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Abstract

Hands are the most important body part for humans to interact with and manipulate

their environment. Hence, 3D hand pose estimation is an important cornerstone of many

Human-Computer Interaction (HCI), Virtual Reality (VR), and Augmented Reality (AR)

applications, such as robotic control or virtual object interaction. Despite the plentiful

applications and importance for the industry, hand pose estimation is still an unsolved

problem. It requires dealing with many challenges, including many Degrees of Freedom

(DoF) and occlusions.

In this thesis we focus on markerless Computer Vision-based 3D hand pose estimation as

well as joint hand-object pose estimation in case a hand is interacting with an object. The

input to our methods are single view depth or color images and the outputs are the 3D

poses of the hand and/or the object, respectively.

First, we contribute to the class of discriminative methods for 3D hand pose estimation.

Our proposed methods are based on Convolutional Neural Networks (CNNs), and we show

how to efficiently integrate a prior on the 3D pose into such a network. The prior signif-

icantly increases the accuracy of the predicted 3D hand pose and restricts the predicted

pose to the manifold of feasible hand poses. Despite the high accuracy, the pose estimator

can still make mistakes and thus we propose a second approach that learns to fix the

mistakes made by an initial estimator. This approach relies on the analysis-by-synthesis

paradigm to fix these mistakes.

However, these supervised methods require a large amount of accurate training data, which

can be cumbersome to acquire. Therefore, we propose an efficient method to generate 3D

training data for articulated objects. Our semi-automatic method takes image sequences

with sparse 2D annotations as input and outputs 3D annotations for every frame. We also

investigate how additional data sources can be leveraged. We present an approach that

additionally uses synthetically rendered depth images of the hand, which are easy to gen-

erate in practice, and using this additional data source significantly boosts the accuracy

of the predictions. We further investigate 3D hand pose estimation from color images.
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Therefore, we propose a method that transfers the supervision of pairs of unlabeled depth

and color images to labeled synthetic depth images. We show that our method—trained

without color labels—can achieve similar results to methods trained on labeled color im-

ages.

Practical applications in AR and VR often involve hand-held objects that are manipulated

by the hand. These applications require the pose of the hand together with the pose of

the object, and thus we introduce an approach that jointly estimates the hand and the

object pose. Our method is, to the best of our knowledge, the first single-frame method

for joint hand-object pose estimation, and has a comparable accuracy to state-of-the-art

tracking-based approaches. When the hand interacts with an object, handling the different

occlusions quickly becomes intractable and methods that do not need any prior knowledge

of the occluders are required. For such scenarios, we introduce a method for 3D object

pose estimation that is inherently robust to occlusions and does not require knowledge

of the occluders in advance, while providing high accuracy 3D pose estimates of highly

occluded objects.

Finally, we conclude with a discussion of the proposed methods and possible extensions

with directions of future work.

Keywords. 3D hand pose estimation; 3D object pose estimation; Joint hand-object

pose estimation; Deep Learning; Occlusions



Kurzfassung

Hände sind der wichtigste Körperteil mit dem Menschen mit ihrer Umwelt interagieren

und diese manipulieren. Daher ist die 3D Handposenschätzung ein integraler Bestandteil

vieler Anwendungen im Bereich der Mensch-Computer-Interaktion (HCI), virtuellen

Realität (VR) und erweiterten Realität (AR), wie zum Beispiel die Steuerung von

Robotern oder Interaktion mit virtuellen Objekten. Trotz der zahlreichen Anwendungen

und der großen Bedeutung für die Industrie ist die Handposenschätzung immer noch ein

ungelöstes Problem. Es erfordert den Umgang mit vielen Herausforderungen, darunter

einer hohen Anzahl an Freiheitsgraden und Verdeckungen.

In dieser Dissertation fokussieren wir uns auf die markerlose 3D Handposenschätzung

mithilfe maschineller Bilderverarbeitung, sowie auf die Schätzung der gemeinsamen

Hand- und Objektpose für den Fall, dass eine Hand mit einem Objekt interagiert.

Die Eingabedaten für die präsentierten Methoden sind Einzelbilder mit Tiefen- oder

Farbinformation und die Ausgabendaten sind die 3D Posen der Hand bzw. des Objekts.

Zu Beginn präsentieren wir diskriminative Methoden für die 3D Handposenschätzung.

Unsere Methoden basieren auf künstlichen neuronalen Netzwerken und wir zeigen,

wie man einen Prior der 3D Handpose effizient in ein solches Netzwerk integriert.

Dieser Prior erhöht signifikant die Genauigkeit der vorhergesagten 3D Handposen und

beschränkt diese auf die Mannigfaltigkeit möglicher Posen. Trotz der hohen Genauigkeit

kann der Posenschätzer immer noch Fehler machen und so präsentieren wir eine weitere

Methode, welche lernt, die Fehler, die von einem solchen Schätzer gemacht wurden, zu

korrigieren. Diese Methode beruht auf dem Analyse-durch-Synthese Paradigma.

Diese Methoden erfordern jedoch eine große Anzahl an Trainingsdaten, welche mühsam

erstellt werden müssen. Wir schlagen daher eine effiziente Methode vor, um 3D

Trainingsdaten für artikulierte Objekte zu generieren. Unsere halbautomatische

Methode verwendet Bildsequenzen mit vereinzelten 2D Annotationen und erzeugt

daraus 3D Annotationen für jedes Einzelbild. Weiters untersuchen wir, wie zusätzliche
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Datenquellen genutzt werden können. Wir präsentieren einen Ansatz, der zusätzlich

synthetisch generierte Tiefenbilder einer Hand verwendet, welche in der Praxis einfach

zu erstellen sind. Durch die Verwendung dieser zusätzlichen Datenquelle können wir die

Genauigkeit der Vorhersagen signifikant erhöhen. Wir untersuchen außerdem die 3D

Handposenschätzung aus Farbbildern. Dazu präsentieren wir eine Methode, welche die

Information, die in der Korrespondenz von Paaren von Tiefen- und Farbbildern steckt,

auf annotierte synthetische Tiefenbilder überträgt. Unsere Methode, ohne annotierte

Farbbilder trainiert, erzielt ähnliche Ergebnisse wie Methoden, die mit annotierten

Farbbildern trainiert wurden.

Praktische Anwendungen in Bereich der AR und VR beinhalten oft handgehaltene

Objekte, welche von der Hand manipuliert werden. Diese Anwendungen erfordern die

Schätzung der Handpose gemeinsam mit der Objektpose. Wir stellen daher eine solche

Methode vor, die gemeinsam die Hand- und Objektpose schätzt. Unsere Methode

ist nach unserem besten Wissen die erste Methode zur gemeinsamen Schätzung von

Hand- und Objektpose aus einem Einzelbild und bietet eine vergleichbare Genauigkeit

wie Tracking-basierte Ansätze. Wenn die Hand mit einem Objekt interagiert, wird die

Handhabung der verschiedenen Verdeckungen schnell komplex und Methoden, die keine

vorherige Kenntnis der Verdecker benötigen, sind erforderlich. Für solche Szenarien

präsentieren wir eine Methode zur Schätzung der 3D Pose, die inhärent robust gegenüber

Verdeckungen ist und keine vorherige Kenntnis der Verdecker erfordert. Unsere Methode

bietet eine sehr hohe Genauigkeit für die 3D Posenschätzung stark verdeckter Objekte.

Abschließend folgt eine Diskussion der vorgeschlagenen Methoden und mögliche

Erweiterungen und Richtungen für zukünftige Arbeiten.

Schlagwörter. 3D Handposenschätzung; 3D Objektposenschätzung; Gemeinsame

Hand- und Objektposenschätzung; Deep Learning; Verdeckungen
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1.1 Problem Statement

Accurate 3D hand pose estimation is an important requirement for many

Human-Computer Interaction (HCI), Virtual Reality (VR), and Augmented Reality

(AR) applications. It has attracted lots of attention in the Computer Vision research

community [122, 165, 187, 201, 256, 299] with works reaching back to the early

1990s [108, 209]. In this thesis, we aim to advance the state-of-the-art in 3D hand pose

estimation and joint hand-object pose estimation. Specifically, we want to estimate

the joint locations of a human hand from an input image. Early works used 2D

images [108, 209], which renders this problem very difficult due to ambiguities in the 2D

images and given the restricted computational power at that time. With the advent of

3D sensors, such as structured-light or time-of-flight sensors, inferring 3D joint locations

became feasible. Using 3D measurements as input to 3D pose estimation methods makes

pose prediction tractable and one of the seminal works in this field used the Microsoft

Kinect, a structured-light imaging sensor, for 3D human pose estimation [229]. The

Kinect was designed for long range sensing but the introduction of short range sensors,

such as the Creative Senz3D or Intel RealSense sensors, gave rise to accurate 3D hand

1
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pose estimation from depth images [122, 165, 256]. More recently, hand pose estimation

from color images became feasibly [172, 325], by using large amounts of training data to

resolve the ambiguities present in the 2D images. Industry also developed task-tailored

devices such as the Leap Motion for 3D hand pose estimation, however, they still lack

robustness and accuracy required for many real world applications.

In this work we focus on 3D hand pose regression, which is contrary to gesture recog-

nition [207] that aims at assigning a distinctive label such as open or close to a certain

hand pose. In regression we deal with continuous labels in Euclidean space that assign a

location in R3 to each joint. The term 3D indicates that the output of our methods is in

3D space relative to the camera, which is contrary to other works that only perform 2D

pose estimation [179, 290], i.e., estimating the locations in 2D image coordinates. The

input data we use can be from 3D sensors as well as 2D color images. Our methods only

require a single camera view, which is very challenging as there is no simple way to resolve

the inherent ambiguities of hand pose estimation. We perform markerless pose estimation,

which implies that we use the users’ bare hands as input without invasive markers or other

elements added to the users’ hands. While our methods were initially proposed for hands

in isolation, we extend them to jointly estimate the pose of the hand and an object when

both are interacting with each other. Our methods are computationally very efficient as

they run in real-time on consumer hardware. This efficiency is an important requirement

for interactive applications and thus gives rise to plentiful future applications.

The human hand representation that is commonly used in the literature [149] is shown

in Figure 1.1. Each finger consists of three joints: the metacarpophalangeal (MCP), prox-

imal interphalangeal (PIP), and distal interphalangeal (DIP) joint. Each joint is assigned

a specific number of Degrees of Freedom (DoF), depending on the physiology of the joint.

The wrist has six DoF as it can move freely around the body comprising 3D transla-

tion and global rotation. The MCP joints have two DoF , PIP and DIP joints have one

DoF . The thumb has a slightly different physiology than the other fingers, consisting of

the carpometacarpal (CMC) joint with two DoF , the MCP joint with two DoF and the

interphalangeal (IP) joint with one DoF . This sums up to a total of 27 DoF .1

In a more formal definition of 3D pose estimation, we aim at mapping an input image

to the corresponding 3D hand pose P. As input we consider depth D or color images I.

This mapping task does not significantly differ from other pose estimation problems, such

as human pose [229]. However, hand pose estimation has unique challenges as we discuss

in Section 1.3. On of the biggest challenges is the high number of DoF due to the complex

physiology of the human hand. In this thesis, the hand pose is represented by its J 3D

hand joint locations P = {ji}Ji=1, i.e., each joint ji is assigned ji = (xi, yi, zi) coordinates

1The representation of the hand model is not limited to the one we use in this work, since related
works use other models resulting in different DoF , e.g ., [2] use one additional DoF for the MCP and CMC
joints to represent more natural movements, or [271] use a Linear Blend Skinning (LBS) model with 42
DoF . However, since our methods are all learning-based, they can be trained to predict other hand model
representations as well.
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in the camera coordinate system. Given a hand model with bone length and rotation

angles for all DoF of the joints, forward kinematics [86] can be used to calculate the 3D

joint locations. Reciprocally, inverse kinematics [268] can be applied to obtain joint angles

and bone length from the 3D joint locations.

Index
Middle

Ring

Little

Thumb DIP

PIP
MCP

Wrist

IP

MCP

CMC

Figure 1.1: Human hand model with joints. Each joint is assigned a number of DoF : MCP
and CMC joints have two DoF , IP, PIP and DIP joints have one DoF . The global hand location
and orientation is defined by the wrist with six DoF .

1.2 Applications

There are many applications of 3D hand pose estimation in AR, VR, and HCI . These

applications require the pose estimation methods be robust to occlusions, hand size and

shape, background clutter, and noise. Further, they require a high accuracy, low latency,

and high speed for interactive applications. Especially on mobile devices, a low computa-

tional complexity is desired in order to run on lightweight mobile hardware, such as the

Nvidia Tegra2.

Humans use their hands as primary body part to interact with their environment, which

naturally gives rise to plentiful applications within HCI as depicted in Figure 1.2. Such

applications include sign language recognition [176], where an algorithm automatically

assigns the corresponding sign language entity to a specific hand pose. Another application

includes in-air drawing [77], where a user draws sketches mid-air and a sensor captures the

trajectory. Capturing the human hand pose can be used for robotic control [245], where a

robotic hand mimics the hand pose of a human operator. Touch-based user interfaces [109]

can also be realized by capturing the users hand pose and detecting commands.

Further, 3D hand pose estimation is a prerequisite of many AR and VR applications

and the users’ hands can be used as a primary tool for interacting with virtual elements, as

2https://www.nvidia.com/object/tegra.html

Reference:

Gustus, Agneta and Stillfried, Georg and Visser, Judith and Jörntell, Henrik and van der Smagt, Patrick ("2012")Human Hand Modelling: Kinematics, Dynamics, Applications

Reference:

Tolani, Deepak and Goswami, Ambarish and Badler, Norman I (2000)Real-time Inverse Kinematics Techniques for Anthropomorphic Limbs

Reference:

Carol Neidle and Ashwin Thangali and Stan Sclaroff ("2012")Challenges in Development of the American Sign Language Lexicon Video Dataset (ASLLVD) Corpus

Reference:

Google (2018)Tilt Brush by Google

Reference:

Sota Sugimura and Kiyoshi Hoshino (2017)Wearable Hand Pose Estimation for Remote Control of a Robot on the Moon

Reference:

Ishikawa, Yu and Shizuki, Buntarou and Hoshino, Junichi (2017)Evaluation of Finger Position Estimation with a Small Ranging Sensor Array

https://www.nvidia.com/object/tegra.html


4 Chapter 1. Introduction

(a) Sign language
recognition.

(b) In-air drawing. (c) Robotic control. (d) Touch interfaces.

Figure 1.2: Applications of hand pose estimation within HCI , including sign language recog-
nition [176], in-air drawing [77], robotic control [245], and touch-based user interfaces [109].

shown in Figure 1.3. A user should be able to affect the virtual world with, for example,

pushes or grabs, or interact with virtual interfaces using gestures. [98] has shown an

interaction method in VR, where the bare hand can be used to interact with virtual objects,

or the hand pose is captured and virtual objects are superimposed on the hand in an AR

environment [21]. Further, the hand pose can be used to control virtual interfaces [9]

for example in an automotive environment. The video gaming industry is also highly

interested in using the 3D hand pose for interaction in video games [99], where, so far,

additional hardware is required in order to provide the interfaces. Especially in VR, self

presence is an important prerequisite for an immersive experience, i.e., the user can see

its own body and hands that need to be accurately modeled, and incorporating hands into

social avatars is an important part for increased immersiveness [19].

(a) Object manipula-
tion in AR.

(b) Object interac-
tion in VR.

(c) Virtual interfaces. (d) Video games.

Figure 1.3: Applications of hand pose estimation in AR and VR, including object manipulation
in AR [21], object interaction in VR [98], virtual interfaces [9], and video game control [99].

Hand pose estimation has also many applications within social and medical sciences, as

well as simulation and training, as depicted in Figure 1.4. Hand gestures can be analyzed

to understand social interactions [66] or to detect autism in children [116]. There are also

plentiful medical applications [281] that require non-touch interfaces due to the risk of

infections. Further, hand pose estimation can be used for simulation-based training [259],

since simulation-based training can be more efficient and less dangerous than training
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certain procedures in the real world environment.

(a) Detecting social
signals.

(b) Medical applica-
tions.

(c) Simulation-based
training.

Figure 1.4: Applications of hand pose estimation in medical sciences and training, includ-
ing analysis of social signals [116], medical hands-free applications [281], and simulation-based
training [259].

1.3 Challenges

Markerless 3D hand pose estimation is a hard problem that involves dealing with several

challenges. Although some of these challenges are not limited to 3D hand pose estimation

and can also be found for example in body pose estimation [229] or facial landmark

localization [295], many of these challenges arise in a harder configuration for 3D hand

pose estimation.

Many Degrees of Freedom The hand is a highly articulated object as shown in

Figure 1.5 and a popular hand model that we introduced in Section 1.1 has 27 DoF .

Although the hand has 27 DoF , they are not independent of each other and there are

kinematic constraints that restrict the pose space. Thus, the natural hand articulation

does not span the whole 27 DoF pose space. Further, the 3D location of the hand wrist

is usually factored out by performing localization as a preprocessing step. This removes

three DoF , but still, there are many remaining DoF that need to be estimated. This large

pose space is especially difficult for learning-based methods, since they require a large

amount of representative training data that ideally covers the full pose space [7].

In addition to the high number of DoF , the appearance of the different fingers is very

close to each other, i.e., they exhibit self-similarity. This can pose significant problems to

methods that only considers small parts of the patch covering the full hand as input, since

the different fingers can be easily mixed up.

In case of joint hand-object pose estimation, the object introduces six additional DoF , i.e.,

three DoF for 3D rotation and three DoF for global 3D translation of the rigid object.

Occlusions Occlusions can pose significant problems to hand pose estimation. While for

rigid object the location and pose can be inferred from non-occluded parts of the object,
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(a) (b) (c) (d)

Figure 1.5: Challenges of hand pose estimation due to the high number of DoF . The hand can
be highly articulated as shown in the images, and considering all the possible joint configurations
becomes quickly intractable in practice.

this is not possible for the hand due to the complex anatomy with many DoF and parts

that can move independently. The occluded joint locations have to be inferred from other

observations, e.g ., by using kinematic constraints or a statistical prior on the pose space.

Two types of occlusions can occur in hand pose estimation: (1) occlusions from other

objects, such as hand-held objects or other hands, and (2) self-occlusions, where one part

of the hand overlaps other parts. Different occlusions are shown in Figure 1.6. Hand

pose estimation is especially difficult in egocentric views, where the palm or forearm can

completely occlude the fingers. In such a case the exact locations of the occluded joints are

undefined when considering the image only. The best thing that we can do is to predict a

distribution of possible locations.

These occlusions do not only make inference difficult, but also creating annotations for

the training and testing datasets.

(a) Self-occlusion. (b) Occlusion. (c) Egocentric view-
point.

Figure 1.6: Challenges of hand pose estimation due to occlusions. Occlusions can be either self-
occlusions, or caused by occluders, as for example hand-held objects or other hands. Especially
the egocentric viewpoint shows severe self-occlusions.
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Size and Shape Human hands show high variability in their size and shape. Not only

the size changes for each person significantly between childhood and adulthood, but there

are also significant differences between adults. Factors that influence the hand size involve

body height, gender, ethnicity, etc. Data from an anthropometric survey [78, 162] shows

high variations in size. Hand lengths vary from 145 mm to 215 mm for women and 144 mm

to 231 mm for men. Also the hand shapes vary significantly, where for example the middle

finger PIP circumference ranges between 64 mm and 77 mm for men, and 56 mm to 68 mm

for women.

Within the field of computer vision, related works have spent little effort so far on

dealing with these variations. This is mostly due to the fact that there is not enough data

available for modeling these variations. For example, the dataset of Sun et al . [247] con-

tains nine subjects with hand sizes that range from approximately 150 mm to 200 mm, and

the dataset of Tompson et al . [271] contains two subjects with hand sizes of approximately

200 mm and 250 mm, respectively.

These variations in size and shape lead to different hand appearances as shown in

Figure 1.7. This poses challenges to the different pose estimation methods. Generative

methods need to address this by adjusting the 3D hand model [239, 252, 266], and discrim-

inative methods, so far, are trained to be invariant to the different shapes [73, 170, 254].

(a) Different hand sizes. (b) Different hand shapes.

Figure 1.7: Challenges of hand pose estimation due to hand size and shape. The size and shape
of the human hand can significantly differ between subjects, which requires special attention.

Noisy Data Methods for 3D hand pose estimation require robustness to noisy data.

This noise can be observed at different points within the pipeline.

First, the input to the 3D pose estimation method, i.e., the images, can exhibit noise.

Since the hand only occupies a small portion of the camera frame, the signal to noise

ratio can be low. Further, the images exhibit noise characteristic to the sensor type. For

depth image, structured-light sensors exhibits missing regions and noisy outlines [41], and

time-of-flight sensors exhibit noise in the depth measurements and hanging pixels along

depth discontinuities [106]. In color images there can be shadows and different lighting

conditions as well as pixel noise. When comparing real and synthetic data, one can observe
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significant discrepancies between them. This domain gap deteriorates the accuracy of the

predictions when considering only synthetic data for training and requires special care.

Figure 1.8a shows the difference between real and synthetic data.

Second, the dataset annotations can be noisy or erroneous, which can pose difficul-

ties to learning, i.e., the targets for the output of the 3D pose estimation method are

noisy. Since large scale dataset annotations are created using automatic annotation proce-

dures [247, 254, 271], there is no guarantee that these annotations are correct. Figure 1.8b

shows correct and actual annotations from a popular hand pose estimation dataset [247].

This erroneous annotations can lead to convergence problems during training or cause

overfitting to the annotations errors.

(a) Real and synthetic depth images. (b) Dataset annotation and correct annota-
tion.

Figure 1.8: Challenges of hand pose estimation due to noisy data. There is a large difference
in appearance between real and synthetic data as depicted in (a). Also annotations provided
along with the dataset can be inaccurate due to automated annotation procedures and (b)
shows significant differences between the annotations from the dataset of [247] and the correct
annotations.

Fast Motion The hand can move very fast, specifically the wrist can move with up to

5m/s in translation and 300◦/s in rotation [61], while the individual fingers can move even

faster. For example, closing an open hand at a natural speed takes only 60ms [269]. This

fast movement can cause problems at different levels. First, it can cause motion blur or

artifacts that deteriorates the quality of the input image, as shown in Figure 1.9. Given

video frame rates of common consumer cameras, i.e., around 30 frames per second (fps),

this can cause large differences in appearance between two consecutive frames. This is

especially challenging for tracking-based methods that use the pose of the previous frame

as initialization. Further, these fast movements require methods to have low latency and

methods that can run in real-time in order to enable adequate user interactions.

Detection and Segmentation In the hand pose estimation literature, detection and

segmentation are often assumed as a prerequisite and provided [73, 170, 254]. While in lab

environments simple ad hoc approaches such as color or depth thresholding can be used,
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Figure 1.9: Challenges of hand pose estimation due to fast hand motion. Fast motion can
cause motion blur in color images and artifacts in depth images, such as thinned structures or
distortions of geometric measurements [138]. Ultimately, this can significantly deteriorate the
accuracy of the prediction.

in real-world environments this can be a non-trivial task as shown in Figure 1.10. Such

depth thresholding techniques fail for example, when the hand gets close to the body, or

color thresholding fails when the hand has a similar color to the background. Further,

it can be especially difficult to separate the hand from the forearm since they share the

same uniform skin color and they are close in depth. Also, background clutter can pose

problems to an accurate detection.

Figure 1.10: Challenges of hand pose estimation due to segmentation. The forearm or back-
ground clutter might be included in the hand segmentation, which can deteriorate the accuracy
of the prediction.

1.4 Strategies

As discussed in the previous sections, there are many practical applications of 3D hand

pose estimation and due to the many challenges it is still an unresolved problem raising

considerable scientific interest within the last years. Consequently, there are many different

approaches towards solving this hard problem.

A first classification of such approaches can be done by distinguishing between invasive

methods, which require additional hardware attached to the users hand, and non-invasive

methods, which are based on a remote sensing technology, such as radar [147], or cam-
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eras [50, 254, 271]. Invasive methods include for example gloves [53], exoskeletons [81], or

marker-based tracking environments [88]. While such invasive methods deliver fast and

accurate results, their practical applicability is limited due to additional expensive setups

and hardware that hinders free hand motion. Many of these artificial input devices could

be replaced by non-invasive bare-hand interactions.

Non-invasive methods are most practical for everyday users and camera-based methods

are the most popular research direction among them. Computer Vision-based methods

can rely on cheap and ubiquitous cameras and do not restrict the users hand movement by

additional hardware. Although being most appealing for applications, using non-invasive

camera-based methods requires solving the aforementioned hard problems.

(a) Windows Mixed
Reality motion con-
trollers.

(b) Oculus Rift
Touch.

(c) HTC Vive con-
trollers.

(d) Leap Motion con-
troller.

Figure 1.11: Popular interaction devices from industry, as for example the Windows Mixed
Reality motion controllers [166], Oculus Rift Touch [185], HTC Vive controllers [101], and Leap
Motion controller [137].

The industry so far relies mostly on invasive input devices and several examples are

as shown in Figure 1.11. Popular devices include the Windows Mixed Reality motion

controllers [166], Oculus Rift Touch [185] and HTC Vive controllers [101]. The most

popular non-invasive device is the Leap Motion controller [137]. Although it works with

bare hands, it relies on a complex hardware with stereo camera and stereo illumination

that consumes much power and limits its applicability on untethered devices.

In this thesis, we focus on the more challenging Computer Vision-based methods,

which can be further separated into discriminative frame-based and generative

tracking-based methods. Discriminative methods learn a mapping from an observed

image showing the users hand to the hand pose representation and can be applied to a

single frames [52, 82, 173, 178, 300, 321, 325]. Generative methods require a hand model

and work on image sequences [186, 187, 201, 227]. They require the previous frames’

pose as initialization of the current frame [165, 187, 240, 279] and solve an optimization

problem such that the articulated hand model matches the observation in the image.

However, such methods still require an initialization for the first frame [187, 224], and

are prone to tracking failures, especially when the difference in appearance between the

current and previous frame is large due to fast hand movement. With the raise of large
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scale datasets and efficient learning methods, discriminative methods became tractable,

and within this thesis we focus on discriminative methods. Our research showed that

we can achieve the same accuracy as generative methods but without requiring a hand

model, without solving an optimization problem for each frame at run-time, and more

importantly without the risk of tracking failures over time.

1.5 Contributions

Image Sensor
Hand/Object
Localization

Pose Estimation

Training Data

Interactive
Application

Figure 1.12: General pose estimation pipeline. An image sensor captures data, e.g ., color
or depth images, that subsequently get processed. The object of interest, i.e., a hand or an
object, is localized within the camera frame. Based on the location, a small patch containing
only the hand or the object is extracted and used for pose estimation. The estimated pose can
then be used for interactive applications, e.g ., object manipulation in VR. In this thesis, both
the localization and pose estimation are based on machine learning methods and thus require
training data. This thesis makes contributions in the areas that are highlighted in green.

This thesis contributes in several areas of 3D hand pose estimation and joint hand-

object pose estimation. A general pipeline for pose estimation is shown in Figure 1.12 with

the areas of contribution highlighted. We divide our contributions in three major parts:

First, we present methods for high accuracy and fast 3D hand pose estimation. Second,

we show how we can generate training data for learning-based 3D hand pose estimation

methods and how we can leverage additional data sources to increase the accuracy or

use different modalities as input to our methods. Third, we present a method for joint

hand-object pose estimation and show how to robustly estimate the object pose in case of

large occlusions that appear frequently when a hand is interacting with an object.

We refer to Section 1.7 for a list of publications and information on where these con-

tributions were originally published. Notably, our 3D hand pose estimation methods pre-

sented herein outperformed state-of-the-art methods at the time of publication in terms

of accuracy on the popular benchmark dataset [271] twice in 2015 [183] and [184], in

2017 [181], and in 2018 [203]. Also, the original works on which this thesis is based on

have already shown great impact in the field of 3D hand pose estimation. Our publications

[183] and [184] were cited over 100 times at the time of writing, and [182] and [181] were
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cited over 30 times, according to Google Scholar.

1.6 Outline

In the following we describe the overall outline of this thesis, which is structured into three

parts.

Part I: Fast and Accurate 3D Hand Pose Estimation In the first part we present

methods that can accurately predict the 3D hand pose estimation. Not only these methods

are very accurate, they perform 3D hand pose estimation very efficient, by running at

hundreds of frames per second. Due to their recent success in Computer Vision, we

focus on Deep Learning-based methods, specifically using Convolutional Neural Networks

(CNNs) for 3D hand pose estimation. We contribute to these methods twofold.

In Chapter 4 we show that we can efficiently integrate a prior on the 3D pose into a

Deep Learning-based pose estimator. This significantly increases the accuracy of the

predictions and restricts the predictions to the manifold of feasible 3D hand poses, which

is an appealing property in practice.

Further, we show in Chapter 5 that we can learn another predictor that can correct the

mistakes made by an initial pose estimator. This predictor takes the original image as

input together with a synthesized image of the hand. This additional input introduces

feedback by following an analysis-by-synthesis approach [175]. The predictor then predicts

an update for the hand pose such that the synthesized image matches better the original

input image. This predictor can be applied in an iterative way where each iteration

increases the accuracy of the prediction.

Part II: Training Data for 3D Hand Pose Estimation Training the methods pre-

sented in Part I requires a large number of training samples, which can be hard to acquire.

Therefore, we present a semi-automatic approach for easily creating 3D training data in

Chapter 6. A user is asked to perform hand gestures in front of and camera and an image

sequence is recorded. From this sequence, we select key frames, i.e., a subset of all frames

that contain distinctive hand poses. These key frames are then manually annotated in

2D, which is a much simpler task than annotating them in 3D. We show that users can

do this efficiently and with high accuracy. Finally, the 3D hand poses for the key frames

are automatically propagated to the remaining frames, which gives us a large number of

frames with 3D annotations.

We further investigate in Chapter 7 how additional synthetic training data can be used

to increase the accuracy of the 3D pose estimation. Synthetic data is much simpler to

acquire than real data, however, there exists a domain gap between the different data

sources. This domain gap deteriorates the accuracy of the prediction when using only

synthetic data for training the pose estimator. We, therefore, introduce a novel method

that transfers features from the real domain to features from the synthetic domain by
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using pairs of synthetic and real images. We integrate this approach into our method

presented in Chapter 4 and show that this additional data source significantly increases

the accuracy of the estimator.

Finally, we show in Chapter 8 how we can transfer the annotations from synthetic depth

to real color images. This is a desirable property, since creating synthetic depth images is

rather simple: no texture and lighting has to be considered. Further, estimating the 3D

hand pose from color images is more practical since it does not require additional depth

sensors. Therefore, we introduce a method that uses pairs of unlabeled color and depth

images and maps the color features to the features of the synthetic depth images. We

show that our method—trained without color labels—achieves similar accuracy compared

to methods that are trained with color labels.

Part III: Hands and Objects In the last part of this thesis we investigate hands

interacting with objects, which is a realistic scenario that frequently occurs in AR and

VR applications. We, therefore, extend the feedback method presented in Chapter 5 and

generalize it to multiple objects in Chapter 9. We extend our method to jointly estimate

the hand pose and the object pose. The method comprises two predictors, one for the

hand pose and one for the object pose. In a first step the two poses are estimated sepa-

rately, and then jointly refined in an iterative manner. Feedback is generated after each

iteration for the hand and the object by synthesizing images of the hand and the object,

respectively. The synthesized feedback of the hand and the object are combined before

feeding it to the next iteration. For synthesizing the images, models for the hand and the

object are acquired beforehand.

However, objects are often severely occluded by hands or other objects, and dealing with

such occlusions requires additional knowledge of the occluder, for example in form of ob-

ject models, and/or knowledge of the occluded parts. Especially joint hand-object pose

estimation becomes increasingly complex with a larger number of interacting objects, i.e.,

occluders. Pose estimation methods that do not require prior knowledge of the occluders

are beneficial in practice since we cannot know all possible occluders beforehand. There-

fore, we present a novel approach in Chapter 10 that does not require any prior information

about the occluder. Our approach estimates the pose of the object from partial obser-

vations that are not corrupted by an occlusion, and robustly combines the individual

estimates to compute the final pose.

Before we present our contributions in detail, we first discuss related work, and intro-

duce the datasets and evaluation metrics that are used for evaluating our methods.

1.7 List of Publications

My work at the Institute for Computer Graphics and Vision led to the following peer-

reviewed publications. For the sake of completeness of this thesis, they are listed in

chronological order along with the respective abstracts.



14 Chapter 1. Introduction

Hands Deep in Deep Learning for Hand Pose Estimation

Markus Oberweger, Paul Wohlhart, and Vincent Lepetit

In: Proceedings of Computer Vision Winter Workshop (CVWW)

February 2015, Seggau, Austria

(Accepted for oral presentation)

Abstract: We introduce and evaluate several architectures for Convolutional Neural

Networks to predict the 3D joint locations of a hand given a depth map. We first show

that a prior on the 3D pose can be easily introduced and significantly improves the accuracy

and reliability of the predictions. We also show how to use context efficiently to deal with

ambiguities between fingers. These two contributions allow us to significantly outperform

the state-of-the-art on several challenging benchmarks, both in terms of accuracy and

computation times.

Training a Feedback Loop for Hand Pose Estimation

Markus Oberweger, Paul Wohlhart, and Vincent Lepetit

In: Proceedings of International Conference on Computer Vision (ICCV)

December 2015, Santiago, Chile

(Accepted for oral presentation)

Abstract: We propose an entirely data-driven approach to estimating the 3D pose of

a hand given a depth image. We show that we can correct the mistakes made by a

Convolutional Neural Network trained to predict an estimate of the 3D pose by using a

feedback loop. The components of this feedback loop are also Deep Networks, optimized

using training data. They remove the need for fitting a 3D model to the input data,

which requires both a carefully designed fitting function and algorithm. We show that

our approach outperforms state-of-the-art methods, and is efficient as our implementation

runs at over 400 fps on a single GPU.

Efficiently Creating 3D Training Data for Fine Hand Pose Estimation

Markus Oberweger, Gernot Riegler, Paul Wohlhart, and Vincent Lepetit

In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR)

June 2016, Las Vegas, USA

(Accepted for poster presentation)

Abstract: While many recent hand pose estimation methods critically rely on a train-

ing set of labelled frames, the creation of such a dataset is a challenging task that has

been overlooked so far. As a result, existing datasets are limited to a few sequences and

individuals, with limited accuracy, and this prevents these methods from delivering their
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full potential. We propose a semi-automated method for efficiently and accurately labeling

each frame of a hand depth video with the corresponding 3D locations of the joints: The

user is asked to provide only an estimate of the 2D reprojections of the visible joints in

some reference frames, which are automatically selected to minimize the labeling work

by efficiently optimizing a sub-modular loss function. We then exploit spatial, temporal,

and appearance constraints to retrieve the full 3D poses of the hand over the complete

sequence. We show that this data can be used to train a recent state-of-the-art hand pose

estimation method, leading to increased accuracy.

DeepPrior++: Improving Fast and Accurate 3D Hand Pose Estimation

Markus Oberweger and Vincent Lepetit

In: Proceedings of International Conference on Computer Vision Workshops (ICCVW)

October 2017, Venice, Italy

(Accepted for poster presentation)

Abstract: DeepPrior is a simple approach based on Deep Learning that predicts the

joint 3D locations of a hand given a depth map. Since its publication early 2015, it has been

outperformed by several impressive works. Here we show that with simple improvements:

adding ResNet layers, data augmentation, and better initial hand localization, we achieve

better or similar performance than more sophisticated recent methods on the three main

benchmarks (NYU, ICVL, MSRA) while keeping the simplicity of the original method.

Our new implementation is publicly available.

Feature Mapping for Learning Fast and Accurate 3D Pose Inference from

Synthetic Images

Mahdi Rad, Markus Oberweger, and Vincent Lepetit

In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR)

June 2018, Salt Lake City, USA

(Accepted for poster presentation)

Abstract: We propose a simple and efficient method for exploiting synthetic images

when training a Deep Network to predict a 3D pose from an image. The ability of using

synthetic images for training a Deep Network is extremely valuable as it is easy to create

a virtually infinite training set made of such images, while capturing and annotating

real images can be very cumbersome. However, synthetic images do not resemble real

images exactly, and using them for training can result in suboptimal performance. It was

recently shown that for exemplar-based approaches, it is possible to learn a mapping from

the exemplar representations of real images to the exemplar representations of synthetic

images. In this paper, we show that this approach is more general, and that a network

can also be applied after the mapping to infer a 3D pose: At run-time, given a real
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image of the target object, we first compute the features for the image, map them to the

feature space of synthetic images, and finally use the resulting features as input to another

network which predicts the 3D pose. Since this network can be trained very effectively by

using synthetic images, it performs very well in practice, and inference is faster and more

accurate than with an exemplar-based approach. We demonstrate our approach on the

LINEMOD dataset for 3D object pose estimation from color images, and the NYU dataset

for 3D hand pose estimation from depth maps. We show that it allows us to outperform

the state-of-the-art on both datasets.

Making Deep Heatmaps Robust to Partial Occlusions for 3D Object Pose

Estimation

Markus Oberweger, Mahdi Rad, and Vincent Lepetit

In: Proceedings of European Conference on Computer Vision (ECCV)

September 2018, Munich, Germany

(Accepted for poster presentation)

Abstract: We introduce a novel method for robust and accurate 3D object pose esti-

mation from a single color image under large occlusions. Following recent approaches, we

first predict the 2D projections of 3D points related to the target object and then com-

pute the 3D pose from these correspondences using a geometric method. Unfortunately,

as the results of our experiments show, predicting these 2D projections using a regular

CNN or a Convolutional Pose Machine is highly sensitive to partial occlusions, even when

these methods are trained with partially occluded examples. Our solution is to predict

heatmaps from multiple small patches independently and to accumulate the results to

obtain accurate and robust predictions. Training subsequently becomes challenging be-

cause patches with similar appearances but different positions on the object correspond to

different heatmaps. However, we provide a simple yet effective solution to deal with such

ambiguities. We show that our approach outperforms existing methods on two challenging

datasets: The Occluded LineMOD dataset and the YCB-Video dataset, both exhibiting

cluttered scenes with highly occluded objects.

