a long dead time in between. This dead time can be used in conventional
multi-slice imaging to multiplex the acquisition of spatially non-overlapping slices to
increase the temporal acquisition efficiency [23]. Developments in parallel imaging
enabled an extension of this idea of slice selective multi-slice imaging to acquire
slice information simultaneously to further increase the acquisition efficiency and
use coil sensitivities to separate the aliased slice information [95], [161]. Although
the main idea of SMS was founded in 1988 [162], it took several years until SMS
imaging became widely accepted as evidenced in various publications [95], [163]–
[166] and pushed by pre-compiled SMS-MR sequences provided by the University of
Minnesota (Center for Magnetic Resonance Research, CMMR) and the Massachusetts
General Hospital (MGH, Boston). Today, SMS is commercially available as a clinically
approved MRI sequence product.
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Besides parallel imaging based reconstruction [82], [167]–[172], special RF pulses
that excite or refocus slices simultaneously are essential for SMS imaging [95]. The
topic of this section deals with limitations influencing the slice acceleration factor,
or multi-band MB factor. Different approaches are introduced to increase the slice
acceleration while maintaining a minimal echo time to maximize the achievable MR
signal.

SMS RF pulses can be computed by a simple superposition of individual RF pulses
with a different carrier frequencies [162]. Originally, the resulting SMS pulses were
combined with Hadamard encoding [161] to disentangle the aliased slice information
by subtraction of raw images acquired with alternating phase patterns [162]. This
implies that the required acquisitions to disentangle the aliased slice information
increase by the power of the MB factor. To avoid multiple acquisitions, later imple-
mentations use parallel imaging reconstruction techniques [95]. Slice selective RF
pulses, see Section 5.3, can be easily shifted along the slice direction z by a phase
modulation of the RF pulse shape

B1,o f f set(t) = B1(t)eiγGs∆zt, (5.21)

for a given slice selective gradient amplitude Gs at each time-point t [95]. This allows
superposition of phase modulated RF pulse shapes B1(t) replicated in the slice
direction for the desired spatial locations ∆zn

B1,sp(t) =
MB

∑
n=1

B1(t)eiγGs∆znt, (5.22)

with MB being the MB factor. This process is depicted in Figure 5.7 for a MB3
superposition pulses together with the Bloch simulation to visualize the position of
the slice profile. The superposition results in a linear scaling of the maximal peak RF
amplitude [95], thus easily reaching B1,max and RF power.

5.5.1 Peak RF amplitude reduction

The linear B1 peak amplitude scaling of conventional superposition pulses competes
with RF amplifier constraints, see Section 4. For typical 3 T in vivo MR systems the
RF amplifiers are usually limited to 12− 20 µT. To fulfil this amplitude constraint,
superposition pulses have to be stretched and can get unacceptably long since, the
pulse duration competes with inherent T2 and T∗2 de-phasing, especially for high MB
factors or high TBWP. The following methods assess the problem of peak amplitude
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Figure 5.7: Principal composition of a SMS superposition pulse as a sum of different on-resonant and
phase shifted single slice pulses.

increase without reducing the overall RF power requirements. A more extensive
comparison of the presented design methods is given in [111], [173].

Phase scrambling

The peak B1 amplitude of superposition SMS pulses can be reduced by a variation of
the individual mean phase of each single slice RF pulse [174]. The phase variation
results in a shift of the complex peak amplitudes such that the individual peaks do
not overlap. Theoretically, the peak amplitude reduction then is proportional to the
square root of the number of simultaneous slices

√
MB [174].

A slight modification of Equation 5.22 can be used to compute the RF shape

B1,ps(t) =
MB

∑
n=1

B1(t)ei(γGs∆znt+θn), (5.23)

with θn being the mean phase for each of the individual slices. The phase offsets up
to a MB factor of 16 can be found at [174]. Column 2 of Figure 5.8 shows a phase
scrambled superposition pulse with the mean phase θ(n) = (0, 2.005, 1.674, 5.012,
5.736, 4.123) rad with a roughly 28% shorter pulse duration.
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Figure 5.8: Overview of different SMS refocusing pulses (MB= 6, TBWP= 2) designed with superposi-
tion (Column 1), phase-scrambling (Column 2), time shifting (Column 3) and root flipping
(Column 4) and maximal RF peak amplitude of 12.5 µT. The Bloch simulations (magnitude
and phase) are given in Row 2 and 3 respectively.

Time shifting

The B1 peak amplitude of superposition pulses can be further reduced by a temporal
shift of the individual sub pulses. This results in a better amplitude distribution
and reduced peak amplitudes [175]. Column 3 of Figure 5.8 shows a time shifted
superposition pulse with a roughly 32% reduced pulse duration. The individual
sub-pulses are delayed by 0.25 ms. There is a nice overview and comparison of
time-stretched, time-shifted and phase-scrambled superposition in [175]. Therein, it’s
shown that the combination of phase-scrambled and time-shifted sub-pulses results
in the lowest peak amplitude and thereafter enables generation of even shorter pulses.
Due to the different temporal shifts however, the individual slices are excited at
different time points and the slice selection gradient can not re-phase all slices at the
same echo time. This slice dependent echo time can be corrected with a matched
second RF pulse e.g. to generate a uniform spin echo in all slices. Therefore the use
of time shifted pulses is limited to the use of sequences with two RF pulses needed,
for instance SE or TSE.
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Root flipping

Another approach to reduce the B1 peak amplitude using SLR theory is to generate
asymmetric RF pulses whose peak amplitudes do not overlap [173]. This is achieved
by flipping the roots of the sub pulse’s beta polynomial such that the peak amplitude
of the overall RF pulse is reduced. In addition to a slice dependent echo time, root
flipped SMS pulses have a quadratic in-slice phase and require a second matched
SMS RF pulse. Compared to phase optimization and pure time shifting, the use of
root flipping reduces both the pass- and stop-band ripple amplification and yields
significant shorter minimal RF pulse durations. A comparison of a representative
SMS root flipping RF pulse is given in Column 4 of Figure 5.8 with roughly half the
pulse duration compared to the superposition pulse in Column 1.

5.5.2 Peak RF amplitude and RF power reduction

In addition to the linear peak amplitude scaling the mean RF energy requirements of
superposition pulses also scale linearly [95], hence limiting the the use of large MB
factors. The mean energy S of an arbitrary RF pulse B1(t) can be computed by

S = τ ∑ |B1(t)|2, (5.24)

with the time discretization τ for all temporal samples. The overall energy require-
ments of SMS RF pulses can be reduced analogous to single slice RF pulses by
modifying the k-space trajectory via VERSE [112], [160], [172], see Section 5.4. It
should be noted, however, that strong oscillations of the RF waveform might require
additional smoothing of the otherwise too rapidly changing gradient waveform. The
application of VERSE on the envelope of the SMS pulse resolves this limitation [176],
[177].

A different approach to reduce peak RF amplitude and mean energy can be achieved
via wavelet compression [178]. Alternatively, an inherent power reduction can be
achieved by the PINS [131] or MultiPINS [179] method described in the following
sections. A direct peak and power constrained RF design including in-slice error
constraints was proposed with constrained convex optimization [180] or applying
OC, see Section 5.6.
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PINS

An elegant way to set up the k-space trajectory by means of power efficiency is
the power independent number of slices PINS technique [131]. Therein, RF pulse
shape and the corresponding k-space trajectory are discretized and used after each
other in an alternating scheme. The RF pulse is then a convolution of the continuous
single slice pulse with a train of delta functions whereas the gradient are triangular
blips. This results in a piecewise movement through excitation k-space with RF power
deposition only at distinct k-space positions and periodic slice profiles. The alternating
RF and slice selective gradient pattern, together with the slew rate limitations of the
slice selective gradient system typically results in lengthy PINS pulses. The TBWP of
PINS pulses is defined as [95]

TBWP = NspTHK/zsep, (5.25)

with the number of PINS sub-pulses Nsp, the slice thickness THK and the slice
separation zsep. The PINS method can be directly applied to single slice RF pulses
with a constant slice selective gradient shape. Figure 5.9 shows a superposition
refocusing pulse (TBWP= 2.05, THK= 1 mm, MB= 11, zsep = 20 mm) and in
comparison a PINS RF pulse (Number of gradient blips Nsp = 37 with a duration
τsp = 0.2 ms) based on the same single slice SLR pulse. It can be seen that both, the
superposition and PINS pulse suffer from a large B1,max of 41.13 µT (superposition)
and 31.72 µT (PINS).

Multi PINS

The comparison of PINS and superposition based RF pulses shows that both methods
have different design targets. Therefore, the question arises when to use superposition
pulses and when to use PINS based pulses. It has shown that the combination of
conventional superposition pulses and PINS yields good intermediate results [179].
With Multi PINS it is possible to combine the beneficial low power requirements of
PINS pulses with the higher TBWP of superposition pulses. This is realized by using
VERSE on the superposition pulse and using the time of the slice selective gradient
blips for RF transmission. This reduces peak RF amplitude and power and can be
used to further reduce the overall RF pulse duration. Column 3 of Figure 5.9 shows a
MultiPINS example with a mixing ratio of 0.5, see [179], reducing B1,max from 31.72
µT by roughly 50% to 15.99 µT.
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Figure 5.9: Comparision of superposition (Column 1), PINS (Column 2) and MultiPINS (Column
3) pulses with the same pulse duration and different peak RF amplitudes. The Bloch
simulations (magnitude) are shown in Row 2 and 3 (zoom to one slice) respectively.
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5.6 Slice selective RF pulse design via optimal control

Optimal control theory goes back to the 17th century and became widely used
with the development of digital computers for various applications [181] including
flight path optimization, feedback control and RF pulse design for NMR and MRI
applications. This includes the design of RF pulses for slice selective excitation
in MRI [120], coupled spin systems in NMR [155], [156], NMR and MRI contrast
optimization [152], [182], multidimensional parallel transmission [47], [49] and robust
2D spatial selective excitation [153]. For modern OC theory the reader is refered to
the monography [183]. There are various ways to compute the optimal solution and
the following will therefore focus on the methods used in [1]–[3] to design RF pulses
for single slice selective and SMS applications with and without constraints on the
controls.

The general idea of optimal control based RF pulse design is to compute the RF
and slice selective gradient shapes summarized by u(t) (control variables), that
minimize a cost functional J(M, u) containing the discrepancy of the simulated and
desired magnetization (state variables) and a penalty function related to the control
variables. The Bloch equations in the rotating frame, see Section 2.5, are defined by
the differential equation{

Ṁ(t, z) = A(u(t), z)M(t, z) + b(z), t > 0,

M(0, z) = M0(z),
(5.26)

with the magnetization M, the controls u(t) = (B1,x(t), B1,y(t), Gs(t))T describing the
real and imaginary RF pulse and the slice selective gradient shape [26]. The system
matrix A is defined as

A(u; z) =

 − 1
T2

γGs(t)z −γB1,y(t)
−γGs(t)z − 1

T2
γB1,x(t)

γB1,y(t) −γB1,x(t) − 1
T1

 , b(z) =

 0
0

M0
T1

 , (5.27)

for each time point t ∈ [0, T] and spatial point z ∈ [−zmin, zmax].

The RF pulse design problem with a constant slice selective gradient waveform
can be formulated as a quadratic tracking problem starting from a given initial
magnetization M0(z) and initial controls u0(t) = (B1,x(t), B1,y(t))T to find u(t) that
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results in a M(T, z) as close as possible to a desired magnetization Md(z) for a spatial
region covered by zmin and zmax at the read-out time T, for instance by solving

min
(u, M) s.t. (5.26)

J(M, u) =
1
2

∫ zmax

−zmin

|M(T, z)−Md(z)|22 dz

+
µRF

2

∫ T

0
|u(t)|22 dt,

(5.28)

with the regularization parameter µRF to balance between slice profile accuracy and
RF power requirements.

The first RF pulse design application for MRI via OC [120] were proposed in 1986

using a steepest descent approach to iteratively update the controls u(t). This for-
mulation comes with the hurdle of choosing an appropriate step size to determine
the size of the update step. While a too small step size results in slow convergence
and long computation times, large step sizes are associated with an instability issue
[120]. The iterative steepest descent scheme is performed until the change of the cost
J becomes close to zero, hence, fulfilling the first-order condition for an optimal set
of controls u(t) in a local optimum. The final control variables u(t) then describe
the optimal RF pulse with respect to the cost function J. The RF pulse design via
optimal control can be achieved using various other minimization methods including
gradient [47], [49] or approximate second-order methods [184].

The optimal control approaches presented in the following sections use Newton-type
methods where the Newton equations are solved with the conjugate gradient method
(CG) embedded in a Steihaug trust-region framework [185]. In the following sections
two different applications, the design of single slice selective RF pulses (5.6.1) and slice
selective SMS RF pulses (5.6.2) are presented. Therein, two different Bloch models,
based on the fully time dependent Bloch equations in the magnetization domain [1]
and the spin domain with neglected relaxation terms [2], [3] are used for a fixed [1],
[2] and a variable pulse duration [3]. Different second-order methods are used in the
optimization, including Newton [1], semismooth Newton or quasi-Newton methods
[2], [3].

5.6.1 Single slice selective RF pulse design via OC

This chapter describes two optimal control approaches for the unconstrained and
constrained design of RF pulse and slice selective gradient shapes for single slice
selective excitation [1] based on the fully time dependent Bloch equations. The first
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section contains a brief description of the unconstrained optimal control framework
and its limitation with respect to strict hardware limitations on the RF and slice
selective gradient waveform. These limitations are included in the optimal control
framework and described in the second section.

Unconstrained joint design of RF pulse and slice selective gradient shape

First, only the real RF pulse waveform B1,x(t) is optimized. The imaginary part
of the RF pulse B1,y(t) and the selective gradient shape Gs(t) are not part of the
optimization and are set to zero and to a trapezoidal shape, respectively. Therefore,
the controls u(t) are equivalent to B1,x(t). The optimization consists of minimizing
the functional

min
(u, M) s.t. (5.26)

J(M, u) =
1
2

∫ zmax

zmin

|M(T, z)−Md(z)|22dz

+
µRF

2

∫ T

0
|B1,x(t)|22dt,

(5.29)

at the end of the excitation time t = T that is evaluated at discrete spatial points z
ranging from zmin to zmax.

The optimal RF shape B1,x(t) is computed by minimizing J, see Eq. 5.29. In contrast
to gradient methods that compute the update

uk+1 = uk − skg(uk), (5.30)

for a step length sk and the gradient g(uk) of Eq.5.29, the application of the Newton’s
method requires an additional derivative. However, the computation of the full
Hessian H(k) is in practice computationally expensive. The computation of the full
Hessian can be prevented using Krylov methods such as CG that only require to
compute the Hessian action H(uk)h for a given direction h in each iteration. This
reduces the computational effort dramatically to the cost of a gradient evaluation [1],
[186]. To achieve accurate derivative information the gradient and the action of the
Hessian are computed using the adjoint method. This is achieved solving the forward
Bloch equations, see Eq. 5.26, and adjoint (backward in time) Bloch equations{

−Ṗ(t; z) = A(u(t); z)TP(t; z), 0 ≤ t < T,
P(T; z) = M(T; z)−Md(z),

(5.31)
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with P being the solution to the adjoint Bloch equation. The gradient can be then
calculated efficiently by

g(uk)(t) = µRFu(t) +

(∫ zmax
−zmin

M(t; z)A1P(t; z) dz∫ zmax
−zmin

M(t; z)A2P(t; z) dz

)
, 0 ≤ t ≤ T, (5.32)

with

A1 :=

0 0 0
0 0 −γ
0 γ 0

 , A2 :=

0 0 −γ
0 0 0
γ 0 0

 . (5.33)

The computation of the Hessian action H(uk)h is done accordingly by differntiating
Eq. 5.32 with respect to u and h, see [1] and 9.1.2 in the Appendix. To ensure practical
application of the CG Newton method and to guarantee convergence from any
arbitrary initial u(t), the Newton’s method is embedded into a Steihaug CG trust-
region [185] framework. This, however, does not imply the determination of the
globally optimal solution, but the convergence to a local minimum is guaranteed. In
the Steihaug CG trust-region framework a breakdown of the CG method is handled
by a trust-region step. Additional checks before the application of the update step
on curvature, step size and actual cost decrease allow us to use the CG method for
minimizing a quadratic function with a trust-region radius that is adapted iteratively.
The full algorithm and discretization required for numerical optimization are given
in [1] as well as in 9.1.7 and 9.1.8 in the Appendix.

As an exemplary result, the optimal RF pulse shape B1,x(t) with respect to a Gauss-
filtered rectangular slice with a THK of 5 mm and a flip angle of 90 ◦ (Md(z)) is
shown in Row 1 of Figure 5.10 [187]. The optimization is initialized with a zero RF
pulse and has a fixed duration of 2.56 ms (τ = 10 µs). The refocusing gradient is
not part of the optimization and is fixed to half of the gradient moment of the slice
selective gradient. The spatial domain consists of 2001 equidistant discrete samples
to incorporate a distance of ±0.2 m. The Bloch simulation at the end of the gradient
refocusing is shown and compared to experimental GRE magnitude reconstruction
of the measured slice profile. The choice of the regularization parameter µRF in
Eq. 5.29 is done with respect to the best ratio between the slice profile accuracy, RF
peak amplitude and RF power requirements. Figure 5.11 shows this for different
optimization runs with different regularization parameters to find the best value for
the optimization of a MB6 excitation pulse used in [1] and shown in Figure 5.16.

The extension to a joint design of both the RF shape and the slice selective gradient
shape is straight forward. The vector notation of the optimization enables direct
extension of the controls to include the slice selective gradient in the optimization
as well. Besides tracking to a desired Md this allows for reduction of the RF power
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Figure 5.10: RF only (Row 1) and joint RF/Gs (Row 2) optimization (left) together with the simulated
(middle) and measured transverse magnetization (right). Row 3 shows the experimental
phantom an in vivo magnitude reconstructions using the RF and gradient shapes RF only
(A) and joint RF/Gs (B) [187].
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Figure 5.11: Optimized SMS pulses with different regularization parameter µRF. The relative error
is defined as the normalized point-wise Euclidean norm ||M − Md||22/||Md||22 and the
average RF energy is ||B1||22. The red circle depicts the µRF used in [1].

requirements of the RF pulse by changing the k-space velocity, a similar effect as
described in Section 5.4 (VERSE). However, the slice selective gradient is changed
here in each iteration simultaneously with the RF pulse.

The optimization results for a joint optimization of RF and slice selective gradient is
depicted in Row 2 of Figure 5.10. Again, the optimization is started with a zero RF
pulse and the trapezoidal slice selective gradient with respect to the same parameters
as stated above. Now, the first 256 samples of the slice selective gradient are modified
in the optimization, thus leading to simultaneous reduction and stretching of both,
the RF and slice selective gradient shape to reduce the RF power present in the cost
function Eq. 5.29. This reduces the RF power by 30% with only a low increase of the
mean squared error (0.26% to 0.31%). The peak slew rate of the optimized gradient
(120 T m−1 s−1) remains below the prescribed maximal rate (180 T m−1 s−1) of the
used system. It should be noted, however, that the optimization is unconstrained and
depending on the regularization parameters the optimized waveforms may violate
MR scanner hardware limits. An experimental comparison of the two optimized
results is depicted in Row 3 of Figure 5.10 for a standard GRE in vivo scan and a
modified GRE phantom scan to directly measure the slice profile, see Section 4.2.
The intersection line depicts the position of the profile. The joint design yields
sharp slice profiles and reduced RF power requirements without the need of explicit
power reduction techniques such as VERSE [112], see Section 5.4. The matrix-free
implementation allows computation of a larger number of temporal and spatial
control points compared to the gVERSE [188] approach that is limited with 15 spatial
points. Depending on the regularization parameters it is possible to compute pulses
with an even lower SAR depending on hardware limitations, in particular the gradient
slew rate.

64



5 RF pulse design

Constrained joint design of RF pulse and slice selective gradient shape

The design approach described before enables an unconstrained optimization of
both the RF pulse and slice gradient shape at a high spatial and temporal resolution
[1]. However, the optimized results could exceed physical constraints and therefore
may not be realized on a real MR scanner. To include hard constraints of actual
MR hardware, the previously introduced framework is extended to a trust-region
semismooth Newton method to include physical constraints such as the peak B1
amplitude of the RF pulse and the slew rate of the gradient system [2].

The optimization is again based on minimizing the difference between the forward
Bloch simulation at the end of the pulse duration M(T, z) and the desired magneti-
zation Md(z). Three additional cost terms model the power of the RF pulse B1,x, the
slew rate Ġs and the final amplitude of Gs

min
(u, M) s.t. (5.26)

J(M, u) =
1
2

∫ z

−z
|M(T; z)−Md(z)|22 dz +

µRF

2

∫ T

0
|B1,x(t)|22 dt

+
µGs

2

∫ T

0
|Ġs(t)|22 dt +

µs

2
|Gs(T)|22,

(5.34)

with the regularization parameters µRF, µGs , µs. To include peak RF and slew rate
amplitude constraints, these are added as point-wise inequality constraints on the
control variables u(t):

|B1|∞ ≤ B1,max and |Ġs|∞ ≤ Ġs,max. (5.35)

Now, the Newton method is not applicable any longer due to a resulting set of
nonsmooth equations [2]. However, such problems can be efficiently solved with gen-
eralized semismooth Newton methods [190] based on projections without increasing
the computational effort. The semismooth Newton-derivative can be evaluated for
the Hessian action similar to the unconstrained design [1]. In addition to the efficient
application, semismooth Newton methods converge locally superlinear which makes
them an highly efficient method for OC problems with inequality constraints [2].
Again, the gradient and Hessian information are computed with the adjoint calcu-
lus. The generalized semismooth Newton method is embedded in a Steihaug CG
trust-region framework [185], [191].

Figure 5.12 compares a conventional Hamming filtered SINC pulse with the results
of the unconstrained optimization together with the constrained optimization (peak
RF magnitude B1,max = 13 µT, peak slew rate Ġs = 175 mT m−1 s−1) [189]. The Bloch
simulations show a well-defined slice profile for all three examples. However, only
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Figure 5.12: Conventional Hamming window filtered SINC with standard trapezoidal gradient slope,
low SAR optimized unconstrained and constrained RF and Gs shapes (both with µRF =
5e − 4, µGs = 3e − 4, µs = 1.25), second line: simulated (Mxy) and ideal transverse
magnetization (Mi,xy), third line: simulated and ideal phase (θ and θd) [189].
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Figure 5.13: Measured phantom slice profile of the constrained optimized RF and slice selective
gradient shape (B1,max = 13 µT, peak slew rate Ġs = 175 mT m−1 s−1) together with the
measured relative in-slice phase θ [189].

Table 5.2: Comparison of B1 and Ġs peak, B1 power and root mean squared error (RMSE) and mean
absolute error (MAE) for the optimized pulses [189].

