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Abstract

MQTT is one of the most widely used protocols in the Internet of Things. The performance
of this protocol can be tested using statistical model checking integrated into a property-
based testing tool. This approach utilizes a cost model to get predictions of the latency of
the system-under-test. Multiple linear regression is used for the creation of the cost model
at the moment.

In this work we replace the current cost model with deep learning methods. We analyze
different datasets from various experiments and broker implementations in order to find the
most suitable (recurrent) neural network. We compare different architectures of standard
neural networks and gated recurrent units and evaluate the models on datasets created by
the test system. We show that the results of the predictions improve significantly compared
to the multiple linear regression. In particular, we obtain an R2 value of 0.9152 compared
to a value of 0.8697 with the current cost model, using a dataset created with limited CPU
resources. Additionally, the effort of preprocessing, data cleansing and human interactions
can be lowered to a minimum. Compared to the mean latencies of the system-under-test,
a simulation on the model can achieve a speedup by a factor of up to 500.

Keywords neural network, deep learning, MQTT, Internet of Things, performance,
latency, data analysis
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Kurzfassung

MQTT ist eines der am weitesten verbreiteten Protokolle im Internet der Dinge. Die
Performance dieses Protokolls kann getestet werden, indem Statistical Model Checking
in ein Property-based Testing Tool integriert wird. Dieses Testwerkzeug verwendet ein
Kostenmodell, um Vorhersagen über die Latenz des zu testenden Systems zu erhalten. Für
die Erstellung des Kostenmodells wird derzeit eine multiple lineare Regression verwendet.

In dieser Arbeit ersetzen wir das aktuelle Kostenmodell durch Deep-Learning-Methoden.
Wir analysieren unterschiedliche Datensätze aus verschiedenen Experimenten und Broker-
Implementierungen, um das am besten geeignete neuronale Netzwerk zu finden. Wir
vergleichen verschiedene Architekturen von neuronalen Netzwerken und Gated Recurrent
Units und evaluieren die Modelle an Datensätzen, die vom Testsystem erstellt wurden. Wir
zeigen, dass sich die Ergebnisse im Vergleich zur linearen Regression signifikant verbessern.
Insbesondere erreichen wir einen R2-Wert von 0.9152 verglichen mit einem Wert von 0.8697
des derzeitigen Kostenmodells, unter Verwendung eines mit begrenzten CPU-Ressourcen
erstellten Datensatzes. Darüber hinaus kann der Aufwand für Vorverarbeitung, Daten-
bereinigung und menschliche Interaktionen auf ein Minimum reduziert werden. Verglichen
mit der mittleren Latenzzeit des zu testenden Systems, kann die Simulation am Modell
einen Geschwindigkeitsvorteil um einen Faktor von bis zu 500 erreichen.

Schlüsselwörter Neuronales Netzwerk, Deep Learning, MQTT, Internet der Dinge,
Performance, Latenzzeit, Datenanalyse
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1
Introduction

The Internet of Things (IoT) is growing in popularity. More and more small and passive
devices, like sensors etc., are communicating over networks with each other. One way to
establish a message exchange between those devices, without producing too much overhead
and using too many valuable resources (like energy etc.), is the Message Queue Telemetry
Transport (MQTT) protocol. It allows machine-to-machine communication with the use of
a publisher-subscriber pattern. The broker, a central server in MQTT, is a key element in
this infrastructure. It can be chosen from a wide range of different broker implementations.
But how does one know if the chosen implementation is capable of fulfilling all the needs?
It is not feasible to try out different systems in a real-life scenario. The performances of all
eligible brokers have to be tested and compared with each other. To simplify this process
of performance testing and comparison, Aichernig et al. [1] developed a new method
of automatically testing the performance of different implementations, using Statistical
Model Checking (SMC) integrated into a Property-Based Testing (PBT) tool and used
it to check the response-times of a web application [2]. Their test system is capable of
answering quantitative and qualitative questions and is therefore essential to identify the
best performing software implementation. It allows to predict the performance on a model,
rather than the real system. Then, the predictions are verified on the system-under-test
(SUT), using a hypothesis test.

Aichernig and Schumi adopted this testing method for the specific use case of MQTT
broker performance testing [3]. The system is capable of comparing multiple MQTT
implementations in terms of latencies. It answers questions, like ”What is the probability
that the latency is below a certain threshold?”. A substantial part of the test system is the
cost model, which is used to estimate the costs of the SUT. Because this work is targeting
the performance of different MQTT broker implementations, the costs we are interested
in are the latencies. The latency is a measure of the time of an operation executed
on the broker, from the request being sent, to the response being received. This work
focuses on the cost model of the test system. In the test system a simple multiple linear
regression is being used to create a cost model, which turned out to be not very accurate.
Furthermore, using a linear regression as cost model takes a lot of effort in feature selection
and preprocessing. This has to be done manually by analyzing coefficient matrices and
other statistical parameters. The question is, if the whole process of cost model learning
can be simplified and at the same time increase the quality of the prediction.

1.1 Aim and Contributions

The aim of this work is to improve the predictive accuracy of the cost model and to simplify
the process of cost model learning, i.e. to keep the preprocessing at a minimum. Our deep
learning cost model is capable of increasing the predictive accuracy of the currently used
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1 Introduction

multiple linear regression, which serves as a baseline for comparison. It is possible to
achieve an R2 value of over 0.9 without feature selection. We show that the processes of
preprocessing, learning and predicting can be completely integrated into the test system.

The log-data, created in the test system, is used to select the neural network model. The
datasets consists of 21 attributes and up to 300,000 samples which are carefully analyzed
to find out what kind of machine learning technique should be used. To keep the process
as simple as possible, we try to avoid as many manual preprocessing steps as possible. We
leverage state-of-the-art methods in deep learning and take advantage of neural networks
as well as recurrent neural networks to create a cost model which is capable of predicting
the latency of an MQTT broker.

By now, there is no comparable test system available, which uses model-based testing
combined with deep learning methods. Current work in the area of MQTT performance
testing mainly focuses on different settings of the broker. To the best of our knowledge,
there is no work that compares the performance of multiple broker implementations with
each other. Our test system can speedup performance testing by a factor of up to 500
compared to mean latency on the SUT, which is a tremendous improvement. The method
developed in this work can also be applied to compare various of other costs (like energy
etc.) and the applications are therefore not limited to performance testing.

1.2 Outline

Chapter 2 explains the theoretical background and related work substantial for this the-
sis. The chapter starts with an overview of statistical model checking and property-based
testing as well as how to integrate SMC into PBT to answer quantitative and qualitative
questions. Then the MQTT protocol is described in detail. Afterwards an introduction to
regression analysis is given before the main deep learning methods of this thesis, neural
networks and recurrent neural networks, are explained. Chapter 3 introduces the test
system and the cost model. It shows the generation of the log-data and the different test
cases used in this thesis. The features and a statistical analysis of the data is done after-
wards. The steps of preprocessing, learning and serving of the cost model are described
and the neural network architectures used in this thesis are presented. Chapter 4 shows
the experimental results and provides a detailed discussion. It shows the limitations of
this method and provides a deep insight before Chapter 5 concludes this work and gives
an outlook on future work.
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2
Background

The following chapter presents the theoretical background and the current state-of-the-
art techniques used in this work. Section 2.1 starts with statistical model checking and
property-based testing, methods used in our test system around the cost model. Sec-
tion 2.2 gives an overview of the MQTT protocol and its message types. Section 2.3
provides an introduction to regression analysis, multiple linear regression and the model
evaluation. Afterwards, Sections 2.4 and 2.5 introduce the machine learning methods used
in this thesis. They cover the structure of a single neuron as well as complex architectures
and networks. Training of neural networks and methods to regularize them are shortly
discussed.

2.1 Statistical Model Checking and Testing

This section is based on [2] and [3] as it is the underlying work of this thesis. For more
detailed information the interested reader is referred to this work. The test system is
described in Section 3.1.

2.1.1 Statistical Model Checking

Statistical Model Checking (SMC) [4] is a software simulation method which is capable of
answering qualitative as well as quantitative questions of a stochastic model, formulated
as properties. For example, SMC is able to answer questions like ”What is the probability,
the latency is below a certain threshold?”. SMC creates samples using random walks
on the model. Those samples are evaluated and verified to check if the property holds.
The test system (see Section 3.1) uses a standard Monte Carlo simulation. The algorithm
estimates the probability γ, that the property is satisfied. Multiple algorithms can be used
to compute the number of samples n needed to get an answer with a certain probability.
The test system uses the Chernoff-Hoeffding bound to calculate n using a lower limit for
the estimation error ε. Sampling can be stopped when the stopping criterion, e.g. the
number of simulations n, is reached. With the confidence 1− δ, n is determined as

n ≥ 1

2ε2
ln

(
2

δ

)
. (2.1)

The n Monte Carlo simulations produce the random variables X1, . . . , Xn, which result in
xi = 0 if the property does not hold or xi = 1 if it holds. Then, the estimated probability
is

γ̄n =

∑n
i xi
n

(2.2)
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2 Background

and the probability of the estimation error being below ε, is greater than the confidence:

Pr(|γ̄n − γ| ≤ ε) ≥ 1− δ. (2.3)

Another algorithm used is the Sequential Probability Ratio Test (SPRT), which is a
form of hypothesis testing [5]. It can be used to answer qualitative question, by deciding
between a null hypothesis H0 : θ = θ0 or an alternative hypothesis H1 : θ = θ1. Sampling
is done while log β

1−α < log Λm < log 1−β
α with

log Λm = log
pm1
pm0

=
m∑
i

log
f(xi, θ1)

f(xi, θ0)
. (2.4)

The variables α and β are the desired type I and type II errors. We accept H0 when
log Λm ≤ log β

1−α and H1 when log Λm ≥ log1−β
α .