Domain Transfer for 3D Pose Estimation from Color Images without

Manual Annotations

Mahdi Rad, Markus Oberweger, and Vincent Lepetit

In: Proceedings of Asian Conference on Computer Vision (ACCV)

December 2018, Perth, Australia

(Accepted for oral presentation)

Abstract: We introduce a novel learning method for 3D pose estimation from color

images. While acquiring annotations for color images is a difficult task, our approach
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circumvents this problem by learning a mapping from paired color and depth images

captured with an RGB-D camera. We jointly learn the pose from synthetic depth images

that are easy to generate, and learn to align these synthetic depth images with the real

depth images. We show our approach for the task of 3D hand pose estimation and 3D

object pose estimation, both from color images only. Our method achieves performances

comparable to state-of-the-art methods on popular benchmark datasets, without requiring

any annotations for the color images.

Generalized Feedback Loop for Joint Hand Object Pose Estimation

Markus Oberweger, Paul Wohlhart, and Vincent Lepetit

In: Transactions on Pattern Analysis and Machine Intelligence (PAMI)

(Currently under review)

Abstract: We propose an approach to estimating the 3D pose of a hand, possibly han-

dling an object, given a depth image. We show that we can correct the mistakes made by

a Convolutional Neural Network trained to predict an estimate of the 3D pose by using

a feedback loop. The components of this feedback loop are also Deep Networks, opti-

mized using training data. This approach can be generalized to multiple objects, and we

demonstrate this specifically for a hand interacting with an object. In that case, we jointly

estimate the 3D pose of the hand and the 3D pose of the object. Our approach performs

en-par with state-of-the-art methods for 3D hand pose estimation, and outperforms state-

of-the-art methods for joint hand object pose estimation when using depth images only.

Also, our approach is efficient as our implementation runs in real-time on a single GPU.
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This thesis aims for Computer Vision-based 3D hand pose estimation and joint hand-

object pose estimation. In this chapter we review related literature and put our contribu-

tions in context to existing approaches. In a broader context, 3D hand pose estimation

is related to other structured keypoint estimation methods, such as facial landmark local-

ization and body pose estimation. We give a short review of important and related works

in these areas, before we give a more detailed review of related works in the field of hand

pose estimation. Finally, we review works on joint hand-object pose estimation.

2.1 Structured Keypoint Localization

Hand pose estimation is related to other keypoint localization tasks, such as facial land-

mark localization or body pose estimation. We therefore give a short overview of related

works in these fields.

Facial Landmark Localization Facial landmark localization aims at localizing dis-

tinctive facial features, such as the corners of the eyes, nose tip, pupil center, etc. An

example of annotated landmarks is shown in Figure 2.1a. Facial landmark localization

is a prerequisite for many applications, e.g ., expression analysis [5], face animation and

reenactment [70], or face registration [174]. Although the key challenges of facial landmark

estimation are similar to hand pose estimation, facial landmark localization is simpler: The

face has less Degrees of Freedom (DoF) [10] than the hand and thus less self-occlusions.
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The face is not articulated and therefore no kinematic rules are required. Since the face

is approximately symmetric, the occluded parts can be reconstructed from the visible

parts [294]. Also, the landmark locations are more structured and only locally deformable.

Fitting an average face and performing local adjustments is sufficient for accurate land-

mark localization [18]. Due to the large corpus of works in facial landmark localization,

we only consider more related work and refer to [235, 287] for a broader overview of the

field.

In the seminal work of Cootes et al . [44], the Active Appearance Model (AAM) was

introduced for fitting a deformable object model to an image. The AAM is a statistical

model that is learned from a collection of annotated images, such as faces with landmarks,

and models the shape and appearance of a specific object category. This generative model

is parametrized by a set of orthogonal variables. In order to fit the AAM to an image,

the variables are iteratively optimized by minimizing the difference in appearance between

the observed image and the rendered model. However, due to limited expressive power

of the model and its holistic representation, it does not generalize well to unseen objects.

Some of these weaknesses were addressed in later work, such as using a non-linear shape

model [59], or more efficient iterative optimization [221, 273].

Recent methods follow a cascaded or iterative approach that rely on local representa-

tions. The Supervised Descent Method (SDM) [298] represents one of the seminal works

of this class of approaches. They initialize the landmarks with the average locations and

extract local features, specifically SIFT features [155], around these locations. Based on

these local features, they formulate an iterative refinement as a non-linear least squares

problem, which can be solved with the Newton method for example, that predicts gradient

directions for all landmarks jointly. The landmark locations are iteratively updated based

on the predicted gradients. Following such an iterative regression, [210] learns a set of bi-

nary features that encode the local appearance of the landmark. They combine the local

features in a global regressor that predicts an update on the landmark locations, which

can be run very efficiently. [33, 119] use a cascade of regression trees that are trained to

predict updates of the landmark locations in each step of the cascade. The trees not only

learn the updates, but also localized image features depending on the current landmark

locations.

More recent works rely on the large learning capacity of Convolutional Neural Networks

(CNNs). [324] uses an iterative approach where a cascade of CNNs predict updates on

the parameters of a face model. The CNN takes as input a color coded rendering of a

3D face model together with the input image. The network learns to predict an update

for the parameters of the model such that the rendered image aligns well with the input

image. [135] uses a single CNN to extract features from the image and an additional simple

network to predict initial landmark locations. Features are extracted around the landmark

locations and fed to a Long Short-Term Memory (LSTM) network that iteratively predicts

updates on the landmark locations.
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(a) Facial landmark localization. (b) Body pose estimation.

Figure 2.1: Structured keypoint localization. Hand pose estimation shares similar challenges
with, e.g ., facial landmark localization [318] shown in (a) with landmarks visualized as white
dots, or body pose estimation [290] shown in (b) with skeleton shown as colored sticks.

Body Pose Estimation Body pose estimation aims at estimating the configuration

of body parts and is also related to hand pose estimation. Many hand pose estimation

approaches are rooted in the field of body pose estimation. Thus, we shortly review this

field here as well. An example image with estimated human joint locations is shown in

Figure 2.1b. Body pose estimation shares many challenges with hand pose estimation

such as a large number of DoF with kinematic constraints, and large variations in size

and shape. However, the human body does not show self-similarity except the symmetry

and in general less self-occlusions. Also the movement is much slower compared to the

hand. Human pose estimation has also unique challenges such as a larger variation in

appearance due to clothing, which does not apply to the hand that is usually bare. Again,

we only report the most relevant works in this section and refer to [37, 168, 199] for a

more in-depth review.

For body pose estimation there are already commercial products available for a few

years now, such as the method integrated in the Microsoft Kinect. This technology relies

on the seminal work of Shotton et al . [229], who presented an approach that predicts the

3D joint locations from depth images. They use a per-pixel semantic labeling of the body

parts, which is predicted using a Random Forest with depth-dependent features. They

further refine the joint locations by regressing offsets for the joints. Their approach is

enabled by a large scale synthetic dataset used for training. [260] infer dense correspon-

dences between a depth image and a 3D model by predicting coordinates corresponding

to the surface location of the model. From these predicted correspondences they perform

optimization to obtain the pose.
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Many popular approaches for monocular human pose estimation build upon the Pic-

torial Structures (PS) model [64]. [206] learns a deformable part-based model and use a

probabilistic inference to match the body parts to edges extracted from the image. They

iteratively parse the image by assigning soft labels to the image regions. In each iteration

they learn a foreground/background color model to refine the part detection. Finally, they

use the highest likelihood locations as the joint detections. [65] extended the PS model

to image sequences by introducing additional spatio-temporal constraints. They also use

foreground/background segmentation to restrict the spatial search space for a more ef-

ficient inference. [6] combines strong discriminative part detectors with a prior on the

kinematic tree and models the part dependencies as Gaussian distributions for efficient

inference. [48] extended the PS model with a two-step procedure. In the first step they

learn discriminative, independent body part classifiers. In the second step they apply a

regressor to predict joint positions depending on the initial body part distributions. The

regressor learns the dependencies between the different joints to solve for ambiguities. [115]

replaced the part detectors of the PS model by a cascade of part detectors, each applied to

more likely part regions of the previous stage. Thus they can apply the detectors in a step

by step refinement. [13] uses multiple views to perform 3D pose estimation. They apply

the PS method in 2D for each view and combine the different views for 3D inference. They

use a discrete state-space for efficiency. [231] presented a solution to handle occlusions in

the PS framework, by explicitly encoding the occlusions between the body parts at the

pixel level. [304] introduced a novel representation of the part model that incorporates

contextual co-occurrence between parts using a tree-structured spring model. [23] intro-

duced poselets, which represent parts that are tightly clustered in appearance and pose

space. Poselets are detected in the image and combined to infer the part locations and

pose. Since pose estimation is multi-modal, i.e., the part configurations are in different

spatial modes, [220] uses different models for each mode. The modes are filtered via a

cascaded prediction step and then local mode-specific model are applied.

With the advent of more powerful models, such as CNNs, it became feasible to directly

predict the human pose from monocular color images. [272] directly predicts the 2D joint

locations using a regression CNN and further refines the joint locations by learning a

cascade of joint regressors that predict updates for the joint locations. [270] jointly trains

a CNN and graphical model. The CNN is used as a part detector and the graphical

model incorporates the spatial dependencies between the different parts, which, however,

is not effective for high variations in pose space. A similar spatial model to enforce global

pose consistency was used in [113]. Recently, direct prediction of the 3D body pose from

monocular images became feasible by addressing the inherent ambiguities with large-scale

training data. [107] combines body part labeling and iterative structured-output regression

for 3D joint localization. Also, powerful CNN models can be used to directly learn 3D

pose estimation from monocular color images [163, 196, 263], and even from challenging

egocentric viewpoints [301].

Another line of work relies on a model of the human body. [71] uses a simple 3D stick
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figure as a body model. They render the outline of the model and maximize the similarity

of edge contours between the rendered and observed image using the Chamfer distance.

For efficient optimization they decompose the search space and perform independent op-

timization of torso and limbs. [110] uses a simple subdivision model for the body and

applies Particle Swarm Optimization (PSO) to optimize multi-view silhouettes to obtain

the human pose. PSO is also used for the optimization in [326], who use a 2D statistical

shape model of the body. They infer the pose for image sequences by keeping track of the

parts using optical flow between consecutive frames, and constraint the part locations with

an additional hand detector. They optimize the pose likelihood over the full sequence and

take the pose with highest probability per frame. [20] first estimates the 2D body joint

locations using a CNN -based method and then uses a statistical body shape model fit to

these prediction. In the optimization they penalize differences in the projected 3D model

joints to the detected 2D joints. Using the 3D model allows to account for interpenetra-

tions and physical feasibility. [164] uses a fully-convolutional network to jointly regress the

2D and 3D joint locations, followed by a kinematic skeleton fitting method for temporally

stable pose estimates. Recently, [118] proposed an end-to-end solution that recovers pose

and shape of the body simultaneously, by directly predicting the pose and shape param-

eters of a 3D model. In order to obtain realistic shape parameters, they jointly train a

discriminator that distinguishes between real and unreal human shapes. By using a 3D

joint reprojection loss, they only require 2D annotations for color images that are easier

to acquire.

2.2 Hand Pose Estimation

Hand pose estimation shares several of the challenges with other structured keypoint

estimation problems, as discussed in the previous section, but nevertheless has its own

large corpus of distinctive work. Hand pose estimation is an old problem in Computer

Vision, with early references from the nineties [108, 209], but it is currently very active

probably because of the appearance of depth sensors and its application in Augmented

Reality (AR) and Virtual Reality (VR). There is a significant amount of early work that

deals with hand pose estimation and we refer to Erol et al . [61] for an overview.

Here we discuss only more recent work, which can be divided into two main types

of approaches: Generative and discriminative methods. Figure 2.2 illustrates the funda-

mental differences. While both methods aim at assigning a pose in an output space to

an observation in an input space, the way this assignment is performed is fundamentally

different. In this work, the input space corresponds to depth or color images and the

output space corresponds to the 3D poses.

Generative methods require an initialization for the pose, e.g ., the pose of the previous

frame [251, 259], and perform an optimization that minimizes the difference between the

observed data and the model. This can be achieved for example by rendering a model

under the current pose and comparing this rendering with the input image [187, 299]. We
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present more details on this type of approaches in Section 2.2.1.

Discriminative methods rely on a mapping between the input space and the output space.

There are various ways of implementing this mapping or even learning it from training

data as we discuss in more detail in Section 2.2.2.

Observations
(input space)

Poses
(output space)

Mapping

Discriminative Generative

Initialization

Optimization

Rendering

Figure 2.2: Discriminative and generative methods. On the one side we have the observa-
tions, i.e., the input space or input images, that we want to assign a pose in the output space.
While discriminative methods learn a mapping from the input images to the poses, generative
methods perform an optimization of the pose such that an articulated model resembles the input
data as accurate as possible.

2.2.1 Generative Methods

The first type of approaches are based on generative, model-based tracking methods. The

works of this type are developed from four generic building blocks: (1) a hand model,

(2) a similarity function that measures the fit of the observed image to the model, (3) an

optimization algorithm that maximizes the similarity function with respect to the model

parameters, and (4) an initial pose from which the optimization starts.

Hand Model There is a large variability of hand models used in the literature. The

choice of a simple model is important for maintaining real-time capabilities, and repre-

senting a trade-off between speed and accuracy as a response to a potentially high degree

of model abstraction. Depending on the used optimization algorithm, additional require-

ments for the model might be imposed, such as differentiability [241], local rigidity [265]

or mesh interpolation [259].

A large number of different hand models was proposed that use different hand-crafted geo-

metrical approximations for the hand and some popular models are depicted in Figure 2.3.

[187, 189, 224, 251] use geometric primitives, such as cylinders, ellipsoids, spheres, and

cones to model the hand. [128] uses simple prism shapes, and [201] uses a model con-
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(a) 3D mesh [50]. (b) Geometric primi-
tives [187].

(c) Sum of Gaus-
sians [242].

(d) Spheres [201].

Figure 2.3: Generative hand models. The different hand models show different levels of abstrac-
tion, ranging from a fully rigged 3D mesh [50], an assembly of simple geometric primitives [187],
a Sum of Gaussians [242], to multiple spheres [201].

sisting of spheres. Similarly, [265] also uses spheres, but the spheres are combined with

the union convolution primitive operator to obtain a differentiable shape with a smooth

surface. [241] models the hand from a Sum of Gaussians, which is also differentiable.

More holistic hand representations are used by [12, 145, 225, 227, 255, 279] utilizing a

mesh-based Linear Blend Skinning (LBS) model of the hand. [259] uses a 3D mesh with a

subdivision surface that allows efficient interpolation of surface vertices. [299] increases the

matching quality by using depth images that resemble the same noise pattern as the depth

sensor. While the previous works deal with depth images or silhouettes that are simple to

render, [50] uses a fully shaded and textured triangle mesh controlled by a skeleton.

In order to work well in practice, these hand models should be adjusted to the users

hand [239, 252, 266], which requires an additional optimization step or manual adjustment

of hand shape parameters [165]. [239] adjusts the hand length, width, and finger thickness

by modifying the position and variance of their Sum of Gaussians hand model. They

perform a greedy search over a fixed range of parameters and select the parameters that

best explain the image evidence. [261] adapts a rough template hand model to different

users by adjusting the vertices of the template by fitting it to a small number of depth

frames captured from the users hand. [124] extended this work and represents the hand

shape parameters as a linear combination of a mean mesh with a number of offset vectors.

Again, these shape parameters are optimized over a short sequence of frames to adjust the

model to a user [252]. Therefore, they minimize the difference between a rendered depth

image from the hand model and the observed depth image. They use a gradient-based

optimizer together with a geometric prior, but they require a rough pose initialization

for each frame in the sequence. [266] performs the model adjustment in parallel with the

hand tracking. They adjust the radii and positions of their sphere-based hand model by

running a gradient-based optimization.
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Similarity Function Different modalities were proposed for the similarity function,

which should measure the fit of the hand model to the input data and thus the similarity

function is coupled to the used model. Depth-based methods naturally rely on similarity

functions that consider depth values or point clouds, and apply the `1 or `2 norm, or

truncated versions thereof [128, 165, 186, 201, 225, 255, 299]. [279] uses salient points in

addition to the depth, [189, 241] combine color and depth, and [251] combines the point

cloud with the hand silhouette for rough alignment. [50] evaluates the difference between

color images considering shading and texture, and [187] uses edges and color. [12] relies

on salient points, edges, and optical flow. [224] relies on the signed distance function for

efficiently finding correspondences between input depth and model points, and [145] uses a

semantic labeling of the different fingers of the hand together with the point cloud. Within

this context of plentiful choices of distance measurements, [277] presented an evaluation

of the performance of different distances.

Optimization The optimization of the similarity function is a critical part, as the high-

dimensional pose space is prone to local minima. Thus, PSO is often used to handle

the high dimensionality of the pose vector [186, 187, 201, 227]. PSO maintains a set of

hypothesis that are sampled across the search space. Thereby, each hypothesis represents a

full hand pose. The similarity function is evaluated for each hypothesis and the hypothesis

is updated according to its own best solution and the best solution among the full set of

hypothesis. Although this is an appealing algorithm that can be easily parallelized and

thus efficiently implemented, it requires a good initialization and does not guarantee to

find the global optimum [317].

[189] proposed an evolutionary search algorithm similar to PSO . They start from a densely

sampled search space and identify the best fitting hypothesis. They iteratively reduce the

size of the search space and increase the space resolution, and each iteration starts from

a weighted average of the previous best hypothesis.

Due to the high computation time of these optimization methods, which have to be solved

for every frame, [299] does not optimize the pose but only evaluates the similarity function

for several hypothesis to select the best hypothesis. [255] proceeds along the skeleton tree

and use a Random Forest to predict different hypothesis of the child joints within the

skeleton tree. This allows to sample hypothesis of the different fingers and does not

require a holistic pose hypothesis.

Differently, [12, 50, 224, 241] use gradient-based methods to optimize the pose, while

[165] uses dynamics simulation of the 3D model. Most notable, [50] deals with color images

and thus cannot resort to geometry methods to optimize the similarity function. They

require a carefully designed hand model that supports differentiation of the model with

respect to the pose. They calculate gradients to update illumination, texture and pose

using a local optimization method.

For optimizing a similarity function that is based on point clouds, geometric methods

such as Iterative Closest Point (ICP) are often employed. [251] uses an articulated ICP

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

Schmidt, Tanner and Newcombe, Richard and Fox, Dieter ("2015")DART: Dense Articulated Real-time Tracking with Consumer Depth Cameras

Reference:

Liang, Hui and Yuan, Junsong and Thalmann, Daniel and Zhang, Zhengyou ("2013")Model-based Hand Pose Estimation via Spatial-temporal Hand Parsing and 3D Fingertip Localization

Reference:

 ()

Reference:

 ()

Reference:

Yudong Zhang and Shuihua Wang and Genlin Ji (2015)A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

Reference:

I. Oikonomidis and M. I. A. Lourakis and A. A. Argyros (2014)Evolutionary Quasi-Random Search for Hand Articulations Tracking

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()



2.2. Hand Pose Estimation 27

formulation that is optimized using the Levenberg-Marquardt algorithm and constraint

with a prior on the hand pose, together with kinematic and temporal constraints. [145]

optimizes ICP that is constrained with an inverse kinematic pose obtained from detected

finger tips. [128] uses a formulation similar to ICP , which employs point to surface con-

straints that are predicted by a Random Forest. Optimizing these constraints pulls the

model into position, thus minimizing the error between model and observation. [225] ap-

plies inverse kinematics from correspondences of target points that are matched to their

spatially closest points on the surface of the hand model. They optimize the distance be-

tween the corresponding points by applying a linearization to the Gauss-Newton approach

with additional bounds on the joint angles and a prior on the hand pose.

Recent works aim at handcrafting a differentiable similarity function, which tightly

integrates the hand model to achieve accurate and fast results [259, 265]. Such an formu-

lation allows for directly calculating the gradients of the pose with respect to the model,

however, requires careful design and implementation.

Pose Initialization In order to kick-start optimization and to guarantee the conver-

gence to a meaningful pose, a strong prior on the initial pose of the optimization is re-

quired. The simplest choice is a predefined initial hand location and pose [50], or a manual

initialization of the first frame [187, 224], although this not really useful in practice. More

useful are automatic methods that provide an initial pose. [227, 241] use a discriminative

part-based pose initialization, and [201] uses a finger tip detector. [299] predicts candi-

date poses using a Hough Forest. Furthermore, tracking-based methods use the pose of

the previous frame to initialize the consecutive frame [165, 187, 240, 279]. This can be

problematic if the difference between the frames is too large, e.g ., due to fast motion or

low frame rates.

2.2.2 Discriminative Methods

The second type of approaches is based on discriminative models that aim at directly

predicting the joint locations from color, depth, or RGB-D images. The accuracy and

speed of such methods critically rely on the mapping from image to pose.

Early works formulated hand pose estimation as a database retrieval problem. There-

fore, a database of synthetic images is generated in order to identify the samples that

are most similar to a query image. [289] uses a color glove with a specific pattern and

perform a nearest-neighbor search by comparing tiny color images. [228] matches the

silhouette with the database, and [217] uses silhouette, color segmentation and a simple

feature mapping learned from shape moments. [8] uses a probabilistic edge matching to

retrieve relevant database samples, and [54] matches the depth and edges for retrieval.

A disadvantage of such approaches is that the pose accuracy is limited to the number of

samples in the dataset. For hand pose estimation with many DoF , the number of required

samples can quickly become intractable [7] and prohibitively slow. To overcome the effi-
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ciency problem, [249] proposed a fast nearest-neighbor method that relies on a volumetric

Hamming distance to jointly detect the hand in a sliding window fashion and estimate the

pose. [40] identifies the nearest neighbors from a database of hand poses using local shape

descriptors. The poses of the nearest neighbors are then used to retrieve the unknown

pose of the hand using joint matrix factorization and completion. [214] formulates hand

pose estimation as a multi-class classification problem and uses a coarse-to-fine tree-based

approach for classification. Although it works in egocentric environments, they require

strong priors over viewpoint and pose, and photorealistic renderings of the egocentric

scenes.

Some recent works, including [122, 123, 134, 254, 256], use different approaches with

Random Forests, but are restricted to static gestures, showing difficulties with occluded

joints, or causing high inaccuracies at finger tips. [123, 134] rely on multi-layered Random

Forests for the prediction. [123] uses invariant depth features, and [134] uses clustering in

hand configuration space and pixel-wise labeling. However, both do not predict the actual

3D pose but only classify given poses based on a dictionary. Motivated by work for human

pose estimation [229], [122] uses Random Forests to perform a per-pixel classification of

depth images and then a local mode-finding algorithm to estimate the 2D joint locations.

However, this approach cannot directly infer the locations of hidden joints, which are

much more frequent for hands than for the human body. [256] proposed a semi-supervised

regression forest, which first classifies the hands viewpoint, then the individual joints, to

finally predict the 3D joint locations. However, it relies on a costly pixel-wise classification,

and requires a huge training database due to viewpoint quantization. The same authors

proposed a regression forest in [254] to directly regress the 3D locations of the joints, using

a hierarchical model of the hand. However, their hierarchical approach accumulates errors,

causing larger errors for the finger tips.

These problems have been addressed by more recent works that resort to CNNs to

learn the mapping from image to pose [52, 82, 173, 178, 271, 300, 321, 325]. One of the

first works that used a CNN is [271], who use a CNN for feature extraction and instead

of predicting the 3D joint locations directly, generate small 2D heatmaps for the different

joints. They use the heatmaps to infer the hand pose using inverse kinematics. However,

their approach predicts only the 2D locations of the joints, and uses a depth image for

the third coordinate, which is problematic for hidden joints. Furthermore, the accuracy is

restricted to the heatmap resolution. [72] extended this work and uses multiple CNNs to

predict heatmaps from different reprojections of the depth image, which requires a separate

CNN for each reprojection. Also, this approach requires complex post-processing to fit a

kinematic model to the heatmaps. Similarly, Wan et al . [284] use 2D heatmaps, but in

addition they predict heatmaps that encode the proximity of the input 3D points to the

joint locations and dense 3D vector offsets pointing towards the 3D joint location. This

representation requires complex post-processing to obtain the 3D locations of the joints.

Many recent approaches exploit the hierarchy of the hand kinematic tree. [300] predicts

updates along the skeleton tree that correct an initial pose and use Lie-algebra to constrain
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these updates. Sun et al . [247] estimate the joint locations in normalized coordinate frames

for each finger, and [233] uses a separate regressor for each finger to predict spatial and

temporal features that are combined in a nearest-neighbor formulation. [307] introduces a

spatial attention mechanism that specializes on each joint and an additional optimization

step to enforce kinematic constraints. [142] splits the hand into smaller sub-regions along

the kinematic tree. [303] predicts a gesture class for each pose and trains a separate

pose regressor for each class. [114] relies on the hierarchical topology of the hand and

uses a Random Forest for each finger to estimate 3D coordinates of the joints. All these

approaches require multiple predictors, one for each joint or finger, and often additional

regressors for different iterations of the algorithms. Thus the number of regression models

ranges from tens to more than 50 different models that have to be trained and evaluated.

This can quickly become problematic with an increasing number of joints to predict.

To overcome this shortcoming, there are several works that integrate the kinematic

hierarchy into a single CNN structure. Guo et al . [82] and similarly Chen et al . [39] train

an ensemble of sub-networks for different spatial regions of input features, and Madadi et

al . [156] use a tree-shaped CNN architecture that predicts different parts of the kinematic

tree. However, this requires a specifically designed CNN architecture depending on the

used hand annotation. Zhou et al . [321] integrate a hand model into a CNN by introducing

an additional layer that enforces the physical constraints of a 3D hand model. However,

these constraints have to be manually defined beforehand.

Different data representations of the input depth image were also proposed. Deng et

al . [52] convert the depth image to a 3D volume and use a 3D CNN to predict joint

locations. Similarly, Moon et al . [170] represent the hand depth image as a voxel grid and

use 3D CNN to predict volumetric heatmaps. Also, [73] uses a 3D CNN with different

volumetric representations to directly predict the 3D joint locations with an additional

prior on the 3D hand pose, similar to the one proposed in this work. However, 3D networks

show a low computational efficiency [213]. Differently, [285] uses surface normals instead

of the depth image, but surface normals are not readily accessible from current depth

sensors and thus introduce an additional computational overhead. Neverova et al . [178]

combine a segmentation of the hand parts with a regression of joint locations, but the

segmentation is sensitive to the sensor noise.

A probabilistic framework was proposed by Bouchacourt et al . [22], who use a network

to learn the posterior distribution of hand poses and one can sample from this distribution.

However, it is unclear how to combine these samples in practice. Wan et al . [283] use two

generative networks, one for the hand pose and one for the depth image, and learn a

shared mapping between these two networks, which involves training several networks in

a complex procedure.

Fourure et al . [67] exploit annotations from different datasets by introducing a shared

representation, which is an interesting idea for harvesting more training samples, but

has shortcomings when dealing with sensor characteristics. Zhang et al . [315] formulate

pose estimation as a multivariate regression problem that, however, requires solving a
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complex optimization problem during run-time. [38] proposed several different networks

for integrated hand detection and pose estimation. [202] extended a single frame pose

estimation method to the temporal domain by using the pose from the previous frame for

estimating the pose of the consecutive frame.

Predicting the 3D hand pose from monocular color image is especially difficult. To cir-

cumvent the inherent ambiguities of monocular color images, [316] uses stereo color images

and estimates depth images from the stereo images, which are then used in a model-based

hand pose estimation method. Recently, [325] proposed an approach that first predicts the

2D joint locations and then lifts these predictions to 3D estimates. [172] predicts 2D and

3D joint locations jointly, and then applies inverse kinematics to align these predictions.

Similarly, [194] uses inverse kinematics to lift predicted 2D joint locations to 3D. [237]

learns a shared embedding of images and hand poses that allows to exploit additional

semi-supervised training data.

2.3 Joint Hand-Object Pose Estimation

The approaches for hand pose estimation discussed so far can only handle minor occlusions

and in practice the accuracy decreases with the degree of occlusion. To specifically account

for occlusions, different approaches aim at learning invariance by using images of a hand

with an interacting object for training. [173, 215] simulate occlusions of the hand by adding

occlusions of real objects to the training data, which, however, poses problems to acquiring

such training data. [216] does the contrary: They remove the object before estimating the

hand pose using a segmentation of the object. [157] uses additional temporal information

to recover from occlusions.

Similar to hands in isolation, accurate methods are available for object pose estima-

tion without occlusions [203, 293]. However, for our problem of joint hand-object pose

estimation, object pose methods are required that are specifically robust to partial oc-

clusion. Keypoint-based methods [155, 282] perform well with occlusions, but only on

textured objects, and [46] requires discriminative color and features. In order to handle

clutter and occlusions, local patch-based methods [25, 130], voting-based methods [57], or

segmentation-based methods [84] have shown robustness to clutter and occlusions. How-

ever, they only consider objects and it is not clear how to integrate a hand in these

methods.

The problem of hand and object pose estimation is much harder than considering

hands or objects in isolation. A straightforward approach of combining methods of

both sides does not lead to good results, since the physical constraints and visual oc-

clusions between hand and object are not considered. Several works considered track-

ing of two hands or hand and object simultaneously, however, they require hands to be

well-separated [251, 288], multiple-views [187], accurate segmentation [79, 87], or work at

non-interactive framerates [188].

[187] considers jointly tracking a hand with an object. Therefore, they use multiple cam-
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eras capturing the scene from different viewpoint to resolve ambiguities due to the oc-

cluded parts. They use a 3D model for the hand and one for the object and jointly

optimize the hand and object poses using PSO . For the optimization, they consider edges

and skin color and constrain the poses within their optimization with an interpenetration

constraint. [188] considers hand-hand interactions, again by optimizing two hand models

jointly using PSO . Therefore, they compare the rendered depth image to the input depth

image. [276] uses a model-based approach for tracking hand-hand and hand-object poses.

Similarly, [240] performs model-based tracking of hand and object jointly, both relying on

a model for the hand and the object. These tracking-based approaches require a good

initialization for each frame and are inherently prone to drifting over time.

[87] handles the occlusions of the hand due to the object by using individual pose es-

timators for each hand part. Further, by using a skin segmentation, they increase the

uncertainty of the pose of occluded parts, and fuse the different parts together using an

Markov Random Field that enforces the physical constraints. [79] relies on an accurate

hand/object segmentation and masks the object from the depth image before predicting

the hand pose. Their approach, however, does not consider the object pose.

For handling unknown objects, [193, 278] use an ICP -like object tracking that creates a

model of the object on the fly. However, once it looses the temporal tracking, it fails

completely.

2.4 Discussion

The methods presented in this chapter put the work done in this thesis on pose estimation

into perspective of other works. The chapter should have given the reader a brief overview

over related methods. A more in-depth review of the most closely related methods is given

in the respective chapters.
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In this chapter we briefly introduce the datasets that we used for evaluating our meth-

ods. In order to achieve best comparison with other approaches from the literature, we

resort to publicly available datasets. Further, we present the evaluation metrics for hand

and object pose estimation that are used throughout the thesis to assess the accuracy of

our methods.

3.1 Public Datasets

We used several publicly available datasets for our experiments and comparison with

related work. An overview of different dataset characteristics is shown in Table 3.1.

The considered datasets are not only different in terms of used sensor and annotations,

Dataset NYU [271] MSRA [247] ICVL [254] BigHands [311] STB [316]

Sensor SL ToF ToF SL SL & color
Resolution 640× 480 320× 240 320× 240 640× 480 640× 480
Distance 45-100 cm 18-56 cm 26-57 cm 21-89 cm 45-56 cm
Annotation 42 3D pos 21 3D pos 16 3D pos 21 3D pos 21 3D pos
Viewpoint 3rd 3rd 3rd Ego/3rd 3rd
Subjects 2 9 1 10 1
Images train/test 72k/8k 76k/LOO 22k/2k 580k/295k 15k/3k

Table 3.1: Comparison of hand pose estimation datasets. SL denotes a structured-light sensor,
and ToF is a time-of-flight sensor. Ego denotes egocentric and 3rd third-person view. LOO
denotes leave-one-out cross-validation.
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but also different in terms of the pose space they cover. This is visualized in Figure 3.1 by

using t-SNE [280]. One can clearly see that the BigHands dataset [311] covers the largest

pose area, which is especially challenging for pose estimation algorithms since they need

to cover the full pose space. Examples from the different datasets are shown in Figure 3.2.

Figure 3.1: t-SNE visualization of the pose space of different datasets. The BigHands
dataset [311] covers the largest pose space. The other datasets cover smaller regions within
this pose space.

We would also like to note that accurate annotations for large datasets are hard to

obtain. Many of the currently used datasets contain inaccurate annotations as shown in

Figure 3.3. This leads to difficulties in the evaluation, since learning-based methods can

overfit to the inaccurate annotations and learn the annotation bias.

3.1.1 NYU Dataset

One of the most popular benchmark datasets for 3D hand pose estimation is the NYU

dataset [271]. It contains over 72k training and 8k test frames of multi-view RGB-D data.

The images are captured from three different viewpoints and annotated with the 3D joint

locations. The dataset was captured using the structured-light-based Primesense Carmine

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()



3.1. Public Datasets 35

NYU [271]

ICVL [254]

MSRA [247]

BigHands [311]

STB [316]

Figure 3.2: Random dataset examples for the different hand pose estimation datasets we
consider in this work.
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Figure 3.3: Samples with inaccurate annotations for different hand pose estimation datasets
we consider in this work. Accurate annotations are hard to obtain and several datasets contain
inaccurate annotations that can bias the evaluation.

1.09 sensor. Thus, the depth images show missing values as well as noisy outlines, which

makes the dataset very challenging. For our experiments we use only the depth data from

a single camera. Using the color images on this dataset is problematic, though, since the

color pixels are projected onto the depth images causing the same artifacts in the color

image than the ones present in the depth images. This renders the color images unusable

for pose estimation from color images only. The dataset has accurate annotations and

exhibits a high variability of different poses. The training set contains samples from a

single user and the test set samples from two different users. While the ground truth

contains 36 annotated joints, we follow the evaluation protocol of [183, 271] and use the

same subset of 14 joints for calculating the metrics.

3.1.2 ICVL Dataset

The ICVL dataset [254] comprises a training set of over 180k depth frames showing various

hand poses. The test set contains two sequences with each approximately 700 frames. The

dataset is recorded using a time-of-flight Intel Creative Interactive Gesture camera and

has 16 annotated joints. The depth images have a high quality with hardly any missing

depth values and sharp outlines with little noise. Although the authors provide different

artificially rotated training samples, we only use the genuine 22k. A drawback of this

dataset is that the pose variability is limited compared to other datasets [247, 271], and

annotations are rather inaccurate as discussed in [183, 249].

3.1.3 MSRA Dataset

The MSRA dataset [247] contains about 76k depth frames, each annotated with 21 3D

joint locations. It was captured using a time-of-flight Creative Senz3D camera. The

dataset comprises sequences from nine different subjects. We follow the common evalu-

ation protocol [72, 248, 283] and perform a leave-one-out cross-validation: We train on

eight different subjects and evaluate on the remaining subject. We repeat this procedure

for each subject and report the average errors over the different runs.
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3.1.4 BigHands Dataset

The BigHands dataset [311] is the largest publicly availably dataset so far, as it contains

over 580k training frames and over 295k test frames. It was captured using an Intel

RealSense SR300, a structured-light sensor. The dataset was automatically annotated by

using six 6D magnetic sensors and inverse kinematics that results in 21 3D joint locations.

However, the labels are rather inaccurate due to the used annotation process. The depth

images have a high quality with hardly any missing depth values, and sharp outlines with

little noise. The dataset is considered very challenging, as it has a large pose variability,

and contains ten users, whereas five of them are only available for testing.

3.1.5 STB Dataset

The STB dataset [316] contains twelve sequences each containing 1500 frames of a stereo

camera and an RGB-D camera. It shows a user performing diverse hand gestures in

front of different backgrounds. Each image is annotated with the corresponding 3D

hand pose with 21 joints. Since the STB dataset is only used for testing, learning-based

method [172, 237, 325] use the synthetic RHD dataset [325] for training. It contains over

40k synthetically rendered images of humans performing various hand articulations. It

consists of pairs of depth and color images, each with hand segmentation and 3D pose

annotations of the same 21 joints. We slightly adjust the wrist location to better match

the annotations between the two datasets.

3.1.6 DexterHO Dataset

The DexterHO dataset [240] is designed for the task of joint hand-object pose estimation.

The dataset contains several sequences of RGB-D data showing different users handling

an object in front of a camera, totaling over 2k frames. There are two different objects

used, a large and a small cuboid. The dataset has annotations for both the hand and

the object available. The hand annotation contains the 3D location of visible fingertips,

and the object annotation consists of three 3D points on the object corners. Although

the dataset contains color and depth, we only use the depth images for the evaluation.

Examples from the dataset are shown in Figure 3.4.

3.1.7 Occlusion Datasets

As discussed in the introduction, joint hand-object pose estimation has to deal with con-

siderable occlusions, which is an important aspect that needs to be evaluated. However,

evaluating this is problematic, since, to the best of our knowledge, no dataset with 3D

pose annotation of hand-held objects is available. We, therefore, resort to using more

researched datasets in the context of object pose estimation, where objects occlude other

objects. We consider two datasets, the Occluded LineMOD dataset [25], and the YCB-

Video dataset [297]. Examples from the datasets are shown in Figure 3.4.
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Occluded LineMOD Dataset The Occluded LineMOD dataset [25] consists of a se-

quence of 1215 frames, each frame labeled with the 6 Degrees of Freedom (DoF) poses of

eight objects as well as object masks. The objects show severe occlusions, which makes

pose estimation extremely challenging. The sequences were captured using an RGB-D

camera with 640× 480 images.

YCB-Video Dataset The recently proposed YCB-Video dataset [297] consists of 92

video sequences, where 12 sequences are used for testing and the remaining 80 sequences

for training. In addition, the dataset contains 80k synthetically rendered images, which

can be used for training as well. There are 21 objects in the dataset, which are taken from

the YCB dataset [32] and are publicly available for purchase. The dataset is captured

with two different RGB-D sensors, each providing 640 × 480 images. The test images

are extremely challenging due to the presence of significant image noise and different

illumination levels. Each image is annotated with the 6 DoF object poses, as well as the

objects’ masks.