‖B1,x‖∞ ‖Ġs‖∞ ‖B1,x‖2
2 RMSE MAE

[µT] [Tm−1s−1] [a.u.] [a.u.] [a.u.]

conventional 37.18 170.5 191.6 0.0892 0.0232
unconstrained 16.49 214.4 129.3 0.0498 0.0113
constrained 13.0 175 114.7 0.0499 0.0113
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Figure 5.14: Desired magnetization Md for single (a) and SMS design with 6 slices with different phase
patterns (b,c) [1].

the constrained results are directly applicable on the MR scanner. The unconstrained
results violate the hardware limitations and have to be stretched in time to reduce
peak RF and slew rate of the slice selective gradient. The numerical simulations
are validated by magnitude and phase images of experimental 3 T phantom mea-
surements in Figure 5.13. The significant key features are summarized in Table 5.2.
Despite using a constrained optimization, the optimized pulses achieve a similar
slice profile compared to the unconstrained optimization while having the benefit of
guaranteed practical applicability.

5.6.2 SMS RF pulse design via OC

The OC based design method introduced in the previous Section 5.6.1 can be easily
extended to the design of SMS pulses and gradient shapes. For this purpose, the
desired magnetization is changed to contain more than one slice, for instance six
equidistant slices, as shown in Figure 5.14. The following sections describe the
unconstrained and constrained design of SMS RF pulses with fixed pulse duration
and optimized pulse duration.

Unconstrained SMS excitation

The unconstrained OC approach to design SMS RF pulse shapes is done in a similar
way to Section 5.6.1 and consists of minimizing the discrepancy between the numerical
solution of the fully time-dependent Bloch equations and a prescribed magnetization
profile together with a cost term modeling the pulse power, see Eq. 5.29. The use
of different desired magnetization patterns, see Figure 5.14, now results in SMS RF
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Figure 5.15: Optimized SMS RF pulse for three slices with different flip angles (φ = (65, 35, 15) ◦) and
experimental phantom reconstruction [193].

pulses. The source code used to generate the examples can be downloaded from
https://github.com/chaigner/rfcontrol/releases/v1.2 [1].

This approach was applied to compute RF pulses for a simultaneous excitation, con-
sidering a z-range of 400 mm with a spatial resolution of 0.02 mm and a thickness of
5 mm for each slice. The high spatial resolution is important to suppress a modulation
of the magnetization. The pulses were designed for a total excitation time T = 2.56
ms and consisted of 256 samples. For each slice, a flip angle of 25 ◦ [192] or 90 ◦ was
specified [1], see also Figure 5.14. Alternatively, the OC-based design approach allows
for the choice of any arbitrary desired magnetization pattern, for instance choosing
different flip angles for individual slices [193]. This is exemplary shown in Figure 5.15

for an optimized complex SMS excitation pulse to excite three slices with different
flip angles (φi = (65, 35, 15) ◦). The numerical results are imported to the previously
described GRE sequence to perform phantom and in vivo measurements.

Figure 5.16 shows optimized RF pulses (B1,x, B1,y) together with the prescribed slice
selective gradient Gs, the corresponding simulated slice profiles and the central
line of the reconstructed phantom magnitude images for a flip angle of 90 ◦. To
separate aliased slice information in the case of in vivo imaging, we use the slice-
GRAPPA (sG) algorithm [172] with reference scans of 24 phase encoding lines per
slice. Since the reconstruction starts to suffer from g-factor problems for more than
three slices, we modified the above-described SMS pulses using a CAIPIRINHA-based
excitation pattern [171], which alternates two different pulses to achieve phase-shifted
magnetization vectors in order to increase the spatial distance of aliased voxels by
a factor of FOV/2 for every second slice. As it can be seen in Row 2 of Figure 5.16,
the optimized pulses lead to the desired excitation pattern while the remaining
columns show the sG reconstructions, which illustrate the uniform excitation and the
applicability of the optimized pulses for in vivo experiments.
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Figure 5.16: Optimized RF pulse for six slice profiles, each with a flip angle of 90 ◦ together with
simulated magnetization patterns and experimental phantom measurements (Row 1).
Cartesian and slice-GRAPPA reconstruction using CAIPIRINHA-based SMS excitation
(Row 2) [1].

The simulation and optimization of the full time dependent Bloch equations with
the Crank–Nicolson method [1] turned out to introduce numerical errors [71] that
were not visible in the numerical simulations and experimental validation. This error
increases for off-resonant positions and leads to a slice shift and dephasing. This
numerical errors can be effectively reduced by increasing the temporal discretiza-
tion. Figure 5.17 shows two optimization runs for six slices and compares forward
simulations with the Crank–Nicolson method and spin domain Bloch simulations.
The differences in the transversal magnetization are minimized by the finer temporal
discretization in Row 2. A more extensive analysis of different numerical methods to
solve the Bloch equations with and without relaxation times is covered in [68].
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Figure 5.17: Optimized SMS excitation pulses using the numerical Bloch Crank–Nicolson (CN) model
with different temporal sampling (Row 1: τ = 10 µs and Row 2: τ = 2.5 µs) together with
simulated transverse magnetization using Crank–Nicolson and spin domain (SD) Bloch
equations.

Constrained SMS refocusing

The joint design of RF and slice selective gradient shape via OC [1] can be extended
to the spin domain Bloch equations using the Cayley-Klein parameters a, b [2]

am = αmam−1 − β∗mbm−1,
bm = βmam−1 + α∗mbm−1,

(5.36)

and α, β defined in Eq. 3.15 together with the initial conditions a0 = 1, b0 = 0.
The controls x are the complex RF pulse B1,m = rmexp(iϑm) and the slice selective
gradient slew rate sm = gm − gm−1/τ for each discrete time point m. Contrary to the
previously described design of single and SMS excitation pulses, SMS refocusing
pulses are designed in the spin domain assuming perfect crusher gradients. Therefore,
the desired refocusing profile (magnitude and phase) at the end of the refocusing
time T is defined in-slice as 1− |β(z)|2 ≤ ein, out-of-slice as |β(z)|2 ≤ eout together
with a in-slice phase constraint |ϕ− ϕ̄| ≤ eph with the phase ϕ and desired mean
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phase ϕ̄ based on the parameter relations in [66] and Tab. 5.1. The optimization is
done to minimize the RF energy requirements by minimizing the functional

min
(x) s.t. (5.36)

J =
τ

2

Nt

∑
m=1

r2
m + ζϑ2

m + ζg2
m

+
δµout

2p ∑
zj∈Ωout

(
|bNt |2

e

)p

+
δµin

2p ∑
zj∈Ωin

(
|bNt |2 − 1

e

)p

+
δµp

p

L

∑
l=1

∑
zj∈Sl

(
ϕ− ϕ̄l

ep

)p
+

τµg

p

Nt

∑
m=2

(
gm − gm−1

τsmax

)p
,

where x are the control variables, p is an even positive integer, rm the RF amplitude,
ϑm the RF phase, gm the slice selective gradient and ζ, µout, µin, µp and µg being the
regularization parameters. The regularization parameters are initialized with ζ = 0.01,
µout = 1e5, µin = 1e4, µp = 1 and µg = 1. To balance between the different terms the
regularization parameters are being adapted throughout the optimization [2]. Hard
amplitude constraints on the RF amplitude (0 ≤ r ≤ B1,max), RF phase (−π ≤ ϑ ≤ π)
and slew rate of the slice selective gradient (−smax ≤ gm − gm−1 ≤ smax) are included
for the controls. The resulting set of nonsmooth equations are solved for a fixed p
by a semismooth quasi-Newton method [190] that is embedded in a Steihaug CG
trust-region framework [185], [191]. Throughout the optimization, the parameter p
is successively increased starting with a small number, for instance p = 2, until the
minimum pulse energy is found. For a full description refer to [2], or 9.2.2, 9.2.3 and
9.2.7 in the Appendix.

The proposed algorithm is tested to reduce the power requirements of different SMS
pulses including superposition, PINS and root flipping as well as examples given by
the ISMRM Challenge 2015 test set [83] for a fixed pulse duration [2]. To guarantee
practical applicability on the MR system used, the time discretization is fixed to a
gradient raster time of τ = 10 µs. Throughout the optimization, the parameter p is
iteratively increased with a decrease of all µ in Eq. 5.37 to find a minimal RF power
solution. Figure 5.18 shows an optimized result for SMS refocusing with a MB factor
of 6, a THK of 1.75 mm and a TBWP of 4 starting from a root flipping [173] initial
for peak RF amplitude B1,max = 13 µT, a peak slew rate Ġs,max = 200 T m−1 s−1,
and a maximum refocusing error of 5% (in-slice) and 4% (out-slice). The phase of
the refocusing profiles was not included since root flipping pulses do not have a
linear phase profile [173]. Other optimized results are presented in [2] and in 9.2.4 of
the Appendix. Optimized SMS pulses with a MB factor of 3 and 10 respectively are
implemented on a 3 T MR scanner (Magnetom Skyra, Siemens Healthcare, Erlangen,
Germany) using a spin echo sequence with a conventional superposed 90 ◦ SLR
based SMS excitation pulse. These results are depicted in Figure 5.19 for phantom
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Figure 5.18: Numerical optimization results and spin domain Bloch simulations for a MB6 pulse.
Initial (Row 1) and optimized (Row 2) RF and Gs (Re(RF) in blue, Im(RF) in yellow and
Gs in red) with refocusing profile |bNt |2. Zoom of the central slice (black lines mark the
in-slice/out-of-slice error tolerance) with phase angle(bNt) (not part of the optimization)
for the optimized pulse (Row 3) [2].

and in vivo measurements (TR/TE= 100/25− 30 ms, FOV= 300× 300 mm, matrix=
1536 × 1536 with 922 phase encoding steps) and an in vivo scan (TR/TE= 200/15
ms, FOV= 300 × 300 mm, matrix= 512 × 512). The reconstructed high resolution
experimental phantom data is further directly compared with the numerical results,
thereby validating the Bloch simulations. Across a wide range of parameters the pulse
power is dramatically reduced. Both the phantom and in vivo measurements show
well defined slices and validate the Bloch simulations, demonstrating the ability to
jointly design RF and slice selective gradient shapes with hard inequality constraints.
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Figure 5.19: Measured experimental data for optimized MB3 and MB10 pulses (left). Simulated re-
focusing profile (solid line) and experimental phantom data (crosses) of the phantom
measurements and reconstructed experimental data for in vivo measurements using the
optimized MB3 pulse [2].

Constrained time optimal SMS refocusing

The constrained joint design of RF pulse and slice selective gradient shape for a fixed
pulse duration T [2] can be extended to reduce the pulse duration T by a time-OC
formulation of the Bloch equations in the spin domain [3]. The terminal time T is
iteratively reduced in a bi-level fashion in the upper-level. The lower-level problem
is computed with a fixed T analogous to the previous Section (Constrained SMS
refocusing) until the prescribed constraints on the refocusing profile, refocusing phase
and maximal slice selective peak amplitudes are fulfilled and the energy of the RF
pulse is sufficiently reduced. Again, hard amplitude constraints on the RF amplitude
(0 ≤ r ≤ B1,max), RF phase (−π ≤ ϑ ≤ π) and slew rate of the slice selective gradient
(−smax ≤ gm − gm−1 ≤ smax) are included for the controls. The reduction of the time
duration T is done in the upper-level by deleting appropriate time points that result in
the best performance after deletion followed by an optimization with a fixed T using
a trust-region semismooth quasi-Newton method [2] until an admissible solution
has been found. To minimize the deletion effects on the slice profile the deleted RF
and slice selective amplitudes are symmetrically distributed to the neighbouring time
instances. To exploit all constraints the parameter p is increased in the upper-level
problem throughout the optimization. The performed optimization runs revealed
that a further refinement of the time grid in the course of the optimization results
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in even shorter pulse durations. The refinement, however, has to be used with
care with respect to gradient raster time of the MR system. For a full description
refer to [3], or 9.3.2 in the Appendix. The source code can be downloaded from
https://github.com/rundar/mr.control.

To test the general applicability of the proposed design method, we minimized
the pulse duration in the test set of 31 cases from the 2015 ISMRM pulse design
challenge [83]. The iterative optimization was initialized with PINS [131]-based RF
and triangular slice selective gradient shapes with respect to a B1,max = 18 µT, and
Ġs,max = 200 T m−1 s−1, and a maximum refocusing error of 3% and 2% for in-
and out-slice regions respectively. A representative optimized TSE result (MB= 12,
TBWP= 3, THK= 1 mm) is depicted in Figure 5.20. The exploitation of the hardware
constraints, see Row 1 of Figure 5.20, and a p driven to large even numbers, allowed
for determination of the shown result with a pulse duration T reduced by 75% from
12.92 ms to 3.16 ms compared to the initial PINS pulse that still fulfils all control
constraints. An overview of all optimized 31 examples of the ISMRM challenge [83]

Table 5.3: Comparison of the optimized pulse duration (in ms) with the duration of the PINS initial
guess for all examples without constraints on the refocusing phase.

MB3 MB4 MB5

THK PINS opt PINS opt PINS opt
mm ms ms ms ms ms ms

2.00 16.870 2.155 15.090 2.285 13.560 2.414

1.75 18.460 2.155 16.400 2.448 14.140 2.502

1.50 21.260 2.336 18.470 2.539 16.090 2.651

1.25 24.370 2.470 21.180 2.673 18.320 2.404

1.00 28.840 2.650 25.250 2.805 21.180 2.938

is summarized in Tables 5.3 and 5.4 and compare the time optimal pulse duration
with the used PINS initial guesses. The optimized slice selective gradient resulted in
a varying k-space trajectory that makes the pulse possibly prone to B0 off-resonance
influences and B1 inhomogeneities. Figure 5.21 shows Bloch simulations with a
constant global B0 off-resonance variation of ±200 Hz and B1 variation of 75%-125%
with stable slice profiles below ±100 Hz. To validate the numerical results, the
optimized pulses were computed for the gradient raster time of τ = 10 µs, which
results in a pulse duration of T = 3.3 ms on the 3 T MR scanner (Magnetom Skyra,
Siemens Healthcare, Erlangen, Germany) used and imported to a spin echo sequence.
Phantom experiments were performed with a conventional SLR based 90 ◦ SMS
excitation pulse acquiring high-resolution phantom scans (TR/TE = 300/30 ms,
FOV = 300 × 300 mm, matrix = 960 × 960) where the phase encoding is applied in
slice-direction. The experimental results are shown in Figure 5.22. To validate the
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Figure 5.20: Optimization results and Bloch simulations for one representative TSE example. The first
row shows the control variables B1 amplitude and slew rate of the slice selective gradient
for the refocusing duration of T = 3.16 ms. The second row depicts the slice selective
gradient shape, and the corresponding simulated refocusing profile |bNt |2. The last row
shows a detail zoom of one slice to see the refocusing profile together with the error
corridor (black), and the phase angle arg(b2

Nt
) per slice [3].

Table 5.4: Comparison of the optimized pulse duration (in ms) with the duration of the PINS initial
guess for all TSE examples.

MB8 MB10 MB12 MB14

THK PINS opt PINS opt PINS opt PINS opt
mm ms ms ms ms ms ms ms ms

2.0 10.640 2.742 9.460 2.856 8.810 2.728 8.710 2.809

1.5 13.260 3.295 11.110 3.213 10.890 3.286 10.300 3.296

1.0 18.040 3.958 15.170 4.122 14.460 4.120 14.110 3.996

0.5 32.420 6.106 27.390 6.113 25.230 6.080 24.520 6.189
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Figure 5.21: Simulated refocusing profiles |bNt |2 (zoom to the outermost slice with comparable refo-
cusing profiles across all individual slices) for a variation in the off-resonance and B1
inhomogeneity for the PINS-based initial and the optimized pulse shown in Figure 5.20

[3].

numerical Bloch simulations the measured slice profiles were normalized for spatial
B1 transmit/receive and signal variations resulting from the used spherical phantom
by a fully non-selective reference scan. These normalized slice profiles are depicted
in Rows 5 and 6 of Figure 5.22 together with the simulated refocusing profiles (solid).
Despite rapidly varying RF and slice selective gradient shapes only minor slice
profile degradation can be observed. The small deviations of the outermost slice are
likely to be an effect of non-ideal gradients, see Section 4.3 and [119]. In general, the
proposed design of minimum duration RF pulse and slice selective gradient shape in
the presence of physical and technical constraints guarantees practical applicability
and allows the optimized pulses to be integrated in existing EPI or TSE sequences
to reduce the echo-spacing or effective echo time. Moreover, the proposed method
resulted in the first place in the ISMRM SMS RF pulse design challenge [83] (October
2015 to May 2016, http://challenge.ismrm.org/node/71).

Application to Wave-CAIPIRINHA encoded TSE

The previously introduced constrained time-OC design of SMS pulses was extended
to prescribe a fixed mean phase for each individual slice to fulfil the CPMG condition
[23] and applied to the design of a Wave-CAIPIRINHA encoded TSE sequence [194].
Therefore, a SMS refocusing pulse (MB = 15, THK = 1 mm, slice gap = 17 mm,
TBWP = 2.37) was optimized using a PINS initial guess with respect to B1,max = 18
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Figure 5.22: Reconstructed experimental spin echo data for MB12 refocusing with a slice thickness of 1
mm using a spherical phantom. Two different pairings are used: slice selective excitation
and non-selective refocusing (non-selective), and slice selective excitation and optimized
slice selective refocusing. Row 5 and 6 show a comparison of the experimental data (exp)
with optimized refocusing normalized by a fully non-selective SE measurement and the
Bloch simulations (sim) for slice selective excitation and optimized MB12 refocusing [3].
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Figure 5.23: Time-optimal RF and slew rate of the slice selective gradient (1st row), refocusing profile
(|bNt |2) with zoom (2nd row), and phase angle arg(b2

Nt
) per slice with zoom (3rd row)

[194].

µT, Gs,max = 35 mT m−1) and Ġs,max = 180 T m−1 s−1. To ensure the CPMG condition
we added an additional constraint for the in-slice phase and prescribe the global
mean phase of the refocusing pulse to be –π/2.

Figure 5.23 depicts the time optimal results that are imported into a Wave-CAIPIRINHA
encoded TSE sequence [195] (TR/TE= 4000/100 ms, bandwidth= 130 Hz/pixel,
turbo factor = 12, MB = 15) with wave gradients during the readout to create a
corkscrew trajectory due to Gs,max = 6 mT m−1, Ġs,max = 50 T m−1 s−1, 7 sinusoidal
cycles) to maximize the spatial distance of aliased voxels and reduce the g-factor.

In contrast to the optimized result shown in Figure 5.20, the strict SAR and B1
amplitude constraints of this example prevent a further reduction of the refocusing
pulse in time. Again, the simulated refocusing profile fulfils the magnitude and phase
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Figure 5.24: Phantom (Row 1) and in vivo (Row 2) RARE/TSE measurement using the optimized
pulse shown in Figure 5.23 after Wave-CAIPIRINHA reconstruction [194].

constraints in the observed slice regions. Measurements are performed on a 3 T MR
Scanner (Magnetom Trio, Siemens Healthcare, Erlangen, Germany) for a phantom
and in vivo. The Wave-CAIPIRINHA reconstruction of the optimized RF pulse is
shown in Figure 5.24 for a phantom (Row 1) and in vivo (Row 2). The optimized RF
pulse and slice selective gradient fulfil the hard constraints given by actual scanner
hardware and safety measures that ensures a simple replacement of existing pulses
and is well suited to further decrease the echo spacing in TSE/RARE sequences. The
combination of optimized pulses for large MB factors with a Wave-CAIPIRINHA
reconstruction allows for fast acquisition of whole head TSE/RARE imaging in 70 s.
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6 Discussion

This thesis presents different methods to design RF pulse and slice selective gradient
shapes. The focus was placed on single slice and SMS applications with and without
explicit hardware constraints for the full Bloch equations including relaxation effects
and the spin domain Bloch equations with neglected relaxation terms. A summarised
discussion of the key results is presented below.

Compared to standard RF design methods, OC approaches are flexible in the problem
formulation and can be modified to prescribe various problem parameters ranging
from a point-wise description of the desired magnetization [1] to maximal error and
amplitude bounds on the state and control variables [2]. The theory is described for
both, the full [1] and the spin domain Bloch equations [2], [3], while most of the
optimization runs are done with neglected relaxation times. For standard in vivo
imaging of the human head, this is a valid assumption since the relaxation times are
very long compared to the RF pulse duration. Nevertheless, the inclusion of relaxation
times is possible using the design approach based on the full time dependent Bloch
equations [1]. More details on the theory and the employed methods can be found in
the Appendix.

The increased computational effort of numerical optimization is kept low by an
efficient computation of exact or approximate second order information to speed up
convergence and by using a trust region framework for robustness and numerical
efficiency. Large numbers of spatial points are efficiently computed by means of GPU
or CPU parallelization. The RF and slice selective gradient shapes are treated in the
optimization as piecewise constant functions. This form of modelling reflects how
external fields are implemented in MR sequences.

The performed studies show that the OC based design of RF pulse shapes increases
the slice profile accuracy without major RF power reduction [1]. The RF power
requirements can be reduced, however, by a joint design of RF and slice selective
gradient waveforms [2]. This is in good accordance with the VERSE theory and comes
with the benefits of a constant raster time and single step formulation, rather than
splitting the design of RF and slice selective gradient. Therefore, jointly optimized
RF and slice selective gradient shapes do not have to be interpolated to match the
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raster time, which saves interpolation errors. Additionally, the joint optimization does
not require a scaling function and the balance between slice profile accuracy and
RF power requirements can be adjusted with the regularization parameters. These
observations can be transferred to SMS pulse design where RF amplitude, power and
duration are highly limited parameters [1].

The Crank–Nicolson scheme used to discretize the Bloch equations [1] showed slight
slice profile differences as a function of the spatial position that remained undetected
by the initial experimental validation [71]. Compared to the Bloch solution with
rotation matrices, off resonant spatial positions experienced a slice shift and de-
phasing. Spins close to the isocenter, however, are affected by a much smaller content.
It seems, that the precession of spins far away from the isocenter becomes too large
for an adequate solution by the Crank-Nicolson method. This inaccurracy can be
effectively reduced choosing finer temporal discretization as shown exemplarly by
Figure 5.17. However, the optimization framework and methods are independent
of the chosen Bloch solver, and hence can be extended easily to more expensive
and accurate Bloch solvers, for instance to symmetric operator splitting or piecewise
constant analytic solution, which was done in [68]. Alternatively, the spin domain
formulation can be used to accurately solve the Bloch equations with neglected
relaxation terms [2]. The decreased computational effort compared to a numerical
solution allows looping of the optimization to address new issues, for instance a
reduction of the overall pulse duration [3].

While the proposed optimal control approaches use highly efficient numerical meth-
ods, the computational effort is significantly greater than, for instance, SLR-based
approaches. The optimized examples are therefore computed offline within in the
minute to hour range [1]–[3] using parallel CPU computing. A proof-of-concept
GPU implementation indicates that this gap can be sufficiently narrowed to make
patient-specific design feasible [1].