In the test system, SPRT is used to verify if a hypothesis, formed on the model, also
holds on the SUT. Performance evaluation of software implementations is computationally
very expensive. Using a model-based approach, and therefore running the Monte Carlo
simulation on a model instead of the SUT directly, increases the speed of the process.

2.1.2 Property-Based Testing

Property-Based Testing (PBT) is a random-testing method. PBT automatically creates
random inputs for the SUT and checks if the behavior of the SUT is as expected. The
random inputs are created using data generators. A counterexample is formed if the
SUT does not work as expected [6]. There are numerous PBT implementations, with
QuickCheck being the first one [7].

PBT supports model-based testing, with models in the form of an extended finite state
machine (EFSM) [8]. An EFSM consists of a finite set of states S, the initial state s0, a
finite set of variables V , a finite set of inputs I and outputs O, and a finite set of transitions
T . It can be written as a tuple (S, s0, V, I, O, T ). A transition t is a tuple (ss, i, g, op, o, st),
where ss is the source state and st the target state. The variables i and o are the input
and output of the transition. The guard g is the predicate and therefore an expression
that decides whether the transition is enabled or not. If the expression is always True,
the transition does not have a guard. The operation op is the update function, which
calculates new values for the variables.

In the test system, we execute a command on the SUT and one on the model, using
the same input parameters. Valid input parameters are defined in the precondition. After
execution of the command, the outputs and states of the SUT and the model are compared
with each other in the postcondition.

2.1.3 Stochastic Timed Automata

Stochastic timed automata (STA) [9] are an extension of timed automata (TA) [10], which
are used to simulate realistic timing behavior of computer systems [2]. The TA tuple
(L, l0, A,C, I, E) is extended by a probability density function (PDF) F for the sojourn
and natural weightsW = (we)e∈E to the STA tuple (L, l0, A,C, I, E, F,W ). The remaining
elements of the tuple is the finite set of locations L with the initial location l0, a finite set
of actions A, a finite set of clocks C, a finite set of invariants I and a finite set of transitions
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(or edges) E. For a state (l, u) with the location l ∈ L and the clock valuation u ∈ C,
the sojourn time d is chosen with the use of the probability function fl. This changes the
state to (l, u+ d), where u+ d denotes the clock valuation change of (u+ d)(c) = u(c) + d
for all c ∈ C. Then, an enabled edge e is selected from E(l, u + d) and the probability
of we/

∑
h∈E(l,u+d)wh. The transition to the target location l′ of e and u′ = u + d is

performed afterwards.
In the test system, STA is used to add realistic timing behavior to the predictions of

the model. We use a semi-Markov process as underlying stochastic process, because the
clocks are reset at every transition, but exponential delays are not assumed.

2.1.4 Integration SMC into PBT

Aichernig and Schumi demonstrated that SMC can be integrated into a PBT tool [1, 11].
Which makes it possible to perform SMC of PBT properties and can return a qualitative
or quantitative result, depending on the use case. The PBT tool is used as simulation
environment to execute the SMC algorithm. In the test system, the integration is used
for an performance evaluation with the model and for testing the SUT.

2.2 MQTT

MQTT (Message Queue Telemetry Transport) is a messaging protocol widely used in
many modern IoT and machine-to-machine applications. MQTT is located in the appli-
cation layer of the TCP/IP stack. The latest protocol version is 3.1.1 and was released
in December 2015 [12]. The protocol consists of one central server, referred to as bro-
ker, and multiple clients. It follows a publisher-subscriber pattern. Topics, clients can
subscribe or publish to, are structured hierarchically. The hierarchical layers are being
separated by a forward slash (e.g. sensor/temperature/area1 with sensor being the top
and area1 the bottom of the hierarchy). Clients can be both, publisher or subscriber.
It is also possible to use wild-cards to subscribe to multiple topics at the same time
(e.g. sensor/+/area1 subscribes to all sensors within area1 ). The different message types
(control messages) used in this protocol to establish a connection and to communicate
are: connect, connack, publish, puback, pubrec, pubrel, pubcomp, subscribe, suback,
unsubscribe, unsuback, pingreq, pingresp, and disconnect and will be further de-
scribed in Section 2.2.1.

When publishing a message to a topic, the broker receives the message and distributes
it to all the clients subscribed to the same topic. Figure 2.1 gives an overview of the
publisher-subscriber pattern used in MQTT. The clients Device 1 and Device 2 are both
subscribed to a topic, the client Sensor is publishing to and therefore are both receiving the
messages in this topic. The protocol uses a 2-byte header with fields indicating the message
type, the QoS level, the retain flag as well as the length of the payload. The retain flag
can be set to keep the latest message on the broker, which will be delivered immediately
to all newly subscribing receivers. Only the newest message for the corresponding topic,
with the retain flag set to true, will be kept by the broker. Other MQTT features like
last will and testament (LWT) or keep alive, which involve the message types pingreq and
pingresp are not covered, because they are not relevant for this thesis.
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Broker
publish

subscribe

publish
subscribe

publish

Sensor

Device 1

Device 2

Figure 2.1: Overview of the MQTT publisher-subscriber pattern.

Quality of Service The protocol supports three levels of Quality of Service (QoS): At
most once (QoS 0), at least once (QoS 1) and exactly once (QoS 2). The level QoS 0
delivers the message only one time and does not need an acknowledge from the receiving
clients. QoS 1 messages will be delivered at least once but it could also happen that
they get delivered more than one time. The level QoS 2 indicates that the message will
be received exactly once. To ensure the QoS, the pubrec, pubrel and pubcomp control
messages are sent after the publish, depending on the level of service.

2.2.1 Message Types

This section covers only the message types that are relevant for this thesis. Other control
messages which for example would require QoS 2 are not used in our experiments.

Connect The message type connect is the first message that has to be sent after a client
has initiated a TCP/IP connection with the broker. If the connection was successfully
established, the server answers with a connack message. The connect message has several
options, like username, password, clientId or a cleanSession flag. The cleanSession flag
indicates that the client wants to use a persistent session, i.e. the broker stores all messages
missed by the client and delivers them after a reconnect if the flag is set to false. This flag
is also dependent on the QoS level and therefore only relevant for QoS 1 or 2. If the flag
is set to false and the client had a clean session before, the broker creates a new session
for that client.

Disconnect Disconnect is the counterpart to the connect message. It is sent to the
broker to end an existing connection.

Subscribe The control message subscribe is necessary to subscribe to topics and there-
fore to receive messages, published by other clients. The message contains a list of topics
and the corresponding QoS levels. A successful subscription will be acknowledged by the
broker with a suback message.

Unsubscribe The unsubscribe message is used to remove existing subscriptions. The
payload contains a list of topics the clients wants to unsubscribe from. If the request was
successful, the broker acknowledges it with a unsuback message.
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2.3 Regression Analysis

Publish The publish message is used to send messages. It contains the fields topicName,
QoS, retainFlag, and the payload.

2.3 Regression Analysis

Regression analysis is a statistical method, used to describe relations between one or more
independent variables X to the dependent variable y, also referred to as target variable.
This analysis can be used to make predictions or forecasts of target values based on
various input features (or a history of them). The simplest form of the regression analysis
is the linear regression. It tries to fit a line or hyperplane through data, while keeping
the occurring error as small as possible [13]. Regression analysis is a form of supervised
learning, which means that, unlike unsupervised learning, the real target values are known
in the training phase. The regression consists of the following variables and parameters:

X is an n×m matrix, consisting of n samples and m independent variables (the features).
A single sample is denoted as xi = [xi,1, xi,2, · · · , xi,m]T .

y = [y1, y2, · · · , yn]T is the dependent variable of size n (we assume a single target vari-
able).

β = [β0, β1, · · · , βn]T of size n are the regression parameters.

Note, that for the sequel, bold and uppercase letters such as X denote matrices and the
transpose is denoted by a superscript T . Lowercase bold letters such as y denote vectors
and lowercase non-bold letters such as m denote scalars.

The regression model f(·) tries to explain the dependent variable with the independent
variables, the regression parameters and the error term ε, i.e.

y = f(X,β) + ε. (2.5)

Residual The residual e is the difference between the observable true value y and the
estimated value ŷ by the regression model: e = y − ŷ

Error The error term ε on the other hand is a random variable which is the unobservable
change of the (unobservable) true value. This could be for example errors in measurement,
noise etc.

RSS The residual sum of squares (RSS) is the sum of the squared residuals, i.e.

RSS =
n∑
i

(yi − f(xi))
2 =

n∑
i

(yi − ŷi)2 =
n∑
i

e2i . (2.6)

TSS The total sum of squares (TSS) is the sum of the squared difference of the target
variable and its mean value ȳ, i.e.