DexterHO [240]

YCB-Video [297]

Occluded LineMOD [25]

Figure 3.4: Random dataset examples for the different hand-object and occlusion datasets we
consider in this work.
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3.2 Evaluation Metrics

There were different evaluation metrics proposed in the literature for hand pose estimation

and choosing the “correct” evaluation metric ultimately depends on the application. Also,

the required pose accuracy depends on the application. While, for example, gesture recog-

nition can tolerate errors of several centimeter when distinctive gestures as used, other

applications such as virtual object manipulation in Augmented Reality (AR) or Virtual

Reality (VR) might require millimeter accuracies. However, studies that systematically

analyze the required levels of accuracy are yet to be published. According to Supancic et

al . [249], a maximum joint error of 20 mm approaches the accuracy of human annotators,

a maximum joint error of 50 mm seems visually consistent with a roughly correct pose

estimate, and a maximum error of 100 mm appears consistent with a correct detection.

Although our methods already achieve accuracies below 20 mm maximum joint error, these

values can act as guidelines for assessing the severity of outliers.

Since the hand pose can be defined using different representation that we described in

Section 1.1, such as joint angles or 3D joint locations, one can imagine different evaluation

criteria depending on the representation. However, evaluation metrics using the Euclidean

3D joint locations are the most common criteria found in the literature. This evaluation

has several advantages [253]. First, converting joint angles to 3D locations can be simply

achieved by using forward kinematics, whereas the inverse is not trivial. Second, joint

angles depend on the kinematic chain. For example, if the PIP angle is correctly estimated

but the MCP angle is erroneous, the location of the finger tip is still wrong since the errors

propagate and accumulate along the kinematic chain. Third, the global translation of

hand, i.e., the wrist location, is always in 3D with respect to a global coordinate system.

Using this location during evaluation would result in a mixture of units which would make

things complicated. Therefore, we use the 3D Euclidean error metrics throughout this

thesis.

3.2.1 Per-Frame Errors

We first present the error metrics that can be applied to a single frame. We calculate the

Euclidean distance between the ground truth P and the predicted pose P̂. We denote the

average error Eavg for a single frame by averaging the Euclidean distance over the number

of all joints J :

Eavg =
1

J

J∑
j=1

‖Pj − P̂j‖ . (3.1)

Further, the maximum error Emax is defined as the maximum error over all joints:

Emax = max
j∈[1;J ]

‖Pj − P̂j‖ . (3.2)
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This error represents a much harder metric, since a single erroneous joint can deteriorate

the hand pose.

3.2.2 Set Errors

We usually deal with sequences or sets of frames that are evaluated in an overall metric.

We therefore denote the poses of a set of frames as:

P = {P(n)}Nn=1 . (3.3)

The average error Favg has established itself as the most common metric when the

error should be measured as a single number for a sequence:

Favg =
1

N

N∑
n=1

Eavg(P
(n)) , (3.4)

where the overall error is simply measured as the average over the full sequence.

However, this measure is not sensitive to outliers and [260] introduced a more challeng-

ing metric F (τ) that measures the fraction of test samples that have all predicted joints

below a given maximum Euclidean distance from the ground truth:

F (τ) =
|{Emax(P) | Emax(P) < τ,P ∈ P}|

|P |
. (3.5)

τ denotes a threshold that can be varied to create plots that show the fraction of frames

with a worst case error below the threshold.

Another metric, the Percentage of Correct Keypoints (PCK), originating from human

pose estimation [305], treats each predicted joint location separately. It measures the frac-

tion of joints that have an Euclidean distance between the ground truth Pj and predicted

joint location P̂j below a given threshold τ :

PCK(τ) =
|{‖Pj − P̂j‖ | ‖Pj − P̂j‖ < τ, j ∈ [1; J ],P ∈ P}|

J · |P |
. (3.6)

3.2.3 Joint Hand-Object Pose Evaluation

For joint hand-object pose estimation, we need to evaluate the object pose in addition

to the hand pose. There are two possibilities: (1) evaluating the hand and object pose

in a combined metric, or (2) evaluating the hand pose and object pose separately in two

different metric.

[240] proposed a combined metric, which combines the evaluation of the hand and the
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object poses:

EHO =
1

|V |+ 1M

[∑
i∈V
‖Xi −Gi‖+

1M
3

∑
m∈M

‖Ym −Om‖

]
. (3.7)

The first sum measures the Euclidean distance between the predicted finger tip locations

X and the ground truth finger tips G for all visible finger tips V . The second sum

measures the Euclidean distance between the predicted object corners Y and the ground

truth corners O, where M is the set of visible corners. The object pose is only evaluated if

all corners of the object are visible, i.e., the indicator function 1M = 3 if all three corners

are visible.

When using separate metrics for hand and object, we can resort to the metric for hand

pose estimation introduced in the previous paragraph. For the evaluation of the 3D object

pose, we use the most common metrics [26, 94, 297]: Firstly, the 2D Reprojection error.

This error computes the distances between the projected 3D model pointsM in 2D image

coordinates. Hereby, P denotes the ground truth pose, P̂ denotes our estimated pose,

and proj(·) denotes the projection from 3D to 2D using the intrinsic camera calibration

matrix. The poses are represented as 4×4 matrices in homogeneous coordinates consisting

of rotation and translation. The 2D Reprojection error can be calculated as:

Repr =
1

|M|
∑
x∈M
‖proj(P · x)− proj(P̂ · x)‖ . (3.8)

Similarly, the ADD metric calculates the average distance in 3D between the model

points M transformed by ground truth pose P and the model point transformed by the

estimated pose P̂:

ADD =
1

|M|
∑
x∈M
‖P · x− P̂ · x‖ . (3.9)

Further, for symmetric objects, the 3D distances are calculated between the closest 3D

points, referred to as the ADI metric:

ADI =
1

|M|
∑

x1∈M
min
x2∈M

‖P · x1 − P̂ · x2‖ . (3.10)
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3D Hand Pose Estimation with Feed-forward Neural Networks
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In this work, we build on the success of Convolutional Neural Networks (CNNs) and use

them for their demonstrated performance. We observe, that the structure of the network

is very important. We introduce and evaluate several architectures for CNNs to predict

the 3D joint locations of a hand given a depth image. We first show that a prior on the

3D pose can be easily introduced and significantly improves the accuracy and reliability

of the predictions. We name this approach DeepPrior. Also, we show how to use context

efficiently to deal with ambiguities between fingers. These two contributions enable our

method to achieve excellent results on several challenging benchmarks, both in terms of

accuracy and computation times.

Since this method provides a simple and accurate approach, we further show that we

can significantly increase its accuracy with other simple improvements, referred to as Deep-

Prior++: By adding Residual layers, data augmentation, and better initial hand local-

ization, we achieve better or similar performance than more sophisticated recent methods

on several challenging benchmarks while keeping the simplicity of the original method.

4.1 Introduction

Given the current trend in Computer Vision, it is natural to apply Deep Learning [223]

to solve the task of 3D hand pose estimation, and a CNN with a standard architecture

performs remarkably well when applied to this problem, as a simple experiment shows.

However, the architecture of the network has a strong influence on the accuracy of the

45
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output [43, 248] and in this chapter, we aim at identifying the architecture that performs

best for this problem.

More specifically, our contribution is two-fold:

• We show that we can learn a prior model of the 3D hand pose and integrate it

seamlessly to a Deep Network—denoted as DeepPrior—to improve the accuracy of

the predicted pose. This results in a network with an unusual “bottleneck”, i.e., a

layer with fewer neurons than the output layer.

• Like previous work [248, 272], we use a refinement stage to improve the location es-

timates for each joint independently. Since it is a regression problem, spatial pooling

and subsampling should be used carefully for this stage. To solve this problem, we

use multiple input regions centered on the initial estimates of the joints, with very

small pooling regions for the smaller input regions, and larger pooling regions for

the larger input regions. Smaller regions provide accuracy, larger regions provide

contextual information.

We show that our original contributions lead to excellent results on several challenging

benchmarks [254, 271], both in terms of accuracy and computation times. Our method

runs at over 5000 frames per second (fps) on a single GPU and over 500 fps on a CPU,

which is one order of magnitude faster than the state-of-the-art.

In 2015, an evaluation of several works on benchmark datasets [249] has shown that

DeepPrior, the method presented in this chapter, performed state-of-the-art in terms of

accuracy and speed. Since the publication of the original paper, there has been tremen-

dous advances in the field of Machine Learning and Deep Neural Networks. We leverage

recent progress in this field and update the original approach. Thus, we call the resulting

approach DeepPrior++. Specifically:

• we update the model architecture to make the model more powerful by introducing

Residual layers [91] for extracting feature maps;

• we improve the initial hand localization method. This step in DeepPrior was based

on a heuristics. Here we use a trained method;

• we improve the training procedure to leverage more information from the available

data.

In the remainder of this chapter, we introduce our contributions in Section 4.2 and

evaluate them in Section 4.3.

4.2 Hand Pose Estimation with Deep Learning

In this section we present our original contributions to the hand pose estimation problem.

We first briefly introduce the problem and a simple hand detector, which we use to get a

coarse bounding box of the hand as input to the CNN -based pose predictors.
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Then we describe our general approach that consists of two stages. For the first stage

we consider different architectures that predict the locations of all joints simultaneously.

Optionally, this stage can predict the pose in a lower-dimensional space, which is described

next. Further, we detail the second stage, which refines the locations of the joints inde-

pendently from the predictions made at the first stage. Finally, we introduce the changes

we applied to obtain the DeepPrior++ method.

4.2.1 Hand Detection and Data Preprocessing

We want to estimate the 3D hand joint locations from a single depth image. We assume

that a training set of depth images labeled with the 3D joint locations is available. To

simplify the regression task, we first estimate a coarse 3D bounding box containing the

hand using a simple method similar to [254], by assuming the hand is the closest object

to the camera: We extract from the depth image a fixed-size cube centered on the center

of mass of this object, and resize it to a 128 × 128 patch of depth values normalized to

[−1, 1]. Points for which the depth is not available—which may happen with structured-

light sensors for example—or are deeper than the back face of the cube, are assigned a

depth of 1. This normalization is important for the CNN in order to be invariant to

different distances from the hand to the camera.

4.2.2 Network Structures for Predicting the Joints’ 3D Locations

We first considered two standard CNN architectures. The first one is shown in Figure 4.1a,

and is a simple shallow network, which consists of a single convolutional layer, a max-

pooling layer, and a single fully connected hidden layer. The second architecture we

consider is shown in Figure 4.1b and is a deeper but still generic network [129, 272], with

three convolutional layers followed by max-pooling layers and two fully connected hidden

layers. All layers use Rectified Linear Unit [129] activation functions.

Additionally, we evaluated a multi-scale approach, as done for example

in [63, 226, 270]. The motivation for this approach is that using multiple scales may help

capturing contextual information. It uses several downscaled versions of the input image

as input to the network, as shown in Figure 4.1c.

Our results will show that, unsurprisingly, the multi-scale approach performs better

than the deep architecture, which performs better than the shallow one. However, our

contributions, described in the next two sections, bring significantly more improvement.

4.2.3 Enforcing a Prior on the 3D Pose

So far we only considered predicting the 3D positions of the joints directly. However, given

the physical constraints over the hand, there are strong correlation between the different

3D joint locations, and previous work [296] has shown that a low-dimensional embedding

is sufficient to parameterize the 3D hand pose. Instead of directly predicting the 3D
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(a) (b)

(c) (d)

Figure 4.1: Different network architectures for the first stage. C denotes a convolutional layer
with the number of filters and the filter size inscribed, FC a fully connected layer with the number
of neurons, and P a max-pooling layer with the pooling size. We evaluated the performance of
a shallow network (a) and a deeper network (b), as well as a multi-scale architecture (c), which
was used in [63, 226]. This architecture extracts features after downscaling the input depth
image by several factors. (d) All these networks can be extended to incorporate a pose prior.
The shown Multi-layer Network can be an arbitrary neural network, with an additional layer
for the prior. DeepPrior introduces a pose prior by pre-computing the weights of the last layer
from a Principal Component Analysis (PCA) applied to the 3D hand pose data. This causes an
unusual bottleneck with less neurons than the output layer.

joint locations, we can therefore predict the parameters of the pose in a lower-dimensional

space. As this enforces constraints of the hand pose, it can be expected that it improves

the reliability of the predictions, which will be confirmed by our experiments.

As shown in Figure 4.1d, we implement the pose prior into the network structure by

introducing a “bottleneck” in the last layer. This bottleneck is a layer with less neurons

than necessary for the full pose representation, i.e., � 3 · J for J 3D joints. It forces the

network to learn a low-dimensional representation of the training data, that implements

the physical constraints of the hand. Similar to [296], we rely on a linear embedding. The

embedding is enforced by the bottleneck layer and the reconstruction from the embedding

to pose space is integrated as a separate hidden layer added on top of the bottleneck layer.

The weights of the reconstruction layer are set to compute the back-projection into the

3 · J-dimensional 3D joint space. The resulting network therefore directly computes the

full pose. We initialize the reconstruction weights with the major components from a PCA

of the 3D hand pose data and then train the full network using back-propagation. Using
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this approach we train the networks described in the previous section.

The embedding can be as small as 8 dimensions for a 42-dimensional pose vector to

fully represent the 3D pose as we show in the experiments.

(a) (b)

Figure 4.2: Architecture for refining the joint locations during the second stage. We use
a different network for each joint in order to refine its location estimate as provided by the
first stage. (a) The architecture we propose uses overlapping inputs centered on the joint to
refine. Pooling with small regions is applied to the smaller inputs, while the larger inputs are
pooled with larger regions. The smaller inputs allow for higher accuracy, the larger ones provide
contextual information. We experimentally show that this architecture is more accurate than a
more standard network architecture. (b) shows a generic architecture of an iterative refinement,
where the output of the previous iteration is used as input for the consecutive iteration. As for
Figure 4.1, C denotes a convolutional layer, FC a fully connected layer, and P a max-pooling
layer.

4.2.4 Refining the Joint Location Estimates

The first stage, presented in the previous section, provides estimates for the locations of

all the joints simultaneously. As done in [248, 272], these estimates can then be refined

independently.

Spatial context is important for this refinement step to avoid confusion between the

different fingers. The best performing architecture we experimented with is shown in

Figure 4.2a. We will refer to this architecture as ORRef for Refinement with Overlapping

Regions. It uses as input several patches of different sizes but all centered on the joint

location predicted by the first stage. No pooling is applied to the smallest patch, and the

size of the pooling regions then increases with the size of the patch. The larger patches

provide more spatial context, whereas the absence of pooling on the small patch enables

better accuracy.

We also considered a standard CNN architecture as a baseline, represented in

Figure 4.1b, which relies on a single input patch. We will refer to this baseline as StdRef

for Refinement with Standard Architecture.
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To further improve the accuracy of the location estimates, we iterate this refinement

step several times, by centering the network on the location predicted at the previous

iteration.

4.2.5 DeepPrior++

In this section, we describe our changes to improve the original DeepPrior approach.

Our improved method—referred to as DeepPrior++—relies on the same original method

presented in Section 4.2, but implements novel insights and progress gathered within two

years in the fields of Machine Learning and Deep Learning. It is interesting to see, that

we can achieve huge improvements by using the same original method, only extended with

a better implementation and applying new Deep Learning techniques.

4.2.5.1 Improved Training Data Augmentation

Since our approach is data-driven, we aim at leveraging as much information as possible

from the available data. There have been many different augmentation methods used in

literature [129, 271], such as scaling, flipping, mirroring, rotating, etc. In this chapter we

use depth images, which give rise to specific data augmentation methods. Specifically, we

use rotation, scaling, and translation, as well as different combinations of them.

Rotation The hand can be rotated easily around the forearm. This rotation can be

approximated by simple in-plane rotation of the depth images. We use random in-plane

rotations of the image and change the 3D annotations accordingly by projecting the 3D

annotations onto the 2D image, applying the same in-plane rotation, and projecting the

2D annotations back to 3D coordinates. The rotation angle is sampled from a uniform

distribution with the interval [−180◦, 180◦].

Scaling The MSRA [247] and NYU [271] datasets contain different persons, with differ-

ent hand size and shape. Although DeepPrior is not explicitly invariant to scale, we can

train the network to be invariant to the hand size by varying the size of the crop in the

training data. Therefore, we scale the 3D bounding box for the crop from the depth image

by a random factor sampled from a normal distribution with mean of 1 and variance of

0.02. This changes the appearance of the hand size in the cropped cube and we scale the

3D joint locations according to the random factor.

Translation Since the hand 3D localization is not perfect, we augment the training set

by adding random 3D offsets to the hand 3D location, and center the crops from the depth

images on these 3D locations. We sample the random offsets from a normal distribution

with a variance of 5 mm, which is comparable to the error of the hand 3D detector we use.

We also modify the 3D annotations according to this offset.
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Online Augmentation The augmentation is performed online during training and thus

the network sees different samples at each epoch. This leads to more than 10M different

samples in total. The augmentation helps to prevent overfitting and to be more robust

to deviations of the hand from the training set. Although the samples are correlated, it

significantly helps at test time, as we show in the experiments.

Robust Prior Similarly, we also improve the prior, which is obtained by applying PCA

to the 3D hand poses. We sample 1M poses, by randomly using rotation, scaling, and

translation of the original poses in 3D. We use this augmented set of 3D poses for calcu-

lating the prior.

4.2.5.2 Refined Hand Localization

The original DeepPrior used a very simple hand detection. It was based on the center of

mass of the depth segmentation of the hand. Therefore, the hand was segmented using

depth-thresholding and the 3D center of mass was calculated. Then, a 3D bounding box

was extracted around the center of mass.

DeepPrior++ still uses this method but introduces a refinement step that significantly

improves the final accuracy. This refinement step relies on a regression CNN . This CNN

is applied to the 3D bounding box centered on the center of mass, and is trained to predict

the location of the metacarpophalangeal (MCP) joint of the middle finger, which we use

as referential. We also use augmented training data to train this CNN as described in

Section 4.2.5.1.

For real-time applications, instead of extracting the center of mass from each frame,

we apply this regression CNN to the hand location of the previous frame. This remains

accurate while being faster in practice.

4.2.5.3 More Powerful Network Architecture

Residual Networks Since the introduction of DeepPrior, there has been much research

on better deep architectures [92, 232, 250], and the Residual Network (ResNet) architec-

ture [92] appears to be one of the best performing models.

Our model is similar to the 50-layer ResNet model of [92]. Since ResNet was originally

proposed for image classification, we adapt the architecture to fit our regression problem.

Most importantly, we remove the Global Average Pooling, and add two fully connected

layers. The input to the network is 128 × 128 px, with values normalized to [−1, 1]. The

adapted ResNet model is shown in Figure 4.3. The network contains an initial convolution

layer with 64 filters and 2 × 2 max-pooling. This convolutional layer is followed by four

residual modules, each with a stride of 2× 2, and with {64, 128, 256, 256} filters.

The much simpler model used for refining the hand localization is shown in Figure 4.4.

It consists of three convolutional layers with max-pooling, and two fully connected layers

with Dropout [243].
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Regularization using Dropout The ResNet model can overfit, and we experienced

this behavior especially on datasets with small hand pose variation [254]. Therefore, we

introduce Dropout [243] to the model, which was shown to provide an effective way of

regularizing a neural network. We apply binary Dropout with a dropout rate of 0.3 on

both fully connected layers after the residual modules. This enables training high capacity

ResNet models while avoiding overfitting and achieving highly accurate predictions.
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Figure 4.3: Our ResNet architecture. C denotes a convolutional layer with the number of
filters and the filter size inscribed, FC a fully connected layer with the number of neurons, D a
Dropout layer with the probability of dropping a neuron, R a residual module with the number
of filters and filter size, and P a max-pooling layer with the pooling region size. The hand crop
from the depth image is fed to the ResNet that predicts the final 3D hand pose.
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Figure 4.4: Network architecture for refining hand localization. As in Figure 4.3, C denotes a
convolutional layer, FC a fully connected layer, D a Dropout layer, and P a max-pooling layer.
The initial hand crop from the depth image is fed to the network that predicts an offset to
correct an inaccurate hand localization.

4.3 Evaluation

In this section we evaluate the different architectures introduced in the previous section on

several challenging benchmarks. We first describe the network optimization and further

present the results, quantitatively as well as qualitatively, on several challenging bench-

mark dataset.
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4.3.1 Meta-Parameters and Optimization

The performance of neural networks depends on several meta-parameters, and we per-

formed a large number of experiments varying the meta-parameters for the different ar-

chitectures we evaluated. We report here only the results of the best performing sets of

meta-parameters for each method. However, in our experiments, the performance depends

more on the architecture itself than on the values of the meta-parameters.

We trained the different architectures by minimizing the distance between the pre-

diction and the expected output per joint, and a regularization term for weight decay to

prevent over-fitting, where the regularization factor is 0.001. We do not differ between

occluded and non-occluded joints. Because the annotations are noisy, we use the robust

Huber loss [104] to evaluate the differences. We optimize the network parameters using

the gradient descent algorithm ADAM [125] with standard hyper-parameters, a batch size

of 128, and a learning rate of 0.0001 for 100 epochs.

4.3.2 Importance of the Pose Prior

In Figure 4.5a and 4.5c we compare different embedding dimensions and direct regres-

sion in the full 3 · J-dimensional pose space for the NYU dataset [271] and the ICVL

dataset [254], respectively. The evaluation on both datasets shows that enforcing a pose

prior is beneficial compared to direct regression in the full pose space. Only 8 dimensions

out of the original 42- or 48-dimensional pose spaces are already enough to capture the

pose and outperform the baseline on both datasets. However, the 30-dimensional embed-

ding performs best, and thus we use this for all further evaluations. The results on the

ICVL dataset, which has noisy annotations, are not as significant, but still consistent with

the results on the NYU dataset.

The baseline on the NYU dataset of Tompson et al . [271] only provide the 2D locations

of the joints. For comparison, we follow their protocol and augment their 2D locations

by taking the depth of each joint directly from the depth images to derive comparable

3D locations. Depth values that do not lie within the hand cube are set to the ground

truth depth value to avoid large errors. This protocol, however, has a certain influence on

the error metric, as evident in Figure 4.7a. The augmentation works well for some joints,

as apparent by the average error. However, it is unlikely that the augmented depth is

correct for all joints of the hand, e.g ., the 2D joint location lies on the background or is

self-occluded, thus causing higher errors for individual joints. When using the evaluation

metric of [260], where all joints have to be within a maximum distance, this outlier has a

strong influence, in contrast to the evaluation of the average error, where an outlier can

be insignificant for the mean. Thus we outperform the baseline more significantly for the

distance threshold than for the average error.

We further show the average error over the embedding dimensions in Figure 4.6. We

compare the accuracy of DeepPrior to a Deep Network without prior. The accuracy of

DeepPrior for very low-dimensional embeddings is worse than the network without prior,
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(a) Pose prior on NYU dataset.
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(b) Refinement on NYU dataset.
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(c) Pose prior on ICVL dataset.
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(d) Refinement on ICVL dataset.

Figure 4.5: Importance of the pose prior (left) and the refinement stage (right). We plot the
fraction of frames where all joints are within a maximum distance for different approaches. A
higher area under the curve denotes more accurate results. Left (a), (c): We show the influence
of the dimensionality of the pose embedding. The optimal value is around 30, but using only 8
dimensions performs already very well. The pose prior significantly increases the accuracy, even
without the refinement step. Right (b), (d): We show that our architecture with overlapping
input patches, denoted by the ORRef suffix, provides higher accuracy for refining the joint
positions compared to a standard deep CNN , denoted by the StdRef suffix. For the baseline of
Tompson et al . [271] we augment their 2D joint locations with the depth from the depth images,
as done by [271], and depth values that do not lie within the hand cube are set to the ground
truth depth value to avoid large errors.
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since the embedding is not expressive enough to represent all poses. For embeddings with

more than 10 dimensions, the accuracy of DeepPrior is better than the network without

prior. This approximately corresponds to a cumulative explained variance of the PCA

components of more than 95%. For embedding dimensions larger than 30, the error does

not change significantly and is within the standard deviation of the different network

initializations.

Figure 4.6: Accuracy over embedding dimensions. We plot the average 3D joint error with
standard deviations for five differently initialized networks on the NYU dataset [271]. The red
curve shows the accuracy for DeepPrior with different embedding dimensions, and the green
curve shows the accuracy for a Deep Network without prior. We further plot the cumulative
explained variance of the different number of PCA components in blue.

4.3.3 Increasing Accuracy with Pose Refinement

The refinement stage can be used to further increase the location accuracy of the predicted

joints. We achieved the highest accuracy by using our CNN with pose prior as first stage,

and then applying the second iterative refinement stage with our CNN with overlapping

input patches, denoted ORRef.

The results in Figure 4.5b, 4.5d and 4.7 show that applying the refinement improves

the location accuracy for different base CNNs. From rather inaccurate initial estimates,

as provided by the standard deep CNN , our proposed ORRef performs only slightly better

than refinement with the baseline deep CNN , denoted by StdRef. This is because for large

initial errors only the larger input patch provides enough context for reasoning about the

offset. The smaller input patch cannot provide any information if the offset is bigger than
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the patch size. For more accurate initial estimates, as provided by our deep CNN with

pose prior, the ORRef takes advantage from the small input patch which does not use

pooling for higher accuracy. We iterate our refinement two times, since iterating more

often does not provide any further increase in accuracy.

We would like to emphasize that our results on the ICVL dataset, with an average

accuracy below 10 mm, already scratch at the uncertainty of the labeled annotations. As

already mentioned, the ICVL dataset suffers from inaccurate annotations, as we show in

some qualitative samples in Figure 4.8 first and fourth column. While this has only a

minor effect on training, the evaluation is more affected. We evaluated the accuracy of

the test sequence by revising the annotations in image space and calculated an average

error of 2.4 mm with a standard deviation of 5.2 mm.
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Figure 4.7: Evaluation of average 3D joint errors. For completeness and comparability we
show the average joint errors, which are, however, not as decisive as the evaluation in Figure 4.5.
Though, the results are consistent. The evaluation of the average error is more tolerant to
larger errors of a single joint, which deteriorate the pose as for Figure 4.5, but are insignificant
for the mean if the other joints are accurate. Our proposed architecture DeepPrior-ORRef,
the constrained pose CNN with refinement stage, provides the highest accuracy. For the ICVL
dataset, the simple baseline architectures already outperform the baseline. However, they cannot
capture the higher variations in pose space and noisy images of the NYU dataset, where they
perform much worse. The palm and fingers are indexed as C: palm, T: thumb, I: index, M:
middle, R: ring, P: pinky, W: wrist.

4.3.4 Runtime

Table 4.1 provides a comparison of the runtimes of the different methods, both on CPU

and GPU. They were measured on a computer equipped with an Intel Core i7, 16GB of

RAM, and an nVidia GeForce GTX 780 Ti GPU. Our methods are implemented in Python
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Architecture GPU CPU

Shallow 0.07 ms 1.85 ms
Deep [129] 0.1 ms 2.08 ms
Multi-Scale [63] 0.81 ms 5.36 ms
DeepPrior 0.09 ms 2.29 ms
Refinement 2.38 ms 62.91 ms
Tompson et al . [271] 5.6 ms -
Tang et al . [254] - 16 ms

Table 4.1: Comparison of different runtimes. Our CNN with pose prior (DeepPrior) is faster
by a magnitude compared to the other methods when considering pose estimation only. We can
further increase the accuracy using the refinement stage, still at competitive speed. All of the
denoted baselines use state-of-the-art hardware comparable to ours.

using Theano [15], which offers an option to select between the CPU and the GPU for

evaluating CNNs. Our different models perform very fast, up to over 5000 fps on a single

GPU. Training takes about five hours for each CNN . The Deep Network with pose prior

performs very fast and outperforms all other methods in terms of accuracy. However, we

can further refine the joint locations at the cost of higher runtime.

4.3.5 Qualitative Results

We present qualitative results in Figure 4.8. The typical problems of structured-light-

based sensors, such as missing depth, can be problematic for accurate localization. How-

ever, only partially missing parts, as shown in the third and fourth columns for example,

do not significantly deteriorate the result. The location of the joint is constrained by the

learned hand model. If the missing regions get too large, as shown in the fifth column,

the accuracy gets worse. However, because of the use of the pose prior, the predicted

joint locations still preserve the learned hand topology. The erroneous annotations of the

ICVL dataset deteriorate the results, as our predicted locations during the first stage are

sometimes more accurate than the ones obtained during the second stage, as evident for

example on the pinky in the first or fourth column.

4.3.6 DeepPrior++

We evaluate our DeepPrior++ approach on three public benchmark datasets for hand pose

estimation: the NYU dataset [271], the ICVL dataset [254], and the MSRA dataset [247].

We further present additional results on the more recent BigHands dataset [311], and

show the generalizability of our method to color images on the STB dataset [316]. For

the comparison with other methods, we focus here on works that were published after the

original DeepPrior paper. There are different evaluation metrics used in the literature for
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Figure 4.8: Qualitative results. We show the inferred joint locations on the depth images (in
gray-scale), as well as the 3D locations with the point cloud of the hand (blue images) rendered
from a different viewpoint. The ground truth is shown in blue, our results in red. The point cloud
is only annotated with our results for clarity. The right column shows erroneous results. One
can see the difference between the pose prior and the local refinement, especially in the presence
of missing depth values as shown in the fifth column. While the pose prior still preserves the
hand topology, the local refinement cannot reason about the locations in the presence of missing
depth data.
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Method Average 3D error

DeepPrior (Chapter 4) 19.8 mm
Feedback (Chapter 5) 16.2 mm
Deng et al . [52] (Hand3D) 17.6 mm
Guo et al . [82] (REN) 13.4 mm
Bouchacourt et al . [22] (DISCO) 20.7 mm
Zhou et al . [321] (DeepModel) 16.9 mm
Xu et al . [300] (Lie-X) 14.5 mm
Neverova et al . [178] 14.9 mm
Wan et al . [283] (Crossing Nets) 15.5 mm
Fourure et al . [67] (JTSC) 16.8 mm
Zhang et al . [315] 18.3 mm
Madadi et al . [156] 15.6 mm
DeepPrior++ 12.3 mm

Table 4.2: Comparison with state-of-the-art on the NYU dataset [271]. We report the average
3D error. DeepPrior++ significantly performed better than all other methods for this dataset.

hand pose estimation, and we report the numbers stated in the papers or measured from

the graphs if provided, and/or plot the relevant graphs for comparison.

For all experiments, we report the results for a 30-dimensional PCA prior. By using

an efficient implementation for data augmentation, the training time is the same for all

experiments, approximately 10 hours on a computer with an Intel i7 with 3.2GHz and

64GB of RAM, and an nVidia GTX 980 Ti graphics card.

4.3.6.1 NYU Dataset

Our results are shown in Table 4.2 together with a comparison to state-of-the-art methods.

We compare DeepPrior++ to several related methods, and it significantly outperforms the

other methods.

In Figure 4.9 we compare our method with other discriminative approaches. Although

Supancic et al . [249] report very accurate results for a small fraction of the frames, our

approach significantly performs better for the majority of the frames.

In Figure 4.10 we compare state-of-the-art methods using a different evaluation pro-

tocol, i.e., we follow the protocol of [251, 259], who evaluate the first 2400 frames of the

test set. Also for this protocol, we significantly outperformed the state-of-the-art method

of Taylor et al . [259]. Note that [251, 252, 259] require a, possibly user-specific, 3D hand

model, whereas our method only uses training data without any 3D model. Compar-

ing to these recent approaches, our method is easier and faster to train, has a simpler

architecture, is more accurate, and runs at a comparable speed, i.e., real-time.
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Figure 4.9: Comparison with state-of-the-art discriminative methods on the NYU dataset [271].
We plot the fraction of frames where all joints are within a maximum distance from the ground
truth. A larger area under the curve indicates better results. Our proposed approach performed
best among other discriminative methods.

4.3.6.2 ICVL Dataset

We show a comparison to different state-of-the-art methods in Table 4.3. However, the

gap to other methods is much smaller. This may be attributed to the fact that the dataset

is much easier, with smaller pose variations [249], and due to errors in the annotations for

the evaluation [183, 249].

In Figure 4.11 we compare DeepPrior++ to other methods on the ICVL dataset [254].

Our approach performs similar to the works of Guo et al . [82], Wan et al . [285], and

Tang et al . [255], all achieving state-of-the-art accuracy on this dataset. This might be

an indication that the performance on the dataset is saturating, and the remaining error

is due to the annotation uncertainty. This empirical finding is similar to the discussion

in [249]. Although Tang et al . [255] performs slightly better in some parts of the curve in

Figure 4.11, our approach performs significantly better on the NYU dataset, as shown in

Figure 4.10.
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Figure 4.10: Comparison with state-of-the-art model-based methods on the NYU dataset [271].
We plot the fraction of frames where the average joint error per frame is within a maximum
distance from the ground truth, following the protocol of [251, 259]. A larger area under the curve
indicates better results. Our proposed approach even outperformed model-based approaches on
this dataset, with more than 90% of the frames having an error smaller than 10 mm.

Method Average 3D error

DeepPrior (Chapter 4) 10.4 mm
Deng et al . [52] (Hand3D) 10.9 mm
Tang et al . [254] (LRF) 12.6 mm
Wan et al . [285] 8.2 mm
Zhou et al . [321] (DeepModel) 11.3 mm
Sun et al . [247] (HPR) 9.9 mm
Wan et al . [283] (Crossing Nets) 10.2 mm
Fourure et al . [67] (JTSC) 9.2 mm
Krejov et al . [128] (CDO) 10.5 mm
DeepPrior++ 8.1 mm

Table 4.3: Comparison with state-of-the-art on the ICVL dataset [254]. We report the average
3D error.
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Figure 4.11: Comparison with state-of-the-art on the ICVL dataset [254]. We plot the fraction
of frames where all joints are within a maximum distance from the ground truth. Several works
show a similar error curve, which can be an indicator for saturating performance for this dataset.

Method Average 3D error

Ge et al . [72] 13.2 mm
Sun et al . [247] (HPR) 15.2 mm
Wan et al . [283] (CrossingNets) 12.2 mm
Yang et al . [303] 13.7 mm
DeepPrior++ 9.5 mm

Table 4.4: Comparison with state-of-the-art on the MSRA dataset [247]. We report the average
3D error averaged over all folds of the leave-one-out cross-validation. DeepPrior++ significantly
performed better than all other methods for this dataset.

4.3.6.3 MSRA Dataset

A comparison of the average 3D error is shown in Table 4.4. We perform leave-one-out

cross-validation by using one subject for testing and the remaining subjects for training.

Again, DeepPrior++ outperforms the existing methods by a large margin of 3 mm. In

Figure 4.12, DeepPrior++ also outperforms all other methods on the plotted metric, which

shows that it is also able to handle different users’ hands.
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Figure 4.12: Comparison with state-of-the-art on the MSRA dataset [247]. We plot the
fraction of frames where all joints are within a maximum distance from the ground truth. A
larger area under the curve indicates better results. Our approach significantly outperformed
state-of-the-art discriminative approaches on this dataset.

4.3.6.4 STB Dataset

We further present an evaluation of our method for 3D pose estimation from color images

on the STB dataset [316]. Our method can be trained on different data modalities without

modifications, which shows the general applicability of our approach. For the evaluation

on the STB dataset, we also used the synthetic RHD dataset [325] for training as done

in [172, 325].

A quantitative evaluation is shown in Table 4.5 using the average 3D End Point Error

(EPE) metric, which is the de facto standard metric for evaluation on the STB dataset.

We achieve very accurate results compared to other state-of-the-art methods. Since the

dataset contains color and depth images, we trained and tested our method on color and

depth images separately. A comparison of the results trained with different modalities

shows that it is easier to infer the 3D pose from depth images, resulting in lower errors.

The results from color images are still competitive.

We show qualitative results in Figure 4.13. Note, that although we use monocular

color images, we estimate 3D joint locations that are subsequently projected to the image
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Method Avg. 3D EPE

Zimmermann&Brox [325] 12.21 mm
Müller et al . [172] (GANerated) 13.22 mm
DeepPrior++ color 11.07 mm

DeepPrior++ depth 8.16 mm

Table 4.5: Comparison with state-of-the-art on the STB dataset [316]. We report the average
3D EPE for 3D hand pose estimation from monocular color images. For comparison, we also
report the accuracy of DeepPrior++ using depth images. For the method of [172] we report the
accuracy on a per-frame basis without the temporal constraints used in their paper.

for visualization.

Figure 4.13: Qualitative results on the STB dataset [316]. We show the inferred 3D joint
locations projected on the color images. Ground truth is shown in blue, the predicted poses in
red.

4.3.6.5 BigHands Dataset

We also evaluate our method on the BigHands dataset [311]. This dataset is very challeng-

ing due to the mixed egocentric and third person viewpoints and due to multiple subjects.

Due to the annotation process there are considerable annotation errors present in the

dataset. A quantitative evaluation is shown in Table 4.61. Note that the top perform-

ing methods were published after our work, but still our method can achieve competitive

results. The top performing methods [73, 169, 170] use 3D CNNs with voxel-based rep-

resentations. This can be advantageous since they can directly represent the 3D point

measurements from the depth sensor in the voxel grid, whereas we represent these mea-

surements as intensities in a 2D image. Although these voxel representations results in

more powerful architectures, they are computationally inefficient as shown in [213], since

most input voxels are filled with zeros.

Qualitative results are shown in Figure 4.14. Our method provides accurate results for

third person and egocentric viewpoints.

1The results of the other methods were take from [310] and from the leaderboard of the dataset https:
//competitions.codalab.org/competitions/17356 as of 2018-08-08.
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Method Average 3D error

Moon et al . [170]† 9.95 mm
Molchanov et al . [100, 169]† 9.97 mm
Ge et al . [73]‡ 11.30 mm
Chen et al . [39]‡ 11.70 mm
Yang et al . [302] 16.61 mm
Wan et al . [283] 17.78 mm
Akiyama et al . [1] 16.61 mm
Madadi et al . [156] 14.74 mm
Li et al . [143] 12.79 mm
DeepPrior++ 12.94 mm

Table 4.6: Comparison with state-of-the-art on the BigHands dataset [311]. We report the
average 3D error. Note that the top performing methods were published after our work (IC-
CVW’17), denoted as † CVPR’18 and ‡ preprint’18.