The use of unconstrained optimization requires checking the admissibility of opti-
mized results which may result in the need for manual tuning of the regularization
parameters or post optimal adjustment efforts [1]. This is no longer necessary when
explicit hardware constraints are included in the optimization. The constraint for-
mulation proved to facilitate the optimization and guarantees practical applicability
[2]. The extension to a bi-level optimization with an iterative reduction of the pulse
duration further allows the design of time optimal SMS pulses [3]. Compared to
conventional superposed frequency shifted and PINS based pulse candidates, the du-
ration can be reduced drastically by roughly 80%. This reduces the effective echo time
or echo spacing which increases signal quality and motion robustness and increases
the temporal acquisition efficiency. Moreover, the discussed time optimal design was
declared the winning method of the ISMRM Challenge on RF pulse design [83].
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The optimized RF and slice selective gradient shapes are implemented on different
3 T MR scanners. The experimental results validate the numerical simulations with
various phantom and in vivo experiments. Using the specific hardware constraints
of the MR system used in the optimization simplifies the application of optimized
pulses since no further transformations have to be done that could reduce the slice
profile accuracy or violate hardware constraints.

The joint design of RF and slice selective gradient results in time varying slice
selective gradient shapes that are known to introduce sensitivity with respect to
B0 inhomogeneity. However, the slice profile fidelity remains almost unchanged
(±500 Hz for fixed duration and ±100 Hz for time optimization). With respect to B1
variations the optimized RF shapes behave similar to conventional RF pulses [3].

Although the optimized results fulfil all prescribed hardware constraints on the RF
and slice selective gradient, the optimized slice selective gradient shape might exceed
the bandwidth of the slice selective gradient system. Despite a highly fluctuating
slice selective gradient shape, influences from gradient imperfections are hardly
visible in the acquired experimental data [2], [3]. However, the same optimized results
showed clearly visible deviations on a different MR system of a different vendor [119]
as a result of a lower effective gradient system bandwidth. These gradient system
imperfections can be corrected by an inclusion of the GIRF in the optimization [119]
which is currently in progress.

The optimization is formulated and has been performed for excitation in the mag-
netization domain [1] and refocusing with crusher gradients in the spin domain
[2], [3]. To cover other RF examples such as inversion or saturation, or to address
additional effects such as B0 or B1 inhomogeneities, the discussed cost functions have
to be adapted. Finally, the presented OC based RF pulse design methods outper-
forms previously proposed design methods in terms of flexibility and shows that
it is possible to greatly reduce the RF power and pulse duration while fulfilling
hardware constraints. The numerical results are validated in various experiments and
demonstrate its practical use to design short, low power and accurate RF and slice
selective gradient shapes for single and SMS applications.
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The OC based RF design methods described in the previous chapters and listed in
the Appendix show different numerical strategies to design short and low power RF
and slice selective gradient shapes for clinically relevant sequences with respect to
physical constraints given by current scanner hardware. The presented approaches
form the basis of new research projects targeting different directions.

Translating the time optimal solutions to different MR systems revealed that the
rapid varying slice selective gradient shapes might outperform the gradient amplifier
bandwidth and together with gradient imperfections caused by eddy currents or
time delays could be an obstacle for practical application of optimized RF pulses.
Preliminary results in Figure 7.1 show that the inclusion of the time-invariant GIRF
[115] in the optimization completely corrects these gradient imperfections and should
allow the design of short RF and slice selective gradient shapes for precise SMS
refocusing [119].

The OC design framework can be extended to jointly design RF pulses and slice
selective gradient shapes for multi-dimensional and multi-channel pTx excitation.
In addition to the known hardware constraints, we add a minimum local 10 g
SAR constraint based on the Q-matrix formalism to limit potential SAR hot spots.
Preliminary simulations with a homogenious spherical phantom showed that both,
local SAR and peak RF power can be reduced significantly while maintaining a low
slice profile error [139]. Figure 7.2 shows the initial and SAR optimized independent
RF and slice selective gradient shapes. Both, Bloch and electromagnetic simulations
to computing the local SAR (XFdtd 7.4, Remcom, State College, USA) show the
feasibility to jointly compute complex RF and slice selective gradient shapes for large
flip angle pTx excitation which forms the basis for future projects.

Finally, future work will be done on the extension of more complicated Bloch models
such as the Bloch Torrey equation [196] or the Bloch McConnell equation [197]
to model more comprehensive physical processes, such as diffusion or chemical
exchange during RF application.
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, ,

,,

Figure 7.1: Comparison of the two optimized slice selective gradient shapes before (Gs) and after
convolution with the GIRF (Gs,GIRF) with a duration of 3.17 ms (optimized without GIRF)
and 3.6 ms (optimized with GIRF). Row 2 and 3 show the simulated refocusing profiles
|b(z)|2 in the spin domain without and with convolution. Row 4 and 5 show slice profile
measurements on a phantom bottle, in a spin-echo sequence using the time-optimal control
refocusing pulses and conventional multiband excitation pulses [119].
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Figure 7.2: Comparison of RF magnitude and gradient shapes of the initialization and the optimized
case (note the different scaling on the y-axis for the RF pulse magnitude) and simulated
two dimensional in-ROI flip angle and phase distributions together with corresponding
maximum intensity projections of the time-averaged local 10 g-SAR in three directions
compared for the initial pulse and the optimized pulse [139].
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9.1 Efficient high-resolution RF pulse design applied to
simultaneous multi-slice excitation

Christoph Stefan Aigner1,2, Christian Clason3, Armin Rund4 and Rudolf Stoll-
berger1,2

This is a preprint of the publication ”Efficient high-resolution RF pulse design applied
to simultaneous multi-slice excitation”. Journal of Magnetic Resonance, Volume 263,
February 2016, Pages 33–44, doi: https://doi.org/10.1016/j.jmr.2015.11.013

Abstract

RF pulse design via optimal control is typically based on gradient and quasi-Newton
approaches and therefore suffers from slow convergence. We present a flexible and
highly efficient method that uses exact second-order information within a globally
convergent trust-region CG-Newton method to yield an improved convergence rate.
The approach is applied to the design of RF pulses for single- and simultaneous
multi-slice (SMS) excitation and validated using phantom and in-vivo experiments
on a 3 T scanner using a modified gradient echo sequence.
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9 Appendix

9.1.1 Introduction

For many applications in MRI there is still demand for the optimization of selective
RF excitation, e.g., for simultaneous multi-slice excitation [163], [166], UTE imaging
[198], or velocity selective excitation [128]. To achieve a well-defined slice profile at
high field strength while meeting B1 peak amplitude limitations is a challenge for RF
pulse design and becomes especially critical for quantitative methods.

Correspondingly, many approaches for general pulse design have been proposed in
the literature. RF pulses with low flip angles can be designed using the small tip angle
simplification [43], which makes use of an approximation of the Bloch equation to
compute a pulse via the Fourier transform of the desired slice profile. However, this
simplification breaks down for large flip angles. The resulting excitation error for large
flip angle pulses can be reduced by applying the Shinnar–Le Roux (SLR) technique
[66] or optimization methods, e.g., simulated annealing, evolutionary approaches or
optimal control [47], [120], [147], [149], [152], [153], [199]. The SLR method is based
on the hard pulse approximation and a transformation of the excitation problem,
allowing to solve the excitation problem recursively by applying fast filter design
algorithms such as the Parks–McClellan algorithm [66]. Originally, this approach
only covered special pulses such as 90◦ and 180◦ excitation or refocusing, but Lee
[200] generalized this approach to arbitrary flip angles with an exact parameter
relation. Despite its limitations due to neglected relaxation terms and sensitivity to B1
inhomogeneities, it found widespread use (see, e.g., [200]–[203]) and is considered to
be the gold standard for large tip angle pulse design. An alternative approach is based
on optimizing a suitable functional; see, e.g., [47], [66], [145], [151], [154]. In particular,
optimal control (OC) approaches involve the solution of the Bloch equation describing
the evolution of the magnetization vector in an exterior magnetic field [47], [49], [120],
[152], [153], [155], [156], [182]. They often lead to better excitation profiles due to a
more accurate design model and are increasingly used in MRI, for instance, to perform
multidimensional and multichannel RF design [47], [49], robust 2D spatial selective
pulses [153] and saturation contrast [152]. In addition, arbitrary flip angles and target
slice profiles, as well as inclusion of additional physical effects such as, e.g., relaxation
can be handled. However, so far OC approaches are limited by the computational
effort and require a proper modeling of the objective. In particular, standard gradient-
based approaches suffer from slow convergence, imposing significant limitations
on the accuracy of the obtained slice profiles. On the other hand, Newton methods
show a locally quadratic convergence, but require second-order information which
in general is expensive to compute [157]. Approximating the Hessian using finite
differences causes loss of quadratic convergence due to the lack of exact second-
order information and typically requires significantly more iterations. Superlinear
convergence can be obtained using quasi-Newton methods based on exact gradients
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[204], although their performance can be sensitive to implementation details. The
purpose of this work is to demonstrate that for the OC approach to pulse design,
it is in fact possible to use exact second-order information while avoiding the need
of computing the full Hessian, yielding a highly efficient numerical method for the
optimal control of the full time-dependent Bloch equation. In contrast to [157] (which
uses black-box optimization method and symbolically calculated Hessians based on
an effective-matrix approximation of the Bloch equation), we propose a matrix-free
Newton–Krylov method [186] using first- and second-order derivatives based on the
adjoint calculus [205] together with a trust-region globalization [185]; for details we
refer to Section 9.1.2. Recently, similar matrix-free Newton–Krylov approaches with
line search globalization were presented for optimal control of quantum systems in
the context of NMR pulse sequence design [206], [207]. In comparison, the proposed
trust-region framework significantly reduces the computational effort, particularly
for the initial steps far away from the optimum. The effectiveness of the proposed
method is demonstrated for the design of pulses for single and simultaneous multi-
slice excitation (SMS).

SMS excitation is increasingly used to accelerate imaging experiments [163]–[166].
Conventional design approaches, based on a superposition of phase-shifted sub-
pulses [162] or sinusoidal modulation [163], typically result in a linear scaling of
the B1 peak amplitude, a quadratic peak power and a linear increase in the overall
RF power [131], [175]. The required maximal B1 peak amplitude of conventional
multi-slice pulses therefore easily exceeds the transmit voltage of the RF amplifier. In
this case, clipping will occur, while rescaling will decrease and limit the maximal flip
angle of such a pulse. On the other hand, restrictions of the specific absorption rate
limit the total (integrated) B1 power and therefore the maximal number of slices as
well as the pulse duration and flip angle. The increase of B1 power can be addressed
by the Power Independent of Number of Slices (PINS) technique [131], which was
extended to the kT-PINS method [208] to account for B1 inhomogeneities. This
approach leads to a nearly slice-independent power requirement, but the periodicity
of the resulting excitation restricts the slice orientation and positioning. Furthermore,
the slice profile accuracy is reduced [165], and a limited ratio between slice thickness
and slice distance may further restrict possible applications. The combination of PINS
with regular multi-band pulses was shown to reduce the overall RF power by up to
50 % (MultiPINS [179]) and was applied to refocusing pulses in a multi-band RARE
sequence with 13 slices [195].

A different way to reduce the maximum B1 amplitude is to increase the pulse length;
however, this stretching increases the minimal echo and repetition times and decreases
the RF bandwidth, thus reducing the slice profile accuracy [175]. Applying variable
rate selective excitation [160], [209] avoids this problem but leads to an increased
sensitivity to slice profile degradations at off-resonance frequencies. In addition, they
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require specific sequence alterations, e.g., variable slice gradients or gradient blips.
Instead of using the same phase for all sub-slices, the peak power can be reduced
by changing the uniform phase schedule to a different phase for each individual
slice [174]. Alternative approaches[173], [210] using phase-matched excitation and
refocusing pairs show that a nonlinear phase pattern can be corrected by a subsequent
refocusing pulse. Another way to reduce the power deposition and SAR of SMS pulses
is to combine them with parallel transmission [211]. This allows to capitalize transmit
sensitivities in the pulse design and leads to a more uniform excitation with an
increased power efficiency [212], [213]. Recently, Guerin et al. [214] demonstrated that
it is possible to explicitly control both global and local SAR as well as the peak power
using a spokes-SMS-pTx pulse design.

The focus of this work, however, is on single channel imaging, where we apply our
OC-based pulse design for efficient SMS pulse optimization using a direct description
of the desired magnetization pattern. Its flexible formulation allows a trade-off
between the slice profile accuracy and the required pulse power and is well suited
for the reduction of power and amplitude requirements of such pulses, even for a
large number of slices or large flip angles or in presence of relaxation. The efficient
implementation of the proposed method allows to optimize for SMS pulses with
a high spatial resolution to achieve accurate excitation profiles. The RF pulses are
designed to achieve a uniform effective echo time and phase for each slice and
use a constant slice-selective gradient, allowing to insert the RF pulse into existing
sequences and opening up a wide range of applications.

9.1.2 Theory

This section is concerned with the description of the optimal control approach to RF
pulse design as well as of the proposed numerical solution approach.

Optimal control framework

Our OC approach is based on the full time-dependent Bloch equation, which
describes the temporal evolution of the ensemble magnetization vector M(t) =
(Mx(t), My(t), Mz(t))T due to a transient external magnetic field B(t) as the solution
of the ordinary differential equation (ODE){

Ṁ(t) = γB(t)×M(t) + R(M(t)), t > 0,

M(0) = M0,
(9.1)
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where γ is the gyromagnetic ratio, M0 is the initial magnetization and

R(M(t)) = (−Mx(t)/T2,−My(t)/T2,−(Mz(t)−M0)/T1)
T (9.2)

denotes the relaxation term with relaxation times T1, T2 and the equilibrium mag-
netization M0. To encode spatial information in MR imaging, the external magnetic
field B (and thus the magnetization vector) depends on the slice direction z, hence
the Bloch equation can be considered as a parametrized family of three-dimensional
ODEs. In the on-resonance case and ignoring spatial field inhomogeneities, the Bloch
equation can be expressed in the rotating frame as{

Ṁ(t; z) = A(u(t); z)M(t; z) + b(z), t > 0,

M(0; z) = M0(z),
(9.3)

where the control u(t) = (ux(t), uy(t)) describes the RF pulse,

A(u; z) =

 − 1
T2

γGz(t)z γuy(t)B1

−γGz(t)z − 1
T2

γux(t)B1

−γuy(t)B1 −γux(t)B1 − 1
T1

 , b(z) =

 0
0

M0
T1

 , (9.4)

and Gz is the slice-selective gradient; see, e. g., [26, Chapter 6.1].

The OC approach consists in computing for given initial magnetization M0(z) the
RF pulse u(t), t ∈ [0, Tu], that minimizes the squared error at read-out time T > Tu
between the corresponding solution M(T; z) of (9.3) and a prescribed slice profile
Md(z) for all z ∈ [−a, a] together with a quadratic cost term modeling the SAR of the
pulse, i.e., solving

min
(u,M) satisfying (9.3)

J(M, u) =
1
2

∫ a

−a
|M(T; z)−Md(z)|22 dz +

α

2

∫ Tu

0
|u(t)|22 dt. (9.5)

The parameter α > 0 controls the trade-off between the competing goals of slice
profile attainment and SAR reduction.

Adjoint approach

The standard gradient method for solving (9.5) consists of computing for given uk

the gradient g(uk) of j(u) := J(M(u), u) and setting uk+1 = uk − skg(uk) for some
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suitable step length sk. The gradient can be calculated efficiently using the adjoint
method, which in this case yields

g(uk)(t) = αu(t) + γB1

(∫ a
−a Mz(t; z)Py(t; z)−My(t; z)Pz(t; z) dz∫ a
−a Mz(t; z)Px(t; z)−Mx(t; z)Pz(t; z) dz

)

=: αu(t) +

(∫ a
−a M(t; z)A1P(t; z) dz∫ a
−a M(t; z)A2P(t; z) dz

)
, 0 ≤ t ≤ Tu,

(9.6)

where M is the solution to (9.3) for u = uk and 0 < t ≤ T, P is the solution to the
adjoint (backward in time) equation{

−Ṗ(t; z) = A(u(t); z)TP(t; z), 0 ≤ t < T,
P(T; z) = M(T; z)−Md(z),

(9.7)

and for the sake of brevity, we have set

A1 := γB1

0 0 0
0 0 −1
0 1 0

 , A2 := γB1

0 0 −1
0 0 0
1 0 0

 . (9.8)

However, this method requires a line search to converge and usually suffers from
slow convergence close to a minimizer. This is not the case for Newton’s method
(which is a second-order method and converges locally quadratically), where one
additionally computes the Hessian H(uk) of j at uk, solves for δu in

H(uk)δu = −g(uk), (9.9)

and sets uk+1 = uk + δu. While the full Hessian H(uk) is very expensive to compute
in practice, solving (9.9) using a Krylov method such as conjugate gradients (CG) only
requires computing the Hessian action H(uk)h for a given direction h per iteration;
see, e.g., [186]. The crucial observation in our approach is that the adjoint method
allows computing this action exactly (e.g., without employing finite difference ap-
proximations) and without knowledge of the full Hessian. Since Krylov methods
usually converge within very few iterations, this so-called “matrix-free” approach
amounts to significant computational savings. To derive a procedure for computing
the Hessian action H(uk)h for a given direction h directly, we start by differentiating
(9.6) with respect to u in direction h and applying the product rule. This yields
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[H(uk)h](t) = αh(t) +
(∫ a
−a δM(t; z)A1P(t; z) + M(t; z)A1δP(t; z) dz∫ a
−a δM(t; z)A2P(t; z) + M(t; z)A2δP(t; z) dz

)
, 0 ≤ t ≤ Tu, (9.10)

where δM – corresponding to the directional derivative of M with respect to u – is
given by the solution of the linearized state equation{

˙δM(t; z) = A(uk; z)δM(t; z) + A′(h)M, 0 < t ≤ T,

δM(0; z) = (0, 0, 0)T,
(9.11)

with

A′(h) = γB1

 0 0 hy(t)
0 0 hx(t)

−hy(t) −hx(t) 0

 , (9.12)

and δP – corresponding to the directional derivative of P with respect to u – is the
solution of the linearized adjoint equation{

− ˙δP(t; z) = A(uk; z)TδP(t; z) + A′(h)TP, 0 ≤ t < T,
δP(T; z) = δM(T; z).

(9.13)

This characterization can be derived using formal Lagrangian calculus and rigorously
justified using the implicit function theorem; see, e.g., [215, Chapter 1.6]. Since (9.10)
can be computed by solving the two ODEs (9.11) and (9.13), the cost of computing a
single Hessian action is comparable to that of a gradient evaluation; cf. (9.6). This has
already been observed in the context of seismic imaging [216], meteorology [217], and
optimal control of partial differential equations [205], but has received little attention
so far in the context of optimal control of ODEs.

One difficulty is that the Bloch equation (9.3) is bilinear since it involves the product of
the unknowns u and M. Hence, the optimal control problem (9.5) is not convex and the
Hessian H(u) is not necessarily positive definite (or even invertible), thus precluding a
direct application of the CG-Newton method. We therefore embed Newton’s method
into the trust-region framework of Steihaug [185], where a breakdown of the CG
method is handled by a trust-region step and the trust region radius is continually
adapted. This allows global convergence (i.e., for any starting point) to a local
minimizer as well as transition to fast quadratic convergence; see [185]. As an added
advantage, computational time is saved since the CG method is usually not fully
resolved far away from the optimum. The full algorithm is given in Appendix 9.1.7.
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Discretization

For the numerical computation of optimal controls, both the Bloch equation (9.3)
and the optimal control problem in (9.5) need to be discretized. Here, the time
interval [0, T] is replaced by a time grid 0 = t0 < · · · < tN = T with time steps
∆tm := tm − tm−1, chosen such that tNu = Tu < T for some Nu < N. The domain
[−a, a] is replaced by a spatial grid −a = z1 < · · · < zZ = a with grid sizes
∆zm := zm − zm−1. We note that for each zi, the corresponding ODEs can be solved
independently and in parallel. The Bloch equation is discretized using a Crank–
Nicolson method, where the state M is discretized as continuous piecewise linear
functions with values Mm := M(tm), and the controls u are treated as piecewise
constant functions, i.e., u = ∑Nu

m=1 umχ(tm−1,tm](t), where χ(a,b] is the characteristic
function of the half-open interval (a, b].

For the efficient computation of optimal controls, it is crucial that both the gradient
and the Hessian action are computed in a manner consistent with the chosen dis-
cretization. This implies that the adjoint state P has to be discretized as piecewise
constant using an appropriate time-stepping scheme [218], and that the linearized
state δM and the linearized adjoint state δP have to be discretized in the same way as
the state and adjoint state, respectively. Furthermore, the conjugate gradient method
has to be implemented using the scaled inner product 〈u, v〉 := ∑Nu

m=1 ∆tmumvm and
the corresponding induced norm ‖u‖2 := 〈u, u〉. For completeness, the resulting
schemes and discrete derivatives are given in Appendix 9.1.8.

9.1.3 Methods

This section describes the computational implementation of the proposed pulse
design and the experimental protocol for its validation.

Pulse design

The OC approach described in Section 9.1.2 is implemented in MATLAB (The Math-
Works, Inc., Natick, USA) using the Parallel Toolbox for parallel solution of the
(linearized) Bloch and adjoint equation for different values of zi. In the spirit of
reproducible research, the code used to generate the results in this paper can be
downloaded from https://github.com/chaigner/rfcontrol/releases/v1.2.
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(a) Md for single slice (zoom)
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(b) Md for SMS 6 (zoom)
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(c) Md for phase shifted SMS
6 (zoom)

Figure 9.1: Desired magnetization for single- (a) and multi-slice (b,c) pulse design

The initial magnetization vector is set to equilibrium, i.e., M0(z) = M0(0, 0, 1)T. The
slice-selective gradient Gz(t) is extracted out of a standard Cartesian GRE sequence
simulation and consists of a trapezoidal shape of length 2.56 ms that is followed by a
re-phasing part of length 0.92 ms to correct the phase dispersion using the maximal
slew rate; i.e., Tu = 2.56 ms and T = 3.48 ms with a temporal resolution of ∆t = 5 µs
for the single-slice excitation (see dashed line in Figure 9.2a) and Tu = 10.24 ms and
T = 13.92 ms with a temporal resolution of ∆t = 20 µs for the SMS excitation (see
dashed line in Figure 9.4a). This corresponds in both cases to N = 697 uniform time
steps for the time interval [0, T] and Nu = 512 time steps for the control interval
[0, Tu]. For the spatial computational domain, a = 0.5 m is chosen to consider typical
scanner dimensions; the domain [−a, a] is discretized using Z = 5001 equidistant
points to achieve a homogeneous spatial resolution of ∆z = 0.2 mm.