TSS =

n∑
i

(yi − ȳ)2. (2.7)
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2.3.1 Multiple Linear Regression

To explain the dependent variable y with multiple independent variables X, multiple
linear regression [14] is used. It is defined as

yi = β0 + β1xi,1 + β2xi,2 + · · ·+ βmxi,m + εi (2.8)

and when using all data samples1 as

y = Xβ + ε. (2.9)

Ordinary Least Squares

One method of estimating the unknown regression parameters β of the multiple linear
regression is to use ordinary least squares (OLS). To get an estimation of the unknown
regression parameters, OLS minimizes the residual sum of squares. Ignoring the error
term, it can be written as

arg min
β

RSS = arg min
β

(y −Xβ)T (y −Xβ) = arg min
β
e2. (2.10)

We obtain the regression parameters by using the Moore-Penrose inverse as

β = (XTX)−1XTy. (2.11)

2.3.2 Model Evaluation

To evaluate and compare results of different models, metrics like R2, mean squared error
(MSE) or rooted mean squared error (RMSE) can be used. We introduce these metrics in
the sequel.

R2 Also referred to as coefficient of determination, R2 is a measure for the goodness of
a fit. A value of 1 denotes a perfect fit, while a value of 0 indicates a bad fit and occurs
when the model always estimates the mean of the dependent variable. It is also possible
for values to be negative, when the data is fitted worse than with a mean estimator. It is
computed as

R2 = 1− RSS

TSS
= 1−

∑n
i (yi − ŷi)2∑n
i (yi − ȳ)2

= 1−
∑n

i e
2
i

var{y}2
. (2.12)

MSE The mean squared error is the average of the squared sum of the residuals. A
value of 0 indicates a perfect fit of the model. There is no upper boundary. The MSE is
determined as

MSE =
1

n
RSS =

1

n

n∑
i

(yi − ŷi)2 =
1

n

n∑
i

e2i . (2.13)

1 Note that for X, a column of ones is added to include the bias.

– 8 –
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RMSE The rooted mean squared error is the square root of the MSE, i.e.

RMSE =
√

MSE. (2.14)

2.4 Neural Network

Artificial neural networks (ANN) were inspired by biology, where multiple individual neu-
rons together form a complex network. This network, better known as the brain, is capable
of learning and processing things [15,16]. The multilayer perceptron (MLP) is one type of
artificial neural networks. It consists of neurons arranged in multiple layers with connec-
tions between them. Without recurrent connections between the neurons, it is also called
feed forward network [17]. Neural networks are used in a wide field of applications, for
classification or prediction tasks. They are used for signal processing, speech recognition,
image classification, self-driving cars, image optimization, etc. [18–20]. Deep learning
denotes the use of a neural network with multiple layers which are capable of processing
complex data [21–23].

2.4.1 Neuron

An artificial neuron is the smallest building block of a neural network. Its principles are
based on the biological neuron, which is shown in Figure 2.2a. The dendrite therefore
corresponds to the input of the neuron, the axon to the output and the cell body forms
the activation function. A connection between two biological neurons is referred to as
synapse.

Dendrite

Cell body

Axon Terminal

Schwann cell

Myelin sheath

Axon

Nucleus

Node of
Ranvier

(a) biological neuron (adopted from [24])

∑
f

w1

wn

x1

xn

a z

b
(b) artificial neuron

Figure 2.2: Structure of an artifical neuron compared to a biological neuron.

The artificial neuron on the other hand is shown in Figure 2.2b. It consists of one or
more inputs xi and a corresponding weight wi for each of it, a bias b and an activation
function (also called transfer function) f(·). An artificial neuron can be mathematically
described as

a = b+
m∑
i

xiwi = wTx, (2.15)
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where

w =



b

w1

w2

...

wm


and x =



1

x1

x2
...

xm


. (2.16)

After applying the activation function f(·), we obtain the output (or activation) z of the
neuron:

z = f(a) = f(wTx) (2.17)

2.4.2 Architecture

Multiple neurons connected together, form a neural network. Those connections can also
be structured in layers to form an MLP:

Input Layer is the first layer of a neural network and processes the input of the network.

Hidden Layers are the layers between input and output layers. A neural network can
consist of multiple hidden layers, which are increasing the, so called, depth of the
network and therefore also its complexity.

Output Layer is the last layer of a neural network and provides the output of the network.
For classification tasks, this layer usually has multiple neurons, while in prediction
and forecasting it consists of only one neuron with linear activation function.

Input Layer Hidden Layer Output Layer

Figure 2.3: Architecture of a neural network, structured in input layer, hidden layers and output layer.

Figure 2.3 shows a neural network with three inputs, two hidden layers with 4 and 3
neurons and an output neuron. This architecture can also be denoted as 4-3-1.
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2.4.3 Activation function

To establish non-linearity in the network, a (non-linear) activation function is used. De-
pending on the goal of the task, various activation functions can be used. Activation
functions are monotonic functions and have to be derivable so they can be used in back-
propagation (see Section 2.4.4). In the following, we introduce three widely used activation
functions.

Sigmoid The sigmoid activation function, commonly known as the logistic activation
function, is characterized by the S-shape and shown in Figure 2.4a. It can range from 0
to 1 and is defined as

f(a) = σ(a) =
1

1 + e−x
=

ex

ex + 1
(2.18)

and the derivative is defined as

f ′(a) = σ(a) (1− σ(a)) . (2.19)

TanH The tanH activation function is the hyperbolic tangent function. It can range
from −1 to 1. Like the logistic function, the tanH function is a sigmoid function too.
Figure 2.4b shows the hyperbolic tangent function. The activation function is defined as

f(a) = tanh(a) =
ex − e−x
ex + e−x

(2.20)

and the derivative of this function is defined as

f ′(a) = 1− tanh2(a). (2.21)

ReLU The ReLU is the rectified linear unit activation function. It can range from 0 to
infinity. The ReLU function leads to better results than comparable activation functions
[25] and is widely used in modern applications [26]. There are various extensions to this
activation function. Figure 2.4c shows the ReLU activation function, which is defined as

f(a) = max(0, a) =

{
0 for a < 0,

a for a ≥ 0,
(2.22)

and the derivative of the ReLU function is defined as

f ′(a) =

{
0 for a < 0,

1 for a ≥ 0.
(2.23)
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(a) Sigmoid (logistic) activation function

−2 −1 0 1 2
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(b) TanH activation function

−2 −1 0 1 2

a

0

1
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f
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)

(c) ReLU activation function

Figure 2.4: Comparison of three widely used activation functions.

2.4.4 Training

Training is the process of learning the unknown parameters of a neural network. One
method to train a neural network, is backpropagation (also referred to as backprop),
which is a supervised learning method. The goal of the training is to find the parameters
that minimize the loss function J (also referred to as error or cost function). Minimizing
the loss function cannot be solved analytically and therefore an optimization algorithm
has to be applied. The gradient descent algorithm is used for optimization, to find the
minimum of a function. However, it is not guaranteed that the global minimum is found
and not just a local minimum. As cost function we use the MSE (defined in (2.13)), but
also other functions like the mean absolute error (MAE) or the cross entropy can be used.

Backpropagation The backpropagation algorithm is split into a forward step and a
backward step. The forward step processes the input through the network and calculates
the output, similar to the prediction. The backward step on the other hand, calculates
the error by comparing the output of the network to the target value, propagates it back
and updates the parameters of the network. The MSE loss function J we are using, is
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multiplied by a factor 1
2 to simplify the future derivation:

JMSE =
1

2n

n∑
i

(zi − yi)2 =
1

2n

n∑
i

e2i . (2.24)

The derivative of the squared error function J , with wjk being the weight between the
neurons j and k, is:

∂J

∂wjk
=

∂J

∂zk

∂zk
∂ak

∂ak
∂wjk

= δkzj , (2.25)

where

δk =


∂fk(ak)
∂ak

ek if k is an output neuron,
∂fk(ak)
∂ak

∑
l δlwkl if k is a hidden neuron.

(2.26)

Then, gradient descent is applied to update the weight wjk. With the learning rate η, the
change of the weight is:

∆wjk = −ηδkzj . (2.27)

The standard gradient descent update step, can also be extended with other parameters as
in the ADAM (Adaptive Moment Estimation) optimizer [27]. When training the network,
the input can be fed into the network in different ways:

Batch learning uses the entire dataset in one batch.

Mini batch is the dataset split into multiple smaller batches with the same size.

Stochastic Gradient Descent (SGD) or online learning uses a batch size of one.

2.4.5 Regularization

Overfitting occurs if a neural network memorizes the training set or parts of it. It is
characterized by a low training error but a high test error. The opposite is called under-
fitting and is characterized by high training and test errors. Underfitting mostly occurs
if the network is too shallow or the chosen architecture is too simple. Overfitting can be
prevented by the use of various regularization techniques like:

Early Stopping stops the learning process when the error on the validation set increases
more than a certain threshold.

Dropout randomly stops using various neurons of the network, so other neurons have to
increase their ability in generalization [28].

L1/L2 Regularization (also referred to as weight decay) adds e.g. L2 norm of the weights
as an additional term to the objective function, so that large weights are penalized:

J = MSE + λ||w||2. (2.28)
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2.4.6 Model Selection

In order to choose the best model for the machine learning task, the entire dataset is split
into a training set, test set and validation set. The different models are trained using the
training set. Afterwards the validation set is used to compare the trained models with
each other and the model with the lowest error is chosen. Then, the test set is used to
obtain the final performance of the network.

2.5 Recurrent Neural Network

A variant of the neural network which is capable of memorizing the past of a sequence is
the recurrent neural network (RNN) [23]. A recurrent cell gets its output fed back as input
and usually consists of multiple gates that decide how much of the (new) input should
be kept, how much of the (old) internal cell state should be preserved and what should
be replaced by new information. RNNs are very useful for sequential tasks like speech
recognition [29] or language translation [30,31].