Figure 4.14: Qualitative results on the BigHands dataset [311]. We show the inferred 3D joint
locations projected on the depth images. Since there is no publicly available ground truth for
the test images available, we only show the predicted poses in red.

4.3.6.6 Ablation Experiments

We performed additional experiments to show the contributions of our modifications.

We evaluate the modifications on the NYU dataset [271], since it has the most accurate

annotations, diverse poses, and two different users for evaluation.

Training Data Augmentation In order to evaluate the contribution of the training

procedure, we tested the different data augmentation schemes. The results are shown in

Table 4.7. Using data augmentation results in an increase in accuracy over 7 mm. Most

importantly, augmenting the hand translation accounts for errors in the hand localization

method, and augmenting the rotation accounts for rotated hand poses, thus effectively

enlarging the training poses.

Although augmenting only the scale does not help as much as augmenting translation

or rotation on the NYU dataset, it can help in cases where the size of the users’ hand

is not accurately determined, i.e., a new user in a practical application. Interestingly,
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Augmentation Average 3D error

No augmentation 19.9 mm
Translation (T) 14.7 mm
Rotation (R) 13.8 mm
Scale (S) 17.1 mm
All (R+T+S) 12.3 mm
All (R+T+S) & no prior aug. 21.7 mm

Table 4.7: Effects of the proposed training procedure on the NYU dataset [271]. By using
different data augmentation methods, the accuracy can be significantly increased. In the first
row we do not use any data augmentation. In the last row we apply augmentation on the training
data, but not for computing the pose prior, showing the importance of having an expressive pose
prior.

Localization Avg. 3D pose error Loc. 3D error

CoM 13.8 mm 28.1 mm
Refined CoM 12.3 mm 8.6 mm
Ground truth 10.8 mm 0.0 mm

Table 4.8: Impact of hand localization accuracy on NYU dataset [271]. The ground truth
localization gives the lowest 3D pose error, but this localization is not applicable in practice.
Our refinement of the commonly used center of mass localization (CoM) improves the accuracy
by over 1 mm.

computing the prior from augmented 3D hand poses is very important as well. If the data

is augmented, but the prior is computed from the original 3D hand poses, the accuracy

is worse compared to no data augmentation, since the prior is not expressive enough to

capture the variances of the augmented hand poses.

Hand Localization Further, we evaluate the influence of the hand localization on the

final 3D joint error. For this experiment, we use the ResNet architecture and all data

augmentation. The results are shown in Table 4.8. The highest accuracy can be achieved

using the ground truth location of the hand, which is not feasible in practice, since real

detectors do not provide perfect hand localization. This indicates, that there is still room

for improvement by using a more accurate 3D hand localization method.

Starting with the very simple center of mass localization and by refining the estimated

center of mass localization, this step decreases the 3D localization error by almost 20 mm.

This in turn improves further the final average 3D pose error by over 1 mm.

Network Architecture We evaluate the impact of the different network architectures

in Table 4.9. We use the refined hand localization and all data augmentation for training
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Figure 4.15: Qualitative comparison between DeepPrior and DeepPrior++ on the NYU
dataset [271]. We show the inferred 3D joint locations projected on the depth images. Ground
truth is shown in blue, the predicted poses in red. The results provided by DeepPrior++ are
significantly better than the results from the original DeepPrior, especially on highly articulated
poses.

Architecture Avg. 3D error fps

Original DeepPrior 16.6 mm 100
Original with more filters 13.7 mm 80
ResNet 12.3 mm 30

Table 4.9: Impact of network architecture on the NYU dataset [271]. The more recent ResNet
architecture performs significantly better than the original network architecture, even when using
the same number of filters as ResNet for the Original architecture (Original with more filters).
Most importantly, we can still maintain real-time performance with 30 fps in our hand tracking
application.

the networks. The improved training procedure and better localization already improve

the results for the original architecture by more than 3 mm (19.8 mm from DeepPrior).

Using the proposed ResNet architecture, the accuracy can be improved by another 4 mm

on average, due to the higher capacity of the model. We also evaluated the original

architecture, but changed the convolutional layers such that they use the same number of

filters as the ResNet architecture, but this architecture is still inferior to the ResNet.

The ResNet architecture is slower than the original implementation, however, it is still

able to run at over 30 fps on a single GPU, making it applicable to real-time applications.

Note that this 30 fps is measured in our hand tracking application, which includes camera

communication, hand localization, pose estimation, and visualization in a user interface.

4.3.6.7 Qualitative Results

We show several qualitative results in Figure 4.15, where we compare DeepPrior++ to

the original DeepPrior. In general, DeepPrior++ provides significantly better results
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compared to the original DeepPrior, especially on highly articulated poses. This can be

attributed to the data augmentation and better localization, but also to the more powerful

CNN architecture, which enables the CNN to learn highly accurate poses for complex

articulations.

4.4 Discussion

We evaluated different network architectures for hand pose estimation by directly re-

gressing the 3D joint locations. We introduced a constrained prior hand model that can

significantly improve the joint localization accuracy. Further, we applied a joint-specific

refinement stage to increase the localization accuracy. We have shown, that for this refine-

ment a CNN with overlapping input patches with different pooling sizes can benefit from

both, input resolution and context. We have compared the architectures on two datasets

and shown that they achieve very good results both in terms of localization accuracy and

speed.

Since the publication of DeepPrior, other works on pose estimation introduced a pose

prior in a Deep Learning framework, showing the importance of such prior:

• Several more recent works [73, 74, 322] rely on a bottleneck layer reminiscent to ours

in order to improve the accuracy of the predicted 3D hand pose.

• [212] proposed to replace the linear transformation computed by the PCA by an

encoder. This encoder is trained first as an autoencoder, together with a decoder,

to predict a compact representation of the pose. As the decoder has a more complex

non-linear form, it brings some improvement in accuracy.

• [263] considers human pose estimation and also uses an autoencoder, but to compute

a pose embedding of larger dimensions than the original pose, which appears to

significantly improves the accuracy in the case of body pose estimation.

• [325] learns a pose prior for estimating the 3D hand joint locations from 2D heatmaps

by factorizing the prior into canonical coordinates and a relative motion, while our

prior learned with PCA does not distinguish between the two.

Maybe a high-level conclusion of the work presented in this chapter is that our com-

munity should be careful when comparing approaches: By paying attention to its different

steps, we were able to make DeepPrior++ perform significantly better than the original

DeepPrior and it performs similarly or better than more recent works, while the key ideas

are the same for the two methods.
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In the previous chapter, we introduced a feed-forward Convolutional Neural Network

(CNN) for accurate and fast 3D hand pose estimation. Although achieving high accuracy,

it can still make mistakes. We address these mistakes in this chapter and show that we can

correct the mistakes made by a CNN trained to predict an estimate of the 3D pose by using

a feedback loop. The components of this feedback loop are also Deep Networks, optimized

using training data. They remove the need for fitting a 3D model to the input data,

which requires both a carefully designed fitting function and algorithm. We show that our

approach significantly improves the accuracy of the initial estimates and is efficient as our

implementation runs at over 400 frames per second (fps) on a single GPU.

5.1 Introduction

A popular approach, as we have introduced in the previous chapter, is to use a

discriminative method to predict the position of the joints [122, 183, 254, 256, 271],

because they are robust and fast. To refine the pose further, they are often used to

initialize an optimization where a 3D model of the hand is fit to the input depth

data [12, 50, 187, 197, 201, 227, 241, 279]. Such an optimization remains complex and

typically requires the maintaining of multiple hypotheses [186, 187, 201]. It also relies on

a criterion to evaluate how well the 3D model fits to the input data, and designing such

a criterion is not a simple and straightforward task [12, 50, 241, 259, 266].
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In this chapter, we first show how we can get rid of the 3D model of the hand altogether

and build instead upon work that learns to generate images from training data [55]. Cre-

ating a 3D model of the hand is very difficult since the hand contains numerous muscles,

soft tissue, etc., which influence the shape of the hand [239, 251, 259, 266]. We think that

our approach could also be applied to other problems where acquiring a 3D model is very

difficult.

We then introduce a method that learns to provide updates for improving the current

estimate of the pose, given the input depth image and the image generated for this pose

estimate as shown in Figure 5.1. By iterating this method a number of times, we can

correct the mistakes of an initial estimate provided by a simple discriminative method.

All the components are implemented as Deep Networks with simple architectures.

Synthesizer 
CNN

Synthesized Image

Input Image

Pose

Pose Update

Predictor
CNN

Updater 
CNN

Initialize

Add update

1

2 3

Camera Frame

Localizer
CNN

0

Figure 5.1: Overview of our feedback method. We use a first CNN 1 to predict an initial
estimate of the 3D pose given an input depth image of the hand. The pose is used to synthesize
a depth image 2 , which is used together with the input depth image to derive a pose update 3 .
The update is applied to the pose and the process is iterated. Optionally, we can use a localizer
CNN 0 to increase the localization accuracy of the input depth image, as done in Section 4.2.5.

Not only is it interesting to see that all the components needed for hand registration
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that used to require careful design can be learned instead, but we will also show that our

approach had superior performance when compared to the state-of-the-art methods. It is

also efficient; our implementation runs at over 400 fps on a single GPU.

Our approach is related to generative approaches [17], in particular [257] which also

features a feedback loop reminiscent of ours. However, our approach is deterministic and

does not require an optimization based on distribution sampling, on which generative

approaches generally rely, but which tends to be inefficient.

In the remainder of the chapter, we first give a short review of related work on feedback

methods in Section 5.2. We describe our approach in Section 5.3 and evaluate it in

Section 5.4.

5.2 Related Work on Feedback Methods

Our approach presented in this chapter is more related to generative, model-based meth-

ods. However, it differs from previous work in the first three building blocks of such conven-

tional generative methods that we presented in Section 2.2.1. We do not use a deformable

CAD model of the hand. Instead, we learn from registered depth images to generate re-

alistic depth images of hands, similar to work on inverse graphics networks [55, 132], and

other recent work on generating images [76, 133]. This approach is very convenient, since

deforming correctly and rendering a CAD model of the hand in a realistic manner requires

a significant input of engineering work. Most importantly, it does not require additional

training data.

In addition, we do not use a hand-crafted similarity function and an optimization

algorithm. We learn rather to predict updates that improve the current estimate of the

hand pose from training data, given the input depth image and a generated image for this

estimate. Again this approach is very convenient, since it means we do not need to design

the similarity function and the optimization algorithm, neither of which is a simple task.

Since we learn to generate images of the hand, our approach is also related to generative

approaches, in particular [257], which uses a feedback loop with an updater mechanism

akin to ours. It predicts updates for the position from which a patch is cropped from an

image, such that the patch fits best to the output of a generative model. However, this

step does not predict the full set of parameters. The hidden states of the model are found

by a costly sampling process. [175] relies on a given black-box image synthesizer to provide

synthetic samples on which the regression network can be trained. It then learns a network

to substitute the black-box graphics model, which can ultimately be used to update the

pose parameters to generate an image that most resembles the input. In contrast, we learn

the generator model directly from training data, without the need for a black-box image

synthesizer. Moreover, we will show that the optimization is prone to output infeasible

poses or get stuck in local minima and therefore introduce a better approach to improve

the pose. The approach of [34] is related to ours, since it also relies on iteratively refining

the 2D joint locations for human pose estimation. They use an initial estimate of the 2D
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joint locations to generate a heatmap with the joint locations. These heatmaps are stacked

to the input image and an update is predicted, which, however, does not handle occlusions

well. This process is then iterated a few times. In contrast to our work, their approach

only works for 2D images due to limitations of the feedback. Also, their training strategy

is different, as it requires a predefined absolute step size and predefined update directions,

which can be hard to learn. In contrast, we use latent update directions with a relative

step size. [313] introduced Feedback Networks for general purpose iterative prediction.

They formulate the feedback as a recurrent operation where a hidden state is passed on to

the next iteration. At each iteration, they predict an absolute output and not an update,

which is more difficult. Also, their approach does not use any feedback in the input or

output space, so their notion of “feedback” is only an internal structure of the predictor.

[283] uses an autoencoder to compute an embedding from the 3D hand pose and feed the

embedding vector to an image synthesizer that outputs a depth image of the hand. This

setup is used to synthesize additional training data for training a pose predictor, but in

their setup they only aim at generating synthesized images as close as possible to the real

images to train a discriminative predictor.

5.3 Model-based Pose Optimization

In this section, we first give an overview of our method. We then describe in detail the

different components of our method: A discriminative approach to predict a first pose

estimate, a method able to generate realistic depth images of the hand, and a learning-

based method to refine the initial pose estimate using the generated depth images.

5.3.1 Method Overview

Our objective is to estimate the pose P of a hand in the form of the 3D locations of its

joints P = {ji}Ji=1 with ji = (xi, yi, zi) from a single depth image D. In practice, J = 14

for the dataset we use. We assume that a training set T = {(Di,Pi)}Ni=1 of depth images

labeled with the corresponding 3D joint locations is available.

As explained in the introduction, we first train a predictor CNN to predict an initial

pose estimate P̂(0) in a discriminative manner given an input depth image Dinput centered

around the hand location:

P̂(0) = pred(Dinput) . (5.1)

We use a CNN to implement the pred(.) function with a standard architecture. More

details will be given in Section 5.3.3.

In practice, P̂(0) is never perfect, and following the motivation provided in the introduc-

tion, we introduce a hand model learned from the training data. As shown in Figure 5.2,

this model can synthesize the depth image corresponding to a given pose P, and we will
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refer to this model as the synthesizer CNN:

Dsynth = synth(P) . (5.2)

We also use a Deep Network to implement the synthesizer.

Figure 5.2: Samples generated by the synthesizer CNN for different poses from the test set.
Top: Ground truth depth image. Middle: Synthesized depth image using our learned hand
model. Bottom: Color-coded, pixel-wise difference between the depth images. Red represents
large errors, blue represents small errors. The synthesizer CNN is able to render convincing
depth images for a very large range of poses. The largest errors are located near the occluding
contours of the hand, which are noisy in the ground truth images.

A straightforward way of using this synthesizer would consist in estimating the hand

pose P̂ by minimizing the squared loss between the input image and the synthetic one:

P̂ = arg min
P
‖Dinput − synth(P)‖2 . (5.3)

This is a non-linear least-squares problem, which can potentially be solved iteratively

using P̂(0) as initial estimate. However, the objective function of Eqn. (5.3) exhibits many

local minima. Moreover, during the optimization of Eqn. (5.3), P can take values that
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(a) (b) (c) (d)

Figure 5.3: Synthesized images for physically impossible poses. Note the colors that indicate
different fingers. (a) shows a feasible pose with its synthesized image. (b) shows the synthesized
image for the same pose after swapping the ring and middle finger positions. In (c) the ring and
middle finger are flipped downwards, and in (d) the wrist joints are flipped upwards.

correspond to physically infeasible poses. For such values, the output synth(P) of the

synthesizer CNN is unpredictable as depicted in Figure 5.3, and this is likely to make the

optimization of Eqn. (5.3) diverge or be stuck in a local minimum, as we will show in the

experiments in Section 5.4.5.

We therefore introduce a third function that we call the updater(., .). It learns to

predict updates, which are applied to the pose estimate to improve it, given the input

image Dinput and the image synth(P) produced by the synthesizer CNN :

P̂(i+1) ← P̂(i) + updater(Dinput, synth(P̂(i))) . (5.4)

We iterate this update several times to improve the initial pose estimate. Again, the

updater(., .) function is implemented as a Deep Network.

We detail below how we implement and train the different functions.

5.3.2 Learning the Localizer Function loc(.)

In practice, we require an input depth image centered on the hand location. It is sufficient

to rely on a common heuristic that uses the center of mass for localizing the hand [183, 254].

However, we can optionally further improve this heuristic by introducing the localizer CNN

loc(.), as we already used in Section 4.2.5. We still use the center of mass for the initial

localization from the depth camera frame, but apply an additional refinement step that

improves the final accuracy [173, 181]. We refer to this optional step as improved feedback

in our experiments in Section 5.4.4. This refinement step relies on the localizer CNN . The

CNN is applied to the 3D bounding box centered on the center of mass, and is trained to

predict the location of the metacarpophalangeal (MCP) joint of the middle finger, which

we use as referential. The localizer CNN has a simple network architecture, which is

shown in Figure 4.4.
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We train the localizer CNN , parametrized by φ, by optimizing the cost function:

φ̂ = arg min
φ

∑
(D,l)∈T

‖locφ(D)− l‖2 . (5.5)

l denotes the offset in image coordinates and depth between the center of mass and the

MCP of the hand. For inference, we crop a depth image centered on the center of mass

from the depth camera frame, then predict the MCP location by applying loc(.) to this

crop, and finally crop again from the depth camera frame using the predicted location.

We crop the training depth images and the original input depth images around the

locations provided by locφ(.) for these images: D in Eqn. (5.6), (5.7), (5.8), (5.10), (5.11),

(5.12) therefore denotes a training depth image after cropping, and Dinput the original

input depth image after cropping.

5.3.3 Learning the Predictor Function pred(.)

C1 FC1

FC2

P1

8 
x 

(5
,5
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)

10
24

3·
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Figure 5.4: Network architecture of the predictor CNN used for initial pose prediction. C
denotes a convolutional layer with the number of filters and the filter size inscribed, FC a fully
connected layer with the number of neurons, and P a max-pooling layer with the window size.

The predictor CNN is implemented as a vanilla neural network. The network consists

of a convolutional layer with 5× 5 filter kernels producing 8 feature maps. These feature

maps are max-pooled with 4 × 4 windows, followed by a hidden layer with 1024 neurons

and an output layer with one neuron for each joint and dimension, i.e., 3 · J neurons. The

predictor is parametrized by Φ, which is obtained by minimizing:

Φ̂ = arg min
Φ

∑
(D,P)∈T

‖predΦ(D)−P‖2 + γ‖Φ‖22 , (5.6)

where the second term is a regularizer for weight decay with γ = 0.001.
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5.3.4 Learning the Synthesizer Function synth(.)

We also use a CNN to implement the synthesizer CNN synth(.), and we train it using the

set T of annotated training pairs. The network architecture is strongly inspired by [55],

and is shown in Figure 5.6. It consists of four hidden layers, which learn an initial la-

tent representation of feature maps apparent after the fourth fully connected layer FC4.

These latent feature maps are followed by several unpooling and convolution layers. The

unpooling operation, used for example by [55, 76, 314], is the inverse of the max-pooling

operation: The feature map is expanded, in our case by a factor of two along each image

dimension as shown in Figure 5.5. The emerging “holes” are filled with zeros. The ex-

panded feature maps are then convolved with trained 3D filters to generate another set of

feature maps. These unpooling and convolution operations are applied subsequently. The

last convolution layer combines all feature maps to generate a depth image.
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Figure 5.5: Unpooling layer with an upscaling factor of two. This layer takes dense feature
maps as input and expands them by the upscaling factor along each direction. This expansion
creates “holes” that are filled with zeros.
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Figure 5.6: Network architecture of the synthesizer CNN used to generate depth images of
hands given their poses. The input of the network is the hand pose. The fully connected
hidden layers create a 2048-dimensional latent representation at FC4 which is reshaped into 32
feature maps of size 8×8. The feature maps are gradually enlarged by successive unpooling and
convolution operations. The last convolution layer combines the feature maps to derive a single
depth image of size 128× 128. All layers have rectified-linear units, except the last layer which
has tanh units. C denotes a convolutional layer with the number of filters and the filter size
inscribed, FC a fully connected layer with the number of neurons, and UP an unpooling layer
with the upscaling factor.
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We learn the parameters Θ̂ of the network by minimizing the difference between the

generated depth images synth(P) and the training depth images D as:

Θ̂ = arg min
Θ

∑
(D,P)∈T

1

|D|
‖synthΘ(P)−D‖2 . (5.7)

We perform the optimization in a layer-wise fashion. We start by training the first 8× 8

feature map. Then we gradually extend the output size by adding another unpooling and

convolutional layer and train again, which achieves lesser errors than end-to-end training

in our experience.

The synthesizer CNN is able to generate accurate images, maybe surprisingly well

for such a simple architecture. The median pixel error on the test set is only 0.1 mm.

However, the average pixel error is 8.9±28.5 mm. This is mostly due to noise in the input

images along the outline of the hand, which is smoothed away by the synthesizer CNN .

The average depth accuracy of the sensor is ±1 mm [200].

5.3.5 Learning the Updater Function updater(., .)

The updater CNN updater(., .) takes two depth images as input. As already stated in

Eqn. (5.4), at run-time, the first image is the input depth image, the second image is the

image returned by the synthesizer for the current pose estimate. Its output is an update

that improves the pose estimate. The architecture, shown in Fig. 5.7, is inspired by the

Siamese network [42]. It consists of two identical paths with shared weights. One path is

fed with the observed image and the second path is fed with the image from the synthesizer.

Each path consists of four convolutional layers. We do not use max-pooling here, but a

filter stride [113, 151] to reduce the resolution of the feature maps. We experienced inferior

accuracy with max-pooling compared to that with stride, probably because max-pooling

introduces spatial invariance [222] that is not desired for this task. The feature maps of

the two paths are concatenated and fed into a fully connected network that outputs the

update.

Ideally, the output of the updater CNN should bring the pose estimate to the correct

pose in a single step as shown in Figure 5.8a. This is a very difficult problem, though,

and we could not get the network to reduce the initial training error within a reasonable

timeframe. However, our only requirement from the updater CNN is for it to output an

update that brings us closer to the ground truth as shown in Figure 5.8b. We iterate this

update procedure to get closer step-by-step. Thus, the update should follow the inequality

‖P + updater(D, synth(P))−PGT‖ < λ‖P−PGT‖ , (5.8)

where PGT is the ground truth pose for image D, and λ ∈ [0, 1] is a multiplicative factor

that specifies a minimal improvement. We use λ = 0.6 in our experiments.

We optimize the parameters Ω of the updater CNN by minimizing the following cost
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Synthesized Image

Input Image

C1 C2 C3

32
 x

 (
5,

5)
, 

st
rid

e=
2

32
 x

 (
5,

5)
, 

st
rid

e=
2

32
 x

 (
3,

3)

FC2

FC5

FC1

10
24

10
24

3·
J

C4

32
 x

 (
3,

3)

32
 x

 (
5,

5)
, 

st
rid

e=
2

32
 x

 (
5,

5)
, s

tr
id

e=
2

32
 x

 (
3,

3)

32
 x

 (
3,

3)

shared weights

FC4FC3

10
24

10
24

Figure 5.7: Architecture of the updater CNN . The network contains several convolutional
layers that use a filter stride to reduce the size of the feature maps. The final feature maps are
fed into a fully connected network. All layers have rectified-linear units, except the last layer
has linear units. The pose update is used to refine the initial pose and the refined pose is again
fed into the synthesizer CNN to iterate the whole procedure. As in Figure 5.6, C denotes a
convolutional layer, and FC a fully connected layer.

function

L =
∑

(D,P)∈T

∑
P′∈TD

max(0, ‖P′′ −P‖ − λ‖P′ −P‖) , (5.9)

where P′′ = P′ + updaterΩ(D, synth(P′)), and TD is a set of poses. The introduction of

the synthesizer CNN allows us to virtually augment the training data and add arbitrary

poses to TD, which the updater CNN is then trained to correct.

The set TD contains the ground truth poses P, for which the updater CNN should

output a zero update. We further add as many meaningful deviations from that ground

truth as possible, which the updater CNN might perceive during testing and be asked to

correct. We start by including the output pose of the predictor CNN pred(D), which is

used during testing as initialization of the update loop. Additionally, we add copies with

small Gaussian noise for all poses. This creates convergence basins around the ground

truth, in which the predicted updates point towards the ground truth, as we show in the

evaluation, and helps to explore the pose space.

After every two epochs, we augment the set by applying the current updater CNN to

the poses in TD, that is, we add the set

{P2 | ∃P ∈ TD s.t. P2 = P + updater(D, synth(P))} (5.10)
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Figure 5.8: Ideally, we would like a predictor to update an initial pose (×) to the ground
truth pose (◦) in a single step, as schematized in 2D in (a). However, this is very challenging in
practice. Our iterative pose optimization in high-dimensional space is shown in (b). We start
at an initial pose (×) and want to converge to the ground truth pose (◦) that maximizes image
similarity. Our updater CNN generates updates for each pose (+) that bring us closer to the
ground truth pose. The updates are predicted from the synthesized image of the current pose
estimate and the observed depth image.

to TD. This forces the updater CNN to learn to further improve on its own outputs.

In addition, we sample from the current distribution of errors across all the samples,

and add these errors to the poses, thus explicitly focusing the training on common devi-

ations. This is different from the Gaussian noise and helps to predict correct updates for

larger initialization errors.

We show a more intuitive interpretation of the training in Figure 5.9. We plot an

error function E over the difference between a pose and the ground truth pose. A typical

metric for this function is for example the squared difference between the input depth

image and the synthesized image. This function can exhibit local minima that makes

optimization of the appearance in image space difficult. However, our method is more

robust to such local minima. The red dot shows the ground truth pose. In a first step,

we train the updater CNN to get closer to the ground truth by adding Gaussian noise to

the ground truth location. We do this several times. Further, we use the predicted pose

of the predictor CNN on the training set as starting point and predict an update for this

pose. Here, the pose is located in a local minima when only considering the difference

function between the images. However, we can escape such a minima by improving on the

pose without any assumptions on the similarity function E. Thus, the actual latent error

function that we learn might not exhibit a local minima there and we can improve the
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pose. Again, we sample additional poses around the predictions by adding small Gaussian

noise. In addition, we add previously predicted updates and sample additional poses

around the predicted updates. Last, we add further random samples from the current

error distribution of the updater to explore the pose space further.

GT

Pred

Err Distr

Upd

E = |D - synth(P)|2

|P - P
GT

|2

Figure 5.9: Intuitive interpretation of the training. The y-axis denotes the squared difference
in image space between the input image and the synthesized image and the x-axis the difference
between estimated pose and ground truth pose in pose space. Hence, this plot depicts the image
difference as a function of the pose difference. The red dot depicts the ground truth pose, green
diamonds depict samples from the error distribution of the predictor, the pink triangle depicts
the initial prediction, blue stars depict random poses sampled around the ground truth and
the prediction, and salmon stars depict predicted updates from previous iterations. Ideally, the
global minimum of this function should be at the location where the estimated pose is equal
to ground truth pose. However, there can be many local minima in the difference, e.g ., due
to depth noise or self-similarities of the hand. We train the updater CNN to predict updates
(shown as dashed lines) that all bring the pose closer to the ground truth pose, and can escape
local minima of the image difference function.

5.3.6 Learning all Functions Jointly

So far, we have considered optimizing all functions separately, i.e., first training the syn-

thesizer CNN and the predictor CNN , and then using them to train the updater CNN .

However, it is theoretically possible to train the three networks together. One iteration can

be expressed in terms of the current pose P by introducing the following iter(.) function:

iter(P) = P + updater(synth(P),D) . (5.11)
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The pose estimate P̂(n) after n iterations can be written as:

P̂(n) = iter(. . . iter(pred(D)) . . .) . (5.12)

pred(.), synth(.), and updater(., .) can now be trained by minimizing:

{Φ̂, Θ̂, Ω̂} = arg min
{Φ,Θ,Ω}

∑
(D,P)∈T

‖P̂(n) −P‖2 . (5.13)

The function iter(.) can be seen as a Recurrent Neural Network (RNN) that depends

on the input depth image D. In comparison to RNNs, our method makes training simpler,

intermediary steps easier to understand, and the design of the networks’ architectures

easier.

We tried to optimize Eqn. (5.13) starting from a random network initialization, but the

optimization did not converge to a satisfying solution. Also, when using the pretrained

synthesizer CNN and predictor CNN as initialization, the optimization converges, but

this leads to similar accuracy, indicating that end-to-end optimization is possible, but not

useful here. Moreover, the intermediate results, i.e., the synthesized depth images, are

less interpretable as the hand is barely recognizable. Splitting the optimization problem

as we do makes therefore the optimization easier, at no loss of accuracy.

5.4 Evaluation

In this section we evaluate our proposed method on the NYU dataset [271], a challenging

real-world benchmark for hand pose estimation. First, we describe how we train the

networks. Then, we introduce the training dataset. Furthermore, we evaluate our method

qualitatively and quantitatively.

5.4.1 Network Optimization

We optimize the network parameters using gradient descent, specifically using the ADAM

method [125] with default hyper-parameters. The batch size is 64. The learning rate

decays over the epochs and starts with 0.001. The networks are trained for 100 epochs.

5.4.2 Training Dataset

We evaluated our method on the NYU dataset [271]. For the image data we use the

same preprocessing step as described in Chapter 4. We also considered other datasets for

this task; unfortunately, no further dataset was suitable. The ICVL dataset of Tang et

al . [254] has large annotation errors, that cause blurry outlines and “ghost” fingers in the

synthesized images as shown in Figure 5.10, which are not suitable for our method. The

datasets of [201, 241, 299] provide too little training data to train meaningful models.
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Figure 5.10: The effects of erroneous annotations in the training data of [254]. The figures show
input images together with synthesized images which exhibit very blurry outlines and “ghost”
fingers. The synthesizer learns the erroneous annotations and interpolates between inconsistent
ones, causing such artifacts that limit the applicability in our method.

5.4.3 Comparison with Baseline
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Figure 5.11: Quantitative evaluation of pose optimization. Both figures show the fraction of
frames where all joints are within a maximum distance. A higher area under the curve denotes
better results. In (a) we compare our method to the baseline of Tompson et al . [271] and
DeepPrior introduced in Chapter 4. Although our initialization is worse than both baselines,
we can boost the accuracy of the joint locations using our proposed feedback method. In (b)
we compare different initializations. Init 1 is the simple predictor presented in Section 5.3.3.
We used our more sophisticated DeepPrior that we introduced in Chapter 4 for a more accurate
initialization, denoted as Init 2. +FB indicates the application of our feedback method. The
better initialization helps obtain slightly more accurate results, however, our much simpler and
faster predictor is already sufficient for our method as initialization.

We show the benefit of using our proposed feedback loop to increase the accuracy of

the 3D joint localization. For this, we compare to Tompson et al . [271], and to DeepPrior.

For [271], we augment their 2D joint locations with the depth from the depth images, as
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done in [271]. In case this estimate is outside the hand cube we assign the ground truth

depth, thus favorably mitigating large errors in those cases.

The quantitative comparison is shown in Figure 5.11a. It denotes the fraction of test

samples that have all predicted joints below a given maximum Euclidean distance from

the ground truth, which is generally regarded as being very challenging. Thus a single

erroneous joint results in the deterioration of the whole hand pose.

While the baseline of [271] and [183] have an average Euclidean joint error of 21 mm

and 20 mm respectively, our proposed method reaches an error reduction to 16.5 mm on

the dataset. The initialization with the simple and efficient proposed predictor has an

error of 27 mm. We further show an evaluation of different initializations in Figure 5.11b.

When we use a more complex initialization [183] with an error of 23 mm, we can decrease

the average error to 16 mm.

5.4.4 Improving the Results
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Figure 5.12: Architecture of the updater CNN . The input to the network is the input image
stacked to the synthesized image. The network contains several convolutional layers that use a
filter stride to reduce the size of the feature maps. The final feature maps are fed into a fully
connected network. All layers have rectified-linear units, except the last layer has linear units.
The pose update is used to refine the initial pose and the refined pose is again fed into the
synthesizer CNN to iterate the whole procedure. As in Figure 5.6, C denotes a convolutional
layer, and FC a fully connected layer.

We further extend the our approach and implement recent advances as described in

Section 4.2.5. Specifically, we use a refinement for the hand localization, and further aug-

ment the training data during training. Also, we slightly adjust the network architecture

as shown in Figure 5.12. Instead of using two separate streams and concatenating the

feature maps as shown in Figure 5.7, we concatenate the input image with the synthesized

image and use this two-channel image as input to the updater CNN . The intuition behind

this is that the feature extraction of the two stream network introduces spatial invariance

due to the filter stride and by directly concatenating the input depth images, the network

can directly learn features that correspond to the differences in the images.
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Method Average 3D error

Neverova et al . [178] 14.9 mm
Crossing Nets [283] 15.5 mm
Lie-X [300] 14.5 mm
REN [82] 13.4 mm
DeepPrior++ (Section 4.2.5) 12.3 mm
Feedback (Section 5.3) 16.2 mm
Hand3D [52] 17.6 mm
DISCO [22] 20.7 mm
DeepModel [321] 16.9 mm
Pose-REN [39] 11.8 mm
3DCNN [73] 10.6 mm

Improved Feedback 10.8 mm

Table 5.1: Quantitative evaluation on the NYU dataset [271]. We compare the average Eu-
clidean 3D error of the predicted poses with state-of-the-art methods on the NYU dataset.

We show the benefits of adding the described improvements. For this, we compare

our method to recent state-of-the-art methods: DeepPrior++ introduced in Section 4.2.5

that integrates a prior on the 3D hand poses into a Deep Network; REN [82] relies on an

ensemble of Deep Networks, each operating on a region of the input image; Lie-X [300]

uses a sophisticated tracking algorithm constrained to the Lie group; Crossing Nets [283]

uses an adversarial training architecture; Neverova et al . [178] proposed a semi-supervised

approach that incorporates a semantic segmentation of the hand; DeepModel [321] inte-

grates a 3D hand model into a Deep Network; DISCO [22] learns the posterior distribution

of hand poses; Hand3D [52] uses a volumetric CNN to process a point cloud, similar to

3DCNN [73].

We show quantitative comparisons in Table 5.1, which compares the different methods

we consider using the average 3D error. For our feedback loop, we use DeepPrior++ for

initialization as described in Section 4.2.5, which performs already very accurately. Still,

our feedback loop can reduce the error from 12.2 mm to 10.8 mm.

5.4.5 Image-Based Hand Pose Optimization

We mentioned in Section 5.3.1 that the attempt may be made to estimate the pose by

directly optimizing the squared loss between the input image and the synthetic one as given

in Eqn. (5.3) and we argued that this does not in fact work well. We now demonstrate

this empirically.

We used the powerful L-BFGS-B algorithm [30], which is a box constrained optimizer,

to solve Eqn. (5.3). We set the constraints on the pose in such a manner that each joint

coordinate stays inside the hand cube.

The minimizer of Eqn. (5.3), however, does not correspond to a better pose in general,
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as shown in Figure 5.13. Although the generated image looks very similar to the input

image, the pose does not improve, moreover it even often becomes worse. Several reasons

can account for this. The depth input image typically exhibits noise along the contours, as

in the example of Figure 5.13. After several iterations of L-BFGS-B, the optimization may

start corrupting the pose estimate with the result that the synthesizer generates artifacts

that fit the noise. As shown in Figure 5.14, the pose after optimization is actually worse

than the initial pose of the predictor.

Furthermore, the optimization is prone to local minima due to a noisy error sur-

face [201]. We also tried Particle Swarm Optimization (PSO) [186, 201, 227] a genetic

algorithm popular for hand pose optimization, and obtained similar results. This tends to

confirm that the bad performance comes from the objective function of Eqn. (5.3) rather

than the optimization algorithm.

By contrast, in Figure 5.15 we show the predicted updates for different initializations

around the ground truth joint location with our updater. It predicts updates that move

the pose closer to the ground truth, for almost all initializations.

Init Init Iter 1 Iter 2 Final

Figure 5.13: Comparison with image-based pose optimization. (Top) results for image-based
optimization, and (bottom) for our proposed method. From left to right: input depth image
with initial pose, synthesized image for initial pose, after first, second iteration, and final pose.
Minimizing the difference between the synthesized and the input image does not induce better
poses. Thanks to the updater, our method can fit a good estimate.

5.4.6 Analysis of Updater CNN

For a more detailed interpretation of the updater CNN , let us assume that the up-

dater CNN learns the gradient ∂E(D,P)
∂P = updater(D, synth(P)) of a latent error function
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Figure 5.14: Comparing image-based optimization and our feedback loop. A higher area
under the curve denotes better results. The image-based optimization actually tends to result
in a deterioration of the initial pose estimate. Our proposed optimization method performs
significantly better.

E(D,P). We can perform integration to obtain the function:

E(D,P) =

∫
updater(D, synth(P)) dP . (5.14)

However, we cannot easily visualize the resulting function E(D,P) in a meaningful way

due to the high dimensionality of the pose space. We therefore simplify the integration

for visualization purposes and integrate over two coordinates x, y around a fixed pose P:

F (x, y) =

∫
x,y

updater(D, synth(P + [x, y, 0])) dxdy . (5.15)

We numerically solve this integral on a discretized grid of (x, y) locations around the

ground truth pose and visualize the result in Figure 5.16. One can clearly see the effect

of training the updater, which leads to a convex function with a minimum at the ground

truth location. We repeated this visualization for different test samples with different P

and D and observed similar shaped functions.

The previous visualization only works for a single pose. However, we can visualize



5.4. Evaluation 87

Figure 5.15: Predicted updates around the ground truth joint position, denoted as . We
initialize noisy joint locations around the ground truth location and show the pose updates as
vectors predicted by our updater CNN . The start and end of the vectors denote the initial and
the updated 3D joint location. All the different updates bring us closer to the ground truth joint
location.

multiple slices though the function as an integral along a line. By using an integration

along a line trough the ground truth pose connecting two poses P0 and P1, we can average

the lines between different poses to get a sense of the effect of different starting poses. Thus,

we numerically calculate:

F (t) =

∫ P1

P0

updater(D, synth(P0 + (P1 −P0)t/N)) dt , (5.16)

where we use N = 100 samples along the line. We show this visualization in Figure 5.17.

For comparison, we also plot the Euclidean distance between the depth image D and the

synthesized image synth(.):

G(t) = ‖D − synth(P0 + (P1 −P0)t/N)‖2 . (5.17)
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Figure 5.16: Visualization of the latent error function before and after training. Without
training, the predictions of the updater CNN do not make any sense and thus result in a very
noisy function. However, after training the function shows a minimum at the ground truth
location, which is a desired property of an error function.

The visualization shows that the latent function F (t) of the updater CNN has a distinctive

minimum located at the ground truth pose, whereas the difference G(t) between the depth

image and the synthesized image does not show such a distinctive minimum. Looking at

the variance of the different curves reveals that this minimum is consistent for different

poses for the updater CNN and this is not the case for the image difference G(t).