For the desired magnetization vector, we consider three examples:

Single-slice excitation To validate the design procedure, we compute an optimized
pulse for a single slice of a given thickness ∆w and a flip angle of 90◦, i.e., we set

M̃d(z) =

{
(0, sin(90◦), cos(90◦))T if |z| < ∆w/2,
(0, 0, 1)T else,

(9.14)

as visualized in Figure 9.1a. To reduce Gibbs ringing, this vector is filtered before the
optimization with a Gaussian kernel with a full width at half maximum of 1.6 mm.
For comparison, an SLR pulse [66], [200] with an identical temporal resolution and
pulse duration is designed to the same specification (slice width, flip angle, full width
at half maximum) using the Parks–McClellan (PM) algorithm [66] with a 1 % in-
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and out-of slice ripple as usual [66] and a bandwidth of 2.35 kHz. To achieve a fully
refocused magnetization, the refocusing area of the slice selective gradient for the
SLR pulse is increased by 4.1 percent compared to the OC pulse (Figure 9.2a).

SMS excitation: phantom RF pulses for the simultaneous excitation of two, four,
and six equidistant rectangular slices with a flip angle of 90◦ are computed, i.e., we
set

M̃d(z) =

{
(0, sin(90◦), cos(90◦))T if z in slice,
(0, 0, 1)T if z out of slice,

(9.15)

and apply Gauss filtering; see Figure 9.1b for the case of six slices.

Since PINS pulses are not suitable for axial or axial-oblique slice preference as
they generate a periodic slice pattern extending outside the field of interest [166],
the optimized pulses are compared with conventional SMS pulses obtained using
superposed phase-shifted sinc-based excitation pulses, again for the same slice width,
flip angle and full width at half maximum.

SMS excitation: in-vivo Since multi-slice in-vivo imaging using slice-GRAPPA starts
to suffer from g-factor problems for more than three slices, we modify the above-
described SMS pulses using a CAIPIRINHA-based excitation pattern [171], which
alternates two different pulses to achieve phase-shifted magnetization vectors in order
to increase the spatial distance of aliased voxels. Here, the first vector and pulse
are identical to those designed for the phantom. For odd slice numbers, the second
vector is modified by adding a phase term of π to every second slice of the desired
magnetization, i.e.,

M̃d(z) =

{
(0,± sin(90◦), cos(90◦))T if z in odd/even slice,
(0, 0, 1)T if z out of slice

(9.16)

(before filtering). For even slice numbers, the transverse pattern has to be further
shifted by π

2 , i.e.,

M̃d(z) =

{
(± sin(90◦), 0, cos(90◦))T if z in even/odd slice,
(0, 0, 1)T if z out of slice,

(9.17)

see Figure 9.1c for the case of six slices. The additional phase shift is balanced before
reconstruction by subtracting a phase of π

2 from every second phase-encoding line
of the measured k-space data. Since typical relaxation times in the human brain are
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at least an order of magnitude bigger than the pulse duration, relaxation effects are
neglected in the optimization.

The starting point for the optimization is chosen in all cases as u0 = [0, . . . , 0]. The
control cost parameter is fixed at α = 10−4 for both the single-slice and the multi-slice
optimization. The parameters in Algorithm 1 are set to tolN = 10−9, maxitN = 5,
tolC = 10−6, maxitC = 50, ρ0 = 1, ρmax = 2, q = 2, σ1 = 0.03, σ2 = 0.25, σ3 = 0.7.

All calculations are performed on a workstation with a four-core 64 bit processor with
3.1 GHz (Intel i5-3350P) and 16 GB of RAM.

Experimental validation

Fully sampled experimental data for a phantom and a healthy volunteer were acquired
on a 3 T MR scanner (Magnetom Skyra, Siemens Healthcare, Erlangen, Germany)
using the built-in body coil to transmit the RF pulse. The MR signals were received
using a body coil for the phantom experiments and a 32-channel head coil for the
in-vivo experiments. A standard Cartesian GRE sequence was modified to import and
apply external RF pulses. By changing the read-out gradient from the frequency-axis
to the slice direction, the excited slice can be measured and visualized. The single-slice
excitation was measured using a water filled sphere with a diameter of 170 mm. To
acquire a high resolution in z-direction, we used a matrix size of 512× 384 with a FOV
of 250 mm× 187 mm and a bandwidth of 390 Hz. The echo time was TE = 5 ms and
the repetition time TR = 2000 ms to get fully relaxed magnetization before the next
excitation. The SMS phantom experiments were performed using a homogeneous
cylinder phantom with diameter of 140 mm, length of 400 mm, and relaxation times
T1 = 102 ms, T2 = 81 ms, and T∗2 = 70 ms. The sequence parameters were TE =
10 ms, TR = 1000 ms, bandwidth 390 Hz, matrix size 512× 288, and a field of view of
250 mm× 141 mm.

To verify the in-vivo applicability, human brain images of a healthy volunteer were
acquired using the above described GRE sequence modified to include the optimized
CAIPIRINHA-based pulses. The sequence parameters were set to TE = 10 ms, TR =
4000 ms, bandwidth 390 Hz, matrix size 192× 120 and FOV 300 mm× 187 mm. After
acquisition, the k-space data of the individual slices were separated using an offline
slice-GRAPPA (32 coils, kernel size of 4× 4) reconstruction [172], [219]. The reference
scans used in the slice-GRAPPA reconstruction were performed with the same
sequence using an optimized single-slice pulse (not shown here). To decrease the
scanning time, we acquired 25 k-space lines (1/5 of the full dataset) around the
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k-space center for each reference scan. After this separation, a conventional Cartesian
reconstruction was performed individually for each slice.

9.1.4 Results

Single-slice excitation Figure 9.2 shows the results of the design of an RF pulse for
the excitation of a single slice of width ∆w = 5 mm; see Figure 9.1a. The computed
pulse (after 4 Newton iterations and a total number of 28 CG steps taking 989 s on
the above-mentioned workstation is shown in Figure 9.2a. (To indicate the sequence
timing, the slice-selective gradient Gz – although not part of the optimization – is
shown dashed.) It can be seen that ux(t) is similar, but not identical, to a standard
sinc shape, and that uy(t) is close to zero, which is expected due to the symmetry
of the prescribed slice profile. Figure 9.2b contains a detail of the corresponding
transverse magnetization Mxy(T) = (Mx(T)2 + My(T)2)1/2 obtained from the nu-
merical solution of the Bloch equation, which is confirmed by experimental phantom
measurements in Figure 9.2c,d. Both simulation and measurement show an excitation
with a steep transition between the in- and out-of-slice regions and a homogeneous
flip angle distribution across the target slice.

Figure 9.3 compares the optimized (OC) pulse with a standard SLR pulse by showing
details of the corresponding simulated magnetizations (Figure 9.3a for OC and Figure
9.3b for SLR; in both cases the targeted ideal magnetization is shown dashed). It
can be seen that the in-slice magnetization of the optimized pulse has oscillations of
higher frequency but of much smaller amplitude than that of the SLR pulse. This
becomes especially visible when comparing the resulting in-slice phases (Figure
9.3c).

This is achieved by allowing higher ripples close to the slice while decreasing the
amplitude monotonically away from the slice. (Note that only a small central segment
of this region is shown in the figures.) This leads to the total root mean squared error
(RMSE) and the mean absolute error (MAE) with the ideal rectangular magnetization
pattern (Figure 9.3d) matching the full width at half maximum of both pulses being
smaller for the OC pulse (1.46× 10−2 and 1.10× 10−4, respectively) compared to
the SLR pulse (1.62× 10−2 and 2.27× 10−4, with an equal power demand for both
pulses.

SMS excitation: phantom Figure 9.4 shows the results of the design of RF pulses
for simultaneous excitation of two, four and six equidistant slices with a separation
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Figure 9.2: Optimized pulse and slice profile for single-slice excitation

of 25 mm and a thickness ∆w = 5 mm; see Figure 9.1b. The computational effort in all
cases is similar to that in the single-slice case. The corresponding computed pulses are
shown in Figures 9.4a–c. A graphical analysis shows that instead of higher amplitudes,
the optimization distributes the total RF power (which increases with the number of
slices) more uniformly over the pulse length. A central section of the corresponding
optimized slice profiles are given in Figures 9.4d–f. It can be seen that all slices
have a sharp profile which does not deteriorate as the number of slices increases
(although it decreases slightly farther from the center and the bandwidth is slightly
reduced). These results are validated by the experimental phantom measurements
using the computed pulses: Figures 9.4g–i show the reconstructed excitation inside
the phantom, while Figures 9.4j–l show the measured slice profiles along a cut parallel
to the x-axis in the center of the previous images.
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(a) simulated magnetization
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(d) ideal magnetization

Figure 9.3: Comparison of SLR and OC pulse

A quantitative comparison of SLR and OC-based SMS pulses from one to six simulta-
neous slices is given in Table 9.1, which shows both the power requirement of the
computed pulses, both in total B1 energy

‖B1,x‖2
2 =

∫ T

0
|B1ux(t)|2 dt (9.18)

and in peak B1 amplitude

‖B1,x‖∞ = max
t∈[0,T]

|B1ux(t)|, (9.19)

as well as the mean absolute error (MAE) with respect to the ideal (unfiltered) slice
profiles for the in-slice and the out-of-slice regions. While both methods lead to a
linear increase of the total energy with the number of slices, the peak amplitude in-
creases more slowly for the OC pulses than for the conventional pulses. Furthermore,
we remark that the peak B1 amplitude for four, five and six slices remain similar.
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Figure 9.4: Optimized pulses and slice profiles for SMS excitation (phantom)

107



9 Appendix

Regarding the corresponding slice profiles, the OC pulses lead to a significantly lower
MAE in both the in-slice and out-of-slice regions compared to the SLR pulses. Visual
inspection of Figure 9.4d–f shows that this is due to the fact that the out-of-slice
ripples are concentrated around the in-slice regions while quickly decaying away
from them.

Table 9.1: Comparison of B1 power and the mean absolute error (MAE) of the transverse magnetization
after excitation for conventional and OC based SMS pulses

‖B1,x‖2
2 ‖B1,x‖∞ MAE in-slice MAE out-of-slice

[a.u.] [µT] [a.u.] [a.u.]

slices conv OC conv OC conv OC conv OC

1 19.5 19.5 3.5 3.49 0.062 0.052 0.0039 0.0014
2 38.9 38.1 7.0 6.78 0.060 0.052 0.0040 0.0018
3 58.4 57.2 10.5 10.02 0.054 0.053 0.0039 0.0030
4 77.9 76.3 14.0 12.13 0.065 0.045 0.0086 0.0031
5 97.3 95.5 17.5 11.38 0.059 0.053 0.0078 0.0051
6 116.8 113.9 21.0 12.63 0.068 0.053 0.0075 0.0067

Finally, we illustrate the influence of the regularization parameter α in Table 9.2,
where the root of mean square error (RMSE), the total B1 energy as well as the
B1 peak of the OC SMS 6 pulses is shown for different values of the control cost
parameter α. As can be seen, a bigger α leads to an increase in the error between
desired and controlled magnetization while both the total B1 power and the peak B1
amplitude are reduced, although these effects amount to less than 20 percent over
a range of parameters spanning two orders of magnitude. This demonstrates that
the results presented here are robust with respect to the choice of the control cost
parameter.

Table 9.2: Comparison of RMSE, B1 power and B1 peak for different values of α

α RMSE ‖B1,x‖2
2 ‖B1,x‖∞

[a.u.] [a.u.] [a.u.] [µT]

1× 10−5 2.374× 10−2 117.0 12.75
5× 10−5 2.375× 10−2 115.1 12.71
1× 10−4 2.377× 10−2 113.9 12.62
5× 10−4 2.437× 10−2 106.7 12.14
1× 10−3 2.591× 10−2 98.9 11.63

108



9 Appendix

0 5 10
−15

−10

−5

0

5

10

15

t [ms]

B
1
 [
µT

],
 G

z
 [
m

T
/m

]

 

 
B

1
 u

x

B
1
 u

y

G
z

(a) optimized pulse (no shift)

−0.1 −0.05 0 0.05 0.1

−1

0

1

z [m]
n
o
rm

a
liz

e
d
 m

a
g
n
e
ti
z
a
ti
o
n

 

 

M
x
(T)

M
y
(T)

−0.1 −0.05 0 0.05 0.1

−1

0

1

z [m]
n
o
rm

a
liz

e
d
 m

a
g
n
e
ti
z
a
ti
o
n
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Figure 9.5: Optimized pulses, slice profiles and slice-aliased Cartesian reconstruction for CAIPIRINHA-
based SMS excitation pattern (five slices)

SMS excitation: in-vivo The CAIPIRINHA-based modifications to the SMS pulse
design (see Figure 9.1c) are illustrated in Figure 9.5 (showing the case of five slices
for the sake of variation). Figure 9.5a shows the unmodified pulse, which differs in
structure from the cases with an even number of slices in, e.g., Figure 9.4c due to the
different symmetry of the slice profile (see Figure 9.5b). On the other hand, the pulse
is very similar to the modified pulse for the alternating phase shift; see Figure 9.5c
for the computed pulse and Figure 9.5d for the resulting slice profile. For illustration,
a slice-aliased reconstruction of the acquired in-vivo data using this pulse sequence
is shown in Figure 9.5e.

Figure 9.6 shows the image reconstruction using optimized RF pulses for simultane-
ous excitation of two, four and six slices with the same slice separation and thickness
as above. As can be seen clearly in the first column, all three pulses lead to the desired
excitation pattern in-vivo as well. The remaining columns show the slice-GRAPPA
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Figure 9.6: Slice-GRAPPA reconstruction of in-vivo data using CAIPIRINHA-based SMS excitation
pattern for two (top), four (middle) and six (bottom) slices (left: conventional reconstruction
showing the collapsed data in slice-encoding direction; right: reconstruction of GRAPPA-
separated slices)

reconstructions, which illustrate that the excitation is uniform across the field of
view.

9.1.5 Discussion

Our optimization approach is related to the basic ideas presented by Conolly et al.
[120]. In the context of MRI, the implementation of this principle was also carried out
by other groups using gradient [47], [49] and quasi-Newton [153] methods. However,
these methods do not make full use of second-order information and therefore achieve
at best superlinear convergence. In contrast, our Newton method makes use of exact
second derivatives and is therefore quadratically convergent. In particular, the main
contribution of our work is the efficient computation of exact Hessian actions using
the adjoint approach and its implementation in a matrix-free trust-region CG–Newton
method. The use of exact derivatives speeds up convergence of the CG method, while
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the trust-region framework guarantees global convergence and terminates the CG
method early especially at the beginning of the optimization. Both techniques save
CG steps and therefore computations of Hessian actions, allowing the use of second-
order information with limited computational effort and memory requirements.
Since computing a Hessian action incurs the same computational cost as a gradient
evaluation (i.e., the solution of two ODEs; compare (9.6) with (9.10)), we were able to
compute a minimizer, e.g., for the single-slice example, with a computational effort
corresponding to 32 gradient evaluations (4 for the right-hand side in each Newton
iteration and 28 for the Hessian action in each CG iteration). This is less than the
same number of iterations of a gradient or quasi-Newton method with line search
(required in this case for global convergence), demonstrating the efficiency of the
proposed approach. Therefore, our method can be used to compute RF pulses with a
high temporal resolution, allowing the design of pulses for a desired magnetization
on a very fine spatial scale, in particular for the excitation of a sharp slice profile.

Furthermore, the proposed algorithm does not require an educated initial guess for
global convergence (to a local minimizer, which might depend on the initial guess if
more than one exists) and allows for pulse optimization in non-standard situations
where no analytic RF pulse exists (e.g., for large flip angles). Compared to design
methods using a simplification or approximation of the Bloch equation [43], [66], our
OC based approach is capable of including relaxation terms. However, for standard
in-vivo imaging applications of the human head, the relevant relaxation times are
very long compared to the RF pulse duration. Thus, in our examples the influence
of relaxation during excitation on the designed pulses is insignificant and has been
neglected in the optimization process (although the inclusion may be indicated
for other applications). The presented direct design approach allows to specify the
desired magnetization in x-, y- and z-direction independently for every point in
the field of view. This spatial independence of each control point allows to directly
apply parallel computing to speed up the optimization process. While real-time
optimization was not the aim of this work, a proof-of-concept implementation of
the proposed approach on a GPU system (CUDA, double precision, GeForce GTX
550 Ti with 192 cores and 1024 MB of RAM) shows an average speedup of 135 (e.g.,
6.8 s instead of 989 s for the single-slice example) while yielding identical results,
thus making patient-specific design feasible as well as making the gap between OC
and SLR pulse design nearly negligible. This allows efficient and fast generation
of accurate slice profiles – important for minimal slice gaps, optimal contrast and
low systematic errors in quantitative imaging – for arbitrary flip angles and even for
specialized pulses such as refocusing or inversion.

In particular, our approach can be used to design pulses for the simultaneous excita-
tion of multiple slices, which increases the temporal efficiency of advanced imaging
techniques such as diffusion tensor imaging, functional imaging or dynamic scans.
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In these contexts, SMS excitation is successfully used to reduce the total imaging
time [163]–[166]; however, the peak B1 amplitude of conventional SMS pulses is one
of the main restrictions of applying SMS imaging to high-field systems [166]. The
performed studies show that compared to conventional SMS design, the presented
procedure yields pulses with a reduced B1 peak amplitude (e.g., 40 % reduction for six
simultaneous slices). Depending on the desired temporal resolution, the bandwidth
and the slice profiles of the outer slices are slightly changed, which results in a
decreased B1 peak amplitude. It could be shown that the peak B1 amplitude does
not increase linearly with the number of slices, while the power requirement per
slice remains constant and the overall power consumption is comparable to that of
conventional pulses. To further reduce the SAR it is necessary to either change the
excitation velocity using a time-varying slice selective gradient [160], or to extend
the pulse design to parallel transmit [211]–[214]. Furthermore, our OC-based pulses
produce sharp slice profiles with a lower mean absolute error compared to the used
PM-based SLR pulse, both in- and out-of-slice, at the cost of slightly larger out-of-slice
ripples close to the in-slice regions. Of course, the ripple behavior of the SLR pulse
can be balanced with the transition steepness by using different digital filter design
methods (i.e. PM for minimizing the maximum ripple or a least squares linear-phase
FIR filter for minimizing integrated squared error). The OC ripple amplitude close to
the transition band can be further controlled by using offset-dependent weights as
demonstrated by Skinner et al. [220]. In addition, the computational complexity of
OC methods is significantly higher than for direct or linearized methods. This implies
that OC-based pulse design is advantageous in situations where high in-slice contrast
and low B1 peak amplitude are important, while SLR pulses should be used when
minimal near-slice excitation and computational effort are crucial.

The presented OC approach is able to avoid some possible disadvantages of previously
proposed design methods for SMS excitation. In particular, the OC design method
prescribes each slice with the same uniform echo-time and phase in comparison to
time-shifted [175], phase relaxation [174] and nonlinear phase design techniques [173],
[210]. On the other hand, some of their features such as different echo times [175]
or a non-uniform phase pattern [173], [174], [210] (e.g., for spin echo experiments)
can be incorporated in our approach to further reduce the B1 peak amplitude. It
also should be possible to combine the OC design method with other techniques
analogous to MultiPINS [179], [195] that combine PINS with conventional multiband
pulses for a further reduction of SAR. Finally, the phantom and in-vivo experiments
demonstrate that it is possible to simply replace standard pulses by optimized pulses
in existing imaging sequences, and that the proposed method is therefore well suited
for application in a wide range of imaging situations in MRI.
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9.1.6 Conclusions

This paper demonstrates a novel general-purpose implementation of RF pulse op-
timization based on the full time-dependent Bloch equation and a highly efficient
second-order optimization technique assuring global convergence to a local minimizer,
which allows large-scale optimization with flexible problem-specific constraints. The
power and applicability of this technique was demonstrated for SMS, where a re-
duced B1 peak amplitude allows exciting a higher number of simultaneous slices or
achieving a higher flip angle. Phantom and in-vivo measurements (on a 3 T scanner)
verified these findings for optimized single- and multi-slice pulses. Even for a large
number of simultaneously acquired slices, the reconstructed images show good image
quality and thus the applicability of the optimized RF pulses for practical imaging
applications. While the computational requirements for optimal control approaches
are of course significantly greater than for, e.g., SLR-based approaches, a proof-of-
concept GPU implementation indicates that this gap can be sufficiently narrowed to
make patient-specific design feasible.

Due to the flexibility of the optimal control formulation and the efficiency of our
optimization strategy, it is possible to consider field inhomogeneities (B1, B0), design
complex RF pulses for parallel transmit, or to extend the framework to include
pointwise constraints due to hardware limits such as peak B1 amplitude and slew
rate.
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9.1.7 Trust-region algorithm

Algorithm 1: Trust-region CG-Newton algorithm
Input: Trust region parameters tolN , maxitN , tolC, maxitC, ρ0, ρmax, q > 1,

0 < σ1 < σ2 < σ3 < 1
Output: Control u
Set u0 ≡ 0, k = 0, g ≡ 1, ρ = ρ0 // initialization

while ‖g‖ > tolN and k < maxitN do // TR-Newton step

Compute gradient g(uk)

Set p0 = r0 = −g(uk), δu = 0, i = 0
while ‖ri‖ > tolC‖r0‖ and i < maxitC do // TR-CG step

Compute H(uk)pi

if 〈pi, H(uk)pi〉 < ε then // negative curvature: CG fails

Compute max{τ : ‖δu + τpi‖ ≤ ρ} // go to boundary of trust region

Set δu = δu + τpi; break
end
Compute α = ‖ri‖/〈pi, H(uk)pi〉
if ‖δu + αpi‖ ≥ ρ then // step too large: model not trusted

Compute max{τ : ‖δu + τpi‖ ≤ ρ} // go to boundary of trust region

Set δu = δu + τpi; break
end
Set ri+1 = ri − αH(uk)pi

Set pi+1 = ri+1 + ‖ri+1‖2/‖ri‖2 pi

Set δu = δu + αpi, i = i + 1
end
Compute δJa = J(uk)− J(uk + δu) // actual function decrease

Compute δJm = − 1
2 〈δu, H(uk)δu〉 − 〈δu, g(uk)〉 // predicted function decrease

if δJa > ε and δJa > σ1δJm then // sufficient decrease

Set uk+1 = uk + δu // accept step

end
if δJa > ε and |δJa/δJm − 1| ≤ 1− σ3 then // step accepted, model good

Set ρ = min {qρ, ρmax} // increase radius

else if δJa ≤ ε then // step rejected, no decrease

Set ρ = ρ/q // decrease radius

end
else if δJa < σ2δJm then // model bad

Set ρ = ρ/q // decrease radius

end
end
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9.1.8 Discretization

Cost functional:

J(M, u) =
1
2

Z

∑
i=1

∆zi|MN,i −Md(zi)|22 +
α

2

N

∑
m=1

∆tm|um|22

Bloch equation for all i = 1, . . . , Z:[
I − ∆tm

2
A(um; zi)

]
Mm,i =

[
I +

∆tm

2
A(um; zi)

]
Mm−1,i + ∆tmb, m = 1, . . . , N

M0,i = M0(zi)

Adjoint equation for all i = 1, . . . , Z:[
I − ∆tm

2
A(um; zi)

T
]

Pm,i =

[
I +

∆tm+1

2
A(um+1; zi)

T
]

Pm+1,i, m = 1, . . . , N − 1[
I − ∆tN

2
A(uN ; zi)

T
]

PN,i = MN,i −Md(zi)

Discrete gradient for all m = 1, . . . , Nu: M̄m := 1
2(Mm + Mm−1),

gm = αum + γB1

∑Z
i=1 ∆zi

(
PT

m,i A1 M̄m,i

)
∑Z

i=1 ∆zi

(
PT

m,i A2 M̄m,i

)

Linearized state equation for all i = 1, . . . , Z:[
I − ∆tm

2
A(um; zi)

]
δMm,i =

[
I +

∆tm

2
A(um; zi)

]
δMm−1,i + ∆tm A′(δum)M̄m,i, m = 1, . . . , N

δM0,i = 0
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Linearized adjoint equation for all i = 1, . . . , Z:[
I − ∆tm

2
A(um; zi)

T
]

δPm,i =

[
I +

∆tm+1

2
A(um+1; zi)

T
]

δPm+1,i +
∆tm

2
A′(δum)

TPm,i

+
∆tm+1

2
A′(δum+1)

TPm+1,i, m = 1, . . . , N − 1[
I − ∆tN

2
A(uN ; zi)

T
]

δPN,i = δMN,i +
∆tN

2
A′(δuN)

TPN,i

Discrete Hessian action for all m = 1, . . . , Nu: ¯δMm := 1
2(δMm + δMm−1)

[H(u)h]m = αhm + γB1

∑Z
i=1 ∆zi

(
δPT

m,i A1M̄m,i + PT
m,i A1 ¯δMm,i

)
∑Z

i=1 ∆zi

(
δPT

m,i A2M̄m,i + PT
m,i A2 ¯δMm,i

)
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9.2 Magnetic Resonance RF pulse design by optimal
control with physical constraints
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Abstract

Optimal control approaches have proved useful in designing RF pulses for large
tip-angle applications. A typical challenge for optimal control design is the inclusion
of constraints resulting from physiological or technical limitations, that assure the
realizability of the optimized pulses. In this work we show how to treat such inequality
constraints, in particular, amplitude constraints on the B1 field, the slice-selective
gradient and its slew rate, as well as constraints on the slice profile accuracy. For the
latter a pointwise profile error and additional phase constraints are prescribed. Here,
a penalization method is introduced that corresponds to a higher-order tracking
instead of the common quadratic tracking. The order is driven to infinity in the
course of the optimization. We jointly optimize for the RF and slice-selective gradient
waveform. The amplitude constraints on these control variables are treated efficiently
by semismooth Newton or quasi-Newton methods.