A simple recurrent neural network with the output vector ht and the activation function
σ can be described as:

ht = σ(Wxt +Uht−1 + b). (2.29)

The h× h matrix U and the h×m matrix W are the weights and b is the bias vector of
size h. The number of features in the input is denoted with m and the number of recurrent
units is denoted with h. Figure 2.5 shows the simplified structure of an RNN cell, before
and after unrolling.

C

x

h

unroll

C

xt+1

ht+1

C

xt

ht

C

xt−1

ht−1

Figure 2.5: Schematic representation of a recurrent neural network and its unrolled version.

2.5.1 Gated Recurrent Unit

The Gated Recurrent Unit (GRU) [32] is one type of RNN and aims to solve the van-
ishing gradient problem, which is commonly present in recurrent neural networks [33] and
describes vanishingly small gradients, that prevent the weights from being updated. It is
similar to a long short-term memory (LSTM) cell, introduced by Hochreiter and Schmid-
huber [34], but uses fewer parameters and no output gate. The performance of GRUs is
slightly better than the performance of LSTMs [35]. It consists of a reset gate and an
update gate. As suggested by Kyunghyun et al. the activation functions are a sigmoid
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function, denoted as σ, and the hyperbolic tangent. The operation � is the Hadamard,
or entrywise, product. Update gate vector zt and reset gate vector rt decide how much
of the past information from previous times steps should be kept, and what should be
updated, i.e.

zt = σ (Wzxt +Uzht−1 + bz) , (2.30)

rt = σ (Wrxt +Urht−1 + br) , (2.31)

and

h̃t = tanh (Wxt +U (rt � ht−1) + b) . (2.32)

The output vector is computed as:

ht = (1− zt)� h̃t + zt � ht−1. (2.33)

Figure 2.6 shows the inner structure of a GRU with its reset and update gates.

ht−1

xt−1 xt

ht+1

xt+1

ht

C

σ σ tanh

1-

+

×
h̃t

×
rt

C
ht

×

zt

ht−1

Figure 2.6: Simplified representation of a GRU (inspired by [36]).

2.5.2 Training

Similar to an MLP, a recurrent neural network like the GRU is trained using backpropa-
gation. For RNNs, the process is called backpropagation through time and essentially, the
network is unrolled (unfolded) and transformed to a standard feed forward network [37].
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3
Cost Model Learning

This chapter gives an overview of the test system developed by Aichernig and Schumi [3] in
Section 3.1 and shows how the cost model is embedded in it. Next, Section 3.2 describes the
generation of the log-data and Section 3.3 presents the features of the datasets. Afterwards,
Section 3.4 statistically analyzes the different datasets and compares them with each other.
We show all the necessary preprocessing steps in Section 3.5 as well as a detailed description
of the learning techniques we use in Section 3.6. Then, Section 3.7 shows how the trained
cost model is integrated into the test system in a process called serving.

3.1 Test System

Aichernig and Schumi developed and implemented2 a test system based on the integration
of SMC into PBT. This test system is described in detail in the publication ”How Fast is
MQTT? Statistical Model Checking and Testing of IoT Protocols” [3]. The publication
further exploits the results developed within TRUCONF3 (trust via cost function driven
model based test case generation for non-functional properties of systems of systems),
but is a publication of the Dependable Things project4. In this test system, log-files are
generated while testing an MQTT broker (the reference SUT) using model-based testing
techniques. During testing, the SUT is treated as a black box. Multiple threads with
clients are running concurrently and are sending messages to the broker. The latencies of
the messages are recorded in log-files, which are then used to learn a cost model. Originally
a multiple linear regression is used to create the model. Combined with user profiles, the
cost model is afterwards being used to create a timed model (STA, see Section 2.1.3).
Later, Monte Carlo simulations of the model are being conducted in virtual time i.e. a
fraction of real time. The predicted latencies of the models are compared with the real
time latencies of the SUT in a hypothesis test (SPRT, see Section 2.1.1) and the test
system decides which hypothesis should be accepted and which one should be refused.
Figure 3.1 gives an overview of the test system by Aichernig and Schumi.

The test system was implemented in C# and using Visual Studio 2012 with the .NET
framework 4.5, NUnit 2.64 and FsCheck 2.92.

2 https://github.com/schumi42/mqttCheck
3 http://truconf.ist.tugraz.at
4 https://www.tugraz.at/projekte/dependablethings
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Accepted/Rejected
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Functional

Model
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Log-Files
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Timed

Model (STA)

Monte Carlo

of the Model

(virtual time)
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as Hypotheses

Hypothesis Test

(SPRT) of SUTs

(real time)

SUT

Figure 3.1: Overview of the test system by Aichernig and Schumi (based on [38]).

3.1.1 Cost Model

As seen in the overview of the test system (Figure 3.1), the green box represents the
cost model we are going to develop and improve in this thesis. Originally, Aichernig and
Schumi used a multiple linear regression to create a cost model. This work replaces the
linear regression with deep learning methods, in order to achieve better results while saving
more effort in preprocessing.

3.2 Log-Data Generation

As described in Section 3.1, the data we are using in training is log data, generated while
randomly testing the SUT using model-based testing. In this work, the performance
of multiple MQTT broker implementations and usage scenarios will be evaluated. The
generated datasets are sorted by time and split into comma separated values (CSV) files
per Client ID. The data is generated using approximately equally distributed message
types. The test system is running on a Microsoft Windows server (2008 R2) with 2.1 GHz
Intel Xeon E5-2620 v4 CPU, 8 cores and memory of 32 GB. In our experiments, the
machine runs the clients as well as the broker. Therefore it is likely that the processes are
influenced by each other. However, there is no disturbance because of network latencies
in this setup. For some experiments, the broker is executed in a virtual machine using
Oracle VM Virtual Box (see Section 3.2.2). Table 3.1 shows a simplified excerpt of the log
data. Note that some feature names are left out or shortened to make it more readable.
All features of the dataset are listed and described in detail in Section 3.3.
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ActiveReq TotalSubs Msg TopicSize MsgSize Subs Receivers Latency

18 754 connect 0 0 0 0 106.36

18 737 subscribe 14 0 0 0 98.88

18 700 disconnect 0 0 0 0 0.19

19 733 publish 14 76 2 2 228.11

18 742 unsubscribe 14 0 0 0 78.46

Table 3.1: Simplified example of the generated log-data. Detailed feature names are presented in
Section 3.3. In particular ActiveReq and TotalSubs correspond to #ActiveRequests and
#TotalSubscriptions. Subs and Receivers correspond to #Subscribers and #PublishRe-
ceiver.

3.2.1 Implementations

There are several implementations of MQTT brokers. This work evaluates the perfor-
mances of three of the most widely used implementations for its experiments: EMQ,
Mosquitto and VerneMQ. For all experiments, the default settings of the brokers are used.
As MQTT client library, Aichernig and Schumi use M2Mqtt5.

EMQ is the Erlang MQTT Broker, also referred to as eMQTT It is an open source
MQTT broker written in Erlang. In the experiments, version 2.3.5 of the broker is used.

Eclipse Mosquitto is an open source MQTT broker written in Python and C [39]. In
the experiments, version 1.4.15 of the broker is used.

VerneMQ is a broker developed by Octavio Labs in Erlang/OTP. The lastest release is
version 1.4.1, which is used in this thesis.

3.2.2 Datasets

We identified multiple usage scenarios and therefore run a range of different experiments
which led to two major groups of datasets, which are subject of this thesis:

Default The dataset originally used by Aichernig and Schumi in [3]. It consists of 100
test cases, each with a length of 50 messages and 3 – 100 active clients. The dataset
has a length of approximately 300,000 samples.

IoT Environment This dataset is similar to the default one, except that we run the broker
in a Virtual Box and limit its CPU resources (in percentage of the host machine’s
CPU). We used this setting to create a more realistic IoT environment, which often
operate on very small, energy efficient devices and do not have a lot of computing
power. For this work we experimented with limitations of 10%, 5% and 1% of the
CPU resources.

5 https://m2mqtt.wordpress.com
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Other experiments, like increasing size of messages or topics, or experiments with many
passive clients (clients which only subscribe to topics, but do not publish themselves) are
not part of this thesis, but might be covered in future work.

3.3 Features

The generated datasets consist of 20 – 21 features (attributes), which are logged properties
of the broker for every operation (or request) executed on it, captured on the client side.
The target variable is the duration (latency) of the broker.

Time The date and time (in microseconds) when the log entry was created.

OperationIDForClient Incremental identifier of all the operations performed by one client.

GlobalOperationID Globally unique identifier of all operations executed on the broker.

Client Unique client identifier (also referred to as Client ID).

#StartActiveRequests Number of active requests on the broker at the beginning of the
operation. Note that this feature was not present in earlier implementations of the
test system.

#EndActiveRequests Number of active requests on the broker at the end of the operation.
Also referred to as #ActiveRequests in earlier implementations of the test system.

#TotalSubscriptions Number of total subscriptions on the broker, which is the sum of
all subscriptions to all existing topics.

Msg Message type of the operation (also referred to as control message) (cf. Section 2.2.1).
Clients can connect, disconnect, subscribe, unsubscribe or publish. This is a
categorical variable.