5.4.7 Joint-Specific Evaluation

We show the evaluation of the average error for each joint in Figure 5.18. A very small

error can be observed for the hand crop location C, since aligning the global silhouette

works especially well with our feedback method.

5.4.8 Number of Training Samples

We further evaluate the influence of the number of training samples on the accuracy. We

plot the average 3D error over the fraction of training data used for training in Figure 5.19.

For this experiment we randomly subsample the training data. The accuracy is only

slightly worse when using 50% of the training data, but then significantly decreases when

using less training data. Although our method for training the updater CNN described

in Section 5.3.5 can explore a large pose space, the image quality of the synthesizer CNN

deteriorates when using less training samples, which makes the updates less effective.
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Figure 5.17: Visualization of the latent error function. We show slices through the obtained
latent error function of our updater CNN in green and the Euclidean distance between the
input image and the synthesized image in orange. We plot the average with the variance over
200 randomly sampled slices. The error function of our updater CNN has a minimum at the
location of the ground truth pose, whereas the difference between the images does not show such
a desired property.

5.4.9 Qualitative Results

Figure 5.20 shows some qualitative examples. For some examples, the predictor provides

already a good pose, which we can still improve, especially for the thumb. For worse

initializations, also larger updates on the pose can be achieved by our proposed method,

to better explain the evidence in the image.

5.4.10 Runtime

Our method is implemented in Python using the Theano library [15] and we run the

experiments on a computer equipped with an Intel Core i7, 16GB of RAM, and an nVidia

GeForce GTX 780 Ti GPU. Training takes about ten hours for each CNN .

The runtime is composed of the discriminative initialization that takes 0.07 ms, the

updater network takes 1.2 ms for each iteration, and that already includes the synthesizer

with 0.8 ms. In practice we iterate our updater twice, thus our method performs very fast

at over 400 fps on a single GPU. The runtime of our method compares favorably with

other model-based methods ranging between 12 and 60 fps [165, 186, 201, 241, 299].

For the improved feedback in Section 5.4.4, we use the more complex DeepPrior++ as

predictor CNN for the initial poses, which takes 20 ms. Still, our method runs at over 40

fps.
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Figure 5.18: Quantitative evaluation of pose optimization. Both figures show the average joint
error. In (a) we compare our method to the baseline of Tompson et al . [271] and DeepPrior
introduced in Chapter 4. Although our initialization is worse than both baselines, we can
boost the accuracy of the joint locations using our proposed feedback method FB. In (b) we
compare different initializations. Init 1 is the simple predictor presented in Section 5.3.3. We
used our more sophisticated DeepPrior that we introduced in Chapter 4 for a more accurate
initialization, denoted as Init 2. +FB indicates the application of our feedback method. The
better initialization helps to get slightly more accurate results, however, our much simpler and
faster predictor is already sufficient for our method as initialization. The palm and fingers are
indexed as C: palm, T: thumb, I: index, M: middle, R: ring, P: pinky, W: wrist.

5.5 Discussion

While our approach is not really biologically-inspired, it should be noted that similar feed-

back mechanisms also have the support of strong biological evidence. It has been shown

that feedback paths in the brain and especially in the visual cortex actually consist of more

neurons than the forward path [49]. Their functional role remains mostly unexplained [27];

our approach could be a possible explanation in the case of feedback in the visual cortex,

but of course, this would need to be proved.

It should also be noted that our predictor and our synthesizer are trained with exactly

the same data. One may then ask how our approach can improve the first estimate made

by the predictor. The combination of the synthesizer and the updater network provides us

with the possibility for simply yet considerably augmenting the training data to learn the

update of the pose: For a given input image, we can draw arbitrary numbers of samples of

poses through which the updater is then trained to move closer to the ground truth. In this

way, we can explore regions of the pose space which are not present in the training data,

but might be returned by the predictor when applied to unseen images. Conceptually, it
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Figure 5.19: Evaluation of number of training samples. We plot the average 3D error over the
fraction of training data used. We randomly subsample the training data. The accuracy is only
slightly worse when using only half of the training data, but then significantly gets worse.

is easier to add realistic noise to the poses than to the input images.

Finally, our approach has nothing really specific to the hand pose detection or the

use of a depth camera, since all its components are learned, from the prediction of the

initialization to the generation of images and the update computation. The representation

of the pose itself is also very simple and does not have to take into account the specifics

of the structure of the hand. We therefore believe that, given proper training data, our

approach can be applied to many detection and tracking problems and also with different

sensors.

Since the original publication of our feedback method [184] in 2015, our general ap-

proach was successfully applied to other fields, such as 3D object pose estimation. [203]

predicts updates on 2D object locations. Similarly, [144, 158] use a CAD rendering of an

object together with the input image to predict an update for the rendered CAD pose to

better resemble the object pose in the input image.
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Figure 5.20: Qualitative results on NYU dataset [271]. We show the inferred joint locations
on the depth images where the depth is color coded in gray-scale. The individual fingers are
color coded, where the bones of each finger share the same color, but with a different hue. The
left image of each pair shows the initialization and the right image shows the pose after applying
our feedback method. Our method applies to a wide variety of poses and is tolerant to noise,
self-occlusions and missing depth values as shown in several images.
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6
Semi-Automatic Method for Creating Training Data
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In the previous part, we introduced methods for accurate and fast 3D hand pose

estimation from images. While these methods and many other recent hand pose estimation

methods critically rely on a training set of labeled frames, the creation of such a dataset is

a challenging task that has been overlooked so far. As a result, existing datasets are limited

to a few sequences and individuals, with limited accuracy, and this prevents these methods

from delivering their full potential. We propose a semi-automated method for efficiently

and accurately labeling each frame of a hand depth sequence with the corresponding 3D

locations of the joints: The user is asked to provide only an estimate of the 2D reprojections

of the visible joints in some reference frames, which are automatically selected to minimize

the labeling work by efficiently optimizing a sub-modular loss function. We then exploit

spatial, temporal, and appearance constraints to retrieve the full 3D poses of the hand

over the complete sequence. We show that this data can be used to train a recent state-

of-the-art hand pose estimation method, leading to increased accuracy.

6.1 Introduction

Recent work on articulated pose estimation [107, 184, 247, 254, 271] has shown that a

large amount of accurate training data makes reliable and precise estimation possible.

This observation is also valid for the methods introduced in the previous chapters.
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For human bodies, motion capture [107] can be used to generate large datasets with suf-

ficient accuracy. However, creating accurate annotations for hand pose estimation is far

more difficult, and still an unsolved problem. Motion capture is not an option anymore,

since the fiducials required to track the joints of a hand would corrupt the images. More-

over, the human hand has more Degrees of Freedom (DoF) than are generally considered

for 3D body tracking, and an even larger amount of training data is probably required.

(a) (b) (c)

Figure 6.1: Recent hand pose datasets exhibit significant errors in the 3D locations of the
joints. (a) is from the ICVL dataset [254], and (b) from the MSRA dataset [247]. Both datasets
were annotated by fitting a 3D hand model, which is prone to converge to a local minimum. In
contrast, (c) shows the annotations acquired with our proposed method for the same frame as
in (b).

The appearance of depth sensors has made 3D hand pose estimation easier, but has

not solved the problem of the creation of training data entirely. Despite its importance,

the creation of a training set has been overlooked so far, and authors have had to rely

on ad hoc ways that are prone to errors, as shown in Figure 6.1. Complex multi-camera

setups [12, 241, 271, 277] together with tracking algorithms have typically been used to

create annotations. For example, Tompson et al . [271] used a complex camera setup with

three RGB-D cameras to fit a predefined 3D hand model. Looking closely at the resulting

data, it seems that the 3D model was often manually adjusted to fit the sequences better

and in between these manually adjusted frames the fit can be poor. Further, the dataset

of [254] contains many misplaced annotations, as discussed by [183, 249]. Although recent

datasets [247] have paid more attention to high quality annotations, they still contain

annotation errors, such as multiple annotations on a single finger, or mixing fingers. These

errors result in noisy training and test data, and make training and evaluating uncertain.

This issue was addressed recently by [14], which shows that using a robust loss function

for training rather than a least-squares one results in better performance.

These problems can be circumvented via using synthetic training data [212, 215, 299].

Unfortunately, this does not capture the sensor characteristics, such as noise and missing
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data typical of depth sensors, nor the physical constraints that limit the range of possible

hand poses [296]. Another common approach to creating training data is using crowd

source platforms, such as Amazon Mechanical Turk. In our case, however, the annotations

should be in 3D, which makes the task very challenging if done manually, even with a depth

sensor: The sensor can only provide the depth of the skin, not the joints themselves, and

even this information is not always available in the case of self-occlusion or missing data.

Thus, this task does not lend itself to this kind of crowd sourcing with untrained workers.

Moreover, whatever the method, one has to recreate new data for each new sensor.

For all of these reasons, we developed a semi-automated approach that makes it easy

to annotate sequences of articulated poses in 3D. The general pipeline of our approach

is shown in Figure 6.2. We ask a human annotator to provide an estimate of the 2D

reprojections of the visible joints in frames we refer to as reference frames. We propose

a method to automatically select these reference frames to minimize the annotation ef-

fort, based on the appearances of the frames over the whole sequence. We then use this

information to automatically infer the 3D locations of the joints for all the frames, by

exploiting appearance, temporal, and distances constraints. If this inference fails for some

frames, the annotator can still provide additional 2D reprojections; by running the global

inference again, a single additional annotation typically fixes many frames.

Automatic
reference frame

selection

Automatic 
3D locations for

reference frames

Automatic 
inference of 

remaining frames

Global 
optimization

Input: 
Sequence of depth frames

Output: 
Annotated depth frames

Manual 
reference frame

annotation

Figure 6.2: General pipeline of the proposed training data generation. See text for details.

Figure 6.3: Our method made it possible to create a fully annotated dataset of more than 2000
frames from an egocentric viewpoint, which is considered to be very challenging [214].

We evaluate our approach using both synthetic data and real images. We also show that

we can improve the annotations of existing datasets, which yield more accurate predicted
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poses. As Figure 6.3 shows, our approach also allows us to provide the first fully annotated

egocentric sequences, with more than 2000 frames in total.

In the remainder of this chapter, we first give a short review of related work on creating

training data in Section 6.2. Then, we introduce our contributions in Section 6.3 and

evaluate them in Section 6.4.

6.2 Related Work on Creating Training Data

Various approaches to create training and test data with ground truth for evaluation have

been proposed in the literature. Complex camera setups can be used to mitigate problems

with self-occlusions. Tompson et al . [271] relied on three RGB-D cameras. They used a

predefined 3D hand model that had to be manually readjusted for each person. When

looking closely at the data, it appears that the dimensions of the model were modified

over the sequences, probably to fit the incoming images better. This dataset was taken

from a frontal view of the user, which limits the range of the poses. Sridhar et al . [241]

used five RGB and two RGB-D cameras, and annotated only the finger tips, which is not

enough for full 3D pose estimation. [12, 277] required eight RGB cameras to capture hand

interactions, however, causing significant restrictions on hand movement within this setup.

An alternative to these complex setups with restricted ranges are single camera ap-

proaches. For example, Tang et al . [254] used the method from [165] to fit a hand model to

a single depth image. Similarly, [201, 247] used a single depth camera to fit a predefined 3D

hand model. These methods are based on frame-to-frame tracking. This requires manual

supervision and leads to many errors if the optimization does not converge correctly.

Very accurate training data can be generated using synthetic models, as was done in

[212, 215, 299] for example. However, synthetic data does not capture the full charac-

teristics of the human hand and sensor characteristics are not considered. [299] added

synthetic sensor noise, however, it is difficult to model this in a general way.

There are also invasive methods for acquiring accurate 3D locations. For example,

[292] used a sophisticated magnetic tracker but only for finger tips. [299] used a data

glove, but unfortunately data gloves are not very accurate and would be visible in the

training images, thus biasing learning algorithms.

A different approach was proposed by Yasin et al . [306], who matched 2D poses against

a set of 3D poses obtained from motion capture sequences, by comparing the 2D poses

with the reprojections of the 3D poses in virtual cameras. This is an interesting approach,

however, 2D pose estimation is also an open research topic and still prone to errors.

For egocentric 3D hand pose annotation, Rogez et al . [214] proposed a semi-automatic

labeling method, where a user labels the 2D locations of a few joints, and chooses the

closest 3D pose among a set of synthetic training samples. The 3D pose is then estimated

from the 2D annotations and the selected 3D training pose. The user then has to manually

refine the pose in 3D. This process is iterated until an appealing result is achieved. This is
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a time consuming task and thus, they only created a temporally sparse set, which is only

sufficient for testing and additional data is required for training.

Semi-automated methods for annotating video sequences like ours are not new to

Computer Vision. [139] exploited object silhouettes in reference frames to predict the

object silhouettes in the remaining frames. [4] also used manual annotations of some

frames to iteratively train a 2D object detector. [291] used annotations in manually

selected frames, to predict the annotations of the remaining ones. Compared to these

works, we propose a method for selecting the frames to be annotated, minimize manual

work, but more importantly, our approach provides a complex articulated 3D structure

from 2D annotations.

6.3 Creating Training Data Efficiently

Given a sequence of N depth images {Di}Ni=1 capturing a hand in motion, we want to

estimate the 3D joint locations for each Di with minimal effort. Our approach starts

by automatically selecting some of the depth images we will refer to as reference frames

(Section 6.3.1). A user is then asked to provide the 2D reprojections of the joints in these

reference frames, from which we infer their 3D locations in these frames (Section 6.3.2). We

propagate these 3D locations to the other frames (Section 6.3.3), and we perform a global

optimization, enforcing appearance, temporal, and spatial constraints (Section 6.3.4).

6.3.1 Selecting the Reference Frames

A simple way to select the reference frames would be to regularly sample the image se-

quence in time, and select, for example, every tenth frame as reference frame. However,

this solution would be sub-optimal: Sometimes the fingers move fast, and a higher sam-

pling rate would be required, while they can also move more slowly, requiring less manual

annotation. Moreover, hand motion performers tend to move back to similar poses at wide

intervals, and annotating the same poses several times should be avoided.

Simple temporal sampling therefore does not seem to be a good approach. Ideally,

we would like to select as few reference frames as possible, while making sure that for

each frame, there is at least one reference frame that is similar enough. This will ensure

that we can match them together and estimate the joint reprojections in the frame. Let

us assume that we know a distance function d(Di,Dj) that can be used to evaluate the

similarity between two depth images Di and Dj . Then, the reference frame selection can

be formulated as the following Integer Linear Program (ILP):

arg min
{xi}Ni=1

N∑
i

xi s.t. ∀i
∑
j∈Ei

xj ≥ 1 , (6.1)

with Ei = {j | d(Di,Dj) ≤ ρ} , (6.2)

Reference:

 ()

Reference:

 ()

Reference:

 ()



100 Chapter 6. Semi-Automatic Method for Creating Training Data

where the xi indicate which frames are selected as reference frames (xi = 1 if Di is selected,

and 0 otherwise). Ei is the set of indices of the frames that are similar enough to frame i

for matching, according to a distance function d(·, ·), and ρ is a threshold.

This formulation guarantees that we find the global optimum. We implemented it

using [16] but unfortunately, optimization turned out to be intractable for real problems

with the number of frames N larger than about 103. Thus, we turned to the suboptimal

but tractable approach by optimizing:

max
R

f(R) s.t. |R| < M , (6.3)

where R is the set of selected reference frames, M the maximum number of reference

frames, and f(R) is the number of frames within the chosen distance ρ to at least one

of the frames in R. In this approach, if M is set too small, some frames may not have

a reference frame near them, but we can trade off the coverage by reference frames with

the amount of annotation work. This optimization problem is a submodular problem

and it is NP-complete, but what makes it attractive is that a simple greedy optimization

was shown to deliver a solution that is close to the globally optimal one [177]. This

greedy optimization procedure simply proceeds by adding the element e to the set R that

maximizes the difference f(e ∪ R) − f(R) as long as the number of reference frames is

smaller than M .

We define the distance function d(·, ·) on descriptors computed for depth images. We

tried LineMOD [93] and HOG [47]. However, the best results were achieved by cosine

distance between low-dimensional embeddings computed by a Convolutional Autoen-

coder [160]. Figure 6.4 shows several examples of reference frames selected with this

method, visualized along with the depth image embedding.

The autoencoder is trained by minimizing the `2-norm of the reconstruction of the in-

put image. We train the autoencoder in a greedy, layer-wise fashion [96]. The architecture

is shown in Figure 6.5. The encoder part of the autoencoder consists of four convolutional

layers, each with 32 kernels of size 5 × 5. Each convolutional layer is followed by a max-

pooling layer with a window size of 2 × 2. The convolutional layers are followed by four

fully connected layers. The decoder part is a mirrored version of the encoder, but instead

of max-pooling layers, we use unpooling layers [314], which upsample the feature maps by

a factor of 2.

6.3.2 Initializing the 3D Joint Locations in the Reference Frames

Once the procedure described in the previous section has selected the reference frames,

a human annotator has to label them. The annotator is only required to provide the

2D reprojections of the joints with visibility information in each reference frame, and

whether these joints are closer or farther from the camera than the parent joint in the

hand skeleton tree. This can be done easily and quickly, and we use this information to
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Figure 6.4: t-SNE [280] visualization of the depth image embedding over a sequence. Each
colored dot • represents a frame, the color encodes the temporal order. Temporal changes of
the hand articulations can be clearly observed from the different trajectories. The reference
frames are shown as black stars F. We automatically select them so that their annotations
can be propagated to the other frames while minimizing the manual annotation effort. The
selected reference frames cover a maximum of other frames within a distance ρ, based on their
appearance. Note that t-SNE sometimes moves points far apart that are close to each other in
the original space. This is why the points do not form a continuous curve even if they correspond
to consecutive frames [280].
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Figure 6.5: Architecture of the Convolutional Autoencoder trained to reconstruct the input
image. We use the activations computed after FC4 as embedding to select the reference frames.
C denotes a convolutional layer, FC a fully connected layer, UP an unpooling layer, and MP a
max-pooling layer. All layers have ReLU activation functions [129].

automatically recover the 3D locations of the joints. It is useful to know the positions of

consecutive joints in relation to the camera in order to avoid possible mirroring ambiguities

typical of articulated structures [198, 234, 258]. We refer to this information as the z-order

constraint.

To automatically recover the 3D locations of the joints, we optimize the following
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constrained non-linear least squares problem for each reference frame:

arg min
{Pr,k}Kk=1

K∑
k=1

vr,k‖proj(Pr,k)− lr,k‖22 (6.4)

s.t. ∀k ‖Pr,k −Pr,p(k)‖22 = d2
k,p(k)

∀k vr,k = 1⇒ Dr[lr,k] < z(Pr,k) < Dr[lr,k] + ε

∀k vr,k = 0⇒ z(Pr,k) > Dr[lr,k]
∀k (Pr,k −Pr,p(k))

> · cr,k > 0

where r is the index of the reference frame. vr,k = 1 if the k-th joint is visible in the

r-th frame, and 0 otherwise. Pr,k is the 3D location of the k-th joint for the r-th frame.

lr,k is its 2D reprojection as provided by the human annotator. proj(P) returns the 2D

reprojection of a 3D location. p(r) returns the index of the parent joint of the k-th joint

in the hand skeleton. dk,p(k) is the known distance between the k-th joint and its parent

p(k). Dr[lr,k] is the depth value in Dr at location lr,k. z(P) is the depth of 3D location P.

ε is a threshold used to define the depth interval of the visible joints. In practice, we use

ε = 15 mm given the physical properties of the hand. cr,k is equal to the vector [0, 0,−1]>

if the k-th joint is closer to the camera than its parent in frame r, and [0, 0, 1]> otherwise.

(Pr,k −Pr,p(k)) is the vector between joint k and its parent in this frame.

Together, the terms of Eqn. (6.4) assure that: (1) the bone lengths of the skeleton are

respected; (2) visible joints are in range of observed depth values; (3) hidden joints are

not in front of observed depth values; and (4) depth order constraints of parent joints are

fulfilled. We currently assume that the lengths dk,p(k) are known. In practice, we measure

them from a depth image of the hand with open fingers and parallel to the image plane.

It may also be possible to optimize these distances as they are constant over the sequences

from the same person.

We optimize this problem with SLSQP [127]. Equality constraints are hard to optimize,

so we relax them and replace the constraints by a term in the loss function that penalizes

constraint violations. We use a simple scheduling procedure to progressively increase the

weight of this term. This gives us a reasonable initial estimate of the 3D pose of the hand

for each reference frame.

We initialize the joint depth with the measurement from the depth sensor at the

annotated 2D location. This is shown in Figure 6.6, which depicts the initialized 3D

locations and the result after optimizing the relaxation of Eqn. (6.4).

6.3.3 Initializing the 3D Joint Locations in the Remaining Frames

The previous section described how to compute a first estimate for the 3D locations of the

joints in the reference frames. Next, we iteratively propagate these 3D locations from the

reference frames to the remaining frames, in a way similar to [131], as explained in this
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(a) 2D annotation. (b) 3D initialization. (c) 3D result.

Figure 6.6: Optimization steps for reference frames. We start with the 2D annotations on
a depth image provided by a user (a), and backproject them to initialize their 3D location
estimates. (b) shows the same pose rendered from a different viewpoint, depicting the depth
initialization of the joints. We then optimize the constrained non-linear least squares loss of
Eqn. (6.4) on these initial 3D locations. The result is shown in (c), again rendered from a
different viewpoint, but now with better aligned 3D locations.

section. This gives us an initialization for the joint locations in all the frames. The next

subsection will explain how we refine them in a global optimization procedure.

I is used to denote the set of frames for which the 3D locations of the joints have

already been initialized. At the beginning, I is initialized to the set of reference frames,

but each time we estimate the joints for a frame, this frame is added to I. At each

iteration, a frame ĉ not yet initialized and its closest frame â ∈ I are selected:[
ĉ

â

]
= arg min

c∈[1;N ]\I
a∈I

d(Dc,Da) . (6.5)

We use the appearance of the joints in â to predict their 3D locations {Pĉ,k}k in ĉ by

minimizing:

arg min
{Pĉ,k}k

∑
k

ds(Dĉ,proj(Pĉ,k);Dâ, lâ,k)2

s.t. ∀k ‖Pĉ,k −Pĉ,p(k)‖22 = d2
k,p(k) ,

(6.6)

where ds(D1,proj(P1);D2, l2) denotes the dissimilarity between the patch in D1 centered

on the projection proj(P1) and the patch in D2 centered on l2. This optimization looks

for joints based on their appearances in frame â while enforcing the 3D distances between

the joints. We use the Levenberg-Marquardt algorithm to solve Eqn. (6.6), by relaxing

the hard constraint with a weighted additional term in the loss function.

As illustrated in Figure 6.7, we initialize the optimization problem of Eqn. (6.6) by
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aligning frames ĉ and â using SIFTFlow [150]. This maps the 2D reprojections of the

joints in frame â to 2D locations {l̃k}k in frame ĉ. We backproject each l̃k on the depth

image Dĉ to initialize Pĉ,k. If the depth information is missing at l̃k, we use the 3D point

that reprojects on l̃k and with the same depth as Pâ,k.

(a) Closest reference frame. (b) Initialization with SIFT-
Flow.

(c) After optimization.

Figure 6.7: Initialization of locations on a non-reference frame. (a) shows the 3D locations for
the closest reference frame. (b) We propagate the 3D locations using SIFTFlow [150]. (c) 3D
locations after optimization of Eqn. (6.6).

6.3.4 Global Optimization

The previous optimization already gives already a good estimate for the 3D locations

of the joints in all frames. However, each frame is processed independently. We can

improve the estimates further by introducing temporal constraints on the 3D locations.

We therefore perform a global optimization over all the 3D locations Pi,k for all the frames

by minimizing: ∑
i∈[1;N ]\R

∑
k

ds(Di,proj(Pi,k);Dî, l̂i,k)
2 + (C)

λM
∑
i

∑
k

‖Pi,k −Pi+1,k‖22 + (TC)

λP
∑
r∈R

∑
k

vr,k‖proj(Pr,k)− lr,k‖22 (P)

s.t. ∀i, k ‖Pi,k −Pi,p(k)‖22 = d2
k,p(k) .

The first term (C) sums the dissimilarities of the joint appearances with those in the

closest reference frame î = arg mina∈R d(Di,Da) over the non-reference frames i. The

second term (TC) is a simple 0-th order motion model that enforces temporal smoothness

of the 3D locations. The last term (P) of the sum ensures consistency with the manual
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2D annotations for the reference frames. λM and λP are weights to trade off the different

terms.

This is a non-convex problem, and we use the estimates from the previous subsection

to initialize it. This prevents the optimization from falling into bad local minimums.

This problem has 3KN unknowns for K joints and N frames. In practice, the number

of unknowns varies from 105 to 107 for the datasets we consider in the evaluation. For-

tunately, this is a sparse problem, which can be efficiently optimized with the Levenberg-

Marquardt algorithm.

6.3.5 Relaxations of Optimization Problems

We show the relaxations of the optimization problems presented earlier. For all problems,

we use the penalty method [180] for equality constraints. For this, we introduce a multiplier

that penalizes constraint violations.

The given optimization problem in Eqn. (6.4) includes an equality and inequality con-

straints. By introducing multipliers µ and β, the relaxation is:

arg min
{Pr,k}Kk=1

K∑
k=1

vr,k‖proj(Pr,k)− lr,k‖22 + µb
∑
k

(
‖Pr,k −Pr,p(k)‖22 − d2

k,p(k)

)2
+

β
∑

{k|vr,k=1}

min
(

(Pr,k −Pr,p(k))
> · cr,k, 0

)2
(6.7)

s.t. ∀k vr,k = 1⇒ Dr[lr,k] < z(Pr,k) < Dr[lr,k] + ε

∀k vr,k = 0⇒ z(Pr,k) > Dr[lr,k]

We start with µ0 = 100 and increase µb+1 = 10µb for 5 times. For each µ we solve the

problem until convergence, i.e., the decrease of the objective function is smaller than 10−5.

Further, we keep β = 1 fixed. We use the SLSQP algorithm [127] to solve the relaxed

problem. The remaining two constraints can be integrated as box constraints in SLSQP.

We relax the equality constraint of the optimization problem in Eqn. (6.6) by intro-

ducing a multiplier γ:

arg min
{Pĉ,k}k

∑
k

ds(Dĉ, proj(Pĉ,k);Dâ, lâ,k)2 + γb
∑
k

(
‖Pĉ,k −Pĉ,p(k)‖22 − d2

k,p(k)

)2
. (6.8)

We start with γ0 = 101 and increase γb+1 = 10γb for 5 times. For each γ we solve the

problem until convergence using the Levenberg-Marquardt [140] algorithm.

The equality constraint of the optimization problem in Eqn. (6.7) is relaxed by intro-
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ducing a multiplier η: ∑
i∈[1;N ]\R

∑
k

ds(Di, proj(Pi,k);Dî, l̂i,k)
2 +

λM
∑
i

∑
k

‖Pi,k −Pi+1,k‖22 +

λP
∑
r∈R

∑
k

vr,k‖proj(Pr,k)− lr,k‖22 +

ηb
∑
i

∑
k

(
‖Pi,k −Pi,p(k)‖22 − d2

k,p(k)

)2
.

We start with η0 = 102 and increase ηb+1 = 10ηb for 5 times. The relaxed problem is

solved with sparse Levenberg-Marquardt [140] algorithm.

6.4 Evaluation

To validate our method, we first evaluate it on a synthetic dataset, which is the only way

to have depth images with ground truth 3D locations of the joints. We then provide a

qualitative evaluation on real images and on the recent MSRA dataset [247]. Finally, we

show that we can use our method to create a large dataset of egocentric annotated frames.

6.4.1 Evaluation on Synthetic Data

We used the publicly available framework of [212] to generate synthetic depth images along

with the corresponding ground truth annotations. The sequence consists of 3040 frames

and shows a single hand performing various poses and arm movements.

Reference Frame Selection In Figure 6.8, we plot the fraction of frames for which

the maximum 3D distance of their joints to their locations in the assigned reference frame

is lower than a threshold. More formally, we plot the function n(τ) with:

n(τ) :=
1

N

∣∣∣{i ∈ [1;N ] | max
k
‖PGT

i,k −PGT
a(i),k‖ < τ

}∣∣∣ , (6.9)

where the PGT
i,k are the ground truth 3D locations for the joints, and

a(i) = arg mina∈R d(Di,Da). This metric allows us to check if the selection based on the

visual appearance using distance d(·, ·) also retrieves reference frames that are close in

3D. This is an important factor for the rest of the method, as the propagation step will

perform better if a frame is not too far away from the closest reference frame. We use

ρ = 0.1, which we obtained by cross-validation, however, the reference frame selection is

not very sensitive to the exact value.
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We compare our selection with a straightforward selection based on regular tempo-

ral sampling using the same number of reference frames. According to this metric, our

method is significantly better, and it actually yields more accurate 3D annotations: Using

our proposed selection, the average error is 5.53 mm, compared to 6.45 mm when tak-

ing equitemporal samples. Additionally, the required number of manual reannotations is

much higher. Our method required 133 additional 2D locations, compared to 276 manual

interventions for the equitemporal selection.
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Figure 6.8: Evaluation of the reference frame selection method on the synthetic sequence. We
plot the metric n(τ) of Eqn. (6.9) for our selection of 304 reference frames, and the same number
of reference frames sampled regularly in time. With our method, the non-reference frames are
closer in 3D to the reference frames. For the oracle, we assume the pose given, and apply
the submodular optimization on the Euclidean pose distances. The average pose distance of our
proposed selection is only 0.5 mm worse than the oracle. For this sequence, the number of frames
is about 103, thus solving the ILP is still feasible. The approximation using our submodular
optimization is close to the optimal ILP solution, which on average is only 1 mm better.

Reference Frame Initialization Table 6.1 provides the accuracy of the initialization of

the 3D joint locations for the reference frames, and evaluates the influence of the different

terms in Eqn. (6.4). We first use the perfect 2D locations of the joints from ground truth.
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Method Visible joints All joints
Avg. / median Avg. / median

2D locations 12.86 / 8.96 mm 19.98 / 13.29 mm
2D & visibility 3.94 / 3.18 mm 6.20 / 3.41 mm
2D & vis & z-order 2.97 / 2.93 mm 3.65 / 2.98 mm

All + 2D noise
3.70± 0.71 mm /
2.59± 0.21 mm

4.29± 0.63 mm /
2.56± 0.23 mm

Table 6.1: Accuracy of reference frame initialization on the synthetic sequence. We provide
the average and the median Euclidean joint error over all joints. The highest accuracy can be
achieved by combining all of our proposed clues: 2D reprojection errors, visibility, and z-order.
The last row shows the robustness of our method to noise, after adding Gaussian noise to the
2D locations.

When only minimizing the 2D reprojection errors with the 3D distance constraints, the

error is quite large. Adding the visibility constraint significantly improves the accuracy,

but the maximum error is still large. By adding the z-order term, depth ambiguities due

to mirroring can be resolved, and the errors get much smaller.

In practice, the 2D locations of the joints provided by a human annotator are noisy.

Thus, we evaluated the robustness of our algorithm by adding Gaussian noise with zero

mean and a standard deviation of 3 pixels to the 2D locations. For reference, the width of

the fingers in the depth image is around 25 pixels. We show the average errors in Table 6.1

after 10 random runs. The errors are only 0.7 mm larger than without noise, which shows

the robustness of our method to noisy annotations. Interestingly, the median error is lower

with noisy initialization, which can be attributed to the non-convex optimization. Due

to noise, the convergence can lead to different local minima, thus improving some joint

estimates, but significantly worsening others.

3D Location Propagation and Global Optimization We evaluate the contributions

of the different optimization steps in Table 6.2. We implement ds(·) as normalized cross-

correlation with a patch size of 25 pixels. A cross-validation among different correlation

methods and different patch sizes has shown that our method is not sensitive to this choice.

Further, we use λM = 1 and λP = 100. The choice of these values is not crucial for a good

result, as long as λP > λM to emphasize the reprojections on the 2D annotations.

If the deviation of the 2D location of a joint gets too large, i.e., the 2D location is

more than 5 pixels away from the ground truth location, manual intervention is required.

For the synthetic dataset, it was required to readjust the 2D locations of 133 joints in

79 frames, or 0.06% of the total number of joints. Figure 6.9 gives a more exhaustive

evaluation of the influence of the chosen number of reference frames. We can obtain a

very good accuracy by annotating only a small percentage of the reference frames and

correcting an even smaller percentage of joints.
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Method Avg. / median error

Closest reference 11.50 / 5.58 mm
Aligned with SIFTFlow 11.40 / 5.40 mm
Frame optimization 5.76 / 4.34 mm

Global optimization 5.53 / 4.23 mm

Table 6.2: Accuracy of the different stages on the synthetic sequence. We report the average
and median Euclidean 3D joint errors. We use the 3D locations of the reference frame to initialize
the remaining frames. The first row shows the accuracy if the 3D locations of the closest reference
frame are used. The next row shows the contribution of the alignment with SIFTFlow, and the
further optimization on the 3D locations. The last row denotes the accuracy after the global
optimization. The gain in accuracy with SIFTFlow is small, as it only provides an offset in 2D,
but it is useful to make the correlation term contribute properly.
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Figure 6.9: Accuracy over the number of reference frames on the synthetic sequence. We plot
the average 3D joint error and the number of required additional annotations over the number
of initially selected reference frames. The best result can be achieved, when providing manual
annotations for all frames, however, more reference frames require more annotation work, and
for larger sequences this can be infeasible, i.e., providing manual annotations for about 23k
joints for this sequence. When decreasing the number of initial reference frames, the additional
annotations of individual joints during the process increases, but only in the hundreds. Using
for example 3% of all frames as reference frames requires annotating only 700 joint locations and
revising another 250, while still retaining an average 3D annotation error of only 6.5 mm.
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Error Analysis In Figure 6.10 we show the distribution of the errors in x-, y-, z-

coordinates for the synthetic sequence. The errors in all coordinates are similarly dis-

tributed, thus there is no error bias towards a certain coordinate.

8 6 4 2 0 2 4
Error / mm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
a
ct

io
n
 o

f 
o
cc

u
re

n
ce

 /
 

Errors x

(a)

10 5 0 5 10
Error / mm

0.00

0.05

0.10

0.15

0.20

Fr
a
ct

io
n
 o

f 
o
cc

u
re

n
ce

 /
 

Errors y

(b)

8 6 4 2 0 2 4 6 8
Error / mm

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
a
ct

io
n
 o

f 
o
cc

u
re

n
ce

 /
 

Errors z

(c)

Figure 6.10: Evaluation of error distributions. We show the distance between our inferred
joint locations and the ground truth joint locations for the x-, y-, and z-coordinate.

6.4.2 Evaluation on Real Data

To also evaluate real data, we tested our method on a calibrated camera setup consisting

of a depth camera and an RGB camera capturing the hand from two different perspectives.

We create 3D annotations using the depth camera and project them into the RGB camera.

We can then visually check the projections of the annotations. Figure 6.11 shows one

example: The joint locations project nearby the real joint locations, which indicates that

not only the image coordinates are correct, but also the depth.

6.4.3 Application to the MSRA Dataset

We applied our approach to the MSRA dataset [247], which is currently the largest dataset

for hand pose estimation from single depth images. The authors used a state-of-the-

art 3D model-based method [201] to obtain the annotations. As discussed earlier, these

annotations are not perfect. We used our method to select 10% of the frames (849 out

of 8499 for the first subject) as reference frames and manually provided the 2D locations,

visibility, and z-order of the joints for these reference frames. We further show a qualitative

comparison, and that the higher annotation accuracy leads to better pose estimates, when

training the state-of-the-art 3D hand pose estimator DeepPrior that we introduced in

Chapter 4.

Qualitative Comparison As “real” ground truth is not available, a direct evaluation

is not possible. Figure 6.12 compares different frames for which the distances between
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(a) Depth camera. (b) Projected into RGB camera.

Figure 6.11: Sample frames of our two camera setup. We capture hand articulations from a
depth and an RGB camera and apply our method on the depth camera to obtain 3D annotations.
These annotations are shown in (a). To evaluate the accuracy, we project the estimated 3D
annotations into the RGB camera, which is shown in (b).

the annotations are large. Our annotations appear systematically better. This strongly

suggests that our annotations are more accurate over the sequence.

Higher Annotation Accuracy Leads to Better Pose Estimators We further show

that better annotations improve the accuracy of state-of-the-art 3D hand pose estimation

methods. We train DeepPrior with the original annotations and compare it with the

estimator trained using the annotations we obtained with our method. For the evaluation,

we perform 10-fold cross-validation, because no explicit test set is specified [247]. The

results of this experiment are shown in Figure 6.13. The estimator trained with our

annotations converges faster, but to similar average joint errors in the end. This indicates

that training is easier when the annotations are better. Otherwise, the estimator may

focus on difficult, possibly wrongly annotated samples. The results clearly show that

accurate training data is necessary to perform accurate inference. The estimator achieves

test set errors of 5.58 ± 0.56 mm using our annotations for training and testing, and

6.41± 2.05 mm using the provided annotations. When we train the pose estimator on the

provided annotations but evaluate it on our own annotations, the error is 13.23±6.98 mm,

which indicates discrepancy among the annotations. However, the visual comparison—

which is the best that can be done on real data—shows that our annotations are more

accurate.

6.4.4 New Egocentric Dataset

Egocentric 3D hand pose estimation is an appealing feature for different Augmented Real-

ity (AR) or Human-Computer Interaction (HCI) applications. Creating datasets for this
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 ()



112 Chapter 6. Semi-Automatic Method for Creating Training Data

(a) Frame 970. (b) Frame 1635.

(c) Frame 3626. (d) Frame 8495.

Figure 6.12: Qualitative comparison of the annotations obtained using our method (left image)
and the annotations of [247] (right image) on the MSRA dataset [247]. We selected several frames
with large differences between the two annotations. Note that the shown sample frames are not
manually annotated reference frames.

task is very difficult [214]. Egocentric views show severe self-occlusions as fingers are often

occluded by the hand and egocentric cameras have a limited field-of-view. Both facts

result in a less reliable tracking. Even with manual initialization, fingers are frequently

occluded and the hand can move outside the camera view frustum.