The method is flexible, adapting to many optimization goals. As an application
we reduce the power of refocusing pulses, which is important for spin echo based
applications with a short echo spacing. Here, the optimization method is tested
in numerical experiments for reducing the pulse power of simultaneous multislice
refocusing pulses. The results are validated by phantom and in-vivo experiments.
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9.2.1 Introduction

Magnetic resonance imaging at high field strength is restricted by the specific absorp-
tion rate (SAR) and technical limitations of the hardware. For single transmit MR
imaging the SAR is proportional to the overall or global pulse power. SAR limitations
apply mainly for sequences with larger flip angles (e.g. turbo or multi spin echo) or
short TR (e.g. True FISP, SSFP).

Various methods exist to design slice-selective RF pulses [23]. For small flip angles the
Bloch equation can be approximated by the inverse Fourier transform, while large flip
angles require the full Bloch equation. Neglecting the relaxation terms and assuming
pointwise constancy, the Bloch equation can be expressed in the spin domain [67] and
inverted by the Shinnar Le-Roux transform for large tip angle RF pulse design [66].

In the context of Simultaneous Multislice (SMS) imaging [95] the global RF power
typically increases linearly with the multiband (MB) factor, while the increase in
the maximum B1 peak amplitude can be reduced by phase scrambling[174], time
shifting[175] or root flipping[173]. Using sampling and replication properties from
the Fourier transform, the PINS method[131] allows for a refocusing of many periodic
slices without a power increase at the cost of a reduced bandwith and long pulse
durations, which makes PINS or its enhancement MultiPINS[179] the gold standard
for large MB factors. A different approach to reduce the power of a given RF pulse
with a distinct slice profile can be accomplished by applying the VERSE principle[112],
[176], [221]. Alternatively, the pulse can be improved iteratively by optimal control
approaches [1], [152], [153], [202]. Here, one typically minimizes a quadratic objective
subject to the Bloch equations.

The aim of this work is to introduce new models and optimal control methods for
minimizing the global RF power while restricting the maximal slice profile error. To
effectively reduce the pulse power, both the RF pulse and the slice-selective gradient
(Gs) are controlled jointly. For ensuring the practical applicability of the optimized
pulses, technical constraints on the MR hardware are included into the optimization.
Among these are amplitude constraints on Gs and its slew rate, as well as amplitude
constraints on the RF pulse. In contrast to existing optimal control approaches, the
proper excitation/refocusing pattern is modeled in a detailed way using an error band
around a desired pattern. Accordingly we cast the design objectives as inequality
constraints rather than as quadratic tracking type functionals. New methods for
solving the resulting inequality-constrained optimal control problems for RF pulse
design are introduced. Since a reduced pulse power is highly important especially
in SMS acquisition[95], test examples from this field are chosen for numerical
experiments, as well as phantom and in-vivo measurements.

118



9 Appendix

In our preceding work [1] we set up efficient second-order optimization methods for
optimal control of the Bloch equations with relaxation. Here we show how to extend
second-order methods to different types of inequality constraints. Semismooth New-
ton and quasi-Newton methods are introduced and combined with new penalization
techniques for assuring the profile accuracy. Furthermore, we extend the optimization
framework to the common spin-domain description [66], [67] at the cost of neglecting
the relaxation.

9.2.2 Theory

The nuclear magnetization vector M is described by the Bloch equation (without
relaxation) in the on-resonance case Ṁ(t, z) = γB(t, z)×M(t, z). The external mag-
netic field B(t, z) = (Re(B1(t)), Im(B1(t)), g(t)z) depends on the complex-valued RF
pulse B1(t) and the amplitude g(t) of Gs, as well as the spatial position z and time
t ∈ (0, T). The aim of the optimization will be to control B1(t) and g(t) jointly in
order to approximately reach a space-dependent desired magnetization pattern at
the terminal time T with a minimum pulse power. The optimization model will be
defined in the spin domain.

Spin domain Bloch equation

Assuming the external magnetic field to be piecewise constant in time, this Bloch
equation can be solved in the spin domain [66], [67] as a sequence of rotations, where
the magnetization vector M can be described by the complex-valued Cayley-Klein
parameters (am), (bm), m = 1, . . . , Nt with evolution

am = αmam−1 − β∗mbm−1,
bm = βmam−1 + α∗mbm−1,

(9.20)

and with initial conditions a0 = 1, b0 = 0.

The RF pulse is described in polar coordinates B1(t) = r(t) exp(iϑ(t)) with RF
amplitude r(t), RF phase ϑ(t) and imaginary unit i. An equidistant time grid tk =
kτ, k = 0, . . . , Nt with step size τ = T/Nt is chosen with piecewise constant RF pulse
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and Gs described by (rm, ϑm, gm), m = 1, . . . , Nt. The coefficients am, bm are then given
by

αm = cos(φm/2) + iγτzgm sin(φm/2)/φm,
βm = iγτrm exp(iϑm) sin(φm/2)/φm,

(9.21)

with φm = −γτ
√

r2
m + (zgm)2 and the gyromagnetic ratio γ. Here, the variables

am, bm, αm, βm, φm depend on the spatial coordinate z ∈ Ω = [−L, L] in slice direction
based on an equidistant spatial discretization −L = z1 < · · · < zNz = L with step
size δ.

Optimal control of the Bloch equation in the spin-domain

The slice-selective excitation or refocusing is modeled as optimal control problem
with inequality constraints. We jointly optimize for the RF pulse and Gs amplitude,
hence we define the control vector
x = (r1, . . . , rNt , ϑ1, . . . , ϑNt , g2, . . . , gNt−1)

T. The boundary values for the Gs amplitude
are fixed g1 = g0 and gNt = gT with given g0, gT ∈ R. The optimal control problem is
to minimize the pulse power

min
x

τ

2

Nt

∑
m=1

r2
m (9.22)

subject to the spin domain Bloch equation (9.20) in every spatial point zj, j = 1, . . . , Nz,
and an amplitude constraint on the Gs slew rate

|gm − gm−1| ≤ τsmax, m = 2, . . . , Nt, (9.23)

with given smax > 0. Additionally, we prescribe amplitude constraints r(t) ≤ rmax
with rmax > 0 and bounds for Gs gmin ≤ g(t) ≤ gmax denoted by gmax > 0 and
gmin < gmax. They are collected in the pointwise control constraints

cmin ≤ x ≤ cmax (9.24)

with vectorized lower and upper bound
cmin = (0, . . . , 0,−π, . . . ,−π, gmin, . . . , gmin)

T

and cmax = (rmax, . . . , rmax, π, . . . , π, gmax, . . . , gmax)T.

The slice profile accuracy is now modeled by constraints on the profile and on the
phase according to the type of the RF pulse, see [23, Tab 2.3] for excitation, inversion
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or refocusing pulses. Below, we concentrate on a spin-echo profile for SMS refocusing
with initial magnetization (0, M0, 0)T and ideal crusher gradients. The refocusing
profile at the terminal time T is described by |bNt(z)|2 using the last Cayley-Klein
parameter bNt = bNt(z) in (9.20). It is enforced to stay in a neighborhood of the
ideal rectangular refocusing for all z in the observation domain Ωobs ⊂ Ω, which is
partitioned into the in-slice and out-of-slice domain Ωobs = Ωin ∪Ωout.

|bNt(z)|2 − 1 ≤ e(z), ∀z ∈ Ωin,

|bNt(z)|2 ≤ e(z), ∀z ∈ Ωout,
(9.25)

with tolerance e = e(z) > 0 that may depend on z. In particular a different in-slice
and out-of-slice error can be prescribed. The profile is not fixed in between the two
regions i.e. on Ω \ (Ωin ∪Ωout). For ease of notation we do not write the dependence
on zj below and introduce the vector b = (bNt(z1), . . . , bNt(zNz)). In case of NMB slices
with in-slice domain Sl, l = 1, . . . , NMB, Ωin = ∪NMB

l=1 Sl a constant phase per slice can
be modeled as

|ϕ(b(z))− ϕ̄l(b)| ≤ ep, ∀z ∈ Sl, l = 1, . . . , NMB, (9.26)

with phase ϕ(b(z)) = arg(b2
Nt
(z)) and arithmetic mean of the phase ϕ̄l(b) in slice l,

and tolerance ep = ep(z) > 0.

The control constraints (9.24) and the state constraints (9.25), (9.26) need different
solution techniques. Below, we suggest semismooth Newton techniques for the
pointwise control constraints (9.24), which is computationally very inexpensive. In
contrast, (9.23) and the state constraints (9.25, 9.26) will be treated by an iterative
penalization method.

Penalization

State-constrained optimal control problems are known to be challenging since the
Lagrange multipliers are typically irregular, which may lead to a decrease of the
convergence speed and accuracy of numerical solution methods. To address these dif-
ficulties, regularization techniques within Newton-type methods for state-constrained
optimal control problems were introduced by several authors, in particular primal-
dual active-set strategies applied to a Moreau-Yosida regularization [222], [223], which
are under appropriate conditions equivalent to a semismooth Newton method [224].
Solution by interior-point methods were proposed in [225]. For further investigations
of the topic we refer to [226] and the references therein.
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Here we suggest a related but different method, which is designed to facilate the
convergence and globalization properties of the problem at hand. We suggest an
Lp-penalization of the state constraints (9.25) with parameters µout, µin > 0, and an
integer exponent p ≥ 1, which is driven to ∞ as we approach the optimizer. Therefore,
we eliminate (9.25) and add

δµout

2p ∑
zj∈Ωout

(
|bNt |2

e

)p

+
δµin

2p ∑
zj∈Ωin

∣∣∣∣ |bNt |2 − 1
e

∣∣∣∣p (9.27)

to the objective with parameters µin, µout > 0 and the spatial step size δ > 0. While
p = 1 corresponds to the widespread quadratic tracking, the power-p penalty recovers
the original state constraint (9.25) for p→ ∞. This follows from the simple observation
that |s|p → ∞ for |s| > 1 and |s|p → 0 for |s| < 1 if p → ∞. We propose a loop
around the optimization where p is increased successively until the minimum pulse
power solution is attained. We do not start with large p from the beginning, since a
small value of p turns out to be advantageous for the globalization, as will be shown
in the results section.

The constraints on g in (9.23) and on the in-slice phase in (9.26) are treated analogously.
For algorithmic purposes we also add a small regularization for the controls ϑm, gm
with parameter ζ > 0, which is driven to 0 as we approach the optimizer. To avoid
absolute values we restrict p > 0 to be even. Altogether the penalized objective is
defined as

J(x, b) =
τ

2

Nt

∑
m=1

r2
m + ζϑ2

m + ζg2
m (9.28)

+
δµout

2p ∑
zj∈Ωout

(
|bNt |2

e

)p

+
δµin

2p ∑
zj∈Ωin

(
|bNt |2 − 1

e

)p

+
δµp

p

L

∑
l=1

∑
zj∈Sl

(
ϕ− ϕ̄l

ep

)p
+

τµg

p

Nt

∑
m=2

(
gm − gm−1

τsmax

)p

with parameters ζ, µp, µg > 0.
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9.2.3 Methods

Semismooth (quasi-)Newton method

Semismooth Newton methods are a generalization of Newton’s method for specific
nonsmooth equations. In the context of optimal control problems they were intro-
duced by [190], [224], see also the monographs [227], [228]. With local superlinear
convergence, these methods turned out to be highly efficient for optimal control prob-
lems with pointwise control or (regularized) state constraints, with sparsity, or with
variational inequalities. Here, the penalized optimal control problem (9.20,9.24,9.28)
for a fixed p is solved with semismooth Newton methods. Semismooth Newton
methods fulfill the remaining inequality constraints efficiently based on projections.
This procedure allows for the inclusion of these constraints into the optimization code
without increasing the computational effort. For efficiency the optimization is done
purely on the controls x, while the state variables are eliminated using the discrete
Bloch and auxiliary equations. We introduce the reduced objective

j(x) = J(x, b(x), w(x)) =
1
2

xTEx + F(x),

with the diagonal matrix E = τdiag(1, . . . , 1, ζ, . . . , ζ, ζ, . . . , ζ) and penalization terms
F. With its gradient j′(x) = Ex + F′(x) the first order necessary optimality conditions
for mincmin≤x≤cmax j(x) are given by

x = Pad(−E−1F′(x)), (9.29)

where Pad = min
(
cmax, max(cmin, z)

)
denotes the componentwise projection to the

feasible set. F′(x) is given in terms of a forward and backward solve using a Lagrange
calculus in Appendix 9.2.7. The calculations are done with the Wirtinger calculus
[229], which for the spin domain description allows for an efficient derivation and a
compact form of both, the equations and the subsequent code. We reformulate (9.29)
equivalently by introducing c := −E−1F′(x) as independent variable and parametrize
the control x = Pad(c). Then a minimizer has to fulfill G(c) := Ec + F′(Pad(c)) = 0.
G is nonsmooth but semismooth, which allows for the semismooth Newton iteration
ck+1 = ck + δc,

DNG(ck)δc = −G(ck). (9.30)

Therein, DNG(ck)δc is the generalized Newton-derivative of G applied to the direc-
tion δc in the current point ck. While the assembling of the full matrix DNG(ck) is
computationally expensive, it is well-known that the evaluation of a matrix vector
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product can be performed efficiently, without knowledge of the full matrix. This tech-
nique is basis of matrix-free Newton-Krylov methods, where the Newton equation is
solved iteratively using a Krylov method. We already presented this technique in [1]
in the absence of inequality constraints and for the Crank-Nicolson Bloch solver. Here,
we apply the technique in the spin domain, generalize the Newton method to the
semismooth case with inequality constraints, and to quasi-Newton methods. By the
calculus for Newton derivatives [227], the left-hand side of (9.30) can be computed
as

DNG(ck)δc = Eδc + F′′(Pad(ck))DNPad(ck)δc (9.31)

where DNPad(ck) is the Newton-derivative of the projection Pad at the current iterate
ck. The second summand can be realized by a forward backward solve consisting in a
linearized Bloch equation and its adjoint analogously to [1, eq. (6,7)]. We introduce
the inactive set I = {m | − cmin,m < cm < cmax,m} and its characteristic function
χI(m) which is 1 for m ∈ I and 0 otherwise. Then it holds that DNPad(c) = χ with
χ = diag(χI(1), . . . , χI(3Nt − 2)). In order to save computational effort, the system
is firstly solved on the inactive set I , where DNG(c) is symmetric, using the Steihaug-
cg method [230]. Finally the components on the active set can be easily obtained
by adding the last residual, for background see [191, Algorithm 2]. Steihaug-cg is
embedded into a trust-region framework based on [230] and [191, Algorithm 3].

In case of a semismooth quasi-Newton method we approximate F′′ using the Broyden-
Fletcher–Goldfarb-Shanno (BFGS) formula [231]

Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+
ykyT

k
yT

k sk
, (9.32)

with sk = xk+1 − xk and yk = F′(Pad(ck+1))− F′(Pad(ck)). The expression DNG(c)δc
is then replaced by (E + Bk+1χ)δc. The update is skipped if the trust-region step
is rejected. For efficiency, we apply Bk+1 in the (matrix-free) limited-memory BFGS
method using the compact form of [231] and [232], which requires less storage and
computational effort by storing only data from the last LBFGS steps with a fixed limit
LBFGS ∈N.

We note that the presented trust-region semismooth Newton method coincides with
the trust-region Newton method of [1] in the absence of control constraints (9.24). In
this case Pad(c) = c, and the active set is empty.
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Implementation

The optimal control approach is implemented in Matlab (The MathWorks, Inc.,
Natick, USA). The Bloch state and adjoint solvers are parallelized in C using OpenMP
and included using a MEX file. The computations are done on one node of the HPC
Cluster ”RADON 1” (RICAM Linz, Austria) with 16 CPU cores with 2.4 GHz.

The parameters of the penalized objective are adapted automatically throughout the
optimization. Therefore, the maximum errors in the constraints (9.23), (9.25), (9.26)
are defined

εg = max
m=2,...,Nt

|gm−1 − gm|/(τsmax),

εout = max
z∈Ωout

|bNt |2/e,

εin = max
z∈Ωin

(1− |bNt |2)/e,

εph = max
l=1,...,L

max
z∈Sl
|ϕ− ϕ̄l|/ep.

(9.33)

Note that these errors are dimensionless and scaled to 1. Every 20th optimization
step we adapt the parameter µg by multiplication with
min(10, max(0.3, 1 + 10(εg − 1))). Accordingly we increase µg if g is not admissible
to the slew rate constraint (εg > 1), keep µg if g is admissible but active (εg = 1), and
reduce it if the slew rate constraint is not active at all (εg < 1). The other parameters
(µout, µin, µp) are adapted in the same way by exchanging εg with εout, εin, εph. This
technique ensures that the different penalty terms remain balanced, and that the
results are insensitive to the initialization of the parameters. Initially we set µout = 105,
µin = 104, µp = 1, and µg = 1.

9.2.4 Results

In this section we demonstrate the application of the proposed design method to
reduce the overall RF pulse power using different initial guesses in the field of SMS
refocusing. We consider four different experiments for a varying number of slices
and slice thicknesses. The initial pulses are designed with six different state of the art
methods for SMS RF pulse design [95] including a conventional superposition [162],
superposition with VERSE[112], [160], PINS[131], PINS with VERSE, MultiPINS[179]
and root-flipped SMS design [173]. For all simulations we assume perfect spoiling for
the computed refocusing profile in the spin-domain description [66]. Tab. 9.3 lists the
parameters of the four examples. The peak amplitudes are generally set to rmax = 18
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Table 9.3: Parameters of the experiments

Example MB factor T Nt L Nz transition region smax e|Ωin e|Ωout ep
ms mm mm T m−1 s−1

SUP MB3 3 10.42 515 60 2401 1.1 200 0.03 0.02 ∞
Root-flipped MB6 6 8.41 258 36 961 1.2 200 0.05 0.04 ∞

PINS MB10 10 9.46 946 120 4801 1.2 200 0.03 0.02 0.01
Comparison MB5 5 6.02 602 125 5001 1.8 200 0.03 0.02 0.01

µT for B1, gmax = 24 mT m−1 for the gradient, and 200 T m−1 s−1 for the gradient slew
rate. The minimum gradient value gmin is set to −gmax. However, the second example
below investigates the influence of the choice of smax and gmin on the optimal solution.
Typical spatial and the temporal discretizations are chosen (50 to 75 µm and 10 to 40
µs). The excluded transition regions are listed in Tab. 9.3 and shown graphically in
Row 3 of Fig. 9.7-9.11 where black lines mark the in-slice/out-of-slice error tolerance.
In all examples we set gT = g0 determined by the used initial guess. To compare
the overall pulse power of the initials and the optimized RF pulse candidates, we
compute the (scaled) pulse power using

S = 104τ
Nt

∑
m=1

r2
m, [S] = 10−5T2s. (9.34)

As standard parameters for the optimization the exponent p in the penalization is
initially set to 2 and increased by a factor of 2 every 350th iteration of the quasi-
Newton method (with LBFGS = 30), which is shown below to be the preferable
strategy in general. In addition, we give the best results using individually tuned
parameters per example. Whenever p is increased, ζ is divided by 10 starting from
ζ = 0.01.

Superposition (SUP) MB3

We designed a 180 degree single slice refocusing pulse based on the SLR [66] (in-
slice and out-of-slice error of 0.02, time bandwidth product (TBP) = 2.8 and slice
thickness of 2 mm). To generate a SMS refocusing pulse with a MB factor of three,
we superposed three partially phase shifted subpulses together with a constant Gs
amplitude. The symmetry of the slices around the isocenter leads to a real valued
pulse, rather than a complex pulse. This RF pulse was scaled to a maximal peak B1
amplitude of 18 µT resulting in a pulse duration of 10.42 ms and is shown, together
with a Bloch simulation, in the first row of Figure 9.7. The optimized results for this
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Table 9.4: Optimization results: optimized pulse power in dependence of the choice rule for p (in
Matlab colon notation). p is increased every maxit iteration (or stopping in case of maximum
p)

choice rule maxit optimized pulse power S
for p SUP MB3 RF MB6 PINS MB10

2 3500 1.859 4.501 1.697
25 3500 0.931 3.087 1.087
210 3500 1.298 4.501 0.929

21:10 350 0.767 2.199 0.819
41:5 700 0.768 2.240 0.828
24:10 500 0.770 2.232 0.851
81:4 875 0.799 2.433 0.879

21:10 100 1.577 2.632 1.697
21:10 250 0.771 2.237 0.840
21:10 350 0.767 2.199 0.819
21:10 450 0.797 2.184 0.816
21:10 500 0.805 2.168 0.914

example are given in the second row of Figure 9.7. The simulated refocusing profile
is shown for the full field of view (FOV) of 120 mm and in detail for the central
slice in the third row of Figure 9.7 with the non-optimized but still stable phase. The
overall pulse power is reduced by 59% from initially S = 1.859 to S = 0.767 after the
optimization.