From Boolean value indicating the current state. Not relevant for our experiments.

To Boolean value indicating the next state. Not relevant for our experiments.

Retain Boolean value of the retain flag (cf. Section 2.2). Not relevant for our experiments
and therefore always equal to false.

TopicSize Size of the topic, the client publishes to. Only set if the message type is
subscribe, unsubscribe or publish.

CumulativeTopicSize Sum of all topic sizes on the broker.

MsgSize Size of the message published by the client. Only present if the message type is
publish.

CumulativeMsgSize Sum of all message sizes on the broker.

#Subscribers Number of subscribers at the topic the client publishes to. Only present if
the message type is publish.

#PublishReceiver Number of receivers of the published message. Only present when the
message type is publish.
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Success Boolean value indicating if the operation was executed successfully.

ExceptionMsg Field for error messages if any errors occurred.

PopulationSize Number of clients (population) of the current test case.

Duration Latency of the operation. The latency is measured in milliseconds from the
time the client is sending the request, until it receives a response from the broker or
in case of a publish, until all subscribers received the message.

3.4 Analysis and Statistics

We perform statistical analysis on the data in order to get a better understanding of the
datasets and therefore to make it easier to find suitable cost models for them. Scatter
plots and plots over time give us insights on how the data has to be processed and what
deep learning method and hyper parameters should be used to achieve the best results. In
the analysis we focus on the two major groups of datasets: The default dataset and the
dataset with limited CPU resources.

3.4.1 Default Dataset

The default datasets consists of 254,752 samples for EMQ and 242,911 samples for Mos-
quitto. Note, that the default dataset consists of only 20 different features, compared
to the 21 features of other datasets, because it was created with an older version of the
test system. In this dataset, #StartActiveRequests is not present. However, it includes
#ActiveRequests, which is equivalent to #EndActiveRequests of the newer datasets.

EMQ

For EMQ, the mean and standard deviation for the most relevant features are shown in
Table 3.2. The statistical information for the target variable, the latency (duration), is
given in Table 3.3. Overall the latency has a mean of 8.3884 ms and the standard deviation
is 22.3957 ms.

#ActiveRequests #TotalSubscriptions #Subscribers

Msg Type count mean std mean std mean std

connect 53255 22.7577 9.9333 279.2641 195.9930 – –

disconnect 58177 19.6330 12.0123 276.3124 195.2427 – –

subscribe 45032 22.8802 9.9221 275.5825 194.9149 – –

unsubscribe 47198 22.8351 9.8820 278.4362 195.9785 – –

publish 51090 22.9838 9.9007 275.7641 195.7054 1.5051 1.8507

Table 3.2: Mean values and standard deviation of the most relevant features for the EMQ default
dataset.
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Msg Type min Q25% Q50% Q75% max mean std

connect 0.7587 7.5436 20.6914 47.7472 410.8455 34.0358 38.0782

disconnect 0.0536 0.1399 0.1911 0.4130 197.1196 0.8186 4.1201

subscribe 0.1726 0.5622 0.8031 1.3087 227.1484 1.8164 5.5172

unsubscribe 0.1082 0.3579 0.5553 0.9810 270.9498 1.4148 4.6294

publish 0.1706 0.5744 0.8918 1.6208 200.9157 2.5094 7.4279

0.0536 0.3885 0.7972 2.9910 410.8455 8.3884 22.3957

Table 3.3: Statistical values for the target variable (latency) in ms for the EMQ default dataset. Min is
the minimum latency, and max the maximum latency. The Q-values describe the quantile
and the last two columns are the mean value and the standard deviation.

Figure 3.2 shows the distribution of the latency (duration) as histogram. It is structured
per message type and the red dotted line marks the mean value of the latency. Figure 3.3
shows the scatter plot for #ActiveRequests and #TotalSubscriptions, while Figure 3.4
shows the scatter plot for #Subscribers, MsgSize and TopicSize.
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Figure 3.2: Distribution of the latencies per message type for the EMQ default dataset. The mean is
displayed in red.
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Figure 3.3: Scatter plot of #ActiveRequests and #TotalSubscriptions for a subsample of 1% of the
EMQ default dataset.
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Figure 3.4: Scatter plot of #Subscribers, MsgSize and TopicSize for a subsample of 1% of the EMQ
default dataset.

Mosquitto

For Mosquitto, the mean and standard deviation for the most relevant features are shown
in Table 3.4. The statistical information for the target variable is given in Table 3.5.
Overall the latency has a mean of 7.5457 ms and the standard deviation is 19.4222 ms.

#ActiveRequests #TotalSubscriptions #Subscribers

Msg Type count mean std mean std mean std

connect 50886 22.3892 10.0489 270.3474 191.9621 – –

disconnect 55580 19.2689 12.0329 269.4060 191.6482 – –

subscribe 43013 22.4298 10.0958 268.1302 191.7639 – –

unsubscribe 44930 22.4383 10.1194 270.8538 192.4423 – –

publish 48502 22.5435 10.0900 268.7437 191.9409 1.5325 1.8529

Table 3.4: Mean values and standard deviation of the most relevant features for the Mosquitto default
dataset.

Figure 3.5 shows the distribution of the latency (duration) as histogram. The scatter
plots for Mosquitto are omitted, because they are similar to the scatter plots for EMQ
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Msg Type min Q25% Q50% Q75% max mean std

connect 0.7626 4.5762 14.2127 38.7582 467.1957 27.8185 34.1847

disconnect 0.0541 0.1365 0.1682 0.2712 256.4340 0.6070 3.3153

subscribe 0.1496 0.7416 1.2263 2.1079 146.9460 2.5553 5.1801

unsubscribe 0.1062 0.7002 1.1514 1.9836 454.3836 2.3789 5.3354

publish 0.1535 0.9030 1.6422 2.9013 199.6367 3.4399 7.1008

0.0541 0.4885 1.3199 3.7697 467.1957 7.5457 19.4222

Table 3.5: Statistical values for the target variable (latency) in ms for the Mosquitto default dataset.
Min is the minimum latency, and max the maximum latency. The Q-values describe the
quantile and the last two columns are the mean value and the standard deviation.

and no new insights can be gained.
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Figure 3.5: Distribution of the latencies per message type for the Mosquitto default dataset. The mean
is displayed in red.

Discussion

The scatter plots of the default dataset do not give a lot of insights. There are higher
latencies present, when the number of active requests increases, but the latency can also
be on the same level with half of the active requests. The data is very noisy, has a high
variance and is distributed all over the place. Especially the number of total subscriptions
does not seem to have an influence on the latency at all. It is clearly noticeable, that the
features #Subscribers and MsgSize are only dependent on the message type publish and
are set to zero for the other message types. The feature TopicSize on the other hand is
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only dependent on subscribe, unsubscribe and publish. It is also noticeable that the latency
is not increasing, when the number of subscribers increases, which is not very intuitive.
The latency also stays almost constant for increasing message or topic sizes.

As shown in the tables and the scatter plots, the control message connect takes on
average much longer than the other message types. This is because the TCP/IP connection
has to be initiated with a handshake first. Afterwards, the broker needs to create and store
a session for the newly connected client.

When sorting the dataset by time or GlobalOperationId it is noticeable that #Active-
Requests or #TotalSubscriptions are not raising in a constant way, they are jumping,
which leads to the assumption that the samples in the dataset are not independent from
each other. Putting them in groups of 10 and summarizing the features made a slight
linear correlation visible between #ActiveRequests and the latency.

3.4.2 Limited CPU Dataset

The limited CPU datasets are created for limited CPU resources of 1%, 5% and 10%
of the host system’s CPU. They consist of around 300,000 samples, are structured in 21
different features and are created running the same experiments on the test system as
for the default datasets. Note that for the limited CPU dataset we mainly focus on the
EMQ broker and the 5% CPU limitation, in order to improve the readability of this work.
For the limited CPU datasets we omit the mean and standard deviation for the features
#ActiveRequests, #TotalSubscriptions and #Subscribers, as they stay almost constant
over all experiments and message types (see Section 3.4.1).

1% CPU EMQ

For the 1% CPU EMQ dataset, the statistical information for the target variable is given
in Table 3.6.

Msg Type count min max mean std

connect 51918 1.9021 5695.4095 1616.1722 1039.1016

disconnect 56712 0.0677 45.2018 0.2443 1.0011

subscribe 43850 0.5592 4348.7390 629.3687 469.2520

unsubscribe 45914 0.3242 1577.8925 181.7533 146.5992

publish 49692 0.4607 5724.0788 350.7410 358.5365

248086 0.0677 5724.0788 553.4135 797.3277

Table 3.6: Statistical values for the target variable (latency) for the 1% CPU EMQ dataset. Min is
the minimum latency, and max the maximum latency. The last two columns represent the
mean value and the standard deviation.

5% CPU EMQ

The statistical information for the target variable for the 5% CPU EMQ dataset is listed
in Table 3.7. Figure 3.6 shows the distribution of the latency (duration) as histogram.
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Figure 3.7 shows the scatter plot for #ActiveRequests and #TotalSubscriptions, while
Figure 3.8 shows the scatter plot for #Subscribers, MsgSize and TopicSize. Note, that for
EMQ, this figures are only shown for the 5% CPU EMQ dataset, as they are similar for
the 1% and 10% CPU EMQ datasets.