We provide a new dataset consisting of more than 2000 frames of several egocentric

sequences, each starting and ending with a neutral hand pose and showing a user per-

forming a single or various hand articulations per sequence. We annotated the dataset

using our method. In contrast, the 3D model-based implementation of [271] often failed

by converging to different local minima, and thus resulted in time consuming fiddling with

the model parameters.

We establish a baseline on this dataset, by running two state-of-the-art methods: (1)

DeepPrior that we introduced in Chapter 4, which was shown to be among the best

methods for third person hand pose estimation [249], and (2) the method of Supancic et

al . [249], which was initially proposed for hand pose estimation, but especially for hand-

object interaction in egocentric views. We perform 5-fold cross-validation and report the

average and standard deviation over the different folds. We report the results in Table 6.3.

The method of Supancic et al . has larger errors, mostly due to flipping ambiguities. For

the oracle, we assume the 3D poses known, and return the pose with the smallest Euclidean
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Figure 6.13: Training and testing a 3D hand pose estimator with different annotations for
the MSRA dataset [247]. We train our 3D hand pose estimator DeepPrior with the provided
annotations and with our revised annotations. We then compare the predicted annotations on a
test set. The predictions with our annotations are on the left side. It shows that the estimator
learns the incorrect annotations, which leads to inaccurate locations for the test samples. Using
our more accurate annotations leads to more accurate results. In (a) note the annotation of the
thumb, in (b) the annotations of the pinky and ring fingers, and in (c) the articulation of the
index finger.

distance from the training set.

6.4.5 User Evaluation

We evaluate the performance of different users using the proposed annotation method to

annotate a sequence. We required the users to annotate the synthetic sequence presented

in Section 6.4.1 in order to have ground truth labels for a comparison of the accuracy.

We evaluate the user performance in terms of 3D pose accuracy and annotation time per

frame.

First, the hand needed to be localized in 3D space within the depth image. The time

required for this task is shown in Figure 6.14a. The average time is around 2 s per frame

and consistent between the users. The long tail of the distribution can be attributed to
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Method Avg. / median error

DeepPrior (Chapter 4) 24.58± 16.08 / 19.53 mm
Supancic et al . [249] 33.09± 21.66 / 26.20 mm
Oracle 20.20± 10.92 / 19.47 mm

Table 6.3: Average accuracy on the egocentric hand dataset with 5-fold cross-validation. We
apply two state-of-the-art methods to the dataset and report the Euclidean 3D joint errors. For
the orcle, we calculate the distance to the nearest sample in the training set.

breaks of the users or harder examples that required more time.1

Second, the 3D pose in terms of 21 joint locations needed to be annotated. The time for this

task is shown in Figure 6.14b. The average time needed for this task was around 1 min per

frame. However, the distribution shows that there are many frames that required less than

20 s. Optimization of Eqn. (6.4) was around 1 s and had to be run after each adjustment

of the 2D locations that resulted in additional computation time that is included in this

statistics.
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(b) Annotation time for hand pose.

Figure 6.14: Annotation time for hand detection in (a) and for hand pose in (b).

Further, we evaluate the accuracy of the user annotations. First, we evaluate the

accuracy of the 3D hand localization. We plot the fraction of frames where the 3D error

is below a specific threshold in Figure 6.15. Four users annotated each frame using our

proposed method with the 3D hand location. The evaluation shows, that all users marked

all the 3D hand locations with less than 20 mm error.

Next, we evaluate the accuracy of the hand pose annotations. Therefore, we evaluate

1Due to privacy reasons, we did only track the time per frame, not the actual clicks and actions the
users perform.
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Figure 6.15: Accuracy of 3D hand localization. Four users manually annotated the 3D hand
locations of the synthetic sequence. We plot the fraction of frames where the 3D error is below
a specific threshold.

the 2D user locations of three users and the inferred 3D hand pose using the method

presented in Section 6.3.2. Again, we plot the fraction of frames where the maximum error

per frame is below a specific threshold in Figure 6.16. Around 80% of the 2D annotations

are below 20 px error, mostly due to inaccurate occluded joints. One can observe that

there is a larger discrepancy in terms of accuracy between the different users, which can

be attributed to their individual skills.

The errors in the 3D locations are due to the inaccurate 2D user annotations, since there

are much more high accuracy frames when using the ground truth 2D locations. A study

of Supancic et al . [249] comes to similar conclusion in terms of accuracy. However, their

users where provided color and depth image together with a 3D hand model for visual

feedback, which required to fit inverse kinematics to the annotations. In our case, the

users only used depth images without any 3D hand model and inverse kinematics.
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(a) Joint annotation in 2D.
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(b) Joint annotation in 3D.

Figure 6.16: Accuracy of joint annotation in 2D and 3D. Three users manually annotated the
2D joint locations of the synthetic sequence. We plot the fraction of frames where the maximum
joint error per frame is below a specific threshold.

6.5 Discussion

Given the recent developments in Deep Learning, the creation of training data may now

be the main bottleneck in practical applications of Machine Learning for hand pose es-

timation. Our method brings a much needed solution to the creation of accurate 3D

annotations of hand poses. It avoids the need for motion capture systems, which are

cumbersome and cannot always be used, and does not require complex camera setups.

Moreover, it could also be applied to any other articulated structures, such as human

bodies.
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In the previous chapter, we introduced a method to create labeled training data of artic-

ulated structures. Although this is an efficient and general purpose method, it still requires

considerable amount of human labor especially when scaling the dataset to millions of im-

ages. However, a common side product of model-based hand annotation methods [271] is a

synthetic rendering of the hand. In this chapter, we propose a simple and efficient method

for exploiting synthetic images when training a Deep Network to predict a 3D pose from

an image. The ability of using synthetic images for training a Deep Network is extremely

valuable as it is easy to create a virtually infinite training set made of such images, while

capturing and annotating real images can be very cumbersome. However, synthetic images

do not resemble real images exactly, and using them for training can result in suboptimal

performance. It was recently shown that for exemplar-based approaches, it is possible to

learn a mapping from the exemplar representations of real images to the exemplar repre-

sentations of synthetic images. Here, we show that this approach is more general and that

a network can also be applied after the mapping to infer a 3D pose: At run-time, given

a real image of the hand, we first compute the features for the image, map them to the

feature space of synthetic images, and finally use the resulting features as input to another

network that predicts the 3D pose. Since this network can be trained very effectively by

1The original publication [205], on which this chapter is based on, was done in collaboration with Mahdi
Rad, who conducted experiments on 3D object pose estimation that were also presented in the original
paper.
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using synthetic images, it performs very well in practice, and inference is faster and more

accurate than with an exemplar-based approach. We demonstrate our approach on the

NYU dataset for 3D hand pose estimation from depth images. We show that it allows us to

significantly outperform the state-of-the-art on this dataset. Our approach, DeepPrior++

with Feature Mapping, achieves state-of-the-art accuracy on the NYU dataset at the time

of writing.

7.1 Introduction

Figure 7.1: We propose a method for exploiting real and synthetic images to predict a 3D
pose from a real image. This method allows us to outperform the state-of-the-art on the NYU
dataset [271] for 3D hand pose estimation from depth images. Left: Estimated 3D pose using
DeepPrior++, which we introduced in Section 4.2.5. Right: Estimated pose using the method
proposed in this chapter. Green corresponds to ground truth, blue to our predictions. We obtain
the best performances reported so far on this dataset.

The power of Deep Learning for inference from images has been clearly demonstrated

over the past years, however, for many Computer Vision problems, inference is effective

only if a large amount of training data is available. Typically this data is created and

labeled manually, which is a task expensive in terms of both money and time. Compared

to 2D problems where the labels can be directly defined in the training images, the problem

is even exacerbated for 3D problems where the training images have to be labeled with

3D data. This 3D data cannot be guessed easily by the human annotator, and needs to be

estimated with an ad hoc method, for example by using markers [94] or a semi-automatic

approach [271].

Many works therefore aimed at using synthetic images created with computer graphics

methods [3, 83, 141, 146, 244]. The resulting performances are usually suboptimal, as the

synthetic images do not correspond exactly to real images. When some real images are

available for training, which is often the case in practice, it is possible to use transfer

learning [11, 171, 192, 219], where a first predictor is trained on real images and a second
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one on synthetic images. By enforcing constraints on the parameters of the two predic-

tors, the first predictor can benefit from a large amount of synthetic training images.

Many works using Generative Adversarial Networks (GANs) have also been developed re-

cently [24, 76, 230, 323], in which a first Deep Network is trained to generate real images

and it competes with a second Deep Network trained to distinguish synthetic images from

real ones.

However, transfer learning and GANs are two general approaches. While important by

itself, the 3D pose estimation problem has some specificities that are not exploited by these

two approaches. It was shown recently in [161] that, by synthesizing views of objects under

the same pose as in some available real images, it is possible to learn a mapping between

the features computed for a real image and the features computed in a synthetic image

corresponding to the same pose. However, [161] applies this mapping to the descriptors

of exemplars, which are matched using special layers computing a similarity score with

reference exemplars. In this chapter, we show that this mapping can be used as input to a

general network. We therefore train a network jointly with the feature mapping to predict

the 3D pose of the hand from its synthetic images. We can use a virtually infinite number

of training images to train this network, and it therefore performs very well. At run-time,

given a real input image of the hand, we compute its image features, map them to the

space of features of synthetic images, to finally predict the 3D pose of the hand from the

mapped features.

As illustrated in Figure 7.1, we demonstrate our approach on the NYU dataset [271]

for 3D hand pose estimation from depth images. Our experiments show that we can sig-

nificantly outperform the state-of-the-art, by relying on our approach to exploit synthetic

images. Moreover, pose inference is very efficient as it is performed by a Deep Network,

in contrast to comparisons of exemplars as was done in [161].

In the remainder of this chapter, we discuss work related to using synthetic images

for training Deep Networks, then present our approach and its evaluation on the NYU

dataset.

7.2 Related Work on Using Synthetic Data for Training

A major problem in training Deep Networks is the acquisition of training data, but train-

ing data is critical for the success of Deep Networks [246]. An appealing solution is to

use training samples rendered from 3D models [95, 120]. Such annotated samples are very

easy to acquire, due to the presence of large scale 3D model datasets [35, 320]. However,

using synthetic data requires special measures to prevent the network from overfitting on

the synthetic appearance of the data. To prevent overfitting, [95] uses pretrained feature

extractors from image classification networks, such as VGG [232], together with sophisti-

cated data augmentation. While this is convenient as no real images are needed, it was

only demonstrated on detection problems. [120] also uses synthetically generated images

from 3D models with pretrained features, however, they require extensive refinement of

Reference:

 ()

Reference:

F. Massa and B. Russell and M. Aubry (2016)Deep Exemplar 2D-3D Detection by Adapting from Real to Rendered Views

Reference:

F. Massa and B. Russell and M. Aubry (2016)Deep Exemplar 2D-3D Detection by Adapting from Real to Rendered Views

Reference:

 ()

Reference:

F. Massa and B. Russell and M. Aubry (2016)Deep Exemplar 2D-3D Detection by Adapting from Real to Rendered Views

Reference:

Chen Sun and Abhinav Shrivastava and Saurabh Singh and Abhinav Gupta (2017)Revisiting Unreasonable Effectiveness of Data in Deep Learning Era

Reference:

 ()

Reference:

 ()

Reference:

Stefan Hinterstoisser and Vincent Lepetit and Paul Wohlhart and Kurt Konolige (2017)On Pre-Trained Image Features and Synthetic Images for Deep Learning

Reference:

 ()

Reference:

Wadim Kehl and Fabian Manhardt and Federico Tombari and Slobodan Ilic and Nassir Navab  (2017)SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation Great Again



120 Chapter 7. Leveraging Additional Synthetic Training Data

the initial network predictions, and we will show that by combining some real images and

many synthetic images, we can reach better performances.

To improve the relevance of the synthetic images for training, [218] uses a small set of real

images to estimate the rendering parameters that lead to image features similar to those

of real images. However, this requires to parametrize the rendering process in such a way

that it can be adapted from real images, which is restricted to ad hoc parameters, such as

blurring, brightness, etc.

Other solutions of acquiring training data involve semi-supervised methods, such as the

method introduced in Chapter 6 that propagates sparse annotations from a few keyframes

to the full image sequences. However, it still requires labor intensive annotation of the

keyframes.

Synthetic data on one side and real data on the other side can be seen as two different

domains, which gives rise to domain adaptation methods. However, there can be significant

differences between the synthetic and real images, which makes methods trained only on

synthetic data perform poorly in practice [95]. Domain adaptation techniques provide a

welcome solution to this problem, since it is easy to get training data in the synthetic

domain, and it can be hard to acquire many training samples in the real domain.

For Deep Networks, fine-tuning is one of the most prominent and simple domain adap-

tation methods [75, 190]. This, however, can lead to severe overfitting, if there is only a

small amount of training labels in the target domain available. Another way to handle

the domain shift is to explicitly align the source and target distributions of the data. This

can be achieved by quantifying the similarity of the two distributions and maximizing

the similarity thereof. One popular metric is Maximum Mean Discrepancy (MMD) [80].

MMD can be either used to align the distributions of target and source features [102, 275],

or by learning a transformation of the data such that the distributions match in a common

subspace [11, 154, 171, 192]. [69] uses a deep feature extractor together with an additional

classifier that predicts the domain for each sample. If the learned features are domain-

invariant, such a classifier should exhibit poor performance. [275] adds an MMD loss to

align the source and target data representations learned by Deep Networks.

However, [309] observed that feature transferability drops in higher layers of a Deep

Network. To leverage this fact, [153] proposed a novel architecture that has the first few

layers frozen, the mid layers fine-tuned, and the fully connected layers learned for each

domain separately. The features of the fully connected layers are constrained by MMD .

This works well for discriminative approaches that separate features into clusters, but not

for regression problems. It also requires extensive task-specific validation on which layers

to freeze, fine-tune, and transfer.

Very recently, [219] proposed a Siamese Network for domain adaptation, but instead

of sharing the weights between the two streams, their method allows the weights to differ

and only regularizes them to keep them related. This method is very general as it can

learn adaptation between very different domains. We show in the results section that our

approach outperforms [219], as we can exploit the specificities of our problem by rendering
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synthetic images under the same poses as the real images to learn a mapping.

With the development of Deep Learning, GANs were also proposed for domain adap-

tation [76, 323], where a network is trained to transfer images from one domain to another

domain. Although GANs are able to generate visually similar images in terms of appear-

ance between different domains [24, 230], the synthesized images lack precision required to

train 3D pose estimation methods. Especially for geometric tasks, such as 3D pose estima-

tion, this shortcoming can be attributed to the lack of geometry in GAN models [308, 323].

An alternative to generating images in order to bridge the domain gap was presented by

[274] and [62], who use a domain discriminator with adversarial loss to force a network to

learn cross-domain features. Although this works well for discriminative applications, the

features are not well suited for regression as we will discuss in the results section.

Another approach for domain adaptation is introduced in [29], which casts domain

adaptation as an assignment problem, where samples from the target domain are assigned

predefined classes from the source domain. This, however, strongly depends on the ini-

tialization of the features to obtain a semantically meaningful mapping, and for regression

problems the undefined number of classes would make the problem intractable.

[161] proposed the method most related to ours, as they also learn a mapping from

the real to synthetic domain. However, they consider an exemplar-based approach for

3D pose retrieval, and the mapping is applied to the exemplar representations. Relying

on exemplars requires a discretization of the pose space in order to create the exemplars,

and a nearest neighbor search. A fine discretization thus improves the accuracy of the

estimated pose, but also slows down the nearest neighbor search. We show in this paper

that it is possible to learn a similar mapping jointly with a network inferring the 3D pose

after feature mapping. As our experiments show, our approach of retrieving the pose is

thus both fast and accurate.

7.3 Feature Mapping for Using Synthetic Training Data

Since it is easy to create synthetic images, our goal is to exploit such images to guide

learning, when training a Deep Network to predict a 3D pose from a real image. This real

image can be a color image or a depth image, for example.

7.3.1 Training

We use synthetic images to train a feature extractor f(x; θf ) together with a 3D pose

predictor h(f ; θh), which predicts a 3D pose given features f extracted from a given image

x. θf and θh denote the parameters for networks f and h, respectively. However, synthetic

images do not resemble real images, and their features also vary significantly. Although

this might not harm easier tasks such as object detection or object recognition, it is very

important for accurate 3D pose prediction.

We therefore train a network g(f ; θg) with parameters θg to map features of the real
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Figure 7.2: The overall model architecture that we use for training is made of two streams,
one for the synthetic and one for the real images. Each stream contains a feature extractor
f (blue) and a pose predictor h (red). The real stream contains the feature mapping network
g (green) to map features extracted from a real image to the feature space of synthetic images.
The parameters of the feature extractor f are shared between the two streams, as well as the
parameters of the pose predictor h. We apply g only to the features from real images, not on
the features from synthetic images. We can thus train the pose predictor on synthetic images,
and apply it to real images at run-time without being affected by the domain gap.

images into the synthetic feature space, before they are used as input to the h network that

predicts the 3D pose from image features. Figure 7.2 shows the three networks and how

they are connected. Specifically, we implement the networks in a two stream architecture.

One stream takes the real images and the other stream takes the synthetic images. The

parameters of the two streams are shared, except for the mapping network g.

Network g is trained using pairs of images, each pair is made of one of the available

real images and of one synthetic image of the hand rendered under the same 3D pose as in

the real image. During training, we minimize the distance between the features extracted

from the synthetic images and the features extracted from the real image after mapping

by g. For 3D hand pose estimation from depth images, we directly generate a depth image

of the 3D model under the same pose. The first row of Figure 7.3 shows an example.

More exactly, we train the three networks f , h, and g jointly on the training set

T = T S ∪ T R where T S = {(xSi ,ySi )}i denotes a training set of synthetic images and

their corresponding 3D labels, and T R = {(xRi ,yRi )}i is made of real images and their 3D

labels. We also use a training set TM made of the real images xRi in T R, each paired to

a synthetic image generated under the same pose as mentioned above. Jointly training f ,

h, and g helps learning to extract image features such that they are transferable from the

real domain to the synthetic domain.

We optimize the following loss function over the parameters of the three networks:

L(θf , θh, θg; T S , T R, TM) = LhS + βLhR + γLg . (7.1)
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β and γ are meta-parameters to control the interaction of the losses.

LhS is the loss for predicting the poses for synthetic images:

LhS =
∑

(xs,ys)∈T S
‖h(f(xs; θf ); θh)− ys‖2 . (7.2)

Note that we compose network f that extracts image features from image x and network

h that predicts a 3D pose from these features.

In practice, the 3D pose y is simply parameterized as a vector made of the 3D locations

of the hand joints normalized as in Chapter 4, which allows us to use the Euclidean norm

in Eqn. (7.2).

LhR is a loss function equivalent to LhS but for the real images:

LhR =
∑

(xr,yr)∈T R
‖h(g(f(xr; θf ); θg); θh)− yr‖2 , (7.3)

where we compose f , g, and h together, to first extract image features, then map them

to the space of image features for synthetic images, and finally predict the 3D pose from

these mapped features.

Lg is the loss to learn the mapping between the features extracted from the real images

to the features extracted from the synthetic images:

Lg =
∑

(xr,xs)∈TM
‖g(f(xr; θf ); θg)− f(xs; θf )‖2 . (7.4)

7.3.2 Effect of the Learned Mapping

To understand better the effect of the learned mapping, we computed the distributions of

the absolute differences between the synthetic feature vectors and real feature vectors, as

computed by network f , before and after mapping of the real feature vectors by network

g. The distributions remain surprisingly close, as their means and standard deviations are

(µ1 = 1.60, σ1 = 1.64) and (µ2 = 1.30, σ2 = 1.50) respectively.

However, considering distributions can only provide a limited view. To get a finer

insight, we took a pair of real and synthetic images under the same pose, and we plotted

the absolute differences between the coefficients of their feature vectors, first without

mapping, then after mapping of the real feature vector by network g. The differences are

shown in Figure 7.3(c) and Figure 7.3(d). Blue corresponds to small differences, and red

to large differences. It appears that the mapping mostly removes the large differences

without changing the smaller differences. We repeated this experiment on other image

pairs and observed a similar behavior. Our interpretation is that for each pair, only a few

feature coefficients are responsible for the domain gap, and they can be attenuated by the

mapping.
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Figure 7.3: The effect of the mapping learned by network g using a real image (a) and the
corresponding synthetic image (b). The second row shows the absolute differences between the
synthetic and real feature vectors (reshaped to images for better visualization) before (c) and
after mapping (d). The mapping mostly removes the large differences.

7.3.3 Pose Prediction

At run-time, given a real image x, we predict the corresponding 3D pose y by composing

the three networks together:

y← h(g(f(x; θ̂f ); θ̂g); θ̂h) ,
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where (θ̂f , θ̂g, θ̂h) are the networks’ parameters found during training. Note that this

composition of the three networks can be implemented as a single network to improve

efficiency.

7.3.4 Network Details
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Figure 7.4: Our model architecture of the mapping network g used to map features extracted
from a real image to the feature space of synthetic images. It consists of two Residual blocks [92].
FC denotes a fully connected layer, and ReLU a rectified linear unit.

As shown in Figure 7.4, we use two Residual blocks [92] for network g to map feature

vectors of size 1024. Each fully connected layer within the Residual block has 1024 neurons.

We use an architecture similar to the one of [173, 181] for the feature extraction network

f : It is similar to the 50-layer Residual Network [92] with four residual modules. We

remove the Global Average Pooling [92], which we experienced during our experiments

significantly reduces localization accuracy of the joints, and add two fully connected layers

with 1024 neurons each. f is trained from scratch. We use a single fully connected layer

with 42 outputs—3 for each of the 14 joints—for the pose prediction network h, together

with a bottleneck layer as introduced in Chapter 4.

For the parameters of the loss function in Eqn. (7.1), we use β = 1, which gives the

same weight to the synthetic and real samples, and γ = 0.2, which gives a good trade-off

between pose loss and feature mapping loss. We optimize the loss using gradient descent,

specifically the ADAM algorithm [125] with a learning rate of 10−4 and a batch size of 64.

In order to improve convergence, we pretraining the networks with synthetic data only,

which in practice gives better results compared to starting from a random initialization.

7.4 Evaluation

In this section, we present and discuss the results of our evaluation for 3D hand pose

estimation from depth images.
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7.4.1 Training Set Creation

We evaluate it on 3D hand pose estimation from single view depth images. For this

experiment, we consider the NYU dataset [271]. We follow the protocol of [271] and

predict a subset of 14 joints. We use the pipeline described in Section 4.2.5 to preprocess

the depth images: It crops a 128 × 128 patch around the hand location, and normalizes

its depth values to the range of [−1,+1].

Creating synthetic depth images for hand poses is a relatively simple problem. In

practice, we use the 3D hand model of [271] to render synthetic views of a hand. However,

it should be noted that the noise present in real depth images captured with a structured-

light sensor is difficult to simulate, and our synthetic depth images do not contain any

noise. We use 5M synthetic images of the hand that are rendered online during training

from poses of the training set perturbed with randomly added articulations.

(a) Synthetic depth images. (b) Real depth images.

Figure 7.5: Importance of noise in real depth images. (a): Synthetic images; (b): Real images
for the same poses as in (a). There is a significant amount of sensor noise present in the real
depth images, which considerably deteriorates the results when using synthetic training data
only, as we show below.

7.4.2 Comparison with Transfer Learning

We first compare our method to other domain adaptation methods: The transfer learning

method proposed in [219], the GRL method of [69], and the ADDA method of [274].

We also compare to the DDC method [275], designed for classification. We therefore

changed the classification loss to our regression loss on the 3D pose. A comparison to

these other transfer learning methods is shown in Table 7.1. Although the other transfer

learning methods improve the accuracy compared to training with real data only, the

results obtained by our proposed Feature Mapping are much more accurate.

We also tried the method of [274], which performed actually more poorly on this

problem. This can be explained by the fact that this method does not guarantee that

the learned features carry enough information for predicting a pose, as this method was

designed for classification, not regression.
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Method [219] GRL [69] DDC [275] DeepPrior++
DeepPrior++

w/ Feature Mapping

Avg. 3D error 9.8 mm 9.4 mm 11.1 mm 12.3 mm 7.4 mm

Table 7.1: Comparison of different domain adaptation methods ([219], GRL [69], and
DDC [275]) on 3D hand pose estimation using the NYU dataset [271]. All methods predict
the 3D joint locations using regression and we compare them using the average Euclidean 3D
error. DeepPrior++ denotes the results obtained using only the real images. Our method,
DeepPrior++ with Feature Mapping, outperforms the other domain adaptation methods on
this problem.

7.4.3 Comparison with Baselines

We compare our method to very recent state-of-the-art methods: DeepPrior++ intro-

duced in Section 4.2.5 that integrates a prior on the 3D hand poses into a Deep Network;

REN [82] relies on an ensemble of Deep Networks, each operating on a region of the input

image; Lie-X [300] uses a sophisticated tracking algorithm constrained to the Lie group;

Crossing Nets [283] uses an adversarial training architecture; Neverova et al . [178] pro-

posed a semi-supervised approach that incorporates a semantic segmentation of the hand;

DeepModel [321] integrates a 3D hand model into a Deep Network; DISCO [22] learns

the posterior distribution of hand poses; Feedback introduced in Chapter 5 that uses an

additional Deep Network to improve results of an initial prediction; Hand3D [52] uses a

volumetric Convolutional Neural Network (CNN) to process a point cloud.

Table 7.2 compares the different methods we consider using the average Euclidean dis-

tance between ground truth and predicted joint 3D locations, which is a de facto standard

for this problem. When training on synthetic data only, the error on the real test im-

ages is 21 mm, which suggests that the network severely overfits to the synthetic depth

images and cannot generalizes to real depth images, which are often very noisy. By using

DeepPrior++ with Feature Mapping, we achieve an error of 7.4 mm, which improves the

state-of-the-art by 4.9 mm or almost 40%. DeepPrior++ with Feature Mapping achieves

state-of-the-art accuracy at the time of writing, and when using ground truth detection,

the accuracy can be improved to an average 3D error of 5.5 mm.

Figure 7.7 shows the fraction of frames where all joints of a frame are within a maxi-

mum distance from the ground truth. This is a very difficult metric since a single erroneous

joint can deteriorate the result of a frame [183, 260]. We significantly outperform all pre-

vious works on this difficult metric, by almost 40% at an error threshold of 20 mm.

Figure 7.6 shows some qualitative results. When only synthetic depth images are used,

the predictions for synthetic depth images are typically very good, but the predictions for

real images are bad. When using our method, the predicted poses significantly improve,

especially in the presence of noise in the depth images. In Figure 7.8 we qualitatively

compare the 3D hand pose estimates obtained with our approach to those obtained with

DeepPrior++.
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Method Average 3D error

Neverova et al . [178] 14.9 mm
Crossing Nets [283] 15.5 mm
Lie-X [300] 14.5 mm
REN [82] 13.4 mm
DeepPrior++ (Section 4.2.5) 12.3 mm
Feedback (Chapter 5) 16.2 mm
Hand3D [52] 17.6 mm
DISCO [22] 20.7 mm
DeepModel [321] 16.9 mm

DeepPrior++ synthetic only 21.1 mm
DeepPrior++ w/ Feature Mapping 7.4 mm

Table 7.2: Quantitative evaluation on the NYU dataset [271]. We compare the average Eu-
clidean 3D error of the predicted poses with state-of-the-art methods on the NYU dataset. The
numbers are reported for the real test images.

Figure 7.6: Qualitative results on the NYU dataset [271]. Top row: Predicted poses on
synthetic test depth images. Middle row: Predicted poses on real test depth images, when
training on synthetic depth images only. Training only on synthetic depth images does not
generalize well to real depth images. Bottom row: Predicted poses when using our proposed
DeepPrior++ with Feature Mapping. We plot the 2D projection of the 3D pose prediction. Blue
denotes ground truth annotations, red are our predictions.
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Figure 7.7: Comparison with state-of-the-art methods on the NYU dataset [271]. We plot the
fraction of frames where all joints of a frame are within a maximum distance from the ground
truth. A larger area under the curve indicates better results. The proposed DeepPrior++ with
Feature Mapping (DP++ w/ FM) performs best among all other methods.

Further, we compare against DeepPrior++, which is the second best performing

method identified. Figure 7.9 shows a comparison with this method on the NYU

dataset [271], where we compare the distributions of the average 3D joint errors.

DeepPrior++ with Feature Mapping outperform the original DeepPrior++ on almost all

frames.

7.4.4 Influence of the Number of Real Training Images

Capturing real data is very cumbersome and time consuming, which motivates the use of

synthetic data. We therefore evaluate the influence of the number of real training images on

the NYU dataset [271]. The dataset contains 72k real images that we randomly subsample

to reduce the number of real training images, while keeping the number of synthetic images

the same. Figure 7.10 shows the influence of the number of real training images on the

final results. Using our method systematically improves the results compared to using

only real images for training. DeepPrior++ with Feature Mapping requires less than 1%
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Figure 7.8: Top rows: Estimated 3D poses for the hand on the NYU dataset [271] by using
DeepPrior++. Bottom rows: Estimated poses using DeepPrior++ with Feature Mapping
(DP++ w/ FM). Green corresponds to ground truth, blue to our predictions.

of the amount of training images and still has higher accuracy compared to the original

DeepPrior++ trained only on real images. We attribute this to the highly correlated poses

in the training data, which allows to omit many training samples without loosing much

accuracy and the generalization of the feature mapping network.

7.4.5 Runtime

We implemented our approach in Theano [15] and the code runs on an Intel Core i7

with an nVidia Titan GPU. Our approach takes 8.6 ms for the pose inference including

feature mapping, which requires only a few matrix multiplications in addition to the

feature extraction. This corresponds to more than 110 frames per second (fps). These

computation times should be compared to those of the exemplar-based approach of [161],

which reports runtimes of several seconds per image.
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Figure 7.9: Joint distribution of the average Euclidean 3D distance (in mm) on the NYU
dataset [271] for DeepPrior++ with Feature Mapping (on the x-axis) and the original Deep-
Prior++ (on the y-axis). The fact that the distribution mass is over the main diagonal shows
that Feature Mapping improves the pose estimates for most of the images. The improvement is
often very large on the NYU dataset.

7.5 Discussion

We showed that domain transfer between synthetic and real images can be achieved easily

in the case of 3D pose inference. We presented an approach that learns a mapping between

the two domains from synthetic images rendered under the same pose as the available real

training images, jointly with feature extraction and pose inference. Our method is simple

to implement, can be easily optimized, is very efficient at run-time, and allowed us to

outperform the state-of-the-art on a popular dataset for 3D hand pose estimation.
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In the previous chapter, we showed how to exploit additional synthetic data. In case

of 3D hand pose estimation, generating synthetic depth images is a rather simple task,

but recent work in this field [172, 237, 325] tends to use color images as input. However,

rendering color images for hands is much more difficult than rendering depth images, since

it would need to consider lighting and texture as well. Therefore, we introduce a novel

learning method for 3D pose estimation from color images. While acquiring annotations

for color images is a difficult task, our approach circumvents this problem by learning a

mapping from paired color and depth images captured with an RGB-D camera. We jointly

learn the 3D pose from synthetic depth images that are easy to generate, and learn to

align these synthetic depth images with the real depth images. We show our approach

for the task of 3D hand pose estimation from color images only. Our method achieves

performances comparable to state-of-the-art methods on a popular benchmark dataset,

without requiring any labels for the color images.
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Figure 8.1: Method overview. We train a depth feature extractor (red box) together with a
pose estimator (blue box) on synthetic data. We also train a second network (green box), which
extracts image color features and maps them to the depth space, given color images and their
corresponding depth images. At run-time, given a color image, we map color features to depth
space in order to use the pose estimator to predict the 3D pose of the hand (dashed lines). This
removes the need for labeled color images.

Figure 8.2: Our method allows accurate 3D pose estimation from color images without labeled
color images. We show the estimated 3D joint locations projected to the color image.

8.1 Introduction

As already discussed in the previous chapters, Deep Learning methods require a large

amount of training data to perform well [181, 203, 205, 264, 297]. To create training data,

the labeling is usually done with the help of markers [88, 311], which is very cumbersome,

expensive, or sometimes even impossible, especially from color images. For example, mark-

ers cannot be used for 3D hand labeling of color images, as they change the appearance

of the hand.

1The original publication [204], on which this chapter is based on, was done in collaboration with Mahdi
Rad, who conducted experiments on 3D object pose estimation that were also presented in the original
paper.
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Another direction is to use synthetic images for training. However, synthetic

images do not exactly look like real images. Generative Adversarial Networks

(GANs) [24, 76, 230, 323] or transfer learning techniques [69, 171, 192, 219], as the

method we introduced in Chapter 7, can be used to bridge the domain gap between

real and synthetic images. However, these approaches still require some annotated real

images to learn the domain transfer. In Chapter 7 we relied on registered real images to

compute a direct mapping between the image features of real and synthetic images, but

it also requires some labeled real images.

In this chapter, we propose a method that learns to predict a 3D pose from color

images, without requiring labeled color images. Instead, it exploits labeled depth images.

These depth images can be real depth images, which are easier to label than color images,

and are already readily available for some problems. More interestingly, they can also be

synthetic depth images: Compared to color images, synthetic depth images are easier to

render, as there is no texture or illumination present in these images.

An overview of our approach is shown in Figure 8.1. Our main idea is to bridge the

domain gap between color images and these synthetic depth images in two steps, each one

solving an easier problem than the original one. We use an RGB-D camera to capture a set

of pairs made of color and depth images that correspond to the same view. Capturing such

a set can be done by simply moving the camera around. We apply Feature Mapping, which

we introduced in Chapter 7, to this set and learn to map the features from the color images

to corresponding depth images. However, this mapping alone is not sufficient: A domain

gap between the depth images captured by the RGB-D camera and the available labeled

depth images remains, since the labeled depth images could be captured with another

RGB-D camera or rendered synthetically. Fortunately, this remaining gap is easier to

bridge than the domain gap between real and synthetic color images, since illumination

and texture effects are not present in depth images. To handle it, we use Maximum Mean

Discrepancy (MMD) [80] to measure and minimize the distance between the means of

the features of the real and synthetic depth images mapped into a Reproducing Kernel

Hilbert Space (RKHS). MMD is a popular in domain transfer method [219] since it does

not require correspondences to align the features of different domains and can be efficiently

implemented.

Our approach is general. It can be applied to many other applications, such as 3D

object pose estimation, human pose estimation, etc. Furthermore, in contrast to color

rendering, no prior information about object’s texture has to be known. Figure 8.2 shows

results on 3D hand pose estimation from color images on the STB dataset [316]. Our

method achieves performance comparable to state-of-the-art methods on this dataset with-

out requiring any labels for the color images.

In the remainder of this chapter, we discuss related work, then present our approach

and its evaluation.
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8.2 Related Work on Domain Transfer Learning

As we mentioned in the introduction, it is difficult to acquire annotations for real training

data, and training on synthetic data leads to poor results [120, 203]. This is an indication

for a domain gap between synthetic and real training data. Moreover, using synthetic

data still requires accurately textured models [32, 95, 120, 203] that require large amount

of engineering to model. On the other hand, synthetic depth data is much simpler to

produce, but still it requires a method for domain transfer.

A popular method is to align the distributions for the extracted features from the differ-

ent domains. GANs [76] and Variational Autoencoders (VAEs) [126] can be used to learn

a common embedding for the different domains. This usually involves learning a transfor-

mation of the data such that the distributions match in a common subspace [69, 171, 192].

[237] learns a shared embedding of images and 3D poses, but it requires annotations for

the images to learn this mapping. Although GANs are able to generate visually similar

images between different domains [323], the synthesized images lack precision required to

train 3D pose estimation methods [24, 205]. Therefore, [172] developed a sophisticated

GAN approach to adapt the visual appearance of synthetically rendered images to real

images, but this still requires renderings of high-quality synthetic color images.

To bridge this domain gap, we introduced a method in Chapter 7 that predicts synthetic

features from real features and uses these predicted features for inference, but this works

only for a single modality, i.e., depth or color images, and requires annotations from both

domains. Similarly, [85] transfers supervision between images from different modalities by

learning representations from a large labeled modality as a supervisory signal for training

representations for a new unlabeled paired modality. In our case, however, we have an

additional domain gap between real and synthetic depth data, which is not considered in

their work. Also, [31] aims at transforming the source features into the space of target

features by optimizing an adversarial loss. However, they have only demonstrated this for

classification and this approach works poorly for regression, as shown in Chapter 7. [219]

proposed a Siamese Network for domain adaptation, but instead of sharing the weights

between the two streams, their method allows the weights to differ and only regularizes

them to keep them related. However, we have shown in Chapter 7 that the adapted

features are not accurate enough for 3D pose estimation.

Differently, [312] transfers real depth images to clean synthetic-looking depth images.

However, this requires extensive hand-crafted depth image augmentation to create artificial

real-looking depth images during training, and modeling the noise of real depth cameras is

difficult in practice. [267] proposed to randomize the appearance of objects and rendering

parameters during training, in order to improve generalization of the trained model to

real-world scenarios. However, this requires significant engineering effort and there is no

guarantee that these randomized renderings cover all the visual appearances of a real-world

scene.

Several works [97, 236] proposed a fusion of features from different domains. [97] fuses
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color and depth features by using labeled depth images for a few categories and adapts a

color object detector for a new category such that it can use depth images in addition to

color images at test time. [236] proposed a combination method that selects discriminative

combinations of layers from the different source models and target modalities and sums the

features before feeding them to a classifier. However, both works require annotated images

in all domains. [103] uses a shared network that utilizes one modality in both source

and target domain as a bridge between the two modalities, and an additional network

that preserves the cross-modal semantic correlation in the target domain. However, they

require annotations in both domains, whereas we only require annotations in one, i.e., the

synthetic, domain that are much easier to acquire.

When comparing our work to these related works on domain transfer

learning, these methods either require annotated examples in the target do-

main [31, 97, 103, 172, 205, 236], are restricted to two domains [31, 83, 97, 205, 236],

or require significant engineering [267, 312]. By contrast, our method does not require

any annotations in the target domain, i.e., color images, and can be only trained on

synthetically rendered depth images that are easy to generate, and the domain transfer

is trained from real data that can be easily acquired using a commodity RGB-D camera.