Different strategies for choosing the penalty exponent p were tested, see Tab. 9.4.
In the upper seven cases 3500 quasi-Newton iterations are performed in total. The
optimized values of S for the first three examples presented in this paper are depicted.
As can be seen in the first three rows, constant values of p do not allow to find a
small pulse power. Especially, the classical quadratic tracking in the first row cannot
improve S within 3500 iterations. In contrast, the proposed strategy of increasing
p from a small initial value to a large value performs well, independently of the
particular protocol, see rows four to seven. The best results were gained with the
strategy p = 2k, k = 1, . . . , 10. The lower part shows that the number of 350 iterations
is a reasonable choice for that strategy. Therefore, this strategy is applied for all other
optimization results throughout the paper. We observed that larger values p > 1024
lead to many more iterations without a significant gain. However, we mention the best
observed run for this example, which yielded a power S = 0.744 with individually
tuned parameters p = 2k, k = 1, . . . , 12 with maxit = 500 and LBFGS = 180.
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Root-flipped MB6

For this example we used a SMS refocusing pulse designed with the root-flipped
method[173] as an initial guess for the numerical optimization together with a
constant Gs amplitude. This complex RF pulse refocuses six slices with a slice
thickness of 1.75 mm and TBP = 4. Scaled to a peak B1 amplitude of 13 µT, the pulse
duration results in 9.46 ms with S = 4.501. By optimization the pulse power was
reduced down to approximately S = 2.2 corresponding to a SAR reduction of 51%.
Below we show that the reduction can even be increased to 77%. This best solution is
plotted together with the initial guess in Figure 9.8. Bloch simulations at the terminal
time of the spoiled refocusing profile are given for the full FOV = 72 mm and in
detail for one slice together with the refocusing phase. Please note, that the phase
was intentionally not part of the optimization.

Here, we compare different values of the limit parameter LBFGS for the limit-memory
BFGS, as well as the full semismooth Newton method, see Tab. 9.5. As can be
seen from the table, LBFGS = 10 does not improve the pulse power satisfactorily. In
contrast, LBFGS = 30 already yields very small values in a computation time of 2.3
min. Further increasing the limit in the BFGS method yields slightly better results at
the costs of a higher computational effort. Due to this trade-off we decided to use
LBFGS = 30 in all other optimization results. However, if much more computational
time can be invested, the SAR of the MB6 pulse can be even reduced by 74% using
individually tuned parameters. Then, the pulse power is reduced to S = 1.166 using
p = 2k, k = 1, . . . , 10 with maxit = 5000 and LBFGS = 200 leading to a computation
time of 55 min. On the other hand, the exact Hessian within the semismooth Newton
method allows for the best power values that were observed at the cost of an increased
numerical effort. Here, we find S = 1.471 in the standard configuration (300 iterations
per step for p = 2k, k = 2, . . . , 7) with a computation time of about 2h (with standard
Matlab parallelization instead of C/OpenMP). With individually tuned parameters
the semismooth Newton method gives S = 1.041 which is a reduction of 77% of the
pulse power.
The influences of the maximum slew rate smax and the minimum gradient gmin on
the gain of the optimal solution are depicted in Tab. 9.6. With smaller smax the SAR
reduction decreases slightly from 51% down to 40%. An increase of gmin up to 1 does
not influence the optimal SAR significantly, which is related to the given boundary
conditions g0 = gT = 2.31. However, larger values decrease the SAR reduction
significantly. The optimal solutions for different smax are depicted in Fig. 9.9. It can
be seen that the slew rate is hitting the constraint at many time instances and in all
settings. With smaller smax the gradient waveform gets smoother, while the maximum
RF amplitude increases slightly. All optimal solutions show a good slice profile, one
that is admissible to the underlying inequality constraints. Up to now the lower
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Table 9.5: Optimization results: optimal pulse power in dependence of the optimization method. maxit
is the iteration per step for p, i.p. denotes individually tuned parameters per example.

optimization method maxit optimized pulse power S
SUP RF PINS
MB3 MB6 MB10

semism. Newton, p = 22:7 300 1.471
semism. Newton i.p. 1.041
semism. BFGS, LBFGS = 10 350 0.790 2.257 0.997
semism. BFGS, LBFGS = 30 350 0.767 2.199 0.819
semism. BFGS, LBFGS = 50 350 0.763 2.172 0.813
semism. BFGS, LBFGS = 80 350 0.761 2.163 0.808
semism. BFGS, LBFGS = 200 i.p. 0.744 1.166 0.803

constraint on g was never active due to gmin = −24. In contrast, Figure 9.10 shows the
optimized results with different tight constraints on the minimal gradient amplitude
({0, 1, 2.31} mT m−1) and standard parameters. As can be seen, the lower bound
constraint on g is active at many time instances, especially for gmin = 2.31.

PINS MB10

For the third example we designed a SMS refocusing pulse applying the PINS method
[131] on a SLR based 180 degree refocusing pulse (in-slice and out-of-slice error of
0.02, TBP = 3, slice thickness of 2 mm). Accordingly, the Gs amplitude is built up
of regular PINS blips, see the upper left plot of Figure 9.11. Here, we include phase
constraints with a maximum phase deviation of ep = 0.01 rad from the mean phase
per slice. This PINS refocusing pulse was scaled to a peak B1 amplitude of 18 µT
producing T = 10.36 ms. The optimized real valued controls are given in Figure 9.11

together with the used initial and Bloch simulations with FOV = 240 mm.

The power of the shown RF pulse was reduced to S = 0.819 by roughly 53% compared
to the inital PINS guess. With individually tuned parameters we even find S = 0.803
with p = 2k, k = 1, . . . , 12, maxit = 500 and LBFGS = 170. For each example the
reduction of the required pulse power is depicted in Tab. 9.7. The last three rows
of Tab. 9.7 contain the optimization results without joint control, i.e. when only the
RF pulse is controlled while g is kept fix at its initialization. For the superposition
pulse with a fixed and constant g the reduction in the pulse power S is limited, while
for the root-flipped pulse we observe a good reduction of 35% (compared to 51%
reduction for joint control). In case of PINS initialization, keeping the non-constant g
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Table 9.6: Optimization results for a MB6 pulse: optimal pulse power S in dependence of the maximum
slew rate smax and the minimum gradient field gmin.

smax gmin optimized S SAR reduction

200 −24 2.199 51.1%
100 −24 2.248 50.1%
50 −24 2.357 47.6%
30 −24 2.458 45.4%
10 −24 2.683 40.4%

200 −24 2.199 51.1%
200 0 2.211 50.9%
200 1 2.289 49.1%
200 2 2.621 41.8%
200 2.3 2.896 35.7%
200 2.3091 2.901 35.6%

fixed yields a reduction of 46% which is just slightly below the value of 53% that was
observed for joint control.

Comparison of different initializations for MB5

In a final study we compare the performance of the optimization method for different
initializations (superposition, superposition with VERSE, PINS, PINS with VERSE,
and MultiPINS). For an intermediate MB factor of 5, these five initializations can
be designed with the same duration (T = 6.02 ms) and comparable slice profile
properties (slice thickness 2 mm, TBP = 2, maximum in-slice and out-of-slice error,
and maximum phase error, see Tab.9.3) resulting in different peak B1 amplitudes and
RF power (see Tab.9.8). The boundary conditions are in general set to g0 = gT = 0,
which is implemented with a ramp-up/ramp down for the superposition pulse to
reach the constant gradient of 4.65 mT m−1, respectively 5.00 mT m−1 with VERSE.
Furthermore, the peak B1 for the superposition pulse is projected down to the allowed
maximum of 18 µT. The optimized pulse power S is shown in the last two columns of
Tab.9.8 for standard parameters in the optimization (column S) and for LBFGS = 200,
p = 2k, k = 1, . . . , 12 with each 350 iterations (column S best). Depicted are also the
maximum errors of the slice profile.

In the first two rows the superposition pulse without and with VERSE are compared.
We see that the version with VERSE allows for a smaller pulse power S after op-
timization. The last three rows show that the optimization method yields the best
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Table 9.7: Pulse power S of initial and optimized pulse with standard parameters and with individually
tuned parameters/method.

Example initial S optimized S SAR reduction

PINS 1.724 0.819 52.5%
PINS best 1.724 0.803 53.4%

SUP 1.859 0.767 58.7%
SUP best 1.859 0.744 60.0%

Root-flipped 4.501 2.199 51.1%
Root-flipped best 4.501 1.041 76.9%

PINS (g fixed) 1.724 0.925 46.3%
SUP (g fixed) 1.859 1.471 20.9%

Root-flipped (g fixed) 4.501 2.927 35.0%

power values for PINS, PINS with VERSE and MultiPINS pulses. While their initial
values for S are different, the optimized values in the last column coincide for these
three initialization. However, the optimized pulses behind these power values are
very different. The maximum errors in the optimum are increased out-of-slice and in
the phase, however, the maximum allowed errors are in most cases not attained. The
maximum in-slice errors of the initializations and the optima agree and are at the
bound 0.03.

Experimental validation

Figure 9.12 contains the experimental validation of the optimized refocusing pulse and
Gs shape for MB3 using a superposition initial (Figure 9.7), MB5 using a MultiPINS
initial (not shown) and MB10 using a PINS initial (Figure 9.11), on a 3T MR scanner
(Magnetom Skyra, Siemens Healthcare, Erlangen, Germany). The data is acquired
with a 2D spin echo sequence (TE = 25 − 30 ms, TR = 100 ms, FOV = 300 mm
× 300 mm, matrix = 1536 pixel × 1536 pixel (922 phase encoding steps), readout
bandwidth = 130 Hz/pixel) with conventional superposed SMS excitation pulses
using a cylindrical phantom. Figure 9.13 contains a zoomed view to one slice of
the experimental phantom data shown in Figure 9.12 and compares it to numerical
Bloch simulations of the optimized refocusing pulses. Figure 9.14 shows the in-vivo
reconstruction of the measured slice profiles (optimized MB3) as described above
with a TR = 200 ms and a matrix of 512 pixel × 512 pixel with a measured head SAR
of 0.288 W kg−1 (0.512 W kg−1 for the initial MB3 pulse).
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Figure 9.7: Optimization results and spin domain Bloch simulations for a MB3 pulse. Initial (Row 1)
and optimized (Row 2) RF and Gs (Re(RF) in blue, Im(RF) in yellow and Gs in red) with
refocusing profile |bNt |2. Zoom of the central slice (black lines mark the in-slice/out-of-slice
error tolerance) with phase angle(bNt) (not part of the optimization) for the optimized
pulse (Row 3).
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Figure 9.8: Optimization results and spin domain Bloch simulations for a MB6 pulse. Initial (Row 1)
and optimized (Row 2) RF and Gs (Re(RF) in blue, Im(RF) in yellow and Gs in red) with
refocusing profile |bNt |2. Zoom of the central slice (black lines mark the in-slice/out-of-slice
error tolerance) with phase angle(bNt) (not part of the optimization) for the optimized
pulse (Row 3)
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Figure 9.9: Optimized MB6 RF pulse (Re(RF) in blue, Im(RF) in red), slice-selective gradient Gs and
gradient slew rate for different maximum values of s: smax ∈ {100, 50, 10} T m−1 s−1.
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Figure 9.10: Optimized MB6 RF pulse and slice-selective gradient shape (Re(RF) in blue, Im(RF) in
yellow and Gs in red) for different minimal values of Gs: gmin ∈ {0, 1, 2.3} mT m−1.
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Table 9.8: Performance of the optimization method for different initializations for an MB5 example.
Depicted are the maximum errors and the pulse power S both for the initial and optimized
pulse. The maximum errors were constrained by 0.03 in-slice , by 0.02 out-of-slice , and by
0.01 in the phase constraint.

initial optimized
Initialization error error error max |B1| S error error error S S best

in-slice out-of-slice phase µT 10−5T2s in-slice out-of-slice phase 10−5T2s 10−5T2s

SUP 0.0318 0.0142 0.0031 18 1.9531 0.0300 0.0066 0.0100 0.7712 0.7677
SUP VERSE 0.0297 0.0016 0.0010 14 1.4461 0.0300 0.0200 0.0032 0.5603 0.5556

PINS 0.0294 0.0010 0.0009 13 1.1301 0.0300 0.0116 0.0030 0.4163 0.4108
PINS VERSE 0.0297 0.0014 0.0008 13 0.9967 0.0300 0.0146 0.0093 0.4578 0.4093
MultiPINS 0.0297 0.0016 0.0009 8 0.7262 0.0300 0.0200 0.0032 0.4144 0.4127

9.2.5 Discussion

We presented a general framework for optimal control based joint design of RF
pulses and gradient waveforms for MRI. The framework is flexible in the primary
optimization goal, which was chosen as SAR reduction in the examples above, and in
the desired magnetization profile. The latter can range from a conventional single
slice in the isocenter, to asymmetric or off-resonance profiles, or SMS. While we
included the most important inequality constraints for RF pulse design, it is possible
to add other constraints and treat them with the presented penalization method.
Otherwise, constraints can also be turned off by choosing an infinite bound.

The examples were chosen in the context of SMS imaging, where the pulse power
and peak B1 amplitude are easily exceeded and complying the hardware constraints
is crucial for practical applications. Therefore, the optimal control method was tested
in the numerical experiments focusing on SAR reduction of several SMS refocusing
pulses for various slice thicknesses, time bandwidth products and a slice acceleration
factor ranging from MB3 to MB10. The initial pulses are designed with different
methods, with conventional superposition[162], VERSE[112], [160], root flipping[173],
PINS[131] and MultiPINS [179] with SLR based subpulses[66]. We investigated four
different examples for low (MB3), intermediate (MB5 and MB6) and large (MB10)
slice acceleration factors. PINS pulses for low MB factors and superposition pulses for
large MB factors typically have a very long pulse duration. Therefore we chose to use
MB3 superposition pulses for low and MB10 PINS pulses for large MB factors only
and compare different initialization methods (SUP, SUP VERSE, PINS, PINS VERSE
and MultiPINS) for the intermediate MB5 case. The root flipping pulse is excluded
from this comparison and investigated separately for MB6 as it creates refocusing
profiles with a non linear phase.
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Figure 9.11: Optimization results and spin domain Bloch simulations for a MB10 pulse. Initial (Row 1)
and optimized (Row 2) RF and gradient waveform (Re(RF) in blue, Im(RF) in yellow
and Gs in red) with refocusing profile |bNt |2. Zoom of the central slice (black lines mark
the in-slice/out-of-slice error tolerance) with phase angle(bNt) for the optimized pulse
(Row 3)

The results show that the proposed optimal control model and method can reduce
the pulse power dramatically. The overall power of the initial pulses was reduced
by roughly 58 percent for SUP MB3 and 52 percent for PINS MB10 (and by 77
percent for the RF MB6 pulse with a higher tolerance ein and eout, see Tab. 9.3).
Please note that the initial power of the PINS pulse already lies in the range of
the MB3 pulse designed with superposition. As can be seen in the Figures 9.7-9.11

the optimal waveforms vary in their shape, and hence depend on the initialization.
The figures show that the maximum and mean B1 amplitude is reduced and the
slice-selective gradient is modulated. While the initial PINS already uses a time
varying Gs, the optimized superposition and in particular the optimized root flipped
example introduce fluctuating Gs curves from constant initializations. The extent of
the fluctuations in Gs changes with the prescribed maximum gradient slew rate, see
Fig.9.9, and small fluctuations give a slightly reduced but still significant reduction in
the pulse power, see Tab. 9.6. Even a constant and fixed Gs allows for a significant
reduction of the pulse power for the root flipped initialization, but only a slight
reduction for the superposition pulse, see Tab. 9.7. Keeping the non-constant Gs from
PINS initialization fixed allows for nearly the same reduction of the pulse power as
with the joint control. Accordingly, joint control is always beneficial, but the gain
varys with the specific examples.
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Figure 9.12: Reconstructed experimental data for the optimized MB3, MB5 and MB10 candidates.

136



9 Appendix

distance in mm

-4 0 4

a
.u

.

MB3

distance in mm

-4 0 4

a
.u

.

MB5

distance in mm

-16 -12 -8

a
.u

.

MB10

Figure 9.13: Simulated refocusing profile (solid line) and experimental phantom data (crosses) of the
phantom measurements shown in Figure 9.12 for MB3 (zoom to one slice).
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Figure 9.14: Reconstructed experimental data for in-vivo measurements using the optimized MB3
pulse.
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Five different initializations were compared for an intermediate MB factor of 5 with
a uniform pulse duration and comparable error properties. The pulse power was
heavily reduced in all cases while the maximal in-slice errors εin remained the same.
An increase in the out-of-slice errors εout and phase errors εph was observed, but it
remained below the prescribed error bounds of 2% and 0.01 radians, respectively.
A superposition pulse with VERSE yielded S ≈ 0.56 and therefore outperformed
the same pulse without VERSE (S ≈ 0.77). However, much better power values of
S ≈ 0.41 were observed for optimized PINS, PINS with VERSE and MultiPINS pulses.
Therefore, it seems that the optimal control method performs best with PINS based
initializations, especially for large MB factors.

These improvements in the pulse power were possible by allowing a controlled deviation
of 3% and 5% for the slice profile accuracy along with 2% and 4% for the out-of-
slice region compared to an ideal rectangular refocusing with a transition zone
excluded from the optimization. For two of the examples (SUP MB3 and PINS MB10)
this formulation results in a slightly steeper refocusing profile for the optimized
refocusing compared to the initial. Figures 9.7-9.11 show that the controlled deviation
is not exceeded anywhere in the observation domain. In other words, the profile
constraints are fulfilled exactly, which is an achievement of the presented penalization
technique.

Two second-order methods of numerical optimal control were introduced, that both
use adjoint-based exact discrete derivatives, also for the second derivative. The precise
derivative information allows for better progress when approaching the minimizer.
For robustness of the optimization method w.r.t. the initialization and the problem
parameters we embedded the Newton-type method into a trust-region framework
using the Steihaug-CG method. Additionally, Steihaug-CG reduces the computational
effort of Newton-type methods, since it saves many Hessian evaluations in the first
phase of the optimization. In the second phase of the optimization both methods
profit from an increased convergence order compared to first-order methods. To
save computational effort, both methods were applied as a Newton-Krylov method
with a matrix-free evaluation of the Hessian. By semismooth Newton techniques the
inequality constraints on the control variables were included into the optimization
without increasing the numerical effort. The parameters of the optimization method
were adapted automatically, or calibrated in the numerical experiments shown above.
With these parameters the semismooth quasi-Newton method yields good results in
short computational time. In contrast, the semismooth Newton method which uses
increased computation time gives the best results.

Two examples for turbo spin echo sequences included explicit phase constraints,
whereas the two other examples, intended for double refocused diffusion sequences,
did not constrain the phase of the refocusing profile. The influence of the phase
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constraints on the optimal solutions is less severe than expected and the optimized
cases lead to similar power reductions in the range of 50% for the standard constraints
(Tab. 9.6).

The prescribed amplitude constraints on the optimized RF pulse, the gradient and
its slew rate ensure practical applicability on MR scanners. Due to the semismooth
Newton method as well as the penalization technique, all these constraints are never
exceeded in the optimum. More closely, the results show that the maximum values
for the B1 amplitude and gradient strength were not attained in the optimal solution.
This is due to the fact, that the reduction of the pulse power and the boundary
conditions for the gradient already pull the maximum value downwards. However,
both these constraints become active for examples with smaller maximum values,
different boundary conditions, and especially for smaller pulse durations. In contrast,
we observe that the slew rate constraint is active in any of the investigated scenarios,
which can e.g. be seen in Fig. 9.9. A nonnegative minimum gradient value is also
in effect for large pulse durations, as can be seen in Fig. 9.10. If the minimum
gradient value gets too large, the possible reduction of the pulse power is decreased
significantly, as can be seen for gmin = 2.31 in Tab. 9.6.

The pulses were designed based on the spin-domain description neglecting the
relaxation effects. To justify this simplification we performed full Bloch simulations
[233] for the optimized pulses and compared the simulations to the spin-domain
results. The relaxation times were set to those of the cylindric phantom (T1 = 102
ms, T2 = 81 ms) used in the experiment. In all simulations, the refocusing profiles of
the optimized examples do not degenerate significantly in the presence of relaxation.
We see a simple scaling of the refocusing profiles, similar to conventional RF pulses
for short T2 values. The effects of T1 is an increase of the refocusing error outside of
the slices, which is compensated by the T2 relaxation and remains below the allowed
deviation for each example. Since the T1 relaxation times of typical in-vivo tissue
are even higher and their influence on the refocusing profiles are negligible. These
findings have been verified by the experimental phantom measurements.

The experimental validation was done on a 3T scanner exchanging the excitation and
refocusing pulse of a standard crushed spin echo sequence for a cylindrical phantom
(MB3, MB5 and MB10) and in-vivo (MB3). Changing the readout gradient to the slice
direction allows for a direct measurement of the simultaneous excited and refocused
slices. The small inter slice ripples of the optimized refocusing pulses can be neglected
for a real measurement as standard excitation pulses produce no marked transversal
magnetization at these inter slice positions and the refocused magnetization would
be weighted by a factor of sin(θ/2)2 with a spatially dependent but low inter slice
refocusing flip angle θ. Due to the adequate choice and implementation of the slew
rate constraint, the fluctuating Gs shapes were implementable, and the measured slice
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profiles fit very well to the Bloch simulations for all measurements. The measured
whole body SAR includes the non optimized excitation pulse and is therefore lower
than the calculated power reduction of the optimized MB3 refocusing pulse. The good
accordance of the simulations and the measurements shows the practical applicability
of the optimized pulses on a standard clinical scanner. Using the specific hardware
constraints of the desired MR system simplifies the application of optimized pulses
since no further modifications or transformations have to be done, that moreover
could reduce the optimality.