Msg Type count min max mean std

connect 62259 1.8080 5090.4812 1448.7444 839.5920

disconnect 67991 0.0658 42.8013 0.2481 1.0589

subscribe 52393 0.5436 2808.1109 575.1638 388.8421

unsubscribe 54587 0.3374 1434.2807 164.7632 121.4869

publish 59422 0.4954 4996.5954 321.7108 304.0088

296652 0.0658 5090.4812 500.4498 685.6155

Table 3.7: Statistical values for the target variable (latency) for the 5% CPU EMQ dataset. Min is
the minimum latency, and max the maximum latency. The last two columns represent the
mean value and the standard deviation.
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Figure 3.6: Distribution of the latencies per message type for EMQ with 5% CPU. The mean is
displayed in red.
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Figure 3.7: Scatter plot for a subsample of 1% for the 5% CPU EMQ dataset.
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Figure 3.8: Scatter plot for a subsample of 1% for the 5% CPU EMQ dataset with features more
relevant to the message type publish.

5% CPU Mosquitto

The statistical information for the target variable for the 5% CPU Mosquitto dataset is
listed in Table 3.8. Figure 3.9 shows the scatter plot for the number of active requests and
the number of total subscriptions.

Msg Type count min max mean std

connect 54555 1.1419 3206.6305 185.7904 122.7880

disconnect 59580 0.0750 109.9941 0.4585 2.1792

subscribe 45913 0.2374 2180.4905 124.4450 132.3105

unsubscribe 48191 0.2135 2481.9387 127.1247 143.8745

publish 51847 0.2340 1875.4681 181.7770 162.0015

260086 0.0750 3206.6305 120.8355 142.3915

Table 3.8: Statistical values for the target variable (latency) for the 5% CPU Mosquitto dataset. Min
is the minimum latency, and max the maximum latency. The last two columns represent
the mean value and the standard deviation.
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Figure 3.9: Scatter plot for a subsample 1% of the 5% CPU Mosquitto dataset.

5% CPU VerneMQ

The statistical information for the target variable for the 5% CPU VerneMQ dataset is
listed in Table 3.9. Figure 3.10 shows the scatter plot for #ActiveRequests and #Total-
Subscriptions.

Msg Type count min max mean std

connect 51437 2.1347 23151.3111 3130.6190 2273.1320

disconnect 56228 0.0750 174.7420 0.2810 1.4671

subscribe 43313 0.6226 10007.3503 588.7484 314.6931

unsubscribe 46019 0.5753 3727.9271 199.0021 155.8423

publish 49594 0.5846 27035.3788 384.6339 864.0394

246591 0.0750 27035.3788 870.9941 1622.8523

Table 3.9: Statistical values for the target variable (latency) for the 5% CPU VerneMQ dataset. Min
is the minimum latency, and max the maximum latency. The last two columns represent
the mean value and the standard deviation.

0 50

#ActiveRequests

0

10000

20000

D
u

ra
ti

on

0 250 500 750

#TotalSubscriptions

Msg

connect

disconnect

subscribe

unsubscribe

publish

Figure 3.10: Scatter plot for a subsample 1% of the 5% CPU VerneMQ dataset.
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10% CPU EMQ

For the 10% CPU EMQ dataset, the statistical information for the target variable is given
in Table 3.10.

Msg Type count min max mean std

connect 47229 1.6730 5222.9173 1415.9095 879.5023

disconnect 51601 0.0755 46.1624 0.2308 0.8521

subscribe 40078 0.4159 2694.2412 571.6901 395.8018

unsubscribe 42065 0.3696 1241.0303 165.5091 127.4656

publish 45263 0.3496 4885.5129 312.8729 303.0169

226236 0.0755 5222.9173 490.2836 686.5436

Table 3.10: Statistical values for the target variable (latency) for the 10% CPU EMQ dataset. Min
is the minimum latency, and max the maximum latency. The last two columns represent
the mean value and the standard deviation.

Discussion

The mean values and standard deviation increase dramatically compared to the default
dataset. The message types connect and publish are the control messages with the longest
duration, while disconnect is still short compared to all other message types (except for
the Mosquitto dataset). In the scatter plots for EMQ and VerneMQ we see a slight linear
trend, when increasing the number of active requests. However, for the 5% CPU Mosquitto
dataset there is no linear trend visible and the mean of the latency is much lower than for
the other datasets. It seems that limiting the CPU resources did not eliminate most of
the noise in this dataset.

Same as for the default dataset, increasing the number of subscribers, the message or
topic size does not have a lot of impact on the latency. An increasing number of total
subscribers has an impact on the latency too, but in the scatter plot, there is also a lot of
noise present.

Note that the percentage values of the CPU limitations should not be taken too seriously.
Repeated experiments have shown a high variance of the mean latencies for the limited
CPU datasets. The reason for this is not only the randomness in the experiments. Also
the virtualization with Virtual Box and inaccuracies in the CPU resource limitation might
have an impact on the variance of the latencies.

3.4.3 Summary

Except for Mosquitto, we can see a linear trend for increasing numbers of active requests.
To make the trend more visible, we created a line plot instead of the previous scatter plot.
For the EMQ default dataset it is shown in Figure 3.11 and for the 5% limited CPU EMQ
dataset it is shown in Figure 3.12. The limited CPU dataset clearly shows a linear trend
for all message types, while the default dataset increases only slightly for the message type
connect, with a high variance (shown as shaded area around the line). The number of total
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subscriptions are very noisy, but also slightly increasing in the limited CPU dataset. The
latency does not really increase with a higher number of subscribers, as seen on the right.
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Figure 3.11: Line plot for the most relevant variables for the EMQ default dataset. The shaded area
represents the variance.
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Figure 3.12: Line plot for the most relevant variables for the 5% CPU EMQ dataset. The shaded area
represents the variance.

Figure 3.13 shows the features of the datasets over time. As seen in the increasing and
decreasing number of active requests and number of total subscriptions, there are multiple
test cases run after each other. So, the number of active requests and the number of
total subscriptions are reset with every start of an experiment. One can also see that the
latencies approximately follow the same pattern for the default dataset in Figure 3.13a,
while the duration in Figure 3.13b for the 5% CPU EMQ dataset does not fluctuate that
much and seems to be more stable.

Figure 3.14 shows the data over time for one user (client0) only. As in the previous
Figure 3.13, the different experiments run after each other. The duration in the 5% CPU
EMQ dataset (Figure 3.14b) does not change as much as the data in the default dataset
(Figure 3.14a).

There is definitely a time dependency in the datasets, which is probably caused by
the testing server’s scheduling mechanism. As shown in the figures, the variance of the
duration is decreasing, if the CPU resources are limited to 5%. One can clearly observe
this in Figure 3.13. Because of the limited CPU resources, the events processed on the
broker take longer and timing effects caused by scheduling etc. on the testing server are not
as significant anymore. However, for Mosquitto it seems that the noise is not decreasing
when the CPU resources are limited as shown in Figure 3.15, because the latencies are
lower than for VerneMQ or EMQ and therefore errors are more prominent.
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(a) default EMQ dataset
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(b) 5% CPU EMQ dataset

Figure 3.13: Most relevant features over time for the default dataset and the 5% CPU EMQ dataset.
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(a) default EMQ dataset
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(b) 5% CPU EMQ dataset

Figure 3.14: Most relevant features over time for the default dataset and the 5% CPU EMQ dataset
and one user (client0) only.
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(a) default EMQ dataset
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(b) 5% CPU EMQ dataset

Figure 3.15: Most relevant features over time for the default dataset and the 5% CPU dataset for
Mosquitto.
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3.5 Preprocessing

Before we can use the datasets to train the neural networks, some preprocessing is per-
formed in order to increase the quality of the data. The data has to be put in the required
format, so it can be used as an input for the (recurrent) neural networks. We also filter
out unsuccessful events, failed because of timeouts or other reasons.

For the recurrent neural network, the dataset is sorted ascending by GlobalOperationID
and converted into a cubical form with features, time steps and batch size as dimensions
as shown in Figure 3.16.

x1 . . . xm

batch size

time

y

Figure 3.16: Converted dataset for recurrent neural networks. The features are displayed in green and
the target variable is displayed in blue.

The dataset is shuffled and split into a training and validation set, using a ratio of 80%
and 20% respectively. Note, that Aichernig and Schumi used all of the data for learning
the linear regression. Afterwards, we apply one-hot encoding, feature and target scaling
as described in the following sections.

3.5.1 One-Hot Encoding

Since the feature message type is a categorical variable, we have to use one-hot encod-
ing to convert the categories into indicator variables. This means, that Msg is split up
into the binary features Msg connect, Msg disconnect, Msg publish, Msg subscribe and
Msg unsubscribe as shown in Table 3.11.

Msg: connect disconnect publish subscribe unsubscribe

Msg connect 1 0 0 0 0

Msg disconnect 0 1 0 0 0

Msg publish 0 0 1 0 0

Msg subscribe 0 0 0 1 0

Msg unsubscribe 0 0 0 0 1

Table 3.11: One-Hot encoding of the categorical variable Msg to the indicator variable in the left
column.
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3.5.2 Feature Scaling

To keep the values of the features and therefore also the parameters of the neural network
small, we use feature scaling. One method to scale features, is to standardize them,
which means the features are scaled to zero mean and unit variance. An alternative to
standardization is the use of a Min-Max scaler, which works slightly better for our data.
The Min-Max scaler transforms the features to a scale between 0 and 1:

xi,scaled =
xi −min(x)

max(x)−min(x)
(3.1)

3.5.3 Target Scaling

Since the latency can range from fractions of a millisecond to over a second, we also scaled
the target variable y for some of the experiments. We use the logarithm to scale y:

yi,scaled = log(yi) (3.2)

3.6 Learning

Developing the cost model is the main part of this thesis and is also referred to as learning.
In the original test system, multiple linear regression is used as cost model, which serves
as a baseline for the deep learning methods we are going to apply in this thesis. We are
using multiple different methods like (deep) neural networks or GRUs, depending on the
dataset we are going to process.