8.3 Domain Transfer for 3D Pose Estimation from Color

Images

Given a 3D model of a hand, it is easy to generate a training set made of many depth

images of the hand under different 3D poses. Alternatively, we can use an existing dataset

of labeled depth images. We use this training set to train a first network to extract features

from such depth images, and a second network, the pose estimator, to predict the 3D pose

of a hand, given the features extracted from a depth image. Because it is trained on many

images, the pose estimator performs well, but only on depth images.

To apply the pose estimator network to color images, we train a network to map

features extracted from color images to features extracted from depth images, as was done

in Chapter 7 between real and synthetic images. To learn this mapping, we capture a set

of pairs of color and depth images that correspond to the same view, using an RGB-D

camera. In order to handle the domain gap between the real and synthetic depth images

of two training sets, we apply MMD [80], which aims to map features of each training set

to a RKHS and then minimizes the distance between the means of the mapped features

of the two training sets. An overview of the proposed method is shown in Figure 8.3.

8.3.1 Learning the Mapping

More formally, let T S = {(xSi ,yi)}i be a training set of synthetically rendered depth

images xSi using a 3D rendering engine under 3D poses yi. A second training set T RGB-D =

{(xRi ,xDi )}i consists of pairs of color images xRi , and their corresponding depth images
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Figure 8.3: Detailed overview of our approach. It consists of three data streams, one for
each domain. The lower two streams take depth images as input, i.e., synthetic and real depth
images, respectively, and extract features using the network fD. The upper stream takes color
images as input and uses the mapping network g to map the color features to the depth features
used for pose prediction with network hD. The parameters of the depth feature extractor fD
and pose predictor hD are shared between the synthetic and real depth image (green arrows).
Between the synthetic and the real depth feature we have the MMD loss LMMD and between
the real color and real depth features we use the feature mapping loss LFM . For inference at
test time, we use only the upper stream within the dashed lines that takes a real color image as
input, extracts features using the network fC , maps these features to the depth space using g,
and uses the pose estimator hD to predict the 3D pose.

xDi . We jointly train four networks: the feature extractor for depth images fD, the feature

extractor for color images fC , the pose estimator hD, and the feature mapping network g,

on the training sets T D and T RGB-D.

We optimize the following loss function over the parameters of networks fD, hD, fC ,

and g as:

L(θD, θh, θC , θg; T S , T RGB-D) =

LP (θD, θh; T S) + βLFM (θD, θC , θg; T RGB-D) + γLMMD(θD; T S , T RGB-D) ,
(8.1)

where θD, θh, θC , and θg are the parameters of networks fD, hD, fC , and g, respectively.

The losses LP for the pose, LFM for the feature mapping between color and depth features,

and LMMD for the MMD between synthetic and real depth images are weighted by meta

parameters β and γ.
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LP is the sum of the errors for poses predicted from depth images:

LP (θD, θh; T S) =
∑

(xSi ,yi)∈T S
‖hD(fD(xSi ; θD); θh)− yi‖2 . (8.2)

LFM is the loss used to learn to map features extracted from depth images to features

extracted from their corresponding color images:

LFM (θD, θC , θg; T RGB-D) =
∑

(xRi ,x
D
i )∈T RGB-D

‖g(fC(x
R
i ; θC); θg)− fD(xDi ; θD)‖2 . (8.3)

Finally, LMMD is the MMD [80] loss to minimize the domain shift between the distribution

of features extracted from real and synthetic depth images of these training sets:

LMMD(θD; T S , T RGB-D) =
∥∥∥ 1

|T RGB-D|
∑

xDi ∈T RGB-D φ(fD(xDi ; θD)) −
1
|T S |

∑
xSi ∈T S

φ(fD(xSi ; θD))
∥∥∥2
,

(8.4)

where φ(·) denotes the mapping to kernel space, but the exact mapping is typically un-

known in practice. By applying the kernel trick, this rewrites to:

LMMD(θD; T S , T RGB-D) = 1
|T RGB-D|2

∑
i,i′ k(fD(xDi ; θD), fD(xDi′ ; θD))

− 2
|T RGB-D||T S |

∑
i,j k(fD(xDi ; θD), fD(xSj ; θD))

+ 1

|T S |2
∑

j,j′ k(fD(xSj ; θD), fD(xSj′ ; θD)) ,

(8.5)

where k(·, ·) denotes a kernel function. In this work, we implement k(·, ·) as an RBF

kernel, such that:

k(x,y) = e−
‖x−y‖2

2σ2 , (8.6)

where we select the bandwidth σ = 1. Note that our method is not sensitive to the exact

value of σ.

At run-time, given a real color image xR, we extract its features in color space and

map them to the depth feature space by the networks fC and g, respectively, and then use

the pose estimator hD to predict the 3D pose ŷ of the hand:

ŷ = hD(g(fC(x
R))) . (8.7)

8.3.2 Network Details and Optimization

For the depth feature extraction network fD, we use a network architecture similar to

the 50-layer Residual Network [92], and remove the Global Average Pooling [92] as done

in [173, 181, 205]. The convolutional layers are followed by two fully connected layers of
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1024 neurons each. The pose estimator hD consists of one single fully connected layer with

63 outputs, which correspond to 3 values for each of the 21 joints. Additionally, we add

a 3D pose prior, as introduced in Chapter 4, as a bottleneck layer to the pose estimator

network hD, which was shown to efficiently constrain the 3D hand poses and also gives

better performance in our case.

For the color feature extractor fC , we use the same architecture as the depth feature

extractor, which makes the feature extractor comparable to the one used in [172, 237].

As in Chapter 7, we use a two Residual blocks [92] network g for mapping the features

of size 1024 from color space to depth space. Each fully connected layer within the Residual

block has 1024 neurons.

In practice, we use β = 0.02 and γ = 0.01 for the meta parameters of the objective

function in Eqn. (8.1) for all our experiments. We first pretrain fD and hD on the syn-

thetic depth dataset T S . We also pretrain fC by predicting depth from color images [60].

Pretraining is important in our experiments for improving convergence. We then jointly

train all the networks together using the ADAM optimizer [125] with a batch size of 128

and an initial learning rate of 10−4.

8.4 Evaluation

In this section, we evaluate our method on 3D hand pose estimation from color images

only.

8.4.1 Training Data

We use the Stereo Hand Pose Benchmark (STB) [316] and the Rendered Hand

Dataset (RHD) [325] for training and testing our approach for 3D hand pose estimation.

We follow the protocol of [172, 237, 325], which use the first two sequences from the STB

dataset for testing. The remaining ten sequences from the STB dataset together with

the RHD dataset are used for the training set T RGB-D, since they both contain aligned

depth and color images. Creating synthetic depth images for hands is a relatively simple

problem. For generating the training set T S we use the publicly available 3D hand model

of [271] to render synthetic depth images of a hand. We use 5M synthetic images of the

hand that are rendered online during training from poses of the NYU 3D hand pose

dataset [271] perturbed with randomly added articulations. Furthermore, [172, 325] align

their 3D prediction to the ground truth wrist which we also do for comparison.

We use the pipeline described in Chapter 4 to preprocess the depth images: It crops

a 128× 128 patch around the hand location, and normalizes its depth values to the range

of [−1,+1]. For the color image we also crop a 128× 128 patch around the corresponding

hand location and subtract the mean RGB values. When a hand segmentation mask is

available, such as for the RHD dataset [325], we superimpose the segmented hand on
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random color backgrounds from the RGB-D dataset [136]. During training, we randomly

augment the hand scale, in-plane rotation, and 3D translation, as done in Section 4.2.5.

8.4.2 Comparison with Baselines
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Figure 8.4: 3D Percentage of Correct Keypoints (PCK) curves for comparison to state-of-the-
art 3D hand pose estimation methods on the STB dataset [316]. Note that all other approaches
use annotated color images for training, whereas we do not use any annotations for the color
images.

We compare to the following methods: GANerated [172]2, which uses a GAN to adapt

synthetic color images for training a Convolutional Neural Network (CNN); Z&B [325],

which uses a learned prior to lift 2D keypoints to 3D locations and the similar approach

of Zhao et al . [319]; Zhang et al . [316], which uses stereo images to estimate depth and

applies a depth-based pose estimator with variants denoted PSO, ICPPSO, and CHPR;

Spurr et al . [237], which projects color images to a common embedding that is shared

between images and 3D poses.

2The results reported in the paper [172] are tracking-based and include an additional inverse kinematics
step. In order to make their results more comparable to ours, we denote results predicted for each frame
separately without inverse kinematics kindly provided by the authors.
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Figure 8.4 shows the PCK curves over different error thresholds, which is the most

common metric on the STB dataset [172, 237, 316, 325]. This metric denotes the average

percentage of predicted joints below an Euclidean distance from the ground truth 3D joint

location. While all methods that we compare to require annotations for color images, we

can achieve comparable results without annotations of color images.

8.4.3 3D Pose from Predicted Depth Images

Color image
Pose prediction on
real depth image

Pose prediction on
predicted depth image

Our approach on
color image

(a) (b) (c) (d)

Figure 8.5: We use the paired color and depth images shown in (a) and (b) to predict depth
from color images [60] shown in (c). We further apply our 3D pose estimator DeepPrior++,
introduced in Section 4.2.5, on these images. These predictions from the predicted and real
depth images are shown in (b) and (c), respectively. Although the predicted depth images look
visually close, the accuracy of the estimated 3D pose is significantly worse compared to using
the real depth images. The results from our method are shown in (d) and provide a significantly
higher accuracy. Our predictions are shown in blue and the ground truth in green.

3D hand pose estimation methods work very well on depth images [173, 181]. Since

we have paired color and depth images, we can train a CNN to predict the depth image

from the corresponding color image [60]. Since the pose estimator works on cropped image

patches, we only use these cropped image patches for depth prediction, which makes the

task easier. We then use the predicted depth image for our depth-based 3D hand pose

estimator DeepPrior++. Although this approach also does not require any annotations

of color images, our experiments show that this performs significantly worse on the STB

dataset compared to our approach. The 3D pose estimator gives an average Euclidean joint

error of 17.6 mm on the real depth images and 39.8 mm on the predicted depth images.

We show a qualitative comparison in Figure 8.5.
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8.4.4 Comparison with Domain Adaptation

Finally, we evaluate the domain adaption technique of [69] that aims to learn invariant

features with respect to the shift between the color and depth domains. However, this

approach gives an average 3D error of 28.5 mm, which shows that although this technique

helps for general applications such as classification, the features are not well suited for 3D

pose estimation. For comparison, training on synthetic images only gives an average 3D

error of 31.4 mm.

8.4.5 Qualitative Results

We show some qualitative results of our method for 3D hand pose estimation in Figure 8.6.

These examples show that our approach predicts very accurate poses.

Figure 8.6: Qualitative results of our method for 3D hand pose estimation on the STB
dataset [316]. Green denotes ground truth and blue corresponds to the predicted pose.

Figure 8.7 illustrates some failure cases that occur due to the challenges of the test

sets, such as misalignment and confusion of the different fingers, severe self-occlusions,

or missing poses in the paired dataset T RGB-D that can be simply resolved by capturing

additional data with an RGB-D camera.

8.4.6 Runtime

All experiments are implemented using Theano [15] and run on an Intel Core i7 with an

nVidia Titan. Given an image window extracted around the hand, our approach takes

8.6 ms for 3D hand pose estimation to extract color features, map them to the depth

feature space, and estimate the 3D pose.
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(a) (b)

Figure 8.7: Some failure cases for 3D hand pose estimation due to (a) misalignment/confusion
of the fingers, and (b) severe self-occlusions.

8.5 Discussion

In this chapter we presented a novel approach for 3D pose estimation from color images,

without requiring labeled color images for training. We showed that a pose estimator can

be trained on a large number of synthetic depth images, and at run-time, given a color

image, we can map its features from color space to depth space. We showed that this

mapping between the two domains can easily be learned by having corresponding color and

depth images captured by a commodity RGB-D camera. Our approach is simple, general,

and can be applied to different application domains, such as 3D hand pose estimation.

While for this task our approach achieves performances comparable to state-of-the-art

methods, it does not require any labels for the color images.
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9
Joint Hand-Object Pose Estimation
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In the previous chapters, we introduced methods for accurate 3D hand pose estimation

from images and how to deal with the tedious task of acquiring training data. However, in

Virtual Reality (VR) and especially in Augmented Reality (AR) applications, the hand is

commonly interacting with or manipulating objects. This introduces additional occlusions

of the hand and the object that need to be considered. Therefore, we show in this chapter

how to generalize our feedback loop approach introduced in Chapter 5 to multiple objects.

This generalization gives accurate results for the challenging task of jointly estimating

the 3D poses of hands and objects, while hands interact with objects. This is inherently

challenging, since the objects introduce additional occlusions and enlarge the joint config-

uration space. In such a case, we first estimate initial poses for the hand and the object

separately, and then fuse these initial predictions within our feedback framework to in-

crease the accuracy of the two poses. For this complex problem, our novel approach works

on each frame independently and does not require a good initialization as current tracking-

based approaches do [240, 276], while still outperforming the state-of-the-art when using

depth images only.

9.1 Introduction

Joint hand-object pose estimation is still an unsolved problem, yet there are plentiful

applications in AR and VR, e.g ., in-hand object manipulation, or video game control.
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The task at hand is very challenging: It involves estimating the 3D pose of the hand and

the 3D pose of the object. Thus in addition to the large number of Degrees of Freedom

(DoF) of the hand there are six DoF of the object. Also, there are severe occlusions of

the object and the hand from each other in addition to the self-occlusions of the hand.

So far, the methods that are used to solve this problem rely on model-based tracking

approaches [187, 240, 276]. They start from an initial pose of the hand and the object

and optimize the pose of the hand and the object for a new frame by starting from the

pose of the last frame. Although recent approaches can perform this optimization in real-

time [240, 276], these approaches are inherently prone to drifting over time that can cause

large problems in practice, especially for long sequences or fast movement. In contrast

to these joint hand-object pose estimation methods, our approach only requires a single

depth camera, works without initialization, without temporal tracking, and does not drift

over time.

In this chapter we present, to the best of our knowledge, the first method for single-

frame joint hand-object pose estimation. Our approach does not require temporal tracking

and works for single depth images. We build upon recent work that we introduced in

Chapter 5, which uses a feedback loop for hand pose estimation. In this chapter we

generalize this approach to multiple objects, since this method only accounts for a single

hand and does not work well in the case of occlusion. Therefore, we introduce an additional

feedback loop for the object. Both feedback loops, one for the hand and one for the object,

jointly take a synthesized image of the hand and the object from the previous iteration as

input and thus learn to be invariant to the occlusions of the other object.

We evaluate our approach on a public dataset for joint hand-object pose estimation

and show that our approach can outperform the state-of-the-art when using depth images

only. It is also efficient as our implementation runs in real-time on a single GPU.

In the remainder of the chapter, we describe our approach in Section 9.2 and evaluate

it in Section 9.3.

9.2 Generalized Feedback Loop for Joint Hand-Object Pose

Estimation

We now aim at estimating both the pose PH of a hand and the pose PO of an object

simultaneously while the hand is manipulating the object. We start the pose prediction

by first estimating the locations of the hand and the object within the input image.

Using the localization, we predict an initial estimate of the pose for the hand and the

object separately. In practice, these poses are not very accurate, since hand and object

can severely occlude each other. Therefore, we introduce feedback by first synthesizing

depth images of the hand and the object and merge them together. An overview of

our method with the different operations and networks is shown in Figure 9.1. We then

predict an update that aims at correcting the object pose and the hand pose. Each step is
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performed by a Convolutional Neural Network (CNN). As in Chapter 5, we denote them

localizer CNN loc(.), predictor CNN pred(.), synthesizer CNN synth(.), and updater

CNN updater(., .). However, this time we use one network for the hand and one for the

object and use suffixes H and O, respectively, to distinguish them. In the following we

detail how the individual networks are trained.

We now aim at estimating the hand pose and the object pose simultaneously, thus we

require for the training set the hand pose and the object pose for each depth frame T =

{(Di,PO
i ,P

H
i )}Ni=1. Acquiring these annotations for real data can be very cumbersome,

and therefore we only use synthetically generated training data. We outline the generation

of the training data in Section 9.2.5.

9.2.1 Learning the Hand and Object Localizers

During experiments we have found that accurate localization of the hand and the object

is crucial for accurate pose estimation. Since we use multiple objects, we use the center

of mass to perform a rough localization and extract a larger cube around the center of

mass that contains the hand and the object. Then, we use two CNNs to perform the

localization of the hand and the object separately. We train two networks, locH(.) for the

hand and locO(.) for the object, both taking the same input image cropped from the center

of mass location. The network architectures are the same as the one used in Section 5.3.2

and shown in Figure 4.4. The networks are trained to predict the 2D location and depth

of the MCP joint of the hand lH , and the object centroid lO, respectively. Formally, we

optimize the cost function

Γ̂ = arg min
Γ

∑
(D,lH)∈T

‖locHΓ (D)− lH‖2 (9.1)

for the hand localizer, and

χ̂ = arg min
χ

∑
(D,lO)∈T

‖locOχ (D)− lO‖2 (9.2)

for the object localizer, where Γ and χ are the parameters of the localizer CNNs.

9.2.2 Spatial Transformer and Inverse Spatial Transformer Networks

Once we are given the location of the hand and the object, we use them to crop a region of

interest around the hand and the object, respectively, using a STN . Note that this makes

the crop differentiable and thus trainable end-to-end. The STN proposed in [111] was

parametrized to work with 2D images. In this work, we apply the STN on 2.5D depth

images. We estimate the spatial transformation Aθ from the 3D location, calculated from

the predicted 2D location and depth. Using the intrinsic camera calibration we denote the

projection from 3D to 2D as proj(·), the 3D bounding box as c, and the 3D location as
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Figure 9.1: Overview of our joint hand-object pose estimation method. We show the predictors
for the initial poses with one iteration of the updaters. The input to our method is a crop from
the depth camera frame that contains the hand with the object estimated from the center of mass
in the depth camera frame. From this input, we localize the hand and the object separately, by
predicting the 2D locations and depth using the localizer CNNs. We apply Spatial Transformer
Networks (STNs) to crop regions of interest around the predicted locations. On these centered
crops, we predict initial poses using the predictor CNNs, which are then used to synthesize
depth images of the hand and the object using the synthesizer CNNs. Using Inverse Spatial
Transformer Networks (ISTNs), we paste back the different inputs, i.e., the synthesized object
and the synthesized hand, into the original input frame. These images are stacked together (⊗)
and serve as input to the updater CNNs that predict one update for the pose of the hand and
one for the object. The updates are added to the poses and the procedure is iterated several
times.
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t. We can estimate the 2D bounding box projection as (x±, y±) = proj(t± c) and define

x∆ = (x+ − x−) and y∆ = (y+ − y−). This leads to the parametrization of the spatial

transformation Aθ as:

Aθ =

x∆/2 0 x− + x∆/2

0 y∆/2 y− + y∆/2

0 0 1

 , (9.3)

for the parametrization of the sampling grid locations as in [111]. The source sampling grid

locations (xs, ys) are obtained by transforming the regularly sampled target grid locations

(xt, yt) as:

(xs, ys)T = Aθ · (xt, yt, 1)T . (9.4)

We then use bilinear sampling to interpolate the depth values of input depth image D of

size W ×H:

STN(l,D) =
H∑
h

W∑
w

D[h,w] max(0, 1− |xs − w|) max(0, 1− |ys − h|) . (9.5)

Since we apply a detection and crop using the STN , we require the inverse operation

for putting the synthesized object back into the original image frame before applying the

updater CNN . Hence, we apply an ISTN [148]. It operates the same way as the STN ,

but uses the inverse of the spatial transformation Aθ.

9.2.3 Learning the Hand and Object Pose Predictors

Once we are given an accurate location of the hand and the object, we crop a patch around

the hand and the object using the STN and use the crop to estimate the pose. We denote

cH the crop of the hand and cO the crop of the object. We denote this operation as

cO = STN(locO(D),D). For the pose prediction, we require appropriate parametrization

of the hand and object poses. For the object pose PO, we use the eight corners of its 3D

bounding box, which was shown to perform better than rotation and translation [297].

For the hand pose, we use the 3D joint locations with a prior on the 3D hand poses, as

introduced in Chapter 4. A prior on the 3D hand pose is very effective in case of occlusions,

since it constraints the predicted hand pose to valid poses. For our experiments with hands

manipulating objects, we use a similar architecture to the network shown in Figure 4.4 for

the sake of speed. However, for the hand predictor CNN predH(.) we use 3 ·J neurons for

the output layer and for the object predictor CNN predO(.) we use 3 · 8 neurons.

Again, we optimize two cost functions to train the predictor CNNs. For the hand pose

predictor we optimize

η̂ = arg min
η

∑
(D,PH)∈T

‖P(predHη (cH))−PH‖2 , (9.6)
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where P is the linear prior on the 3D hand poses. For the object pose predictor we optimize

Π̂ = arg min
Π

∑
(D,PO)∈T

‖predOΠ(cO)− π(PO)‖2 , (9.7)

where π(·) returns the 3D bounding box coordinates given the object pose. η and Π denote

the parameters of the predictor CNNs. We use orthogonal Procrustes analysis [117] to

obtain the 3D object pose from the output of predO(.).

9.2.4 Learning the Hand and Object Updaters

Since we now have initial estimates of the pose for the hand and the object, we can use

them to start a feedback loop that considers the interaction of hand and object. Therefore,

we extend the input data of the updater CNN with the synthesized image of the hand and

the object given the initially predicted poses. This requires training a synthesizer CNN

or using a software renderer. Since we have the 3D model of the object readily available,

we implement the object synthesizer synthO(.) with an OpenGL-based renderer. During

our experiments, we also evaluated training the updater CNN with the object synthesizer

CNN and this resulted in similar results compared to the OpenGL-based rendering. The

hand synthesizer CNN synthH(.) is trained in the same way as described in Section 5.3.4.

Also, the network architecture of the updater CNN is the same as shown in Figure 5.12.

For training the updater CNN , the synthesized images are merged into a single depth

image:

S = min(ISTN(locH(D), synth(PH)), ISTN(locO(D), synth(PO)))⊗D , (9.8)

where min(A,B) denotes the pixel-wise minimum between two depth images A and B,

and ⊗ denotes a channel-wise stacking. We then train the updater CNN for the hand

updaterH(., .) and the object updaterO(., .) by minimizing the following cost function:∑
(D,PH ,PO)∈T

∑
P′O∈TO

∑
P′H∈TH

max(0, ‖P′′ −P‖ − λ‖P′H,O −P‖) , (9.9)

where P′′ = P′H,O + updaterH,O(cH,O, S), and TH and TO are sets of poses for the hand

and the object, respectively. When optimizing Eqn. (9.9) for the hand updater CNN

updaterH(., .), the variables with suffix H are used, and when optimizing for the object

updater CNN updaterO(., .) the variables with suffix O are used.

When training the updater CNN updaterH(., .) for the hand, TH is initialized and updated

during training as described in Section 5.3.5. TO is made from random poses around the

ground truth object pose and poses from the predictor predO(.) applied to training im-

ages.

When training the updater CNN updaterO(., .) for the object, TO is defined as in Sec-

tion 5.3.5. TH is made from random poses around the ground truth together with predic-
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tions from the training data.

For inference, we iterate the updater CNN several times: We first obtain the initial

estimates P(0) for hand H and object O, by running the predictor CNN on the cropped

locations from the localizer CNN . Then we predict the updates using the merged image

S(i) from the previous iteration. Figure 9.2 gives a formal expression of this algorithm.



P̂(0),H ← predH(STN(locH(D),D)

P̂(0),O ← predO(STN(locO(D),D)

S(i) ← min(ISTN(locH(D), synth(P̂(i),H)), ISTN(locO(D), synth(P̂(i),O)))⊗D
P̂(i+1),H ← P̂(i),H + updaterH(STN(P(i),H ,D), S(i))

P̂(i+1),O ← P̂(i),O + updaterO(STN(P(i),O,D), S(i)) .

Figure 9.2: Algorithm for joint hand-object pose estimation.

9.2.5 Training Data Generation

Capturing real training data of a hand manipulating an object can be very cumbersome,

since in our case it requires 3D hand pose and 3D object pose annotations for each frame.

This is hindered by severe occlusions, or not always possible at all. Our approach leverages

annotations from datasets of hands in isolation, which are much simpler to capture in

practice [201, 247, 254], and data from 3D object models, which are available at large

scales [35]. We use an OpenGL-based rendering of the 3D object model and fuse the

rendering with the frames from a 3D hand dataset. Since we use depth images, we can

simply take the minimum of both depth images for each pixel. We render the object on

top of the hand, placing the object near the fingers, and apply a simple collision detection,

such that the object is not placed “within” the hand point cloud. The object poses, i.e.,

rotations and translations, are sampled randomly, constrained by the collision detection.

In order to account for sensor noise, we add small Gaussian noise to the rendering. In

Figure 9.3 we show some samples of synthesized training data.

Besides this semi-synthetic training data, we also use completely synthetic training

data of hands and objects. We therefore use a marker-based motion capture system [88]

to capture the hand and object pose while the hand is manipulating different objects.

Since the image data is corrupted with the markers, we render a synthetic hand model

and the CAD object model given the captured poses, and use this rendering as additional

training data.
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Figure 9.3: Training samples used for joint hand-object pose estimation. The interaction
between hand and object cannot be accurately modeled easily, but the solution space of possible
object locations and possible object poses can be significantly reduced, which enables training
our proposed method.

9.3 Evaluation

In this section we present the evaluation of our approach for joint hand-object pose esti-

mation on the challenging DexterHO dataset [240]. First, we describe the data we use for

training. Then, we evaluate our method qualitatively and quantitatively.

9.3.1 Training Data

Since there are no datasets for joint hand-object pose estimation available that contain

enough samples to train a Neural Network, our approach relies on fusing real and synthetic

data. We use real hand data and synthetic object data as described in Section 9.2.5. We

use real hand data from the large MSRA [247] dataset, consisting of 72k depth frames

of hands of 9 different subjects and a wide variety of hand poses. Further, we use the

dataset of Qian et al . [201], which contains 2k depth frames of 6 different subjects. Both

datasets were captured using a Creative RealSenz Time-of-Flight camera, which is the

same camera as used for the experiments on the benchmark dataset. The depth image

resolution is 320× 240 and the annotations contain J = 21 joint locations. The 3D object

models are manually created from simple geometric primitives to resemble the objects

from the benchmark dataset.

9.3.2 Comparison with Baselines

We evaluate the approach using the combined hand-object metric proposed by [240] and

discussed in Section 3. Although we predict the 3D location of all joints of the hand,
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Method Sequence Rigid Rotate Occlusion Grasp1 Grasp2 Pinch Average

Sridhar et al . [240]
RGB+D

Finger tips 14.2 mm 16.3 mm 17.5 mm 18.1 mm 17.5 mm 10.3 mm 15.6 mm
Object corners 13.5 mm 26.8 mm 11.9 mm 15.3 mm 15.7 mm 13.9 mm 16.2 mm

Combined 14.1 mm 18.0 mm 16.4 mm 17.6 mm 17.2 mm 10.9 mm 15.7 mm

Sridhar et al . [240]
D only

Combined – – – – – – 18.5 mm

This work init
D only

Combined 14.1 mm 20.3 mm 18.8 mm 20.8 mm 24.3 mm 17.6 mm 19.3 mm

This work feedback
D only

Finger tips 14.2 mm 17.9 mm 16.3 mm 22.7 mm 24.0 mm 18.5 mm 18.9 mm
Object corners 8.4 mm 23.4 mm 7.4 mm 8.2 mm 16.6 mm 9.6 mm 12.4 mm

Combined 13.2 mm 18.9 mm 14.5 mm 20.2 mm 22.5 mm 16.7 mm 17.6 mm

Table 9.1: Quantitative results on the DexterHO dataset [240]. Note, that [240] uses color
and depth information together with a tracking-based approach, which relies on a strong pose
prior from the previous frame. In comparison, we perform hand and object pose estimation for
each frame independently. Also, we use depth information only, for which their reported average
error is larger than for our approach. Our approach significantly outperforms the baseline for
the accuracy of the object pose on average.

we only use the 3D locations of the finger tips for calculating the error metric. Also, we

predict the full 6 DoF pose of the object and calculate the 3D corner locations for the

evaluation.

We compare our results to the state-of-the-art on the DexterHO dataset [240] in

Table 9.1. Note that the baseline of [240] uses a tracking-based approach, which does

not rely on training data but requires the pose of the previous frame as initialization. By

contrast, we do not require any initialization at all and predict the poses from scratch on

each frame independently. We outperform this strong baseline on two sequences (Rigid

and Occlusion), and when [240] use only depth, as we do, we outperform their method

on average over all sequences of the dataset. Our method is significantly more accurate

for the object corner metric, since it is much easier to acquire training data for objects

compared to hands. For the accuracy of the hand pose estimation, our approach is mostly

restricted by the limited training data.

The updaters perform two iterations for the hand and the object, since the results do

not improve much for more iterations. Using the feedback loop improves the accuracy on

all sequences by 10% on average compared to our initialization.

9.3.3 Qualitative Results

Figure 9.4 shows some qualitative examples. Our approach estimates accurate 3D poses

for the hand and the object.

Figure 9.5 shows the pose for consecutive iterations. The predictor provides an initial

estimate of the pose of the hand and the object, and our feedback loop improves these

initial poses iteratively.
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Figure 9.4: Qualitative results on the DexterHO dataset [240]. Our method provides accurate
hand and object poses, also when the hand is manipulating an object.

9.3.4 Runtime

Our method is implemented in Python using the Theano library [15] and we run the

experiments on a computer equipped with an Intel Core i7, 64GB of RAM, and an nVidia

GeForce GTX 980 Ti GPU. Training takes about ten hours for each CNN . The runtime

is composed of the localizer CNN that takes 0.8 ms, the predictor CNN with the simpler

network architecture takes 0.8 ms, the updater CNN takes 1.2 ms for each iteration, and

that already includes the synthesizer CNN with 0.8 ms. For the joint hand-object pose

estimation we have to run each network once for the hand and once for the object. We

run the inference in two threads in parallel, one for the hand and one for the object. In

practice we iterate our updater CNN twice, thus our method runs at over 40 frames per

second (fps) on a single GPU.

9.4 Discussion

In this chapter we presented a novel approach for joint hand-object pose estimation. First,

we separated the problem into hand pose and object pose estimation, in order to obtain

an initial pose for the hand and the object independently. Then, we introduced a feedback

loop that refines these initial estimates. Remarkably, our approach does not require real

data of hand-object interaction and can be trained on synthetic data, which simplifies the

creation of the dataset. We evaluated our approach on a public dataset for joint hand-

object pose estimation, where our approach outperformed the state-of-the-art tracking-

based approach when using only depth images.
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Figure 9.5: Different iterations on the DexterHO dataset [240]. Top row shows the initialization
and further rows the consecutive iterations. Our results are shown in color and the ground truth
annotations are shown in orange. The ground truth contains the finger tips for the hand and
the corners for the object.
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In the previous chapter, we presented an approach for joint hand-object pose estima-

tion. The assumption for this approach is that we have a priori knowledge of the object

and the hand available. In practice, however, we do not know the object and possible oc-

cluders in advance. Thus, if we do not have any knowledge of the occluder, the accuracy

of the predicted pose is worse, as we show in this chapter. Here we focus on the problem

of 3D object pose estimation, since the problem is better studied and has more publicly

available datasets. Further, it is easier to study this problem for rigid objects compared

to the hand, since rigid objects are not articulated. Especially for hand-held objects, the

occlusions from the hand have a considerable impact as shown in Figure 10.1. Large re-

gions of the object are occluded and since there are many different ways of grasping or

holding an object, it would be difficult to model all different grasps and occlusions during

training.

Therefore, we introduce a novel method for robust and accurate 3D object pose estimation

from a single color image under large occlusions. Following recent approaches [203, 264],

we first predict the 2D projections of 3D points related to the target object and then com-

pute the 3D pose from these correspondences using a geometric method. Unfortunately,

as the results of our experiments show, predicting these 2D projections using a regular

Convolutional Neural Network (CNN) or a Convolutional Pose Machine (CPM) [290] is

highly sensitive to partial occlusions, even when these methods are trained with partially

159
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occluded examples. Our solution is to predict heatmaps from multiple small patches in-

dependently and to accumulate the results to obtain accurate and robust predictions.

Training subsequently becomes challenging because patches with similar appearances but

different positions on the object correspond to different heatmaps. However, we provide a

simple yet effective solution to deal with such ambiguities. We show that our approach out-

performs existing methods on two challenging datasets: The Occluded LineMOD dataset

and the YCB-Video dataset, both exhibiting cluttered scenes with highly occluded objects.

Figure 10.1: Objects from the YCB dataset [32] held in-hand. There are significant occlusions
of the object caused by the hand. Since there are many different ways of grasping the objects,
it would be difficult to consider all different grasps for creating a training dataset.

10.1 Introduction

3D object pose estimation from images is an old but currently highly researched topic,

mostly due to the advent of Deep Learning-based approaches and the possibility

of using large datasets for training such methods. 3D object pose estimation from

RGB-D already has provided compelling results [112, 120, 130, 297], and the accuracy

of methods that only require RGB images recently led to huge progress in the

field [26, 112, 120, 195, 203, 264, 297]. In particular, one way to obtain an accurate pose

is to rely on a Deep Network to initially predict the 2D projections of some chosen 3D

points and then compute the 3D pose of the object using a PnP method [90]. Such an

approach has been shown to be more accurate than the approach of directly predicting

the pose used in [195, 203, 264], and, therefore, we used the former approach in the

research described in this chapter.

However, while Deep Learning methods allow researchers to predict the pose of fully

visible objects, they suffer significantly from occlusions, which are very common in prac-

tice: Parts of the target object can be hidden by other objects or by a hand interacting

with the object. A common ad hoc solution is to train the network with occluded objects

in the training data. As the results of our experiments presented in this chaper show,

the presence of large occlusions and unknown occluders still decrease the accuracy of the

predicted pose.

Instead of using the entire image of the target object as input to the network, we
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Figure 10.2: Overview of our method. (a) Given an image region centered on the target object,
we sample image patches from which we predict heatmaps for the 2D projections of the corners
of the object’s 3D bounding box. This prediction is done by a Deep Network fθ(·). We aggregate
the heatmaps and extract the global maxima for each heatmap, from which we compute the 3D
object pose using a PnP algorithm. We show that fθ(·) can be trained simply and efficiently
despite the ambiguities that may arise when using small patches as input. (b) To obtain the
image region centered on the object, we apply the predictor in a sliding window fashion and
accumulate the heatmaps for the full camera frame. We keep the image region with the largest
values after accumulation.

consider image patches, as illustrated in Figure 10.2, since at least some of these are not

corrupted by the occluder. Using an image patch as input, our approach learns to predict

heatmaps over the 2D projections of 3D points related to the target object. By combining

the heatmaps predicted from many patches, we obtain an accurate 3D pose even if some

patches actually lie on the occluder or the background instead of on the object. We show

results of our method in Figure 10.3.

When moving to an image patch as input, the prediction becomes multimodal. This is
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(a) Cat (pink). (b) Duck (yel-
low).

(c) Can
(white).

(d)
Holepuncher
(blue).

(e) Driller
(green).

Figure 10.3: Our method can be used to predict the 3D pose of objects even when heavy
occlusions are present in color images. We show different objects from the Occluded LineMOD
dataset [25]. The green bounding boxes correspond to the ground truth poses and the blue
bounding boxes, to our estimated poses.
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Figure 10.4: Predicting heatmaps from image patches. In this example, we consider predicting
the projection of the 3D corner highlighted in (a) for the tuna fish can object of the YCB-Video
dataset [297]. The red boxes show the input patch of the predicted heatmap. (b) shows a
patch from which the projection can be predicted unambiguously. (c) shows two patches that
are located in two different positions on the can (notice that the can is flipped and rotated
between the two images) while having a similar appearance. In presence of such patches, it is
only possible to predict a distribution over the possible locations for the projection. (d) shows
a patch on the background, from which we predict a uniform heatmap as it does not provide
additional information. See text for details.

shown in Figure 10.4: Some patches may appear on different parts of the target object but

look similar. These patches are ambiguous, as they can correspond to different predictions.

In such a case, we would like to predict heatmaps with multiple local maxima, one for each

possible prediction. The main challenge is that the ambiguities are difficult to identify:

This would require us to identify the patches that have similar appearances, from all the

possible viewpoints and at all the possible positions on the object.
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The authors of [286] faced a similar problem in the context of 2D object detection when

aiming to localize semantic parts from feature vectors of a convolutional layer computed

by a CNN . As we discuss in Section 10.2, the method they proposed is complex both for

training and inference, and also inaccurate. The solution we propose is much simpler yet

efficient: We train a network to predict heatmaps corresponding to a single solution for

training image patches using a least-squares loss function. Thanks to the properties of

the least-squares loss, this makes the network naturally predict the average of the possible

heatmap solutions for a given patch. This is exactly what we want, because it is the best

information we can obtain from a single patch even if the information remains ambiguous.

We then follow an ensemble approach and take the average of the heatmaps predicted

for many patches, which allows us to resolve the ambiguities that arise with individual

patches. We finally extract the global maximum from this average as the final 2D location.

Our main contribution is, therefore, a simple method that can be used to accurately

predict the 3D pose of an object under partial occlusion. We also considered applying

Transfer Learning to exploit additional synthetic training data and improve performances.

However, as we show, if the input to a network contains an occluder, the occlusion sig-

nificantly influences the network output even when the network has been trained with

occlusion examples and simply adding more training data does not help. In our case,

some of the input patches used by our method will not contain occluders, and Transfer

Learning becomes useful. In practice, we use the Feature Mapping method described in

Chapter 7, which can be used to map the image features extracted from real images to cor-

responding image features for synthetic images. This step is not needed for our method to

outperform the state-of-the-art but allows us to provide an additional performance boost.

In the remainder of this chapter, we first review related work, then discuss the influence

of occlusions on CNNs, present our approach, and finally evaluate it and compare it to

the state-of-the-art methods on the Occluded LineMOD [25] and the YCB-Video [297]

datasets.