In simulations we compared the robustness of the optimized pulses w.r.t. inhomo-
geneities in B0 and B1 to the one of the initial pulses. The initial pulse and gradient
pairs have a constant k-space excitation velocity and constant B0 inhomogeneities
lead to a constant spatial shift. Despite the time varying slice-selective gradient of
the optimized examples, which is known to be prone to off-resonance effects, the
profile fidelity remains almost unchanged in the range of ±500 Hz and the impact
of the chemical shift (400 Hz at 3 T) is negligible. For applications with larger B0
inhomogeneities, the minimal amplitude constraint of the slice selective gradient can
be increased or Gs can be fixed to enhance off-resonance robustness at the cost of a
decreased power reduction. To investigate the influences of a temporal mismatch be-
tween the RF and slice selective gradient and eddy currents on the refocusing profiles,
Bloch simulations were performed using a temporal shift of the slice selective gradient
shape with respect to the RF pulse (up to 10 µs) and a first order low pass filtering
(normalized numerator and denominator of 0.5) of the slice selective gradient shape.
Both effects led to a symmetric decrease of the refocusing efficiency in dependence of
the distance to the isocenter. Compared to the used initials with constant or repetitive
gradient functions, the fast changes in the optimized slice selective gradient are more
prone to these effects. However, such a behavior is not observable in the experimental
phantom measurements and leads to the conclusion that the optimized examples can
be successfully implemented on the used MR scanner without special compensation
techniques. To decrease the sensitivity of gradient imperfections of the optimized
results, it should be possible to incorporate this directly in the optimization by enforc-
ing a smoothness constraint on the slice selective gradient or to directly include the
gradient impulse response[234]. In the context of B1 inhomogeneities all optimized
examples behave similar as the initial pulses and lead to a smooth transition of higher
and lower flip angles for a static B1 increase or reduction, respectively. Furthermore,
we do not expect an additional proneness to small in-plane and through-plane motion
compared to conventional RF pulses. The same holds for movements between the
excitation and the read-out. However, to reduce the influences of motion artifacts it
should be considered to reduce the overall refocusing time.

If the pulse power is not the primary restriction, then the pulse duration can be
decreased instead while keeping the pulse power. The reduction of the refocusing
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time is of high importance in SMS imaging and was chosen to be the topic of the
2015 ISMRM Challenge[4]. In this direction the next step is to minimize the pulse
duration by time-optimal control [235] in order to find the shortest possible pulses
that fulfill the given inequality constraints.

9.2.6 Conclusions

The modeling of the profile accuracy with inequality constraints together with a
customized solution method allows for the computation of optimal RF pulses and
slice-selective gradients, that outperform other approaches in the performance index.
Moreover, the usage of constrained optimization guarantees for practical applicability
and a direct implementation in clinical MR sequences.
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9.2.7 Lagrange calculus in the spin domain

The adjoint based derivative is set up using a real-valued Lagrangian together with the
Wirtinger calculus. Therefore we introduce the complex RF pulse Um = um + ivm =
rmeiϑm . The Lagrange multipliers for the discrete Bloch equation (9.20) are called
pm, qm ∈ C for m = 1, . . . , Nt. The control constraints (9.24) are kept explicitely. The
Lagrangian of the penalized problem is defined in the usual way depending on the
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control variables rm, ϑm, gm, the state variables am, bm and the Lagrange multipliers
pm, qm as

L =
τ

2

Nt

∑
m=1

r2
m + ζϑ2

m + ζg2
m +

δµout

2p ∑
zj∈Ωout

(
|bNt |2

e

)p

+
δµin

2p ∑
zj∈Ωin

(
|bNt |2 − 1

e

)p

+
δµp

p

L

∑
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∑
zj∈Sl

(
ϕ− ϕ̄l

ep
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+
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p
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∑
m=2

(
gm − gm−1

τsmax

)p

− ∑
zj∈Ω

Re
{ Nt

∑
m=1

(am − αmam−1 + β∗mbm−1) p∗m

+ (bm − βmam−1 − α∗mbm−1) q∗m
}

.

A compact form of the first-order necessary conditions can be derived efficiently
using the Wirtinger calculus. In particular, for a Lagrangian of the form L = Re(LC)
with a complex-valued expression LC the derivatives w.r.t the real and imaginary
part Z1, Z2 of a complex variable Z = Z1 + iZ2 can be combined to

∂L
∂Z1

+ i
∂L
∂Z2

=
∂LC

∂Z∗
+

(
∂LC

∂Z

)∗
using the Wirtinger derivatives [229] of a function f : C→ C, Z = Z1 + iZ2 7→ f (Z)

∂ f
∂Z

=
1
2

(
∂ f

∂Z1
− i

∂ f
∂Z2

)
,

∂ f
∂Z∗

=
1
2

(
∂ f

∂Z1
+ i

∂ f
∂Z2

)
.

In our case LC does not depend on pm, qm, a∗m, b∗m. Therefore the state equations (9.20)
are easily recovered by differentiation w.r.t. p∗m, q∗m. Analogously differentiating w.r.t.
am and bm and complex conjugation gives the adjoint Bloch equations

pm = α∗m+1pm+1 + β∗m+1qm+1,
qm = −βm+1pm+1 + αm+1qm+1,
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for m = 1, . . . , Nt − 1 and pointwise in each zj ∈ Ω. For the terminal condition in
case of a refocusing pulse both Wirtinger derivatives w.r.t. bNt and b∗Nt

have to be
evaluated. Depending on the location zj we find pNt = 0 and

qNt =
µoutδ

e
χΩout

(
|bNt |2

e

)p−1

bNt

+
µinδ

e
χΩin

(
|bNt |2 − 1

e

)p−1

bNt +

{
NMB

∑
l=1

χSl

δµp

e[(
ϕ− ϕ̄l

ep

)p−1

− 1
Nl

∑
zk∈Sl

(
ϕ(zk)− ϕ̄l

ep(zk)

)p−1
]}

2
ibNt

b∗Nt
bNt

.

The last fraction stems from the chain rule using the derivative of the arctan function
in ϕ = arg(b2

Nt
). Moreover, χSl is the characteristic function of the in-slice set Sl =

{zl
1, . . . , zl

Nl
} with Nl points and mean phase ϕ̄l = ∑Nl

k=1 ϕ(zl
k)/Nl.

The gradient of the reduced objective j′ = Ex+ F′(x) is given by the partial derivatives
w.r.t the control variables. Its components are given by chain rule for the polar
coordinates

∂L
∂rm

= τrm +
∂L
∂um

cos(ϑm) +
∂L
∂vm

sin(ϑm),

∂L
∂ϑm

= ζτϑm −
∂L
∂um

rm sin(ϑm) +
∂L
∂vm

rm cos(ϑm),

for m = 1, . . . , Nt and by ∂L
∂gm

, m = 2, . . . , Nt − 1, which is computed below. Each first
term is collected in Ex, and the other terms constitute F′(x). In these equations we
need

∂L
∂um

= Re
(

∂LC

∂Um
+

∂LC

∂U∗m

)
,

∂L
∂vm

= Im
(

∂LC

∂U∗m
− ∂LC

∂Um

)
.

With ∂α∗m
∂φm

=
(

∂αm
∂φm

)∗
and analogously for βm the result is

∂L
∂um

=γ2τ2umRm − γτ Im(Qm), m = 1, . . . , Nt,

∂L
∂vm

=γ2τ2vmRm − γτ Re(Qm), m = 1, . . . , Nt,
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with

Qm = ∑
zj∈Ω
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1
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.

Differentiation w.r.t. gm gives finally

∂L
∂gm

= ζτgm + ∑
zj∈Ω
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,

for m = 2, . . . , Nt − 1 and with

∂αm

∂gm
=

γτz
φm

(
i sin(φm/2) + γτzgm
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9.3 Simultaneous Multislice Refocusing via Time
Optimal Control

Armin Rund1,2,†, Christoph Stefan Aigner3,† Karl Kunisch1,2,4 and Rudolf Stoll-
berger2,3

This is a preprint of the publication ”Simultaneous multislice refocusing via time
optimal control”. Magnetic Resonance in Medicine, Early view: February 2018, doi:
https://doi.org/10.1002/mrm.27124

Abstract

Purpose: Joint design of minimum duration RF pulses and slice-selective gradient
shapes for MRI via time optimal control with strict physical constraints, and its
application to simultaneous multislice (SMS) imaging.
Theory and Methods: The minimization of the pulse duration is cast as a time op-
timal control problem with inequality constraints describing the refocusing quality
and physical constraints. It is solved with a bilevel method, where the pulse length is
minimized in the upper level, and the constraints are satisfied in the lower level. To
address the inherent nonconvexity of the optimization problem, the upper level is
enhanced with new heuristics for finding a near global optimizer based on a second
optimization problem.
Results: A large set of optimized examples shows an average temporal reduction of
87.1% for double diffusion and 74% for turbo spin echo pulses compared to PINS
pulses. The optimized results are validated on a 3T scanner with phantom measure-
ments.
Conclusion: The presented design method computes minimum duration RF pulse
and slice-selective gradient shapes subject to physical constraints. The shorter pulse
duration can be used to decrease the effective TE in existing EPI or echo spacing in
TSE sequences.
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9.3.1 Introduction

Simultaneous Multislice (SMS) imaging acquires the information of different slices
simultaneously to reduce the overall acquisition time and is an emerging imaging
technique with various applications such as multi-directional diffusion tensor imag-
ing [209], short echo time (TE) functional imaging [236] and clinically important turbo
spin echo (TSE) based sequences [195]. Contrary to pure in-plane accelerated parallel
imaging, SMS acceleration in slice direction acquires signal for every extra slice mea-
sured and has only a minimal signal-to-noise penalty [95]. Recently, the application
of Wave-CAIPI [237], originally proposed for 3D encoding, to SMS imaging allowed
an increase in the number of simultaneous slices, called the multiband (MB) factor, to
13 without major g-factor penalties [195]. On the other hand, SMS refocusing pulses
with a low MB factor but a good refocusing profile are beneficial for high resolution
diffusion imaging [173], [238], [239].

However, SMS imaging requires RF pulses that simultaneously excite or refocus slices,
which typically result in RF amplitudes and power which are too high, or in very
long pulse durations [95]. Historically, the first SMS RF pulse design method is based
on a superposition of frequency shifted sub-pulses [162]. To overcome the limitation
of a linear scaling of the B1 peak amplitude and overall RF power with the MB factor
[95], [163], different groups proposed design methods via phase modulation [174],
time shifted superposition [175], root-flipping [173] and use of the wavelet domain
[178]. After the pulse design, additional B1 and power reduction can be achieved
by applying variable-rate selective excitation (VERSE) [112], [160], [172]. However,
high MB factors lead to a strong oscillation of the RF amplitude and a direct VERSE
application might require additional smoothing of the otherwise too rapidly changing
gradient waveform, which was resolved by applying VERSE on the overall RF pulse
envelope[176]. Alternatively, an inherent power reduction in the pulse design is
possible using the power independent number of slices (PINS) [131] method that
utilizes periodic excitation patterns, with the limitation that a low time-bandwidth
product (TBP) is generally used in order to avoid long pulse durations.

The combination of PINS pulses with conventional SMS pulses, MultiPINS [179],
combines both approaches to reduce the overall pulse duration and increase the
bandwidth of PINS pulses.

In addition, SMS RF pulses can also be designed by optimal control methods. Optimal
Control (OC) has proven to be successful in NMR and MRI to design accurate
excitation profiles based on different models such as the Liouville-von Neumann
equation [155], [156], [158], the Bloch equations [1], [157], [184], [240], or the Bloch
spin-domain model [49].
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To encourage researchers to focus on new methods that compute short SMS pulses
with a low B1 peak and SAR, while achieving accurate excitation/refocusing profiles,
SMS pulse design was chosen to be the topic of the 2015 ISMRM challenge [4] (October
2015 to May 2016, http://challenge.ismrm.org/node/71). The method described in
this paper was developed and applied in its SMS design subchallenge.

In our preceding work [2], [241] we introduced an optimal control method for RF
pulse design subject to different equality and inequality constraints using a fixed
time horizon. In contrast, we present here a new time optimal control modeling for
designing RF pulses with minimum duration under technical constraints. Due to the
free terminal time, the solution of time optimal control problems [242] is algorithmi-
cally involved and different methods are needed. We introduce a new bilevel method
with time grid adaption and warm-start algorithms. Moreover, globalization plays a
central role, since both the free terminal time and the bilinear Bloch equation lead to
a nonconvex optimization problem. Here, we introduce new heuristics for finding a
near global optimizer. The optimization method is tested on 31 SMS refocusing exam-
ples. The numerical results are validated by experimental phantom measurements on
a 3T MR system.

9.3.2 Theory

In the following, refocusing in minimum time is posed as a time optimal control prob-
lem with inequality constraints for slice profile fidelity and MR hardware restrictions.
The constraints were inspired by the ISMRM Challenge [4].

Optimal control framework

We jointly optimize for the time horizon/pulse duration T, as well as the RF pulse
and slice-selective gradient (Gs) slew rate values at each time sample. Applying an
equidistant time grid tm = mτ, m = 0, . . . , Nt with step size τ = T/Nt, the RF pulse
is described as B1,m = rm exp(iϑm) with amplitude rm, phase ϑm and the imaginary
unit i. The Gs amplitude gm is given via the slew rate sm as

gm = gm−1 + τsm−1, m = 2, . . . , Nt − 1 (9.35)

with given boundary conditions g1, gNt . The Bloch equation is solved exactly in
the spin-domain, see [66], [67], neglecting relaxation effects, which is reasonable
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for short T. The evolution of the magnetization is described by the complex-valued
Cayley-Klein parameters

am = αmam−1 − β∗mbm−1, bm = βmam−1 + α∗mbm−1, (9.36)

for m = 1, . . . , Nt with a0 = 1, b0 = 0, the gyromagnetic ratio γ, and coefficients

αm = cos(φm/2) + iγτzgm sin(φm/2)/φm,
βm = iγτB1,m sin(φm/2)/φm,

φm = −γτ
√

r2
m + (zgm)2.

Therein, the spatial point z covers the field of view (FOV) Ω which is discretized
equidistantly as zj, j = 1, . . . , Nz with the spatial resolution δ. Ω is separated into the
in-slice domain Ωin = ∪NMB

l=1 Sl containing the interior Sl of each of the NMB slices, the
out-of-slice domain Ωout, and a free transition region in between. For refocusing in
minimum time we optimize the control x = (r1, . . . , rNt , ϑ1, . . . , ϑNt , s1, . . . , sNt−2) and
the pulse duration T in order to

min
T>0,x

T subject to (9.35), (9.37)

(9.36) for z = zj, j = 1, . . . , Nz, (9.38)

|bNt |2 − 1 ≤ e for zj ∈ Ωin, |bNt |2 ≤ e for zj ∈ Ωout, (9.39)

|ϕ− ϕ̄l| ≤ ep, for zj ∈ Sl, l = 1, . . . , NMB, (9.40)

0 ≤ rm ≤ rmax, |sm| ≤ smax, −π ≤ ϑm ≤ π, (9.41)

|gm| ≤ gmax,
∣∣∣∣gNt − gNt−1

τ

∣∣∣∣ ≤ smax, (9.42)

SARe = SARcoileff fpτ
Nt

∑
m=1

r2
m ≤ Smax. (9.43)

The inequalities model the slice profile accuracy in magnitude and phase, amplitude
and SAR constraints. In (9.39) the slice profile is prescribed with a tolerance e > 0 (that
may depend on the spatial location) around a perfect refocusing. Here, ideal crusher
gradients are assumed to completely dephase the free induction decay produced by
the refocusing pulse [23], [66]. In (9.40) the phase ϕ = arg(b2

Nt
) is allowed to vary

only up to a tolerance ep = ep(zj) > 0 from the arithmetic mean ϕ̄l of the phase in
slice Sl. MR hardware restrictions are included as amplitude constraints in (9.41),
(9.42) with maximum amplitudes rmax, gmax, smax > 0. The last inequality in (9.42)
incorporates the given terminal condition gNt . Since a low SAR and a short pulse
duration are competing goals, a SAR limit Smax > 0 is prescribed. For single transmit
MR imaging, it is here reasonable to apply a SAR estimate SARe (W kg−1) based on
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the global pulse power with constant SARcoileff (W/kg/µT2) and constant pulse rate
fp.

This optimization problem is a pure time optimal control problem with control
and state constraints. Such problems tend to possess bang-bang solutions, where
the control constraint is active all the time but the value jumps between the upper
and lower bound, see e.g. [242]. To approximate such optimal controls reliably we
suggest an L2-regularization of the controls with parameters α, ζ > 0. Furthermore,
pointwise state-constrained optimal control problems are known to be involved since
the Lagrange multiplier is irregular which leads to a decrease of the convergence
speed and accuracy of numerical solution methods, see e.g. [226]. To reduce these
effects we apply the Lp-penalization of the state constraints from [2] and drive the
exponent p → ∞ in a homotopy loop as we approach the optimizer. Therefore, we
define the penalized objective

min
T>0,x

J = T +
τ

2

Nt

∑
m=1

αr2
m + ζϑ2

m +
ζτ

2

Nt−2

∑
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s2
m +

δµout

2p ∑
zj∈Ωout

(
|bNt |2

e

)p

+
δµin

2p ∑
zj∈Ωin

(
|bNt |2 − 1

e

)p

+
δµp

p

L

∑
l=1

∑
zj∈Sl

(
ϕ− ϕ̄l

ep

)p

+
τµw

p

Nt−1

∑
m=2

(
gm

gmax

)p
+

µT

p

(
gNt − gNt−1

τsmax

)p
(9.44)

with even number p and parameters µout, µin, µp, µw, µT > 0. α is automatically
adapted to fulfill the SAR constraint (9.43), ζ is decreased as the optimizer is ap-
proached. This penalized objective has to be minimized subject to (9.35), (9.36), (9.43),
and the pointwise control constraints (9.41). For a fixed T this problem can be solved
with established methods of numerical optimal control. We apply the trust-region
semismooth quasi-Newton method from [2], which features robustness and adjoint-
based exact discrete derivatives. It also handles the automatic adaption of the penalty
parameters µout, µin, µp, µw, µT. However, we still have to take care of the free terminal
time T.

Bilevel method for time optimal control

Time-optimal control problems can be solved by different approaches. In our ap-
proach, the control x and T are separated in a bilevel method, where T is kept fixed
in the lower level problem. Alternatively, both can be treated at once using time
transformations, see e.g. [243]. For the Bloch equation on equidistant time grids,
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numerical studies showed that a bilevel method prevails, since it facilitates keeping a
good slice profile pattern after a time reduction. Furthermore, it offers more flexibility
in the time reduction, which is exploited for finding an improved minimizer.

The bilevel method is initialized using an existing method for SMS pulse design, e.g.
conventional superposition [162], phase scrambling [174], root-flipped pulses [173],
PINS [131] or MultiPINS [179]. Then, we alternately reduce the terminal time (upper
level) and fulfill the constraints (lower level). For the former we keep the time step
constant and reduce the terminal time by deleting one time point. The latter is done
by minimization of the penalized objective (9.44) for a fixed T using the trust-region
semismooth quasi-Newton method of [2] with the following changes. First, we do
not fully iterate until a relative or absolute stopping criteria is fulfilled, but terminate
as soon as we have found an admissible solution to (9.39)–(9.43). Second, p is not
changed during the course of the semismooth quasi-Newton method, but altered in
the upper level of the bilevel method in order to have a monotonicity of p towards
the optimum. Sometimes in the alternation of lower and upper level we decide to
increase p and might apply a refinement of the time grid (depending on the allowed
raster time). The resulting bilevel method reads:

Step 1: Initialize control x0 and duration T0 with a conventional RF pulse design
method, choose p and set n = 1.

Step 2: Upper level: Choose to delete one time instance tk applying the heuristics
for an improved optimizer (9.45). Reduce the terminal time to Tn < Tn−1
and warm-start xn = f (xn−1, k).

Step 3: Lower level: Minimize the penalized objective (9.44) for a fixed terminal
time Tn by a trust-region semismooth quasi-Newton method until an
admissible solution to the inequality constraints (9.39)–(9.43) is found. The
resulting control is xn.

Step 4: Decide to increase p, decrease ζ and/or to refine the time grid. Set n =
n + 1 and repeat from Step 2.

Finally, we present the technical details of the time reduction. At deletion of a time
point tk, the current control xn−1 is represented on the new time grid xn = f (xn−1, k)
using a transfer function f that performs a good warm-start for the next lower level
optimization. In particular, for maintaining a good slice profile this transfer function
distributes the values of gk and the real and imaginary part of B1,k at the deleted
time instance tk symmetrically to the neighboring time instances. While doing so,
we fulfill the constraints (9.41), (9.42). For technical details of f we refer to its source
code, which we published together with the software (see below). The time point tk
to be deleted is chosen based on new heuristics for finding a near global optimizer.
We choose the time point that allows the best performance after deletion, warm-start
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and Ng steps of the lower level solver. More precisely, the time tk is determined as
the global solution to the optimization problem

min
m∈{1,...,Nt

n}
J(Tn, Q( f (xn−1, m))), (9.45)

where Q is an abstract function that stands for solving the lower level problem with
the trust-region semismooth quasi-Newton method of [2] in at most Ng iterations.
Obviously, a larger Ng gives a better minimizer at the end, but increases the runtime
of the code. We use Ng = 0 for fast runs and 10 ≤ Ng ≤ 20 otherwise. Then the
global minimizer of this auxiliary problem is computed exactly by total enumeration,
or approximately by reusing information from previous upper level steps.

9.3.3 Methods

Simulations and pulse design

To test the general applicability of the proposed design method, we minimized the
pulse duration in the test set of 31 cases given by the organizers of the ISMRM
Challenge [4]. It contains different problem parameters (i.e. MB factor and slice
thickness (THK)) and 13 different constraints (i.e. B1 peak, slew rate of Gs, maximum
refocusing errors and SAR limits). For the sake of completeness the most important
problem parameters and constraints are repeated below. A full description is given
by the ISMRM 2015 challenge homepage and [4].

The maximum refocusing error e was set to 0.02 out-of-slice and 0.03 in-slice. For
the design of all SMS refocusing pulses we assumed perfect crusher gradients. The
space was discretized equidistantly with a resolution δ = THK/400. Two different
example classes were considered for the optimization, double refocused diffusion
and TSE/RARE imaging, each with different problem parameters (see Supporting
Table S1). The global SAR constraint for all cases was set to be Smax = 3.2 W kg−1. The
SAR estimate SARe used an expected SAR efficiency of a 3T birdcage coil SARcoileff
of 0.25 W/kg/µT2 and the assumed pulse rate fp for the two different scenarios (see
Supporting Table S1). The influence of amplitude constraints on the optimization was
analyzed by using three different constraint settings given by actual hardware limits
(see Supporting Table S2).

Diffusion pulses (DIFF). This example class asked for refocusing pulses for double
refocused diffusion sequences [143] with a small MB factor (3–5) and THK (1–2
mm), see Supporting Table S1. The number of spatial points Nz varied from 2401
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(MB = 3, THK = 2 mm) to 4801 (MB = 5, THK = 1 mm) to define a FOV of 120
mm. The SAR estimate SARe used a repetition time (TR) of 120 ms with two identical
refocusing pulses per repetition, resulting in a pulse rate fp = 16.67/s. The phase of
the refocusing profile was not considered in the optimization.

Turbo spin echo pulses (TSE). Here the task was to generate SMS refocusing pulses
with a large number of simultaneous and thin slices (MB = 8–14, THK = 0.5–2
mm, TBP = 3) for a repeated application in a TSE/RARE based sequence. A phase
constraint with a maximal deviation of ep = 0.01 radiant from the mean phase per
slice was added according to (9.40). The bigger FOV of 240 mm resulted in more
degrees of freedom in the spatial direction, ranging from 4801 (MB = 8, THK = 2
mm) up to 19201 (MB = 14, THK = 0.5 mm). For all TSE cases a turbo factor of 12
and a TR of 220 ms was assumed resulting in a pulse rate fp = 54.55/s.