3.6.1 Multiple Linear Regression

Aichernig and Schumi [3] were using a multiple linear regression to create a cost model in
the original implementation of the test system. To achieve fairly good results, they had to
perform a lot of feature analysis and preprocessing. The data was checked for any biases
in the log-data with the use of scatter plots, histograms and correlation matrices. In a
next step, they cleaned the data i.e. they removed outliers (top 5% latencies per message
type) and log entries with error messages. In an extensive feature selection step, they only
kept features that had an impact on the latency. Features with no additional information
were not considered in the cost model. To do this, they used the Pearson correlation
coefficient. They also found out, that some features are only relevant for certain message
types and therefore set the features #ActiveRequests and #TotalSubscriptions to zero for
some message types.

The linear regression was performed in R [40] with the lm function and using the Features
Msg, EndActiveRequests, TotalSubscriptions and Subscriptions. The R Stats Package
automatically splits the message type into dummy features (dummy encoding). It outputs
a table of regression coefficients, standard errors, t-values and the significance of each
feature. The output was written to a text file, which was then loaded by the test system.
In order to use the linear regression as a baseline and to make comparison easier, we
re-implement the R project of Aichernig and Schumi in Python, using scikit-learn [41].
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3.6.2 (Recurrent) Neural Network

In this work, we compare various different architectures of (recurrent) neural networks.
We implemented the models using Python 3.66 with Keras [42] and a TensorFlow [43] back
end. The experiments were performed on a MacBook Pro with a Intel Core i5 2 GHz dual-
core CPU and 8 GB of RAM running macOS 10.13.6. Some experiments are performed on
a Linux GPU cluster, running Debian 4.9.82 and utilizing multiple NVIDIA Tesla K40c
GPUs with 12 GB of RAM.

As input features we selected #ActiveRequests, #TotalSubscriptions, #Subscribers,
Msg, TopicSize, MsgSize and #PublishReceiver. Other features such as Retain, From or
To were omitted, because they were constant throughout all experiments or not relevant.
Using one-hot encoding for the message type, sums the number of input features up to 11.
We applied a Min-Max scaler on all of our features. Scaling the target using the logarithm
was not an advantage for most of the experiments.

In all of our experiments we used the MSE (2.13) as loss function and an ADAM
optimizer with a learning rate of 0.001, β1 = 0.9, β2 = 0.999 and a decay of 0.0.

Architecture

As neural network architecture, we used multiple densely connected layers with a ReLU
activation function (2.22) and linear activation in the output layer. All the other settings
were left to their default values (bias initialized with zeros, weights initialized using the
Glorot uniform initializer [44]). As regularization in the standard neural network we used
early stopping. We experimented using dropout with a rate between 0.1 and 0.2 applied
after every hidden layer, but improvements could not be observed.

For the recurrent neural network, we used NVIDIA’s cuDNN7 GRU implementation for
the recurrent units. This implementation does not offer dropout. Therefore, we used kernel
and recurrent regularizers (weight decay) for some experiments, but no improvement could
be observed. The architecture consist of multiple stacked GRU layers and one dense layer
with linear activation as output layer. As activation function in the recurrent layers we
used the hyperbolic tangent and the sigmoid function in the recurrent step, as suggested
in [32]. All the other settings were left to their default values (bias initialized with zeros,
weights initialized using the Glorot uniform initializer).

For the neural network as well as for the recurrent neural network we used 1 – 10 hidden
layers with 6 – 512 neurons (or units) in the first hidden layer and a same or decreasing
number of neurons in the subsequent layers. The architecture is denoted by the number
of neurons per layer, split by hyphens e.g. 11-12-6-1 for an input layer of size 11, one
hidden layer with 12 neurons, one hidden layer with 6 neurons, and an output layer with
one neuron.

3.7 Serving

To use the cost model, written in Python, in the enclosing test system, written in C#,
we had to implement a serving platform. We used a small Flask8 server, which loads the

6 https://www.python.org
7 https://developer.nvidia.com/cudnn
8 http://flask.pocoo.org
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3.7 Serving

trained Keras model (saved in h5 format), does the preprocessing and responses with a
prediction. Requests can be submitted via HTTP GET method e.g.

http ://127.0.0.1:5000/ predict?msg=publish&totalsubscriptions =42&

subscribers =7& activerequests =10

to get a prediction for the message type publish with 42 total subscriptions, 7 subscribers
and 10 active requests. The server then responses with the prediction in JSON format
e.g.

{" prediction ":5.261019706726074 ," success ":true}

for a predicted latency of approximately 5.2610 ms.
Another option, which turned out to be faster and easier to integrate, is to use the

standard input and output of the Python script instead of a Flask server to communicate
with the cost model.
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4
Experimental Results

This chapter presents the experimental results we achieved in this work. It shows the
architectures that performed best with the different datasets. We focused on the EMQ
and Mosquitto default datasets as well as the 1%, 5% and 10% limited CPU EMQ datasets
(see Section 3.2.2) for our comparison. At first we describe the results achieved with the
default dataset and what challenges we were facing in Section 4.1. We tried standard
neural networks as well as recurrent neural networks to cover the sequential dependencies
we found out about in the statistical analysis. In Section 4.2, we perform experiments
with standard neural networks using the limited CPU datasets. As a baseline for all of
our experiments, we used the multiple linear regression from [3] with all its preprocessing
steps as described in Section 3.6.1. To have a better comparison with unprocessed data,
we ran the linear regression also on the datasets without any preprocessing. We tried
different architectures, from shallow to very deep neural networks. At the end of this
chapter, Section 4.3 gives a summary of the results achieved in our experiments.

4.1 Default Dataset

The results for the linear regression, with and without preprocessing, are listed in Ta-
bles 4.1. Note that the MSE of the linear regression with preprocessing cannot be used
for comparison, because the preprocessing step removed all the outliers. Figure 4.1 shows

Dataset R2 MSE

EMQ 0.3906 309.3296

Mosquitto 0.3760 229.1834

(a) without preprocessing

Dataset R2 MSE

EMQ 0.6418 93.5200

Mosquitto 0.6936 56.6065

(b) with preprocessing

Table 4.1: Results of the linear regression, with and without preprocessing, for the default datasets.

the results of the linear regression (with preprocessing) from Table 4.1b as scatter plot. It
shows the true duration (latency) in the x-axis and the predicted duration in the y-axis.
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The dashed 45° line represents the ideal result for the regression, where all the predictions
are equal to the real values.
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Figure 4.1: True vs. predicted duration (latency) for the linear regression with preprocessing and the
default datasets.

As a next step, we tried different neural network architectures, starting with very shallow
neural networks like 11-6-1 to very deep neural networks like 11-265-128-64-32-16-8-1. The
best results were achieved with the 11-265-128-64-1 network and are listed in Table 4.2 un-
der the NN column and graphically in Figure 4.2. As noticed in the analysis in Section 3.4,
we can observe a time dependency in the default dataset. To take those dependencies into
account and process a sequence of data, we concatenated multiple time steps from one
user and trained a 11-256-128-64-1 neural network (referred to as NNsequence) as well as
a 11-256-128-64-1 GRU. The best results for that experiments are listed in Table 4.2 and
shown in Figure 4.3 for the neural network and Figure 4.4 for the GRU.

NN NNsequence GRU

Dataset R2 MSE R2 MSE R2 MSE

EMQ 0.5439 231.5091 0.7448 124.8604 0.7606 117.1198

Mosquitto 0.6465 129.8170 0.7624 89.4789 0.7915 78.5293

Table 4.2: Results of the 11-256-128-64-1 neural network and GRU architecture for the default
datasets.
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4.1 Default Dataset
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Figure 4.2: True vs. predicted duration (latency) for the 11-256-128-64-1 neural network and the
default datasets.
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Figure 4.3: True vs. predicted duration (latency) for the 11-256-128-64-1 neural network using the
concatenation of three time steps as input feature vector on the default datasets.
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Figure 4.4: True vs. predicted duration (latency) for a 11-256-128-64-1 GRU using a sequence of
length 3 on the default datasets.
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4 Experimental Results

4.1.1 Discussion

As seen in the analysis and statistics of the data (see Section 3.4) the dataset has a
time dependency. This is the reason the recurrent neural network performed best for this
dataset. Because the scheduling is also depended on the current user, the results turned
out to be better after grouping the dataset by users and then sorting it than just sorting
it by time.

Good results were also achieved by using a neural network with the time steps con-
catenated. Methods which did not consider the time dependencies, did not lead to good
results as seen in the results. The standard neural network did not perform better than
the linear regression with preprocessing. But it performed much better than the linear
regression without preprocessing. As seen in the scatter plots, the preprocessing removed
all the outliers and therefore most latencies above 110. That is the reason, why the axes
in the plots in Figure 4.1 are limited to around 120, while the range of other plots is to
around 225. The scatter plots also show, that the neural network and the linear regression
did not perform very well for larger latencies.