10.2 Related Work on Robust 3D Object Pose Estimation

The literature on 3D object pose estimation is extremely large. After the

popularity of edge-based [89] and keypoint-based methods [155] waned, Machine

Learning and Deep Learning became popular in recent years for addressing this

problem [26, 45, 112, 120, 195, 203, 264, 297]. Here, we mostly focus on recent work

based on RGB images. In the Evaluation section, we compare our method to recent

methods [112, 203, 264, 297].

[26, 112] proposed a cascade of modules, whereby the first module localizes the tar-

get objects, and the second module regresses the object surface 3D coordinates. These

coordinates then are used to predict the object pose through hypotheses sampling with a

pre-emptive RANSAC [90]. Most importantly, we do not directly predict 3D points but

average 2D heatmaps. Predicting 3D points for corresponding 2D points seems to be much
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more difficult than predicting 2D points for 3D points, as discussed in [297]. Also, surface

coordinates are not adapted to deal with symmetric objects. [203] also first detects the

target object, then predicts the 2D projections of the corners of the object’s 3D bounding

boxes and, finally, estimates the 3D object pose from their 3D correspondences using a

PnP algorithm. [264] integrated this idea into a recent object detector [208] to predict

2D projections of the corners of the 3D bounding boxes, instead of a 2D bounding box.

Similarly, [195] predicts 2D keypoints in the form of a set of heatmaps as we do in this

work. However, it uses the entire image as input and, thus, performs poorly on occlusions.

It also requires training images annotated with keypoint locations, while we use virtual

3D points. [105] also relies on 2D keypoint detection. They consider partially occluded

objects for inferring the 3D object location from these keypoints. However, their inference

adopts a complex model fitting and requires the target objects to co-occur in near-regular

configuration.

[120] extended the SSD architecture [152] to estimate the objects’ 2D locations and

3D rotations. In a next step, they use these predictions together with pre-computed

information to estimate the object’s 3D pose. However, this requires a refinement step to

get an accurate pose, which is influenced by occlusions. [297] segments the objects and

estimates their 3D poses by predicting the translation and a quaternion for the rotation,

refined by Iterative Closest Point (ICP). Segmenting objects makes their approach robust

to occlusions to some extent, however, it requires the use of a highly complex model. [45]

considers object parts in order to handle partial occlusions by predicting a set of 2D-3D

correspondences from each of these parts. However, the parts have to be manually picked,

and it is not clear which parts can represent objects such as those we evaluate in this

paper.

As mentioned in the introduction, our method is related to [286]. In the context of

2D object detection, [286] localizes semantic parts from neighboring feature vectors using

a spatial offset map. The offset maps are accumulated in a training phase. However,

they need to be able to identify which feature vectors support a semantic part from these

maps, and complex statistical measures are used to identify such vectors. Our method is

significantly simpler, as the mapping between the input patches and the 2D projections

does not have to be established explicitly.

[191] already evaluated CNNs trained on occlusions in the context of 2D object de-

tection and recognition, and proposed modifying training to penalize large spatial filter

support. This yields better performance; however, this does not fully cancel out the influ-

ence of occlusions. Some recent work also describes explicitly how to handle occlusions for

3D pose estimation when dealing with 3D or RGB-D data: Like us, [28] relies on a voting

scheme to increase robustness to occlusions; [167] first segments and identifies the objects

from an RGB-D image. They then perform an extensive randomized search over possible

object poses by considering physical simulation of the configuration. [315] combines holis-

tic and local patches for object pose estimation, using a codebook for local patches and

applying a nearest-neighbor search to find similar poses, in a way similar to [56, 121]. In
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contrast to these methods, we use only color images.

Our method is also related to ensemble methods and, in particular, the Hough

Forests [68], which are based on regression trees. Hough Forests also predict 2D locations

from multiple patches and are multimodal. Multimodal prediction is easy to perform

with trees, as the multiple solutions can be stored in the tree leaves. With our method,

we aim to combine the ability of Hough Forests for multimodal predictions and the

learning power of Deep Learning. [211] already reformulated a Hough Forest as a CNN

by predicting classification and regression for patches of the input image. However, this

method requires to handle the detection separately, and each patch regresses a single

vector, which is not multimodal and requires clustering of the predicted vectors. In

this paper, we show that carrying out a multimodal prediction with Deep Networks to

address our problem is, in fact, simple.

10.3 Influence of Occlusions on Deep Networks

In this section, we describe how we evaluate how much a partial occlusion influences a

Deep Network, whether it is a standard CNN or a CPM [290]. Specifically, a CPM is

a carefully designed CNN that predicts dense heatmaps by sequentially refining results

from previous stages. The input features are concatenated to intermediary heatmaps in

order to learn spatial dependencies.

For this experiment, depicted in Figure 10.5, we use an image centered on an object

as input to a network—here, the Cat object from the Occluded LineMOD dataset [25].

We then compare the layer activations in the absence of occlusion, and when the object

is occluded by an artificial object (here, a striped triangle). We consider two networks:

A standard CNN trained to predict the 2D projections of 3D points as a vector [203],

and a CPM [290] with three stages trained to predict a heatmap for each of the same 2D

projections. For the 3D points, we use the corners of the 3D bounding box of the object.

As can be seen in Figure 10.5, the occlusion induces changes in the activations of all

the layers of both networks. For a standard CNN , the occlusion spreads to more than 20%

in the last feature map, and, beyond the first fully connected layer, more than 45% of all

activations are changed. In this case, all the predictions for the 2D projections, occluded

or not, are inaccurate. A similar effect can be observed for the CPM : Here, the altered

activations are more specifically localized to the occluded region due to the convolutions,

with more than 29% of the activations changed in the last feature map. In this case, the

predictions of the 2D projections are inaccurate when the 3D points are occluded. When

the 3D points are not occluded, the predicted projections are sometimes correct, because

the influence of the occluder spreads less with a CPM than with a standard CNN .

Figure 10.6 shows a more detailed visualization of the effect of occlusions on the feature

maps of CNNs. We show two examples: in the top part of the figure an example with

small occlusion and in the bottom part of the figure an example with a larger occlusion.

In each part of the figure, we show the feature maps with and without occlusions together
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Figure 10.5: Effect of occlusions on the feature maps of Deep Networks. (a) Input image
without (top) and with (bottom) partial occlusion. (b-Top) Sums of absolute differences between
the feature maps with and without occlusions for a CNN trained without occlusions. (b-Bottom)
Same when the network is trained with occlusion examples. (c) Same for a CPM . The influence
of the occlusion increases with the layers’ depths, as receptive fields are larger in the deeper
layers than in the first layers, even when the method is trained with occlusion examples.

with the sums of the absolute differences between them. Further, we compare when the

network is trained with or without occlusion examples. The left column shows the results

for a standard CNN [203] and the right column shows the same for a CPM [290]. The

influence of the occlusion increases with the layers’ depths, as receptive fields are larger in

the deeper layers than in the first layers, even when the method is trained with occlusion

examples.

10.4 Minimizing the Effect of Occlusions

In this section, we first describe our training procedure given an input image region cen-

tered on the object, then the run-time inference of the pose. Finally, we explain how we

identify the input image region in practice.

10.4.1 Training

Datasets for 3D pose estimation typically provide training images annotated with the

objects’ poses and the 3D models of the objects. From this data, we generate our training

set {(I(i), {p(i)
j }j ,M (i))}i, where I(i) is the i-th training image; p

(i)
j , the 2D projection of

the j-th 3D corner; and M (i), the 2D mask of the object in image I(i). This mask can be

obtained by projecting the 3D object model into the image using the object’s pose.

10.4.1.1 The Unambiguous Case

Let us first ignore the fact that some image patches can be ambiguous and that the learning

problem is actually multimodal. We train a network fθ(·) to predict a heatmap for each

projection pj . The architecture we use for this network is shown in Figure 10.7. fθ(·)
takes an input patch of size 32× 32, and predicts a set of heatmaps of size 128× 128, and
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Figure 10.6: Effect of occlusions on the feature maps of CNNs. The left column shows the
effects for a standard CNN and the right column for the CPM . We compare the influence on the
feature maps when the network was trained with and without occlusions. The top row of each
subfigure shows the feature maps for different layers of the network when no occlusion is present
in the input image. The middle row shows the feature maps when an occlusion is present in the
input image, and the bottom row show the absolute difference between the feature maps. We
further denote the fraction of features where the difference is larger than 10%. Up to 60% of the
features can be affected by the occlusions, specifically for standard CNNs. For the CPM , the
influence of the occlusions is more localized to the occluded region of the input image.
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Figure 10.7: Network architecture for fθ(·). C denotes a convolutional layer with the number
of filters and the filter size inscribed; FC, a fully connected layer with the number of neurons;
UP, an unpooling layer [314]; R, a residual module [92] with the number of filters and filter
size; and STL, a Spatial Transformation Layer [111] used for translation. All layers have ReLU
activations, and the output of the last layer is linear.

we train it by minimizing:

min
θ

∑
i

∑
u,v

‖H(i) − Transl(fθ(P(I(i), u, v)),−u,−v)‖2 , (10.1)

where:

• P(I(i), u, v) is an image patch centered on location (u, v) in image I(i);

• H(i) is the set of expected heatmaps for P(I(i), u, v). It contains one heatmap for

each 2D projection p
(i)
j . We describe how H(i) is defined in detail below;

• fθ(·) returns a set of heatmaps, one for each 2D projection p
(i)
j .

• Transl(H,−u,−v) translates the predicted heatmaps H by (−u,−v). fθ(·) learns to

predict the heatmaps with respect to the patch center (u, v), and this translation is

required to correctly align the predicted heatmaps together. Such a translation can

be efficiently implemented using a Spatial Transformation Layer [111], which makes

the network trainable end-to-end.

The sum
∑

(u,v) is over 2D locations randomly sampled from the image. The heatmaps

in H(i) are defined as a Gaussian distribution with a small standard deviation (we use

σ = 4 px in practice) and centered on the expected 2D projections p
(i)
j when patch

P(I(i), u, v) overlaps the object mask M (i). The top row of Figure 10.4 shows examples of

such heatmaps.

When the patch does not overlap the object mask, the heatmaps in H(i) are defined

as a uniform distribution of value 1
W ·H , where W ×H is the heatmap’s resolution, since

there is no information in the patch to predict the 2D projections. In addition, we use

patches sampled from the ImageNet dataset [51] and train the network to predict uniform

heatmaps as well for these patches. Considering these patches (outside the object’s mask

or from ImageNet) during training allows us to correctly handle patches appearing in the

background or on the occluders and significantly reduces the number of false positives

observed at run-time.
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10.4.1.2 The Multimodal Case

Let us now consider the real problem, where the prediction is multimodal: Two image

patches such as the ones shown in Figure 10.4(c) can be similar but extracted from different

training images and, therefore, correspond to different expected heatmaps. In other words,

in our training set, we can have values for samples i, i′ and locations (u, v) and (u′, v′)

such that P(I(i), u, v) ≈ P(I(i′), u′, v′) and H(i) 6= H(i′).

It may seem as though, in this case, training given by Eqn. (10.1) would fail or need to

be modified. In fact, Eqn. (10.1) remains valid. This is because we use the least-squares

loss function: For image patches with similar appearances that correspond to different

possible heatmaps, fθ(·) will learn to predict the average of these heatmaps, which is

exactly what we want. The bottom row of Figure 10.4 shows such heatmaps. At run-

time, because we will combine the contribution of multiple image patches, we will be able

to resolve the ambiguities.

10.4.2 Run-Time Inference

At run-time, given an input image I, we extract patches from randomly selected locations

from the input image and feed them into the predictor fθ(·). To combine the contributions

of the different patches, we use a simple ensemble approach and average the predicted

heatmaps for each 2D projection. We take the locations of the global maxima after

averaging them as the final predictions for the 2D projections.

More formally, the final prediction p̃j for the 2D projection pj is the location of

the global maximum of
∑

u,v Transl(fθ(P(I, u, v)),−u,−v)[j], the sum of the heatmaps

predicted for the j-th projection, translated such that these heatmaps align correctly. The

sum is performed over randomly sampled patches. To compute the pose, we use a PnP

estimation with RANSAC [90] on the correspondences between the corners of the object’s

3D bounding box and the p̃j locations.

10.4.3 Two-Step Procedure

In practice, we first estimate the 2D location of the object of interest, using the same

method as in the previous subsection, but instead of sampling random locations, we apply

the network fθ(·) in a sliding window fashion, as illustrated in Figure 10.2b. For each

image location, we compute a score by summing up the heatmap values over a bounding

box of size 128×128 and over the 8 corners for each object, which is done efficiently using

integral images. We apply Gaussian smoothing and thresholding to the resulting score

map. We use the centers of mass of the regions after thresholding as the centers of the

input image I. Finally, we use this image as input to the method described in the previous

subsection. We use a fixed size for this region as our method is robust to scale changes.



170 Chapter 10. Occlusion Tolerant 3D Object Pose Estimation

10.5 Evaluation

In this section, we evaluate our method and compare it to the state-of-the-art. For this, we

use two datasets: The Occluded LineMOD dataset [25] and the YCB-Video dataset [297].

Both datasets contain challenging sequences with partially occluded objects and cluttered

backgrounds. In the following, we first provide the implementation details, the evaluation

metrics used and then present the results of evaluation of the two datasets, including the

results of an ablative analysis of our method.

10.5.1 Implementation Details

Training Data The training data consist of real and synthetic images with annotated

3D poses and object masks, as was also the case in [297]. To render the synthetic objects,

we use the models that are provided with the datasets. We crop the objects of interest

from the training images and paste them onto random backgrounds [58] sampled from

ImageNet [51] to achieve invariance to different backgrounds. We augment the dataset

with small affine perturbations in HSV color space.

Network Training The network is optimized using ADAM [125] with default param-

eters and using a minibatch size of 64, a learning rate of 0.001, and 100k iterations. We

train one network per object starting from a random initialization.

Symmetric Objects We adapt the heatmap generation to symmetric objects present

in the two datasets. For rotationally symmetric objects, e.g ., cylindrical shapes, we only

predict a single position around the rotation axis. For mirror-symmetric objects, we only

train on half the range of the symmetry axis, as was performed in [203].

Feature Mapping Optionally, we apply the Feature Mapping method as described in

Chapter 7 to compensate for a lack of real training data. We apply the mapping between

the FC1 and FC2 layers shown in Figure 10.7. The mapping network uses the same

architecture as shown in Figure 7.4, but the weight for the feature loss is significantly

lower (10−5).

10.5.2 Evaluation Metrics

We consider the most common metrics. The 2D Reprojection error [26] computes the

distances between the projections of the 3D model points when projected using the ground

truth pose, and when using the predicted pose. The ADD metric [94] calculates the average

distance in 3D between the model points, after applying the ground truth pose and the

predicted pose. For symmetric objects, the 3D distances are calculated between the closest

3D points, denoted as the ADI metric. Below, we refer to these two metrics as AD{D|I}
and use the one appropriate to the object.
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10.5.3 Runtime

We implemented our method in Python on an Intel i7 with 3.2GHz and 64GB of RAM,

using an nVidia GTX 980 Ti graphics card. Pose estimation is 100 ms for 64 patches, and

detection takes 150 ms on a 640× 480 camera frame. Predicting the heatmaps for a single

patch takes 4 ms, and the total runtime could, thus, be significantly reduced by processing

the individual patches in parallel.

10.5.4 Occluded LineMOD Dataset

We evaluate our approach on the Occluded LineMOD dataset [25], and we use only the

color images for our method and all results reported.

For training the heatmap predictors, we use the LineMOD dataset [94] that contains

the same objects as the Occluded LineMOD dataset. This protocol is commonly used

for the dataset [112, 203, 264, 297], since the Occluded LineMOD dataset only contains

testing sequences. Figure 10.8 shows some of the qualitative results obtained. We give an

extensive quantitative evaluation in the following section.

10.5.4.1 Comparison with Baselines

Figure 10.9 shows the fraction of frames where the 2D Reprojection error is smaller than a

given threshold, for each of the 8 objects from the dataset. A larger area under the curve

denotes better results. We compare these results to those obtained from the use of several

recent methods that also work only with color images, namely, BB8 [203], PoseCNN [297],

Jafari et al . [112], and Tekin et al . [264]. Note that the method described in [203] uses

ground truth detection, whereas ours does not. Our method performs significantly more

accurately on all sequences. Notably, we also provide results for the Eggbox object, which,

so far, was not considered since it was too difficult to learn for [112, 203, 264].

Adding Feature Mapping, which we introduced in Chapter 7, improves the 2D Repro-

jection error for a threshold of 5 px by 17% on average. We also tried Feature Mapping

for the approach of [203], but it did not improve the results because the occlusions influ-

ence the feature maps too greatly when the network input contains occluders, as already

discussed in the introduction.

Further quantitative results are given in Table 10.1, where we provide the percentage

of frames for which the ADD or ADI metric is smaller than 10% of the object diameter, as

[297] reported such results on the Occluded LineMOD dataset. This is considered a highly

challenging metric. We also give the percentage of frames that have a 2D Reprojection

error of less than 5 px. Our method significantly outperforms all other methods on these

metrics by a large margin.
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Figure 10.8: Some qualitative results on the Occluded LineMOD dataset [25]. We show the
3D bounding boxes of the objects projected onto the color image. Ground truth poses are shown
in green, and our predictions are shown in blue.
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Figure 10.9: Evaluation on the Occluded LineMOD dataset [25] using color images only. We
plot the fraction of frames for which the 2D Reprojection error is smaller than the threshold on
the horizontal axis. Our method provides results that significantly outperform those reported
by previous work. The suffix “w/o FM” denotes without Feature Mapping.
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PoseCNN [297] 9.6 45.2 0.93 41.4 19.6 22.0 38.5 22.1 24.9 34.6 15.1 10.4 7.40 31.8 1.90 13.8 23.1 17.2
Tekin et al . [264] – – – – – – – – – 7.01 11.2 3.62 1.40 5.07 – 6.53 8.26 6.16
BB8 [203] – – – – – – – – – 28.5 1.20 9.60 0.00 6.80 – 4.70 2.40 7.60
Jafari et al . [112] – – – – – – – – – 24.2 30.2 12.3 – 12.1 – 25.9 20.6 20.8
CPM [290] 12.5 25.6 1.43 23.8 6.99 18.3 15.0 0.74 13.0 55.4 30.6 15.7 27.9 26.6 7.97 18.5 1.81 23.1
Our method w/o FM 16.5 42.5 2.82 47.1 11.0 24.7 39.5 21.9 25.8 64.7 53.0 47.9 35.1 36.1 10.3 44.9 52.9 43.1
Our method 17.6 53.9 3.31 62.4 19.2 25.9 39.6 21.3 30.4 69.6 82.6 65.1 73.8 61.4 13.1 54.9 66.4 60.9

Table 10.1: Comparison on the Occluded LineMOD dataset [25] with color images only. We
provide the percentage of frames for which the AD{D|I} error is smaller than 10% of the object
diameter, and for which the 2D Reprojection error is smaller than 5 px. Objects marked with a
* are considered to be symmetric. The suffix “w/o FM” denotes without Feature Mapping.

10.5.4.2 The Effect of Seeing Occlusions During Training

We evaluate the importance of knowing the occluder in advance. [203, 264, 297] assumed

that the occluder is another object from the LineMOD dataset and only used occlusions

from these objects during training. However, in practice, this assumption does not hold,

since the occluder can be an arbitrary object. Therefore, we investigated how the perfor-

mance was affected by the use of occlusions during training.

We compare our results (without Feature Mapping) to two state-of-the-art approaches:

our reimplementations of BB8 [203] and CPM [290]. To avoid bias introduced by the lim-

ited amount of training data in the Occluded LineMOD dataset [25], we consider synthetic

images both for training and for testing here.

We investigate three different training schemes: (a) No occlusions used for training;

(b) random occlusions by simple geometric shapes; (c) random occlusions with the same

objects from the dataset, as described in [112, 203, 264]. We compare the different training

schemes in Figure 10.10. Training without occlusions clearly result in worse performance

for BB8 and CPM , whereas our method is significantly more robust. Adding random

geometric occlusions during training slightly increases the performance of BB8 and CPM ,

since the networks learn invariance to occlusions, however, mainly for these specific oc-

clusions, whereas our approach maintains the accuracy compared to training without

occlusions. Using occluders from the dataset gives the best results, since the networks

learn to ignore specific features from these occluders. This, however, is only possible when

the occluders are known in advance, which is not necessarily the case in practice.

10.5.4.3 Patch Size

We evaluated the influence of the patch size on the predicted pose accuracy. There is a

range of sizes (25 px to 40 px) for which the performances stay very close to those presented

in Table 10.1. Small patches seem to lack discriminative power, the 2D Reprojection metric

gets 19% worse with 8 px patches, and large patches are sensitive to occlusions, which leads
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Figure 10.10: Evaluation of synthetic renderings of scenes from the Occluded LineMOD
dataset (see text) using the 2D Reprojection error. (a) Training without occlusions; (b) training
with random geometric occlusions; and (c) training with occluding objects from the LineMOD
dataset [94]. Knowing the occluders in advance significantly improves the performances of
BB8 [203] and CPM [290], however, this knowledge is often not available in practice. Our
method does not require this knowledge.

to a decrease in the 2D Reprojection metric of 5% for 128 px patches.

10.5.4.4 Number of Patches

Figure 10.11 shows the aggregated heatmaps for one input image when varying the number

of patches.

Figure 10.12a shows the influence of the sampling of the patches on the 2D Reprojec-

tion error for different sampling strategies. Since we do not have a segmentation mask

of the object given during run-time, we rely on random sampling. However, if we sample

enough patches, i.e., more than 64 patches, we can achieve the same performance as sam-

pling the patches only on the object mask that we created for the test sequences. If some

preprocessing algorithm would provide a segmentation mask as well, we could reduce the

number of patches to achieve the same accuracy. Figure 10.12b shows the influence of

the number of patches that we randomly sample. The more patches we sample, the more

accurate the results get, however, the accuracy starts to flatten for more than 64 patches.

10.5.5 YCB-Video Dataset

Further, we evaluate our approach an the recently proposed YCB-Video dataset [297].

Figure 10.13 shows some qualitative results. We give an extensive quantitative evaluation

in the following section.

A detailed evaluation of the different objects of the YCB-Video dataset is shown in

Table 10.2. Our method performs better for almost all objects and significantly better on

all metrics on average. In [297], the area under the accuracy-threshold curve was used as
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# Patches Heatmaps

GT

N = 1

N = 16

N = 32

N = 64

N = 512

Figure 10.11: Effect of the number of patches used at run-time. While for small numbers
of patches, the resulting heatmaps are strongly effected by the sampling, the aggregation of
more heatmaps forms more accurate distributions robust to the patches sampled from occluded
regions.

a metric, which we also provide.1

Figure 10.14a and 10.14b plot the fraction of frames where the 2D Reprojection error

and the AD{D|I} metrics averaged over all the objects are smaller than a given threshold.

Our approach clearly results in better performance.

A qualitative comparison of our proposed method to the state-of-the-art method

PoseCNN [297] is shown in Figure 10.15. Our method provides significantly more ac-

curate results compared to PoseCNN.

10.6 Discussion

In this chapter, we introduced a novel method for 3D object pose estimation that is inher-

ently robust to partial occlusions of the object. To do this, we considered only small image

patches as input and merged their contributions. Because we chose to compute the pose

1The metrics are calculated from the results provided by the authors at their website.



10.6. Discussion 177

100 101
102 103

Number samples

0

20

40

60

80

100

2
D

 R
e
p
ro

je
ct

io
n
 e

rr
o
r 

<
 5

p
x

Random sampling Sampling with mask

(a) Sampling patches within the object
mask compared to random sampling.

0 10 20 30 40 50
Distance threshold / px

0

20

40

60

80

100

Fr
ac

tio
n 

of
 fr

am
es

 w
ith

in
 d

is
ta

nc
e 

/ %

1 Patches
16 Patches

32 Patches
64 Patches

256 Patches
512 Patches

(b) Influence of number of samples.

Figure 10.12: (a) Evaluation of the sampling strategy and (b) the number of sampled patches
on the Occluded LineMOD dataset [25] for the Cat object. We plot the fraction of frames where
the 2D Reprojection error is smaller than a threshold.

Object
Method PoseCNN [297] Our method w/o FM Our method

AUC AD{D|I}-10% 2D Repr-5 px AUC AD{D|I}-10% 2D Repr-5 px AUC AD{D|I}-10% 2D Repr-5 px

002 master chef can 50.1 3.58 0.09 68.5 32.9 9.94 81.6 75.8 29.7
003 cracker box 52.9 25.1 0.12 74.7 62.6 24.5 83.6 86.2 64.7
004 sugar box 68.3 40.3 7.11 74.9 44.5 47.0 82.0 67.7 72.2
005 tomato soup can 66.1 25.5 5.21 68.7 31.1 41.5 79.7 38.1 39.8
006 mustard bottle 80.8 61.9 6.44 72.6 42.0 42.3 91.4 95.2 87.7

007 tuna fish can 70.6 11.4 2.96 38.2 6.79 7.14 49.2 5.83 38.9
008 pudding box 62.2 14.5 5.14 82.9 58.4 43.9 90.1 82.2 78.0
009 gelatin box 74.8 12.1 15.8 82.8 42.5 62.1 93.6 87.8 94.8
010 potted meat can 59.5 18.9 23.1 66.8 37.6 38.5 79.0 46.5 41.2
011 banana 72.1 30.3 0.26 44.9 16.8 8.18 51.9 30.8 10.3

019 pitcher base 53.1 15.6 0.00 70.3 57.2 15.9 69.4 57.9 5.43
021 bleach cleanser 50.2 21.2 1.16 67.1 65.3 12.1 76.1 73.3 23.2
024 bowl* 69.8 12.1 4.43 58.6 25.6 16.0 76.9 36.9 26.1
025 mug 58.4 5.18 0.78 38.0 11.6 20.3 53.7 17.5 29.2
035 power drill 55.2 29.9 3.31 72.6 46.1 40.9 82.7 78.8 69.5

036 wood block* 61.8 10.7 0.00 57.7 34.3 2.48 55.0 33.9 2.06
037 scissors 35.3 2.21 0.00 30.9 0.00 0.00 65.9 43.1 12.1
040 large marker 58.1 3.39 1.38 46.2 3.24 0.00 56.4 8.88 1.85
051 large clamp* 50.1 28.5 0.28 42.4 10.8 0.00 67.5 50.1 24.2
052 extra large clamp* 46.5 19.6 0.58 48.1 29.6 0.00 53.9 32.5 1.32
061 foam brick* 85.9 54.5 0.00 82.7 51.7 52.4 89.0 66.3 75.0

Average 61.0 21.3 3.72 61.4 33.6 23.1 72.8 53.1 39.4

Table 10.2: Comparison on the YCB-Video dataset [297]. We denote the area under the
accuracy-threshold curve (AUC), the percentage of frames which have a 2D Reprojection error
of less than 5 px, and the percentage of frames where the 3D ADD or ADI error is less than 10%
of the object diameter. The objects marked with * are considered to be symmetric. Our method
clearly outperforms the baseline. The suffix “w/o FM” denotes without Feature Mapping.



178 Chapter 10. Occlusion Tolerant 3D Object Pose Estimation

Figure 10.13: Qualitative results on the YCB-Video dataset [297]. The green bounding boxes
correspond to the ground truth poses, the blue ones to our estimated poses.
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(a) 2D Reprojection error.
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(b) AD{D|I} error.

Figure 10.14: Evaluation on the YCB-Video dataset [297]. We plot the fraction of frames
where (a) the 2D Reprojection error and (b) AD{D|I} metrics are smaller than a threshold. The
suffix “w/o FM” denotes without Feature Mapping.

by initially predicting the 2D projections of 3D points related to the object, the prediction

can be performed in the form of 2D heatmaps. Since heatmaps are closely related to

density functions, they can be conveniently applied to capture the ambiguities that arise

when using small image patches as input. We showed that training a network to predict

the heatmaps in the presence of such ambiguities is much simpler than it may sound. This

resulted in a simple pipeline, which outperformed much more complex methods on two

challenging datasets.

Our approach can be extended in different ways. The heatmaps could be merged in

a way that is more robust to erroneous values than simple averaging. The pose could

be estimated by considering the best local maxima rather than only the global maxima.

Sampling only patches intersecting with the object mask, which could be predicted by

a segmentation method, would limit the influence of occluders and background in the

accumulated heatmaps even more. Predicting the heatmaps could be performed in parallel

to reduce the runtime.
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Our method PoseCNN [297]

Figure 10.15: Qualitative comparison to state-of-the-art PoseCNN [297] on the YCB-Video
dataset [297]. The green bounding boxes correspond to the ground truth poses, the blue ones
to our estimated poses, and the red ones to the results from PoseCNN.



11
Conclusion

11.1 Summary

In this thesis we presented solutions to several important and unsolved problems in Com-

puter Vision-based 3D hand pose estimation and joint hand-object pose estimation. More

specifically, we introduced methods for fast and accurate 3D pose estimation in Part I.

First, we showed in Chapter 4 that integrating a prior on the 3D hand pose can signifi-

cantly increase the accuracy of the pose, without forfeit in computational efficiency and

running at several hundred frames per second. Still, this estimator can make mistakes,

and we showed in Chapter 5 how we can train an additional predictor to fix the mistakes

made by an initial estimator.

In Part II, we proposed methods to deal with the limited training data available for

3D hand pose estimation. We introduced a method in Chapter 6 that can be used to

generate dense 3D annotations for sequences showing a users hand from sparse 2D labels.

We showed that acquiring these labels can be efficiently done in a semi-automatic way.

Further, we showed in Chapter 7 that we can use synthetically generated depth images to

boost the accuracy of the 3D pose estimator introduced in Chapter 4. We further showed

in Chapter 8 that we can use pairs of real color and depth images as supervisory signal

together with synthetically generated depth images to train an estimator for 3D hand pose

estimation from color images without requiring labeled color images.

Finally, in Part III, we introduced methods for hand and object pose estimation. We

first showed in Chapter 9 that we can generalize the method introduced in Chapter 5 to

multiple objects, specifically estimating the 3D pose of the hand and a hand-held object

jointly. Since occlusions of the object are very common when the hand is interacting with

an object, we proposed a method for 3D pose estimation that is inherently robust to these

occlusions.

In conclusion, we presented efficient and accurate methods for 3D hand pose estimation

that are based on Deep Learning. Our methods do not require markers on the human

hands. Also, they do not require temporal tracking since they are applied on each frame

181
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separately, which makes them inherently robust to drift. Although we are very happy

with the results from our methods, there is always room for improvement and we discuss

possible future work in the next section.

11.2 Future Work

There are several directions for future work that naturally arise from the work presented

herein. We state possible directions below. In general, there are several open challenges

that need to be addressed in future work. Hand pose estimation needs to become more

robust and should always result in plausible poses even under significant occlusion. Es-

pecially, when hands interact with hand-held objects and when hands are in contact with

other parts of the environment. Hand pose estimation needs to work everywhere and for

everyone. Also, it should work on inexpensive and low power sensor and devices.

Single Color Cameras For our pose estimation methods in Part I of this theses, we

relied on a single depth camera for 3D hand pose estimation. However, depth sensors

consume more energy than color cameras, have a limited range, and might not work in

outdoor environments. In contrast, color cameras are already ubiquitous on different

devices, such as smartphones or notebooks, and work in many different environments. In

Chapter 8, we already presented a method to estimate the 3D pose from a single color

image. Although we achieved encouraging results, there is still room for improvement.

There is the essential question on how to lift the estimates from 2D color images to 3D.

Also, clutter can be a bigger problem than for depth images since using simple heuristics for

the segmentation, as we did in this thesis, do not work anymore. Finally, creating training

data is more challenging, since using marker-based systems [88, 311], which are used so

far for large scale datasets, does not work anymore as they would corrupt the images. We

believe that 3D pose estimation from single color images is the most promising direction

for future work especially for enabling 3D hand pose estimation at a large scale on mobile

devices.

Person-Specific Pose Estimation In this thesis we relied upon an ad hoc method

to normalize the hand size of different users, but this did not consider different hand

shapes. The largest dataset we used contains ten users [311], and our experiments showed

that the accuracy deteriorates for unknown users. There exists a large variability of hand

shapes and sizes in practice [162], and when using color images as input even different skin

colors. In terms of diversity, it is unclear how to deal with persons that have disabilities

of the hands, or skin wrinkles of elderly persons [262], for example. Capturing datasets

for such corner cases becomes quickly difficult and expensive, but might be necessary for

widespread applicability in practice.

Adjusting the pose estimator to a specific user could be a possible solution [36], but so

far there is no guarantee that this method improves the pose estimates in all cases, and
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training on the users device quickly becomes impractical and intractable. A direction

for further research could involve designing calibration procedures and integrating the

acquired calibration into the pose estimator.

Hand-Object and Hand-Hand Pose Estimation As discussed in the previous para-

graphs, creating pose estimation methods for hands in isolation can already be challenging.

This becomes even harder when considering hands and objects jointly. Figure 11.1 shows

example images and challenges that arise with this problem. In addition to self-occlusions

of the hand, there can be severe occlusions from the object or other hands that make

pose estimation very difficult. Not only pose inference is difficult in such cases, but also

creating the training data in the first place. We would like to note that current datasets

for this problem, which we also considered in Chapter 9, look rather artificial [173, 240].

There might be several further directions of creating training data within this context:

Firstly, synthetic datasets could be used. However, it is hard to model the interactions

between hands and objects, and additionally there is a domain gap between synthetic and

real data that needs to be addressed. Secondly, multi-camera setups [241] could be used

to mitigate the occlusion problem, but this would still require large efforts to automatize

the annotation procedure in order to capture large datasets.

Figure 11.1: Challenges that arise in hand-object and hand-hand pose estimation. Not only
parts of the hand are occluded by the object, but also parts of the object are occluded by the
hand, or hands occlude each other or touch different body parts. This is challenging for both,
the hand pose estimation and object pose estimation.

Tight Interactions In this thesis we have shown that 3D hand pose estimation already

gives very good results for hands in isolation. However, when two hands are closely in-

teracting, or a hand is grasping a object tightly, the accuracy of our methods quickly

deteriorates. Although we have shown accurate results for joint hand-object pose estima-

tion, the benchmark dataset used for the evaluation did not contain very tight interactions.

While in Chapter 10 we designed a method for object pose estimation that is robust to

unknown occluders, such properties are also desirable for hand pose estimation. Otherwise

we would need to know all possible occluding objects in advance. However, the method

we proposed relies on patches and can be confused with the self-similarity of the different



184 Chapter 11. Conclusion

fingers. Thus, adding some kind of structural constraints to the predicted heatmaps that

preserves the kinematic constraints of valid hand poses could be a possible solution. Also,

adding physical constraints to the predictions could be a solution, as we discuss below.

Tight Integration in Graphics Engines For Augmented Reality (AR) and Virtual

Reality (VR) applications, the visual feedback and interactions for the user are created

using a graphics engine that renders the virtual scene. For physically correct scenes, the

graphics engine takes the hand pose and performs physics simulation based on the hand

pose in order to correctly arrange the scene objects. However, the hand pose is taken

as an input to the engine and treated as a correct observation, not taking into account

uncertainties of the measurements. This can lead to jitter, drift, or other uncomfortable

glitches that deteriorate an immersive user experience. A possible direction could be to

integrate the hand pose estimation method more tightly into the graphics engine and

physics simulation, or even learning the full graphics pipeline with physical interaction in

an end-to-end framework.

Physically Correct Interaction In the real world there are strong physical constraints

for hand-object interaction, e.g ., interpenetration, friction, or drag. Figure 11.2 shows

images of our work [98], where we modeled the friction forces between hands and objects in

a graphics engine assuming a given 3D hand pose. In this thesis, we implicitly learned such

constraints from the training data, but they were not strictly enforced during inference.

However, such constraints can be a strong prior for the hand and the object pose. So far,

it is unclear, how exactly this can be done. A possible direction is the work of [159], who

introduced a method to enforce hard constraints in learning-based methods that could be

added as an additional constraint layer to the joint feedback loop presented in Chapter 9.

Figure 11.2: Physically correct interaction, taken from [98]. In [98], we aimed at modeling the
interaction of a real hand with a virtual object by modeling the forces between the hand and
the object with a simple friction model. However, we assumed that the 3D hand pose is given
and correct, and the approach required a cumbersome integration into an off-the-shelf physics
engine. The red arrows indicate the calculated friction forces that are applied to the objects.
Yellow arrows depict the global hand motion.
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Combined Discriminative and Generative Methods Combining discriminative

methods with a generative model could combine the benefits from both worlds, i.e., leading

to hand pose estimators with the high accuracy of generative methods and the robustness

to drift of discriminative methods. Such a framework was introduced in [217, 227], where

a discriminative method can reinitialize the pose when tracking errors occur. However, the

discriminative and generative parts are separated from each other and solely the hand pose

serves as interface and is passed between the two parts. The feedback method presented

in Chapter 5 could be reformulated as an energy minimization framework that performs

the generative optimization of the hand pose.

Designing Efficient Human-Computer Interaction (HCI) Methods While we

mainly focused on 3D hand pose estimation in this thesis, we skipped an important part:

How can we leverage the accurate 3D pose for HCI methods? So far, most interaction

methods are based on gestures. While gesture-based interaction tries to classify a hand

movement into a certain gesture to trigger a function, our highly accurate 3D pose es-

timates would allow for much finer-grained interactions. For example, one might think

of subtle manipulations of virtual objects. Such techniques could lead to a desirable in-

crease in usability and user experience [238]. However, this would require to design such

interaction methods and make them available in commodity interaction frameworks.
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List of Acronyms

AAM Active Appearance Model

AR Augmented Reality

CNN Convolutional Neural Network

CPM Convolutional Pose Machine

DoF Degrees of Freedom

EPE End Point Error

fps frames per second

GAN Generative Adversarial Network

HCI Human-Computer Interaction

ICP Iterative Closest Point

ILP Integer Linear Program

ISTN Inverse Spatial Transformer Network

LBS Linear Blend Skinning

MMD Maximum Mean Discrepancy

PCA Principal Component Analysis

PCK Percentage of Correct Keypoints

PS Pictorial Structures

PSO Particle Swarm Optimization

RKHS Reproducing Kernel Hilbert Space

STN Spatial Transformer Network

VR Virtual Reality
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