The optimization was in general started from RF and Gs waveforms based on the
PINS method [131]. The sub-pulse envelope was computed by the SLR algorithm [66]
using d1 = e/4 (in-slice) and d2 = e/

√
2 (out-of-slice). For τ = 10 µs the initial pulse

durations Tinit ranged from 8.710 ms (MB = 14, THK = 2 mm) to 32.42 ms (MB = 8,
THK = 0.5 mm), see Table 9.9 and 9.10.

The optimization method was implemented in MATLAB (The MathWorks, Inc, Natick,
USA). A version of it can be downloaded from https://github.com/rundar/mr.

control. Initially a small penalty exponent p = 6 was chosen, which was doubled
towards the optimum gradually to about 103 to 104 based on previous experience
[2]. The trust-region semismooth quasi-Newton method [2] calibrated and adapted
the other parameters in the objective (9.44) automatically. The time step size was
initially set to τ = 10 µs, and gradually decreased by a factor of two as long as
the optimizer stayed below 20000 sampling points. For the challenge we typically

Table 9.9: Comparison of the optimized pulse duration (in ms) with the duration of the PINS initial
guess for all DIFF examples.

MB3 MB4 MB5

THK PINS opt PINS opt PINS opt
mm ms ms ms ms ms ms

2.00 16.870 2.155 15.090 2.285 13.560 2.414

1.75 18.460 2.155 16.400 2.448 14.140 2.502

1.50 21.260 2.336 18.470 2.539 16.090 2.651

1.25 24.370 2.470 21.180 2.673 18.320 2.404

1.00 28.840 2.650 25.250 2.805 21.180 2.938
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chose Ng = 20 for the auxiliary optimization problem of the best time reduction,
and reused the information several times. All calculations were done in parallel on
the high-performance-computing-cluster “RADON 1” (RICAM, Linz, Austria) using
one node (2× Xeon E5-2630v3 with in total 16 cores and 128 GB of RAM) for each
case. Two examples were analyzed and described in more detail. One diffusion case
with MB = 3 and THK = 1.75 mm and one TSE/RARE case with MB = 12 and
THK = 1 mm.

Experiments

To validate the numerical simulations, phantom measurements were performed on
a 3T MR scanner (Magnetom Skyra, Siemens Healthcare, Erlangen, Germany) us-
ing the transmit/receive body-coil (birdcage). A standard crushed spin echo (SE)
sequence was modified to import arbitrary RF and Gs shapes, and to measure
the slice profile by changing the phase encoding to the slice direction. We created
three SE sequences, non-selective excitation and refocusing, slice-selective MB excita-
tion with non-selective refocusing, and slice-selective MB excitation with optimized
slice-selective MB refocusing (applying the proposed optimization method). We im-
plemented two optimized refocusing pulses and slice-selective gradient shapes, both
shown in Figure 9.17 (“scanner 2”), optimized for the hardware constraints that
comply with the MR system used. Their durations were T = 3.38 ms (DIFF MB3) and
T = 5.78 ms (TSE MB12) using a temporal grid of 10 µs equivalent to the gradient
raster time of the MR system.

The utilized non-selective rectangular block pulses were 0.8 ms long for both, excita-
tion and refocusing. The slice-selective MB excitation pulses were created applying
superposition with phase shifted SLR sub-pulse envelopes[66] resulting in a pulse

Table 9.10: Comparison of the optimized pulse duration (in ms) with the duration of the PINS initial
guess for all TSE examples.

MB8 MB10 MB12 MB14

THK PINS opt PINS opt PINS opt PINS opt
mm ms ms ms ms ms ms ms ms

2.0 10.640 2.742 9.460 2.856 8.810 2.728 8.710 2.809

1.5 13.260 3.295 11.110 3.213 10.890 3.286 10.300 3.296

1.0 18.040 3.958 15.170 4.122 14.460 4.120 14.110 3.996

0.5 32.420 6.106 27.390 6.113 25.230 6.080 24.520 6.189
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Figure 9.15: Optimization results and Bloch simulations for one representative TSE example. The first
row shows the control variables B1 amplitude and slew rate of Gs for the refocusing
duration of 3.16 ms. The second row depicts Gs shape, and the corresponding simulated
refocusing profile |bNt |2. The last row shows a detail zoom of one slice to see the refocusing
profile together with the error corridor (black), and the phase angle arg(b2

Nt
) per slice.

duration of T = 5.58 ms and a constant slice-selective gradient of 10 mT/m for the
DIFF MB3 case. For the TSE MB12 case we have T = 10.92 ms and 5 mT/m.

The experiments were performed using a spherical phantom with a diameter of 240
mm filled with 0.011 g MACROLEX blue per liter MARCOL-oil (T1 ≈ 200 ms and
T2 ≈ 100 ms). High resolution data were acquired in the transversal plane with a
matrix size of 1536× 1536 (1536 phase encoding steps) and a FOV of 300× 300 mm
resulting in a voxel size of 0.2× 0.2 mm. For both cases we used TR = 300 ms. The
TE was set to 23 ms (DIFF MB3) and 30 ms (TSE MB12) for both the non-selective and
optimized SE experiments. The TE of the fully non-selective SE was set to 15.5 ms.
All measurements were acquired after a manual shim with a sampling bandwidth of
130 Hz and were repeated five times to compute the median with an increased signal
to noise ratio. The experimental data using the optimized slice-selective refocusing
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were normalized by the fully non-selective SE measurement using a masked noise
cut-off of 0.1.

9.3.4 Results

Below we present the results of our contribution to the ISMRM challenge. In particular,
we show the real-valued RF pulses (B1,m ∈ R for all times) which were submitted for
the challenge.

Simulations

Supporting Figure S1 summarizes the numerical results of an optimized diffusion
example to refocus 5 slices with a thickness of 1.25 mm equally distributed over
a FOV of 120 mm at a temporal resolution of τ = 0.625 µs. The overall terminal
time could be reduced to 2.404 ms, which is a reduction of 86.9% compared to the
initial PINS pulse with 18.32 ms and a reduction of 90.3% compared to a valid
pulse candidate based on conventional superposition with 24.85 ms (not shown). The
optimized RF amplitude and slew rate are given in the first row of Supporting Figure
S1. The second row additionally shows the Gs shape, and the simulated refocusing
profile for the whole FOV. A zoomed image in the third row shows, that the profile
always remains inside the black error corridor. The last plot shows the phase of each
refocusing profile, which was not constrained here.

Figure 9.15 shows the analogous plots, this time for the optimized TSE refocusing
(MB12, THK= 1 mm, FOC= 240 mm, τ = 0.625 µs). The optimization was done here
without a constraint on the SAR. The pulse duration was reduced by 75% from 12.92
ms to 3.16 ms compared to the initial PINS pulse. Again, the gradient amplitude
in the third plot shows a large hump at the beginning and the end, and a small
zigzagging in between that remained from the initial PINS pulse. The slice profile
fulfills the constraints, with an equiripple error in the out-of-slice region, which can
be seen in the zoomed plot in the third row for one slice. The last plot shows the
additional phase constraint for the TSE/RARE examples. The refocusing phase is
nearly constant per slice, but each slice shows a different mean phase.

A summary for the total pulse duration of the PINS based initial guesses Tinit
compared to the time optimal pulse durations T is given in Table 9.9 (DIFF) and
Table 9.10 (TSE). Here, all 31 examples were solved with the SAR constraint. The
achieved temporal reduction for the diffusion example is 86.9% (from 18.32 ms to
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Figure 9.16: Comparison of the optimized results shown in Figure 9.15 and Supporting Figure S1 with
the initial guess from PINS.

2.404 ms) and for the TSE example 71% (from 14.21 ms to 4.12 ms). Overall, an
average reduction of 87.1% could be achieved for all diffusion cases and 74% for all
TSE cases. All 15 DIFF examples show very short pulse durations 2 < T < 3 ms.
More closely, the optimized durations increase slightly with decreasing THK and
with increasing MB factor. The SAR constraints of all optimized DIFF examples are
not active and do not restrict the temporal reduction. The case with the maximum
SAR observed in the optimum was MB = 4 with THK = 1 mm and a SAR of 3.16.
In contrast, all TSE examples show an active SAR constraint in the optimum that
limits a further temporal reduction. As a consequence, TSE examples with small slice
thickness show a larger pulse duration of up to 6 ms, and the optimized durations
depend mainly on the slice thickness. For example, the RF pulses shown in Figure 9.16

have a SARe of 3.03 W kg−1 (DIFF optimized) and 3.19 W kg−1 (TSE optimized). The
initial PINS pulses feature a lower SAR estimate (1.47 W kg−1 (DIFF init) and 2.46
W kg−1 (TSE init)), mainly due to the much longer pulse duration. The 31 optimized
pulses behind this Figure fulfill all constraints of the optimization model exactly,
since the software rejects pulses with even minor violation in any constraint.

Figure 9.17 shows the optimized RF and Gs shapes for one DIFF and one TSE example
using three different hardware constraints given in Supporting Table S2. Here, τ is
set to the minimal gradient raster time of 10 µs of the 3T MR scanner used later in
the experimental validation. The computation times (scanner 2) of these pulses are
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Figure 9.17: Optimized RF and Gs shapes for different hardware constraints (shown dotted) summa-
rized in Supporting Table S2 (left: ISMRM challenge, middle: scanner 1, right: scanner 2)
and a fixed temporal resolution of 10 µs. The upper row shows a DIFF pulse for 3 slices
with a thickness of 1.75 mm and the lower row shows a TSE pulse for 12 slices with a
thickness of 1 mm.

approximately 2h (DIFF) and 2.5h (TSE) using MPI on the hardware (16 CPU cores)
described above.

Next, we investigated the influence of time-invariant B0 and B1 inhomogeneities on
the two optimized pulses shown in Figure 9.15 and Supporting Figure S1. Bloch
simulations were performed with an off-resonance range of pm200 Hz and a B1
variation of 75− 125%. The results for the optimized pulses and the corresponding
initial PINS pulse are depicted in Supporting Figure S2.

The optimized results do not change significantly w.r.t. the time resolution of the
PINS initial guess or the initialization of the objective parameters, as long as the
final time sampling rate is the same. In contrast, a coarser time discretization at
the end generally leads to an increased pulse duration. For instance, the shortest
diffusion candidate in Figure 9.17 optimized for a temporal discretization of τ = 10
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Figure 9.18: Reconstructed experimental spin echo data using a spherical oil phantom. Three different
pairings are used: non-selective excitation and refocusing (left), slice-selective MB12
excitation and non-selective refocusing (middle), and slice-selective MB12 excitation and
optimized refocusing (right). The intersection is shown in Figure 9.19 in detail.

µs is about 17% longer (T = 2.61 ms) than the optimized candidate with a temporal
discretization of 0.625 µs shown in Table 9.9 with T = 2.155 ms.

Experiments

Figure 9.18 shows the image reconstructions (magnitude) of the three SE experiments
using a spherical oil phantom in the above mentioned 3T MR scanner. The optimized
refocusing is based on the RF and Gs shapes of Figure 9.17 (“scanner 2”). The
measured and reconstructed magnitude signal along the blue intersection line is
plotted in detail in Figure 9.19 for the two slice-selective SE experiments.

There, the first and third row show the median of the high resolution DIFF and TSE
phantom measurements, whereas the second, fourth and fifth row display zoomed
images of the slices displaying both the median (solid) and the measurements points
(crosses). The median is computed out of five individual measurements with minor
noise variations. There is a good agreement between the different SE experiments with
a small signal reduction for the outermost OC TSE slices, visible in the lowest right
plot of Figure 9.19. The larger span in slice direction of the TSE example (240 mm)
led to a comparable slice shift for both, the non-selective and optimized refocused
data.

Figure 9.20 shows the intersection of the optimized SE experiment (median) normal-
ized by the median of the non-selective SE experiment (shown for TSE in Figure
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Figure 9.19: Reconstructed experimental spin echo data for DIFF MB = 3 and TSE MB = 12 refocusing
with a slice thickness of 1.75 mm and 1 mm using a spherical phantom. Two different
pairings are used: slice-selective excitation and non-selective refocusing (non-selective),
and slice-selective excitation and optimized refocusing (optimized). Row one and three
show the median of four individual measurements per curve. Row two, four and five show
a zoom into the slices where the measurement points are additionally plotted (crosses).
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Figure 9.20: Comparison of the experimental data (exp) with optimized refocusing normalized by a
fully non-selective SE measurement and the Bloch simulations (sim) for slice-selective
excitation and optimized DIFF MB = 3 and TSE MB = 12 refocusing.
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9.18). This normalization corrects for spatial B1 transmit/receive and signal variations
resulting from the spherical phantom. The normalized data points were compared
to the numerical Bloch simulations of the used excitation and optimized refocusing
(solid).

9.3.5 Discussion

In addition to strict hardware and safety constraints, the minimal excitation or
refocusing duration is a critical and important parameter. Specifically in the context
of SMS imaging, RF pulses tend to have unacceptable long pulse durations limiting
the applications and capabilities of SMS imaging. This work presented a time optimal
control method, that, together with constrained optimization [2], can be applied to
drastically reduce the pulse duration of SMS refocusing pulses while still fulfilling
the hardware constraints and slice profile accuracy. The methods were tested on the
31 examples of the ISMRM Challenge on RF pulse design [4]. Compared to the given
initialization of the ISMRM challenge (conventional superposed frequency shifted
candidates for the diffusion cases, PINS for the TSE cases) the sum of the pulse
durations for the 31 examples was reduced from 520.4 ms down to 102.4 ms, which
is a reduction of 80.3%.

The proposed time optimal control method was tested for different problem parame-
ters (Supporting Table S1) and constraints (Supporting Table S2). It robustly delivered
pulses that exploit the allowed error bands to significantly shorten the pulse duration.
This robustness w.r.t. the parameters and initializations is a consequence of using
a trust-region globalization of the Newton-type method in the lower level problem.
During the Challenge we tested the optimizer on different initializations computed by
frequency shifted superposition, phase modulation and PINS. In all cases the pulses
were shortened significantly. The shortest pulse durations were in most cases obtained
for PINS based initial pulses, however, other educated guesses may outperform the
presented results. We note that different initializations can be tested by the user in
the published software.

The simulations of the optimized SMS pulses show accurate refocusing profiles
with errors below the prescribed error bounds. Both, the treatment of the control
constraints (i.e. peak B1 amplitude and the peak slew rate of Gs) by a semismooth
quasi-Newton method and the treatment of the state constraints (profile accuracy,
phase constraints, amplitude of Gs) by an Lp penalization with an iteratively increased
p → ∞ allowed for full exploitation of the inequality constraints [2]. The precise
derivative information (exact discrete derivatives using adjoint calculus, second-order
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method) enabled additional progress in reducing the pulse duration, when many of
the constraints were already active. In contrast to the SAR minimization for fixed
pulse duration in [2] the RF amplitude constraint is much more important in the
time optimal case. In particular, the optimized controls in Figure 9.15 and Supporting
Figure S1 show that (if the SAR and peak gradient constraint are not active) all the
constraints are active wherever it is possible, resulting in equiripple error distributions
and bang-bang controls. This is a typical behavior of solutions of pure time optimal
control problems, and it underlines the local optimality of the presented results. With
stronger constraints on the SAR or the peak gradient amplitude, optimized durations
increase. In this case the optimal RF amplitude is at its bounds only in certain points
during the time interval, see Figure 9.17.

In all examples, the pulse duration can be further decreased by a temporal refinement
at the cost of an increased computational effort. For example the diffusion case shown
in Figure 9.17 yielded a minimum pulse duration of 2.61 ms for a typical time grid
(τ = 10 µs) and of 2.155 ms after four further refinement steps (τ = 2.5 µs). For the
SE measurements the temporal refinement was done only up to the minimal gradient
raster time of the particular MR scanner.

All optimized examples are designed and evaluated for a distinct FOV. We would
like to mention here that both the PINS initial and optimized pulses create refocusing
slices outside the FOV of interest. If this is unacceptable, the use of different initial
guesses such as superposition pulses allows to increase the FOV and further restricts
the refocusing profiles.

Optimized pulse durations of under 3 ms were observed throughout all diffusion
examples, see Table 9.9. Here, the SAR was never at its bounds, mainly because of the
low pulse rate. The maximum amplitude gmax for the Gs amplitude was only reached
in 3 of the 15 examples. In contrast, all optimized RF amplitudes and gradient slew
rates were at their bounds almost everywhere with small exceptions around the two
time points of maximum gradient amplitude.

For the TSE examples, the initial PINS pulses already combine a good refocusing
profile with a small RF power that is exploited in the temporal reduction. Due to a
higher pulse rate, the SAR constraint has a strong influence on the pulse duration
here and is the main limiting factor for the temporal reduction. All 16 cases show
an active SAR constraint in the optimum and outperform the initial PINS pulses
in terms of the required refocusing duration. For the case given in Figure 9.15, the
optimizer computes an admissible pulse candidate with a minimal pulse duration of
3.155 ms without a SAR constraint, compared to 4.120 ms with a SAR constraint, see
Figure 9.16 and Table 9.10, of 3.2 W kg−1 - a factor of roughly 25%. This results in less
exploited RF shape where the RF envelope differs from the block shape of examples
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without an active power constraint, e.g. the DIFF MB5 case shown in Figure 9.16. As
a consequence of the active SAR constraint, the minimum durations turn out to be
independent of the MB factor, see Table 9.10. Instead, they mainly depend on the slice
thickness.

In total we applied the proposed optimization method to design SMS refocusing
pulses with a wide range of MB factors (3–14) and THK (0.5–2 mm). All optimized
pulses show a dramatically reduced pulse duration, on average by 87.1% for the
diffusion and by 74.5% for the TSE examples, which allows significant reduction of
the minimal TE of both, diffusion and TSE/RARE sequences.

Compared to state-of-the-art minimum duration design methods such as root-flip
design [173], the achieved reduction of the proposed method is still significantly
higher. For instance, the DIFF pulse used in the experiment (see Figure 9.17) is 57.4%
shorter than a root-flipped pulse (T = 6.11 ms) designed with equivalent design
parameters (512 time-points with τ = 11.93 µs, MB = 3, TBP = 4, THK = 1.75 mm,
rmax = 12.5 µT and a refocusing error of 0.02 out-of-slice and 0.03 in-slice).

Comparison of DIFF examples without a distinct phase constraint with the TSE
examples designed with a pointwise phase constraint of the refocusing slices revealed
that the additional constraint only has a minor effect on the overall pulse duration.
Although this is not shown in this work, the phase constraint can obviously be
changed to treat all slices at once to comply with the CPMG condition [244], [245].

With the current CPU based MPI implementation the pulses need to be precomputed
and provided on the MR scanner. To reduce the current computation time, a speed-up
of a factor 31 has been reported by using GPU parallelization[159]. Both optimized
SE measurements were in a good accordance with the non-selective refocusing.

For comparison of simulated and measured slice profiles, the transmit/receive sen-
sitivity variations and spatial signal differences arising from the used spherical oil
phantom were removed by normalization of the measurements with a fully non-
selective SE reference scan. Then, comparisons between the normalized slice profiles
with optimized refocusing and the Bloch simulations were performed (Figure 9.20).

In general, rapidly-varying RF pulses can be distorted by the limited bandwidth of
the RF system[246]. To reduce this RF distortion, we design real valued RF pulses
that are less prone to RF distortions[111]. Additionally we used a time grid of 10 µs,
400 times the minimal RF duration of 25 ns. Therefore we do not expect significant
alterations of the RF chain on the optimized RF shapes. This is supported by the
measured slice profiles. The question, whether time-optimal complex-valued RF
pulses can outperform the real-valued ones will be part of future work. For systems
with different RF specifications or for the optimization of complex RF pulses, an
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additional constraint on the RF slew rate, analogous to the presented Gs slew rate
constraint, could be included in the optimization.

The question arises how the optimized pulses perform in the presence of gradient
imperfections. Besides an identical slice shift for both refocusing examples (see
Figure 9.19) the slices of the optimized refocusing are attenuated with the distance to
the isocenter. After a manual shim there are only minor B0 inhomogeneities in the
phantom and the slice shift mainly results from non-linear gradients at the boundary
of the field of view. The minor signal attenuations of the outermost slices are likely
caused by gradient distortions [115], [118]. The inclusion of gradient and amplifier
imperfections for different MR systems in the optimization will be future work.

An additional gradient echo phase scan (not shown) showed a slightly asymmetric B0
field that explains spatial signal differences between data from non-selective excitation
and data from slice-selective excitation. However, these residual B0 inhomogeneities
are not strong enough to explain the observed signal loss. The robustness of the
optimized pulses w.r.t. B0 and B1 inhomogeneities was investigated in simulations in
comparison to the initial pulses (Supporting Figure S2). In general the slice displace-
ment for both optimized cases are lower compared with the initial PINS pulses. This
is mainly due to the heavily decreased pulse duration which reduces the B0 sensitivity.
Due to a variable k-space velocity of the optimized examples, the refocusing profiles
are thinned out with increasing off-resonance, but remain stable below pm100 Hz. In
the context of B1 inhomogeneities, all examples share the principle that the thickness
of the refocusing profile is broadened for lower B1 scaling and thinned out for a
higher B1 scaling similar to other studies [247]. Depending on the application, an
inclusion of B0/B1 robustness into the optimization framework will be focus of future
work.

9.3.6 Conclusions

The proposed time optimal design method yields optimized SMS refocusing pulses
for clinical sequences with very short pulse durations with respect to representative
physical constraints given by current scanner hardware. The time optimal refocusing
pulses will be beneficial for a broad range of SMS applications such as diffusion and
spin echo based sequences to reduce the echo spacing and increase the signal quality
in terms of amplitude and robustness to motion.
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Supporting Figure S.2: Simulated refocusing profiles |bNt |2 (zoom to the outermost slice with com-
parable refocusing profiles across all individual slices) for a variation in the
off-resonance and B1 inhomogeneity for four different pulses: the PINS-based
initial pulses (first and third row) and the optimized pulses shown in Support-
ing Figure S1 (second row) and Figure 1 (fourth row), respectively.
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Supporting Table S.1: Overview of the problem parameters for TSE and diffusion (DIFF).

MB factor FOV THK TBP fp phase
[a.u.] mm mm [a.u.] 1/s [a.u.]

TSE 8 : 2 : 14 240 0.5 : 0.5 : 2.0 3 54.55 constant
DIFF 3 : 1 : 5 120 1.0 : 0.25 : 2.0 4 16.67 free

Supporting Table S.2: Overview of the physical constraints used in the optimization.

gmax smax rmax
mT/m mT/m/ms µT

ISMRM challenge 80.0 200 18.0
scanner 1 34.0 200 18.0
scanner 2 24.0 180 12.5
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