Because the neural network did not perform better than the linear regression with pre-
processing, we tried a lot of different architectures and parameters. We trained networks
down to a depth of 8 layers, but there was not a lot of improvement. The 11-265-128-64-1
architecture was a good compromise between decent results and not too many parame-
ters and therefore a better performance. However, architectures with less parameters, like
11-12-12-6-6-1, did not perform much worse with an R2 value of around 0.5369.

Similar as for the architecture, we also performed experiments with a different amount
of time steps for the GRU and the neural network with concatenated time steps. The best
results were achieved with only three time steps and the dataset grouped by clients. We
tried to increase the time steps up to 800, but the results of the network did not increase,
while the training and prediction time of it drastically decreased. The results for different
time steps, using the 11-12-12-6-6-1 neural network architecture and the EMQ default
dataset are listed in Table 4.3.

Time Steps R2 MSE

3 0.7339 130.1850

6 0.6971 148.9849

8 0.6902 157.3421

Table 4.3: Different time steps settings for the 11-12-12-6-6-1 neural network architecture and the
EMQ default dataset.

Note that for the GRU, even though we used the same number of units and layers as
for the neural network, the number of parameters is significantly higher because of the
structure of a GRU unit. As shown in Section 2.5.1, one GRU unit consists of six weight
matrices, while artificial neurons consist of only one. The GRU therefore needs around
4 ms for the prediction, which is twice as much time needed than the neural network.
Compared to the mean latency of the default datasets (around 8 ms), this is a only a
speedup of a factor of 2.
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4.2 Limited CPU Dataset

4.2 Limited CPU Dataset

The multiple linear regression results of the limited CPU datasets are listed in Tables 4.4.
A scatter plot is shown in Figure 4.5 for the data with preprocessing.

Dataset R2 MSE

1% CPU EMQ 0.6852 146106.8164

5% CPU EMQ 0.7085 136517.9478

10% CPU EMQ 0.6852 455975.1158

(a) without preprocessing

Dataset R2 MSE

1% CPU EMQ 0.8697 47924.4792

5% CPU EMQ 0.8631 52431.6899

10% CPU EMQ 0.7526 181229.1207

(b) with preprocessing

Table 4.4: Results for the linear regression with and without preprocessing for the limited CPU
datasets.

Because of limiting the CPU resources, dependency of samples over time was not as
prominent anymore and therefore, sequential neural networks have not been applied for
this datasets. In this experiment, we also tried different neural network architectures, but
ended up taking the same as for the default dataset. This also shows that this architecture
is able to generalize well between different use cases. The results for the 11-265-128-64-1
architecture are listed in Table 4.5 and the scatter plot can be seen in Figure 4.6.

Dataset R2 MSE

1% CPU EMQ 0.9152 39348.0030

5% CPU EMQ 0.9141 40214.0486

10% CPU EMQ 0.7737 243292.5299

Table 4.5: Results of the 11-256-128-64-1 neural network architecture for the limited CPU datasets.
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Figure 4.5: True vs. predicted duration (latency) for the linear regression and the limited CPU EMQ
datasets.
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Figure 4.6: True vs. predicted duration (latency) for the 11-256-128-64-1 neural network and the
limited CPU EMQ datasets.
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4.2.1 Discussion

For the limited CPU EMQ datasets we achieved very good results with a multiple linear
regression already, compared to the default dataset. The neural network performed even
better and we could achieve a maximum R2 value of 0.9152 for the 1% limited CPU dataset,
with the predicted duration being aligned along the 45° line. The network architecture
is also not too large and therefore does not contain too many weights to slow down the
computation of the prediction. Taking around 1 – 2 ms for the prediction is significantly
faster than the mean latency of the experiments on the SUT, which took around 500 –
600 ms in average.

As with the default dataset, we tried various different architectures. A small excerpt
from the architectures we tried and the corresponding results are given in Table 4.6. The
more parameters we used, the better the network performed in general. In order to speed
up the computation of the prediction and make the networks as simple as possible, we
decided to use the 11-256-128-64-1 architecture, because it provided decent results with
a reasonable amount of parameters. All in all, the difference in the R2 values is not too
large between the architectures. A very simple architecture like 11-12-1 already performed
better than the linear regression and it requires less effort for preprocessing. A scatter
plot of the architecture is shown in Figure 4.7

Architecture R2 MSE

11-12-1 0.8865 53133.7090

11-12-6-1 0.8894 51799.8317

11-12-12-6-6-1 0.9079 43093.4257

11-64-32-16-1 0.9110 41675.5917

11-64-32-16-8-1 0.9112 41579.1678

11-128-64-32-16-8-1 0.9133 40596.8134

11-256-128-64-1 0.9141 40214.0486

11-256-128-64-32-16-8-1 0.9168 38958.4936

Table 4.6: Comparison of a sample of different architectures for the 5% limited CPU EMQ dataset.
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Figure 4.7: True vs. predicted duration (latency) for the 12-1 neural network and the 5% limited CPU
dataset.

4.3 Summary

Compared to the multiple linear regression baseline model, the deep learning methods we
used achieved significantly better results. It was possible to get an R2 value of over 0.9 and
therefore a better fit of the regression than with the multiple linear regression. The neural
network performed best for the dataset with limited CPU resources. The limitation is also
close to a real-world IoT scenario that utilizes small and energy efficient devices. Because
of the CPU resource limitations, the operations performed by the broker take longer
and therefore other influences of the latency like scheduling, errors etc. are negligible.
The baseline model, the multiple linear regression, performed well on the limited CPU
dataset already, but a lot of preprocessing had to be performed in order to achieve those
results. For the neural network, only the most necessary preprocessing tasks, like one-hot
encoding, feature and target scaling were performed. Those tasks do not require human
interaction and can therefore be automated and integrated into the test system. It was
not possible to find a well-performing neural network for the default dataset because of
the time dependencies among the data samples. However, processing a sequence of three
consecutive samples with a neural network or a GRU solved that issue and led to a higher
R2 value and the predictions aligned along the 45° line in the scatter plots. Compared to
the unprocessed data in the linear regression, also the neural network already led to good
results for the default datasets. Changing the architecture of the neural network increased
its performance when using more layers and neurons. But compared to the amount of
additional parameters, the performance was not much better and the network probably
learned more noise of our datasets.

Of course, the time to train a neural network is higher than to fit the linear regression.
Also the computation of the prediction takes longer as with the baseline linear regression
model (approximately twice as long). Compared to the time it takes to execute the
experiments on the SUT, the neural networks performed still at least twice as fast. For
the limited CPU datasets, the prediction time of approximately 1 – 2 ms and therefore a
speedup by a factor of up to 500, compared to the mean latencies on the SUT, was a huge
improvement in performance.
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5
Conclusion

In this work we used deep learning methods to create a cost model for an MQTT perfor-
mance test system. The aim of this thesis was to find a cost model which does not require
a lot of effort in preprocessing and at the same time which improves the results of the
prediction compared to the old cost model, a multiple linear regression.

The cost model was trained to predict the latency of MQTT broker implementations and
integrated into a test system which then compares the performances of them. The datasets
used for training were log-data of different testing scenarios and broker implementations.
The data was automatically created by the test system, using model-based testing within
a property-based testing tool.

To find the most suitable deep learning methods for creating the cost model, we per-
formed an extensive amount of statistical analysis. We found out that, because of schedul-
ing on the test server which ran the broker as well as all the clients, a strong dependency
on clients and between consecutive samples exits. These dependencies made it necessary
to pick a recurrent neural network, which is capable of processing multiple time steps
from the past. The results achieved with GRUs were a huge improvement to the linear
regression baseline, but, because of the complex architecture and vast amounts of weights,
prediction took around 4 ms, which was not necessarily faster than the execution of one
operation on the system-under-test.

The consequence of this performance issue was to slow down the broker and therefore
also to create a more realistic testing environment. IoT applications usually run on small
and energy efficient hardware. To create an environment comparable to this, we slowed
down the the virtual machine, running the broker, to 1 – 10% of the CPU resources of the
test server. This modification did not only give us a more realistic testing environment, it
also helped to get rid of the time dependency for EMQ and VerneMQ. The errors, which
occurred because of scheduling etc., became really small compared to the latencies of the
broker and could therefore be neglected.

The CPU limitations also made the neural network perform really good and to reach an
R2 value of over 0.9 for the EMQ dataset. The architecture of the neural network was kept
as simple as possible and the preprocessing steps do not require any human interaction
and therefore can be performed automated. The integration of our deep learning cost
model made it possible to make performance testing even easier and the prediction of the
performance using a model simulation is faster than to run the performance tests on the
SUT.

5.1 Outlook

In the future, we plan to completely automate the process of training the cost model
using the created log-data and to integrate the learned model into the test system. The
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5 Conclusion

evaluation of other test scenarios and datasets, like the influence of the network etc., is
also a very interesting area we want to step into.

To speed up the prediction time even more, the neural network can be implemented in
C and optimized to be more efficient. Those optimizations however, take a lot of effort to
be implemented and the result is not expected to be dramatically faster than the current
method of serving, using the standard input-output of the prediction process we wrote.

The ability for the neural network to be more precise in extrapolation could also be
investigated. To achieve this, stronger regularization methods within the network can be
used. It would also be interesting to use a Bayesian neural network to get uncertainty
estimates of the prediction, which would also be a good indicator of how well the neural
network performs.
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